1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These classes wrap the information about a call or function
10 // definition used to handle ABI compliancy.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "TargetInfo.h"
15 #include "ABIInfo.h"
16 #include "CGBlocks.h"
17 #include "CGCXXABI.h"
18 #include "CGValue.h"
19 #include "CodeGenFunction.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/RecordLayout.h"
22 #include "clang/Basic/CodeGenOptions.h"
23 #include "clang/Basic/DiagnosticFrontend.h"
24 #include "clang/Basic/Builtins.h"
25 #include "clang/CodeGen/CGFunctionInfo.h"
26 #include "clang/CodeGen/SwiftCallingConv.h"
27 #include "llvm/ADT/SmallBitVector.h"
28 #include "llvm/ADT/StringExtras.h"
29 #include "llvm/ADT/StringSwitch.h"
30 #include "llvm/ADT/Triple.h"
31 #include "llvm/ADT/Twine.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/IntrinsicsNVPTX.h"
34 #include "llvm/IR/IntrinsicsS390.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include <algorithm> // std::sort
38 
39 using namespace clang;
40 using namespace CodeGen;
41 
42 // Helper for coercing an aggregate argument or return value into an integer
43 // array of the same size (including padding) and alignment.  This alternate
44 // coercion happens only for the RenderScript ABI and can be removed after
45 // runtimes that rely on it are no longer supported.
46 //
47 // RenderScript assumes that the size of the argument / return value in the IR
48 // is the same as the size of the corresponding qualified type. This helper
49 // coerces the aggregate type into an array of the same size (including
50 // padding).  This coercion is used in lieu of expansion of struct members or
51 // other canonical coercions that return a coerced-type of larger size.
52 //
53 // Ty          - The argument / return value type
54 // Context     - The associated ASTContext
55 // LLVMContext - The associated LLVMContext
56 static ABIArgInfo coerceToIntArray(QualType Ty,
57                                    ASTContext &Context,
58                                    llvm::LLVMContext &LLVMContext) {
59   // Alignment and Size are measured in bits.
60   const uint64_t Size = Context.getTypeSize(Ty);
61   const uint64_t Alignment = Context.getTypeAlign(Ty);
62   llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment);
63   const uint64_t NumElements = (Size + Alignment - 1) / Alignment;
64   return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
65 }
66 
67 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
68                                llvm::Value *Array,
69                                llvm::Value *Value,
70                                unsigned FirstIndex,
71                                unsigned LastIndex) {
72   // Alternatively, we could emit this as a loop in the source.
73   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
74     llvm::Value *Cell =
75         Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I);
76     Builder.CreateAlignedStore(Value, Cell, CharUnits::One());
77   }
78 }
79 
80 static bool isAggregateTypeForABI(QualType T) {
81   return !CodeGenFunction::hasScalarEvaluationKind(T) ||
82          T->isMemberFunctionPointerType();
83 }
84 
85 ABIArgInfo ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByVal,
86                                             bool Realign,
87                                             llvm::Type *Padding) const {
88   return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), ByVal,
89                                  Realign, Padding);
90 }
91 
92 ABIArgInfo
93 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const {
94   return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty),
95                                       /*ByVal*/ false, Realign);
96 }
97 
98 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
99                              QualType Ty) const {
100   return Address::invalid();
101 }
102 
103 bool ABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const {
104   if (Ty->isPromotableIntegerType())
105     return true;
106 
107   if (const auto *EIT = Ty->getAs<ExtIntType>())
108     if (EIT->getNumBits() < getContext().getTypeSize(getContext().IntTy))
109       return true;
110 
111   return false;
112 }
113 
114 ABIInfo::~ABIInfo() {}
115 
116 /// Does the given lowering require more than the given number of
117 /// registers when expanded?
118 ///
119 /// This is intended to be the basis of a reasonable basic implementation
120 /// of should{Pass,Return}IndirectlyForSwift.
121 ///
122 /// For most targets, a limit of four total registers is reasonable; this
123 /// limits the amount of code required in order to move around the value
124 /// in case it wasn't produced immediately prior to the call by the caller
125 /// (or wasn't produced in exactly the right registers) or isn't used
126 /// immediately within the callee.  But some targets may need to further
127 /// limit the register count due to an inability to support that many
128 /// return registers.
129 static bool occupiesMoreThan(CodeGenTypes &cgt,
130                              ArrayRef<llvm::Type*> scalarTypes,
131                              unsigned maxAllRegisters) {
132   unsigned intCount = 0, fpCount = 0;
133   for (llvm::Type *type : scalarTypes) {
134     if (type->isPointerTy()) {
135       intCount++;
136     } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) {
137       auto ptrWidth = cgt.getTarget().getPointerWidth(0);
138       intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth;
139     } else {
140       assert(type->isVectorTy() || type->isFloatingPointTy());
141       fpCount++;
142     }
143   }
144 
145   return (intCount + fpCount > maxAllRegisters);
146 }
147 
148 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
149                                              llvm::Type *eltTy,
150                                              unsigned numElts) const {
151   // The default implementation of this assumes that the target guarantees
152   // 128-bit SIMD support but nothing more.
153   return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16);
154 }
155 
156 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
157                                               CGCXXABI &CXXABI) {
158   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
159   if (!RD) {
160     if (!RT->getDecl()->canPassInRegisters())
161       return CGCXXABI::RAA_Indirect;
162     return CGCXXABI::RAA_Default;
163   }
164   return CXXABI.getRecordArgABI(RD);
165 }
166 
167 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
168                                               CGCXXABI &CXXABI) {
169   const RecordType *RT = T->getAs<RecordType>();
170   if (!RT)
171     return CGCXXABI::RAA_Default;
172   return getRecordArgABI(RT, CXXABI);
173 }
174 
175 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI,
176                                const ABIInfo &Info) {
177   QualType Ty = FI.getReturnType();
178 
179   if (const auto *RT = Ty->getAs<RecordType>())
180     if (!isa<CXXRecordDecl>(RT->getDecl()) &&
181         !RT->getDecl()->canPassInRegisters()) {
182       FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty);
183       return true;
184     }
185 
186   return CXXABI.classifyReturnType(FI);
187 }
188 
189 /// Pass transparent unions as if they were the type of the first element. Sema
190 /// should ensure that all elements of the union have the same "machine type".
191 static QualType useFirstFieldIfTransparentUnion(QualType Ty) {
192   if (const RecordType *UT = Ty->getAsUnionType()) {
193     const RecordDecl *UD = UT->getDecl();
194     if (UD->hasAttr<TransparentUnionAttr>()) {
195       assert(!UD->field_empty() && "sema created an empty transparent union");
196       return UD->field_begin()->getType();
197     }
198   }
199   return Ty;
200 }
201 
202 CGCXXABI &ABIInfo::getCXXABI() const {
203   return CGT.getCXXABI();
204 }
205 
206 ASTContext &ABIInfo::getContext() const {
207   return CGT.getContext();
208 }
209 
210 llvm::LLVMContext &ABIInfo::getVMContext() const {
211   return CGT.getLLVMContext();
212 }
213 
214 const llvm::DataLayout &ABIInfo::getDataLayout() const {
215   return CGT.getDataLayout();
216 }
217 
218 const TargetInfo &ABIInfo::getTarget() const {
219   return CGT.getTarget();
220 }
221 
222 const CodeGenOptions &ABIInfo::getCodeGenOpts() const {
223   return CGT.getCodeGenOpts();
224 }
225 
226 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); }
227 
228 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
229   return false;
230 }
231 
232 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
233                                                 uint64_t Members) const {
234   return false;
235 }
236 
237 LLVM_DUMP_METHOD void ABIArgInfo::dump() const {
238   raw_ostream &OS = llvm::errs();
239   OS << "(ABIArgInfo Kind=";
240   switch (TheKind) {
241   case Direct:
242     OS << "Direct Type=";
243     if (llvm::Type *Ty = getCoerceToType())
244       Ty->print(OS);
245     else
246       OS << "null";
247     break;
248   case Extend:
249     OS << "Extend";
250     break;
251   case Ignore:
252     OS << "Ignore";
253     break;
254   case InAlloca:
255     OS << "InAlloca Offset=" << getInAllocaFieldIndex();
256     break;
257   case Indirect:
258     OS << "Indirect Align=" << getIndirectAlign().getQuantity()
259        << " ByVal=" << getIndirectByVal()
260        << " Realign=" << getIndirectRealign();
261     break;
262   case IndirectAliased:
263     OS << "Indirect Align=" << getIndirectAlign().getQuantity()
264        << " AadrSpace=" << getIndirectAddrSpace()
265        << " Realign=" << getIndirectRealign();
266     break;
267   case Expand:
268     OS << "Expand";
269     break;
270   case CoerceAndExpand:
271     OS << "CoerceAndExpand Type=";
272     getCoerceAndExpandType()->print(OS);
273     break;
274   }
275   OS << ")\n";
276 }
277 
278 // Dynamically round a pointer up to a multiple of the given alignment.
279 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF,
280                                                   llvm::Value *Ptr,
281                                                   CharUnits Align) {
282   llvm::Value *PtrAsInt = Ptr;
283   // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align;
284   PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy);
285   PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt,
286         llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1));
287   PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt,
288            llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity()));
289   PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt,
290                                         Ptr->getType(),
291                                         Ptr->getName() + ".aligned");
292   return PtrAsInt;
293 }
294 
295 /// Emit va_arg for a platform using the common void* representation,
296 /// where arguments are simply emitted in an array of slots on the stack.
297 ///
298 /// This version implements the core direct-value passing rules.
299 ///
300 /// \param SlotSize - The size and alignment of a stack slot.
301 ///   Each argument will be allocated to a multiple of this number of
302 ///   slots, and all the slots will be aligned to this value.
303 /// \param AllowHigherAlign - The slot alignment is not a cap;
304 ///   an argument type with an alignment greater than the slot size
305 ///   will be emitted on a higher-alignment address, potentially
306 ///   leaving one or more empty slots behind as padding.  If this
307 ///   is false, the returned address might be less-aligned than
308 ///   DirectAlign.
309 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF,
310                                       Address VAListAddr,
311                                       llvm::Type *DirectTy,
312                                       CharUnits DirectSize,
313                                       CharUnits DirectAlign,
314                                       CharUnits SlotSize,
315                                       bool AllowHigherAlign) {
316   // Cast the element type to i8* if necessary.  Some platforms define
317   // va_list as a struct containing an i8* instead of just an i8*.
318   if (VAListAddr.getElementType() != CGF.Int8PtrTy)
319     VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy);
320 
321   llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur");
322 
323   // If the CC aligns values higher than the slot size, do so if needed.
324   Address Addr = Address::invalid();
325   if (AllowHigherAlign && DirectAlign > SlotSize) {
326     Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign),
327                                                  DirectAlign);
328   } else {
329     Addr = Address(Ptr, SlotSize);
330   }
331 
332   // Advance the pointer past the argument, then store that back.
333   CharUnits FullDirectSize = DirectSize.alignTo(SlotSize);
334   Address NextPtr =
335       CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next");
336   CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr);
337 
338   // If the argument is smaller than a slot, and this is a big-endian
339   // target, the argument will be right-adjusted in its slot.
340   if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() &&
341       !DirectTy->isStructTy()) {
342     Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize);
343   }
344 
345   Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy);
346   return Addr;
347 }
348 
349 /// Emit va_arg for a platform using the common void* representation,
350 /// where arguments are simply emitted in an array of slots on the stack.
351 ///
352 /// \param IsIndirect - Values of this type are passed indirectly.
353 /// \param ValueInfo - The size and alignment of this type, generally
354 ///   computed with getContext().getTypeInfoInChars(ValueTy).
355 /// \param SlotSizeAndAlign - The size and alignment of a stack slot.
356 ///   Each argument will be allocated to a multiple of this number of
357 ///   slots, and all the slots will be aligned to this value.
358 /// \param AllowHigherAlign - The slot alignment is not a cap;
359 ///   an argument type with an alignment greater than the slot size
360 ///   will be emitted on a higher-alignment address, potentially
361 ///   leaving one or more empty slots behind as padding.
362 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr,
363                                 QualType ValueTy, bool IsIndirect,
364                                 TypeInfoChars ValueInfo,
365                                 CharUnits SlotSizeAndAlign,
366                                 bool AllowHigherAlign) {
367   // The size and alignment of the value that was passed directly.
368   CharUnits DirectSize, DirectAlign;
369   if (IsIndirect) {
370     DirectSize = CGF.getPointerSize();
371     DirectAlign = CGF.getPointerAlign();
372   } else {
373     DirectSize = ValueInfo.Width;
374     DirectAlign = ValueInfo.Align;
375   }
376 
377   // Cast the address we've calculated to the right type.
378   llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy);
379   if (IsIndirect)
380     DirectTy = DirectTy->getPointerTo(0);
381 
382   Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy,
383                                         DirectSize, DirectAlign,
384                                         SlotSizeAndAlign,
385                                         AllowHigherAlign);
386 
387   if (IsIndirect) {
388     Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.Align);
389   }
390 
391   return Addr;
392 
393 }
394 
395 static Address complexTempStructure(CodeGenFunction &CGF, Address VAListAddr,
396                                     QualType Ty, CharUnits SlotSize,
397                                     CharUnits EltSize, const ComplexType *CTy) {
398   Address Addr =
399       emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, SlotSize * 2,
400                              SlotSize, SlotSize, /*AllowHigher*/ true);
401 
402   Address RealAddr = Addr;
403   Address ImagAddr = RealAddr;
404   if (CGF.CGM.getDataLayout().isBigEndian()) {
405     RealAddr =
406         CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize - EltSize);
407     ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr,
408                                                       2 * SlotSize - EltSize);
409   } else {
410     ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize);
411   }
412 
413   llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType());
414   RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy);
415   ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy);
416   llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal");
417   llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag");
418 
419   Address Temp = CGF.CreateMemTemp(Ty, "vacplx");
420   CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty),
421                          /*init*/ true);
422   return Temp;
423 }
424 
425 static Address emitMergePHI(CodeGenFunction &CGF,
426                             Address Addr1, llvm::BasicBlock *Block1,
427                             Address Addr2, llvm::BasicBlock *Block2,
428                             const llvm::Twine &Name = "") {
429   assert(Addr1.getType() == Addr2.getType());
430   llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name);
431   PHI->addIncoming(Addr1.getPointer(), Block1);
432   PHI->addIncoming(Addr2.getPointer(), Block2);
433   CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment());
434   return Address(PHI, Align);
435 }
436 
437 TargetCodeGenInfo::~TargetCodeGenInfo() = default;
438 
439 // If someone can figure out a general rule for this, that would be great.
440 // It's probably just doomed to be platform-dependent, though.
441 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
442   // Verified for:
443   //   x86-64     FreeBSD, Linux, Darwin
444   //   x86-32     FreeBSD, Linux, Darwin
445   //   PowerPC    Linux, Darwin
446   //   ARM        Darwin (*not* EABI)
447   //   AArch64    Linux
448   return 32;
449 }
450 
451 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
452                                      const FunctionNoProtoType *fnType) const {
453   // The following conventions are known to require this to be false:
454   //   x86_stdcall
455   //   MIPS
456   // For everything else, we just prefer false unless we opt out.
457   return false;
458 }
459 
460 void
461 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
462                                              llvm::SmallString<24> &Opt) const {
463   // This assumes the user is passing a library name like "rt" instead of a
464   // filename like "librt.a/so", and that they don't care whether it's static or
465   // dynamic.
466   Opt = "-l";
467   Opt += Lib;
468 }
469 
470 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const {
471   // OpenCL kernels are called via an explicit runtime API with arguments
472   // set with clSetKernelArg(), not as normal sub-functions.
473   // Return SPIR_KERNEL by default as the kernel calling convention to
474   // ensure the fingerprint is fixed such way that each OpenCL argument
475   // gets one matching argument in the produced kernel function argument
476   // list to enable feasible implementation of clSetKernelArg() with
477   // aggregates etc. In case we would use the default C calling conv here,
478   // clSetKernelArg() might break depending on the target-specific
479   // conventions; different targets might split structs passed as values
480   // to multiple function arguments etc.
481   return llvm::CallingConv::SPIR_KERNEL;
482 }
483 
484 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM,
485     llvm::PointerType *T, QualType QT) const {
486   return llvm::ConstantPointerNull::get(T);
487 }
488 
489 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
490                                                    const VarDecl *D) const {
491   assert(!CGM.getLangOpts().OpenCL &&
492          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
493          "Address space agnostic languages only");
494   return D ? D->getType().getAddressSpace() : LangAS::Default;
495 }
496 
497 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast(
498     CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr,
499     LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const {
500   // Since target may map different address spaces in AST to the same address
501   // space, an address space conversion may end up as a bitcast.
502   if (auto *C = dyn_cast<llvm::Constant>(Src))
503     return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy);
504   // Try to preserve the source's name to make IR more readable.
505   return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
506       Src, DestTy, Src->hasName() ? Src->getName() + ".ascast" : "");
507 }
508 
509 llvm::Constant *
510 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src,
511                                         LangAS SrcAddr, LangAS DestAddr,
512                                         llvm::Type *DestTy) const {
513   // Since target may map different address spaces in AST to the same address
514   // space, an address space conversion may end up as a bitcast.
515   return llvm::ConstantExpr::getPointerCast(Src, DestTy);
516 }
517 
518 llvm::SyncScope::ID
519 TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts,
520                                       SyncScope Scope,
521                                       llvm::AtomicOrdering Ordering,
522                                       llvm::LLVMContext &Ctx) const {
523   return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */
524 }
525 
526 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
527 
528 /// isEmptyField - Return true iff a the field is "empty", that is it
529 /// is an unnamed bit-field or an (array of) empty record(s).
530 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
531                          bool AllowArrays) {
532   if (FD->isUnnamedBitfield())
533     return true;
534 
535   QualType FT = FD->getType();
536 
537   // Constant arrays of empty records count as empty, strip them off.
538   // Constant arrays of zero length always count as empty.
539   bool WasArray = false;
540   if (AllowArrays)
541     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
542       if (AT->getSize() == 0)
543         return true;
544       FT = AT->getElementType();
545       // The [[no_unique_address]] special case below does not apply to
546       // arrays of C++ empty records, so we need to remember this fact.
547       WasArray = true;
548     }
549 
550   const RecordType *RT = FT->getAs<RecordType>();
551   if (!RT)
552     return false;
553 
554   // C++ record fields are never empty, at least in the Itanium ABI.
555   //
556   // FIXME: We should use a predicate for whether this behavior is true in the
557   // current ABI.
558   //
559   // The exception to the above rule are fields marked with the
560   // [[no_unique_address]] attribute (since C++20).  Those do count as empty
561   // according to the Itanium ABI.  The exception applies only to records,
562   // not arrays of records, so we must also check whether we stripped off an
563   // array type above.
564   if (isa<CXXRecordDecl>(RT->getDecl()) &&
565       (WasArray || !FD->hasAttr<NoUniqueAddressAttr>()))
566     return false;
567 
568   return isEmptyRecord(Context, FT, AllowArrays);
569 }
570 
571 /// isEmptyRecord - Return true iff a structure contains only empty
572 /// fields. Note that a structure with a flexible array member is not
573 /// considered empty.
574 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
575   const RecordType *RT = T->getAs<RecordType>();
576   if (!RT)
577     return false;
578   const RecordDecl *RD = RT->getDecl();
579   if (RD->hasFlexibleArrayMember())
580     return false;
581 
582   // If this is a C++ record, check the bases first.
583   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
584     for (const auto &I : CXXRD->bases())
585       if (!isEmptyRecord(Context, I.getType(), true))
586         return false;
587 
588   for (const auto *I : RD->fields())
589     if (!isEmptyField(Context, I, AllowArrays))
590       return false;
591   return true;
592 }
593 
594 /// isSingleElementStruct - Determine if a structure is a "single
595 /// element struct", i.e. it has exactly one non-empty field or
596 /// exactly one field which is itself a single element
597 /// struct. Structures with flexible array members are never
598 /// considered single element structs.
599 ///
600 /// \return The field declaration for the single non-empty field, if
601 /// it exists.
602 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
603   const RecordType *RT = T->getAs<RecordType>();
604   if (!RT)
605     return nullptr;
606 
607   const RecordDecl *RD = RT->getDecl();
608   if (RD->hasFlexibleArrayMember())
609     return nullptr;
610 
611   const Type *Found = nullptr;
612 
613   // If this is a C++ record, check the bases first.
614   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
615     for (const auto &I : CXXRD->bases()) {
616       // Ignore empty records.
617       if (isEmptyRecord(Context, I.getType(), true))
618         continue;
619 
620       // If we already found an element then this isn't a single-element struct.
621       if (Found)
622         return nullptr;
623 
624       // If this is non-empty and not a single element struct, the composite
625       // cannot be a single element struct.
626       Found = isSingleElementStruct(I.getType(), Context);
627       if (!Found)
628         return nullptr;
629     }
630   }
631 
632   // Check for single element.
633   for (const auto *FD : RD->fields()) {
634     QualType FT = FD->getType();
635 
636     // Ignore empty fields.
637     if (isEmptyField(Context, FD, true))
638       continue;
639 
640     // If we already found an element then this isn't a single-element
641     // struct.
642     if (Found)
643       return nullptr;
644 
645     // Treat single element arrays as the element.
646     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
647       if (AT->getSize().getZExtValue() != 1)
648         break;
649       FT = AT->getElementType();
650     }
651 
652     if (!isAggregateTypeForABI(FT)) {
653       Found = FT.getTypePtr();
654     } else {
655       Found = isSingleElementStruct(FT, Context);
656       if (!Found)
657         return nullptr;
658     }
659   }
660 
661   // We don't consider a struct a single-element struct if it has
662   // padding beyond the element type.
663   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
664     return nullptr;
665 
666   return Found;
667 }
668 
669 namespace {
670 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
671                        const ABIArgInfo &AI) {
672   // This default implementation defers to the llvm backend's va_arg
673   // instruction. It can handle only passing arguments directly
674   // (typically only handled in the backend for primitive types), or
675   // aggregates passed indirectly by pointer (NOTE: if the "byval"
676   // flag has ABI impact in the callee, this implementation cannot
677   // work.)
678 
679   // Only a few cases are covered here at the moment -- those needed
680   // by the default abi.
681   llvm::Value *Val;
682 
683   if (AI.isIndirect()) {
684     assert(!AI.getPaddingType() &&
685            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
686     assert(
687         !AI.getIndirectRealign() &&
688         "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!");
689 
690     auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty);
691     CharUnits TyAlignForABI = TyInfo.Align;
692 
693     llvm::Type *BaseTy =
694         llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
695     llvm::Value *Addr =
696         CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy);
697     return Address(Addr, TyAlignForABI);
698   } else {
699     assert((AI.isDirect() || AI.isExtend()) &&
700            "Unexpected ArgInfo Kind in generic VAArg emitter!");
701 
702     assert(!AI.getInReg() &&
703            "Unexpected InReg seen in arginfo in generic VAArg emitter!");
704     assert(!AI.getPaddingType() &&
705            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
706     assert(!AI.getDirectOffset() &&
707            "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!");
708     assert(!AI.getCoerceToType() &&
709            "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!");
710 
711     Address Temp = CGF.CreateMemTemp(Ty, "varet");
712     Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty));
713     CGF.Builder.CreateStore(Val, Temp);
714     return Temp;
715   }
716 }
717 
718 /// DefaultABIInfo - The default implementation for ABI specific
719 /// details. This implementation provides information which results in
720 /// self-consistent and sensible LLVM IR generation, but does not
721 /// conform to any particular ABI.
722 class DefaultABIInfo : public ABIInfo {
723 public:
724   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
725 
726   ABIArgInfo classifyReturnType(QualType RetTy) const;
727   ABIArgInfo classifyArgumentType(QualType RetTy) const;
728 
729   void computeInfo(CGFunctionInfo &FI) const override {
730     if (!getCXXABI().classifyReturnType(FI))
731       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
732     for (auto &I : FI.arguments())
733       I.info = classifyArgumentType(I.type);
734   }
735 
736   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
737                     QualType Ty) const override {
738     return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty));
739   }
740 };
741 
742 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
743 public:
744   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
745       : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {}
746 };
747 
748 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
749   Ty = useFirstFieldIfTransparentUnion(Ty);
750 
751   if (isAggregateTypeForABI(Ty)) {
752     // Records with non-trivial destructors/copy-constructors should not be
753     // passed by value.
754     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
755       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
756 
757     return getNaturalAlignIndirect(Ty);
758   }
759 
760   // Treat an enum type as its underlying type.
761   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
762     Ty = EnumTy->getDecl()->getIntegerType();
763 
764   ASTContext &Context = getContext();
765   if (const auto *EIT = Ty->getAs<ExtIntType>())
766     if (EIT->getNumBits() >
767         Context.getTypeSize(Context.getTargetInfo().hasInt128Type()
768                                 ? Context.Int128Ty
769                                 : Context.LongLongTy))
770       return getNaturalAlignIndirect(Ty);
771 
772   return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
773                                             : ABIArgInfo::getDirect());
774 }
775 
776 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
777   if (RetTy->isVoidType())
778     return ABIArgInfo::getIgnore();
779 
780   if (isAggregateTypeForABI(RetTy))
781     return getNaturalAlignIndirect(RetTy);
782 
783   // Treat an enum type as its underlying type.
784   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
785     RetTy = EnumTy->getDecl()->getIntegerType();
786 
787   if (const auto *EIT = RetTy->getAs<ExtIntType>())
788     if (EIT->getNumBits() >
789         getContext().getTypeSize(getContext().getTargetInfo().hasInt128Type()
790                                      ? getContext().Int128Ty
791                                      : getContext().LongLongTy))
792       return getNaturalAlignIndirect(RetTy);
793 
794   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
795                                                : ABIArgInfo::getDirect());
796 }
797 
798 //===----------------------------------------------------------------------===//
799 // WebAssembly ABI Implementation
800 //
801 // This is a very simple ABI that relies a lot on DefaultABIInfo.
802 //===----------------------------------------------------------------------===//
803 
804 class WebAssemblyABIInfo final : public SwiftABIInfo {
805 public:
806   enum ABIKind {
807     MVP = 0,
808     ExperimentalMV = 1,
809   };
810 
811 private:
812   DefaultABIInfo defaultInfo;
813   ABIKind Kind;
814 
815 public:
816   explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind)
817       : SwiftABIInfo(CGT), defaultInfo(CGT), Kind(Kind) {}
818 
819 private:
820   ABIArgInfo classifyReturnType(QualType RetTy) const;
821   ABIArgInfo classifyArgumentType(QualType Ty) const;
822 
823   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
824   // non-virtual, but computeInfo and EmitVAArg are virtual, so we
825   // overload them.
826   void computeInfo(CGFunctionInfo &FI) const override {
827     if (!getCXXABI().classifyReturnType(FI))
828       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
829     for (auto &Arg : FI.arguments())
830       Arg.info = classifyArgumentType(Arg.type);
831   }
832 
833   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
834                     QualType Ty) const override;
835 
836   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
837                                     bool asReturnValue) const override {
838     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
839   }
840 
841   bool isSwiftErrorInRegister() const override {
842     return false;
843   }
844 };
845 
846 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo {
847 public:
848   explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
849                                         WebAssemblyABIInfo::ABIKind K)
850       : TargetCodeGenInfo(std::make_unique<WebAssemblyABIInfo>(CGT, K)) {}
851 
852   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
853                            CodeGen::CodeGenModule &CGM) const override {
854     TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
855     if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
856       if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) {
857         llvm::Function *Fn = cast<llvm::Function>(GV);
858         llvm::AttrBuilder B;
859         B.addAttribute("wasm-import-module", Attr->getImportModule());
860         Fn->addFnAttrs(B);
861       }
862       if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) {
863         llvm::Function *Fn = cast<llvm::Function>(GV);
864         llvm::AttrBuilder B;
865         B.addAttribute("wasm-import-name", Attr->getImportName());
866         Fn->addFnAttrs(B);
867       }
868       if (const auto *Attr = FD->getAttr<WebAssemblyExportNameAttr>()) {
869         llvm::Function *Fn = cast<llvm::Function>(GV);
870         llvm::AttrBuilder B;
871         B.addAttribute("wasm-export-name", Attr->getExportName());
872         Fn->addFnAttrs(B);
873       }
874     }
875 
876     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
877       llvm::Function *Fn = cast<llvm::Function>(GV);
878       if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype())
879         Fn->addFnAttr("no-prototype");
880     }
881   }
882 };
883 
884 /// Classify argument of given type \p Ty.
885 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const {
886   Ty = useFirstFieldIfTransparentUnion(Ty);
887 
888   if (isAggregateTypeForABI(Ty)) {
889     // Records with non-trivial destructors/copy-constructors should not be
890     // passed by value.
891     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
892       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
893     // Ignore empty structs/unions.
894     if (isEmptyRecord(getContext(), Ty, true))
895       return ABIArgInfo::getIgnore();
896     // Lower single-element structs to just pass a regular value. TODO: We
897     // could do reasonable-size multiple-element structs too, using getExpand(),
898     // though watch out for things like bitfields.
899     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
900       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
901     // For the experimental multivalue ABI, fully expand all other aggregates
902     if (Kind == ABIKind::ExperimentalMV) {
903       const RecordType *RT = Ty->getAs<RecordType>();
904       assert(RT);
905       bool HasBitField = false;
906       for (auto *Field : RT->getDecl()->fields()) {
907         if (Field->isBitField()) {
908           HasBitField = true;
909           break;
910         }
911       }
912       if (!HasBitField)
913         return ABIArgInfo::getExpand();
914     }
915   }
916 
917   // Otherwise just do the default thing.
918   return defaultInfo.classifyArgumentType(Ty);
919 }
920 
921 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const {
922   if (isAggregateTypeForABI(RetTy)) {
923     // Records with non-trivial destructors/copy-constructors should not be
924     // returned by value.
925     if (!getRecordArgABI(RetTy, getCXXABI())) {
926       // Ignore empty structs/unions.
927       if (isEmptyRecord(getContext(), RetTy, true))
928         return ABIArgInfo::getIgnore();
929       // Lower single-element structs to just return a regular value. TODO: We
930       // could do reasonable-size multiple-element structs too, using
931       // ABIArgInfo::getDirect().
932       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
933         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
934       // For the experimental multivalue ABI, return all other aggregates
935       if (Kind == ABIKind::ExperimentalMV)
936         return ABIArgInfo::getDirect();
937     }
938   }
939 
940   // Otherwise just do the default thing.
941   return defaultInfo.classifyReturnType(RetTy);
942 }
943 
944 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
945                                       QualType Ty) const {
946   bool IsIndirect = isAggregateTypeForABI(Ty) &&
947                     !isEmptyRecord(getContext(), Ty, true) &&
948                     !isSingleElementStruct(Ty, getContext());
949   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
950                           getContext().getTypeInfoInChars(Ty),
951                           CharUnits::fromQuantity(4),
952                           /*AllowHigherAlign=*/true);
953 }
954 
955 //===----------------------------------------------------------------------===//
956 // le32/PNaCl bitcode ABI Implementation
957 //
958 // This is a simplified version of the x86_32 ABI.  Arguments and return values
959 // are always passed on the stack.
960 //===----------------------------------------------------------------------===//
961 
962 class PNaClABIInfo : public ABIInfo {
963  public:
964   PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
965 
966   ABIArgInfo classifyReturnType(QualType RetTy) const;
967   ABIArgInfo classifyArgumentType(QualType RetTy) const;
968 
969   void computeInfo(CGFunctionInfo &FI) const override;
970   Address EmitVAArg(CodeGenFunction &CGF,
971                     Address VAListAddr, QualType Ty) const override;
972 };
973 
974 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
975  public:
976    PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
977        : TargetCodeGenInfo(std::make_unique<PNaClABIInfo>(CGT)) {}
978 };
979 
980 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
981   if (!getCXXABI().classifyReturnType(FI))
982     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
983 
984   for (auto &I : FI.arguments())
985     I.info = classifyArgumentType(I.type);
986 }
987 
988 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
989                                 QualType Ty) const {
990   // The PNaCL ABI is a bit odd, in that varargs don't use normal
991   // function classification. Structs get passed directly for varargs
992   // functions, through a rewriting transform in
993   // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows
994   // this target to actually support a va_arg instructions with an
995   // aggregate type, unlike other targets.
996   return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
997 }
998 
999 /// Classify argument of given type \p Ty.
1000 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
1001   if (isAggregateTypeForABI(Ty)) {
1002     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
1003       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
1004     return getNaturalAlignIndirect(Ty);
1005   } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
1006     // Treat an enum type as its underlying type.
1007     Ty = EnumTy->getDecl()->getIntegerType();
1008   } else if (Ty->isFloatingType()) {
1009     // Floating-point types don't go inreg.
1010     return ABIArgInfo::getDirect();
1011   } else if (const auto *EIT = Ty->getAs<ExtIntType>()) {
1012     // Treat extended integers as integers if <=64, otherwise pass indirectly.
1013     if (EIT->getNumBits() > 64)
1014       return getNaturalAlignIndirect(Ty);
1015     return ABIArgInfo::getDirect();
1016   }
1017 
1018   return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
1019                                             : ABIArgInfo::getDirect());
1020 }
1021 
1022 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
1023   if (RetTy->isVoidType())
1024     return ABIArgInfo::getIgnore();
1025 
1026   // In the PNaCl ABI we always return records/structures on the stack.
1027   if (isAggregateTypeForABI(RetTy))
1028     return getNaturalAlignIndirect(RetTy);
1029 
1030   // Treat extended integers as integers if <=64, otherwise pass indirectly.
1031   if (const auto *EIT = RetTy->getAs<ExtIntType>()) {
1032     if (EIT->getNumBits() > 64)
1033       return getNaturalAlignIndirect(RetTy);
1034     return ABIArgInfo::getDirect();
1035   }
1036 
1037   // Treat an enum type as its underlying type.
1038   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1039     RetTy = EnumTy->getDecl()->getIntegerType();
1040 
1041   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
1042                                                : ABIArgInfo::getDirect());
1043 }
1044 
1045 /// IsX86_MMXType - Return true if this is an MMX type.
1046 bool IsX86_MMXType(llvm::Type *IRType) {
1047   // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
1048   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
1049     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
1050     IRType->getScalarSizeInBits() != 64;
1051 }
1052 
1053 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1054                                           StringRef Constraint,
1055                                           llvm::Type* Ty) {
1056   bool IsMMXCons = llvm::StringSwitch<bool>(Constraint)
1057                      .Cases("y", "&y", "^Ym", true)
1058                      .Default(false);
1059   if (IsMMXCons && Ty->isVectorTy()) {
1060     if (cast<llvm::VectorType>(Ty)->getPrimitiveSizeInBits().getFixedSize() !=
1061         64) {
1062       // Invalid MMX constraint
1063       return nullptr;
1064     }
1065 
1066     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
1067   }
1068 
1069   // No operation needed
1070   return Ty;
1071 }
1072 
1073 /// Returns true if this type can be passed in SSE registers with the
1074 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
1075 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
1076   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
1077     if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) {
1078       if (BT->getKind() == BuiltinType::LongDouble) {
1079         if (&Context.getTargetInfo().getLongDoubleFormat() ==
1080             &llvm::APFloat::x87DoubleExtended())
1081           return false;
1082       }
1083       return true;
1084     }
1085   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
1086     // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
1087     // registers specially.
1088     unsigned VecSize = Context.getTypeSize(VT);
1089     if (VecSize == 128 || VecSize == 256 || VecSize == 512)
1090       return true;
1091   }
1092   return false;
1093 }
1094 
1095 /// Returns true if this aggregate is small enough to be passed in SSE registers
1096 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
1097 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
1098   return NumMembers <= 4;
1099 }
1100 
1101 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86.
1102 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) {
1103   auto AI = ABIArgInfo::getDirect(T);
1104   AI.setInReg(true);
1105   AI.setCanBeFlattened(false);
1106   return AI;
1107 }
1108 
1109 //===----------------------------------------------------------------------===//
1110 // X86-32 ABI Implementation
1111 //===----------------------------------------------------------------------===//
1112 
1113 /// Similar to llvm::CCState, but for Clang.
1114 struct CCState {
1115   CCState(CGFunctionInfo &FI)
1116       : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()) {}
1117 
1118   llvm::SmallBitVector IsPreassigned;
1119   unsigned CC = CallingConv::CC_C;
1120   unsigned FreeRegs = 0;
1121   unsigned FreeSSERegs = 0;
1122 };
1123 
1124 /// X86_32ABIInfo - The X86-32 ABI information.
1125 class X86_32ABIInfo : public SwiftABIInfo {
1126   enum Class {
1127     Integer,
1128     Float
1129   };
1130 
1131   static const unsigned MinABIStackAlignInBytes = 4;
1132 
1133   bool IsDarwinVectorABI;
1134   bool IsRetSmallStructInRegABI;
1135   bool IsWin32StructABI;
1136   bool IsSoftFloatABI;
1137   bool IsMCUABI;
1138   bool IsLinuxABI;
1139   unsigned DefaultNumRegisterParameters;
1140 
1141   static bool isRegisterSize(unsigned Size) {
1142     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
1143   }
1144 
1145   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
1146     // FIXME: Assumes vectorcall is in use.
1147     return isX86VectorTypeForVectorCall(getContext(), Ty);
1148   }
1149 
1150   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
1151                                          uint64_t NumMembers) const override {
1152     // FIXME: Assumes vectorcall is in use.
1153     return isX86VectorCallAggregateSmallEnough(NumMembers);
1154   }
1155 
1156   bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
1157 
1158   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1159   /// such that the argument will be passed in memory.
1160   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
1161 
1162   ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const;
1163 
1164   /// Return the alignment to use for the given type on the stack.
1165   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
1166 
1167   Class classify(QualType Ty) const;
1168   ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
1169   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
1170 
1171   /// Updates the number of available free registers, returns
1172   /// true if any registers were allocated.
1173   bool updateFreeRegs(QualType Ty, CCState &State) const;
1174 
1175   bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg,
1176                                 bool &NeedsPadding) const;
1177   bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const;
1178 
1179   bool canExpandIndirectArgument(QualType Ty) const;
1180 
1181   /// Rewrite the function info so that all memory arguments use
1182   /// inalloca.
1183   void rewriteWithInAlloca(CGFunctionInfo &FI) const;
1184 
1185   void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1186                            CharUnits &StackOffset, ABIArgInfo &Info,
1187                            QualType Type) const;
1188   void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const;
1189 
1190 public:
1191 
1192   void computeInfo(CGFunctionInfo &FI) const override;
1193   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1194                     QualType Ty) const override;
1195 
1196   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1197                 bool RetSmallStructInRegABI, bool Win32StructABI,
1198                 unsigned NumRegisterParameters, bool SoftFloatABI)
1199     : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI),
1200       IsRetSmallStructInRegABI(RetSmallStructInRegABI),
1201       IsWin32StructABI(Win32StructABI), IsSoftFloatABI(SoftFloatABI),
1202       IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()),
1203       IsLinuxABI(CGT.getTarget().getTriple().isOSLinux() ||
1204                  CGT.getTarget().getTriple().isOSCygMing()),
1205       DefaultNumRegisterParameters(NumRegisterParameters) {}
1206 
1207   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
1208                                     bool asReturnValue) const override {
1209     // LLVM's x86-32 lowering currently only assigns up to three
1210     // integer registers and three fp registers.  Oddly, it'll use up to
1211     // four vector registers for vectors, but those can overlap with the
1212     // scalar registers.
1213     return occupiesMoreThan(CGT, scalars, /*total*/ 3);
1214   }
1215 
1216   bool isSwiftErrorInRegister() const override {
1217     // x86-32 lowering does not support passing swifterror in a register.
1218     return false;
1219   }
1220 };
1221 
1222 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
1223 public:
1224   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1225                           bool RetSmallStructInRegABI, bool Win32StructABI,
1226                           unsigned NumRegisterParameters, bool SoftFloatABI)
1227       : TargetCodeGenInfo(std::make_unique<X86_32ABIInfo>(
1228             CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
1229             NumRegisterParameters, SoftFloatABI)) {}
1230 
1231   static bool isStructReturnInRegABI(
1232       const llvm::Triple &Triple, const CodeGenOptions &Opts);
1233 
1234   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1235                            CodeGen::CodeGenModule &CGM) const override;
1236 
1237   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1238     // Darwin uses different dwarf register numbers for EH.
1239     if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
1240     return 4;
1241   }
1242 
1243   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1244                                llvm::Value *Address) const override;
1245 
1246   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1247                                   StringRef Constraint,
1248                                   llvm::Type* Ty) const override {
1249     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1250   }
1251 
1252   void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
1253                                 std::string &Constraints,
1254                                 std::vector<llvm::Type *> &ResultRegTypes,
1255                                 std::vector<llvm::Type *> &ResultTruncRegTypes,
1256                                 std::vector<LValue> &ResultRegDests,
1257                                 std::string &AsmString,
1258                                 unsigned NumOutputs) const override;
1259 
1260   llvm::Constant *
1261   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
1262     unsigned Sig = (0xeb << 0) |  // jmp rel8
1263                    (0x06 << 8) |  //           .+0x08
1264                    ('v' << 16) |
1265                    ('2' << 24);
1266     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
1267   }
1268 
1269   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
1270     return "movl\t%ebp, %ebp"
1271            "\t\t// marker for objc_retainAutoreleaseReturnValue";
1272   }
1273 };
1274 
1275 }
1276 
1277 /// Rewrite input constraint references after adding some output constraints.
1278 /// In the case where there is one output and one input and we add one output,
1279 /// we need to replace all operand references greater than or equal to 1:
1280 ///     mov $0, $1
1281 ///     mov eax, $1
1282 /// The result will be:
1283 ///     mov $0, $2
1284 ///     mov eax, $2
1285 static void rewriteInputConstraintReferences(unsigned FirstIn,
1286                                              unsigned NumNewOuts,
1287                                              std::string &AsmString) {
1288   std::string Buf;
1289   llvm::raw_string_ostream OS(Buf);
1290   size_t Pos = 0;
1291   while (Pos < AsmString.size()) {
1292     size_t DollarStart = AsmString.find('$', Pos);
1293     if (DollarStart == std::string::npos)
1294       DollarStart = AsmString.size();
1295     size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
1296     if (DollarEnd == std::string::npos)
1297       DollarEnd = AsmString.size();
1298     OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
1299     Pos = DollarEnd;
1300     size_t NumDollars = DollarEnd - DollarStart;
1301     if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
1302       // We have an operand reference.
1303       size_t DigitStart = Pos;
1304       if (AsmString[DigitStart] == '{') {
1305         OS << '{';
1306         ++DigitStart;
1307       }
1308       size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
1309       if (DigitEnd == std::string::npos)
1310         DigitEnd = AsmString.size();
1311       StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
1312       unsigned OperandIndex;
1313       if (!OperandStr.getAsInteger(10, OperandIndex)) {
1314         if (OperandIndex >= FirstIn)
1315           OperandIndex += NumNewOuts;
1316         OS << OperandIndex;
1317       } else {
1318         OS << OperandStr;
1319       }
1320       Pos = DigitEnd;
1321     }
1322   }
1323   AsmString = std::move(OS.str());
1324 }
1325 
1326 /// Add output constraints for EAX:EDX because they are return registers.
1327 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
1328     CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
1329     std::vector<llvm::Type *> &ResultRegTypes,
1330     std::vector<llvm::Type *> &ResultTruncRegTypes,
1331     std::vector<LValue> &ResultRegDests, std::string &AsmString,
1332     unsigned NumOutputs) const {
1333   uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
1334 
1335   // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
1336   // larger.
1337   if (!Constraints.empty())
1338     Constraints += ',';
1339   if (RetWidth <= 32) {
1340     Constraints += "={eax}";
1341     ResultRegTypes.push_back(CGF.Int32Ty);
1342   } else {
1343     // Use the 'A' constraint for EAX:EDX.
1344     Constraints += "=A";
1345     ResultRegTypes.push_back(CGF.Int64Ty);
1346   }
1347 
1348   // Truncate EAX or EAX:EDX to an integer of the appropriate size.
1349   llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
1350   ResultTruncRegTypes.push_back(CoerceTy);
1351 
1352   // Coerce the integer by bitcasting the return slot pointer.
1353   ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(CGF),
1354                                                   CoerceTy->getPointerTo()));
1355   ResultRegDests.push_back(ReturnSlot);
1356 
1357   rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
1358 }
1359 
1360 /// shouldReturnTypeInRegister - Determine if the given type should be
1361 /// returned in a register (for the Darwin and MCU ABI).
1362 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
1363                                                ASTContext &Context) const {
1364   uint64_t Size = Context.getTypeSize(Ty);
1365 
1366   // For i386, type must be register sized.
1367   // For the MCU ABI, it only needs to be <= 8-byte
1368   if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size)))
1369    return false;
1370 
1371   if (Ty->isVectorType()) {
1372     // 64- and 128- bit vectors inside structures are not returned in
1373     // registers.
1374     if (Size == 64 || Size == 128)
1375       return false;
1376 
1377     return true;
1378   }
1379 
1380   // If this is a builtin, pointer, enum, complex type, member pointer, or
1381   // member function pointer it is ok.
1382   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
1383       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
1384       Ty->isBlockPointerType() || Ty->isMemberPointerType())
1385     return true;
1386 
1387   // Arrays are treated like records.
1388   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
1389     return shouldReturnTypeInRegister(AT->getElementType(), Context);
1390 
1391   // Otherwise, it must be a record type.
1392   const RecordType *RT = Ty->getAs<RecordType>();
1393   if (!RT) return false;
1394 
1395   // FIXME: Traverse bases here too.
1396 
1397   // Structure types are passed in register if all fields would be
1398   // passed in a register.
1399   for (const auto *FD : RT->getDecl()->fields()) {
1400     // Empty fields are ignored.
1401     if (isEmptyField(Context, FD, true))
1402       continue;
1403 
1404     // Check fields recursively.
1405     if (!shouldReturnTypeInRegister(FD->getType(), Context))
1406       return false;
1407   }
1408   return true;
1409 }
1410 
1411 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
1412   // Treat complex types as the element type.
1413   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
1414     Ty = CTy->getElementType();
1415 
1416   // Check for a type which we know has a simple scalar argument-passing
1417   // convention without any padding.  (We're specifically looking for 32
1418   // and 64-bit integer and integer-equivalents, float, and double.)
1419   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
1420       !Ty->isEnumeralType() && !Ty->isBlockPointerType())
1421     return false;
1422 
1423   uint64_t Size = Context.getTypeSize(Ty);
1424   return Size == 32 || Size == 64;
1425 }
1426 
1427 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD,
1428                           uint64_t &Size) {
1429   for (const auto *FD : RD->fields()) {
1430     // Scalar arguments on the stack get 4 byte alignment on x86. If the
1431     // argument is smaller than 32-bits, expanding the struct will create
1432     // alignment padding.
1433     if (!is32Or64BitBasicType(FD->getType(), Context))
1434       return false;
1435 
1436     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
1437     // how to expand them yet, and the predicate for telling if a bitfield still
1438     // counts as "basic" is more complicated than what we were doing previously.
1439     if (FD->isBitField())
1440       return false;
1441 
1442     Size += Context.getTypeSize(FD->getType());
1443   }
1444   return true;
1445 }
1446 
1447 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD,
1448                                  uint64_t &Size) {
1449   // Don't do this if there are any non-empty bases.
1450   for (const CXXBaseSpecifier &Base : RD->bases()) {
1451     if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(),
1452                               Size))
1453       return false;
1454   }
1455   if (!addFieldSizes(Context, RD, Size))
1456     return false;
1457   return true;
1458 }
1459 
1460 /// Test whether an argument type which is to be passed indirectly (on the
1461 /// stack) would have the equivalent layout if it was expanded into separate
1462 /// arguments. If so, we prefer to do the latter to avoid inhibiting
1463 /// optimizations.
1464 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const {
1465   // We can only expand structure types.
1466   const RecordType *RT = Ty->getAs<RecordType>();
1467   if (!RT)
1468     return false;
1469   const RecordDecl *RD = RT->getDecl();
1470   uint64_t Size = 0;
1471   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1472     if (!IsWin32StructABI) {
1473       // On non-Windows, we have to conservatively match our old bitcode
1474       // prototypes in order to be ABI-compatible at the bitcode level.
1475       if (!CXXRD->isCLike())
1476         return false;
1477     } else {
1478       // Don't do this for dynamic classes.
1479       if (CXXRD->isDynamicClass())
1480         return false;
1481     }
1482     if (!addBaseAndFieldSizes(getContext(), CXXRD, Size))
1483       return false;
1484   } else {
1485     if (!addFieldSizes(getContext(), RD, Size))
1486       return false;
1487   }
1488 
1489   // We can do this if there was no alignment padding.
1490   return Size == getContext().getTypeSize(Ty);
1491 }
1492 
1493 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const {
1494   // If the return value is indirect, then the hidden argument is consuming one
1495   // integer register.
1496   if (State.FreeRegs) {
1497     --State.FreeRegs;
1498     if (!IsMCUABI)
1499       return getNaturalAlignIndirectInReg(RetTy);
1500   }
1501   return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
1502 }
1503 
1504 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
1505                                              CCState &State) const {
1506   if (RetTy->isVoidType())
1507     return ABIArgInfo::getIgnore();
1508 
1509   const Type *Base = nullptr;
1510   uint64_t NumElts = 0;
1511   if ((State.CC == llvm::CallingConv::X86_VectorCall ||
1512        State.CC == llvm::CallingConv::X86_RegCall) &&
1513       isHomogeneousAggregate(RetTy, Base, NumElts)) {
1514     // The LLVM struct type for such an aggregate should lower properly.
1515     return ABIArgInfo::getDirect();
1516   }
1517 
1518   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
1519     // On Darwin, some vectors are returned in registers.
1520     if (IsDarwinVectorABI) {
1521       uint64_t Size = getContext().getTypeSize(RetTy);
1522 
1523       // 128-bit vectors are a special case; they are returned in
1524       // registers and we need to make sure to pick a type the LLVM
1525       // backend will like.
