1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes wrap the information about a call or function 11 // definition used to handle ABI compliancy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "TargetInfo.h" 16 #include "ABIInfo.h" 17 #include "CGCXXABI.h" 18 #include "CodeGenFunction.h" 19 #include "clang/AST/RecordLayout.h" 20 #include "clang/CodeGen/CGFunctionInfo.h" 21 #include "clang/Frontend/CodeGenOptions.h" 22 #include "llvm/ADT/Triple.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/Type.h" 25 #include "llvm/Support/raw_ostream.h" 26 using namespace clang; 27 using namespace CodeGen; 28 29 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 30 llvm::Value *Array, 31 llvm::Value *Value, 32 unsigned FirstIndex, 33 unsigned LastIndex) { 34 // Alternatively, we could emit this as a loop in the source. 35 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 36 llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I); 37 Builder.CreateStore(Value, Cell); 38 } 39 } 40 41 static bool isAggregateTypeForABI(QualType T) { 42 return !CodeGenFunction::hasScalarEvaluationKind(T) || 43 T->isMemberFunctionPointerType(); 44 } 45 46 ABIInfo::~ABIInfo() {} 47 48 static bool isRecordReturnIndirect(const RecordType *RT, 49 CGCXXABI &CXXABI) { 50 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 51 if (!RD) 52 return false; 53 return CXXABI.isReturnTypeIndirect(RD); 54 } 55 56 57 static bool isRecordReturnIndirect(QualType T, CGCXXABI &CXXABI) { 58 const RecordType *RT = T->getAs<RecordType>(); 59 if (!RT) 60 return false; 61 return isRecordReturnIndirect(RT, CXXABI); 62 } 63 64 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 65 CGCXXABI &CXXABI) { 66 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 67 if (!RD) 68 return CGCXXABI::RAA_Default; 69 return CXXABI.getRecordArgABI(RD); 70 } 71 72 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 73 CGCXXABI &CXXABI) { 74 const RecordType *RT = T->getAs<RecordType>(); 75 if (!RT) 76 return CGCXXABI::RAA_Default; 77 return getRecordArgABI(RT, CXXABI); 78 } 79 80 CGCXXABI &ABIInfo::getCXXABI() const { 81 return CGT.getCXXABI(); 82 } 83 84 ASTContext &ABIInfo::getContext() const { 85 return CGT.getContext(); 86 } 87 88 llvm::LLVMContext &ABIInfo::getVMContext() const { 89 return CGT.getLLVMContext(); 90 } 91 92 const llvm::DataLayout &ABIInfo::getDataLayout() const { 93 return CGT.getDataLayout(); 94 } 95 96 const TargetInfo &ABIInfo::getTarget() const { 97 return CGT.getTarget(); 98 } 99 100 void ABIArgInfo::dump() const { 101 raw_ostream &OS = llvm::errs(); 102 OS << "(ABIArgInfo Kind="; 103 switch (TheKind) { 104 case Direct: 105 OS << "Direct Type="; 106 if (llvm::Type *Ty = getCoerceToType()) 107 Ty->print(OS); 108 else 109 OS << "null"; 110 break; 111 case Extend: 112 OS << "Extend"; 113 break; 114 case Ignore: 115 OS << "Ignore"; 116 break; 117 case Indirect: 118 OS << "Indirect Align=" << getIndirectAlign() 119 << " ByVal=" << getIndirectByVal() 120 << " Realign=" << getIndirectRealign(); 121 break; 122 case Expand: 123 OS << "Expand"; 124 break; 125 } 126 OS << ")\n"; 127 } 128 129 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; } 130 131 // If someone can figure out a general rule for this, that would be great. 132 // It's probably just doomed to be platform-dependent, though. 133 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 134 // Verified for: 135 // x86-64 FreeBSD, Linux, Darwin 136 // x86-32 FreeBSD, Linux, Darwin 137 // PowerPC Linux, Darwin 138 // ARM Darwin (*not* EABI) 139 // AArch64 Linux 140 return 32; 141 } 142 143 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 144 const FunctionNoProtoType *fnType) const { 145 // The following conventions are known to require this to be false: 146 // x86_stdcall 147 // MIPS 148 // For everything else, we just prefer false unless we opt out. 149 return false; 150 } 151 152 void 153 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 154 llvm::SmallString<24> &Opt) const { 155 // This assumes the user is passing a library name like "rt" instead of a 156 // filename like "librt.a/so", and that they don't care whether it's static or 157 // dynamic. 158 Opt = "-l"; 159 Opt += Lib; 160 } 161 162 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 163 164 /// isEmptyField - Return true iff a the field is "empty", that is it 165 /// is an unnamed bit-field or an (array of) empty record(s). 166 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 167 bool AllowArrays) { 168 if (FD->isUnnamedBitfield()) 169 return true; 170 171 QualType FT = FD->getType(); 172 173 // Constant arrays of empty records count as empty, strip them off. 174 // Constant arrays of zero length always count as empty. 175 if (AllowArrays) 176 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 177 if (AT->getSize() == 0) 178 return true; 179 FT = AT->getElementType(); 180 } 181 182 const RecordType *RT = FT->getAs<RecordType>(); 183 if (!RT) 184 return false; 185 186 // C++ record fields are never empty, at least in the Itanium ABI. 187 // 188 // FIXME: We should use a predicate for whether this behavior is true in the 189 // current ABI. 190 if (isa<CXXRecordDecl>(RT->getDecl())) 191 return false; 192 193 return isEmptyRecord(Context, FT, AllowArrays); 194 } 195 196 /// isEmptyRecord - Return true iff a structure contains only empty 197 /// fields. Note that a structure with a flexible array member is not 198 /// considered empty. 199 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 200 const RecordType *RT = T->getAs<RecordType>(); 201 if (!RT) 202 return 0; 203 const RecordDecl *RD = RT->getDecl(); 204 if (RD->hasFlexibleArrayMember()) 205 return false; 206 207 // If this is a C++ record, check the bases first. 208 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 209 for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(), 210 e = CXXRD->bases_end(); i != e; ++i) 211 if (!isEmptyRecord(Context, i->getType(), true)) 212 return false; 213 214 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 215 i != e; ++i) 216 if (!isEmptyField(Context, *i, AllowArrays)) 217 return false; 218 return true; 219 } 220 221 /// isSingleElementStruct - Determine if a structure is a "single 222 /// element struct", i.e. it has exactly one non-empty field or 223 /// exactly one field which is itself a single element 224 /// struct. Structures with flexible array members are never 225 /// considered single element structs. 226 /// 227 /// \return The field declaration for the single non-empty field, if 228 /// it exists. 229 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 230 const RecordType *RT = T->getAsStructureType(); 231 if (!RT) 232 return 0; 233 234 const RecordDecl *RD = RT->getDecl(); 235 if (RD->hasFlexibleArrayMember()) 236 return 0; 237 238 const Type *Found = 0; 239 240 // If this is a C++ record, check the bases first. 241 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 242 for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(), 243 e = CXXRD->bases_end(); i != e; ++i) { 244 // Ignore empty records. 245 if (isEmptyRecord(Context, i->getType(), true)) 246 continue; 247 248 // If we already found an element then this isn't a single-element struct. 249 if (Found) 250 return 0; 251 252 // If this is non-empty and not a single element struct, the composite 253 // cannot be a single element struct. 254 Found = isSingleElementStruct(i->getType(), Context); 255 if (!Found) 256 return 0; 257 } 258 } 259 260 // Check for single element. 261 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 262 i != e; ++i) { 263 const FieldDecl *FD = *i; 264 QualType FT = FD->getType(); 265 266 // Ignore empty fields. 267 if (isEmptyField(Context, FD, true)) 268 continue; 269 270 // If we already found an element then this isn't a single-element 271 // struct. 272 if (Found) 273 return 0; 274 275 // Treat single element arrays as the element. 276 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 277 if (AT->getSize().getZExtValue() != 1) 278 break; 279 FT = AT->getElementType(); 280 } 281 282 if (!isAggregateTypeForABI(FT)) { 283 Found = FT.getTypePtr(); 284 } else { 285 Found = isSingleElementStruct(FT, Context); 286 if (!Found) 287 return 0; 288 } 289 } 290 291 // We don't consider a struct a single-element struct if it has 292 // padding beyond the element type. 293 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 294 return 0; 295 296 return Found; 297 } 298 299 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 300 // Treat complex types as the element type. 301 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 302 Ty = CTy->getElementType(); 303 304 // Check for a type which we know has a simple scalar argument-passing 305 // convention without any padding. (We're specifically looking for 32 306 // and 64-bit integer and integer-equivalents, float, and double.) 307 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 308 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 309 return false; 310 311 uint64_t Size = Context.getTypeSize(Ty); 312 return Size == 32 || Size == 64; 313 } 314 315 /// canExpandIndirectArgument - Test whether an argument type which is to be 316 /// passed indirectly (on the stack) would have the equivalent layout if it was 317 /// expanded into separate arguments. If so, we prefer to do the latter to avoid 318 /// inhibiting optimizations. 319 /// 320 // FIXME: This predicate is missing many cases, currently it just follows 321 // llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We 322 // should probably make this smarter, or better yet make the LLVM backend 323 // capable of handling it. 324 static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) { 325 // We can only expand structure types. 326 const RecordType *RT = Ty->getAs<RecordType>(); 327 if (!RT) 328 return false; 329 330 // We can only expand (C) structures. 331 // 332 // FIXME: This needs to be generalized to handle classes as well. 333 const RecordDecl *RD = RT->getDecl(); 334 if (!RD->isStruct() || isa<CXXRecordDecl>(RD)) 335 return false; 336 337 uint64_t Size = 0; 338 339 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 340 i != e; ++i) { 341 const FieldDecl *FD = *i; 342 343 if (!is32Or64BitBasicType(FD->getType(), Context)) 344 return false; 345 346 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 347 // how to expand them yet, and the predicate for telling if a bitfield still 348 // counts as "basic" is more complicated than what we were doing previously. 349 if (FD->isBitField()) 350 return false; 351 352 Size += Context.getTypeSize(FD->getType()); 353 } 354 355 // Make sure there are not any holes in the struct. 356 if (Size != Context.getTypeSize(Ty)) 357 return false; 358 359 return true; 360 } 361 362 namespace { 363 /// DefaultABIInfo - The default implementation for ABI specific 364 /// details. This implementation provides information which results in 365 /// self-consistent and sensible LLVM IR generation, but does not 366 /// conform to any particular ABI. 367 class DefaultABIInfo : public ABIInfo { 368 public: 369 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 370 371 ABIArgInfo classifyReturnType(QualType RetTy) const; 372 ABIArgInfo classifyArgumentType(QualType RetTy) const; 373 374 virtual void computeInfo(CGFunctionInfo &FI) const { 375 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 376 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 377 it != ie; ++it) 378 it->info = classifyArgumentType(it->type); 379 } 380 381 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 382 CodeGenFunction &CGF) const; 383 }; 384 385 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 386 public: 387 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 388 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 389 }; 390 391 llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 392 CodeGenFunction &CGF) const { 393 return 0; 394 } 395 396 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 397 if (isAggregateTypeForABI(Ty)) { 398 // Records with non trivial destructors/constructors should not be passed 399 // by value. 400 if (isRecordReturnIndirect(Ty, getCXXABI())) 401 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 402 403 return ABIArgInfo::getIndirect(0); 404 } 405 406 // Treat an enum type as its underlying type. 407 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 408 Ty = EnumTy->getDecl()->getIntegerType(); 409 410 return (Ty->isPromotableIntegerType() ? 411 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 412 } 413 414 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 415 if (RetTy->isVoidType()) 416 return ABIArgInfo::getIgnore(); 417 418 if (isAggregateTypeForABI(RetTy)) 419 return ABIArgInfo::getIndirect(0); 420 421 // Treat an enum type as its underlying type. 422 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 423 RetTy = EnumTy->getDecl()->getIntegerType(); 424 425 return (RetTy->isPromotableIntegerType() ? 426 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 427 } 428 429 //===----------------------------------------------------------------------===// 430 // le32/PNaCl bitcode ABI Implementation 431 // 432 // This is a simplified version of the x86_32 ABI. Arguments and return values 433 // are always passed on the stack. 434 //===----------------------------------------------------------------------===// 435 436 class PNaClABIInfo : public ABIInfo { 437 public: 438 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 439 440 ABIArgInfo classifyReturnType(QualType RetTy) const; 441 ABIArgInfo classifyArgumentType(QualType RetTy) const; 442 443 virtual void computeInfo(CGFunctionInfo &FI) const; 444 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 445 CodeGenFunction &CGF) const; 446 }; 447 448 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 449 public: 450 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 451 : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {} 452 }; 453 454 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 455 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 456 457 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 458 it != ie; ++it) 459 it->info = classifyArgumentType(it->type); 460 } 461 462 llvm::Value *PNaClABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 463 CodeGenFunction &CGF) const { 464 return 0; 465 } 466 467 /// \brief Classify argument of given type \p Ty. 468 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 469 if (isAggregateTypeForABI(Ty)) { 470 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 471 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 472 return ABIArgInfo::getIndirect(0); 473 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 474 // Treat an enum type as its underlying type. 475 Ty = EnumTy->getDecl()->getIntegerType(); 476 } else if (Ty->isFloatingType()) { 477 // Floating-point types don't go inreg. 478 return ABIArgInfo::getDirect(); 479 } 480 481 return (Ty->isPromotableIntegerType() ? 482 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 483 } 484 485 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 486 if (RetTy->isVoidType()) 487 return ABIArgInfo::getIgnore(); 488 489 // In the PNaCl ABI we always return records/structures on the stack. 490 if (isAggregateTypeForABI(RetTy)) 491 return ABIArgInfo::getIndirect(0); 492 493 // Treat an enum type as its underlying type. 494 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 495 RetTy = EnumTy->getDecl()->getIntegerType(); 496 497 return (RetTy->isPromotableIntegerType() ? 498 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 499 } 500 501 /// IsX86_MMXType - Return true if this is an MMX type. 502 bool IsX86_MMXType(llvm::Type *IRType) { 503 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 504 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 505 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 506 IRType->getScalarSizeInBits() != 64; 507 } 508 509 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 510 StringRef Constraint, 511 llvm::Type* Ty) { 512 if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) { 513 if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) { 514 // Invalid MMX constraint 515 return 0; 516 } 517 518 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 519 } 520 521 // No operation needed 522 return Ty; 523 } 524 525 //===----------------------------------------------------------------------===// 526 // X86-32 ABI Implementation 527 //===----------------------------------------------------------------------===// 528 529 /// X86_32ABIInfo - The X86-32 ABI information. 530 class X86_32ABIInfo : public ABIInfo { 531 enum Class { 532 Integer, 533 Float 534 }; 535 536 static const unsigned MinABIStackAlignInBytes = 4; 537 538 bool IsDarwinVectorABI; 539 bool IsSmallStructInRegABI; 540 bool IsWin32StructABI; 541 unsigned DefaultNumRegisterParameters; 542 543 static bool isRegisterSize(unsigned Size) { 544 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 545 } 546 547 static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context, 548 unsigned callingConvention); 549 550 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 551 /// such that the argument will be passed in memory. 552 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, 553 unsigned &FreeRegs) const; 554 555 /// \brief Return the alignment to use for the given type on the stack. 556 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 557 558 Class classify(QualType Ty) const; 559 ABIArgInfo classifyReturnType(QualType RetTy, 560 unsigned callingConvention) const; 561 ABIArgInfo classifyArgumentType(QualType RetTy, unsigned &FreeRegs, 562 bool IsFastCall) const; 563 bool shouldUseInReg(QualType Ty, unsigned &FreeRegs, 564 bool IsFastCall, bool &NeedsPadding) const; 565 566 public: 567 568 virtual void computeInfo(CGFunctionInfo &FI) const; 569 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 570 CodeGenFunction &CGF) const; 571 572 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool w, 573 unsigned r) 574 : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p), 575 IsWin32StructABI(w), DefaultNumRegisterParameters(r) {} 576 }; 577 578 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 579 public: 580 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 581 bool d, bool p, bool w, unsigned r) 582 :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, w, r)) {} 583 584 static bool isStructReturnInRegABI( 585 const llvm::Triple &Triple, const CodeGenOptions &Opts); 586 587 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 588 CodeGen::CodeGenModule &CGM) const; 589 590 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const { 591 // Darwin uses different dwarf register numbers for EH. 592 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 593 return 4; 594 } 595 596 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 597 llvm::Value *Address) const; 598 599 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 600 StringRef Constraint, 601 llvm::Type* Ty) const { 602 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 603 } 604 605 llvm::Constant *getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const { 606 unsigned Sig = (0xeb << 0) | // jmp rel8 607 (0x06 << 8) | // .+0x08 608 ('F' << 16) | 609 ('T' << 24); 610 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 611 } 612 613 }; 614 615 } 616 617 /// shouldReturnTypeInRegister - Determine if the given type should be 618 /// passed in a register (for the Darwin ABI). 619 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 620 ASTContext &Context, 621 unsigned callingConvention) { 622 uint64_t Size = Context.getTypeSize(Ty); 623 624 // Type must be register sized. 625 if (!isRegisterSize(Size)) 626 return false; 627 628 if (Ty->isVectorType()) { 629 // 64- and 128- bit vectors inside structures are not returned in 630 // registers. 631 if (Size == 64 || Size == 128) 632 return false; 633 634 return true; 635 } 636 637 // If this is a builtin, pointer, enum, complex type, member pointer, or 638 // member function pointer it is ok. 639 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 640 Ty->isAnyComplexType() || Ty->isEnumeralType() || 641 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 642 return true; 643 644 // Arrays are treated like records. 645 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 646 return shouldReturnTypeInRegister(AT->getElementType(), Context, 647 callingConvention); 648 649 // Otherwise, it must be a record type. 650 const RecordType *RT = Ty->getAs<RecordType>(); 651 if (!RT) return false; 652 653 // FIXME: Traverse bases here too. 654 655 // For thiscall conventions, structures will never be returned in 656 // a register. This is for compatibility with the MSVC ABI 657 if (callingConvention == llvm::CallingConv::X86_ThisCall && 658 RT->isStructureType()) { 659 return false; 660 } 661 662 // Structure types are passed in register if all fields would be 663 // passed in a register. 664 for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(), 665 e = RT->getDecl()->field_end(); i != e; ++i) { 666 const FieldDecl *FD = *i; 667 668 // Empty fields are ignored. 669 if (isEmptyField(Context, FD, true)) 670 continue; 671 672 // Check fields recursively. 673 if (!shouldReturnTypeInRegister(FD->getType(), Context, 674 callingConvention)) 675 return false; 676 } 677 return true; 678 } 679 680 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 681 unsigned callingConvention) const { 682 if (RetTy->isVoidType()) 683 return ABIArgInfo::getIgnore(); 684 685 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 686 // On Darwin, some vectors are returned in registers. 687 if (IsDarwinVectorABI) { 688 uint64_t Size = getContext().getTypeSize(RetTy); 689 690 // 128-bit vectors are a special case; they are returned in 691 // registers and we need to make sure to pick a type the LLVM 692 // backend will like. 693 if (Size == 128) 694 return ABIArgInfo::getDirect(llvm::VectorType::get( 695 llvm::Type::getInt64Ty(getVMContext()), 2)); 696 697 // Always return in register if it fits in a general purpose 698 // register, or if it is 64 bits and has a single element. 699 if ((Size == 8 || Size == 16 || Size == 32) || 700 (Size == 64 && VT->getNumElements() == 1)) 701 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 702 Size)); 703 704 return ABIArgInfo::getIndirect(0); 705 } 706 707 return ABIArgInfo::getDirect(); 708 } 709 710 if (isAggregateTypeForABI(RetTy)) { 711 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 712 if (isRecordReturnIndirect(RT, getCXXABI())) 713 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 714 715 // Structures with flexible arrays are always indirect. 716 if (RT->getDecl()->hasFlexibleArrayMember()) 717 return ABIArgInfo::getIndirect(0); 718 } 719 720 // If specified, structs and unions are always indirect. 721 if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType()) 722 return ABIArgInfo::getIndirect(0); 723 724 // Small structures which are register sized are generally returned 725 // in a register. 726 if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, getContext(), 727 callingConvention)) { 728 uint64_t Size = getContext().getTypeSize(RetTy); 729 730 // As a special-case, if the struct is a "single-element" struct, and 731 // the field is of type "float" or "double", return it in a 732 // floating-point register. (MSVC does not apply this special case.) 733 // We apply a similar transformation for pointer types to improve the 734 // quality of the generated IR. 735 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 736 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 737 || SeltTy->hasPointerRepresentation()) 738 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 739 740 // FIXME: We should be able to narrow this integer in cases with dead 741 // padding. 742 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 743 } 744 745 return ABIArgInfo::getIndirect(0); 746 } 747 748 // Treat an enum type as its underlying type. 749 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 750 RetTy = EnumTy->getDecl()->getIntegerType(); 751 752 return (RetTy->isPromotableIntegerType() ? 753 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 754 } 755 756 static bool isSSEVectorType(ASTContext &Context, QualType Ty) { 757 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 758 } 759 760 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) { 761 const RecordType *RT = Ty->getAs<RecordType>(); 762 if (!RT) 763 return 0; 764 const RecordDecl *RD = RT->getDecl(); 765 766 // If this is a C++ record, check the bases first. 