1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes wrap the information about a call or function 10 // definition used to handle ABI compliancy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "TargetInfo.h" 15 #include "ABIInfo.h" 16 #include "CGBlocks.h" 17 #include "CGCXXABI.h" 18 #include "CGValue.h" 19 #include "CodeGenFunction.h" 20 #include "clang/AST/Attr.h" 21 #include "clang/AST/RecordLayout.h" 22 #include "clang/Basic/CodeGenOptions.h" 23 #include "clang/Basic/DiagnosticFrontend.h" 24 #include "clang/Basic/Builtins.h" 25 #include "clang/CodeGen/CGFunctionInfo.h" 26 #include "clang/CodeGen/SwiftCallingConv.h" 27 #include "llvm/ADT/SmallBitVector.h" 28 #include "llvm/ADT/StringExtras.h" 29 #include "llvm/ADT/StringSwitch.h" 30 #include "llvm/ADT/Triple.h" 31 #include "llvm/ADT/Twine.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/IntrinsicsNVPTX.h" 34 #include "llvm/IR/IntrinsicsS390.h" 35 #include "llvm/IR/Type.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <algorithm> // std::sort 38 39 using namespace clang; 40 using namespace CodeGen; 41 42 // Helper for coercing an aggregate argument or return value into an integer 43 // array of the same size (including padding) and alignment. This alternate 44 // coercion happens only for the RenderScript ABI and can be removed after 45 // runtimes that rely on it are no longer supported. 46 // 47 // RenderScript assumes that the size of the argument / return value in the IR 48 // is the same as the size of the corresponding qualified type. This helper 49 // coerces the aggregate type into an array of the same size (including 50 // padding). This coercion is used in lieu of expansion of struct members or 51 // other canonical coercions that return a coerced-type of larger size. 52 // 53 // Ty - The argument / return value type 54 // Context - The associated ASTContext 55 // LLVMContext - The associated LLVMContext 56 static ABIArgInfo coerceToIntArray(QualType Ty, 57 ASTContext &Context, 58 llvm::LLVMContext &LLVMContext) { 59 // Alignment and Size are measured in bits. 60 const uint64_t Size = Context.getTypeSize(Ty); 61 const uint64_t Alignment = Context.getTypeAlign(Ty); 62 llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment); 63 const uint64_t NumElements = (Size + Alignment - 1) / Alignment; 64 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 65 } 66 67 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 68 llvm::Value *Array, 69 llvm::Value *Value, 70 unsigned FirstIndex, 71 unsigned LastIndex) { 72 // Alternatively, we could emit this as a loop in the source. 73 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 74 llvm::Value *Cell = 75 Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); 76 Builder.CreateAlignedStore(Value, Cell, CharUnits::One()); 77 } 78 } 79 80 static bool isAggregateTypeForABI(QualType T) { 81 return !CodeGenFunction::hasScalarEvaluationKind(T) || 82 T->isMemberFunctionPointerType(); 83 } 84 85 ABIArgInfo ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByVal, 86 bool Realign, 87 llvm::Type *Padding) const { 88 return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), ByVal, 89 Realign, Padding); 90 } 91 92 ABIArgInfo 93 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const { 94 return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty), 95 /*ByVal*/ false, Realign); 96 } 97 98 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 99 QualType Ty) const { 100 return Address::invalid(); 101 } 102 103 bool ABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const { 104 if (Ty->isPromotableIntegerType()) 105 return true; 106 107 if (const auto *EIT = Ty->getAs<ExtIntType>()) 108 if (EIT->getNumBits() < getContext().getTypeSize(getContext().IntTy)) 109 return true; 110 111 return false; 112 } 113 114 ABIInfo::~ABIInfo() {} 115 116 /// Does the given lowering require more than the given number of 117 /// registers when expanded? 118 /// 119 /// This is intended to be the basis of a reasonable basic implementation 120 /// of should{Pass,Return}IndirectlyForSwift. 121 /// 122 /// For most targets, a limit of four total registers is reasonable; this 123 /// limits the amount of code required in order to move around the value 124 /// in case it wasn't produced immediately prior to the call by the caller 125 /// (or wasn't produced in exactly the right registers) or isn't used 126 /// immediately within the callee. But some targets may need to further 127 /// limit the register count due to an inability to support that many 128 /// return registers. 129 static bool occupiesMoreThan(CodeGenTypes &cgt, 130 ArrayRef<llvm::Type*> scalarTypes, 131 unsigned maxAllRegisters) { 132 unsigned intCount = 0, fpCount = 0; 133 for (llvm::Type *type : scalarTypes) { 134 if (type->isPointerTy()) { 135 intCount++; 136 } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) { 137 auto ptrWidth = cgt.getTarget().getPointerWidth(0); 138 intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth; 139 } else { 140 assert(type->isVectorTy() || type->isFloatingPointTy()); 141 fpCount++; 142 } 143 } 144 145 return (intCount + fpCount > maxAllRegisters); 146 } 147 148 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 149 llvm::Type *eltTy, 150 unsigned numElts) const { 151 // The default implementation of this assumes that the target guarantees 152 // 128-bit SIMD support but nothing more. 153 return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16); 154 } 155 156 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 157 CGCXXABI &CXXABI) { 158 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 159 if (!RD) { 160 if (!RT->getDecl()->canPassInRegisters()) 161 return CGCXXABI::RAA_Indirect; 162 return CGCXXABI::RAA_Default; 163 } 164 return CXXABI.getRecordArgABI(RD); 165 } 166 167 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 168 CGCXXABI &CXXABI) { 169 const RecordType *RT = T->getAs<RecordType>(); 170 if (!RT) 171 return CGCXXABI::RAA_Default; 172 return getRecordArgABI(RT, CXXABI); 173 } 174 175 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI, 176 const ABIInfo &Info) { 177 QualType Ty = FI.getReturnType(); 178 179 if (const auto *RT = Ty->getAs<RecordType>()) 180 if (!isa<CXXRecordDecl>(RT->getDecl()) && 181 !RT->getDecl()->canPassInRegisters()) { 182 FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty); 183 return true; 184 } 185 186 return CXXABI.classifyReturnType(FI); 187 } 188 189 /// Pass transparent unions as if they were the type of the first element. Sema 190 /// should ensure that all elements of the union have the same "machine type". 191 static QualType useFirstFieldIfTransparentUnion(QualType Ty) { 192 if (const RecordType *UT = Ty->getAsUnionType()) { 193 const RecordDecl *UD = UT->getDecl(); 194 if (UD->hasAttr<TransparentUnionAttr>()) { 195 assert(!UD->field_empty() && "sema created an empty transparent union"); 196 return UD->field_begin()->getType(); 197 } 198 } 199 return Ty; 200 } 201 202 CGCXXABI &ABIInfo::getCXXABI() const { 203 return CGT.getCXXABI(); 204 } 205 206 ASTContext &ABIInfo::getContext() const { 207 return CGT.getContext(); 208 } 209 210 llvm::LLVMContext &ABIInfo::getVMContext() const { 211 return CGT.getLLVMContext(); 212 } 213 214 const llvm::DataLayout &ABIInfo::getDataLayout() const { 215 return CGT.getDataLayout(); 216 } 217 218 const TargetInfo &ABIInfo::getTarget() const { 219 return CGT.getTarget(); 220 } 221 222 const CodeGenOptions &ABIInfo::getCodeGenOpts() const { 223 return CGT.getCodeGenOpts(); 224 } 225 226 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); } 227 228 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 229 return false; 230 } 231 232 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 233 uint64_t Members) const { 234 return false; 235 } 236 237 LLVM_DUMP_METHOD void ABIArgInfo::dump() const { 238 raw_ostream &OS = llvm::errs(); 239 OS << "(ABIArgInfo Kind="; 240 switch (TheKind) { 241 case Direct: 242 OS << "Direct Type="; 243 if (llvm::Type *Ty = getCoerceToType()) 244 Ty->print(OS); 245 else 246 OS << "null"; 247 break; 248 case Extend: 249 OS << "Extend"; 250 break; 251 case Ignore: 252 OS << "Ignore"; 253 break; 254 case InAlloca: 255 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 256 break; 257 case Indirect: 258 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 259 << " ByVal=" << getIndirectByVal() 260 << " Realign=" << getIndirectRealign(); 261 break; 262 case IndirectAliased: 263 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 264 << " AadrSpace=" << getIndirectAddrSpace() 265 << " Realign=" << getIndirectRealign(); 266 break; 267 case Expand: 268 OS << "Expand"; 269 break; 270 case CoerceAndExpand: 271 OS << "CoerceAndExpand Type="; 272 getCoerceAndExpandType()->print(OS); 273 break; 274 } 275 OS << ")\n"; 276 } 277 278 // Dynamically round a pointer up to a multiple of the given alignment. 279 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF, 280 llvm::Value *Ptr, 281 CharUnits Align) { 282 llvm::Value *PtrAsInt = Ptr; 283 // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align; 284 PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy); 285 PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt, 286 llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1)); 287 PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt, 288 llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity())); 289 PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt, 290 Ptr->getType(), 291 Ptr->getName() + ".aligned"); 292 return PtrAsInt; 293 } 294 295 /// Emit va_arg for a platform using the common void* representation, 296 /// where arguments are simply emitted in an array of slots on the stack. 297 /// 298 /// This version implements the core direct-value passing rules. 299 /// 300 /// \param SlotSize - The size and alignment of a stack slot. 301 /// Each argument will be allocated to a multiple of this number of 302 /// slots, and all the slots will be aligned to this value. 303 /// \param AllowHigherAlign - The slot alignment is not a cap; 304 /// an argument type with an alignment greater than the slot size 305 /// will be emitted on a higher-alignment address, potentially 306 /// leaving one or more empty slots behind as padding. If this 307 /// is false, the returned address might be less-aligned than 308 /// DirectAlign. 309 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF, 310 Address VAListAddr, 311 llvm::Type *DirectTy, 312 CharUnits DirectSize, 313 CharUnits DirectAlign, 314 CharUnits SlotSize, 315 bool AllowHigherAlign) { 316 // Cast the element type to i8* if necessary. Some platforms define 317 // va_list as a struct containing an i8* instead of just an i8*. 318 if (VAListAddr.getElementType() != CGF.Int8PtrTy) 319 VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy); 320 321 llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur"); 322 323 // If the CC aligns values higher than the slot size, do so if needed. 324 Address Addr = Address::invalid(); 325 if (AllowHigherAlign && DirectAlign > SlotSize) { 326 Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign), 327 DirectAlign); 328 } else { 329 Addr = Address(Ptr, SlotSize); 330 } 331 332 // Advance the pointer past the argument, then store that back. 333 CharUnits FullDirectSize = DirectSize.alignTo(SlotSize); 334 Address NextPtr = 335 CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next"); 336 CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 337 338 // If the argument is smaller than a slot, and this is a big-endian 339 // target, the argument will be right-adjusted in its slot. 340 if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() && 341 !DirectTy->isStructTy()) { 342 Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize); 343 } 344 345 Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy); 346 return Addr; 347 } 348 349 /// Emit va_arg for a platform using the common void* representation, 350 /// where arguments are simply emitted in an array of slots on the stack. 351 /// 352 /// \param IsIndirect - Values of this type are passed indirectly. 353 /// \param ValueInfo - The size and alignment of this type, generally 354 /// computed with getContext().getTypeInfoInChars(ValueTy). 355 /// \param SlotSizeAndAlign - The size and alignment of a stack slot. 356 /// Each argument will be allocated to a multiple of this number of 357 /// slots, and all the slots will be aligned to this value. 358 /// \param AllowHigherAlign - The slot alignment is not a cap; 359 /// an argument type with an alignment greater than the slot size 360 /// will be emitted on a higher-alignment address, potentially 361 /// leaving one or more empty slots behind as padding. 362 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr, 363 QualType ValueTy, bool IsIndirect, 364 TypeInfoChars ValueInfo, 365 CharUnits SlotSizeAndAlign, 366 bool AllowHigherAlign) { 367 // The size and alignment of the value that was passed directly. 368 CharUnits DirectSize, DirectAlign; 369 if (IsIndirect) { 370 DirectSize = CGF.getPointerSize(); 371 DirectAlign = CGF.getPointerAlign(); 372 } else { 373 DirectSize = ValueInfo.Width; 374 DirectAlign = ValueInfo.Align; 375 } 376 377 // Cast the address we've calculated to the right type. 378 llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy); 379 if (IsIndirect) 380 DirectTy = DirectTy->getPointerTo(0); 381 382 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy, 383 DirectSize, DirectAlign, 384 SlotSizeAndAlign, 385 AllowHigherAlign); 386 387 if (IsIndirect) { 388 Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.Align); 389 } 390 391 return Addr; 392 393 } 394 395 static Address complexTempStructure(CodeGenFunction &CGF, Address VAListAddr, 396 QualType Ty, CharUnits SlotSize, 397 CharUnits EltSize, const ComplexType *CTy) { 398 Address Addr = 399 emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, SlotSize * 2, 400 SlotSize, SlotSize, /*AllowHigher*/ true); 401 402 Address RealAddr = Addr; 403 Address ImagAddr = RealAddr; 404 if (CGF.CGM.getDataLayout().isBigEndian()) { 405 RealAddr = 406 CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize - EltSize); 407 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr, 408 2 * SlotSize - EltSize); 409 } else { 410 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize); 411 } 412 413 llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType()); 414 RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy); 415 ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy); 416 llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal"); 417 llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag"); 418 419 Address Temp = CGF.CreateMemTemp(Ty, "vacplx"); 420 CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty), 421 /*init*/ true); 422 return Temp; 423 } 424 425 static Address emitMergePHI(CodeGenFunction &CGF, 426 Address Addr1, llvm::BasicBlock *Block1, 427 Address Addr2, llvm::BasicBlock *Block2, 428 const llvm::Twine &Name = "") { 429 assert(Addr1.getType() == Addr2.getType()); 430 llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name); 431 PHI->addIncoming(Addr1.getPointer(), Block1); 432 PHI->addIncoming(Addr2.getPointer(), Block2); 433 CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment()); 434 return Address(PHI, Align); 435 } 436 437 TargetCodeGenInfo::~TargetCodeGenInfo() = default; 438 439 // If someone can figure out a general rule for this, that would be great. 440 // It's probably just doomed to be platform-dependent, though. 441 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 442 // Verified for: 443 // x86-64 FreeBSD, Linux, Darwin 444 // x86-32 FreeBSD, Linux, Darwin 445 // PowerPC Linux, Darwin 446 // ARM Darwin (*not* EABI) 447 // AArch64 Linux 448 return 32; 449 } 450 451 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 452 const FunctionNoProtoType *fnType) const { 453 // The following conventions are known to require this to be false: 454 // x86_stdcall 455 // MIPS 456 // For everything else, we just prefer false unless we opt out. 457 return false; 458 } 459 460 void 461 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 462 llvm::SmallString<24> &Opt) const { 463 // This assumes the user is passing a library name like "rt" instead of a 464 // filename like "librt.a/so", and that they don't care whether it's static or 465 // dynamic. 466 Opt = "-l"; 467 Opt += Lib; 468 } 469 470 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const { 471 // OpenCL kernels are called via an explicit runtime API with arguments 472 // set with clSetKernelArg(), not as normal sub-functions. 473 // Return SPIR_KERNEL by default as the kernel calling convention to 474 // ensure the fingerprint is fixed such way that each OpenCL argument 475 // gets one matching argument in the produced kernel function argument 476 // list to enable feasible implementation of clSetKernelArg() with 477 // aggregates etc. In case we would use the default C calling conv here, 478 // clSetKernelArg() might break depending on the target-specific 479 // conventions; different targets might split structs passed as values 480 // to multiple function arguments etc. 481 return llvm::CallingConv::SPIR_KERNEL; 482 } 483 484 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM, 485 llvm::PointerType *T, QualType QT) const { 486 return llvm::ConstantPointerNull::get(T); 487 } 488 489 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 490 const VarDecl *D) const { 491 assert(!CGM.getLangOpts().OpenCL && 492 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 493 "Address space agnostic languages only"); 494 return D ? D->getType().getAddressSpace() : LangAS::Default; 495 } 496 497 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast( 498 CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr, 499 LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const { 500 // Since target may map different address spaces in AST to the same address 501 // space, an address space conversion may end up as a bitcast. 502 if (auto *C = dyn_cast<llvm::Constant>(Src)) 503 return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy); 504 // Try to preserve the source's name to make IR more readable. 505 return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 506 Src, DestTy, Src->hasName() ? Src->getName() + ".ascast" : ""); 507 } 508 509 llvm::Constant * 510 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src, 511 LangAS SrcAddr, LangAS DestAddr, 512 llvm::Type *DestTy) const { 513 // Since target may map different address spaces in AST to the same address 514 // space, an address space conversion may end up as a bitcast. 515 return llvm::ConstantExpr::getPointerCast(Src, DestTy); 516 } 517 518 llvm::SyncScope::ID 519 TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 520 SyncScope Scope, 521 llvm::AtomicOrdering Ordering, 522 llvm::LLVMContext &Ctx) const { 523 return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */ 524 } 525 526 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 527 528 /// isEmptyField - Return true iff a the field is "empty", that is it 529 /// is an unnamed bit-field or an (array of) empty record(s). 530 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 531 bool AllowArrays) { 532 if (FD->isUnnamedBitfield()) 533 return true; 534 535 QualType FT = FD->getType(); 536 537 // Constant arrays of empty records count as empty, strip them off. 538 // Constant arrays of zero length always count as empty. 539 bool WasArray = false; 540 if (AllowArrays) 541 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 542 if (AT->getSize() == 0) 543 return true; 544 FT = AT->getElementType(); 545 // The [[no_unique_address]] special case below does not apply to 546 // arrays of C++ empty records, so we need to remember this fact. 547 WasArray = true; 548 } 549 550 const RecordType *RT = FT->getAs<RecordType>(); 551 if (!RT) 552 return false; 553 554 // C++ record fields are never empty, at least in the Itanium ABI. 555 // 556 // FIXME: We should use a predicate for whether this behavior is true in the 557 // current ABI. 558 // 559 // The exception to the above rule are fields marked with the 560 // [[no_unique_address]] attribute (since C++20). Those do count as empty 561 // according to the Itanium ABI. The exception applies only to records, 562 // not arrays of records, so we must also check whether we stripped off an 563 // array type above. 564 if (isa<CXXRecordDecl>(RT->getDecl()) && 565 (WasArray || !FD->hasAttr<NoUniqueAddressAttr>())) 566 return false; 567 568 return isEmptyRecord(Context, FT, AllowArrays); 569 } 570 571 /// isEmptyRecord - Return true iff a structure contains only empty 572 /// fields. Note that a structure with a flexible array member is not 573 /// considered empty. 574 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 575 const RecordType *RT = T->getAs<RecordType>(); 576 if (!RT) 577 return false; 578 const RecordDecl *RD = RT->getDecl(); 579 if (RD->hasFlexibleArrayMember()) 580 return false; 581 582 // If this is a C++ record, check the bases first. 583 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 584 for (const auto &I : CXXRD->bases()) 585 if (!isEmptyRecord(Context, I.getType(), true)) 586 return false; 587 588 for (const auto *I : RD->fields()) 589 if (!isEmptyField(Context, I, AllowArrays)) 590 return false; 591 return true; 592 } 593 594 /// isSingleElementStruct - Determine if a structure is a "single 595 /// element struct", i.e. it has exactly one non-empty field or 596 /// exactly one field which is itself a single element 597 /// struct. Structures with flexible array members are never 598 /// considered single element structs. 599 /// 600 /// \return The field declaration for the single non-empty field, if 601 /// it exists. 602 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 603 const RecordType *RT = T->getAs<RecordType>(); 604 if (!RT) 605 return nullptr; 606 607 const RecordDecl *RD = RT->getDecl(); 608 if (RD->hasFlexibleArrayMember()) 609 return nullptr; 610 611 const Type *Found = nullptr; 612 613 // If this is a C++ record, check the bases first. 614 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 615 for (const auto &I : CXXRD->bases()) { 616 // Ignore empty records. 617 if (isEmptyRecord(Context, I.getType(), true)) 618 continue; 619 620 // If we already found an element then this isn't a single-element struct. 621 if (Found) 622 return nullptr; 623 624 // If this is non-empty and not a single element struct, the composite 625 // cannot be a single element struct. 626 Found = isSingleElementStruct(I.getType(), Context); 627 if (!Found) 628 return nullptr; 629 } 630 } 631 632 // Check for single element. 633 for (const auto *FD : RD->fields()) { 634 QualType FT = FD->getType(); 635 636 // Ignore empty fields. 637 if (isEmptyField(Context, FD, true)) 638 continue; 639 640 // If we already found an element then this isn't a single-element 641 // struct. 642 if (Found) 643 return nullptr; 644 645 // Treat single element arrays as the element. 646 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 647 if (AT->getSize().getZExtValue() != 1) 648 break; 649 FT = AT->getElementType(); 650 } 651 652 if (!isAggregateTypeForABI(FT)) { 653 Found = FT.getTypePtr(); 654 } else { 655 Found = isSingleElementStruct(FT, Context); 656 if (!Found) 657 return nullptr; 658 } 659 } 660 661 // We don't consider a struct a single-element struct if it has 662 // padding beyond the element type. 663 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 664 return nullptr; 665 666 return Found; 667 } 668 669 namespace { 670 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, 671 const ABIArgInfo &AI) { 672 // This default implementation defers to the llvm backend's va_arg 673 // instruction. It can handle only passing arguments directly 674 // (typically only handled in the backend for primitive types), or 675 // aggregates passed indirectly by pointer (NOTE: if the "byval" 676 // flag has ABI impact in the callee, this implementation cannot 677 // work.) 678 679 // Only a few cases are covered here at the moment -- those needed 680 // by the default abi. 681 llvm::Value *Val; 682 683 if (AI.isIndirect()) { 684 assert(!AI.getPaddingType() && 685 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 686 assert( 687 !AI.getIndirectRealign() && 688 "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!"); 689 690 auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty); 691 CharUnits TyAlignForABI = TyInfo.Align; 692 693 llvm::Type *BaseTy = 694 llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 695 llvm::Value *Addr = 696 CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy); 697 return Address(Addr, TyAlignForABI); 698 } else { 699 assert((AI.isDirect() || AI.isExtend()) && 700 "Unexpected ArgInfo Kind in generic VAArg emitter!"); 701 702 assert(!AI.getInReg() && 703 "Unexpected InReg seen in arginfo in generic VAArg emitter!"); 704 assert(!AI.getPaddingType() && 705 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 706 assert(!AI.getDirectOffset() && 707 "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!"); 708 assert(!AI.getCoerceToType() && 709 "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!"); 710 711 Address Temp = CGF.CreateMemTemp(Ty, "varet"); 712 Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty)); 713 CGF.Builder.CreateStore(Val, Temp); 714 return Temp; 715 } 716 } 717 718 /// DefaultABIInfo - The default implementation for ABI specific 719 /// details. This implementation provides information which results in 720 /// self-consistent and sensible LLVM IR generation, but does not 721 /// conform to any particular ABI. 722 class DefaultABIInfo : public ABIInfo { 723 public: 724 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 725 726 ABIArgInfo classifyReturnType(QualType RetTy) const; 727 ABIArgInfo classifyArgumentType(QualType RetTy) const; 728 729 void computeInfo(CGFunctionInfo &FI) const override { 730 if (!getCXXABI().classifyReturnType(FI)) 731 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 732 for (auto &I : FI.arguments()) 733 I.info = classifyArgumentType(I.type); 734 } 735 736 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 737 QualType Ty) const override { 738 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 739 } 740 }; 741 742 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 743 public: 744 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 745 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 746 }; 747 748 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 749 Ty = useFirstFieldIfTransparentUnion(Ty); 750 751 if (isAggregateTypeForABI(Ty)) { 752 // Records with non-trivial destructors/copy-constructors should not be 753 // passed by value. 754 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 755 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 756 757 return getNaturalAlignIndirect(Ty); 758 } 759 760 // Treat an enum type as its underlying type. 761 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 762 Ty = EnumTy->getDecl()->getIntegerType(); 763 764 ASTContext &Context = getContext(); 765 if (const auto *EIT = Ty->getAs<ExtIntType>()) 766 if (EIT->getNumBits() > 767 Context.getTypeSize(Context.getTargetInfo().hasInt128Type() 768 ? Context.Int128Ty 769 : Context.LongLongTy)) 770 return getNaturalAlignIndirect(Ty); 771 772 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 773 : ABIArgInfo::getDirect()); 774 } 775 776 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 777 if (RetTy->isVoidType()) 778 return ABIArgInfo::getIgnore(); 779 780 if (isAggregateTypeForABI(RetTy)) 781 return getNaturalAlignIndirect(RetTy); 782 783 // Treat an enum type as its underlying type. 784 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 785 RetTy = EnumTy->getDecl()->getIntegerType(); 786 787 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 788 if (EIT->getNumBits() > 789 getContext().getTypeSize(getContext().getTargetInfo().hasInt128Type() 790 ? getContext().Int128Ty 791 : getContext().LongLongTy)) 792 return getNaturalAlignIndirect(RetTy); 793 794 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 795 : ABIArgInfo::getDirect()); 796 } 797 798 //===----------------------------------------------------------------------===// 799 // WebAssembly ABI Implementation 800 // 801 // This is a very simple ABI that relies a lot on DefaultABIInfo. 802 //===----------------------------------------------------------------------===// 803 804 class WebAssemblyABIInfo final : public SwiftABIInfo { 805 public: 806 enum ABIKind { 807 MVP = 0, 808 ExperimentalMV = 1, 809 }; 810 811 private: 812 DefaultABIInfo defaultInfo; 813 ABIKind Kind; 814 815 public: 816 explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind) 817 : SwiftABIInfo(CGT), defaultInfo(CGT), Kind(Kind) {} 818 819 private: 820 ABIArgInfo classifyReturnType(QualType RetTy) const; 821 ABIArgInfo classifyArgumentType(QualType Ty) const; 822 823 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 824 // non-virtual, but computeInfo and EmitVAArg are virtual, so we 825 // overload them. 826 void computeInfo(CGFunctionInfo &FI) const override { 827 if (!getCXXABI().classifyReturnType(FI)) 828 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 829 for (auto &Arg : FI.arguments()) 830 Arg.info = classifyArgumentType(Arg.type); 831 } 832 833 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 834 QualType Ty) const override; 835 836 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 837 bool asReturnValue) const override { 838 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 839 } 840 841 bool isSwiftErrorInRegister() const override { 842 return false; 843 } 844 }; 845 846 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo { 847 public: 848 explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 849 WebAssemblyABIInfo::ABIKind K) 850 : TargetCodeGenInfo(std::make_unique<WebAssemblyABIInfo>(CGT, K)) {} 851 852 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 853 CodeGen::CodeGenModule &CGM) const override { 854 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 855 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 856 if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) { 857 llvm::Function *Fn = cast<llvm::Function>(GV); 858 llvm::AttrBuilder B; 859 B.addAttribute("wasm-import-module", Attr->getImportModule()); 860 Fn->addFnAttrs(B); 861 } 862 if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) { 863 llvm::Function *Fn = cast<llvm::Function>(GV); 864 llvm::AttrBuilder B; 865 B.addAttribute("wasm-import-name", Attr->getImportName()); 866 Fn->addFnAttrs(B); 867 } 868 if (const auto *Attr = FD->getAttr<WebAssemblyExportNameAttr>()) { 869 llvm::Function *Fn = cast<llvm::Function>(GV); 870 llvm::AttrBuilder B; 871 B.addAttribute("wasm-export-name", Attr->getExportName()); 872 Fn->addFnAttrs(B); 873 } 874 } 875 876 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 877 llvm::Function *Fn = cast<llvm::Function>(GV); 878 if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype()) 879 Fn->addFnAttr("no-prototype"); 880 } 881 } 882 }; 883 884 /// Classify argument of given type \p Ty. 885 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const { 886 Ty = useFirstFieldIfTransparentUnion(Ty); 887 888 if (isAggregateTypeForABI(Ty)) { 889 // Records with non-trivial destructors/copy-constructors should not be 890 // passed by value. 891 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 892 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 893 // Ignore empty structs/unions. 894 if (isEmptyRecord(getContext(), Ty, true)) 895 return ABIArgInfo::getIgnore(); 896 // Lower single-element structs to just pass a regular value. TODO: We 897 // could do reasonable-size multiple-element structs too, using getExpand(), 898 // though watch out for things like bitfields. 899 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 900 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 901 // For the experimental multivalue ABI, fully expand all other aggregates 902 if (Kind == ABIKind::ExperimentalMV) { 903 const RecordType *RT = Ty->getAs<RecordType>(); 904 assert(RT); 905 bool HasBitField = false; 906 for (auto *Field : RT->getDecl()->fields()) { 907 if (Field->isBitField()) { 908 HasBitField = true; 909 break; 910 } 911 } 912 if (!HasBitField) 913 return ABIArgInfo::getExpand(); 914 } 915 } 916 917 // Otherwise just do the default thing. 918 return defaultInfo.classifyArgumentType(Ty); 919 } 920 921 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const { 922 if (isAggregateTypeForABI(RetTy)) { 923 // Records with non-trivial destructors/copy-constructors should not be 924 // returned by value. 925 if (!getRecordArgABI(RetTy, getCXXABI())) { 926 // Ignore empty structs/unions. 927 if (isEmptyRecord(getContext(), RetTy, true)) 928 return ABIArgInfo::getIgnore(); 929 // Lower single-element structs to just return a regular value. TODO: We 930 // could do reasonable-size multiple-element structs too, using 931 // ABIArgInfo::getDirect(). 932 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 933 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 934 // For the experimental multivalue ABI, return all other aggregates 935 if (Kind == ABIKind::ExperimentalMV) 936 return ABIArgInfo::getDirect(); 937 } 938 } 939 940 // Otherwise just do the default thing. 941 return defaultInfo.classifyReturnType(RetTy); 942 } 943 944 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 945 QualType Ty) const { 946 bool IsIndirect = isAggregateTypeForABI(Ty) && 947 !isEmptyRecord(getContext(), Ty, true) && 948 !isSingleElementStruct(Ty, getContext()); 949 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 950 getContext().getTypeInfoInChars(Ty), 951 CharUnits::fromQuantity(4), 952 /*AllowHigherAlign=*/true); 953 } 954 955 //===----------------------------------------------------------------------===// 956 // le32/PNaCl bitcode ABI Implementation 957 // 958 // This is a simplified version of the x86_32 ABI. Arguments and return values 959 // are always passed on the stack. 960 //===----------------------------------------------------------------------===// 961 962 class PNaClABIInfo : public ABIInfo { 963 public: 964 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 965 966 ABIArgInfo classifyReturnType(QualType RetTy) const; 967 ABIArgInfo classifyArgumentType(QualType RetTy) const; 968 969 void computeInfo(CGFunctionInfo &FI) const override; 970 Address EmitVAArg(CodeGenFunction &CGF, 971 Address VAListAddr, QualType Ty) const override; 972 }; 973 974 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 975 public: 976 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 977 : TargetCodeGenInfo(std::make_unique<PNaClABIInfo>(CGT)) {} 978 }; 979 980 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 981 if (!getCXXABI().classifyReturnType(FI)) 982 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 983 984 for (auto &I : FI.arguments()) 985 I.info = classifyArgumentType(I.type); 986 } 987 988 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 989 QualType Ty) const { 990 // The PNaCL ABI is a bit odd, in that varargs don't use normal 991 // function classification. Structs get passed directly for varargs 992 // functions, through a rewriting transform in 993 // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows 994 // this target to actually support a va_arg instructions with an 995 // aggregate type, unlike other targets. 996 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 997 } 998 999 /// Classify argument of given type \p Ty. 1000 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 1001 if (isAggregateTypeForABI(Ty)) { 1002 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 1003 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 1004 return getNaturalAlignIndirect(Ty); 1005 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 1006 // Treat an enum type as its underlying type. 1007 Ty = EnumTy->getDecl()->getIntegerType(); 1008 } else if (Ty->isFloatingType()) { 1009 // Floating-point types don't go inreg. 1010 return ABIArgInfo::getDirect(); 1011 } else if (const auto *EIT = Ty->getAs<ExtIntType>()) { 1012 // Treat extended integers as integers if <=64, otherwise pass indirectly. 1013 if (EIT->getNumBits() > 64) 1014 return getNaturalAlignIndirect(Ty); 1015 return ABIArgInfo::getDirect(); 1016 } 1017 1018 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 1019 : ABIArgInfo::getDirect()); 1020 } 1021 1022 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 1023 if (RetTy->isVoidType()) 1024 return ABIArgInfo::getIgnore(); 1025 1026 // In the PNaCl ABI we always return records/structures on the stack. 1027 if (isAggregateTypeForABI(RetTy)) 1028 return getNaturalAlignIndirect(RetTy); 1029 1030 // Treat extended integers as integers if <=64, otherwise pass indirectly. 1031 if (const auto *EIT = RetTy->getAs<ExtIntType>()) { 1032 if (EIT->getNumBits() > 64) 1033 return getNaturalAlignIndirect(RetTy); 1034 return ABIArgInfo::getDirect(); 1035 } 1036 1037 // Treat an enum type as its underlying type. 1038 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1039 RetTy = EnumTy->getDecl()->getIntegerType(); 1040 1041 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 1042 : ABIArgInfo::getDirect()); 1043 } 1044 1045 /// IsX86_MMXType - Return true if this is an MMX type. 1046 bool IsX86_MMXType(llvm::Type *IRType) { 1047 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 1048 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 1049 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 1050 IRType->getScalarSizeInBits() != 64; 1051 } 1052 1053 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1054 StringRef Constraint, 1055 llvm::Type* Ty) { 1056 bool IsMMXCons = llvm::StringSwitch<bool>(Constraint) 1057 .Cases("y", "&y", "^Ym", true) 1058 .Default(false); 1059 if (IsMMXCons && Ty->isVectorTy()) { 1060 if (cast<llvm::VectorType>(Ty)->getPrimitiveSizeInBits().getFixedSize() != 1061 64) { 1062 // Invalid MMX constraint 1063 return nullptr; 1064 } 1065 1066 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 1067 } 1068 1069 // No operation needed 1070 return Ty; 1071 } 1072 1073 /// Returns true if this type can be passed in SSE registers with the 1074 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 1075 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 1076 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 1077 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) { 1078 if (BT->getKind() == BuiltinType::LongDouble) { 1079 if (&Context.getTargetInfo().getLongDoubleFormat() == 1080 &llvm::APFloat::x87DoubleExtended()) 1081 return false; 1082 } 1083 return true; 1084 } 1085 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 1086 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 1087 // registers specially. 1088 unsigned VecSize = Context.getTypeSize(VT); 1089 if (VecSize == 128 || VecSize == 256 || VecSize == 512) 1090 return true; 1091 } 1092 return false; 1093 } 1094 1095 /// Returns true if this aggregate is small enough to be passed in SSE registers 1096 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 1097 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 1098 return NumMembers <= 4; 1099 } 1100 1101 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86. 1102 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) { 1103 auto AI = ABIArgInfo::getDirect(T); 1104 AI.setInReg(true); 1105 AI.setCanBeFlattened(false); 1106 return AI; 1107 } 1108 1109 //===----------------------------------------------------------------------===// 1110 // X86-32 ABI Implementation 1111 //===----------------------------------------------------------------------===// 1112 1113 /// Similar to llvm::CCState, but for Clang. 1114 struct CCState { 1115 CCState(CGFunctionInfo &FI) 1116 : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()) {} 1117 1118 llvm::SmallBitVector IsPreassigned; 1119 unsigned CC = CallingConv::CC_C; 1120 unsigned FreeRegs = 0; 1121 unsigned FreeSSERegs = 0; 1122 }; 1123 1124 /// X86_32ABIInfo - The X86-32 ABI information. 1125 class X86_32ABIInfo : public SwiftABIInfo { 1126 enum Class { 1127 Integer, 1128 Float 1129 }; 1130 1131 static const unsigned MinABIStackAlignInBytes = 4; 1132 1133 bool IsDarwinVectorABI; 1134 bool IsRetSmallStructInRegABI; 1135 bool IsWin32StructABI; 1136 bool IsSoftFloatABI; 1137 bool IsMCUABI; 1138 bool IsLinuxABI; 1139 unsigned DefaultNumRegisterParameters; 1140 1141 static bool isRegisterSize(unsigned Size) { 1142 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 1143 } 1144 1145 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 1146 // FIXME: Assumes vectorcall is in use. 1147 return isX86VectorTypeForVectorCall(getContext(), Ty); 1148 } 1149 1150 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 1151 uint64_t NumMembers) const override { 1152 // FIXME: Assumes vectorcall is in use. 1153 return isX86VectorCallAggregateSmallEnough(NumMembers); 1154 } 1155 1156 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 1157 1158 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1159 /// such that the argument will be passed in memory. 1160 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 1161 1162 ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; 1163 1164 /// Return the alignment to use for the given type on the stack. 1165 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 1166 1167 Class classify(QualType Ty) const; 1168 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 1169 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 1170 1171 /// Updates the number of available free registers, returns 1172 /// true if any registers were allocated. 1173 bool updateFreeRegs(QualType Ty, CCState &State) const; 1174 1175 bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, 1176 bool &NeedsPadding) const; 1177 bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; 1178 1179 bool canExpandIndirectArgument(QualType Ty) const; 1180 1181 /// Rewrite the function info so that all memory arguments use 1182 /// inalloca. 1183 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 1184 1185 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1186 CharUnits &StackOffset, ABIArgInfo &Info, 1187 QualType Type) const; 1188 void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const; 1189 1190 public: 1191 1192 void computeInfo(CGFunctionInfo &FI) const override; 1193 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 1194 QualType Ty) const override; 1195 1196 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1197 bool RetSmallStructInRegABI, bool Win32StructABI, 1198 unsigned NumRegisterParameters, bool SoftFloatABI) 1199 : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), 1200 IsRetSmallStructInRegABI(RetSmallStructInRegABI), 1201 IsWin32StructABI(Win32StructABI), IsSoftFloatABI(SoftFloatABI), 1202 IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), 1203 IsLinuxABI(CGT.getTarget().getTriple().isOSLinux() || 1204 CGT.getTarget().getTriple().isOSCygMing()), 1205 DefaultNumRegisterParameters(NumRegisterParameters) {} 1206 1207 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 1208 bool asReturnValue) const override { 1209 // LLVM's x86-32 lowering currently only assigns up to three 1210 // integer registers and three fp registers. Oddly, it'll use up to 1211 // four vector registers for vectors, but those can overlap with the 1212 // scalar registers. 1213 return occupiesMoreThan(CGT, scalars, /*total*/ 3); 1214 } 1215 1216 bool isSwiftErrorInRegister() const override { 1217 // x86-32 lowering does not support passing swifterror in a register. 1218 return false; 1219 } 1220 }; 1221 1222 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 1223 public: 1224 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1225 bool RetSmallStructInRegABI, bool Win32StructABI, 1226 unsigned NumRegisterParameters, bool SoftFloatABI) 1227 : TargetCodeGenInfo(std::make_unique<X86_32ABIInfo>( 1228 CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, 1229 NumRegisterParameters, SoftFloatABI)) {} 1230 1231 static bool isStructReturnInRegABI( 1232 const llvm::Triple &Triple, const CodeGenOptions &Opts); 1233 1234 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1235 CodeGen::CodeGenModule &CGM) const override; 1236 1237 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1238 // Darwin uses different dwarf register numbers for EH. 1239 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 1240 return 4; 1241 } 1242 1243 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1244 llvm::Value *Address) const override; 1245 1246 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1247 StringRef Constraint, 1248 llvm::Type* Ty) const override { 1249 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1250 } 1251 1252 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 1253 std::string &Constraints, 1254 std::vector<llvm::Type *> &ResultRegTypes, 1255 std::vector<llvm::Type *> &ResultTruncRegTypes, 1256 std::vector<LValue> &ResultRegDests, 1257 std::string &AsmString, 1258 unsigned NumOutputs) const override; 1259 1260 llvm::Constant * 1261 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1262 unsigned Sig = (0xeb << 0) | // jmp rel8 1263 (0x06 << 8) | // .+0x08 1264 ('v' << 16) | 1265 ('2' << 24); 1266 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1267 } 1268 1269 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 1270 return "movl\t%ebp, %ebp" 1271 "\t\t// marker for objc_retainAutoreleaseReturnValue"; 1272 } 1273 }; 1274 1275 } 1276 1277 /// Rewrite input constraint references after adding some output constraints. 1278 /// In the case where there is one output and one input and we add one output, 1279 /// we need to replace all operand references greater than or equal to 1: 1280 /// mov $0, $1 1281 /// mov eax, $1 1282 /// The result will be: 1283 /// mov $0, $2 1284 /// mov eax, $2 1285 static void rewriteInputConstraintReferences(unsigned FirstIn, 1286 unsigned NumNewOuts, 1287 std::string &AsmString) { 1288 std::string Buf; 1289 llvm::raw_string_ostream OS(Buf); 1290 size_t Pos = 0; 1291 while (Pos < AsmString.size()) { 1292 size_t DollarStart = AsmString.find('$', Pos); 1293 if (DollarStart == std::string::npos) 1294 DollarStart = AsmString.size(); 1295 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 1296 if (DollarEnd == std::string::npos) 1297 DollarEnd = AsmString.size(); 1298 OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 1299 Pos = DollarEnd; 1300 size_t NumDollars = DollarEnd - DollarStart; 1301 if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 1302 // We have an operand reference. 1303 size_t DigitStart = Pos; 1304 if (AsmString[DigitStart] == '{') { 1305 OS << '{'; 1306 ++DigitStart; 1307 } 1308 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 1309 if (DigitEnd == std::string::npos) 1310 DigitEnd = AsmString.size(); 1311 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 1312 unsigned OperandIndex; 1313 if (!OperandStr.getAsInteger(10, OperandIndex)) { 1314 if (OperandIndex >= FirstIn) 1315 OperandIndex += NumNewOuts; 1316 OS << OperandIndex; 1317 } else { 1318 OS << OperandStr; 1319 } 1320 Pos = DigitEnd; 1321 } 1322 } 1323 AsmString = std::move(OS.str()); 1324 } 1325 1326 /// Add output constraints for EAX:EDX because they are return registers. 1327 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 1328 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 1329 std::vector<llvm::Type *> &ResultRegTypes, 1330 std::vector<llvm::Type *> &ResultTruncRegTypes, 1331 std::vector<LValue> &ResultRegDests, std::string &AsmString, 1332 unsigned NumOutputs) const { 1333 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 1334 1335 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 1336 // larger. 1337 if (!Constraints.empty()) 1338 Constraints += ','; 1339 if (RetWidth <= 32) { 1340 Constraints += "={eax}"; 1341 ResultRegTypes.push_back(CGF.Int32Ty); 1342 } else { 1343 // Use the 'A' constraint for EAX:EDX. 1344 Constraints += "=A"; 1345 ResultRegTypes.push_back(CGF.Int64Ty); 1346 } 1347 1348 // Truncate EAX or EAX:EDX to an integer of the appropriate size. 1349 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 1350 ResultTruncRegTypes.push_back(CoerceTy); 1351 1352 // Coerce the integer by bitcasting the return slot pointer. 1353 ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(CGF), 1354 CoerceTy->getPointerTo())); 1355 ResultRegDests.push_back(ReturnSlot); 1356 1357 rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 1358 } 1359 1360 /// shouldReturnTypeInRegister - Determine if the given type should be 1361 /// returned in a register (for the Darwin and MCU ABI). 1362 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 1363 ASTContext &Context) const { 1364 uint64_t Size = Context.getTypeSize(Ty); 1365 1366 // For i386, type must be register sized. 1367 // For the MCU ABI, it only needs to be <= 8-byte 1368 if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) 1369 return false; 1370 1371 if (Ty->isVectorType()) { 1372 // 64- and 128- bit vectors inside structures are not returned in 1373 // registers. 1374 if (Size == 64 || Size == 128) 1375 return false; 1376 1377 return true; 1378 } 1379 1380 // If this is a builtin, pointer, enum, complex type, member pointer, or 1381 // member function pointer it is ok. 1382 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 1383 Ty->isAnyComplexType() || Ty->isEnumeralType() || 1384 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 1385 return true; 1386 1387 // Arrays are treated like records. 1388 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 1389 return shouldReturnTypeInRegister(AT->getElementType(), Context); 1390 1391 // Otherwise, it must be a record type. 1392 const RecordType *RT = Ty->getAs<RecordType>(); 1393 if (!RT) return false; 1394 1395 // FIXME: Traverse bases here too. 1396 1397 // Structure types are passed in register if all fields would be 1398 // passed in a register. 1399 for (const auto *FD : RT->getDecl()->fields()) { 1400 // Empty fields are ignored. 1401 if (isEmptyField(Context, FD, true)) 1402 continue; 1403 1404 // Check fields recursively. 1405 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 1406 return false; 1407 } 1408 return true; 1409 } 1410 1411 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 1412 // Treat complex types as the element type. 1413 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 1414 Ty = CTy->getElementType(); 1415 1416 // Check for a type which we know has a simple scalar argument-passing 1417 // convention without any padding. (We're specifically looking for 32 1418 // and 64-bit integer and integer-equivalents, float, and double.) 1419 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 1420 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 1421 return false; 1422 1423 uint64_t Size = Context.getTypeSize(Ty); 1424 return Size == 32 || Size == 64; 1425 } 1426 1427 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD, 1428 uint64_t &Size) { 1429 for (const auto *FD : RD->fields()) { 1430 // Scalar arguments on the stack get 4 byte alignment on x86. If the 1431 // argument is smaller than 32-bits, expanding the struct will create 1432 // alignment padding. 1433 if (!is32Or64BitBasicType(FD->getType(), Context)) 1434 return false; 1435 1436 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 1437 // how to expand them yet, and the predicate for telling if a bitfield still 1438 // counts as "basic" is more complicated than what we were doing previously. 