1526       if (Size == 128)
1527         return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
1528             llvm::Type::getInt64Ty(getVMContext()), 2));
1529 
1530       // Always return in register if it fits in a general purpose
1531       // register, or if it is 64 bits and has a single element.
1532       if ((Size == 8 || Size == 16 || Size == 32) ||
1533           (Size == 64 && VT->getNumElements() == 1))
1534         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1535                                                             Size));
1536 
1537       return getIndirectReturnResult(RetTy, State);
1538     }
1539 
1540     return ABIArgInfo::getDirect();
1541   }
1542 
1543   if (isAggregateTypeForABI(RetTy)) {
1544     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
1545       // Structures with flexible arrays are always indirect.
1546       if (RT->getDecl()->hasFlexibleArrayMember())
1547         return getIndirectReturnResult(RetTy, State);
1548     }
1549 
1550     // If specified, structs and unions are always indirect.
1551     if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType())
1552       return getIndirectReturnResult(RetTy, State);
1553 
1554     // Ignore empty structs/unions.
1555     if (isEmptyRecord(getContext(), RetTy, true))
1556       return ABIArgInfo::getIgnore();
1557 
1558     // Return complex of _Float16 as <2 x half> so the backend will use xmm0.
1559     if (const ComplexType *CT = RetTy->getAs<ComplexType>()) {
1560       QualType ET = getContext().getCanonicalType(CT->getElementType());
1561       if (ET->isFloat16Type())
1562         return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
1563             llvm::Type::getHalfTy(getVMContext()), 2));
1564     }
1565 
1566     // Small structures which are register sized are generally returned
1567     // in a register.
1568     if (shouldReturnTypeInRegister(RetTy, getContext())) {
1569       uint64_t Size = getContext().getTypeSize(RetTy);
1570 
1571       // As a special-case, if the struct is a "single-element" struct, and
1572       // the field is of type "float" or "double", return it in a
1573       // floating-point register. (MSVC does not apply this special case.)
1574       // We apply a similar transformation for pointer types to improve the
1575       // quality of the generated IR.
1576       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
1577         if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
1578             || SeltTy->hasPointerRepresentation())
1579           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
1580 
1581       // FIXME: We should be able to narrow this integer in cases with dead
1582       // padding.
1583       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
1584     }
1585 
1586     return getIndirectReturnResult(RetTy, State);
1587   }
1588 
1589   // Treat an enum type as its underlying type.
1590   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1591     RetTy = EnumTy->getDecl()->getIntegerType();
1592 
1593   if (const auto *EIT = RetTy->getAs<ExtIntType>())
1594     if (EIT->getNumBits() > 64)
1595       return getIndirectReturnResult(RetTy, State);
1596 
1597   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
1598                                                : ABIArgInfo::getDirect());
1599 }
1600 
1601 static bool isSIMDVectorType(ASTContext &Context, QualType Ty) {
1602   return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
1603 }
1604 
1605 static bool isRecordWithSIMDVectorType(ASTContext &Context, QualType Ty) {
1606   const RecordType *RT = Ty->getAs<RecordType>();
1607   if (!RT)
1608     return 0;
1609   const RecordDecl *RD = RT->getDecl();
1610 
1611   // If this is a C++ record, check the bases first.
1612   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1613     for (const auto &I : CXXRD->bases())
1614       if (!isRecordWithSIMDVectorType(Context, I.getType()))
1615         return false;
1616 
1617   for (const auto *i : RD->fields()) {
1618     QualType FT = i->getType();
1619 
1620     if (isSIMDVectorType(Context, FT))
1621       return true;
1622 
1623     if (isRecordWithSIMDVectorType(Context, FT))
1624       return true;
1625   }
1626 
1627   return false;
1628 }
1629 
1630 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
1631                                                  unsigned Align) const {
1632   // Otherwise, if the alignment is less than or equal to the minimum ABI
1633   // alignment, just use the default; the backend will handle this.
1634   if (Align <= MinABIStackAlignInBytes)
1635     return 0; // Use default alignment.
1636 
1637   if (IsLinuxABI) {
1638     // Exclude other System V OS (e.g Darwin, PS4 and FreeBSD) since we don't
1639     // want to spend any effort dealing with the ramifications of ABI breaks.
1640     //
1641     // If the vector type is __m128/__m256/__m512, return the default alignment.
1642     if (Ty->isVectorType() && (Align == 16 || Align == 32 || Align == 64))
1643       return Align;
1644   }
1645   // On non-Darwin, the stack type alignment is always 4.
1646   if (!IsDarwinVectorABI) {
1647     // Set explicit alignment, since we may need to realign the top.
1648     return MinABIStackAlignInBytes;
1649   }
1650 
1651   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
1652   if (Align >= 16 && (isSIMDVectorType(getContext(), Ty) ||
1653                       isRecordWithSIMDVectorType(getContext(), Ty)))
1654     return 16;
1655 
1656   return MinABIStackAlignInBytes;
1657 }
1658 
1659 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
1660                                             CCState &State) const {
1661   if (!ByVal) {
1662     if (State.FreeRegs) {
1663       --State.FreeRegs; // Non-byval indirects just use one pointer.
1664       if (!IsMCUABI)
1665         return getNaturalAlignIndirectInReg(Ty);
1666     }
1667     return getNaturalAlignIndirect(Ty, false);
1668   }
1669 
1670   // Compute the byval alignment.
1671   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
1672   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
1673   if (StackAlign == 0)
1674     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true);
1675 
1676   // If the stack alignment is less than the type alignment, realign the
1677   // argument.
1678   bool Realign = TypeAlign > StackAlign;
1679   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign),
1680                                  /*ByVal=*/true, Realign);
1681 }
1682 
1683 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
1684   const Type *T = isSingleElementStruct(Ty, getContext());
1685   if (!T)
1686     T = Ty.getTypePtr();
1687 
1688   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
1689     BuiltinType::Kind K = BT->getKind();
1690     if (K == BuiltinType::Float || K == BuiltinType::Double)
1691       return Float;
1692   }
1693   return Integer;
1694 }
1695 
1696 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const {
1697   if (!IsSoftFloatABI) {
1698     Class C = classify(Ty);
1699     if (C == Float)
1700       return false;
1701   }
1702 
1703   unsigned Size = getContext().getTypeSize(Ty);
1704   unsigned SizeInRegs = (Size + 31) / 32;
1705 
1706   if (SizeInRegs == 0)
1707     return false;
1708 
1709   if (!IsMCUABI) {
1710     if (SizeInRegs > State.FreeRegs) {
1711       State.FreeRegs = 0;
1712       return false;
1713     }
1714   } else {
1715     // The MCU psABI allows passing parameters in-reg even if there are
1716     // earlier parameters that are passed on the stack. Also,
1717     // it does not allow passing >8-byte structs in-register,
1718     // even if there are 3 free registers available.
1719     if (SizeInRegs > State.FreeRegs || SizeInRegs > 2)
1720       return false;
1721   }
1722 
1723   State.FreeRegs -= SizeInRegs;
1724   return true;
1725 }
1726 
1727 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State,
1728                                              bool &InReg,
1729                                              bool &NeedsPadding) const {
1730   // On Windows, aggregates other than HFAs are never passed in registers, and
1731   // they do not consume register slots. Homogenous floating-point aggregates
1732   // (HFAs) have already been dealt with at this point.
1733   if (IsWin32StructABI && isAggregateTypeForABI(Ty))
1734     return false;
1735 
1736   NeedsPadding = false;
1737   InReg = !IsMCUABI;
1738 
1739   if (!updateFreeRegs(Ty, State))
1740     return false;
1741 
1742   if (IsMCUABI)
1743     return true;
1744 
1745   if (State.CC == llvm::CallingConv::X86_FastCall ||
1746       State.CC == llvm::CallingConv::X86_VectorCall ||
1747       State.CC == llvm::CallingConv::X86_RegCall) {
1748     if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs)
1749       NeedsPadding = true;
1750 
1751     return false;
1752   }
1753 
1754   return true;
1755 }
1756 
1757 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const {
1758   if (!updateFreeRegs(Ty, State))
1759     return false;
1760 
1761   if (IsMCUABI)
1762     return false;
1763 
1764   if (State.CC == llvm::CallingConv::X86_FastCall ||
1765       State.CC == llvm::CallingConv::X86_VectorCall ||
1766       State.CC == llvm::CallingConv::X86_RegCall) {
1767     if (getContext().getTypeSize(Ty) > 32)
1768       return false;
1769 
1770     return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() ||
1771         Ty->isReferenceType());
1772   }
1773 
1774   return true;
1775 }
1776 
1777 void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const {
1778   // Vectorcall x86 works subtly different than in x64, so the format is
1779   // a bit different than the x64 version.  First, all vector types (not HVAs)
1780   // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers.
1781   // This differs from the x64 implementation, where the first 6 by INDEX get
1782   // registers.
1783   // In the second pass over the arguments, HVAs are passed in the remaining
1784   // vector registers if possible, or indirectly by address. The address will be
1785   // passed in ECX/EDX if available. Any other arguments are passed according to
1786   // the usual fastcall rules.
1787   MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments();
1788   for (int I = 0, E = Args.size(); I < E; ++I) {
1789     const Type *Base = nullptr;
1790     uint64_t NumElts = 0;
1791     const QualType &Ty = Args[I].type;
1792     if ((Ty->isVectorType() || Ty->isBuiltinType()) &&
1793         isHomogeneousAggregate(Ty, Base, NumElts)) {
1794       if (State.FreeSSERegs >= NumElts) {
1795         State.FreeSSERegs -= NumElts;
1796         Args[I].info = ABIArgInfo::getDirectInReg();
1797         State.IsPreassigned.set(I);
1798       }
1799     }
1800   }
1801 }
1802 
1803 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
1804                                                CCState &State) const {
1805   // FIXME: Set alignment on indirect arguments.
1806   bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall;
1807   bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall;
1808   bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall;
1809 
1810   Ty = useFirstFieldIfTransparentUnion(Ty);
1811   TypeInfo TI = getContext().getTypeInfo(Ty);
1812 
1813   // Check with the C++ ABI first.
1814   const RecordType *RT = Ty->getAs<RecordType>();
1815   if (RT) {
1816     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
1817     if (RAA == CGCXXABI::RAA_Indirect) {
1818       return getIndirectResult(Ty, false, State);
1819     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
1820       // The field index doesn't matter, we'll fix it up later.
1821       return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
1822     }
1823   }
1824 
1825   // Regcall uses the concept of a homogenous vector aggregate, similar
1826   // to other targets.
1827   const Type *Base = nullptr;
1828   uint64_t NumElts = 0;
1829   if ((IsRegCall || IsVectorCall) &&
1830       isHomogeneousAggregate(Ty, Base, NumElts)) {
1831     if (State.FreeSSERegs >= NumElts) {
1832       State.FreeSSERegs -= NumElts;
1833 
1834       // Vectorcall passes HVAs directly and does not flatten them, but regcall
1835       // does.
1836       if (IsVectorCall)
1837         return getDirectX86Hva();
1838 
1839       if (Ty->isBuiltinType() || Ty->isVectorType())
1840         return ABIArgInfo::getDirect();
1841       return ABIArgInfo::getExpand();
1842     }
1843     return getIndirectResult(Ty, /*ByVal=*/false, State);
1844   }
1845 
1846   if (isAggregateTypeForABI(Ty)) {
1847     // Structures with flexible arrays are always indirect.
1848     // FIXME: This should not be byval!
1849     if (RT && RT->getDecl()->hasFlexibleArrayMember())
1850       return getIndirectResult(Ty, true, State);
1851 
1852     // Ignore empty structs/unions on non-Windows.
1853     if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true))
1854       return ABIArgInfo::getIgnore();
1855 
1856     llvm::LLVMContext &LLVMContext = getVMContext();
1857     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
1858     bool NeedsPadding = false;
1859     bool InReg;
1860     if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) {
1861       unsigned SizeInRegs = (TI.Width + 31) / 32;
1862       SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
1863       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
1864       if (InReg)
1865         return ABIArgInfo::getDirectInReg(Result);
1866       else
1867         return ABIArgInfo::getDirect(Result);
1868     }
1869     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
1870 
1871     // Pass over-aligned aggregates on Windows indirectly. This behavior was
1872     // added in MSVC 2015.
1873     if (IsWin32StructABI && TI.isAlignRequired() && TI.Align > 32)
1874       return getIndirectResult(Ty, /*ByVal=*/false, State);
1875 
1876     // Expand small (<= 128-bit) record types when we know that the stack layout
1877     // of those arguments will match the struct. This is important because the
1878     // LLVM backend isn't smart enough to remove byval, which inhibits many
1879     // optimizations.
1880     // Don't do this for the MCU if there are still free integer registers
1881     // (see X86_64 ABI for full explanation).
1882     if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) &&
1883         canExpandIndirectArgument(Ty))
1884       return ABIArgInfo::getExpandWithPadding(
1885           IsFastCall || IsVectorCall || IsRegCall, PaddingType);
1886 
1887     return getIndirectResult(Ty, true, State);
1888   }
1889 
1890   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1891     // On Windows, vectors are passed directly if registers are available, or
1892     // indirectly if not. This avoids the need to align argument memory. Pass
1893     // user-defined vector types larger than 512 bits indirectly for simplicity.
1894     if (IsWin32StructABI) {
1895       if (TI.Width <= 512 && State.FreeSSERegs > 0) {
1896         --State.FreeSSERegs;
1897         return ABIArgInfo::getDirectInReg();
1898       }
1899       return getIndirectResult(Ty, /*ByVal=*/false, State);
1900     }
1901 
1902     // On Darwin, some vectors are passed in memory, we handle this by passing
1903     // it as an i8/i16/i32/i64.
1904     if (IsDarwinVectorABI) {
1905       if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) ||
1906           (TI.Width == 64 && VT->getNumElements() == 1))
1907         return ABIArgInfo::getDirect(
1908             llvm::IntegerType::get(getVMContext(), TI.Width));
1909     }
1910 
1911     if (IsX86_MMXType(CGT.ConvertType(Ty)))
1912       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
1913 
1914     return ABIArgInfo::getDirect();
1915   }
1916 
1917 
1918   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1919     Ty = EnumTy->getDecl()->getIntegerType();
1920 
1921   bool InReg = shouldPrimitiveUseInReg(Ty, State);
1922 
1923   if (isPromotableIntegerTypeForABI(Ty)) {
1924     if (InReg)
1925       return ABIArgInfo::getExtendInReg(Ty);
1926     return ABIArgInfo::getExtend(Ty);
1927   }
1928 
1929   if (const auto * EIT = Ty->getAs<ExtIntType>()) {
1930     if (EIT->getNumBits() <= 64) {
1931       if (InReg)
1932         return ABIArgInfo::getDirectInReg();
1933       return ABIArgInfo::getDirect();
1934     }
1935     return getIndirectResult(Ty, /*ByVal=*/false, State);
1936   }
1937 
1938   if (InReg)
1939     return ABIArgInfo::getDirectInReg();
1940   return ABIArgInfo::getDirect();
1941 }
1942 
1943 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1944   CCState State(FI);
1945   if (IsMCUABI)
1946     State.FreeRegs = 3;
1947   else if (State.CC == llvm::CallingConv::X86_FastCall) {
1948     State.FreeRegs = 2;
1949     State.FreeSSERegs = 3;
1950   } else if (State.CC == llvm::CallingConv::X86_VectorCall) {
1951     State.FreeRegs = 2;
1952     State.FreeSSERegs = 6;
1953   } else if (FI.getHasRegParm())
1954     State.FreeRegs = FI.getRegParm();
1955   else if (State.CC == llvm::CallingConv::X86_RegCall) {
1956     State.FreeRegs = 5;
1957     State.FreeSSERegs = 8;
1958   } else if (IsWin32StructABI) {
1959     // Since MSVC 2015, the first three SSE vectors have been passed in
1960     // registers. The rest are passed indirectly.
1961     State.FreeRegs = DefaultNumRegisterParameters;
1962     State.FreeSSERegs = 3;
1963   } else
1964     State.FreeRegs = DefaultNumRegisterParameters;
1965 
1966   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
1967     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
1968   } else if (FI.getReturnInfo().isIndirect()) {
1969     // The C++ ABI is not aware of register usage, so we have to check if the
1970     // return value was sret and put it in a register ourselves if appropriate.
1971     if (State.FreeRegs) {
1972       --State.FreeRegs;  // The sret parameter consumes a register.
1973       if (!IsMCUABI)
1974         FI.getReturnInfo().setInReg(true);
1975     }
1976   }
1977 
1978   // The chain argument effectively gives us another free register.
1979   if (FI.isChainCall())
1980     ++State.FreeRegs;
1981 
1982   // For vectorcall, do a first pass over the arguments, assigning FP and vector
1983   // arguments to XMM registers as available.
1984   if (State.CC == llvm::CallingConv::X86_VectorCall)
1985     runVectorCallFirstPass(FI, State);
1986 
1987   bool UsedInAlloca = false;
1988   MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments();
1989   for (int I = 0, E = Args.size(); I < E; ++I) {
1990     // Skip arguments that have already been assigned.
1991     if (State.IsPreassigned.test(I))
1992       continue;
1993 
1994     Args[I].info = classifyArgumentType(Args[I].type, State);
1995     UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca);
1996   }
1997 
1998   // If we needed to use inalloca for any argument, do a second pass and rewrite
1999   // all the memory arguments to use inalloca.
2000   if (UsedInAlloca)
2001     rewriteWithInAlloca(FI);
2002 }
2003 
2004 void
2005 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
2006                                    CharUnits &StackOffset, ABIArgInfo &Info,
2007                                    QualType Type) const {
2008   // Arguments are always 4-byte-aligned.
2009   CharUnits WordSize = CharUnits::fromQuantity(4);
2010   assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct");
2011 
2012   // sret pointers and indirect things will require an extra pointer
2013   // indirection, unless they are byval. Most things are byval, and will not
2014   // require this indirection.
2015   bool IsIndirect = false;
2016   if (Info.isIndirect() && !Info.getIndirectByVal())
2017     IsIndirect = true;
2018   Info = ABIArgInfo::getInAlloca(FrameFields.size(), IsIndirect);
2019   llvm::Type *LLTy = CGT.ConvertTypeForMem(Type);
2020   if (IsIndirect)
2021     LLTy = LLTy->getPointerTo(0);
2022   FrameFields.push_back(LLTy);
2023   StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(Type);
2024 
2025   // Insert padding bytes to respect alignment.
2026   CharUnits FieldEnd = StackOffset;
2027   StackOffset = FieldEnd.alignTo(WordSize);
2028   if (StackOffset != FieldEnd) {
2029     CharUnits NumBytes = StackOffset - FieldEnd;
2030     llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
2031     Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity());
2032     FrameFields.push_back(Ty);
2033   }
2034 }
2035 
2036 static bool isArgInAlloca(const ABIArgInfo &Info) {
2037   // Leave ignored and inreg arguments alone.
2038   switch (Info.getKind()) {
2039   case ABIArgInfo::InAlloca:
2040     return true;
2041   case ABIArgInfo::Ignore:
2042   case ABIArgInfo::IndirectAliased:
2043     return false;
2044   case ABIArgInfo::Indirect:
2045   case ABIArgInfo::Direct:
2046   case ABIArgInfo::Extend:
2047     return !Info.getInReg();
2048   case ABIArgInfo::Expand:
2049   case ABIArgInfo::CoerceAndExpand:
2050     // These are aggregate types which are never passed in registers when
2051     // inalloca is involved.
2052     return true;
2053   }
2054   llvm_unreachable("invalid enum");
2055 }
2056 
2057 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
2058   assert(IsWin32StructABI && "inalloca only supported on win32");
2059 
2060   // Build a packed struct type for all of the arguments in memory.
2061   SmallVector<llvm::Type *, 6> FrameFields;
2062 
2063   // The stack alignment is always 4.
2064   CharUnits StackAlign = CharUnits::fromQuantity(4);
2065 
2066   CharUnits StackOffset;
2067   CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
2068 
2069   // Put 'this' into the struct before 'sret', if necessary.
2070   bool IsThisCall =
2071       FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
2072   ABIArgInfo &Ret = FI.getReturnInfo();
2073   if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
2074       isArgInAlloca(I->info)) {
2075     addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
2076     ++I;
2077   }
2078 
2079   // Put the sret parameter into the inalloca struct if it's in memory.
2080   if (Ret.isIndirect() && !Ret.getInReg()) {
2081     addFieldToArgStruct(FrameFields, StackOffset, Ret, FI.getReturnType());
2082     // On Windows, the hidden sret parameter is always returned in eax.
2083     Ret.setInAllocaSRet(IsWin32StructABI);
2084   }
2085 
2086   // Skip the 'this' parameter in ecx.
2087   if (IsThisCall)
2088     ++I;
2089 
2090   // Put arguments passed in memory into the struct.
2091   for (; I != E; ++I) {
2092     if (isArgInAlloca(I->info))
2093       addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
2094   }
2095 
2096   FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
2097                                         /*isPacked=*/true),
2098                   StackAlign);
2099 }
2100 
2101 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF,
2102                                  Address VAListAddr, QualType Ty) const {
2103 
2104   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
2105 
2106   // x86-32 changes the alignment of certain arguments on the stack.
2107   //
2108   // Just messing with TypeInfo like this works because we never pass
2109   // anything indirectly.
2110   TypeInfo.Align = CharUnits::fromQuantity(
2111                 getTypeStackAlignInBytes(Ty, TypeInfo.Align.getQuantity()));
2112 
2113   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
2114                           TypeInfo, CharUnits::fromQuantity(4),
2115                           /*AllowHigherAlign*/ true);
2116 }
2117 
2118 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
2119     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
2120   assert(Triple.getArch() == llvm::Triple::x86);
2121 
2122   switch (Opts.getStructReturnConvention()) {
2123   case CodeGenOptions::SRCK_Default:
2124     break;
2125   case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
2126     return false;
2127   case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
2128     return true;
2129   }
2130 
2131   if (Triple.isOSDarwin() || Triple.isOSIAMCU())
2132     return true;
2133 
2134   switch (Triple.getOS()) {
2135   case llvm::Triple::DragonFly:
2136   case llvm::Triple::FreeBSD:
2137   case llvm::Triple::OpenBSD:
2138   case llvm::Triple::Win32:
2139     return true;
2140   default:
2141     return false;
2142   }
2143 }
2144 
2145 static void addX86InterruptAttrs(const FunctionDecl *FD, llvm::GlobalValue *GV,
2146                                  CodeGen::CodeGenModule &CGM) {
2147   if (!FD->hasAttr<AnyX86InterruptAttr>())
2148     return;
2149 
2150   llvm::Function *Fn = cast<llvm::Function>(GV);
2151   Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2152   if (FD->getNumParams() == 0)
2153     return;
2154 
2155   auto PtrTy = cast<PointerType>(FD->getParamDecl(0)->getType());
2156   llvm::Type *ByValTy = CGM.getTypes().ConvertType(PtrTy->getPointeeType());
2157   llvm::Attribute NewAttr = llvm::Attribute::getWithByValType(
2158     Fn->getContext(), ByValTy);
2159   Fn->addParamAttr(0, NewAttr);
2160 }
2161 
2162 void X86_32TargetCodeGenInfo::setTargetAttributes(
2163     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2164   if (GV->isDeclaration())
2165     return;
2166   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2167     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2168       llvm::Function *Fn = cast<llvm::Function>(GV);
2169       Fn->addFnAttr("stackrealign");
2170     }
2171 
2172     addX86InterruptAttrs(FD, GV, CGM);
2173   }
2174 }
2175 
2176 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
2177                                                CodeGen::CodeGenFunction &CGF,
2178                                                llvm::Value *Address) const {
2179   CodeGen::CGBuilderTy &Builder = CGF.Builder;
2180 
2181   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
2182 
2183   // 0-7 are the eight integer registers;  the order is different
2184   //   on Darwin (for EH), but the range is the same.
2185   // 8 is %eip.
2186   AssignToArrayRange(Builder, Address, Four8, 0, 8);
2187 
2188   if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
2189     // 12-16 are st(0..4).  Not sure why we stop at 4.
2190     // These have size 16, which is sizeof(long double) on
2191     // platforms with 8-byte alignment for that type.
2192     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
2193     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
2194 
2195   } else {
2196     // 9 is %eflags, which doesn't get a size on Darwin for some
2197     // reason.
2198     Builder.CreateAlignedStore(
2199         Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9),
2200                                CharUnits::One());
2201 
2202     // 11-16 are st(0..5).  Not sure why we stop at 5.
2203     // These have size 12, which is sizeof(long double) on
2204     // platforms with 4-byte alignment for that type.
2205     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
2206     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
2207   }
2208 
2209   return false;
2210 }
2211 
2212 //===----------------------------------------------------------------------===//
2213 // X86-64 ABI Implementation
2214 //===----------------------------------------------------------------------===//
2215 
2216 
2217 namespace {
2218 /// The AVX ABI level for X86 targets.
2219 enum class X86AVXABILevel {
2220   None,
2221   AVX,
2222   AVX512
2223 };
2224 
2225 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
2226 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
2227   switch (AVXLevel) {
2228   case X86AVXABILevel::AVX512:
2229     return 512;
2230   case X86AVXABILevel::AVX:
2231     return 256;
2232   case X86AVXABILevel::None:
2233     return 128;
2234   }
2235   llvm_unreachable("Unknown AVXLevel");
2236 }
2237 
2238 /// X86_64ABIInfo - The X86_64 ABI information.
2239 class X86_64ABIInfo : public SwiftABIInfo {
2240   enum Class {
2241     Integer = 0,
2242     SSE,
2243     SSEUp,
2244     X87,
2245     X87Up,
2246     ComplexX87,
2247     NoClass,
2248     Memory
2249   };
2250 
2251   /// merge - Implement the X86_64 ABI merging algorithm.
2252   ///
2253   /// Merge an accumulating classification \arg Accum with a field
2254   /// classification \arg Field.
2255   ///
2256   /// \param Accum - The accumulating classification. This should
2257   /// always be either NoClass or the result of a previous merge
2258   /// call. In addition, this should never be Memory (the caller
2259   /// should just return Memory for the aggregate).
2260   static Class merge(Class Accum, Class Field);
2261 
2262   /// postMerge - Implement the X86_64 ABI post merging algorithm.
2263   ///
2264   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
2265   /// final MEMORY or SSE classes when necessary.
2266   ///
2267   /// \param AggregateSize - The size of the current aggregate in
2268   /// the classification process.
2269   ///
2270   /// \param Lo - The classification for the parts of the type
2271   /// residing in the low word of the containing object.
2272   ///
2273   /// \param Hi - The classification for the parts of the type
2274   /// residing in the higher words of the containing object.
2275   ///
2276   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
2277 
2278   /// classify - Determine the x86_64 register classes in which the
2279   /// given type T should be passed.
2280   ///
2281   /// \param Lo - The classification for the parts of the type
2282   /// residing in the low word of the containing object.
2283   ///
2284   /// \param Hi - The classification for the parts of the type
2285   /// residing in the high word of the containing object.
2286   ///
2287   /// \param OffsetBase - The bit offset of this type in the
2288   /// containing object.  Some parameters are classified different
2289   /// depending on whether they straddle an eightbyte boundary.
2290   ///
2291   /// \param isNamedArg - Whether the argument in question is a "named"
2292   /// argument, as used in AMD64-ABI 3.5.7.
2293   ///
2294   /// If a word is unused its result will be NoClass; if a type should
2295   /// be passed in Memory then at least the classification of \arg Lo
2296   /// will be Memory.
2297   ///
2298   /// The \arg Lo class will be NoClass iff the argument is ignored.
2299   ///
2300   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
2301   /// also be ComplexX87.
2302   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
2303                 bool isNamedArg) const;
2304 
2305   llvm::Type *GetByteVectorType(QualType Ty) const;
2306   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
2307                                  unsigned IROffset, QualType SourceTy,
2308                                  unsigned SourceOffset) const;
2309   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
2310                                      unsigned IROffset, QualType SourceTy,
2311                                      unsigned SourceOffset) const;
2312 
2313   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2314   /// such that the argument will be returned in memory.
2315   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
2316 
2317   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2318   /// such that the argument will be passed in memory.
2319   ///
2320   /// \param freeIntRegs - The number of free integer registers remaining
2321   /// available.
2322   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
2323 
2324   ABIArgInfo classifyReturnType(QualType RetTy) const;
2325 
2326   ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs,
2327                                   unsigned &neededInt, unsigned &neededSSE,
2328                                   bool isNamedArg) const;
2329 
2330   ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt,
2331                                        unsigned &NeededSSE) const;
2332 
2333   ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
2334                                            unsigned &NeededSSE) const;
2335 
2336   bool IsIllegalVectorType(QualType Ty) const;
2337 
2338   /// The 0.98 ABI revision clarified a lot of ambiguities,
2339   /// unfortunately in ways that were not always consistent with
2340   /// certain previous compilers.  In particular, platforms which
2341   /// required strict binary compatibility with older versions of GCC
2342   /// may need to exempt themselves.
2343   bool honorsRevision0_98() const {
2344     return !getTarget().getTriple().isOSDarwin();
2345   }
2346 
2347   /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to
2348   /// classify it as INTEGER (for compatibility with older clang compilers).
2349   bool classifyIntegerMMXAsSSE() const {
2350     // Clang <= 3.8 did not do this.
2351     if (getContext().getLangOpts().getClangABICompat() <=
2352         LangOptions::ClangABI::Ver3_8)
2353       return false;
2354 
2355     const llvm::Triple &Triple = getTarget().getTriple();
2356     if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4)
2357       return false;
2358     if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10)
2359       return false;
2360     return true;
2361   }
2362 
2363   // GCC classifies vectors of __int128 as memory.
2364   bool passInt128VectorsInMem() const {
2365     // Clang <= 9.0 did not do this.
2366     if (getContext().getLangOpts().getClangABICompat() <=
2367         LangOptions::ClangABI::Ver9)
2368       return false;
2369 
2370     const llvm::Triple &T = getTarget().getTriple();
2371     return T.isOSLinux() || T.isOSNetBSD();
2372   }
2373 
2374   X86AVXABILevel AVXLevel;
2375   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
2376   // 64-bit hardware.
2377   bool Has64BitPointers;
2378 
2379 public:
2380   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) :
2381       SwiftABIInfo(CGT), AVXLevel(AVXLevel),
2382       Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
2383   }
2384 
2385   bool isPassedUsingAVXType(QualType type) const {
2386     unsigned neededInt, neededSSE;
2387     // The freeIntRegs argument doesn't matter here.
2388     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
2389                                            /*isNamedArg*/true);
2390     if (info.isDirect()) {
2391       llvm::Type *ty = info.getCoerceToType();
2392       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
2393         return vectorTy->getPrimitiveSizeInBits().getFixedSize() > 128;
2394     }
2395     return false;
2396   }
2397 
2398   void computeInfo(CGFunctionInfo &FI) const override;
2399 
2400   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2401                     QualType Ty) const override;
2402   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
2403                       QualType Ty) const override;
2404 
2405   bool has64BitPointers() const {
2406     return Has64BitPointers;
2407   }
2408 
2409   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
2410                                     bool asReturnValue) const override {
2411     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2412   }
2413   bool isSwiftErrorInRegister() const override {
2414     return true;
2415   }
2416 };
2417 
2418 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
2419 class WinX86_64ABIInfo : public SwiftABIInfo {
2420 public:
2421   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2422       : SwiftABIInfo(CGT), AVXLevel(AVXLevel),
2423         IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {}
2424 
2425   void computeInfo(CGFunctionInfo &FI) const override;
2426 
2427   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2428                     QualType Ty) const override;
2429 
2430   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
2431     // FIXME: Assumes vectorcall is in use.
2432     return isX86VectorTypeForVectorCall(getContext(), Ty);
2433   }
2434 
2435   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
2436                                          uint64_t NumMembers) const override {
2437     // FIXME: Assumes vectorcall is in use.
2438     return isX86VectorCallAggregateSmallEnough(NumMembers);
2439   }
2440 
2441   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars,
2442                                     bool asReturnValue) const override {
2443     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2444   }
2445 
2446   bool isSwiftErrorInRegister() const override {
2447     return true;
2448   }
2449 
2450 private:
2451   ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType,
2452                       bool IsVectorCall, bool IsRegCall) const;
2453   ABIArgInfo reclassifyHvaArgForVectorCall(QualType Ty, unsigned &FreeSSERegs,
2454                                            const ABIArgInfo &current) const;
2455 
2456   X86AVXABILevel AVXLevel;
2457 
2458   bool IsMingw64;
2459 };
2460 
2461 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2462 public:
2463   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2464       : TargetCodeGenInfo(std::make_unique<X86_64ABIInfo>(CGT, AVXLevel)) {}
2465 
2466   const X86_64ABIInfo &getABIInfo() const {
2467     return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
2468   }
2469 
2470   /// Disable tail call on x86-64. The epilogue code before the tail jump blocks
2471   /// autoreleaseRV/retainRV and autoreleaseRV/unsafeClaimRV optimizations.
2472   bool markARCOptimizedReturnCallsAsNoTail() const override { return true; }
2473 
2474   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2475     return 7;
2476   }
2477 
2478   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2479                                llvm::Value *Address) const override {
2480     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2481 
2482     // 0-15 are the 16 integer registers.
2483     // 16 is %rip.
2484     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2485     return false;
2486   }
2487 
2488   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
2489                                   StringRef Constraint,
2490                                   llvm::Type* Ty) const override {
2491     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
2492   }
2493 
2494   bool isNoProtoCallVariadic(const CallArgList &args,
2495                              const FunctionNoProtoType *fnType) const override {
2496     // The default CC on x86-64 sets %al to the number of SSA
2497     // registers used, and GCC sets this when calling an unprototyped
2498     // function, so we override the default behavior.  However, don't do
2499     // that when AVX types are involved: the ABI explicitly states it is
2500     // undefined, and it doesn't work in practice because of how the ABI
2501     // defines varargs anyway.
2502     if (fnType->getCallConv() == CC_C) {
2503       bool HasAVXType = false;
2504       for (CallArgList::const_iterator
2505              it = args.begin(), ie = args.end(); it != ie; ++it) {
2506         if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
2507           HasAVXType = true;
2508           break;
2509         }
2510       }
2511 
2512       if (!HasAVXType)
2513         return true;
2514     }
2515 
2516     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
2517   }
2518 
2519   llvm::Constant *
2520   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
2521     unsigned Sig = (0xeb << 0) | // jmp rel8
2522                    (0x06 << 8) | //           .+0x08
2523                    ('v' << 16) |
2524                    ('2' << 24);
2525     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
2526   }
2527 
2528   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2529                            CodeGen::CodeGenModule &CGM) const override {
2530     if (GV->isDeclaration())
2531       return;
2532     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2533       if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2534         llvm::Function *Fn = cast<llvm::Function>(GV);
2535         Fn->addFnAttr("stackrealign");
2536       }
2537 
2538       addX86InterruptAttrs(FD, GV, CGM);
2539     }
2540   }
2541 
2542   void checkFunctionCallABI(CodeGenModule &CGM, SourceLocation CallLoc,
2543                             const FunctionDecl *Caller,
2544                             const FunctionDecl *Callee,
2545                             const CallArgList &Args) const override;
2546 };
2547 
2548 static void initFeatureMaps(const ASTContext &Ctx,
2549                             llvm::StringMap<bool> &CallerMap,
2550                             const FunctionDecl *Caller,
2551                             llvm::StringMap<bool> &CalleeMap,
2552                             const FunctionDecl *Callee) {
2553   if (CalleeMap.empty() && CallerMap.empty()) {
2554     // The caller is potentially nullptr in the case where the call isn't in a
2555     // function.  In this case, the getFunctionFeatureMap ensures we just get
2556     // the TU level setting (since it cannot be modified by 'target'..
2557     Ctx.getFunctionFeatureMap(CallerMap, Caller);
2558     Ctx.getFunctionFeatureMap(CalleeMap, Callee);
2559   }
2560 }
2561 
2562 static bool checkAVXParamFeature(DiagnosticsEngine &Diag,
2563                                  SourceLocation CallLoc,
2564                                  const llvm::StringMap<bool> &CallerMap,
2565                                  const llvm::StringMap<bool> &CalleeMap,
2566                                  QualType Ty, StringRef Feature,
2567                                  bool IsArgument) {
2568   bool CallerHasFeat = CallerMap.lookup(Feature);
2569   bool CalleeHasFeat = CalleeMap.lookup(Feature);
2570   if (!CallerHasFeat && !CalleeHasFeat)
2571     return Diag.Report(CallLoc, diag::warn_avx_calling_convention)
2572            << IsArgument << Ty << Feature;
2573 
2574   // Mixing calling conventions here is very clearly an error.
2575   if (!CallerHasFeat || !CalleeHasFeat)
2576     return Diag.Report(CallLoc, diag::err_avx_calling_convention)
2577            << IsArgument << Ty << Feature;
2578 
2579   // Else, both caller and callee have the required feature, so there is no need
2580   // to diagnose.
2581   return false;
2582 }
2583 
2584 static bool checkAVXParam(DiagnosticsEngine &Diag, ASTContext &Ctx,
2585                           SourceLocation CallLoc,
2586                           const llvm::StringMap<bool> &CallerMap,
2587                           const llvm::StringMap<bool> &CalleeMap, QualType Ty,
2588                           bool IsArgument) {
2589   uint64_t Size = Ctx.getTypeSize(Ty);
2590   if (Size > 256)
2591     return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty,
2592                                 "avx512f", IsArgument);
2593 
2594   if (Size > 128)
2595     return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, "avx",
2596                                 IsArgument);
2597 
2598   return false;
2599 }
2600 
2601 void X86_64TargetCodeGenInfo::checkFunctionCallABI(
2602     CodeGenModule &CGM, SourceLocation CallLoc, const FunctionDecl *Caller,
2603     const FunctionDecl *Callee, const CallArgList &Args) const {
2604   llvm::StringMap<bool> CallerMap;
2605   llvm::StringMap<bool> CalleeMap;
2606   unsigned ArgIndex = 0;
2607 
2608   // We need to loop through the actual call arguments rather than the the
2609   // function's parameters, in case this variadic.
2610   for (const CallArg &Arg : Args) {
2611     // The "avx" feature changes how vectors >128 in size are passed. "avx512f"
2612     // additionally changes how vectors >256 in size are passed. Like GCC, we
2613     // warn when a function is called with an argument where this will change.
2614     // Unlike GCC, we also error when it is an obvious ABI mismatch, that is,
2615     // the caller and callee features are mismatched.
2616     // Unfortunately, we cannot do this diagnostic in SEMA, since the callee can
2617     // change its ABI with attribute-target after this call.
2618     if (Arg.getType()->isVectorType() &&
2619         CGM.getContext().getTypeSize(Arg.getType()) > 128) {
2620       initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee);
2621       QualType Ty = Arg.getType();
2622       // The CallArg seems to have desugared the type already, so for clearer
2623       // diagnostics, replace it with the type in the FunctionDecl if possible.
2624       if (ArgIndex < Callee->getNumParams())
2625         Ty = Callee->getParamDecl(ArgIndex)->getType();
2626 
2627       if (checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap,
2628                         CalleeMap, Ty, /*IsArgument*/ true))
2629         return;
2630     }
2631     ++ArgIndex;
2632   }
2633 
2634   // Check return always, as we don't have a good way of knowing in codegen
2635   // whether this value is used, tail-called, etc.
2636   if (Callee->getReturnType()->isVectorType() &&
2637       CGM.getContext().getTypeSize(Callee->getReturnType()) > 128) {
2638     initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee);
2639     checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap,
2640                   CalleeMap, Callee->getReturnType(),
2641                   /*IsArgument*/ false);
2642   }
2643 }
2644 
2645 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
2646   // If the argument does not end in .lib, automatically add the suffix.
2647   // If the argument contains a space, enclose it in quotes.
2648   // This matches the behavior of MSVC.
2649   bool Quote = (Lib.find(' ') != StringRef::npos);
2650   std::string ArgStr = Quote ? "\"" : "";
2651   ArgStr += Lib;
2652   if (!Lib.endswith_insensitive(".lib") && !Lib.endswith_insensitive(".a"))
2653     ArgStr += ".lib";
2654   ArgStr += Quote ? "\"" : "";
2655   return ArgStr;
2656 }
2657 
2658 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
2659 public:
2660   WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2661         bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI,
2662         unsigned NumRegisterParameters)
2663     : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI,
2664         Win32StructABI, NumRegisterParameters, false) {}
2665 
2666   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2667                            CodeGen::CodeGenModule &CGM) const override;
2668 
2669   void getDependentLibraryOption(llvm::StringRef Lib,
2670                                  llvm::SmallString<24> &Opt) const override {
2671     Opt = "/DEFAULTLIB:";
2672     Opt += qualifyWindowsLibrary(Lib);
2673   }
2674 
2675   void getDetectMismatchOption(llvm::StringRef Name,
2676                                llvm::StringRef Value,
2677                                llvm::SmallString<32> &Opt) const override {
2678     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2679   }
2680 };
2681 
2682 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2683                                           CodeGen::CodeGenModule &CGM) {
2684   if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) {
2685 
2686     if (CGM.getCodeGenOpts().StackProbeSize != 4096)
2687       Fn->addFnAttr("stack-probe-size",
2688                     llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
2689     if (CGM.getCodeGenOpts().NoStackArgProbe)
2690       Fn->addFnAttr("no-stack-arg-probe");
2691   }
2692 }
2693 
2694 void WinX86_32TargetCodeGenInfo::setTargetAttributes(
2695     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2696   X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2697   if (GV->isDeclaration())
2698     return;
2699   addStackProbeTargetAttributes(D, GV, CGM);
2700 }
2701 
2702 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2703 public:
2704   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2705                              X86AVXABILevel AVXLevel)
2706       : TargetCodeGenInfo(std::make_unique<WinX86_64ABIInfo>(CGT, AVXLevel)) {}
2707 
2708   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2709                            CodeGen::CodeGenModule &CGM) const override;
2710 
2711   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2712     return 7;
2713   }
2714 
2715   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2716                                llvm::Value *Address) const override {
2717     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2718 
2719     // 0-15 are the 16 integer registers.
2720     // 16 is %rip.
2721     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2722     return false;
2723   }
2724 
2725   void getDependentLibraryOption(llvm::StringRef Lib,
2726                                  llvm::SmallString<24> &Opt) const override {
2727     Opt = "/DEFAULTLIB:";
2728     Opt += qualifyWindowsLibrary(Lib);
2729   }
2730 
2731   void getDetectMismatchOption(llvm::StringRef Name,
2732                                llvm::StringRef Value,
2733                                llvm::SmallString<32> &Opt) const override {
2734     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2735   }
2736 };
2737 
2738 void WinX86_64TargetCodeGenInfo::setTargetAttributes(
2739     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2740   TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2741   if (GV->isDeclaration())
2742     return;
2743   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2744     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2745       llvm::Function *Fn = cast<llvm::Function>(GV);
2746       Fn->addFnAttr("stackrealign");
2747     }
2748 
2749     addX86InterruptAttrs(FD, GV, CGM);
2750   }
2751 
2752   addStackProbeTargetAttributes(D, GV, CGM);
2753 }
2754 }
2755 
2756 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
2757                               Class &Hi) const {
2758   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
2759   //
2760   // (a) If one of the classes is Memory, the whole argument is passed in
2761   //     memory.
2762   //
2763   // (b) If X87UP is not preceded by X87, the whole argument is passed in
2764   //     memory.
2765   //
2766   // (c) If the size of the aggregate exceeds two eightbytes and the first
2767   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
2768   //     argument is passed in memory. NOTE: This is necessary to keep the
2769   //     ABI working for processors that don't support the __m256 type.
2770   //
2771   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
2772   //
2773   // Some of these are enforced by the merging logic.  Others can arise
2774   // only with unions; for example:
2775   //   union { _Complex double; unsigned; }
2776   //
2777   // Note that clauses (b) and (c) were added in 0.98.
2778   //
2779   if (Hi == Memory)
2780     Lo = Memory;
2781   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
2782     Lo = Memory;
2783   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
2784     Lo = Memory;
2785   if (Hi == SSEUp && Lo != SSE)
2786     Hi = SSE;
2787 }
2788 
2789 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
2790   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
2791   // classified recursively so that always two fields are
2792   // considered. The resulting class is calculated according to
2793   // the classes of the fields in the eightbyte:
2794   //
2795   // (a) If both classes are equal, this is the resulting class.
2796   //
2797   // (b) If one of the classes is NO_CLASS, the resulting class is
2798   // the other class.
2799   //
2800   // (c) If one of the classes is MEMORY, the result is the MEMORY
2801   // class.
2802   //
2803   // (d) If one of the classes is INTEGER, the result is the
2804   // INTEGER.
2805   //
2806   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
2807   // MEMORY is used as class.
2808   //
2809   // (f) Otherwise class SSE is used.
2810 
2811   // Accum should never be memory (we should have returned) or
2812   // ComplexX87 (because this cannot be passed in a structure).
2813   assert((Accum != Memory && Accum != ComplexX87) &&
2814          "Invalid accumulated classification during merge.");
2815   if (Accum == Field || Field == NoClass)
2816     return Accum;
2817   if (Field == Memory)
2818     return Memory;
2819   if (Accum == NoClass)
2820     return Field;
2821   if (Accum == Integer || Field == Integer)
2822     return Integer;
2823   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
2824       Accum == X87 || Accum == X87Up)
2825     return Memory;
2826   return SSE;
2827 }
2828 
2829 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
2830                              Class &Lo, Class &Hi, bool isNamedArg) const {
2831   // FIXME: This code can be simplified by introducing a simple value class for
2832   // Class pairs with appropriate constructor methods for the various
2833   // situations.
2834 
2835   // FIXME: Some of the split computations are wrong; unaligned vectors
2836   // shouldn't be passed in registers for example, so there is no chance they
2837   // can straddle an eightbyte. Verify & simplify.
2838 
2839   Lo = Hi = NoClass;
2840 
2841   Class &Current = OffsetBase < 64 ? Lo : Hi;
2842   Current = Memory;
2843 
2844   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
2845     BuiltinType::Kind k = BT->getKind();
2846 
2847     if (k == BuiltinType::Void) {
2848       Current = NoClass;
2849     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
2850       Lo = Integer;
2851       Hi = Integer;
2852     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
2853       Current = Integer;
2854     } else if (k == BuiltinType::Float || k == BuiltinType::Double ||
2855                k == BuiltinType::Float16) {
2856       Current = SSE;
2857     } else if (k == BuiltinType::LongDouble) {
2858       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2859       if (LDF == &llvm::APFloat::IEEEquad()) {
2860         Lo = SSE;
2861         Hi = SSEUp;
2862       } else if (LDF == &llvm::APFloat::x87DoubleExtended()) {
2863         Lo = X87;
2864         Hi = X87Up;
2865       } else if (LDF == &llvm::APFloat::IEEEdouble()) {
2866         Current = SSE;
2867       } else
2868         llvm_unreachable("unexpected long double representation!");
2869     }
2870     // FIXME: _Decimal32 and _Decimal64 are SSE.
2871     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
2872     return;
2873   }
2874 
2875   if (const EnumType *ET = Ty->getAs<EnumType>()) {
2876     // Classify the underlying integer type.
2877     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
2878     return;
2879   }
2880 
2881   if (Ty->hasPointerRepresentation()) {
2882     Current = Integer;
2883     return;
2884   }
2885 
2886   if (Ty->isMemberPointerType()) {
2887     if (Ty->isMemberFunctionPointerType()) {
2888       if (Has64BitPointers) {
2889         // If Has64BitPointers, this is an {i64, i64}, so classify both
2890         // Lo and Hi now.
2891         Lo = Hi = Integer;
2892       } else {
2893         // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
2894         // straddles an eightbyte boundary, Hi should be classified as well.
2895         uint64_t EB_FuncPtr = (OffsetBase) / 64;
2896         uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
2897         if (EB_FuncPtr != EB_ThisAdj) {
2898           Lo = Hi = Integer;
2899         } else {
2900           Current = Integer;
2901         }
2902       }
2903     } else {
2904       Current = Integer;
2905     }
2906     return;
2907   }
2908 
2909   if (const VectorType *VT = Ty->getAs<VectorType>()) {
2910     uint64_t Size = getContext().getTypeSize(VT);
2911     if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
2912       // gcc passes the following as integer:
2913       // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
2914       // 2 bytes - <2 x char>, <1 x short>
2915       // 1 byte  - <1 x char>
2916       Current = Integer;
2917 
2918       // If this type crosses an eightbyte boundary, it should be
2919       // split.
2920       uint64_t EB_Lo = (OffsetBase) / 64;
2921       uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
2922       if (EB_Lo != EB_Hi)
2923         Hi = Lo;
2924     } else if (Size == 64) {
2925       QualType ElementType = VT->getElementType();
2926 
2927       // gcc passes <1 x double> in memory. :(
2928       if (ElementType->isSpecificBuiltinType(BuiltinType::Double))
2929         return;
2930 
2931       // gcc passes <1 x long long> as SSE but clang used to unconditionally
2932       // pass them as integer.  For platforms where clang is the de facto
2933       // platform compiler, we must continue to use integer.
2934       if (!classifyIntegerMMXAsSSE() &&
2935           (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) ||
2936            ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
2937            ElementType->isSpecificBuiltinType(BuiltinType::Long) ||
2938            ElementType->isSpecificBuiltinType(BuiltinType::ULong)))
2939         Current = Integer;
2940       else
2941         Current = SSE;
2942 
2943       // If this type crosses an eightbyte boundary, it should be
2944       // split.
