1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "TargetInfo.h"
16 #include "ABIInfo.h"
17 #include "CGBlocks.h"
18 #include "CGCXXABI.h"
19 #include "CGValue.h"
20 #include "CodeGenFunction.h"
21 #include "clang/AST/RecordLayout.h"
22 #include "clang/Basic/CodeGenOptions.h"
23 #include "clang/CodeGen/CGFunctionInfo.h"
24 #include "clang/CodeGen/SwiftCallingConv.h"
25 #include "llvm/ADT/StringExtras.h"
26 #include "llvm/ADT/StringSwitch.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/Type.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include <algorithm>    // std::sort
33 
34 using namespace clang;
35 using namespace CodeGen;
36 
37 // Helper for coercing an aggregate argument or return value into an integer
38 // array of the same size (including padding) and alignment.  This alternate
39 // coercion happens only for the RenderScript ABI and can be removed after
40 // runtimes that rely on it are no longer supported.
41 //
42 // RenderScript assumes that the size of the argument / return value in the IR
43 // is the same as the size of the corresponding qualified type. This helper
44 // coerces the aggregate type into an array of the same size (including
45 // padding).  This coercion is used in lieu of expansion of struct members or
46 // other canonical coercions that return a coerced-type of larger size.
47 //
48 // Ty          - The argument / return value type
49 // Context     - The associated ASTContext
50 // LLVMContext - The associated LLVMContext
51 static ABIArgInfo coerceToIntArray(QualType Ty,
52                                    ASTContext &Context,
53                                    llvm::LLVMContext &LLVMContext) {
54   // Alignment and Size are measured in bits.
55   const uint64_t Size = Context.getTypeSize(Ty);
56   const uint64_t Alignment = Context.getTypeAlign(Ty);
57   llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment);
58   const uint64_t NumElements = (Size + Alignment - 1) / Alignment;
59   return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
60 }
61 
62 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
63                                llvm::Value *Array,
64                                llvm::Value *Value,
65                                unsigned FirstIndex,
66                                unsigned LastIndex) {
67   // Alternatively, we could emit this as a loop in the source.
68   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
69     llvm::Value *Cell =
70         Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I);
71     Builder.CreateAlignedStore(Value, Cell, CharUnits::One());
72   }
73 }
74 
75 static bool isAggregateTypeForABI(QualType T) {
76   return !CodeGenFunction::hasScalarEvaluationKind(T) ||
77          T->isMemberFunctionPointerType();
78 }
79 
80 ABIArgInfo
81 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign,
82                                  llvm::Type *Padding) const {
83   return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty),
84                                  ByRef, Realign, Padding);
85 }
86 
87 ABIArgInfo
88 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const {
89   return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty),
90                                       /*ByRef*/ false, Realign);
91 }
92 
93 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
94                              QualType Ty) const {
95   return Address::invalid();
96 }
97 
98 ABIInfo::~ABIInfo() {}
99 
100 /// Does the given lowering require more than the given number of
101 /// registers when expanded?
102 ///
103 /// This is intended to be the basis of a reasonable basic implementation
104 /// of should{Pass,Return}IndirectlyForSwift.
105 ///
106 /// For most targets, a limit of four total registers is reasonable; this
107 /// limits the amount of code required in order to move around the value
108 /// in case it wasn't produced immediately prior to the call by the caller
109 /// (or wasn't produced in exactly the right registers) or isn't used
110 /// immediately within the callee.  But some targets may need to further
111 /// limit the register count due to an inability to support that many
112 /// return registers.