767 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 768 for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(), 769 e = CXXRD->bases_end(); i != e; ++i) 770 if (!isRecordWithSSEVectorType(Context, i->getType())) 771 return false; 772 773 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 774 i != e; ++i) { 775 QualType FT = i->getType(); 776 777 if (isSSEVectorType(Context, FT)) 778 return true; 779 780 if (isRecordWithSSEVectorType(Context, FT)) 781 return true; 782 } 783 784 return false; 785 } 786 787 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 788 unsigned Align) const { 789 // Otherwise, if the alignment is less than or equal to the minimum ABI 790 // alignment, just use the default; the backend will handle this. 791 if (Align <= MinABIStackAlignInBytes) 792 return 0; // Use default alignment. 793 794 // On non-Darwin, the stack type alignment is always 4. 795 if (!IsDarwinVectorABI) { 796 // Set explicit alignment, since we may need to realign the top. 797 return MinABIStackAlignInBytes; 798 } 799 800 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 801 if (Align >= 16 && (isSSEVectorType(getContext(), Ty) || 802 isRecordWithSSEVectorType(getContext(), Ty))) 803 return 16; 804 805 return MinABIStackAlignInBytes; 806 } 807 808 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 809 unsigned &FreeRegs) const { 810 if (!ByVal) { 811 if (FreeRegs) { 812 --FreeRegs; // Non byval indirects just use one pointer. 813 return ABIArgInfo::getIndirectInReg(0, false); 814 } 815 return ABIArgInfo::getIndirect(0, false); 816 } 817 818 // Compute the byval alignment. 819 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 820 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 821 if (StackAlign == 0) 822 return ABIArgInfo::getIndirect(4); 823 824 // If the stack alignment is less than the type alignment, realign the 825 // argument. 826 if (StackAlign < TypeAlign) 827 return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true, 828 /*Realign=*/true); 829 830 return ABIArgInfo::getIndirect(StackAlign); 831 } 832 833 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 834 const Type *T = isSingleElementStruct(Ty, getContext()); 835 if (!T) 836 T = Ty.getTypePtr(); 837 838 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 839 BuiltinType::Kind K = BT->getKind(); 840 if (K == BuiltinType::Float || K == BuiltinType::Double) 841 return Float; 842 } 843 return Integer; 844 } 845 846 bool X86_32ABIInfo::shouldUseInReg(QualType Ty, unsigned &FreeRegs, 847 bool IsFastCall, bool &NeedsPadding) const { 848 NeedsPadding = false; 849 Class C = classify(Ty); 850 if (C == Float) 851 return false; 852 853 unsigned Size = getContext().getTypeSize(Ty); 854 unsigned SizeInRegs = (Size + 31) / 32; 855 856 if (SizeInRegs == 0) 857 return false; 858 859 if (SizeInRegs > FreeRegs) { 860 FreeRegs = 0; 861 return false; 862 } 863 864 FreeRegs -= SizeInRegs; 865 866 if (IsFastCall) { 867 if (Size > 32) 868 return false; 869 870 if (Ty->isIntegralOrEnumerationType()) 871 return true; 872 873 if (Ty->isPointerType()) 874 return true; 875 876 if (Ty->isReferenceType()) 877 return true; 878 879 if (FreeRegs) 880 NeedsPadding = true; 881 882 return false; 883 } 884 885 return true; 886 } 887 888 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 889 unsigned &FreeRegs, 890 bool IsFastCall) const { 891 // FIXME: Set alignment on indirect arguments. 892 if (isAggregateTypeForABI(Ty)) { 893 if (const RecordType *RT = Ty->getAs<RecordType>()) { 894 if (IsWin32StructABI) 895 return getIndirectResult(Ty, true, FreeRegs); 896 897 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 898 return getIndirectResult(Ty, RAA == CGCXXABI::RAA_DirectInMemory, FreeRegs); 899 900 // Structures with flexible arrays are always indirect. 901 if (RT->getDecl()->hasFlexibleArrayMember()) 902 return getIndirectResult(Ty, true, FreeRegs); 903 } 904 905 // Ignore empty structs/unions. 906 if (isEmptyRecord(getContext(), Ty, true)) 907 return ABIArgInfo::getIgnore(); 908 909 llvm::LLVMContext &LLVMContext = getVMContext(); 910 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 911 bool NeedsPadding; 912 if (shouldUseInReg(Ty, FreeRegs, IsFastCall, NeedsPadding)) { 913 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 914 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 915 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 916 return ABIArgInfo::getDirectInReg(Result); 917 } 918 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : 0; 919 920 // Expand small (<= 128-bit) record types when we know that the stack layout 921 // of those arguments will match the struct. This is important because the 922 // LLVM backend isn't smart enough to remove byval, which inhibits many 923 // optimizations. 924 if (getContext().getTypeSize(Ty) <= 4*32 && 925 canExpandIndirectArgument(Ty, getContext())) 926 return ABIArgInfo::getExpandWithPadding(IsFastCall, PaddingType); 927 928 return getIndirectResult(Ty, true, FreeRegs); 929 } 930 931 if (const VectorType *VT = Ty->getAs<VectorType>()) { 932 // On Darwin, some vectors are passed in memory, we handle this by passing 933 // it as an i8/i16/i32/i64. 934 if (IsDarwinVectorABI) { 935 uint64_t Size = getContext().getTypeSize(Ty); 936 if ((Size == 8 || Size == 16 || Size == 32) || 937 (Size == 64 && VT->getNumElements() == 1)) 938 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 939 Size)); 940 } 941 942 if (IsX86_MMXType(CGT.ConvertType(Ty))) 943 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 944 945 return ABIArgInfo::getDirect(); 946 } 947 948 949 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 950 Ty = EnumTy->getDecl()->getIntegerType(); 951 952 bool NeedsPadding; 953 bool InReg = shouldUseInReg(Ty, FreeRegs, IsFastCall, NeedsPadding); 954 955 if (Ty->isPromotableIntegerType()) { 956 if (InReg) 957 return ABIArgInfo::getExtendInReg(); 958 return ABIArgInfo::getExtend(); 959 } 960 if (InReg) 961 return ABIArgInfo::getDirectInReg(); 962 return ABIArgInfo::getDirect(); 963 } 964 965 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 966 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), 967 FI.getCallingConvention()); 968 969 unsigned CC = FI.getCallingConvention(); 970 bool IsFastCall = CC == llvm::CallingConv::X86_FastCall; 971 unsigned FreeRegs; 972 if (IsFastCall) 973 FreeRegs = 2; 974 else if (FI.getHasRegParm()) 975 FreeRegs = FI.getRegParm(); 976 else 977 FreeRegs = DefaultNumRegisterParameters; 978 979 // If the return value is indirect, then the hidden argument is consuming one 980 // integer register. 981 if (FI.getReturnInfo().isIndirect() && FreeRegs) { 982 --FreeRegs; 983 ABIArgInfo &Old = FI.getReturnInfo(); 984 Old = ABIArgInfo::getIndirectInReg(Old.getIndirectAlign(), 985 Old.getIndirectByVal(), 986 Old.getIndirectRealign()); 987 } 988 989 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 990 it != ie; ++it) 991 it->info = classifyArgumentType(it->type, FreeRegs, IsFastCall); 992 } 993 994 llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 995 CodeGenFunction &CGF) const { 996 llvm::Type *BPP = CGF.Int8PtrPtrTy; 997 998 CGBuilderTy &Builder = CGF.Builder; 999 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, 1000 "ap"); 1001 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 1002 1003 // Compute if the address needs to be aligned 1004 unsigned Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity(); 1005 Align = getTypeStackAlignInBytes(Ty, Align); 1006 Align = std::max(Align, 4U); 1007 if (Align > 4) { 1008 // addr = (addr + align - 1) & -align; 1009 llvm::Value *Offset = 1010 llvm::ConstantInt::get(CGF.Int32Ty, Align - 1); 1011 Addr = CGF.Builder.CreateGEP(Addr, Offset); 1012 llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(Addr, 1013 CGF.Int32Ty); 1014 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -Align); 1015 Addr = CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask), 1016 Addr->getType(), 1017 "ap.cur.aligned"); 1018 } 1019 1020 llvm::Type *PTy = 1021 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 1022 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 1023 1024 uint64_t Offset = 1025 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, Align); 1026 llvm::Value *NextAddr = 1027 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 1028 "ap.next"); 1029 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 1030 1031 return AddrTyped; 1032 } 1033 1034 void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D, 1035 llvm::GlobalValue *GV, 1036 CodeGen::CodeGenModule &CGM) const { 1037 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1038 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 1039 // Get the LLVM function. 1040 llvm::Function *Fn = cast<llvm::Function>(GV); 1041 1042 // Now add the 'alignstack' attribute with a value of 16. 1043 llvm::AttrBuilder B; 1044 B.addStackAlignmentAttr(16); 1045 Fn->addAttributes(llvm::AttributeSet::FunctionIndex, 1046 llvm::AttributeSet::get(CGM.getLLVMContext(), 1047 llvm::AttributeSet::FunctionIndex, 1048 B)); 1049 } 1050 } 1051 } 1052 1053 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 1054 CodeGen::CodeGenFunction &CGF, 1055 llvm::Value *Address) const { 1056 CodeGen::CGBuilderTy &Builder = CGF.Builder; 1057 1058 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 1059 1060 // 0-7 are the eight integer registers; the order is different 1061 // on Darwin (for EH), but the range is the same. 1062 // 8 is %eip. 1063 AssignToArrayRange(Builder, Address, Four8, 0, 8); 1064 1065 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 1066 // 12-16 are st(0..4). Not sure why we stop at 4. 1067 // These have size 16, which is sizeof(long double) on 1068 // platforms with 8-byte alignment for that type. 1069 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 1070 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 1071 1072 } else { 1073 // 9 is %eflags, which doesn't get a size on Darwin for some 1074 // reason. 1075 Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9)); 1076 1077 // 11-16 are st(0..5). Not sure why we stop at 5. 1078 // These have size 12, which is sizeof(long double) on 1079 // platforms with 4-byte alignment for that type. 1080 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 1081 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 1082 } 1083 1084 return false; 1085 } 1086 1087 //===----------------------------------------------------------------------===// 1088 // X86-64 ABI Implementation 1089 //===----------------------------------------------------------------------===// 1090 1091 1092 namespace { 1093 /// X86_64ABIInfo - The X86_64 ABI information. 1094 class X86_64ABIInfo : public ABIInfo { 1095 enum Class { 1096 Integer = 0, 1097 SSE, 1098 SSEUp, 1099 X87, 1100 X87Up, 1101 ComplexX87, 1102 NoClass, 1103 Memory 1104 }; 1105 1106 /// merge - Implement the X86_64 ABI merging algorithm. 1107 /// 1108 /// Merge an accumulating classification \arg Accum with a field 1109 /// classification \arg Field. 1110 /// 1111 /// \param Accum - The accumulating classification. This should 1112 /// always be either NoClass or the result of a previous merge 1113 /// call. In addition, this should never be Memory (the caller 1114 /// should just return Memory for the aggregate). 1115 static Class merge(Class Accum, Class Field); 1116 1117 /// postMerge - Implement the X86_64 ABI post merging algorithm. 1118 /// 1119 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 1120 /// final MEMORY or SSE classes when necessary. 1121 /// 1122 /// \param AggregateSize - The size of the current aggregate in 1123 /// the classification process. 1124 /// 1125 /// \param Lo - The classification for the parts of the type 1126 /// residing in the low word of the containing object. 1127 /// 1128 /// \param Hi - The classification for the parts of the type 1129 /// residing in the higher words of the containing object. 1130 /// 1131 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 1132 1133 /// classify - Determine the x86_64 register classes in which the 1134 /// given type T should be passed. 1135 /// 1136 /// \param Lo - The classification for the parts of the type 1137 /// residing in the low word of the containing object. 1138 /// 1139 /// \param Hi - The classification for the parts of the type 1140 /// residing in the high word of the containing object. 1141 /// 1142 /// \param OffsetBase - The bit offset of this type in the 1143 /// containing object. Some parameters are classified different 1144 /// depending on whether they straddle an eightbyte boundary. 1145 /// 1146 /// \param isNamedArg - Whether the argument in question is a "named" 1147 /// argument, as used in AMD64-ABI 3.5.7. 1148 /// 1149 /// If a word is unused its result will be NoClass; if a type should 1150 /// be passed in Memory then at least the classification of \arg Lo 1151 /// will be Memory. 1152 /// 1153 /// The \arg Lo class will be NoClass iff the argument is ignored. 1154 /// 1155 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 1156 /// also be ComplexX87. 1157 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 1158 bool isNamedArg) const; 1159 1160 llvm::Type *GetByteVectorType(QualType Ty) const; 1161 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 1162 unsigned IROffset, QualType SourceTy, 1163 unsigned SourceOffset) const; 1164 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 1165 unsigned IROffset, QualType SourceTy, 1166 unsigned SourceOffset) const; 1167 1168 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1169 /// such that the argument will be returned in memory. 1170 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 1171 1172 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1173 /// such that the argument will be passed in memory. 1174 /// 1175 /// \param freeIntRegs - The number of free integer registers remaining 1176 /// available. 1177 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 1178 1179 ABIArgInfo classifyReturnType(QualType RetTy) const; 1180 1181 ABIArgInfo classifyArgumentType(QualType Ty, 1182 unsigned freeIntRegs, 1183 unsigned &neededInt, 1184 unsigned &neededSSE, 1185 bool isNamedArg) const; 1186 1187 bool IsIllegalVectorType(QualType Ty) const; 1188 1189 /// The 0.98 ABI revision clarified a lot of ambiguities, 1190 /// unfortunately in ways that were not always consistent with 1191 /// certain previous compilers. In particular, platforms which 1192 /// required strict binary compatibility with older versions of GCC 1193 /// may need to exempt themselves. 1194 bool honorsRevision0_98() const { 1195 return !getTarget().getTriple().isOSDarwin(); 1196 } 1197 1198 bool HasAVX; 1199 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 1200 // 64-bit hardware. 1201 bool Has64BitPointers; 1202 1203 public: 1204 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool hasavx) : 1205 ABIInfo(CGT), HasAVX(hasavx), 1206 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 1207 } 1208 1209 bool isPassedUsingAVXType(QualType type) const { 1210 unsigned neededInt, neededSSE; 1211 // The freeIntRegs argument doesn't matter here. 1212 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 1213 /*isNamedArg*/true); 1214 if (info.isDirect()) { 1215 llvm::Type *ty = info.getCoerceToType(); 1216 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 1217 return (vectorTy->getBitWidth() > 128); 1218 } 1219 return false; 1220 } 1221 1222 virtual void computeInfo(CGFunctionInfo &FI) const; 1223 1224 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 1225 CodeGenFunction &CGF) const; 1226 }; 1227 1228 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 1229 class WinX86_64ABIInfo : public ABIInfo { 1230 1231 ABIArgInfo classify(QualType Ty, bool IsReturnType) const; 1232 1233 public: 1234 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 1235 1236 virtual void computeInfo(CGFunctionInfo &FI) const; 1237 1238 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 1239 CodeGenFunction &CGF) const; 1240 }; 1241 1242 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 1243 public: 1244 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX) 1245 : TargetCodeGenInfo(new X86_64ABIInfo(CGT, HasAVX)) {} 1246 1247 const X86_64ABIInfo &getABIInfo() const { 1248 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 1249 } 1250 1251 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const { 1252 return 7; 1253 } 1254 1255 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1256 llvm::Value *Address) const { 1257 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 1258 1259 // 0-15 are the 16 integer registers. 1260 // 16 is %rip. 1261 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 1262 return false; 1263 } 1264 1265 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1266 StringRef Constraint, 1267 llvm::Type* Ty) const { 1268 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1269 } 1270 1271 bool isNoProtoCallVariadic(const CallArgList &args, 1272 const FunctionNoProtoType *fnType) const { 1273 // The default CC on x86-64 sets %al to the number of SSA 1274 // registers used, and GCC sets this when calling an unprototyped 1275 // function, so we override the default behavior. However, don't do 1276 // that when AVX types are involved: the ABI explicitly states it is 1277 // undefined, and it doesn't work in practice because of how the ABI 1278 // defines varargs anyway. 1279 if (fnType->getCallConv() == CC_C) { 1280 bool HasAVXType = false; 1281 for (CallArgList::const_iterator 1282 it = args.begin(), ie = args.end(); it != ie; ++it) { 1283 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 1284 HasAVXType = true; 1285 break; 1286 } 1287 } 1288 1289 if (!HasAVXType) 1290 return true; 1291 } 1292 1293 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 1294 } 1295 1296 llvm::Constant *getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const { 1297 unsigned Sig = (0xeb << 0) | // jmp rel8 1298 (0x0a << 8) | // .+0x0c 1299 ('F' << 16) | 1300 ('T' << 24); 1301 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1302 } 1303 1304 }; 1305 1306 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 1307 // If the argument does not end in .lib, automatically add the suffix. This 1308 // matches the behavior of MSVC. 1309 std::string ArgStr = Lib; 1310 if (Lib.size() <= 4 || 1311 Lib.substr(Lib.size() - 4).compare_lower(".lib") != 0) { 1312 ArgStr += ".lib"; 1313 } 1314 return ArgStr; 1315 } 1316 1317 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 1318 public: 1319 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 1320 bool d, bool p, bool w, unsigned RegParms) 1321 : X86_32TargetCodeGenInfo(CGT, d, p, w, RegParms) {} 1322 1323 void getDependentLibraryOption(llvm::StringRef Lib, 1324 llvm::SmallString<24> &Opt) const { 1325 Opt = "/DEFAULTLIB:"; 1326 Opt += qualifyWindowsLibrary(Lib); 1327 } 1328 1329 void getDetectMismatchOption(llvm::StringRef Name, 1330 llvm::StringRef Value, 1331 llvm::SmallString<32> &Opt) const { 1332 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 1333 } 1334 }; 1335 1336 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 1337 public: 1338 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 1339 : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {} 1340 1341 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const { 1342 return 7; 1343 } 1344 1345 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1346 llvm::Value *Address) const { 1347 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 1348 1349 // 0-15 are the 16 integer registers. 1350 // 16 is %rip. 1351 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 1352 return false; 1353 } 1354 1355 void getDependentLibraryOption(llvm::StringRef Lib, 1356 llvm::SmallString<24> &Opt) const { 1357 Opt = "/DEFAULTLIB:"; 1358 Opt += qualifyWindowsLibrary(Lib); 1359 } 1360 1361 void getDetectMismatchOption(llvm::StringRef Name, 1362 llvm::StringRef Value, 1363 llvm::SmallString<32> &Opt) const { 1364 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 1365 } 1366 }; 1367 1368 } 1369 1370 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 1371 Class &Hi) const { 1372 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 1373 // 1374 // (a) If one of the classes is Memory, the whole argument is passed in 1375 // memory. 1376 // 1377 // (b) If X87UP is not preceded by X87, the whole argument is passed in 1378 // memory. 1379 // 1380 // (c) If the size of the aggregate exceeds two eightbytes and the first 1381 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 1382 // argument is passed in memory. NOTE: This is necessary to keep the 1383 // ABI working for processors that don't support the __m256 type. 1384 // 1385 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 1386 // 1387 // Some of these are enforced by the merging logic. Others can arise 1388 // only with unions; for example: 1389 // union { _Complex double; unsigned; } 1390 // 1391 // Note that clauses (b) and (c) were added in 0.98. 1392 // 1393 if (Hi == Memory) 1394 Lo = Memory; 1395 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 1396 Lo = Memory; 1397 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 1398 Lo = Memory; 1399 if (Hi == SSEUp && Lo != SSE) 1400 Hi = SSE; 1401 } 1402 1403 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 1404 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 1405 // classified recursively so that always two fields are 1406 // considered. The resulting class is calculated according to 1407 // the classes of the fields in the eightbyte: 1408 // 1409 // (a) If both classes are equal, this is the resulting class. 1410 // 1411 // (b) If one of the classes is NO_CLASS, the resulting class is 1412 // the other class. 1413 // 1414 // (c) If one of the classes is MEMORY, the result is the MEMORY 1415 // class. 1416 // 1417 // (d) If one of the classes is INTEGER, the result is the 1418 // INTEGER. 1419 // 1420 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 1421 // MEMORY is used as class. 1422 // 1423 // (f) Otherwise class SSE is used. 1424 1425 // Accum should never be memory (we should have returned) or 1426 // ComplexX87 (because this cannot be passed in a structure). 1427 assert((Accum != Memory && Accum != ComplexX87) && 1428 "Invalid accumulated classification during merge."); 1429 if (Accum == Field || Field == NoClass) 1430 return Accum; 1431 if (Field == Memory) 1432 return Memory; 1433 if (Accum == NoClass) 1434 return Field; 1435 if (Accum == Integer || Field == Integer) 1436 return Integer; 1437 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 1438 Accum == X87 || Accum == X87Up) 1439 return Memory; 1440 return SSE; 1441 } 1442 1443 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 1444 Class &Lo, Class &Hi, bool isNamedArg) const { 1445 // FIXME: This code can be simplified by introducing a simple value class for 1446 // Class pairs with appropriate constructor methods for the various 1447 // situations. 1448 1449 // FIXME: Some of the split computations are wrong; unaligned vectors 1450 // shouldn't be passed in registers for example, so there is no chance they 1451 // can straddle an eightbyte. Verify & simplify. 1452 1453 Lo = Hi = NoClass; 1454 1455 Class &Current = OffsetBase < 64 ? Lo : Hi; 1456 Current = Memory; 1457 1458 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 1459 BuiltinType::Kind k = BT->getKind(); 1460 1461 if (k == BuiltinType::Void) { 1462 Current = NoClass; 1463 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 1464 Lo = Integer; 1465 Hi = Integer; 1466 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 1467 Current = Integer; 1468 } else if ((k == BuiltinType::Float || k == BuiltinType::Double) || 1469 (k == BuiltinType::LongDouble && 1470 getTarget().getTriple().isOSNaCl())) { 1471 Current = SSE; 1472 } else if (k == BuiltinType::LongDouble) { 1473 Lo = X87; 1474 Hi = X87Up; 1475 } 1476 // FIXME: _Decimal32 and _Decimal64 are SSE. 1477 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 1478 return; 1479 } 1480 1481 if (const EnumType *ET = Ty->getAs<EnumType>()) { 1482 // Classify the underlying integer type. 1483 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 1484 return; 1485 } 1486 1487 if (Ty->hasPointerRepresentation()) { 1488 Current = Integer; 1489 return; 1490 } 1491 1492 if (Ty->isMemberPointerType()) { 1493 if (Ty->isMemberFunctionPointerType() && Has64BitPointers) 1494 Lo = Hi = Integer; 1495 else 1496 Current = Integer; 1497 return; 1498 } 1499 1500 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1501 uint64_t Size = getContext().getTypeSize(VT); 1502 if (Size == 32) { 1503 // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x 1504 // float> as integer. 1505 Current = Integer; 1506 1507 // If this type crosses an eightbyte boundary, it should be 1508 // split. 1509 uint64_t EB_Real = (OffsetBase) / 64; 1510 uint64_t EB_Imag = (OffsetBase + Size - 1) / 64; 1511 if (EB_Real != EB_Imag) 1512 Hi = Lo; 1513 } else if (Size == 64) { 1514 // gcc passes <1 x double> in memory. :( 1515 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) 1516 return; 1517 1518 // gcc passes <1 x long long> as INTEGER. 