1439 if (FD->isBitField()) 1440 return false; 1441 1442 Size += Context.getTypeSize(FD->getType()); 1443 } 1444 return true; 1445 } 1446 1447 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD, 1448 uint64_t &Size) { 1449 // Don't do this if there are any non-empty bases. 1450 for (const CXXBaseSpecifier &Base : RD->bases()) { 1451 if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(), 1452 Size)) 1453 return false; 1454 } 1455 if (!addFieldSizes(Context, RD, Size)) 1456 return false; 1457 return true; 1458 } 1459 1460 /// Test whether an argument type which is to be passed indirectly (on the 1461 /// stack) would have the equivalent layout if it was expanded into separate 1462 /// arguments. If so, we prefer to do the latter to avoid inhibiting 1463 /// optimizations. 1464 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const { 1465 // We can only expand structure types. 1466 const RecordType *RT = Ty->getAs<RecordType>(); 1467 if (!RT) 1468 return false; 1469 const RecordDecl *RD = RT->getDecl(); 1470 uint64_t Size = 0; 1471 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1472 if (!IsWin32StructABI) { 1473 // On non-Windows, we have to conservatively match our old bitcode 1474 // prototypes in order to be ABI-compatible at the bitcode level. 1475 if (!CXXRD->isCLike()) 1476 return false; 1477 } else { 1478 // Don't do this for dynamic classes. 1479 if (CXXRD->isDynamicClass()) 1480 return false; 1481 } 1482 if (!addBaseAndFieldSizes(getContext(), CXXRD, Size)) 1483 return false; 1484 } else { 1485 if (!addFieldSizes(getContext(), RD, Size)) 1486 return false; 1487 } 1488 1489 // We can do this if there was no alignment padding. 1490 return Size == getContext().getTypeSize(Ty); 1491 } 1492 1493 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { 1494 // If the return value is indirect, then the hidden argument is consuming one 1495 // integer register. 1496 if (State.FreeRegs) { 1497 --State.FreeRegs; 1498 if (!IsMCUABI) 1499 return getNaturalAlignIndirectInReg(RetTy); 1500 } 1501 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 1502 } 1503 1504 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 1505 CCState &State) const { 1506 if (RetTy->isVoidType()) 1507 return ABIArgInfo::getIgnore(); 1508 1509 const Type *Base = nullptr; 1510 uint64_t NumElts = 0; 1511 if ((State.CC == llvm::CallingConv::X86_VectorCall || 1512 State.CC == llvm::CallingConv::X86_RegCall) && 1513 isHomogeneousAggregate(RetTy, Base, NumElts)) { 1514 // The LLVM struct type for such an aggregate should lower properly. 1515 return ABIArgInfo::getDirect(); 1516 } 1517 1518 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 1519 // On Darwin, some vectors are returned in registers. 1520 if (IsDarwinVectorABI) { 1521 uint64_t Size = getContext().getTypeSize(RetTy); 1522 1523 // 128-bit vectors are a special case; they are returned in 1524 // registers and we need to make sure to pick a type the LLVM 1525 // backend will like. 1526 if (Size == 128) 1527 return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 1528 llvm::Type::getInt64Ty(getVMContext()), 2)); 1529 1530 // Always return in register if it fits in a general purpose 1531 // register, or if it is 64 bits and has a single element. 1532 if ((Size == 8 || Size == 16 || Size == 32) || 1533 (Size == 64 && VT->getNumElements() == 1)) 1534 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1535 Size)); 1536 1537 return getIndirectReturnResult(RetTy, State); 1538 } 1539 1540 return ABIArgInfo::getDirect(); 1541 } 1542 1543 if (isAggregateTypeForABI(RetTy)) { 1544 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 1545 // Structures with flexible arrays are always indirect. 1546 if (RT->getDecl()->hasFlexibleArrayMember()) 1547 return getIndirectReturnResult(RetTy, State); 1548 } 1549 1550 // If specified, structs and unions are always indirect. 1551 if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) 1552 return getIndirectReturnResult(RetTy, State); 1553 1554 // Ignore empty structs/unions. 1555 if (isEmptyRecord(getContext(), RetTy, true)) 1556 return ABIArgInfo::getIgnore(); 1557 1558 // Return complex of _Float16 as <2 x half> so the backend will use xmm0. 1559 if (const ComplexType *CT = RetTy->getAs<ComplexType>()) { 1560 QualType ET = getContext().getCanonicalType(CT->getElementType()); 1561 if (ET->isFloat16Type()) 1562 return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 1563 llvm::Type::getHalfTy(getVMContext()), 2)); 1564 } 1565 1566 // Small structures which are register sized are generally returned 1567 // in a register. 1568 if (shouldReturnTypeInRegister(RetTy, getContext())) { 1569 uint64_t Size = getContext().getTypeSize(RetTy); 1570 1571 // As a special-case, if the struct is a "single-element" struct, and 1572 // the field is of type "float" or "double", return it in a 1573 // floating-point register. (MSVC does not apply this special case.) 1574 // We apply a similar transformation for pointer types to improve the 1575 // quality of the generated IR. 1576 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 1577 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 1578 || SeltTy->hasPointerRepresentation()) 1579 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 1580 1581 // FIXME: We should be able to narrow this integer in cases with dead 1582 // padding. 1583 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 1584 } 1585 1586 return getIndirectReturnResult(RetTy, State); 1587 } 1588 1589 // Treat an enum type as its underlying type. 1590 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1591 RetTy = EnumTy->getDecl()->getIntegerType(); 1592 1593 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 1594 if (EIT->getNumBits() > 64) 1595 return getIndirectReturnResult(RetTy, State); 1596 1597 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 1598 : ABIArgInfo::getDirect()); 1599 } 1600 1601 static bool isSIMDVectorType(ASTContext &Context, QualType Ty) { 1602 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 1603 } 1604 1605 static bool isRecordWithSIMDVectorType(ASTContext &Context, QualType Ty) { 1606 const RecordType *RT = Ty->getAs<RecordType>(); 1607 if (!RT) 1608 return 0; 1609 const RecordDecl *RD = RT->getDecl(); 1610 1611 // If this is a C++ record, check the bases first. 1612 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1613 for (const auto &I : CXXRD->bases()) 1614 if (!isRecordWithSIMDVectorType(Context, I.getType())) 1615 return false; 1616 1617 for (const auto *i : RD->fields()) { 1618 QualType FT = i->getType(); 1619 1620 if (isSIMDVectorType(Context, FT)) 1621 return true; 1622 1623 if (isRecordWithSIMDVectorType(Context, FT)) 1624 return true; 1625 } 1626 1627 return false; 1628 } 1629 1630 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 1631 unsigned Align) const { 1632 // Otherwise, if the alignment is less than or equal to the minimum ABI 1633 // alignment, just use the default; the backend will handle this. 1634 if (Align <= MinABIStackAlignInBytes) 1635 return 0; // Use default alignment. 1636 1637 if (IsLinuxABI) { 1638 // Exclude other System V OS (e.g Darwin, PS4 and FreeBSD) since we don't 1639 // want to spend any effort dealing with the ramifications of ABI breaks. 1640 // 1641 // If the vector type is __m128/__m256/__m512, return the default alignment. 1642 if (Ty->isVectorType() && (Align == 16 || Align == 32 || Align == 64)) 1643 return Align; 1644 } 1645 // On non-Darwin, the stack type alignment is always 4. 1646 if (!IsDarwinVectorABI) { 1647 // Set explicit alignment, since we may need to realign the top. 1648 return MinABIStackAlignInBytes; 1649 } 1650 1651 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 1652 if (Align >= 16 && (isSIMDVectorType(getContext(), Ty) || 1653 isRecordWithSIMDVectorType(getContext(), Ty))) 1654 return 16; 1655 1656 return MinABIStackAlignInBytes; 1657 } 1658 1659 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 1660 CCState &State) const { 1661 if (!ByVal) { 1662 if (State.FreeRegs) { 1663 --State.FreeRegs; // Non-byval indirects just use one pointer. 1664 if (!IsMCUABI) 1665 return getNaturalAlignIndirectInReg(Ty); 1666 } 1667 return getNaturalAlignIndirect(Ty, false); 1668 } 1669 1670 // Compute the byval alignment. 1671 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 1672 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 1673 if (StackAlign == 0) 1674 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); 1675 1676 // If the stack alignment is less than the type alignment, realign the 1677 // argument. 1678 bool Realign = TypeAlign > StackAlign; 1679 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), 1680 /*ByVal=*/true, Realign); 1681 } 1682 1683 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 1684 const Type *T = isSingleElementStruct(Ty, getContext()); 1685 if (!T) 1686 T = Ty.getTypePtr(); 1687 1688 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 1689 BuiltinType::Kind K = BT->getKind(); 1690 if (K == BuiltinType::Float || K == BuiltinType::Double) 1691 return Float; 1692 } 1693 return Integer; 1694 } 1695 1696 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { 1697 if (!IsSoftFloatABI) { 1698 Class C = classify(Ty); 1699 if (C == Float) 1700 return false; 1701 } 1702 1703 unsigned Size = getContext().getTypeSize(Ty); 1704 unsigned SizeInRegs = (Size + 31) / 32; 1705 1706 if (SizeInRegs == 0) 1707 return false; 1708 1709 if (!IsMCUABI) { 1710 if (SizeInRegs > State.FreeRegs) { 1711 State.FreeRegs = 0; 1712 return false; 1713 } 1714 } else { 1715 // The MCU psABI allows passing parameters in-reg even if there are 1716 // earlier parameters that are passed on the stack. Also, 1717 // it does not allow passing >8-byte structs in-register, 1718 // even if there are 3 free registers available. 1719 if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) 1720 return false; 1721 } 1722 1723 State.FreeRegs -= SizeInRegs; 1724 return true; 1725 } 1726 1727 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, 1728 bool &InReg, 1729 bool &NeedsPadding) const { 1730 // On Windows, aggregates other than HFAs are never passed in registers, and 1731 // they do not consume register slots. Homogenous floating-point aggregates 1732 // (HFAs) have already been dealt with at this point. 1733 if (IsWin32StructABI && isAggregateTypeForABI(Ty)) 1734 return false; 1735 1736 NeedsPadding = false; 1737 InReg = !IsMCUABI; 1738 1739 if (!updateFreeRegs(Ty, State)) 1740 return false; 1741 1742 if (IsMCUABI) 1743 return true; 1744 1745 if (State.CC == llvm::CallingConv::X86_FastCall || 1746 State.CC == llvm::CallingConv::X86_VectorCall || 1747 State.CC == llvm::CallingConv::X86_RegCall) { 1748 if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) 1749 NeedsPadding = true; 1750 1751 return false; 1752 } 1753 1754 return true; 1755 } 1756 1757 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { 1758 if (!updateFreeRegs(Ty, State)) 1759 return false; 1760 1761 if (IsMCUABI) 1762 return false; 1763 1764 if (State.CC == llvm::CallingConv::X86_FastCall || 1765 State.CC == llvm::CallingConv::X86_VectorCall || 1766 State.CC == llvm::CallingConv::X86_RegCall) { 1767 if (getContext().getTypeSize(Ty) > 32) 1768 return false; 1769 1770 return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || 1771 Ty->isReferenceType()); 1772 } 1773 1774 return true; 1775 } 1776 1777 void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const { 1778 // Vectorcall x86 works subtly different than in x64, so the format is 1779 // a bit different than the x64 version. First, all vector types (not HVAs) 1780 // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers. 1781 // This differs from the x64 implementation, where the first 6 by INDEX get 1782 // registers. 1783 // In the second pass over the arguments, HVAs are passed in the remaining 1784 // vector registers if possible, or indirectly by address. The address will be 1785 // passed in ECX/EDX if available. Any other arguments are passed according to 1786 // the usual fastcall rules. 1787 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); 1788 for (int I = 0, E = Args.size(); I < E; ++I) { 1789 const Type *Base = nullptr; 1790 uint64_t NumElts = 0; 1791 const QualType &Ty = Args[I].type; 1792 if ((Ty->isVectorType() || Ty->isBuiltinType()) && 1793 isHomogeneousAggregate(Ty, Base, NumElts)) { 1794 if (State.FreeSSERegs >= NumElts) { 1795 State.FreeSSERegs -= NumElts; 1796 Args[I].info = ABIArgInfo::getDirectInReg(); 1797 State.IsPreassigned.set(I); 1798 } 1799 } 1800 } 1801 } 1802 1803 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 1804 CCState &State) const { 1805 // FIXME: Set alignment on indirect arguments. 1806 bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall; 1807 bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall; 1808 bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall; 1809 1810 Ty = useFirstFieldIfTransparentUnion(Ty); 1811 TypeInfo TI = getContext().getTypeInfo(Ty); 1812 1813 // Check with the C++ ABI first. 1814 const RecordType *RT = Ty->getAs<RecordType>(); 1815 if (RT) { 1816 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 1817 if (RAA == CGCXXABI::RAA_Indirect) { 1818 return getIndirectResult(Ty, false, State); 1819 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 1820 // The field index doesn't matter, we'll fix it up later. 1821 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 1822 } 1823 } 1824 1825 // Regcall uses the concept of a homogenous vector aggregate, similar 1826 // to other targets. 1827 const Type *Base = nullptr; 1828 uint64_t NumElts = 0; 1829 if ((IsRegCall || IsVectorCall) && 1830 isHomogeneousAggregate(Ty, Base, NumElts)) { 1831 if (State.FreeSSERegs >= NumElts) { 1832 State.FreeSSERegs -= NumElts; 1833 1834 // Vectorcall passes HVAs directly and does not flatten them, but regcall 1835 // does. 1836 if (IsVectorCall) 1837 return getDirectX86Hva(); 1838 1839 if (Ty->isBuiltinType() || Ty->isVectorType()) 1840 return ABIArgInfo::getDirect(); 1841 return ABIArgInfo::getExpand(); 1842 } 1843 return getIndirectResult(Ty, /*ByVal=*/false, State); 1844 } 1845 1846 if (isAggregateTypeForABI(Ty)) { 1847 // Structures with flexible arrays are always indirect. 1848 // FIXME: This should not be byval! 1849 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 1850 return getIndirectResult(Ty, true, State); 1851 1852 // Ignore empty structs/unions on non-Windows. 1853 if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true)) 1854 return ABIArgInfo::getIgnore(); 1855 1856 llvm::LLVMContext &LLVMContext = getVMContext(); 1857 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 1858 bool NeedsPadding = false; 1859 bool InReg; 1860 if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { 1861 unsigned SizeInRegs = (TI.Width + 31) / 32; 1862 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 1863 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 1864 if (InReg) 1865 return ABIArgInfo::getDirectInReg(Result); 1866 else 1867 return ABIArgInfo::getDirect(Result); 1868 } 1869 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 1870 1871 // Pass over-aligned aggregates on Windows indirectly. This behavior was 1872 // added in MSVC 2015. 1873 if (IsWin32StructABI && TI.isAlignRequired() && TI.Align > 32) 1874 return getIndirectResult(Ty, /*ByVal=*/false, State); 1875 1876 // Expand small (<= 128-bit) record types when we know that the stack layout 1877 // of those arguments will match the struct. This is important because the 1878 // LLVM backend isn't smart enough to remove byval, which inhibits many 1879 // optimizations. 1880 // Don't do this for the MCU if there are still free integer registers 1881 // (see X86_64 ABI for full explanation). 1882 if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) && 1883 canExpandIndirectArgument(Ty)) 1884 return ABIArgInfo::getExpandWithPadding( 1885 IsFastCall || IsVectorCall || IsRegCall, PaddingType); 1886 1887 return getIndirectResult(Ty, true, State); 1888 } 1889 1890 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1891 // On Windows, vectors are passed directly if registers are available, or 1892 // indirectly if not. This avoids the need to align argument memory. Pass 1893 // user-defined vector types larger than 512 bits indirectly for simplicity. 1894 if (IsWin32StructABI) { 1895 if (TI.Width <= 512 && State.FreeSSERegs > 0) { 1896 --State.FreeSSERegs; 1897 return ABIArgInfo::getDirectInReg(); 1898 } 1899 return getIndirectResult(Ty, /*ByVal=*/false, State); 1900 } 1901 1902 // On Darwin, some vectors are passed in memory, we handle this by passing 1903 // it as an i8/i16/i32/i64. 1904 if (IsDarwinVectorABI) { 1905 if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) || 1906 (TI.Width == 64 && VT->getNumElements() == 1)) 1907 return ABIArgInfo::getDirect( 1908 llvm::IntegerType::get(getVMContext(), TI.Width)); 1909 } 1910 1911 if (IsX86_MMXType(CGT.ConvertType(Ty))) 1912 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 1913 1914 return ABIArgInfo::getDirect(); 1915 } 1916 1917 1918 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1919 Ty = EnumTy->getDecl()->getIntegerType(); 1920 1921 bool InReg = shouldPrimitiveUseInReg(Ty, State); 1922 1923 if (isPromotableIntegerTypeForABI(Ty)) { 1924 if (InReg) 1925 return ABIArgInfo::getExtendInReg(Ty); 1926 return ABIArgInfo::getExtend(Ty); 1927 } 1928 1929 if (const auto * EIT = Ty->getAs<ExtIntType>()) { 1930 if (EIT->getNumBits() <= 64) { 1931 if (InReg) 1932 return ABIArgInfo::getDirectInReg(); 1933 return ABIArgInfo::getDirect(); 1934 } 1935 return getIndirectResult(Ty, /*ByVal=*/false, State); 1936 } 1937 1938 if (InReg) 1939 return ABIArgInfo::getDirectInReg(); 1940 return ABIArgInfo::getDirect(); 1941 } 1942 1943 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 1944 CCState State(FI); 1945 if (IsMCUABI) 1946 State.FreeRegs = 3; 1947 else if (State.CC == llvm::CallingConv::X86_FastCall) { 1948 State.FreeRegs = 2; 1949 State.FreeSSERegs = 3; 1950 } else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1951 State.FreeRegs = 2; 1952 State.FreeSSERegs = 6; 1953 } else if (FI.getHasRegParm()) 1954 State.FreeRegs = FI.getRegParm(); 1955 else if (State.CC == llvm::CallingConv::X86_RegCall) { 1956 State.FreeRegs = 5; 1957 State.FreeSSERegs = 8; 1958 } else if (IsWin32StructABI) { 1959 // Since MSVC 2015, the first three SSE vectors have been passed in 1960 // registers. The rest are passed indirectly. 1961 State.FreeRegs = DefaultNumRegisterParameters; 1962 State.FreeSSERegs = 3; 1963 } else 1964 State.FreeRegs = DefaultNumRegisterParameters; 1965 1966 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 1967 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 1968 } else if (FI.getReturnInfo().isIndirect()) { 1969 // The C++ ABI is not aware of register usage, so we have to check if the 1970 // return value was sret and put it in a register ourselves if appropriate. 1971 if (State.FreeRegs) { 1972 --State.FreeRegs; // The sret parameter consumes a register. 1973 if (!IsMCUABI) 1974 FI.getReturnInfo().setInReg(true); 1975 } 1976 } 1977 1978 // The chain argument effectively gives us another free register. 1979 if (FI.isChainCall()) 1980 ++State.FreeRegs; 1981 1982 // For vectorcall, do a first pass over the arguments, assigning FP and vector 1983 // arguments to XMM registers as available. 1984 if (State.CC == llvm::CallingConv::X86_VectorCall) 1985 runVectorCallFirstPass(FI, State); 1986 1987 bool UsedInAlloca = false; 1988 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); 1989 for (int I = 0, E = Args.size(); I < E; ++I) { 1990 // Skip arguments that have already been assigned. 1991 if (State.IsPreassigned.test(I)) 1992 continue; 1993 1994 Args[I].info = classifyArgumentType(Args[I].type, State); 1995 UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca); 1996 } 1997 1998 // If we needed to use inalloca for any argument, do a second pass and rewrite 1999 // all the memory arguments to use inalloca. 2000 if (UsedInAlloca) 2001 rewriteWithInAlloca(FI); 2002 } 2003 2004 void 2005 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 2006 CharUnits &StackOffset, ABIArgInfo &Info, 2007 QualType Type) const { 2008 // Arguments are always 4-byte-aligned. 2009 CharUnits WordSize = CharUnits::fromQuantity(4); 2010 assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct"); 2011 2012 // sret pointers and indirect things will require an extra pointer 2013 // indirection, unless they are byval. Most things are byval, and will not 2014 // require this indirection. 2015 bool IsIndirect = false; 2016 if (Info.isIndirect() && !Info.getIndirectByVal()) 2017 IsIndirect = true; 2018 Info = ABIArgInfo::getInAlloca(FrameFields.size(), IsIndirect); 2019 llvm::Type *LLTy = CGT.ConvertTypeForMem(Type); 2020 if (IsIndirect) 2021 LLTy = LLTy->getPointerTo(0); 2022 FrameFields.push_back(LLTy); 2023 StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(Type); 2024 2025 // Insert padding bytes to respect alignment. 2026 CharUnits FieldEnd = StackOffset; 2027 StackOffset = FieldEnd.alignTo(WordSize); 2028 if (StackOffset != FieldEnd) { 2029 CharUnits NumBytes = StackOffset - FieldEnd; 2030 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 2031 Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); 2032 FrameFields.push_back(Ty); 2033 } 2034 } 2035 2036 static bool isArgInAlloca(const ABIArgInfo &Info) { 2037 // Leave ignored and inreg arguments alone. 2038 switch (Info.getKind()) { 2039 case ABIArgInfo::InAlloca: 2040 return true; 2041 case ABIArgInfo::Ignore: 2042 case ABIArgInfo::IndirectAliased: 2043 return false; 2044 case ABIArgInfo::Indirect: 2045 case ABIArgInfo::Direct: 2046 case ABIArgInfo::Extend: 2047 return !Info.getInReg(); 2048 case ABIArgInfo::Expand: 2049 case ABIArgInfo::CoerceAndExpand: 2050 // These are aggregate types which are never passed in registers when 2051 // inalloca is involved. 2052 return true; 2053 } 2054 llvm_unreachable("invalid enum"); 2055 } 2056 2057 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 2058 assert(IsWin32StructABI && "inalloca only supported on win32"); 2059 2060 // Build a packed struct type for all of the arguments in memory. 2061 SmallVector<llvm::Type *, 6> FrameFields; 2062 2063 // The stack alignment is always 4. 2064 CharUnits StackAlign = CharUnits::fromQuantity(4); 2065 2066 CharUnits StackOffset; 2067 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 2068 2069 // Put 'this' into the struct before 'sret', if necessary. 2070 bool IsThisCall = 2071 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 2072 ABIArgInfo &Ret = FI.getReturnInfo(); 2073 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 2074 isArgInAlloca(I->info)) { 2075 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 2076 ++I; 2077 } 2078 2079 // Put the sret parameter into the inalloca struct if it's in memory. 2080 if (Ret.isIndirect() && !Ret.getInReg()) { 2081 addFieldToArgStruct(FrameFields, StackOffset, Ret, FI.getReturnType()); 2082 // On Windows, the hidden sret parameter is always returned in eax. 2083 Ret.setInAllocaSRet(IsWin32StructABI); 2084 } 2085 2086 // Skip the 'this' parameter in ecx. 2087 if (IsThisCall) 2088 ++I; 2089 2090 // Put arguments passed in memory into the struct. 2091 for (; I != E; ++I) { 2092 if (isArgInAlloca(I->info)) 2093 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 2094 } 2095 2096 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 2097 /*isPacked=*/true), 2098 StackAlign); 2099 } 2100 2101 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, 2102 Address VAListAddr, QualType Ty) const { 2103 2104 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 2105 2106 // x86-32 changes the alignment of certain arguments on the stack. 2107 // 2108 // Just messing with TypeInfo like this works because we never pass 2109 // anything indirectly. 2110 TypeInfo.Align = CharUnits::fromQuantity( 2111 getTypeStackAlignInBytes(Ty, TypeInfo.Align.getQuantity())); 2112 2113 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 2114 TypeInfo, CharUnits::fromQuantity(4), 2115 /*AllowHigherAlign*/ true); 2116 } 2117 2118 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 2119 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 2120 assert(Triple.getArch() == llvm::Triple::x86); 2121 2122 switch (Opts.getStructReturnConvention()) { 2123 case CodeGenOptions::SRCK_Default: 2124 break; 2125 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 2126 return false; 2127 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 2128 return true; 2129 } 2130 2131 if (Triple.isOSDarwin() || Triple.isOSIAMCU()) 2132 return true; 2133 2134 switch (Triple.getOS()) { 2135 case llvm::Triple::DragonFly: 2136 case llvm::Triple::FreeBSD: 2137 case llvm::Triple::OpenBSD: 2138 case llvm::Triple::Win32: 2139 return true; 2140 default: 2141 return false; 2142 } 2143 } 2144 2145 static void addX86InterruptAttrs(const FunctionDecl *FD, llvm::GlobalValue *GV, 2146 CodeGen::CodeGenModule &CGM) { 2147 if (!FD->hasAttr<AnyX86InterruptAttr>()) 2148 return; 2149 2150 llvm::Function *Fn = cast<llvm::Function>(GV); 2151 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2152 if (FD->getNumParams() == 0) 2153 return; 2154 2155 auto PtrTy = cast<PointerType>(FD->getParamDecl(0)->getType()); 2156 llvm::Type *ByValTy = CGM.getTypes().ConvertType(PtrTy->getPointeeType()); 2157 llvm::Attribute NewAttr = llvm::Attribute::getWithByValType( 2158 Fn->getContext(), ByValTy); 2159 Fn->addParamAttr(0, NewAttr); 2160 } 2161 2162 void X86_32TargetCodeGenInfo::setTargetAttributes( 2163 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2164 if (GV->isDeclaration()) 2165 return; 2166 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2167 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2168 llvm::Function *Fn = cast<llvm::Function>(GV); 2169 Fn->addFnAttr("stackrealign"); 2170 } 2171 2172 addX86InterruptAttrs(FD, GV, CGM); 2173 } 2174 } 2175 2176 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 2177 CodeGen::CodeGenFunction &CGF, 2178 llvm::Value *Address) const { 2179 CodeGen::CGBuilderTy &Builder = CGF.Builder; 2180 2181 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 2182 2183 // 0-7 are the eight integer registers; the order is different 2184 // on Darwin (for EH), but the range is the same. 2185 // 8 is %eip. 2186 AssignToArrayRange(Builder, Address, Four8, 0, 8); 2187 2188 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 2189 // 12-16 are st(0..4). Not sure why we stop at 4. 2190 // These have size 16, which is sizeof(long double) on 2191 // platforms with 8-byte alignment for that type. 2192 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 2193 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 2194 2195 } else { 2196 // 9 is %eflags, which doesn't get a size on Darwin for some 2197 // reason. 2198 Builder.CreateAlignedStore( 2199 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), 2200 CharUnits::One()); 2201 2202 // 11-16 are st(0..5). Not sure why we stop at 5. 2203 // These have size 12, which is sizeof(long double) on 2204 // platforms with 4-byte alignment for that type. 2205 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 2206 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 2207 } 2208 2209 return false; 2210 } 2211 2212 //===----------------------------------------------------------------------===// 2213 // X86-64 ABI Implementation 2214 //===----------------------------------------------------------------------===// 2215 2216 2217 namespace { 2218 /// The AVX ABI level for X86 targets. 2219 enum class X86AVXABILevel { 2220 None, 2221 AVX, 2222 AVX512 2223 }; 2224 2225 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. 2226 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { 2227 switch (AVXLevel) { 2228 case X86AVXABILevel::AVX512: 2229 return 512; 2230 case X86AVXABILevel::AVX: 2231 return 256; 2232 case X86AVXABILevel::None: 2233 return 128; 2234 } 2235 llvm_unreachable("Unknown AVXLevel"); 2236 } 2237 2238 /// X86_64ABIInfo - The X86_64 ABI information. 2239 class X86_64ABIInfo : public SwiftABIInfo { 2240 enum Class { 2241 Integer = 0, 2242 SSE, 2243 SSEUp, 2244 X87, 2245 X87Up, 2246 ComplexX87, 2247 NoClass, 2248 Memory 2249 }; 2250 2251 /// merge - Implement the X86_64 ABI merging algorithm. 2252 /// 2253 /// Merge an accumulating classification \arg Accum with a field 2254 /// classification \arg Field. 2255 /// 2256 /// \param Accum - The accumulating classification. This should 2257 /// always be either NoClass or the result of a previous merge 2258 /// call. In addition, this should never be Memory (the caller 2259 /// should just return Memory for the aggregate). 2260 static Class merge(Class Accum, Class Field); 2261 2262 /// postMerge - Implement the X86_64 ABI post merging algorithm. 2263 /// 2264 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 2265 /// final MEMORY or SSE classes when necessary. 2266 /// 2267 /// \param AggregateSize - The size of the current aggregate in 2268 /// the classification process. 2269 /// 2270 /// \param Lo - The classification for the parts of the type 2271 /// residing in the low word of the containing object. 2272 /// 2273 /// \param Hi - The classification for the parts of the type 2274 /// residing in the higher words of the containing object. 2275 /// 2276 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 2277 2278 /// classify - Determine the x86_64 register classes in which the 2279 /// given type T should be passed. 2280 /// 2281 /// \param Lo - The classification for the parts of the type 2282 /// residing in the low word of the containing object. 2283 /// 2284 /// \param Hi - The classification for the parts of the type 2285 /// residing in the high word of the containing object. 2286 /// 2287 /// \param OffsetBase - The bit offset of this type in the 2288 /// containing object. Some parameters are classified different 2289 /// depending on whether they straddle an eightbyte boundary. 2290 /// 2291 /// \param isNamedArg - Whether the argument in question is a "named" 2292 /// argument, as used in AMD64-ABI 3.5.7. 2293 /// 2294 /// If a word is unused its result will be NoClass; if a type should 2295 /// be passed in Memory then at least the classification of \arg Lo 2296 /// will be Memory. 2297 /// 2298 /// The \arg Lo class will be NoClass iff the argument is ignored. 2299 /// 2300 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 2301 /// also be ComplexX87. 2302 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 2303 bool isNamedArg) const; 2304 2305 llvm::Type *GetByteVectorType(QualType Ty) const; 2306 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 2307 unsigned IROffset, QualType SourceTy, 2308 unsigned SourceOffset) const; 2309 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 2310 unsigned IROffset, QualType SourceTy, 2311 unsigned SourceOffset) const; 2312 2313 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2314 /// such that the argument will be returned in memory. 2315 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 2316 2317 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2318 /// such that the argument will be passed in memory. 2319 /// 2320 /// \param freeIntRegs - The number of free integer registers remaining 2321 /// available. 2322 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 2323 2324 ABIArgInfo classifyReturnType(QualType RetTy) const; 2325 2326 ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs, 2327 unsigned &neededInt, unsigned &neededSSE, 2328 bool isNamedArg) const; 2329 2330 ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt, 2331 unsigned &NeededSSE) const; 2332 2333 ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 2334 unsigned &NeededSSE) const; 2335 2336 bool IsIllegalVectorType(QualType Ty) const; 2337 2338 /// The 0.98 ABI revision clarified a lot of ambiguities, 2339 /// unfortunately in ways that were not always consistent with 2340 /// certain previous compilers. In particular, platforms which 2341 /// required strict binary compatibility with older versions of GCC 2342 /// may need to exempt themselves. 2343 bool honorsRevision0_98() const { 2344 return !getTarget().getTriple().isOSDarwin(); 2345 } 2346 2347 /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to 2348 /// classify it as INTEGER (for compatibility with older clang compilers). 2349 bool classifyIntegerMMXAsSSE() const { 2350 // Clang <= 3.8 did not do this. 2351 if (getContext().getLangOpts().getClangABICompat() <= 2352 LangOptions::ClangABI::Ver3_8) 2353 return false; 2354 2355 const llvm::Triple &Triple = getTarget().getTriple(); 2356 if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4) 2357 return false; 2358 if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10) 2359 return false; 2360 return true; 2361 } 2362 2363 // GCC classifies vectors of __int128 as memory. 2364 bool passInt128VectorsInMem() const { 2365 // Clang <= 9.0 did not do this. 2366 if (getContext().getLangOpts().getClangABICompat() <= 2367 LangOptions::ClangABI::Ver9) 2368 return false; 2369 2370 const llvm::Triple &T = getTarget().getTriple(); 2371 return T.isOSLinux() || T.isOSNetBSD(); 2372 } 2373 2374 X86AVXABILevel AVXLevel; 2375 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 2376 // 64-bit hardware. 2377 bool Has64BitPointers; 2378 2379 public: 2380 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : 2381 SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2382 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 2383 } 2384 2385 bool isPassedUsingAVXType(QualType type) const { 2386 unsigned neededInt, neededSSE; 2387 // The freeIntRegs argument doesn't matter here. 2388 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 2389 /*isNamedArg*/true); 2390 if (info.isDirect()) { 2391 llvm::Type *ty = info.getCoerceToType(); 2392 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 2393 return vectorTy->getPrimitiveSizeInBits().getFixedSize() > 128; 2394 } 2395 return false; 2396 } 2397 2398 void computeInfo(CGFunctionInfo &FI) const override; 2399 2400 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2401 QualType Ty) const override; 2402 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 2403 QualType Ty) const override; 2404 2405 bool has64BitPointers() const { 2406 return Has64BitPointers; 2407 } 2408 2409 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 2410 bool asReturnValue) const override { 2411 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2412 } 2413 bool isSwiftErrorInRegister() const override { 2414 return true; 2415 } 2416 }; 2417 2418 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 2419 class WinX86_64ABIInfo : public SwiftABIInfo { 2420 public: 2421 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2422 : SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2423 IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} 2424 2425 void computeInfo(CGFunctionInfo &FI) const override; 2426 2427 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2428 QualType Ty) const override; 2429 2430 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 2431 // FIXME: Assumes vectorcall is in use. 2432 return isX86VectorTypeForVectorCall(getContext(), Ty); 2433 } 2434 2435 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 2436 uint64_t NumMembers) const override { 2437 // FIXME: Assumes vectorcall is in use. 2438 return isX86VectorCallAggregateSmallEnough(NumMembers); 2439 } 2440 2441 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars, 2442 bool asReturnValue) const override { 2443 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2444 } 2445 2446 bool isSwiftErrorInRegister() const override { 2447 return true; 2448 } 2449 2450 private: 2451 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType, 2452 bool IsVectorCall, bool IsRegCall) const; 2453 ABIArgInfo reclassifyHvaArgForVectorCall(QualType Ty, unsigned &FreeSSERegs, 2454 const ABIArgInfo ¤t) const; 2455 2456 X86AVXABILevel AVXLevel; 2457 2458 bool IsMingw64; 2459 }; 2460 2461 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2462 public: 2463 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2464 : TargetCodeGenInfo(std::make_unique<X86_64ABIInfo>(CGT, AVXLevel)) {} 2465 2466 const X86_64ABIInfo &getABIInfo() const { 2467 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 2468 } 2469 2470 /// Disable tail call on x86-64. The epilogue code before the tail jump blocks 2471 /// autoreleaseRV/retainRV and autoreleaseRV/unsafeClaimRV optimizations. 2472 bool markARCOptimizedReturnCallsAsNoTail() const override { return true; } 2473 2474 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2475 return 7; 2476 } 2477 2478 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2479 llvm::Value *Address) const override { 2480 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2481 2482 // 0-15 are the 16 integer registers. 2483 // 16 is %rip. 2484 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2485 return false; 2486 } 2487 2488 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 2489 StringRef Constraint, 2490 llvm::Type* Ty) const override { 2491 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 2492 } 2493 2494 bool isNoProtoCallVariadic(const CallArgList &args, 2495 const FunctionNoProtoType *fnType) const override { 2496 // The default CC on x86-64 sets %al to the number of SSA 2497 // registers used, and GCC sets this when calling an unprototyped 2498 // function, so we override the default behavior. However, don't do 2499 // that when AVX types are involved: the ABI explicitly states it is 2500 // undefined, and it doesn't work in practice because of how the ABI 2501 // defines varargs anyway. 2502 if (fnType->getCallConv() == CC_C) { 2503 bool HasAVXType = false; 2504 for (CallArgList::const_iterator 2505 it = args.begin(), ie = args.end(); it != ie; ++it) { 2506 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 2507 HasAVXType = true; 2508 break; 2509 } 2510 } 2511 2512 if (!HasAVXType) 2513 return true; 2514 } 2515 2516 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 2517 } 2518 2519 llvm::Constant * 2520 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 2521 unsigned Sig = (0xeb << 0) | // jmp rel8 2522 (0x06 << 8) | // .+0x08 2523 ('v' << 16) | 2524 ('2' << 24); 2525 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 2526 } 2527 2528 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2529 CodeGen::CodeGenModule &CGM) const override { 2530 if (GV->isDeclaration()) 2531 return; 2532 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2533 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2534 llvm::Function *Fn = cast<llvm::Function>(GV); 2535 Fn->addFnAttr("stackrealign"); 2536 } 2537 2538 addX86InterruptAttrs(FD, GV, CGM); 2539 } 2540 } 2541 2542 void checkFunctionCallABI(CodeGenModule &CGM, SourceLocation CallLoc, 2543 const FunctionDecl *Caller, 2544 const FunctionDecl *Callee, 2545 const CallArgList &Args) const override; 2546 }; 2547 2548 static void initFeatureMaps(const ASTContext &Ctx, 2549 llvm::StringMap<bool> &CallerMap, 2550 const FunctionDecl *Caller, 2551 llvm::StringMap<bool> &CalleeMap, 2552 const FunctionDecl *Callee) { 2553 if (CalleeMap.empty() && CallerMap.empty()) { 2554 // The caller is potentially nullptr in the case where the call isn't in a 2555 // function. In this case, the getFunctionFeatureMap ensures we just get 2556 // the TU level setting (since it cannot be modified by 'target'.. 2557 Ctx.getFunctionFeatureMap(CallerMap, Caller); 2558 Ctx.getFunctionFeatureMap(CalleeMap, Callee); 2559 } 2560 } 2561 2562 static bool checkAVXParamFeature(DiagnosticsEngine &Diag, 2563 SourceLocation CallLoc, 2564 const llvm::StringMap<bool> &CallerMap, 2565 const llvm::StringMap<bool> &CalleeMap, 2566 QualType Ty, StringRef Feature, 2567 bool IsArgument) { 2568 bool CallerHasFeat = CallerMap.lookup(Feature); 2569 bool CalleeHasFeat = CalleeMap.lookup(Feature); 2570 if (!CallerHasFeat && !CalleeHasFeat) 2571 return Diag.Report(CallLoc, diag::warn_avx_calling_convention) 2572 << IsArgument << Ty << Feature; 2573 2574 // Mixing calling conventions here is very clearly an error. 2575 if (!CallerHasFeat || !CalleeHasFeat) 2576 return Diag.Report(CallLoc, diag::err_avx_calling_convention) 2577 << IsArgument << Ty << Feature; 2578 2579 // Else, both caller and callee have the required feature, so there is no need 2580 // to diagnose. 2581 return false; 2582 } 2583 2584 static bool checkAVXParam(DiagnosticsEngine &Diag, ASTContext &Ctx, 2585 SourceLocation CallLoc, 2586 const llvm::StringMap<bool> &CallerMap, 2587 const llvm::StringMap<bool> &CalleeMap, QualType Ty, 2588 bool IsArgument) { 2589 uint64_t Size = Ctx.getTypeSize(Ty); 2590 if (Size > 256) 2591 return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, 2592 "avx512f", IsArgument); 2593 2594 if (Size > 128) 2595 return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, "avx", 2596 IsArgument); 2597 2598 return false; 2599 } 2600 2601 void X86_64TargetCodeGenInfo::checkFunctionCallABI( 2602 CodeGenModule &CGM, SourceLocation CallLoc, const FunctionDecl *Caller, 2603 const FunctionDecl *Callee, const CallArgList &Args) const { 2604 llvm::StringMap<bool> CallerMap; 2605 llvm::StringMap<bool> CalleeMap; 2606 unsigned ArgIndex = 0; 2607 2608 // We need to loop through the actual call arguments rather than the the 2609 // function's parameters, in case this variadic. 2610 for (const CallArg &Arg : Args) { 2611 // The "avx" feature changes how vectors >128 in size are passed. "avx512f" 2612 // additionally changes how vectors >256 in size are passed. Like GCC, we 2613 // warn when a function is called with an argument where this will change. 2614 // Unlike GCC, we also error when it is an obvious ABI mismatch, that is, 2615 // the caller and callee features are mismatched. 2616 // Unfortunately, we cannot do this diagnostic in SEMA, since the callee can 2617 // change its ABI with attribute-target after this call. 2618 if (Arg.getType()->isVectorType() && 2619 CGM.getContext().getTypeSize(Arg.getType()) > 128) { 2620 initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee); 2621 QualType Ty = Arg.getType(); 2622 // The CallArg seems to have desugared the type already, so for clearer 2623 // diagnostics, replace it with the type in the FunctionDecl if possible. 2624 if (ArgIndex < Callee->getNumParams()) 2625 Ty = Callee->getParamDecl(ArgIndex)->getType(); 2626 2627 if (checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap, 2628 CalleeMap, Ty, /*IsArgument*/ true)) 2629 return; 2630 } 2631 ++ArgIndex; 2632 } 2633 2634 // Check return always, as we don't have a good way of knowing in codegen 2635 // whether this value is used, tail-called, etc. 2636 if (Callee->getReturnType()->isVectorType() && 2637 CGM.getContext().getTypeSize(Callee->getReturnType()) > 128) { 2638 initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee); 2639 checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap, 2640 CalleeMap, Callee->getReturnType(), 2641 /*IsArgument*/ false); 2642 } 2643 } 2644 2645 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 2646 // If the argument does not end in .lib, automatically add the suffix. 2647 // If the argument contains a space, enclose it in quotes. 2648 // This matches the behavior of MSVC. 2649 bool Quote = (Lib.find(' ') != StringRef::npos); 2650 std::string ArgStr = Quote ? "\"" : ""; 2651 ArgStr += Lib; 2652 if (!Lib.endswith_insensitive(".lib") && !Lib.endswith_insensitive(".a")) 2653 ArgStr += ".lib"; 2654 ArgStr += Quote ? "\"" : ""; 2655 return ArgStr; 2656 } 2657 2658 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 2659 public: 2660 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2661 bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, 2662 unsigned NumRegisterParameters) 2663 : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, 2664 Win32StructABI, NumRegisterParameters, false) {} 2665 2666 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2667 CodeGen::CodeGenModule &CGM) const override; 2668 2669 void getDependentLibraryOption(llvm::StringRef Lib, 2670 llvm::SmallString<24> &Opt) const override { 2671 Opt = "/DEFAULTLIB:"; 2672 Opt += qualifyWindowsLibrary(Lib); 2673 } 2674 2675 void getDetectMismatchOption(llvm::StringRef Name, 2676 llvm::StringRef Value, 2677 llvm::SmallString<32> &Opt) const override { 2678 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2679 } 2680 }; 2681 2682 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2683 CodeGen::CodeGenModule &CGM) { 2684 if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) { 2685 2686 if (CGM.getCodeGenOpts().StackProbeSize != 4096) 2687 Fn->addFnAttr("stack-probe-size", 2688 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 2689 if (CGM.getCodeGenOpts().NoStackArgProbe) 2690 Fn->addFnAttr("no-stack-arg-probe"); 2691 } 2692 } 2693 2694 void WinX86_32TargetCodeGenInfo::setTargetAttributes( 2695 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2696 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2697 if (GV->isDeclaration()) 2698 return; 2699 addStackProbeTargetAttributes(D, GV, CGM); 2700 } 2701 2702 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2703 public: 2704 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2705 X86AVXABILevel AVXLevel) 2706 : TargetCodeGenInfo(std::make_unique<WinX86_64ABIInfo>(CGT, AVXLevel)) {} 2707 2708 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2709 CodeGen::CodeGenModule &CGM) const override; 2710 2711 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2712 return 7; 2713 } 2714 2715 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2716 llvm::Value *Address) const override { 2717 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2718 2719 // 0-15 are the 16 integer registers. 2720 // 16 is %rip. 2721 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2722 return false; 2723 } 2724 2725 void getDependentLibraryOption(llvm::StringRef Lib, 2726 llvm::SmallString<24> &Opt) const override { 2727 Opt = "/DEFAULTLIB:"; 2728 Opt += qualifyWindowsLibrary(Lib); 2729 } 2730 2731 void getDetectMismatchOption(llvm::StringRef Name, 2732 llvm::StringRef Value, 2733 llvm::SmallString<32> &Opt) const override { 2734 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2735 } 2736 }; 2737 2738 void WinX86_64TargetCodeGenInfo::setTargetAttributes( 2739 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2740 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2741 if (GV->isDeclaration()) 2742 return; 2743 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2744 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2745 llvm::Function *Fn = cast<llvm::Function>(GV); 2746 Fn->addFnAttr("stackrealign"); 2747 } 2748 2749 addX86InterruptAttrs(FD, GV, CGM); 2750 } 2751 2752 addStackProbeTargetAttributes(D, GV, CGM); 2753 } 2754 } 2755 2756 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 2757 Class &Hi) const { 2758 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 2759 // 2760 // (a) If one of the classes is Memory, the whole argument is passed in 2761 // memory. 2762 // 2763 // (b) If X87UP is not preceded by X87, the whole argument is passed in 2764 // memory. 2765 // 2766 // (c) If the size of the aggregate exceeds two eightbytes and the first 2767 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 2768 // argument is passed in memory. NOTE: This is necessary to keep the 2769 // ABI working for processors that don't support the __m256 type. 2770 // 2771 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 2772 // 2773 // Some of these are enforced by the merging logic. Others can arise 2774 // only with unions; for example: 2775 // union { _Complex double; unsigned; } 2776 // 2777 // Note that clauses (b) and (c) were added in 0.98. 2778 // 2779 if (Hi == Memory) 2780 Lo = Memory; 2781 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 2782 Lo = Memory; 2783 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 2784 Lo = Memory; 2785 if (Hi == SSEUp && Lo != SSE) 2786 Hi = SSE; 2787 } 2788 2789 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 2790 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 2791 // classified recursively so that always two fields are 2792 // considered. The resulting class is calculated according to 2793 // the classes of the fields in the eightbyte: 2794 // 2795 // (a) If both classes are equal, this is the resulting class. 2796 // 2797 // (b) If one of the classes is NO_CLASS, the resulting class is 2798 // the other class. 2799 // 2800 // (c) If one of the classes is MEMORY, the result is the MEMORY 2801 // class. 2802 // 2803 // (d) If one of the classes is INTEGER, the result is the 2804 // INTEGER. 2805 // 2806 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 2807 // MEMORY is used as class. 2808 // 2809 // (f) Otherwise class SSE is used. 2810 2811 // Accum should never be memory (we should have returned) or 2812 // ComplexX87 (because this cannot be passed in a structure). 2813 assert((Accum != Memory && Accum != ComplexX87) && 2814 "Invalid accumulated classification during merge."); 2815 if (Accum == Field || Field == NoClass) 2816 return Accum; 2817 if (Field == Memory) 2818 return Memory; 2819 if (Accum == NoClass) 2820 return Field; 2821 if (Accum == Integer || Field == Integer) 2822 return Integer; 2823 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 2824 Accum == X87 || Accum == X87Up) 2825 return Memory; 2826 return SSE; 2827 } 2828 2829 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 2830 Class &Lo, Class &Hi, bool isNamedArg) const { 2831 // FIXME: This code can be simplified by introducing a simple value class for 2832 // Class pairs with appropriate constructor methods for the various 2833 // situations. 2834 2835 // FIXME: Some of the split computations are wrong; unaligned vectors 2836 // shouldn't be passed in registers for example, so there is no chance they 2837 // can straddle an eightbyte. Verify & simplify. 2838 2839 Lo = Hi = NoClass; 2840 2841 Class &Current = OffsetBase < 64 ? Lo : Hi; 2842 Current = Memory; 2843 2844 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 2845 BuiltinType::Kind k = BT->getKind(); 2846 2847 if (k == BuiltinType::Void) { 2848 Current = NoClass; 2849 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 2850 Lo = Integer; 2851 Hi = Integer; 2852 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 2853 Current = Integer; 2854 } else if (k == BuiltinType::Float || k == BuiltinType::Double || 2855 k == BuiltinType::Float16) { 2856 Current = SSE; 2857 } else if (k == BuiltinType::LongDouble) { 2858 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2859 if (LDF == &llvm::APFloat::IEEEquad()) { 2860 Lo = SSE; 2861 Hi = SSEUp; 2862 } else if (LDF == &llvm::APFloat::x87DoubleExtended()) { 2863 Lo = X87; 2864 Hi = X87Up; 2865 } else if (LDF == &llvm::APFloat::IEEEdouble()) { 2866 Current = SSE; 2867 } else 2868 llvm_unreachable("unexpected long double representation!"); 2869 } 2870 // FIXME: _Decimal32 and _Decimal64 are SSE. 2871 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 2872 return; 2873 } 2874 2875 if (const EnumType *ET = Ty->getAs<EnumType>()) { 2876 // Classify the underlying integer type. 2877 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 2878 return; 2879 } 2880 2881 if (Ty->hasPointerRepresentation()) { 2882 Current = Integer; 2883 return; 2884 } 2885 2886 if (Ty->isMemberPointerType()) { 2887 if (Ty->isMemberFunctionPointerType()) { 2888 if (Has64BitPointers) { 2889 // If Has64BitPointers, this is an {i64, i64}, so classify both 2890 // Lo and Hi now. 2891 Lo = Hi = Integer; 2892 } else { 2893 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 2894 // straddles an eightbyte boundary, Hi should be classified as well. 2895 uint64_t EB_FuncPtr = (OffsetBase) / 64; 2896 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 2897 if (EB_FuncPtr != EB_ThisAdj) { 2898 Lo = Hi = Integer; 2899 } else { 2900 Current = Integer; 2901 } 2902 } 2903 } else { 2904 Current = Integer; 2905 } 2906 return; 2907 } 2908 2909 if (const VectorType *VT = Ty->getAs<VectorType>()) { 2910 uint64_t Size = getContext().getTypeSize(VT); 2911 if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { 2912 // gcc passes the following as integer: 2913 // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> 2914 // 2 bytes - <2 x char>, <1 x short> 2915 // 1 byte - <1 x char> 2916 Current = Integer; 2917 2918 // If this type crosses an eightbyte boundary, it should be 2919 // split. 