113 static bool occupiesMoreThan(CodeGenTypes &cgt,
114                              ArrayRef<llvm::Type*> scalarTypes,
115                              unsigned maxAllRegisters) {
116   unsigned intCount = 0, fpCount = 0;
117   for (llvm::Type *type : scalarTypes) {
118     if (type->isPointerTy()) {
119       intCount++;
120     } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) {
121       auto ptrWidth = cgt.getTarget().getPointerWidth(0);
122       intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth;
123     } else {
124       assert(type->isVectorTy() || type->isFloatingPointTy());
125       fpCount++;
126     }
127   }
128 
129   return (intCount + fpCount > maxAllRegisters);
130 }
131 
132 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
133                                              llvm::Type *eltTy,
134                                              unsigned numElts) const {
135   // The default implementation of this assumes that the target guarantees
136   // 128-bit SIMD support but nothing more.
137   return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16);
138 }
139 
140 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
141                                               CGCXXABI &CXXABI) {
142   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
143   if (!RD) {
144     if (!RT->getDecl()->canPassInRegisters())
145       return CGCXXABI::RAA_Indirect;
146     return CGCXXABI::RAA_Default;
147   }
148   return CXXABI.getRecordArgABI(RD);
149 }
150 
151 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
152                                               CGCXXABI &CXXABI) {
153   const RecordType *RT = T->getAs<RecordType>();
154   if (!RT)
155     return CGCXXABI::RAA_Default;
156   return getRecordArgABI(RT, CXXABI);
157 }
158 
159 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI,
160                                const ABIInfo &Info) {
161   QualType Ty = FI.getReturnType();
162 
163   if (const auto *RT = Ty->getAs<RecordType>())
164     if (!isa<CXXRecordDecl>(RT->getDecl()) &&
165         !RT->getDecl()->canPassInRegisters()) {
166       FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty);
167       return true;
168     }
169 
170   return CXXABI.classifyReturnType(FI);
171 }
172 
173 /// Pass transparent unions as if they were the type of the first element. Sema
174 /// should ensure that all elements of the union have the same "machine type".
175 static QualType useFirstFieldIfTransparentUnion(QualType Ty) {
176   if (const RecordType *UT = Ty->getAsUnionType()) {
177     const RecordDecl *UD = UT->getDecl();
178     if (UD->hasAttr<TransparentUnionAttr>()) {
179       assert(!UD->field_empty() && "sema created an empty transparent union");
180       return UD->field_begin()->getType();
181     }
182   }
183   return Ty;
184 }
185 
186 CGCXXABI &ABIInfo::getCXXABI() const {
187   return CGT.getCXXABI();
188 }
189 
190 ASTContext &ABIInfo::getContext() const {
191   return CGT.getContext();
192 }
193 
194 llvm::LLVMContext &ABIInfo::getVMContext() const {
195   return CGT.getLLVMContext();
196 }
197 
198 const llvm::DataLayout &ABIInfo::getDataLayout() const {
199   return CGT.getDataLayout();
200 }
201 
202 const TargetInfo &ABIInfo::getTarget() const {
203   return CGT.getTarget();
204 }
205 
206 const CodeGenOptions &ABIInfo::getCodeGenOpts() const {
207   return CGT.getCodeGenOpts();
208 }
209 
210 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); }
211 
212 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
213   return false;
214 }
215 
216 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
217                                                 uint64_t Members) const {
218   return false;
219 }
220 
221 LLVM_DUMP_METHOD void ABIArgInfo::dump() const {
222   raw_ostream &OS = llvm::errs();
223   OS << "(ABIArgInfo Kind=";
224   switch (TheKind) {
225   case Direct:
226     OS << "Direct Type=";
227     if (llvm::Type *Ty = getCoerceToType())
228       Ty->print(OS);
229     else
230       OS << "null";
231     break;
232   case Extend:
233     OS << "Extend";
234     break;
235   case Ignore:
236     OS << "Ignore";
237     break;
238   case InAlloca:
239     OS << "InAlloca Offset=" << getInAllocaFieldIndex();
240     break;
241   case Indirect:
242     OS << "Indirect Align=" << getIndirectAlign().getQuantity()
243        << " ByVal=" << getIndirectByVal()
244        << " Realign=" << getIndirectRealign();
245     break;
246   case Expand:
247     OS << "Expand";
248     break;
249   case CoerceAndExpand:
250     OS << "CoerceAndExpand Type=";
251     getCoerceAndExpandType()->print(OS);
252     break;
253   }
254   OS << ")\n";
255 }
256 
257 // Dynamically round a pointer up to a multiple of the given alignment.