1519 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) || 1520 VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) || 1521 VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) || 1522 VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong)) 1523 Current = Integer; 1524 else 1525 Current = SSE; 1526 1527 // If this type crosses an eightbyte boundary, it should be 1528 // split. 1529 if (OffsetBase && OffsetBase != 64) 1530 Hi = Lo; 1531 } else if (Size == 128 || (HasAVX && isNamedArg && Size == 256)) { 1532 // Arguments of 256-bits are split into four eightbyte chunks. The 1533 // least significant one belongs to class SSE and all the others to class 1534 // SSEUP. The original Lo and Hi design considers that types can't be 1535 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 1536 // This design isn't correct for 256-bits, but since there're no cases 1537 // where the upper parts would need to be inspected, avoid adding 1538 // complexity and just consider Hi to match the 64-256 part. 1539 // 1540 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 1541 // registers if they are "named", i.e. not part of the "..." of a 1542 // variadic function. 1543 Lo = SSE; 1544 Hi = SSEUp; 1545 } 1546 return; 1547 } 1548 1549 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 1550 QualType ET = getContext().getCanonicalType(CT->getElementType()); 1551 1552 uint64_t Size = getContext().getTypeSize(Ty); 1553 if (ET->isIntegralOrEnumerationType()) { 1554 if (Size <= 64) 1555 Current = Integer; 1556 else if (Size <= 128) 1557 Lo = Hi = Integer; 1558 } else if (ET == getContext().FloatTy) 1559 Current = SSE; 1560 else if (ET == getContext().DoubleTy || 1561 (ET == getContext().LongDoubleTy && 1562 getTarget().getTriple().isOSNaCl())) 1563 Lo = Hi = SSE; 1564 else if (ET == getContext().LongDoubleTy) 1565 Current = ComplexX87; 1566 1567 // If this complex type crosses an eightbyte boundary then it 1568 // should be split. 1569 uint64_t EB_Real = (OffsetBase) / 64; 1570 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 1571 if (Hi == NoClass && EB_Real != EB_Imag) 1572 Hi = Lo; 1573 1574 return; 1575 } 1576 1577 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 1578 // Arrays are treated like structures. 1579 1580 uint64_t Size = getContext().getTypeSize(Ty); 1581 1582 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 1583 // than four eightbytes, ..., it has class MEMORY. 1584 if (Size > 256) 1585 return; 1586 1587 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 1588 // fields, it has class MEMORY. 1589 // 1590 // Only need to check alignment of array base. 1591 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 1592 return; 1593 1594 // Otherwise implement simplified merge. We could be smarter about 1595 // this, but it isn't worth it and would be harder to verify. 1596 Current = NoClass; 1597 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 1598 uint64_t ArraySize = AT->getSize().getZExtValue(); 1599 1600 // The only case a 256-bit wide vector could be used is when the array 1601 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 1602 // to work for sizes wider than 128, early check and fallback to memory. 1603 if (Size > 128 && EltSize != 256) 1604 return; 1605 1606 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 1607 Class FieldLo, FieldHi; 1608 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 1609 Lo = merge(Lo, FieldLo); 1610 Hi = merge(Hi, FieldHi); 1611 if (Lo == Memory || Hi == Memory) 1612 break; 1613 } 1614 1615 postMerge(Size, Lo, Hi); 1616 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 1617 return; 1618 } 1619 1620 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1621 uint64_t Size = getContext().getTypeSize(Ty); 1622 1623 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 1624 // than four eightbytes, ..., it has class MEMORY. 1625 if (Size > 256) 1626 return; 1627 1628 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 1629 // copy constructor or a non-trivial destructor, it is passed by invisible 1630 // reference. 1631 if (getRecordArgABI(RT, getCXXABI())) 1632 return; 1633 1634 const RecordDecl *RD = RT->getDecl(); 1635 1636 // Assume variable sized types are passed in memory. 1637 if (RD->hasFlexibleArrayMember()) 1638 return; 1639 1640 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 1641 1642 // Reset Lo class, this will be recomputed. 1643 Current = NoClass; 1644 1645 // If this is a C++ record, classify the bases first. 1646 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1647 for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(), 1648 e = CXXRD->bases_end(); i != e; ++i) { 1649 assert(!i->isVirtual() && !i->getType()->isDependentType() && 1650 "Unexpected base class!"); 1651 const CXXRecordDecl *Base = 1652 cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl()); 1653 1654 // Classify this field. 1655 // 1656 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 1657 // single eightbyte, each is classified separately. Each eightbyte gets 1658 // initialized to class NO_CLASS. 1659 Class FieldLo, FieldHi; 1660 uint64_t Offset = 1661 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 1662 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 1663 Lo = merge(Lo, FieldLo); 1664 Hi = merge(Hi, FieldHi); 1665 if (Lo == Memory || Hi == Memory) 1666 break; 1667 } 1668 } 1669 1670 // Classify the fields one at a time, merging the results. 1671 unsigned idx = 0; 1672 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 1673 i != e; ++i, ++idx) { 1674 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 1675 bool BitField = i->isBitField(); 1676 1677 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 1678 // four eightbytes, or it contains unaligned fields, it has class MEMORY. 1679 // 1680 // The only case a 256-bit wide vector could be used is when the struct 1681 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 1682 // to work for sizes wider than 128, early check and fallback to memory. 1683 // 1684 if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) { 1685 Lo = Memory; 1686 return; 1687 } 1688 // Note, skip this test for bit-fields, see below. 1689 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 1690 Lo = Memory; 1691 return; 1692 } 1693 1694 // Classify this field. 1695 // 1696 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 1697 // exceeds a single eightbyte, each is classified 1698 // separately. Each eightbyte gets initialized to class 1699 // NO_CLASS. 1700 Class FieldLo, FieldHi; 1701 1702 // Bit-fields require special handling, they do not force the 1703 // structure to be passed in memory even if unaligned, and 1704 // therefore they can straddle an eightbyte. 1705 if (BitField) { 1706 // Ignore padding bit-fields. 1707 if (i->isUnnamedBitfield()) 1708 continue; 1709 1710 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 1711 uint64_t Size = i->getBitWidthValue(getContext()); 1712 1713 uint64_t EB_Lo = Offset / 64; 1714 uint64_t EB_Hi = (Offset + Size - 1) / 64; 1715 1716 if (EB_Lo) { 1717 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 1718 FieldLo = NoClass; 1719 FieldHi = Integer; 1720 } else { 1721 FieldLo = Integer; 1722 FieldHi = EB_Hi ? Integer : NoClass; 1723 } 1724 } else 1725 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 1726 Lo = merge(Lo, FieldLo); 1727 Hi = merge(Hi, FieldHi); 1728 if (Lo == Memory || Hi == Memory) 1729 break; 1730 } 1731 1732 postMerge(Size, Lo, Hi); 1733 } 1734 } 1735 1736 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 1737 // If this is a scalar LLVM value then assume LLVM will pass it in the right 1738 // place naturally. 1739 if (!isAggregateTypeForABI(Ty)) { 1740 // Treat an enum type as its underlying type. 1741 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1742 Ty = EnumTy->getDecl()->getIntegerType(); 1743 1744 return (Ty->isPromotableIntegerType() ? 1745 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 1746 } 1747 1748 return ABIArgInfo::getIndirect(0); 1749 } 1750 1751 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 1752 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 1753 uint64_t Size = getContext().getTypeSize(VecTy); 1754 unsigned LargestVector = HasAVX ? 256 : 128; 1755 if (Size <= 64 || Size > LargestVector) 1756 return true; 1757 } 1758 1759 return false; 1760 } 1761 1762 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 1763 unsigned freeIntRegs) const { 1764 // If this is a scalar LLVM value then assume LLVM will pass it in the right 1765 // place naturally. 1766 // 1767 // This assumption is optimistic, as there could be free registers available 1768 // when we need to pass this argument in memory, and LLVM could try to pass 1769 // the argument in the free register. This does not seem to happen currently, 1770 // but this code would be much safer if we could mark the argument with 1771 // 'onstack'. See PR12193. 1772 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) { 1773 // Treat an enum type as its underlying type. 1774 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1775 Ty = EnumTy->getDecl()->getIntegerType(); 1776 1777 return (Ty->isPromotableIntegerType() ? 1778 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 1779 } 1780 1781 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 1782 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 1783 1784 // Compute the byval alignment. We specify the alignment of the byval in all 1785 // cases so that the mid-level optimizer knows the alignment of the byval. 1786 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 1787 1788 // Attempt to avoid passing indirect results using byval when possible. This 1789 // is important for good codegen. 1790 // 1791 // We do this by coercing the value into a scalar type which the backend can 1792 // handle naturally (i.e., without using byval). 1793 // 1794 // For simplicity, we currently only do this when we have exhausted all of the 1795 // free integer registers. Doing this when there are free integer registers 1796 // would require more care, as we would have to ensure that the coerced value 1797 // did not claim the unused register. That would require either reording the 1798 // arguments to the function (so that any subsequent inreg values came first), 1799 // or only doing this optimization when there were no following arguments that 1800 // might be inreg. 1801 // 1802 // We currently expect it to be rare (particularly in well written code) for 1803 // arguments to be passed on the stack when there are still free integer 1804 // registers available (this would typically imply large structs being passed 1805 // by value), so this seems like a fair tradeoff for now. 1806 // 1807 // We can revisit this if the backend grows support for 'onstack' parameter 1808 // attributes. See PR12193. 1809 if (freeIntRegs == 0) { 1810 uint64_t Size = getContext().getTypeSize(Ty); 1811 1812 // If this type fits in an eightbyte, coerce it into the matching integral 1813 // type, which will end up on the stack (with alignment 8). 1814 if (Align == 8 && Size <= 64) 1815 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1816 Size)); 1817 } 1818 1819 return ABIArgInfo::getIndirect(Align); 1820 } 1821 1822 /// GetByteVectorType - The ABI specifies that a value should be passed in an 1823 /// full vector XMM/YMM register. Pick an LLVM IR type that will be passed as a 1824 /// vector register. 1825 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 1826 llvm::Type *IRType = CGT.ConvertType(Ty); 1827 1828 // Wrapper structs that just contain vectors are passed just like vectors, 1829 // strip them off if present. 1830 llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType); 1831 while (STy && STy->getNumElements() == 1) { 1832 IRType = STy->getElementType(0); 1833 STy = dyn_cast<llvm::StructType>(IRType); 1834 } 1835 1836 // If the preferred type is a 16-byte vector, prefer to pass it. 1837 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(IRType)){ 1838 llvm::Type *EltTy = VT->getElementType(); 1839 unsigned BitWidth = VT->getBitWidth(); 1840 if ((BitWidth >= 128 && BitWidth <= 256) && 1841 (EltTy->isFloatTy() || EltTy->isDoubleTy() || 1842 EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) || 1843 EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) || 1844 EltTy->isIntegerTy(128))) 1845 return VT; 1846 } 1847 1848 return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2); 1849 } 1850 1851 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 1852 /// is known to either be off the end of the specified type or being in 1853 /// alignment padding. The user type specified is known to be at most 128 bits 1854 /// in size, and have passed through X86_64ABIInfo::classify with a successful 1855 /// classification that put one of the two halves in the INTEGER class. 1856 /// 1857 /// It is conservatively correct to return false. 1858 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 1859 unsigned EndBit, ASTContext &Context) { 1860 // If the bytes being queried are off the end of the type, there is no user 1861 // data hiding here. This handles analysis of builtins, vectors and other 1862 // types that don't contain interesting padding. 1863 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 1864 if (TySize <= StartBit) 1865 return true; 1866 1867 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 1868 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 1869 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 1870 1871 // Check each element to see if the element overlaps with the queried range. 1872 for (unsigned i = 0; i != NumElts; ++i) { 1873 // If the element is after the span we care about, then we're done.. 1874 unsigned EltOffset = i*EltSize; 1875 if (EltOffset >= EndBit) break; 1876 1877 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 1878 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 1879 EndBit-EltOffset, Context)) 1880 return false; 1881 } 1882 // If it overlaps no elements, then it is safe to process as padding. 1883 return true; 1884 } 1885 1886 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1887 const RecordDecl *RD = RT->getDecl(); 1888 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 1889 1890 // If this is a C++ record, check the bases first. 1891 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1892 for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(), 1893 e = CXXRD->bases_end(); i != e; ++i) { 1894 assert(!i->isVirtual() && !i->getType()->isDependentType() && 1895 "Unexpected base class!"); 1896 const CXXRecordDecl *Base = 1897 cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl()); 1898 1899 // If the base is after the span we care about, ignore it. 1900 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 1901 if (BaseOffset >= EndBit) continue; 1902 1903 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 1904 if (!BitsContainNoUserData(i->getType(), BaseStart, 1905 EndBit-BaseOffset, Context)) 1906 return false; 1907 } 1908 } 1909 1910 // Verify that no field has data that overlaps the region of interest. Yes 1911 // this could be sped up a lot by being smarter about queried fields, 1912 // however we're only looking at structs up to 16 bytes, so we don't care 1913 // much. 1914 unsigned idx = 0; 1915 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 1916 i != e; ++i, ++idx) { 1917 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 1918 1919 // If we found a field after the region we care about, then we're done. 1920 if (FieldOffset >= EndBit) break; 1921 1922 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 1923 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 1924 Context)) 1925 return false; 1926 } 1927 1928 // If nothing in this record overlapped the area of interest, then we're 1929 // clean. 1930 return true; 1931 } 1932 1933 return false; 1934 } 1935 1936 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a 1937 /// float member at the specified offset. For example, {int,{float}} has a 1938 /// float at offset 4. It is conservatively correct for this routine to return 1939 /// false. 1940 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, 1941 const llvm::DataLayout &TD) { 1942 // Base case if we find a float. 1943 if (IROffset == 0 && IRType->isFloatTy()) 1944 return true; 1945 1946 // If this is a struct, recurse into the field at the specified offset. 1947 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 1948 const llvm::StructLayout *SL = TD.getStructLayout(STy); 1949 unsigned Elt = SL->getElementContainingOffset(IROffset); 1950 IROffset -= SL->getElementOffset(Elt); 1951 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); 1952 } 1953 1954 // If this is an array, recurse into the field at the specified offset. 1955 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 1956 llvm::Type *EltTy = ATy->getElementType(); 1957 unsigned EltSize = TD.getTypeAllocSize(EltTy); 1958 IROffset -= IROffset/EltSize*EltSize; 1959 return ContainsFloatAtOffset(EltTy, IROffset, TD); 1960 } 1961 1962 return false; 1963 } 1964 1965 1966 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 1967 /// low 8 bytes of an XMM register, corresponding to the SSE class. 1968 llvm::Type *X86_64ABIInfo:: 1969 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 1970 QualType SourceTy, unsigned SourceOffset) const { 1971 // The only three choices we have are either double, <2 x float>, or float. We 1972 // pass as float if the last 4 bytes is just padding. This happens for 1973 // structs that contain 3 floats. 1974 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, 1975 SourceOffset*8+64, getContext())) 1976 return llvm::Type::getFloatTy(getVMContext()); 1977 1978 // We want to pass as <2 x float> if the LLVM IR type contains a float at 1979 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the 1980 // case. 1981 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && 1982 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) 1983 return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2); 1984 1985 return llvm::Type::getDoubleTy(getVMContext()); 1986 } 1987 1988 1989 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 1990 /// an 8-byte GPR. This means that we either have a scalar or we are talking 1991 /// about the high or low part of an up-to-16-byte struct. This routine picks 1992 /// the best LLVM IR type to represent this, which may be i64 or may be anything 1993 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 1994 /// etc). 1995 /// 1996 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 1997 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 1998 /// the 8-byte value references. PrefType may be null. 1999 /// 2000 /// SourceTy is the source level type for the entire argument. SourceOffset is 2001 /// an offset into this that we're processing (which is always either 0 or 8). 2002 /// 2003 llvm::Type *X86_64ABIInfo:: 2004 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 2005 QualType SourceTy, unsigned SourceOffset) const { 2006 // If we're dealing with an un-offset LLVM IR type, then it means that we're 2007 // returning an 8-byte unit starting with it. See if we can safely use it. 2008 if (IROffset == 0) { 2009 // Pointers and int64's always fill the 8-byte unit. 2010 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 2011 IRType->isIntegerTy(64)) 2012 return IRType; 2013 2014 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 2015 // goodness in the source type is just tail padding. This is allowed to 2016 // kick in for struct {double,int} on the int, but not on 2017 // struct{double,int,int} because we wouldn't return the second int. We 2018 // have to do this analysis on the source type because we can't depend on 2019 // unions being lowered a specific way etc. 2020 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 2021 IRType->isIntegerTy(32) || 2022 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 2023 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 2024 cast<llvm::IntegerType>(IRType)->getBitWidth(); 2025 2026 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 2027 SourceOffset*8+64, getContext())) 2028 return IRType; 2029 } 2030 } 2031 2032 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 2033 // If this is a struct, recurse into the field at the specified offset. 2034 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 2035 if (IROffset < SL->getSizeInBytes()) { 2036 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 2037 IROffset -= SL->getElementOffset(FieldIdx); 2038 2039 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 2040 SourceTy, SourceOffset); 2041 } 2042 } 2043 2044 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 2045 llvm::Type *EltTy = ATy->getElementType(); 2046 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 2047 unsigned EltOffset = IROffset/EltSize*EltSize; 2048 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 2049 SourceOffset); 2050 } 2051 2052 // Okay, we don't have any better idea of what to pass, so we pass this in an 2053 // integer register that isn't too big to fit the rest of the struct. 2054 unsigned TySizeInBytes = 2055 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 2056 2057 assert(TySizeInBytes != SourceOffset && "Empty field?"); 2058 2059 // It is always safe to classify this as an integer type up to i64 that 2060 // isn't larger than the structure. 2061 return llvm::IntegerType::get(getVMContext(), 2062 std::min(TySizeInBytes-SourceOffset, 8U)*8); 2063 } 2064 2065 2066 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 2067 /// be used as elements of a two register pair to pass or return, return a 2068 /// first class aggregate to represent them. For example, if the low part of 2069 /// a by-value argument should be passed as i32* and the high part as float, 2070 /// return {i32*, float}. 2071 static llvm::Type * 2072 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 2073 const llvm::DataLayout &TD) { 2074 // In order to correctly satisfy the ABI, we need to the high part to start 2075 // at offset 8. If the high and low parts we inferred are both 4-byte types 2076 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 2077 // the second element at offset 8. Check for this: 2078 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 2079 unsigned HiAlign = TD.getABITypeAlignment(Hi); 2080 unsigned HiStart = llvm::DataLayout::RoundUpAlignment(LoSize, HiAlign); 2081 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 2082 2083 // To handle this, we have to increase the size of the low part so that the 2084 // second element will start at an 8 byte offset. We can't increase the size 2085 // of the second element because it might make us access off the end of the 2086 // struct. 2087 if (HiStart != 8) { 2088 // There are only two sorts of types the ABI generation code can produce for 2089 // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32. 2090 // Promote these to a larger type. 2091 if (Lo->isFloatTy()) 2092 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 2093 else { 2094 assert(Lo->isIntegerTy() && "Invalid/unknown lo type"); 2095 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 2096 } 2097 } 2098 2099 llvm::StructType *Result = llvm::StructType::get(Lo, Hi, NULL); 2100 2101 2102 // Verify that the second element is at an 8-byte offset. 2103 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 2104 "Invalid x86-64 argument pair!"); 2105 return Result; 2106 } 2107 2108 ABIArgInfo X86_64ABIInfo:: 2109 classifyReturnType(QualType RetTy) const { 2110 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 2111 // classification algorithm. 2112 X86_64ABIInfo::Class Lo, Hi; 2113 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 2114 2115 // Check some invariants. 2116 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 2117 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 2118 2119 llvm::Type *ResType = 0; 2120 switch (Lo) { 2121 case NoClass: 2122 if (Hi == NoClass) 2123 return ABIArgInfo::getIgnore(); 2124 // If the low part is just padding, it takes no register, leave ResType 2125 // null. 2126 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 2127 "Unknown missing lo part"); 2128 break; 2129 2130 case SSEUp: 2131 case X87Up: 2132 llvm_unreachable("Invalid classification for lo word."); 2133 2134 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 2135 // hidden argument. 2136 case Memory: 2137 return getIndirectReturnResult(RetTy); 2138 2139 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 2140 // available register of the sequence %rax, %rdx is used. 2141 case Integer: 2142 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 2143 2144 // If we have a sign or zero extended integer, make sure to return Extend 2145 // so that the parameter gets the right LLVM IR attributes. 