2945       if (OffsetBase && OffsetBase != 64)
2946         Hi = Lo;
2947     } else if (Size == 128 ||
2948                (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
2949       QualType ElementType = VT->getElementType();
2950 
2951       // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :(
2952       if (passInt128VectorsInMem() && Size != 128 &&
2953           (ElementType->isSpecificBuiltinType(BuiltinType::Int128) ||
2954            ElementType->isSpecificBuiltinType(BuiltinType::UInt128)))
2955         return;
2956 
2957       // Arguments of 256-bits are split into four eightbyte chunks. The
2958       // least significant one belongs to class SSE and all the others to class
2959       // SSEUP. The original Lo and Hi design considers that types can't be
2960       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
2961       // This design isn't correct for 256-bits, but since there're no cases
2962       // where the upper parts would need to be inspected, avoid adding
2963       // complexity and just consider Hi to match the 64-256 part.
2964       //
2965       // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
2966       // registers if they are "named", i.e. not part of the "..." of a
2967       // variadic function.
2968       //
2969       // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
2970       // split into eight eightbyte chunks, one SSE and seven SSEUP.
2971       Lo = SSE;
2972       Hi = SSEUp;
2973     }
2974     return;
2975   }
2976 
2977   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
2978     QualType ET = getContext().getCanonicalType(CT->getElementType());
2979 
2980     uint64_t Size = getContext().getTypeSize(Ty);
2981     if (ET->isIntegralOrEnumerationType()) {
2982       if (Size <= 64)
2983         Current = Integer;
2984       else if (Size <= 128)
2985         Lo = Hi = Integer;
2986     } else if (ET->isFloat16Type() || ET == getContext().FloatTy) {
2987       Current = SSE;
2988     } else if (ET == getContext().DoubleTy) {
2989       Lo = Hi = SSE;
2990     } else if (ET == getContext().LongDoubleTy) {
2991       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2992       if (LDF == &llvm::APFloat::IEEEquad())
2993         Current = Memory;
2994       else if (LDF == &llvm::APFloat::x87DoubleExtended())
2995         Current = ComplexX87;
2996       else if (LDF == &llvm::APFloat::IEEEdouble())
2997         Lo = Hi = SSE;
2998       else
2999         llvm_unreachable("unexpected long double representation!");
3000     }
3001 
3002     // If this complex type crosses an eightbyte boundary then it
3003     // should be split.
3004     uint64_t EB_Real = (OffsetBase) / 64;
3005     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
3006     if (Hi == NoClass && EB_Real != EB_Imag)
3007       Hi = Lo;
3008 
3009     return;
3010   }
3011 
3012   if (const auto *EITy = Ty->getAs<ExtIntType>()) {
3013     if (EITy->getNumBits() <= 64)
3014       Current = Integer;
3015     else if (EITy->getNumBits() <= 128)
3016       Lo = Hi = Integer;
3017     // Larger values need to get passed in memory.
3018     return;
3019   }
3020 
3021   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
3022     // Arrays are treated like structures.
3023 
3024     uint64_t Size = getContext().getTypeSize(Ty);
3025 
3026     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
3027     // than eight eightbytes, ..., it has class MEMORY.
3028     if (Size > 512)
3029       return;
3030 
3031     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
3032     // fields, it has class MEMORY.
3033     //
3034     // Only need to check alignment of array base.
3035     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
3036       return;
3037 
3038     // Otherwise implement simplified merge. We could be smarter about
3039     // this, but it isn't worth it and would be harder to verify.
3040     Current = NoClass;
3041     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
3042     uint64_t ArraySize = AT->getSize().getZExtValue();
3043 
3044     // The only case a 256-bit wide vector could be used is when the array
3045     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
3046     // to work for sizes wider than 128, early check and fallback to memory.
3047     //
3048     if (Size > 128 &&
3049         (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel)))
3050       return;
3051 
3052     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
3053       Class FieldLo, FieldHi;
3054       classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
3055       Lo = merge(Lo, FieldLo);
3056       Hi = merge(Hi, FieldHi);
3057       if (Lo == Memory || Hi == Memory)
3058         break;
3059     }
3060 
3061     postMerge(Size, Lo, Hi);
3062     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
3063     return;
3064   }
3065 
3066   if (const RecordType *RT = Ty->getAs<RecordType>()) {
3067     uint64_t Size = getContext().getTypeSize(Ty);
3068 
3069     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
3070     // than eight eightbytes, ..., it has class MEMORY.
3071     if (Size > 512)
3072       return;
3073 
3074     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
3075     // copy constructor or a non-trivial destructor, it is passed by invisible
3076     // reference.
3077     if (getRecordArgABI(RT, getCXXABI()))
3078       return;
3079 
3080     const RecordDecl *RD = RT->getDecl();
3081 
3082     // Assume variable sized types are passed in memory.
3083     if (RD->hasFlexibleArrayMember())
3084       return;
3085 
3086     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
3087 
3088     // Reset Lo class, this will be recomputed.
3089     Current = NoClass;
3090 
3091     // If this is a C++ record, classify the bases first.
3092     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3093       for (const auto &I : CXXRD->bases()) {
3094         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
3095                "Unexpected base class!");
3096         const auto *Base =
3097             cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
3098 
3099         // Classify this field.
3100         //
3101         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
3102         // single eightbyte, each is classified separately. Each eightbyte gets
3103         // initialized to class NO_CLASS.
3104         Class FieldLo, FieldHi;
3105         uint64_t Offset =
3106           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
3107         classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
3108         Lo = merge(Lo, FieldLo);
3109         Hi = merge(Hi, FieldHi);
3110         if (Lo == Memory || Hi == Memory) {
3111           postMerge(Size, Lo, Hi);
3112           return;
3113         }
3114       }
3115     }
3116 
3117     // Classify the fields one at a time, merging the results.
3118     unsigned idx = 0;
3119     bool UseClang11Compat = getContext().getLangOpts().getClangABICompat() <=
3120                                 LangOptions::ClangABI::Ver11 ||
3121                             getContext().getTargetInfo().getTriple().isPS4();
3122     bool IsUnion = RT->isUnionType() && !UseClang11Compat;
3123 
3124     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3125            i != e; ++i, ++idx) {
3126       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
3127       bool BitField = i->isBitField();
3128 
3129       // Ignore padding bit-fields.
3130       if (BitField && i->isUnnamedBitfield())
3131         continue;
3132 
3133       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
3134       // eight eightbytes, or it contains unaligned fields, it has class MEMORY.
3135       //
3136       // The only case a 256-bit or a 512-bit wide vector could be used is when
3137       // the struct contains a single 256-bit or 512-bit element. Early check
3138       // and fallback to memory.
3139       //
3140       // FIXME: Extended the Lo and Hi logic properly to work for size wider
3141       // than 128.
3142       if (Size > 128 &&
3143           ((!IsUnion && Size != getContext().getTypeSize(i->getType())) ||
3144            Size > getNativeVectorSizeForAVXABI(AVXLevel))) {
3145         Lo = Memory;
3146         postMerge(Size, Lo, Hi);
3147         return;
3148       }
3149       // Note, skip this test for bit-fields, see below.
3150       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
3151         Lo = Memory;
3152         postMerge(Size, Lo, Hi);
3153         return;
3154       }
3155 
3156       // Classify this field.
3157       //
3158       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
3159       // exceeds a single eightbyte, each is classified
3160       // separately. Each eightbyte gets initialized to class
3161       // NO_CLASS.
3162       Class FieldLo, FieldHi;
3163 
3164       // Bit-fields require special handling, they do not force the
3165       // structure to be passed in memory even if unaligned, and
3166       // therefore they can straddle an eightbyte.
3167       if (BitField) {
3168         assert(!i->isUnnamedBitfield());
3169         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
3170         uint64_t Size = i->getBitWidthValue(getContext());
3171 
3172         uint64_t EB_Lo = Offset / 64;
3173         uint64_t EB_Hi = (Offset + Size - 1) / 64;
3174 
3175         if (EB_Lo) {
3176           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
3177           FieldLo = NoClass;
3178           FieldHi = Integer;
3179         } else {
3180           FieldLo = Integer;
3181           FieldHi = EB_Hi ? Integer : NoClass;
3182         }
3183       } else
3184         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
3185       Lo = merge(Lo, FieldLo);
3186       Hi = merge(Hi, FieldHi);
3187       if (Lo == Memory || Hi == Memory)
3188         break;
3189     }
3190 
3191     postMerge(Size, Lo, Hi);
3192   }
3193 }
3194 
3195 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
3196   // If this is a scalar LLVM value then assume LLVM will pass it in the right
3197   // place naturally.
3198   if (!isAggregateTypeForABI(Ty)) {
3199     // Treat an enum type as its underlying type.
3200     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3201       Ty = EnumTy->getDecl()->getIntegerType();
3202 
3203     if (Ty->isExtIntType())
3204       return getNaturalAlignIndirect(Ty);
3205 
3206     return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
3207                                               : ABIArgInfo::getDirect());
3208   }
3209 
3210   return getNaturalAlignIndirect(Ty);
3211 }
3212 
3213 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
3214   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
3215     uint64_t Size = getContext().getTypeSize(VecTy);
3216     unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
3217     if (Size <= 64 || Size > LargestVector)
3218       return true;
3219     QualType EltTy = VecTy->getElementType();
3220     if (passInt128VectorsInMem() &&
3221         (EltTy->isSpecificBuiltinType(BuiltinType::Int128) ||
3222          EltTy->isSpecificBuiltinType(BuiltinType::UInt128)))
3223       return true;
3224   }
3225 
3226   return false;
3227 }
3228 
3229 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
3230                                             unsigned freeIntRegs) const {
3231   // If this is a scalar LLVM value then assume LLVM will pass it in the right
3232   // place naturally.
3233   //
3234   // This assumption is optimistic, as there could be free registers available
3235   // when we need to pass this argument in memory, and LLVM could try to pass
3236   // the argument in the free register. This does not seem to happen currently,
3237   // but this code would be much safer if we could mark the argument with
3238   // 'onstack'. See PR12193.
3239   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty) &&
3240       !Ty->isExtIntType()) {
3241     // Treat an enum type as its underlying type.
3242     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3243       Ty = EnumTy->getDecl()->getIntegerType();
3244 
3245     return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
3246                                               : ABIArgInfo::getDirect());
3247   }
3248 
3249   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
3250     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
3251 
3252   // Compute the byval alignment. We specify the alignment of the byval in all
3253   // cases so that the mid-level optimizer knows the alignment of the byval.
3254   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
3255 
3256   // Attempt to avoid passing indirect results using byval when possible. This
3257   // is important for good codegen.
3258   //
3259   // We do this by coercing the value into a scalar type which the backend can
3260   // handle naturally (i.e., without using byval).
3261   //
3262   // For simplicity, we currently only do this when we have exhausted all of the
3263   // free integer registers. Doing this when there are free integer registers
3264   // would require more care, as we would have to ensure that the coerced value
3265   // did not claim the unused register. That would require either reording the
3266   // arguments to the function (so that any subsequent inreg values came first),
3267   // or only doing this optimization when there were no following arguments that
3268   // might be inreg.
3269   //
3270   // We currently expect it to be rare (particularly in well written code) for
3271   // arguments to be passed on the stack when there are still free integer
3272   // registers available (this would typically imply large structs being passed
3273   // by value), so this seems like a fair tradeoff for now.
3274   //
3275   // We can revisit this if the backend grows support for 'onstack' parameter
3276   // attributes. See PR12193.
3277   if (freeIntRegs == 0) {
3278     uint64_t Size = getContext().getTypeSize(Ty);
3279 
3280     // If this type fits in an eightbyte, coerce it into the matching integral
3281     // type, which will end up on the stack (with alignment 8).
3282     if (Align == 8 && Size <= 64)
3283       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
3284                                                           Size));
3285   }
3286 
3287   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align));
3288 }
3289 
3290 /// The ABI specifies that a value should be passed in a full vector XMM/YMM
3291 /// register. Pick an LLVM IR type that will be passed as a vector register.
3292 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
3293   // Wrapper structs/arrays that only contain vectors are passed just like
3294   // vectors; strip them off if present.
3295   if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
3296     Ty = QualType(InnerTy, 0);
3297 
3298   llvm::Type *IRType = CGT.ConvertType(Ty);
3299   if (isa<llvm::VectorType>(IRType)) {
3300     // Don't pass vXi128 vectors in their native type, the backend can't
3301     // legalize them.
3302     if (passInt128VectorsInMem() &&
3303         cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy(128)) {
3304       // Use a vXi64 vector.
3305       uint64_t Size = getContext().getTypeSize(Ty);
3306       return llvm::FixedVectorType::get(llvm::Type::getInt64Ty(getVMContext()),
3307                                         Size / 64);
3308     }
3309 
3310     return IRType;
3311   }
3312 
3313   if (IRType->getTypeID() == llvm::Type::FP128TyID)
3314     return IRType;
3315 
3316   // We couldn't find the preferred IR vector type for 'Ty'.
3317   uint64_t Size = getContext().getTypeSize(Ty);
3318   assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!");
3319 
3320 
3321   // Return a LLVM IR vector type based on the size of 'Ty'.
3322   return llvm::FixedVectorType::get(llvm::Type::getDoubleTy(getVMContext()),
3323                                     Size / 64);
3324 }
3325 
3326 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
3327 /// is known to either be off the end of the specified type or being in
3328 /// alignment padding.  The user type specified is known to be at most 128 bits
3329 /// in size, and have passed through X86_64ABIInfo::classify with a successful
3330 /// classification that put one of the two halves in the INTEGER class.
3331 ///
3332 /// It is conservatively correct to return false.
3333 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
3334                                   unsigned EndBit, ASTContext &Context) {
3335   // If the bytes being queried are off the end of the type, there is no user
3336   // data hiding here.  This handles analysis of builtins, vectors and other
3337   // types that don't contain interesting padding.
3338   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
3339   if (TySize <= StartBit)
3340     return true;
3341 
3342   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
3343     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
3344     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
3345 
3346     // Check each element to see if the element overlaps with the queried range.
3347     for (unsigned i = 0; i != NumElts; ++i) {
3348       // If the element is after the span we care about, then we're done..
3349       unsigned EltOffset = i*EltSize;
3350       if (EltOffset >= EndBit) break;
3351 
3352       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
3353       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
3354                                  EndBit-EltOffset, Context))
3355         return false;
3356     }
3357     // If it overlaps no elements, then it is safe to process as padding.
3358     return true;
3359   }
3360 
3361   if (const RecordType *RT = Ty->getAs<RecordType>()) {
3362     const RecordDecl *RD = RT->getDecl();
3363     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3364 
3365     // If this is a C++ record, check the bases first.
3366     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3367       for (const auto &I : CXXRD->bases()) {
3368         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
3369                "Unexpected base class!");
3370         const auto *Base =
3371             cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
3372 
3373         // If the base is after the span we care about, ignore it.
3374         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
3375         if (BaseOffset >= EndBit) continue;
3376 
3377         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
3378         if (!BitsContainNoUserData(I.getType(), BaseStart,
3379                                    EndBit-BaseOffset, Context))
3380           return false;
3381       }
3382     }
3383 
3384     // Verify that no field has data that overlaps the region of interest.  Yes
3385     // this could be sped up a lot by being smarter about queried fields,
3386     // however we're only looking at structs up to 16 bytes, so we don't care
3387     // much.
3388     unsigned idx = 0;
3389     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3390          i != e; ++i, ++idx) {
3391       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
3392 
3393       // If we found a field after the region we care about, then we're done.
3394       if (FieldOffset >= EndBit) break;
3395 
3396       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
3397       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
3398                                  Context))
3399         return false;
3400     }
3401 
3402     // If nothing in this record overlapped the area of interest, then we're
3403     // clean.
3404     return true;
3405   }
3406 
3407   return false;
3408 }
3409 
3410 /// getFPTypeAtOffset - Return a floating point type at the specified offset.
3411 static llvm::Type *getFPTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3412                                      const llvm::DataLayout &TD) {
3413   if (IROffset == 0 && IRType->isFloatingPointTy())
3414     return IRType;
3415 
3416   // If this is a struct, recurse into the field at the specified offset.
3417   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3418     const llvm::StructLayout *SL = TD.getStructLayout(STy);
3419     unsigned Elt = SL->getElementContainingOffset(IROffset);
3420     IROffset -= SL->getElementOffset(Elt);
3421     return getFPTypeAtOffset(STy->getElementType(Elt), IROffset, TD);
3422   }
3423 
3424   // If this is an array, recurse into the field at the specified offset.
3425   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3426     llvm::Type *EltTy = ATy->getElementType();
3427     unsigned EltSize = TD.getTypeAllocSize(EltTy);
3428     IROffset -= IROffset / EltSize * EltSize;
3429     return getFPTypeAtOffset(EltTy, IROffset, TD);
3430   }
3431 
3432   return nullptr;
3433 }
3434 
3435 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
3436 /// low 8 bytes of an XMM register, corresponding to the SSE class.
3437 llvm::Type *X86_64ABIInfo::
3438 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3439                    QualType SourceTy, unsigned SourceOffset) const {
3440   const llvm::DataLayout &TD = getDataLayout();
3441   llvm::Type *T0 = getFPTypeAtOffset(IRType, IROffset, TD);
3442   if (!T0 || T0->isDoubleTy())
3443     return llvm::Type::getDoubleTy(getVMContext());
3444 
3445   // Get the adjacent FP type.
3446   llvm::Type *T1 =
3447       getFPTypeAtOffset(IRType, IROffset + TD.getTypeAllocSize(T0), TD);
3448   if (T1 == nullptr) {
3449     // Check if IRType is a half + float. float type will be in IROffset+4 due
3450     // to its alignment.
3451     if (T0->isHalfTy())
3452       T1 = getFPTypeAtOffset(IRType, IROffset + 4, TD);
3453     // If we can't get a second FP type, return a simple half or float.
3454     // avx512fp16-abi.c:pr51813_2 shows it works to return float for
3455     // {float, i8} too.
3456     if (T1 == nullptr)
3457       return T0;
3458   }
3459 
3460   if (T0->isFloatTy() && T1->isFloatTy())
3461     return llvm::FixedVectorType::get(T0, 2);
3462 
3463   if (T0->isHalfTy() && T1->isHalfTy()) {
3464     llvm::Type *T2 = getFPTypeAtOffset(IRType, IROffset + 4, TD);
3465     if (T2 == nullptr)
3466       return llvm::FixedVectorType::get(T0, 2);
3467     return llvm::FixedVectorType::get(T0, 4);
3468   }
3469 
3470   if (T0->isHalfTy() || T1->isHalfTy())
3471     return llvm::FixedVectorType::get(llvm::Type::getHalfTy(getVMContext()), 4);
3472 
3473   return llvm::Type::getDoubleTy(getVMContext());
3474 }
3475 
3476 
3477 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
3478 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
3479 /// about the high or low part of an up-to-16-byte struct.  This routine picks
3480 /// the best LLVM IR type to represent this, which may be i64 or may be anything
3481 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
3482 /// etc).
3483 ///
3484 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
3485 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
3486 /// the 8-byte value references.  PrefType may be null.
3487 ///
3488 /// SourceTy is the source-level type for the entire argument.  SourceOffset is
3489 /// an offset into this that we're processing (which is always either 0 or 8).
3490 ///
3491 llvm::Type *X86_64ABIInfo::
3492 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3493                        QualType SourceTy, unsigned SourceOffset) const {
3494   // If we're dealing with an un-offset LLVM IR type, then it means that we're
3495   // returning an 8-byte unit starting with it.  See if we can safely use it.
3496   if (IROffset == 0) {
3497     // Pointers and int64's always fill the 8-byte unit.
3498     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
3499         IRType->isIntegerTy(64))
3500       return IRType;
3501 
3502     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
3503     // goodness in the source type is just tail padding.  This is allowed to
3504     // kick in for struct {double,int} on the int, but not on
3505     // struct{double,int,int} because we wouldn't return the second int.  We
3506     // have to do this analysis on the source type because we can't depend on
3507     // unions being lowered a specific way etc.
3508     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
3509         IRType->isIntegerTy(32) ||
3510         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
3511       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
3512           cast<llvm::IntegerType>(IRType)->getBitWidth();
3513 
3514       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
3515                                 SourceOffset*8+64, getContext()))
3516         return IRType;
3517     }
3518   }
3519 
3520   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3521     // If this is a struct, recurse into the field at the specified offset.
3522     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
3523     if (IROffset < SL->getSizeInBytes()) {
3524       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
3525       IROffset -= SL->getElementOffset(FieldIdx);
3526 
3527       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
3528                                     SourceTy, SourceOffset);
3529     }
3530   }
3531 
3532   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3533     llvm::Type *EltTy = ATy->getElementType();
3534     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
3535     unsigned EltOffset = IROffset/EltSize*EltSize;
3536     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
3537                                   SourceOffset);
3538   }
3539 
3540   // Okay, we don't have any better idea of what to pass, so we pass this in an
3541   // integer register that isn't too big to fit the rest of the struct.
3542   unsigned TySizeInBytes =
3543     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
3544 
3545   assert(TySizeInBytes != SourceOffset && "Empty field?");
3546 
3547   // It is always safe to classify this as an integer type up to i64 that
3548   // isn't larger than the structure.
3549   return llvm::IntegerType::get(getVMContext(),
3550                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
3551 }
3552 
3553 
3554 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
3555 /// be used as elements of a two register pair to pass or return, return a
3556 /// first class aggregate to represent them.  For example, if the low part of
3557 /// a by-value argument should be passed as i32* and the high part as float,
3558 /// return {i32*, float}.
3559 static llvm::Type *
3560 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
3561                            const llvm::DataLayout &TD) {
3562   // In order to correctly satisfy the ABI, we need to the high part to start
3563   // at offset 8.  If the high and low parts we inferred are both 4-byte types
3564   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
3565   // the second element at offset 8.  Check for this:
3566   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
3567   unsigned HiAlign = TD.getABITypeAlignment(Hi);
3568   unsigned HiStart = llvm::alignTo(LoSize, HiAlign);
3569   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
3570 
3571   // To handle this, we have to increase the size of the low part so that the
3572   // second element will start at an 8 byte offset.  We can't increase the size
3573   // of the second element because it might make us access off the end of the
3574   // struct.
3575   if (HiStart != 8) {
3576     // There are usually two sorts of types the ABI generation code can produce
3577     // for the low part of a pair that aren't 8 bytes in size: half, float or
3578     // i8/i16/i32.  This can also include pointers when they are 32-bit (X32 and
3579     // NaCl).
3580     // Promote these to a larger type.
3581     if (Lo->isHalfTy() || Lo->isFloatTy())
3582       Lo = llvm::Type::getDoubleTy(Lo->getContext());
3583     else {
3584       assert((Lo->isIntegerTy() || Lo->isPointerTy())
3585              && "Invalid/unknown lo type");
3586       Lo = llvm::Type::getInt64Ty(Lo->getContext());
3587     }
3588   }
3589 
3590   llvm::StructType *Result = llvm::StructType::get(Lo, Hi);
3591 
3592   // Verify that the second element is at an 8-byte offset.
3593   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
3594          "Invalid x86-64 argument pair!");
3595   return Result;
3596 }
3597 
3598 ABIArgInfo X86_64ABIInfo::
3599 classifyReturnType(QualType RetTy) const {
3600   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
3601   // classification algorithm.
3602   X86_64ABIInfo::Class Lo, Hi;
3603   classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
3604 
3605   // Check some invariants.
3606   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3607   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3608 
3609   llvm::Type *ResType = nullptr;
3610   switch (Lo) {
3611   case NoClass:
3612     if (Hi == NoClass)
3613       return ABIArgInfo::getIgnore();
3614     // If the low part is just padding, it takes no register, leave ResType
3615     // null.
3616     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3617            "Unknown missing lo part");
3618     break;
3619 
3620   case SSEUp:
3621   case X87Up:
3622     llvm_unreachable("Invalid classification for lo word.");
3623 
3624     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
3625     // hidden argument.
3626   case Memory:
3627     return getIndirectReturnResult(RetTy);
3628 
3629     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
3630     // available register of the sequence %rax, %rdx is used.
3631   case Integer:
3632     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3633 
3634     // If we have a sign or zero extended integer, make sure to return Extend
3635     // so that the parameter gets the right LLVM IR attributes.
3636     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3637       // Treat an enum type as its underlying type.
3638       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3639         RetTy = EnumTy->getDecl()->getIntegerType();
3640 
3641       if (RetTy->isIntegralOrEnumerationType() &&
3642           isPromotableIntegerTypeForABI(RetTy))
3643         return ABIArgInfo::getExtend(RetTy);
3644     }
3645     break;
3646 
3647     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
3648     // available SSE register of the sequence %xmm0, %xmm1 is used.
3649   case SSE:
3650     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3651     break;
3652 
3653     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
3654     // returned on the X87 stack in %st0 as 80-bit x87 number.
3655   case X87:
3656     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
3657     break;
3658 
3659     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
3660     // part of the value is returned in %st0 and the imaginary part in
3661     // %st1.
3662   case ComplexX87:
3663     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
3664     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
3665                                     llvm::Type::getX86_FP80Ty(getVMContext()));
3666     break;
3667   }
3668 
3669   llvm::Type *HighPart = nullptr;
3670   switch (Hi) {
3671     // Memory was handled previously and X87 should
3672     // never occur as a hi class.
3673   case Memory:
3674   case X87:
3675     llvm_unreachable("Invalid classification for hi word.");
3676 
3677   case ComplexX87: // Previously handled.
3678   case NoClass:
3679     break;
3680 
3681   case Integer:
3682     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3683     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3684       return ABIArgInfo::getDirect(HighPart, 8);
3685     break;
3686   case SSE:
3687     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3688     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3689       return ABIArgInfo::getDirect(HighPart, 8);
3690     break;
3691 
3692     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
3693     // is passed in the next available eightbyte chunk if the last used
3694     // vector register.
3695     //
3696     // SSEUP should always be preceded by SSE, just widen.
3697   case SSEUp:
3698     assert(Lo == SSE && "Unexpected SSEUp classification.");
3699     ResType = GetByteVectorType(RetTy);
3700     break;
3701 
3702     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
3703     // returned together with the previous X87 value in %st0.
3704   case X87Up:
3705     // If X87Up is preceded by X87, we don't need to do
3706     // anything. However, in some cases with unions it may not be
3707     // preceded by X87. In such situations we follow gcc and pass the
3708     // extra bits in an SSE reg.
3709     if (Lo != X87) {
3710       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3711       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3712         return ABIArgInfo::getDirect(HighPart, 8);
3713     }
3714     break;
3715   }
3716 
3717   // If a high part was specified, merge it together with the low part.  It is
3718   // known to pass in the high eightbyte of the result.  We do this by forming a
3719   // first class struct aggregate with the high and low part: {low, high}
3720   if (HighPart)
3721     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3722 
3723   return ABIArgInfo::getDirect(ResType);
3724 }
3725 
3726 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
3727   QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
3728   bool isNamedArg)
3729   const
3730 {
3731   Ty = useFirstFieldIfTransparentUnion(Ty);
3732 
3733   X86_64ABIInfo::Class Lo, Hi;
3734   classify(Ty, 0, Lo, Hi, isNamedArg);
3735 
3736   // Check some invariants.
3737   // FIXME: Enforce these by construction.
3738   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3739   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3740 
3741   neededInt = 0;
3742   neededSSE = 0;
3743   llvm::Type *ResType = nullptr;
3744   switch (Lo) {
3745   case NoClass:
3746     if (Hi == NoClass)
3747       return ABIArgInfo::getIgnore();
3748     // If the low part is just padding, it takes no register, leave ResType
3749     // null.
3750     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3751            "Unknown missing lo part");
3752     break;
3753 
3754     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
3755     // on the stack.
3756   case Memory:
3757 
3758     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
3759     // COMPLEX_X87, it is passed in memory.
3760   case X87:
3761   case ComplexX87:
3762     if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
3763       ++neededInt;
3764     return getIndirectResult(Ty, freeIntRegs);
3765 
3766   case SSEUp:
3767   case X87Up:
3768     llvm_unreachable("Invalid classification for lo word.");
3769 
3770     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
3771     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
3772     // and %r9 is used.
3773   case Integer:
3774     ++neededInt;
3775 
3776     // Pick an 8-byte type based on the preferred type.
3777     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
3778 
3779     // If we have a sign or zero extended integer, make sure to return Extend
3780     // so that the parameter gets the right LLVM IR attributes.
3781     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3782       // Treat an enum type as its underlying type.
3783       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3784         Ty = EnumTy->getDecl()->getIntegerType();
3785 
3786       if (Ty->isIntegralOrEnumerationType() &&
3787           isPromotableIntegerTypeForABI(Ty))
3788         return ABIArgInfo::getExtend(Ty);
3789     }
3790 
3791     break;
3792 
3793     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
3794     // available SSE register is used, the registers are taken in the
3795     // order from %xmm0 to %xmm7.
3796   case SSE: {
3797     llvm::Type *IRType = CGT.ConvertType(Ty);
3798     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
3799     ++neededSSE;
3800     break;
3801   }
3802   }
3803 
3804   llvm::Type *HighPart = nullptr;
3805   switch (Hi) {
3806     // Memory was handled previously, ComplexX87 and X87 should
3807     // never occur as hi classes, and X87Up must be preceded by X87,
3808     // which is passed in memory.
3809   case Memory:
3810   case X87:
3811   case ComplexX87:
3812     llvm_unreachable("Invalid classification for hi word.");
3813 
3814   case NoClass: break;
3815 
3816   case Integer:
3817     ++neededInt;
3818     // Pick an 8-byte type based on the preferred type.
3819     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3820 
3821     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3822       return ABIArgInfo::getDirect(HighPart, 8);
3823     break;
3824 
3825     // X87Up generally doesn't occur here (long double is passed in
3826     // memory), except in situations involving unions.
3827   case X87Up:
3828   case SSE:
3829     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3830 
3831     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3832       return ABIArgInfo::getDirect(HighPart, 8);
3833 
3834     ++neededSSE;
3835     break;
3836 
3837     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
3838     // eightbyte is passed in the upper half of the last used SSE
3839     // register.  This only happens when 128-bit vectors are passed.
3840   case SSEUp:
3841     assert(Lo == SSE && "Unexpected SSEUp classification");
3842     ResType = GetByteVectorType(Ty);
3843     break;
3844   }
3845 
3846   // If a high part was specified, merge it together with the low part.  It is
3847   // known to pass in the high eightbyte of the result.  We do this by forming a
3848   // first class struct aggregate with the high and low part: {low, high}
3849   if (HighPart)
3850     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3851 
3852   return ABIArgInfo::getDirect(ResType);
3853 }
3854 
3855 ABIArgInfo
3856 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
3857                                              unsigned &NeededSSE) const {
3858   auto RT = Ty->getAs<RecordType>();
3859   assert(RT && "classifyRegCallStructType only valid with struct types");
3860 
3861   if (RT->getDecl()->hasFlexibleArrayMember())
3862     return getIndirectReturnResult(Ty);
3863 
3864   // Sum up bases
3865   if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
3866     if (CXXRD->isDynamicClass()) {
3867       NeededInt = NeededSSE = 0;
3868       return getIndirectReturnResult(Ty);
3869     }
3870 
3871     for (const auto &I : CXXRD->bases())
3872       if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE)
3873               .isIndirect()) {
3874         NeededInt = NeededSSE = 0;
3875         return getIndirectReturnResult(Ty);
3876       }
3877   }
3878 
3879   // Sum up members
3880   for (const auto *FD : RT->getDecl()->fields()) {
3881     if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) {
3882       if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE)
3883               .isIndirect()) {
3884         NeededInt = NeededSSE = 0;
3885         return getIndirectReturnResult(Ty);
3886       }
3887     } else {
3888       unsigned LocalNeededInt, LocalNeededSSE;
3889       if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt,
3890                                LocalNeededSSE, true)
3891               .isIndirect()) {
3892         NeededInt = NeededSSE = 0;
3893         return getIndirectReturnResult(Ty);
3894       }
3895       NeededInt += LocalNeededInt;
3896       NeededSSE += LocalNeededSSE;
3897     }
3898   }
3899 
3900   return ABIArgInfo::getDirect();
3901 }
3902 
3903 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty,
3904                                                     unsigned &NeededInt,
3905                                                     unsigned &NeededSSE) const {
3906 
3907   NeededInt = 0;
3908   NeededSSE = 0;
3909 
3910   return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE);
3911 }
3912 
3913 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3914 
3915   const unsigned CallingConv = FI.getCallingConvention();
3916   // It is possible to force Win64 calling convention on any x86_64 target by
3917   // using __attribute__((ms_abi)). In such case to correctly emit Win64
3918   // compatible code delegate this call to WinX86_64ABIInfo::computeInfo.
3919   if (CallingConv == llvm::CallingConv::Win64) {
3920     WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel);
3921     Win64ABIInfo.computeInfo(FI);
3922     return;
3923   }
3924 
3925   bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall;
3926 
3927   // Keep track of the number of assigned registers.
3928   unsigned FreeIntRegs = IsRegCall ? 11 : 6;
3929   unsigned FreeSSERegs = IsRegCall ? 16 : 8;
3930   unsigned NeededInt, NeededSSE;
3931 
3932   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
3933     if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() &&
3934         !FI.getReturnType()->getTypePtr()->isUnionType()) {
3935       FI.getReturnInfo() =
3936           classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE);
3937       if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3938         FreeIntRegs -= NeededInt;
3939         FreeSSERegs -= NeededSSE;
3940       } else {
3941         FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3942       }
3943     } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>() &&
3944                getContext().getCanonicalType(FI.getReturnType()
3945                                                  ->getAs<ComplexType>()
3946                                                  ->getElementType()) ==
3947                    getContext().LongDoubleTy)
3948       // Complex Long Double Type is passed in Memory when Regcall
3949       // calling convention is used.
3950       FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3951     else
3952       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3953   }
3954 
3955   // If the return value is indirect, then the hidden argument is consuming one
3956   // integer register.
3957   if (FI.getReturnInfo().isIndirect())
3958     --FreeIntRegs;
3959 
3960   // The chain argument effectively gives us another free register.
3961   if (FI.isChainCall())
3962     ++FreeIntRegs;
3963 
3964   unsigned NumRequiredArgs = FI.getNumRequiredArgs();
3965   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
3966   // get assigned (in left-to-right order) for passing as follows...
3967   unsigned ArgNo = 0;
3968   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3969        it != ie; ++it, ++ArgNo) {
3970     bool IsNamedArg = ArgNo < NumRequiredArgs;
3971 
3972     if (IsRegCall && it->type->isStructureOrClassType())
3973       it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE);
3974     else
3975       it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt,
3976                                       NeededSSE, IsNamedArg);
3977 
3978     // AMD64-ABI 3.2.3p3: If there are no registers available for any
3979     // eightbyte of an argument, the whole argument is passed on the
3980     // stack. If registers have already been assigned for some
3981     // eightbytes of such an argument, the assignments get reverted.
3982     if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3983       FreeIntRegs -= NeededInt;
3984       FreeSSERegs -= NeededSSE;
3985     } else {
3986       it->info = getIndirectResult(it->type, FreeIntRegs);
3987     }
3988   }
3989 }
3990 
3991 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF,
3992                                          Address VAListAddr, QualType Ty) {
3993   Address overflow_arg_area_p =
3994       CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
3995   llvm::Value *overflow_arg_area =
3996     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
3997 
3998   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
3999   // byte boundary if alignment needed by type exceeds 8 byte boundary.
4000   // It isn't stated explicitly in the standard, but in practice we use
4001   // alignment greater than 16 where necessary.
4002   CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
4003   if (Align > CharUnits::fromQuantity(8)) {
4004     overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area,
4005                                                       Align);
4006   }
4007 
4008   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
4009   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
4010   llvm::Value *Res =
4011     CGF.Builder.CreateBitCast(overflow_arg_area,
4012                               llvm::PointerType::getUnqual(LTy));
4013 
4014   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
4015   // l->overflow_arg_area + sizeof(type).
4016   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
4017   // an 8 byte boundary.
4018 
4019   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
4020   llvm::Value *Offset =
4021       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
4022   overflow_arg_area = CGF.Builder.CreateGEP(CGF.Int8Ty, overflow_arg_area,
4023                                             Offset, "overflow_arg_area.next");
4024   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
4025 
4026   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
4027   return Address(Res, Align);
4028 }
4029 
4030 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4031                                  QualType Ty) const {
4032   // Assume that va_list type is correct; should be pointer to LLVM type:
4033   // struct {
4034   //   i32 gp_offset;
4035   //   i32 fp_offset;
4036   //   i8* overflow_arg_area;
4037   //   i8* reg_save_area;
4038   // };
4039   unsigned neededInt, neededSSE;
4040 
4041   Ty = getContext().getCanonicalType(Ty);
4042   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
4043                                        /*isNamedArg*/false);
4044 
4045   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
4046   // in the registers. If not go to step 7.
4047   if (!neededInt && !neededSSE)
4048     return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
4049 
4050   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
4051   // general purpose registers needed to pass type and num_fp to hold
4052   // the number of floating point registers needed.
4053 
4054   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
4055   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
4056   // l->fp_offset > 304 - num_fp * 16 go to step 7.
4057   //
4058   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
4059   // register save space).
4060 
4061   llvm::Value *InRegs = nullptr;
4062   Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid();
4063   llvm::Value *gp_offset = nullptr, *fp_offset = nullptr;
4064   if (neededInt) {
4065     gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
4066     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
4067     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
4068     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
4069   }
4070 
4071   if (neededSSE) {
4072     fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
4073     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
4074     llvm::Value *FitsInFP =
4075       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
4076     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
4077     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
4078   }
4079 
4080   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
4081   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
4082   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
4083   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
4084 
4085   // Emit code to load the value if it was passed in registers.
4086 
4087   CGF.EmitBlock(InRegBlock);
4088 
4089   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
4090   // an offset of l->gp_offset and/or l->fp_offset. This may require
4091   // copying to a temporary location in case the parameter is passed
4092   // in different register classes or requires an alignment greater
4093   // than 8 for general purpose registers and 16 for XMM registers.
4094   //
4095   // FIXME: This really results in shameful code when we end up needing to
4096   // collect arguments from different places; often what should result in a
4097   // simple assembling of a structure from scattered addresses has many more
4098   // loads than necessary. Can we clean this up?
4099   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
4100   llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(
4101       CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area");
4102 
4103   Address RegAddr = Address::invalid();
4104   if (neededInt && neededSSE) {
4105     // FIXME: Cleanup.
4106     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
4107     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
4108     Address Tmp = CGF.CreateMemTemp(Ty);
4109     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
4110     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
4111     llvm::Type *TyLo = ST->getElementType(0);
4112     llvm::Type *TyHi = ST->getElementType(1);
4113     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
4114            "Unexpected ABI info for mixed regs");
4115     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
4116     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
4117     llvm::Value *GPAddr =
4118         CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset);
4119     llvm::Value *FPAddr =
4120         CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset);
4121     llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
4122     llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
4123 
4124     // Copy the first element.
4125     // FIXME: Our choice of alignment here and below is probably pessimistic.
4126     llvm::Value *V = CGF.Builder.CreateAlignedLoad(
4127         TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo),
4128         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo)));
4129     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
4130 
4131     // Copy the second element.
4132     V = CGF.Builder.CreateAlignedLoad(
4133         TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi),
4134         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi)));
4135     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
4136 
4137     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
4138   } else if (neededInt) {
4139     RegAddr = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset),
4140                       CharUnits::fromQuantity(8));
4141     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
4142 
4143     // Copy to a temporary if necessary to ensure the appropriate alignment.
4144     auto TInfo = getContext().getTypeInfoInChars(Ty);
4145     uint64_t TySize = TInfo.Width.getQuantity();
4146     CharUnits TyAlign = TInfo.Align;
4147 
4148     // Copy into a temporary if the type is more aligned than the
4149     // register save area.
4150     if (TyAlign.getQuantity() > 8) {
4151       Address Tmp = CGF.CreateMemTemp(Ty);
4152       CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false);
4153       RegAddr = Tmp;
4154     }
4155 
4156   } else if (neededSSE == 1) {
4157     RegAddr = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset),
4158                       CharUnits::fromQuantity(16));
4159     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
4160   } else {
4161     assert(neededSSE == 2 && "Invalid number of needed registers!");
4162     // SSE registers are spaced 16 bytes apart in the register save
4163     // area, we need to collect the two eightbytes together.
4164     // The ABI isn't explicit about this, but it seems reasonable
4165     // to assume that the slots are 16-byte aligned, since the stack is
4166     // naturally 16-byte aligned and the prologue is expected to store
4167     // all the SSE registers to the RSA.
4168     Address RegAddrLo = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea,
4169                                                       fp_offset),
4170                                 CharUnits::fromQuantity(16));
4171     Address RegAddrHi =
4172       CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo,
4173                                              CharUnits::fromQuantity(16));
4174     llvm::Type *ST = AI.canHaveCoerceToType()
4175                          ? AI.getCoerceToType()
4176                          : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy);
4177     llvm::Value *V;
4178     Address Tmp = CGF.CreateMemTemp(Ty);
4179     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
4180     V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
4181         RegAddrLo, ST->getStructElementType(0)));
4182     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
4183     V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
4184         RegAddrHi, ST->getStructElementType(1)));
4185     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
4186 
4187     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
4188   }
4189 
4190   // AMD64-ABI 3.5.7p5: Step 5. Set:
4191   // l->gp_offset = l->gp_offset + num_gp * 8
4192   // l->fp_offset = l->fp_offset + num_fp * 16.
4193   if (neededInt) {
4194     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
4195     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
4196                             gp_offset_p);
4197   }
4198   if (neededSSE) {
4199     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
4200     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
4201                             fp_offset_p);
4202   }
4203   CGF.EmitBranch(ContBlock);
4204 
4205   // Emit code to load the value if it was passed in memory.
4206 
4207   CGF.EmitBlock(InMemBlock);
4208   Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
4209 
4210   // Return the appropriate result.
4211 
4212   CGF.EmitBlock(ContBlock);
4213   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
4214                                  "vaarg.addr");
4215   return ResAddr;
4216 }
4217 
4218 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
4219                                    QualType Ty) const {
4220   // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4221   // not 1, 2, 4, or 8 bytes, must be passed by reference."
4222   uint64_t Width = getContext().getTypeSize(Ty);
4223   bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
4224 
4225   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
4226                           CGF.getContext().getTypeInfoInChars(Ty),
4227                           CharUnits::fromQuantity(8),
4228                           /*allowHigherAlign*/ false);
4229 }
4230 
4231 ABIArgInfo WinX86_64ABIInfo::reclassifyHvaArgForVectorCall(
4232     QualType Ty, unsigned &FreeSSERegs, const ABIArgInfo &current) const {
4233   const Type *Base = nullptr;
4234   uint64_t NumElts = 0;
4235 
4236   if (!Ty->isBuiltinType() && !Ty->isVectorType() &&
4237       isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) {
4238     FreeSSERegs -= NumElts;
4239     return getDirectX86Hva();
4240   }
4241   return current;
4242 }
4243 
4244 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
4245                                       bool IsReturnType, bool IsVectorCall,
4246                                       bool IsRegCall) const {
4247 
4248   if (Ty->isVoidType())
4249     return ABIArgInfo::getIgnore();
4250 
4251   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4252     Ty = EnumTy->getDecl()->getIntegerType();
4253 
4254   TypeInfo Info = getContext().getTypeInfo(Ty);
4255   uint64_t Width = Info.Width;
4256   CharUnits Align = getContext().toCharUnitsFromBits(Info.Align);
4257 
4258   const RecordType *RT = Ty->getAs<RecordType>();
4259   if (RT) {
4260     if (!IsReturnType) {
4261       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
4262         return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
4263     }
4264 
4265     if (RT->getDecl()->hasFlexibleArrayMember())
4266       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4267 
4268   }
4269 
4270   const Type *Base = nullptr;
4271   uint64_t NumElts = 0;
4272   // vectorcall adds the concept of a homogenous vector aggregate, similar to
4273   // other targets.
4274   if ((IsVectorCall || IsRegCall) &&
4275       isHomogeneousAggregate(Ty, Base, NumElts)) {
4276     if (IsRegCall) {
4277       if (FreeSSERegs >= NumElts) {
4278         FreeSSERegs -= NumElts;
4279         if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
4280           return ABIArgInfo::getDirect();
4281         return ABIArgInfo::getExpand();
4282       }
4283       return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4284     } else if (IsVectorCall) {
4285       if (FreeSSERegs >= NumElts &&
4286           (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) {
4287         FreeSSERegs -= NumElts;
4288         return ABIArgInfo::getDirect();
4289       } else if (IsReturnType) {
4290         return ABIArgInfo::getExpand();
4291       } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) {
4292         // HVAs are delayed and reclassified in the 2nd step.
4293         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4294       }
4295     }
4296   }
4297 
4298   if (Ty->isMemberPointerType()) {
4299     // If the member pointer is represented by an LLVM int or ptr, pass it
4300     // directly.
4301     llvm::Type *LLTy = CGT.ConvertType(Ty);
4302     if (LLTy->isPointerTy() || LLTy->isIntegerTy())
4303       return ABIArgInfo::getDirect();
4304   }
4305 
4306   if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
4307     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4308     // not 1, 2, 4, or 8 bytes, must be passed by reference."
4309     if (Width > 64 || !llvm::isPowerOf2_64(Width))
4310       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4311 
4312     // Otherwise, coerce it to a small integer.
4313     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
4314   }
4315 
4316   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4317     switch (BT->getKind()) {
4318     case BuiltinType::Bool:
4319       // Bool type is always extended to the ABI, other builtin types are not
4320       // extended.
4321       return ABIArgInfo::getExtend(Ty);
4322 
4323     case BuiltinType::LongDouble:
4324       // Mingw64 GCC uses the old 80 bit extended precision floating point
4325       // unit. It passes them indirectly through memory.
4326       if (IsMingw64) {
4327         const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
4328         if (LDF == &llvm::APFloat::x87DoubleExtended())
4329           return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4330       }
4331       break;
4332 
4333     case BuiltinType::Int128:
4334     case BuiltinType::UInt128:
4335       // If it's a parameter type, the normal ABI rule is that arguments larger
4336       // than 8 bytes are passed indirectly. GCC follows it. We follow it too,
4337       // even though it isn't particularly efficient.
4338       if (!IsReturnType)
4339         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4340 
4341       // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that.
4342       // Clang matches them for compatibility.
4343       return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
4344           llvm::Type::getInt64Ty(getVMContext()), 2));
4345 
4346     default:
4347       break;
4348     }
4349   }
4350 
4351   if (Ty->isExtIntType()) {
4352     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4353     // not 1, 2, 4, or 8 bytes, must be passed by reference."
4354     // However, non-power-of-two _ExtInts will be passed as 1,2,4 or 8 bytes
4355     // anyway as long is it fits in them, so we don't have to check the power of
4356     // 2.
4357     if (Width <= 64)
4358       return ABIArgInfo::getDirect();
4359     return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4360   }
4361 
4362   return ABIArgInfo::getDirect();
4363 }
4364 
4365 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
4366   const unsigned CC = FI.getCallingConvention();
4367   bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall;
4368   bool IsRegCall = CC == llvm::CallingConv::X86_RegCall;
4369 
4370   // If __attribute__((sysv_abi)) is in use, use the SysV argument
4371   // classification rules.
4372   if (CC == llvm::CallingConv::X86_64_SysV) {
4373     X86_64ABIInfo SysVABIInfo(CGT, AVXLevel);
4374     SysVABIInfo.computeInfo(FI);
4375     return;
4376   }
4377 
4378   unsigned FreeSSERegs = 0;
4379   if (IsVectorCall) {
4380     // We can use up to 4 SSE return registers with vectorcall.
4381     FreeSSERegs = 4;
4382   } else if (IsRegCall) {
4383     // RegCall gives us 16 SSE registers.
4384     FreeSSERegs = 16;
4385   }
4386 
4387   if (!getCXXABI().classifyReturnType(FI))
4388     FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true,
4389                                   IsVectorCall, IsRegCall);
4390 
4391   if (IsVectorCall) {
4392     // We can use up to 6 SSE register parameters with vectorcall.
4393     FreeSSERegs = 6;
4394   } else if (IsRegCall) {
4395     // RegCall gives us 16 SSE registers, we can reuse the return registers.
4396     FreeSSERegs = 16;
4397   }
4398 
4399   unsigned ArgNum = 0;
4400   unsigned ZeroSSERegs = 0;
4401   for (auto &I : FI.arguments()) {
4402     // Vectorcall in x64 only permits the first 6 arguments to be passed as
4403     // XMM/YMM registers. After the sixth argument, pretend no vector
4404     // registers are left.
4405     unsigned *MaybeFreeSSERegs =
4406         (IsVectorCall && ArgNum >= 6) ? &ZeroSSERegs : &FreeSSERegs;
4407     I.info =
4408         classify(I.type, *MaybeFreeSSERegs, false, IsVectorCall, IsRegCall);
4409     ++ArgNum;
4410   }
4411 
4412   if (IsVectorCall) {
4413     // For vectorcall, assign aggregate HVAs to any free vector registers in a
4414     // second pass.
4415     for (auto &I : FI.arguments())
4416       I.info = reclassifyHvaArgForVectorCall(I.type, FreeSSERegs, I.info);
4417   }
4418 }
4419 
4420 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4421                                     QualType Ty) const {
4422   // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4423   // not 1, 2, 4, or 8 bytes, must be passed by reference."
4424   uint64_t Width = getContext().getTypeSize(Ty);
4425   bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
4426 
4427   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
4428                           CGF.getContext().getTypeInfoInChars(Ty),
4429                           CharUnits::fromQuantity(8),
4430                           /*allowHigherAlign*/ false);
4431 }
4432 
4433 static bool PPC_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4434                                         llvm::Value *Address, bool Is64Bit,
4435                                         bool IsAIX) {
4436   // This is calculated from the LLVM and GCC tables and verified
4437   // against gcc output.  AFAIK all PPC ABIs use the same encoding.