2920 uint64_t EB_Lo = (OffsetBase) / 64; 2921 uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; 2922 if (EB_Lo != EB_Hi) 2923 Hi = Lo; 2924 } else if (Size == 64) { 2925 QualType ElementType = VT->getElementType(); 2926 2927 // gcc passes <1 x double> in memory. :( 2928 if (ElementType->isSpecificBuiltinType(BuiltinType::Double)) 2929 return; 2930 2931 // gcc passes <1 x long long> as SSE but clang used to unconditionally 2932 // pass them as integer. For platforms where clang is the de facto 2933 // platform compiler, we must continue to use integer. 2934 if (!classifyIntegerMMXAsSSE() && 2935 (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) || 2936 ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) || 2937 ElementType->isSpecificBuiltinType(BuiltinType::Long) || 2938 ElementType->isSpecificBuiltinType(BuiltinType::ULong))) 2939 Current = Integer; 2940 else 2941 Current = SSE; 2942 2943 // If this type crosses an eightbyte boundary, it should be 2944 // split. 2945 if (OffsetBase && OffsetBase != 64) 2946 Hi = Lo; 2947 } else if (Size == 128 || 2948 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { 2949 QualType ElementType = VT->getElementType(); 2950 2951 // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :( 2952 if (passInt128VectorsInMem() && Size != 128 && 2953 (ElementType->isSpecificBuiltinType(BuiltinType::Int128) || 2954 ElementType->isSpecificBuiltinType(BuiltinType::UInt128))) 2955 return; 2956 2957 // Arguments of 256-bits are split into four eightbyte chunks. The 2958 // least significant one belongs to class SSE and all the others to class 2959 // SSEUP. The original Lo and Hi design considers that types can't be 2960 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 2961 // This design isn't correct for 256-bits, but since there're no cases 2962 // where the upper parts would need to be inspected, avoid adding 2963 // complexity and just consider Hi to match the 64-256 part. 2964 // 2965 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 2966 // registers if they are "named", i.e. not part of the "..." of a 2967 // variadic function. 2968 // 2969 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are 2970 // split into eight eightbyte chunks, one SSE and seven SSEUP. 2971 Lo = SSE; 2972 Hi = SSEUp; 2973 } 2974 return; 2975 } 2976 2977 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 2978 QualType ET = getContext().getCanonicalType(CT->getElementType()); 2979 2980 uint64_t Size = getContext().getTypeSize(Ty); 2981 if (ET->isIntegralOrEnumerationType()) { 2982 if (Size <= 64) 2983 Current = Integer; 2984 else if (Size <= 128) 2985 Lo = Hi = Integer; 2986 } else if (ET->isFloat16Type() || ET == getContext().FloatTy) { 2987 Current = SSE; 2988 } else if (ET == getContext().DoubleTy) { 2989 Lo = Hi = SSE; 2990 } else if (ET == getContext().LongDoubleTy) { 2991 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2992 if (LDF == &llvm::APFloat::IEEEquad()) 2993 Current = Memory; 2994 else if (LDF == &llvm::APFloat::x87DoubleExtended()) 2995 Current = ComplexX87; 2996 else if (LDF == &llvm::APFloat::IEEEdouble()) 2997 Lo = Hi = SSE; 2998 else 2999 llvm_unreachable("unexpected long double representation!"); 3000 } 3001 3002 // If this complex type crosses an eightbyte boundary then it 3003 // should be split. 3004 uint64_t EB_Real = (OffsetBase) / 64; 3005 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 3006 if (Hi == NoClass && EB_Real != EB_Imag) 3007 Hi = Lo; 3008 3009 return; 3010 } 3011 3012 if (const auto *EITy = Ty->getAs<ExtIntType>()) { 3013 if (EITy->getNumBits() <= 64) 3014 Current = Integer; 3015 else if (EITy->getNumBits() <= 128) 3016 Lo = Hi = Integer; 3017 // Larger values need to get passed in memory. 3018 return; 3019 } 3020 3021 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 3022 // Arrays are treated like structures. 3023 3024 uint64_t Size = getContext().getTypeSize(Ty); 3025 3026 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 3027 // than eight eightbytes, ..., it has class MEMORY. 3028 if (Size > 512) 3029 return; 3030 3031 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 3032 // fields, it has class MEMORY. 3033 // 3034 // Only need to check alignment of array base. 3035 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 3036 return; 3037 3038 // Otherwise implement simplified merge. We could be smarter about 3039 // this, but it isn't worth it and would be harder to verify. 3040 Current = NoClass; 3041 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 3042 uint64_t ArraySize = AT->getSize().getZExtValue(); 3043 3044 // The only case a 256-bit wide vector could be used is when the array 3045 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 3046 // to work for sizes wider than 128, early check and fallback to memory. 3047 // 3048 if (Size > 128 && 3049 (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel))) 3050 return; 3051 3052 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 3053 Class FieldLo, FieldHi; 3054 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 3055 Lo = merge(Lo, FieldLo); 3056 Hi = merge(Hi, FieldHi); 3057 if (Lo == Memory || Hi == Memory) 3058 break; 3059 } 3060 3061 postMerge(Size, Lo, Hi); 3062 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 3063 return; 3064 } 3065 3066 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3067 uint64_t Size = getContext().getTypeSize(Ty); 3068 3069 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 3070 // than eight eightbytes, ..., it has class MEMORY. 3071 if (Size > 512) 3072 return; 3073 3074 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 3075 // copy constructor or a non-trivial destructor, it is passed by invisible 3076 // reference. 3077 if (getRecordArgABI(RT, getCXXABI())) 3078 return; 3079 3080 const RecordDecl *RD = RT->getDecl(); 3081 3082 // Assume variable sized types are passed in memory. 3083 if (RD->hasFlexibleArrayMember()) 3084 return; 3085 3086 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 3087 3088 // Reset Lo class, this will be recomputed. 3089 Current = NoClass; 3090 3091 // If this is a C++ record, classify the bases first. 3092 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3093 for (const auto &I : CXXRD->bases()) { 3094 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3095 "Unexpected base class!"); 3096 const auto *Base = 3097 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 3098 3099 // Classify this field. 3100 // 3101 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 3102 // single eightbyte, each is classified separately. Each eightbyte gets 3103 // initialized to class NO_CLASS. 3104 Class FieldLo, FieldHi; 3105 uint64_t Offset = 3106 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 3107 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 3108 Lo = merge(Lo, FieldLo); 3109 Hi = merge(Hi, FieldHi); 3110 if (Lo == Memory || Hi == Memory) { 3111 postMerge(Size, Lo, Hi); 3112 return; 3113 } 3114 } 3115 } 3116 3117 // Classify the fields one at a time, merging the results. 3118 unsigned idx = 0; 3119 bool UseClang11Compat = getContext().getLangOpts().getClangABICompat() <= 3120 LangOptions::ClangABI::Ver11 || 3121 getContext().getTargetInfo().getTriple().isPS4(); 3122 bool IsUnion = RT->isUnionType() && !UseClang11Compat; 3123 3124 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3125 i != e; ++i, ++idx) { 3126 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 3127 bool BitField = i->isBitField(); 3128 3129 // Ignore padding bit-fields. 3130 if (BitField && i->isUnnamedBitfield()) 3131 continue; 3132 3133 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 3134 // eight eightbytes, or it contains unaligned fields, it has class MEMORY. 3135 // 3136 // The only case a 256-bit or a 512-bit wide vector could be used is when 3137 // the struct contains a single 256-bit or 512-bit element. Early check 3138 // and fallback to memory. 3139 // 3140 // FIXME: Extended the Lo and Hi logic properly to work for size wider 3141 // than 128. 3142 if (Size > 128 && 3143 ((!IsUnion && Size != getContext().getTypeSize(i->getType())) || 3144 Size > getNativeVectorSizeForAVXABI(AVXLevel))) { 3145 Lo = Memory; 3146 postMerge(Size, Lo, Hi); 3147 return; 3148 } 3149 // Note, skip this test for bit-fields, see below. 3150 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 3151 Lo = Memory; 3152 postMerge(Size, Lo, Hi); 3153 return; 3154 } 3155 3156 // Classify this field. 3157 // 3158 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 3159 // exceeds a single eightbyte, each is classified 3160 // separately. Each eightbyte gets initialized to class 3161 // NO_CLASS. 3162 Class FieldLo, FieldHi; 3163 3164 // Bit-fields require special handling, they do not force the 3165 // structure to be passed in memory even if unaligned, and 3166 // therefore they can straddle an eightbyte. 3167 if (BitField) { 3168 assert(!i->isUnnamedBitfield()); 3169 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 3170 uint64_t Size = i->getBitWidthValue(getContext()); 3171 3172 uint64_t EB_Lo = Offset / 64; 3173 uint64_t EB_Hi = (Offset + Size - 1) / 64; 3174 3175 if (EB_Lo) { 3176 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 3177 FieldLo = NoClass; 3178 FieldHi = Integer; 3179 } else { 3180 FieldLo = Integer; 3181 FieldHi = EB_Hi ? Integer : NoClass; 3182 } 3183 } else 3184 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 3185 Lo = merge(Lo, FieldLo); 3186 Hi = merge(Hi, FieldHi); 3187 if (Lo == Memory || Hi == Memory) 3188 break; 3189 } 3190 3191 postMerge(Size, Lo, Hi); 3192 } 3193 } 3194 3195 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 3196 // If this is a scalar LLVM value then assume LLVM will pass it in the right 3197 // place naturally. 3198 if (!isAggregateTypeForABI(Ty)) { 3199 // Treat an enum type as its underlying type. 3200 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3201 Ty = EnumTy->getDecl()->getIntegerType(); 3202 3203 if (Ty->isExtIntType()) 3204 return getNaturalAlignIndirect(Ty); 3205 3206 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 3207 : ABIArgInfo::getDirect()); 3208 } 3209 3210 return getNaturalAlignIndirect(Ty); 3211 } 3212 3213 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 3214 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 3215 uint64_t Size = getContext().getTypeSize(VecTy); 3216 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); 3217 if (Size <= 64 || Size > LargestVector) 3218 return true; 3219 QualType EltTy = VecTy->getElementType(); 3220 if (passInt128VectorsInMem() && 3221 (EltTy->isSpecificBuiltinType(BuiltinType::Int128) || 3222 EltTy->isSpecificBuiltinType(BuiltinType::UInt128))) 3223 return true; 3224 } 3225 3226 return false; 3227 } 3228 3229 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 3230 unsigned freeIntRegs) const { 3231 // If this is a scalar LLVM value then assume LLVM will pass it in the right 3232 // place naturally. 3233 // 3234 // This assumption is optimistic, as there could be free registers available 3235 // when we need to pass this argument in memory, and LLVM could try to pass 3236 // the argument in the free register. This does not seem to happen currently, 3237 // but this code would be much safer if we could mark the argument with 3238 // 'onstack'. See PR12193. 3239 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty) && 3240 !Ty->isExtIntType()) { 3241 // Treat an enum type as its underlying type. 3242 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3243 Ty = EnumTy->getDecl()->getIntegerType(); 3244 3245 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 3246 : ABIArgInfo::getDirect()); 3247 } 3248 3249 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 3250 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 3251 3252 // Compute the byval alignment. We specify the alignment of the byval in all 3253 // cases so that the mid-level optimizer knows the alignment of the byval. 3254 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 3255 3256 // Attempt to avoid passing indirect results using byval when possible. This 3257 // is important for good codegen. 3258 // 3259 // We do this by coercing the value into a scalar type which the backend can 3260 // handle naturally (i.e., without using byval). 3261 // 3262 // For simplicity, we currently only do this when we have exhausted all of the 3263 // free integer registers. Doing this when there are free integer registers 3264 // would require more care, as we would have to ensure that the coerced value 3265 // did not claim the unused register. That would require either reording the 3266 // arguments to the function (so that any subsequent inreg values came first), 3267 // or only doing this optimization when there were no following arguments that 3268 // might be inreg. 3269 // 3270 // We currently expect it to be rare (particularly in well written code) for 3271 // arguments to be passed on the stack when there are still free integer 3272 // registers available (this would typically imply large structs being passed 3273 // by value), so this seems like a fair tradeoff for now. 3274 // 3275 // We can revisit this if the backend grows support for 'onstack' parameter 3276 // attributes. See PR12193. 3277 if (freeIntRegs == 0) { 3278 uint64_t Size = getContext().getTypeSize(Ty); 3279 3280 // If this type fits in an eightbyte, coerce it into the matching integral 3281 // type, which will end up on the stack (with alignment 8). 3282 if (Align == 8 && Size <= 64) 3283 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 3284 Size)); 3285 } 3286 3287 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); 3288 } 3289 3290 /// The ABI specifies that a value should be passed in a full vector XMM/YMM 3291 /// register. Pick an LLVM IR type that will be passed as a vector register. 3292 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 3293 // Wrapper structs/arrays that only contain vectors are passed just like 3294 // vectors; strip them off if present. 3295 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) 3296 Ty = QualType(InnerTy, 0); 3297 3298 llvm::Type *IRType = CGT.ConvertType(Ty); 3299 if (isa<llvm::VectorType>(IRType)) { 3300 // Don't pass vXi128 vectors in their native type, the backend can't 3301 // legalize them. 3302 if (passInt128VectorsInMem() && 3303 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy(128)) { 3304 // Use a vXi64 vector. 3305 uint64_t Size = getContext().getTypeSize(Ty); 3306 return llvm::FixedVectorType::get(llvm::Type::getInt64Ty(getVMContext()), 3307 Size / 64); 3308 } 3309 3310 return IRType; 3311 } 3312 3313 if (IRType->getTypeID() == llvm::Type::FP128TyID) 3314 return IRType; 3315 3316 // We couldn't find the preferred IR vector type for 'Ty'. 3317 uint64_t Size = getContext().getTypeSize(Ty); 3318 assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!"); 3319 3320 3321 // Return a LLVM IR vector type based on the size of 'Ty'. 3322 return llvm::FixedVectorType::get(llvm::Type::getDoubleTy(getVMContext()), 3323 Size / 64); 3324 } 3325 3326 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 3327 /// is known to either be off the end of the specified type or being in 3328 /// alignment padding. The user type specified is known to be at most 128 bits 3329 /// in size, and have passed through X86_64ABIInfo::classify with a successful 3330 /// classification that put one of the two halves in the INTEGER class. 3331 /// 3332 /// It is conservatively correct to return false. 3333 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 3334 unsigned EndBit, ASTContext &Context) { 3335 // If the bytes being queried are off the end of the type, there is no user 3336 // data hiding here. This handles analysis of builtins, vectors and other 3337 // types that don't contain interesting padding. 3338 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 3339 if (TySize <= StartBit) 3340 return true; 3341 3342 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 3343 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 3344 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 3345 3346 // Check each element to see if the element overlaps with the queried range. 3347 for (unsigned i = 0; i != NumElts; ++i) { 3348 // If the element is after the span we care about, then we're done.. 3349 unsigned EltOffset = i*EltSize; 3350 if (EltOffset >= EndBit) break; 3351 3352 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 3353 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 3354 EndBit-EltOffset, Context)) 3355 return false; 3356 } 3357 // If it overlaps no elements, then it is safe to process as padding. 3358 return true; 3359 } 3360 3361 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3362 const RecordDecl *RD = RT->getDecl(); 3363 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3364 3365 // If this is a C++ record, check the bases first. 3366 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3367 for (const auto &I : CXXRD->bases()) { 3368 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3369 "Unexpected base class!"); 3370 const auto *Base = 3371 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 3372 3373 // If the base is after the span we care about, ignore it. 3374 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 3375 if (BaseOffset >= EndBit) continue; 3376 3377 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 3378 if (!BitsContainNoUserData(I.getType(), BaseStart, 3379 EndBit-BaseOffset, Context)) 3380 return false; 3381 } 3382 } 3383 3384 // Verify that no field has data that overlaps the region of interest. Yes 3385 // this could be sped up a lot by being smarter about queried fields, 3386 // however we're only looking at structs up to 16 bytes, so we don't care 3387 // much. 3388 unsigned idx = 0; 3389 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3390 i != e; ++i, ++idx) { 3391 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 3392 3393 // If we found a field after the region we care about, then we're done. 3394 if (FieldOffset >= EndBit) break; 3395 3396 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 3397 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 3398 Context)) 3399 return false; 3400 } 3401 3402 // If nothing in this record overlapped the area of interest, then we're 3403 // clean. 3404 return true; 3405 } 3406 3407 return false; 3408 } 3409 3410 /// getFPTypeAtOffset - Return a floating point type at the specified offset. 3411 static llvm::Type *getFPTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3412 const llvm::DataLayout &TD) { 3413 if (IROffset == 0 && IRType->isFloatingPointTy()) 3414 return IRType; 3415 3416 // If this is a struct, recurse into the field at the specified offset. 3417 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3418 const llvm::StructLayout *SL = TD.getStructLayout(STy); 3419 unsigned Elt = SL->getElementContainingOffset(IROffset); 3420 IROffset -= SL->getElementOffset(Elt); 3421 return getFPTypeAtOffset(STy->getElementType(Elt), IROffset, TD); 3422 } 3423 3424 // If this is an array, recurse into the field at the specified offset. 3425 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3426 llvm::Type *EltTy = ATy->getElementType(); 3427 unsigned EltSize = TD.getTypeAllocSize(EltTy); 3428 IROffset -= IROffset / EltSize * EltSize; 3429 return getFPTypeAtOffset(EltTy, IROffset, TD); 3430 } 3431 3432 return nullptr; 3433 } 3434 3435 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 3436 /// low 8 bytes of an XMM register, corresponding to the SSE class. 3437 llvm::Type *X86_64ABIInfo:: 3438 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3439 QualType SourceTy, unsigned SourceOffset) const { 3440 const llvm::DataLayout &TD = getDataLayout(); 3441 llvm::Type *T0 = getFPTypeAtOffset(IRType, IROffset, TD); 3442 if (!T0 || T0->isDoubleTy()) 3443 return llvm::Type::getDoubleTy(getVMContext()); 3444 3445 // Get the adjacent FP type. 3446 llvm::Type *T1 = 3447 getFPTypeAtOffset(IRType, IROffset + TD.getTypeAllocSize(T0), TD); 3448 if (T1 == nullptr) { 3449 // Check if IRType is a half + float. float type will be in IROffset+4 due 3450 // to its alignment. 3451 if (T0->isHalfTy()) 3452 T1 = getFPTypeAtOffset(IRType, IROffset + 4, TD); 3453 // If we can't get a second FP type, return a simple half or float. 3454 // avx512fp16-abi.c:pr51813_2 shows it works to return float for 3455 // {float, i8} too. 3456 if (T1 == nullptr) 3457 return T0; 3458 } 3459 3460 if (T0->isFloatTy() && T1->isFloatTy()) 3461 return llvm::FixedVectorType::get(T0, 2); 3462 3463 if (T0->isHalfTy() && T1->isHalfTy()) { 3464 llvm::Type *T2 = getFPTypeAtOffset(IRType, IROffset + 4, TD); 3465 if (T2 == nullptr) 3466 return llvm::FixedVectorType::get(T0, 2); 3467 return llvm::FixedVectorType::get(T0, 4); 3468 } 3469 3470 if (T0->isHalfTy() || T1->isHalfTy()) 3471 return llvm::FixedVectorType::get(llvm::Type::getHalfTy(getVMContext()), 4); 3472 3473 return llvm::Type::getDoubleTy(getVMContext()); 3474 } 3475 3476 3477 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 3478 /// an 8-byte GPR. This means that we either have a scalar or we are talking 3479 /// about the high or low part of an up-to-16-byte struct. This routine picks 3480 /// the best LLVM IR type to represent this, which may be i64 or may be anything 3481 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 3482 /// etc). 3483 /// 3484 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 3485 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 3486 /// the 8-byte value references. PrefType may be null. 3487 /// 3488 /// SourceTy is the source-level type for the entire argument. SourceOffset is 3489 /// an offset into this that we're processing (which is always either 0 or 8). 3490 /// 3491 llvm::Type *X86_64ABIInfo:: 3492 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3493 QualType SourceTy, unsigned SourceOffset) const { 3494 // If we're dealing with an un-offset LLVM IR type, then it means that we're 3495 // returning an 8-byte unit starting with it. See if we can safely use it. 3496 if (IROffset == 0) { 3497 // Pointers and int64's always fill the 8-byte unit. 3498 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 3499 IRType->isIntegerTy(64)) 3500 return IRType; 3501 3502 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 3503 // goodness in the source type is just tail padding. This is allowed to 3504 // kick in for struct {double,int} on the int, but not on 3505 // struct{double,int,int} because we wouldn't return the second int. We 3506 // have to do this analysis on the source type because we can't depend on 3507 // unions being lowered a specific way etc. 3508 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 3509 IRType->isIntegerTy(32) || 3510 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 3511 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 3512 cast<llvm::IntegerType>(IRType)->getBitWidth(); 3513 3514 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 3515 SourceOffset*8+64, getContext())) 3516 return IRType; 3517 } 3518 } 3519 3520 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3521 // If this is a struct, recurse into the field at the specified offset. 3522 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 3523 if (IROffset < SL->getSizeInBytes()) { 3524 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 3525 IROffset -= SL->getElementOffset(FieldIdx); 3526 3527 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 3528 SourceTy, SourceOffset); 3529 } 3530 } 3531 3532 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3533 llvm::Type *EltTy = ATy->getElementType(); 3534 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 3535 unsigned EltOffset = IROffset/EltSize*EltSize; 3536 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 3537 SourceOffset); 3538 } 3539 3540 // Okay, we don't have any better idea of what to pass, so we pass this in an 3541 // integer register that isn't too big to fit the rest of the struct. 3542 unsigned TySizeInBytes = 3543 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 3544 3545 assert(TySizeInBytes != SourceOffset && "Empty field?"); 3546 3547 // It is always safe to classify this as an integer type up to i64 that 3548 // isn't larger than the structure. 3549 return llvm::IntegerType::get(getVMContext(), 3550 std::min(TySizeInBytes-SourceOffset, 8U)*8); 3551 } 3552 3553 3554 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 3555 /// be used as elements of a two register pair to pass or return, return a 3556 /// first class aggregate to represent them. For example, if the low part of 3557 /// a by-value argument should be passed as i32* and the high part as float, 3558 /// return {i32*, float}. 3559 static llvm::Type * 3560 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 3561 const llvm::DataLayout &TD) { 3562 // In order to correctly satisfy the ABI, we need to the high part to start 3563 // at offset 8. If the high and low parts we inferred are both 4-byte types 3564 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 3565 // the second element at offset 8. Check for this: 3566 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 3567 unsigned HiAlign = TD.getABITypeAlignment(Hi); 3568 unsigned HiStart = llvm::alignTo(LoSize, HiAlign); 3569 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 3570 3571 // To handle this, we have to increase the size of the low part so that the 3572 // second element will start at an 8 byte offset. We can't increase the size 3573 // of the second element because it might make us access off the end of the 3574 // struct. 3575 if (HiStart != 8) { 3576 // There are usually two sorts of types the ABI generation code can produce 3577 // for the low part of a pair that aren't 8 bytes in size: half, float or 3578 // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and 3579 // NaCl). 3580 // Promote these to a larger type. 3581 if (Lo->isHalfTy() || Lo->isFloatTy()) 3582 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 3583 else { 3584 assert((Lo->isIntegerTy() || Lo->isPointerTy()) 3585 && "Invalid/unknown lo type"); 3586 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 3587 } 3588 } 3589 3590 llvm::StructType *Result = llvm::StructType::get(Lo, Hi); 3591 3592 // Verify that the second element is at an 8-byte offset. 3593 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 3594 "Invalid x86-64 argument pair!"); 3595 return Result; 3596 } 3597 3598 ABIArgInfo X86_64ABIInfo:: 3599 classifyReturnType(QualType RetTy) const { 3600 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 3601 // classification algorithm. 3602 X86_64ABIInfo::Class Lo, Hi; 3603 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 3604 3605 // Check some invariants. 3606 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3607 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3608 3609 llvm::Type *ResType = nullptr; 3610 switch (Lo) { 3611 case NoClass: 3612 if (Hi == NoClass) 3613 return ABIArgInfo::getIgnore(); 3614 // If the low part is just padding, it takes no register, leave ResType 3615 // null. 3616 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3617 "Unknown missing lo part"); 3618 break; 3619 3620 case SSEUp: 3621 case X87Up: 3622 llvm_unreachable("Invalid classification for lo word."); 3623 3624 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 3625 // hidden argument. 3626 case Memory: 3627 return getIndirectReturnResult(RetTy); 3628 3629 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 3630 // available register of the sequence %rax, %rdx is used. 3631 case Integer: 3632 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3633 3634 // If we have a sign or zero extended integer, make sure to return Extend 3635 // so that the parameter gets the right LLVM IR attributes. 3636 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3637 // Treat an enum type as its underlying type. 3638 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3639 RetTy = EnumTy->getDecl()->getIntegerType(); 3640 3641 if (RetTy->isIntegralOrEnumerationType() && 3642 isPromotableIntegerTypeForABI(RetTy)) 3643 return ABIArgInfo::getExtend(RetTy); 3644 } 3645 break; 3646 3647 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 3648 // available SSE register of the sequence %xmm0, %xmm1 is used. 3649 case SSE: 3650 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3651 break; 3652 3653 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 3654 // returned on the X87 stack in %st0 as 80-bit x87 number. 3655 case X87: 3656 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 3657 break; 3658 3659 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 3660 // part of the value is returned in %st0 and the imaginary part in 3661 // %st1. 3662 case ComplexX87: 3663 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 3664 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 3665 llvm::Type::getX86_FP80Ty(getVMContext())); 3666 break; 3667 } 3668 3669 llvm::Type *HighPart = nullptr; 3670 switch (Hi) { 3671 // Memory was handled previously and X87 should 3672 // never occur as a hi class. 3673 case Memory: 3674 case X87: 3675 llvm_unreachable("Invalid classification for hi word."); 3676 3677 case ComplexX87: // Previously handled. 3678 case NoClass: 3679 break; 3680 3681 case Integer: 3682 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3683 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3684 return ABIArgInfo::getDirect(HighPart, 8); 3685 break; 3686 case SSE: 3687 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3688 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3689 return ABIArgInfo::getDirect(HighPart, 8); 3690 break; 3691 3692 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 3693 // is passed in the next available eightbyte chunk if the last used 3694 // vector register. 3695 // 3696 // SSEUP should always be preceded by SSE, just widen. 3697 case SSEUp: 3698 assert(Lo == SSE && "Unexpected SSEUp classification."); 3699 ResType = GetByteVectorType(RetTy); 3700 break; 3701 3702 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 3703 // returned together with the previous X87 value in %st0. 3704 case X87Up: 3705 // If X87Up is preceded by X87, we don't need to do 3706 // anything. However, in some cases with unions it may not be 3707 // preceded by X87. In such situations we follow gcc and pass the 3708 // extra bits in an SSE reg. 3709 if (Lo != X87) { 3710 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3711 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3712 return ABIArgInfo::getDirect(HighPart, 8); 3713 } 3714 break; 3715 } 3716 3717 // If a high part was specified, merge it together with the low part. It is 3718 // known to pass in the high eightbyte of the result. We do this by forming a 3719 // first class struct aggregate with the high and low part: {low, high} 3720 if (HighPart) 3721 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3722 3723 return ABIArgInfo::getDirect(ResType); 3724 } 3725 3726 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 3727 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 3728 bool isNamedArg) 3729 const 3730 { 3731 Ty = useFirstFieldIfTransparentUnion(Ty); 3732 3733 X86_64ABIInfo::Class Lo, Hi; 3734 classify(Ty, 0, Lo, Hi, isNamedArg); 3735 3736 // Check some invariants. 3737 // FIXME: Enforce these by construction. 3738 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3739 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3740 3741 neededInt = 0; 3742 neededSSE = 0; 3743 llvm::Type *ResType = nullptr; 3744 switch (Lo) { 3745 case NoClass: 3746 if (Hi == NoClass) 3747 return ABIArgInfo::getIgnore(); 3748 // If the low part is just padding, it takes no register, leave ResType 3749 // null. 3750 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3751 "Unknown missing lo part"); 3752 break; 3753 3754 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 3755 // on the stack. 3756 case Memory: 3757 3758 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 3759 // COMPLEX_X87, it is passed in memory. 3760 case X87: 3761 case ComplexX87: 3762 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 3763 ++neededInt; 3764 return getIndirectResult(Ty, freeIntRegs); 3765 3766 case SSEUp: 3767 case X87Up: 3768 llvm_unreachable("Invalid classification for lo word."); 3769 3770 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 3771 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 3772 // and %r9 is used. 3773 case Integer: 3774 ++neededInt; 3775 3776 // Pick an 8-byte type based on the preferred type. 3777 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 3778 3779 // If we have a sign or zero extended integer, make sure to return Extend 3780 // so that the parameter gets the right LLVM IR attributes. 3781 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3782 // Treat an enum type as its underlying type. 3783 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3784 Ty = EnumTy->getDecl()->getIntegerType(); 3785 3786 if (Ty->isIntegralOrEnumerationType() && 3787 isPromotableIntegerTypeForABI(Ty)) 3788 return ABIArgInfo::getExtend(Ty); 3789 } 3790 3791 break; 3792 3793 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 3794 // available SSE register is used, the registers are taken in the 3795 // order from %xmm0 to %xmm7. 3796 case SSE: { 3797 llvm::Type *IRType = CGT.ConvertType(Ty); 3798 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 3799 ++neededSSE; 3800 break; 3801 } 3802 } 3803 3804 llvm::Type *HighPart = nullptr; 3805 switch (Hi) { 3806 // Memory was handled previously, ComplexX87 and X87 should 3807 // never occur as hi classes, and X87Up must be preceded by X87, 3808 // which is passed in memory. 3809 case Memory: 3810 case X87: 3811 case ComplexX87: 3812 llvm_unreachable("Invalid classification for hi word."); 3813 3814 case NoClass: break; 3815 3816 case Integer: 3817 ++neededInt; 3818 // Pick an 8-byte type based on the preferred type. 3819 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3820 3821 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3822 return ABIArgInfo::getDirect(HighPart, 8); 3823 break; 3824 3825 // X87Up generally doesn't occur here (long double is passed in 3826 // memory), except in situations involving unions. 3827 case X87Up: 3828 case SSE: 3829 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3830 3831 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3832 return ABIArgInfo::getDirect(HighPart, 8); 3833 3834 ++neededSSE; 3835 break; 3836 3837 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 3838 // eightbyte is passed in the upper half of the last used SSE 3839 // register. This only happens when 128-bit vectors are passed. 3840 case SSEUp: 3841 assert(Lo == SSE && "Unexpected SSEUp classification"); 3842 ResType = GetByteVectorType(Ty); 3843 break; 3844 } 3845 3846 // If a high part was specified, merge it together with the low part. It is 3847 // known to pass in the high eightbyte of the result. We do this by forming a 3848 // first class struct aggregate with the high and low part: {low, high} 3849 if (HighPart) 3850 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3851 3852 return ABIArgInfo::getDirect(ResType); 3853 } 3854 3855 ABIArgInfo 3856 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 3857 unsigned &NeededSSE) const { 3858 auto RT = Ty->getAs<RecordType>(); 3859 assert(RT && "classifyRegCallStructType only valid with struct types"); 3860 3861 if (RT->getDecl()->hasFlexibleArrayMember()) 3862 return getIndirectReturnResult(Ty); 3863 3864 // Sum up bases 3865 if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 3866 if (CXXRD->isDynamicClass()) { 3867 NeededInt = NeededSSE = 0; 3868 return getIndirectReturnResult(Ty); 3869 } 3870 3871 for (const auto &I : CXXRD->bases()) 3872 if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE) 3873 .isIndirect()) { 3874 NeededInt = NeededSSE = 0; 3875 return getIndirectReturnResult(Ty); 3876 } 3877 } 3878 3879 // Sum up members 3880 for (const auto *FD : RT->getDecl()->fields()) { 3881 if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) { 3882 if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE) 3883 .isIndirect()) { 3884 NeededInt = NeededSSE = 0; 3885 return getIndirectReturnResult(Ty); 3886 } 3887 } else { 3888 unsigned LocalNeededInt, LocalNeededSSE; 3889 if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt, 3890 LocalNeededSSE, true) 3891 .isIndirect()) { 3892 NeededInt = NeededSSE = 0; 3893 return getIndirectReturnResult(Ty); 3894 } 3895 NeededInt += LocalNeededInt; 3896 NeededSSE += LocalNeededSSE; 3897 } 3898 } 3899 3900 return ABIArgInfo::getDirect(); 3901 } 3902 3903 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty, 3904 unsigned &NeededInt, 3905 unsigned &NeededSSE) const { 3906 3907 NeededInt = 0; 3908 NeededSSE = 0; 3909 3910 return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE); 3911 } 3912 3913 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3914 3915 const unsigned CallingConv = FI.getCallingConvention(); 3916 // It is possible to force Win64 calling convention on any x86_64 target by 3917 // using __attribute__((ms_abi)). In such case to correctly emit Win64 3918 // compatible code delegate this call to WinX86_64ABIInfo::computeInfo. 3919 if (CallingConv == llvm::CallingConv::Win64) { 3920 WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel); 3921 Win64ABIInfo.computeInfo(FI); 3922 return; 3923 } 3924 3925 bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall; 3926 3927 // Keep track of the number of assigned registers. 3928 unsigned FreeIntRegs = IsRegCall ? 11 : 6; 3929 unsigned FreeSSERegs = IsRegCall ? 16 : 8; 3930 unsigned NeededInt, NeededSSE; 3931 3932 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 3933 if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() && 3934 !FI.getReturnType()->getTypePtr()->isUnionType()) { 3935 FI.getReturnInfo() = 3936 classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE); 3937 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3938 FreeIntRegs -= NeededInt; 3939 FreeSSERegs -= NeededSSE; 3940 } else { 3941 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3942 } 3943 } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>() && 3944 getContext().getCanonicalType(FI.getReturnType() 3945 ->getAs<ComplexType>() 3946 ->getElementType()) == 3947 getContext().LongDoubleTy) 3948 // Complex Long Double Type is passed in Memory when Regcall 3949 // calling convention is used. 3950 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3951 else 3952 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3953 } 3954 3955 // If the return value is indirect, then the hidden argument is consuming one 3956 // integer register. 3957 if (FI.getReturnInfo().isIndirect()) 3958 --FreeIntRegs; 3959 3960 // The chain argument effectively gives us another free register. 3961 if (FI.isChainCall()) 3962 ++FreeIntRegs; 3963 3964 unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 3965 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 3966 // get assigned (in left-to-right order) for passing as follows... 3967 unsigned ArgNo = 0; 3968 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3969 it != ie; ++it, ++ArgNo) { 3970 bool IsNamedArg = ArgNo < NumRequiredArgs; 3971 3972 if (IsRegCall && it->type->isStructureOrClassType()) 3973 it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE); 3974 else 3975 it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt, 3976 NeededSSE, IsNamedArg); 3977 3978 // AMD64-ABI 3.2.3p3: If there are no registers available for any 3979 // eightbyte of an argument, the whole argument is passed on the 3980 // stack. If registers have already been assigned for some 3981 // eightbytes of such an argument, the assignments get reverted. 3982 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3983 FreeIntRegs -= NeededInt; 3984 FreeSSERegs -= NeededSSE; 3985 } else { 3986 it->info = getIndirectResult(it->type, FreeIntRegs); 3987 } 3988 } 3989 } 3990 3991 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, 3992 Address VAListAddr, QualType Ty) { 3993 Address overflow_arg_area_p = 3994 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); 3995 llvm::Value *overflow_arg_area = 3996 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 3997 3998 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 3999 // byte boundary if alignment needed by type exceeds 8 byte boundary. 4000 // It isn't stated explicitly in the standard, but in practice we use 4001 // alignment greater than 16 where necessary. 4002 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 4003 if (Align > CharUnits::fromQuantity(8)) { 4004 overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, 4005 Align); 4006 } 4007 4008 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 4009 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 4010 llvm::Value *Res = 4011 CGF.Builder.CreateBitCast(overflow_arg_area, 4012 llvm::PointerType::getUnqual(LTy)); 4013 4014 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 4015 // l->overflow_arg_area + sizeof(type). 4016 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 4017 // an 8 byte boundary. 4018 4019 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 4020 llvm::Value *Offset = 4021 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 4022 overflow_arg_area = CGF.Builder.CreateGEP(CGF.Int8Ty, overflow_arg_area, 4023 Offset, "overflow_arg_area.next"); 4024 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 4025 4026 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 4027 return Address(Res, Align); 4028 } 4029 4030 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4031 QualType Ty) const { 4032 // Assume that va_list type is correct; should be pointer to LLVM type: 4033 // struct { 4034 // i32 gp_offset; 4035 // i32 fp_offset; 4036 // i8* overflow_arg_area; 4037 // i8* reg_save_area; 4038 // }; 4039 unsigned neededInt, neededSSE; 4040 4041 Ty = getContext().getCanonicalType(Ty); 4042 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 4043 /*isNamedArg*/false); 4044 4045 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 4046 // in the registers. If not go to step 7. 4047 if (!neededInt && !neededSSE) 4048 return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 4049 4050 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 4051 // general purpose registers needed to pass type and num_fp to hold 4052 // the number of floating point registers needed. 4053 4054 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 4055 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 4056 // l->fp_offset > 304 - num_fp * 16 go to step 7. 4057 // 4058 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 4059 // register save space). 4060 4061 llvm::Value *InRegs = nullptr; 4062 Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); 4063 llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; 4064 if (neededInt) { 4065 gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); 4066 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 4067 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 4068 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 4069 } 4070 4071 if (neededSSE) { 4072 fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); 4073 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 4074 llvm::Value *FitsInFP = 4075 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 4076 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 4077 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 4078 } 4079 4080 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 4081 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 4082 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 4083 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 4084 4085 // Emit code to load the value if it was passed in registers. 4086 4087 CGF.EmitBlock(InRegBlock); 4088 4089 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 4090 // an offset of l->gp_offset and/or l->fp_offset. This may require 4091 // copying to a temporary location in case the parameter is passed 4092 // in different register classes or requires an alignment greater 4093 // than 8 for general purpose registers and 16 for XMM registers. 4094 // 4095 // FIXME: This really results in shameful code when we end up needing to 4096 // collect arguments from different places; often what should result in a 4097 // simple assembling of a structure from scattered addresses has many more 4098 // loads than necessary. Can we clean this up? 4099 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 4100 llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( 4101 CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area"); 4102 4103 Address RegAddr = Address::invalid(); 4104 if (neededInt && neededSSE) { 4105 // FIXME: Cleanup. 4106 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 4107 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 4108 Address Tmp = CGF.CreateMemTemp(Ty); 4109 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 4110 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 4111 llvm::Type *TyLo = ST->getElementType(0); 4112 llvm::Type *TyHi = ST->getElementType(1); 4113 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 4114 "Unexpected ABI info for mixed regs"); 4115 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 4116 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 4117 llvm::Value *GPAddr = 4118 CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset); 4119 llvm::Value *FPAddr = 4120 CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset); 4121 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 4122 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 4123 4124 // Copy the first element. 4125 // FIXME: Our choice of alignment here and below is probably pessimistic. 4126 llvm::Value *V = CGF.Builder.CreateAlignedLoad( 4127 TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo), 4128 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo))); 4129 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 4130 4131 // Copy the second element. 4132 V = CGF.Builder.CreateAlignedLoad( 4133 TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi), 4134 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi))); 4135 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 4136 4137 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 4138 } else if (neededInt) { 4139 RegAddr = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset), 4140 CharUnits::fromQuantity(8)); 4141 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 4142 4143 // Copy to a temporary if necessary to ensure the appropriate alignment. 4144 auto TInfo = getContext().getTypeInfoInChars(Ty); 4145 uint64_t TySize = TInfo.Width.getQuantity(); 4146 CharUnits TyAlign = TInfo.Align; 4147 4148 // Copy into a temporary if the type is more aligned than the 4149 // register save area. 4150 if (TyAlign.getQuantity() > 8) { 4151 Address Tmp = CGF.CreateMemTemp(Ty); 4152 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); 4153 RegAddr = Tmp; 4154 } 4155 4156 } else if (neededSSE == 1) { 4157 RegAddr = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset), 4158 CharUnits::fromQuantity(16)); 4159 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 4160 } else { 4161 assert(neededSSE == 2 && "Invalid number of needed registers!"); 4162 // SSE registers are spaced 16 bytes apart in the register save 4163 // area, we need to collect the two eightbytes together. 4164 // The ABI isn't explicit about this, but it seems reasonable 4165 // to assume that the slots are 16-byte aligned, since the stack is 4166 // naturally 16-byte aligned and the prologue is expected to store 4167 // all the SSE registers to the RSA. 4168 Address RegAddrLo = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, 4169 fp_offset), 4170 CharUnits::fromQuantity(16)); 4171 Address RegAddrHi = 4172 CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, 4173 CharUnits::fromQuantity(16)); 4174 llvm::Type *ST = AI.canHaveCoerceToType() 4175 ? AI.getCoerceToType() 4176 : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy); 4177 llvm::Value *V; 4178 Address Tmp = CGF.CreateMemTemp(Ty); 4179 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 4180 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 4181 RegAddrLo, ST->getStructElementType(0))); 4182 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 4183 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 4184 RegAddrHi, ST->getStructElementType(1))); 4185 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 4186 4187 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 4188 } 4189 4190 // AMD64-ABI 3.5.7p5: Step 5. Set: 4191 // l->gp_offset = l->gp_offset + num_gp * 8 4192 // l->fp_offset = l->fp_offset + num_fp * 16. 4193 if (neededInt) { 4194 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 4195 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 4196 gp_offset_p); 4197 } 4198 if (neededSSE) { 4199 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 4200 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 4201 fp_offset_p); 4202 } 4203 CGF.EmitBranch(ContBlock); 4204 4205 // Emit code to load the value if it was passed in memory. 4206 4207 CGF.EmitBlock(InMemBlock); 4208 Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 4209 4210 // Return the appropriate result. 4211 4212 CGF.EmitBlock(ContBlock); 4213 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, 4214 "vaarg.addr"); 4215 return ResAddr; 4216 } 4217 4218 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 4219 QualType Ty) const { 4220 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4221 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4222 uint64_t Width = getContext().getTypeSize(Ty); 4223 bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 4224 4225 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 4226 CGF.getContext().getTypeInfoInChars(Ty), 4227 CharUnits::fromQuantity(8), 4228 /*allowHigherAlign*/ false); 4229 } 4230 4231 ABIArgInfo WinX86_64ABIInfo::reclassifyHvaArgForVectorCall( 4232 QualType Ty, unsigned &FreeSSERegs, const ABIArgInfo ¤t) const { 4233 const Type *Base = nullptr; 4234 uint64_t NumElts = 0; 4235 4236 if (!Ty->isBuiltinType() && !Ty->isVectorType() && 4237 isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) { 4238 FreeSSERegs -= NumElts; 4239 return getDirectX86Hva(); 4240 } 4241 return current; 4242 } 4243 4244 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 4245 bool IsReturnType, bool IsVectorCall, 4246 bool IsRegCall) const { 4247 4248 if (Ty->isVoidType()) 4249 return ABIArgInfo::getIgnore(); 4250 4251 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4252 Ty = EnumTy->getDecl()->getIntegerType(); 4253 4254 TypeInfo Info = getContext().getTypeInfo(Ty); 4255 uint64_t Width = Info.Width; 4256 CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); 4257 4258 const RecordType *RT = Ty->getAs<RecordType>(); 4259 if (RT) { 4260 if (!IsReturnType) { 4261 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 4262 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4263 } 4264 4265 if (RT->getDecl()->hasFlexibleArrayMember()) 4266 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4267 4268 } 4269 4270 const Type *Base = nullptr; 4271 uint64_t NumElts = 0; 4272 // vectorcall adds the concept of a homogenous vector aggregate, similar to 4273 // other targets. 