258 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF,
259                                                   llvm::Value *Ptr,
260                                                   CharUnits Align) {
261   llvm::Value *PtrAsInt = Ptr;
262   // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align;
263   PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy);
264   PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt,
265         llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1));
266   PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt,
267            llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity()));
268   PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt,
269                                         Ptr->getType(),
270                                         Ptr->getName() + ".aligned");
271   return PtrAsInt;
272 }
273 
274 /// Emit va_arg for a platform using the common void* representation,
275 /// where arguments are simply emitted in an array of slots on the stack.
276 ///
277 /// This version implements the core direct-value passing rules.
278 ///
279 /// \param SlotSize - The size and alignment of a stack slot.
280 ///   Each argument will be allocated to a multiple of this number of
281 ///   slots, and all the slots will be aligned to this value.
282 /// \param AllowHigherAlign - The slot alignment is not a cap;
283 ///   an argument type with an alignment greater than the slot size
284 ///   will be emitted on a higher-alignment address, potentially
285 ///   leaving one or more empty slots behind as padding.  If this
286 ///   is false, the returned address might be less-aligned than
287 ///   DirectAlign.
288 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF,
289                                       Address VAListAddr,
290                                       llvm::Type *DirectTy,
291                                       CharUnits DirectSize,
292                                       CharUnits DirectAlign,
293                                       CharUnits SlotSize,
294                                       bool AllowHigherAlign) {
295   // Cast the element type to i8* if necessary.  Some platforms define
296   // va_list as a struct containing an i8* instead of just an i8*.
297   if (VAListAddr.getElementType() != CGF.Int8PtrTy)
298     VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy);
299 
300   llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur");
301 
302   // If the CC aligns values higher than the slot size, do so if needed.
303   Address Addr = Address::invalid();
304   if (AllowHigherAlign && DirectAlign > SlotSize) {
305     Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign),
306                                                  DirectAlign);
307   } else {
308     Addr = Address(Ptr, SlotSize);
309   }
310 
311   // Advance the pointer past the argument, then store that back.
312   CharUnits FullDirectSize = DirectSize.alignTo(SlotSize);
313   llvm::Value *NextPtr =
314     CGF.Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), FullDirectSize,
315                                            "argp.next");
316   CGF.Builder.CreateStore(NextPtr, VAListAddr);
317 
318   // If the argument is smaller than a slot, and this is a big-endian
319   // target, the argument will be right-adjusted in its slot.
320   if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() &&
321       !DirectTy->isStructTy()) {
322     Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize);
323   }
324 
325   Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy);
326   return Addr;
327 }
328 
329 /// Emit va_arg for a platform using the common void* representation,
330 /// where arguments are simply emitted in an array of slots on the stack.
331 ///
332 /// \param IsIndirect - Values of this type are passed indirectly.
333 /// \param ValueInfo - The size and alignment of this type, generally
334 ///   computed with getContext().getTypeInfoInChars(ValueTy).
335 /// \param SlotSizeAndAlign - The size and alignment of a stack slot.
336 ///   Each argument will be allocated to a multiple of this number of
337 ///   slots, and all the slots will be aligned to this value.
338 /// \param AllowHigherAlign - The slot alignment is not a cap;
339 ///   an argument type with an alignment greater than the slot size
340 ///   will be emitted on a higher-alignment address, potentially
341 ///   leaving one or more empty slots behind as padding.
342 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr,
343                                 QualType ValueTy, bool IsIndirect,
344                                 std::pair<CharUnits, CharUnits> ValueInfo,
345                                 CharUnits SlotSizeAndAlign,
346                                 bool AllowHigherAlign) {
347   // The size and alignment of the value that was passed directly.