4438 
4439   CodeGen::CGBuilderTy &Builder = CGF.Builder;
4440 
4441   llvm::IntegerType *i8 = CGF.Int8Ty;
4442   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
4443   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
4444   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
4445 
4446   // 0-31: r0-31, the 4-byte or 8-byte general-purpose registers
4447   AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 0, 31);
4448 
4449   // 32-63: fp0-31, the 8-byte floating-point registers
4450   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
4451 
4452   // 64-67 are various 4-byte or 8-byte special-purpose registers:
4453   // 64: mq
4454   // 65: lr
4455   // 66: ctr
4456   // 67: ap
4457   AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 64, 67);
4458 
4459   // 68-76 are various 4-byte special-purpose registers:
4460   // 68-75 cr0-7
4461   // 76: xer
4462   AssignToArrayRange(Builder, Address, Four8, 68, 76);
4463 
4464   // 77-108: v0-31, the 16-byte vector registers
4465   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
4466 
4467   // 109: vrsave
4468   // 110: vscr
4469   AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 109, 110);
4470 
4471   // AIX does not utilize the rest of the registers.
4472   if (IsAIX)
4473     return false;
4474 
4475   // 111: spe_acc
4476   // 112: spefscr
4477   // 113: sfp
4478   AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 111, 113);
4479 
4480   if (!Is64Bit)
4481     return false;
4482 
4483   // TODO: Need to verify if these registers are used on 64 bit AIX with Power8
4484   // or above CPU.
4485   // 64-bit only registers:
4486   // 114: tfhar
4487   // 115: tfiar
4488   // 116: texasr
4489   AssignToArrayRange(Builder, Address, Eight8, 114, 116);
4490 
4491   return false;
4492 }
4493 
4494 // AIX
4495 namespace {
4496 /// AIXABIInfo - The AIX XCOFF ABI information.
4497 class AIXABIInfo : public ABIInfo {
4498   const bool Is64Bit;
4499   const unsigned PtrByteSize;
4500   CharUnits getParamTypeAlignment(QualType Ty) const;
4501 
4502 public:
4503   AIXABIInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit)
4504       : ABIInfo(CGT), Is64Bit(Is64Bit), PtrByteSize(Is64Bit ? 8 : 4) {}
4505 
4506   bool isPromotableTypeForABI(QualType Ty) const;
4507 
4508   ABIArgInfo classifyReturnType(QualType RetTy) const;
4509   ABIArgInfo classifyArgumentType(QualType Ty) const;
4510 
4511   void computeInfo(CGFunctionInfo &FI) const override {
4512     if (!getCXXABI().classifyReturnType(FI))
4513       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4514 
4515     for (auto &I : FI.arguments())
4516       I.info = classifyArgumentType(I.type);
4517   }
4518 
4519   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4520                     QualType Ty) const override;
4521 };
4522 
4523 class AIXTargetCodeGenInfo : public TargetCodeGenInfo {
4524   const bool Is64Bit;
4525 
4526 public:
4527   AIXTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit)
4528       : TargetCodeGenInfo(std::make_unique<AIXABIInfo>(CGT, Is64Bit)),
4529         Is64Bit(Is64Bit) {}
4530   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4531     return 1; // r1 is the dedicated stack pointer
4532   }
4533 
4534   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4535                                llvm::Value *Address) const override;
4536 };
4537 } // namespace
4538 
4539 // Return true if the ABI requires Ty to be passed sign- or zero-
4540 // extended to 32/64 bits.
4541 bool AIXABIInfo::isPromotableTypeForABI(QualType Ty) const {
4542   // Treat an enum type as its underlying type.
4543   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4544     Ty = EnumTy->getDecl()->getIntegerType();
4545 
4546   // Promotable integer types are required to be promoted by the ABI.
4547   if (Ty->isPromotableIntegerType())
4548     return true;
4549 
4550   if (!Is64Bit)
4551     return false;
4552 
4553   // For 64 bit mode, in addition to the usual promotable integer types, we also
4554   // need to extend all 32-bit types, since the ABI requires promotion to 64
4555   // bits.
4556   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4557     switch (BT->getKind()) {
4558     case BuiltinType::Int:
4559     case BuiltinType::UInt:
4560       return true;
4561     default:
4562       break;
4563     }
4564 
4565   return false;
4566 }
4567 
4568 ABIArgInfo AIXABIInfo::classifyReturnType(QualType RetTy) const {
4569   if (RetTy->isAnyComplexType())
4570     return ABIArgInfo::getDirect();
4571 
4572   if (RetTy->isVectorType())
4573     return ABIArgInfo::getDirect();
4574 
4575   if (RetTy->isVoidType())
4576     return ABIArgInfo::getIgnore();
4577 
4578   if (isAggregateTypeForABI(RetTy))
4579     return getNaturalAlignIndirect(RetTy);
4580 
4581   return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
4582                                         : ABIArgInfo::getDirect());
4583 }
4584 
4585 ABIArgInfo AIXABIInfo::classifyArgumentType(QualType Ty) const {
4586   Ty = useFirstFieldIfTransparentUnion(Ty);
4587 
4588   if (Ty->isAnyComplexType())
4589     return ABIArgInfo::getDirect();
4590 
4591   if (Ty->isVectorType())
4592     return ABIArgInfo::getDirect();
4593 
4594   if (isAggregateTypeForABI(Ty)) {
4595     // Records with non-trivial destructors/copy-constructors should not be
4596     // passed by value.
4597     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
4598       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
4599 
4600     CharUnits CCAlign = getParamTypeAlignment(Ty);
4601     CharUnits TyAlign = getContext().getTypeAlignInChars(Ty);
4602 
4603     return ABIArgInfo::getIndirect(CCAlign, /*ByVal*/ true,
4604                                    /*Realign*/ TyAlign > CCAlign);
4605   }
4606 
4607   return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
4608                                      : ABIArgInfo::getDirect());
4609 }
4610 
4611 CharUnits AIXABIInfo::getParamTypeAlignment(QualType Ty) const {
4612   // Complex types are passed just like their elements.
4613   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4614     Ty = CTy->getElementType();
4615 
4616   if (Ty->isVectorType())
4617     return CharUnits::fromQuantity(16);
4618 
4619   // If the structure contains a vector type, the alignment is 16.
4620   if (isRecordWithSIMDVectorType(getContext(), Ty))
4621     return CharUnits::fromQuantity(16);
4622 
4623   return CharUnits::fromQuantity(PtrByteSize);
4624 }
4625 
4626 Address AIXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4627                               QualType Ty) const {
4628 
4629   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
4630   TypeInfo.Align = getParamTypeAlignment(Ty);
4631 
4632   CharUnits SlotSize = CharUnits::fromQuantity(PtrByteSize);
4633 
4634   // If we have a complex type and the base type is smaller than the register
4635   // size, the ABI calls for the real and imaginary parts to be right-adjusted
4636   // in separate words in 32bit mode or doublewords in 64bit mode. However,
4637   // Clang expects us to produce a pointer to a structure with the two parts
4638   // packed tightly. So generate loads of the real and imaginary parts relative
4639   // to the va_list pointer, and store them to a temporary structure. We do the
4640   // same as the PPC64ABI here.
4641   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4642     CharUnits EltSize = TypeInfo.Width / 2;
4643     if (EltSize < SlotSize)
4644       return complexTempStructure(CGF, VAListAddr, Ty, SlotSize, EltSize, CTy);
4645   }
4646 
4647   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, TypeInfo,
4648                           SlotSize, /*AllowHigher*/ true);
4649 }
4650 
4651 bool AIXTargetCodeGenInfo::initDwarfEHRegSizeTable(
4652     CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const {
4653   return PPC_initDwarfEHRegSizeTable(CGF, Address, Is64Bit, /*IsAIX*/ true);
4654 }
4655 
4656 // PowerPC-32
4657 namespace {
4658 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
4659 class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
4660   bool IsSoftFloatABI;
4661   bool IsRetSmallStructInRegABI;
4662 
4663   CharUnits getParamTypeAlignment(QualType Ty) const;
4664 
4665 public:
4666   PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI,
4667                      bool RetSmallStructInRegABI)
4668       : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI),
4669         IsRetSmallStructInRegABI(RetSmallStructInRegABI) {}
4670 
4671   ABIArgInfo classifyReturnType(QualType RetTy) const;
4672 
4673   void computeInfo(CGFunctionInfo &FI) const override {
4674     if (!getCXXABI().classifyReturnType(FI))
4675       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4676     for (auto &I : FI.arguments())
4677       I.info = classifyArgumentType(I.type);
4678   }
4679 
4680   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4681                     QualType Ty) const override;
4682 };
4683 
4684 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
4685 public:
4686   PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI,
4687                          bool RetSmallStructInRegABI)
4688       : TargetCodeGenInfo(std::make_unique<PPC32_SVR4_ABIInfo>(
4689             CGT, SoftFloatABI, RetSmallStructInRegABI)) {}
4690 
4691   static bool isStructReturnInRegABI(const llvm::Triple &Triple,
4692                                      const CodeGenOptions &Opts);
4693 
4694   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4695     // This is recovered from gcc output.
4696     return 1; // r1 is the dedicated stack pointer
4697   }
4698 
4699   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4700                                llvm::Value *Address) const override;
4701 };
4702 }
4703 
4704 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
4705   // Complex types are passed just like their elements.
4706   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4707     Ty = CTy->getElementType();
4708 
4709   if (Ty->isVectorType())
4710     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16
4711                                                                        : 4);
4712 
4713   // For single-element float/vector structs, we consider the whole type
4714   // to have the same alignment requirements as its single element.
4715   const Type *AlignTy = nullptr;
4716   if (const Type *EltType = isSingleElementStruct(Ty, getContext())) {
4717     const BuiltinType *BT = EltType->getAs<BuiltinType>();
4718     if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) ||
4719         (BT && BT->isFloatingPoint()))
4720       AlignTy = EltType;
4721   }
4722 
4723   if (AlignTy)
4724     return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4);
4725   return CharUnits::fromQuantity(4);
4726 }
4727 
4728 ABIArgInfo PPC32_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
4729   uint64_t Size;
4730 
4731   // -msvr4-struct-return puts small aggregates in GPR3 and GPR4.
4732   if (isAggregateTypeForABI(RetTy) && IsRetSmallStructInRegABI &&
4733       (Size = getContext().getTypeSize(RetTy)) <= 64) {
4734     // System V ABI (1995), page 3-22, specified:
4735     // > A structure or union whose size is less than or equal to 8 bytes
4736     // > shall be returned in r3 and r4, as if it were first stored in the
4737     // > 8-byte aligned memory area and then the low addressed word were
4738     // > loaded into r3 and the high-addressed word into r4.  Bits beyond
4739     // > the last member of the structure or union are not defined.
4740     //
4741     // GCC for big-endian PPC32 inserts the pad before the first member,
4742     // not "beyond the last member" of the struct.  To stay compatible
4743     // with GCC, we coerce the struct to an integer of the same size.
4744     // LLVM will extend it and return i32 in r3, or i64 in r3:r4.
4745     if (Size == 0)
4746       return ABIArgInfo::getIgnore();
4747     else {
4748       llvm::Type *CoerceTy = llvm::Type::getIntNTy(getVMContext(), Size);
4749       return ABIArgInfo::getDirect(CoerceTy);
4750     }
4751   }
4752 
4753   return DefaultABIInfo::classifyReturnType(RetTy);
4754 }
4755 
4756 // TODO: this implementation is now likely redundant with
4757 // DefaultABIInfo::EmitVAArg.
4758 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList,
4759                                       QualType Ty) const {
4760   if (getTarget().getTriple().isOSDarwin()) {
4761     auto TI = getContext().getTypeInfoInChars(Ty);
4762     TI.Align = getParamTypeAlignment(Ty);
4763 
4764     CharUnits SlotSize = CharUnits::fromQuantity(4);
4765     return emitVoidPtrVAArg(CGF, VAList, Ty,
4766                             classifyArgumentType(Ty).isIndirect(), TI, SlotSize,
4767                             /*AllowHigherAlign=*/true);
4768   }
4769 
4770   const unsigned OverflowLimit = 8;
4771   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4772     // TODO: Implement this. For now ignore.
4773     (void)CTy;
4774     return Address::invalid(); // FIXME?
4775   }
4776 
4777   // struct __va_list_tag {
4778   //   unsigned char gpr;
4779   //   unsigned char fpr;
4780   //   unsigned short reserved;
4781   //   void *overflow_arg_area;
4782   //   void *reg_save_area;
4783   // };
4784 
4785   bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
4786   bool isInt = !Ty->isFloatingType();
4787   bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64;
4788 
4789   // All aggregates are passed indirectly?  That doesn't seem consistent
4790   // with the argument-lowering code.
4791   bool isIndirect = isAggregateTypeForABI(Ty);
4792 
4793   CGBuilderTy &Builder = CGF.Builder;
4794 
4795   // The calling convention either uses 1-2 GPRs or 1 FPR.
4796   Address NumRegsAddr = Address::invalid();
4797   if (isInt || IsSoftFloatABI) {
4798     NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr");
4799   } else {
4800     NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr");
4801   }
4802 
4803   llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs");
4804 
4805   // "Align" the register count when TY is i64.
4806   if (isI64 || (isF64 && IsSoftFloatABI)) {
4807     NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1));
4808     NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U));
4809   }
4810 
4811   llvm::Value *CC =
4812       Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond");
4813 
4814   llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
4815   llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
4816   llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
4817 
4818   Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
4819 
4820   llvm::Type *DirectTy = CGF.ConvertType(Ty);
4821   if (isIndirect) DirectTy = DirectTy->getPointerTo(0);
4822 
4823   // Case 1: consume registers.
4824   Address RegAddr = Address::invalid();
4825   {
4826     CGF.EmitBlock(UsingRegs);
4827 
4828     Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4);
4829     RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr),
4830                       CharUnits::fromQuantity(8));
4831     assert(RegAddr.getElementType() == CGF.Int8Ty);
4832 
4833     // Floating-point registers start after the general-purpose registers.
4834     if (!(isInt || IsSoftFloatABI)) {
4835       RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr,
4836                                                    CharUnits::fromQuantity(32));
4837     }
4838 
4839     // Get the address of the saved value by scaling the number of
4840     // registers we've used by the number of
4841     CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8);
4842     llvm::Value *RegOffset =
4843       Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity()));
4844     RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty,
4845                                             RegAddr.getPointer(), RegOffset),
4846                       RegAddr.getAlignment().alignmentOfArrayElement(RegSize));
4847     RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy);
4848 
4849     // Increase the used-register count.
4850     NumRegs =
4851       Builder.CreateAdd(NumRegs,
4852                         Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1));
4853     Builder.CreateStore(NumRegs, NumRegsAddr);
4854 
4855     CGF.EmitBranch(Cont);
4856   }
4857 
4858   // Case 2: consume space in the overflow area.
4859   Address MemAddr = Address::invalid();
4860   {
4861     CGF.EmitBlock(UsingOverflow);
4862 
4863     Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr);
4864 
4865     // Everything in the overflow area is rounded up to a size of at least 4.
4866     CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4);
4867 
4868     CharUnits Size;
4869     if (!isIndirect) {
4870       auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty);
4871       Size = TypeInfo.Width.alignTo(OverflowAreaAlign);
4872     } else {
4873       Size = CGF.getPointerSize();
4874     }
4875 
4876     Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3);
4877     Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"),
4878                          OverflowAreaAlign);
4879     // Round up address of argument to alignment
4880     CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
4881     if (Align > OverflowAreaAlign) {
4882       llvm::Value *Ptr = OverflowArea.getPointer();
4883       OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align),
4884                                                            Align);
4885     }
4886 
4887     MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy);
4888 
4889     // Increase the overflow area.
4890     OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size);
4891     Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr);
4892     CGF.EmitBranch(Cont);
4893   }
4894 
4895   CGF.EmitBlock(Cont);
4896 
4897   // Merge the cases with a phi.
4898   Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow,
4899                                 "vaarg.addr");
4900 
4901   // Load the pointer if the argument was passed indirectly.
4902   if (isIndirect) {
4903     Result = Address(Builder.CreateLoad(Result, "aggr"),
4904                      getContext().getTypeAlignInChars(Ty));
4905   }
4906 
4907   return Result;
4908 }
4909 
4910 bool PPC32TargetCodeGenInfo::isStructReturnInRegABI(
4911     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
4912   assert(Triple.isPPC32());
4913 
4914   switch (Opts.getStructReturnConvention()) {
4915   case CodeGenOptions::SRCK_Default:
4916     break;
4917   case CodeGenOptions::SRCK_OnStack: // -maix-struct-return
4918     return false;
4919   case CodeGenOptions::SRCK_InRegs: // -msvr4-struct-return
4920     return true;
4921   }
4922 
4923   if (Triple.isOSBinFormatELF() && !Triple.isOSLinux())
4924     return true;
4925 
4926   return false;
4927 }
4928 
4929 bool
4930 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4931                                                 llvm::Value *Address) const {
4932   return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ false,
4933                                      /*IsAIX*/ false);
4934 }
4935 
4936 // PowerPC-64
4937 
4938 namespace {
4939 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
4940 class PPC64_SVR4_ABIInfo : public SwiftABIInfo {
4941 public:
4942   enum ABIKind {
4943     ELFv1 = 0,
4944     ELFv2
4945   };
4946 
4947 private:
4948   static const unsigned GPRBits = 64;
4949   ABIKind Kind;
4950   bool IsSoftFloatABI;
4951 
4952 public:
4953   PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind,
4954                      bool SoftFloatABI)
4955       : SwiftABIInfo(CGT), Kind(Kind), IsSoftFloatABI(SoftFloatABI) {}
4956 
4957   bool isPromotableTypeForABI(QualType Ty) const;
4958   CharUnits getParamTypeAlignment(QualType Ty) const;
4959 
4960   ABIArgInfo classifyReturnType(QualType RetTy) const;
4961   ABIArgInfo classifyArgumentType(QualType Ty) const;
4962 
4963   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4964   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4965                                          uint64_t Members) const override;
4966 
4967   // TODO: We can add more logic to computeInfo to improve performance.
4968   // Example: For aggregate arguments that fit in a register, we could
4969   // use getDirectInReg (as is done below for structs containing a single
4970   // floating-point value) to avoid pushing them to memory on function
4971   // entry.  This would require changing the logic in PPCISelLowering
4972   // when lowering the parameters in the caller and args in the callee.
4973   void computeInfo(CGFunctionInfo &FI) const override {
4974     if (!getCXXABI().classifyReturnType(FI))
4975       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4976     for (auto &I : FI.arguments()) {
4977       // We rely on the default argument classification for the most part.
4978       // One exception:  An aggregate containing a single floating-point
4979       // or vector item must be passed in a register if one is available.
4980       const Type *T = isSingleElementStruct(I.type, getContext());
4981       if (T) {
4982         const BuiltinType *BT = T->getAs<BuiltinType>();
4983         if ((T->isVectorType() && getContext().getTypeSize(T) == 128) ||
4984             (BT && BT->isFloatingPoint())) {
4985           QualType QT(T, 0);
4986           I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
4987           continue;
4988         }
4989       }
4990       I.info = classifyArgumentType(I.type);
4991     }
4992   }
4993 
4994   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4995                     QualType Ty) const override;
4996 
4997   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
4998                                     bool asReturnValue) const override {
4999     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
5000   }
5001 
5002   bool isSwiftErrorInRegister() const override {
5003     return false;
5004   }
5005 };
5006 
5007 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
5008 
5009 public:
5010   PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT,
5011                                PPC64_SVR4_ABIInfo::ABIKind Kind,
5012                                bool SoftFloatABI)
5013       : TargetCodeGenInfo(
5014             std::make_unique<PPC64_SVR4_ABIInfo>(CGT, Kind, SoftFloatABI)) {}
5015 
5016   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5017     // This is recovered from gcc output.
5018     return 1; // r1 is the dedicated stack pointer
5019   }
5020 
5021   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5022                                llvm::Value *Address) const override;
5023 };
5024 
5025 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
5026 public:
5027   PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
5028 
5029   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5030     // This is recovered from gcc output.
5031     return 1; // r1 is the dedicated stack pointer
5032   }
5033 
5034   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5035                                llvm::Value *Address) const override;
5036 };
5037 
5038 }
5039 
5040 // Return true if the ABI requires Ty to be passed sign- or zero-
5041 // extended to 64 bits.
5042 bool
5043 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
5044   // Treat an enum type as its underlying type.
5045   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5046     Ty = EnumTy->getDecl()->getIntegerType();
5047 
5048   // Promotable integer types are required to be promoted by the ABI.
5049   if (isPromotableIntegerTypeForABI(Ty))
5050     return true;
5051 
5052   // In addition to the usual promotable integer types, we also need to
5053   // extend all 32-bit types, since the ABI requires promotion to 64 bits.
5054   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
5055     switch (BT->getKind()) {
5056     case BuiltinType::Int:
5057     case BuiltinType::UInt:
5058       return true;
5059     default:
5060       break;
5061     }
5062 
5063   if (const auto *EIT = Ty->getAs<ExtIntType>())
5064     if (EIT->getNumBits() < 64)
5065       return true;
5066 
5067   return false;
5068 }
5069 
5070 /// isAlignedParamType - Determine whether a type requires 16-byte or
5071 /// higher alignment in the parameter area.  Always returns at least 8.
5072 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
5073   // Complex types are passed just like their elements.
5074   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
5075     Ty = CTy->getElementType();
5076 
5077   // Only vector types of size 16 bytes need alignment (larger types are
5078   // passed via reference, smaller types are not aligned).
5079   if (Ty->isVectorType()) {
5080     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8);
5081   } else if (Ty->isRealFloatingType() &&
5082              &getContext().getFloatTypeSemantics(Ty) ==
5083                  &llvm::APFloat::IEEEquad()) {
5084     // According to ABI document section 'Optional Save Areas': If extended
5085     // precision floating-point values in IEEE BINARY 128 QUADRUPLE PRECISION
5086     // format are supported, map them to a single quadword, quadword aligned.
5087     return CharUnits::fromQuantity(16);
5088   }
5089 
5090   // For single-element float/vector structs, we consider the whole type
5091   // to have the same alignment requirements as its single element.
5092   const Type *AlignAsType = nullptr;
5093   const Type *EltType = isSingleElementStruct(Ty, getContext());
5094   if (EltType) {
5095     const BuiltinType *BT = EltType->getAs<BuiltinType>();
5096     if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) ||
5097         (BT && BT->isFloatingPoint()))
5098       AlignAsType = EltType;
5099   }
5100 
5101   // Likewise for ELFv2 homogeneous aggregates.
5102   const Type *Base = nullptr;
5103   uint64_t Members = 0;
5104   if (!AlignAsType && Kind == ELFv2 &&
5105       isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
5106     AlignAsType = Base;
5107 
5108   // With special case aggregates, only vector base types need alignment.
5109   if (AlignAsType) {
5110     return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8);
5111   }
5112 
5113   // Otherwise, we only need alignment for any aggregate type that
5114   // has an alignment requirement of >= 16 bytes.
5115   if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) {
5116     return CharUnits::fromQuantity(16);
5117   }
5118 
5119   return CharUnits::fromQuantity(8);
5120 }
5121 
5122 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
5123 /// aggregate.  Base is set to the base element type, and Members is set
5124 /// to the number of base elements.
5125 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
5126                                      uint64_t &Members) const {
5127   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
5128     uint64_t NElements = AT->getSize().getZExtValue();
5129     if (NElements == 0)
5130       return false;
5131     if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
5132       return false;
5133     Members *= NElements;
5134   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
5135     const RecordDecl *RD = RT->getDecl();
5136     if (RD->hasFlexibleArrayMember())
5137       return false;
5138 
5139     Members = 0;
5140 
5141     // If this is a C++ record, check the properties of the record such as
5142     // bases and ABI specific restrictions
5143     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
5144       if (!getCXXABI().isPermittedToBeHomogeneousAggregate(CXXRD))
5145         return false;
5146 
5147       for (const auto &I : CXXRD->bases()) {
5148         // Ignore empty records.
5149         if (isEmptyRecord(getContext(), I.getType(), true))
5150           continue;
5151 
5152         uint64_t FldMembers;
5153         if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
5154           return false;
5155 
5156         Members += FldMembers;
5157       }
5158     }
5159 
5160     for (const auto *FD : RD->fields()) {
5161       // Ignore (non-zero arrays of) empty records.
5162       QualType FT = FD->getType();
5163       while (const ConstantArrayType *AT =
5164              getContext().getAsConstantArrayType(FT)) {
5165         if (AT->getSize().getZExtValue() == 0)
5166           return false;
5167         FT = AT->getElementType();
5168       }
5169       if (isEmptyRecord(getContext(), FT, true))
5170         continue;
5171 
5172       // For compatibility with GCC, ignore empty bitfields in C++ mode.
5173       if (getContext().getLangOpts().CPlusPlus &&
5174           FD->isZeroLengthBitField(getContext()))
5175         continue;
5176 
5177       uint64_t FldMembers;
5178       if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
5179         return false;
5180 
5181       Members = (RD->isUnion() ?
5182                  std::max(Members, FldMembers) : Members + FldMembers);
5183     }
5184 
5185     if (!Base)
5186       return false;
5187 
5188     // Ensure there is no padding.
5189     if (getContext().getTypeSize(Base) * Members !=
5190         getContext().getTypeSize(Ty))
5191       return false;
5192   } else {
5193     Members = 1;
5194     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
5195       Members = 2;
5196       Ty = CT->getElementType();
5197     }
5198 
5199     // Most ABIs only support float, double, and some vector type widths.
5200     if (!isHomogeneousAggregateBaseType(Ty))
5201       return false;
5202 
5203     // The base type must be the same for all members.  Types that
5204     // agree in both total size and mode (float vs. vector) are
5205     // treated as being equivalent here.
5206     const Type *TyPtr = Ty.getTypePtr();
5207     if (!Base) {
5208       Base = TyPtr;
5209       // If it's a non-power-of-2 vector, its size is already a power-of-2,
5210       // so make sure to widen it explicitly.
5211       if (const VectorType *VT = Base->getAs<VectorType>()) {
5212         QualType EltTy = VT->getElementType();
5213         unsigned NumElements =
5214             getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy);
5215         Base = getContext()
5216                    .getVectorType(EltTy, NumElements, VT->getVectorKind())
5217                    .getTypePtr();
5218       }
5219     }
5220 
5221     if (Base->isVectorType() != TyPtr->isVectorType() ||
5222         getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
5223       return false;
5224   }
5225   return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
5226 }
5227 
5228 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
5229   // Homogeneous aggregates for ELFv2 must have base types of float,
5230   // double, long double, or 128-bit vectors.
5231   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
5232     if (BT->getKind() == BuiltinType::Float ||
5233         BT->getKind() == BuiltinType::Double ||
5234         BT->getKind() == BuiltinType::LongDouble ||
5235         BT->getKind() == BuiltinType::Ibm128 ||
5236         (getContext().getTargetInfo().hasFloat128Type() &&
5237          (BT->getKind() == BuiltinType::Float128))) {
5238       if (IsSoftFloatABI)
5239         return false;
5240       return true;
5241     }
5242   }
5243   if (const VectorType *VT = Ty->getAs<VectorType>()) {
5244     if (getContext().getTypeSize(VT) == 128)
5245       return true;
5246   }
5247   return false;
5248 }
5249 
5250 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough(
5251     const Type *Base, uint64_t Members) const {
5252   // Vector and fp128 types require one register, other floating point types
5253   // require one or two registers depending on their size.
5254   uint32_t NumRegs =
5255       ((getContext().getTargetInfo().hasFloat128Type() &&
5256           Base->isFloat128Type()) ||
5257         Base->isVectorType()) ? 1
5258                               : (getContext().getTypeSize(Base) + 63) / 64;
5259 
5260   // Homogeneous Aggregates may occupy at most 8 registers.
5261   return Members * NumRegs <= 8;
5262 }
5263 
5264 ABIArgInfo
5265 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
5266   Ty = useFirstFieldIfTransparentUnion(Ty);
5267 
5268   if (Ty->isAnyComplexType())
5269     return ABIArgInfo::getDirect();
5270 
5271   // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
5272   // or via reference (larger than 16 bytes).
5273   if (Ty->isVectorType()) {
5274     uint64_t Size = getContext().getTypeSize(Ty);
5275     if (Size > 128)
5276       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5277     else if (Size < 128) {
5278       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
5279       return ABIArgInfo::getDirect(CoerceTy);
5280     }
5281   }
5282 
5283   if (const auto *EIT = Ty->getAs<ExtIntType>())
5284     if (EIT->getNumBits() > 128)
5285       return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
5286 
5287   if (isAggregateTypeForABI(Ty)) {
5288     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
5289       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
5290 
5291     uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity();
5292     uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
5293 
5294     // ELFv2 homogeneous aggregates are passed as array types.
5295     const Type *Base = nullptr;
5296     uint64_t Members = 0;
5297     if (Kind == ELFv2 &&
5298         isHomogeneousAggregate(Ty, Base, Members)) {
5299       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
5300       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
5301       return ABIArgInfo::getDirect(CoerceTy);
5302     }
5303 
5304     // If an aggregate may end up fully in registers, we do not
5305     // use the ByVal method, but pass the aggregate as array.
5306     // This is usually beneficial since we avoid forcing the
5307     // back-end to store the argument to memory.
5308     uint64_t Bits = getContext().getTypeSize(Ty);
5309     if (Bits > 0 && Bits <= 8 * GPRBits) {
5310       llvm::Type *CoerceTy;
5311 
5312       // Types up to 8 bytes are passed as integer type (which will be
5313       // properly aligned in the argument save area doubleword).
5314       if (Bits <= GPRBits)
5315         CoerceTy =
5316             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
5317       // Larger types are passed as arrays, with the base type selected
5318       // according to the required alignment in the save area.
5319       else {
5320         uint64_t RegBits = ABIAlign * 8;
5321         uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits;
5322         llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
5323         CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
5324       }
5325 
5326       return ABIArgInfo::getDirect(CoerceTy);
5327     }
5328 
5329     // All other aggregates are passed ByVal.
5330     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
5331                                    /*ByVal=*/true,
5332                                    /*Realign=*/TyAlign > ABIAlign);
5333   }
5334 
5335   return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
5336                                      : ABIArgInfo::getDirect());
5337 }
5338 
5339 ABIArgInfo
5340 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
5341   if (RetTy->isVoidType())
5342     return ABIArgInfo::getIgnore();
5343 
5344   if (RetTy->isAnyComplexType())
5345     return ABIArgInfo::getDirect();
5346 
5347   // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
5348   // or via reference (larger than 16 bytes).
5349   if (RetTy->isVectorType()) {
5350     uint64_t Size = getContext().getTypeSize(RetTy);
5351     if (Size > 128)
5352       return getNaturalAlignIndirect(RetTy);
5353     else if (Size < 128) {
5354       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
5355       return ABIArgInfo::getDirect(CoerceTy);
5356     }
5357   }
5358 
5359   if (const auto *EIT = RetTy->getAs<ExtIntType>())
5360     if (EIT->getNumBits() > 128)
5361       return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
5362 
5363   if (isAggregateTypeForABI(RetTy)) {
5364     // ELFv2 homogeneous aggregates are returned as array types.
5365     const Type *Base = nullptr;
5366     uint64_t Members = 0;
5367     if (Kind == ELFv2 &&
5368         isHomogeneousAggregate(RetTy, Base, Members)) {
5369       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
5370       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
5371       return ABIArgInfo::getDirect(CoerceTy);
5372     }
5373 
5374     // ELFv2 small aggregates are returned in up to two registers.
5375     uint64_t Bits = getContext().getTypeSize(RetTy);
5376     if (Kind == ELFv2 && Bits <= 2 * GPRBits) {
5377       if (Bits == 0)
5378         return ABIArgInfo::getIgnore();
5379 
5380       llvm::Type *CoerceTy;
5381       if (Bits > GPRBits) {
5382         CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
5383         CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy);
5384       } else
5385         CoerceTy =
5386             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
5387       return ABIArgInfo::getDirect(CoerceTy);
5388     }
5389 
5390     // All other aggregates are returned indirectly.
5391     return getNaturalAlignIndirect(RetTy);
5392   }
5393 
5394   return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
5395                                         : ABIArgInfo::getDirect());
5396 }
5397 
5398 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
5399 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5400                                       QualType Ty) const {
5401   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
5402   TypeInfo.Align = getParamTypeAlignment(Ty);
5403 
5404   CharUnits SlotSize = CharUnits::fromQuantity(8);
5405 
5406   // If we have a complex type and the base type is smaller than 8 bytes,
5407   // the ABI calls for the real and imaginary parts to be right-adjusted
5408   // in separate doublewords.  However, Clang expects us to produce a
5409   // pointer to a structure with the two parts packed tightly.  So generate
5410   // loads of the real and imaginary parts relative to the va_list pointer,
5411   // and store them to a temporary structure.
5412   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
5413     CharUnits EltSize = TypeInfo.Width / 2;
5414     if (EltSize < SlotSize)
5415       return complexTempStructure(CGF, VAListAddr, Ty, SlotSize, EltSize, CTy);
5416   }
5417 
5418   // Otherwise, just use the general rule.
5419   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
5420                           TypeInfo, SlotSize, /*AllowHigher*/ true);
5421 }
5422 
5423 bool
5424 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
5425   CodeGen::CodeGenFunction &CGF,
5426   llvm::Value *Address) const {
5427   return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true,
5428                                      /*IsAIX*/ false);
5429 }
5430 
5431 bool
5432 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5433                                                 llvm::Value *Address) const {
5434   return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true,
5435                                      /*IsAIX*/ false);
5436 }
5437 
5438 //===----------------------------------------------------------------------===//
5439 // AArch64 ABI Implementation
5440 //===----------------------------------------------------------------------===//
5441 
5442 namespace {
5443 
5444 class AArch64ABIInfo : public SwiftABIInfo {
5445 public:
5446   enum ABIKind {
5447     AAPCS = 0,
5448     DarwinPCS,
5449     Win64
5450   };
5451 
5452 private:
5453   ABIKind Kind;
5454 
5455 public:
5456   AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind)
5457     : SwiftABIInfo(CGT), Kind(Kind) {}
5458 
5459 private:
5460   ABIKind getABIKind() const { return Kind; }
5461   bool isDarwinPCS() const { return Kind == DarwinPCS; }
5462 
5463   ABIArgInfo classifyReturnType(QualType RetTy, bool IsVariadic) const;
5464   ABIArgInfo classifyArgumentType(QualType RetTy, bool IsVariadic,
5465                                   unsigned CallingConvention) const;
5466   ABIArgInfo coerceIllegalVector(QualType Ty) const;
5467   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
5468   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
5469                                          uint64_t Members) const override;
5470 
5471   bool isIllegalVectorType(QualType Ty) const;
5472 
5473   void computeInfo(CGFunctionInfo &FI) const override {
5474     if (!::classifyReturnType(getCXXABI(), FI, *this))
5475       FI.getReturnInfo() =
5476           classifyReturnType(FI.getReturnType(), FI.isVariadic());
5477 
5478     for (auto &it : FI.arguments())
5479       it.info = classifyArgumentType(it.type, FI.isVariadic(),
5480                                      FI.getCallingConvention());
5481   }
5482 
5483   Address EmitDarwinVAArg(Address VAListAddr, QualType Ty,
5484                           CodeGenFunction &CGF) const;
5485 
5486   Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
5487                          CodeGenFunction &CGF) const;
5488 
5489   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5490                     QualType Ty) const override {
5491     llvm::Type *BaseTy = CGF.ConvertType(Ty);
5492     if (isa<llvm::ScalableVectorType>(BaseTy))
5493       llvm::report_fatal_error("Passing SVE types to variadic functions is "
5494                                "currently not supported");
5495 
5496     return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty)
5497                          : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
5498                                          : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
5499   }
5500 
5501   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
5502                       QualType Ty) const override;
5503 
5504   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
5505                                     bool asReturnValue) const override {
5506     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
5507   }
5508   bool isSwiftErrorInRegister() const override {
5509     return true;
5510   }
5511 
5512   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
5513                                  unsigned elts) const override;
5514 
5515   bool allowBFloatArgsAndRet() const override {
5516     return getTarget().hasBFloat16Type();
5517   }
5518 };
5519 
5520 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
5521 public:
5522   AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
5523       : TargetCodeGenInfo(std::make_unique<AArch64ABIInfo>(CGT, Kind)) {}
5524 
5525   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
5526     return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue";
5527   }
5528 
5529   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5530     return 31;
5531   }
5532 
5533   bool doesReturnSlotInterfereWithArgs() const override { return false; }
5534 
5535   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5536                            CodeGen::CodeGenModule &CGM) const override {
5537     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5538     if (!FD)
5539       return;
5540 
5541     const auto *TA = FD->getAttr<TargetAttr>();
5542     if (TA == nullptr)
5543       return;
5544 
5545     ParsedTargetAttr Attr = TA->parse();
5546     if (Attr.BranchProtection.empty())
5547       return;
5548 
5549     TargetInfo::BranchProtectionInfo BPI;
5550     StringRef Error;
5551     (void)CGM.getTarget().validateBranchProtection(Attr.BranchProtection,
5552                                                    BPI, Error);
5553     assert(Error.empty());
5554 
5555     auto *Fn = cast<llvm::Function>(GV);
5556     static const char *SignReturnAddrStr[] = {"none", "non-leaf", "all"};
5557     Fn->addFnAttr("sign-return-address", SignReturnAddrStr[static_cast<int>(BPI.SignReturnAddr)]);
5558 
5559     if (BPI.SignReturnAddr != LangOptions::SignReturnAddressScopeKind::None) {
5560       Fn->addFnAttr("sign-return-address-key",
5561                     BPI.SignKey == LangOptions::SignReturnAddressKeyKind::AKey
5562                         ? "a_key"
5563                         : "b_key");
5564     }
5565 
5566     Fn->addFnAttr("branch-target-enforcement",
5567                   BPI.BranchTargetEnforcement ? "true" : "false");
5568   }
5569 
5570   bool isScalarizableAsmOperand(CodeGen::CodeGenFunction &CGF,
5571                                 llvm::Type *Ty) const override {
5572     if (CGF.getTarget().hasFeature("ls64")) {
5573       auto *ST = dyn_cast<llvm::StructType>(Ty);
5574       if (ST && ST->getNumElements() == 1) {
5575         auto *AT = dyn_cast<llvm::ArrayType>(ST->getElementType(0));
5576         if (AT && AT->getNumElements() == 8 &&
5577             AT->getElementType()->isIntegerTy(64))
5578           return true;
5579       }
5580     }
5581     return TargetCodeGenInfo::isScalarizableAsmOperand(CGF, Ty);
5582   }
5583 };
5584 
5585 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo {
5586 public:
5587   WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K)
5588       : AArch64TargetCodeGenInfo(CGT, K) {}
5589 
5590   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5591                            CodeGen::CodeGenModule &CGM) const override;
5592 
5593   void getDependentLibraryOption(llvm::StringRef Lib,
5594                                  llvm::SmallString<24> &Opt) const override {
5595     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
5596   }
5597 
5598   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
5599                                llvm::SmallString<32> &Opt) const override {
5600     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
5601   }
5602 };
5603 
5604 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes(
5605     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
5606   AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
5607   if (GV->isDeclaration())
5608     return;
5609   addStackProbeTargetAttributes(D, GV, CGM);
5610 }
5611 }
5612 
5613 ABIArgInfo AArch64ABIInfo::coerceIllegalVector(QualType Ty) const {
5614   assert(Ty->isVectorType() && "expected vector type!");
5615 
5616   const auto *VT = Ty->castAs<VectorType>();
5617   if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) {
5618     assert(VT->getElementType()->isBuiltinType() && "expected builtin type!");
5619     assert(VT->getElementType()->castAs<BuiltinType>()->getKind() ==
5620                BuiltinType::UChar &&
5621            "unexpected builtin type for SVE predicate!");
5622     return ABIArgInfo::getDirect(llvm::ScalableVectorType::get(
5623         llvm::Type::getInt1Ty(getVMContext()), 16));
5624   }
5625 
5626   if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector) {
5627     assert(VT->getElementType()->isBuiltinType() && "expected builtin type!");
5628 
5629     const auto *BT = VT->getElementType()->castAs<BuiltinType>();
5630     llvm::ScalableVectorType *ResType = nullptr;
5631     switch (BT->getKind()) {
5632     default:
5633       llvm_unreachable("unexpected builtin type for SVE vector!");
5634     case BuiltinType::SChar:
5635     case BuiltinType::UChar:
5636       ResType = llvm::ScalableVectorType::get(
5637           llvm::Type::getInt8Ty(getVMContext()), 16);
5638       break;
5639     case BuiltinType::Short:
5640     case BuiltinType::UShort:
5641       ResType = llvm::ScalableVectorType::get(
5642           llvm::Type::getInt16Ty(getVMContext()), 8);
5643       break;
5644     case BuiltinType::Int:
5645     case BuiltinType::UInt:
5646       ResType = llvm::ScalableVectorType::get(
5647           llvm::Type::getInt32Ty(getVMContext()), 4);
5648       break;
5649     case BuiltinType::Long:
5650     case BuiltinType::ULong:
5651       ResType = llvm::ScalableVectorType::get(
5652           llvm::Type::getInt64Ty(getVMContext()), 2);
5653       break;
5654     case BuiltinType::Half:
5655       ResType = llvm::ScalableVectorType::get(
5656           llvm::Type::getHalfTy(getVMContext()), 8);
5657       break;
5658     case BuiltinType::Float:
5659       ResType = llvm::ScalableVectorType::get(
5660           llvm::Type::getFloatTy(getVMContext()), 4);
5661       break;
5662     case BuiltinType::Double:
5663       ResType = llvm::ScalableVectorType::get(
5664           llvm::Type::getDoubleTy(getVMContext()), 2);
5665       break;
5666     case BuiltinType::BFloat16:
5667       ResType = llvm::ScalableVectorType::get(
5668           llvm::Type::getBFloatTy(getVMContext()), 8);
5669       break;
5670     }
5671     return ABIArgInfo::getDirect(ResType);
5672   }
5673 
5674   uint64_t Size = getContext().getTypeSize(Ty);
5675   // Android promotes <2 x i8> to i16, not i32
5676   if (isAndroid() && (Size <= 16)) {
5677     llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext());
5678     return ABIArgInfo::getDirect(ResType);
5679   }
5680   if (Size <= 32) {
5681     llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
5682     return ABIArgInfo::getDirect(ResType);
5683   }
5684   if (Size == 64) {
5685     auto *ResType =
5686         llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
5687     return ABIArgInfo::getDirect(ResType);
5688   }
5689   if (Size == 128) {
5690     auto *ResType =
5691         llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
5692     return ABIArgInfo::getDirect(ResType);
5693   }
5694   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5695 }
5696 
5697 ABIArgInfo
5698 AArch64ABIInfo::classifyArgumentType(QualType Ty, bool IsVariadic,
5699                                      unsigned CallingConvention) const {
5700   Ty = useFirstFieldIfTransparentUnion(Ty);
5701 
5702   // Handle illegal vector types here.
5703   if (isIllegalVectorType(Ty))
5704     return coerceIllegalVector(Ty);
5705 
5706   if (!isAggregateTypeForABI(Ty)) {
5707     // Treat an enum type as its underlying type.
5708     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5709       Ty = EnumTy->getDecl()->getIntegerType();
5710 
5711     if (const auto *EIT = Ty->getAs<ExtIntType>())
5712       if (EIT->getNumBits() > 128)
5713         return getNaturalAlignIndirect(Ty);
5714 
5715     return (isPromotableIntegerTypeForABI(Ty) && isDarwinPCS()
5716                 ? ABIArgInfo::getExtend(Ty)
5717                 : ABIArgInfo::getDirect());
5718   }
5719 
5720   // Structures with either a non-trivial destructor or a non-trivial
5721   // copy constructor are always indirect.
5722   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5723     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
5724                                      CGCXXABI::RAA_DirectInMemory);
5725   }
5726 
5727   // Empty records are always ignored on Darwin, but actually passed in C++ mode
5728   // elsewhere for GNU compatibility.
5729   uint64_t Size = getContext().getTypeSize(Ty);
5730   bool IsEmpty = isEmptyRecord(getContext(), Ty, true);
5731   if (IsEmpty || Size == 0) {
5732     if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
5733       return ABIArgInfo::getIgnore();
5734 
5735     // GNU C mode. The only argument that gets ignored is an empty one with size
5736     // 0.
5737     if (IsEmpty && Size == 0)
5738       return ABIArgInfo::getIgnore();
5739     return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5740   }
5741 
5742   // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
5743   const Type *Base = nullptr;
5744   uint64_t Members = 0;
5745   bool IsWin64 = Kind == Win64 || CallingConvention == llvm::CallingConv::Win64;
5746   bool IsWinVariadic = IsWin64 && IsVariadic;
5747   // In variadic functions on Windows, all composite types are treated alike,
5748   // no special handling of HFAs/HVAs.
5749   if (!IsWinVariadic && isHomogeneousAggregate(Ty, Base, Members)) {
5750     if (Kind != AArch64ABIInfo::AAPCS)
5751       return ABIArgInfo::getDirect(
5752           llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
5753 
5754     // For alignment adjusted HFAs, cap the argument alignment to 16, leave it
5755     // default otherwise.
5756     unsigned Align =
5757         getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity();
5758     unsigned BaseAlign = getContext().getTypeAlignInChars(Base).getQuantity();
5759     Align = (Align > BaseAlign && Align >= 16) ? 16 : 0;
5760     return ABIArgInfo::getDirect(
5761         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members), 0,
5762         nullptr, true, Align);
5763   }
5764 
5765   // Aggregates <= 16 bytes are passed directly in registers or on the stack.
5766   if (Size <= 128) {
5767     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5768     // same size and alignment.
5769     if (getTarget().isRenderScriptTarget()) {
5770       return coerceToIntArray(Ty, getContext(), getVMContext());
5771     }
5772     unsigned Alignment;
5773     if (Kind == AArch64ABIInfo::AAPCS) {
5774       Alignment = getContext().getTypeUnadjustedAlign(Ty);
5775       Alignment = Alignment < 128 ? 64 : 128;
5776     } else {
5777       Alignment = std::max(getContext().getTypeAlign(Ty),
5778                            (unsigned)getTarget().getPointerWidth(0));
5779     }
5780     Size = llvm::alignTo(Size, Alignment);
5781 
5782     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5783     // For aggregates with 16-byte alignment, we use i128.
5784     llvm::Type *BaseTy = llvm::Type::getIntNTy(getVMContext(), Alignment);
5785     return ABIArgInfo::getDirect(
5786         Size == Alignment ? BaseTy
5787                           : llvm::ArrayType::get(BaseTy, Size / Alignment));
5788   }
5789 
5790   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5791 }
5792 
5793 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy,
5794                                               bool IsVariadic) const {
5795   if (RetTy->isVoidType())
5796     return ABIArgInfo::getIgnore();
5797 
5798   if (const auto *VT = RetTy->getAs<VectorType>()) {
5799     if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector ||
5800         VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector)
5801       return coerceIllegalVector(RetTy);
5802   }
5803 
5804   // Large vector types should be returned via memory.
5805   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
5806     return getNaturalAlignIndirect(RetTy);
5807 
5808   if (!isAggregateTypeForABI(RetTy)) {
5809     // Treat an enum type as its underlying type.
5810     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5811       RetTy = EnumTy->getDecl()->getIntegerType();
5812 
5813     if (const auto *EIT = RetTy->getAs<ExtIntType>())
5814       if (EIT->getNumBits() > 128)
5815         return getNaturalAlignIndirect(RetTy);
5816 
5817     return (isPromotableIntegerTypeForABI(RetTy) && isDarwinPCS()
5818                 ? ABIArgInfo::getExtend(RetTy)
5819                 : ABIArgInfo::getDirect());
5820   }
5821 
5822   uint64_t Size = getContext().getTypeSize(RetTy);
5823   if (isEmptyRecord(getContext(), RetTy, true) || Size == 0)
5824     return ABIArgInfo::getIgnore();
5825 
5826   const Type *Base = nullptr;
5827   uint64_t Members = 0;
5828   if (isHomogeneousAggregate(RetTy, Base, Members) &&
5829       !(getTarget().getTriple().getArch() == llvm::Triple::aarch64_32 &&
5830         IsVariadic))
5831     // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
5832     return ABIArgInfo::getDirect();
5833 
5834   // Aggregates <= 16 bytes are returned directly in registers or on the stack.
5835   if (Size <= 128) {
5836     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5837     // same size and alignment.
5838     if (getTarget().isRenderScriptTarget()) {
5839       return coerceToIntArray(RetTy, getContext(), getVMContext());
5840     }
5841 
5842     if (Size <= 64 && getDataLayout().isLittleEndian()) {
5843       // Composite types are returned in lower bits of a 64-bit register for LE,
5844       // and in higher bits for BE. However, integer types are always returned
5845       // in lower bits for both LE and BE, and they are not rounded up to
5846       // 64-bits. We can skip rounding up of composite types for LE, but not for
5847       // BE, otherwise composite types will be indistinguishable from integer
5848       // types.
5849       return ABIArgInfo::getDirect(
5850           llvm::IntegerType::get(getVMContext(), Size));
5851     }
5852 
5853     unsigned Alignment = getContext().getTypeAlign(RetTy);
5854     Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes
5855 
5856     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5857     // For aggregates with 16-byte alignment, we use i128.
5858     if (Alignment < 128 && Size == 128) {
5859       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
5860       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
5861     }
5862     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
5863   }
5864 
5865   return getNaturalAlignIndirect(RetTy);
5866 }
5867 
5868 /// isIllegalVectorType - check whether the vector type is legal for AArch64.
5869 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
5870   if (const VectorType *VT = Ty->getAs<VectorType>()) {
5871     // Check whether VT is a fixed-length SVE vector. These types are
5872     // represented as scalable vectors in function args/return and must be
5873     // coerced from fixed vectors.
5874     if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector ||
5875         VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector)
5876       return true;
5877 
5878     // Check whether VT is legal.
5879     unsigned NumElements = VT->getNumElements();
5880     uint64_t Size = getContext().getTypeSize(VT);
5881     // NumElements should be power of 2.