4274 if ((IsVectorCall || IsRegCall) && 4275 isHomogeneousAggregate(Ty, Base, NumElts)) { 4276 if (IsRegCall) { 4277 if (FreeSSERegs >= NumElts) { 4278 FreeSSERegs -= NumElts; 4279 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 4280 return ABIArgInfo::getDirect(); 4281 return ABIArgInfo::getExpand(); 4282 } 4283 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4284 } else if (IsVectorCall) { 4285 if (FreeSSERegs >= NumElts && 4286 (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) { 4287 FreeSSERegs -= NumElts; 4288 return ABIArgInfo::getDirect(); 4289 } else if (IsReturnType) { 4290 return ABIArgInfo::getExpand(); 4291 } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) { 4292 // HVAs are delayed and reclassified in the 2nd step. 4293 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4294 } 4295 } 4296 } 4297 4298 if (Ty->isMemberPointerType()) { 4299 // If the member pointer is represented by an LLVM int or ptr, pass it 4300 // directly. 4301 llvm::Type *LLTy = CGT.ConvertType(Ty); 4302 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 4303 return ABIArgInfo::getDirect(); 4304 } 4305 4306 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { 4307 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4308 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4309 if (Width > 64 || !llvm::isPowerOf2_64(Width)) 4310 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4311 4312 // Otherwise, coerce it to a small integer. 4313 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 4314 } 4315 4316 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4317 switch (BT->getKind()) { 4318 case BuiltinType::Bool: 4319 // Bool type is always extended to the ABI, other builtin types are not 4320 // extended. 4321 return ABIArgInfo::getExtend(Ty); 4322 4323 case BuiltinType::LongDouble: 4324 // Mingw64 GCC uses the old 80 bit extended precision floating point 4325 // unit. It passes them indirectly through memory. 4326 if (IsMingw64) { 4327 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 4328 if (LDF == &llvm::APFloat::x87DoubleExtended()) 4329 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4330 } 4331 break; 4332 4333 case BuiltinType::Int128: 4334 case BuiltinType::UInt128: 4335 // If it's a parameter type, the normal ABI rule is that arguments larger 4336 // than 8 bytes are passed indirectly. GCC follows it. We follow it too, 4337 // even though it isn't particularly efficient. 4338 if (!IsReturnType) 4339 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4340 4341 // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that. 4342 // Clang matches them for compatibility. 4343 return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 4344 llvm::Type::getInt64Ty(getVMContext()), 2)); 4345 4346 default: 4347 break; 4348 } 4349 } 4350 4351 if (Ty->isExtIntType()) { 4352 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4353 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4354 // However, non-power-of-two _ExtInts will be passed as 1,2,4 or 8 bytes 4355 // anyway as long is it fits in them, so we don't have to check the power of 4356 // 2. 4357 if (Width <= 64) 4358 return ABIArgInfo::getDirect(); 4359 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4360 } 4361 4362 return ABIArgInfo::getDirect(); 4363 } 4364 4365 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 4366 const unsigned CC = FI.getCallingConvention(); 4367 bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall; 4368 bool IsRegCall = CC == llvm::CallingConv::X86_RegCall; 4369 4370 // If __attribute__((sysv_abi)) is in use, use the SysV argument 4371 // classification rules. 4372 if (CC == llvm::CallingConv::X86_64_SysV) { 4373 X86_64ABIInfo SysVABIInfo(CGT, AVXLevel); 4374 SysVABIInfo.computeInfo(FI); 4375 return; 4376 } 4377 4378 unsigned FreeSSERegs = 0; 4379 if (IsVectorCall) { 4380 // We can use up to 4 SSE return registers with vectorcall. 4381 FreeSSERegs = 4; 4382 } else if (IsRegCall) { 4383 // RegCall gives us 16 SSE registers. 4384 FreeSSERegs = 16; 4385 } 4386 4387 if (!getCXXABI().classifyReturnType(FI)) 4388 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true, 4389 IsVectorCall, IsRegCall); 4390 4391 if (IsVectorCall) { 4392 // We can use up to 6 SSE register parameters with vectorcall. 4393 FreeSSERegs = 6; 4394 } else if (IsRegCall) { 4395 // RegCall gives us 16 SSE registers, we can reuse the return registers. 4396 FreeSSERegs = 16; 4397 } 4398 4399 unsigned ArgNum = 0; 4400 unsigned ZeroSSERegs = 0; 4401 for (auto &I : FI.arguments()) { 4402 // Vectorcall in x64 only permits the first 6 arguments to be passed as 4403 // XMM/YMM registers. After the sixth argument, pretend no vector 4404 // registers are left. 4405 unsigned *MaybeFreeSSERegs = 4406 (IsVectorCall && ArgNum >= 6) ? &ZeroSSERegs : &FreeSSERegs; 4407 I.info = 4408 classify(I.type, *MaybeFreeSSERegs, false, IsVectorCall, IsRegCall); 4409 ++ArgNum; 4410 } 4411 4412 if (IsVectorCall) { 4413 // For vectorcall, assign aggregate HVAs to any free vector registers in a 4414 // second pass. 4415 for (auto &I : FI.arguments()) 4416 I.info = reclassifyHvaArgForVectorCall(I.type, FreeSSERegs, I.info); 4417 } 4418 } 4419 4420 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4421 QualType Ty) const { 4422 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4423 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4424 uint64_t Width = getContext().getTypeSize(Ty); 4425 bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 4426 4427 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 4428 CGF.getContext().getTypeInfoInChars(Ty), 4429 CharUnits::fromQuantity(8), 4430 /*allowHigherAlign*/ false); 4431 } 4432 4433 static bool PPC_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4434 llvm::Value *Address, bool Is64Bit, 4435 bool IsAIX) { 4436 // This is calculated from the LLVM and GCC tables and verified 4437 // against gcc output. AFAIK all PPC ABIs use the same encoding. 4438 4439 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4440 4441 llvm::IntegerType *i8 = CGF.Int8Ty; 4442 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4443 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4444 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4445 4446 // 0-31: r0-31, the 4-byte or 8-byte general-purpose registers 4447 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 0, 31); 4448 4449 // 32-63: fp0-31, the 8-byte floating-point registers 4450 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4451 4452 // 64-67 are various 4-byte or 8-byte special-purpose registers: 4453 // 64: mq 4454 // 65: lr 4455 // 66: ctr 4456 // 67: ap 4457 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 64, 67); 4458 4459 // 68-76 are various 4-byte special-purpose registers: 4460 // 68-75 cr0-7 4461 // 76: xer 4462 AssignToArrayRange(Builder, Address, Four8, 68, 76); 4463 4464 // 77-108: v0-31, the 16-byte vector registers 4465 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4466 4467 // 109: vrsave 4468 // 110: vscr 4469 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 109, 110); 4470 4471 // AIX does not utilize the rest of the registers. 4472 if (IsAIX) 4473 return false; 4474 4475 // 111: spe_acc 4476 // 112: spefscr 4477 // 113: sfp 4478 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 111, 113); 4479 4480 if (!Is64Bit) 4481 return false; 4482 4483 // TODO: Need to verify if these registers are used on 64 bit AIX with Power8 4484 // or above CPU. 4485 // 64-bit only registers: 4486 // 114: tfhar 4487 // 115: tfiar 4488 // 116: texasr 4489 AssignToArrayRange(Builder, Address, Eight8, 114, 116); 4490 4491 return false; 4492 } 4493 4494 // AIX 4495 namespace { 4496 /// AIXABIInfo - The AIX XCOFF ABI information. 4497 class AIXABIInfo : public ABIInfo { 4498 const bool Is64Bit; 4499 const unsigned PtrByteSize; 4500 CharUnits getParamTypeAlignment(QualType Ty) const; 4501 4502 public: 4503 AIXABIInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit) 4504 : ABIInfo(CGT), Is64Bit(Is64Bit), PtrByteSize(Is64Bit ? 8 : 4) {} 4505 4506 bool isPromotableTypeForABI(QualType Ty) const; 4507 4508 ABIArgInfo classifyReturnType(QualType RetTy) const; 4509 ABIArgInfo classifyArgumentType(QualType Ty) const; 4510 4511 void computeInfo(CGFunctionInfo &FI) const override { 4512 if (!getCXXABI().classifyReturnType(FI)) 4513 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4514 4515 for (auto &I : FI.arguments()) 4516 I.info = classifyArgumentType(I.type); 4517 } 4518 4519 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4520 QualType Ty) const override; 4521 }; 4522 4523 class AIXTargetCodeGenInfo : public TargetCodeGenInfo { 4524 const bool Is64Bit; 4525 4526 public: 4527 AIXTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit) 4528 : TargetCodeGenInfo(std::make_unique<AIXABIInfo>(CGT, Is64Bit)), 4529 Is64Bit(Is64Bit) {} 4530 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4531 return 1; // r1 is the dedicated stack pointer 4532 } 4533 4534 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4535 llvm::Value *Address) const override; 4536 }; 4537 } // namespace 4538 4539 // Return true if the ABI requires Ty to be passed sign- or zero- 4540 // extended to 32/64 bits. 4541 bool AIXABIInfo::isPromotableTypeForABI(QualType Ty) const { 4542 // Treat an enum type as its underlying type. 4543 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4544 Ty = EnumTy->getDecl()->getIntegerType(); 4545 4546 // Promotable integer types are required to be promoted by the ABI. 4547 if (Ty->isPromotableIntegerType()) 4548 return true; 4549 4550 if (!Is64Bit) 4551 return false; 4552 4553 // For 64 bit mode, in addition to the usual promotable integer types, we also 4554 // need to extend all 32-bit types, since the ABI requires promotion to 64 4555 // bits. 4556 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4557 switch (BT->getKind()) { 4558 case BuiltinType::Int: 4559 case BuiltinType::UInt: 4560 return true; 4561 default: 4562 break; 4563 } 4564 4565 return false; 4566 } 4567 4568 ABIArgInfo AIXABIInfo::classifyReturnType(QualType RetTy) const { 4569 if (RetTy->isAnyComplexType()) 4570 return ABIArgInfo::getDirect(); 4571 4572 if (RetTy->isVectorType()) 4573 return ABIArgInfo::getDirect(); 4574 4575 if (RetTy->isVoidType()) 4576 return ABIArgInfo::getIgnore(); 4577 4578 if (isAggregateTypeForABI(RetTy)) 4579 return getNaturalAlignIndirect(RetTy); 4580 4581 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 4582 : ABIArgInfo::getDirect()); 4583 } 4584 4585 ABIArgInfo AIXABIInfo::classifyArgumentType(QualType Ty) const { 4586 Ty = useFirstFieldIfTransparentUnion(Ty); 4587 4588 if (Ty->isAnyComplexType()) 4589 return ABIArgInfo::getDirect(); 4590 4591 if (Ty->isVectorType()) 4592 return ABIArgInfo::getDirect(); 4593 4594 if (isAggregateTypeForABI(Ty)) { 4595 // Records with non-trivial destructors/copy-constructors should not be 4596 // passed by value. 4597 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 4598 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4599 4600 CharUnits CCAlign = getParamTypeAlignment(Ty); 4601 CharUnits TyAlign = getContext().getTypeAlignInChars(Ty); 4602 4603 return ABIArgInfo::getIndirect(CCAlign, /*ByVal*/ true, 4604 /*Realign*/ TyAlign > CCAlign); 4605 } 4606 4607 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 4608 : ABIArgInfo::getDirect()); 4609 } 4610 4611 CharUnits AIXABIInfo::getParamTypeAlignment(QualType Ty) const { 4612 // Complex types are passed just like their elements. 4613 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4614 Ty = CTy->getElementType(); 4615 4616 if (Ty->isVectorType()) 4617 return CharUnits::fromQuantity(16); 4618 4619 // If the structure contains a vector type, the alignment is 16. 4620 if (isRecordWithSIMDVectorType(getContext(), Ty)) 4621 return CharUnits::fromQuantity(16); 4622 4623 return CharUnits::fromQuantity(PtrByteSize); 4624 } 4625 4626 Address AIXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4627 QualType Ty) const { 4628 4629 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 4630 TypeInfo.Align = getParamTypeAlignment(Ty); 4631 4632 CharUnits SlotSize = CharUnits::fromQuantity(PtrByteSize); 4633 4634 // If we have a complex type and the base type is smaller than the register 4635 // size, the ABI calls for the real and imaginary parts to be right-adjusted 4636 // in separate words in 32bit mode or doublewords in 64bit mode. However, 4637 // Clang expects us to produce a pointer to a structure with the two parts 4638 // packed tightly. So generate loads of the real and imaginary parts relative 4639 // to the va_list pointer, and store them to a temporary structure. We do the 4640 // same as the PPC64ABI here. 4641 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4642 CharUnits EltSize = TypeInfo.Width / 2; 4643 if (EltSize < SlotSize) 4644 return complexTempStructure(CGF, VAListAddr, Ty, SlotSize, EltSize, CTy); 4645 } 4646 4647 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, TypeInfo, 4648 SlotSize, /*AllowHigher*/ true); 4649 } 4650 4651 bool AIXTargetCodeGenInfo::initDwarfEHRegSizeTable( 4652 CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const { 4653 return PPC_initDwarfEHRegSizeTable(CGF, Address, Is64Bit, /*IsAIX*/ true); 4654 } 4655 4656 // PowerPC-32 4657 namespace { 4658 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. 4659 class PPC32_SVR4_ABIInfo : public DefaultABIInfo { 4660 bool IsSoftFloatABI; 4661 bool IsRetSmallStructInRegABI; 4662 4663 CharUnits getParamTypeAlignment(QualType Ty) const; 4664 4665 public: 4666 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI, 4667 bool RetSmallStructInRegABI) 4668 : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI), 4669 IsRetSmallStructInRegABI(RetSmallStructInRegABI) {} 4670 4671 ABIArgInfo classifyReturnType(QualType RetTy) const; 4672 4673 void computeInfo(CGFunctionInfo &FI) const override { 4674 if (!getCXXABI().classifyReturnType(FI)) 4675 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4676 for (auto &I : FI.arguments()) 4677 I.info = classifyArgumentType(I.type); 4678 } 4679 4680 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4681 QualType Ty) const override; 4682 }; 4683 4684 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { 4685 public: 4686 PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI, 4687 bool RetSmallStructInRegABI) 4688 : TargetCodeGenInfo(std::make_unique<PPC32_SVR4_ABIInfo>( 4689 CGT, SoftFloatABI, RetSmallStructInRegABI)) {} 4690 4691 static bool isStructReturnInRegABI(const llvm::Triple &Triple, 4692 const CodeGenOptions &Opts); 4693 4694 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4695 // This is recovered from gcc output. 4696 return 1; // r1 is the dedicated stack pointer 4697 } 4698 4699 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4700 llvm::Value *Address) const override; 4701 }; 4702 } 4703 4704 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4705 // Complex types are passed just like their elements. 4706 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4707 Ty = CTy->getElementType(); 4708 4709 if (Ty->isVectorType()) 4710 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 4711 : 4); 4712 4713 // For single-element float/vector structs, we consider the whole type 4714 // to have the same alignment requirements as its single element. 4715 const Type *AlignTy = nullptr; 4716 if (const Type *EltType = isSingleElementStruct(Ty, getContext())) { 4717 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4718 if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || 4719 (BT && BT->isFloatingPoint())) 4720 AlignTy = EltType; 4721 } 4722 4723 if (AlignTy) 4724 return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4); 4725 return CharUnits::fromQuantity(4); 4726 } 4727 4728 ABIArgInfo PPC32_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 4729 uint64_t Size; 4730 4731 // -msvr4-struct-return puts small aggregates in GPR3 and GPR4. 4732 if (isAggregateTypeForABI(RetTy) && IsRetSmallStructInRegABI && 4733 (Size = getContext().getTypeSize(RetTy)) <= 64) { 4734 // System V ABI (1995), page 3-22, specified: 4735 // > A structure or union whose size is less than or equal to 8 bytes 4736 // > shall be returned in r3 and r4, as if it were first stored in the 4737 // > 8-byte aligned memory area and then the low addressed word were 4738 // > loaded into r3 and the high-addressed word into r4. Bits beyond 4739 // > the last member of the structure or union are not defined. 4740 // 4741 // GCC for big-endian PPC32 inserts the pad before the first member, 4742 // not "beyond the last member" of the struct. To stay compatible 4743 // with GCC, we coerce the struct to an integer of the same size. 4744 // LLVM will extend it and return i32 in r3, or i64 in r3:r4. 4745 if (Size == 0) 4746 return ABIArgInfo::getIgnore(); 4747 else { 4748 llvm::Type *CoerceTy = llvm::Type::getIntNTy(getVMContext(), Size); 4749 return ABIArgInfo::getDirect(CoerceTy); 4750 } 4751 } 4752 4753 return DefaultABIInfo::classifyReturnType(RetTy); 4754 } 4755 4756 // TODO: this implementation is now likely redundant with 4757 // DefaultABIInfo::EmitVAArg. 4758 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList, 4759 QualType Ty) const { 4760 if (getTarget().getTriple().isOSDarwin()) { 4761 auto TI = getContext().getTypeInfoInChars(Ty); 4762 TI.Align = getParamTypeAlignment(Ty); 4763 4764 CharUnits SlotSize = CharUnits::fromQuantity(4); 4765 return emitVoidPtrVAArg(CGF, VAList, Ty, 4766 classifyArgumentType(Ty).isIndirect(), TI, SlotSize, 4767 /*AllowHigherAlign=*/true); 4768 } 4769 4770 const unsigned OverflowLimit = 8; 4771 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4772 // TODO: Implement this. For now ignore. 4773 (void)CTy; 4774 return Address::invalid(); // FIXME? 4775 } 4776 4777 // struct __va_list_tag { 4778 // unsigned char gpr; 4779 // unsigned char fpr; 4780 // unsigned short reserved; 4781 // void *overflow_arg_area; 4782 // void *reg_save_area; 4783 // }; 4784 4785 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; 4786 bool isInt = !Ty->isFloatingType(); 4787 bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64; 4788 4789 // All aggregates are passed indirectly? That doesn't seem consistent 4790 // with the argument-lowering code. 4791 bool isIndirect = isAggregateTypeForABI(Ty); 4792 4793 CGBuilderTy &Builder = CGF.Builder; 4794 4795 // The calling convention either uses 1-2 GPRs or 1 FPR. 4796 Address NumRegsAddr = Address::invalid(); 4797 if (isInt || IsSoftFloatABI) { 4798 NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr"); 4799 } else { 4800 NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr"); 4801 } 4802 4803 llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs"); 4804 4805 // "Align" the register count when TY is i64. 4806 if (isI64 || (isF64 && IsSoftFloatABI)) { 4807 NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1)); 4808 NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U)); 4809 } 4810 4811 llvm::Value *CC = 4812 Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond"); 4813 4814 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); 4815 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); 4816 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 4817 4818 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); 4819 4820 llvm::Type *DirectTy = CGF.ConvertType(Ty); 4821 if (isIndirect) DirectTy = DirectTy->getPointerTo(0); 4822 4823 // Case 1: consume registers. 4824 Address RegAddr = Address::invalid(); 4825 { 4826 CGF.EmitBlock(UsingRegs); 4827 4828 Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4); 4829 RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr), 4830 CharUnits::fromQuantity(8)); 4831 assert(RegAddr.getElementType() == CGF.Int8Ty); 4832 4833 // Floating-point registers start after the general-purpose registers. 4834 if (!(isInt || IsSoftFloatABI)) { 4835 RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr, 4836 CharUnits::fromQuantity(32)); 4837 } 4838 4839 // Get the address of the saved value by scaling the number of 4840 // registers we've used by the number of 4841 CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8); 4842 llvm::Value *RegOffset = 4843 Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity())); 4844 RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty, 4845 RegAddr.getPointer(), RegOffset), 4846 RegAddr.getAlignment().alignmentOfArrayElement(RegSize)); 4847 RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy); 4848 4849 // Increase the used-register count. 4850 NumRegs = 4851 Builder.CreateAdd(NumRegs, 4852 Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1)); 4853 Builder.CreateStore(NumRegs, NumRegsAddr); 4854 4855 CGF.EmitBranch(Cont); 4856 } 4857 4858 // Case 2: consume space in the overflow area. 4859 Address MemAddr = Address::invalid(); 4860 { 4861 CGF.EmitBlock(UsingOverflow); 4862 4863 Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr); 4864 4865 // Everything in the overflow area is rounded up to a size of at least 4. 4866 CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4); 4867 4868 CharUnits Size; 4869 if (!isIndirect) { 4870 auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty); 4871 Size = TypeInfo.Width.alignTo(OverflowAreaAlign); 4872 } else { 4873 Size = CGF.getPointerSize(); 4874 } 4875 4876 Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3); 4877 Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), 4878 OverflowAreaAlign); 4879 // Round up address of argument to alignment 4880 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 4881 if (Align > OverflowAreaAlign) { 4882 llvm::Value *Ptr = OverflowArea.getPointer(); 4883 OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align), 4884 Align); 4885 } 4886 4887 MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy); 4888 4889 // Increase the overflow area. 4890 OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size); 4891 Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr); 4892 CGF.EmitBranch(Cont); 4893 } 4894 4895 CGF.EmitBlock(Cont); 4896 4897 // Merge the cases with a phi. 4898 Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow, 4899 "vaarg.addr"); 4900 4901 // Load the pointer if the argument was passed indirectly. 4902 if (isIndirect) { 4903 Result = Address(Builder.CreateLoad(Result, "aggr"), 4904 getContext().getTypeAlignInChars(Ty)); 4905 } 4906 4907 return Result; 4908 } 4909 4910 bool PPC32TargetCodeGenInfo::isStructReturnInRegABI( 4911 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 4912 assert(Triple.isPPC32()); 4913 4914 switch (Opts.getStructReturnConvention()) { 4915 case CodeGenOptions::SRCK_Default: 4916 break; 4917 case CodeGenOptions::SRCK_OnStack: // -maix-struct-return 4918 return false; 4919 case CodeGenOptions::SRCK_InRegs: // -msvr4-struct-return 4920 return true; 4921 } 4922 4923 if (Triple.isOSBinFormatELF() && !Triple.isOSLinux()) 4924 return true; 4925 4926 return false; 4927 } 4928 4929 bool 4930 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4931 llvm::Value *Address) const { 4932 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ false, 4933 /*IsAIX*/ false); 4934 } 4935 4936 // PowerPC-64 4937 4938 namespace { 4939 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 4940 class PPC64_SVR4_ABIInfo : public SwiftABIInfo { 4941 public: 4942 enum ABIKind { 4943 ELFv1 = 0, 4944 ELFv2 4945 }; 4946 4947 private: 4948 static const unsigned GPRBits = 64; 4949 ABIKind Kind; 4950 bool IsSoftFloatABI; 4951 4952 public: 4953 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, 4954 bool SoftFloatABI) 4955 : SwiftABIInfo(CGT), Kind(Kind), IsSoftFloatABI(SoftFloatABI) {} 4956 4957 bool isPromotableTypeForABI(QualType Ty) const; 4958 CharUnits getParamTypeAlignment(QualType Ty) const; 4959 4960 ABIArgInfo classifyReturnType(QualType RetTy) const; 4961 ABIArgInfo classifyArgumentType(QualType Ty) const; 4962 4963 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4964 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4965 uint64_t Members) const override; 4966 4967 // TODO: We can add more logic to computeInfo to improve performance. 4968 // Example: For aggregate arguments that fit in a register, we could 4969 // use getDirectInReg (as is done below for structs containing a single 4970 // floating-point value) to avoid pushing them to memory on function 4971 // entry. This would require changing the logic in PPCISelLowering 4972 // when lowering the parameters in the caller and args in the callee. 4973 void computeInfo(CGFunctionInfo &FI) const override { 4974 if (!getCXXABI().classifyReturnType(FI)) 4975 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4976 for (auto &I : FI.arguments()) { 4977 // We rely on the default argument classification for the most part. 4978 // One exception: An aggregate containing a single floating-point 4979 // or vector item must be passed in a register if one is available. 4980 const Type *T = isSingleElementStruct(I.type, getContext()); 4981 if (T) { 4982 const BuiltinType *BT = T->getAs<BuiltinType>(); 4983 if ((T->isVectorType() && getContext().getTypeSize(T) == 128) || 4984 (BT && BT->isFloatingPoint())) { 4985 QualType QT(T, 0); 4986 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 4987 continue; 4988 } 4989 } 4990 I.info = classifyArgumentType(I.type); 4991 } 4992 } 4993 4994 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4995 QualType Ty) const override; 4996 4997 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 4998 bool asReturnValue) const override { 4999 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5000 } 5001 5002 bool isSwiftErrorInRegister() const override { 5003 return false; 5004 } 5005 }; 5006 5007 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 5008 5009 public: 5010 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 5011 PPC64_SVR4_ABIInfo::ABIKind Kind, 5012 bool SoftFloatABI) 5013 : TargetCodeGenInfo( 5014 std::make_unique<PPC64_SVR4_ABIInfo>(CGT, Kind, SoftFloatABI)) {} 5015 5016 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5017 // This is recovered from gcc output. 5018 return 1; // r1 is the dedicated stack pointer 5019 } 5020 5021 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5022 llvm::Value *Address) const override; 5023 }; 5024 5025 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 5026 public: 5027 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 5028 5029 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5030 // This is recovered from gcc output. 5031 return 1; // r1 is the dedicated stack pointer 5032 } 5033 5034 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5035 llvm::Value *Address) const override; 5036 }; 5037 5038 } 5039 5040 // Return true if the ABI requires Ty to be passed sign- or zero- 5041 // extended to 64 bits. 5042 bool 5043 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 5044 // Treat an enum type as its underlying type. 5045 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5046 Ty = EnumTy->getDecl()->getIntegerType(); 5047 5048 // Promotable integer types are required to be promoted by the ABI. 5049 if (isPromotableIntegerTypeForABI(Ty)) 5050 return true; 5051 5052 // In addition to the usual promotable integer types, we also need to 5053 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 5054 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 5055 switch (BT->getKind()) { 5056 case BuiltinType::Int: 5057 case BuiltinType::UInt: 5058 return true; 5059 default: 5060 break; 5061 } 5062 5063 if (const auto *EIT = Ty->getAs<ExtIntType>()) 5064 if (EIT->getNumBits() < 64) 5065 return true; 5066 5067 return false; 5068 } 5069 5070 /// isAlignedParamType - Determine whether a type requires 16-byte or 5071 /// higher alignment in the parameter area. Always returns at least 8. 5072 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 5073 // Complex types are passed just like their elements. 5074 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 5075 Ty = CTy->getElementType(); 5076 5077 // Only vector types of size 16 bytes need alignment (larger types are 5078 // passed via reference, smaller types are not aligned). 5079 if (Ty->isVectorType()) { 5080 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8); 5081 } else if (Ty->isRealFloatingType() && 5082 &getContext().getFloatTypeSemantics(Ty) == 5083 &llvm::APFloat::IEEEquad()) { 5084 // According to ABI document section 'Optional Save Areas': If extended 5085 // precision floating-point values in IEEE BINARY 128 QUADRUPLE PRECISION 5086 // format are supported, map them to a single quadword, quadword aligned. 5087 return CharUnits::fromQuantity(16); 5088 } 5089 5090 // For single-element float/vector structs, we consider the whole type 5091 // to have the same alignment requirements as its single element. 5092 const Type *AlignAsType = nullptr; 5093 const Type *EltType = isSingleElementStruct(Ty, getContext()); 5094 if (EltType) { 5095 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 5096 if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || 5097 (BT && BT->isFloatingPoint())) 5098 AlignAsType = EltType; 5099 } 5100 5101 // Likewise for ELFv2 homogeneous aggregates. 5102 const Type *Base = nullptr; 5103 uint64_t Members = 0; 5104 if (!AlignAsType && Kind == ELFv2 && 5105 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 5106 AlignAsType = Base; 5107 5108 // With special case aggregates, only vector base types need alignment. 5109 if (AlignAsType) { 5110 return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8); 5111 } 5112 5113 // Otherwise, we only need alignment for any aggregate type that 5114 // has an alignment requirement of >= 16 bytes. 5115 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { 5116 return CharUnits::fromQuantity(16); 5117 } 5118 5119 return CharUnits::fromQuantity(8); 5120 } 5121 5122 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 5123 /// aggregate. Base is set to the base element type, and Members is set 5124 /// to the number of base elements. 5125 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 5126 uint64_t &Members) const { 5127 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 5128 uint64_t NElements = AT->getSize().getZExtValue(); 5129 if (NElements == 0) 5130 return false; 5131 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 5132 return false; 5133 Members *= NElements; 5134 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 5135 const RecordDecl *RD = RT->getDecl(); 5136 if (RD->hasFlexibleArrayMember()) 5137 return false; 5138 5139 Members = 0; 5140 5141 // If this is a C++ record, check the properties of the record such as 5142 // bases and ABI specific restrictions 5143 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 5144 if (!getCXXABI().isPermittedToBeHomogeneousAggregate(CXXRD)) 5145 return false; 5146 5147 for (const auto &I : CXXRD->bases()) { 5148 // Ignore empty records. 5149 if (isEmptyRecord(getContext(), I.getType(), true)) 5150 continue; 5151 5152 uint64_t FldMembers; 5153 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) 5154 return false; 5155 5156 Members += FldMembers; 5157 } 5158 } 5159 5160 for (const auto *FD : RD->fields()) { 5161 // Ignore (non-zero arrays of) empty records. 5162 QualType FT = FD->getType(); 5163 while (const ConstantArrayType *AT = 5164 getContext().getAsConstantArrayType(FT)) { 5165 if (AT->getSize().getZExtValue() == 0) 5166 return false; 5167 FT = AT->getElementType(); 5168 } 5169 if (isEmptyRecord(getContext(), FT, true)) 5170 continue; 5171 5172 // For compatibility with GCC, ignore empty bitfields in C++ mode. 5173 if (getContext().getLangOpts().CPlusPlus && 5174 FD->isZeroLengthBitField(getContext())) 5175 continue; 5176 5177 uint64_t FldMembers; 5178 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 5179 return false; 5180 5181 Members = (RD->isUnion() ? 5182 std::max(Members, FldMembers) : Members + FldMembers); 5183 } 5184 5185 if (!Base) 5186 return false; 5187 5188 // Ensure there is no padding. 5189 if (getContext().getTypeSize(Base) * Members != 5190 getContext().getTypeSize(Ty)) 5191 return false; 5192 } else { 5193 Members = 1; 5194 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 5195 Members = 2; 5196 Ty = CT->getElementType(); 5197 } 5198 5199 // Most ABIs only support float, double, and some vector type widths. 5200 if (!isHomogeneousAggregateBaseType(Ty)) 5201 return false; 5202 5203 // The base type must be the same for all members. Types that 5204 // agree in both total size and mode (float vs. vector) are 5205 // treated as being equivalent here. 5206 const Type *TyPtr = Ty.getTypePtr(); 5207 if (!Base) { 5208 Base = TyPtr; 5209 // If it's a non-power-of-2 vector, its size is already a power-of-2, 5210 // so make sure to widen it explicitly. 5211 if (const VectorType *VT = Base->getAs<VectorType>()) { 5212 QualType EltTy = VT->getElementType(); 5213 unsigned NumElements = 5214 getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy); 5215 Base = getContext() 5216 .getVectorType(EltTy, NumElements, VT->getVectorKind()) 5217 .getTypePtr(); 5218 } 5219 } 5220 5221 if (Base->isVectorType() != TyPtr->isVectorType() || 5222 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 5223 return false; 5224 } 5225 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); 5226 } 5227 5228 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5229 // Homogeneous aggregates for ELFv2 must have base types of float, 5230 // double, long double, or 128-bit vectors. 5231 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5232 if (BT->getKind() == BuiltinType::Float || 5233 BT->getKind() == BuiltinType::Double || 5234 BT->getKind() == BuiltinType::LongDouble || 5235 BT->getKind() == BuiltinType::Ibm128 || 5236 (getContext().getTargetInfo().hasFloat128Type() && 5237 (BT->getKind() == BuiltinType::Float128))) { 5238 if (IsSoftFloatABI) 5239 return false; 5240 return true; 5241 } 5242 } 5243 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5244 if (getContext().getTypeSize(VT) == 128) 5245 return true; 5246 } 5247 return false; 5248 } 5249 5250 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( 5251 const Type *Base, uint64_t Members) const { 5252 // Vector and fp128 types require one register, other floating point types 5253 // require one or two registers depending on their size. 5254 uint32_t NumRegs = 5255 ((getContext().getTargetInfo().hasFloat128Type() && 5256 Base->isFloat128Type()) || 5257 Base->isVectorType()) ? 1 5258 : (getContext().getTypeSize(Base) + 63) / 64; 5259 5260 // Homogeneous Aggregates may occupy at most 8 registers. 5261 return Members * NumRegs <= 8; 5262 } 5263 5264 ABIArgInfo 5265 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 5266 Ty = useFirstFieldIfTransparentUnion(Ty); 5267 5268 if (Ty->isAnyComplexType()) 5269 return ABIArgInfo::getDirect(); 5270 5271 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 5272 // or via reference (larger than 16 bytes). 5273 if (Ty->isVectorType()) { 5274 uint64_t Size = getContext().getTypeSize(Ty); 5275 if (Size > 128) 5276 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5277 else if (Size < 128) { 5278 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 5279 return ABIArgInfo::getDirect(CoerceTy); 5280 } 5281 } 5282 5283 if (const auto *EIT = Ty->getAs<ExtIntType>()) 5284 if (EIT->getNumBits() > 128) 5285 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 5286 5287 if (isAggregateTypeForABI(Ty)) { 5288 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 5289 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 5290 5291 uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity(); 5292 uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 5293 5294 // ELFv2 homogeneous aggregates are passed as array types. 5295 const Type *Base = nullptr; 5296 uint64_t Members = 0; 5297 if (Kind == ELFv2 && 5298 isHomogeneousAggregate(Ty, Base, Members)) { 5299 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 5300 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 5301 return ABIArgInfo::getDirect(CoerceTy); 5302 } 5303 5304 // If an aggregate may end up fully in registers, we do not 5305 // use the ByVal method, but pass the aggregate as array. 5306 // This is usually beneficial since we avoid forcing the 5307 // back-end to store the argument to memory. 5308 uint64_t Bits = getContext().getTypeSize(Ty); 5309 if (Bits > 0 && Bits <= 8 * GPRBits) { 5310 llvm::Type *CoerceTy; 5311 5312 // Types up to 8 bytes are passed as integer type (which will be 5313 // properly aligned in the argument save area doubleword). 5314 if (Bits <= GPRBits) 5315 CoerceTy = 5316 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 5317 // Larger types are passed as arrays, with the base type selected 5318 // according to the required alignment in the save area. 5319 else { 5320 uint64_t RegBits = ABIAlign * 8; 5321 uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits; 5322 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 5323 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 5324 } 5325 5326 return ABIArgInfo::getDirect(CoerceTy); 5327 } 5328 5329 // All other aggregates are passed ByVal. 5330 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 5331 /*ByVal=*/true, 5332 /*Realign=*/TyAlign > ABIAlign); 5333 } 5334 5335 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 5336 : ABIArgInfo::getDirect()); 5337 } 5338 5339 ABIArgInfo 5340 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 5341 if (RetTy->isVoidType()) 5342 return ABIArgInfo::getIgnore(); 5343 5344 if (RetTy->isAnyComplexType()) 5345 return ABIArgInfo::getDirect(); 5346 5347 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 5348 // or via reference (larger than 16 bytes). 5349 if (RetTy->isVectorType()) { 5350 uint64_t Size = getContext().getTypeSize(RetTy); 5351 if (Size > 128) 5352 return getNaturalAlignIndirect(RetTy); 5353 else if (Size < 128) { 5354 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 5355 return ABIArgInfo::getDirect(CoerceTy); 5356 } 5357 } 5358 5359 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 5360 if (EIT->getNumBits() > 128) 5361 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 5362 5363 if (isAggregateTypeForABI(RetTy)) { 5364 // ELFv2 homogeneous aggregates are returned as array types. 5365 const Type *Base = nullptr; 5366 uint64_t Members = 0; 5367 if (Kind == ELFv2 && 5368 isHomogeneousAggregate(RetTy, Base, Members)) { 5369 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 5370 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 5371 return ABIArgInfo::getDirect(CoerceTy); 5372 } 5373 5374 // ELFv2 small aggregates are returned in up to two registers. 5375 uint64_t Bits = getContext().getTypeSize(RetTy); 5376 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 5377 if (Bits == 0) 5378 return ABIArgInfo::getIgnore(); 5379 5380 llvm::Type *CoerceTy; 5381 if (Bits > GPRBits) { 5382 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 5383 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy); 5384 } else 5385 CoerceTy = 5386 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 5387 return ABIArgInfo::getDirect(CoerceTy); 5388 } 5389 5390 // All other aggregates are returned indirectly. 5391 return getNaturalAlignIndirect(RetTy); 5392 } 5393 5394 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 5395 : ABIArgInfo::getDirect()); 5396 } 5397 5398 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 5399 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5400 QualType Ty) const { 5401 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 5402 TypeInfo.Align = getParamTypeAlignment(Ty); 5403 5404 CharUnits SlotSize = CharUnits::fromQuantity(8); 5405 5406 // If we have a complex type and the base type is smaller than 8 bytes, 5407 // the ABI calls for the real and imaginary parts to be right-adjusted 5408 // in separate doublewords. However, Clang expects us to produce a 5409 // pointer to a structure with the two parts packed tightly. So generate 5410 // loads of the real and imaginary parts relative to the va_list pointer, 5411 // and store them to a temporary structure. 5412 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 5413 CharUnits EltSize = TypeInfo.Width / 2; 5414 if (EltSize < SlotSize) 5415 return complexTempStructure(CGF, VAListAddr, Ty, SlotSize, EltSize, CTy); 5416 } 5417 5418 // Otherwise, just use the general rule. 5419 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 5420 TypeInfo, SlotSize, /*AllowHigher*/ true); 5421 } 5422 5423 bool 5424 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 5425 CodeGen::CodeGenFunction &CGF, 5426 llvm::Value *Address) const { 5427 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true, 5428 /*IsAIX*/ false); 5429 } 5430 5431 bool 5432 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5433 llvm::Value *Address) const { 5434 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true, 5435 /*IsAIX*/ false); 5436 } 5437 5438 //===----------------------------------------------------------------------===// 5439 // AArch64 ABI Implementation 5440 //===----------------------------------------------------------------------===// 5441 5442 namespace { 5443 5444 class AArch64ABIInfo : public SwiftABIInfo { 5445 public: 5446 enum ABIKind { 5447 AAPCS = 0, 5448 DarwinPCS, 5449 Win64 5450 }; 5451 5452 private: 5453 ABIKind Kind; 5454 5455 public: 5456 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) 5457 : SwiftABIInfo(CGT), Kind(Kind) {} 5458 5459 private: 5460 ABIKind getABIKind() const { return Kind; } 5461 bool isDarwinPCS() const { return Kind == DarwinPCS; } 5462 5463 ABIArgInfo classifyReturnType(QualType RetTy, bool IsVariadic) const; 5464 ABIArgInfo classifyArgumentType(QualType RetTy, bool IsVariadic, 5465 unsigned CallingConvention) const; 5466 ABIArgInfo coerceIllegalVector(QualType Ty) const; 5467 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 5468 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 5469 uint64_t Members) const override; 5470 5471 bool isIllegalVectorType(QualType Ty) const; 5472 5473 void computeInfo(CGFunctionInfo &FI) const override { 5474 if (!::classifyReturnType(getCXXABI(), FI, *this)) 5475 FI.getReturnInfo() = 5476 classifyReturnType(FI.getReturnType(), FI.isVariadic()); 5477 5478 for (auto &it : FI.arguments()) 5479 it.info = classifyArgumentType(it.type, FI.isVariadic(), 5480 FI.getCallingConvention()); 5481 } 5482 5483 Address EmitDarwinVAArg(Address VAListAddr, QualType Ty, 5484 CodeGenFunction &CGF) const; 5485 5486 Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 5487 CodeGenFunction &CGF) const; 5488 5489 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5490 QualType Ty) const override { 5491 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5492 if (isa<llvm::ScalableVectorType>(BaseTy)) 5493 llvm::report_fatal_error("Passing SVE types to variadic functions is " 5494 "currently not supported"); 5495 5496 return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty) 5497 : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 5498 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 5499 } 5500 5501 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 5502 QualType Ty) const override; 5503 5504 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 5505 bool asReturnValue) const override { 5506 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5507 } 5508 bool isSwiftErrorInRegister() const override { 5509 return true; 5510 } 5511 5512 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 5513 unsigned elts) const override; 5514 5515 bool allowBFloatArgsAndRet() const override { 5516 return getTarget().hasBFloat16Type(); 5517 } 5518 }; 5519 5520 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 5521 public: 5522 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 5523 : TargetCodeGenInfo(std::make_unique<AArch64ABIInfo>(CGT, Kind)) {} 5524 5525 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 5526 return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue"; 5527 } 5528 5529 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5530 return 31; 5531 } 5532 5533 bool doesReturnSlotInterfereWithArgs() const override { return false; } 5534 5535 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5536 CodeGen::CodeGenModule &CGM) const override { 5537 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5538 if (!FD) 5539 return; 5540 5541 const auto *TA = FD->getAttr<TargetAttr>(); 5542 if (TA == nullptr) 5543 return; 5544 5545 ParsedTargetAttr Attr = TA->parse(); 5546 if (Attr.BranchProtection.empty()) 5547 return; 5548 5549 TargetInfo::BranchProtectionInfo BPI; 5550 StringRef Error; 5551 (void)CGM.getTarget().validateBranchProtection(Attr.BranchProtection, 5552 BPI, Error); 5553 assert(Error.empty()); 5554 5555 auto *Fn = cast<llvm::Function>(GV); 5556 static const char *SignReturnAddrStr[] = {"none", "non-leaf", "all"}; 5557 Fn->addFnAttr("sign-return-address", SignReturnAddrStr[static_cast<int>(BPI.SignReturnAddr)]); 5558 5559 if (BPI.SignReturnAddr != LangOptions::SignReturnAddressScopeKind::None) { 5560 Fn->addFnAttr("sign-return-address-key", 5561 BPI.SignKey == LangOptions::SignReturnAddressKeyKind::AKey 5562 ? "a_key" 5563 : "b_key"); 5564 } 5565 5566 Fn->addFnAttr("branch-target-enforcement", 5567 BPI.BranchTargetEnforcement ? "true" : "false"); 5568 } 5569 5570 bool isScalarizableAsmOperand(CodeGen::CodeGenFunction &CGF, 5571 llvm::Type *Ty) const override { 5572 if (CGF.getTarget().hasFeature("ls64")) { 5573 auto *ST = dyn_cast<llvm::StructType>(Ty); 5574 if (ST && ST->getNumElements() == 1) { 5575 auto *AT = dyn_cast<llvm::ArrayType>(ST->getElementType(0)); 5576 if (AT && AT->getNumElements() == 8 && 5577 AT->getElementType()->isIntegerTy(64)) 5578 return true; 5579 } 5580 } 5581 return TargetCodeGenInfo::isScalarizableAsmOperand(CGF, Ty); 5582 } 5583 }; 5584 5585 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo { 5586 public: 5587 WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K) 5588 : AArch64TargetCodeGenInfo(CGT, K) {} 5589 5590 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5591 CodeGen::CodeGenModule &CGM) const override; 5592 5593 void getDependentLibraryOption(llvm::StringRef Lib, 5594 llvm::SmallString<24> &Opt) const override { 5595 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5596 } 5597 5598 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5599 llvm::SmallString<32> &Opt) const override { 5600 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5601 } 5602 }; 5603 5604 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes( 5605 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 5606 AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 5607 if (GV->isDeclaration()) 5608 return; 5609 addStackProbeTargetAttributes(D, GV, CGM); 5610 } 5611 } 5612 5613 ABIArgInfo AArch64ABIInfo::coerceIllegalVector(QualType Ty) const { 5614 assert(Ty->isVectorType() && "expected vector type!"); 5615 5616 const auto *VT = Ty->castAs<VectorType>(); 5617 if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) { 5618 assert(VT->getElementType()->isBuiltinType() && "expected builtin type!"); 5619 assert(VT->getElementType()->castAs<BuiltinType>()->getKind() == 5620 BuiltinType::UChar && 5621 "unexpected builtin type for SVE predicate!"); 5622 return ABIArgInfo::getDirect(llvm::ScalableVectorType::get( 5623 llvm::Type::getInt1Ty(getVMContext()), 16)); 5624 } 5625 5626 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector) { 5627 assert(VT->getElementType()->isBuiltinType() && "expected builtin type!"); 5628 5629 const auto *BT = VT->getElementType()->castAs<BuiltinType>(); 5630 llvm::ScalableVectorType *ResType = nullptr; 5631 switch (BT->getKind()) { 5632 default: 5633 llvm_unreachable("unexpected builtin type for SVE vector!"); 5634 case BuiltinType::SChar: 5635 case BuiltinType::UChar: 5636 ResType = llvm::ScalableVectorType::get( 5637 llvm::Type::getInt8Ty(getVMContext()), 16); 5638 break; 5639 case BuiltinType::Short: 5640 case BuiltinType::UShort: 5641 ResType = llvm::ScalableVectorType::get( 5642 llvm::Type::getInt16Ty(getVMContext()), 8); 5643 break; 5644 case BuiltinType::Int: 5645 case BuiltinType::UInt: 5646 ResType = llvm::ScalableVectorType::get( 5647 llvm::Type::getInt32Ty(getVMContext()), 4); 5648 break; 5649 case BuiltinType::Long: 5650 case BuiltinType::ULong: 5651 ResType = llvm::ScalableVectorType::get( 5652 llvm::Type::getInt64Ty(getVMContext()), 2); 5653 break; 5654 case BuiltinType::Half: 5655 ResType = llvm::ScalableVectorType::get( 5656 llvm::Type::getHalfTy(getVMContext()), 8); 5657 break; 5658 case BuiltinType::Float: 5659 ResType = llvm::ScalableVectorType::get( 5660 llvm::Type::getFloatTy(getVMContext()), 4); 5661 break; 5662 case BuiltinType::Double: 5663 ResType = llvm::ScalableVectorType::get( 5664 llvm::Type::getDoubleTy(getVMContext()), 2); 5665 break; 5666 case BuiltinType::BFloat16: 5667 ResType = llvm::ScalableVectorType::get( 5668 llvm::Type::getBFloatTy(getVMContext()), 8); 5669 break; 5670 } 5671 return ABIArgInfo::getDirect(ResType); 5672 } 5673 5674 uint64_t Size = getContext().getTypeSize(Ty); 5675 // Android promotes <2 x i8> to i16, not i32 5676 if (isAndroid() && (Size <= 16)) { 5677 llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext()); 5678 return ABIArgInfo::getDirect(ResType); 5679 } 5680 if (Size <= 32) { 5681 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 5682 return ABIArgInfo::getDirect(ResType); 5683 } 5684 if (Size == 64) { 5685 auto *ResType = 5686 llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 5687 return ABIArgInfo::getDirect(ResType); 5688 } 5689 if (Size == 128) { 5690 auto *ResType = 5691 llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 5692 return ABIArgInfo::getDirect(ResType); 5693 } 5694 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5695 } 5696 5697 ABIArgInfo 5698 AArch64ABIInfo::classifyArgumentType(QualType Ty, bool IsVariadic, 5699 unsigned CallingConvention) const { 5700 Ty = useFirstFieldIfTransparentUnion(Ty); 5701 5702 // Handle illegal vector types here. 5703 if (isIllegalVectorType(Ty)) 5704 return coerceIllegalVector(Ty); 5705 5706 if (!isAggregateTypeForABI(Ty)) { 5707 // Treat an enum type as its underlying type. 5708 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5709 Ty = EnumTy->getDecl()->getIntegerType(); 5710 5711 if (const auto *EIT = Ty->getAs<ExtIntType>()) 5712 if (EIT->getNumBits() > 128) 5713 return getNaturalAlignIndirect(Ty); 5714 5715 return (isPromotableIntegerTypeForABI(Ty) && isDarwinPCS() 5716 ? ABIArgInfo::getExtend(Ty) 5717 : ABIArgInfo::getDirect()); 5718 } 5719 5720 // Structures with either a non-trivial destructor or a non-trivial 5721 // copy constructor are always indirect. 5722 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5723 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 5724 CGCXXABI::RAA_DirectInMemory); 5725 } 5726 5727 // Empty records are always ignored on Darwin, but actually passed in C++ mode 5728 // elsewhere for GNU compatibility. 5729 uint64_t Size = getContext().getTypeSize(Ty); 5730 bool IsEmpty = isEmptyRecord(getContext(), Ty, true); 5731 if (IsEmpty || Size == 0) { 5732 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 5733 return ABIArgInfo::getIgnore(); 5734 5735 // GNU C mode. The only argument that gets ignored is an empty one with size 5736 // 0. 