348   CharUnits DirectSize, DirectAlign;
349   if (IsIndirect) {
350     DirectSize = CGF.getPointerSize();
351     DirectAlign = CGF.getPointerAlign();
352   } else {
353     DirectSize = ValueInfo.first;
354     DirectAlign = ValueInfo.second;
355   }
356 
357   // Cast the address we've calculated to the right type.
358   llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy);
359   if (IsIndirect)
360     DirectTy = DirectTy->getPointerTo(0);
361 
362   Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy,
363                                         DirectSize, DirectAlign,
364                                         SlotSizeAndAlign,
365                                         AllowHigherAlign);
366 
367   if (IsIndirect) {
368     Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second);
369   }
370 
371   return Addr;
372 
373 }
374 
375 static Address emitMergePHI(CodeGenFunction &CGF,
376                             Address Addr1, llvm::BasicBlock *Block1,
377                             Address Addr2, llvm::BasicBlock *Block2,
378                             const llvm::Twine &Name = "") {
379   assert(Addr1.getType() == Addr2.getType());
380   llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name);
381   PHI->addIncoming(Addr1.getPointer(), Block1);
382   PHI->addIncoming(Addr2.getPointer(), Block2);
383   CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment());
384   return Address(PHI, Align);
385 }
386 
387 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
388 
389 // If someone can figure out a general rule for this, that would be great.
390 // It's probably just doomed to be platform-dependent, though.
391 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
392   // Verified for:
393   //   x86-64     FreeBSD, Linux, Darwin
394   //   x86-32     FreeBSD, Linux, Darwin
395   //   PowerPC    Linux, Darwin
396   //   ARM        Darwin (*not* EABI)
397   //   AArch64    Linux
398   return 32;
399 }
400 
401 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
402                                      const FunctionNoProtoType *fnType) const {
403   // The following conventions are known to require this to be false:
404   //   x86_stdcall
405   //   MIPS
406   // For everything else, we just prefer false unless we opt out.
407   return false;
408 }
409 
410 void
411 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
412                                              llvm::SmallString<24> &Opt) const {
413   // This assumes the user is passing a library name like "rt" instead of a
414   // filename like "librt.a/so", and that they don't care whether it's static or
415   // dynamic.
416   Opt = "-l";
417   Opt += Lib;
418 }
419 
420 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const {
421   // OpenCL kernels are called via an explicit runtime API with arguments
422   // set with clSetKernelArg(), not as normal sub-functions.
423   // Return SPIR_KERNEL by default as the kernel calling convention to
424   // ensure the fingerprint is fixed such way that each OpenCL argument
425   // gets one matching argument in the produced kernel function argument
426   // list to enable feasible implementation of clSetKernelArg() with
427   // aggregates etc. In case we would use the default C calling conv here,
428   // clSetKernelArg() might break depending on the target-specific
429   // conventions; different targets might split structs passed as values
430   // to multiple function arguments etc.
431   return llvm::CallingConv::SPIR_KERNEL;
432 }
433 
434 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM,
435     llvm::PointerType *T, QualType QT) const {
436   return llvm::ConstantPointerNull::get(T);
437 }
438 
439 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
440                                                    const VarDecl *D) const {
441   assert(!CGM.getLangOpts().OpenCL &&
442          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
443          "Address space agnostic languages only");
444   return D ? D->getType().getAddressSpace() : LangAS::Default;
445 }
446 
447 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast(
448     CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr,
449     LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const {
450   // Since target may map different address spaces in AST to the same address
451   // space, an address space conversion may end up as a bitcast.
452   if (auto *C = dyn_cast<llvm::Constant>(Src))
453     return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy);
454   return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DestTy);
455 }
456 
457 llvm::Constant *
458 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src,
459                                         LangAS SrcAddr, LangAS DestAddr,
460                                         llvm::Type *DestTy) const {
461   // Since target may map different address spaces in AST to the same address
462   // space, an address space conversion may end up as a bitcast.