5882     if (!llvm::isPowerOf2_32(NumElements))
5883       return true;
5884 
5885     // arm64_32 has to be compatible with the ARM logic here, which allows huge
5886     // vectors for some reason.
5887     llvm::Triple Triple = getTarget().getTriple();
5888     if (Triple.getArch() == llvm::Triple::aarch64_32 &&
5889         Triple.isOSBinFormatMachO())
5890       return Size <= 32;
5891 
5892     return Size != 64 && (Size != 128 || NumElements == 1);
5893   }
5894   return false;
5895 }
5896 
5897 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize,
5898                                                llvm::Type *eltTy,
5899                                                unsigned elts) const {
5900   if (!llvm::isPowerOf2_32(elts))
5901     return false;
5902   if (totalSize.getQuantity() != 8 &&
5903       (totalSize.getQuantity() != 16 || elts == 1))
5904     return false;
5905   return true;
5906 }
5907 
5908 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
5909   // Homogeneous aggregates for AAPCS64 must have base types of a floating
5910   // point type or a short-vector type. This is the same as the 32-bit ABI,
5911   // but with the difference that any floating-point type is allowed,
5912   // including __fp16.
5913   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
5914     if (BT->isFloatingPoint())
5915       return true;
5916   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
5917     unsigned VecSize = getContext().getTypeSize(VT);
5918     if (VecSize == 64 || VecSize == 128)
5919       return true;
5920   }
5921   return false;
5922 }
5923 
5924 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
5925                                                        uint64_t Members) const {
5926   return Members <= 4;
5927 }
5928 
5929 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
5930                                        CodeGenFunction &CGF) const {
5931   ABIArgInfo AI = classifyArgumentType(Ty, /*IsVariadic=*/true,
5932                                        CGF.CurFnInfo->getCallingConvention());
5933   bool IsIndirect = AI.isIndirect();
5934 
5935   llvm::Type *BaseTy = CGF.ConvertType(Ty);
5936   if (IsIndirect)
5937     BaseTy = llvm::PointerType::getUnqual(BaseTy);
5938   else if (AI.getCoerceToType())
5939     BaseTy = AI.getCoerceToType();
5940 
5941   unsigned NumRegs = 1;
5942   if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
5943     BaseTy = ArrTy->getElementType();
5944     NumRegs = ArrTy->getNumElements();
5945   }
5946   bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy();
5947 
5948   // The AArch64 va_list type and handling is specified in the Procedure Call
5949   // Standard, section B.4:
5950   //
5951   // struct {
5952   //   void *__stack;
5953   //   void *__gr_top;
5954   //   void *__vr_top;
5955   //   int __gr_offs;
5956   //   int __vr_offs;
5957   // };
5958 
5959   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
5960   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
5961   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
5962   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
5963 
5964   CharUnits TySize = getContext().getTypeSizeInChars(Ty);
5965   CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty);
5966 
5967   Address reg_offs_p = Address::invalid();
5968   llvm::Value *reg_offs = nullptr;
5969   int reg_top_index;
5970   int RegSize = IsIndirect ? 8 : TySize.getQuantity();
5971   if (!IsFPR) {
5972     // 3 is the field number of __gr_offs
5973     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p");
5974     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
5975     reg_top_index = 1; // field number for __gr_top
5976     RegSize = llvm::alignTo(RegSize, 8);
5977   } else {
5978     // 4 is the field number of __vr_offs.
5979     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p");
5980     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
5981     reg_top_index = 2; // field number for __vr_top
5982     RegSize = 16 * NumRegs;
5983   }
5984 
5985   //=======================================
5986   // Find out where argument was passed
5987   //=======================================
5988 
5989   // If reg_offs >= 0 we're already using the stack for this type of
5990   // argument. We don't want to keep updating reg_offs (in case it overflows,
5991   // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
5992   // whatever they get).
5993   llvm::Value *UsingStack = nullptr;
5994   UsingStack = CGF.Builder.CreateICmpSGE(
5995       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
5996 
5997   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
5998 
5999   // Otherwise, at least some kind of argument could go in these registers, the
6000   // question is whether this particular type is too big.
6001   CGF.EmitBlock(MaybeRegBlock);
6002 
6003   // Integer arguments may need to correct register alignment (for example a
6004   // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
6005   // align __gr_offs to calculate the potential address.
6006   if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) {
6007     int Align = TyAlign.getQuantity();
6008 
6009     reg_offs = CGF.Builder.CreateAdd(
6010         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
6011         "align_regoffs");
6012     reg_offs = CGF.Builder.CreateAnd(
6013         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
6014         "aligned_regoffs");
6015   }
6016 
6017   // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
6018   // The fact that this is done unconditionally reflects the fact that
6019   // allocating an argument to the stack also uses up all the remaining
6020   // registers of the appropriate kind.
6021   llvm::Value *NewOffset = nullptr;
6022   NewOffset = CGF.Builder.CreateAdd(
6023       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
6024   CGF.Builder.CreateStore(NewOffset, reg_offs_p);
6025 
6026   // Now we're in a position to decide whether this argument really was in
6027   // registers or not.
6028   llvm::Value *InRegs = nullptr;
6029   InRegs = CGF.Builder.CreateICmpSLE(
6030       NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
6031 
6032   CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
6033 
6034   //=======================================
6035   // Argument was in registers
6036   //=======================================
6037 
6038   // Now we emit the code for if the argument was originally passed in
6039   // registers. First start the appropriate block:
6040   CGF.EmitBlock(InRegBlock);
6041 
6042   llvm::Value *reg_top = nullptr;
6043   Address reg_top_p =
6044       CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p");
6045   reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
6046   Address BaseAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, reg_top, reg_offs),
6047                    CharUnits::fromQuantity(IsFPR ? 16 : 8));
6048   Address RegAddr = Address::invalid();
6049   llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty);
6050 
6051   if (IsIndirect) {
6052     // If it's been passed indirectly (actually a struct), whatever we find from
6053     // stored registers or on the stack will actually be a struct **.
6054     MemTy = llvm::PointerType::getUnqual(MemTy);
6055   }
6056 
6057   const Type *Base = nullptr;
6058   uint64_t NumMembers = 0;
6059   bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
6060   if (IsHFA && NumMembers > 1) {
6061     // Homogeneous aggregates passed in registers will have their elements split
6062     // and stored 16-bytes apart regardless of size (they're notionally in qN,
6063     // qN+1, ...). We reload and store into a temporary local variable
6064     // contiguously.
6065     assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
6066     auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0));
6067     llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
6068     llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
6069     Address Tmp = CGF.CreateTempAlloca(HFATy,
6070                                        std::max(TyAlign, BaseTyInfo.Align));
6071 
6072     // On big-endian platforms, the value will be right-aligned in its slot.
6073     int Offset = 0;
6074     if (CGF.CGM.getDataLayout().isBigEndian() &&
6075         BaseTyInfo.Width.getQuantity() < 16)
6076       Offset = 16 - BaseTyInfo.Width.getQuantity();
6077 
6078     for (unsigned i = 0; i < NumMembers; ++i) {
6079       CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset);
6080       Address LoadAddr =
6081         CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset);
6082       LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy);
6083 
6084       Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i);
6085 
6086       llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
6087       CGF.Builder.CreateStore(Elem, StoreAddr);
6088     }
6089 
6090     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy);
6091   } else {
6092     // Otherwise the object is contiguous in memory.
6093 
6094     // It might be right-aligned in its slot.
6095     CharUnits SlotSize = BaseAddr.getAlignment();
6096     if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect &&
6097         (IsHFA || !isAggregateTypeForABI(Ty)) &&
6098         TySize < SlotSize) {
6099       CharUnits Offset = SlotSize - TySize;
6100       BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset);
6101     }
6102 
6103     RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy);
6104   }
6105 
6106   CGF.EmitBranch(ContBlock);
6107 
6108   //=======================================
6109   // Argument was on the stack
6110   //=======================================
6111   CGF.EmitBlock(OnStackBlock);
6112 
6113   Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p");
6114   llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack");
6115 
6116   // Again, stack arguments may need realignment. In this case both integer and
6117   // floating-point ones might be affected.
6118   if (!IsIndirect && TyAlign.getQuantity() > 8) {
6119     int Align = TyAlign.getQuantity();
6120 
6121     OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty);
6122 
6123     OnStackPtr = CGF.Builder.CreateAdd(
6124         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
6125         "align_stack");
6126     OnStackPtr = CGF.Builder.CreateAnd(
6127         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
6128         "align_stack");
6129 
6130     OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy);
6131   }
6132   Address OnStackAddr(OnStackPtr,
6133                       std::max(CharUnits::fromQuantity(8), TyAlign));
6134 
6135   // All stack slots are multiples of 8 bytes.
6136   CharUnits StackSlotSize = CharUnits::fromQuantity(8);
6137   CharUnits StackSize;
6138   if (IsIndirect)
6139     StackSize = StackSlotSize;
6140   else
6141     StackSize = TySize.alignTo(StackSlotSize);
6142 
6143   llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize);
6144   llvm::Value *NewStack = CGF.Builder.CreateInBoundsGEP(
6145       CGF.Int8Ty, OnStackPtr, StackSizeC, "new_stack");
6146 
6147   // Write the new value of __stack for the next call to va_arg
6148   CGF.Builder.CreateStore(NewStack, stack_p);
6149 
6150   if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
6151       TySize < StackSlotSize) {
6152     CharUnits Offset = StackSlotSize - TySize;
6153     OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset);
6154   }
6155 
6156   OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy);
6157 
6158   CGF.EmitBranch(ContBlock);
6159 
6160   //=======================================
6161   // Tidy up
6162   //=======================================
6163   CGF.EmitBlock(ContBlock);
6164 
6165   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
6166                                  OnStackAddr, OnStackBlock, "vaargs.addr");
6167 
6168   if (IsIndirect)
6169     return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"),
6170                    TyAlign);
6171 
6172   return ResAddr;
6173 }
6174 
6175 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty,
6176                                         CodeGenFunction &CGF) const {
6177   // The backend's lowering doesn't support va_arg for aggregates or
6178   // illegal vector types.  Lower VAArg here for these cases and use
6179   // the LLVM va_arg instruction for everything else.
6180   if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
6181     return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
6182 
6183   uint64_t PointerSize = getTarget().getPointerWidth(0) / 8;
6184   CharUnits SlotSize = CharUnits::fromQuantity(PointerSize);
6185 
6186   // Empty records are ignored for parameter passing purposes.
6187   if (isEmptyRecord(getContext(), Ty, true)) {
6188     Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
6189     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
6190     return Addr;
6191   }
6192 
6193   // The size of the actual thing passed, which might end up just
6194   // being a pointer for indirect types.
6195   auto TyInfo = getContext().getTypeInfoInChars(Ty);
6196 
6197   // Arguments bigger than 16 bytes which aren't homogeneous
6198   // aggregates should be passed indirectly.
6199   bool IsIndirect = false;
6200   if (TyInfo.Width.getQuantity() > 16) {
6201     const Type *Base = nullptr;
6202     uint64_t Members = 0;
6203     IsIndirect = !isHomogeneousAggregate(Ty, Base, Members);
6204   }
6205 
6206   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
6207                           TyInfo, SlotSize, /*AllowHigherAlign*/ true);
6208 }
6209 
6210 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
6211                                     QualType Ty) const {
6212   bool IsIndirect = false;
6213 
6214   // Composites larger than 16 bytes are passed by reference.
6215   if (isAggregateTypeForABI(Ty) && getContext().getTypeSize(Ty) > 128)
6216     IsIndirect = true;
6217 
6218   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
6219                           CGF.getContext().getTypeInfoInChars(Ty),
6220                           CharUnits::fromQuantity(8),
6221                           /*allowHigherAlign*/ false);
6222 }
6223 
6224 //===----------------------------------------------------------------------===//
6225 // ARM ABI Implementation
6226 //===----------------------------------------------------------------------===//
6227 
6228 namespace {
6229 
6230 class ARMABIInfo : public SwiftABIInfo {
6231 public:
6232   enum ABIKind {
6233     APCS = 0,
6234     AAPCS = 1,
6235     AAPCS_VFP = 2,
6236     AAPCS16_VFP = 3,
6237   };
6238 
6239 private:
6240   ABIKind Kind;
6241   bool IsFloatABISoftFP;
6242 
6243 public:
6244   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind)
6245       : SwiftABIInfo(CGT), Kind(_Kind) {
6246     setCCs();
6247     IsFloatABISoftFP = CGT.getCodeGenOpts().FloatABI == "softfp" ||
6248         CGT.getCodeGenOpts().FloatABI == ""; // default
6249   }
6250 
6251   bool isEABI() const {
6252     switch (getTarget().getTriple().getEnvironment()) {
6253     case llvm::Triple::Android:
6254     case llvm::Triple::EABI:
6255     case llvm::Triple::EABIHF:
6256     case llvm::Triple::GNUEABI:
6257     case llvm::Triple::GNUEABIHF:
6258     case llvm::Triple::MuslEABI:
6259     case llvm::Triple::MuslEABIHF:
6260       return true;
6261     default:
6262       return false;
6263     }
6264   }
6265 
6266   bool isEABIHF() const {
6267     switch (getTarget().getTriple().getEnvironment()) {
6268     case llvm::Triple::EABIHF:
6269     case llvm::Triple::GNUEABIHF:
6270     case llvm::Triple::MuslEABIHF:
6271       return true;
6272     default:
6273       return false;
6274     }
6275   }
6276 
6277   ABIKind getABIKind() const { return Kind; }
6278 
6279   bool allowBFloatArgsAndRet() const override {
6280     return !IsFloatABISoftFP && getTarget().hasBFloat16Type();
6281   }
6282 
6283 private:
6284   ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic,
6285                                 unsigned functionCallConv) const;
6286   ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic,
6287                                   unsigned functionCallConv) const;
6288   ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base,
6289                                           uint64_t Members) const;
6290   ABIArgInfo coerceIllegalVector(QualType Ty) const;
6291   bool isIllegalVectorType(QualType Ty) const;
6292   bool containsAnyFP16Vectors(QualType Ty) const;
6293 
6294   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
6295   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
6296                                          uint64_t Members) const override;
6297 
6298   bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const;
6299 
6300   void computeInfo(CGFunctionInfo &FI) const override;
6301 
6302   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6303                     QualType Ty) const override;
6304 
6305   llvm::CallingConv::ID getLLVMDefaultCC() const;
6306   llvm::CallingConv::ID getABIDefaultCC() const;
6307   void setCCs();
6308 
6309   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
6310                                     bool asReturnValue) const override {
6311     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
6312   }
6313   bool isSwiftErrorInRegister() const override {
6314     return true;
6315   }
6316   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
6317                                  unsigned elts) const override;
6318 };
6319 
6320 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
6321 public:
6322   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
6323       : TargetCodeGenInfo(std::make_unique<ARMABIInfo>(CGT, K)) {}
6324 
6325   const ARMABIInfo &getABIInfo() const {
6326     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
6327   }
6328 
6329   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
6330     return 13;
6331   }
6332 
6333   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
6334     return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue";
6335   }
6336 
6337   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6338                                llvm::Value *Address) const override {
6339     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
6340 
6341     // 0-15 are the 16 integer registers.
6342     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
6343     return false;
6344   }
6345 
6346   unsigned getSizeOfUnwindException() const override {
6347     if (getABIInfo().isEABI()) return 88;
6348     return TargetCodeGenInfo::getSizeOfUnwindException();
6349   }
6350 
6351   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6352                            CodeGen::CodeGenModule &CGM) const override {
6353     if (GV->isDeclaration())
6354       return;
6355     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6356     if (!FD)
6357       return;
6358 
6359     const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
6360     if (!Attr)
6361       return;
6362 
6363     const char *Kind;
6364     switch (Attr->getInterrupt()) {
6365     case ARMInterruptAttr::Generic: Kind = ""; break;
6366     case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break;
6367     case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break;
6368     case ARMInterruptAttr::SWI:     Kind = "SWI"; break;
6369     case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break;
6370     case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break;
6371     }
6372 
6373     llvm::Function *Fn = cast<llvm::Function>(GV);
6374 
6375     Fn->addFnAttr("interrupt", Kind);
6376 
6377     ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind();
6378     if (ABI == ARMABIInfo::APCS)
6379       return;
6380 
6381     // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
6382     // however this is not necessarily true on taking any interrupt. Instruct
6383     // the backend to perform a realignment as part of the function prologue.
6384     llvm::AttrBuilder B;
6385     B.addStackAlignmentAttr(8);
6386     Fn->addFnAttrs(B);
6387   }
6388 };
6389 
6390 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo {
6391 public:
6392   WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
6393       : ARMTargetCodeGenInfo(CGT, K) {}
6394 
6395   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6396                            CodeGen::CodeGenModule &CGM) const override;
6397 
6398   void getDependentLibraryOption(llvm::StringRef Lib,
6399                                  llvm::SmallString<24> &Opt) const override {
6400     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
6401   }
6402 
6403   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
6404                                llvm::SmallString<32> &Opt) const override {
6405     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
6406   }
6407 };
6408 
6409 void WindowsARMTargetCodeGenInfo::setTargetAttributes(
6410     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
6411   ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
6412   if (GV->isDeclaration())
6413     return;
6414   addStackProbeTargetAttributes(D, GV, CGM);
6415 }
6416 }
6417 
6418 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
6419   if (!::classifyReturnType(getCXXABI(), FI, *this))
6420     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(),
6421                                             FI.getCallingConvention());
6422 
6423   for (auto &I : FI.arguments())
6424     I.info = classifyArgumentType(I.type, FI.isVariadic(),
6425                                   FI.getCallingConvention());
6426 
6427 
6428   // Always honor user-specified calling convention.
6429   if (FI.getCallingConvention() != llvm::CallingConv::C)
6430     return;
6431 
6432   llvm::CallingConv::ID cc = getRuntimeCC();
6433   if (cc != llvm::CallingConv::C)
6434     FI.setEffectiveCallingConvention(cc);
6435 }
6436 
6437 /// Return the default calling convention that LLVM will use.
6438 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
6439   // The default calling convention that LLVM will infer.
6440   if (isEABIHF() || getTarget().getTriple().isWatchABI())
6441     return llvm::CallingConv::ARM_AAPCS_VFP;
6442   else if (isEABI())
6443     return llvm::CallingConv::ARM_AAPCS;
6444   else
6445     return llvm::CallingConv::ARM_APCS;
6446 }
6447 
6448 /// Return the calling convention that our ABI would like us to use
6449 /// as the C calling convention.
6450 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
6451   switch (getABIKind()) {
6452   case APCS: return llvm::CallingConv::ARM_APCS;
6453   case AAPCS: return llvm::CallingConv::ARM_AAPCS;
6454   case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
6455   case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
6456   }
6457   llvm_unreachable("bad ABI kind");
6458 }
6459 
6460 void ARMABIInfo::setCCs() {
6461   assert(getRuntimeCC() == llvm::CallingConv::C);
6462 
6463   // Don't muddy up the IR with a ton of explicit annotations if
6464   // they'd just match what LLVM will infer from the triple.
6465   llvm::CallingConv::ID abiCC = getABIDefaultCC();
6466   if (abiCC != getLLVMDefaultCC())
6467     RuntimeCC = abiCC;
6468 }
6469 
6470 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const {
6471   uint64_t Size = getContext().getTypeSize(Ty);
6472   if (Size <= 32) {
6473     llvm::Type *ResType =
6474         llvm::Type::getInt32Ty(getVMContext());
6475     return ABIArgInfo::getDirect(ResType);
6476   }
6477   if (Size == 64 || Size == 128) {
6478     auto *ResType = llvm::FixedVectorType::get(
6479         llvm::Type::getInt32Ty(getVMContext()), Size / 32);
6480     return ABIArgInfo::getDirect(ResType);
6481   }
6482   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6483 }
6484 
6485 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty,
6486                                                     const Type *Base,
6487                                                     uint64_t Members) const {
6488   assert(Base && "Base class should be set for homogeneous aggregate");
6489   // Base can be a floating-point or a vector.
6490   if (const VectorType *VT = Base->getAs<VectorType>()) {
6491     // FP16 vectors should be converted to integer vectors
6492     if (!getTarget().hasLegalHalfType() && containsAnyFP16Vectors(Ty)) {
6493       uint64_t Size = getContext().getTypeSize(VT);
6494       auto *NewVecTy = llvm::FixedVectorType::get(
6495           llvm::Type::getInt32Ty(getVMContext()), Size / 32);
6496       llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members);
6497       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
6498     }
6499   }
6500   unsigned Align = 0;
6501   if (getABIKind() == ARMABIInfo::AAPCS ||
6502       getABIKind() == ARMABIInfo::AAPCS_VFP) {
6503     // For alignment adjusted HFAs, cap the argument alignment to 8, leave it
6504     // default otherwise.
6505     Align = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity();
6506     unsigned BaseAlign = getContext().getTypeAlignInChars(Base).getQuantity();
6507     Align = (Align > BaseAlign && Align >= 8) ? 8 : 0;
6508   }
6509   return ABIArgInfo::getDirect(nullptr, 0, nullptr, false, Align);
6510 }
6511 
6512 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic,
6513                                             unsigned functionCallConv) const {
6514   // 6.1.2.1 The following argument types are VFP CPRCs:
6515   //   A single-precision floating-point type (including promoted
6516   //   half-precision types); A double-precision floating-point type;
6517   //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
6518   //   with a Base Type of a single- or double-precision floating-point type,
6519   //   64-bit containerized vectors or 128-bit containerized vectors with one
6520   //   to four Elements.
6521   // Variadic functions should always marshal to the base standard.
6522   bool IsAAPCS_VFP =
6523       !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false);
6524 
6525   Ty = useFirstFieldIfTransparentUnion(Ty);
6526 
6527   // Handle illegal vector types here.
6528   if (isIllegalVectorType(Ty))
6529     return coerceIllegalVector(Ty);
6530 
6531   if (!isAggregateTypeForABI(Ty)) {
6532     // Treat an enum type as its underlying type.
6533     if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
6534       Ty = EnumTy->getDecl()->getIntegerType();
6535     }
6536 
6537     if (const auto *EIT = Ty->getAs<ExtIntType>())
6538       if (EIT->getNumBits() > 64)
6539         return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
6540 
6541     return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
6542                                               : ABIArgInfo::getDirect());
6543   }
6544 
6545   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
6546     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6547   }
6548 
6549   // Ignore empty records.
6550   if (isEmptyRecord(getContext(), Ty, true))
6551     return ABIArgInfo::getIgnore();
6552 
6553   if (IsAAPCS_VFP) {
6554     // Homogeneous Aggregates need to be expanded when we can fit the aggregate
6555     // into VFP registers.
6556     const Type *Base = nullptr;
6557     uint64_t Members = 0;
6558     if (isHomogeneousAggregate(Ty, Base, Members))
6559       return classifyHomogeneousAggregate(Ty, Base, Members);
6560   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
6561     // WatchOS does have homogeneous aggregates. Note that we intentionally use
6562     // this convention even for a variadic function: the backend will use GPRs
6563     // if needed.
6564     const Type *Base = nullptr;
6565     uint64_t Members = 0;
6566     if (isHomogeneousAggregate(Ty, Base, Members)) {
6567       assert(Base && Members <= 4 && "unexpected homogeneous aggregate");
6568       llvm::Type *Ty =
6569         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members);
6570       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
6571     }
6572   }
6573 
6574   if (getABIKind() == ARMABIInfo::AAPCS16_VFP &&
6575       getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) {
6576     // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're
6577     // bigger than 128-bits, they get placed in space allocated by the caller,
6578     // and a pointer is passed.
6579     return ABIArgInfo::getIndirect(
6580         CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false);
6581   }
6582 
6583   // Support byval for ARM.
6584   // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
6585   // most 8-byte. We realign the indirect argument if type alignment is bigger
6586   // than ABI alignment.
6587   uint64_t ABIAlign = 4;
6588   uint64_t TyAlign;
6589   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
6590       getABIKind() == ARMABIInfo::AAPCS) {
6591     TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity();
6592     ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
6593   } else {
6594     TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
6595   }
6596   if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
6597     assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval");
6598     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
6599                                    /*ByVal=*/true,
6600                                    /*Realign=*/TyAlign > ABIAlign);
6601   }
6602 
6603   // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of
6604   // same size and alignment.
6605   if (getTarget().isRenderScriptTarget()) {
6606     return coerceToIntArray(Ty, getContext(), getVMContext());
6607   }
6608 
6609   // Otherwise, pass by coercing to a structure of the appropriate size.
6610   llvm::Type* ElemTy;
6611   unsigned SizeRegs;
6612   // FIXME: Try to match the types of the arguments more accurately where
6613   // we can.
6614   if (TyAlign <= 4) {
6615     ElemTy = llvm::Type::getInt32Ty(getVMContext());
6616     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
6617   } else {
6618     ElemTy = llvm::Type::getInt64Ty(getVMContext());
6619     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
6620   }
6621 
6622   return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
6623 }
6624 
6625 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
6626                               llvm::LLVMContext &VMContext) {
6627   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
6628   // is called integer-like if its size is less than or equal to one word, and
6629   // the offset of each of its addressable sub-fields is zero.
6630 
6631   uint64_t Size = Context.getTypeSize(Ty);
6632 
6633   // Check that the type fits in a word.
6634   if (Size > 32)
6635     return false;
6636 
6637   // FIXME: Handle vector types!
6638   if (Ty->isVectorType())
6639     return false;
6640 
6641   // Float types are never treated as "integer like".
6642   if (Ty->isRealFloatingType())
6643     return false;
6644 
6645   // If this is a builtin or pointer type then it is ok.
6646   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
6647     return true;
6648 
6649   // Small complex integer types are "integer like".
6650   if (const ComplexType *CT = Ty->getAs<ComplexType>())
6651     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
6652 
6653   // Single element and zero sized arrays should be allowed, by the definition
6654   // above, but they are not.
6655 
6656   // Otherwise, it must be a record type.
6657   const RecordType *RT = Ty->getAs<RecordType>();
6658   if (!RT) return false;
6659 
6660   // Ignore records with flexible arrays.
6661   const RecordDecl *RD = RT->getDecl();
6662   if (RD->hasFlexibleArrayMember())
6663     return false;
6664 
6665   // Check that all sub-fields are at offset 0, and are themselves "integer
6666   // like".
6667   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
6668 
6669   bool HadField = false;
6670   unsigned idx = 0;
6671   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
6672        i != e; ++i, ++idx) {
6673     const FieldDecl *FD = *i;
6674 
6675     // Bit-fields are not addressable, we only need to verify they are "integer
6676     // like". We still have to disallow a subsequent non-bitfield, for example:
6677     //   struct { int : 0; int x }
6678     // is non-integer like according to gcc.
6679     if (FD->isBitField()) {
6680       if (!RD->isUnion())
6681         HadField = true;
6682 
6683       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
6684         return false;
6685 
6686       continue;
6687     }
6688 
6689     // Check if this field is at offset 0.
6690     if (Layout.getFieldOffset(idx) != 0)
6691       return false;
6692 
6693     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
6694       return false;
6695 
6696     // Only allow at most one field in a structure. This doesn't match the
6697     // wording above, but follows gcc in situations with a field following an
6698     // empty structure.
6699     if (!RD->isUnion()) {
6700       if (HadField)
6701         return false;
6702 
6703       HadField = true;
6704     }
6705   }
6706 
6707   return true;
6708 }
6709 
6710 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic,
6711                                           unsigned functionCallConv) const {
6712 
6713   // Variadic functions should always marshal to the base standard.
6714   bool IsAAPCS_VFP =
6715       !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true);
6716 
6717   if (RetTy->isVoidType())
6718     return ABIArgInfo::getIgnore();
6719 
6720   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
6721     // Large vector types should be returned via memory.
6722     if (getContext().getTypeSize(RetTy) > 128)
6723       return getNaturalAlignIndirect(RetTy);
6724     // TODO: FP16/BF16 vectors should be converted to integer vectors
6725     // This check is similar  to isIllegalVectorType - refactor?
6726     if ((!getTarget().hasLegalHalfType() &&
6727         (VT->getElementType()->isFloat16Type() ||
6728          VT->getElementType()->isHalfType())) ||
6729         (IsFloatABISoftFP &&
6730          VT->getElementType()->isBFloat16Type()))
6731       return coerceIllegalVector(RetTy);
6732   }
6733 
6734   if (!isAggregateTypeForABI(RetTy)) {
6735     // Treat an enum type as its underlying type.
6736     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6737       RetTy = EnumTy->getDecl()->getIntegerType();
6738 
6739     if (const auto *EIT = RetTy->getAs<ExtIntType>())
6740       if (EIT->getNumBits() > 64)
6741         return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
6742 
6743     return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
6744                                                 : ABIArgInfo::getDirect();
6745   }
6746 
6747   // Are we following APCS?
6748   if (getABIKind() == APCS) {
6749     if (isEmptyRecord(getContext(), RetTy, false))
6750       return ABIArgInfo::getIgnore();
6751 
6752     // Complex types are all returned as packed integers.
6753     //
6754     // FIXME: Consider using 2 x vector types if the back end handles them
6755     // correctly.
6756     if (RetTy->isAnyComplexType())
6757       return ABIArgInfo::getDirect(llvm::IntegerType::get(
6758           getVMContext(), getContext().getTypeSize(RetTy)));
6759 
6760     // Integer like structures are returned in r0.
6761     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
6762       // Return in the smallest viable integer type.
6763       uint64_t Size = getContext().getTypeSize(RetTy);
6764       if (Size <= 8)
6765         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6766       if (Size <= 16)
6767         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6768       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6769     }
6770 
6771     // Otherwise return in memory.
6772     return getNaturalAlignIndirect(RetTy);
6773   }
6774 
6775   // Otherwise this is an AAPCS variant.
6776 
6777   if (isEmptyRecord(getContext(), RetTy, true))
6778     return ABIArgInfo::getIgnore();
6779 
6780   // Check for homogeneous aggregates with AAPCS-VFP.
6781   if (IsAAPCS_VFP) {
6782     const Type *Base = nullptr;
6783     uint64_t Members = 0;
6784     if (isHomogeneousAggregate(RetTy, Base, Members))
6785       return classifyHomogeneousAggregate(RetTy, Base, Members);
6786   }
6787 
6788   // Aggregates <= 4 bytes are returned in r0; other aggregates
6789   // are returned indirectly.
6790   uint64_t Size = getContext().getTypeSize(RetTy);
6791   if (Size <= 32) {
6792     // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of
6793     // same size and alignment.
6794     if (getTarget().isRenderScriptTarget()) {
6795       return coerceToIntArray(RetTy, getContext(), getVMContext());
6796     }
6797     if (getDataLayout().isBigEndian())
6798       // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
6799       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6800 
6801     // Return in the smallest viable integer type.
6802     if (Size <= 8)
6803       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6804     if (Size <= 16)
6805       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6806     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6807   } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) {
6808     llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext());
6809     llvm::Type *CoerceTy =
6810         llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32);
6811     return ABIArgInfo::getDirect(CoerceTy);
6812   }
6813 
6814   return getNaturalAlignIndirect(RetTy);
6815 }
6816 
6817 /// isIllegalVector - check whether Ty is an illegal vector type.
6818 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
6819   if (const VectorType *VT = Ty->getAs<VectorType> ()) {
6820     // On targets that don't support half, fp16 or bfloat, they are expanded
6821     // into float, and we don't want the ABI to depend on whether or not they
6822     // are supported in hardware. Thus return false to coerce vectors of these
6823     // types into integer vectors.
6824     // We do not depend on hasLegalHalfType for bfloat as it is a
6825     // separate IR type.
6826     if ((!getTarget().hasLegalHalfType() &&
6827         (VT->getElementType()->isFloat16Type() ||
6828          VT->getElementType()->isHalfType())) ||
6829         (IsFloatABISoftFP &&
6830          VT->getElementType()->isBFloat16Type()))
6831       return true;
6832     if (isAndroid()) {
6833       // Android shipped using Clang 3.1, which supported a slightly different
6834       // vector ABI. The primary differences were that 3-element vector types
6835       // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path
6836       // accepts that legacy behavior for Android only.
6837       // Check whether VT is legal.
6838       unsigned NumElements = VT->getNumElements();
6839       // NumElements should be power of 2 or equal to 3.
6840       if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3)
6841         return true;
6842     } else {
6843       // Check whether VT is legal.
6844       unsigned NumElements = VT->getNumElements();
6845       uint64_t Size = getContext().getTypeSize(VT);
6846       // NumElements should be power of 2.
6847       if (!llvm::isPowerOf2_32(NumElements))
6848         return true;
6849       // Size should be greater than 32 bits.
6850       return Size <= 32;
6851     }
6852   }
6853   return false;
6854 }
6855 
6856 /// Return true if a type contains any 16-bit floating point vectors
6857 bool ARMABIInfo::containsAnyFP16Vectors(QualType Ty) const {
6858   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
6859     uint64_t NElements = AT->getSize().getZExtValue();
6860     if (NElements == 0)
6861       return false;
6862     return containsAnyFP16Vectors(AT->getElementType());
6863   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
6864     const RecordDecl *RD = RT->getDecl();
6865 
6866     // If this is a C++ record, check the bases first.
6867     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
6868       if (llvm::any_of(CXXRD->bases(), [this](const CXXBaseSpecifier &B) {
6869             return containsAnyFP16Vectors(B.getType());
6870           }))
6871         return true;
6872 
6873     if (llvm::any_of(RD->fields(), [this](FieldDecl *FD) {
6874           return FD && containsAnyFP16Vectors(FD->getType());
6875         }))
6876       return true;
6877 
6878     return false;
6879   } else {
6880     if (const VectorType *VT = Ty->getAs<VectorType>())
6881       return (VT->getElementType()->isFloat16Type() ||
6882               VT->getElementType()->isBFloat16Type() ||
6883               VT->getElementType()->isHalfType());
6884     return false;
6885   }
6886 }
6887 
6888 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
6889                                            llvm::Type *eltTy,
6890                                            unsigned numElts) const {
6891   if (!llvm::isPowerOf2_32(numElts))
6892     return false;
6893   unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy);
6894   if (size > 64)
6895     return false;
6896   if (vectorSize.getQuantity() != 8 &&
6897       (vectorSize.getQuantity() != 16 || numElts == 1))
6898     return false;
6899   return true;
6900 }
6901 
6902 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
6903   // Homogeneous aggregates for AAPCS-VFP must have base types of float,
6904   // double, or 64-bit or 128-bit vectors.
6905   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
6906     if (BT->getKind() == BuiltinType::Float ||
6907         BT->getKind() == BuiltinType::Double ||
6908         BT->getKind() == BuiltinType::LongDouble)
6909       return true;
6910   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
6911     unsigned VecSize = getContext().getTypeSize(VT);
6912     if (VecSize == 64 || VecSize == 128)
6913       return true;
6914   }
6915   return false;
6916 }
6917 
6918 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
6919                                                    uint64_t Members) const {
6920   return Members <= 4;
6921 }
6922 
6923 bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention,
6924                                         bool acceptHalf) const {
6925   // Give precedence to user-specified calling conventions.
6926   if (callConvention != llvm::CallingConv::C)
6927     return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP);
6928   else
6929     return (getABIKind() == AAPCS_VFP) ||
6930            (acceptHalf && (getABIKind() == AAPCS16_VFP));
6931 }
6932 
6933 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6934                               QualType Ty) const {
6935   CharUnits SlotSize = CharUnits::fromQuantity(4);
6936 
6937   // Empty records are ignored for parameter passing purposes.
6938   if (isEmptyRecord(getContext(), Ty, true)) {
6939     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
6940     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
6941     return Addr;
6942   }
6943 
6944   CharUnits TySize = getContext().getTypeSizeInChars(Ty);
6945   CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty);
6946 
6947   // Use indirect if size of the illegal vector is bigger than 16 bytes.
6948   bool IsIndirect = false;
6949   const Type *Base = nullptr;
6950   uint64_t Members = 0;
6951   if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) {
6952     IsIndirect = true;
6953 
6954   // ARMv7k passes structs bigger than 16 bytes indirectly, in space
6955   // allocated by the caller.
6956   } else if (TySize > CharUnits::fromQuantity(16) &&
6957              getABIKind() == ARMABIInfo::AAPCS16_VFP &&
6958              !isHomogeneousAggregate(Ty, Base, Members)) {
6959     IsIndirect = true;
6960 
6961   // Otherwise, bound the type's ABI alignment.
6962   // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
6963   // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
6964   // Our callers should be prepared to handle an under-aligned address.
6965   } else if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
6966              getABIKind() == ARMABIInfo::AAPCS) {
6967     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6968     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8));
6969   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
6970     // ARMv7k allows type alignment up to 16 bytes.
6971     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6972     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16));
6973   } else {
6974     TyAlignForABI = CharUnits::fromQuantity(4);
6975   }
6976 
6977   TypeInfoChars TyInfo(TySize, TyAlignForABI, AlignRequirementKind::None);
6978   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo,
6979                           SlotSize, /*AllowHigherAlign*/ true);
6980 }
6981 
6982 //===----------------------------------------------------------------------===//
6983 // NVPTX ABI Implementation
6984 //===----------------------------------------------------------------------===//
6985 
6986 namespace {
6987 
6988 class NVPTXTargetCodeGenInfo;
6989 
6990 class NVPTXABIInfo : public ABIInfo {
6991   NVPTXTargetCodeGenInfo &CGInfo;
6992 
6993 public:
6994   NVPTXABIInfo(CodeGenTypes &CGT, NVPTXTargetCodeGenInfo &Info)
6995       : ABIInfo(CGT), CGInfo(Info) {}
6996 
6997   ABIArgInfo classifyReturnType(QualType RetTy) const;
6998   ABIArgInfo classifyArgumentType(QualType Ty) const;
6999 
7000   void computeInfo(CGFunctionInfo &FI) const override;
7001   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7002                     QualType Ty) const override;
7003   bool isUnsupportedType(QualType T) const;
7004   ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, unsigned MaxSize) const;
7005 };
7006 
7007 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
7008 public:
7009   NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
7010       : TargetCodeGenInfo(std::make_unique<NVPTXABIInfo>(CGT, *this)) {}
7011 
7012   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7013                            CodeGen::CodeGenModule &M) const override;
7014   bool shouldEmitStaticExternCAliases() const override;
7015 
7016   llvm::Type *getCUDADeviceBuiltinSurfaceDeviceType() const override {
7017     // On the device side, surface reference is represented as an object handle
7018     // in 64-bit integer.
7019     return llvm::Type::getInt64Ty(getABIInfo().getVMContext());
7020   }
7021 
7022   llvm::Type *getCUDADeviceBuiltinTextureDeviceType() const override {
7023     // On the device side, texture reference is represented as an object handle
7024     // in 64-bit integer.
7025     return llvm::Type::getInt64Ty(getABIInfo().getVMContext());
7026   }
7027 
7028   bool emitCUDADeviceBuiltinSurfaceDeviceCopy(CodeGenFunction &CGF, LValue Dst,
7029                                               LValue Src) const override {
7030     emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src);
7031     return true;
7032   }
7033 
7034   bool emitCUDADeviceBuiltinTextureDeviceCopy(CodeGenFunction &CGF, LValue Dst,
7035                                               LValue Src) const override {
7036     emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src);
7037     return true;
7038   }
7039 
7040 private:
7041   // Adds a NamedMDNode with GV, Name, and Operand as operands, and adds the
7042   // resulting MDNode to the nvvm.annotations MDNode.
7043   static void addNVVMMetadata(llvm::GlobalValue *GV, StringRef Name,
7044                               int Operand);
7045 
7046   static void emitBuiltinSurfTexDeviceCopy(CodeGenFunction &CGF, LValue Dst,
7047                                            LValue Src) {
7048     llvm::Value *Handle = nullptr;
7049     llvm::Constant *C =
7050         llvm::dyn_cast<llvm::Constant>(Src.getAddress(CGF).getPointer());
7051     // Lookup `addrspacecast` through the constant pointer if any.
7052     if (auto *ASC = llvm::dyn_cast_or_null<llvm::AddrSpaceCastOperator>(C))
7053       C = llvm::cast<llvm::Constant>(ASC->getPointerOperand());
7054     if (auto *GV = llvm::dyn_cast_or_null<llvm::GlobalVariable>(C)) {
7055       // Load the handle from the specific global variable using
7056       // `nvvm.texsurf.handle.internal` intrinsic.
7057       Handle = CGF.EmitRuntimeCall(
7058           CGF.CGM.getIntrinsic(llvm::Intrinsic::nvvm_texsurf_handle_internal,
7059                                {GV->getType()}),
7060           {GV}, "texsurf_handle");
7061     } else
7062       Handle = CGF.EmitLoadOfScalar(Src, SourceLocation());
7063     CGF.EmitStoreOfScalar(Handle, Dst);
7064   }
7065 };
7066 
7067 /// Checks if the type is unsupported directly by the current target.
7068 bool NVPTXABIInfo::isUnsupportedType(QualType T) const {
7069   ASTContext &Context = getContext();
7070   if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type())
7071     return true;
7072   if (!Context.getTargetInfo().hasFloat128Type() &&
7073       (T->isFloat128Type() ||
7074        (T->isRealFloatingType() && Context.getTypeSize(T) == 128)))
7075     return true;
7076   if (const auto *EIT = T->getAs<ExtIntType>())
7077     return EIT->getNumBits() >
7078            (Context.getTargetInfo().hasInt128Type() ? 128U : 64U);
7079   if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() &&
7080       Context.getTypeSize(T) > 64U)
7081     return true;
7082   if (const auto *AT = T->getAsArrayTypeUnsafe())
7083     return isUnsupportedType(AT->getElementType());
7084   const auto *RT = T->getAs<RecordType>();
7085   if (!RT)
7086     return false;
7087   const RecordDecl *RD = RT->getDecl();
7088 
7089   // If this is a C++ record, check the bases first.
7090   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
7091     for (const CXXBaseSpecifier &I : CXXRD->bases())
7092       if (isUnsupportedType(I.getType()))
7093         return true;
7094 
7095   for (const FieldDecl *I : RD->fields())
7096     if (isUnsupportedType(I->getType()))
7097       return true;
7098   return false;
7099 }
7100 
7101 /// Coerce the given type into an array with maximum allowed size of elements.
7102 ABIArgInfo NVPTXABIInfo::coerceToIntArrayWithLimit(QualType Ty,
7103                                                    unsigned MaxSize) const {
7104   // Alignment and Size are measured in bits.
7105   const uint64_t Size = getContext().getTypeSize(Ty);
7106   const uint64_t Alignment = getContext().getTypeAlign(Ty);
7107   const unsigned Div = std::min<unsigned>(MaxSize, Alignment);
7108   llvm::Type *IntType = llvm::Type::getIntNTy(getVMContext(), Div);
7109   const uint64_t NumElements = (Size + Div - 1) / Div;
7110   return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
7111 }
7112 
7113 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
7114   if (RetTy->isVoidType())
7115     return ABIArgInfo::getIgnore();
7116 
7117   if (getContext().getLangOpts().OpenMP &&
7118       getContext().getLangOpts().OpenMPIsDevice && isUnsupportedType(RetTy))
7119     return coerceToIntArrayWithLimit(RetTy, 64);
7120 
7121   // note: this is different from default ABI
7122   if (!RetTy->isScalarType())
7123     return ABIArgInfo::getDirect();
7124 
7125   // Treat an enum type as its underlying type.
7126   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
7127     RetTy = EnumTy->getDecl()->getIntegerType();
7128 
7129   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
7130                                                : ABIArgInfo::getDirect());
7131 }
7132 
7133 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
7134   // Treat an enum type as its underlying type.
7135   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7136     Ty = EnumTy->getDecl()->getIntegerType();
7137 
7138   // Return aggregates type as indirect by value
7139   if (isAggregateTypeForABI(Ty)) {
7140     // Under CUDA device compilation, tex/surf builtin types are replaced with
7141     // object types and passed directly.
7142     if (getContext().getLangOpts().CUDAIsDevice) {
7143       if (Ty->isCUDADeviceBuiltinSurfaceType())
7144         return ABIArgInfo::getDirect(
7145             CGInfo.getCUDADeviceBuiltinSurfaceDeviceType());
7146       if (Ty->isCUDADeviceBuiltinTextureType())
7147         return ABIArgInfo::getDirect(
7148             CGInfo.getCUDADeviceBuiltinTextureDeviceType());
7149     }
7150     return getNaturalAlignIndirect(Ty, /* byval */ true);
7151   }
7152 
7153   if (const auto *EIT = Ty->getAs<ExtIntType>()) {
7154     if ((EIT->getNumBits() > 128) ||
7155         (!getContext().getTargetInfo().hasInt128Type() &&
7156          EIT->getNumBits() > 64))
7157       return getNaturalAlignIndirect(Ty, /* byval */ true);
7158   }
7159 
7160   return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
7161                                             : ABIArgInfo::getDirect());
7162 }
7163 
7164 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
7165   if (!getCXXABI().classifyReturnType(FI))
7166     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7167   for (auto &I : FI.arguments())
7168     I.info = classifyArgumentType(I.type);
7169 
7170   // Always honor user-specified calling convention.
7171   if (FI.getCallingConvention() != llvm::CallingConv::C)
7172     return;
7173 
7174   FI.setEffectiveCallingConvention(getRuntimeCC());
7175 }
7176 
7177 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7178                                 QualType Ty) const {
7179   llvm_unreachable("NVPTX does not support varargs");
7180 }
7181 
7182 void NVPTXTargetCodeGenInfo::setTargetAttributes(
7183     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
7184   if (GV->isDeclaration())
7185     return;
7186   const VarDecl *VD = dyn_cast_or_null<VarDecl>(D);
7187   if (VD) {
7188     if (M.getLangOpts().CUDA) {
7189       if (VD->getType()->isCUDADeviceBuiltinSurfaceType())
7190         addNVVMMetadata(GV, "surface", 1);
7191       else if (VD->getType()->isCUDADeviceBuiltinTextureType())
7192         addNVVMMetadata(GV, "texture", 1);
7193       return;
7194     }
7195   }
7196 
7197   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7198   if (!FD) return;
7199 
7200   llvm::Function *F = cast<llvm::Function>(GV);
7201 
7202   // Perform special handling in OpenCL mode
7203   if (M.getLangOpts().OpenCL) {
7204     // Use OpenCL function attributes to check for kernel functions
7205     // By default, all functions are device functions
7206     if (FD->hasAttr<OpenCLKernelAttr>()) {
7207       // OpenCL __kernel functions get kernel metadata
7208       // Create !{<func-ref>, metadata !"kernel", i32 1} node
7209       addNVVMMetadata(F, "kernel", 1);
7210       // And kernel functions are not subject to inlining
7211       F->addFnAttr(llvm::Attribute::NoInline);
7212     }
7213   }
7214 
7215   // Perform special handling in CUDA mode.
7216   if (M.getLangOpts().CUDA) {
7217     // CUDA __global__ functions get a kernel metadata entry.  Since
7218     // __global__ functions cannot be called from the device, we do not
7219     // need to set the noinline attribute.
7220     if (FD->hasAttr<CUDAGlobalAttr>()) {
7221       // Create !{<func-ref>, metadata !"kernel", i32 1} node
7222       addNVVMMetadata(F, "kernel", 1);
7223     }
7224     if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) {
7225       // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
7226       llvm::APSInt MaxThreads(32);
7227       MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext());
7228       if (MaxThreads > 0)
7229         addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue());
7230 
7231       // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was
7232       // not specified in __launch_bounds__ or if the user specified a 0 value,
7233       // we don't have to add a PTX directive.
7234       if (Attr->getMinBlocks()) {
7235         llvm::APSInt MinBlocks(32);
7236         MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext());
7237         if (MinBlocks > 0)
7238           // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
7239           addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue());
7240       }
7241     }
7242   }
7243 }
7244 
7245 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::GlobalValue *GV,
7246                                              StringRef Name, int Operand) {
7247   llvm::Module *M = GV->getParent();
7248   llvm::LLVMContext &Ctx = M->getContext();
7249 
7250   // Get "nvvm.annotations" metadata node
7251   llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
7252 
7253   llvm::Metadata *MDVals[] = {
7254       llvm::ConstantAsMetadata::get(GV), llvm::MDString::get(Ctx, Name),
7255       llvm::ConstantAsMetadata::get(
7256           llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
7257   // Append metadata to nvvm.annotations
7258   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
7259 }
7260 
7261 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
7262   return false;
7263 }
7264 }
7265 
7266 //===----------------------------------------------------------------------===//
7267 // SystemZ ABI Implementation
7268 //===----------------------------------------------------------------------===//
7269 
7270 namespace {
7271 
7272 class SystemZABIInfo : public SwiftABIInfo {
7273   bool HasVector;
7274   bool IsSoftFloatABI;
7275 
7276 public:
7277   SystemZABIInfo(CodeGenTypes &CGT, bool HV, bool SF)
7278     : SwiftABIInfo(CGT), HasVector(HV), IsSoftFloatABI(SF) {}
7279 
7280   bool isPromotableIntegerTypeForABI(QualType Ty) const;
7281   bool isCompoundType(QualType Ty) const;
7282   bool isVectorArgumentType(QualType Ty) const;
7283   bool isFPArgumentType(QualType Ty) const;
7284   QualType GetSingleElementType(QualType Ty) const;
7285 
7286   ABIArgInfo classifyReturnType(QualType RetTy) const;
7287   ABIArgInfo classifyArgumentType(QualType ArgTy) const;
7288 
7289   void computeInfo(CGFunctionInfo &FI) const override {
7290     if (!getCXXABI().classifyReturnType(FI))
7291       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7292     for (auto &I : FI.arguments())
7293       I.info = classifyArgumentType(I.type);
7294   }
7295 
7296   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7297                     QualType Ty) const override;
7298 
7299   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
7300                                     bool asReturnValue) const override {
7301     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
7302   }
7303   bool isSwiftErrorInRegister() const override {
7304     return false;
7305   }
7306 };
7307 
7308 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
7309 public:
7310   SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector, bool SoftFloatABI)
7311       : TargetCodeGenInfo(
7312             std::make_unique<SystemZABIInfo>(CGT, HasVector, SoftFloatABI)) {}
7313 
7314   llvm::Value *testFPKind(llvm::Value *V, unsigned BuiltinID,
7315                           CGBuilderTy &Builder,
7316                           CodeGenModule &CGM) const override {
7317     assert(V->getType()->isFloatingPointTy() && "V should have an FP type.");
7318     // Only use TDC in constrained FP mode.