5737 if (IsEmpty && Size == 0) 5738 return ABIArgInfo::getIgnore(); 5739 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5740 } 5741 5742 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 5743 const Type *Base = nullptr; 5744 uint64_t Members = 0; 5745 bool IsWin64 = Kind == Win64 || CallingConvention == llvm::CallingConv::Win64; 5746 bool IsWinVariadic = IsWin64 && IsVariadic; 5747 // In variadic functions on Windows, all composite types are treated alike, 5748 // no special handling of HFAs/HVAs. 5749 if (!IsWinVariadic && isHomogeneousAggregate(Ty, Base, Members)) { 5750 if (Kind != AArch64ABIInfo::AAPCS) 5751 return ABIArgInfo::getDirect( 5752 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); 5753 5754 // For alignment adjusted HFAs, cap the argument alignment to 16, leave it 5755 // default otherwise. 5756 unsigned Align = 5757 getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); 5758 unsigned BaseAlign = getContext().getTypeAlignInChars(Base).getQuantity(); 5759 Align = (Align > BaseAlign && Align >= 16) ? 16 : 0; 5760 return ABIArgInfo::getDirect( 5761 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members), 0, 5762 nullptr, true, Align); 5763 } 5764 5765 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 5766 if (Size <= 128) { 5767 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5768 // same size and alignment. 5769 if (getTarget().isRenderScriptTarget()) { 5770 return coerceToIntArray(Ty, getContext(), getVMContext()); 5771 } 5772 unsigned Alignment; 5773 if (Kind == AArch64ABIInfo::AAPCS) { 5774 Alignment = getContext().getTypeUnadjustedAlign(Ty); 5775 Alignment = Alignment < 128 ? 64 : 128; 5776 } else { 5777 Alignment = std::max(getContext().getTypeAlign(Ty), 5778 (unsigned)getTarget().getPointerWidth(0)); 5779 } 5780 Size = llvm::alignTo(Size, Alignment); 5781 5782 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5783 // For aggregates with 16-byte alignment, we use i128. 5784 llvm::Type *BaseTy = llvm::Type::getIntNTy(getVMContext(), Alignment); 5785 return ABIArgInfo::getDirect( 5786 Size == Alignment ? BaseTy 5787 : llvm::ArrayType::get(BaseTy, Size / Alignment)); 5788 } 5789 5790 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5791 } 5792 5793 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy, 5794 bool IsVariadic) const { 5795 if (RetTy->isVoidType()) 5796 return ABIArgInfo::getIgnore(); 5797 5798 if (const auto *VT = RetTy->getAs<VectorType>()) { 5799 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector || 5800 VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) 5801 return coerceIllegalVector(RetTy); 5802 } 5803 5804 // Large vector types should be returned via memory. 5805 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 5806 return getNaturalAlignIndirect(RetTy); 5807 5808 if (!isAggregateTypeForABI(RetTy)) { 5809 // Treat an enum type as its underlying type. 5810 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5811 RetTy = EnumTy->getDecl()->getIntegerType(); 5812 5813 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 5814 if (EIT->getNumBits() > 128) 5815 return getNaturalAlignIndirect(RetTy); 5816 5817 return (isPromotableIntegerTypeForABI(RetTy) && isDarwinPCS() 5818 ? ABIArgInfo::getExtend(RetTy) 5819 : ABIArgInfo::getDirect()); 5820 } 5821 5822 uint64_t Size = getContext().getTypeSize(RetTy); 5823 if (isEmptyRecord(getContext(), RetTy, true) || Size == 0) 5824 return ABIArgInfo::getIgnore(); 5825 5826 const Type *Base = nullptr; 5827 uint64_t Members = 0; 5828 if (isHomogeneousAggregate(RetTy, Base, Members) && 5829 !(getTarget().getTriple().getArch() == llvm::Triple::aarch64_32 && 5830 IsVariadic)) 5831 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 5832 return ABIArgInfo::getDirect(); 5833 5834 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 5835 if (Size <= 128) { 5836 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5837 // same size and alignment. 5838 if (getTarget().isRenderScriptTarget()) { 5839 return coerceToIntArray(RetTy, getContext(), getVMContext()); 5840 } 5841 5842 if (Size <= 64 && getDataLayout().isLittleEndian()) { 5843 // Composite types are returned in lower bits of a 64-bit register for LE, 5844 // and in higher bits for BE. However, integer types are always returned 5845 // in lower bits for both LE and BE, and they are not rounded up to 5846 // 64-bits. We can skip rounding up of composite types for LE, but not for 5847 // BE, otherwise composite types will be indistinguishable from integer 5848 // types. 5849 return ABIArgInfo::getDirect( 5850 llvm::IntegerType::get(getVMContext(), Size)); 5851 } 5852 5853 unsigned Alignment = getContext().getTypeAlign(RetTy); 5854 Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes 5855 5856 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5857 // For aggregates with 16-byte alignment, we use i128. 5858 if (Alignment < 128 && Size == 128) { 5859 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 5860 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 5861 } 5862 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 5863 } 5864 5865 return getNaturalAlignIndirect(RetTy); 5866 } 5867 5868 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 5869 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 5870 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5871 // Check whether VT is a fixed-length SVE vector. These types are 5872 // represented as scalable vectors in function args/return and must be 5873 // coerced from fixed vectors. 5874 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector || 5875 VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) 5876 return true; 5877 5878 // Check whether VT is legal. 5879 unsigned NumElements = VT->getNumElements(); 5880 uint64_t Size = getContext().getTypeSize(VT); 5881 // NumElements should be power of 2. 5882 if (!llvm::isPowerOf2_32(NumElements)) 5883 return true; 5884 5885 // arm64_32 has to be compatible with the ARM logic here, which allows huge 5886 // vectors for some reason. 5887 llvm::Triple Triple = getTarget().getTriple(); 5888 if (Triple.getArch() == llvm::Triple::aarch64_32 && 5889 Triple.isOSBinFormatMachO()) 5890 return Size <= 32; 5891 5892 return Size != 64 && (Size != 128 || NumElements == 1); 5893 } 5894 return false; 5895 } 5896 5897 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize, 5898 llvm::Type *eltTy, 5899 unsigned elts) const { 5900 if (!llvm::isPowerOf2_32(elts)) 5901 return false; 5902 if (totalSize.getQuantity() != 8 && 5903 (totalSize.getQuantity() != 16 || elts == 1)) 5904 return false; 5905 return true; 5906 } 5907 5908 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5909 // Homogeneous aggregates for AAPCS64 must have base types of a floating 5910 // point type or a short-vector type. This is the same as the 32-bit ABI, 5911 // but with the difference that any floating-point type is allowed, 5912 // including __fp16. 5913 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5914 if (BT->isFloatingPoint()) 5915 return true; 5916 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 5917 unsigned VecSize = getContext().getTypeSize(VT); 5918 if (VecSize == 64 || VecSize == 128) 5919 return true; 5920 } 5921 return false; 5922 } 5923 5924 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 5925 uint64_t Members) const { 5926 return Members <= 4; 5927 } 5928 5929 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 5930 CodeGenFunction &CGF) const { 5931 ABIArgInfo AI = classifyArgumentType(Ty, /*IsVariadic=*/true, 5932 CGF.CurFnInfo->getCallingConvention()); 5933 bool IsIndirect = AI.isIndirect(); 5934 5935 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5936 if (IsIndirect) 5937 BaseTy = llvm::PointerType::getUnqual(BaseTy); 5938 else if (AI.getCoerceToType()) 5939 BaseTy = AI.getCoerceToType(); 5940 5941 unsigned NumRegs = 1; 5942 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { 5943 BaseTy = ArrTy->getElementType(); 5944 NumRegs = ArrTy->getNumElements(); 5945 } 5946 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); 5947 5948 // The AArch64 va_list type and handling is specified in the Procedure Call 5949 // Standard, section B.4: 5950 // 5951 // struct { 5952 // void *__stack; 5953 // void *__gr_top; 5954 // void *__vr_top; 5955 // int __gr_offs; 5956 // int __vr_offs; 5957 // }; 5958 5959 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 5960 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 5961 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 5962 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 5963 5964 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 5965 CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty); 5966 5967 Address reg_offs_p = Address::invalid(); 5968 llvm::Value *reg_offs = nullptr; 5969 int reg_top_index; 5970 int RegSize = IsIndirect ? 8 : TySize.getQuantity(); 5971 if (!IsFPR) { 5972 // 3 is the field number of __gr_offs 5973 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p"); 5974 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 5975 reg_top_index = 1; // field number for __gr_top 5976 RegSize = llvm::alignTo(RegSize, 8); 5977 } else { 5978 // 4 is the field number of __vr_offs. 5979 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p"); 5980 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 5981 reg_top_index = 2; // field number for __vr_top 5982 RegSize = 16 * NumRegs; 5983 } 5984 5985 //======================================= 5986 // Find out where argument was passed 5987 //======================================= 5988 5989 // If reg_offs >= 0 we're already using the stack for this type of 5990 // argument. We don't want to keep updating reg_offs (in case it overflows, 5991 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 5992 // whatever they get). 5993 llvm::Value *UsingStack = nullptr; 5994 UsingStack = CGF.Builder.CreateICmpSGE( 5995 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 5996 5997 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 5998 5999 // Otherwise, at least some kind of argument could go in these registers, the 6000 // question is whether this particular type is too big. 6001 CGF.EmitBlock(MaybeRegBlock); 6002 6003 // Integer arguments may need to correct register alignment (for example a 6004 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 6005 // align __gr_offs to calculate the potential address. 6006 if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) { 6007 int Align = TyAlign.getQuantity(); 6008 6009 reg_offs = CGF.Builder.CreateAdd( 6010 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 6011 "align_regoffs"); 6012 reg_offs = CGF.Builder.CreateAnd( 6013 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 6014 "aligned_regoffs"); 6015 } 6016 6017 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 6018 // The fact that this is done unconditionally reflects the fact that 6019 // allocating an argument to the stack also uses up all the remaining 6020 // registers of the appropriate kind. 6021 llvm::Value *NewOffset = nullptr; 6022 NewOffset = CGF.Builder.CreateAdd( 6023 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 6024 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 6025 6026 // Now we're in a position to decide whether this argument really was in 6027 // registers or not. 6028 llvm::Value *InRegs = nullptr; 6029 InRegs = CGF.Builder.CreateICmpSLE( 6030 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 6031 6032 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 6033 6034 //======================================= 6035 // Argument was in registers 6036 //======================================= 6037 6038 // Now we emit the code for if the argument was originally passed in 6039 // registers. First start the appropriate block: 6040 CGF.EmitBlock(InRegBlock); 6041 6042 llvm::Value *reg_top = nullptr; 6043 Address reg_top_p = 6044 CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p"); 6045 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 6046 Address BaseAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, reg_top, reg_offs), 6047 CharUnits::fromQuantity(IsFPR ? 16 : 8)); 6048 Address RegAddr = Address::invalid(); 6049 llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty); 6050 6051 if (IsIndirect) { 6052 // If it's been passed indirectly (actually a struct), whatever we find from 6053 // stored registers or on the stack will actually be a struct **. 6054 MemTy = llvm::PointerType::getUnqual(MemTy); 6055 } 6056 6057 const Type *Base = nullptr; 6058 uint64_t NumMembers = 0; 6059 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); 6060 if (IsHFA && NumMembers > 1) { 6061 // Homogeneous aggregates passed in registers will have their elements split 6062 // and stored 16-bytes apart regardless of size (they're notionally in qN, 6063 // qN+1, ...). We reload and store into a temporary local variable 6064 // contiguously. 6065 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 6066 auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0)); 6067 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 6068 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 6069 Address Tmp = CGF.CreateTempAlloca(HFATy, 6070 std::max(TyAlign, BaseTyInfo.Align)); 6071 6072 // On big-endian platforms, the value will be right-aligned in its slot. 6073 int Offset = 0; 6074 if (CGF.CGM.getDataLayout().isBigEndian() && 6075 BaseTyInfo.Width.getQuantity() < 16) 6076 Offset = 16 - BaseTyInfo.Width.getQuantity(); 6077 6078 for (unsigned i = 0; i < NumMembers; ++i) { 6079 CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset); 6080 Address LoadAddr = 6081 CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset); 6082 LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy); 6083 6084 Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i); 6085 6086 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 6087 CGF.Builder.CreateStore(Elem, StoreAddr); 6088 } 6089 6090 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy); 6091 } else { 6092 // Otherwise the object is contiguous in memory. 6093 6094 // It might be right-aligned in its slot. 6095 CharUnits SlotSize = BaseAddr.getAlignment(); 6096 if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect && 6097 (IsHFA || !isAggregateTypeForABI(Ty)) && 6098 TySize < SlotSize) { 6099 CharUnits Offset = SlotSize - TySize; 6100 BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset); 6101 } 6102 6103 RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy); 6104 } 6105 6106 CGF.EmitBranch(ContBlock); 6107 6108 //======================================= 6109 // Argument was on the stack 6110 //======================================= 6111 CGF.EmitBlock(OnStackBlock); 6112 6113 Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p"); 6114 llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack"); 6115 6116 // Again, stack arguments may need realignment. In this case both integer and 6117 // floating-point ones might be affected. 6118 if (!IsIndirect && TyAlign.getQuantity() > 8) { 6119 int Align = TyAlign.getQuantity(); 6120 6121 OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty); 6122 6123 OnStackPtr = CGF.Builder.CreateAdd( 6124 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 6125 "align_stack"); 6126 OnStackPtr = CGF.Builder.CreateAnd( 6127 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 6128 "align_stack"); 6129 6130 OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy); 6131 } 6132 Address OnStackAddr(OnStackPtr, 6133 std::max(CharUnits::fromQuantity(8), TyAlign)); 6134 6135 // All stack slots are multiples of 8 bytes. 6136 CharUnits StackSlotSize = CharUnits::fromQuantity(8); 6137 CharUnits StackSize; 6138 if (IsIndirect) 6139 StackSize = StackSlotSize; 6140 else 6141 StackSize = TySize.alignTo(StackSlotSize); 6142 6143 llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize); 6144 llvm::Value *NewStack = CGF.Builder.CreateInBoundsGEP( 6145 CGF.Int8Ty, OnStackPtr, StackSizeC, "new_stack"); 6146 6147 // Write the new value of __stack for the next call to va_arg 6148 CGF.Builder.CreateStore(NewStack, stack_p); 6149 6150 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 6151 TySize < StackSlotSize) { 6152 CharUnits Offset = StackSlotSize - TySize; 6153 OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset); 6154 } 6155 6156 OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy); 6157 6158 CGF.EmitBranch(ContBlock); 6159 6160 //======================================= 6161 // Tidy up 6162 //======================================= 6163 CGF.EmitBlock(ContBlock); 6164 6165 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 6166 OnStackAddr, OnStackBlock, "vaargs.addr"); 6167 6168 if (IsIndirect) 6169 return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), 6170 TyAlign); 6171 6172 return ResAddr; 6173 } 6174 6175 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty, 6176 CodeGenFunction &CGF) const { 6177 // The backend's lowering doesn't support va_arg for aggregates or 6178 // illegal vector types. Lower VAArg here for these cases and use 6179 // the LLVM va_arg instruction for everything else. 6180 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 6181 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 6182 6183 uint64_t PointerSize = getTarget().getPointerWidth(0) / 8; 6184 CharUnits SlotSize = CharUnits::fromQuantity(PointerSize); 6185 6186 // Empty records are ignored for parameter passing purposes. 6187 if (isEmptyRecord(getContext(), Ty, true)) { 6188 Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 6189 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 6190 return Addr; 6191 } 6192 6193 // The size of the actual thing passed, which might end up just 6194 // being a pointer for indirect types. 6195 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6196 6197 // Arguments bigger than 16 bytes which aren't homogeneous 6198 // aggregates should be passed indirectly. 6199 bool IsIndirect = false; 6200 if (TyInfo.Width.getQuantity() > 16) { 6201 const Type *Base = nullptr; 6202 uint64_t Members = 0; 6203 IsIndirect = !isHomogeneousAggregate(Ty, Base, Members); 6204 } 6205 6206 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 6207 TyInfo, SlotSize, /*AllowHigherAlign*/ true); 6208 } 6209 6210 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 6211 QualType Ty) const { 6212 bool IsIndirect = false; 6213 6214 // Composites larger than 16 bytes are passed by reference. 6215 if (isAggregateTypeForABI(Ty) && getContext().getTypeSize(Ty) > 128) 6216 IsIndirect = true; 6217 6218 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 6219 CGF.getContext().getTypeInfoInChars(Ty), 6220 CharUnits::fromQuantity(8), 6221 /*allowHigherAlign*/ false); 6222 } 6223 6224 //===----------------------------------------------------------------------===// 6225 // ARM ABI Implementation 6226 //===----------------------------------------------------------------------===// 6227 6228 namespace { 6229 6230 class ARMABIInfo : public SwiftABIInfo { 6231 public: 6232 enum ABIKind { 6233 APCS = 0, 6234 AAPCS = 1, 6235 AAPCS_VFP = 2, 6236 AAPCS16_VFP = 3, 6237 }; 6238 6239 private: 6240 ABIKind Kind; 6241 bool IsFloatABISoftFP; 6242 6243 public: 6244 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) 6245 : SwiftABIInfo(CGT), Kind(_Kind) { 6246 setCCs(); 6247 IsFloatABISoftFP = CGT.getCodeGenOpts().FloatABI == "softfp" || 6248 CGT.getCodeGenOpts().FloatABI == ""; // default 6249 } 6250 6251 bool isEABI() const { 6252 switch (getTarget().getTriple().getEnvironment()) { 6253 case llvm::Triple::Android: 6254 case llvm::Triple::EABI: 6255 case llvm::Triple::EABIHF: 6256 case llvm::Triple::GNUEABI: 6257 case llvm::Triple::GNUEABIHF: 6258 case llvm::Triple::MuslEABI: 6259 case llvm::Triple::MuslEABIHF: 6260 return true; 6261 default: 6262 return false; 6263 } 6264 } 6265 6266 bool isEABIHF() const { 6267 switch (getTarget().getTriple().getEnvironment()) { 6268 case llvm::Triple::EABIHF: 6269 case llvm::Triple::GNUEABIHF: 6270 case llvm::Triple::MuslEABIHF: 6271 return true; 6272 default: 6273 return false; 6274 } 6275 } 6276 6277 ABIKind getABIKind() const { return Kind; } 6278 6279 bool allowBFloatArgsAndRet() const override { 6280 return !IsFloatABISoftFP && getTarget().hasBFloat16Type(); 6281 } 6282 6283 private: 6284 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic, 6285 unsigned functionCallConv) const; 6286 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic, 6287 unsigned functionCallConv) const; 6288 ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base, 6289 uint64_t Members) const; 6290 ABIArgInfo coerceIllegalVector(QualType Ty) const; 6291 bool isIllegalVectorType(QualType Ty) const; 6292 bool containsAnyFP16Vectors(QualType Ty) const; 6293 6294 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 6295 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 6296 uint64_t Members) const override; 6297 6298 bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const; 6299 6300 void computeInfo(CGFunctionInfo &FI) const override; 6301 6302 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6303 QualType Ty) const override; 6304 6305 llvm::CallingConv::ID getLLVMDefaultCC() const; 6306 llvm::CallingConv::ID getABIDefaultCC() const; 6307 void setCCs(); 6308 6309 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 6310 bool asReturnValue) const override { 6311 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 6312 } 6313 bool isSwiftErrorInRegister() const override { 6314 return true; 6315 } 6316 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 6317 unsigned elts) const override; 6318 }; 6319 6320 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 6321 public: 6322 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 6323 : TargetCodeGenInfo(std::make_unique<ARMABIInfo>(CGT, K)) {} 6324 6325 const ARMABIInfo &getABIInfo() const { 6326 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 6327 } 6328 6329 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 6330 return 13; 6331 } 6332 6333 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 6334 return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue"; 6335 } 6336 6337 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6338 llvm::Value *Address) const override { 6339 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 6340 6341 // 0-15 are the 16 integer registers. 6342 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 6343 return false; 6344 } 6345 6346 unsigned getSizeOfUnwindException() const override { 6347 if (getABIInfo().isEABI()) return 88; 6348 return TargetCodeGenInfo::getSizeOfUnwindException(); 6349 } 6350 6351 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6352 CodeGen::CodeGenModule &CGM) const override { 6353 if (GV->isDeclaration()) 6354 return; 6355 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6356 if (!FD) 6357 return; 6358 6359 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 6360 if (!Attr) 6361 return; 6362 6363 const char *Kind; 6364 switch (Attr->getInterrupt()) { 6365 case ARMInterruptAttr::Generic: Kind = ""; break; 6366 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 6367 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 6368 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 6369 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 6370 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 6371 } 6372 6373 llvm::Function *Fn = cast<llvm::Function>(GV); 6374 6375 Fn->addFnAttr("interrupt", Kind); 6376 6377 ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind(); 6378 if (ABI == ARMABIInfo::APCS) 6379 return; 6380 6381 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 6382 // however this is not necessarily true on taking any interrupt. Instruct 6383 // the backend to perform a realignment as part of the function prologue. 6384 llvm::AttrBuilder B; 6385 B.addStackAlignmentAttr(8); 6386 Fn->addFnAttrs(B); 6387 } 6388 }; 6389 6390 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { 6391 public: 6392 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 6393 : ARMTargetCodeGenInfo(CGT, K) {} 6394 6395 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6396 CodeGen::CodeGenModule &CGM) const override; 6397 6398 void getDependentLibraryOption(llvm::StringRef Lib, 6399 llvm::SmallString<24> &Opt) const override { 6400 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 6401 } 6402 6403 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 6404 llvm::SmallString<32> &Opt) const override { 6405 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 6406 } 6407 }; 6408 6409 void WindowsARMTargetCodeGenInfo::setTargetAttributes( 6410 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 6411 ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 6412 if (GV->isDeclaration()) 6413 return; 6414 addStackProbeTargetAttributes(D, GV, CGM); 6415 } 6416 } 6417 6418 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 6419 if (!::classifyReturnType(getCXXABI(), FI, *this)) 6420 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(), 6421 FI.getCallingConvention()); 6422 6423 for (auto &I : FI.arguments()) 6424 I.info = classifyArgumentType(I.type, FI.isVariadic(), 6425 FI.getCallingConvention()); 6426 6427 6428 // Always honor user-specified calling convention. 6429 if (FI.getCallingConvention() != llvm::CallingConv::C) 6430 return; 6431 6432 llvm::CallingConv::ID cc = getRuntimeCC(); 6433 if (cc != llvm::CallingConv::C) 6434 FI.setEffectiveCallingConvention(cc); 6435 } 6436 6437 /// Return the default calling convention that LLVM will use. 6438 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 6439 // The default calling convention that LLVM will infer. 6440 if (isEABIHF() || getTarget().getTriple().isWatchABI()) 6441 return llvm::CallingConv::ARM_AAPCS_VFP; 6442 else if (isEABI()) 6443 return llvm::CallingConv::ARM_AAPCS; 6444 else 6445 return llvm::CallingConv::ARM_APCS; 6446 } 6447 6448 /// Return the calling convention that our ABI would like us to use 6449 /// as the C calling convention. 6450 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 6451 switch (getABIKind()) { 6452 case APCS: return llvm::CallingConv::ARM_APCS; 6453 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 6454 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 6455 case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 6456 } 6457 llvm_unreachable("bad ABI kind"); 6458 } 6459 6460 void ARMABIInfo::setCCs() { 6461 assert(getRuntimeCC() == llvm::CallingConv::C); 6462 6463 // Don't muddy up the IR with a ton of explicit annotations if 6464 // they'd just match what LLVM will infer from the triple. 6465 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 6466 if (abiCC != getLLVMDefaultCC()) 6467 RuntimeCC = abiCC; 6468 } 6469 6470 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const { 6471 uint64_t Size = getContext().getTypeSize(Ty); 6472 if (Size <= 32) { 6473 llvm::Type *ResType = 6474 llvm::Type::getInt32Ty(getVMContext()); 6475 return ABIArgInfo::getDirect(ResType); 6476 } 6477 if (Size == 64 || Size == 128) { 6478 auto *ResType = llvm::FixedVectorType::get( 6479 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 6480 return ABIArgInfo::getDirect(ResType); 6481 } 6482 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6483 } 6484 6485 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty, 6486 const Type *Base, 6487 uint64_t Members) const { 6488 assert(Base && "Base class should be set for homogeneous aggregate"); 6489 // Base can be a floating-point or a vector. 6490 if (const VectorType *VT = Base->getAs<VectorType>()) { 6491 // FP16 vectors should be converted to integer vectors 6492 if (!getTarget().hasLegalHalfType() && containsAnyFP16Vectors(Ty)) { 6493 uint64_t Size = getContext().getTypeSize(VT); 6494 auto *NewVecTy = llvm::FixedVectorType::get( 6495 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 6496 llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members); 6497 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 6498 } 6499 } 6500 unsigned Align = 0; 6501 if (getABIKind() == ARMABIInfo::AAPCS || 6502 getABIKind() == ARMABIInfo::AAPCS_VFP) { 6503 // For alignment adjusted HFAs, cap the argument alignment to 8, leave it 6504 // default otherwise. 6505 Align = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); 6506 unsigned BaseAlign = getContext().getTypeAlignInChars(Base).getQuantity(); 6507 Align = (Align > BaseAlign && Align >= 8) ? 8 : 0; 6508 } 6509 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false, Align); 6510 } 6511 6512 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic, 6513 unsigned functionCallConv) const { 6514 // 6.1.2.1 The following argument types are VFP CPRCs: 6515 // A single-precision floating-point type (including promoted 6516 // half-precision types); A double-precision floating-point type; 6517 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 6518 // with a Base Type of a single- or double-precision floating-point type, 6519 // 64-bit containerized vectors or 128-bit containerized vectors with one 6520 // to four Elements. 6521 // Variadic functions should always marshal to the base standard. 6522 bool IsAAPCS_VFP = 6523 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false); 6524 6525 Ty = useFirstFieldIfTransparentUnion(Ty); 6526 6527 // Handle illegal vector types here. 6528 if (isIllegalVectorType(Ty)) 6529 return coerceIllegalVector(Ty); 6530 6531 if (!isAggregateTypeForABI(Ty)) { 6532 // Treat an enum type as its underlying type. 6533 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 6534 Ty = EnumTy->getDecl()->getIntegerType(); 6535 } 6536 6537 if (const auto *EIT = Ty->getAs<ExtIntType>()) 6538 if (EIT->getNumBits() > 64) 6539 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 6540 6541 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 6542 : ABIArgInfo::getDirect()); 6543 } 6544 6545 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 6546 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6547 } 6548 6549 // Ignore empty records. 6550 if (isEmptyRecord(getContext(), Ty, true)) 6551 return ABIArgInfo::getIgnore(); 6552 6553 if (IsAAPCS_VFP) { 6554 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 6555 // into VFP registers. 6556 const Type *Base = nullptr; 6557 uint64_t Members = 0; 6558 if (isHomogeneousAggregate(Ty, Base, Members)) 6559 return classifyHomogeneousAggregate(Ty, Base, Members); 6560 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6561 // WatchOS does have homogeneous aggregates. Note that we intentionally use 6562 // this convention even for a variadic function: the backend will use GPRs 6563 // if needed. 6564 const Type *Base = nullptr; 6565 uint64_t Members = 0; 6566 if (isHomogeneousAggregate(Ty, Base, Members)) { 6567 assert(Base && Members <= 4 && "unexpected homogeneous aggregate"); 6568 llvm::Type *Ty = 6569 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members); 6570 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 6571 } 6572 } 6573 6574 if (getABIKind() == ARMABIInfo::AAPCS16_VFP && 6575 getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) { 6576 // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're 6577 // bigger than 128-bits, they get placed in space allocated by the caller, 6578 // and a pointer is passed. 6579 return ABIArgInfo::getIndirect( 6580 CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false); 6581 } 6582 6583 // Support byval for ARM. 6584 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 6585 // most 8-byte. We realign the indirect argument if type alignment is bigger 6586 // than ABI alignment. 6587 uint64_t ABIAlign = 4; 6588 uint64_t TyAlign; 6589 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6590 getABIKind() == ARMABIInfo::AAPCS) { 6591 TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); 6592 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 6593 } else { 6594 TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 6595 } 6596 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 6597 assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval"); 6598 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 6599 /*ByVal=*/true, 6600 /*Realign=*/TyAlign > ABIAlign); 6601 } 6602 6603 // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of 6604 // same size and alignment. 6605 if (getTarget().isRenderScriptTarget()) { 6606 return coerceToIntArray(Ty, getContext(), getVMContext()); 6607 } 6608 6609 // Otherwise, pass by coercing to a structure of the appropriate size. 6610 llvm::Type* ElemTy; 6611 unsigned SizeRegs; 6612 // FIXME: Try to match the types of the arguments more accurately where 6613 // we can. 6614 if (TyAlign <= 4) { 6615 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 6616 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 6617 } else { 6618 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 6619 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 6620 } 6621 6622 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); 6623 } 6624 6625 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 6626 llvm::LLVMContext &VMContext) { 6627 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 6628 // is called integer-like if its size is less than or equal to one word, and 6629 // the offset of each of its addressable sub-fields is zero. 6630 6631 uint64_t Size = Context.getTypeSize(Ty); 6632 6633 // Check that the type fits in a word. 6634 if (Size > 32) 6635 return false; 6636 6637 // FIXME: Handle vector types! 6638 if (Ty->isVectorType()) 6639 return false; 6640 6641 // Float types are never treated as "integer like". 6642 if (Ty->isRealFloatingType()) 6643 return false; 6644 6645 // If this is a builtin or pointer type then it is ok. 6646 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 6647 return true; 6648 6649 // Small complex integer types are "integer like". 6650 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 6651 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 6652 6653 // Single element and zero sized arrays should be allowed, by the definition 6654 // above, but they are not. 6655 6656 // Otherwise, it must be a record type. 6657 const RecordType *RT = Ty->getAs<RecordType>(); 6658 if (!RT) return false; 6659 6660 // Ignore records with flexible arrays. 6661 const RecordDecl *RD = RT->getDecl(); 6662 if (RD->hasFlexibleArrayMember()) 6663 return false; 6664 6665 // Check that all sub-fields are at offset 0, and are themselves "integer 6666 // like". 6667 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 6668 6669 bool HadField = false; 6670 unsigned idx = 0; 6671 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 6672 i != e; ++i, ++idx) { 6673 const FieldDecl *FD = *i; 6674 6675 // Bit-fields are not addressable, we only need to verify they are "integer 6676 // like". We still have to disallow a subsequent non-bitfield, for example: 6677 // struct { int : 0; int x } 6678 // is non-integer like according to gcc. 6679 if (FD->isBitField()) { 6680 if (!RD->isUnion()) 6681 HadField = true; 6682 6683 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6684 return false; 6685 6686 continue; 6687 } 6688 6689 // Check if this field is at offset 0. 6690 if (Layout.getFieldOffset(idx) != 0) 6691 return false; 6692 6693 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6694 return false; 6695 6696 // Only allow at most one field in a structure. This doesn't match the 6697 // wording above, but follows gcc in situations with a field following an 6698 // empty structure. 6699 if (!RD->isUnion()) { 6700 if (HadField) 6701 return false; 6702 6703 HadField = true; 6704 } 6705 } 6706 6707 return true; 6708 } 6709 6710 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic, 6711 unsigned functionCallConv) const { 6712 6713 // Variadic functions should always marshal to the base standard. 6714 bool IsAAPCS_VFP = 6715 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true); 6716 6717 if (RetTy->isVoidType()) 6718 return ABIArgInfo::getIgnore(); 6719 6720 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 6721 // Large vector types should be returned via memory. 6722 if (getContext().getTypeSize(RetTy) > 128) 6723 return getNaturalAlignIndirect(RetTy); 6724 // TODO: FP16/BF16 vectors should be converted to integer vectors 6725 // This check is similar to isIllegalVectorType - refactor? 6726 if ((!getTarget().hasLegalHalfType() && 6727 (VT->getElementType()->isFloat16Type() || 6728 VT->getElementType()->isHalfType())) || 6729 (IsFloatABISoftFP && 6730 VT->getElementType()->isBFloat16Type())) 6731 return coerceIllegalVector(RetTy); 6732 } 6733 6734 if (!isAggregateTypeForABI(RetTy)) { 6735 // Treat an enum type as its underlying type. 6736 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6737 RetTy = EnumTy->getDecl()->getIntegerType(); 6738 6739 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 6740 if (EIT->getNumBits() > 64) 6741 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 6742 6743 return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 6744 : ABIArgInfo::getDirect(); 6745 } 6746 6747 // Are we following APCS? 6748 if (getABIKind() == APCS) { 6749 if (isEmptyRecord(getContext(), RetTy, false)) 6750 return ABIArgInfo::getIgnore(); 6751 6752 // Complex types are all returned as packed integers. 6753 // 6754 // FIXME: Consider using 2 x vector types if the back end handles them 6755 // correctly. 6756 if (RetTy->isAnyComplexType()) 6757 return ABIArgInfo::getDirect(llvm::IntegerType::get( 6758 getVMContext(), getContext().getTypeSize(RetTy))); 6759 6760 // Integer like structures are returned in r0. 6761 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 6762 // Return in the smallest viable integer type. 6763 uint64_t Size = getContext().getTypeSize(RetTy); 6764 if (Size <= 8) 6765 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6766 if (Size <= 16) 6767 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6768 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6769 } 6770 6771 // Otherwise return in memory. 6772 return getNaturalAlignIndirect(RetTy); 6773 } 6774 6775 // Otherwise this is an AAPCS variant. 6776 6777 if (isEmptyRecord(getContext(), RetTy, true)) 6778 return ABIArgInfo::getIgnore(); 6779 6780 // Check for homogeneous aggregates with AAPCS-VFP. 6781 if (IsAAPCS_VFP) { 6782 const Type *Base = nullptr; 6783 uint64_t Members = 0; 6784 if (isHomogeneousAggregate(RetTy, Base, Members)) 6785 return classifyHomogeneousAggregate(RetTy, Base, Members); 6786 } 6787 6788 // Aggregates <= 4 bytes are returned in r0; other aggregates 6789 // are returned indirectly. 6790 uint64_t Size = getContext().getTypeSize(RetTy); 6791 if (Size <= 32) { 6792 // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of 6793 // same size and alignment. 6794 if (getTarget().isRenderScriptTarget()) { 6795 return coerceToIntArray(RetTy, getContext(), getVMContext()); 6796 } 6797 if (getDataLayout().isBigEndian()) 6798 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 6799 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6800 6801 // Return in the smallest viable integer type. 6802 if (Size <= 8) 6803 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6804 if (Size <= 16) 6805 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6806 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6807 } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) { 6808 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext()); 6809 llvm::Type *CoerceTy = 6810 llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32); 6811 return ABIArgInfo::getDirect(CoerceTy); 6812 } 6813 6814 return getNaturalAlignIndirect(RetTy); 6815 } 6816 6817 /// isIllegalVector - check whether Ty is an illegal vector type. 6818 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 6819 if (const VectorType *VT = Ty->getAs<VectorType> ()) { 6820 // On targets that don't support half, fp16 or bfloat, they are expanded 6821 // into float, and we don't want the ABI to depend on whether or not they 6822 // are supported in hardware. Thus return false to coerce vectors of these 6823 // types into integer vectors. 6824 // We do not depend on hasLegalHalfType for bfloat as it is a 6825 // separate IR type. 6826 if ((!getTarget().hasLegalHalfType() && 6827 (VT->getElementType()->isFloat16Type() || 6828 VT->getElementType()->isHalfType())) || 6829 (IsFloatABISoftFP && 6830 VT->getElementType()->isBFloat16Type())) 6831 return true; 6832 if (isAndroid()) { 6833 // Android shipped using Clang 3.1, which supported a slightly different 6834 // vector ABI. The primary differences were that 3-element vector types 6835 // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path 6836 // accepts that legacy behavior for Android only. 6837 // Check whether VT is legal. 6838 unsigned NumElements = VT->getNumElements(); 6839 // NumElements should be power of 2 or equal to 3. 6840 if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3) 6841 return true; 6842 } else { 6843 // Check whether VT is legal. 6844 unsigned NumElements = VT->getNumElements(); 6845 uint64_t Size = getContext().getTypeSize(VT); 6846 // NumElements should be power of 2. 6847 if (!llvm::isPowerOf2_32(NumElements)) 6848 return true; 6849 // Size should be greater than 32 bits. 6850 return Size <= 32; 6851 } 6852 } 6853 return false; 6854 } 6855 6856 /// Return true if a type contains any 16-bit floating point vectors 6857 bool ARMABIInfo::containsAnyFP16Vectors(QualType Ty) const { 6858 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 6859 uint64_t NElements = AT->getSize().getZExtValue(); 6860 if (NElements == 0) 6861 return false; 6862 return containsAnyFP16Vectors(AT->getElementType()); 6863 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 6864 const RecordDecl *RD = RT->getDecl(); 6865 6866 // If this is a C++ record, check the bases first. 6867 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6868 if (llvm::any_of(CXXRD->bases(), [this](const CXXBaseSpecifier &B) { 6869 return containsAnyFP16Vectors(B.getType()); 6870 })) 6871 return true; 6872 6873 if (llvm::any_of(RD->fields(), [this](FieldDecl *FD) { 6874 return FD && containsAnyFP16Vectors(FD->getType()); 6875 })) 6876 return true; 6877 6878 return false; 6879 } else { 6880 if (const VectorType *VT = Ty->getAs<VectorType>()) 6881 return (VT->getElementType()->isFloat16Type() || 6882 VT->getElementType()->isBFloat16Type() || 6883 VT->getElementType()->isHalfType()); 6884 return false; 6885 } 6886 } 6887 6888 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 6889 llvm::Type *eltTy, 6890 unsigned numElts) const { 6891 if (!llvm::isPowerOf2_32(numElts)) 6892 return false; 6893 unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy); 6894 if (size > 64) 6895 return false; 6896 if (vectorSize.getQuantity() != 8 && 6897 (vectorSize.getQuantity() != 16 || numElts == 1)) 6898 return false; 6899 return true; 6900 } 6901 6902 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 6903 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 6904 // double, or 64-bit or 128-bit vectors. 6905 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 6906 if (BT->getKind() == BuiltinType::Float || 6907 BT->getKind() == BuiltinType::Double || 6908 BT->getKind() == BuiltinType::LongDouble) 6909 return true; 6910 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 6911 unsigned VecSize = getContext().getTypeSize(VT); 6912 if (VecSize == 64 || VecSize == 128) 6913 return true; 6914 } 6915 return false; 6916 } 6917 6918 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 6919 uint64_t Members) const { 6920 return Members <= 4; 6921 } 6922 6923 bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention, 6924 bool acceptHalf) const { 6925 // Give precedence to user-specified calling conventions. 6926 if (callConvention != llvm::CallingConv::C) 6927 return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP); 6928 else 6929 return (getABIKind() == AAPCS_VFP) || 6930 (acceptHalf && (getABIKind() == AAPCS16_VFP)); 6931 } 6932 6933 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6934 QualType Ty) const { 6935 CharUnits SlotSize = CharUnits::fromQuantity(4); 6936 6937 // Empty records are ignored for parameter passing purposes. 6938 if (isEmptyRecord(getContext(), Ty, true)) { 6939 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 6940 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 6941 return Addr; 6942 } 6943 6944 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 6945 CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty); 6946 6947 // Use indirect if size of the illegal vector is bigger than 16 bytes. 6948 bool IsIndirect = false; 6949 const Type *Base = nullptr; 6950 uint64_t Members = 0; 6951 if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) { 6952 IsIndirect = true; 6953 6954 // ARMv7k passes structs bigger than 16 bytes indirectly, in space 6955 // allocated by the caller. 6956 } else if (TySize > CharUnits::fromQuantity(16) && 6957 getABIKind() == ARMABIInfo::AAPCS16_VFP && 6958 !isHomogeneousAggregate(Ty, Base, Members)) { 6959 IsIndirect = true; 6960 6961 // Otherwise, bound the type's ABI alignment. 6962 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 6963 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 6964 // Our callers should be prepared to handle an under-aligned address. 6965 } else if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6966 getABIKind() == ARMABIInfo::AAPCS) { 6967 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6968 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8)); 6969 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6970 // ARMv7k allows type alignment up to 16 bytes. 6971 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6972 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16)); 6973 } else { 6974 TyAlignForABI = CharUnits::fromQuantity(4); 6975 } 6976 6977 TypeInfoChars TyInfo(TySize, TyAlignForABI, AlignRequirementKind::None); 6978 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo, 6979 SlotSize, /*AllowHigherAlign*/ true); 6980 } 6981 6982 //===----------------------------------------------------------------------===// 6983 // NVPTX ABI Implementation 6984 //===----------------------------------------------------------------------===// 6985 6986 namespace { 6987 6988 class NVPTXTargetCodeGenInfo; 6989 6990 class NVPTXABIInfo : public ABIInfo { 6991 NVPTXTargetCodeGenInfo &CGInfo; 6992 6993 public: 6994 NVPTXABIInfo(CodeGenTypes &CGT, NVPTXTargetCodeGenInfo &Info) 6995 : ABIInfo(CGT), CGInfo(Info) {} 6996 6997 ABIArgInfo classifyReturnType(QualType RetTy) const; 6998 ABIArgInfo classifyArgumentType(QualType Ty) const; 6999 7000 void computeInfo(CGFunctionInfo &FI) const override; 7001 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7002 QualType Ty) const override; 7003 bool isUnsupportedType(QualType T) const; 7004 ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, unsigned MaxSize) const; 7005 }; 7006 7007 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 7008 public: 7009 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 7010 : TargetCodeGenInfo(std::make_unique<NVPTXABIInfo>(CGT, *this)) {} 7011 7012 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7013 CodeGen::CodeGenModule &M) const override; 7014 bool shouldEmitStaticExternCAliases() const override; 7015 7016 llvm::Type *getCUDADeviceBuiltinSurfaceDeviceType() const override { 7017 // On the device side, surface reference is represented as an object handle 7018 // in 64-bit integer. 7019 return llvm::Type::getInt64Ty(getABIInfo().getVMContext()); 7020 } 7021 7022 llvm::Type *getCUDADeviceBuiltinTextureDeviceType() const override { 7023 // On the device side, texture reference is represented as an object handle 7024 // in 64-bit integer. 7025 return llvm::Type::getInt64Ty(getABIInfo().getVMContext()); 7026 } 7027 7028 bool emitCUDADeviceBuiltinSurfaceDeviceCopy(CodeGenFunction &CGF, LValue Dst, 7029 LValue Src) const override { 7030 emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src); 7031 return true; 7032 } 7033 7034 bool emitCUDADeviceBuiltinTextureDeviceCopy(CodeGenFunction &CGF, LValue Dst, 7035 LValue Src) const override { 7036 emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src); 7037 return true; 7038 } 7039 7040 private: 7041 // Adds a NamedMDNode with GV, Name, and Operand as operands, and adds the 7042 // resulting MDNode to the nvvm.annotations MDNode. 7043 static void addNVVMMetadata(llvm::GlobalValue *GV, StringRef Name, 7044 int Operand); 7045 7046 static void emitBuiltinSurfTexDeviceCopy(CodeGenFunction &CGF, LValue Dst, 7047 LValue Src) { 7048 llvm::Value *Handle = nullptr; 7049 llvm::Constant *C = 7050 llvm::dyn_cast<llvm::Constant>(Src.getAddress(CGF).getPointer()); 7051 // Lookup `addrspacecast` through the constant pointer if any. 7052 if (auto *ASC = llvm::dyn_cast_or_null<llvm::AddrSpaceCastOperator>(C)) 7053 C = llvm::cast<llvm::Constant>(ASC->getPointerOperand()); 7054 if (auto *GV = llvm::dyn_cast_or_null<llvm::GlobalVariable>(C)) { 7055 // Load the handle from the specific global variable using 7056 // `nvvm.texsurf.handle.internal` intrinsic. 7057 Handle = CGF.EmitRuntimeCall( 7058 CGF.CGM.getIntrinsic(llvm::Intrinsic::nvvm_texsurf_handle_internal, 7059 {GV->getType()}), 7060 {GV}, "texsurf_handle"); 7061 } else 7062 Handle = CGF.EmitLoadOfScalar(Src, SourceLocation()); 7063 CGF.EmitStoreOfScalar(Handle, Dst); 7064 } 7065 }; 7066 7067 /// Checks if the type is unsupported directly by the current target. 7068 bool NVPTXABIInfo::isUnsupportedType(QualType T) const { 7069 ASTContext &Context = getContext(); 7070 if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type()) 7071 return true; 7072 if (!Context.getTargetInfo().hasFloat128Type() && 7073 (T->isFloat128Type() || 7074 (T->isRealFloatingType() && Context.getTypeSize(T) == 128))) 7075 return true; 7076 if (const auto *EIT = T->getAs<ExtIntType>()) 7077 return EIT->getNumBits() > 7078 (Context.getTargetInfo().hasInt128Type() ? 128U : 64U); 7079 if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() && 7080 Context.getTypeSize(T) > 64U) 7081 return true; 7082 if (const auto *AT = T->getAsArrayTypeUnsafe()) 7083 return isUnsupportedType(AT->getElementType()); 7084 const auto *RT = T->getAs<RecordType>(); 7085 if (!RT) 7086 return false; 7087 const RecordDecl *RD = RT->getDecl(); 7088 7089 // If this is a C++ record, check the bases first. 7090 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 7091 for (const CXXBaseSpecifier &I : CXXRD->bases()) 7092 if (isUnsupportedType(I.getType())) 7093 return true; 7094 7095 for (const FieldDecl *I : RD->fields()) 7096 if (isUnsupportedType(I->getType())) 7097 return true; 7098 return false; 7099 } 7100 7101 /// Coerce the given type into an array with maximum allowed size of elements. 