463   return llvm::ConstantExpr::getPointerCast(Src, DestTy);
464 }
465 
466 llvm::SyncScope::ID
467 TargetCodeGenInfo::getLLVMSyncScopeID(SyncScope S, llvm::LLVMContext &C) const {
468   return C.getOrInsertSyncScopeID(""); /* default sync scope */
469 }
470 
471 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
472 
473 /// isEmptyField - Return true iff a the field is "empty", that is it
474 /// is an unnamed bit-field or an (array of) empty record(s).
475 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
476                          bool AllowArrays) {
477   if (FD->isUnnamedBitfield())
478     return true;
479 
480   QualType FT = FD->getType();
481 
482   // Constant arrays of empty records count as empty, strip them off.
483   // Constant arrays of zero length always count as empty.
484   if (AllowArrays)
485     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
486       if (AT->getSize() == 0)
487         return true;
488       FT = AT->getElementType();
489     }
490 
491   const RecordType *RT = FT->getAs<RecordType>();
492   if (!RT)
493     return false;
494 
495   // C++ record fields are never empty, at least in the Itanium ABI.
496   //
497   // FIXME: We should use a predicate for whether this behavior is true in the
498   // current ABI.
499   if (isa<CXXRecordDecl>(RT->getDecl()))
500     return false;
501 
502   return isEmptyRecord(Context, FT, AllowArrays);
503 }
504 
505 /// isEmptyRecord - Return true iff a structure contains only empty
506 /// fields. Note that a structure with a flexible array member is not
507 /// considered empty.
508 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
509   const RecordType *RT = T->getAs<RecordType>();
510   if (!RT)
511     return false;
512   const RecordDecl *RD = RT->getDecl();
513   if (RD->hasFlexibleArrayMember())
514     return false;
515 
516   // If this is a C++ record, check the bases first.
517   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
518     for (const auto &I : CXXRD->bases())
519       if (!isEmptyRecord(Context, I.getType(), true))
520         return false;
521 
522   for (const auto *I : RD->fields())
523     if (!isEmptyField(Context, I, AllowArrays))
524       return false;
525   return true;
526 }
527 
528 /// isSingleElementStruct - Determine if a structure is a "single
529 /// element struct", i.e. it has exactly one non-empty field or
530 /// exactly one field which is itself a single element
531 /// struct. Structures with flexible array members are never
532 /// considered single element structs.
533 ///
534 /// \return The field declaration for the single non-empty field, if
535 /// it exists.
536 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
537   const RecordType *RT = T->getAs<RecordType>();
538   if (!RT)
539     return nullptr;
540 
541   const RecordDecl *RD = RT->getDecl();
542   if (RD->hasFlexibleArrayMember())
543     return nullptr;
544 
545   const Type *Found = nullptr;
546 
547   // If this is a C++ record, check the bases first.
548   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
549     for (const auto &I : CXXRD->bases()) {
550       // Ignore empty records.
551       if (isEmptyRecord(Context, I.getType(), true))
552         continue;
553 
554       // If we already found an element then this isn't a single-element struct.
555       if (Found)
556         return nullptr;
557 
558       // If this is non-empty and not a single element struct, the composite
559       // cannot be a single element struct.
560       Found = isSingleElementStruct(I.getType(), Context);
561       if (!Found)
562         return nullptr;
563     }
564   }
565 
566   // Check for single element.
567   for (const auto *FD : RD->fields()) {
568     QualType FT = FD->getType();
569 
570     // Ignore empty fields.
571     if (isEmptyField(Context, FD, true))
572       continue;
573 
574     // If we already found an element then this isn't a single-element
575     // struct.
576     if (Found)
577       return nullptr;
578 
579     // Treat single element arrays as the element.