7319     if (!Builder.getIsFPConstrained())
7320       return nullptr;
7321 
7322     llvm::Type *Ty = V->getType();
7323     if (Ty->isFloatTy() || Ty->isDoubleTy() || Ty->isFP128Ty()) {
7324       llvm::Module &M = CGM.getModule();
7325       auto &Ctx = M.getContext();
7326       llvm::Function *TDCFunc =
7327           llvm::Intrinsic::getDeclaration(&M, llvm::Intrinsic::s390_tdc, Ty);
7328       unsigned TDCBits = 0;
7329       switch (BuiltinID) {
7330       case Builtin::BI__builtin_isnan:
7331         TDCBits = 0xf;
7332         break;
7333       case Builtin::BIfinite:
7334       case Builtin::BI__finite:
7335       case Builtin::BIfinitef:
7336       case Builtin::BI__finitef:
7337       case Builtin::BIfinitel:
7338       case Builtin::BI__finitel:
7339       case Builtin::BI__builtin_isfinite:
7340         TDCBits = 0xfc0;
7341         break;
7342       case Builtin::BI__builtin_isinf:
7343         TDCBits = 0x30;
7344         break;
7345       default:
7346         break;
7347       }
7348       if (TDCBits)
7349         return Builder.CreateCall(
7350             TDCFunc,
7351             {V, llvm::ConstantInt::get(llvm::Type::getInt64Ty(Ctx), TDCBits)});
7352     }
7353     return nullptr;
7354   }
7355 };
7356 }
7357 
7358 bool SystemZABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const {
7359   // Treat an enum type as its underlying type.
7360   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7361     Ty = EnumTy->getDecl()->getIntegerType();
7362 
7363   // Promotable integer types are required to be promoted by the ABI.
7364   if (ABIInfo::isPromotableIntegerTypeForABI(Ty))
7365     return true;
7366 
7367   if (const auto *EIT = Ty->getAs<ExtIntType>())
7368     if (EIT->getNumBits() < 64)
7369       return true;
7370 
7371   // 32-bit values must also be promoted.
7372   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
7373     switch (BT->getKind()) {
7374     case BuiltinType::Int:
7375     case BuiltinType::UInt:
7376       return true;
7377     default:
7378       return false;
7379     }
7380   return false;
7381 }
7382 
7383 bool SystemZABIInfo::isCompoundType(QualType Ty) const {
7384   return (Ty->isAnyComplexType() ||
7385           Ty->isVectorType() ||
7386           isAggregateTypeForABI(Ty));
7387 }
7388 
7389 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const {
7390   return (HasVector &&
7391           Ty->isVectorType() &&
7392           getContext().getTypeSize(Ty) <= 128);
7393 }
7394 
7395 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
7396   if (IsSoftFloatABI)
7397     return false;
7398 
7399   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
7400     switch (BT->getKind()) {
7401     case BuiltinType::Float:
7402     case BuiltinType::Double:
7403       return true;
7404     default:
7405       return false;
7406     }
7407 
7408   return false;
7409 }
7410 
7411 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const {
7412   const RecordType *RT = Ty->getAs<RecordType>();
7413 
7414   if (RT && RT->isStructureOrClassType()) {
7415     const RecordDecl *RD = RT->getDecl();
7416     QualType Found;
7417 
7418     // If this is a C++ record, check the bases first.
7419     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
7420       for (const auto &I : CXXRD->bases()) {
7421         QualType Base = I.getType();
7422 
7423         // Empty bases don't affect things either way.
7424         if (isEmptyRecord(getContext(), Base, true))
7425           continue;
7426 
7427         if (!Found.isNull())
7428           return Ty;
7429         Found = GetSingleElementType(Base);
7430       }
7431 
7432     // Check the fields.
7433     for (const auto *FD : RD->fields()) {
7434       // For compatibility with GCC, ignore empty bitfields in C++ mode.
7435       // Unlike isSingleElementStruct(), empty structure and array fields
7436       // do count.  So do anonymous bitfields that aren't zero-sized.
7437       if (getContext().getLangOpts().CPlusPlus &&
7438           FD->isZeroLengthBitField(getContext()))
7439         continue;
7440       // Like isSingleElementStruct(), ignore C++20 empty data members.
7441       if (FD->hasAttr<NoUniqueAddressAttr>() &&
7442           isEmptyRecord(getContext(), FD->getType(), true))
7443         continue;
7444 
7445       // Unlike isSingleElementStruct(), arrays do not count.
7446       // Nested structures still do though.
7447       if (!Found.isNull())
7448         return Ty;
7449       Found = GetSingleElementType(FD->getType());
7450     }
7451 
7452     // Unlike isSingleElementStruct(), trailing padding is allowed.
7453     // An 8-byte aligned struct s { float f; } is passed as a double.
7454     if (!Found.isNull())
7455       return Found;
7456   }
7457 
7458   return Ty;
7459 }
7460 
7461 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7462                                   QualType Ty) const {
7463   // Assume that va_list type is correct; should be pointer to LLVM type:
7464   // struct {
7465   //   i64 __gpr;
7466   //   i64 __fpr;
7467   //   i8 *__overflow_arg_area;
7468   //   i8 *__reg_save_area;
7469   // };
7470 
7471   // Every non-vector argument occupies 8 bytes and is passed by preference
7472   // in either GPRs or FPRs.  Vector arguments occupy 8 or 16 bytes and are
7473   // always passed on the stack.
7474   Ty = getContext().getCanonicalType(Ty);
7475   auto TyInfo = getContext().getTypeInfoInChars(Ty);
7476   llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty);
7477   llvm::Type *DirectTy = ArgTy;
7478   ABIArgInfo AI = classifyArgumentType(Ty);
7479   bool IsIndirect = AI.isIndirect();
7480   bool InFPRs = false;
7481   bool IsVector = false;
7482   CharUnits UnpaddedSize;
7483   CharUnits DirectAlign;
7484   if (IsIndirect) {
7485     DirectTy = llvm::PointerType::getUnqual(DirectTy);
7486     UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8);
7487   } else {
7488     if (AI.getCoerceToType())
7489       ArgTy = AI.getCoerceToType();
7490     InFPRs = (!IsSoftFloatABI && (ArgTy->isFloatTy() || ArgTy->isDoubleTy()));
7491     IsVector = ArgTy->isVectorTy();
7492     UnpaddedSize = TyInfo.Width;
7493     DirectAlign = TyInfo.Align;
7494   }
7495   CharUnits PaddedSize = CharUnits::fromQuantity(8);
7496   if (IsVector && UnpaddedSize > PaddedSize)
7497     PaddedSize = CharUnits::fromQuantity(16);
7498   assert((UnpaddedSize <= PaddedSize) && "Invalid argument size.");
7499 
7500   CharUnits Padding = (PaddedSize - UnpaddedSize);
7501 
7502   llvm::Type *IndexTy = CGF.Int64Ty;
7503   llvm::Value *PaddedSizeV =
7504     llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity());
7505 
7506   if (IsVector) {
7507     // Work out the address of a vector argument on the stack.
7508     // Vector arguments are always passed in the high bits of a
7509     // single (8 byte) or double (16 byte) stack slot.
7510     Address OverflowArgAreaPtr =
7511         CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
7512     Address OverflowArgArea =
7513       Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
7514               TyInfo.Align);
7515     Address MemAddr =
7516       CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr");
7517 
7518     // Update overflow_arg_area_ptr pointer
7519     llvm::Value *NewOverflowArgArea =
7520       CGF.Builder.CreateGEP(OverflowArgArea.getElementType(),
7521                             OverflowArgArea.getPointer(), PaddedSizeV,
7522                             "overflow_arg_area");
7523     CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
7524 
7525     return MemAddr;
7526   }
7527 
7528   assert(PaddedSize.getQuantity() == 8);
7529 
7530   unsigned MaxRegs, RegCountField, RegSaveIndex;
7531   CharUnits RegPadding;
7532   if (InFPRs) {
7533     MaxRegs = 4; // Maximum of 4 FPR arguments
7534     RegCountField = 1; // __fpr
7535     RegSaveIndex = 16; // save offset for f0
7536     RegPadding = CharUnits(); // floats are passed in the high bits of an FPR
7537   } else {
7538     MaxRegs = 5; // Maximum of 5 GPR arguments
7539     RegCountField = 0; // __gpr
7540     RegSaveIndex = 2; // save offset for r2
7541     RegPadding = Padding; // values are passed in the low bits of a GPR
7542   }
7543 
7544   Address RegCountPtr =
7545       CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr");
7546   llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
7547   llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
7548   llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
7549                                                  "fits_in_regs");
7550 
7551   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
7552   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
7553   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
7554   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
7555 
7556   // Emit code to load the value if it was passed in registers.
7557   CGF.EmitBlock(InRegBlock);
7558 
7559   // Work out the address of an argument register.
7560   llvm::Value *ScaledRegCount =
7561     CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
7562   llvm::Value *RegBase =
7563     llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity()
7564                                       + RegPadding.getQuantity());
7565   llvm::Value *RegOffset =
7566     CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
7567   Address RegSaveAreaPtr =
7568       CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr");
7569   llvm::Value *RegSaveArea =
7570     CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
7571   Address RawRegAddr(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, RegOffset,
7572                                            "raw_reg_addr"),
7573                      PaddedSize);
7574   Address RegAddr =
7575     CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr");
7576 
7577   // Update the register count
7578   llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
7579   llvm::Value *NewRegCount =
7580     CGF.Builder.CreateAdd(RegCount, One, "reg_count");
7581   CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
7582   CGF.EmitBranch(ContBlock);
7583 
7584   // Emit code to load the value if it was passed in memory.
7585   CGF.EmitBlock(InMemBlock);
7586 
7587   // Work out the address of a stack argument.
7588   Address OverflowArgAreaPtr =
7589       CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
7590   Address OverflowArgArea =
7591     Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
7592             PaddedSize);
7593   Address RawMemAddr =
7594     CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr");
7595   Address MemAddr =
7596     CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr");
7597 
7598   // Update overflow_arg_area_ptr pointer
7599   llvm::Value *NewOverflowArgArea =
7600     CGF.Builder.CreateGEP(OverflowArgArea.getElementType(),
7601                           OverflowArgArea.getPointer(), PaddedSizeV,
7602                           "overflow_arg_area");
7603   CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
7604   CGF.EmitBranch(ContBlock);
7605 
7606   // Return the appropriate result.
7607   CGF.EmitBlock(ContBlock);
7608   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
7609                                  MemAddr, InMemBlock, "va_arg.addr");
7610 
7611   if (IsIndirect)
7612     ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"),
7613                       TyInfo.Align);
7614 
7615   return ResAddr;
7616 }
7617 
7618 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
7619   if (RetTy->isVoidType())
7620     return ABIArgInfo::getIgnore();
7621   if (isVectorArgumentType(RetTy))
7622     return ABIArgInfo::getDirect();
7623   if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
7624     return getNaturalAlignIndirect(RetTy);
7625   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
7626                                                : ABIArgInfo::getDirect());
7627 }
7628 
7629 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
7630   // Handle the generic C++ ABI.
7631   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
7632     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7633 
7634   // Integers and enums are extended to full register width.
7635   if (isPromotableIntegerTypeForABI(Ty))
7636     return ABIArgInfo::getExtend(Ty);
7637 
7638   // Handle vector types and vector-like structure types.  Note that
7639   // as opposed to float-like structure types, we do not allow any
7640   // padding for vector-like structures, so verify the sizes match.
7641   uint64_t Size = getContext().getTypeSize(Ty);
7642   QualType SingleElementTy = GetSingleElementType(Ty);
7643   if (isVectorArgumentType(SingleElementTy) &&
7644       getContext().getTypeSize(SingleElementTy) == Size)
7645     return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy));
7646 
7647   // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
7648   if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
7649     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
7650 
7651   // Handle small structures.
7652   if (const RecordType *RT = Ty->getAs<RecordType>()) {
7653     // Structures with flexible arrays have variable length, so really
7654     // fail the size test above.
7655     const RecordDecl *RD = RT->getDecl();
7656     if (RD->hasFlexibleArrayMember())
7657       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
7658 
7659     // The structure is passed as an unextended integer, a float, or a double.
7660     llvm::Type *PassTy;
7661     if (isFPArgumentType(SingleElementTy)) {
7662       assert(Size == 32 || Size == 64);
7663       if (Size == 32)
7664         PassTy = llvm::Type::getFloatTy(getVMContext());
7665       else
7666         PassTy = llvm::Type::getDoubleTy(getVMContext());
7667     } else
7668       PassTy = llvm::IntegerType::get(getVMContext(), Size);
7669     return ABIArgInfo::getDirect(PassTy);
7670   }
7671 
7672   // Non-structure compounds are passed indirectly.
7673   if (isCompoundType(Ty))
7674     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
7675 
7676   return ABIArgInfo::getDirect(nullptr);
7677 }
7678 
7679 //===----------------------------------------------------------------------===//
7680 // MSP430 ABI Implementation
7681 //===----------------------------------------------------------------------===//
7682 
7683 namespace {
7684 
7685 class MSP430ABIInfo : public DefaultABIInfo {
7686   static ABIArgInfo complexArgInfo() {
7687     ABIArgInfo Info = ABIArgInfo::getDirect();
7688     Info.setCanBeFlattened(false);
7689     return Info;
7690   }
7691 
7692 public:
7693   MSP430ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
7694 
7695   ABIArgInfo classifyReturnType(QualType RetTy) const {
7696     if (RetTy->isAnyComplexType())
7697       return complexArgInfo();
7698 
7699     return DefaultABIInfo::classifyReturnType(RetTy);
7700   }
7701 
7702   ABIArgInfo classifyArgumentType(QualType RetTy) const {
7703     if (RetTy->isAnyComplexType())
7704       return complexArgInfo();
7705 
7706     return DefaultABIInfo::classifyArgumentType(RetTy);
7707   }
7708 
7709   // Just copy the original implementations because
7710   // DefaultABIInfo::classify{Return,Argument}Type() are not virtual
7711   void computeInfo(CGFunctionInfo &FI) const override {
7712     if (!getCXXABI().classifyReturnType(FI))
7713       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7714     for (auto &I : FI.arguments())
7715       I.info = classifyArgumentType(I.type);
7716   }
7717 
7718   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7719                     QualType Ty) const override {
7720     return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty));
7721   }
7722 };
7723 
7724 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
7725 public:
7726   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
7727       : TargetCodeGenInfo(std::make_unique<MSP430ABIInfo>(CGT)) {}
7728   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7729                            CodeGen::CodeGenModule &M) const override;
7730 };
7731 
7732 }
7733 
7734 void MSP430TargetCodeGenInfo::setTargetAttributes(
7735     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
7736   if (GV->isDeclaration())
7737     return;
7738   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
7739     const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>();
7740     if (!InterruptAttr)
7741       return;
7742 
7743     // Handle 'interrupt' attribute:
7744     llvm::Function *F = cast<llvm::Function>(GV);
7745 
7746     // Step 1: Set ISR calling convention.
7747     F->setCallingConv(llvm::CallingConv::MSP430_INTR);
7748 
7749     // Step 2: Add attributes goodness.
7750     F->addFnAttr(llvm::Attribute::NoInline);
7751     F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber()));
7752   }
7753 }
7754 
7755 //===----------------------------------------------------------------------===//
7756 // MIPS ABI Implementation.  This works for both little-endian and
7757 // big-endian variants.
7758 //===----------------------------------------------------------------------===//
7759 
7760 namespace {
7761 class MipsABIInfo : public ABIInfo {
7762   bool IsO32;
7763   unsigned MinABIStackAlignInBytes, StackAlignInBytes;
7764   void CoerceToIntArgs(uint64_t TySize,
7765                        SmallVectorImpl<llvm::Type *> &ArgList) const;
7766   llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
7767   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
7768   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
7769 public:
7770   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
7771     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
7772     StackAlignInBytes(IsO32 ? 8 : 16) {}
7773 
7774   ABIArgInfo classifyReturnType(QualType RetTy) const;
7775   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
7776   void computeInfo(CGFunctionInfo &FI) const override;
7777   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7778                     QualType Ty) const override;
7779   ABIArgInfo extendType(QualType Ty) const;
7780 };
7781 
7782 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
7783   unsigned SizeOfUnwindException;
7784 public:
7785   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
7786       : TargetCodeGenInfo(std::make_unique<MipsABIInfo>(CGT, IsO32)),
7787         SizeOfUnwindException(IsO32 ? 24 : 32) {}
7788 
7789   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
7790     return 29;
7791   }
7792 
7793   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7794                            CodeGen::CodeGenModule &CGM) const override {
7795     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7796     if (!FD) return;
7797     llvm::Function *Fn = cast<llvm::Function>(GV);
7798 
7799     if (FD->hasAttr<MipsLongCallAttr>())
7800       Fn->addFnAttr("long-call");
7801     else if (FD->hasAttr<MipsShortCallAttr>())
7802       Fn->addFnAttr("short-call");
7803 
7804     // Other attributes do not have a meaning for declarations.
7805     if (GV->isDeclaration())
7806       return;
7807 
7808     if (FD->hasAttr<Mips16Attr>()) {
7809       Fn->addFnAttr("mips16");
7810     }
7811     else if (FD->hasAttr<NoMips16Attr>()) {
7812       Fn->addFnAttr("nomips16");
7813     }
7814 
7815     if (FD->hasAttr<MicroMipsAttr>())
7816       Fn->addFnAttr("micromips");
7817     else if (FD->hasAttr<NoMicroMipsAttr>())
7818       Fn->addFnAttr("nomicromips");
7819 
7820     const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>();
7821     if (!Attr)
7822       return;
7823 
7824     const char *Kind;
7825     switch (Attr->getInterrupt()) {
7826     case MipsInterruptAttr::eic:     Kind = "eic"; break;
7827     case MipsInterruptAttr::sw0:     Kind = "sw0"; break;
7828     case MipsInterruptAttr::sw1:     Kind = "sw1"; break;
7829     case MipsInterruptAttr::hw0:     Kind = "hw0"; break;
7830     case MipsInterruptAttr::hw1:     Kind = "hw1"; break;
7831     case MipsInterruptAttr::hw2:     Kind = "hw2"; break;
7832     case MipsInterruptAttr::hw3:     Kind = "hw3"; break;
7833     case MipsInterruptAttr::hw4:     Kind = "hw4"; break;
7834     case MipsInterruptAttr::hw5:     Kind = "hw5"; break;
7835     }
7836 
7837     Fn->addFnAttr("interrupt", Kind);
7838 
7839   }
7840 
7841   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
7842                                llvm::Value *Address) const override;
7843 
7844   unsigned getSizeOfUnwindException() const override {
7845     return SizeOfUnwindException;
7846   }
7847 };
7848 }
7849 
7850 void MipsABIInfo::CoerceToIntArgs(
7851     uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const {
7852   llvm::IntegerType *IntTy =
7853     llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
7854 
7855   // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
7856   for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
7857     ArgList.push_back(IntTy);
7858 
7859   // If necessary, add one more integer type to ArgList.
7860   unsigned R = TySize % (MinABIStackAlignInBytes * 8);
7861 
7862   if (R)
7863     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
7864 }
7865 
7866 // In N32/64, an aligned double precision floating point field is passed in
7867 // a register.
7868 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
7869   SmallVector<llvm::Type*, 8> ArgList, IntArgList;
7870 
7871   if (IsO32) {
7872     CoerceToIntArgs(TySize, ArgList);
7873     return llvm::StructType::get(getVMContext(), ArgList);
7874   }
7875 
7876   if (Ty->isComplexType())
7877     return CGT.ConvertType(Ty);
7878 
7879   const RecordType *RT = Ty->getAs<RecordType>();
7880 
7881   // Unions/vectors are passed in integer registers.
7882   if (!RT || !RT->isStructureOrClassType()) {
7883     CoerceToIntArgs(TySize, ArgList);
7884     return llvm::StructType::get(getVMContext(), ArgList);
7885   }
7886 
7887   const RecordDecl *RD = RT->getDecl();
7888   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
7889   assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
7890 
7891   uint64_t LastOffset = 0;
7892   unsigned idx = 0;
7893   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
7894 
7895   // Iterate over fields in the struct/class and check if there are any aligned
7896   // double fields.
7897   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
7898        i != e; ++i, ++idx) {
7899     const QualType Ty = i->getType();
7900     const BuiltinType *BT = Ty->getAs<BuiltinType>();
7901 
7902     if (!BT || BT->getKind() != BuiltinType::Double)
7903       continue;
7904 
7905     uint64_t Offset = Layout.getFieldOffset(idx);
7906     if (Offset % 64) // Ignore doubles that are not aligned.
7907       continue;
7908 
7909     // Add ((Offset - LastOffset) / 64) args of type i64.
7910     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
7911       ArgList.push_back(I64);
7912 
7913     // Add double type.
7914     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
7915     LastOffset = Offset + 64;
7916   }
7917 
7918   CoerceToIntArgs(TySize - LastOffset, IntArgList);
7919   ArgList.append(IntArgList.begin(), IntArgList.end());
7920 
7921   return llvm::StructType::get(getVMContext(), ArgList);
7922 }
7923 
7924 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
7925                                         uint64_t Offset) const {
7926   if (OrigOffset + MinABIStackAlignInBytes > Offset)
7927     return nullptr;
7928 
7929   return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
7930 }
7931 
7932 ABIArgInfo
7933 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
7934   Ty = useFirstFieldIfTransparentUnion(Ty);
7935 
7936   uint64_t OrigOffset = Offset;
7937   uint64_t TySize = getContext().getTypeSize(Ty);
7938   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
7939 
7940   Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
7941                    (uint64_t)StackAlignInBytes);
7942   unsigned CurrOffset = llvm::alignTo(Offset, Align);
7943   Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8;
7944 
7945   if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
7946     // Ignore empty aggregates.
7947     if (TySize == 0)
7948       return ABIArgInfo::getIgnore();
7949 
7950     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
7951       Offset = OrigOffset + MinABIStackAlignInBytes;
7952       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7953     }
7954 
7955     // If we have reached here, aggregates are passed directly by coercing to
7956     // another structure type. Padding is inserted if the offset of the
7957     // aggregate is unaligned.
7958     ABIArgInfo ArgInfo =
7959         ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
7960                               getPaddingType(OrigOffset, CurrOffset));
7961     ArgInfo.setInReg(true);
7962     return ArgInfo;
7963   }
7964 
7965   // Treat an enum type as its underlying type.
7966   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7967     Ty = EnumTy->getDecl()->getIntegerType();
7968 
7969   // Make sure we pass indirectly things that are too large.
7970   if (const auto *EIT = Ty->getAs<ExtIntType>())
7971     if (EIT->getNumBits() > 128 ||
7972         (EIT->getNumBits() > 64 &&
7973          !getContext().getTargetInfo().hasInt128Type()))
7974       return getNaturalAlignIndirect(Ty);
7975 
7976   // All integral types are promoted to the GPR width.
7977   if (Ty->isIntegralOrEnumerationType())
7978     return extendType(Ty);
7979 
7980   return ABIArgInfo::getDirect(
7981       nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
7982 }
7983 
7984 llvm::Type*
7985 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
7986   const RecordType *RT = RetTy->getAs<RecordType>();
7987   SmallVector<llvm::Type*, 8> RTList;
7988 
7989   if (RT && RT->isStructureOrClassType()) {
7990     const RecordDecl *RD = RT->getDecl();
7991     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
7992     unsigned FieldCnt = Layout.getFieldCount();
7993 
7994     // N32/64 returns struct/classes in floating point registers if the
7995     // following conditions are met:
7996     // 1. The size of the struct/class is no larger than 128-bit.
7997     // 2. The struct/class has one or two fields all of which are floating
7998     //    point types.
7999     // 3. The offset of the first field is zero (this follows what gcc does).
8000     //
8001     // Any other composite results are returned in integer registers.
8002     //
8003     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
8004       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
8005       for (; b != e; ++b) {
8006         const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
8007 
8008         if (!BT || !BT->isFloatingPoint())
8009           break;
8010 
8011         RTList.push_back(CGT.ConvertType(b->getType()));
8012       }
8013 
8014       if (b == e)
8015         return llvm::StructType::get(getVMContext(), RTList,
8016                                      RD->hasAttr<PackedAttr>());
8017 
8018       RTList.clear();
8019     }
8020   }
8021 
8022   CoerceToIntArgs(Size, RTList);
8023   return llvm::StructType::get(getVMContext(), RTList);
8024 }
8025 
8026 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
8027   uint64_t Size = getContext().getTypeSize(RetTy);
8028 
8029   if (RetTy->isVoidType())
8030     return ABIArgInfo::getIgnore();
8031 
8032   // O32 doesn't treat zero-sized structs differently from other structs.
8033   // However, N32/N64 ignores zero sized return values.
8034   if (!IsO32 && Size == 0)
8035     return ABIArgInfo::getIgnore();
8036 
8037   if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
8038     if (Size <= 128) {
8039       if (RetTy->isAnyComplexType())
8040         return ABIArgInfo::getDirect();
8041 
8042       // O32 returns integer vectors in registers and N32/N64 returns all small
8043       // aggregates in registers.
8044       if (!IsO32 ||
8045           (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
8046         ABIArgInfo ArgInfo =
8047             ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
8048         ArgInfo.setInReg(true);
8049         return ArgInfo;
8050       }
8051     }
8052 
8053     return getNaturalAlignIndirect(RetTy);
8054   }
8055 
8056   // Treat an enum type as its underlying type.
8057   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
8058     RetTy = EnumTy->getDecl()->getIntegerType();
8059 
8060   // Make sure we pass indirectly things that are too large.
8061   if (const auto *EIT = RetTy->getAs<ExtIntType>())
8062     if (EIT->getNumBits() > 128 ||
8063         (EIT->getNumBits() > 64 &&
8064          !getContext().getTargetInfo().hasInt128Type()))
8065       return getNaturalAlignIndirect(RetTy);
8066 
8067   if (isPromotableIntegerTypeForABI(RetTy))
8068     return ABIArgInfo::getExtend(RetTy);
8069 
8070   if ((RetTy->isUnsignedIntegerOrEnumerationType() ||
8071       RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32)
8072     return ABIArgInfo::getSignExtend(RetTy);
8073 
8074   return ABIArgInfo::getDirect();
8075 }
8076 
8077 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
8078   ABIArgInfo &RetInfo = FI.getReturnInfo();
8079   if (!getCXXABI().classifyReturnType(FI))
8080     RetInfo = classifyReturnType(FI.getReturnType());
8081 
8082   // Check if a pointer to an aggregate is passed as a hidden argument.
8083   uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
8084 
8085   for (auto &I : FI.arguments())
8086     I.info = classifyArgumentType(I.type, Offset);
8087 }
8088 
8089 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8090                                QualType OrigTy) const {
8091   QualType Ty = OrigTy;
8092 
8093   // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64.
8094   // Pointers are also promoted in the same way but this only matters for N32.
8095   unsigned SlotSizeInBits = IsO32 ? 32 : 64;
8096   unsigned PtrWidth = getTarget().getPointerWidth(0);
8097   bool DidPromote = false;
8098   if ((Ty->isIntegerType() &&
8099           getContext().getIntWidth(Ty) < SlotSizeInBits) ||
8100       (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) {
8101     DidPromote = true;
8102     Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits,
8103                                             Ty->isSignedIntegerType());
8104   }
8105 
8106   auto TyInfo = getContext().getTypeInfoInChars(Ty);
8107 
8108   // The alignment of things in the argument area is never larger than
8109   // StackAlignInBytes.
8110   TyInfo.Align =
8111     std::min(TyInfo.Align, CharUnits::fromQuantity(StackAlignInBytes));
8112 
8113   // MinABIStackAlignInBytes is the size of argument slots on the stack.
8114   CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes);
8115 
8116   Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
8117                           TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true);
8118 
8119 
8120   // If there was a promotion, "unpromote" into a temporary.
8121   // TODO: can we just use a pointer into a subset of the original slot?
8122   if (DidPromote) {
8123     Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp");
8124     llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr);
8125 
8126     // Truncate down to the right width.
8127     llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType()
8128                                                  : CGF.IntPtrTy);
8129     llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy);
8130     if (OrigTy->isPointerType())
8131       V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType());
8132 
8133     CGF.Builder.CreateStore(V, Temp);
8134     Addr = Temp;
8135   }
8136 
8137   return Addr;
8138 }
8139 
8140 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const {
8141   int TySize = getContext().getTypeSize(Ty);
8142 
8143   // MIPS64 ABI requires unsigned 32 bit integers to be sign extended.
8144   if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
8145     return ABIArgInfo::getSignExtend(Ty);
8146 
8147   return ABIArgInfo::getExtend(Ty);
8148 }
8149 
8150 bool
8151 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
8152                                                llvm::Value *Address) const {
8153   // This information comes from gcc's implementation, which seems to
8154   // as canonical as it gets.
8155 
8156   // Everything on MIPS is 4 bytes.  Double-precision FP registers
8157   // are aliased to pairs of single-precision FP registers.
8158   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
8159 
8160   // 0-31 are the general purpose registers, $0 - $31.
8161   // 32-63 are the floating-point registers, $f0 - $f31.
8162   // 64 and 65 are the multiply/divide registers, $hi and $lo.
8163   // 66 is the (notional, I think) register for signal-handler return.
8164   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
8165 
8166   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
8167   // They are one bit wide and ignored here.
8168 
8169   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
8170   // (coprocessor 1 is the FP unit)
8171   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
8172   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
8173   // 176-181 are the DSP accumulator registers.
8174   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
8175   return false;
8176 }
8177 
8178 //===----------------------------------------------------------------------===//
8179 // M68k ABI Implementation
8180 //===----------------------------------------------------------------------===//
8181 
8182 namespace {
8183 
8184 class M68kTargetCodeGenInfo : public TargetCodeGenInfo {
8185 public:
8186   M68kTargetCodeGenInfo(CodeGenTypes &CGT)
8187       : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {}
8188   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
8189                            CodeGen::CodeGenModule &M) const override;
8190 };
8191 
8192 } // namespace
8193 
8194 void M68kTargetCodeGenInfo::setTargetAttributes(
8195     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
8196   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
8197     if (const auto *attr = FD->getAttr<M68kInterruptAttr>()) {
8198       // Handle 'interrupt' attribute:
8199       llvm::Function *F = cast<llvm::Function>(GV);
8200 
8201       // Step 1: Set ISR calling convention.
8202       F->setCallingConv(llvm::CallingConv::M68k_INTR);
8203 
8204       // Step 2: Add attributes goodness.
8205       F->addFnAttr(llvm::Attribute::NoInline);
8206 
8207       // Step 3: Emit ISR vector alias.
8208       unsigned Num = attr->getNumber() / 2;
8209       llvm::GlobalAlias::create(llvm::Function::ExternalLinkage,
8210                                 "__isr_" + Twine(Num), F);
8211     }
8212   }
8213 }
8214 
8215 //===----------------------------------------------------------------------===//
8216 // AVR ABI Implementation. Documented at
8217 // https://gcc.gnu.org/wiki/avr-gcc#Calling_Convention
8218 // https://gcc.gnu.org/wiki/avr-gcc#Reduced_Tiny
8219 //===----------------------------------------------------------------------===//
8220 
8221 namespace {
8222 class AVRABIInfo : public DefaultABIInfo {
8223 public:
8224   AVRABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
8225 
8226   ABIArgInfo classifyReturnType(QualType Ty) const {
8227     // A return struct with size less than or equal to 8 bytes is returned
8228     // directly via registers R18-R25.
8229     if (isAggregateTypeForABI(Ty) && getContext().getTypeSize(Ty) <= 64)
8230       return ABIArgInfo::getDirect();
8231     else
8232       return DefaultABIInfo::classifyReturnType(Ty);
8233   }
8234 
8235   // Just copy the original implementation of DefaultABIInfo::computeInfo(),
8236   // since DefaultABIInfo::classify{Return,Argument}Type() are not virtual.
8237   void computeInfo(CGFunctionInfo &FI) const override {
8238     if (!getCXXABI().classifyReturnType(FI))
8239       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8240     for (auto &I : FI.arguments())
8241       I.info = classifyArgumentType(I.type);
8242   }
8243 };
8244 
8245 class AVRTargetCodeGenInfo : public TargetCodeGenInfo {
8246 public:
8247   AVRTargetCodeGenInfo(CodeGenTypes &CGT)
8248       : TargetCodeGenInfo(std::make_unique<AVRABIInfo>(CGT)) {}
8249 
8250   LangAS getGlobalVarAddressSpace(CodeGenModule &CGM,
8251                                   const VarDecl *D) const override {
8252     // Check if a global/static variable is defined within address space 1
8253     // but not constant.
8254     LangAS AS = D->getType().getAddressSpace();
8255     if (isTargetAddressSpace(AS) && toTargetAddressSpace(AS) == 1 &&
8256         !D->getType().isConstQualified())
8257       CGM.getDiags().Report(D->getLocation(),
8258                             diag::err_verify_nonconst_addrspace)
8259           << "__flash";
8260     return TargetCodeGenInfo::getGlobalVarAddressSpace(CGM, D);
8261   }
8262 
8263   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
8264                            CodeGen::CodeGenModule &CGM) const override {
8265     if (GV->isDeclaration())
8266       return;
8267     const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
8268     if (!FD) return;
8269     auto *Fn = cast<llvm::Function>(GV);
8270 
8271     if (FD->getAttr<AVRInterruptAttr>())
8272       Fn->addFnAttr("interrupt");
8273 
8274     if (FD->getAttr<AVRSignalAttr>())
8275       Fn->addFnAttr("signal");
8276   }
8277 };
8278 }
8279 
8280 //===----------------------------------------------------------------------===//
8281 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
8282 // Currently subclassed only to implement custom OpenCL C function attribute
8283 // handling.
8284 //===----------------------------------------------------------------------===//
8285 
8286 namespace {
8287 
8288 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
8289 public:
8290   TCETargetCodeGenInfo(CodeGenTypes &CGT)
8291     : DefaultTargetCodeGenInfo(CGT) {}
8292 
8293   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
8294                            CodeGen::CodeGenModule &M) const override;
8295 };
8296 
8297 void TCETargetCodeGenInfo::setTargetAttributes(
8298     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
8299   if (GV->isDeclaration())
8300     return;
8301   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
8302   if (!FD) return;
8303 
8304   llvm::Function *F = cast<llvm::Function>(GV);
8305 
8306   if (M.getLangOpts().OpenCL) {
8307     if (FD->hasAttr<OpenCLKernelAttr>()) {
8308       // OpenCL C Kernel functions are not subject to inlining
8309       F->addFnAttr(llvm::Attribute::NoInline);
8310       const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
8311       if (Attr) {
8312         // Convert the reqd_work_group_size() attributes to metadata.
8313         llvm::LLVMContext &Context = F->getContext();
8314         llvm::NamedMDNode *OpenCLMetadata =
8315             M.getModule().getOrInsertNamedMetadata(
8316                 "opencl.kernel_wg_size_info");
8317 
8318         SmallVector<llvm::Metadata *, 5> Operands;
8319         Operands.push_back(llvm::ConstantAsMetadata::get(F));
8320 
8321         Operands.push_back(
8322             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
8323                 M.Int32Ty, llvm::APInt(32, Attr->getXDim()))));
8324         Operands.push_back(
8325             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
8326                 M.Int32Ty, llvm::APInt(32, Attr->getYDim()))));
8327         Operands.push_back(
8328             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
8329                 M.Int32Ty, llvm::APInt(32, Attr->getZDim()))));
8330 
8331         // Add a boolean constant operand for "required" (true) or "hint"
8332         // (false) for implementing the work_group_size_hint attr later.
8333         // Currently always true as the hint is not yet implemented.
8334         Operands.push_back(
8335             llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context)));
8336         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
8337       }
8338     }
8339   }
8340 }
8341 
8342 }
8343 
8344 //===----------------------------------------------------------------------===//
8345 // Hexagon ABI Implementation
8346 //===----------------------------------------------------------------------===//
8347 
8348 namespace {
8349 
8350 class HexagonABIInfo : public DefaultABIInfo {
8351 public:
8352   HexagonABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
8353 
8354 private:
8355   ABIArgInfo classifyReturnType(QualType RetTy) const;
8356   ABIArgInfo classifyArgumentType(QualType RetTy) const;
8357   ABIArgInfo classifyArgumentType(QualType RetTy, unsigned *RegsLeft) const;
8358 
8359   void computeInfo(CGFunctionInfo &FI) const override;
8360 
8361   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8362                     QualType Ty) const override;
8363   Address EmitVAArgFromMemory(CodeGenFunction &CFG, Address VAListAddr,
8364                               QualType Ty) const;
8365   Address EmitVAArgForHexagon(CodeGenFunction &CFG, Address VAListAddr,
8366                               QualType Ty) const;
8367   Address EmitVAArgForHexagonLinux(CodeGenFunction &CFG, Address VAListAddr,
8368                                    QualType Ty) const;
8369 };
8370 
8371 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
8372 public:
8373   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
8374       : TargetCodeGenInfo(std::make_unique<HexagonABIInfo>(CGT)) {}
8375 
8376   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
8377     return 29;
8378   }
8379 
8380   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
8381                            CodeGen::CodeGenModule &GCM) const override {
8382     if (GV->isDeclaration())
8383       return;
8384     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
8385     if (!FD)
8386       return;
8387   }
8388 };
8389 
8390 } // namespace
8391 
8392 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
8393   unsigned RegsLeft = 6;
8394   if (!getCXXABI().classifyReturnType(FI))
8395     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8396   for (auto &I : FI.arguments())
8397     I.info = classifyArgumentType(I.type, &RegsLeft);
8398 }
8399 
8400 static bool HexagonAdjustRegsLeft(uint64_t Size, unsigned *RegsLeft) {
8401   assert(Size <= 64 && "Not expecting to pass arguments larger than 64 bits"
8402                        " through registers");
8403 
8404   if (*RegsLeft == 0)
8405     return false;
8406 
8407   if (Size <= 32) {
8408     (*RegsLeft)--;
8409     return true;
8410   }
8411 
8412   if (2 <= (*RegsLeft & (~1U))) {
8413     *RegsLeft = (*RegsLeft & (~1U)) - 2;
8414     return true;
8415   }
8416 
8417   // Next available register was r5 but candidate was greater than 32-bits so it
8418   // has to go on the stack. However we still consume r5
8419   if (*RegsLeft == 1)
8420     *RegsLeft = 0;
8421 
8422   return false;
8423 }
8424 
8425 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty,
8426                                                 unsigned *RegsLeft) const {
8427   if (!isAggregateTypeForABI(Ty)) {
8428     // Treat an enum type as its underlying type.
8429     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
8430       Ty = EnumTy->getDecl()->getIntegerType();
8431 
8432     uint64_t Size = getContext().getTypeSize(Ty);
8433     if (Size <= 64)
8434       HexagonAdjustRegsLeft(Size, RegsLeft);
8435 
8436     if (Size > 64 && Ty->isExtIntType())
8437       return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
8438 
8439     return isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
8440                                              : ABIArgInfo::getDirect();
8441   }
8442 
8443   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
8444     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
8445 
8446   // Ignore empty records.
8447   if (isEmptyRecord(getContext(), Ty, true))
8448     return ABIArgInfo::getIgnore();
8449 
8450   uint64_t Size = getContext().getTypeSize(Ty);
8451   unsigned Align = getContext().getTypeAlign(Ty);
8452 
8453   if (Size > 64)
8454     return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
8455 
8456   if (HexagonAdjustRegsLeft(Size, RegsLeft))
8457     Align = Size <= 32 ? 32 : 64;
8458   if (Size <= Align) {
8459     // Pass in the smallest viable integer type.
8460     if (!llvm::isPowerOf2_64(Size))
8461       Size = llvm::NextPowerOf2(Size);
8462     return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size));
8463   }
8464   return DefaultABIInfo::classifyArgumentType(Ty);
8465 }
8466 
8467 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
8468   if (RetTy->isVoidType())
8469     return ABIArgInfo::getIgnore();
8470 
8471   const TargetInfo &T = CGT.getTarget();
8472   uint64_t Size = getContext().getTypeSize(RetTy);
8473 
8474   if (RetTy->getAs<VectorType>()) {
8475     // HVX vectors are returned in vector registers or register pairs.
8476     if (T.hasFeature("hvx")) {
8477       assert(T.hasFeature("hvx-length64b") || T.hasFeature("hvx-length128b"));
8478       uint64_t VecSize = T.hasFeature("hvx-length64b") ? 64*8 : 128*8;
8479       if (Size == VecSize || Size == 2*VecSize)
8480         return ABIArgInfo::getDirectInReg();
8481     }
8482     // Large vector types should be returned via memory.
8483     if (Size > 64)
8484       return getNaturalAlignIndirect(RetTy);
8485   }
8486 
8487   if (!isAggregateTypeForABI(RetTy)) {
8488     // Treat an enum type as its underlying type.
8489     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
8490       RetTy = EnumTy->getDecl()->getIntegerType();
8491 
8492     if (Size > 64 && RetTy->isExtIntType())
8493       return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
8494 
8495     return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
8496                                                 : ABIArgInfo::getDirect();
8497   }
8498 
8499   if (isEmptyRecord(getContext(), RetTy, true))
8500     return ABIArgInfo::getIgnore();
8501 
8502   // Aggregates <= 8 bytes are returned in registers, other aggregates
8503   // are returned indirectly.
8504   if (Size <= 64) {
8505     // Return in the smallest viable integer type.
8506     if (!llvm::isPowerOf2_64(Size))
8507       Size = llvm::NextPowerOf2(Size);
8508     return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size));
8509   }
8510   return getNaturalAlignIndirect(RetTy, /*ByVal=*/true);
8511 }
8512 
8513 Address HexagonABIInfo::EmitVAArgFromMemory(CodeGenFunction &CGF,
8514                                             Address VAListAddr,
8515                                             QualType Ty) const {
8516   // Load the overflow area pointer.
8517   Address __overflow_area_pointer_p =
8518       CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p");
8519   llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad(
8520       __overflow_area_pointer_p, "__overflow_area_pointer");
8521 
8522   uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
8523   if (Align > 4) {
8524     // Alignment should be a power of 2.
8525     assert((Align & (Align - 1)) == 0 && "Alignment is not power of 2!");
8526 
8527     // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
8528     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
8529 
8530     // Add offset to the current pointer to access the argument.
8531     __overflow_area_pointer =
8532         CGF.Builder.CreateGEP(CGF.Int8Ty, __overflow_area_pointer, Offset);
8533     llvm::Value *AsInt =
8534         CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty);
8535 
8536     // Create a mask which should be "AND"ed
8537     // with (overflow_arg_area + align - 1)
8538     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -(int)Align);
8539     __overflow_area_pointer = CGF.Builder.CreateIntToPtr(
8540         CGF.Builder.CreateAnd(AsInt, Mask), __overflow_area_pointer->getType(),
8541         "__overflow_area_pointer.align");
8542   }
8543 
8544   // Get the type of the argument from memory and bitcast
8545   // overflow area pointer to the argument type.
8546   llvm::Type *PTy = CGF.ConvertTypeForMem(Ty);
8547   Address AddrTyped = CGF.Builder.CreateBitCast(
8548       Address(__overflow_area_pointer, CharUnits::fromQuantity(Align)),
8549       llvm::PointerType::getUnqual(PTy));
8550 
8551   // Round up to the minimum stack alignment for varargs which is 4 bytes.
8552   uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4);
8553 
8554   __overflow_area_pointer = CGF.Builder.CreateGEP(
8555       CGF.Int8Ty, __overflow_area_pointer,
8556       llvm::ConstantInt::get(CGF.Int32Ty, Offset),
8557       "__overflow_area_pointer.next");
8558   CGF.Builder.CreateStore(__overflow_area_pointer, __overflow_area_pointer_p);
8559 
8560   return AddrTyped;
8561 }
8562 
8563 Address HexagonABIInfo::EmitVAArgForHexagon(CodeGenFunction &CGF,
8564                                             Address VAListAddr,
8565                                             QualType Ty) const {
8566   // FIXME: Need to handle alignment
8567   llvm::Type *BP = CGF.Int8PtrTy;
8568   llvm::Type *BPP = CGF.Int8PtrPtrTy;
8569   CGBuilderTy &Builder = CGF.Builder;
8570   Address VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
8571   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
8572   // Handle address alignment for type alignment > 32 bits
8573   uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
8574   if (TyAlign > 4) {
8575     assert((TyAlign & (TyAlign - 1)) == 0 && "Alignment is not power of 2!");
8576     llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
8577     AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
8578     AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
8579     Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
8580   }
8581   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
8582   Address AddrTyped = Builder.CreateBitCast(
8583       Address(Addr, CharUnits::fromQuantity(TyAlign)), PTy);
8584 
8585   uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4);
8586   llvm::Value *NextAddr = Builder.CreateGEP(
8587       CGF.Int8Ty, Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next");
8588   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
8589 
8590   return AddrTyped;
8591 }
8592 
8593 Address HexagonABIInfo::EmitVAArgForHexagonLinux(CodeGenFunction &CGF,
8594                                                  Address VAListAddr,
8595                                                  QualType Ty) const {
8596   int ArgSize = CGF.getContext().getTypeSize(Ty) / 8;
8597 
8598   if (ArgSize > 8)
8599     return EmitVAArgFromMemory(CGF, VAListAddr, Ty);
8600 
8601   // Here we have check if the argument is in register area or
8602   // in overflow area.
8603   // If the saved register area pointer + argsize rounded up to alignment >
8604   // saved register area end pointer, argument is in overflow area.
8605   unsigned RegsLeft = 6;
8606   Ty = CGF.getContext().getCanonicalType(Ty);
8607   (void)classifyArgumentType(Ty, &RegsLeft);
8608 
8609   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
8610   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
8611   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
8612   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
8613 
8614   // Get rounded size of the argument.GCC does not allow vararg of
8615   // size < 4 bytes. We follow the same logic here.
8616   ArgSize = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8;
8617   int ArgAlign = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8;
8618 
8619   // Argument may be in saved register area
8620   CGF.EmitBlock(MaybeRegBlock);
8621 
8622   // Load the current saved register area pointer.
8623   Address __current_saved_reg_area_pointer_p = CGF.Builder.CreateStructGEP(
8624       VAListAddr, 0, "__current_saved_reg_area_pointer_p");
8625   llvm::Value *__current_saved_reg_area_pointer = CGF.Builder.CreateLoad(
8626       __current_saved_reg_area_pointer_p, "__current_saved_reg_area_pointer");
8627 
8628   // Load the saved register area end pointer.
8629   Address __saved_reg_area_end_pointer_p = CGF.Builder.CreateStructGEP(
8630       VAListAddr, 1, "__saved_reg_area_end_pointer_p");
8631   llvm::Value *__saved_reg_area_end_pointer = CGF.Builder.CreateLoad(
8632       __saved_reg_area_end_pointer_p, "__saved_reg_area_end_pointer");
8633 
8634   // If the size of argument is > 4 bytes, check if the stack
8635   // location is aligned to 8 bytes
8636   if (ArgAlign > 4) {
8637 
8638     llvm::Value *__current_saved_reg_area_pointer_int =
8639         CGF.Builder.CreatePtrToInt(__current_saved_reg_area_pointer,
8640                                    CGF.Int32Ty);
8641 
8642     __current_saved_reg_area_pointer_int = CGF.Builder.CreateAdd(
8643         __current_saved_reg_area_pointer_int,
8644         llvm::ConstantInt::get(CGF.Int32Ty, (ArgAlign - 1)),
8645         "align_current_saved_reg_area_pointer");
8646 
8647     __current_saved_reg_area_pointer_int =
8648         CGF.Builder.CreateAnd(__current_saved_reg_area_pointer_int,
8649                               llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign),
8650                               "align_current_saved_reg_area_pointer");
8651 
8652     __current_saved_reg_area_pointer =
8653         CGF.Builder.CreateIntToPtr(__current_saved_reg_area_pointer_int,
8654                                    __current_saved_reg_area_pointer->getType(),
8655                                    "align_current_saved_reg_area_pointer");
8656   }
8657 
8658   llvm::Value *__new_saved_reg_area_pointer =
8659       CGF.Builder.CreateGEP(CGF.Int8Ty, __current_saved_reg_area_pointer,
8660                             llvm::ConstantInt::get(CGF.Int32Ty, ArgSize),
8661                             "__new_saved_reg_area_pointer");
8662 
8663   llvm::Value *UsingStack = 0;
8664   UsingStack = CGF.Builder.CreateICmpSGT(__new_saved_reg_area_pointer,
8665                                          __saved_reg_area_end_pointer);
8666 
8667   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, InRegBlock);
8668 
8669   // Argument in saved register area
8670   // Implement the block where argument is in register saved area
8671   CGF.EmitBlock(InRegBlock);
8672 
8673   llvm::Type *PTy = CGF.ConvertType(Ty);
8674   llvm::Value *__saved_reg_area_p = CGF.Builder.CreateBitCast(
8675       __current_saved_reg_area_pointer, llvm::PointerType::getUnqual(PTy));
8676 
8677   CGF.Builder.CreateStore(__new_saved_reg_area_pointer,
8678                           __current_saved_reg_area_pointer_p);
8679 
8680   CGF.EmitBranch(ContBlock);
8681 
8682   // Argument in overflow area
8683   // Implement the block where the argument is in overflow area.