7102 ABIArgInfo NVPTXABIInfo::coerceToIntArrayWithLimit(QualType Ty, 7103 unsigned MaxSize) const { 7104 // Alignment and Size are measured in bits. 7105 const uint64_t Size = getContext().getTypeSize(Ty); 7106 const uint64_t Alignment = getContext().getTypeAlign(Ty); 7107 const unsigned Div = std::min<unsigned>(MaxSize, Alignment); 7108 llvm::Type *IntType = llvm::Type::getIntNTy(getVMContext(), Div); 7109 const uint64_t NumElements = (Size + Div - 1) / Div; 7110 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 7111 } 7112 7113 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 7114 if (RetTy->isVoidType()) 7115 return ABIArgInfo::getIgnore(); 7116 7117 if (getContext().getLangOpts().OpenMP && 7118 getContext().getLangOpts().OpenMPIsDevice && isUnsupportedType(RetTy)) 7119 return coerceToIntArrayWithLimit(RetTy, 64); 7120 7121 // note: this is different from default ABI 7122 if (!RetTy->isScalarType()) 7123 return ABIArgInfo::getDirect(); 7124 7125 // Treat an enum type as its underlying type. 7126 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7127 RetTy = EnumTy->getDecl()->getIntegerType(); 7128 7129 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 7130 : ABIArgInfo::getDirect()); 7131 } 7132 7133 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 7134 // Treat an enum type as its underlying type. 7135 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7136 Ty = EnumTy->getDecl()->getIntegerType(); 7137 7138 // Return aggregates type as indirect by value 7139 if (isAggregateTypeForABI(Ty)) { 7140 // Under CUDA device compilation, tex/surf builtin types are replaced with 7141 // object types and passed directly. 7142 if (getContext().getLangOpts().CUDAIsDevice) { 7143 if (Ty->isCUDADeviceBuiltinSurfaceType()) 7144 return ABIArgInfo::getDirect( 7145 CGInfo.getCUDADeviceBuiltinSurfaceDeviceType()); 7146 if (Ty->isCUDADeviceBuiltinTextureType()) 7147 return ABIArgInfo::getDirect( 7148 CGInfo.getCUDADeviceBuiltinTextureDeviceType()); 7149 } 7150 return getNaturalAlignIndirect(Ty, /* byval */ true); 7151 } 7152 7153 if (const auto *EIT = Ty->getAs<ExtIntType>()) { 7154 if ((EIT->getNumBits() > 128) || 7155 (!getContext().getTargetInfo().hasInt128Type() && 7156 EIT->getNumBits() > 64)) 7157 return getNaturalAlignIndirect(Ty, /* byval */ true); 7158 } 7159 7160 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 7161 : ABIArgInfo::getDirect()); 7162 } 7163 7164 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 7165 if (!getCXXABI().classifyReturnType(FI)) 7166 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7167 for (auto &I : FI.arguments()) 7168 I.info = classifyArgumentType(I.type); 7169 7170 // Always honor user-specified calling convention. 7171 if (FI.getCallingConvention() != llvm::CallingConv::C) 7172 return; 7173 7174 FI.setEffectiveCallingConvention(getRuntimeCC()); 7175 } 7176 7177 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7178 QualType Ty) const { 7179 llvm_unreachable("NVPTX does not support varargs"); 7180 } 7181 7182 void NVPTXTargetCodeGenInfo::setTargetAttributes( 7183 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7184 if (GV->isDeclaration()) 7185 return; 7186 const VarDecl *VD = dyn_cast_or_null<VarDecl>(D); 7187 if (VD) { 7188 if (M.getLangOpts().CUDA) { 7189 if (VD->getType()->isCUDADeviceBuiltinSurfaceType()) 7190 addNVVMMetadata(GV, "surface", 1); 7191 else if (VD->getType()->isCUDADeviceBuiltinTextureType()) 7192 addNVVMMetadata(GV, "texture", 1); 7193 return; 7194 } 7195 } 7196 7197 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7198 if (!FD) return; 7199 7200 llvm::Function *F = cast<llvm::Function>(GV); 7201 7202 // Perform special handling in OpenCL mode 7203 if (M.getLangOpts().OpenCL) { 7204 // Use OpenCL function attributes to check for kernel functions 7205 // By default, all functions are device functions 7206 if (FD->hasAttr<OpenCLKernelAttr>()) { 7207 // OpenCL __kernel functions get kernel metadata 7208 // Create !{<func-ref>, metadata !"kernel", i32 1} node 7209 addNVVMMetadata(F, "kernel", 1); 7210 // And kernel functions are not subject to inlining 7211 F->addFnAttr(llvm::Attribute::NoInline); 7212 } 7213 } 7214 7215 // Perform special handling in CUDA mode. 7216 if (M.getLangOpts().CUDA) { 7217 // CUDA __global__ functions get a kernel metadata entry. Since 7218 // __global__ functions cannot be called from the device, we do not 7219 // need to set the noinline attribute. 7220 if (FD->hasAttr<CUDAGlobalAttr>()) { 7221 // Create !{<func-ref>, metadata !"kernel", i32 1} node 7222 addNVVMMetadata(F, "kernel", 1); 7223 } 7224 if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) { 7225 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 7226 llvm::APSInt MaxThreads(32); 7227 MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); 7228 if (MaxThreads > 0) 7229 addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); 7230 7231 // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was 7232 // not specified in __launch_bounds__ or if the user specified a 0 value, 7233 // we don't have to add a PTX directive. 7234 if (Attr->getMinBlocks()) { 7235 llvm::APSInt MinBlocks(32); 7236 MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); 7237 if (MinBlocks > 0) 7238 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 7239 addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); 7240 } 7241 } 7242 } 7243 } 7244 7245 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::GlobalValue *GV, 7246 StringRef Name, int Operand) { 7247 llvm::Module *M = GV->getParent(); 7248 llvm::LLVMContext &Ctx = M->getContext(); 7249 7250 // Get "nvvm.annotations" metadata node 7251 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 7252 7253 llvm::Metadata *MDVals[] = { 7254 llvm::ConstantAsMetadata::get(GV), llvm::MDString::get(Ctx, Name), 7255 llvm::ConstantAsMetadata::get( 7256 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; 7257 // Append metadata to nvvm.annotations 7258 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 7259 } 7260 7261 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 7262 return false; 7263 } 7264 } 7265 7266 //===----------------------------------------------------------------------===// 7267 // SystemZ ABI Implementation 7268 //===----------------------------------------------------------------------===// 7269 7270 namespace { 7271 7272 class SystemZABIInfo : public SwiftABIInfo { 7273 bool HasVector; 7274 bool IsSoftFloatABI; 7275 7276 public: 7277 SystemZABIInfo(CodeGenTypes &CGT, bool HV, bool SF) 7278 : SwiftABIInfo(CGT), HasVector(HV), IsSoftFloatABI(SF) {} 7279 7280 bool isPromotableIntegerTypeForABI(QualType Ty) const; 7281 bool isCompoundType(QualType Ty) const; 7282 bool isVectorArgumentType(QualType Ty) const; 7283 bool isFPArgumentType(QualType Ty) const; 7284 QualType GetSingleElementType(QualType Ty) const; 7285 7286 ABIArgInfo classifyReturnType(QualType RetTy) const; 7287 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 7288 7289 void computeInfo(CGFunctionInfo &FI) const override { 7290 if (!getCXXABI().classifyReturnType(FI)) 7291 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7292 for (auto &I : FI.arguments()) 7293 I.info = classifyArgumentType(I.type); 7294 } 7295 7296 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7297 QualType Ty) const override; 7298 7299 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 7300 bool asReturnValue) const override { 7301 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 7302 } 7303 bool isSwiftErrorInRegister() const override { 7304 return false; 7305 } 7306 }; 7307 7308 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 7309 public: 7310 SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector, bool SoftFloatABI) 7311 : TargetCodeGenInfo( 7312 std::make_unique<SystemZABIInfo>(CGT, HasVector, SoftFloatABI)) {} 7313 7314 llvm::Value *testFPKind(llvm::Value *V, unsigned BuiltinID, 7315 CGBuilderTy &Builder, 7316 CodeGenModule &CGM) const override { 7317 assert(V->getType()->isFloatingPointTy() && "V should have an FP type."); 7318 // Only use TDC in constrained FP mode. 7319 if (!Builder.getIsFPConstrained()) 7320 return nullptr; 7321 7322 llvm::Type *Ty = V->getType(); 7323 if (Ty->isFloatTy() || Ty->isDoubleTy() || Ty->isFP128Ty()) { 7324 llvm::Module &M = CGM.getModule(); 7325 auto &Ctx = M.getContext(); 7326 llvm::Function *TDCFunc = 7327 llvm::Intrinsic::getDeclaration(&M, llvm::Intrinsic::s390_tdc, Ty); 7328 unsigned TDCBits = 0; 7329 switch (BuiltinID) { 7330 case Builtin::BI__builtin_isnan: 7331 TDCBits = 0xf; 7332 break; 7333 case Builtin::BIfinite: 7334 case Builtin::BI__finite: 7335 case Builtin::BIfinitef: 7336 case Builtin::BI__finitef: 7337 case Builtin::BIfinitel: 7338 case Builtin::BI__finitel: 7339 case Builtin::BI__builtin_isfinite: 7340 TDCBits = 0xfc0; 7341 break; 7342 case Builtin::BI__builtin_isinf: 7343 TDCBits = 0x30; 7344 break; 7345 default: 7346 break; 7347 } 7348 if (TDCBits) 7349 return Builder.CreateCall( 7350 TDCFunc, 7351 {V, llvm::ConstantInt::get(llvm::Type::getInt64Ty(Ctx), TDCBits)}); 7352 } 7353 return nullptr; 7354 } 7355 }; 7356 } 7357 7358 bool SystemZABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const { 7359 // Treat an enum type as its underlying type. 7360 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7361 Ty = EnumTy->getDecl()->getIntegerType(); 7362 7363 // Promotable integer types are required to be promoted by the ABI. 7364 if (ABIInfo::isPromotableIntegerTypeForABI(Ty)) 7365 return true; 7366 7367 if (const auto *EIT = Ty->getAs<ExtIntType>()) 7368 if (EIT->getNumBits() < 64) 7369 return true; 7370 7371 // 32-bit values must also be promoted. 7372 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 7373 switch (BT->getKind()) { 7374 case BuiltinType::Int: 7375 case BuiltinType::UInt: 7376 return true; 7377 default: 7378 return false; 7379 } 7380 return false; 7381 } 7382 7383 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 7384 return (Ty->isAnyComplexType() || 7385 Ty->isVectorType() || 7386 isAggregateTypeForABI(Ty)); 7387 } 7388 7389 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { 7390 return (HasVector && 7391 Ty->isVectorType() && 7392 getContext().getTypeSize(Ty) <= 128); 7393 } 7394 7395 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 7396 if (IsSoftFloatABI) 7397 return false; 7398 7399 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 7400 switch (BT->getKind()) { 7401 case BuiltinType::Float: 7402 case BuiltinType::Double: 7403 return true; 7404 default: 7405 return false; 7406 } 7407 7408 return false; 7409 } 7410 7411 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { 7412 const RecordType *RT = Ty->getAs<RecordType>(); 7413 7414 if (RT && RT->isStructureOrClassType()) { 7415 const RecordDecl *RD = RT->getDecl(); 7416 QualType Found; 7417 7418 // If this is a C++ record, check the bases first. 7419 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 7420 for (const auto &I : CXXRD->bases()) { 7421 QualType Base = I.getType(); 7422 7423 // Empty bases don't affect things either way. 7424 if (isEmptyRecord(getContext(), Base, true)) 7425 continue; 7426 7427 if (!Found.isNull()) 7428 return Ty; 7429 Found = GetSingleElementType(Base); 7430 } 7431 7432 // Check the fields. 7433 for (const auto *FD : RD->fields()) { 7434 // For compatibility with GCC, ignore empty bitfields in C++ mode. 7435 // Unlike isSingleElementStruct(), empty structure and array fields 7436 // do count. So do anonymous bitfields that aren't zero-sized. 7437 if (getContext().getLangOpts().CPlusPlus && 7438 FD->isZeroLengthBitField(getContext())) 7439 continue; 7440 // Like isSingleElementStruct(), ignore C++20 empty data members. 7441 if (FD->hasAttr<NoUniqueAddressAttr>() && 7442 isEmptyRecord(getContext(), FD->getType(), true)) 7443 continue; 7444 7445 // Unlike isSingleElementStruct(), arrays do not count. 7446 // Nested structures still do though. 7447 if (!Found.isNull()) 7448 return Ty; 7449 Found = GetSingleElementType(FD->getType()); 7450 } 7451 7452 // Unlike isSingleElementStruct(), trailing padding is allowed. 7453 // An 8-byte aligned struct s { float f; } is passed as a double. 7454 if (!Found.isNull()) 7455 return Found; 7456 } 7457 7458 return Ty; 7459 } 7460 7461 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7462 QualType Ty) const { 7463 // Assume that va_list type is correct; should be pointer to LLVM type: 7464 // struct { 7465 // i64 __gpr; 7466 // i64 __fpr; 7467 // i8 *__overflow_arg_area; 7468 // i8 *__reg_save_area; 7469 // }; 7470 7471 // Every non-vector argument occupies 8 bytes and is passed by preference 7472 // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are 7473 // always passed on the stack. 7474 Ty = getContext().getCanonicalType(Ty); 7475 auto TyInfo = getContext().getTypeInfoInChars(Ty); 7476 llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); 7477 llvm::Type *DirectTy = ArgTy; 7478 ABIArgInfo AI = classifyArgumentType(Ty); 7479 bool IsIndirect = AI.isIndirect(); 7480 bool InFPRs = false; 7481 bool IsVector = false; 7482 CharUnits UnpaddedSize; 7483 CharUnits DirectAlign; 7484 if (IsIndirect) { 7485 DirectTy = llvm::PointerType::getUnqual(DirectTy); 7486 UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8); 7487 } else { 7488 if (AI.getCoerceToType()) 7489 ArgTy = AI.getCoerceToType(); 7490 InFPRs = (!IsSoftFloatABI && (ArgTy->isFloatTy() || ArgTy->isDoubleTy())); 7491 IsVector = ArgTy->isVectorTy(); 7492 UnpaddedSize = TyInfo.Width; 7493 DirectAlign = TyInfo.Align; 7494 } 7495 CharUnits PaddedSize = CharUnits::fromQuantity(8); 7496 if (IsVector && UnpaddedSize > PaddedSize) 7497 PaddedSize = CharUnits::fromQuantity(16); 7498 assert((UnpaddedSize <= PaddedSize) && "Invalid argument size."); 7499 7500 CharUnits Padding = (PaddedSize - UnpaddedSize); 7501 7502 llvm::Type *IndexTy = CGF.Int64Ty; 7503 llvm::Value *PaddedSizeV = 7504 llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity()); 7505 7506 if (IsVector) { 7507 // Work out the address of a vector argument on the stack. 7508 // Vector arguments are always passed in the high bits of a 7509 // single (8 byte) or double (16 byte) stack slot. 7510 Address OverflowArgAreaPtr = 7511 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 7512 Address OverflowArgArea = 7513 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 7514 TyInfo.Align); 7515 Address MemAddr = 7516 CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr"); 7517 7518 // Update overflow_arg_area_ptr pointer 7519 llvm::Value *NewOverflowArgArea = 7520 CGF.Builder.CreateGEP(OverflowArgArea.getElementType(), 7521 OverflowArgArea.getPointer(), PaddedSizeV, 7522 "overflow_arg_area"); 7523 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 7524 7525 return MemAddr; 7526 } 7527 7528 assert(PaddedSize.getQuantity() == 8); 7529 7530 unsigned MaxRegs, RegCountField, RegSaveIndex; 7531 CharUnits RegPadding; 7532 if (InFPRs) { 7533 MaxRegs = 4; // Maximum of 4 FPR arguments 7534 RegCountField = 1; // __fpr 7535 RegSaveIndex = 16; // save offset for f0 7536 RegPadding = CharUnits(); // floats are passed in the high bits of an FPR 7537 } else { 7538 MaxRegs = 5; // Maximum of 5 GPR arguments 7539 RegCountField = 0; // __gpr 7540 RegSaveIndex = 2; // save offset for r2 7541 RegPadding = Padding; // values are passed in the low bits of a GPR 7542 } 7543 7544 Address RegCountPtr = 7545 CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr"); 7546 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 7547 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 7548 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 7549 "fits_in_regs"); 7550 7551 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 7552 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 7553 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 7554 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 7555 7556 // Emit code to load the value if it was passed in registers. 7557 CGF.EmitBlock(InRegBlock); 7558 7559 // Work out the address of an argument register. 7560 llvm::Value *ScaledRegCount = 7561 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 7562 llvm::Value *RegBase = 7563 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity() 7564 + RegPadding.getQuantity()); 7565 llvm::Value *RegOffset = 7566 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 7567 Address RegSaveAreaPtr = 7568 CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr"); 7569 llvm::Value *RegSaveArea = 7570 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 7571 Address RawRegAddr(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, RegOffset, 7572 "raw_reg_addr"), 7573 PaddedSize); 7574 Address RegAddr = 7575 CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr"); 7576 7577 // Update the register count 7578 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 7579 llvm::Value *NewRegCount = 7580 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 7581 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 7582 CGF.EmitBranch(ContBlock); 7583 7584 // Emit code to load the value if it was passed in memory. 7585 CGF.EmitBlock(InMemBlock); 7586 7587 // Work out the address of a stack argument. 7588 Address OverflowArgAreaPtr = 7589 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 7590 Address OverflowArgArea = 7591 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 7592 PaddedSize); 7593 Address RawMemAddr = 7594 CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr"); 7595 Address MemAddr = 7596 CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr"); 7597 7598 // Update overflow_arg_area_ptr pointer 7599 llvm::Value *NewOverflowArgArea = 7600 CGF.Builder.CreateGEP(OverflowArgArea.getElementType(), 7601 OverflowArgArea.getPointer(), PaddedSizeV, 7602 "overflow_arg_area"); 7603 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 7604 CGF.EmitBranch(ContBlock); 7605 7606 // Return the appropriate result. 7607 CGF.EmitBlock(ContBlock); 7608 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 7609 MemAddr, InMemBlock, "va_arg.addr"); 7610 7611 if (IsIndirect) 7612 ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), 7613 TyInfo.Align); 7614 7615 return ResAddr; 7616 } 7617 7618 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 7619 if (RetTy->isVoidType()) 7620 return ABIArgInfo::getIgnore(); 7621 if (isVectorArgumentType(RetTy)) 7622 return ABIArgInfo::getDirect(); 7623 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 7624 return getNaturalAlignIndirect(RetTy); 7625 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 7626 : ABIArgInfo::getDirect()); 7627 } 7628 7629 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 7630 // Handle the generic C++ ABI. 7631 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 7632 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7633 7634 // Integers and enums are extended to full register width. 7635 if (isPromotableIntegerTypeForABI(Ty)) 7636 return ABIArgInfo::getExtend(Ty); 7637 7638 // Handle vector types and vector-like structure types. Note that 7639 // as opposed to float-like structure types, we do not allow any 7640 // padding for vector-like structures, so verify the sizes match. 7641 uint64_t Size = getContext().getTypeSize(Ty); 7642 QualType SingleElementTy = GetSingleElementType(Ty); 7643 if (isVectorArgumentType(SingleElementTy) && 7644 getContext().getTypeSize(SingleElementTy) == Size) 7645 return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); 7646 7647 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 7648 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 7649 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7650 7651 // Handle small structures. 7652 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7653 // Structures with flexible arrays have variable length, so really 7654 // fail the size test above. 7655 const RecordDecl *RD = RT->getDecl(); 7656 if (RD->hasFlexibleArrayMember()) 7657 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7658 7659 // The structure is passed as an unextended integer, a float, or a double. 7660 llvm::Type *PassTy; 7661 if (isFPArgumentType(SingleElementTy)) { 7662 assert(Size == 32 || Size == 64); 7663 if (Size == 32) 7664 PassTy = llvm::Type::getFloatTy(getVMContext()); 7665 else 7666 PassTy = llvm::Type::getDoubleTy(getVMContext()); 7667 } else 7668 PassTy = llvm::IntegerType::get(getVMContext(), Size); 7669 return ABIArgInfo::getDirect(PassTy); 7670 } 7671 7672 // Non-structure compounds are passed indirectly. 7673 if (isCompoundType(Ty)) 7674 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7675 7676 return ABIArgInfo::getDirect(nullptr); 7677 } 7678 7679 //===----------------------------------------------------------------------===// 7680 // MSP430 ABI Implementation 7681 //===----------------------------------------------------------------------===// 7682 7683 namespace { 7684 7685 class MSP430ABIInfo : public DefaultABIInfo { 7686 static ABIArgInfo complexArgInfo() { 7687 ABIArgInfo Info = ABIArgInfo::getDirect(); 7688 Info.setCanBeFlattened(false); 7689 return Info; 7690 } 7691 7692 public: 7693 MSP430ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7694 7695 ABIArgInfo classifyReturnType(QualType RetTy) const { 7696 if (RetTy->isAnyComplexType()) 7697 return complexArgInfo(); 7698 7699 return DefaultABIInfo::classifyReturnType(RetTy); 7700 } 7701 7702 ABIArgInfo classifyArgumentType(QualType RetTy) const { 7703 if (RetTy->isAnyComplexType()) 7704 return complexArgInfo(); 7705 7706 return DefaultABIInfo::classifyArgumentType(RetTy); 7707 } 7708 7709 // Just copy the original implementations because 7710 // DefaultABIInfo::classify{Return,Argument}Type() are not virtual 7711 void computeInfo(CGFunctionInfo &FI) const override { 7712 if (!getCXXABI().classifyReturnType(FI)) 7713 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7714 for (auto &I : FI.arguments()) 7715 I.info = classifyArgumentType(I.type); 7716 } 7717 7718 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7719 QualType Ty) const override { 7720 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 7721 } 7722 }; 7723 7724 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 7725 public: 7726 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 7727 : TargetCodeGenInfo(std::make_unique<MSP430ABIInfo>(CGT)) {} 7728 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7729 CodeGen::CodeGenModule &M) const override; 7730 }; 7731 7732 } 7733 7734 void MSP430TargetCodeGenInfo::setTargetAttributes( 7735 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7736 if (GV->isDeclaration()) 7737 return; 7738 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 7739 const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>(); 7740 if (!InterruptAttr) 7741 return; 7742 7743 // Handle 'interrupt' attribute: 7744 llvm::Function *F = cast<llvm::Function>(GV); 7745 7746 // Step 1: Set ISR calling convention. 7747 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 7748 7749 // Step 2: Add attributes goodness. 7750 F->addFnAttr(llvm::Attribute::NoInline); 7751 F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber())); 7752 } 7753 } 7754 7755 //===----------------------------------------------------------------------===// 7756 // MIPS ABI Implementation. This works for both little-endian and 7757 // big-endian variants. 7758 //===----------------------------------------------------------------------===// 7759 7760 namespace { 7761 class MipsABIInfo : public ABIInfo { 7762 bool IsO32; 7763 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 7764 void CoerceToIntArgs(uint64_t TySize, 7765 SmallVectorImpl<llvm::Type *> &ArgList) const; 7766 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 7767 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 7768 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 7769 public: 7770 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 7771 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 7772 StackAlignInBytes(IsO32 ? 8 : 16) {} 7773 7774 ABIArgInfo classifyReturnType(QualType RetTy) const; 7775 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 7776 void computeInfo(CGFunctionInfo &FI) const override; 7777 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7778 QualType Ty) const override; 7779 ABIArgInfo extendType(QualType Ty) const; 7780 }; 7781 7782 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 7783 unsigned SizeOfUnwindException; 7784 public: 7785 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 7786 : TargetCodeGenInfo(std::make_unique<MipsABIInfo>(CGT, IsO32)), 7787 SizeOfUnwindException(IsO32 ? 24 : 32) {} 7788 7789 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 7790 return 29; 7791 } 7792 7793 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7794 CodeGen::CodeGenModule &CGM) const override { 7795 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7796 if (!FD) return; 7797 llvm::Function *Fn = cast<llvm::Function>(GV); 7798 7799 if (FD->hasAttr<MipsLongCallAttr>()) 7800 Fn->addFnAttr("long-call"); 7801 else if (FD->hasAttr<MipsShortCallAttr>()) 7802 Fn->addFnAttr("short-call"); 7803 7804 // Other attributes do not have a meaning for declarations. 7805 if (GV->isDeclaration()) 7806 return; 7807 7808 if (FD->hasAttr<Mips16Attr>()) { 7809 Fn->addFnAttr("mips16"); 7810 } 7811 else if (FD->hasAttr<NoMips16Attr>()) { 7812 Fn->addFnAttr("nomips16"); 7813 } 7814 7815 if (FD->hasAttr<MicroMipsAttr>()) 7816 Fn->addFnAttr("micromips"); 7817 else if (FD->hasAttr<NoMicroMipsAttr>()) 7818 Fn->addFnAttr("nomicromips"); 7819 7820 const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>(); 7821 if (!Attr) 7822 return; 7823 7824 const char *Kind; 7825 switch (Attr->getInterrupt()) { 7826 case MipsInterruptAttr::eic: Kind = "eic"; break; 7827 case MipsInterruptAttr::sw0: Kind = "sw0"; break; 7828 case MipsInterruptAttr::sw1: Kind = "sw1"; break; 7829 case MipsInterruptAttr::hw0: Kind = "hw0"; break; 7830 case MipsInterruptAttr::hw1: Kind = "hw1"; break; 7831 case MipsInterruptAttr::hw2: Kind = "hw2"; break; 7832 case MipsInterruptAttr::hw3: Kind = "hw3"; break; 7833 case MipsInterruptAttr::hw4: Kind = "hw4"; break; 7834 case MipsInterruptAttr::hw5: Kind = "hw5"; break; 7835 } 7836 7837 Fn->addFnAttr("interrupt", Kind); 7838 7839 } 7840 7841 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7842 llvm::Value *Address) const override; 7843 7844 unsigned getSizeOfUnwindException() const override { 7845 return SizeOfUnwindException; 7846 } 7847 }; 7848 } 7849 7850 void MipsABIInfo::CoerceToIntArgs( 7851 uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const { 7852 llvm::IntegerType *IntTy = 7853 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 7854 7855 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 7856 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 7857 ArgList.push_back(IntTy); 7858 7859 // If necessary, add one more integer type to ArgList. 7860 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 7861 7862 if (R) 7863 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 7864 } 7865 7866 // In N32/64, an aligned double precision floating point field is passed in 7867 // a register. 7868 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 7869 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 7870 7871 if (IsO32) { 7872 CoerceToIntArgs(TySize, ArgList); 7873 return llvm::StructType::get(getVMContext(), ArgList); 7874 } 7875 7876 if (Ty->isComplexType()) 7877 return CGT.ConvertType(Ty); 7878 7879 const RecordType *RT = Ty->getAs<RecordType>(); 7880 7881 // Unions/vectors are passed in integer registers. 7882 if (!RT || !RT->isStructureOrClassType()) { 7883 CoerceToIntArgs(TySize, ArgList); 7884 return llvm::StructType::get(getVMContext(), ArgList); 7885 } 7886 7887 const RecordDecl *RD = RT->getDecl(); 7888 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 7889 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 7890 7891 uint64_t LastOffset = 0; 7892 unsigned idx = 0; 7893 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 7894 7895 // Iterate over fields in the struct/class and check if there are any aligned 7896 // double fields. 7897 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 7898 i != e; ++i, ++idx) { 7899 const QualType Ty = i->getType(); 7900 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 7901 7902 if (!BT || BT->getKind() != BuiltinType::Double) 7903 continue; 7904 7905 uint64_t Offset = Layout.getFieldOffset(idx); 7906 if (Offset % 64) // Ignore doubles that are not aligned. 7907 continue; 7908 7909 // Add ((Offset - LastOffset) / 64) args of type i64. 7910 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 7911 ArgList.push_back(I64); 7912 7913 // Add double type. 7914 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 7915 LastOffset = Offset + 64; 7916 } 7917 7918 CoerceToIntArgs(TySize - LastOffset, IntArgList); 7919 ArgList.append(IntArgList.begin(), IntArgList.end()); 7920 7921 return llvm::StructType::get(getVMContext(), ArgList); 7922 } 7923 7924 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 7925 uint64_t Offset) const { 7926 if (OrigOffset + MinABIStackAlignInBytes > Offset) 7927 return nullptr; 7928 7929 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 7930 } 7931 7932 ABIArgInfo 7933 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 7934 Ty = useFirstFieldIfTransparentUnion(Ty); 7935 7936 uint64_t OrigOffset = Offset; 7937 uint64_t TySize = getContext().getTypeSize(Ty); 7938 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 7939 7940 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 7941 (uint64_t)StackAlignInBytes); 7942 unsigned CurrOffset = llvm::alignTo(Offset, Align); 7943 Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8; 7944 7945 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 7946 // Ignore empty aggregates. 7947 if (TySize == 0) 7948 return ABIArgInfo::getIgnore(); 7949 7950 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 7951 Offset = OrigOffset + MinABIStackAlignInBytes; 7952 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7953 } 7954 7955 // If we have reached here, aggregates are passed directly by coercing to 7956 // another structure type. Padding is inserted if the offset of the 7957 // aggregate is unaligned. 7958 ABIArgInfo ArgInfo = 7959 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 7960 getPaddingType(OrigOffset, CurrOffset)); 7961 ArgInfo.setInReg(true); 7962 return ArgInfo; 7963 } 7964 7965 // Treat an enum type as its underlying type. 7966 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7967 Ty = EnumTy->getDecl()->getIntegerType(); 7968 7969 // Make sure we pass indirectly things that are too large. 7970 if (const auto *EIT = Ty->getAs<ExtIntType>()) 7971 if (EIT->getNumBits() > 128 || 7972 (EIT->getNumBits() > 64 && 7973 !getContext().getTargetInfo().hasInt128Type())) 7974 return getNaturalAlignIndirect(Ty); 7975 7976 // All integral types are promoted to the GPR width. 7977 if (Ty->isIntegralOrEnumerationType()) 7978 return extendType(Ty); 7979 7980 return ABIArgInfo::getDirect( 7981 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 7982 } 7983 7984 llvm::Type* 7985 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 7986 const RecordType *RT = RetTy->getAs<RecordType>(); 7987 SmallVector<llvm::Type*, 8> RTList; 7988 7989 if (RT && RT->isStructureOrClassType()) { 7990 const RecordDecl *RD = RT->getDecl(); 7991 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 7992 unsigned FieldCnt = Layout.getFieldCount(); 7993 7994 // N32/64 returns struct/classes in floating point registers if the 7995 // following conditions are met: 7996 // 1. The size of the struct/class is no larger than 128-bit. 7997 // 2. The struct/class has one or two fields all of which are floating 7998 // point types. 7999 // 3. The offset of the first field is zero (this follows what gcc does). 8000 // 8001 // Any other composite results are returned in integer registers. 8002 // 8003 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 8004 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 8005 for (; b != e; ++b) { 8006 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 8007 8008 if (!BT || !BT->isFloatingPoint()) 8009 break; 8010 8011 RTList.push_back(CGT.ConvertType(b->getType())); 8012 } 8013 8014 if (b == e) 8015 return llvm::StructType::get(getVMContext(), RTList, 8016 RD->hasAttr<PackedAttr>()); 8017 8018 RTList.clear(); 8019 } 8020 } 8021 8022 CoerceToIntArgs(Size, RTList); 8023 return llvm::StructType::get(getVMContext(), RTList); 8024 } 8025 8026 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 8027 uint64_t Size = getContext().getTypeSize(RetTy); 8028 8029 if (RetTy->isVoidType()) 8030 return ABIArgInfo::getIgnore(); 8031 8032 // O32 doesn't treat zero-sized structs differently from other structs. 8033 // However, N32/N64 ignores zero sized return values. 8034 if (!IsO32 && Size == 0) 8035 return ABIArgInfo::getIgnore(); 8036 8037 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 8038 if (Size <= 128) { 8039 if (RetTy->isAnyComplexType()) 8040 return ABIArgInfo::getDirect(); 8041 8042 // O32 returns integer vectors in registers and N32/N64 returns all small 8043 // aggregates in registers. 8044 if (!IsO32 || 8045 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { 8046 ABIArgInfo ArgInfo = 8047 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 8048 ArgInfo.setInReg(true); 8049 return ArgInfo; 8050 } 8051 } 8052 8053 return getNaturalAlignIndirect(RetTy); 8054 } 8055 8056 // Treat an enum type as its underlying type. 8057 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 8058 RetTy = EnumTy->getDecl()->getIntegerType(); 8059 8060 // Make sure we pass indirectly things that are too large. 8061 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 8062 if (EIT->getNumBits() > 128 || 8063 (EIT->getNumBits() > 64 && 8064 !getContext().getTargetInfo().hasInt128Type())) 8065 return getNaturalAlignIndirect(RetTy); 8066 8067 if (isPromotableIntegerTypeForABI(RetTy)) 8068 return ABIArgInfo::getExtend(RetTy); 8069 8070 if ((RetTy->isUnsignedIntegerOrEnumerationType() || 8071 RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32) 8072 return ABIArgInfo::getSignExtend(RetTy); 8073 8074 return ABIArgInfo::getDirect(); 8075 } 8076 8077 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 8078 ABIArgInfo &RetInfo = FI.getReturnInfo(); 8079 if (!getCXXABI().classifyReturnType(FI)) 8080 RetInfo = classifyReturnType(FI.getReturnType()); 8081 8082 // Check if a pointer to an aggregate is passed as a hidden argument. 8083 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 8084 8085 for (auto &I : FI.arguments()) 8086 I.info = classifyArgumentType(I.type, Offset); 8087 } 8088 8089 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8090 QualType OrigTy) const { 8091 QualType Ty = OrigTy; 8092 8093 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. 8094 // Pointers are also promoted in the same way but this only matters for N32. 8095 unsigned SlotSizeInBits = IsO32 ? 32 : 64; 8096 unsigned PtrWidth = getTarget().getPointerWidth(0); 8097 bool DidPromote = false; 8098 if ((Ty->isIntegerType() && 8099 getContext().getIntWidth(Ty) < SlotSizeInBits) || 8100 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { 8101 DidPromote = true; 8102 Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits, 8103 Ty->isSignedIntegerType()); 8104 } 8105 8106 auto TyInfo = getContext().getTypeInfoInChars(Ty); 8107 8108 // The alignment of things in the argument area is never larger than 8109 // StackAlignInBytes. 8110 TyInfo.Align = 8111 std::min(TyInfo.Align, CharUnits::fromQuantity(StackAlignInBytes)); 8112 8113 // MinABIStackAlignInBytes is the size of argument slots on the stack. 8114 CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes); 8115 8116 Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 8117 TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true); 8118 8119 8120 // If there was a promotion, "unpromote" into a temporary. 8121 // TODO: can we just use a pointer into a subset of the original slot? 8122 if (DidPromote) { 8123 Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp"); 8124 llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr); 8125 8126 // Truncate down to the right width. 8127 llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType() 8128 : CGF.IntPtrTy); 8129 llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy); 8130 if (OrigTy->isPointerType()) 8131 V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType()); 8132 8133 CGF.Builder.CreateStore(V, Temp); 8134 Addr = Temp; 8135 } 8136 8137 return Addr; 8138 } 8139 8140 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const { 8141 int TySize = getContext().getTypeSize(Ty); 8142 8143 // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. 8144 if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 8145 return ABIArgInfo::getSignExtend(Ty); 8146 8147 return ABIArgInfo::getExtend(Ty); 8148 } 8149 8150 bool 8151 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 8152 llvm::Value *Address) const { 8153 // This information comes from gcc's implementation, which seems to 8154 // as canonical as it gets. 8155 8156 // Everything on MIPS is 4 bytes. Double-precision FP registers 8157 // are aliased to pairs of single-precision FP registers. 8158 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 8159 8160 // 0-31 are the general purpose registers, $0 - $31. 8161 // 32-63 are the floating-point registers, $f0 - $f31. 8162 // 64 and 65 are the multiply/divide registers, $hi and $lo. 8163 // 66 is the (notional, I think) register for signal-handler return. 8164 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 8165 8166 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 8167 // They are one bit wide and ignored here. 8168 8169 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 8170 // (coprocessor 1 is the FP unit) 8171 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 8172 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 8173 // 176-181 are the DSP accumulator registers. 8174 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 8175 return false; 8176 } 8177 8178 //===----------------------------------------------------------------------===// 8179 // M68k ABI Implementation 8180 //===----------------------------------------------------------------------===// 8181 8182 namespace { 8183 8184 class M68kTargetCodeGenInfo : public TargetCodeGenInfo { 8185 public: 8186 M68kTargetCodeGenInfo(CodeGenTypes &CGT) 8187 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 8188 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8189 CodeGen::CodeGenModule &M) const override; 8190 }; 8191 8192 } // namespace 8193 8194 void M68kTargetCodeGenInfo::setTargetAttributes( 8195 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 8196 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 8197 if (const auto *attr = FD->getAttr<M68kInterruptAttr>()) { 8198 // Handle 'interrupt' attribute: 8199 llvm::Function *F = cast<llvm::Function>(GV); 8200 8201 // Step 1: Set ISR calling convention. 8202 F->setCallingConv(llvm::CallingConv::M68k_INTR); 8203 8204 // Step 2: Add attributes goodness. 8205 F->addFnAttr(llvm::Attribute::NoInline); 8206 8207 // Step 3: Emit ISR vector alias. 8208 unsigned Num = attr->getNumber() / 2; 8209 llvm::GlobalAlias::create(llvm::Function::ExternalLinkage, 8210 "__isr_" + Twine(Num), F); 8211 } 8212 } 8213 } 8214 8215 //===----------------------------------------------------------------------===// 8216 // AVR ABI Implementation. Documented at 8217 // https://gcc.gnu.org/wiki/avr-gcc#Calling_Convention 8218 // https://gcc.gnu.org/wiki/avr-gcc#Reduced_Tiny 8219 //===----------------------------------------------------------------------===// 8220 8221 namespace { 8222 class AVRABIInfo : public DefaultABIInfo { 8223 public: 8224 AVRABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8225 8226 ABIArgInfo classifyReturnType(QualType Ty) const { 8227 // A return struct with size less than or equal to 8 bytes is returned 8228 // directly via registers R18-R25. 8229 if (isAggregateTypeForABI(Ty) && getContext().getTypeSize(Ty) <= 64) 8230 return ABIArgInfo::getDirect(); 8231 else 8232 return DefaultABIInfo::classifyReturnType(Ty); 8233 } 8234 8235 // Just copy the original implementation of DefaultABIInfo::computeInfo(), 8236 // since DefaultABIInfo::classify{Return,Argument}Type() are not virtual. 8237 void computeInfo(CGFunctionInfo &FI) const override { 8238 if (!getCXXABI().classifyReturnType(FI)) 8239 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8240 for (auto &I : FI.arguments()) 8241 I.info = classifyArgumentType(I.type); 8242 } 8243 }; 8244 8245 class AVRTargetCodeGenInfo : public TargetCodeGenInfo { 8246 public: 8247 AVRTargetCodeGenInfo(CodeGenTypes &CGT) 8248 : TargetCodeGenInfo(std::make_unique<AVRABIInfo>(CGT)) {} 8249 8250 LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, 8251 const VarDecl *D) const override { 8252 // Check if a global/static variable is defined within address space 1 8253 // but not constant. 8254 LangAS AS = D->getType().getAddressSpace(); 8255 if (isTargetAddressSpace(AS) && toTargetAddressSpace(AS) == 1 && 8256 !D->getType().isConstQualified()) 8257 CGM.getDiags().Report(D->getLocation(), 8258 diag::err_verify_nonconst_addrspace) 8259 << "__flash"; 8260 return TargetCodeGenInfo::getGlobalVarAddressSpace(CGM, D); 8261 } 8262 8263 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8264 CodeGen::CodeGenModule &CGM) const override { 8265 if (GV->isDeclaration()) 8266 return; 8267 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 8268 if (!FD) return; 8269 auto *Fn = cast<llvm::Function>(GV); 8270 8271 if (FD->getAttr<AVRInterruptAttr>()) 8272 Fn->addFnAttr("interrupt"); 8273 8274 if (FD->getAttr<AVRSignalAttr>()) 8275 Fn->addFnAttr("signal"); 8276 } 8277 }; 8278 } 8279 8280 //===----------------------------------------------------------------------===// 8281 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 8282 // Currently subclassed only to implement custom OpenCL C function attribute 8283 // handling. 8284 //===----------------------------------------------------------------------===// 8285 8286 namespace { 8287 8288 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 8289 public: 8290 TCETargetCodeGenInfo(CodeGenTypes &CGT) 8291 : DefaultTargetCodeGenInfo(CGT) {} 8292 8293 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8294 CodeGen::CodeGenModule &M) const override; 8295 }; 8296 8297 void TCETargetCodeGenInfo::setTargetAttributes( 8298 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 8299 if (GV->isDeclaration()) 8300 return; 8301 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 8302 if (!FD) return; 8303 8304 llvm::Function *F = cast<llvm::Function>(GV); 8305 8306 if (M.getLangOpts().OpenCL) { 8307 if (FD->hasAttr<OpenCLKernelAttr>()) { 8308 // OpenCL C Kernel functions are not subject to inlining 8309 F->addFnAttr(llvm::Attribute::NoInline); 8310 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 8311 if (Attr) { 8312 // Convert the reqd_work_group_size() attributes to metadata. 8313 llvm::LLVMContext &Context = F->getContext(); 8314 llvm::NamedMDNode *OpenCLMetadata = 8315 M.getModule().getOrInsertNamedMetadata( 8316 "opencl.kernel_wg_size_info"); 8317 8318 SmallVector<llvm::Metadata *, 5> Operands; 8319 Operands.push_back(llvm::ConstantAsMetadata::get(F)); 8320 8321 Operands.push_back( 8322 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8323 M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); 8324 Operands.push_back( 8325 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8326 M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); 8327 Operands.push_back( 8328 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8329 M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); 8330 8331 // Add a boolean constant operand for "required" (true) or "hint" 8332 // (false) for implementing the work_group_size_hint attr later. 8333 // Currently always true as the hint is not yet implemented. 8334 Operands.push_back( 8335 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); 8336 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 8337 } 8338 } 8339 } 8340 } 8341 8342 } 8343 8344 //===----------------------------------------------------------------------===// 8345 // Hexagon ABI Implementation 8346 //===----------------------------------------------------------------------===// 8347 8348 namespace { 8349 8350 class HexagonABIInfo : public DefaultABIInfo { 8351 public: 8352 HexagonABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8353 8354 private: 8355 ABIArgInfo classifyReturnType(QualType RetTy) const; 8356 ABIArgInfo classifyArgumentType(QualType RetTy) const; 8357 ABIArgInfo classifyArgumentType(QualType RetTy, unsigned *RegsLeft) const; 8358 8359 void computeInfo(CGFunctionInfo &FI) const override; 8360 8361 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8362 QualType Ty) const override; 8363 Address EmitVAArgFromMemory(CodeGenFunction &CFG, Address VAListAddr, 8364 QualType Ty) const; 8365 Address EmitVAArgForHexagon(CodeGenFunction &CFG, Address VAListAddr, 8366 QualType Ty) const; 8367 Address EmitVAArgForHexagonLinux(CodeGenFunction &CFG, Address VAListAddr, 8368 QualType Ty) const; 8369 }; 8370 8371 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 8372 public: 8373 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 8374 : TargetCodeGenInfo(std::make_unique<HexagonABIInfo>(CGT)) {} 8375 8376 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 8377 return 29; 8378 } 8379 8380 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8381 CodeGen::CodeGenModule &GCM) const override { 8382 if (GV->isDeclaration()) 8383 return; 8384 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 8385 if (!FD) 8386 return; 8387 } 8388 }; 8389 8390 } // namespace 8391 8392 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 8393 unsigned RegsLeft = 6; 8394 if (!getCXXABI().classifyReturnType(FI)) 8395 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8396 for (auto &I : FI.arguments()) 8397 I.info = classifyArgumentType(I.type, &RegsLeft); 8398 } 8399 8400 static bool HexagonAdjustRegsLeft(uint64_t Size, unsigned *RegsLeft) { 8401 assert(Size <= 64 && "Not expecting to pass arguments larger than 64 bits" 8402 " through registers"); 8403 8404 if (*RegsLeft == 0) 8405 return false; 8406 8407 if (Size <= 32) { 8408 (*RegsLeft)--; 8409 return true; 8410 } 8411 8412 if (2 <= (*RegsLeft & (~1U))) { 8413 *RegsLeft = (*RegsLeft & (~1U)) - 2; 8414 return true; 8415 } 8416 8417 // Next available register was r5 but candidate was greater than 32-bits so it 8418 // has to go on the stack. However we still consume r5 8419 if (*RegsLeft == 1) 8420 *RegsLeft = 0; 8421 8422 return false; 8423 } 8424 8425 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty, 8426 unsigned *RegsLeft) const { 8427 if (!isAggregateTypeForABI(Ty)) { 8428 // Treat an enum type as its underlying type. 8429 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 8430 Ty = EnumTy->getDecl()->getIntegerType(); 8431 8432 uint64_t Size = getContext().getTypeSize(Ty); 8433 if (Size <= 64) 8434 HexagonAdjustRegsLeft(Size, RegsLeft); 8435 8436 if (Size > 64 && Ty->isExtIntType()) 8437 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8438 8439 return isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 8440 : ABIArgInfo::getDirect(); 8441 } 8442 8443 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 8444 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 8445 8446 // Ignore empty records. 8447 if (isEmptyRecord(getContext(), Ty, true)) 8448 return ABIArgInfo::getIgnore(); 8449 8450 uint64_t Size = getContext().getTypeSize(Ty); 8451 unsigned Align = getContext().getTypeAlign(Ty); 8452 8453 if (Size > 64) 8454 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8455 8456 if (HexagonAdjustRegsLeft(Size, RegsLeft)) 8457 Align = Size <= 32 ? 32 : 64; 8458 if (Size <= Align) { 8459 // Pass in the smallest viable integer type. 8460 if (!llvm::isPowerOf2_64(Size)) 8461 Size = llvm::NextPowerOf2(Size); 8462 return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size)); 8463 } 8464 return DefaultABIInfo::classifyArgumentType(Ty); 8465 } 8466 8467 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 8468 if (RetTy->isVoidType()) 8469 return ABIArgInfo::getIgnore(); 8470 8471 const TargetInfo &T = CGT.getTarget(); 8472 uint64_t Size = getContext().getTypeSize(RetTy); 8473 8474 if (RetTy->getAs<VectorType>()) { 8475 // HVX vectors are returned in vector registers or register pairs. 8476 if (T.hasFeature("hvx")) { 8477 assert(T.hasFeature("hvx-length64b") || T.hasFeature("hvx-length128b")); 8478 uint64_t VecSize = T.hasFeature("hvx-length64b") ? 64*8 : 128*8; 8479 if (Size == VecSize || Size == 2*VecSize) 8480 return ABIArgInfo::getDirectInReg(); 8481 } 8482 // Large vector types should be returned via memory. 8483 if (Size > 64) 8484 return getNaturalAlignIndirect(RetTy); 8485 } 8486 8487 if (!isAggregateTypeForABI(RetTy)) { 8488 // Treat an enum type as its underlying type. 8489 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 8490 RetTy = EnumTy->getDecl()->getIntegerType(); 8491 8492 if (Size > 64 && RetTy->isExtIntType()) 8493 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 8494 8495 return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 8496 : ABIArgInfo::getDirect(); 8497 } 8498 8499 if (isEmptyRecord(getContext(), RetTy, true)) 8500 return ABIArgInfo::getIgnore(); 8501 8502 // Aggregates <= 8 bytes are returned in registers, other aggregates 8503 // are returned indirectly. 8504 if (Size <= 64) { 8505 // Return in the smallest viable integer type. 8506 if (!llvm::isPowerOf2_64(Size)) 8507 Size = llvm::NextPowerOf2(Size); 8508 return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size)); 8509 } 8510 return getNaturalAlignIndirect(RetTy, /*ByVal=*/true); 8511 } 8512 8513 Address HexagonABIInfo::EmitVAArgFromMemory(CodeGenFunction &CGF, 8514 Address VAListAddr, 8515 QualType Ty) const { 8516 // Load the overflow area pointer. 8517 Address __overflow_area_pointer_p = 8518 CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p"); 8519 llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad( 8520 __overflow_area_pointer_p, "__overflow_area_pointer"); 8521 8522 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; 8523 if (Align > 4) { 8524 // Alignment should be a power of 2. 8525 assert((Align & (Align - 1)) == 0 && "Alignment is not power of 2!"); 8526 8527 // overflow_arg_area = (overflow_arg_area + align - 1) & -align; 8528 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int64Ty, Align - 1); 8529 8530 // Add offset to the current pointer to access the argument. 8531 __overflow_area_pointer = 8532 CGF.Builder.CreateGEP(CGF.Int8Ty, __overflow_area_pointer, Offset); 8533 llvm::Value *AsInt = 8534 CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty); 8535 8536 // Create a mask which should be "AND"ed 8537 // with (overflow_arg_area + align - 1) 8538 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -(int)Align); 8539 __overflow_area_pointer = CGF.Builder.CreateIntToPtr( 8540 CGF.Builder.CreateAnd(AsInt, Mask), __overflow_area_pointer->getType(), 8541 "__overflow_area_pointer.align"); 8542 } 8543 8544 // Get the type of the argument from memory and bitcast 8545 // overflow area pointer to the argument type. 8546 llvm::Type *PTy = CGF.ConvertTypeForMem(Ty); 8547 Address AddrTyped = CGF.Builder.CreateBitCast( 8548 Address(__overflow_area_pointer, CharUnits::fromQuantity(Align)), 8549 llvm::PointerType::getUnqual(PTy)); 8550 8551 // Round up to the minimum stack alignment for varargs which is 4 bytes. 