580     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
581       if (AT->getSize().getZExtValue() != 1)
582         break;
583       FT = AT->getElementType();
584     }
585 
586     if (!isAggregateTypeForABI(FT)) {
587       Found = FT.getTypePtr();
588     } else {
589       Found = isSingleElementStruct(FT, Context);
590       if (!Found)
591         return nullptr;
592     }
593   }
594 
595   // We don't consider a struct a single-element struct if it has
596   // padding beyond the element type.
597   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
598     return nullptr;
599 
600   return Found;
601 }
602 
603 namespace {
604 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
605                        const ABIArgInfo &AI) {
606   // This default implementation defers to the llvm backend's va_arg
607   // instruction. It can handle only passing arguments directly
608   // (typically only handled in the backend for primitive types), or
609   // aggregates passed indirectly by pointer (NOTE: if the "byval"
610   // flag has ABI impact in the callee, this implementation cannot
611   // work.)
612 
613   // Only a few cases are covered here at the moment -- those needed
614   // by the default abi.
615   llvm::Value *Val;
616 
617   if (AI.isIndirect()) {
618     assert(!AI.getPaddingType() &&
619            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
620     assert(
621         !AI.getIndirectRealign() &&
622         "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!");
623 
624     auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty);
625     CharUnits TyAlignForABI = TyInfo.second;
626 
627     llvm::Type *BaseTy =
628         llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
629     llvm::Value *Addr =
630         CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy);
631     return Address(Addr, TyAlignForABI);
632   } else {
633     assert((AI.isDirect() || AI.isExtend()) &&
634            "Unexpected ArgInfo Kind in generic VAArg emitter!");
635 
636     assert(!AI.getInReg() &&
637            "Unexpected InReg seen in arginfo in generic VAArg emitter!");
638     assert(!AI.getPaddingType() &&
639            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
640     assert(!AI.getDirectOffset() &&
641            "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!");
642     assert(!AI.getCoerceToType() &&
643            "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!");
644 
645     Address Temp = CGF.CreateMemTemp(Ty, "varet");
646     Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty));
647     CGF.Builder.CreateStore(Val, Temp);
648     return Temp;
649   }
650 }
651 
652 /// DefaultABIInfo - The default implementation for ABI specific
653 /// details. This implementation provides information which results in
654 /// self-consistent and sensible LLVM IR generation, but does not
655 /// conform to any particular ABI.
656 class DefaultABIInfo : public ABIInfo {
657 public:
658   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
659 
660   ABIArgInfo classifyReturnType(QualType RetTy) const;
661   ABIArgInfo classifyArgumentType(QualType RetTy) const;
662 
663   void computeInfo(CGFunctionInfo &FI) const override {
664     if (!getCXXABI().classifyReturnType(FI))
665       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
666     for (auto &I : FI.arguments())
667       I.info = classifyArgumentType(I.type);
668   }
669 
670   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
671                     QualType Ty) const override {
672     return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty));
673   }
674 };
675 
676 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
677 public:
678   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
679     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
680 };
681 
682 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
683   Ty = useFirstFieldIfTransparentUnion(Ty);
684 
685   if (isAggregateTypeForABI(Ty)) {
686     // Records with non-trivial destructors/copy-constructors should not be
687     // passed by value.
688     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
689       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
690 
691     return getNaturalAlignIndirect(Ty);
692   }
693 
694   // Treat an enum type as its underlying type.
695   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
696     Ty = EnumTy->getDecl()->getIntegerType();
697 
698   return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
699                                         : ABIArgInfo::getDirect());
700 }
701 
702 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
703   if (RetTy->isVoidType())
704     return ABIArgInfo::getIgnore();
705 
706   if (isAggregateTypeForABI(RetTy))
707     return getNaturalAlignIndirect(RetTy);
708 
709   // Treat an enum type as its underlying type.
710   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
711     RetTy = EnumTy->getDecl()->getIntegerType();
712 
713   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
714                                            : ABIArgInfo::getDirect());
715 }
716 
717 //===----------------------------------------------------------------------===//
718 // WebAssembly ABI Implementation
719 //
720 // This is a very simple ABI that relies a lot on DefaultABIInfo.