8684   CGF.EmitBlock(OnStackBlock);
8685 
8686   // Load the overflow area pointer
8687   Address __overflow_area_pointer_p =
8688       CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p");
8689   llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad(
8690       __overflow_area_pointer_p, "__overflow_area_pointer");
8691 
8692   // Align the overflow area pointer according to the alignment of the argument
8693   if (ArgAlign > 4) {
8694     llvm::Value *__overflow_area_pointer_int =
8695         CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty);
8696 
8697     __overflow_area_pointer_int =
8698         CGF.Builder.CreateAdd(__overflow_area_pointer_int,
8699                               llvm::ConstantInt::get(CGF.Int32Ty, ArgAlign - 1),
8700                               "align_overflow_area_pointer");
8701 
8702     __overflow_area_pointer_int =
8703         CGF.Builder.CreateAnd(__overflow_area_pointer_int,
8704                               llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign),
8705                               "align_overflow_area_pointer");
8706 
8707     __overflow_area_pointer = CGF.Builder.CreateIntToPtr(
8708         __overflow_area_pointer_int, __overflow_area_pointer->getType(),
8709         "align_overflow_area_pointer");
8710   }
8711 
8712   // Get the pointer for next argument in overflow area and store it
8713   // to overflow area pointer.
8714   llvm::Value *__new_overflow_area_pointer = CGF.Builder.CreateGEP(
8715       CGF.Int8Ty, __overflow_area_pointer,
8716       llvm::ConstantInt::get(CGF.Int32Ty, ArgSize),
8717       "__overflow_area_pointer.next");
8718 
8719   CGF.Builder.CreateStore(__new_overflow_area_pointer,
8720                           __overflow_area_pointer_p);
8721 
8722   CGF.Builder.CreateStore(__new_overflow_area_pointer,
8723                           __current_saved_reg_area_pointer_p);
8724 
8725   // Bitcast the overflow area pointer to the type of argument.
8726   llvm::Type *OverflowPTy = CGF.ConvertTypeForMem(Ty);
8727   llvm::Value *__overflow_area_p = CGF.Builder.CreateBitCast(
8728       __overflow_area_pointer, llvm::PointerType::getUnqual(OverflowPTy));
8729 
8730   CGF.EmitBranch(ContBlock);
8731 
8732   // Get the correct pointer to load the variable argument
8733   // Implement the ContBlock
8734   CGF.EmitBlock(ContBlock);
8735 
8736   llvm::Type *MemPTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
8737   llvm::PHINode *ArgAddr = CGF.Builder.CreatePHI(MemPTy, 2, "vaarg.addr");
8738   ArgAddr->addIncoming(__saved_reg_area_p, InRegBlock);
8739   ArgAddr->addIncoming(__overflow_area_p, OnStackBlock);
8740 
8741   return Address(ArgAddr, CharUnits::fromQuantity(ArgAlign));
8742 }
8743 
8744 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8745                                   QualType Ty) const {
8746 
8747   if (getTarget().getTriple().isMusl())
8748     return EmitVAArgForHexagonLinux(CGF, VAListAddr, Ty);
8749 
8750   return EmitVAArgForHexagon(CGF, VAListAddr, Ty);
8751 }
8752 
8753 //===----------------------------------------------------------------------===//
8754 // Lanai ABI Implementation
8755 //===----------------------------------------------------------------------===//
8756 
8757 namespace {
8758 class LanaiABIInfo : public DefaultABIInfo {
8759 public:
8760   LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
8761 
8762   bool shouldUseInReg(QualType Ty, CCState &State) const;
8763 
8764   void computeInfo(CGFunctionInfo &FI) const override {
8765     CCState State(FI);
8766     // Lanai uses 4 registers to pass arguments unless the function has the
8767     // regparm attribute set.
8768     if (FI.getHasRegParm()) {
8769       State.FreeRegs = FI.getRegParm();
8770     } else {
8771       State.FreeRegs = 4;
8772     }
8773 
8774     if (!getCXXABI().classifyReturnType(FI))
8775       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8776     for (auto &I : FI.arguments())
8777       I.info = classifyArgumentType(I.type, State);
8778   }
8779 
8780   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
8781   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
8782 };
8783 } // end anonymous namespace
8784 
8785 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const {
8786   unsigned Size = getContext().getTypeSize(Ty);
8787   unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U;
8788 
8789   if (SizeInRegs == 0)
8790     return false;
8791 
8792   if (SizeInRegs > State.FreeRegs) {
8793     State.FreeRegs = 0;
8794     return false;
8795   }
8796 
8797   State.FreeRegs -= SizeInRegs;
8798 
8799   return true;
8800 }
8801 
8802 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal,
8803                                            CCState &State) const {
8804   if (!ByVal) {
8805     if (State.FreeRegs) {
8806       --State.FreeRegs; // Non-byval indirects just use one pointer.
8807       return getNaturalAlignIndirectInReg(Ty);
8808     }
8809     return getNaturalAlignIndirect(Ty, false);
8810   }
8811 
8812   // Compute the byval alignment.
8813   const unsigned MinABIStackAlignInBytes = 4;
8814   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
8815   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
8816                                  /*Realign=*/TypeAlign >
8817                                      MinABIStackAlignInBytes);
8818 }
8819 
8820 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty,
8821                                               CCState &State) const {
8822   // Check with the C++ ABI first.
8823   const RecordType *RT = Ty->getAs<RecordType>();
8824   if (RT) {
8825     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
8826     if (RAA == CGCXXABI::RAA_Indirect) {
8827       return getIndirectResult(Ty, /*ByVal=*/false, State);
8828     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
8829       return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
8830     }
8831   }
8832 
8833   if (isAggregateTypeForABI(Ty)) {
8834     // Structures with flexible arrays are always indirect.
8835     if (RT && RT->getDecl()->hasFlexibleArrayMember())
8836       return getIndirectResult(Ty, /*ByVal=*/true, State);
8837 
8838     // Ignore empty structs/unions.
8839     if (isEmptyRecord(getContext(), Ty, true))
8840       return ABIArgInfo::getIgnore();
8841 
8842     llvm::LLVMContext &LLVMContext = getVMContext();
8843     unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
8844     if (SizeInRegs <= State.FreeRegs) {
8845       llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
8846       SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
8847       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
8848       State.FreeRegs -= SizeInRegs;
8849       return ABIArgInfo::getDirectInReg(Result);
8850     } else {
8851       State.FreeRegs = 0;
8852     }
8853     return getIndirectResult(Ty, true, State);
8854   }
8855 
8856   // Treat an enum type as its underlying type.
8857   if (const auto *EnumTy = Ty->getAs<EnumType>())
8858     Ty = EnumTy->getDecl()->getIntegerType();
8859 
8860   bool InReg = shouldUseInReg(Ty, State);
8861 
8862   // Don't pass >64 bit integers in registers.
8863   if (const auto *EIT = Ty->getAs<ExtIntType>())
8864     if (EIT->getNumBits() > 64)
8865       return getIndirectResult(Ty, /*ByVal=*/true, State);
8866 
8867   if (isPromotableIntegerTypeForABI(Ty)) {
8868     if (InReg)
8869       return ABIArgInfo::getDirectInReg();
8870     return ABIArgInfo::getExtend(Ty);
8871   }
8872   if (InReg)
8873     return ABIArgInfo::getDirectInReg();
8874   return ABIArgInfo::getDirect();
8875 }
8876 
8877 namespace {
8878 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo {
8879 public:
8880   LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
8881       : TargetCodeGenInfo(std::make_unique<LanaiABIInfo>(CGT)) {}
8882 };
8883 }
8884 
8885 //===----------------------------------------------------------------------===//
8886 // AMDGPU ABI Implementation
8887 //===----------------------------------------------------------------------===//
8888 
8889 namespace {
8890 
8891 class AMDGPUABIInfo final : public DefaultABIInfo {
8892 private:
8893   static const unsigned MaxNumRegsForArgsRet = 16;
8894 
8895   unsigned numRegsForType(QualType Ty) const;
8896 
8897   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
8898   bool isHomogeneousAggregateSmallEnough(const Type *Base,
8899                                          uint64_t Members) const override;
8900 
8901   // Coerce HIP scalar pointer arguments from generic pointers to global ones.
8902   llvm::Type *coerceKernelArgumentType(llvm::Type *Ty, unsigned FromAS,
8903                                        unsigned ToAS) const {
8904     // Single value types.
8905     if (Ty->isPointerTy() && Ty->getPointerAddressSpace() == FromAS)
8906       return llvm::PointerType::get(
8907           cast<llvm::PointerType>(Ty)->getElementType(), ToAS);
8908     return Ty;
8909   }
8910 
8911 public:
8912   explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) :
8913     DefaultABIInfo(CGT) {}
8914 
8915   ABIArgInfo classifyReturnType(QualType RetTy) const;
8916   ABIArgInfo classifyKernelArgumentType(QualType Ty) const;
8917   ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const;
8918 
8919   void computeInfo(CGFunctionInfo &FI) const override;
8920   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8921                     QualType Ty) const override;
8922 };
8923 
8924 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
8925   return true;
8926 }
8927 
8928 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough(
8929   const Type *Base, uint64_t Members) const {
8930   uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32;
8931 
8932   // Homogeneous Aggregates may occupy at most 16 registers.
8933   return Members * NumRegs <= MaxNumRegsForArgsRet;
8934 }
8935 
8936 /// Estimate number of registers the type will use when passed in registers.
8937 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const {
8938   unsigned NumRegs = 0;
8939 
8940   if (const VectorType *VT = Ty->getAs<VectorType>()) {
8941     // Compute from the number of elements. The reported size is based on the
8942     // in-memory size, which includes the padding 4th element for 3-vectors.
8943     QualType EltTy = VT->getElementType();
8944     unsigned EltSize = getContext().getTypeSize(EltTy);
8945 
8946     // 16-bit element vectors should be passed as packed.
8947     if (EltSize == 16)
8948       return (VT->getNumElements() + 1) / 2;
8949 
8950     unsigned EltNumRegs = (EltSize + 31) / 32;
8951     return EltNumRegs * VT->getNumElements();
8952   }
8953 
8954   if (const RecordType *RT = Ty->getAs<RecordType>()) {
8955     const RecordDecl *RD = RT->getDecl();
8956     assert(!RD->hasFlexibleArrayMember());
8957 
8958     for (const FieldDecl *Field : RD->fields()) {
8959       QualType FieldTy = Field->getType();
8960       NumRegs += numRegsForType(FieldTy);
8961     }
8962 
8963     return NumRegs;
8964   }
8965 
8966   return (getContext().getTypeSize(Ty) + 31) / 32;
8967 }
8968 
8969 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const {
8970   llvm::CallingConv::ID CC = FI.getCallingConvention();
8971 
8972   if (!getCXXABI().classifyReturnType(FI))
8973     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8974 
8975   unsigned NumRegsLeft = MaxNumRegsForArgsRet;
8976   for (auto &Arg : FI.arguments()) {
8977     if (CC == llvm::CallingConv::AMDGPU_KERNEL) {
8978       Arg.info = classifyKernelArgumentType(Arg.type);
8979     } else {
8980       Arg.info = classifyArgumentType(Arg.type, NumRegsLeft);
8981     }
8982   }
8983 }
8984 
8985 Address AMDGPUABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8986                                  QualType Ty) const {
8987   llvm_unreachable("AMDGPU does not support varargs");
8988 }
8989 
8990 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const {
8991   if (isAggregateTypeForABI(RetTy)) {
8992     // Records with non-trivial destructors/copy-constructors should not be
8993     // returned by value.
8994     if (!getRecordArgABI(RetTy, getCXXABI())) {
8995       // Ignore empty structs/unions.
8996       if (isEmptyRecord(getContext(), RetTy, true))
8997         return ABIArgInfo::getIgnore();
8998 
8999       // Lower single-element structs to just return a regular value.
9000       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
9001         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
9002 
9003       if (const RecordType *RT = RetTy->getAs<RecordType>()) {
9004         const RecordDecl *RD = RT->getDecl();
9005         if (RD->hasFlexibleArrayMember())
9006           return DefaultABIInfo::classifyReturnType(RetTy);
9007       }
9008 
9009       // Pack aggregates <= 4 bytes into single VGPR or pair.
9010       uint64_t Size = getContext().getTypeSize(RetTy);
9011       if (Size <= 16)
9012         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
9013 
9014       if (Size <= 32)
9015         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
9016 
9017       if (Size <= 64) {
9018         llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
9019         return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
9020       }
9021 
9022       if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet)
9023         return ABIArgInfo::getDirect();
9024     }
9025   }
9026 
9027   // Otherwise just do the default thing.
9028   return DefaultABIInfo::classifyReturnType(RetTy);
9029 }
9030 
9031 /// For kernels all parameters are really passed in a special buffer. It doesn't
9032 /// make sense to pass anything byval, so everything must be direct.
9033 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const {
9034   Ty = useFirstFieldIfTransparentUnion(Ty);
9035 
9036   // TODO: Can we omit empty structs?
9037 
9038   if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
9039     Ty = QualType(SeltTy, 0);
9040 
9041   llvm::Type *OrigLTy = CGT.ConvertType(Ty);
9042   llvm::Type *LTy = OrigLTy;
9043   if (getContext().getLangOpts().HIP) {
9044     LTy = coerceKernelArgumentType(
9045         OrigLTy, /*FromAS=*/getContext().getTargetAddressSpace(LangAS::Default),
9046         /*ToAS=*/getContext().getTargetAddressSpace(LangAS::cuda_device));
9047   }
9048 
9049   // FIXME: Should also use this for OpenCL, but it requires addressing the
9050   // problem of kernels being called.
9051   //
9052   // FIXME: This doesn't apply the optimization of coercing pointers in structs
9053   // to global address space when using byref. This would require implementing a
9054   // new kind of coercion of the in-memory type when for indirect arguments.
9055   if (!getContext().getLangOpts().OpenCL && LTy == OrigLTy &&
9056       isAggregateTypeForABI(Ty)) {
9057     return ABIArgInfo::getIndirectAliased(
9058         getContext().getTypeAlignInChars(Ty),
9059         getContext().getTargetAddressSpace(LangAS::opencl_constant),
9060         false /*Realign*/, nullptr /*Padding*/);
9061   }
9062 
9063   // If we set CanBeFlattened to true, CodeGen will expand the struct to its
9064   // individual elements, which confuses the Clover OpenCL backend; therefore we
9065   // have to set it to false here. Other args of getDirect() are just defaults.
9066   return ABIArgInfo::getDirect(LTy, 0, nullptr, false);
9067 }
9068 
9069 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty,
9070                                                unsigned &NumRegsLeft) const {
9071   assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow");
9072 
9073   Ty = useFirstFieldIfTransparentUnion(Ty);
9074 
9075   if (isAggregateTypeForABI(Ty)) {
9076     // Records with non-trivial destructors/copy-constructors should not be
9077     // passed by value.
9078     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
9079       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
9080 
9081     // Ignore empty structs/unions.
9082     if (isEmptyRecord(getContext(), Ty, true))
9083       return ABIArgInfo::getIgnore();
9084 
9085     // Lower single-element structs to just pass a regular value. TODO: We
9086     // could do reasonable-size multiple-element structs too, using getExpand(),
9087     // though watch out for things like bitfields.
9088     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
9089       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
9090 
9091     if (const RecordType *RT = Ty->getAs<RecordType>()) {
9092       const RecordDecl *RD = RT->getDecl();
9093       if (RD->hasFlexibleArrayMember())
9094         return DefaultABIInfo::classifyArgumentType(Ty);
9095     }
9096 
9097     // Pack aggregates <= 8 bytes into single VGPR or pair.
9098     uint64_t Size = getContext().getTypeSize(Ty);
9099     if (Size <= 64) {
9100       unsigned NumRegs = (Size + 31) / 32;
9101       NumRegsLeft -= std::min(NumRegsLeft, NumRegs);
9102 
9103       if (Size <= 16)
9104         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
9105 
9106       if (Size <= 32)
9107         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
9108 
9109       // XXX: Should this be i64 instead, and should the limit increase?
9110       llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
9111       return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
9112     }
9113 
9114     if (NumRegsLeft > 0) {
9115       unsigned NumRegs = numRegsForType(Ty);
9116       if (NumRegsLeft >= NumRegs) {
9117         NumRegsLeft -= NumRegs;
9118         return ABIArgInfo::getDirect();
9119       }
9120     }
9121   }
9122 
9123   // Otherwise just do the default thing.
9124   ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty);
9125   if (!ArgInfo.isIndirect()) {
9126     unsigned NumRegs = numRegsForType(Ty);
9127     NumRegsLeft -= std::min(NumRegs, NumRegsLeft);
9128   }
9129 
9130   return ArgInfo;
9131 }
9132 
9133 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
9134 public:
9135   AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
9136       : TargetCodeGenInfo(std::make_unique<AMDGPUABIInfo>(CGT)) {}
9137   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
9138                            CodeGen::CodeGenModule &M) const override;
9139   unsigned getOpenCLKernelCallingConv() const override;
9140 
9141   llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM,
9142       llvm::PointerType *T, QualType QT) const override;
9143 
9144   LangAS getASTAllocaAddressSpace() const override {
9145     return getLangASFromTargetAS(
9146         getABIInfo().getDataLayout().getAllocaAddrSpace());
9147   }
9148   LangAS getGlobalVarAddressSpace(CodeGenModule &CGM,
9149                                   const VarDecl *D) const override;
9150   llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts,
9151                                          SyncScope Scope,
9152                                          llvm::AtomicOrdering Ordering,
9153                                          llvm::LLVMContext &Ctx) const override;
9154   llvm::Function *
9155   createEnqueuedBlockKernel(CodeGenFunction &CGF,
9156                             llvm::Function *BlockInvokeFunc,
9157                             llvm::Value *BlockLiteral) const override;
9158   bool shouldEmitStaticExternCAliases() const override;
9159   void setCUDAKernelCallingConvention(const FunctionType *&FT) const override;
9160 };
9161 }
9162 
9163 static bool requiresAMDGPUProtectedVisibility(const Decl *D,
9164                                               llvm::GlobalValue *GV) {
9165   if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility)
9166     return false;
9167 
9168   return D->hasAttr<OpenCLKernelAttr>() ||
9169          (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) ||
9170          (isa<VarDecl>(D) &&
9171           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
9172            cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinSurfaceType() ||
9173            cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinTextureType()));
9174 }
9175 
9176 void AMDGPUTargetCodeGenInfo::setTargetAttributes(
9177     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
9178   if (requiresAMDGPUProtectedVisibility(D, GV)) {
9179     GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
9180     GV->setDSOLocal(true);
9181   }
9182 
9183   if (GV->isDeclaration())
9184     return;
9185   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
9186   if (!FD)
9187     return;
9188 
9189   llvm::Function *F = cast<llvm::Function>(GV);
9190 
9191   const auto *ReqdWGS = M.getLangOpts().OpenCL ?
9192     FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr;
9193 
9194 
9195   const bool IsOpenCLKernel = M.getLangOpts().OpenCL &&
9196                               FD->hasAttr<OpenCLKernelAttr>();
9197   const bool IsHIPKernel = M.getLangOpts().HIP &&
9198                            FD->hasAttr<CUDAGlobalAttr>();
9199   if ((IsOpenCLKernel || IsHIPKernel) &&
9200       (M.getTriple().getOS() == llvm::Triple::AMDHSA))
9201     F->addFnAttr("amdgpu-implicitarg-num-bytes", "56");
9202 
9203   if (IsHIPKernel)
9204     F->addFnAttr("uniform-work-group-size", "true");
9205 
9206 
9207   const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>();
9208   if (ReqdWGS || FlatWGS) {
9209     unsigned Min = 0;
9210     unsigned Max = 0;
9211     if (FlatWGS) {
9212       Min = FlatWGS->getMin()
9213                 ->EvaluateKnownConstInt(M.getContext())
9214                 .getExtValue();
9215       Max = FlatWGS->getMax()
9216                 ->EvaluateKnownConstInt(M.getContext())
9217                 .getExtValue();
9218     }
9219     if (ReqdWGS && Min == 0 && Max == 0)
9220       Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim();
9221 
9222     if (Min != 0) {
9223       assert(Min <= Max && "Min must be less than or equal Max");
9224 
9225       std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max);
9226       F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
9227     } else
9228       assert(Max == 0 && "Max must be zero");
9229   } else if (IsOpenCLKernel || IsHIPKernel) {
9230     // By default, restrict the maximum size to a value specified by
9231     // --gpu-max-threads-per-block=n or its default value for HIP.
9232     const unsigned OpenCLDefaultMaxWorkGroupSize = 256;
9233     const unsigned DefaultMaxWorkGroupSize =
9234         IsOpenCLKernel ? OpenCLDefaultMaxWorkGroupSize
9235                        : M.getLangOpts().GPUMaxThreadsPerBlock;
9236     std::string AttrVal =
9237         std::string("1,") + llvm::utostr(DefaultMaxWorkGroupSize);
9238     F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
9239   }
9240 
9241   if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) {
9242     unsigned Min =
9243         Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue();
9244     unsigned Max = Attr->getMax() ? Attr->getMax()
9245                                         ->EvaluateKnownConstInt(M.getContext())
9246                                         .getExtValue()
9247                                   : 0;
9248 
9249     if (Min != 0) {
9250       assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max");
9251 
9252       std::string AttrVal = llvm::utostr(Min);
9253       if (Max != 0)
9254         AttrVal = AttrVal + "," + llvm::utostr(Max);
9255       F->addFnAttr("amdgpu-waves-per-eu", AttrVal);
9256     } else
9257       assert(Max == 0 && "Max must be zero");
9258   }
9259 
9260   if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
9261     unsigned NumSGPR = Attr->getNumSGPR();
9262 
9263     if (NumSGPR != 0)
9264       F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR));
9265   }
9266 
9267   if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
9268     uint32_t NumVGPR = Attr->getNumVGPR();
9269 
9270     if (NumVGPR != 0)
9271       F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR));
9272   }
9273 
9274   if (M.getContext().getTargetInfo().allowAMDGPUUnsafeFPAtomics())
9275     F->addFnAttr("amdgpu-unsafe-fp-atomics", "true");
9276 
9277   if (!getABIInfo().getCodeGenOpts().EmitIEEENaNCompliantInsts)
9278     F->addFnAttr("amdgpu-ieee", "false");
9279 }
9280 
9281 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
9282   return llvm::CallingConv::AMDGPU_KERNEL;
9283 }
9284 
9285 // Currently LLVM assumes null pointers always have value 0,
9286 // which results in incorrectly transformed IR. Therefore, instead of
9287 // emitting null pointers in private and local address spaces, a null
9288 // pointer in generic address space is emitted which is casted to a
9289 // pointer in local or private address space.
9290 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer(
9291     const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT,
9292     QualType QT) const {
9293   if (CGM.getContext().getTargetNullPointerValue(QT) == 0)
9294     return llvm::ConstantPointerNull::get(PT);
9295 
9296   auto &Ctx = CGM.getContext();
9297   auto NPT = llvm::PointerType::get(PT->getElementType(),
9298       Ctx.getTargetAddressSpace(LangAS::opencl_generic));
9299   return llvm::ConstantExpr::getAddrSpaceCast(
9300       llvm::ConstantPointerNull::get(NPT), PT);
9301 }
9302 
9303 LangAS
9304 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
9305                                                   const VarDecl *D) const {
9306   assert(!CGM.getLangOpts().OpenCL &&
9307          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
9308          "Address space agnostic languages only");
9309   LangAS DefaultGlobalAS = getLangASFromTargetAS(
9310       CGM.getContext().getTargetAddressSpace(LangAS::opencl_global));
9311   if (!D)
9312     return DefaultGlobalAS;
9313 
9314   LangAS AddrSpace = D->getType().getAddressSpace();
9315   assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace));
9316   if (AddrSpace != LangAS::Default)
9317     return AddrSpace;
9318 
9319   if (CGM.isTypeConstant(D->getType(), false)) {
9320     if (auto ConstAS = CGM.getTarget().getConstantAddressSpace())
9321       return ConstAS.getValue();
9322   }
9323   return DefaultGlobalAS;
9324 }
9325 
9326 llvm::SyncScope::ID
9327 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts,
9328                                             SyncScope Scope,
9329                                             llvm::AtomicOrdering Ordering,
9330                                             llvm::LLVMContext &Ctx) const {
9331   std::string Name;
9332   switch (Scope) {
9333   case SyncScope::OpenCLWorkGroup:
9334     Name = "workgroup";
9335     break;
9336   case SyncScope::OpenCLDevice:
9337     Name = "agent";
9338     break;
9339   case SyncScope::OpenCLAllSVMDevices:
9340     Name = "";
9341     break;
9342   case SyncScope::OpenCLSubGroup:
9343     Name = "wavefront";
9344   }
9345 
9346   if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) {
9347     if (!Name.empty())
9348       Name = Twine(Twine(Name) + Twine("-")).str();
9349 
9350     Name = Twine(Twine(Name) + Twine("one-as")).str();
9351   }
9352 
9353   return Ctx.getOrInsertSyncScopeID(Name);
9354 }
9355 
9356 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
9357   return false;
9358 }
9359 
9360 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention(
9361     const FunctionType *&FT) const {
9362   FT = getABIInfo().getContext().adjustFunctionType(
9363       FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel));
9364 }
9365 
9366 //===----------------------------------------------------------------------===//
9367 // SPARC v8 ABI Implementation.
9368 // Based on the SPARC Compliance Definition version 2.4.1.
9369 //
9370 // Ensures that complex values are passed in registers.
9371 //
9372 namespace {
9373 class SparcV8ABIInfo : public DefaultABIInfo {
9374 public:
9375   SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
9376 
9377 private:
9378   ABIArgInfo classifyReturnType(QualType RetTy) const;
9379   void computeInfo(CGFunctionInfo &FI) const override;
9380 };
9381 } // end anonymous namespace
9382 
9383 
9384 ABIArgInfo
9385 SparcV8ABIInfo::classifyReturnType(QualType Ty) const {
9386   if (Ty->isAnyComplexType()) {
9387     return ABIArgInfo::getDirect();
9388   }
9389   else {
9390     return DefaultABIInfo::classifyReturnType(Ty);
9391   }
9392 }
9393 
9394 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const {
9395 
9396   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
9397   for (auto &Arg : FI.arguments())
9398     Arg.info = classifyArgumentType(Arg.type);
9399 }
9400 
9401 namespace {
9402 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo {
9403 public:
9404   SparcV8TargetCodeGenInfo(CodeGenTypes &CGT)
9405       : TargetCodeGenInfo(std::make_unique<SparcV8ABIInfo>(CGT)) {}
9406 };
9407 } // end anonymous namespace
9408 
9409 //===----------------------------------------------------------------------===//
9410 // SPARC v9 ABI Implementation.
9411 // Based on the SPARC Compliance Definition version 2.4.1.
9412 //
9413 // Function arguments a mapped to a nominal "parameter array" and promoted to
9414 // registers depending on their type. Each argument occupies 8 or 16 bytes in
9415 // the array, structs larger than 16 bytes are passed indirectly.
9416 //
9417 // One case requires special care:
9418 //
9419 //   struct mixed {
9420 //     int i;
9421 //     float f;
9422 //   };
9423 //
9424 // When a struct mixed is passed by value, it only occupies 8 bytes in the
9425 // parameter array, but the int is passed in an integer register, and the float
9426 // is passed in a floating point register. This is represented as two arguments
9427 // with the LLVM IR inreg attribute:
9428 //
9429 //   declare void f(i32 inreg %i, float inreg %f)
9430 //
9431 // The code generator will only allocate 4 bytes from the parameter array for
9432 // the inreg arguments. All other arguments are allocated a multiple of 8
9433 // bytes.
9434 //
9435 namespace {
9436 class SparcV9ABIInfo : public ABIInfo {
9437 public:
9438   SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
9439 
9440 private:
9441   ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
9442   void computeInfo(CGFunctionInfo &FI) const override;
9443   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9444                     QualType Ty) const override;
9445 
9446   // Coercion type builder for structs passed in registers. The coercion type
9447   // serves two purposes:
9448   //
9449   // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
9450   //    in registers.
9451   // 2. Expose aligned floating point elements as first-level elements, so the
9452   //    code generator knows to pass them in floating point registers.
9453   //
9454   // We also compute the InReg flag which indicates that the struct contains
9455   // aligned 32-bit floats.
9456   //
9457   struct CoerceBuilder {
9458     llvm::LLVMContext &Context;
9459     const llvm::DataLayout &DL;
9460     SmallVector<llvm::Type*, 8> Elems;
9461     uint64_t Size;
9462     bool InReg;
9463 
9464     CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
9465       : Context(c), DL(dl), Size(0), InReg(false) {}
9466 
9467     // Pad Elems with integers until Size is ToSize.
9468     void pad(uint64_t ToSize) {
9469       assert(ToSize >= Size && "Cannot remove elements");
9470       if (ToSize == Size)
9471         return;
9472 
9473       // Finish the current 64-bit word.
9474       uint64_t Aligned = llvm::alignTo(Size, 64);
9475       if (Aligned > Size && Aligned <= ToSize) {
9476         Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
9477         Size = Aligned;
9478       }
9479 
9480       // Add whole 64-bit words.
9481       while (Size + 64 <= ToSize) {
9482         Elems.push_back(llvm::Type::getInt64Ty(Context));
9483         Size += 64;
9484       }
9485 
9486       // Final in-word padding.
9487       if (Size < ToSize) {
9488         Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
9489         Size = ToSize;
9490       }
9491     }
9492 
9493     // Add a floating point element at Offset.
9494     void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
9495       // Unaligned floats are treated as integers.
9496       if (Offset % Bits)
9497         return;
9498       // The InReg flag is only required if there are any floats < 64 bits.
9499       if (Bits < 64)
9500         InReg = true;
9501       pad(Offset);
9502       Elems.push_back(Ty);
9503       Size = Offset + Bits;
9504     }
9505 
9506     // Add a struct type to the coercion type, starting at Offset (in bits).
9507     void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
9508       const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
9509       for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
9510         llvm::Type *ElemTy = StrTy->getElementType(i);
9511         uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
9512         switch (ElemTy->getTypeID()) {
9513         case llvm::Type::StructTyID:
9514           addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
9515           break;
9516         case llvm::Type::FloatTyID:
9517           addFloat(ElemOffset, ElemTy, 32);
9518           break;
9519         case llvm::Type::DoubleTyID:
9520           addFloat(ElemOffset, ElemTy, 64);
9521           break;
9522         case llvm::Type::FP128TyID:
9523           addFloat(ElemOffset, ElemTy, 128);
9524           break;
9525         case llvm::Type::PointerTyID:
9526           if (ElemOffset % 64 == 0) {
9527             pad(ElemOffset);
9528             Elems.push_back(ElemTy);
9529             Size += 64;
9530           }
9531           break;
9532         default:
9533           break;
9534         }
9535       }
9536     }
9537 
9538     // Check if Ty is a usable substitute for the coercion type.
9539     bool isUsableType(llvm::StructType *Ty) const {
9540       return llvm::makeArrayRef(Elems) == Ty->elements();
9541     }
9542 
9543     // Get the coercion type as a literal struct type.
9544     llvm::Type *getType() const {
9545       if (Elems.size() == 1)
9546         return Elems.front();
9547       else
9548         return llvm::StructType::get(Context, Elems);
9549     }
9550   };
9551 };
9552 } // end anonymous namespace
9553 
9554 ABIArgInfo
9555 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
9556   if (Ty->isVoidType())
9557     return ABIArgInfo::getIgnore();
9558 
9559   uint64_t Size = getContext().getTypeSize(Ty);
9560 
9561   // Anything too big to fit in registers is passed with an explicit indirect
9562   // pointer / sret pointer.
9563   if (Size > SizeLimit)
9564     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
9565 
9566   // Treat an enum type as its underlying type.
9567   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
9568     Ty = EnumTy->getDecl()->getIntegerType();
9569 
9570   // Integer types smaller than a register are extended.
9571   if (Size < 64 && Ty->isIntegerType())
9572     return ABIArgInfo::getExtend(Ty);
9573 
9574   if (const auto *EIT = Ty->getAs<ExtIntType>())
9575     if (EIT->getNumBits() < 64)
9576       return ABIArgInfo::getExtend(Ty);
9577 
9578   // Other non-aggregates go in registers.
9579   if (!isAggregateTypeForABI(Ty))
9580     return ABIArgInfo::getDirect();
9581 
9582   // If a C++ object has either a non-trivial copy constructor or a non-trivial
9583   // destructor, it is passed with an explicit indirect pointer / sret pointer.
9584   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
9585     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
9586 
9587   // This is a small aggregate type that should be passed in registers.
9588   // Build a coercion type from the LLVM struct type.
9589   llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
9590   if (!StrTy)
9591     return ABIArgInfo::getDirect();
9592 
9593   CoerceBuilder CB(getVMContext(), getDataLayout());
9594   CB.addStruct(0, StrTy);
9595   CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64));
9596 
9597   // Try to use the original type for coercion.
9598   llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
9599 
9600   if (CB.InReg)
9601     return ABIArgInfo::getDirectInReg(CoerceTy);
9602   else
9603     return ABIArgInfo::getDirect(CoerceTy);
9604 }
9605 
9606 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9607                                   QualType Ty) const {
9608   ABIArgInfo AI = classifyType(Ty, 16 * 8);
9609   llvm::Type *ArgTy = CGT.ConvertType(Ty);
9610   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
9611     AI.setCoerceToType(ArgTy);
9612 
9613   CharUnits SlotSize = CharUnits::fromQuantity(8);
9614 
9615   CGBuilderTy &Builder = CGF.Builder;
9616   Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
9617   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
9618 
9619   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
9620 
9621   Address ArgAddr = Address::invalid();
9622   CharUnits Stride;
9623   switch (AI.getKind()) {
9624   case ABIArgInfo::Expand:
9625   case ABIArgInfo::CoerceAndExpand:
9626   case ABIArgInfo::InAlloca:
9627     llvm_unreachable("Unsupported ABI kind for va_arg");
9628 
9629   case ABIArgInfo::Extend: {
9630     Stride = SlotSize;
9631     CharUnits Offset = SlotSize - TypeInfo.Width;
9632     ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend");
9633     break;
9634   }
9635 
9636   case ABIArgInfo::Direct: {
9637     auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
9638     Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize);
9639     ArgAddr = Addr;
9640     break;
9641   }
9642 
9643   case ABIArgInfo::Indirect:
9644   case ABIArgInfo::IndirectAliased:
9645     Stride = SlotSize;
9646     ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect");
9647     ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"),
9648                       TypeInfo.Align);
9649     break;
9650 
9651   case ABIArgInfo::Ignore:
9652     return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.Align);
9653   }
9654 
9655   // Update VAList.
9656   Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next");
9657   Builder.CreateStore(NextPtr.getPointer(), VAListAddr);
9658 
9659   return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr");
9660 }
9661 
9662 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
9663   FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
9664   for (auto &I : FI.arguments())
9665     I.info = classifyType(I.type, 16 * 8);
9666 }
9667 
9668 namespace {
9669 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
9670 public:
9671   SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
9672       : TargetCodeGenInfo(std::make_unique<SparcV9ABIInfo>(CGT)) {}
9673 
9674   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
9675     return 14;
9676   }
9677 
9678   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
9679                                llvm::Value *Address) const override;
9680 };
9681 } // end anonymous namespace
9682 
9683 bool
9684 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
9685                                                 llvm::Value *Address) const {
9686   // This is calculated from the LLVM and GCC tables and verified
9687   // against gcc output.  AFAIK all ABIs use the same encoding.
9688 
9689   CodeGen::CGBuilderTy &Builder = CGF.Builder;
9690 
9691   llvm::IntegerType *i8 = CGF.Int8Ty;
9692   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
9693   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
9694 
9695   // 0-31: the 8-byte general-purpose registers
9696   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
9697 
9698   // 32-63: f0-31, the 4-byte floating-point registers
9699   AssignToArrayRange(Builder, Address, Four8, 32, 63);
9700 
9701   //   Y   = 64
9702   //   PSR = 65
9703   //   WIM = 66
9704   //   TBR = 67
9705   //   PC  = 68
9706   //   NPC = 69
9707   //   FSR = 70
9708   //   CSR = 71
9709   AssignToArrayRange(Builder, Address, Eight8, 64, 71);
9710 
9711   // 72-87: d0-15, the 8-byte floating-point registers
9712   AssignToArrayRange(Builder, Address, Eight8, 72, 87);
9713 
9714   return false;
9715 }
9716 
9717 // ARC ABI implementation.
9718 namespace {
9719 
9720 class ARCABIInfo : public DefaultABIInfo {
9721 public:
9722   using DefaultABIInfo::DefaultABIInfo;
9723 
9724 private:
9725   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9726                     QualType Ty) const override;
9727 
9728   void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const {
9729     if (!State.FreeRegs)
9730       return;
9731     if (Info.isIndirect() && Info.getInReg())
9732       State.FreeRegs--;
9733     else if (Info.isDirect() && Info.getInReg()) {
9734       unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32;
9735       if (sz < State.FreeRegs)
9736         State.FreeRegs -= sz;
9737       else
9738         State.FreeRegs = 0;
9739     }
9740   }
9741 
9742   void computeInfo(CGFunctionInfo &FI) const override {
9743     CCState State(FI);
9744     // ARC uses 8 registers to pass arguments.
9745     State.FreeRegs = 8;
9746 
9747     if (!getCXXABI().classifyReturnType(FI))
9748       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
9749     updateState(FI.getReturnInfo(), FI.getReturnType(), State);
9750     for (auto &I : FI.arguments()) {
9751       I.info = classifyArgumentType(I.type, State.FreeRegs);
9752       updateState(I.info, I.type, State);
9753     }
9754   }
9755 
9756   ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const;
9757   ABIArgInfo getIndirectByValue(QualType Ty) const;
9758   ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const;
9759   ABIArgInfo classifyReturnType(QualType RetTy) const;
9760 };
9761 
9762 class ARCTargetCodeGenInfo : public TargetCodeGenInfo {
9763 public:
9764   ARCTargetCodeGenInfo(CodeGenTypes &CGT)
9765       : TargetCodeGenInfo(std::make_unique<ARCABIInfo>(CGT)) {}
9766 };
9767 
9768 
9769 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const {
9770   return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) :
9771                        getNaturalAlignIndirect(Ty, false);
9772 }
9773 
9774 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const {
9775   // Compute the byval alignment.
9776   const unsigned MinABIStackAlignInBytes = 4;
9777   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
9778   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
9779                                  TypeAlign > MinABIStackAlignInBytes);
9780 }
9781 
9782 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9783                               QualType Ty) const {
9784   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
9785                           getContext().getTypeInfoInChars(Ty),
9786                           CharUnits::fromQuantity(4), true);
9787 }
9788 
9789 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty,
9790                                             uint8_t FreeRegs) const {
9791   // Handle the generic C++ ABI.
9792   const RecordType *RT = Ty->getAs<RecordType>();
9793   if (RT) {
9794     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
9795     if (RAA == CGCXXABI::RAA_Indirect)
9796       return getIndirectByRef(Ty, FreeRegs > 0);
9797 
9798     if (RAA == CGCXXABI::RAA_DirectInMemory)
9799       return getIndirectByValue(Ty);
9800   }
9801 
9802   // Treat an enum type as its underlying type.
9803   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
9804     Ty = EnumTy->getDecl()->getIntegerType();
9805 
9806   auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32;
9807 
9808   if (isAggregateTypeForABI(Ty)) {
9809     // Structures with flexible arrays are always indirect.
9810     if (RT && RT->getDecl()->hasFlexibleArrayMember())
9811       return getIndirectByValue(Ty);
9812 
9813     // Ignore empty structs/unions.
9814     if (isEmptyRecord(getContext(), Ty, true))
9815       return ABIArgInfo::getIgnore();
9816 
9817     llvm::LLVMContext &LLVMContext = getVMContext();
9818 
9819     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
9820     SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
9821     llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
9822 
9823     return FreeRegs >= SizeInRegs ?
9824         ABIArgInfo::getDirectInReg(Result) :
9825         ABIArgInfo::getDirect(Result, 0, nullptr, false);
9826   }
9827 
9828   if (const auto *EIT = Ty->getAs<ExtIntType>())
9829     if (EIT->getNumBits() > 64)
9830       return getIndirectByValue(Ty);
9831 
9832   return isPromotableIntegerTypeForABI(Ty)
9833              ? (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty)
9834                                        : ABIArgInfo::getExtend(Ty))
9835              : (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg()
9836                                        : ABIArgInfo::getDirect());
9837 }
9838 
9839 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const {
9840   if (RetTy->isAnyComplexType())
9841     return ABIArgInfo::getDirectInReg();
9842 
9843   // Arguments of size > 4 registers are indirect.
9844   auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32;
9845   if (RetSize > 4)
9846     return getIndirectByRef(RetTy, /*HasFreeRegs*/ true);
9847 
9848   return DefaultABIInfo::classifyReturnType(RetTy);
9849 }
9850 
9851 } // End anonymous namespace.
9852 
9853 //===----------------------------------------------------------------------===//
9854 // XCore ABI Implementation
9855 //===----------------------------------------------------------------------===//
9856 
9857 namespace {
9858 
9859 /// A SmallStringEnc instance is used to build up the TypeString by passing
9860 /// it by reference between functions that append to it.
9861 typedef llvm::SmallString<128> SmallStringEnc;
9862 
9863 /// TypeStringCache caches the meta encodings of Types.
9864 ///
9865 /// The reason for caching TypeStrings is two fold:
9866 ///   1. To cache a type's encoding for later uses;
9867 ///   2. As a means to break recursive member type inclusion.
9868 ///
9869 /// A cache Entry can have a Status of:
9870 ///   NonRecursive:   The type encoding is not recursive;
9871 ///   Recursive:      The type encoding is recursive;
9872 ///   Incomplete:     An incomplete TypeString;
9873 ///   IncompleteUsed: An incomplete TypeString that has been used in a
9874 ///                   Recursive type encoding.
9875 ///
9876 /// A NonRecursive entry will have all of its sub-members expanded as fully
9877 /// as possible. Whilst it may contain types which are recursive, the type
9878 /// itself is not recursive and thus its encoding may be safely used whenever
9879 /// the type is encountered.
9880 ///
9881 /// A Recursive entry will have all of its sub-members expanded as fully as
9882 /// possible. The type itself is recursive and it may contain other types which
9883 /// are recursive. The Recursive encoding must not be used during the expansion
9884 /// of a recursive type's recursive branch. For simplicity the code uses
9885 /// IncompleteCount to reject all usage of Recursive encodings for member types.
9886 ///
9887 /// An Incomplete entry is always a RecordType and only encodes its
9888 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
9889 /// are placed into the cache during type expansion as a means to identify and
9890 /// handle recursive inclusion of types as sub-members. If there is recursion
9891 /// the entry becomes IncompleteUsed.
9892 ///
9893 /// During the expansion of a RecordType's members:
9894 ///
9895 ///   If the cache contains a NonRecursive encoding for the member type, the
9896 ///   cached encoding is used;
9897 ///
9898 ///   If the cache contains a Recursive encoding for the member type, the
9899 ///   cached encoding is 'Swapped' out, as it may be incorrect, and...
9900 ///
9901 ///   If the member is a RecordType, an Incomplete encoding is placed into the
9902 ///   cache to break potential recursive inclusion of itself as a sub-member;
9903 ///
9904 ///   Once a member RecordType has been expanded, its temporary incomplete
9905 ///   entry is removed from the cache. If a Recursive encoding was swapped out
9906 ///   it is swapped back in;
9907 ///
9908 ///   If an incomplete entry is used to expand a sub-member, the incomplete
9909 ///   entry is marked as IncompleteUsed. The cache keeps count of how many
9910 ///   IncompleteUsed entries it currently contains in IncompleteUsedCount;
9911 ///
9912 ///   If a member's encoding is found to be a NonRecursive or Recursive viz:
9913 ///   IncompleteUsedCount==0, the member's encoding is added to the cache.
9914 ///   Else the member is part of a recursive type and thus the recursion has
9915 ///   been exited too soon for the encoding to be correct for the member.
9916 ///
9917 class TypeStringCache {
9918   enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
9919   struct Entry {
9920     std::string Str;     // The encoded TypeString for the type.
9921     enum Status State;   // Information about the encoding in 'Str'.
9922     std::string Swapped; // A temporary place holder for a Recursive encoding
9923                          // during the expansion of RecordType's members.
9924   };
9925   std::map<const IdentifierInfo *, struct Entry> Map;
9926   unsigned IncompleteCount;     // Number of Incomplete entries in the Map.
9927   unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
9928 public:
9929   TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}
9930   void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
9931   bool removeIncomplete(const IdentifierInfo *ID);
9932   void addIfComplete(const IdentifierInfo *ID, StringRef Str,
9933                      bool IsRecursive);
9934   StringRef lookupStr(const IdentifierInfo *ID);
9935 };
9936 
9937 /// TypeString encodings for enum & union fields must be order.
9938 /// FieldEncoding is a helper for this ordering process.
9939 class FieldEncoding {
9940   bool HasName;
9941   std::string Enc;
9942 public:
9943   FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}
9944   StringRef str() { return Enc; }
9945   bool operator<(const FieldEncoding &rhs) const {
9946     if (HasName != rhs.HasName) return HasName;
9947     return Enc < rhs.Enc;
9948   }
9949 };
9950 
9951 class XCoreABIInfo : public DefaultABIInfo {
9952 public:
9953   XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
9954   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9955                     QualType Ty) const override;
9956 };
9957 
9958 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
9959   mutable TypeStringCache TSC;
9960   void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
9961                     const CodeGen::CodeGenModule &M) const;
9962 
9963 public:
9964   XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
9965       : TargetCodeGenInfo(std::make_unique<XCoreABIInfo>(CGT)) {}
9966   void emitTargetMetadata(CodeGen::CodeGenModule &CGM,
9967                           const llvm::MapVector<GlobalDecl, StringRef>
9968                               &MangledDeclNames) const override;
9969 };
9970 
9971 } // End anonymous namespace.
9972 
9973 // TODO: this implementation is likely now redundant with the default
9974 // EmitVAArg.
9975 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9976                                 QualType Ty) const {
9977   CGBuilderTy &Builder = CGF.Builder;
9978 
9979   // Get the VAList.
9980   CharUnits SlotSize = CharUnits::fromQuantity(4);
9981   Address AP(Builder.CreateLoad(VAListAddr), SlotSize);
9982 
9983   // Handle the argument.
9984   ABIArgInfo AI = classifyArgumentType(Ty);
9985   CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty);
9986   llvm::Type *ArgTy = CGT.ConvertType(Ty);
9987   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
9988     AI.setCoerceToType(ArgTy);
9989   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
9990 
9991   Address Val = Address::invalid();
9992   CharUnits ArgSize = CharUnits::Zero();
9993   switch (AI.getKind()) {
9994   case ABIArgInfo::Expand:
9995   case ABIArgInfo::CoerceAndExpand:
9996   case ABIArgInfo::InAlloca:
9997     llvm_unreachable("Unsupported ABI kind for va_arg");
9998   case ABIArgInfo::Ignore:
9999     Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign);
10000     ArgSize = CharUnits::Zero();
10001     break;
10002   case ABIArgInfo::Extend:
10003   case ABIArgInfo::Direct:
10004     Val = Builder.CreateBitCast(AP, ArgPtrTy);
10005     ArgSize = CharUnits::fromQuantity(
10006                        getDataLayout().getTypeAllocSize(AI.getCoerceToType()));
10007     ArgSize = ArgSize.alignTo(SlotSize);
10008     break;
10009   case ABIArgInfo::Indirect:
10010   case ABIArgInfo::IndirectAliased:
10011     Val = Builder.CreateElementBitCast(AP, ArgPtrTy);
10012     Val = Address(Builder.CreateLoad(Val), TypeAlign);
10013     ArgSize = SlotSize;
10014     break;
10015   }
10016 
10017   // Increment the VAList.
10018   if (!ArgSize.isZero()) {
10019     Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize);
10020     Builder.CreateStore(APN.getPointer(), VAListAddr);
10021   }
10022 
10023   return Val;
10024 }
10025 
10026 /// During the expansion of a RecordType, an incomplete TypeString is placed
10027 /// into the cache as a means to identify and break recursion.
10028 /// If there is a Recursive encoding in the cache, it is swapped out and will
10029 /// be reinserted by removeIncomplete().
10030 /// All other types of encoding should have been used rather than arriving here.
10031 void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
10032                                     std::string StubEnc) {
10033   if (!ID)
10034     return;
10035   Entry &E = Map[ID];
10036   assert( (E.Str.empty() || E.State == Recursive) &&
10037          "Incorrectly use of addIncomplete");
10038   assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
10039   E.Swapped.swap(E.Str); // swap out the Recursive
10040   E.Str.swap(StubEnc);
10041   E.State = Incomplete;
10042   ++IncompleteCount;
10043 }
10044 
10045 /// Once the RecordType has been expanded, the temporary incomplete TypeString
10046 /// must be removed from the cache.
10047 /// If a Recursive was swapped out by addIncomplete(), it will be replaced.
10048 /// Returns true if the RecordType was defined recursively.
10049 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
10050   if (!ID)
10051     return false;
10052   auto I = Map.find(ID);
10053   assert(I != Map.end() && "Entry not present");
10054   Entry &E = I->second;
10055   assert( (E.State == Incomplete ||
10056            E.State == IncompleteUsed) &&
10057          "Entry must be an incomplete type");
10058   bool IsRecursive = false;
10059   if (E.State == IncompleteUsed) {
10060     // We made use of our Incomplete encoding, thus we are recursive.
10061     IsRecursive = true;
10062     --IncompleteUsedCount;
10063   }
10064   if (E.Swapped.empty())
10065     Map.erase(I);
10066   else {
10067     // Swap the Recursive back.
10068     E.Swapped.swap(E.Str);
10069     E.Swapped.clear();
10070     E.State = Recursive;
10071   }
10072   --IncompleteCount;
10073   return IsRecursive;
10074 }
10075 
10076 /// Add the encoded TypeString to the cache only if it is NonRecursive or
10077 /// Recursive (viz: all sub-members were expanded as fully as possible).