2146 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 2147 // Treat an enum type as its underlying type. 2148 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 2149 RetTy = EnumTy->getDecl()->getIntegerType(); 2150 2151 if (RetTy->isIntegralOrEnumerationType() && 2152 RetTy->isPromotableIntegerType()) 2153 return ABIArgInfo::getExtend(); 2154 } 2155 break; 2156 2157 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 2158 // available SSE register of the sequence %xmm0, %xmm1 is used. 2159 case SSE: 2160 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 2161 break; 2162 2163 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 2164 // returned on the X87 stack in %st0 as 80-bit x87 number. 2165 case X87: 2166 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 2167 break; 2168 2169 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 2170 // part of the value is returned in %st0 and the imaginary part in 2171 // %st1. 2172 case ComplexX87: 2173 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 2174 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 2175 llvm::Type::getX86_FP80Ty(getVMContext()), 2176 NULL); 2177 break; 2178 } 2179 2180 llvm::Type *HighPart = 0; 2181 switch (Hi) { 2182 // Memory was handled previously and X87 should 2183 // never occur as a hi class. 2184 case Memory: 2185 case X87: 2186 llvm_unreachable("Invalid classification for hi word."); 2187 2188 case ComplexX87: // Previously handled. 2189 case NoClass: 2190 break; 2191 2192 case Integer: 2193 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 2194 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 2195 return ABIArgInfo::getDirect(HighPart, 8); 2196 break; 2197 case SSE: 2198 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 2199 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 2200 return ABIArgInfo::getDirect(HighPart, 8); 2201 break; 2202 2203 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 2204 // is passed in the next available eightbyte chunk if the last used 2205 // vector register. 2206 // 2207 // SSEUP should always be preceded by SSE, just widen. 2208 case SSEUp: 2209 assert(Lo == SSE && "Unexpected SSEUp classification."); 2210 ResType = GetByteVectorType(RetTy); 2211 break; 2212 2213 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 2214 // returned together with the previous X87 value in %st0. 2215 case X87Up: 2216 // If X87Up is preceded by X87, we don't need to do 2217 // anything. However, in some cases with unions it may not be 2218 // preceded by X87. In such situations we follow gcc and pass the 2219 // extra bits in an SSE reg. 2220 if (Lo != X87) { 2221 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 2222 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 2223 return ABIArgInfo::getDirect(HighPart, 8); 2224 } 2225 break; 2226 } 2227 2228 // If a high part was specified, merge it together with the low part. It is 2229 // known to pass in the high eightbyte of the result. We do this by forming a 2230 // first class struct aggregate with the high and low part: {low, high} 2231 if (HighPart) 2232 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 2233 2234 return ABIArgInfo::getDirect(ResType); 2235 } 2236 2237 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 2238 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 2239 bool isNamedArg) 2240 const 2241 { 2242 X86_64ABIInfo::Class Lo, Hi; 2243 classify(Ty, 0, Lo, Hi, isNamedArg); 2244 2245 // Check some invariants. 2246 // FIXME: Enforce these by construction. 2247 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 2248 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 2249 2250 neededInt = 0; 2251 neededSSE = 0; 2252 llvm::Type *ResType = 0; 2253 switch (Lo) { 2254 case NoClass: 2255 if (Hi == NoClass) 2256 return ABIArgInfo::getIgnore(); 2257 // If the low part is just padding, it takes no register, leave ResType 2258 // null. 2259 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 2260 "Unknown missing lo part"); 2261 break; 2262 2263 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 2264 // on the stack. 2265 case Memory: 2266 2267 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 2268 // COMPLEX_X87, it is passed in memory. 2269 case X87: 2270 case ComplexX87: 2271 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 2272 ++neededInt; 2273 return getIndirectResult(Ty, freeIntRegs); 2274 2275 case SSEUp: 2276 case X87Up: 2277 llvm_unreachable("Invalid classification for lo word."); 2278 2279 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 2280 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 2281 // and %r9 is used. 2282 case Integer: 2283 ++neededInt; 2284 2285 // Pick an 8-byte type based on the preferred type. 2286 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 2287 2288 // If we have a sign or zero extended integer, make sure to return Extend 2289 // so that the parameter gets the right LLVM IR attributes. 2290 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 2291 // Treat an enum type as its underlying type. 2292 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2293 Ty = EnumTy->getDecl()->getIntegerType(); 2294 2295 if (Ty->isIntegralOrEnumerationType() && 2296 Ty->isPromotableIntegerType()) 2297 return ABIArgInfo::getExtend(); 2298 } 2299 2300 break; 2301 2302 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 2303 // available SSE register is used, the registers are taken in the 2304 // order from %xmm0 to %xmm7. 2305 case SSE: { 2306 llvm::Type *IRType = CGT.ConvertType(Ty); 2307 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 2308 ++neededSSE; 2309 break; 2310 } 2311 } 2312 2313 llvm::Type *HighPart = 0; 2314 switch (Hi) { 2315 // Memory was handled previously, ComplexX87 and X87 should 2316 // never occur as hi classes, and X87Up must be preceded by X87, 2317 // which is passed in memory. 2318 case Memory: 2319 case X87: 2320 case ComplexX87: 2321 llvm_unreachable("Invalid classification for hi word."); 2322 2323 case NoClass: break; 2324 2325 case Integer: 2326 ++neededInt; 2327 // Pick an 8-byte type based on the preferred type. 2328 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 2329 2330 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 2331 return ABIArgInfo::getDirect(HighPart, 8); 2332 break; 2333 2334 // X87Up generally doesn't occur here (long double is passed in 2335 // memory), except in situations involving unions. 2336 case X87Up: 2337 case SSE: 2338 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 2339 2340 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 2341 return ABIArgInfo::getDirect(HighPart, 8); 2342 2343 ++neededSSE; 2344 break; 2345 2346 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 2347 // eightbyte is passed in the upper half of the last used SSE 2348 // register. This only happens when 128-bit vectors are passed. 2349 case SSEUp: 2350 assert(Lo == SSE && "Unexpected SSEUp classification"); 2351 ResType = GetByteVectorType(Ty); 2352 break; 2353 } 2354 2355 // If a high part was specified, merge it together with the low part. It is 2356 // known to pass in the high eightbyte of the result. We do this by forming a 2357 // first class struct aggregate with the high and low part: {low, high} 2358 if (HighPart) 2359 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 2360 2361 return ABIArgInfo::getDirect(ResType); 2362 } 2363 2364 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 2365 2366 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 2367 2368 // Keep track of the number of assigned registers. 2369 unsigned freeIntRegs = 6, freeSSERegs = 8; 2370 2371 // If the return value is indirect, then the hidden argument is consuming one 2372 // integer register. 2373 if (FI.getReturnInfo().isIndirect()) 2374 --freeIntRegs; 2375 2376 bool isVariadic = FI.isVariadic(); 2377 unsigned numRequiredArgs = 0; 2378 if (isVariadic) 2379 numRequiredArgs = FI.getRequiredArgs().getNumRequiredArgs(); 2380 2381 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 2382 // get assigned (in left-to-right order) for passing as follows... 2383 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 2384 it != ie; ++it) { 2385 bool isNamedArg = true; 2386 if (isVariadic) 2387 isNamedArg = (it - FI.arg_begin()) < 2388 static_cast<signed>(numRequiredArgs); 2389 2390 unsigned neededInt, neededSSE; 2391 it->info = classifyArgumentType(it->type, freeIntRegs, neededInt, 2392 neededSSE, isNamedArg); 2393 2394 // AMD64-ABI 3.2.3p3: If there are no registers available for any 2395 // eightbyte of an argument, the whole argument is passed on the 2396 // stack. If registers have already been assigned for some 2397 // eightbytes of such an argument, the assignments get reverted. 2398 if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) { 2399 freeIntRegs -= neededInt; 2400 freeSSERegs -= neededSSE; 2401 } else { 2402 it->info = getIndirectResult(it->type, freeIntRegs); 2403 } 2404 } 2405 } 2406 2407 static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr, 2408 QualType Ty, 2409 CodeGenFunction &CGF) { 2410 llvm::Value *overflow_arg_area_p = 2411 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); 2412 llvm::Value *overflow_arg_area = 2413 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 2414 2415 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 2416 // byte boundary if alignment needed by type exceeds 8 byte boundary. 2417 // It isn't stated explicitly in the standard, but in practice we use 2418 // alignment greater than 16 where necessary. 2419 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; 2420 if (Align > 8) { 2421 // overflow_arg_area = (overflow_arg_area + align - 1) & -align; 2422 llvm::Value *Offset = 2423 llvm::ConstantInt::get(CGF.Int64Ty, Align - 1); 2424 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset); 2425 llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area, 2426 CGF.Int64Ty); 2427 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align); 2428 overflow_arg_area = 2429 CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask), 2430 overflow_arg_area->getType(), 2431 "overflow_arg_area.align"); 2432 } 2433 2434 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 2435 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 2436 llvm::Value *Res = 2437 CGF.Builder.CreateBitCast(overflow_arg_area, 2438 llvm::PointerType::getUnqual(LTy)); 2439 2440 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 2441 // l->overflow_arg_area + sizeof(type). 2442 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 2443 // an 8 byte boundary. 2444 2445 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 2446 llvm::Value *Offset = 2447 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 2448 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 2449 "overflow_arg_area.next"); 2450 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 2451 2452 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 2453 return Res; 2454 } 2455 2456 llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 2457 CodeGenFunction &CGF) const { 2458 // Assume that va_list type is correct; should be pointer to LLVM type: 2459 // struct { 2460 // i32 gp_offset; 2461 // i32 fp_offset; 2462 // i8* overflow_arg_area; 2463 // i8* reg_save_area; 2464 // }; 2465 unsigned neededInt, neededSSE; 2466 2467 Ty = CGF.getContext().getCanonicalType(Ty); 2468 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 2469 /*isNamedArg*/false); 2470 2471 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 2472 // in the registers. If not go to step 7. 2473 if (!neededInt && !neededSSE) 2474 return EmitVAArgFromMemory(VAListAddr, Ty, CGF); 2475 2476 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 2477 // general purpose registers needed to pass type and num_fp to hold 2478 // the number of floating point registers needed. 2479 2480 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 2481 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 2482 // l->fp_offset > 304 - num_fp * 16 go to step 7. 2483 // 2484 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 2485 // register save space). 2486 2487 llvm::Value *InRegs = 0; 2488 llvm::Value *gp_offset_p = 0, *gp_offset = 0; 2489 llvm::Value *fp_offset_p = 0, *fp_offset = 0; 2490 if (neededInt) { 2491 gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); 2492 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 2493 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 2494 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 2495 } 2496 2497 if (neededSSE) { 2498 fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); 2499 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 2500 llvm::Value *FitsInFP = 2501 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 2502 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 2503 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 2504 } 2505 2506 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 2507 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 2508 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 2509 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 2510 2511 // Emit code to load the value if it was passed in registers. 2512 2513 CGF.EmitBlock(InRegBlock); 2514 2515 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 2516 // an offset of l->gp_offset and/or l->fp_offset. This may require 2517 // copying to a temporary location in case the parameter is passed 2518 // in different register classes or requires an alignment greater 2519 // than 8 for general purpose registers and 16 for XMM registers. 2520 // 2521 // FIXME: This really results in shameful code when we end up needing to 2522 // collect arguments from different places; often what should result in a 2523 // simple assembling of a structure from scattered addresses has many more 2524 // loads than necessary. Can we clean this up? 2525 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 2526 llvm::Value *RegAddr = 2527 CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3), 2528 "reg_save_area"); 2529 if (neededInt && neededSSE) { 2530 // FIXME: Cleanup. 2531 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 2532 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 2533 llvm::Value *Tmp = CGF.CreateMemTemp(Ty); 2534 Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo()); 2535 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 2536 llvm::Type *TyLo = ST->getElementType(0); 2537 llvm::Type *TyHi = ST->getElementType(1); 2538 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 2539 "Unexpected ABI info for mixed regs"); 2540 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 2541 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 2542 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset); 2543 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset); 2544 llvm::Value *RegLoAddr = TyLo->isFloatingPointTy() ? FPAddr : GPAddr; 2545 llvm::Value *RegHiAddr = TyLo->isFloatingPointTy() ? GPAddr : FPAddr; 2546 llvm::Value *V = 2547 CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo)); 2548 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 2549 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi)); 2550 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 2551 2552 RegAddr = CGF.Builder.CreateBitCast(Tmp, 2553 llvm::PointerType::getUnqual(LTy)); 2554 } else if (neededInt) { 2555 RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset); 2556 RegAddr = CGF.Builder.CreateBitCast(RegAddr, 2557 llvm::PointerType::getUnqual(LTy)); 2558 2559 // Copy to a temporary if necessary to ensure the appropriate alignment. 2560 std::pair<CharUnits, CharUnits> SizeAlign = 2561 CGF.getContext().getTypeInfoInChars(Ty); 2562 uint64_t TySize = SizeAlign.first.getQuantity(); 2563 unsigned TyAlign = SizeAlign.second.getQuantity(); 2564 if (TyAlign > 8) { 2565 llvm::Value *Tmp = CGF.CreateMemTemp(Ty); 2566 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, 8, false); 2567 RegAddr = Tmp; 2568 } 2569 } else if (neededSSE == 1) { 2570 RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset); 2571 RegAddr = CGF.Builder.CreateBitCast(RegAddr, 2572 llvm::PointerType::getUnqual(LTy)); 2573 } else { 2574 assert(neededSSE == 2 && "Invalid number of needed registers!"); 2575 // SSE registers are spaced 16 bytes apart in the register save 2576 // area, we need to collect the two eightbytes together. 2577 llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset); 2578 llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16); 2579 llvm::Type *DoubleTy = CGF.DoubleTy; 2580 llvm::Type *DblPtrTy = 2581 llvm::PointerType::getUnqual(DoubleTy); 2582 llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, NULL); 2583 llvm::Value *V, *Tmp = CGF.CreateMemTemp(Ty); 2584 Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo()); 2585 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo, 2586 DblPtrTy)); 2587 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 2588 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi, 2589 DblPtrTy)); 2590 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 2591 RegAddr = CGF.Builder.CreateBitCast(Tmp, 2592 llvm::PointerType::getUnqual(LTy)); 2593 } 2594 2595 // AMD64-ABI 3.5.7p5: Step 5. Set: 2596 // l->gp_offset = l->gp_offset + num_gp * 8 2597 // l->fp_offset = l->fp_offset + num_fp * 16. 2598 if (neededInt) { 2599 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 2600 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 2601 gp_offset_p); 2602 } 2603 if (neededSSE) { 2604 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 2605 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 2606 fp_offset_p); 2607 } 2608 CGF.EmitBranch(ContBlock); 2609 2610 // Emit code to load the value if it was passed in memory. 2611 2612 CGF.EmitBlock(InMemBlock); 2613 llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF); 2614 2615 // Return the appropriate result. 2616 2617 CGF.EmitBlock(ContBlock); 2618 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2, 2619 "vaarg.addr"); 2620 ResAddr->addIncoming(RegAddr, InRegBlock); 2621 ResAddr->addIncoming(MemAddr, InMemBlock); 2622 return ResAddr; 2623 } 2624 2625 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, bool IsReturnType) const { 2626 2627 if (Ty->isVoidType()) 2628 return ABIArgInfo::getIgnore(); 2629 2630 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2631 Ty = EnumTy->getDecl()->getIntegerType(); 2632 2633 uint64_t Size = getContext().getTypeSize(Ty); 2634 2635 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2636 if (IsReturnType) { 2637 if (isRecordReturnIndirect(RT, getCXXABI())) 2638 return ABIArgInfo::getIndirect(0, false); 2639 } else { 2640 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 2641 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 2642 } 2643 2644 if (RT->getDecl()->hasFlexibleArrayMember()) 2645 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 2646 2647 // FIXME: mingw-w64-gcc emits 128-bit struct as i128 2648 if (Size == 128 && getTarget().getTriple().getOS() == llvm::Triple::MinGW32) 2649 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 2650 Size)); 2651 2652 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 2653 // not 1, 2, 4, or 8 bytes, must be passed by reference." 2654 if (Size <= 64 && 2655 (Size & (Size - 1)) == 0) 2656 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 2657 Size)); 2658 2659 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 2660 } 2661 2662 if (Ty->isPromotableIntegerType()) 2663 return ABIArgInfo::getExtend(); 2664 2665 return ABIArgInfo::getDirect(); 2666 } 2667 2668 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 2669 2670 QualType RetTy = FI.getReturnType(); 2671 FI.getReturnInfo() = classify(RetTy, true); 2672 2673 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 2674 it != ie; ++it) 2675 it->info = classify(it->type, false); 2676 } 2677 2678 llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 2679 CodeGenFunction &CGF) const { 2680 llvm::Type *BPP = CGF.Int8PtrPtrTy; 2681 2682 CGBuilderTy &Builder = CGF.Builder; 2683 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, 2684 "ap"); 2685 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 2686 llvm::Type *PTy = 2687 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 2688 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 2689 2690 uint64_t Offset = 2691 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8); 2692 llvm::Value *NextAddr = 2693 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 2694 "ap.next"); 2695 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 2696 2697 return AddrTyped; 2698 } 2699 2700 namespace { 2701 2702 class NaClX86_64ABIInfo : public ABIInfo { 2703 public: 2704 NaClX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX) 2705 : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, HasAVX) {} 2706 virtual void computeInfo(CGFunctionInfo &FI) const; 2707 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 2708 CodeGenFunction &CGF) const; 2709 private: 2710 PNaClABIInfo PInfo; // Used for generating calls with pnaclcall callingconv. 2711 X86_64ABIInfo NInfo; // Used for everything else. 2712 }; 2713 2714 class NaClX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2715 public: 2716 NaClX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX) 2717 : TargetCodeGenInfo(new NaClX86_64ABIInfo(CGT, HasAVX)) {} 2718 }; 2719 2720 } 2721 2722 void NaClX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 2723 if (FI.getASTCallingConvention() == CC_PnaclCall) 2724 PInfo.computeInfo(FI); 2725 else 2726 NInfo.computeInfo(FI); 2727 } 2728 2729 llvm::Value *NaClX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 2730 CodeGenFunction &CGF) const { 2731 // Always use the native convention; calling pnacl-style varargs functions 2732 // is unuspported. 2733 return NInfo.EmitVAArg(VAListAddr, Ty, CGF); 2734 } 2735 2736 2737 // PowerPC-32 2738 2739 namespace { 2740 class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 2741 public: 2742 PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 2743 2744 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const { 2745 // This is recovered from gcc output. 2746 return 1; // r1 is the dedicated stack pointer 2747 } 2748 2749 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2750 llvm::Value *Address) const; 2751 }; 2752 2753 } 2754 2755 bool 2756 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2757 llvm::Value *Address) const { 2758 // This is calculated from the LLVM and GCC tables and verified 2759 // against gcc output. AFAIK all ABIs use the same encoding. 2760 2761 CodeGen::CGBuilderTy &Builder = CGF.Builder; 2762 2763 llvm::IntegerType *i8 = CGF.Int8Ty; 2764 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 2765 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 2766 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 2767 2768 // 0-31: r0-31, the 4-byte general-purpose registers 2769 AssignToArrayRange(Builder, Address, Four8, 0, 31); 2770 2771 // 32-63: fp0-31, the 8-byte floating-point registers 2772 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 2773 2774 // 64-76 are various 4-byte special-purpose registers: 2775 // 64: mq 2776 // 65: lr 2777 // 66: ctr 2778 // 67: ap 2779 // 68-75 cr0-7 2780 // 76: xer 2781 AssignToArrayRange(Builder, Address, Four8, 64, 76); 2782 2783 // 77-108: v0-31, the 16-byte vector registers 2784 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 2785 2786 // 109: vrsave 2787 // 110: vscr 2788 // 111: spe_acc 2789 // 112: spefscr 2790 // 113: sfp 2791 AssignToArrayRange(Builder, Address, Four8, 109, 113); 2792 2793 return false; 2794 } 2795 2796 // PowerPC-64 2797 2798 namespace { 2799 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 2800 class PPC64_SVR4_ABIInfo : public DefaultABIInfo { 2801 2802 public: 2803 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 2804 2805 bool isPromotableTypeForABI(QualType Ty) const; 2806 2807 ABIArgInfo classifyReturnType(QualType RetTy) const; 2808 ABIArgInfo classifyArgumentType(QualType Ty) const; 2809 2810 // TODO: We can add more logic to computeInfo to improve performance. 2811 // Example: For aggregate arguments that fit in a register, we could 2812 // use getDirectInReg (as is done below for structs containing a single 2813 // floating-point value) to avoid pushing them to memory on function 2814 // entry. This would require changing the logic in PPCISelLowering 2815 // when lowering the parameters in the caller and args in the callee. 2816 virtual void computeInfo(CGFunctionInfo &FI) const { 2817 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 2818 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 2819 it != ie; ++it) { 2820 // We rely on the default argument classification for the most part. 2821 // One exception: An aggregate containing a single floating-point 2822 // or vector item must be passed in a register if one is available. 