721 //===----------------------------------------------------------------------===//
722 
723 class WebAssemblyABIInfo final : public SwiftABIInfo {
724   DefaultABIInfo defaultInfo;
725 
726 public:
727   explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT)
728       : SwiftABIInfo(CGT), defaultInfo(CGT) {}
729 
730 private:
731   ABIArgInfo classifyReturnType(QualType RetTy) const;
732   ABIArgInfo classifyArgumentType(QualType Ty) const;
733 
734   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
735   // non-virtual, but computeInfo and EmitVAArg are virtual, so we
736   // overload them.
737   void computeInfo(CGFunctionInfo &FI) const override {
738     if (!getCXXABI().classifyReturnType(FI))
739       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
740     for (auto &Arg : FI.arguments())
741       Arg.info = classifyArgumentType(Arg.type);
742   }
743 
744   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
745                     QualType Ty) const override;
746 
747   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
748                                     bool asReturnValue) const override {
749     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
750   }
751 
752   bool isSwiftErrorInRegister() const override {
753     return false;
754   }
755 };
756 
757 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo {
758 public:
759   explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
760       : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT)) {}
761 
762   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
763                            CodeGen::CodeGenModule &CGM) const override {
764     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
765       llvm::Function *Fn = cast<llvm::Function>(GV);
766       if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype())
767         Fn->addFnAttr("no-prototype");
768     }
769   }
770 };
771 
772 /// Classify argument of given type \p Ty.
773 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const {
774   Ty = useFirstFieldIfTransparentUnion(Ty);
775 
776   if (isAggregateTypeForABI(Ty)) {
777     // Records with non-trivial destructors/copy-constructors should not be
778     // passed by value.
779     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
780       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
781     // Ignore empty structs/unions.
782     if (isEmptyRecord(getContext(), Ty, true))
783       return ABIArgInfo::getIgnore();
784     // Lower single-element structs to just pass a regular value. TODO: We
785     // could do reasonable-size multiple-element structs too, using getExpand(),
786     // though watch out for things like bitfields.
787     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
788       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
789   }
790 
791   // Otherwise just do the default thing.
792   return defaultInfo.classifyArgumentType(Ty);
793 }
794 
795 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const {
796   if (isAggregateTypeForABI(RetTy)) {
797     // Records with non-trivial destructors/copy-constructors should not be
798     // returned by value.
799     if (!getRecordArgABI(RetTy, getCXXABI())) {
800       // Ignore empty structs/unions.
801       if (isEmptyRecord(getContext(), RetTy, true))
802         return ABIArgInfo::getIgnore();
803       // Lower single-element structs to just return a regular value. TODO: We
804       // could do reasonable-size multiple-element structs too, using
805       // ABIArgInfo::getDirect().
806       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
807         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
808     }
809   }
810 
811   // Otherwise just do the default thing.
812   return defaultInfo.classifyReturnType(RetTy);
813 }
814 
815 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
816                                       QualType Ty) const {
817   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect=*/ false,
818                           getContext().getTypeInfoInChars(Ty),
819                           CharUnits::fromQuantity(4),
820                           /*AllowHigherAlign=*/ true);
821 }
822 
823 //===----------------------------------------------------------------------===//
824 // le32/PNaCl bitcode ABI Implementation
825 //
826 // This is a simplified version of the x86_32 ABI.  Arguments and return values
827 // are always passed on the stack.