8552 uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4); 8553 8554 __overflow_area_pointer = CGF.Builder.CreateGEP( 8555 CGF.Int8Ty, __overflow_area_pointer, 8556 llvm::ConstantInt::get(CGF.Int32Ty, Offset), 8557 "__overflow_area_pointer.next"); 8558 CGF.Builder.CreateStore(__overflow_area_pointer, __overflow_area_pointer_p); 8559 8560 return AddrTyped; 8561 } 8562 8563 Address HexagonABIInfo::EmitVAArgForHexagon(CodeGenFunction &CGF, 8564 Address VAListAddr, 8565 QualType Ty) const { 8566 // FIXME: Need to handle alignment 8567 llvm::Type *BP = CGF.Int8PtrTy; 8568 llvm::Type *BPP = CGF.Int8PtrPtrTy; 8569 CGBuilderTy &Builder = CGF.Builder; 8570 Address VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 8571 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 8572 // Handle address alignment for type alignment > 32 bits 8573 uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8; 8574 if (TyAlign > 4) { 8575 assert((TyAlign & (TyAlign - 1)) == 0 && "Alignment is not power of 2!"); 8576 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty); 8577 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1)); 8578 AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1))); 8579 Addr = Builder.CreateIntToPtr(AddrAsInt, BP); 8580 } 8581 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 8582 Address AddrTyped = Builder.CreateBitCast( 8583 Address(Addr, CharUnits::fromQuantity(TyAlign)), PTy); 8584 8585 uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4); 8586 llvm::Value *NextAddr = Builder.CreateGEP( 8587 CGF.Int8Ty, Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next"); 8588 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 8589 8590 return AddrTyped; 8591 } 8592 8593 Address HexagonABIInfo::EmitVAArgForHexagonLinux(CodeGenFunction &CGF, 8594 Address VAListAddr, 8595 QualType Ty) const { 8596 int ArgSize = CGF.getContext().getTypeSize(Ty) / 8; 8597 8598 if (ArgSize > 8) 8599 return EmitVAArgFromMemory(CGF, VAListAddr, Ty); 8600 8601 // Here we have check if the argument is in register area or 8602 // in overflow area. 8603 // If the saved register area pointer + argsize rounded up to alignment > 8604 // saved register area end pointer, argument is in overflow area. 8605 unsigned RegsLeft = 6; 8606 Ty = CGF.getContext().getCanonicalType(Ty); 8607 (void)classifyArgumentType(Ty, &RegsLeft); 8608 8609 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 8610 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 8611 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 8612 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 8613 8614 // Get rounded size of the argument.GCC does not allow vararg of 8615 // size < 4 bytes. We follow the same logic here. 8616 ArgSize = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8; 8617 int ArgAlign = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8; 8618 8619 // Argument may be in saved register area 8620 CGF.EmitBlock(MaybeRegBlock); 8621 8622 // Load the current saved register area pointer. 8623 Address __current_saved_reg_area_pointer_p = CGF.Builder.CreateStructGEP( 8624 VAListAddr, 0, "__current_saved_reg_area_pointer_p"); 8625 llvm::Value *__current_saved_reg_area_pointer = CGF.Builder.CreateLoad( 8626 __current_saved_reg_area_pointer_p, "__current_saved_reg_area_pointer"); 8627 8628 // Load the saved register area end pointer. 8629 Address __saved_reg_area_end_pointer_p = CGF.Builder.CreateStructGEP( 8630 VAListAddr, 1, "__saved_reg_area_end_pointer_p"); 8631 llvm::Value *__saved_reg_area_end_pointer = CGF.Builder.CreateLoad( 8632 __saved_reg_area_end_pointer_p, "__saved_reg_area_end_pointer"); 8633 8634 // If the size of argument is > 4 bytes, check if the stack 8635 // location is aligned to 8 bytes 8636 if (ArgAlign > 4) { 8637 8638 llvm::Value *__current_saved_reg_area_pointer_int = 8639 CGF.Builder.CreatePtrToInt(__current_saved_reg_area_pointer, 8640 CGF.Int32Ty); 8641 8642 __current_saved_reg_area_pointer_int = CGF.Builder.CreateAdd( 8643 __current_saved_reg_area_pointer_int, 8644 llvm::ConstantInt::get(CGF.Int32Ty, (ArgAlign - 1)), 8645 "align_current_saved_reg_area_pointer"); 8646 8647 __current_saved_reg_area_pointer_int = 8648 CGF.Builder.CreateAnd(__current_saved_reg_area_pointer_int, 8649 llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign), 8650 "align_current_saved_reg_area_pointer"); 8651 8652 __current_saved_reg_area_pointer = 8653 CGF.Builder.CreateIntToPtr(__current_saved_reg_area_pointer_int, 8654 __current_saved_reg_area_pointer->getType(), 8655 "align_current_saved_reg_area_pointer"); 8656 } 8657 8658 llvm::Value *__new_saved_reg_area_pointer = 8659 CGF.Builder.CreateGEP(CGF.Int8Ty, __current_saved_reg_area_pointer, 8660 llvm::ConstantInt::get(CGF.Int32Ty, ArgSize), 8661 "__new_saved_reg_area_pointer"); 8662 8663 llvm::Value *UsingStack = 0; 8664 UsingStack = CGF.Builder.CreateICmpSGT(__new_saved_reg_area_pointer, 8665 __saved_reg_area_end_pointer); 8666 8667 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, InRegBlock); 8668 8669 // Argument in saved register area 8670 // Implement the block where argument is in register saved area 8671 CGF.EmitBlock(InRegBlock); 8672 8673 llvm::Type *PTy = CGF.ConvertType(Ty); 8674 llvm::Value *__saved_reg_area_p = CGF.Builder.CreateBitCast( 8675 __current_saved_reg_area_pointer, llvm::PointerType::getUnqual(PTy)); 8676 8677 CGF.Builder.CreateStore(__new_saved_reg_area_pointer, 8678 __current_saved_reg_area_pointer_p); 8679 8680 CGF.EmitBranch(ContBlock); 8681 8682 // Argument in overflow area 8683 // Implement the block where the argument is in overflow area. 8684 CGF.EmitBlock(OnStackBlock); 8685 8686 // Load the overflow area pointer 8687 Address __overflow_area_pointer_p = 8688 CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p"); 8689 llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad( 8690 __overflow_area_pointer_p, "__overflow_area_pointer"); 8691 8692 // Align the overflow area pointer according to the alignment of the argument 8693 if (ArgAlign > 4) { 8694 llvm::Value *__overflow_area_pointer_int = 8695 CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty); 8696 8697 __overflow_area_pointer_int = 8698 CGF.Builder.CreateAdd(__overflow_area_pointer_int, 8699 llvm::ConstantInt::get(CGF.Int32Ty, ArgAlign - 1), 8700 "align_overflow_area_pointer"); 8701 8702 __overflow_area_pointer_int = 8703 CGF.Builder.CreateAnd(__overflow_area_pointer_int, 8704 llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign), 8705 "align_overflow_area_pointer"); 8706 8707 __overflow_area_pointer = CGF.Builder.CreateIntToPtr( 8708 __overflow_area_pointer_int, __overflow_area_pointer->getType(), 8709 "align_overflow_area_pointer"); 8710 } 8711 8712 // Get the pointer for next argument in overflow area and store it 8713 // to overflow area pointer. 8714 llvm::Value *__new_overflow_area_pointer = CGF.Builder.CreateGEP( 8715 CGF.Int8Ty, __overflow_area_pointer, 8716 llvm::ConstantInt::get(CGF.Int32Ty, ArgSize), 8717 "__overflow_area_pointer.next"); 8718 8719 CGF.Builder.CreateStore(__new_overflow_area_pointer, 8720 __overflow_area_pointer_p); 8721 8722 CGF.Builder.CreateStore(__new_overflow_area_pointer, 8723 __current_saved_reg_area_pointer_p); 8724 8725 // Bitcast the overflow area pointer to the type of argument. 8726 llvm::Type *OverflowPTy = CGF.ConvertTypeForMem(Ty); 8727 llvm::Value *__overflow_area_p = CGF.Builder.CreateBitCast( 8728 __overflow_area_pointer, llvm::PointerType::getUnqual(OverflowPTy)); 8729 8730 CGF.EmitBranch(ContBlock); 8731 8732 // Get the correct pointer to load the variable argument 8733 // Implement the ContBlock 8734 CGF.EmitBlock(ContBlock); 8735 8736 llvm::Type *MemPTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 8737 llvm::PHINode *ArgAddr = CGF.Builder.CreatePHI(MemPTy, 2, "vaarg.addr"); 8738 ArgAddr->addIncoming(__saved_reg_area_p, InRegBlock); 8739 ArgAddr->addIncoming(__overflow_area_p, OnStackBlock); 8740 8741 return Address(ArgAddr, CharUnits::fromQuantity(ArgAlign)); 8742 } 8743 8744 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8745 QualType Ty) const { 8746 8747 if (getTarget().getTriple().isMusl()) 8748 return EmitVAArgForHexagonLinux(CGF, VAListAddr, Ty); 8749 8750 return EmitVAArgForHexagon(CGF, VAListAddr, Ty); 8751 } 8752 8753 //===----------------------------------------------------------------------===// 8754 // Lanai ABI Implementation 8755 //===----------------------------------------------------------------------===// 8756 8757 namespace { 8758 class LanaiABIInfo : public DefaultABIInfo { 8759 public: 8760 LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8761 8762 bool shouldUseInReg(QualType Ty, CCState &State) const; 8763 8764 void computeInfo(CGFunctionInfo &FI) const override { 8765 CCState State(FI); 8766 // Lanai uses 4 registers to pass arguments unless the function has the 8767 // regparm attribute set. 8768 if (FI.getHasRegParm()) { 8769 State.FreeRegs = FI.getRegParm(); 8770 } else { 8771 State.FreeRegs = 4; 8772 } 8773 8774 if (!getCXXABI().classifyReturnType(FI)) 8775 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8776 for (auto &I : FI.arguments()) 8777 I.info = classifyArgumentType(I.type, State); 8778 } 8779 8780 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 8781 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 8782 }; 8783 } // end anonymous namespace 8784 8785 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const { 8786 unsigned Size = getContext().getTypeSize(Ty); 8787 unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U; 8788 8789 if (SizeInRegs == 0) 8790 return false; 8791 8792 if (SizeInRegs > State.FreeRegs) { 8793 State.FreeRegs = 0; 8794 return false; 8795 } 8796 8797 State.FreeRegs -= SizeInRegs; 8798 8799 return true; 8800 } 8801 8802 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal, 8803 CCState &State) const { 8804 if (!ByVal) { 8805 if (State.FreeRegs) { 8806 --State.FreeRegs; // Non-byval indirects just use one pointer. 8807 return getNaturalAlignIndirectInReg(Ty); 8808 } 8809 return getNaturalAlignIndirect(Ty, false); 8810 } 8811 8812 // Compute the byval alignment. 8813 const unsigned MinABIStackAlignInBytes = 4; 8814 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 8815 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 8816 /*Realign=*/TypeAlign > 8817 MinABIStackAlignInBytes); 8818 } 8819 8820 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty, 8821 CCState &State) const { 8822 // Check with the C++ ABI first. 8823 const RecordType *RT = Ty->getAs<RecordType>(); 8824 if (RT) { 8825 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 8826 if (RAA == CGCXXABI::RAA_Indirect) { 8827 return getIndirectResult(Ty, /*ByVal=*/false, State); 8828 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 8829 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8830 } 8831 } 8832 8833 if (isAggregateTypeForABI(Ty)) { 8834 // Structures with flexible arrays are always indirect. 8835 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 8836 return getIndirectResult(Ty, /*ByVal=*/true, State); 8837 8838 // Ignore empty structs/unions. 8839 if (isEmptyRecord(getContext(), Ty, true)) 8840 return ABIArgInfo::getIgnore(); 8841 8842 llvm::LLVMContext &LLVMContext = getVMContext(); 8843 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 8844 if (SizeInRegs <= State.FreeRegs) { 8845 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 8846 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 8847 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 8848 State.FreeRegs -= SizeInRegs; 8849 return ABIArgInfo::getDirectInReg(Result); 8850 } else { 8851 State.FreeRegs = 0; 8852 } 8853 return getIndirectResult(Ty, true, State); 8854 } 8855 8856 // Treat an enum type as its underlying type. 8857 if (const auto *EnumTy = Ty->getAs<EnumType>()) 8858 Ty = EnumTy->getDecl()->getIntegerType(); 8859 8860 bool InReg = shouldUseInReg(Ty, State); 8861 8862 // Don't pass >64 bit integers in registers. 8863 if (const auto *EIT = Ty->getAs<ExtIntType>()) 8864 if (EIT->getNumBits() > 64) 8865 return getIndirectResult(Ty, /*ByVal=*/true, State); 8866 8867 if (isPromotableIntegerTypeForABI(Ty)) { 8868 if (InReg) 8869 return ABIArgInfo::getDirectInReg(); 8870 return ABIArgInfo::getExtend(Ty); 8871 } 8872 if (InReg) 8873 return ABIArgInfo::getDirectInReg(); 8874 return ABIArgInfo::getDirect(); 8875 } 8876 8877 namespace { 8878 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo { 8879 public: 8880 LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 8881 : TargetCodeGenInfo(std::make_unique<LanaiABIInfo>(CGT)) {} 8882 }; 8883 } 8884 8885 //===----------------------------------------------------------------------===// 8886 // AMDGPU ABI Implementation 8887 //===----------------------------------------------------------------------===// 8888 8889 namespace { 8890 8891 class AMDGPUABIInfo final : public DefaultABIInfo { 8892 private: 8893 static const unsigned MaxNumRegsForArgsRet = 16; 8894 8895 unsigned numRegsForType(QualType Ty) const; 8896 8897 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 8898 bool isHomogeneousAggregateSmallEnough(const Type *Base, 8899 uint64_t Members) const override; 8900 8901 // Coerce HIP scalar pointer arguments from generic pointers to global ones. 8902 llvm::Type *coerceKernelArgumentType(llvm::Type *Ty, unsigned FromAS, 8903 unsigned ToAS) const { 8904 // Single value types. 8905 if (Ty->isPointerTy() && Ty->getPointerAddressSpace() == FromAS) 8906 return llvm::PointerType::get( 8907 cast<llvm::PointerType>(Ty)->getElementType(), ToAS); 8908 return Ty; 8909 } 8910 8911 public: 8912 explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) : 8913 DefaultABIInfo(CGT) {} 8914 8915 ABIArgInfo classifyReturnType(QualType RetTy) const; 8916 ABIArgInfo classifyKernelArgumentType(QualType Ty) const; 8917 ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const; 8918 8919 void computeInfo(CGFunctionInfo &FI) const override; 8920 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8921 QualType Ty) const override; 8922 }; 8923 8924 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 8925 return true; 8926 } 8927 8928 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough( 8929 const Type *Base, uint64_t Members) const { 8930 uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32; 8931 8932 // Homogeneous Aggregates may occupy at most 16 registers. 8933 return Members * NumRegs <= MaxNumRegsForArgsRet; 8934 } 8935 8936 /// Estimate number of registers the type will use when passed in registers. 8937 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const { 8938 unsigned NumRegs = 0; 8939 8940 if (const VectorType *VT = Ty->getAs<VectorType>()) { 8941 // Compute from the number of elements. The reported size is based on the 8942 // in-memory size, which includes the padding 4th element for 3-vectors. 8943 QualType EltTy = VT->getElementType(); 8944 unsigned EltSize = getContext().getTypeSize(EltTy); 8945 8946 // 16-bit element vectors should be passed as packed. 8947 if (EltSize == 16) 8948 return (VT->getNumElements() + 1) / 2; 8949 8950 unsigned EltNumRegs = (EltSize + 31) / 32; 8951 return EltNumRegs * VT->getNumElements(); 8952 } 8953 8954 if (const RecordType *RT = Ty->getAs<RecordType>()) { 8955 const RecordDecl *RD = RT->getDecl(); 8956 assert(!RD->hasFlexibleArrayMember()); 8957 8958 for (const FieldDecl *Field : RD->fields()) { 8959 QualType FieldTy = Field->getType(); 8960 NumRegs += numRegsForType(FieldTy); 8961 } 8962 8963 return NumRegs; 8964 } 8965 8966 return (getContext().getTypeSize(Ty) + 31) / 32; 8967 } 8968 8969 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const { 8970 llvm::CallingConv::ID CC = FI.getCallingConvention(); 8971 8972 if (!getCXXABI().classifyReturnType(FI)) 8973 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8974 8975 unsigned NumRegsLeft = MaxNumRegsForArgsRet; 8976 for (auto &Arg : FI.arguments()) { 8977 if (CC == llvm::CallingConv::AMDGPU_KERNEL) { 8978 Arg.info = classifyKernelArgumentType(Arg.type); 8979 } else { 8980 Arg.info = classifyArgumentType(Arg.type, NumRegsLeft); 8981 } 8982 } 8983 } 8984 8985 Address AMDGPUABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8986 QualType Ty) const { 8987 llvm_unreachable("AMDGPU does not support varargs"); 8988 } 8989 8990 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const { 8991 if (isAggregateTypeForABI(RetTy)) { 8992 // Records with non-trivial destructors/copy-constructors should not be 8993 // returned by value. 8994 if (!getRecordArgABI(RetTy, getCXXABI())) { 8995 // Ignore empty structs/unions. 8996 if (isEmptyRecord(getContext(), RetTy, true)) 8997 return ABIArgInfo::getIgnore(); 8998 8999 // Lower single-element structs to just return a regular value. 9000 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 9001 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 9002 9003 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 9004 const RecordDecl *RD = RT->getDecl(); 9005 if (RD->hasFlexibleArrayMember()) 9006 return DefaultABIInfo::classifyReturnType(RetTy); 9007 } 9008 9009 // Pack aggregates <= 4 bytes into single VGPR or pair. 9010 uint64_t Size = getContext().getTypeSize(RetTy); 9011 if (Size <= 16) 9012 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 9013 9014 if (Size <= 32) 9015 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 9016 9017 if (Size <= 64) { 9018 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 9019 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 9020 } 9021 9022 if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet) 9023 return ABIArgInfo::getDirect(); 9024 } 9025 } 9026 9027 // Otherwise just do the default thing. 9028 return DefaultABIInfo::classifyReturnType(RetTy); 9029 } 9030 9031 /// For kernels all parameters are really passed in a special buffer. It doesn't 9032 /// make sense to pass anything byval, so everything must be direct. 9033 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const { 9034 Ty = useFirstFieldIfTransparentUnion(Ty); 9035 9036 // TODO: Can we omit empty structs? 9037 9038 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 9039 Ty = QualType(SeltTy, 0); 9040 9041 llvm::Type *OrigLTy = CGT.ConvertType(Ty); 9042 llvm::Type *LTy = OrigLTy; 9043 if (getContext().getLangOpts().HIP) { 9044 LTy = coerceKernelArgumentType( 9045 OrigLTy, /*FromAS=*/getContext().getTargetAddressSpace(LangAS::Default), 9046 /*ToAS=*/getContext().getTargetAddressSpace(LangAS::cuda_device)); 9047 } 9048 9049 // FIXME: Should also use this for OpenCL, but it requires addressing the 9050 // problem of kernels being called. 9051 // 9052 // FIXME: This doesn't apply the optimization of coercing pointers in structs 9053 // to global address space when using byref. This would require implementing a 9054 // new kind of coercion of the in-memory type when for indirect arguments. 9055 if (!getContext().getLangOpts().OpenCL && LTy == OrigLTy && 9056 isAggregateTypeForABI(Ty)) { 9057 return ABIArgInfo::getIndirectAliased( 9058 getContext().getTypeAlignInChars(Ty), 9059 getContext().getTargetAddressSpace(LangAS::opencl_constant), 9060 false /*Realign*/, nullptr /*Padding*/); 9061 } 9062 9063 // If we set CanBeFlattened to true, CodeGen will expand the struct to its 9064 // individual elements, which confuses the Clover OpenCL backend; therefore we 9065 // have to set it to false here. Other args of getDirect() are just defaults. 9066 return ABIArgInfo::getDirect(LTy, 0, nullptr, false); 9067 } 9068 9069 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty, 9070 unsigned &NumRegsLeft) const { 9071 assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow"); 9072 9073 Ty = useFirstFieldIfTransparentUnion(Ty); 9074 9075 if (isAggregateTypeForABI(Ty)) { 9076 // Records with non-trivial destructors/copy-constructors should not be 9077 // passed by value. 9078 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 9079 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 9080 9081 // Ignore empty structs/unions. 9082 if (isEmptyRecord(getContext(), Ty, true)) 9083 return ABIArgInfo::getIgnore(); 9084 9085 // Lower single-element structs to just pass a regular value. TODO: We 9086 // could do reasonable-size multiple-element structs too, using getExpand(), 9087 // though watch out for things like bitfields. 9088 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 9089 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 9090 9091 if (const RecordType *RT = Ty->getAs<RecordType>()) { 9092 const RecordDecl *RD = RT->getDecl(); 9093 if (RD->hasFlexibleArrayMember()) 9094 return DefaultABIInfo::classifyArgumentType(Ty); 9095 } 9096 9097 // Pack aggregates <= 8 bytes into single VGPR or pair. 9098 uint64_t Size = getContext().getTypeSize(Ty); 9099 if (Size <= 64) { 9100 unsigned NumRegs = (Size + 31) / 32; 9101 NumRegsLeft -= std::min(NumRegsLeft, NumRegs); 9102 9103 if (Size <= 16) 9104 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 9105 9106 if (Size <= 32) 9107 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 9108 9109 // XXX: Should this be i64 instead, and should the limit increase? 9110 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 9111 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 9112 } 9113 9114 if (NumRegsLeft > 0) { 9115 unsigned NumRegs = numRegsForType(Ty); 9116 if (NumRegsLeft >= NumRegs) { 9117 NumRegsLeft -= NumRegs; 9118 return ABIArgInfo::getDirect(); 9119 } 9120 } 9121 } 9122 9123 // Otherwise just do the default thing. 9124 ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty); 9125 if (!ArgInfo.isIndirect()) { 9126 unsigned NumRegs = numRegsForType(Ty); 9127 NumRegsLeft -= std::min(NumRegs, NumRegsLeft); 9128 } 9129 9130 return ArgInfo; 9131 } 9132 9133 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { 9134 public: 9135 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) 9136 : TargetCodeGenInfo(std::make_unique<AMDGPUABIInfo>(CGT)) {} 9137 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 9138 CodeGen::CodeGenModule &M) const override; 9139 unsigned getOpenCLKernelCallingConv() const override; 9140 9141 llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM, 9142 llvm::PointerType *T, QualType QT) const override; 9143 9144 LangAS getASTAllocaAddressSpace() const override { 9145 return getLangASFromTargetAS( 9146 getABIInfo().getDataLayout().getAllocaAddrSpace()); 9147 } 9148 LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, 9149 const VarDecl *D) const override; 9150 llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts, 9151 SyncScope Scope, 9152 llvm::AtomicOrdering Ordering, 9153 llvm::LLVMContext &Ctx) const override; 9154 llvm::Function * 9155 createEnqueuedBlockKernel(CodeGenFunction &CGF, 9156 llvm::Function *BlockInvokeFunc, 9157 llvm::Value *BlockLiteral) const override; 9158 bool shouldEmitStaticExternCAliases() const override; 9159 void setCUDAKernelCallingConvention(const FunctionType *&FT) const override; 9160 }; 9161 } 9162 9163 static bool requiresAMDGPUProtectedVisibility(const Decl *D, 9164 llvm::GlobalValue *GV) { 9165 if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility) 9166 return false; 9167 9168 return D->hasAttr<OpenCLKernelAttr>() || 9169 (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) || 9170 (isa<VarDecl>(D) && 9171 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 9172 cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinSurfaceType() || 9173 cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinTextureType())); 9174 } 9175 9176 void AMDGPUTargetCodeGenInfo::setTargetAttributes( 9177 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 9178 if (requiresAMDGPUProtectedVisibility(D, GV)) { 9179 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 9180 GV->setDSOLocal(true); 9181 } 9182 9183 if (GV->isDeclaration()) 9184 return; 9185 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 9186 if (!FD) 9187 return; 9188 9189 llvm::Function *F = cast<llvm::Function>(GV); 9190 9191 const auto *ReqdWGS = M.getLangOpts().OpenCL ? 9192 FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr; 9193 9194 9195 const bool IsOpenCLKernel = M.getLangOpts().OpenCL && 9196 FD->hasAttr<OpenCLKernelAttr>(); 9197 const bool IsHIPKernel = M.getLangOpts().HIP && 9198 FD->hasAttr<CUDAGlobalAttr>(); 9199 if ((IsOpenCLKernel || IsHIPKernel) && 9200 (M.getTriple().getOS() == llvm::Triple::AMDHSA)) 9201 F->addFnAttr("amdgpu-implicitarg-num-bytes", "56"); 9202 9203 if (IsHIPKernel) 9204 F->addFnAttr("uniform-work-group-size", "true"); 9205 9206 9207 const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>(); 9208 if (ReqdWGS || FlatWGS) { 9209 unsigned Min = 0; 9210 unsigned Max = 0; 9211 if (FlatWGS) { 9212 Min = FlatWGS->getMin() 9213 ->EvaluateKnownConstInt(M.getContext()) 9214 .getExtValue(); 9215 Max = FlatWGS->getMax() 9216 ->EvaluateKnownConstInt(M.getContext()) 9217 .getExtValue(); 9218 } 9219 if (ReqdWGS && Min == 0 && Max == 0) 9220 Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim(); 9221 9222 if (Min != 0) { 9223 assert(Min <= Max && "Min must be less than or equal Max"); 9224 9225 std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max); 9226 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 9227 } else 9228 assert(Max == 0 && "Max must be zero"); 9229 } else if (IsOpenCLKernel || IsHIPKernel) { 9230 // By default, restrict the maximum size to a value specified by 9231 // --gpu-max-threads-per-block=n or its default value for HIP. 9232 const unsigned OpenCLDefaultMaxWorkGroupSize = 256; 9233 const unsigned DefaultMaxWorkGroupSize = 9234 IsOpenCLKernel ? OpenCLDefaultMaxWorkGroupSize 9235 : M.getLangOpts().GPUMaxThreadsPerBlock; 9236 std::string AttrVal = 9237 std::string("1,") + llvm::utostr(DefaultMaxWorkGroupSize); 9238 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 9239 } 9240 9241 if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) { 9242 unsigned Min = 9243 Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue(); 9244 unsigned Max = Attr->getMax() ? Attr->getMax() 9245 ->EvaluateKnownConstInt(M.getContext()) 9246 .getExtValue() 9247 : 0; 9248 9249 if (Min != 0) { 9250 assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max"); 9251 9252 std::string AttrVal = llvm::utostr(Min); 9253 if (Max != 0) 9254 AttrVal = AttrVal + "," + llvm::utostr(Max); 9255 F->addFnAttr("amdgpu-waves-per-eu", AttrVal); 9256 } else 9257 assert(Max == 0 && "Max must be zero"); 9258 } 9259 9260 if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { 9261 unsigned NumSGPR = Attr->getNumSGPR(); 9262 9263 if (NumSGPR != 0) 9264 F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR)); 9265 } 9266 9267 if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { 9268 uint32_t NumVGPR = Attr->getNumVGPR(); 9269 9270 if (NumVGPR != 0) 9271 F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR)); 9272 } 9273 9274 if (M.getContext().getTargetInfo().allowAMDGPUUnsafeFPAtomics()) 9275 F->addFnAttr("amdgpu-unsafe-fp-atomics", "true"); 9276 9277 if (!getABIInfo().getCodeGenOpts().EmitIEEENaNCompliantInsts) 9278 F->addFnAttr("amdgpu-ieee", "false"); 9279 } 9280 9281 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 9282 return llvm::CallingConv::AMDGPU_KERNEL; 9283 } 9284 9285 // Currently LLVM assumes null pointers always have value 0, 9286 // which results in incorrectly transformed IR. Therefore, instead of 9287 // emitting null pointers in private and local address spaces, a null 9288 // pointer in generic address space is emitted which is casted to a 9289 // pointer in local or private address space. 9290 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer( 9291 const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT, 9292 QualType QT) const { 9293 if (CGM.getContext().getTargetNullPointerValue(QT) == 0) 9294 return llvm::ConstantPointerNull::get(PT); 9295 9296 auto &Ctx = CGM.getContext(); 9297 auto NPT = llvm::PointerType::get(PT->getElementType(), 9298 Ctx.getTargetAddressSpace(LangAS::opencl_generic)); 9299 return llvm::ConstantExpr::getAddrSpaceCast( 9300 llvm::ConstantPointerNull::get(NPT), PT); 9301 } 9302 9303 LangAS 9304 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 9305 const VarDecl *D) const { 9306 assert(!CGM.getLangOpts().OpenCL && 9307 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 9308 "Address space agnostic languages only"); 9309 LangAS DefaultGlobalAS = getLangASFromTargetAS( 9310 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global)); 9311 if (!D) 9312 return DefaultGlobalAS; 9313 9314 LangAS AddrSpace = D->getType().getAddressSpace(); 9315 assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace)); 9316 if (AddrSpace != LangAS::Default) 9317 return AddrSpace; 9318 9319 if (CGM.isTypeConstant(D->getType(), false)) { 9320 if (auto ConstAS = CGM.getTarget().getConstantAddressSpace()) 9321 return ConstAS.getValue(); 9322 } 9323 return DefaultGlobalAS; 9324 } 9325 9326 llvm::SyncScope::ID 9327 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 9328 SyncScope Scope, 9329 llvm::AtomicOrdering Ordering, 9330 llvm::LLVMContext &Ctx) const { 9331 std::string Name; 9332 switch (Scope) { 9333 case SyncScope::OpenCLWorkGroup: 9334 Name = "workgroup"; 9335 break; 9336 case SyncScope::OpenCLDevice: 9337 Name = "agent"; 9338 break; 9339 case SyncScope::OpenCLAllSVMDevices: 9340 Name = ""; 9341 break; 9342 case SyncScope::OpenCLSubGroup: 9343 Name = "wavefront"; 9344 } 9345 9346 if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) { 9347 if (!Name.empty()) 9348 Name = Twine(Twine(Name) + Twine("-")).str(); 9349 9350 Name = Twine(Twine(Name) + Twine("one-as")).str(); 9351 } 9352 9353 return Ctx.getOrInsertSyncScopeID(Name); 9354 } 9355 9356 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 9357 return false; 9358 } 9359 9360 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention( 9361 const FunctionType *&FT) const { 9362 FT = getABIInfo().getContext().adjustFunctionType( 9363 FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel)); 9364 } 9365 9366 //===----------------------------------------------------------------------===// 9367 // SPARC v8 ABI Implementation. 9368 // Based on the SPARC Compliance Definition version 2.4.1. 9369 // 9370 // Ensures that complex values are passed in registers. 9371 // 9372 namespace { 9373 class SparcV8ABIInfo : public DefaultABIInfo { 9374 public: 9375 SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 9376 9377 private: 9378 ABIArgInfo classifyReturnType(QualType RetTy) const; 9379 void computeInfo(CGFunctionInfo &FI) const override; 9380 }; 9381 } // end anonymous namespace 9382 9383 9384 ABIArgInfo 9385 SparcV8ABIInfo::classifyReturnType(QualType Ty) const { 9386 if (Ty->isAnyComplexType()) { 9387 return ABIArgInfo::getDirect(); 9388 } 9389 else { 9390 return DefaultABIInfo::classifyReturnType(Ty); 9391 } 9392 } 9393 9394 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const { 9395 9396 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 9397 for (auto &Arg : FI.arguments()) 9398 Arg.info = classifyArgumentType(Arg.type); 9399 } 9400 9401 namespace { 9402 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo { 9403 public: 9404 SparcV8TargetCodeGenInfo(CodeGenTypes &CGT) 9405 : TargetCodeGenInfo(std::make_unique<SparcV8ABIInfo>(CGT)) {} 9406 }; 9407 } // end anonymous namespace 9408 9409 //===----------------------------------------------------------------------===// 9410 // SPARC v9 ABI Implementation. 9411 // Based on the SPARC Compliance Definition version 2.4.1. 9412 // 9413 // Function arguments a mapped to a nominal "parameter array" and promoted to 9414 // registers depending on their type. Each argument occupies 8 or 16 bytes in 9415 // the array, structs larger than 16 bytes are passed indirectly. 9416 // 9417 // One case requires special care: 9418 // 9419 // struct mixed { 9420 // int i; 9421 // float f; 9422 // }; 9423 // 9424 // When a struct mixed is passed by value, it only occupies 8 bytes in the 9425 // parameter array, but the int is passed in an integer register, and the float 9426 // is passed in a floating point register. This is represented as two arguments 9427 // with the LLVM IR inreg attribute: 9428 // 9429 // declare void f(i32 inreg %i, float inreg %f) 9430 // 9431 // The code generator will only allocate 4 bytes from the parameter array for 9432 // the inreg arguments. All other arguments are allocated a multiple of 8 9433 // bytes. 9434 // 9435 namespace { 9436 class SparcV9ABIInfo : public ABIInfo { 9437 public: 9438 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 9439 9440 private: 9441 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 9442 void computeInfo(CGFunctionInfo &FI) const override; 9443 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9444 QualType Ty) const override; 9445 9446 // Coercion type builder for structs passed in registers. The coercion type 9447 // serves two purposes: 9448 // 9449 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 9450 // in registers. 9451 // 2. Expose aligned floating point elements as first-level elements, so the 9452 // code generator knows to pass them in floating point registers. 9453 // 9454 // We also compute the InReg flag which indicates that the struct contains 9455 // aligned 32-bit floats. 9456 // 9457 struct CoerceBuilder { 9458 llvm::LLVMContext &Context; 9459 const llvm::DataLayout &DL; 9460 SmallVector<llvm::Type*, 8> Elems; 9461 uint64_t Size; 9462 bool InReg; 9463 9464 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 9465 : Context(c), DL(dl), Size(0), InReg(false) {} 9466 9467 // Pad Elems with integers until Size is ToSize. 9468 void pad(uint64_t ToSize) { 9469 assert(ToSize >= Size && "Cannot remove elements"); 9470 if (ToSize == Size) 9471 return; 9472 9473 // Finish the current 64-bit word. 9474 uint64_t Aligned = llvm::alignTo(Size, 64); 9475 if (Aligned > Size && Aligned <= ToSize) { 9476 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 9477 Size = Aligned; 9478 } 9479 9480 // Add whole 64-bit words. 9481 while (Size + 64 <= ToSize) { 9482 Elems.push_back(llvm::Type::getInt64Ty(Context)); 9483 Size += 64; 9484 } 9485 9486 // Final in-word padding. 9487 if (Size < ToSize) { 9488 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 9489 Size = ToSize; 9490 } 9491 } 9492 9493 // Add a floating point element at Offset. 9494 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 9495 // Unaligned floats are treated as integers. 9496 if (Offset % Bits) 9497 return; 9498 // The InReg flag is only required if there are any floats < 64 bits. 9499 if (Bits < 64) 9500 InReg = true; 9501 pad(Offset); 9502 Elems.push_back(Ty); 9503 Size = Offset + Bits; 9504 } 9505 9506 // Add a struct type to the coercion type, starting at Offset (in bits). 9507 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 9508 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 9509 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 9510 llvm::Type *ElemTy = StrTy->getElementType(i); 9511 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 9512 switch (ElemTy->getTypeID()) { 9513 case llvm::Type::StructTyID: 9514 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 9515 break; 9516 case llvm::Type::FloatTyID: 9517 addFloat(ElemOffset, ElemTy, 32); 9518 break; 9519 case llvm::Type::DoubleTyID: 9520 addFloat(ElemOffset, ElemTy, 64); 9521 break; 9522 case llvm::Type::FP128TyID: 9523 addFloat(ElemOffset, ElemTy, 128); 9524 break; 9525 case llvm::Type::PointerTyID: 9526 if (ElemOffset % 64 == 0) { 9527 pad(ElemOffset); 9528 Elems.push_back(ElemTy); 9529 Size += 64; 9530 } 9531 break; 9532 default: 9533 break; 9534 } 9535 } 9536 } 9537 9538 // Check if Ty is a usable substitute for the coercion type. 9539 bool isUsableType(llvm::StructType *Ty) const { 9540 return llvm::makeArrayRef(Elems) == Ty->elements(); 9541 } 9542 9543 // Get the coercion type as a literal struct type. 9544 llvm::Type *getType() const { 9545 if (Elems.size() == 1) 9546 return Elems.front(); 9547 else 9548 return llvm::StructType::get(Context, Elems); 9549 } 9550 }; 9551 }; 9552 } // end anonymous namespace 9553 9554 ABIArgInfo 9555 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 9556 if (Ty->isVoidType()) 9557 return ABIArgInfo::getIgnore(); 9558 9559 uint64_t Size = getContext().getTypeSize(Ty); 9560 9561 // Anything too big to fit in registers is passed with an explicit indirect 9562 // pointer / sret pointer. 9563 if (Size > SizeLimit) 9564 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 9565 9566 // Treat an enum type as its underlying type. 9567 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 9568 Ty = EnumTy->getDecl()->getIntegerType(); 9569 9570 // Integer types smaller than a register are extended. 9571 if (Size < 64 && Ty->isIntegerType()) 9572 return ABIArgInfo::getExtend(Ty); 9573 9574 if (const auto *EIT = Ty->getAs<ExtIntType>()) 9575 if (EIT->getNumBits() < 64) 9576 return ABIArgInfo::getExtend(Ty); 9577 9578 // Other non-aggregates go in registers. 9579 if (!isAggregateTypeForABI(Ty)) 9580 return ABIArgInfo::getDirect(); 9581 9582 // If a C++ object has either a non-trivial copy constructor or a non-trivial 9583 // destructor, it is passed with an explicit indirect pointer / sret pointer. 9584 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 9585 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 9586 9587 // This is a small aggregate type that should be passed in registers. 9588 // Build a coercion type from the LLVM struct type. 9589 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 9590 if (!StrTy) 9591 return ABIArgInfo::getDirect(); 9592 9593 CoerceBuilder CB(getVMContext(), getDataLayout()); 9594 CB.addStruct(0, StrTy); 9595 CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64)); 9596 9597 // Try to use the original type for coercion. 9598 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 9599 9600 if (CB.InReg) 9601 return ABIArgInfo::getDirectInReg(CoerceTy); 9602 else 9603 return ABIArgInfo::getDirect(CoerceTy); 9604 } 9605 9606 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9607 QualType Ty) const { 9608 ABIArgInfo AI = classifyType(Ty, 16 * 8); 9609 llvm::Type *ArgTy = CGT.ConvertType(Ty); 9610 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 9611 AI.setCoerceToType(ArgTy); 9612 9613 CharUnits SlotSize = CharUnits::fromQuantity(8); 9614 9615 CGBuilderTy &Builder = CGF.Builder; 9616 Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 9617 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 9618 9619 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 9620 9621 Address ArgAddr = Address::invalid(); 9622 CharUnits Stride; 9623 switch (AI.getKind()) { 9624 case ABIArgInfo::Expand: 9625 case ABIArgInfo::CoerceAndExpand: 9626 case ABIArgInfo::InAlloca: 9627 llvm_unreachable("Unsupported ABI kind for va_arg"); 9628 9629 case ABIArgInfo::Extend: { 9630 Stride = SlotSize; 9631 CharUnits Offset = SlotSize - TypeInfo.Width; 9632 ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend"); 9633 break; 9634 } 9635 9636 case ABIArgInfo::Direct: { 9637 auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 9638 Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize); 9639 ArgAddr = Addr; 9640 break; 9641 } 9642 9643 case ABIArgInfo::Indirect: 9644 case ABIArgInfo::IndirectAliased: 9645 Stride = SlotSize; 9646 ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect"); 9647 ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), 9648 TypeInfo.Align); 9649 break; 9650 9651 case ABIArgInfo::Ignore: 9652 return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.Align); 9653 } 9654 9655 // Update VAList. 9656 Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next"); 9657 Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 9658 9659 return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr"); 9660 } 9661 9662 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 9663 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 9664 for (auto &I : FI.arguments()) 9665 I.info = classifyType(I.type, 16 * 8); 9666 } 9667 9668 namespace { 9669 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 9670 public: 9671 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 9672 : TargetCodeGenInfo(std::make_unique<SparcV9ABIInfo>(CGT)) {} 9673 9674 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 9675 return 14; 9676 } 9677 9678 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 9679 llvm::Value *Address) const override; 9680 }; 9681 } // end anonymous namespace 9682 9683 bool 9684 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 9685 llvm::Value *Address) const { 9686 // This is calculated from the LLVM and GCC tables and verified 9687 // against gcc output. AFAIK all ABIs use the same encoding. 9688 9689 CodeGen::CGBuilderTy &Builder = CGF.Builder; 9690 9691 llvm::IntegerType *i8 = CGF.Int8Ty; 9692 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 9693 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 9694 9695 // 0-31: the 8-byte general-purpose registers 9696 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 9697 9698 // 32-63: f0-31, the 4-byte floating-point registers 9699 AssignToArrayRange(Builder, Address, Four8, 32, 63); 9700 9701 // Y = 64 9702 // PSR = 65 9703 // WIM = 66 9704 // TBR = 67 9705 // PC = 68 9706 // NPC = 69 9707 // FSR = 70 9708 // CSR = 71 9709 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 9710 9711 // 72-87: d0-15, the 8-byte floating-point registers 9712 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 9713 9714 return false; 9715 } 9716 9717 // ARC ABI implementation. 9718 namespace { 9719 9720 class ARCABIInfo : public DefaultABIInfo { 9721 public: 9722 using DefaultABIInfo::DefaultABIInfo; 9723 9724 private: 9725 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9726 QualType Ty) const override; 9727 9728 void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const { 9729 if (!State.FreeRegs) 9730 return; 9731 if (Info.isIndirect() && Info.getInReg()) 9732 State.FreeRegs--; 9733 else if (Info.isDirect() && Info.getInReg()) { 9734 unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32; 9735 if (sz < State.FreeRegs) 9736 State.FreeRegs -= sz; 9737 else 9738 State.FreeRegs = 0; 9739 } 9740 } 9741 9742 void computeInfo(CGFunctionInfo &FI) const override { 9743 CCState State(FI); 9744 // ARC uses 8 registers to pass arguments. 9745 State.FreeRegs = 8; 9746 9747 if (!getCXXABI().classifyReturnType(FI)) 9748 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 9749 updateState(FI.getReturnInfo(), FI.getReturnType(), State); 9750 for (auto &I : FI.arguments()) { 9751 I.info = classifyArgumentType(I.type, State.FreeRegs); 9752 updateState(I.info, I.type, State); 9753 } 9754 } 9755 9756 ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const; 9757 ABIArgInfo getIndirectByValue(QualType Ty) const; 9758 ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const; 9759 ABIArgInfo classifyReturnType(QualType RetTy) const; 9760 }; 9761 9762 class ARCTargetCodeGenInfo : public TargetCodeGenInfo { 9763 public: 9764 ARCTargetCodeGenInfo(CodeGenTypes &CGT) 9765 : TargetCodeGenInfo(std::make_unique<ARCABIInfo>(CGT)) {} 9766 }; 9767 9768 9769 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const { 9770 return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) : 9771 getNaturalAlignIndirect(Ty, false); 9772 } 9773 9774 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const { 9775 // Compute the byval alignment. 9776 const unsigned MinABIStackAlignInBytes = 4; 9777 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 9778 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 9779 TypeAlign > MinABIStackAlignInBytes); 9780 } 9781 9782 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9783 QualType Ty) const { 9784 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 9785 getContext().getTypeInfoInChars(Ty), 9786 CharUnits::fromQuantity(4), true); 9787 } 9788 9789 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty, 9790 uint8_t FreeRegs) const { 9791 // Handle the generic C++ ABI. 9792 const RecordType *RT = Ty->getAs<RecordType>(); 9793 if (RT) { 9794 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 9795 if (RAA == CGCXXABI::RAA_Indirect) 9796 return getIndirectByRef(Ty, FreeRegs > 0); 9797 9798 if (RAA == CGCXXABI::RAA_DirectInMemory) 9799 return getIndirectByValue(Ty); 9800 } 9801 9802 // Treat an enum type as its underlying type. 9803 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 9804 Ty = EnumTy->getDecl()->getIntegerType(); 9805 9806 auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32; 9807 9808 if (isAggregateTypeForABI(Ty)) { 9809 // Structures with flexible arrays are always indirect. 9810 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 9811 return getIndirectByValue(Ty); 9812 9813 // Ignore empty structs/unions. 9814 if (isEmptyRecord(getContext(), Ty, true)) 9815 return ABIArgInfo::getIgnore(); 9816 9817 llvm::LLVMContext &LLVMContext = getVMContext(); 9818 9819 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 9820 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 9821 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 9822 9823 return FreeRegs >= SizeInRegs ? 9824 ABIArgInfo::getDirectInReg(Result) : 9825 ABIArgInfo::getDirect(Result, 0, nullptr, false); 9826 } 9827 9828 if (const auto *EIT = Ty->getAs<ExtIntType>()) 9829 if (EIT->getNumBits() > 64) 9830 return getIndirectByValue(Ty); 9831 9832 return isPromotableIntegerTypeForABI(Ty) 9833 ? (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty) 9834 : ABIArgInfo::getExtend(Ty)) 9835 : (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg() 9836 : ABIArgInfo::getDirect()); 9837 } 9838 9839 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const { 9840 if (RetTy->isAnyComplexType()) 9841 return ABIArgInfo::getDirectInReg(); 9842 9843 // Arguments of size > 4 registers are indirect. 9844 auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32; 9845 if (RetSize > 4) 9846 return getIndirectByRef(RetTy, /*HasFreeRegs*/ true); 9847 9848 return DefaultABIInfo::classifyReturnType(RetTy); 9849 } 9850 9851 } // End anonymous namespace. 9852 9853 //===----------------------------------------------------------------------===// 9854 // XCore ABI Implementation 9855 //===----------------------------------------------------------------------===// 9856 9857 namespace { 9858 9859 /// A SmallStringEnc instance is used to build up the TypeString by passing 9860 /// it by reference between functions that append to it. 9861 typedef llvm::SmallString<128> SmallStringEnc; 9862 9863 /// TypeStringCache caches the meta encodings of Types. 9864 /// 9865 /// The reason for caching TypeStrings is two fold: 9866 /// 1. To cache a type's encoding for later uses; 9867 /// 2. As a means to break recursive member type inclusion. 9868 /// 9869 /// A cache Entry can have a Status of: 9870 /// NonRecursive: The type encoding is not recursive; 9871 /// Recursive: The type encoding is recursive; 9872 /// Incomplete: An incomplete TypeString; 9873 /// IncompleteUsed: An incomplete TypeString that has been used in a 9874 /// Recursive type encoding. 9875 /// 9876 /// A NonRecursive entry will have all of its sub-members expanded as fully 9877 /// as possible. Whilst it may contain types which are recursive, the type 9878 /// itself is not recursive and thus its encoding may be safely used whenever 9879 /// the type is encountered. 9880 /// 9881 /// A Recursive entry will have all of its sub-members expanded as fully as 9882 /// possible. The type itself is recursive and it may contain other types which 9883 /// are recursive. The Recursive encoding must not be used during the expansion 9884 /// of a recursive type's recursive branch. For simplicity the code uses 9885 /// IncompleteCount to reject all usage of Recursive encodings for member types. 9886 /// 9887 /// An Incomplete entry is always a RecordType and only encodes its 9888 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 9889 /// are placed into the cache during type expansion as a means to identify and 9890 /// handle recursive inclusion of types as sub-members. If there is recursion 9891 /// the entry becomes IncompleteUsed. 9892 /// 9893 /// During the expansion of a RecordType's members: 9894 /// 9895 /// If the cache contains a NonRecursive encoding for the member type, the 9896 /// cached encoding is used; 9897 /// 9898 /// If the cache contains a Recursive encoding for the member type, the 9899 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 9900 /// 9901 /// If the member is a RecordType, an Incomplete encoding is placed into the 9902 /// cache to break potential recursive inclusion of itself as a sub-member; 9903 /// 9904 /// Once a member RecordType has been expanded, its temporary incomplete 9905 /// entry is removed from the cache. If a Recursive encoding was swapped out 9906 /// it is swapped back in; 9907 /// 9908 /// If an incomplete entry is used to expand a sub-member, the incomplete 9909 /// entry is marked as IncompleteUsed. The cache keeps count of how many 9910 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 9911 /// 9912 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 9913 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 9914 /// Else the member is part of a recursive type and thus the recursion has 9915 /// been exited too soon for the encoding to be correct for the member. 9916 /// 9917 class TypeStringCache { 9918 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 9919 struct Entry { 9920 std::string Str; // The encoded TypeString for the type. 9921 enum Status State; // Information about the encoding in 'Str'. 9922 std::string Swapped; // A temporary place holder for a Recursive encoding 9923 // during the expansion of RecordType's members. 9924 }; 9925 std::map<const IdentifierInfo *, struct Entry> Map; 9926 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 9927 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 9928 public: 9929 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {} 9930 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 9931 bool removeIncomplete(const IdentifierInfo *ID); 9932 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 9933 bool IsRecursive); 9934 StringRef lookupStr(const IdentifierInfo *ID); 9935 }; 9936 9937 /// TypeString encodings for enum & union fields must be order. 9938 /// FieldEncoding is a helper for this ordering process. 9939 class FieldEncoding { 9940 bool HasName; 9941 std::string Enc; 9942 public: 9943 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {} 9944 StringRef str() { return Enc; } 9945 bool operator<(const FieldEncoding &rhs) const { 9946 if (HasName != rhs.HasName) return HasName; 9947 return Enc < rhs.Enc; 9948 } 9949 }; 9950 9951 class XCoreABIInfo : public DefaultABIInfo { 9952 public: 9953 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 9954 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9955 QualType Ty) const override; 9956 }; 9957 9958 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 9959 mutable TypeStringCache TSC; 9960 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 9961 const CodeGen::CodeGenModule &M) const; 9962 9963 public: 9964 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 9965 : TargetCodeGenInfo(std::make_unique<XCoreABIInfo>(CGT)) {} 9966 void emitTargetMetadata(CodeGen::CodeGenModule &CGM, 9967 const llvm::MapVector<GlobalDecl, StringRef> 9968 &MangledDeclNames) const override; 9969 }; 9970 9971 } // End anonymous namespace. 9972 9973 // TODO: this implementation is likely now redundant with the default 9974 // EmitVAArg. 9975 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9976 QualType Ty) const { 9977 CGBuilderTy &Builder = CGF.Builder; 9978 9979 // Get the VAList. 9980 CharUnits SlotSize = CharUnits::fromQuantity(4); 9981 Address AP(Builder.CreateLoad(VAListAddr), SlotSize); 9982 9983 // Handle the argument. 