2823 const Type *T = isSingleElementStruct(it->type, getContext()); 2824 if (T) { 2825 const BuiltinType *BT = T->getAs<BuiltinType>(); 2826 if (T->isVectorType() || (BT && BT->isFloatingPoint())) { 2827 QualType QT(T, 0); 2828 it->info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 2829 continue; 2830 } 2831 } 2832 it->info = classifyArgumentType(it->type); 2833 } 2834 } 2835 2836 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, 2837 QualType Ty, 2838 CodeGenFunction &CGF) const; 2839 }; 2840 2841 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 2842 public: 2843 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT) 2844 : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT)) {} 2845 2846 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const { 2847 // This is recovered from gcc output. 2848 return 1; // r1 is the dedicated stack pointer 2849 } 2850 2851 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2852 llvm::Value *Address) const; 2853 }; 2854 2855 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 2856 public: 2857 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 2858 2859 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const { 2860 // This is recovered from gcc output. 2861 return 1; // r1 is the dedicated stack pointer 2862 } 2863 2864 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2865 llvm::Value *Address) const; 2866 }; 2867 2868 } 2869 2870 // Return true if the ABI requires Ty to be passed sign- or zero- 2871 // extended to 64 bits. 2872 bool 2873 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 2874 // Treat an enum type as its underlying type. 2875 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2876 Ty = EnumTy->getDecl()->getIntegerType(); 2877 2878 // Promotable integer types are required to be promoted by the ABI. 2879 if (Ty->isPromotableIntegerType()) 2880 return true; 2881 2882 // In addition to the usual promotable integer types, we also need to 2883 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 2884 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 2885 switch (BT->getKind()) { 2886 case BuiltinType::Int: 2887 case BuiltinType::UInt: 2888 return true; 2889 default: 2890 break; 2891 } 2892 2893 return false; 2894 } 2895 2896 ABIArgInfo 2897 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 2898 if (Ty->isAnyComplexType()) 2899 return ABIArgInfo::getDirect(); 2900 2901 if (isAggregateTypeForABI(Ty)) { 2902 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 2903 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 2904 2905 return ABIArgInfo::getIndirect(0); 2906 } 2907 2908 return (isPromotableTypeForABI(Ty) ? 2909 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 2910 } 2911 2912 ABIArgInfo 2913 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 2914 if (RetTy->isVoidType()) 2915 return ABIArgInfo::getIgnore(); 2916 2917 if (RetTy->isAnyComplexType()) 2918 return ABIArgInfo::getDirect(); 2919 2920 if (isAggregateTypeForABI(RetTy)) 2921 return ABIArgInfo::getIndirect(0); 2922 2923 return (isPromotableTypeForABI(RetTy) ? 2924 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 2925 } 2926 2927 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 2928 llvm::Value *PPC64_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr, 2929 QualType Ty, 2930 CodeGenFunction &CGF) const { 2931 llvm::Type *BP = CGF.Int8PtrTy; 2932 llvm::Type *BPP = CGF.Int8PtrPtrTy; 2933 2934 CGBuilderTy &Builder = CGF.Builder; 2935 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 2936 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 2937 2938 // Update the va_list pointer. The pointer should be bumped by the 2939 // size of the object. We can trust getTypeSize() except for a complex 2940 // type whose base type is smaller than a doubleword. For these, the 2941 // size of the object is 16 bytes; see below for further explanation. 2942 unsigned SizeInBytes = CGF.getContext().getTypeSize(Ty) / 8; 2943 QualType BaseTy; 2944 unsigned CplxBaseSize = 0; 2945 2946 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 2947 BaseTy = CTy->getElementType(); 2948 CplxBaseSize = CGF.getContext().getTypeSize(BaseTy) / 8; 2949 if (CplxBaseSize < 8) 2950 SizeInBytes = 16; 2951 } 2952 2953 unsigned Offset = llvm::RoundUpToAlignment(SizeInBytes, 8); 2954 llvm::Value *NextAddr = 2955 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), 2956 "ap.next"); 2957 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 2958 2959 // If we have a complex type and the base type is smaller than 8 bytes, 2960 // the ABI calls for the real and imaginary parts to be right-adjusted 2961 // in separate doublewords. However, Clang expects us to produce a 2962 // pointer to a structure with the two parts packed tightly. So generate 2963 // loads of the real and imaginary parts relative to the va_list pointer, 2964 // and store them to a temporary structure. 2965 if (CplxBaseSize && CplxBaseSize < 8) { 2966 llvm::Value *RealAddr = Builder.CreatePtrToInt(Addr, CGF.Int64Ty); 2967 llvm::Value *ImagAddr = RealAddr; 2968 RealAddr = Builder.CreateAdd(RealAddr, Builder.getInt64(8 - CplxBaseSize)); 2969 ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(16 - CplxBaseSize)); 2970 llvm::Type *PBaseTy = llvm::PointerType::getUnqual(CGF.ConvertType(BaseTy)); 2971 RealAddr = Builder.CreateIntToPtr(RealAddr, PBaseTy); 2972 ImagAddr = Builder.CreateIntToPtr(ImagAddr, PBaseTy); 2973 llvm::Value *Real = Builder.CreateLoad(RealAddr, false, ".vareal"); 2974 llvm::Value *Imag = Builder.CreateLoad(ImagAddr, false, ".vaimag"); 2975 llvm::Value *Ptr = CGF.CreateTempAlloca(CGT.ConvertTypeForMem(Ty), 2976 "vacplx"); 2977 llvm::Value *RealPtr = Builder.CreateStructGEP(Ptr, 0, ".real"); 2978 llvm::Value *ImagPtr = Builder.CreateStructGEP(Ptr, 1, ".imag"); 2979 Builder.CreateStore(Real, RealPtr, false); 2980 Builder.CreateStore(Imag, ImagPtr, false); 2981 return Ptr; 2982 } 2983 2984 // If the argument is smaller than 8 bytes, it is right-adjusted in 2985 // its doubleword slot. Adjust the pointer to pick it up from the 2986 // correct offset. 2987 if (SizeInBytes < 8) { 2988 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty); 2989 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(8 - SizeInBytes)); 2990 Addr = Builder.CreateIntToPtr(AddrAsInt, BP); 2991 } 2992 2993 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 2994 return Builder.CreateBitCast(Addr, PTy); 2995 } 2996 2997 static bool 2998 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2999 llvm::Value *Address) { 3000 // This is calculated from the LLVM and GCC tables and verified 3001 // against gcc output. AFAIK all ABIs use the same encoding. 3002 3003 CodeGen::CGBuilderTy &Builder = CGF.Builder; 3004 3005 llvm::IntegerType *i8 = CGF.Int8Ty; 3006 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 3007 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 3008 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 3009 3010 // 0-31: r0-31, the 8-byte general-purpose registers 3011 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 3012 3013 // 32-63: fp0-31, the 8-byte floating-point registers 3014 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 3015 3016 // 64-76 are various 4-byte special-purpose registers: 3017 // 64: mq 3018 // 65: lr 3019 // 66: ctr 3020 // 67: ap 3021 // 68-75 cr0-7 3022 // 76: xer 3023 AssignToArrayRange(Builder, Address, Four8, 64, 76); 3024 3025 // 77-108: v0-31, the 16-byte vector registers 3026 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 3027 3028 // 109: vrsave 3029 // 110: vscr 3030 // 111: spe_acc 3031 // 112: spefscr 3032 // 113: sfp 3033 AssignToArrayRange(Builder, Address, Four8, 109, 113); 3034 3035 return false; 3036 } 3037 3038 bool 3039 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 3040 CodeGen::CodeGenFunction &CGF, 3041 llvm::Value *Address) const { 3042 3043 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 3044 } 3045 3046 bool 3047 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3048 llvm::Value *Address) const { 3049 3050 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 3051 } 3052 3053 //===----------------------------------------------------------------------===// 3054 // ARM ABI Implementation 3055 //===----------------------------------------------------------------------===// 3056 3057 namespace { 3058 3059 class ARMABIInfo : public ABIInfo { 3060 public: 3061 enum ABIKind { 3062 APCS = 0, 3063 AAPCS = 1, 3064 AAPCS_VFP 3065 }; 3066 3067 private: 3068 ABIKind Kind; 3069 3070 public: 3071 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) { 3072 setRuntimeCC(); 3073 } 3074 3075 bool isEABI() const { 3076 StringRef Env = getTarget().getTriple().getEnvironmentName(); 3077 return (Env == "gnueabi" || Env == "eabi" || 3078 Env == "android" || Env == "androideabi"); 3079 } 3080 3081 ABIKind getABIKind() const { return Kind; } 3082 3083 private: 3084 ABIArgInfo classifyReturnType(QualType RetTy) const; 3085 ABIArgInfo classifyArgumentType(QualType RetTy, int *VFPRegs, 3086 unsigned &AllocatedVFP, 3087 bool &IsHA) const; 3088 bool isIllegalVectorType(QualType Ty) const; 3089 3090 virtual void computeInfo(CGFunctionInfo &FI) const; 3091 3092 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 3093 CodeGenFunction &CGF) const; 3094 3095 llvm::CallingConv::ID getLLVMDefaultCC() const; 3096 llvm::CallingConv::ID getABIDefaultCC() const; 3097 void setRuntimeCC(); 3098 }; 3099 3100 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 3101 public: 3102 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 3103 :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {} 3104 3105 const ARMABIInfo &getABIInfo() const { 3106 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 3107 } 3108 3109 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const { 3110 return 13; 3111 } 3112 3113 StringRef getARCRetainAutoreleasedReturnValueMarker() const { 3114 return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue"; 3115 } 3116 3117 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3118 llvm::Value *Address) const { 3119 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 3120 3121 // 0-15 are the 16 integer registers. 3122 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 3123 return false; 3124 } 3125 3126 unsigned getSizeOfUnwindException() const { 3127 if (getABIInfo().isEABI()) return 88; 3128 return TargetCodeGenInfo::getSizeOfUnwindException(); 3129 } 3130 3131 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 3132 CodeGen::CodeGenModule &CGM) const { 3133 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 3134 if (!FD) 3135 return; 3136 3137 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 3138 if (!Attr) 3139 return; 3140 3141 const char *Kind; 3142 switch (Attr->getInterrupt()) { 3143 case ARMInterruptAttr::Generic: Kind = ""; break; 3144 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 3145 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 3146 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 3147 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 3148 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 3149 } 3150 3151 llvm::Function *Fn = cast<llvm::Function>(GV); 3152 3153 Fn->addFnAttr("interrupt", Kind); 3154 3155 if (cast<ARMABIInfo>(getABIInfo()).getABIKind() == ARMABIInfo::APCS) 3156 return; 3157 3158 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 3159 // however this is not necessarily true on taking any interrupt. Instruct 3160 // the backend to perform a realignment as part of the function prologue. 3161 llvm::AttrBuilder B; 3162 B.addStackAlignmentAttr(8); 3163 Fn->addAttributes(llvm::AttributeSet::FunctionIndex, 3164 llvm::AttributeSet::get(CGM.getLLVMContext(), 3165 llvm::AttributeSet::FunctionIndex, 3166 B)); 3167 } 3168 3169 }; 3170 3171 } 3172 3173 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 3174 // To correctly handle Homogeneous Aggregate, we need to keep track of the 3175 // VFP registers allocated so far. 3176 // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive 3177 // VFP registers of the appropriate type unallocated then the argument is 3178 // allocated to the lowest-numbered sequence of such registers. 3179 // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are 3180 // unallocated are marked as unavailable. 3181 unsigned AllocatedVFP = 0; 3182 int VFPRegs[16] = { 0 }; 3183 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3184 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3185 it != ie; ++it) { 3186 unsigned PreAllocation = AllocatedVFP; 3187 bool IsHA = false; 3188 // 6.1.2.3 There is one VFP co-processor register class using registers 3189 // s0-s15 (d0-d7) for passing arguments. 3190 const unsigned NumVFPs = 16; 3191 it->info = classifyArgumentType(it->type, VFPRegs, AllocatedVFP, IsHA); 3192 // If we do not have enough VFP registers for the HA, any VFP registers 3193 // that are unallocated are marked as unavailable. To achieve this, we add 3194 // padding of (NumVFPs - PreAllocation) floats. 3195 if (IsHA && AllocatedVFP > NumVFPs && PreAllocation < NumVFPs) { 3196 llvm::Type *PaddingTy = llvm::ArrayType::get( 3197 llvm::Type::getFloatTy(getVMContext()), NumVFPs - PreAllocation); 3198 it->info = ABIArgInfo::getExpandWithPadding(false, PaddingTy); 3199 } 3200 } 3201 3202 // Always honor user-specified calling convention. 3203 if (FI.getCallingConvention() != llvm::CallingConv::C) 3204 return; 3205 3206 llvm::CallingConv::ID cc = getRuntimeCC(); 3207 if (cc != llvm::CallingConv::C) 3208 FI.setEffectiveCallingConvention(cc); 3209 } 3210 3211 /// Return the default calling convention that LLVM will use. 3212 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 3213 // The default calling convention that LLVM will infer. 3214 if (getTarget().getTriple().getEnvironmentName()=="gnueabihf") 3215 return llvm::CallingConv::ARM_AAPCS_VFP; 3216 else if (isEABI()) 3217 return llvm::CallingConv::ARM_AAPCS; 3218 else 3219 return llvm::CallingConv::ARM_APCS; 3220 } 3221 3222 /// Return the calling convention that our ABI would like us to use 3223 /// as the C calling convention. 3224 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 3225 switch (getABIKind()) { 3226 case APCS: return llvm::CallingConv::ARM_APCS; 3227 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 3228 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 3229 } 3230 llvm_unreachable("bad ABI kind"); 3231 } 3232 3233 void ARMABIInfo::setRuntimeCC() { 3234 assert(getRuntimeCC() == llvm::CallingConv::C); 3235 3236 // Don't muddy up the IR with a ton of explicit annotations if 3237 // they'd just match what LLVM will infer from the triple. 3238 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 3239 if (abiCC != getLLVMDefaultCC()) 3240 RuntimeCC = abiCC; 3241 } 3242 3243 /// isHomogeneousAggregate - Return true if a type is an AAPCS-VFP homogeneous 3244 /// aggregate. If HAMembers is non-null, the number of base elements 3245 /// contained in the type is returned through it; this is used for the 3246 /// recursive calls that check aggregate component types. 3247 static bool isHomogeneousAggregate(QualType Ty, const Type *&Base, 3248 ASTContext &Context, 3249 uint64_t *HAMembers = 0) { 3250 uint64_t Members = 0; 3251 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 3252 if (!isHomogeneousAggregate(AT->getElementType(), Base, Context, &Members)) 3253 return false; 3254 Members *= AT->getSize().getZExtValue(); 3255 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 3256 const RecordDecl *RD = RT->getDecl(); 3257 if (RD->hasFlexibleArrayMember()) 3258 return false; 3259 3260 Members = 0; 3261 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3262 i != e; ++i) { 3263 const FieldDecl *FD = *i; 3264 uint64_t FldMembers; 3265 if (!isHomogeneousAggregate(FD->getType(), Base, Context, &FldMembers)) 3266 return false; 3267 3268 Members = (RD->isUnion() ? 3269 std::max(Members, FldMembers) : Members + FldMembers); 3270 } 3271 } else { 3272 Members = 1; 3273 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 3274 Members = 2; 3275 Ty = CT->getElementType(); 3276 } 3277 3278 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 3279 // double, or 64-bit or 128-bit vectors. 3280 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 3281 if (BT->getKind() != BuiltinType::Float && 3282 BT->getKind() != BuiltinType::Double && 3283 BT->getKind() != BuiltinType::LongDouble) 3284 return false; 3285 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 3286 unsigned VecSize = Context.getTypeSize(VT); 3287 if (VecSize != 64 && VecSize != 128) 3288 return false; 3289 } else { 3290 return false; 3291 } 3292 3293 // The base type must be the same for all members. Vector types of the 3294 // same total size are treated as being equivalent here. 3295 const Type *TyPtr = Ty.getTypePtr(); 3296 if (!Base) 3297 Base = TyPtr; 3298 if (Base != TyPtr && 3299 (!Base->isVectorType() || !TyPtr->isVectorType() || 3300 Context.getTypeSize(Base) != Context.getTypeSize(TyPtr))) 3301 return false; 3302 } 3303 3304 // Homogeneous Aggregates can have at most 4 members of the base type. 3305 if (HAMembers) 3306 *HAMembers = Members; 3307 3308 return (Members > 0 && Members <= 4); 3309 } 3310 3311 /// markAllocatedVFPs - update VFPRegs according to the alignment and 3312 /// number of VFP registers (unit is S register) requested. 3313 static void markAllocatedVFPs(int *VFPRegs, unsigned &AllocatedVFP, 3314 unsigned Alignment, 3315 unsigned NumRequired) { 3316 // Early Exit. 3317 if (AllocatedVFP >= 16) 3318 return; 3319 // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive 3320 // VFP registers of the appropriate type unallocated then the argument is 3321 // allocated to the lowest-numbered sequence of such registers. 3322 for (unsigned I = 0; I < 16; I += Alignment) { 3323 bool FoundSlot = true; 3324 for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++) 3325 if (J >= 16 || VFPRegs[J]) { 3326 FoundSlot = false; 3327 break; 3328 } 3329 if (FoundSlot) { 3330 for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++) 3331 VFPRegs[J] = 1; 3332 AllocatedVFP += NumRequired; 3333 return; 3334 } 3335 } 3336 // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are 3337 // unallocated are marked as unavailable. 3338 for (unsigned I = 0; I < 16; I++) 3339 VFPRegs[I] = 1; 3340 AllocatedVFP = 17; // We do not have enough VFP registers. 3341 } 3342 3343 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, int *VFPRegs, 3344 unsigned &AllocatedVFP, 3345 bool &IsHA) const { 3346 // We update number of allocated VFPs according to 3347 // 6.1.2.1 The following argument types are VFP CPRCs: 3348 // A single-precision floating-point type (including promoted 3349 // half-precision types); A double-precision floating-point type; 3350 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 3351 // with a Base Type of a single- or double-precision floating-point type, 3352 // 64-bit containerized vectors or 128-bit containerized vectors with one 3353 // to four Elements. 3354 3355 // Handle illegal vector types here. 3356 if (isIllegalVectorType(Ty)) { 3357 uint64_t Size = getContext().getTypeSize(Ty); 3358 if (Size <= 32) { 3359 llvm::Type *ResType = 3360 llvm::Type::getInt32Ty(getVMContext()); 3361 return ABIArgInfo::getDirect(ResType); 3362 } 3363 if (Size == 64) { 3364 llvm::Type *ResType = llvm::VectorType::get( 3365 llvm::Type::getInt32Ty(getVMContext()), 2); 3366 markAllocatedVFPs(VFPRegs, AllocatedVFP, 2, 2); 3367 return ABIArgInfo::getDirect(ResType); 3368 } 3369 if (Size == 128) { 3370 llvm::Type *ResType = llvm::VectorType::get( 3371 llvm::Type::getInt32Ty(getVMContext()), 4); 3372 markAllocatedVFPs(VFPRegs, AllocatedVFP, 4, 4); 3373 return ABIArgInfo::getDirect(ResType); 3374 } 3375 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 3376 } 3377 // Update VFPRegs for legal vector types. 3378 if (const VectorType *VT = Ty->getAs<VectorType>()) { 3379 uint64_t Size = getContext().getTypeSize(VT); 3380 // Size of a legal vector should be power of 2 and above 64. 3381 markAllocatedVFPs(VFPRegs, AllocatedVFP, Size >= 128 ? 4 : 2, Size / 32); 3382 } 3383 // Update VFPRegs for floating point types. 3384 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 3385 if (BT->getKind() == BuiltinType::Half || 3386 BT->getKind() == BuiltinType::Float) 3387 markAllocatedVFPs(VFPRegs, AllocatedVFP, 1, 1); 3388 if (BT->getKind() == BuiltinType::Double || 3389 BT->getKind() == BuiltinType::LongDouble) 3390 markAllocatedVFPs(VFPRegs, AllocatedVFP, 2, 2); 3391 } 3392 3393 if (!isAggregateTypeForABI(Ty)) { 3394 // Treat an enum type as its underlying type. 3395 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3396 Ty = EnumTy->getDecl()->getIntegerType(); 3397 3398 return (Ty->isPromotableIntegerType() ? 3399 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 3400 } 3401 3402 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 3403 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 3404 3405 // Ignore empty records. 3406 if (isEmptyRecord(getContext(), Ty, true)) 3407 return ABIArgInfo::getIgnore(); 3408 3409 if (getABIKind() == ARMABIInfo::AAPCS_VFP) { 3410 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 3411 // into VFP registers. 3412 const Type *Base = 0; 3413 uint64_t Members = 0; 3414 if (isHomogeneousAggregate(Ty, Base, getContext(), &Members)) { 3415 assert(Base && "Base class should be set for homogeneous aggregate"); 3416 // Base can be a floating-point or a vector. 3417 if (Base->isVectorType()) { 3418 // ElementSize is in number of floats. 3419 unsigned ElementSize = getContext().getTypeSize(Base) == 64 ? 2 : 4; 3420 markAllocatedVFPs(VFPRegs, AllocatedVFP, ElementSize, 3421 Members * ElementSize); 3422 } else if (Base->isSpecificBuiltinType(BuiltinType::Float)) 3423 markAllocatedVFPs(VFPRegs, AllocatedVFP, 1, Members); 3424 else { 3425 assert(Base->isSpecificBuiltinType(BuiltinType::Double) || 3426 Base->isSpecificBuiltinType(BuiltinType::LongDouble)); 3427 markAllocatedVFPs(VFPRegs, AllocatedVFP, 2, Members * 2); 3428 } 3429 IsHA = true; 3430 return ABIArgInfo::getExpand(); 3431 } 3432 } 3433 3434 // Support byval for ARM. 3435 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 3436 // most 8-byte. We realign the indirect argument if type alignment is bigger 3437 // than ABI alignment. 3438 uint64_t ABIAlign = 4; 3439 uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8; 3440 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 3441 getABIKind() == ARMABIInfo::AAPCS) 3442 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 3443 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 3444 return ABIArgInfo::getIndirect(0, /*ByVal=*/true, 3445 /*Realign=*/TyAlign > ABIAlign); 3446 } 3447 3448 // Otherwise, pass by coercing to a structure of the appropriate size. 3449 llvm::Type* ElemTy; 3450 unsigned SizeRegs; 3451 // FIXME: Try to match the types of the arguments more accurately where 3452 // we can. 3453 if (getContext().getTypeAlign(Ty) <= 32) { 3454 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 3455 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 3456 } else { 3457 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 3458 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 3459 } 3460 3461 llvm::Type *STy = 3462 llvm::StructType::get(llvm::ArrayType::get(ElemTy, SizeRegs), NULL); 3463 return ABIArgInfo::getDirect(STy); 3464 } 3465 3466 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 3467 llvm::LLVMContext &VMContext) { 3468 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 3469 // is called integer-like if its size is less than or equal to one word, and 3470 // the offset of each of its addressable sub-fields is zero. 3471 3472 uint64_t Size = Context.getTypeSize(Ty); 3473 3474 // Check that the type fits in a word. 3475 if (Size > 32) 3476 return false; 3477 3478 // FIXME: Handle vector types! 3479 if (Ty->isVectorType()) 3480 return false; 3481 3482 // Float types are never treated as "integer like". 3483 if (Ty->isRealFloatingType()) 3484 return false; 3485 3486 // If this is a builtin or pointer type then it is ok. 3487 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 3488 return true; 3489 3490 // Small complex integer types are "integer like". 3491 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 3492 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 3493 3494 // Single element and zero sized arrays should be allowed, by the definition 3495 // above, but they are not. 3496 3497 // Otherwise, it must be a record type. 3498 const RecordType *RT = Ty->getAs<RecordType>(); 3499 if (!RT) return false; 3500 3501 // Ignore records with flexible arrays. 3502 const RecordDecl *RD = RT->getDecl(); 3503 if (RD->hasFlexibleArrayMember()) 3504 return false; 3505 3506 // Check that all sub-fields are at offset 0, and are themselves "integer 3507 // like". 3508 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3509 3510 bool HadField = false; 3511 unsigned idx = 0; 3512 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3513 i != e; ++i, ++idx) { 3514 const FieldDecl *FD = *i; 3515 3516 // Bit-fields are not addressable, we only need to verify they are "integer 3517 // like". We still have to disallow a subsequent non-bitfield, for example: 3518 // struct { int : 0; int x } 3519 // is non-integer like according to gcc. 3520 if (FD->isBitField()) { 3521 if (!RD->isUnion()) 3522 HadField = true; 3523 3524 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 3525 return false; 3526 3527 continue; 3528 } 3529 3530 // Check if this field is at offset 0. 