10078 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
10079                                     bool IsRecursive) {
10080   if (!ID || IncompleteUsedCount)
10081     return; // No key or it is is an incomplete sub-type so don't add.
10082   Entry &E = Map[ID];
10083   if (IsRecursive && !E.Str.empty()) {
10084     assert(E.State==Recursive && E.Str.size() == Str.size() &&
10085            "This is not the same Recursive entry");
10086     // The parent container was not recursive after all, so we could have used
10087     // this Recursive sub-member entry after all, but we assumed the worse when
10088     // we started viz: IncompleteCount!=0.
10089     return;
10090   }
10091   assert(E.Str.empty() && "Entry already present");
10092   E.Str = Str.str();
10093   E.State = IsRecursive? Recursive : NonRecursive;
10094 }
10095 
10096 /// Return a cached TypeString encoding for the ID. If there isn't one, or we
10097 /// are recursively expanding a type (IncompleteCount != 0) and the cached
10098 /// encoding is Recursive, return an empty StringRef.
10099 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
10100   if (!ID)
10101     return StringRef();   // We have no key.
10102   auto I = Map.find(ID);
10103   if (I == Map.end())
10104     return StringRef();   // We have no encoding.
10105   Entry &E = I->second;
10106   if (E.State == Recursive && IncompleteCount)
10107     return StringRef();   // We don't use Recursive encodings for member types.
10108 
10109   if (E.State == Incomplete) {
10110     // The incomplete type is being used to break out of recursion.
10111     E.State = IncompleteUsed;
10112     ++IncompleteUsedCount;
10113   }
10114   return E.Str;
10115 }
10116 
10117 /// The XCore ABI includes a type information section that communicates symbol
10118 /// type information to the linker. The linker uses this information to verify
10119 /// safety/correctness of things such as array bound and pointers et al.
10120 /// The ABI only requires C (and XC) language modules to emit TypeStrings.
10121 /// This type information (TypeString) is emitted into meta data for all global
10122 /// symbols: definitions, declarations, functions & variables.
10123 ///
10124 /// The TypeString carries type, qualifier, name, size & value details.
10125 /// Please see 'Tools Development Guide' section 2.16.2 for format details:
10126 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf
10127 /// The output is tested by test/CodeGen/xcore-stringtype.c.
10128 ///
10129 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
10130                           const CodeGen::CodeGenModule &CGM,
10131                           TypeStringCache &TSC);
10132 
10133 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
10134 void XCoreTargetCodeGenInfo::emitTargetMD(
10135     const Decl *D, llvm::GlobalValue *GV,
10136     const CodeGen::CodeGenModule &CGM) const {
10137   SmallStringEnc Enc;
10138   if (getTypeString(Enc, D, CGM, TSC)) {
10139     llvm::LLVMContext &Ctx = CGM.getModule().getContext();
10140     llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV),
10141                                 llvm::MDString::get(Ctx, Enc.str())};
10142     llvm::NamedMDNode *MD =
10143       CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
10144     MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
10145   }
10146 }
10147 
10148 void XCoreTargetCodeGenInfo::emitTargetMetadata(
10149     CodeGen::CodeGenModule &CGM,
10150     const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames) const {
10151   // Warning, new MangledDeclNames may be appended within this loop.
10152   // We rely on MapVector insertions adding new elements to the end
10153   // of the container.
10154   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
10155     auto Val = *(MangledDeclNames.begin() + I);
10156     llvm::GlobalValue *GV = CGM.GetGlobalValue(Val.second);
10157     if (GV) {
10158       const Decl *D = Val.first.getDecl()->getMostRecentDecl();
10159       emitTargetMD(D, GV, CGM);
10160     }
10161   }
10162 }
10163 //===----------------------------------------------------------------------===//
10164 // SPIR ABI Implementation
10165 //===----------------------------------------------------------------------===//
10166 
10167 namespace {
10168 class SPIRABIInfo : public DefaultABIInfo {
10169 public:
10170   SPIRABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) { setCCs(); }
10171 
10172 private:
10173   void setCCs();
10174 };
10175 } // end anonymous namespace
10176 namespace {
10177 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo {
10178 public:
10179   SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
10180       : TargetCodeGenInfo(std::make_unique<SPIRABIInfo>(CGT)) {}
10181 
10182   LangAS getASTAllocaAddressSpace() const override {
10183     return getLangASFromTargetAS(
10184         getABIInfo().getDataLayout().getAllocaAddrSpace());
10185   }
10186 
10187   unsigned getOpenCLKernelCallingConv() const override;
10188 };
10189 
10190 } // End anonymous namespace.
10191 void SPIRABIInfo::setCCs() {
10192   assert(getRuntimeCC() == llvm::CallingConv::C);
10193   RuntimeCC = llvm::CallingConv::SPIR_FUNC;
10194 }
10195 
10196 namespace clang {
10197 namespace CodeGen {
10198 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) {
10199   DefaultABIInfo SPIRABI(CGM.getTypes());
10200   SPIRABI.computeInfo(FI);
10201 }
10202 }
10203 }
10204 
10205 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
10206   return llvm::CallingConv::SPIR_KERNEL;
10207 }
10208 
10209 static bool appendType(SmallStringEnc &Enc, QualType QType,
10210                        const CodeGen::CodeGenModule &CGM,
10211                        TypeStringCache &TSC);
10212 
10213 /// Helper function for appendRecordType().
10214 /// Builds a SmallVector containing the encoded field types in declaration
10215 /// order.
10216 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
10217                              const RecordDecl *RD,
10218                              const CodeGen::CodeGenModule &CGM,
10219                              TypeStringCache &TSC) {
10220   for (const auto *Field : RD->fields()) {
10221     SmallStringEnc Enc;
10222     Enc += "m(";
10223     Enc += Field->getName();
10224     Enc += "){";
10225     if (Field->isBitField()) {
10226       Enc += "b(";
10227       llvm::raw_svector_ostream OS(Enc);
10228       OS << Field->getBitWidthValue(CGM.getContext());
10229       Enc += ':';
10230     }
10231     if (!appendType(Enc, Field->getType(), CGM, TSC))
10232       return false;
10233     if (Field->isBitField())
10234       Enc += ')';
10235     Enc += '}';
10236     FE.emplace_back(!Field->getName().empty(), Enc);
10237   }
10238   return true;
10239 }
10240 
10241 /// Appends structure and union types to Enc and adds encoding to cache.
10242 /// Recursively calls appendType (via extractFieldType) for each field.
10243 /// Union types have their fields ordered according to the ABI.
10244 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
10245                              const CodeGen::CodeGenModule &CGM,
10246                              TypeStringCache &TSC, const IdentifierInfo *ID) {
10247   // Append the cached TypeString if we have one.
10248   StringRef TypeString = TSC.lookupStr(ID);
10249   if (!TypeString.empty()) {
10250     Enc += TypeString;
10251     return true;
10252   }
10253 
10254   // Start to emit an incomplete TypeString.
10255   size_t Start = Enc.size();
10256   Enc += (RT->isUnionType()? 'u' : 's');
10257   Enc += '(';
10258   if (ID)
10259     Enc += ID->getName();
10260   Enc += "){";
10261 
10262   // We collect all encoded fields and order as necessary.
10263   bool IsRecursive = false;
10264   const RecordDecl *RD = RT->getDecl()->getDefinition();
10265   if (RD && !RD->field_empty()) {
10266     // An incomplete TypeString stub is placed in the cache for this RecordType
10267     // so that recursive calls to this RecordType will use it whilst building a
10268     // complete TypeString for this RecordType.
10269     SmallVector<FieldEncoding, 16> FE;
10270     std::string StubEnc(Enc.substr(Start).str());
10271     StubEnc += '}';  // StubEnc now holds a valid incomplete TypeString.
10272     TSC.addIncomplete(ID, std::move(StubEnc));
10273     if (!extractFieldType(FE, RD, CGM, TSC)) {
10274       (void) TSC.removeIncomplete(ID);
10275       return false;
10276     }
10277     IsRecursive = TSC.removeIncomplete(ID);
10278     // The ABI requires unions to be sorted but not structures.
10279     // See FieldEncoding::operator< for sort algorithm.
10280     if (RT->isUnionType())
10281       llvm::sort(FE);
10282     // We can now complete the TypeString.
10283     unsigned E = FE.size();
10284     for (unsigned I = 0; I != E; ++I) {
10285       if (I)
10286         Enc += ',';
10287       Enc += FE[I].str();
10288     }
10289   }
10290   Enc += '}';
10291   TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
10292   return true;
10293 }
10294 
10295 /// Appends enum types to Enc and adds the encoding to the cache.
10296 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
10297                            TypeStringCache &TSC,
10298                            const IdentifierInfo *ID) {
10299   // Append the cached TypeString if we have one.
10300   StringRef TypeString = TSC.lookupStr(ID);
10301   if (!TypeString.empty()) {
10302     Enc += TypeString;
10303     return true;
10304   }
10305 
10306   size_t Start = Enc.size();
10307   Enc += "e(";
10308   if (ID)
10309     Enc += ID->getName();
10310   Enc += "){";
10311 
10312   // We collect all encoded enumerations and order them alphanumerically.
10313   if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
10314     SmallVector<FieldEncoding, 16> FE;
10315     for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
10316          ++I) {
10317       SmallStringEnc EnumEnc;
10318       EnumEnc += "m(";
10319       EnumEnc += I->getName();
10320       EnumEnc += "){";
10321       I->getInitVal().toString(EnumEnc);
10322       EnumEnc += '}';
10323       FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
10324     }
10325     llvm::sort(FE);
10326     unsigned E = FE.size();
10327     for (unsigned I = 0; I != E; ++I) {
10328       if (I)
10329         Enc += ',';
10330       Enc += FE[I].str();
10331     }
10332   }
10333   Enc += '}';
10334   TSC.addIfComplete(ID, Enc.substr(Start), false);
10335   return true;
10336 }
10337 
10338 /// Appends type's qualifier to Enc.
10339 /// This is done prior to appending the type's encoding.
10340 static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
10341   // Qualifiers are emitted in alphabetical order.
10342   static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"};
10343   int Lookup = 0;
10344   if (QT.isConstQualified())
10345     Lookup += 1<<0;
10346   if (QT.isRestrictQualified())
10347     Lookup += 1<<1;
10348   if (QT.isVolatileQualified())
10349     Lookup += 1<<2;
10350   Enc += Table[Lookup];
10351 }
10352 
10353 /// Appends built-in types to Enc.
10354 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
10355   const char *EncType;
10356   switch (BT->getKind()) {
10357     case BuiltinType::Void:
10358       EncType = "0";
10359       break;
10360     case BuiltinType::Bool:
10361       EncType = "b";
10362       break;
10363     case BuiltinType::Char_U:
10364       EncType = "uc";
10365       break;
10366     case BuiltinType::UChar:
10367       EncType = "uc";
10368       break;
10369     case BuiltinType::SChar:
10370       EncType = "sc";
10371       break;
10372     case BuiltinType::UShort:
10373       EncType = "us";
10374       break;
10375     case BuiltinType::Short:
10376       EncType = "ss";
10377       break;
10378     case BuiltinType::UInt:
10379       EncType = "ui";
10380       break;
10381     case BuiltinType::Int:
10382       EncType = "si";
10383       break;
10384     case BuiltinType::ULong:
10385       EncType = "ul";
10386       break;
10387     case BuiltinType::Long:
10388       EncType = "sl";
10389       break;
10390     case BuiltinType::ULongLong:
10391       EncType = "ull";
10392       break;
10393     case BuiltinType::LongLong:
10394       EncType = "sll";
10395       break;
10396     case BuiltinType::Float:
10397       EncType = "ft";
10398       break;
10399     case BuiltinType::Double:
10400       EncType = "d";
10401       break;
10402     case BuiltinType::LongDouble:
10403       EncType = "ld";
10404       break;
10405     default:
10406       return false;
10407   }
10408   Enc += EncType;
10409   return true;
10410 }
10411 
10412 /// Appends a pointer encoding to Enc before calling appendType for the pointee.
10413 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
10414                               const CodeGen::CodeGenModule &CGM,
10415                               TypeStringCache &TSC) {
10416   Enc += "p(";
10417   if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
10418     return false;
10419   Enc += ')';
10420   return true;
10421 }
10422 
10423 /// Appends array encoding to Enc before calling appendType for the element.
10424 static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
10425                             const ArrayType *AT,
10426                             const CodeGen::CodeGenModule &CGM,
10427                             TypeStringCache &TSC, StringRef NoSizeEnc) {
10428   if (AT->getSizeModifier() != ArrayType::Normal)
10429     return false;
10430   Enc += "a(";
10431   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
10432     CAT->getSize().toStringUnsigned(Enc);
10433   else
10434     Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
10435   Enc += ':';
10436   // The Qualifiers should be attached to the type rather than the array.
10437   appendQualifier(Enc, QT);
10438   if (!appendType(Enc, AT->getElementType(), CGM, TSC))
10439     return false;
10440   Enc += ')';
10441   return true;
10442 }
10443 
10444 /// Appends a function encoding to Enc, calling appendType for the return type
10445 /// and the arguments.
10446 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
10447                              const CodeGen::CodeGenModule &CGM,
10448                              TypeStringCache &TSC) {
10449   Enc += "f{";
10450   if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
10451     return false;
10452   Enc += "}(";
10453   if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
10454     // N.B. we are only interested in the adjusted param types.
10455     auto I = FPT->param_type_begin();
10456     auto E = FPT->param_type_end();
10457     if (I != E) {
10458       do {
10459         if (!appendType(Enc, *I, CGM, TSC))
10460           return false;
10461         ++I;
10462         if (I != E)
10463           Enc += ',';
10464       } while (I != E);
10465       if (FPT->isVariadic())
10466         Enc += ",va";
10467     } else {
10468       if (FPT->isVariadic())
10469         Enc += "va";
10470       else
10471         Enc += '0';
10472     }
10473   }
10474   Enc += ')';
10475   return true;
10476 }
10477 
10478 /// Handles the type's qualifier before dispatching a call to handle specific
10479 /// type encodings.
10480 static bool appendType(SmallStringEnc &Enc, QualType QType,
10481                        const CodeGen::CodeGenModule &CGM,
10482                        TypeStringCache &TSC) {
10483 
10484   QualType QT = QType.getCanonicalType();
10485 
10486   if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
10487     // The Qualifiers should be attached to the type rather than the array.
10488     // Thus we don't call appendQualifier() here.
10489     return appendArrayType(Enc, QT, AT, CGM, TSC, "");
10490 
10491   appendQualifier(Enc, QT);
10492 
10493   if (const BuiltinType *BT = QT->getAs<BuiltinType>())
10494     return appendBuiltinType(Enc, BT);
10495 
10496   if (const PointerType *PT = QT->getAs<PointerType>())
10497     return appendPointerType(Enc, PT, CGM, TSC);
10498 
10499   if (const EnumType *ET = QT->getAs<EnumType>())
10500     return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
10501 
10502   if (const RecordType *RT = QT->getAsStructureType())
10503     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
10504 
10505   if (const RecordType *RT = QT->getAsUnionType())
10506     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
10507 
10508   if (const FunctionType *FT = QT->getAs<FunctionType>())
10509     return appendFunctionType(Enc, FT, CGM, TSC);
10510 
10511   return false;
10512 }
10513 
10514 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
10515                           const CodeGen::CodeGenModule &CGM,
10516                           TypeStringCache &TSC) {
10517   if (!D)
10518     return false;
10519 
10520   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
10521     if (FD->getLanguageLinkage() != CLanguageLinkage)
10522       return false;
10523     return appendType(Enc, FD->getType(), CGM, TSC);
10524   }
10525 
10526   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
10527     if (VD->getLanguageLinkage() != CLanguageLinkage)
10528       return false;
10529     QualType QT = VD->getType().getCanonicalType();
10530     if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
10531       // Global ArrayTypes are given a size of '*' if the size is unknown.
10532       // The Qualifiers should be attached to the type rather than the array.
10533       // Thus we don't call appendQualifier() here.
10534       return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
10535     }
10536     return appendType(Enc, QT, CGM, TSC);
10537   }
10538   return false;
10539 }
10540 
10541 //===----------------------------------------------------------------------===//
10542 // RISCV ABI Implementation
10543 //===----------------------------------------------------------------------===//
10544 
10545 namespace {
10546 class RISCVABIInfo : public DefaultABIInfo {
10547 private:
10548   // Size of the integer ('x') registers in bits.
10549   unsigned XLen;
10550   // Size of the floating point ('f') registers in bits. Note that the target
10551   // ISA might have a wider FLen than the selected ABI (e.g. an RV32IF target
10552   // with soft float ABI has FLen==0).
10553   unsigned FLen;
10554   static const int NumArgGPRs = 8;
10555   static const int NumArgFPRs = 8;
10556   bool detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff,
10557                                       llvm::Type *&Field1Ty,
10558                                       CharUnits &Field1Off,
10559                                       llvm::Type *&Field2Ty,
10560                                       CharUnits &Field2Off) const;
10561 
10562 public:
10563   RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen)
10564       : DefaultABIInfo(CGT), XLen(XLen), FLen(FLen) {}
10565 
10566   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
10567   // non-virtual, but computeInfo is virtual, so we overload it.
10568   void computeInfo(CGFunctionInfo &FI) const override;
10569 
10570   ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &ArgGPRsLeft,
10571                                   int &ArgFPRsLeft) const;
10572   ABIArgInfo classifyReturnType(QualType RetTy) const;
10573 
10574   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
10575                     QualType Ty) const override;
10576 
10577   ABIArgInfo extendType(QualType Ty) const;
10578 
10579   bool detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty,
10580                                 CharUnits &Field1Off, llvm::Type *&Field2Ty,
10581                                 CharUnits &Field2Off, int &NeededArgGPRs,
10582                                 int &NeededArgFPRs) const;
10583   ABIArgInfo coerceAndExpandFPCCEligibleStruct(llvm::Type *Field1Ty,
10584                                                CharUnits Field1Off,
10585                                                llvm::Type *Field2Ty,
10586                                                CharUnits Field2Off) const;
10587 };
10588 } // end anonymous namespace
10589 
10590 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const {
10591   QualType RetTy = FI.getReturnType();
10592   if (!getCXXABI().classifyReturnType(FI))
10593     FI.getReturnInfo() = classifyReturnType(RetTy);
10594 
10595   // IsRetIndirect is true if classifyArgumentType indicated the value should
10596   // be passed indirect, or if the type size is a scalar greater than 2*XLen
10597   // and not a complex type with elements <= FLen. e.g. fp128 is passed direct
10598   // in LLVM IR, relying on the backend lowering code to rewrite the argument
10599   // list and pass indirectly on RV32.
10600   bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect;
10601   if (!IsRetIndirect && RetTy->isScalarType() &&
10602       getContext().getTypeSize(RetTy) > (2 * XLen)) {
10603     if (RetTy->isComplexType() && FLen) {
10604       QualType EltTy = RetTy->castAs<ComplexType>()->getElementType();
10605       IsRetIndirect = getContext().getTypeSize(EltTy) > FLen;
10606     } else {
10607       // This is a normal scalar > 2*XLen, such as fp128 on RV32.
10608       IsRetIndirect = true;
10609     }
10610   }
10611 
10612   // We must track the number of GPRs used in order to conform to the RISC-V
10613   // ABI, as integer scalars passed in registers should have signext/zeroext
10614   // when promoted, but are anyext if passed on the stack. As GPR usage is
10615   // different for variadic arguments, we must also track whether we are
10616   // examining a vararg or not.
10617   int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs;
10618   int ArgFPRsLeft = FLen ? NumArgFPRs : 0;
10619   int NumFixedArgs = FI.getNumRequiredArgs();
10620 
10621   int ArgNum = 0;
10622   for (auto &ArgInfo : FI.arguments()) {
10623     bool IsFixed = ArgNum < NumFixedArgs;
10624     ArgInfo.info =
10625         classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft, ArgFPRsLeft);
10626     ArgNum++;
10627   }
10628 }
10629 
10630 // Returns true if the struct is a potential candidate for the floating point
10631 // calling convention. If this function returns true, the caller is
10632 // responsible for checking that if there is only a single field then that
10633 // field is a float.
10634 bool RISCVABIInfo::detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff,
10635                                                   llvm::Type *&Field1Ty,
10636                                                   CharUnits &Field1Off,
10637                                                   llvm::Type *&Field2Ty,
10638                                                   CharUnits &Field2Off) const {
10639   bool IsInt = Ty->isIntegralOrEnumerationType();
10640   bool IsFloat = Ty->isRealFloatingType();
10641 
10642   if (IsInt || IsFloat) {
10643     uint64_t Size = getContext().getTypeSize(Ty);
10644     if (IsInt && Size > XLen)
10645       return false;
10646     // Can't be eligible if larger than the FP registers. Half precision isn't
10647     // currently supported on RISC-V and the ABI hasn't been confirmed, so
10648     // default to the integer ABI in that case.
10649     if (IsFloat && (Size > FLen || Size < 32))
10650       return false;
10651     // Can't be eligible if an integer type was already found (int+int pairs
10652     // are not eligible).
10653     if (IsInt && Field1Ty && Field1Ty->isIntegerTy())
10654       return false;
10655     if (!Field1Ty) {
10656       Field1Ty = CGT.ConvertType(Ty);
10657       Field1Off = CurOff;
10658       return true;
10659     }
10660     if (!Field2Ty) {
10661       Field2Ty = CGT.ConvertType(Ty);
10662       Field2Off = CurOff;
10663       return true;
10664     }
10665     return false;
10666   }
10667 
10668   if (auto CTy = Ty->getAs<ComplexType>()) {
10669     if (Field1Ty)
10670       return false;
10671     QualType EltTy = CTy->getElementType();
10672     if (getContext().getTypeSize(EltTy) > FLen)
10673       return false;
10674     Field1Ty = CGT.ConvertType(EltTy);
10675     Field1Off = CurOff;
10676     Field2Ty = Field1Ty;
10677     Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy);
10678     return true;
10679   }
10680 
10681   if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) {
10682     uint64_t ArraySize = ATy->getSize().getZExtValue();
10683     QualType EltTy = ATy->getElementType();
10684     CharUnits EltSize = getContext().getTypeSizeInChars(EltTy);
10685     for (uint64_t i = 0; i < ArraySize; ++i) {
10686       bool Ret = detectFPCCEligibleStructHelper(EltTy, CurOff, Field1Ty,
10687                                                 Field1Off, Field2Ty, Field2Off);
10688       if (!Ret)
10689         return false;
10690       CurOff += EltSize;
10691     }
10692     return true;
10693   }
10694 
10695   if (const auto *RTy = Ty->getAs<RecordType>()) {
10696     // Structures with either a non-trivial destructor or a non-trivial
10697     // copy constructor are not eligible for the FP calling convention.
10698     if (getRecordArgABI(Ty, CGT.getCXXABI()))
10699       return false;
10700     if (isEmptyRecord(getContext(), Ty, true))
10701       return true;
10702     const RecordDecl *RD = RTy->getDecl();
10703     // Unions aren't eligible unless they're empty (which is caught above).
10704     if (RD->isUnion())
10705       return false;
10706     int ZeroWidthBitFieldCount = 0;
10707     for (const FieldDecl *FD : RD->fields()) {
10708       const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
10709       uint64_t FieldOffInBits = Layout.getFieldOffset(FD->getFieldIndex());
10710       QualType QTy = FD->getType();
10711       if (FD->isBitField()) {
10712         unsigned BitWidth = FD->getBitWidthValue(getContext());
10713         // Allow a bitfield with a type greater than XLen as long as the
10714         // bitwidth is XLen or less.
10715         if (getContext().getTypeSize(QTy) > XLen && BitWidth <= XLen)
10716           QTy = getContext().getIntTypeForBitwidth(XLen, false);
10717         if (BitWidth == 0) {
10718           ZeroWidthBitFieldCount++;
10719           continue;
10720         }
10721       }
10722 
10723       bool Ret = detectFPCCEligibleStructHelper(
10724           QTy, CurOff + getContext().toCharUnitsFromBits(FieldOffInBits),
10725           Field1Ty, Field1Off, Field2Ty, Field2Off);
10726       if (!Ret)
10727         return false;
10728 
10729       // As a quirk of the ABI, zero-width bitfields aren't ignored for fp+fp
10730       // or int+fp structs, but are ignored for a struct with an fp field and
10731       // any number of zero-width bitfields.
10732       if (Field2Ty && ZeroWidthBitFieldCount > 0)
10733         return false;
10734     }
10735     return Field1Ty != nullptr;
10736   }
10737 
10738   return false;
10739 }
10740 
10741 // Determine if a struct is eligible for passing according to the floating
10742 // point calling convention (i.e., when flattened it contains a single fp
10743 // value, fp+fp, or int+fp of appropriate size). If so, NeededArgFPRs and
10744 // NeededArgGPRs are incremented appropriately.
10745 bool RISCVABIInfo::detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty,
10746                                             CharUnits &Field1Off,
10747                                             llvm::Type *&Field2Ty,
10748                                             CharUnits &Field2Off,
10749                                             int &NeededArgGPRs,
10750                                             int &NeededArgFPRs) const {
10751   Field1Ty = nullptr;
10752   Field2Ty = nullptr;
10753   NeededArgGPRs = 0;
10754   NeededArgFPRs = 0;
10755   bool IsCandidate = detectFPCCEligibleStructHelper(
10756       Ty, CharUnits::Zero(), Field1Ty, Field1Off, Field2Ty, Field2Off);
10757   // Not really a candidate if we have a single int but no float.
10758   if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy())
10759     return false;
10760   if (!IsCandidate)
10761     return false;
10762   if (Field1Ty && Field1Ty->isFloatingPointTy())
10763     NeededArgFPRs++;
10764   else if (Field1Ty)
10765     NeededArgGPRs++;
10766   if (Field2Ty && Field2Ty->isFloatingPointTy())
10767     NeededArgFPRs++;
10768   else if (Field2Ty)
10769     NeededArgGPRs++;
10770   return true;
10771 }
10772 
10773 // Call getCoerceAndExpand for the two-element flattened struct described by
10774 // Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an
10775 // appropriate coerceToType and unpaddedCoerceToType.
10776 ABIArgInfo RISCVABIInfo::coerceAndExpandFPCCEligibleStruct(
10777     llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty,
10778     CharUnits Field2Off) const {
10779   SmallVector<llvm::Type *, 3> CoerceElts;
10780   SmallVector<llvm::Type *, 2> UnpaddedCoerceElts;
10781   if (!Field1Off.isZero())
10782     CoerceElts.push_back(llvm::ArrayType::get(
10783         llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity()));
10784 
10785   CoerceElts.push_back(Field1Ty);
10786   UnpaddedCoerceElts.push_back(Field1Ty);
10787 
10788   if (!Field2Ty) {
10789     return ABIArgInfo::getCoerceAndExpand(
10790         llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()),
10791         UnpaddedCoerceElts[0]);
10792   }
10793 
10794   CharUnits Field2Align =
10795       CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(Field2Ty));
10796   CharUnits Field1End = Field1Off +
10797       CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty));
10798   CharUnits Field2OffNoPadNoPack = Field1End.alignTo(Field2Align);
10799 
10800   CharUnits Padding = CharUnits::Zero();
10801   if (Field2Off > Field2OffNoPadNoPack)
10802     Padding = Field2Off - Field2OffNoPadNoPack;
10803   else if (Field2Off != Field2Align && Field2Off > Field1End)
10804     Padding = Field2Off - Field1End;
10805 
10806   bool IsPacked = !Field2Off.isMultipleOf(Field2Align);
10807 
10808   if (!Padding.isZero())
10809     CoerceElts.push_back(llvm::ArrayType::get(
10810         llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity()));
10811 
10812   CoerceElts.push_back(Field2Ty);
10813   UnpaddedCoerceElts.push_back(Field2Ty);
10814 
10815   auto CoerceToType =
10816       llvm::StructType::get(getVMContext(), CoerceElts, IsPacked);
10817   auto UnpaddedCoerceToType =
10818       llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked);
10819 
10820   return ABIArgInfo::getCoerceAndExpand(CoerceToType, UnpaddedCoerceToType);
10821 }
10822 
10823 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed,
10824                                               int &ArgGPRsLeft,
10825                                               int &ArgFPRsLeft) const {
10826   assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow");
10827   Ty = useFirstFieldIfTransparentUnion(Ty);
10828 
10829   // Structures with either a non-trivial destructor or a non-trivial
10830   // copy constructor are always passed indirectly.
10831   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
10832     if (ArgGPRsLeft)
10833       ArgGPRsLeft -= 1;
10834     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
10835                                            CGCXXABI::RAA_DirectInMemory);
10836   }
10837 
10838   // Ignore empty structs/unions.
10839   if (isEmptyRecord(getContext(), Ty, true))
10840     return ABIArgInfo::getIgnore();
10841 
10842   uint64_t Size = getContext().getTypeSize(Ty);
10843 
10844   // Pass floating point values via FPRs if possible.
10845   if (IsFixed && Ty->isFloatingType() && !Ty->isComplexType() &&
10846       FLen >= Size && ArgFPRsLeft) {
10847     ArgFPRsLeft--;
10848     return ABIArgInfo::getDirect();
10849   }
10850 
10851   // Complex types for the hard float ABI must be passed direct rather than
10852   // using CoerceAndExpand.
10853   if (IsFixed && Ty->isComplexType() && FLen && ArgFPRsLeft >= 2) {
10854     QualType EltTy = Ty->castAs<ComplexType>()->getElementType();
10855     if (getContext().getTypeSize(EltTy) <= FLen) {
10856       ArgFPRsLeft -= 2;
10857       return ABIArgInfo::getDirect();
10858     }
10859   }
10860 
10861   if (IsFixed && FLen && Ty->isStructureOrClassType()) {
10862     llvm::Type *Field1Ty = nullptr;
10863     llvm::Type *Field2Ty = nullptr;
10864     CharUnits Field1Off = CharUnits::Zero();
10865     CharUnits Field2Off = CharUnits::Zero();
10866     int NeededArgGPRs = 0;
10867     int NeededArgFPRs = 0;
10868     bool IsCandidate =
10869         detectFPCCEligibleStruct(Ty, Field1Ty, Field1Off, Field2Ty, Field2Off,
10870                                  NeededArgGPRs, NeededArgFPRs);
10871     if (IsCandidate && NeededArgGPRs <= ArgGPRsLeft &&
10872         NeededArgFPRs <= ArgFPRsLeft) {
10873       ArgGPRsLeft -= NeededArgGPRs;
10874       ArgFPRsLeft -= NeededArgFPRs;
10875       return coerceAndExpandFPCCEligibleStruct(Field1Ty, Field1Off, Field2Ty,
10876                                                Field2Off);
10877     }
10878   }
10879 
10880   uint64_t NeededAlign = getContext().getTypeAlign(Ty);
10881   bool MustUseStack = false;
10882   // Determine the number of GPRs needed to pass the current argument
10883   // according to the ABI. 2*XLen-aligned varargs are passed in "aligned"
10884   // register pairs, so may consume 3 registers.
10885   int NeededArgGPRs = 1;
10886   if (!IsFixed && NeededAlign == 2 * XLen)
10887     NeededArgGPRs = 2 + (ArgGPRsLeft % 2);
10888   else if (Size > XLen && Size <= 2 * XLen)
10889     NeededArgGPRs = 2;
10890 
10891   if (NeededArgGPRs > ArgGPRsLeft) {
10892     MustUseStack = true;
10893     NeededArgGPRs = ArgGPRsLeft;
10894   }
10895 
10896   ArgGPRsLeft -= NeededArgGPRs;
10897 
10898   if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) {
10899     // Treat an enum type as its underlying type.
10900     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
10901       Ty = EnumTy->getDecl()->getIntegerType();
10902 
10903     // All integral types are promoted to XLen width, unless passed on the
10904     // stack.
10905     if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) {
10906       return extendType(Ty);
10907     }
10908 
10909     if (const auto *EIT = Ty->getAs<ExtIntType>()) {
10910       if (EIT->getNumBits() < XLen && !MustUseStack)
10911         return extendType(Ty);
10912       if (EIT->getNumBits() > 128 ||
10913           (!getContext().getTargetInfo().hasInt128Type() &&
10914            EIT->getNumBits() > 64))
10915         return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
10916     }
10917 
10918     return ABIArgInfo::getDirect();
10919   }
10920 
10921   // Aggregates which are <= 2*XLen will be passed in registers if possible,
10922   // so coerce to integers.
10923   if (Size <= 2 * XLen) {
10924     unsigned Alignment = getContext().getTypeAlign(Ty);
10925 
10926     // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is
10927     // required, and a 2-element XLen array if only XLen alignment is required.
10928     if (Size <= XLen) {
10929       return ABIArgInfo::getDirect(
10930           llvm::IntegerType::get(getVMContext(), XLen));
10931     } else if (Alignment == 2 * XLen) {
10932       return ABIArgInfo::getDirect(
10933           llvm::IntegerType::get(getVMContext(), 2 * XLen));
10934     } else {
10935       return ABIArgInfo::getDirect(llvm::ArrayType::get(
10936           llvm::IntegerType::get(getVMContext(), XLen), 2));
10937     }
10938   }
10939   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
10940 }
10941 
10942 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const {
10943   if (RetTy->isVoidType())
10944     return ABIArgInfo::getIgnore();
10945 
10946   int ArgGPRsLeft = 2;
10947   int ArgFPRsLeft = FLen ? 2 : 0;
10948 
10949   // The rules for return and argument types are the same, so defer to
10950   // classifyArgumentType.
10951   return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft,
10952                               ArgFPRsLeft);
10953 }
10954 
10955 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
10956                                 QualType Ty) const {
10957   CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8);
10958 
10959   // Empty records are ignored for parameter passing purposes.
10960   if (isEmptyRecord(getContext(), Ty, true)) {
10961     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
10962     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
10963     return Addr;
10964   }
10965 
10966   auto TInfo = getContext().getTypeInfoInChars(Ty);
10967 
10968   // Arguments bigger than 2*Xlen bytes are passed indirectly.
10969   bool IsIndirect = TInfo.Width > 2 * SlotSize;
10970 
10971   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TInfo,
10972                           SlotSize, /*AllowHigherAlign=*/true);
10973 }
10974 
10975 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const {
10976   int TySize = getContext().getTypeSize(Ty);
10977   // RV64 ABI requires unsigned 32 bit integers to be sign extended.
10978   if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
10979     return ABIArgInfo::getSignExtend(Ty);
10980   return ABIArgInfo::getExtend(Ty);
10981 }
10982 
10983 namespace {
10984 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo {
10985 public:
10986   RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen,
10987                          unsigned FLen)
10988       : TargetCodeGenInfo(std::make_unique<RISCVABIInfo>(CGT, XLen, FLen)) {}
10989 
10990   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
10991                            CodeGen::CodeGenModule &CGM) const override {
10992     const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
10993     if (!FD) return;
10994 
10995     const auto *Attr = FD->getAttr<RISCVInterruptAttr>();
10996     if (!Attr)
10997       return;
10998 
10999     const char *Kind;
11000     switch (Attr->getInterrupt()) {
11001     case RISCVInterruptAttr::user: Kind = "user"; break;
11002     case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break;
11003     case RISCVInterruptAttr::machine: Kind = "machine"; break;
11004     }
11005 
11006     auto *Fn = cast<llvm::Function>(GV);
11007 
11008     Fn->addFnAttr("interrupt", Kind);
11009   }
11010 };
11011 } // namespace
11012 
11013 //===----------------------------------------------------------------------===//
11014 // VE ABI Implementation.
11015 //
11016 namespace {
11017 class VEABIInfo : public DefaultABIInfo {
11018 public:
11019   VEABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
11020 
11021 private:
11022   ABIArgInfo classifyReturnType(QualType RetTy) const;
11023   ABIArgInfo classifyArgumentType(QualType RetTy) const;
11024   void computeInfo(CGFunctionInfo &FI) const override;
11025 };
11026 } // end anonymous namespace
11027 
11028 ABIArgInfo VEABIInfo::classifyReturnType(QualType Ty) const {
11029   if (Ty->isAnyComplexType())
11030     return ABIArgInfo::getDirect();
11031   uint64_t Size = getContext().getTypeSize(Ty);
11032   if (Size < 64 && Ty->isIntegerType())
11033     return ABIArgInfo::getExtend(Ty);
11034   return DefaultABIInfo::classifyReturnType(Ty);
11035 }
11036 
11037 ABIArgInfo VEABIInfo::classifyArgumentType(QualType Ty) const {
11038   if (Ty->isAnyComplexType())
11039     return ABIArgInfo::getDirect();
11040   uint64_t Size = getContext().getTypeSize(Ty);
11041   if (Size < 64 && Ty->isIntegerType())
11042     return ABIArgInfo::getExtend(Ty);
11043   return DefaultABIInfo::classifyArgumentType(Ty);
11044 }
11045 
11046 void VEABIInfo::computeInfo(CGFunctionInfo &FI) const {
11047   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
11048   for (auto &Arg : FI.arguments())
11049     Arg.info = classifyArgumentType(Arg.type);
11050 }
11051 
11052 namespace {
11053 class VETargetCodeGenInfo : public TargetCodeGenInfo {
11054 public:
11055   VETargetCodeGenInfo(CodeGenTypes &CGT)
11056       : TargetCodeGenInfo(std::make_unique<VEABIInfo>(CGT)) {}
11057   // VE ABI requires the arguments of variadic and prototype-less functions
11058   // are passed in both registers and memory.
11059   bool isNoProtoCallVariadic(const CallArgList &args,
11060                              const FunctionNoProtoType *fnType) const override {
11061     return true;
11062   }
11063 };
11064 } // end anonymous namespace
11065 
11066 //===----------------------------------------------------------------------===//
11067 // Driver code
11068 //===----------------------------------------------------------------------===//
11069 
11070 bool CodeGenModule::supportsCOMDAT() const {
11071   return getTriple().supportsCOMDAT();
11072 }
11073 
11074 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
11075   if (TheTargetCodeGenInfo)
11076     return *TheTargetCodeGenInfo;
11077 
11078   // Helper to set the unique_ptr while still keeping the return value.
11079   auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & {
11080     this->TheTargetCodeGenInfo.reset(P);
11081     return *P;
11082   };
11083 
11084   const llvm::Triple &Triple = getTarget().getTriple();
11085   switch (Triple.getArch()) {
11086   default:
11087     return SetCGInfo(new DefaultTargetCodeGenInfo(Types));
11088 
11089   case llvm::Triple::le32:
11090     return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
11091   case llvm::Triple::m68k:
11092     return SetCGInfo(new M68kTargetCodeGenInfo(Types));
11093   case llvm::Triple::mips:
11094   case llvm::Triple::mipsel:
11095     if (Triple.getOS() == llvm::Triple::NaCl)
11096       return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
11097     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true));
11098 
11099   case llvm::Triple::mips64:
11100   case llvm::Triple::mips64el:
11101     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false));
11102 
11103   case llvm::Triple::avr:
11104     return SetCGInfo(new AVRTargetCodeGenInfo(Types));
11105 
11106   case llvm::Triple::aarch64:
11107   case llvm::Triple::aarch64_32:
11108   case llvm::Triple::aarch64_be: {
11109     AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
11110     if (getTarget().getABI() == "darwinpcs")
11111       Kind = AArch64ABIInfo::DarwinPCS;
11112     else if (Triple.isOSWindows())
11113       return SetCGInfo(
11114           new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64));
11115 
11116     return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind));
11117   }
11118 
11119   case llvm::Triple::wasm32:
11120   case llvm::Triple::wasm64: {
11121     WebAssemblyABIInfo::ABIKind Kind = WebAssemblyABIInfo::MVP;
11122     if (getTarget().getABI() == "experimental-mv")
11123       Kind = WebAssemblyABIInfo::ExperimentalMV;
11124     return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types, Kind));
11125   }
11126 
11127   case llvm::Triple::arm:
11128   case llvm::Triple::armeb:
11129   case llvm::Triple::thumb:
11130   case llvm::Triple::thumbeb: {
11131     if (Triple.getOS() == llvm::Triple::Win32) {
11132       return SetCGInfo(
11133           new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP));
11134     }
11135 
11136     ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
11137     StringRef ABIStr = getTarget().getABI();
11138     if (ABIStr == "apcs-gnu")
11139       Kind = ARMABIInfo::APCS;
11140     else if (ABIStr == "aapcs16")
11141       Kind = ARMABIInfo::AAPCS16_VFP;
11142     else if (CodeGenOpts.FloatABI == "hard" ||
11143              (CodeGenOpts.FloatABI != "soft" &&
11144               (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
11145                Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
11146                Triple.getEnvironment() == llvm::Triple::EABIHF)))
11147       Kind = ARMABIInfo::AAPCS_VFP;
11148 
11149     return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind));
11150   }
11151 
11152   case llvm::Triple::ppc: {
11153     if (Triple.isOSAIX())
11154       return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ false));
11155 
11156     bool IsSoftFloat =
11157         CodeGenOpts.FloatABI == "soft" || getTarget().hasFeature("spe");
11158     bool RetSmallStructInRegABI =
11159         PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
11160     return SetCGInfo(
11161         new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI));
11162   }
11163   case llvm::Triple::ppcle: {
11164     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
11165     bool RetSmallStructInRegABI =
11166         PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
11167     return SetCGInfo(
11168         new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI));
11169   }
11170   case llvm::Triple::ppc64:
11171     if (Triple.isOSAIX())
11172       return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ true));
11173 
11174     if (Triple.isOSBinFormatELF()) {
11175       PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1;
11176       if (getTarget().getABI() == "elfv2")
11177         Kind = PPC64_SVR4_ABIInfo::ELFv2;
11178       bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
11179 
11180       return SetCGInfo(
11181           new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, IsSoftFloat));
11182     }
11183     return SetCGInfo(new PPC64TargetCodeGenInfo(Types));
11184   case llvm::Triple::ppc64le: {
11185     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
11186     PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2;
11187     if (getTarget().getABI() == "elfv1")
11188       Kind = PPC64_SVR4_ABIInfo::ELFv1;
11189     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
11190 
11191     return SetCGInfo(
11192         new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, IsSoftFloat));
11193   }
11194 
11195   case llvm::Triple::nvptx:
11196   case llvm::Triple::nvptx64:
11197     return SetCGInfo(new NVPTXTargetCodeGenInfo(Types));
11198 
11199   case llvm::Triple::msp430:
11200     return SetCGInfo(new MSP430TargetCodeGenInfo(Types));
11201 
11202   case llvm::Triple::riscv32:
11203   case llvm::Triple::riscv64: {
11204     StringRef ABIStr = getTarget().getABI();
11205     unsigned XLen = getTarget().getPointerWidth(0);
11206     unsigned ABIFLen = 0;
11207     if (ABIStr.endswith("f"))
11208       ABIFLen = 32;
11209     else if (ABIStr.endswith("d"))
11210       ABIFLen = 64;
11211     return SetCGInfo(new RISCVTargetCodeGenInfo(Types, XLen, ABIFLen));
11212   }
11213 
11214   case llvm::Triple::systemz: {
11215     bool SoftFloat = CodeGenOpts.FloatABI == "soft";
11216     bool HasVector = !SoftFloat && getTarget().getABI() == "vector";
11217     return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector, SoftFloat));
11218   }
11219 
11220   case llvm::Triple::tce:
11221   case llvm::Triple::tcele:
11222     return SetCGInfo(new TCETargetCodeGenInfo(Types));
11223 
11224   case llvm::Triple::x86: {
11225     bool IsDarwinVectorABI = Triple.isOSDarwin();
11226     bool RetSmallStructInRegABI =
11227         X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
11228     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
11229 
11230     if (Triple.getOS() == llvm::Triple::Win32) {
11231       return SetCGInfo(new WinX86_32TargetCodeGenInfo(
11232           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
11233           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters));
11234     } else {
11235       return SetCGInfo(new X86_32TargetCodeGenInfo(
11236           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
11237           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters,
11238           CodeGenOpts.FloatABI == "soft"));
11239     }
11240   }
11241 
11242   case llvm::Triple::x86_64: {
11243     StringRef ABI = getTarget().getABI();
11244     X86AVXABILevel AVXLevel =
11245         (ABI == "avx512"
11246              ? X86AVXABILevel::AVX512
11247              : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None);
11248 
11249     switch (Triple.getOS()) {
11250     case llvm::Triple::Win32:
11251       return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel));
11252     default:
11253       return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel));
11254     }
11255   }
11256   case llvm::Triple::hexagon:
11257     return SetCGInfo(new HexagonTargetCodeGenInfo(Types));
11258   case llvm::Triple::lanai:
11259     return SetCGInfo(new LanaiTargetCodeGenInfo(Types));
11260   case llvm::Triple::r600:
11261     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
11262   case llvm::Triple::amdgcn:
11263     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
11264   case llvm::Triple::sparc:
11265     return SetCGInfo(new SparcV8TargetCodeGenInfo(Types));
11266   case llvm::Triple::sparcv9:
11267     return SetCGInfo(new SparcV9TargetCodeGenInfo(Types));
11268   case llvm::Triple::xcore:
11269     return SetCGInfo(new XCoreTargetCodeGenInfo(Types));
11270   case llvm::Triple::arc:
11271     return SetCGInfo(new ARCTargetCodeGenInfo(Types));
11272   case llvm::Triple::spir:
11273   case llvm::Triple::spir64:
11274     return SetCGInfo(new SPIRTargetCodeGenInfo(Types));
11275   case llvm::Triple::ve:
11276     return SetCGInfo(new VETargetCodeGenInfo(Types));
11277   }
11278 }
11279 
11280 /// Create an OpenCL kernel for an enqueued block.
11281 ///
11282 /// The kernel has the same function type as the block invoke function. Its
11283 /// name is the name of the block invoke function postfixed with "_kernel".
11284 /// It simply calls the block invoke function then returns.
11285 llvm::Function *
11286 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF,
11287                                              llvm::Function *Invoke,
11288                                              llvm::Value *BlockLiteral) const {
11289   auto *InvokeFT = Invoke->getFunctionType();
11290   llvm::SmallVector<llvm::Type *, 2> ArgTys;
11291   for (auto &P : InvokeFT->params())
11292     ArgTys.push_back(P);
11293   auto &C = CGF.getLLVMContext();
11294   std::string Name = Invoke->getName().str() + "_kernel";
11295   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
11296   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
11297                                    &CGF.CGM.getModule());
11298   auto IP = CGF.Builder.saveIP();
11299   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
11300   auto &Builder = CGF.Builder;
11301   Builder.SetInsertPoint(BB);
11302   llvm::SmallVector<llvm::Value *, 2> Args;
11303   for (auto &A : F->args())
11304     Args.push_back(&A);
11305   llvm::CallInst *call = Builder.CreateCall(Invoke, Args);
11306   call->setCallingConv(Invoke->getCallingConv());
11307   Builder.CreateRetVoid();
11308   Builder.restoreIP(IP);
11309   return F;
11310 }
11311 
11312 /// Create an OpenCL kernel for an enqueued block.
11313 ///
11314 /// The type of the first argument (the block literal) is the struct type
11315 /// of the block literal instead of a pointer type. The first argument
11316 /// (block literal) is passed directly by value to the kernel. The kernel
11317 /// allocates the same type of struct on stack and stores the block literal
11318 /// to it and passes its pointer to the block invoke function. The kernel
11319 /// has "enqueued-block" function attribute and kernel argument metadata.
11320 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel(
11321     CodeGenFunction &CGF, llvm::Function *Invoke,
11322     llvm::Value *BlockLiteral) const {
11323   auto &Builder = CGF.Builder;
11324   auto &C = CGF.getLLVMContext();
11325 
11326   auto *BlockTy = BlockLiteral->getType()->getPointerElementType();
11327   auto *InvokeFT = Invoke->getFunctionType();
11328   llvm::SmallVector<llvm::Type *, 2> ArgTys;
11329   llvm::SmallVector<llvm::Metadata *, 8> AddressQuals;
11330   llvm::SmallVector<llvm::Metadata *, 8> AccessQuals;
11331   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames;
11332   llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames;
11333   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals;
11334   llvm::SmallVector<llvm::Metadata *, 8> ArgNames;
11335 
11336   ArgTys.push_back(BlockTy);
11337   ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
11338   AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0)));
11339   ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
11340   ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
11341   AccessQuals.push_back(llvm::MDString::get(C, "none"));
11342   ArgNames.push_back(llvm::MDString::get(C, "block_literal"));
11343   for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) {
11344     ArgTys.push_back(InvokeFT->getParamType(I));
11345     ArgTypeNames.push_back(llvm::MDString::get(C, "void*"));
11346     AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3)));
11347     AccessQuals.push_back(llvm::MDString::get(C, "none"));
11348     ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*"));
11349     ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
11350     ArgNames.push_back(
11351         llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str()));
11352   }
11353   std::string Name = Invoke->getName().str() + "_kernel";
11354   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
11355   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
11356                                    &CGF.CGM.getModule());
11357   F->addFnAttr("enqueued-block");
11358   auto IP = CGF.Builder.saveIP();
11359   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
11360   Builder.SetInsertPoint(BB);
11361   const auto BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(BlockTy);
11362   auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr);
11363   BlockPtr->setAlignment(BlockAlign);
11364   Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign);
11365   auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0));
11366   llvm::SmallVector<llvm::Value *, 2> Args;
11367   Args.push_back(Cast);
11368   for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I)
11369     Args.push_back(I);
11370   llvm::CallInst *call = Builder.CreateCall(Invoke, Args);
11371   call->setCallingConv(Invoke->getCallingConv());
11372   Builder.CreateRetVoid();
11373   Builder.restoreIP(IP);
11374 
11375   F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals));
11376   F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals));
11377   F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames));
11378   F->setMetadata("kernel_arg_base_type",
11379                  llvm::MDNode::get(C, ArgBaseTypeNames));
11380   F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals));
11381   if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
11382     F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames));
11383 
11384   return F;
11385 }
11386