9984 ABIArgInfo AI = classifyArgumentType(Ty); 9985 CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty); 9986 llvm::Type *ArgTy = CGT.ConvertType(Ty); 9987 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 9988 AI.setCoerceToType(ArgTy); 9989 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 9990 9991 Address Val = Address::invalid(); 9992 CharUnits ArgSize = CharUnits::Zero(); 9993 switch (AI.getKind()) { 9994 case ABIArgInfo::Expand: 9995 case ABIArgInfo::CoerceAndExpand: 9996 case ABIArgInfo::InAlloca: 9997 llvm_unreachable("Unsupported ABI kind for va_arg"); 9998 case ABIArgInfo::Ignore: 9999 Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign); 10000 ArgSize = CharUnits::Zero(); 10001 break; 10002 case ABIArgInfo::Extend: 10003 case ABIArgInfo::Direct: 10004 Val = Builder.CreateBitCast(AP, ArgPtrTy); 10005 ArgSize = CharUnits::fromQuantity( 10006 getDataLayout().getTypeAllocSize(AI.getCoerceToType())); 10007 ArgSize = ArgSize.alignTo(SlotSize); 10008 break; 10009 case ABIArgInfo::Indirect: 10010 case ABIArgInfo::IndirectAliased: 10011 Val = Builder.CreateElementBitCast(AP, ArgPtrTy); 10012 Val = Address(Builder.CreateLoad(Val), TypeAlign); 10013 ArgSize = SlotSize; 10014 break; 10015 } 10016 10017 // Increment the VAList. 10018 if (!ArgSize.isZero()) { 10019 Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize); 10020 Builder.CreateStore(APN.getPointer(), VAListAddr); 10021 } 10022 10023 return Val; 10024 } 10025 10026 /// During the expansion of a RecordType, an incomplete TypeString is placed 10027 /// into the cache as a means to identify and break recursion. 10028 /// If there is a Recursive encoding in the cache, it is swapped out and will 10029 /// be reinserted by removeIncomplete(). 10030 /// All other types of encoding should have been used rather than arriving here. 10031 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 10032 std::string StubEnc) { 10033 if (!ID) 10034 return; 10035 Entry &E = Map[ID]; 10036 assert( (E.Str.empty() || E.State == Recursive) && 10037 "Incorrectly use of addIncomplete"); 10038 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 10039 E.Swapped.swap(E.Str); // swap out the Recursive 10040 E.Str.swap(StubEnc); 10041 E.State = Incomplete; 10042 ++IncompleteCount; 10043 } 10044 10045 /// Once the RecordType has been expanded, the temporary incomplete TypeString 10046 /// must be removed from the cache. 10047 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 10048 /// Returns true if the RecordType was defined recursively. 10049 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 10050 if (!ID) 10051 return false; 10052 auto I = Map.find(ID); 10053 assert(I != Map.end() && "Entry not present"); 10054 Entry &E = I->second; 10055 assert( (E.State == Incomplete || 10056 E.State == IncompleteUsed) && 10057 "Entry must be an incomplete type"); 10058 bool IsRecursive = false; 10059 if (E.State == IncompleteUsed) { 10060 // We made use of our Incomplete encoding, thus we are recursive. 10061 IsRecursive = true; 10062 --IncompleteUsedCount; 10063 } 10064 if (E.Swapped.empty()) 10065 Map.erase(I); 10066 else { 10067 // Swap the Recursive back. 10068 E.Swapped.swap(E.Str); 10069 E.Swapped.clear(); 10070 E.State = Recursive; 10071 } 10072 --IncompleteCount; 10073 return IsRecursive; 10074 } 10075 10076 /// Add the encoded TypeString to the cache only if it is NonRecursive or 10077 /// Recursive (viz: all sub-members were expanded as fully as possible). 10078 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 10079 bool IsRecursive) { 10080 if (!ID || IncompleteUsedCount) 10081 return; // No key or it is is an incomplete sub-type so don't add. 10082 Entry &E = Map[ID]; 10083 if (IsRecursive && !E.Str.empty()) { 10084 assert(E.State==Recursive && E.Str.size() == Str.size() && 10085 "This is not the same Recursive entry"); 10086 // The parent container was not recursive after all, so we could have used 10087 // this Recursive sub-member entry after all, but we assumed the worse when 10088 // we started viz: IncompleteCount!=0. 10089 return; 10090 } 10091 assert(E.Str.empty() && "Entry already present"); 10092 E.Str = Str.str(); 10093 E.State = IsRecursive? Recursive : NonRecursive; 10094 } 10095 10096 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 10097 /// are recursively expanding a type (IncompleteCount != 0) and the cached 10098 /// encoding is Recursive, return an empty StringRef. 10099 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 10100 if (!ID) 10101 return StringRef(); // We have no key. 10102 auto I = Map.find(ID); 10103 if (I == Map.end()) 10104 return StringRef(); // We have no encoding. 10105 Entry &E = I->second; 10106 if (E.State == Recursive && IncompleteCount) 10107 return StringRef(); // We don't use Recursive encodings for member types. 10108 10109 if (E.State == Incomplete) { 10110 // The incomplete type is being used to break out of recursion. 10111 E.State = IncompleteUsed; 10112 ++IncompleteUsedCount; 10113 } 10114 return E.Str; 10115 } 10116 10117 /// The XCore ABI includes a type information section that communicates symbol 10118 /// type information to the linker. The linker uses this information to verify 10119 /// safety/correctness of things such as array bound and pointers et al. 10120 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 10121 /// This type information (TypeString) is emitted into meta data for all global 10122 /// symbols: definitions, declarations, functions & variables. 10123 /// 10124 /// The TypeString carries type, qualifier, name, size & value details. 10125 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 10126 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf 10127 /// The output is tested by test/CodeGen/xcore-stringtype.c. 10128 /// 10129 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 10130 const CodeGen::CodeGenModule &CGM, 10131 TypeStringCache &TSC); 10132 10133 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 10134 void XCoreTargetCodeGenInfo::emitTargetMD( 10135 const Decl *D, llvm::GlobalValue *GV, 10136 const CodeGen::CodeGenModule &CGM) const { 10137 SmallStringEnc Enc; 10138 if (getTypeString(Enc, D, CGM, TSC)) { 10139 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 10140 llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV), 10141 llvm::MDString::get(Ctx, Enc.str())}; 10142 llvm::NamedMDNode *MD = 10143 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 10144 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 10145 } 10146 } 10147 10148 void XCoreTargetCodeGenInfo::emitTargetMetadata( 10149 CodeGen::CodeGenModule &CGM, 10150 const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames) const { 10151 // Warning, new MangledDeclNames may be appended within this loop. 10152 // We rely on MapVector insertions adding new elements to the end 10153 // of the container. 10154 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 10155 auto Val = *(MangledDeclNames.begin() + I); 10156 llvm::GlobalValue *GV = CGM.GetGlobalValue(Val.second); 10157 if (GV) { 10158 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 10159 emitTargetMD(D, GV, CGM); 10160 } 10161 } 10162 } 10163 //===----------------------------------------------------------------------===// 10164 // SPIR ABI Implementation 10165 //===----------------------------------------------------------------------===// 10166 10167 namespace { 10168 class SPIRABIInfo : public DefaultABIInfo { 10169 public: 10170 SPIRABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) { setCCs(); } 10171 10172 private: 10173 void setCCs(); 10174 }; 10175 } // end anonymous namespace 10176 namespace { 10177 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo { 10178 public: 10179 SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 10180 : TargetCodeGenInfo(std::make_unique<SPIRABIInfo>(CGT)) {} 10181 10182 LangAS getASTAllocaAddressSpace() const override { 10183 return getLangASFromTargetAS( 10184 getABIInfo().getDataLayout().getAllocaAddrSpace()); 10185 } 10186 10187 unsigned getOpenCLKernelCallingConv() const override; 10188 }; 10189 10190 } // End anonymous namespace. 10191 void SPIRABIInfo::setCCs() { 10192 assert(getRuntimeCC() == llvm::CallingConv::C); 10193 RuntimeCC = llvm::CallingConv::SPIR_FUNC; 10194 } 10195 10196 namespace clang { 10197 namespace CodeGen { 10198 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) { 10199 DefaultABIInfo SPIRABI(CGM.getTypes()); 10200 SPIRABI.computeInfo(FI); 10201 } 10202 } 10203 } 10204 10205 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 10206 return llvm::CallingConv::SPIR_KERNEL; 10207 } 10208 10209 static bool appendType(SmallStringEnc &Enc, QualType QType, 10210 const CodeGen::CodeGenModule &CGM, 10211 TypeStringCache &TSC); 10212 10213 /// Helper function for appendRecordType(). 10214 /// Builds a SmallVector containing the encoded field types in declaration 10215 /// order. 10216 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 10217 const RecordDecl *RD, 10218 const CodeGen::CodeGenModule &CGM, 10219 TypeStringCache &TSC) { 10220 for (const auto *Field : RD->fields()) { 10221 SmallStringEnc Enc; 10222 Enc += "m("; 10223 Enc += Field->getName(); 10224 Enc += "){"; 10225 if (Field->isBitField()) { 10226 Enc += "b("; 10227 llvm::raw_svector_ostream OS(Enc); 10228 OS << Field->getBitWidthValue(CGM.getContext()); 10229 Enc += ':'; 10230 } 10231 if (!appendType(Enc, Field->getType(), CGM, TSC)) 10232 return false; 10233 if (Field->isBitField()) 10234 Enc += ')'; 10235 Enc += '}'; 10236 FE.emplace_back(!Field->getName().empty(), Enc); 10237 } 10238 return true; 10239 } 10240 10241 /// Appends structure and union types to Enc and adds encoding to cache. 10242 /// Recursively calls appendType (via extractFieldType) for each field. 10243 /// Union types have their fields ordered according to the ABI. 10244 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 10245 const CodeGen::CodeGenModule &CGM, 10246 TypeStringCache &TSC, const IdentifierInfo *ID) { 10247 // Append the cached TypeString if we have one. 10248 StringRef TypeString = TSC.lookupStr(ID); 10249 if (!TypeString.empty()) { 10250 Enc += TypeString; 10251 return true; 10252 } 10253 10254 // Start to emit an incomplete TypeString. 10255 size_t Start = Enc.size(); 10256 Enc += (RT->isUnionType()? 'u' : 's'); 10257 Enc += '('; 10258 if (ID) 10259 Enc += ID->getName(); 10260 Enc += "){"; 10261 10262 // We collect all encoded fields and order as necessary. 10263 bool IsRecursive = false; 10264 const RecordDecl *RD = RT->getDecl()->getDefinition(); 10265 if (RD && !RD->field_empty()) { 10266 // An incomplete TypeString stub is placed in the cache for this RecordType 10267 // so that recursive calls to this RecordType will use it whilst building a 10268 // complete TypeString for this RecordType. 10269 SmallVector<FieldEncoding, 16> FE; 10270 std::string StubEnc(Enc.substr(Start).str()); 10271 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 10272 TSC.addIncomplete(ID, std::move(StubEnc)); 10273 if (!extractFieldType(FE, RD, CGM, TSC)) { 10274 (void) TSC.removeIncomplete(ID); 10275 return false; 10276 } 10277 IsRecursive = TSC.removeIncomplete(ID); 10278 // The ABI requires unions to be sorted but not structures. 10279 // See FieldEncoding::operator< for sort algorithm. 10280 if (RT->isUnionType()) 10281 llvm::sort(FE); 10282 // We can now complete the TypeString. 10283 unsigned E = FE.size(); 10284 for (unsigned I = 0; I != E; ++I) { 10285 if (I) 10286 Enc += ','; 10287 Enc += FE[I].str(); 10288 } 10289 } 10290 Enc += '}'; 10291 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 10292 return true; 10293 } 10294 10295 /// Appends enum types to Enc and adds the encoding to the cache. 10296 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 10297 TypeStringCache &TSC, 10298 const IdentifierInfo *ID) { 10299 // Append the cached TypeString if we have one. 10300 StringRef TypeString = TSC.lookupStr(ID); 10301 if (!TypeString.empty()) { 10302 Enc += TypeString; 10303 return true; 10304 } 10305 10306 size_t Start = Enc.size(); 10307 Enc += "e("; 10308 if (ID) 10309 Enc += ID->getName(); 10310 Enc += "){"; 10311 10312 // We collect all encoded enumerations and order them alphanumerically. 10313 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 10314 SmallVector<FieldEncoding, 16> FE; 10315 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 10316 ++I) { 10317 SmallStringEnc EnumEnc; 10318 EnumEnc += "m("; 10319 EnumEnc += I->getName(); 10320 EnumEnc += "){"; 10321 I->getInitVal().toString(EnumEnc); 10322 EnumEnc += '}'; 10323 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 10324 } 10325 llvm::sort(FE); 10326 unsigned E = FE.size(); 10327 for (unsigned I = 0; I != E; ++I) { 10328 if (I) 10329 Enc += ','; 10330 Enc += FE[I].str(); 10331 } 10332 } 10333 Enc += '}'; 10334 TSC.addIfComplete(ID, Enc.substr(Start), false); 10335 return true; 10336 } 10337 10338 /// Appends type's qualifier to Enc. 10339 /// This is done prior to appending the type's encoding. 10340 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 10341 // Qualifiers are emitted in alphabetical order. 10342 static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 10343 int Lookup = 0; 10344 if (QT.isConstQualified()) 10345 Lookup += 1<<0; 10346 if (QT.isRestrictQualified()) 10347 Lookup += 1<<1; 10348 if (QT.isVolatileQualified()) 10349 Lookup += 1<<2; 10350 Enc += Table[Lookup]; 10351 } 10352 10353 /// Appends built-in types to Enc. 10354 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 10355 const char *EncType; 10356 switch (BT->getKind()) { 10357 case BuiltinType::Void: 10358 EncType = "0"; 10359 break; 10360 case BuiltinType::Bool: 10361 EncType = "b"; 10362 break; 10363 case BuiltinType::Char_U: 10364 EncType = "uc"; 10365 break; 10366 case BuiltinType::UChar: 10367 EncType = "uc"; 10368 break; 10369 case BuiltinType::SChar: 10370 EncType = "sc"; 10371 break; 10372 case BuiltinType::UShort: 10373 EncType = "us"; 10374 break; 10375 case BuiltinType::Short: 10376 EncType = "ss"; 10377 break; 10378 case BuiltinType::UInt: 10379 EncType = "ui"; 10380 break; 10381 case BuiltinType::Int: 10382 EncType = "si"; 10383 break; 10384 case BuiltinType::ULong: 10385 EncType = "ul"; 10386 break; 10387 case BuiltinType::Long: 10388 EncType = "sl"; 10389 break; 10390 case BuiltinType::ULongLong: 10391 EncType = "ull"; 10392 break; 10393 case BuiltinType::LongLong: 10394 EncType = "sll"; 10395 break; 10396 case BuiltinType::Float: 10397 EncType = "ft"; 10398 break; 10399 case BuiltinType::Double: 10400 EncType = "d"; 10401 break; 10402 case BuiltinType::LongDouble: 10403 EncType = "ld"; 10404 break; 10405 default: 10406 return false; 10407 } 10408 Enc += EncType; 10409 return true; 10410 } 10411 10412 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 10413 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 10414 const CodeGen::CodeGenModule &CGM, 10415 TypeStringCache &TSC) { 10416 Enc += "p("; 10417 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 10418 return false; 10419 Enc += ')'; 10420 return true; 10421 } 10422 10423 /// Appends array encoding to Enc before calling appendType for the element. 10424 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 10425 const ArrayType *AT, 10426 const CodeGen::CodeGenModule &CGM, 10427 TypeStringCache &TSC, StringRef NoSizeEnc) { 10428 if (AT->getSizeModifier() != ArrayType::Normal) 10429 return false; 10430 Enc += "a("; 10431 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 10432 CAT->getSize().toStringUnsigned(Enc); 10433 else 10434 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 10435 Enc += ':'; 10436 // The Qualifiers should be attached to the type rather than the array. 10437 appendQualifier(Enc, QT); 10438 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 10439 return false; 10440 Enc += ')'; 10441 return true; 10442 } 10443 10444 /// Appends a function encoding to Enc, calling appendType for the return type 10445 /// and the arguments. 10446 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 10447 const CodeGen::CodeGenModule &CGM, 10448 TypeStringCache &TSC) { 10449 Enc += "f{"; 10450 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 10451 return false; 10452 Enc += "}("; 10453 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 10454 // N.B. we are only interested in the adjusted param types. 10455 auto I = FPT->param_type_begin(); 10456 auto E = FPT->param_type_end(); 10457 if (I != E) { 10458 do { 10459 if (!appendType(Enc, *I, CGM, TSC)) 10460 return false; 10461 ++I; 10462 if (I != E) 10463 Enc += ','; 10464 } while (I != E); 10465 if (FPT->isVariadic()) 10466 Enc += ",va"; 10467 } else { 10468 if (FPT->isVariadic()) 10469 Enc += "va"; 10470 else 10471 Enc += '0'; 10472 } 10473 } 10474 Enc += ')'; 10475 return true; 10476 } 10477 10478 /// Handles the type's qualifier before dispatching a call to handle specific 10479 /// type encodings. 10480 static bool appendType(SmallStringEnc &Enc, QualType QType, 10481 const CodeGen::CodeGenModule &CGM, 10482 TypeStringCache &TSC) { 10483 10484 QualType QT = QType.getCanonicalType(); 10485 10486 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 10487 // The Qualifiers should be attached to the type rather than the array. 10488 // Thus we don't call appendQualifier() here. 10489 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 10490 10491 appendQualifier(Enc, QT); 10492 10493 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 10494 return appendBuiltinType(Enc, BT); 10495 10496 if (const PointerType *PT = QT->getAs<PointerType>()) 10497 return appendPointerType(Enc, PT, CGM, TSC); 10498 10499 if (const EnumType *ET = QT->getAs<EnumType>()) 10500 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 10501 10502 if (const RecordType *RT = QT->getAsStructureType()) 10503 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 10504 10505 if (const RecordType *RT = QT->getAsUnionType()) 10506 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 10507 10508 if (const FunctionType *FT = QT->getAs<FunctionType>()) 10509 return appendFunctionType(Enc, FT, CGM, TSC); 10510 10511 return false; 10512 } 10513 10514 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 10515 const CodeGen::CodeGenModule &CGM, 10516 TypeStringCache &TSC) { 10517 if (!D) 10518 return false; 10519 10520 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 10521 if (FD->getLanguageLinkage() != CLanguageLinkage) 10522 return false; 10523 return appendType(Enc, FD->getType(), CGM, TSC); 10524 } 10525 10526 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 10527 if (VD->getLanguageLinkage() != CLanguageLinkage) 10528 return false; 10529 QualType QT = VD->getType().getCanonicalType(); 10530 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 10531 // Global ArrayTypes are given a size of '*' if the size is unknown. 10532 // The Qualifiers should be attached to the type rather than the array. 10533 // Thus we don't call appendQualifier() here. 10534 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 10535 } 10536 return appendType(Enc, QT, CGM, TSC); 10537 } 10538 return false; 10539 } 10540 10541 //===----------------------------------------------------------------------===// 10542 // RISCV ABI Implementation 10543 //===----------------------------------------------------------------------===// 10544 10545 namespace { 10546 class RISCVABIInfo : public DefaultABIInfo { 10547 private: 10548 // Size of the integer ('x') registers in bits. 10549 unsigned XLen; 10550 // Size of the floating point ('f') registers in bits. Note that the target 10551 // ISA might have a wider FLen than the selected ABI (e.g. an RV32IF target 10552 // with soft float ABI has FLen==0). 10553 unsigned FLen; 10554 static const int NumArgGPRs = 8; 10555 static const int NumArgFPRs = 8; 10556 bool detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, 10557 llvm::Type *&Field1Ty, 10558 CharUnits &Field1Off, 10559 llvm::Type *&Field2Ty, 10560 CharUnits &Field2Off) const; 10561 10562 public: 10563 RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen) 10564 : DefaultABIInfo(CGT), XLen(XLen), FLen(FLen) {} 10565 10566 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 10567 // non-virtual, but computeInfo is virtual, so we overload it. 10568 void computeInfo(CGFunctionInfo &FI) const override; 10569 10570 ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &ArgGPRsLeft, 10571 int &ArgFPRsLeft) const; 10572 ABIArgInfo classifyReturnType(QualType RetTy) const; 10573 10574 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 10575 QualType Ty) const override; 10576 10577 ABIArgInfo extendType(QualType Ty) const; 10578 10579 bool detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, 10580 CharUnits &Field1Off, llvm::Type *&Field2Ty, 10581 CharUnits &Field2Off, int &NeededArgGPRs, 10582 int &NeededArgFPRs) const; 10583 ABIArgInfo coerceAndExpandFPCCEligibleStruct(llvm::Type *Field1Ty, 10584 CharUnits Field1Off, 10585 llvm::Type *Field2Ty, 10586 CharUnits Field2Off) const; 10587 }; 10588 } // end anonymous namespace 10589 10590 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const { 10591 QualType RetTy = FI.getReturnType(); 10592 if (!getCXXABI().classifyReturnType(FI)) 10593 FI.getReturnInfo() = classifyReturnType(RetTy); 10594 10595 // IsRetIndirect is true if classifyArgumentType indicated the value should 10596 // be passed indirect, or if the type size is a scalar greater than 2*XLen 10597 // and not a complex type with elements <= FLen. e.g. fp128 is passed direct 10598 // in LLVM IR, relying on the backend lowering code to rewrite the argument 10599 // list and pass indirectly on RV32. 10600 bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect; 10601 if (!IsRetIndirect && RetTy->isScalarType() && 10602 getContext().getTypeSize(RetTy) > (2 * XLen)) { 10603 if (RetTy->isComplexType() && FLen) { 10604 QualType EltTy = RetTy->castAs<ComplexType>()->getElementType(); 10605 IsRetIndirect = getContext().getTypeSize(EltTy) > FLen; 10606 } else { 10607 // This is a normal scalar > 2*XLen, such as fp128 on RV32. 10608 IsRetIndirect = true; 10609 } 10610 } 10611 10612 // We must track the number of GPRs used in order to conform to the RISC-V 10613 // ABI, as integer scalars passed in registers should have signext/zeroext 10614 // when promoted, but are anyext if passed on the stack. As GPR usage is 10615 // different for variadic arguments, we must also track whether we are 10616 // examining a vararg or not. 10617 int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs; 10618 int ArgFPRsLeft = FLen ? NumArgFPRs : 0; 10619 int NumFixedArgs = FI.getNumRequiredArgs(); 10620 10621 int ArgNum = 0; 10622 for (auto &ArgInfo : FI.arguments()) { 10623 bool IsFixed = ArgNum < NumFixedArgs; 10624 ArgInfo.info = 10625 classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft, ArgFPRsLeft); 10626 ArgNum++; 10627 } 10628 } 10629 10630 // Returns true if the struct is a potential candidate for the floating point 10631 // calling convention. If this function returns true, the caller is 10632 // responsible for checking that if there is only a single field then that 10633 // field is a float. 10634 bool RISCVABIInfo::detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, 10635 llvm::Type *&Field1Ty, 10636 CharUnits &Field1Off, 10637 llvm::Type *&Field2Ty, 10638 CharUnits &Field2Off) const { 10639 bool IsInt = Ty->isIntegralOrEnumerationType(); 10640 bool IsFloat = Ty->isRealFloatingType(); 10641 10642 if (IsInt || IsFloat) { 10643 uint64_t Size = getContext().getTypeSize(Ty); 10644 if (IsInt && Size > XLen) 10645 return false; 10646 // Can't be eligible if larger than the FP registers. Half precision isn't 10647 // currently supported on RISC-V and the ABI hasn't been confirmed, so 10648 // default to the integer ABI in that case. 10649 if (IsFloat && (Size > FLen || Size < 32)) 10650 return false; 10651 // Can't be eligible if an integer type was already found (int+int pairs 10652 // are not eligible). 10653 if (IsInt && Field1Ty && Field1Ty->isIntegerTy()) 10654 return false; 10655 if (!Field1Ty) { 10656 Field1Ty = CGT.ConvertType(Ty); 10657 Field1Off = CurOff; 10658 return true; 10659 } 10660 if (!Field2Ty) { 10661 Field2Ty = CGT.ConvertType(Ty); 10662 Field2Off = CurOff; 10663 return true; 10664 } 10665 return false; 10666 } 10667 10668 if (auto CTy = Ty->getAs<ComplexType>()) { 10669 if (Field1Ty) 10670 return false; 10671 QualType EltTy = CTy->getElementType(); 10672 if (getContext().getTypeSize(EltTy) > FLen) 10673 return false; 10674 Field1Ty = CGT.ConvertType(EltTy); 10675 Field1Off = CurOff; 10676 Field2Ty = Field1Ty; 10677 Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy); 10678 return true; 10679 } 10680 10681 if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) { 10682 uint64_t ArraySize = ATy->getSize().getZExtValue(); 10683 QualType EltTy = ATy->getElementType(); 10684 CharUnits EltSize = getContext().getTypeSizeInChars(EltTy); 10685 for (uint64_t i = 0; i < ArraySize; ++i) { 10686 bool Ret = detectFPCCEligibleStructHelper(EltTy, CurOff, Field1Ty, 10687 Field1Off, Field2Ty, Field2Off); 10688 if (!Ret) 10689 return false; 10690 CurOff += EltSize; 10691 } 10692 return true; 10693 } 10694 10695 if (const auto *RTy = Ty->getAs<RecordType>()) { 10696 // Structures with either a non-trivial destructor or a non-trivial 10697 // copy constructor are not eligible for the FP calling convention. 10698 if (getRecordArgABI(Ty, CGT.getCXXABI())) 10699 return false; 10700 if (isEmptyRecord(getContext(), Ty, true)) 10701 return true; 10702 const RecordDecl *RD = RTy->getDecl(); 10703 // Unions aren't eligible unless they're empty (which is caught above). 10704 if (RD->isUnion()) 10705 return false; 10706 int ZeroWidthBitFieldCount = 0; 10707 for (const FieldDecl *FD : RD->fields()) { 10708 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 10709 uint64_t FieldOffInBits = Layout.getFieldOffset(FD->getFieldIndex()); 10710 QualType QTy = FD->getType(); 10711 if (FD->isBitField()) { 10712 unsigned BitWidth = FD->getBitWidthValue(getContext()); 10713 // Allow a bitfield with a type greater than XLen as long as the 10714 // bitwidth is XLen or less. 10715 if (getContext().getTypeSize(QTy) > XLen && BitWidth <= XLen) 10716 QTy = getContext().getIntTypeForBitwidth(XLen, false); 10717 if (BitWidth == 0) { 10718 ZeroWidthBitFieldCount++; 10719 continue; 10720 } 10721 } 10722 10723 bool Ret = detectFPCCEligibleStructHelper( 10724 QTy, CurOff + getContext().toCharUnitsFromBits(FieldOffInBits), 10725 Field1Ty, Field1Off, Field2Ty, Field2Off); 10726 if (!Ret) 10727 return false; 10728 10729 // As a quirk of the ABI, zero-width bitfields aren't ignored for fp+fp 10730 // or int+fp structs, but are ignored for a struct with an fp field and 10731 // any number of zero-width bitfields. 10732 if (Field2Ty && ZeroWidthBitFieldCount > 0) 10733 return false; 10734 } 10735 return Field1Ty != nullptr; 10736 } 10737 10738 return false; 10739 } 10740 10741 // Determine if a struct is eligible for passing according to the floating 10742 // point calling convention (i.e., when flattened it contains a single fp 10743 // value, fp+fp, or int+fp of appropriate size). If so, NeededArgFPRs and 10744 // NeededArgGPRs are incremented appropriately. 10745 bool RISCVABIInfo::detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, 10746 CharUnits &Field1Off, 10747 llvm::Type *&Field2Ty, 10748 CharUnits &Field2Off, 10749 int &NeededArgGPRs, 10750 int &NeededArgFPRs) const { 10751 Field1Ty = nullptr; 10752 Field2Ty = nullptr; 10753 NeededArgGPRs = 0; 10754 NeededArgFPRs = 0; 10755 bool IsCandidate = detectFPCCEligibleStructHelper( 10756 Ty, CharUnits::Zero(), Field1Ty, Field1Off, Field2Ty, Field2Off); 10757 // Not really a candidate if we have a single int but no float. 10758 if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy()) 10759 return false; 10760 if (!IsCandidate) 10761 return false; 10762 if (Field1Ty && Field1Ty->isFloatingPointTy()) 10763 NeededArgFPRs++; 10764 else if (Field1Ty) 10765 NeededArgGPRs++; 10766 if (Field2Ty && Field2Ty->isFloatingPointTy()) 10767 NeededArgFPRs++; 10768 else if (Field2Ty) 10769 NeededArgGPRs++; 10770 return true; 10771 } 10772 10773 // Call getCoerceAndExpand for the two-element flattened struct described by 10774 // Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an 10775 // appropriate coerceToType and unpaddedCoerceToType. 10776 ABIArgInfo RISCVABIInfo::coerceAndExpandFPCCEligibleStruct( 10777 llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty, 10778 CharUnits Field2Off) const { 10779 SmallVector<llvm::Type *, 3> CoerceElts; 10780 SmallVector<llvm::Type *, 2> UnpaddedCoerceElts; 10781 if (!Field1Off.isZero()) 10782 CoerceElts.push_back(llvm::ArrayType::get( 10783 llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity())); 10784 10785 CoerceElts.push_back(Field1Ty); 10786 UnpaddedCoerceElts.push_back(Field1Ty); 10787 10788 if (!Field2Ty) { 10789 return ABIArgInfo::getCoerceAndExpand( 10790 llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()), 10791 UnpaddedCoerceElts[0]); 10792 } 10793 10794 CharUnits Field2Align = 10795 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(Field2Ty)); 10796 CharUnits Field1End = Field1Off + 10797 CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty)); 10798 CharUnits Field2OffNoPadNoPack = Field1End.alignTo(Field2Align); 10799 10800 CharUnits Padding = CharUnits::Zero(); 10801 if (Field2Off > Field2OffNoPadNoPack) 10802 Padding = Field2Off - Field2OffNoPadNoPack; 10803 else if (Field2Off != Field2Align && Field2Off > Field1End) 10804 Padding = Field2Off - Field1End; 10805 10806 bool IsPacked = !Field2Off.isMultipleOf(Field2Align); 10807 10808 if (!Padding.isZero()) 10809 CoerceElts.push_back(llvm::ArrayType::get( 10810 llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity())); 10811 10812 CoerceElts.push_back(Field2Ty); 10813 UnpaddedCoerceElts.push_back(Field2Ty); 10814 10815 auto CoerceToType = 10816 llvm::StructType::get(getVMContext(), CoerceElts, IsPacked); 10817 auto UnpaddedCoerceToType = 10818 llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked); 10819 10820 return ABIArgInfo::getCoerceAndExpand(CoerceToType, UnpaddedCoerceToType); 10821 } 10822 10823 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed, 10824 int &ArgGPRsLeft, 10825 int &ArgFPRsLeft) const { 10826 assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow"); 10827 Ty = useFirstFieldIfTransparentUnion(Ty); 10828 10829 // Structures with either a non-trivial destructor or a non-trivial 10830 // copy constructor are always passed indirectly. 10831 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 10832 if (ArgGPRsLeft) 10833 ArgGPRsLeft -= 1; 10834 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 10835 CGCXXABI::RAA_DirectInMemory); 10836 } 10837 10838 // Ignore empty structs/unions. 10839 if (isEmptyRecord(getContext(), Ty, true)) 10840 return ABIArgInfo::getIgnore(); 10841 10842 uint64_t Size = getContext().getTypeSize(Ty); 10843 10844 // Pass floating point values via FPRs if possible. 10845 if (IsFixed && Ty->isFloatingType() && !Ty->isComplexType() && 10846 FLen >= Size && ArgFPRsLeft) { 10847 ArgFPRsLeft--; 10848 return ABIArgInfo::getDirect(); 10849 } 10850 10851 // Complex types for the hard float ABI must be passed direct rather than 10852 // using CoerceAndExpand. 10853 if (IsFixed && Ty->isComplexType() && FLen && ArgFPRsLeft >= 2) { 10854 QualType EltTy = Ty->castAs<ComplexType>()->getElementType(); 10855 if (getContext().getTypeSize(EltTy) <= FLen) { 10856 ArgFPRsLeft -= 2; 10857 return ABIArgInfo::getDirect(); 10858 } 10859 } 10860 10861 if (IsFixed && FLen && Ty->isStructureOrClassType()) { 10862 llvm::Type *Field1Ty = nullptr; 10863 llvm::Type *Field2Ty = nullptr; 10864 CharUnits Field1Off = CharUnits::Zero(); 10865 CharUnits Field2Off = CharUnits::Zero(); 10866 int NeededArgGPRs = 0; 10867 int NeededArgFPRs = 0; 10868 bool IsCandidate = 10869 detectFPCCEligibleStruct(Ty, Field1Ty, Field1Off, Field2Ty, Field2Off, 10870 NeededArgGPRs, NeededArgFPRs); 10871 if (IsCandidate && NeededArgGPRs <= ArgGPRsLeft && 10872 NeededArgFPRs <= ArgFPRsLeft) { 10873 ArgGPRsLeft -= NeededArgGPRs; 10874 ArgFPRsLeft -= NeededArgFPRs; 10875 return coerceAndExpandFPCCEligibleStruct(Field1Ty, Field1Off, Field2Ty, 10876 Field2Off); 10877 } 10878 } 10879 10880 uint64_t NeededAlign = getContext().getTypeAlign(Ty); 10881 bool MustUseStack = false; 10882 // Determine the number of GPRs needed to pass the current argument 10883 // according to the ABI. 2*XLen-aligned varargs are passed in "aligned" 10884 // register pairs, so may consume 3 registers. 10885 int NeededArgGPRs = 1; 10886 if (!IsFixed && NeededAlign == 2 * XLen) 10887 NeededArgGPRs = 2 + (ArgGPRsLeft % 2); 10888 else if (Size > XLen && Size <= 2 * XLen) 10889 NeededArgGPRs = 2; 10890 10891 if (NeededArgGPRs > ArgGPRsLeft) { 10892 MustUseStack = true; 10893 NeededArgGPRs = ArgGPRsLeft; 10894 } 10895 10896 ArgGPRsLeft -= NeededArgGPRs; 10897 10898 if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) { 10899 // Treat an enum type as its underlying type. 10900 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 10901 Ty = EnumTy->getDecl()->getIntegerType(); 10902 10903 // All integral types are promoted to XLen width, unless passed on the 10904 // stack. 10905 if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) { 10906 return extendType(Ty); 10907 } 10908 10909 if (const auto *EIT = Ty->getAs<ExtIntType>()) { 10910 if (EIT->getNumBits() < XLen && !MustUseStack) 10911 return extendType(Ty); 10912 if (EIT->getNumBits() > 128 || 10913 (!getContext().getTargetInfo().hasInt128Type() && 10914 EIT->getNumBits() > 64)) 10915 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 10916 } 10917 10918 return ABIArgInfo::getDirect(); 10919 } 10920 10921 // Aggregates which are <= 2*XLen will be passed in registers if possible, 10922 // so coerce to integers. 10923 if (Size <= 2 * XLen) { 10924 unsigned Alignment = getContext().getTypeAlign(Ty); 10925 10926 // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is 10927 // required, and a 2-element XLen array if only XLen alignment is required. 10928 if (Size <= XLen) { 10929 return ABIArgInfo::getDirect( 10930 llvm::IntegerType::get(getVMContext(), XLen)); 10931 } else if (Alignment == 2 * XLen) { 10932 return ABIArgInfo::getDirect( 10933 llvm::IntegerType::get(getVMContext(), 2 * XLen)); 10934 } else { 10935 return ABIArgInfo::getDirect(llvm::ArrayType::get( 10936 llvm::IntegerType::get(getVMContext(), XLen), 2)); 10937 } 10938 } 10939 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 10940 } 10941 10942 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const { 10943 if (RetTy->isVoidType()) 10944 return ABIArgInfo::getIgnore(); 10945 10946 int ArgGPRsLeft = 2; 10947 int ArgFPRsLeft = FLen ? 2 : 0; 10948 10949 // The rules for return and argument types are the same, so defer to 10950 // classifyArgumentType. 10951 return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft, 10952 ArgFPRsLeft); 10953 } 10954 10955 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 10956 QualType Ty) const { 10957 CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8); 10958 10959 // Empty records are ignored for parameter passing purposes. 10960 if (isEmptyRecord(getContext(), Ty, true)) { 10961 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 10962 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 10963 return Addr; 10964 } 10965 10966 auto TInfo = getContext().getTypeInfoInChars(Ty); 10967 10968 // Arguments bigger than 2*Xlen bytes are passed indirectly. 10969 bool IsIndirect = TInfo.Width > 2 * SlotSize; 10970 10971 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TInfo, 10972 SlotSize, /*AllowHigherAlign=*/true); 10973 } 10974 10975 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const { 10976 int TySize = getContext().getTypeSize(Ty); 10977 // RV64 ABI requires unsigned 32 bit integers to be sign extended. 10978 if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 10979 return ABIArgInfo::getSignExtend(Ty); 10980 return ABIArgInfo::getExtend(Ty); 10981 } 10982 10983 namespace { 10984 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo { 10985 public: 10986 RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, 10987 unsigned FLen) 10988 : TargetCodeGenInfo(std::make_unique<RISCVABIInfo>(CGT, XLen, FLen)) {} 10989 10990 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 10991 CodeGen::CodeGenModule &CGM) const override { 10992 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 10993 if (!FD) return; 10994 10995 const auto *Attr = FD->getAttr<RISCVInterruptAttr>(); 10996 if (!Attr) 10997 return; 10998 10999 const char *Kind; 11000 switch (Attr->getInterrupt()) { 11001 case RISCVInterruptAttr::user: Kind = "user"; break; 11002 case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break; 11003 case RISCVInterruptAttr::machine: Kind = "machine"; break; 11004 } 11005 11006 auto *Fn = cast<llvm::Function>(GV); 11007 11008 Fn->addFnAttr("interrupt", Kind); 11009 } 11010 }; 11011 } // namespace 11012 11013 //===----------------------------------------------------------------------===// 11014 // VE ABI Implementation. 11015 // 11016 namespace { 11017 class VEABIInfo : public DefaultABIInfo { 11018 public: 11019 VEABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 11020 11021 private: 11022 ABIArgInfo classifyReturnType(QualType RetTy) const; 11023 ABIArgInfo classifyArgumentType(QualType RetTy) const; 11024 void computeInfo(CGFunctionInfo &FI) const override; 11025 }; 11026 } // end anonymous namespace 11027 11028 ABIArgInfo VEABIInfo::classifyReturnType(QualType Ty) const { 11029 if (Ty->isAnyComplexType()) 11030 return ABIArgInfo::getDirect(); 11031 uint64_t Size = getContext().getTypeSize(Ty); 11032 if (Size < 64 && Ty->isIntegerType()) 11033 return ABIArgInfo::getExtend(Ty); 11034 return DefaultABIInfo::classifyReturnType(Ty); 11035 } 11036 11037 ABIArgInfo VEABIInfo::classifyArgumentType(QualType Ty) const { 11038 if (Ty->isAnyComplexType()) 11039 return ABIArgInfo::getDirect(); 11040 uint64_t Size = getContext().getTypeSize(Ty); 11041 if (Size < 64 && Ty->isIntegerType()) 11042 return ABIArgInfo::getExtend(Ty); 11043 return DefaultABIInfo::classifyArgumentType(Ty); 11044 } 11045 11046 void VEABIInfo::computeInfo(CGFunctionInfo &FI) const { 11047 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 11048 for (auto &Arg : FI.arguments()) 11049 Arg.info = classifyArgumentType(Arg.type); 11050 } 11051 11052 namespace { 11053 class VETargetCodeGenInfo : public TargetCodeGenInfo { 11054 public: 11055 VETargetCodeGenInfo(CodeGenTypes &CGT) 11056 : TargetCodeGenInfo(std::make_unique<VEABIInfo>(CGT)) {} 11057 // VE ABI requires the arguments of variadic and prototype-less functions 11058 // are passed in both registers and memory. 11059 bool isNoProtoCallVariadic(const CallArgList &args, 11060 const FunctionNoProtoType *fnType) const override { 11061 return true; 11062 } 11063 }; 11064 } // end anonymous namespace 11065 11066 //===----------------------------------------------------------------------===// 11067 // Driver code 11068 //===----------------------------------------------------------------------===// 11069 11070 bool CodeGenModule::supportsCOMDAT() const { 11071 return getTriple().supportsCOMDAT(); 11072 } 11073 11074 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 11075 if (TheTargetCodeGenInfo) 11076 return *TheTargetCodeGenInfo; 11077 11078 // Helper to set the unique_ptr while still keeping the return value. 11079 auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & { 11080 this->TheTargetCodeGenInfo.reset(P); 11081 return *P; 11082 }; 11083 11084 const llvm::Triple &Triple = getTarget().getTriple(); 11085 switch (Triple.getArch()) { 11086 default: 11087 return SetCGInfo(new DefaultTargetCodeGenInfo(Types)); 11088 11089 case llvm::Triple::le32: 11090 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 11091 case llvm::Triple::m68k: 11092 return SetCGInfo(new M68kTargetCodeGenInfo(Types)); 11093 case llvm::Triple::mips: 11094 case llvm::Triple::mipsel: 11095 if (Triple.getOS() == llvm::Triple::NaCl) 11096 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 11097 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true)); 11098 11099 case llvm::Triple::mips64: 11100 case llvm::Triple::mips64el: 11101 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false)); 11102 11103 case llvm::Triple::avr: 11104 return SetCGInfo(new AVRTargetCodeGenInfo(Types)); 11105 11106 case llvm::Triple::aarch64: 11107 case llvm::Triple::aarch64_32: 11108 case llvm::Triple::aarch64_be: { 11109 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 11110 if (getTarget().getABI() == "darwinpcs") 11111 Kind = AArch64ABIInfo::DarwinPCS; 11112 else if (Triple.isOSWindows()) 11113 return SetCGInfo( 11114 new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64)); 11115 11116 return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind)); 11117 } 11118 11119 case llvm::Triple::wasm32: 11120 case llvm::Triple::wasm64: { 11121 WebAssemblyABIInfo::ABIKind Kind = WebAssemblyABIInfo::MVP; 11122 if (getTarget().getABI() == "experimental-mv") 11123 Kind = WebAssemblyABIInfo::ExperimentalMV; 11124 return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types, Kind)); 11125 } 11126 11127 case llvm::Triple::arm: 11128 case llvm::Triple::armeb: 11129 case llvm::Triple::thumb: 11130 case llvm::Triple::thumbeb: { 11131 if (Triple.getOS() == llvm::Triple::Win32) { 11132 return SetCGInfo( 11133 new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP)); 11134 } 11135 11136 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 11137 StringRef ABIStr = getTarget().getABI(); 11138 if (ABIStr == "apcs-gnu") 11139 Kind = ARMABIInfo::APCS; 11140 else if (ABIStr == "aapcs16") 11141 Kind = ARMABIInfo::AAPCS16_VFP; 11142 else if (CodeGenOpts.FloatABI == "hard" || 11143 (CodeGenOpts.FloatABI != "soft" && 11144 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 11145 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 11146 Triple.getEnvironment() == llvm::Triple::EABIHF))) 11147 Kind = ARMABIInfo::AAPCS_VFP; 11148 11149 return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind)); 11150 } 11151 11152 case llvm::Triple::ppc: { 11153 if (Triple.isOSAIX()) 11154 return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ false)); 11155 11156 bool IsSoftFloat = 11157 CodeGenOpts.FloatABI == "soft" || getTarget().hasFeature("spe"); 11158 bool RetSmallStructInRegABI = 11159 PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 11160 return SetCGInfo( 11161 new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI)); 11162 } 11163 case llvm::Triple::ppcle: { 11164 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 11165 bool RetSmallStructInRegABI = 11166 PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 11167 return SetCGInfo( 11168 new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI)); 11169 } 11170 case llvm::Triple::ppc64: 11171 if (Triple.isOSAIX()) 11172 return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ true)); 11173 11174 if (Triple.isOSBinFormatELF()) { 11175 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 11176 if (getTarget().getABI() == "elfv2") 11177 Kind = PPC64_SVR4_ABIInfo::ELFv2; 11178 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 11179 11180 return SetCGInfo( 11181 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, IsSoftFloat)); 11182 } 11183 return SetCGInfo(new PPC64TargetCodeGenInfo(Types)); 11184 case llvm::Triple::ppc64le: { 11185 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 11186 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 11187 if (getTarget().getABI() == "elfv1") 11188 Kind = PPC64_SVR4_ABIInfo::ELFv1; 11189 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 11190 11191 return SetCGInfo( 11192 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, IsSoftFloat)); 11193 } 11194 11195 case llvm::Triple::nvptx: 11196 case llvm::Triple::nvptx64: 11197 return SetCGInfo(new NVPTXTargetCodeGenInfo(Types)); 11198 11199 case llvm::Triple::msp430: 11200 return SetCGInfo(new MSP430TargetCodeGenInfo(Types)); 11201 11202 case llvm::Triple::riscv32: 11203 case llvm::Triple::riscv64: { 11204 StringRef ABIStr = getTarget().getABI(); 11205 unsigned XLen = getTarget().getPointerWidth(0); 11206 unsigned ABIFLen = 0; 11207 if (ABIStr.endswith("f")) 11208 ABIFLen = 32; 11209 else if (ABIStr.endswith("d")) 11210 ABIFLen = 64; 11211 return SetCGInfo(new RISCVTargetCodeGenInfo(Types, XLen, ABIFLen)); 11212 } 11213 11214 case llvm::Triple::systemz: { 11215 bool SoftFloat = CodeGenOpts.FloatABI == "soft"; 11216 bool HasVector = !SoftFloat && getTarget().getABI() == "vector"; 11217 return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector, SoftFloat)); 11218 } 11219 11220 case llvm::Triple::tce: 11221 case llvm::Triple::tcele: 11222 return SetCGInfo(new TCETargetCodeGenInfo(Types)); 11223 11224 case llvm::Triple::x86: { 11225 bool IsDarwinVectorABI = Triple.isOSDarwin(); 11226 bool RetSmallStructInRegABI = 11227 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 11228 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 11229 11230 if (Triple.getOS() == llvm::Triple::Win32) { 11231 return SetCGInfo(new WinX86_32TargetCodeGenInfo( 11232 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 11233 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); 11234 } else { 11235 return SetCGInfo(new X86_32TargetCodeGenInfo( 11236 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 11237 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters, 11238 CodeGenOpts.FloatABI == "soft")); 11239 } 11240 } 11241 11242 case llvm::Triple::x86_64: { 11243 StringRef ABI = getTarget().getABI(); 11244 X86AVXABILevel AVXLevel = 11245 (ABI == "avx512" 11246 ? X86AVXABILevel::AVX512 11247 : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None); 11248 11249 switch (Triple.getOS()) { 11250 case llvm::Triple::Win32: 11251 return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel)); 11252 default: 11253 return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel)); 11254 } 11255 } 11256 case llvm::Triple::hexagon: 11257 return SetCGInfo(new HexagonTargetCodeGenInfo(Types)); 11258 case llvm::Triple::lanai: 11259 return SetCGInfo(new LanaiTargetCodeGenInfo(Types)); 11260 case llvm::Triple::r600: 11261 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 11262 case llvm::Triple::amdgcn: 11263 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 11264 case llvm::Triple::sparc: 11265 return SetCGInfo(new SparcV8TargetCodeGenInfo(Types)); 11266 case llvm::Triple::sparcv9: 11267 return SetCGInfo(new SparcV9TargetCodeGenInfo(Types)); 11268 case llvm::Triple::xcore: 11269 return SetCGInfo(new XCoreTargetCodeGenInfo(Types)); 11270 case llvm::Triple::arc: 11271 return SetCGInfo(new ARCTargetCodeGenInfo(Types)); 11272 case llvm::Triple::spir: 11273 case llvm::Triple::spir64: 11274 return SetCGInfo(new SPIRTargetCodeGenInfo(Types)); 11275 case llvm::Triple::ve: 11276 return SetCGInfo(new VETargetCodeGenInfo(Types)); 11277 } 11278 } 11279 11280 /// Create an OpenCL kernel for an enqueued block. 11281 /// 11282 /// The kernel has the same function type as the block invoke function. Its 11283 /// name is the name of the block invoke function postfixed with "_kernel". 11284 /// It simply calls the block invoke function then returns. 11285 llvm::Function * 11286 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF, 11287 llvm::Function *Invoke, 11288 llvm::Value *BlockLiteral) const { 11289 auto *InvokeFT = Invoke->getFunctionType(); 11290 llvm::SmallVector<llvm::Type *, 2> ArgTys; 11291 for (auto &P : InvokeFT->params()) 11292 ArgTys.push_back(P); 11293 auto &C = CGF.getLLVMContext(); 11294 std::string Name = Invoke->getName().str() + "_kernel"; 11295 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 11296 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 11297 &CGF.CGM.getModule()); 11298 auto IP = CGF.Builder.saveIP(); 11299 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 11300 auto &Builder = CGF.Builder; 11301 Builder.SetInsertPoint(BB); 11302 llvm::SmallVector<llvm::Value *, 2> Args; 11303 for (auto &A : F->args()) 11304 Args.push_back(&A); 11305 llvm::CallInst *call = Builder.CreateCall(Invoke, Args); 11306 call->setCallingConv(Invoke->getCallingConv()); 11307 Builder.CreateRetVoid(); 11308 Builder.restoreIP(IP); 11309 return F; 11310 } 11311 11312 /// Create an OpenCL kernel for an enqueued block. 11313 /// 11314 /// The type of the first argument (the block literal) is the struct type 11315 /// of the block literal instead of a pointer type. The first argument 11316 /// (block literal) is passed directly by value to the kernel. The kernel 11317 /// allocates the same type of struct on stack and stores the block literal 11318 /// to it and passes its pointer to the block invoke function. The kernel 11319 /// has "enqueued-block" function attribute and kernel argument metadata. 11320 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel( 11321 CodeGenFunction &CGF, llvm::Function *Invoke, 11322 llvm::Value *BlockLiteral) const { 11323 auto &Builder = CGF.Builder; 11324 auto &C = CGF.getLLVMContext(); 11325 11326 auto *BlockTy = BlockLiteral->getType()->getPointerElementType(); 11327 auto *InvokeFT = Invoke->getFunctionType(); 11328 llvm::SmallVector<llvm::Type *, 2> ArgTys; 11329 llvm::SmallVector<llvm::Metadata *, 8> AddressQuals; 11330 llvm::SmallVector<llvm::Metadata *, 8> AccessQuals; 11331 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames; 11332 llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames; 11333 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals; 11334 llvm::SmallVector<llvm::Metadata *, 8> ArgNames; 11335 11336 ArgTys.push_back(BlockTy); 11337 ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 11338 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0))); 11339 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 11340 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 11341 AccessQuals.push_back(llvm::MDString::get(C, "none")); 11342 ArgNames.push_back(llvm::MDString::get(C, "block_literal")); 11343 for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) { 11344 ArgTys.push_back(InvokeFT->getParamType(I)); 11345 ArgTypeNames.push_back(llvm::MDString::get(C, "void*")); 11346 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3))); 11347 AccessQuals.push_back(llvm::MDString::get(C, "none")); 11348 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*")); 11349 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 11350 ArgNames.push_back( 11351 llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str())); 11352 } 11353 std::string Name = Invoke->getName().str() + "_kernel"; 11354 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 11355 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 11356 &CGF.CGM.getModule()); 11357 F->addFnAttr("enqueued-block"); 11358 auto IP = CGF.Builder.saveIP(); 11359 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 11360 Builder.SetInsertPoint(BB); 11361 const auto BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(BlockTy); 11362 auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr); 11363 BlockPtr->setAlignment(BlockAlign); 11364 Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign); 11365 auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0)); 11366 llvm::SmallVector<llvm::Value *, 2> Args; 11367 Args.push_back(Cast); 11368 for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I) 11369 Args.push_back(I); 11370 llvm::CallInst *call = Builder.CreateCall(Invoke, Args); 11371 call->setCallingConv(Invoke->getCallingConv()); 11372 Builder.CreateRetVoid(); 11373 Builder.restoreIP(IP); 11374 11375 F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals)); 11376 F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals)); 11377 F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames)); 11378 F->setMetadata("kernel_arg_base_type", 11379 llvm::MDNode::get(C, ArgBaseTypeNames)); 11380 F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals)); 11381 if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 11382 F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames)); 11383 11384 return F; 11385 } 11386