3531 if (Layout.getFieldOffset(idx) != 0) 3532 return false; 3533 3534 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 3535 return false; 3536 3537 // Only allow at most one field in a structure. This doesn't match the 3538 // wording above, but follows gcc in situations with a field following an 3539 // empty structure. 3540 if (!RD->isUnion()) { 3541 if (HadField) 3542 return false; 3543 3544 HadField = true; 3545 } 3546 } 3547 3548 return true; 3549 } 3550 3551 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy) const { 3552 if (RetTy->isVoidType()) 3553 return ABIArgInfo::getIgnore(); 3554 3555 // Large vector types should be returned via memory. 3556 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 3557 return ABIArgInfo::getIndirect(0); 3558 3559 if (!isAggregateTypeForABI(RetTy)) { 3560 // Treat an enum type as its underlying type. 3561 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3562 RetTy = EnumTy->getDecl()->getIntegerType(); 3563 3564 return (RetTy->isPromotableIntegerType() ? 3565 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 3566 } 3567 3568 // Structures with either a non-trivial destructor or a non-trivial 3569 // copy constructor are always indirect. 3570 if (isRecordReturnIndirect(RetTy, getCXXABI())) 3571 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 3572 3573 // Are we following APCS? 3574 if (getABIKind() == APCS) { 3575 if (isEmptyRecord(getContext(), RetTy, false)) 3576 return ABIArgInfo::getIgnore(); 3577 3578 // Complex types are all returned as packed integers. 3579 // 3580 // FIXME: Consider using 2 x vector types if the back end handles them 3581 // correctly. 3582 if (RetTy->isAnyComplexType()) 3583 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 3584 getContext().getTypeSize(RetTy))); 3585 3586 // Integer like structures are returned in r0. 3587 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 3588 // Return in the smallest viable integer type. 3589 uint64_t Size = getContext().getTypeSize(RetTy); 3590 if (Size <= 8) 3591 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 3592 if (Size <= 16) 3593 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 3594 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 3595 } 3596 3597 // Otherwise return in memory. 3598 return ABIArgInfo::getIndirect(0); 3599 } 3600 3601 // Otherwise this is an AAPCS variant. 3602 3603 if (isEmptyRecord(getContext(), RetTy, true)) 3604 return ABIArgInfo::getIgnore(); 3605 3606 // Check for homogeneous aggregates with AAPCS-VFP. 3607 if (getABIKind() == AAPCS_VFP) { 3608 const Type *Base = 0; 3609 if (isHomogeneousAggregate(RetTy, Base, getContext())) { 3610 assert(Base && "Base class should be set for homogeneous aggregate"); 3611 // Homogeneous Aggregates are returned directly. 3612 return ABIArgInfo::getDirect(); 3613 } 3614 } 3615 3616 // Aggregates <= 4 bytes are returned in r0; other aggregates 3617 // are returned indirectly. 3618 uint64_t Size = getContext().getTypeSize(RetTy); 3619 if (Size <= 32) { 3620 // Return in the smallest viable integer type. 3621 if (Size <= 8) 3622 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 3623 if (Size <= 16) 3624 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 3625 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 3626 } 3627 3628 return ABIArgInfo::getIndirect(0); 3629 } 3630 3631 /// isIllegalVector - check whether Ty is an illegal vector type. 3632 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 3633 if (const VectorType *VT = Ty->getAs<VectorType>()) { 3634 // Check whether VT is legal. 3635 unsigned NumElements = VT->getNumElements(); 3636 uint64_t Size = getContext().getTypeSize(VT); 3637 // NumElements should be power of 2. 3638 if ((NumElements & (NumElements - 1)) != 0) 3639 return true; 3640 // Size should be greater than 32 bits. 3641 return Size <= 32; 3642 } 3643 return false; 3644 } 3645 3646 llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 3647 CodeGenFunction &CGF) const { 3648 llvm::Type *BP = CGF.Int8PtrTy; 3649 llvm::Type *BPP = CGF.Int8PtrPtrTy; 3650 3651 CGBuilderTy &Builder = CGF.Builder; 3652 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 3653 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 3654 3655 if (isEmptyRecord(getContext(), Ty, true)) { 3656 // These are ignored for parameter passing purposes. 3657 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 3658 return Builder.CreateBitCast(Addr, PTy); 3659 } 3660 3661 uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8; 3662 uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8; 3663 bool IsIndirect = false; 3664 3665 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 3666 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 3667 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 3668 getABIKind() == ARMABIInfo::AAPCS) 3669 TyAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 3670 else 3671 TyAlign = 4; 3672 // Use indirect if size of the illegal vector is bigger than 16 bytes. 3673 if (isIllegalVectorType(Ty) && Size > 16) { 3674 IsIndirect = true; 3675 Size = 4; 3676 TyAlign = 4; 3677 } 3678 3679 // Handle address alignment for ABI alignment > 4 bytes. 3680 if (TyAlign > 4) { 3681 assert((TyAlign & (TyAlign - 1)) == 0 && 3682 "Alignment is not power of 2!"); 3683 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty); 3684 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1)); 3685 AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1))); 3686 Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align"); 3687 } 3688 3689 uint64_t Offset = 3690 llvm::RoundUpToAlignment(Size, 4); 3691 llvm::Value *NextAddr = 3692 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 3693 "ap.next"); 3694 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 3695 3696 if (IsIndirect) 3697 Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP)); 3698 else if (TyAlign < CGF.getContext().getTypeAlign(Ty) / 8) { 3699 // We can't directly cast ap.cur to pointer to a vector type, since ap.cur 3700 // may not be correctly aligned for the vector type. We create an aligned 3701 // temporary space and copy the content over from ap.cur to the temporary 3702 // space. This is necessary if the natural alignment of the type is greater 3703 // than the ABI alignment. 3704 llvm::Type *I8PtrTy = Builder.getInt8PtrTy(); 3705 CharUnits CharSize = getContext().getTypeSizeInChars(Ty); 3706 llvm::Value *AlignedTemp = CGF.CreateTempAlloca(CGF.ConvertType(Ty), 3707 "var.align"); 3708 llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy); 3709 llvm::Value *Src = Builder.CreateBitCast(Addr, I8PtrTy); 3710 Builder.CreateMemCpy(Dst, Src, 3711 llvm::ConstantInt::get(CGF.IntPtrTy, CharSize.getQuantity()), 3712 TyAlign, false); 3713 Addr = AlignedTemp; //The content is in aligned location. 3714 } 3715 llvm::Type *PTy = 3716 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 3717 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 3718 3719 return AddrTyped; 3720 } 3721 3722 namespace { 3723 3724 class NaClARMABIInfo : public ABIInfo { 3725 public: 3726 NaClARMABIInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind) 3727 : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, Kind) {} 3728 virtual void computeInfo(CGFunctionInfo &FI) const; 3729 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 3730 CodeGenFunction &CGF) const; 3731 private: 3732 PNaClABIInfo PInfo; // Used for generating calls with pnaclcall callingconv. 3733 ARMABIInfo NInfo; // Used for everything else. 3734 }; 3735 3736 class NaClARMTargetCodeGenInfo : public TargetCodeGenInfo { 3737 public: 3738 NaClARMTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind) 3739 : TargetCodeGenInfo(new NaClARMABIInfo(CGT, Kind)) {} 3740 }; 3741 3742 } 3743 3744 void NaClARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 3745 if (FI.getASTCallingConvention() == CC_PnaclCall) 3746 PInfo.computeInfo(FI); 3747 else 3748 static_cast<const ABIInfo&>(NInfo).computeInfo(FI); 3749 } 3750 3751 llvm::Value *NaClARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 3752 CodeGenFunction &CGF) const { 3753 // Always use the native convention; calling pnacl-style varargs functions 3754 // is unsupported. 3755 return static_cast<const ABIInfo&>(NInfo).EmitVAArg(VAListAddr, Ty, CGF); 3756 } 3757 3758 //===----------------------------------------------------------------------===// 3759 // AArch64 ABI Implementation 3760 //===----------------------------------------------------------------------===// 3761 3762 namespace { 3763 3764 class AArch64ABIInfo : public ABIInfo { 3765 public: 3766 AArch64ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 3767 3768 private: 3769 // The AArch64 PCS is explicit about return types and argument types being 3770 // handled identically, so we don't need to draw a distinction between 3771 // Argument and Return classification. 3772 ABIArgInfo classifyGenericType(QualType Ty, int &FreeIntRegs, 3773 int &FreeVFPRegs) const; 3774 3775 ABIArgInfo tryUseRegs(QualType Ty, int &FreeRegs, int RegsNeeded, bool IsInt, 3776 llvm::Type *DirectTy = 0) const; 3777 3778 virtual void computeInfo(CGFunctionInfo &FI) const; 3779 3780 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 3781 CodeGenFunction &CGF) const; 3782 }; 3783 3784 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 3785 public: 3786 AArch64TargetCodeGenInfo(CodeGenTypes &CGT) 3787 :TargetCodeGenInfo(new AArch64ABIInfo(CGT)) {} 3788 3789 const AArch64ABIInfo &getABIInfo() const { 3790 return static_cast<const AArch64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 3791 } 3792 3793 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const { 3794 return 31; 3795 } 3796 3797 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3798 llvm::Value *Address) const { 3799 // 0-31 are x0-x30 and sp: 8 bytes each 3800 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 3801 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 31); 3802 3803 // 64-95 are v0-v31: 16 bytes each 3804 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 3805 AssignToArrayRange(CGF.Builder, Address, Sixteen8, 64, 95); 3806 3807 return false; 3808 } 3809 3810 }; 3811 3812 } 3813 3814 void AArch64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3815 int FreeIntRegs = 8, FreeVFPRegs = 8; 3816 3817 FI.getReturnInfo() = classifyGenericType(FI.getReturnType(), 3818 FreeIntRegs, FreeVFPRegs); 3819 3820 FreeIntRegs = FreeVFPRegs = 8; 3821 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3822 it != ie; ++it) { 3823 it->info = classifyGenericType(it->type, FreeIntRegs, FreeVFPRegs); 3824 3825 } 3826 } 3827 3828 ABIArgInfo 3829 AArch64ABIInfo::tryUseRegs(QualType Ty, int &FreeRegs, int RegsNeeded, 3830 bool IsInt, llvm::Type *DirectTy) const { 3831 if (FreeRegs >= RegsNeeded) { 3832 FreeRegs -= RegsNeeded; 3833 return ABIArgInfo::getDirect(DirectTy); 3834 } 3835 3836 llvm::Type *Padding = 0; 3837 3838 // We need padding so that later arguments don't get filled in anyway. That 3839 // wouldn't happen if only ByVal arguments followed in the same category, but 3840 // a large structure will simply seem to be a pointer as far as LLVM is 3841 // concerned. 3842 if (FreeRegs > 0) { 3843 if (IsInt) 3844 Padding = llvm::Type::getInt64Ty(getVMContext()); 3845 else 3846 Padding = llvm::Type::getFloatTy(getVMContext()); 3847 3848 // Either [N x i64] or [N x float]. 3849 Padding = llvm::ArrayType::get(Padding, FreeRegs); 3850 FreeRegs = 0; 3851 } 3852 3853 return ABIArgInfo::getIndirect(getContext().getTypeAlign(Ty) / 8, 3854 /*IsByVal=*/ true, /*Realign=*/ false, 3855 Padding); 3856 } 3857 3858 3859 ABIArgInfo AArch64ABIInfo::classifyGenericType(QualType Ty, 3860 int &FreeIntRegs, 3861 int &FreeVFPRegs) const { 3862 // Can only occurs for return, but harmless otherwise. 3863 if (Ty->isVoidType()) 3864 return ABIArgInfo::getIgnore(); 3865 3866 // Large vector types should be returned via memory. There's no such concept 3867 // in the ABI, but they'd be over 16 bytes anyway so no matter how they're 3868 // classified they'd go into memory (see B.3). 3869 if (Ty->isVectorType() && getContext().getTypeSize(Ty) > 128) { 3870 if (FreeIntRegs > 0) 3871 --FreeIntRegs; 3872 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 3873 } 3874 3875 // All non-aggregate LLVM types have a concrete ABI representation so they can 3876 // be passed directly. After this block we're guaranteed to be in a 3877 // complicated case. 3878 if (!isAggregateTypeForABI(Ty)) { 3879 // Treat an enum type as its underlying type. 3880 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3881 Ty = EnumTy->getDecl()->getIntegerType(); 3882 3883 if (Ty->isFloatingType() || Ty->isVectorType()) 3884 return tryUseRegs(Ty, FreeVFPRegs, /*RegsNeeded=*/ 1, /*IsInt=*/ false); 3885 3886 assert(getContext().getTypeSize(Ty) <= 128 && 3887 "unexpectedly large scalar type"); 3888 3889 int RegsNeeded = getContext().getTypeSize(Ty) > 64 ? 2 : 1; 3890 3891 // If the type may need padding registers to ensure "alignment", we must be 3892 // careful when this is accounted for. Increasing the effective size covers 3893 // all cases. 3894 if (getContext().getTypeAlign(Ty) == 128) 3895 RegsNeeded += FreeIntRegs % 2 != 0; 3896 3897 return tryUseRegs(Ty, FreeIntRegs, RegsNeeded, /*IsInt=*/ true); 3898 } 3899 3900 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 3901 if (FreeIntRegs > 0 && RAA == CGCXXABI::RAA_Indirect) 3902 --FreeIntRegs; 3903 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 3904 } 3905 3906 if (isEmptyRecord(getContext(), Ty, true)) { 3907 if (!getContext().getLangOpts().CPlusPlus) { 3908 // Empty structs outside C++ mode are a GNU extension, so no ABI can 3909 // possibly tell us what to do. It turns out (I believe) that GCC ignores 3910 // the object for parameter-passsing purposes. 3911 return ABIArgInfo::getIgnore(); 3912 } 3913 3914 // The combination of C++98 9p5 (sizeof(struct) != 0) and the pseudocode 3915 // description of va_arg in the PCS require that an empty struct does 3916 // actually occupy space for parameter-passing. I'm hoping for a 3917 // clarification giving an explicit paragraph to point to in future. 3918 return tryUseRegs(Ty, FreeIntRegs, /*RegsNeeded=*/ 1, /*IsInt=*/ true, 3919 llvm::Type::getInt8Ty(getVMContext())); 3920 } 3921 3922 // Homogeneous vector aggregates get passed in registers or on the stack. 3923 const Type *Base = 0; 3924 uint64_t NumMembers = 0; 3925 if (isHomogeneousAggregate(Ty, Base, getContext(), &NumMembers)) { 3926 assert(Base && "Base class should be set for homogeneous aggregate"); 3927 // Homogeneous aggregates are passed and returned directly. 3928 return tryUseRegs(Ty, FreeVFPRegs, /*RegsNeeded=*/ NumMembers, 3929 /*IsInt=*/ false); 3930 } 3931 3932 uint64_t Size = getContext().getTypeSize(Ty); 3933 if (Size <= 128) { 3934 // Small structs can use the same direct type whether they're in registers 3935 // or on the stack. 3936 llvm::Type *BaseTy; 3937 unsigned NumBases; 3938 int SizeInRegs = (Size + 63) / 64; 3939 3940 if (getContext().getTypeAlign(Ty) == 128) { 3941 BaseTy = llvm::Type::getIntNTy(getVMContext(), 128); 3942 NumBases = 1; 3943 3944 // If the type may need padding registers to ensure "alignment", we must 3945 // be careful when this is accounted for. Increasing the effective size 3946 // covers all cases. 3947 SizeInRegs += FreeIntRegs % 2 != 0; 3948 } else { 3949 BaseTy = llvm::Type::getInt64Ty(getVMContext()); 3950 NumBases = SizeInRegs; 3951 } 3952 llvm::Type *DirectTy = llvm::ArrayType::get(BaseTy, NumBases); 3953 3954 return tryUseRegs(Ty, FreeIntRegs, /*RegsNeeded=*/ SizeInRegs, 3955 /*IsInt=*/ true, DirectTy); 3956 } 3957 3958 // If the aggregate is > 16 bytes, it's passed and returned indirectly. In 3959 // LLVM terms the return uses an "sret" pointer, but that's handled elsewhere. 3960 --FreeIntRegs; 3961 return ABIArgInfo::getIndirect(0, /* byVal = */ false); 3962 } 3963 3964 llvm::Value *AArch64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 3965 CodeGenFunction &CGF) const { 3966 // The AArch64 va_list type and handling is specified in the Procedure Call 3967 // Standard, section B.4: 3968 // 3969 // struct { 3970 // void *__stack; 3971 // void *__gr_top; 3972 // void *__vr_top; 3973 // int __gr_offs; 3974 // int __vr_offs; 3975 // }; 3976 3977 assert(!CGF.CGM.getDataLayout().isBigEndian() 3978 && "va_arg not implemented for big-endian AArch64"); 3979 3980 int FreeIntRegs = 8, FreeVFPRegs = 8; 3981 Ty = CGF.getContext().getCanonicalType(Ty); 3982 ABIArgInfo AI = classifyGenericType(Ty, FreeIntRegs, FreeVFPRegs); 3983 3984 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 3985 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 3986 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 3987 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 3988 3989 llvm::Value *reg_offs_p = 0, *reg_offs = 0; 3990 int reg_top_index; 3991 int RegSize; 3992 if (FreeIntRegs < 8) { 3993 assert(FreeVFPRegs == 8 && "Arguments never split between int & VFP regs"); 3994 // 3 is the field number of __gr_offs 3995 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p"); 3996 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 3997 reg_top_index = 1; // field number for __gr_top 3998 RegSize = 8 * (8 - FreeIntRegs); 3999 } else { 4000 assert(FreeVFPRegs < 8 && "Argument must go in VFP or int regs"); 4001 // 4 is the field number of __vr_offs. 4002 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p"); 4003 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 4004 reg_top_index = 2; // field number for __vr_top 4005 RegSize = 16 * (8 - FreeVFPRegs); 4006 } 4007 4008 //======================================= 4009 // Find out where argument was passed 4010 //======================================= 4011 4012 // If reg_offs >= 0 we're already using the stack for this type of 4013 // argument. We don't want to keep updating reg_offs (in case it overflows, 4014 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 4015 // whatever they get). 4016 llvm::Value *UsingStack = 0; 4017 UsingStack = CGF.Builder.CreateICmpSGE(reg_offs, 4018 llvm::ConstantInt::get(CGF.Int32Ty, 0)); 4019 4020 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 4021 4022 // Otherwise, at least some kind of argument could go in these registers, the 4023 // quesiton is whether this particular type is too big. 4024 CGF.EmitBlock(MaybeRegBlock); 4025 4026 // Integer arguments may need to correct register alignment (for example a 4027 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 4028 // align __gr_offs to calculate the potential address. 4029 if (FreeIntRegs < 8 && AI.isDirect() && getContext().getTypeAlign(Ty) > 64) { 4030 int Align = getContext().getTypeAlign(Ty) / 8; 4031 4032 reg_offs = CGF.Builder.CreateAdd(reg_offs, 4033 llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 4034 "align_regoffs"); 4035 reg_offs = CGF.Builder.CreateAnd(reg_offs, 4036 llvm::ConstantInt::get(CGF.Int32Ty, -Align), 4037 "aligned_regoffs"); 4038 } 4039 4040 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 4041 llvm::Value *NewOffset = 0; 4042 NewOffset = CGF.Builder.CreateAdd(reg_offs, 4043 llvm::ConstantInt::get(CGF.Int32Ty, RegSize), 4044 "new_reg_offs"); 4045 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 4046 4047 // Now we're in a position to decide whether this argument really was in 4048 // registers or not. 4049 llvm::Value *InRegs = 0; 4050 InRegs = CGF.Builder.CreateICmpSLE(NewOffset, 4051 llvm::ConstantInt::get(CGF.Int32Ty, 0), 4052 "inreg"); 4053 4054 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 4055 4056 //======================================= 4057 // Argument was in registers 4058 //======================================= 4059 4060 // Now we emit the code for if the argument was originally passed in 4061 // registers. First start the appropriate block: 4062 CGF.EmitBlock(InRegBlock); 4063 4064 llvm::Value *reg_top_p = 0, *reg_top = 0; 4065 reg_top_p = CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p"); 4066 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 4067 llvm::Value *BaseAddr = CGF.Builder.CreateGEP(reg_top, reg_offs); 4068 llvm::Value *RegAddr = 0; 4069 llvm::Type *MemTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 4070 4071 if (!AI.isDirect()) { 4072 // If it's been passed indirectly (actually a struct), whatever we find from 4073 // stored registers or on the stack will actually be a struct **. 4074 MemTy = llvm::PointerType::getUnqual(MemTy); 4075 } 4076 4077 const Type *Base = 0; 4078 uint64_t NumMembers; 4079 if (isHomogeneousAggregate(Ty, Base, getContext(), &NumMembers) 4080 && NumMembers > 1) { 4081 // Homogeneous aggregates passed in registers will have their elements split 4082 // and stored 16-bytes apart regardless of size (they're notionally in qN, 4083 // qN+1, ...). We reload and store into a temporary local variable 4084 // contiguously. 4085 assert(AI.isDirect() && "Homogeneous aggregates should be passed directly"); 4086 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 4087 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 4088 llvm::Value *Tmp = CGF.CreateTempAlloca(HFATy); 4089 4090 for (unsigned i = 0; i < NumMembers; ++i) { 4091 llvm::Value *BaseOffset = llvm::ConstantInt::get(CGF.Int32Ty, 16 * i); 4092 llvm::Value *LoadAddr = CGF.Builder.CreateGEP(BaseAddr, BaseOffset); 4093 LoadAddr = CGF.Builder.CreateBitCast(LoadAddr, 4094 llvm::PointerType::getUnqual(BaseTy)); 4095 llvm::Value *StoreAddr = CGF.Builder.CreateStructGEP(Tmp, i); 4096 4097 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 4098 CGF.Builder.CreateStore(Elem, StoreAddr); 4099 } 4100 4101 RegAddr = CGF.Builder.CreateBitCast(Tmp, MemTy); 4102 } else { 4103 // Otherwise the object is contiguous in memory 4104 RegAddr = CGF.Builder.CreateBitCast(BaseAddr, MemTy); 4105 } 4106 4107 CGF.EmitBranch(ContBlock); 4108 4109 //======================================= 4110 // Argument was on the stack 4111 //======================================= 4112 CGF.EmitBlock(OnStackBlock); 4113 4114 llvm::Value *stack_p = 0, *OnStackAddr = 0; 4115 stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p"); 4116 OnStackAddr = CGF.Builder.CreateLoad(stack_p, "stack"); 4117 4118 // Again, stack arguments may need realigmnent. In this case both integer and 4119 // floating-point ones might be affected. 4120 if (AI.isDirect() && getContext().getTypeAlign(Ty) > 64) { 4121 int Align = getContext().getTypeAlign(Ty) / 8; 4122 4123 OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty); 4124 4125 OnStackAddr = CGF.Builder.CreateAdd(OnStackAddr, 4126 llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 4127 "align_stack"); 4128 OnStackAddr = CGF.Builder.CreateAnd(OnStackAddr, 4129 llvm::ConstantInt::get(CGF.Int64Ty, -Align), 4130 "align_stack"); 4131 4132 OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy); 4133 } 4134 4135 uint64_t StackSize; 4136 if (AI.isDirect()) 4137 StackSize = getContext().getTypeSize(Ty) / 8; 4138 else 4139 StackSize = 8; 4140 4141 // All stack slots are 8 bytes 4142 StackSize = llvm::RoundUpToAlignment(StackSize, 8); 4143 4144 llvm::Value *StackSizeC = llvm::ConstantInt::get(CGF.Int32Ty, StackSize); 4145 llvm::Value *NewStack = CGF.Builder.CreateGEP(OnStackAddr, StackSizeC, 4146 "new_stack"); 4147 4148 // Write the new value of __stack for the next call to va_arg 4149 CGF.Builder.CreateStore(NewStack, stack_p); 4150 4151 OnStackAddr = CGF.Builder.CreateBitCast(OnStackAddr, MemTy); 4152 4153 CGF.EmitBranch(ContBlock); 4154 4155 //======================================= 4156 // Tidy up 4157 //======================================= 4158 CGF.EmitBlock(ContBlock); 4159 4160 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(MemTy, 2, "vaarg.addr"); 4161 ResAddr->addIncoming(RegAddr, InRegBlock); 4162 ResAddr->addIncoming(OnStackAddr, OnStackBlock); 4163 4164 if (AI.isDirect()) 4165 return ResAddr; 4166 4167 return CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"); 4168 } 4169 4170 //===----------------------------------------------------------------------===// 4171 // NVPTX ABI Implementation 4172 //===----------------------------------------------------------------------===// 4173 4174 namespace { 4175 4176 class NVPTXABIInfo : public ABIInfo { 4177 public: 4178 NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 4179 4180 ABIArgInfo classifyReturnType(QualType RetTy) const; 4181 ABIArgInfo classifyArgumentType(QualType Ty) const; 4182 4183 virtual void computeInfo(CGFunctionInfo &FI) const; 4184 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4185 CodeGenFunction &CFG) const; 4186 }; 4187 4188 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 4189 public: 4190 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 4191 : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {} 4192 4193 virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 4194 CodeGen::CodeGenModule &M) const; 4195 private: 4196 static void addKernelMetadata(llvm::Function *F); 4197 }; 4198 4199 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 4200 if (RetTy->isVoidType()) 4201 return ABIArgInfo::getIgnore(); 4202 if (isAggregateTypeForABI(RetTy)) 4203 return ABIArgInfo::getIndirect(0); 4204 return ABIArgInfo::getDirect(); 4205 } 4206 4207 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 4208 if (isAggregateTypeForABI(Ty)) 4209 return ABIArgInfo::getIndirect(0); 4210 4211 return ABIArgInfo::getDirect(); 4212 } 4213 4214 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 4215 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4216 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 4217 it != ie; ++it) 4218 it->info = classifyArgumentType(it->type); 4219 4220 // Always honor user-specified calling convention. 4221 if (FI.getCallingConvention() != llvm::CallingConv::C) 4222 return; 4223 4224 FI.setEffectiveCallingConvention(getRuntimeCC()); 4225 } 4226 4227 llvm::Value *NVPTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4228 CodeGenFunction &CFG) const { 4229 llvm_unreachable("NVPTX does not support varargs"); 4230 } 4231 4232 void NVPTXTargetCodeGenInfo:: 4233 SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 4234 CodeGen::CodeGenModule &M) const{ 4235 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 4236 if (!FD) return; 4237 4238 llvm::Function *F = cast<llvm::Function>(GV); 4239 4240 // Perform special handling in OpenCL mode 4241 if (M.getLangOpts().OpenCL) { 4242 // Use OpenCL function attributes to check for kernel functions 4243 // By default, all functions are device functions 4244 if (FD->hasAttr<OpenCLKernelAttr>()) { 4245 // OpenCL __kernel functions get kernel metadata 4246 addKernelMetadata(F); 4247 // And kernel functions are not subject to inlining 4248 F->addFnAttr(llvm::Attribute::NoInline); 4249 } 4250 } 4251 4252 // Perform special handling in CUDA mode. 4253 if (M.getLangOpts().CUDA) { 4254 // CUDA __global__ functions get a kernel metadata entry. Since 4255 // __global__ functions cannot be called from the device, we do not 4256 // need to set the noinline attribute. 4257 if (FD->getAttr<CUDAGlobalAttr>()) 4258 addKernelMetadata(F); 4259 } 4260 } 4261 4262 void NVPTXTargetCodeGenInfo::addKernelMetadata(llvm::Function *F) { 4263 llvm::Module *M = F->getParent(); 4264 llvm::LLVMContext &Ctx = M->getContext(); 4265 4266 // Get "nvvm.annotations" metadata node 4267 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 4268 4269 // Create !{<func-ref>, metadata !"kernel", i32 1} node 4270 llvm::SmallVector<llvm::Value *, 3> MDVals; 4271 MDVals.push_back(F); 4272 MDVals.push_back(llvm::MDString::get(Ctx, "kernel")); 4273 MDVals.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), 1)); 4274 4275 // Append metadata to nvvm.annotations 4276 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 4277 } 4278 4279 } 4280 4281 //===----------------------------------------------------------------------===// 4282 // SystemZ ABI Implementation 4283 //===----------------------------------------------------------------------===// 4284 4285 namespace { 4286 4287 class SystemZABIInfo : public ABIInfo { 4288 public: 4289 SystemZABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 4290 4291 bool isPromotableIntegerType(QualType Ty) const; 4292 bool isCompoundType(QualType Ty) const; 4293 bool isFPArgumentType(QualType Ty) const; 4294 4295 ABIArgInfo classifyReturnType(QualType RetTy) const; 4296 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 4297 4298 virtual void computeInfo(CGFunctionInfo &FI) const { 4299 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4300 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 4301 it != ie; ++it) 4302 it->info = classifyArgumentType(it->type); 4303 } 4304 4305 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4306 CodeGenFunction &CGF) const; 4307 }; 4308 4309 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 4310 public: 4311 SystemZTargetCodeGenInfo(CodeGenTypes &CGT) 4312 : TargetCodeGenInfo(new SystemZABIInfo(CGT)) {} 4313 }; 4314 4315 } 4316 4317 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const { 4318 // Treat an enum type as its underlying type. 4319 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4320 Ty = EnumTy->getDecl()->getIntegerType(); 4321 4322 // Promotable integer types are required to be promoted by the ABI. 4323 if (Ty->isPromotableIntegerType()) 4324 return true; 4325 4326 // 32-bit values must also be promoted. 4327 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4328 switch (BT->getKind()) { 4329 case BuiltinType::Int: 4330 case BuiltinType::UInt: 4331 return true; 4332 default: 4333 return false; 4334 } 4335 return false; 4336 } 4337 4338 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 4339 return Ty->isAnyComplexType() || isAggregateTypeForABI(Ty); 4340 } 4341 4342 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 4343 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4344 switch (BT->getKind()) { 4345 case BuiltinType::Float: 4346 case BuiltinType::Double: 4347 return true; 4348 default: 4349 return false; 4350 } 4351 4352 if (const RecordType *RT = Ty->getAsStructureType()) { 4353 const RecordDecl *RD = RT->getDecl(); 4354 bool Found = false; 4355 4356 // If this is a C++ record, check the bases first. 4357 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 4358 for (CXXRecordDecl::base_class_const_iterator I = CXXRD->bases_begin(), 4359 E = CXXRD->bases_end(); I != E; ++I) { 4360 QualType Base = I->getType(); 4361 4362 // Empty bases don't affect things either way. 4363 if (isEmptyRecord(getContext(), Base, true)) 4364 continue; 4365 4366 if (Found) 4367 return false; 4368 Found = isFPArgumentType(Base); 4369 if (!Found) 4370 return false; 4371 } 4372 4373 // Check the fields. 4374 for (RecordDecl::field_iterator I = RD->field_begin(), 4375 E = RD->field_end(); I != E; ++I) { 4376 const FieldDecl *FD = *I; 4377 4378 // Empty bitfields don't affect things either way. 4379 // Unlike isSingleElementStruct(), empty structure and array fields 4380 // do count. So do anonymous bitfields that aren't zero-sized. 4381 if (FD->isBitField() && FD->getBitWidthValue(getContext()) == 0) 4382 return true; 4383 4384 // Unlike isSingleElementStruct(), arrays do not count. 4385 // Nested isFPArgumentType structures still do though. 4386 if (Found) 4387 return false; 4388 Found = isFPArgumentType(FD->getType()); 4389 if (!Found) 4390 return false; 4391 } 4392 4393 // Unlike isSingleElementStruct(), trailing padding is allowed. 4394 // An 8-byte aligned struct s { float f; } is passed as a double. 4395 return Found; 4396 } 4397 4398 return false; 4399 } 4400 4401 llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4402 CodeGenFunction &CGF) const { 4403 // Assume that va_list type is correct; should be pointer to LLVM type: 4404 // struct { 4405 // i64 __gpr; 4406 // i64 __fpr; 4407 // i8 *__overflow_arg_area; 4408 // i8 *__reg_save_area; 4409 // }; 4410 4411 // Every argument occupies 8 bytes and is passed by preference in either 4412 // GPRs or FPRs. 4413 Ty = CGF.getContext().getCanonicalType(Ty); 4414 ABIArgInfo AI = classifyArgumentType(Ty); 4415 bool InFPRs = isFPArgumentType(Ty); 4416 4417 llvm::Type *APTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 4418 bool IsIndirect = AI.isIndirect(); 4419 unsigned UnpaddedBitSize; 4420 if (IsIndirect) { 4421 APTy = llvm::PointerType::getUnqual(APTy); 4422 UnpaddedBitSize = 64; 4423 } else 4424 UnpaddedBitSize = getContext().getTypeSize(Ty); 4425 unsigned PaddedBitSize = 64; 4426 assert((UnpaddedBitSize <= PaddedBitSize) && "Invalid argument size."); 4427 4428 unsigned PaddedSize = PaddedBitSize / 8; 4429 unsigned Padding = (PaddedBitSize - UnpaddedBitSize) / 8; 4430 4431 unsigned MaxRegs, RegCountField, RegSaveIndex, RegPadding; 4432 if (InFPRs) { 4433 MaxRegs = 4; // Maximum of 4 FPR arguments 4434 RegCountField = 1; // __fpr 4435 RegSaveIndex = 16; // save offset for f0 4436 RegPadding = 0; // floats are passed in the high bits of an FPR 4437 } else { 4438 MaxRegs = 5; // Maximum of 5 GPR arguments 4439 RegCountField = 0; // __gpr 4440 RegSaveIndex = 2; // save offset for r2 4441 RegPadding = Padding; // values are passed in the low bits of a GPR 4442 } 4443 4444 llvm::Value *RegCountPtr = 4445 CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr"); 4446 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 4447 llvm::Type *IndexTy = RegCount->getType(); 4448 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 4449 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 4450 "fits_in_regs"); 4451 4452 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 4453 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 4454 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 4455 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 4456 4457 // Emit code to load the value if it was passed in registers. 4458 CGF.EmitBlock(InRegBlock); 4459 4460 // Work out the address of an argument register. 4461 llvm::Value *PaddedSizeV = llvm::ConstantInt::get(IndexTy, PaddedSize); 4462 llvm::Value *ScaledRegCount = 4463 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 4464 llvm::Value *RegBase = 4465 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize + RegPadding); 4466 llvm::Value *RegOffset = 4467 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 4468 llvm::Value *RegSaveAreaPtr = 4469 CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr"); 4470 llvm::Value *RegSaveArea = 4471 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 4472 llvm::Value *RawRegAddr = 4473 CGF.Builder.CreateGEP(RegSaveArea, RegOffset, "raw_reg_addr"); 4474 llvm::Value *RegAddr = 4475 CGF.Builder.CreateBitCast(RawRegAddr, APTy, "reg_addr"); 4476 4477 // Update the register count 4478 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 4479 llvm::Value *NewRegCount = 4480 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 4481 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 4482 CGF.EmitBranch(ContBlock); 4483 4484 // Emit code to load the value if it was passed in memory. 4485 CGF.EmitBlock(InMemBlock); 4486 4487 // Work out the address of a stack argument. 4488 llvm::Value *OverflowArgAreaPtr = 4489 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 4490 llvm::Value *OverflowArgArea = 4491 CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"); 4492 llvm::Value *PaddingV = llvm::ConstantInt::get(IndexTy, Padding); 4493 llvm::Value *RawMemAddr = 4494 CGF.Builder.CreateGEP(OverflowArgArea, PaddingV, "raw_mem_addr"); 4495 llvm::Value *MemAddr = 4496 CGF.Builder.CreateBitCast(RawMemAddr, APTy, "mem_addr"); 4497 4498 // Update overflow_arg_area_ptr pointer 4499 llvm::Value *NewOverflowArgArea = 4500 CGF.Builder.CreateGEP(OverflowArgArea, PaddedSizeV, "overflow_arg_area"); 4501 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 4502 CGF.EmitBranch(ContBlock); 4503 4504 // Return the appropriate result. 4505 CGF.EmitBlock(ContBlock); 4506 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(APTy, 2, "va_arg.addr"); 4507 ResAddr->addIncoming(RegAddr, InRegBlock); 4508 ResAddr->addIncoming(MemAddr, InMemBlock); 4509 4510 if (IsIndirect) 4511 return CGF.Builder.CreateLoad(ResAddr, "indirect_arg"); 4512 4513 return ResAddr; 4514 } 4515 4516 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 4517 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 4518 assert(Triple.getArch() == llvm::Triple::x86); 4519 4520 switch (Opts.getStructReturnConvention()) { 4521 case CodeGenOptions::SRCK_Default: 4522 break; 4523 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 4524 return false; 4525 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 4526 return true; 4527 } 4528 4529 if (Triple.isOSDarwin()) 4530 return true; 4531 4532 switch (Triple.getOS()) { 4533 case llvm::Triple::Cygwin: 4534 case llvm::Triple::MinGW32: 4535 case llvm::Triple::AuroraUX: 4536 case llvm::Triple::DragonFly: 4537 case llvm::Triple::FreeBSD: 4538 case llvm::Triple::OpenBSD: 4539 case llvm::Triple::Bitrig: 4540 case llvm::Triple::Win32: 4541 return true; 4542 default: 4543 return false; 4544 } 4545 } 4546 4547 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 4548 if (RetTy->isVoidType()) 4549 return ABIArgInfo::getIgnore(); 4550 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 4551 return ABIArgInfo::getIndirect(0); 4552 return (isPromotableIntegerType(RetTy) ? 4553 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 4554 } 4555 4556 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 4557 // Handle the generic C++ ABI. 4558 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 4559 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 4560 4561 // Integers and enums are extended to full register width. 4562 if (isPromotableIntegerType(Ty)) 4563 return ABIArgInfo::getExtend(); 4564 4565 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 4566 uint64_t Size = getContext().getTypeSize(Ty); 4567 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 4568 return ABIArgInfo::getIndirect(0); 4569 4570 // Handle small structures. 4571 if (const RecordType *RT = Ty->getAs<RecordType>()) { 4572 // Structures with flexible arrays have variable length, so really 4573 // fail the size test above. 4574 const RecordDecl *RD = RT->getDecl(); 4575 if (RD->hasFlexibleArrayMember()) 4576 return ABIArgInfo::getIndirect(0); 4577 4578 // The structure is passed as an unextended integer, a float, or a double. 4579 llvm::Type *PassTy; 4580 if (isFPArgumentType(Ty)) { 4581 assert(Size == 32 || Size == 64); 4582 if (Size == 32) 4583 PassTy = llvm::Type::getFloatTy(getVMContext()); 4584 else 4585 PassTy = llvm::Type::getDoubleTy(getVMContext()); 4586 } else 4587 PassTy = llvm::IntegerType::get(getVMContext(), Size); 4588 return ABIArgInfo::getDirect(PassTy); 4589 } 4590 4591 // Non-structure compounds are passed indirectly. 4592 if (isCompoundType(Ty)) 4593 return ABIArgInfo::getIndirect(0); 4594 4595 return ABIArgInfo::getDirect(0); 4596 } 4597 4598 //===----------------------------------------------------------------------===// 4599 // MSP430 ABI Implementation 4600 //===----------------------------------------------------------------------===// 4601 4602 namespace { 4603 4604 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 4605 public: 4606 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 4607 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 4608 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 4609 CodeGen::CodeGenModule &M) const; 4610 }; 4611 4612 } 4613 4614 void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D, 4615 llvm::GlobalValue *GV, 4616 CodeGen::CodeGenModule &M) const { 4617 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 4618 if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) { 4619 // Handle 'interrupt' attribute: 4620 llvm::Function *F = cast<llvm::Function>(GV); 4621 4622 // Step 1: Set ISR calling convention. 4623 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 4624 4625 // Step 2: Add attributes goodness. 4626 F->addFnAttr(llvm::Attribute::NoInline); 4627 4628 // Step 3: Emit ISR vector alias. 4629 unsigned Num = attr->getNumber() / 2; 4630 new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage, 4631 "__isr_" + Twine(Num), 4632 GV, &M.getModule()); 4633 } 4634 } 4635 } 4636 4637 //===----------------------------------------------------------------------===// 4638 // MIPS ABI Implementation. This works for both little-endian and 4639 // big-endian variants. 4640 //===----------------------------------------------------------------------===// 4641 4642 namespace { 4643 class MipsABIInfo : public ABIInfo { 4644 bool IsO32; 4645 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 4646 void CoerceToIntArgs(uint64_t TySize, 4647 SmallVectorImpl<llvm::Type *> &ArgList) const; 4648 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 4649 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 4650 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 4651 public: 4652 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32, bool HasFP64) : 4653 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 4654 StackAlignInBytes(IsO32 && !HasFP64 ? 8 : 16) {} 4655 4656 ABIArgInfo classifyReturnType(QualType RetTy) const; 4657 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 4658 virtual void computeInfo(CGFunctionInfo &FI) const; 4659 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4660 CodeGenFunction &CGF) const; 4661 }; 4662 4663 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 4664 unsigned SizeOfUnwindException; 4665 public: 4666 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32, const TargetInfo &Info) 4667 : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32, Info.hasFeature("fp64"))), 4668 SizeOfUnwindException(IsO32 ? 24 : 32) {} 4669 4670 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const { 4671 return 29; 4672 } 4673 4674 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 4675 CodeGen::CodeGenModule &CGM) const { 4676 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 4677 if (!FD) return; 4678 llvm::Function *Fn = cast<llvm::Function>(GV); 4679 if (FD->hasAttr<Mips16Attr>()) { 4680 Fn->addFnAttr("mips16"); 4681 } 4682 else if (FD->hasAttr<NoMips16Attr>()) { 4683 Fn->addFnAttr("nomips16"); 4684 } 4685 } 4686 4687 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4688 llvm::Value *Address) const; 4689 4690 unsigned getSizeOfUnwindException() const { 4691 return SizeOfUnwindException; 4692 } 4693 }; 4694 } 4695 4696 void MipsABIInfo::CoerceToIntArgs(uint64_t TySize, 4697 SmallVectorImpl<llvm::Type *> &ArgList) const { 4698 llvm::IntegerType *IntTy = 4699 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 4700 4701 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 4702 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 4703 ArgList.push_back(IntTy); 4704 4705 // If necessary, add one more integer type to ArgList. 4706 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 4707 4708 if (R) 4709 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 4710 } 4711 4712 // In N32/64, an aligned double precision floating point field is passed in 4713 // a register. 4714 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 4715 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 4716 4717 if (IsO32) { 4718 CoerceToIntArgs(TySize, ArgList); 4719 return llvm::StructType::get(getVMContext(), ArgList); 4720 } 4721 4722 if (Ty->isComplexType()) 4723 return CGT.ConvertType(Ty); 4724 4725 const RecordType *RT = Ty->getAs<RecordType>(); 4726 4727 // Unions/vectors are passed in integer registers. 4728 if (!RT || !RT->isStructureOrClassType()) { 4729 CoerceToIntArgs(TySize, ArgList); 4730 return llvm::StructType::get(getVMContext(), ArgList); 4731 } 4732 4733 const RecordDecl *RD = RT->getDecl(); 4734 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 4735 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 4736 4737 uint64_t LastOffset = 0; 4738 unsigned idx = 0; 4739 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 4740 4741 // Iterate over fields in the struct/class and check if there are any aligned 4742 // double fields. 4743 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 4744 i != e; ++i, ++idx) { 4745 const QualType Ty = i->getType(); 4746 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 4747 4748 if (!BT || BT->getKind() != BuiltinType::Double) 4749 continue; 4750 4751 uint64_t Offset = Layout.getFieldOffset(idx); 4752 if (Offset % 64) // Ignore doubles that are not aligned. 4753 continue; 4754 4755 // Add ((Offset - LastOffset) / 64) args of type i64. 4756 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 4757 ArgList.push_back(I64); 4758 4759 // Add double type. 4760 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 4761 LastOffset = Offset + 64; 4762 } 4763 4764 CoerceToIntArgs(TySize - LastOffset, IntArgList); 4765 ArgList.append(IntArgList.begin(), IntArgList.end()); 4766 4767 return llvm::StructType::get(getVMContext(), ArgList); 4768 } 4769 4770 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 4771 uint64_t Offset) const { 4772 if (OrigOffset + MinABIStackAlignInBytes > Offset) 4773 return 0; 4774 4775 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 4776 } 4777 4778 ABIArgInfo 4779 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 4780 uint64_t OrigOffset = Offset; 4781 uint64_t TySize = getContext().getTypeSize(Ty); 4782 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 4783 4784 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 4785 (uint64_t)StackAlignInBytes); 4786 unsigned CurrOffset = llvm::RoundUpToAlignment(Offset, Align); 4787 Offset = CurrOffset + llvm::RoundUpToAlignment(TySize, Align * 8) / 8; 4788 4789 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 4790 // Ignore empty aggregates. 4791 if (TySize == 0) 4792 return ABIArgInfo::getIgnore(); 4793 4794 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 4795 Offset = OrigOffset + MinABIStackAlignInBytes; 4796 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 4797 } 4798 4799 // If we have reached here, aggregates are passed directly by coercing to 4800 // another structure type. Padding is inserted if the offset of the 4801 // aggregate is unaligned. 4802 return ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 4803 getPaddingType(OrigOffset, CurrOffset)); 4804 } 4805 4806 // Treat an enum type as its underlying type. 4807 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4808 Ty = EnumTy->getDecl()->getIntegerType(); 4809 4810 if (Ty->isPromotableIntegerType()) 4811 return ABIArgInfo::getExtend(); 4812 4813 return ABIArgInfo::getDirect( 4814 0, 0, IsO32 ? 0 : getPaddingType(OrigOffset, CurrOffset)); 4815 } 4816 4817 llvm::Type* 4818 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 4819 const RecordType *RT = RetTy->getAs<RecordType>(); 4820 SmallVector<llvm::Type*, 8> RTList; 4821 4822 if (RT && RT->isStructureOrClassType()) { 4823 const RecordDecl *RD = RT->getDecl(); 4824 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 4825 unsigned FieldCnt = Layout.getFieldCount(); 4826 4827 // N32/64 returns struct/classes in floating point registers if the 4828 // following conditions are met: 4829 // 1. The size of the struct/class is no larger than 128-bit. 4830 // 2. The struct/class has one or two fields all of which are floating 4831 // point types. 4832 // 3. The offset of the first field is zero (this follows what gcc does). 4833 // 4834 // Any other composite results are returned in integer registers. 4835 // 4836 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 4837 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 4838 for (; b != e; ++b) { 4839 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 4840 4841 if (!BT || !BT->isFloatingPoint()) 4842 break; 4843 4844 RTList.push_back(CGT.ConvertType(b->getType())); 4845 } 4846 4847 if (b == e) 4848 return llvm::StructType::get(getVMContext(), RTList, 4849 RD->hasAttr<PackedAttr>()); 4850 4851 RTList.clear(); 4852 } 4853 } 4854 4855 CoerceToIntArgs(Size, RTList); 4856 return llvm::StructType::get(getVMContext(), RTList); 4857 } 4858 4859 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 4860 uint64_t Size = getContext().getTypeSize(RetTy); 4861 4862 if (RetTy->isVoidType() || Size == 0) 4863 return ABIArgInfo::getIgnore(); 4864 4865 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 4866 if (isRecordReturnIndirect(RetTy, getCXXABI())) 4867 return ABIArgInfo::getIndirect(0); 4868 4869 if (Size <= 128) { 4870 if (RetTy->isAnyComplexType()) 4871 return ABIArgInfo::getDirect(); 4872 4873 // O32 returns integer vectors in registers. 4874 if (IsO32 && RetTy->isVectorType() && !RetTy->hasFloatingRepresentation()) 4875 return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 4876 4877 if (!IsO32) 4878 return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 4879 } 4880 4881 return ABIArgInfo::getIndirect(0); 4882 } 4883 4884 // Treat an enum type as its underlying type. 4885 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 4886 RetTy = EnumTy->getDecl()->getIntegerType(); 4887 4888 return (RetTy->isPromotableIntegerType() ? 4889 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 4890 } 4891 4892 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 4893 ABIArgInfo &RetInfo = FI.getReturnInfo(); 4894 RetInfo = classifyReturnType(FI.getReturnType()); 4895 4896 // Check if a pointer to an aggregate is passed as a hidden argument. 4897 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 4898 4899 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 4900 it != ie; ++it) 4901 it->info = classifyArgumentType(it->type, Offset); 4902 } 4903 4904 llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4905 CodeGenFunction &CGF) const { 4906 llvm::Type *BP = CGF.Int8PtrTy; 4907 llvm::Type *BPP = CGF.Int8PtrPtrTy; 4908 4909 CGBuilderTy &Builder = CGF.Builder; 4910 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 4911 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 4912 int64_t TypeAlign = getContext().getTypeAlign(Ty) / 8; 4913 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 4914 llvm::Value *AddrTyped; 4915 unsigned PtrWidth = getTarget().getPointerWidth(0); 4916 llvm::IntegerType *IntTy = (PtrWidth == 32) ? CGF.Int32Ty : CGF.Int64Ty; 4917 4918 if (TypeAlign > MinABIStackAlignInBytes) { 4919 llvm::Value *AddrAsInt = CGF.Builder.CreatePtrToInt(Addr, IntTy); 4920 llvm::Value *Inc = llvm::ConstantInt::get(IntTy, TypeAlign - 1); 4921 llvm::Value *Mask = llvm::ConstantInt::get(IntTy, -TypeAlign); 4922 llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt, Inc); 4923 llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask); 4924 AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy); 4925 } 4926 else 4927 AddrTyped = Builder.CreateBitCast(Addr, PTy); 4928 4929 llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP); 4930 TypeAlign = std::max((unsigned)TypeAlign, MinABIStackAlignInBytes); 4931 uint64_t Offset = 4932 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, TypeAlign); 4933 llvm::Value *NextAddr = 4934 Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(IntTy, Offset), 4935 "ap.next"); 4936 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 4937 4938 return AddrTyped; 4939 } 4940 4941 bool 4942 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4943 llvm::Value *Address) const { 4944 // This information comes from gcc's implementation, which seems to 4945 // as canonical as it gets. 4946 4947 // Everything on MIPS is 4 bytes. Double-precision FP registers 4948 // are aliased to pairs of single-precision FP registers. 4949 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 4950 4951 // 0-31 are the general purpose registers, $0 - $31. 4952 // 32-63 are the floating-point registers, $f0 - $f31. 4953 // 64 and 65 are the multiply/divide registers, $hi and $lo. 4954 // 66 is the (notional, I think) register for signal-handler return. 4955 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 4956 4957 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 4958 // They are one bit wide and ignored here. 4959 4960 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 4961 // (coprocessor 1 is the FP unit) 4962 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 4963 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 4964 // 176-181 are the DSP accumulator registers. 4965 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 4966 return false; 4967 } 4968 4969 //===----------------------------------------------------------------------===// 4970 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 4971 // Currently subclassed only to implement custom OpenCL C function attribute 4972 // handling. 4973 //===----------------------------------------------------------------------===// 4974 4975 namespace { 4976 4977 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 4978 public: 4979 TCETargetCodeGenInfo(CodeGenTypes &CGT) 4980 : DefaultTargetCodeGenInfo(CGT) {} 4981 4982 virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 4983 CodeGen::CodeGenModule &M) const; 4984 }; 4985 4986 void TCETargetCodeGenInfo::SetTargetAttributes(const Decl *D, 4987 llvm::GlobalValue *GV, 4988 CodeGen::CodeGenModule &M) const { 4989 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 4990 if (!FD) return; 4991 4992 llvm::Function *F = cast<llvm::Function>(GV); 4993 4994 if (M.getLangOpts().OpenCL) { 4995 if (FD->hasAttr<OpenCLKernelAttr>()) { 4996 // OpenCL C Kernel functions are not subject to inlining 4997 F->addFnAttr(llvm::Attribute::NoInline); 4998 4999 if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) { 5000 5001 // Convert the reqd_work_group_size() attributes to metadata. 5002 llvm::LLVMContext &Context = F->getContext(); 5003 llvm::NamedMDNode *OpenCLMetadata = 5004 M.getModule().getOrInsertNamedMetadata("opencl.kernel_wg_size_info"); 5005 5006 SmallVector<llvm::Value*, 5> Operands; 5007 Operands.push_back(F); 5008 5009 Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty, 5010 llvm::APInt(32, 5011 FD->getAttr<ReqdWorkGroupSizeAttr>()->getXDim()))); 5012 Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty, 5013 llvm::APInt(32, 5014 FD->getAttr<ReqdWorkGroupSizeAttr>()->getYDim()))); 5015 Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty, 5016 llvm::APInt(32, 5017 FD->getAttr<ReqdWorkGroupSizeAttr>()->getZDim()))); 5018 5019 // Add a boolean constant operand for "required" (true) or "hint" (false) 5020 // for implementing the work_group_size_hint attr later. Currently 5021 // always true as the hint is not yet implemented. 5022 Operands.push_back(llvm::ConstantInt::getTrue(Context)); 5023 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 5024 } 5025 } 5026 } 5027 } 5028 5029 } 5030 5031 //===----------------------------------------------------------------------===// 5032 // Hexagon ABI Implementation 5033 //===----------------------------------------------------------------------===// 5034 5035 namespace { 5036 5037 class HexagonABIInfo : public ABIInfo { 5038 5039 5040 public: 5041 HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 5042 5043 private: 5044 5045 ABIArgInfo classifyReturnType(QualType RetTy) const; 5046 ABIArgInfo classifyArgumentType(QualType RetTy) const; 5047 5048 virtual void computeInfo(CGFunctionInfo &FI) const; 5049 5050 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5051 CodeGenFunction &CGF) const; 5052 }; 5053 5054 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 5055 public: 5056 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 5057 :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {} 5058 5059 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const { 5060 return 29; 5061 } 5062 }; 5063 5064 } 5065 5066 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 5067 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 5068 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 5069 it != ie; ++it) 5070 it->info = classifyArgumentType(it->type); 5071 } 5072 5073 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const { 5074 if (!isAggregateTypeForABI(Ty)) { 5075 // Treat an enum type as its underlying type. 5076 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5077 Ty = EnumTy->getDecl()->getIntegerType(); 5078 5079 return (Ty->isPromotableIntegerType() ? 5080 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5081 } 5082 5083 // Ignore empty records. 5084 if (isEmptyRecord(getContext(), Ty, true)) 5085 return ABIArgInfo::getIgnore(); 5086 5087 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 5088 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 5089 5090 uint64_t Size = getContext().getTypeSize(Ty); 5091 if (Size > 64) 5092 return ABIArgInfo::getIndirect(0, /*ByVal=*/true); 5093 // Pass in the smallest viable integer type. 5094 else if (Size > 32) 5095 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 5096 else if (Size > 16) 5097 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 5098 else if (Size > 8) 5099 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 5100 else 5101 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5102 } 5103 5104 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 5105 if (RetTy->isVoidType()) 5106 return ABIArgInfo::getIgnore(); 5107 5108 // Large vector types should be returned via memory. 5109 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64) 5110 return ABIArgInfo::getIndirect(0); 5111 5112 if (!isAggregateTypeForABI(RetTy)) { 5113 // Treat an enum type as its underlying type. 5114 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5115 RetTy = EnumTy->getDecl()->getIntegerType(); 5116 5117 return (RetTy->isPromotableIntegerType() ? 5118 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5119 } 5120 5121 // Structures with either a non-trivial destructor or a non-trivial 5122 // copy constructor are always indirect. 5123 if (isRecordReturnIndirect(RetTy, getCXXABI())) 5124 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 5125 5126 if (isEmptyRecord(getContext(), RetTy, true)) 5127 return ABIArgInfo::getIgnore(); 5128 5129 // Aggregates <= 8 bytes are returned in r0; other aggregates 5130 // are returned indirectly. 5131 uint64_t Size = getContext().getTypeSize(RetTy); 5132 if (Size <= 64) { 5133 // Return in the smallest viable integer type. 5134 if (Size <= 8) 5135 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5136 if (Size <= 16) 5137 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 5138 if (Size <= 32) 5139 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 5140 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 5141 } 5142 5143 return ABIArgInfo::getIndirect(0, /*ByVal=*/true); 5144 } 5145 5146 llvm::Value *HexagonABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5147 CodeGenFunction &CGF) const { 5148 // FIXME: Need to handle alignment 5149 llvm::Type *BPP = CGF.Int8PtrPtrTy; 5150 5151 CGBuilderTy &Builder = CGF.Builder; 5152 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, 5153 "ap"); 5154 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 5155 llvm::Type *PTy = 5156 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 5157 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 5158 5159 uint64_t Offset = 5160 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4); 5161 llvm::Value *NextAddr = 5162 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 5163 "ap.next"); 5164 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 5165 5166 return AddrTyped; 5167 } 5168 5169 5170 //===----------------------------------------------------------------------===// 5171 // SPARC v9 ABI Implementation. 5172 // Based on the SPARC Compliance Definition version 2.4.1. 5173 // 5174 // Function arguments a mapped to a nominal "parameter array" and promoted to 5175 // registers depending on their type. Each argument occupies 8 or 16 bytes in 5176 // the array, structs larger than 16 bytes are passed indirectly. 5177 // 5178 // One case requires special care: 5179 // 5180 // struct mixed { 5181 // int i; 5182 // float f; 5183 // }; 5184 // 5185 // When a struct mixed is passed by value, it only occupies 8 bytes in the 5186 // parameter array, but the int is passed in an integer register, and the float 5187 // is passed in a floating point register. This is represented as two arguments 5188 // with the LLVM IR inreg attribute: 5189 // 5190 // declare void f(i32 inreg %i, float inreg %f) 5191 // 5192 // The code generator will only allocate 4 bytes from the parameter array for 5193 // the inreg arguments. All other arguments are allocated a multiple of 8 5194 // bytes. 5195 // 5196 namespace { 5197 class SparcV9ABIInfo : public ABIInfo { 5198 public: 5199 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 5200 5201 private: 5202 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 5203 virtual void computeInfo(CGFunctionInfo &FI) const; 5204 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5205 CodeGenFunction &CGF) const; 5206 5207 // Coercion type builder for structs passed in registers. The coercion type 5208 // serves two purposes: 5209 // 5210 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 5211 // in registers. 5212 // 2. Expose aligned floating point elements as first-level elements, so the 5213 // code generator knows to pass them in floating point registers. 5214 // 5215 // We also compute the InReg flag which indicates that the struct contains 5216 // aligned 32-bit floats. 5217 // 5218 struct CoerceBuilder { 5219 llvm::LLVMContext &Context; 5220 const llvm::DataLayout &DL; 5221 SmallVector<llvm::Type*, 8> Elems; 5222 uint64_t Size; 5223 bool InReg; 5224 5225 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 5226 : Context(c), DL(dl), Size(0), InReg(false) {} 5227 5228 // Pad Elems with integers until Size is ToSize. 5229 void pad(uint64_t ToSize) { 5230 assert(ToSize >= Size && "Cannot remove elements"); 5231 if (ToSize == Size) 5232 return; 5233 5234 // Finish the current 64-bit word. 5235 uint64_t Aligned = llvm::RoundUpToAlignment(Size, 64); 5236 if (Aligned > Size && Aligned <= ToSize) { 5237 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 5238 Size = Aligned; 5239 } 5240 5241 // Add whole 64-bit words. 5242 while (Size + 64 <= ToSize) { 5243 Elems.push_back(llvm::Type::getInt64Ty(Context)); 5244 Size += 64; 5245 } 5246 5247 // Final in-word padding. 5248 if (Size < ToSize) { 5249 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 5250 Size = ToSize; 5251 } 5252 } 5253 5254 // Add a floating point element at Offset. 5255 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 5256 // Unaligned floats are treated as integers. 5257 if (Offset % Bits) 5258 return; 5259 // The InReg flag is only required if there are any floats < 64 bits. 5260 if (Bits < 64) 5261 InReg = true; 5262 pad(Offset); 5263 Elems.push_back(Ty); 5264 Size = Offset + Bits; 5265 } 5266 5267 // Add a struct type to the coercion type, starting at Offset (in bits). 5268 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 5269 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 5270 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 5271 llvm::Type *ElemTy = StrTy->getElementType(i); 5272 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 5273 switch (ElemTy->getTypeID()) { 5274 case llvm::Type::StructTyID: 5275 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 5276 break; 5277 case llvm::Type::FloatTyID: 5278 addFloat(ElemOffset, ElemTy, 32); 5279 break; 5280 case llvm::Type::DoubleTyID: 5281 addFloat(ElemOffset, ElemTy, 64); 5282 break; 5283 case llvm::Type::FP128TyID: 5284 addFloat(ElemOffset, ElemTy, 128); 5285 break; 5286 case llvm::Type::PointerTyID: 5287 if (ElemOffset % 64 == 0) { 5288 pad(ElemOffset); 5289 Elems.push_back(ElemTy); 5290 Size += 64; 5291 } 5292 break; 5293 default: 5294 break; 5295 } 5296 } 5297 } 5298 5299 // Check if Ty is a usable substitute for the coercion type. 5300 bool isUsableType(llvm::StructType *Ty) const { 5301 if (Ty->getNumElements() != Elems.size()) 5302 return false; 5303 for (unsigned i = 0, e = Elems.size(); i != e; ++i) 5304 if (Elems[i] != Ty->getElementType(i)) 5305 return false; 5306 return true; 5307 } 5308 5309 // Get the coercion type as a literal struct type. 5310 llvm::Type *getType() const { 5311 if (Elems.size() == 1) 5312 return Elems.front(); 5313 else 5314 return llvm::StructType::get(Context, Elems); 5315 } 5316 }; 5317 }; 5318 } // end anonymous namespace 5319 5320 ABIArgInfo 5321 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 5322 if (Ty->isVoidType()) 5323 return ABIArgInfo::getIgnore(); 5324 5325 uint64_t Size = getContext().getTypeSize(Ty); 5326 5327 // Anything too big to fit in registers is passed with an explicit indirect 5328 // pointer / sret pointer. 5329 if (Size > SizeLimit) 5330 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 5331 5332 // Treat an enum type as its underlying type. 5333 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5334 Ty = EnumTy->getDecl()->getIntegerType(); 5335 5336 // Integer types smaller than a register are extended. 5337 if (Size < 64 && Ty->isIntegerType()) 5338 return ABIArgInfo::getExtend(); 5339 5340 // Other non-aggregates go in registers. 5341 if (!isAggregateTypeForABI(Ty)) 5342 return ABIArgInfo::getDirect(); 5343 5344 // This is a small aggregate type that should be passed in registers. 5345 // Build a coercion type from the LLVM struct type. 5346 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 5347 if (!StrTy) 5348 return ABIArgInfo::getDirect(); 5349 5350 CoerceBuilder CB(getVMContext(), getDataLayout()); 5351 CB.addStruct(0, StrTy); 5352 CB.pad(llvm::RoundUpToAlignment(CB.DL.getTypeSizeInBits(StrTy), 64)); 5353 5354 // Try to use the original type for coercion. 5355 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 5356 5357 if (CB.InReg) 5358 return ABIArgInfo::getDirectInReg(CoerceTy); 5359 else 5360 return ABIArgInfo::getDirect(CoerceTy); 5361 } 5362 5363 llvm::Value *SparcV9ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5364 CodeGenFunction &CGF) const { 5365 ABIArgInfo AI = classifyType(Ty, 16 * 8); 5366 llvm::Type *ArgTy = CGT.ConvertType(Ty); 5367 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 5368 AI.setCoerceToType(ArgTy); 5369 5370 llvm::Type *BPP = CGF.Int8PtrPtrTy; 5371 CGBuilderTy &Builder = CGF.Builder; 5372 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 5373 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 5374 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 5375 llvm::Value *ArgAddr; 5376 unsigned Stride; 5377 5378 switch (AI.getKind()) { 5379 case ABIArgInfo::Expand: 5380 llvm_unreachable("Unsupported ABI kind for va_arg"); 5381 5382 case ABIArgInfo::Extend: 5383 Stride = 8; 5384 ArgAddr = Builder 5385 .CreateConstGEP1_32(Addr, 8 - getDataLayout().getTypeAllocSize(ArgTy), 5386 "extend"); 5387 break; 5388 5389 case ABIArgInfo::Direct: 5390 Stride = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 5391 ArgAddr = Addr; 5392 break; 5393 5394 case ABIArgInfo::Indirect: 5395 Stride = 8; 5396 ArgAddr = Builder.CreateBitCast(Addr, 5397 llvm::PointerType::getUnqual(ArgPtrTy), 5398 "indirect"); 5399 ArgAddr = Builder.CreateLoad(ArgAddr, "indirect.arg"); 5400 break; 5401 5402 case ABIArgInfo::Ignore: 5403 return llvm::UndefValue::get(ArgPtrTy); 5404 } 5405 5406 // Update VAList. 5407 Addr = Builder.CreateConstGEP1_32(Addr, Stride, "ap.next"); 5408 Builder.CreateStore(Addr, VAListAddrAsBPP); 5409 5410 return Builder.CreatePointerCast(ArgAddr, ArgPtrTy, "arg.addr"); 5411 } 5412 5413 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 5414 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 5415 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 5416 it != ie; ++it) 5417 it->info = classifyType(it->type, 16 * 8); 5418 } 5419 5420 namespace { 5421 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 5422 public: 5423 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 5424 : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {} 5425 }; 5426 } // end anonymous namespace 5427 5428 5429 //===----------------------------------------------------------------------===// 5430 // Xcore ABI Implementation 5431 //===----------------------------------------------------------------------===// 5432 namespace { 5433 class XCoreABIInfo : public DefaultABIInfo { 5434 public: 5435 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 5436 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5437 CodeGenFunction &CGF) const; 5438 }; 5439 5440 class XcoreTargetCodeGenInfo : public TargetCodeGenInfo { 5441 public: 5442 XcoreTargetCodeGenInfo(CodeGenTypes &CGT) 5443 :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {} 5444 }; 5445 } // End anonymous namespace. 5446 5447 llvm::Value *XCoreABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5448 CodeGenFunction &CGF) const { 5449 CGBuilderTy &Builder = CGF.Builder; 5450 5451 // Get the VAList. 5452 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, 5453 CGF.Int8PtrPtrTy); 5454 llvm::Value *AP = Builder.CreateLoad(VAListAddrAsBPP); 5455 5456 // Handle the argument. 5457 ABIArgInfo AI = classifyArgumentType(Ty); 5458 llvm::Type *ArgTy = CGT.ConvertType(Ty); 5459 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 5460 AI.setCoerceToType(ArgTy); 5461 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 5462 llvm::Value *Val; 5463 uint64_t ArgSize = 0; 5464 switch (AI.getKind()) { 5465 case ABIArgInfo::Expand: 5466 llvm_unreachable("Unsupported ABI kind for va_arg"); 5467 case ABIArgInfo::Ignore: 5468 Val = llvm::UndefValue::get(ArgPtrTy); 5469 ArgSize = 0; 5470 break; 5471 case ABIArgInfo::Extend: 5472 case ABIArgInfo::Direct: 5473 Val = Builder.CreatePointerCast(AP, ArgPtrTy); 5474 ArgSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 5475 if (ArgSize < 4) 5476 ArgSize = 4; 5477 break; 5478 case ABIArgInfo::Indirect: 5479 llvm::Value *ArgAddr; 5480 ArgAddr = Builder.CreateBitCast(AP, llvm::PointerType::getUnqual(ArgPtrTy)); 5481 ArgAddr = Builder.CreateLoad(ArgAddr); 5482 Val = Builder.CreatePointerCast(ArgAddr, ArgPtrTy); 5483 ArgSize = 4; 5484 break; 5485 } 5486 5487 // Increment the VAList. 5488 if (ArgSize) { 5489 llvm::Value *APN = Builder.CreateConstGEP1_32(AP, ArgSize); 5490 Builder.CreateStore(APN, VAListAddrAsBPP); 5491 } 5492 return Val; 5493 } 5494 5495 //===----------------------------------------------------------------------===// 5496 // Driver code 5497 //===----------------------------------------------------------------------===// 5498 5499 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 5500 if (TheTargetCodeGenInfo) 5501 return *TheTargetCodeGenInfo; 5502 5503 const llvm::Triple &Triple = getTarget().getTriple(); 5504 switch (Triple.getArch()) { 5505 default: 5506 return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types)); 5507 5508 case llvm::Triple::le32: 5509 return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types)); 5510 case llvm::Triple::mips: 5511 case llvm::Triple::mipsel: 5512 return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true, 5513 getTarget())); 5514 case llvm::Triple::mips64: 5515 case llvm::Triple::mips64el: 5516 return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false, 5517 getTarget())); 5518 case llvm::Triple::aarch64: 5519 return *(TheTargetCodeGenInfo = new AArch64TargetCodeGenInfo(Types)); 5520 5521 case llvm::Triple::arm: 5522 case llvm::Triple::thumb: 5523 { 5524 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 5525 if (strcmp(getTarget().getABI(), "apcs-gnu") == 0) 5526 Kind = ARMABIInfo::APCS; 5527 else if (CodeGenOpts.FloatABI == "hard" || 5528 (CodeGenOpts.FloatABI != "soft" && 5529 Triple.getEnvironment() == llvm::Triple::GNUEABIHF)) 5530 Kind = ARMABIInfo::AAPCS_VFP; 5531 5532 switch (Triple.getOS()) { 5533 case llvm::Triple::NaCl: 5534 return *(TheTargetCodeGenInfo = 5535 new NaClARMTargetCodeGenInfo(Types, Kind)); 5536 default: 5537 return *(TheTargetCodeGenInfo = 5538 new ARMTargetCodeGenInfo(Types, Kind)); 5539 } 5540 } 5541 5542 case llvm::Triple::ppc: 5543 return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types)); 5544 case llvm::Triple::ppc64: 5545 if (Triple.isOSBinFormatELF()) 5546 return *(TheTargetCodeGenInfo = new PPC64_SVR4_TargetCodeGenInfo(Types)); 5547 else 5548 return *(TheTargetCodeGenInfo = new PPC64TargetCodeGenInfo(Types)); 5549 case llvm::Triple::ppc64le: 5550 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 5551 return *(TheTargetCodeGenInfo = new PPC64_SVR4_TargetCodeGenInfo(Types)); 5552 5553 case llvm::Triple::nvptx: 5554 case llvm::Triple::nvptx64: 5555 return *(TheTargetCodeGenInfo = new NVPTXTargetCodeGenInfo(Types)); 5556 5557 case llvm::Triple::msp430: 5558 return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types)); 5559 5560 case llvm::Triple::systemz: 5561 return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types)); 5562 5563 case llvm::Triple::tce: 5564 return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types)); 5565 5566 case llvm::Triple::x86: { 5567 bool IsDarwinVectorABI = Triple.isOSDarwin(); 5568 bool IsSmallStructInRegABI = 5569 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 5570 bool IsWin32FloatStructABI = (Triple.getOS() == llvm::Triple::Win32); 5571 5572 if (Triple.getOS() == llvm::Triple::Win32) { 5573 return *(TheTargetCodeGenInfo = 5574 new WinX86_32TargetCodeGenInfo(Types, 5575 IsDarwinVectorABI, IsSmallStructInRegABI, 5576 IsWin32FloatStructABI, 5577 CodeGenOpts.NumRegisterParameters)); 5578 } else { 5579 return *(TheTargetCodeGenInfo = 5580 new X86_32TargetCodeGenInfo(Types, 5581 IsDarwinVectorABI, IsSmallStructInRegABI, 5582 IsWin32FloatStructABI, 5583 CodeGenOpts.NumRegisterParameters)); 5584 } 5585 } 5586 5587 case llvm::Triple::x86_64: { 5588 bool HasAVX = strcmp(getTarget().getABI(), "avx") == 0; 5589 5590 switch (Triple.getOS()) { 5591 case llvm::Triple::Win32: 5592 case llvm::Triple::MinGW32: 5593 case llvm::Triple::Cygwin: 5594 return *(TheTargetCodeGenInfo = new WinX86_64TargetCodeGenInfo(Types)); 5595 case llvm::Triple::NaCl: 5596 return *(TheTargetCodeGenInfo = new NaClX86_64TargetCodeGenInfo(Types, 5597 HasAVX)); 5598 default: 5599 return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo(Types, 5600 HasAVX)); 5601 } 5602 } 5603 case llvm::Triple::hexagon: 5604 return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types)); 5605 case llvm::Triple::sparcv9: 5606 return *(TheTargetCodeGenInfo = new SparcV9TargetCodeGenInfo(Types)); 5607 case llvm::Triple::xcore: 5608 return *(TheTargetCodeGenInfo = new XcoreTargetCodeGenInfo(Types)); 5609 5610 } 5611 } 5612