828 //===----------------------------------------------------------------------===//
829 
830 class PNaClABIInfo : public ABIInfo {
831  public:
832   PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
833 
834   ABIArgInfo classifyReturnType(QualType RetTy) const;
835   ABIArgInfo classifyArgumentType(QualType RetTy) const;
836 
837   void computeInfo(CGFunctionInfo &FI) const override;
838   Address EmitVAArg(CodeGenFunction &CGF,
839                     Address VAListAddr, QualType Ty) const override;
840 };
841 
842 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
843  public:
844   PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
845     : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
846 };
847 
848 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
849   if (!getCXXABI().classifyReturnType(FI))
850     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
851 
852   for (auto &I : FI.arguments())
853     I.info = classifyArgumentType(I.type);
854 }
855 
856 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
857                                 QualType Ty) const {
858   // The PNaCL ABI is a bit odd, in that varargs don't use normal
859   // function classification. Structs get passed directly for varargs
860   // functions, through a rewriting transform in
861   // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows
862   // this target to actually support a va_arg instructions with an
863   // aggregate type, unlike other targets.
864   return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
865 }
866 
867 /// Classify argument of given type \p Ty.
868 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
869   if (isAggregateTypeForABI(Ty)) {
870     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
871       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
872     return getNaturalAlignIndirect(Ty);
873   } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
874     // Treat an enum type as its underlying type.
875     Ty = EnumTy->getDecl()->getIntegerType();
876   } else if (Ty->isFloatingType()) {
877     // Floating-point types don't go inreg.
878     return ABIArgInfo::getDirect();
879   }
880 
881   return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
882                                         : ABIArgInfo::getDirect());
883 }
884 
885 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
886   if (RetTy->isVoidType())
887     return ABIArgInfo::getIgnore();
888 
889   // In the PNaCl ABI we always return records/structures on the stack.
890   if (isAggregateTypeForABI(RetTy))
891     return getNaturalAlignIndirect(RetTy);
892 
893   // Treat an enum type as its underlying type.
894   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
895     RetTy = EnumTy->getDecl()->getIntegerType();
896 
897   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
898                                            : ABIArgInfo::getDirect());
899 }
900 
901 /// IsX86_MMXType - Return true if this is an MMX type.
902 bool IsX86_MMXType(llvm::Type *IRType) {
903   // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
904   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
905     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
906     IRType->getScalarSizeInBits() != 64;
907 }
908 
909 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
910                                           StringRef Constraint,
911                                           llvm::Type* Ty) {
912   bool IsMMXCons = llvm::StringSwitch<bool>(Constraint)
913                      .Cases("y", "&y", "^Ym", true)
914                      .Default(false);
915   if (IsMMXCons && Ty->isVectorTy()) {
916     if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) {
917       // Invalid MMX constraint
918       return nullptr;
919     }
920 
921     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
922   }
923 
924   // No operation needed
925   return Ty;
926 }
927 
928 /// Returns true if this type can be passed in SSE registers with the
929 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
930 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
931   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
932     if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) {
933       if (BT->getKind() == BuiltinType::LongDouble) {
934         if (&Context.getTargetInfo().getLongDoubleFormat() ==
935             &llvm::APFloat::x87DoubleExtended())
936           return false;
937       }
938       return true;
939     }
940   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
941     // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
942     // registers specially.
943     unsigned VecSize = Context.getTypeSize(VT);
944     if (VecSize == 128 || VecSize == 256 || VecSize == 512)
945       return true;
946   }
947   return false;
948 }
949 
950 /// Returns true if this aggregate is small enough to be passed in SSE registers
951 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
952 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
953   return NumMembers <= 4;
954 }
955 
956 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86.
957 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) {
958   auto AI = ABIArgInfo::getDirect(T);
959   AI.setInReg(true);
960   AI.setCanBeFlattened(false);
961   return AI;
962 }
963 
964 //===----------------------------------------------------------------------===//
965 // X86-32 ABI Implementation
966 //===----------------------------------------------------------------------===//
967 
968 /// Similar to llvm::CCState, but for Clang.
969 struct CCState {
970   CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {}
971 
972   unsigned CC;
973   unsigned FreeRegs;
974   unsigned FreeSSERegs;
975 };
976 
977 enum {
978   // Vectorcall only allows the first 6 parameters to be passed in registers.
979   VectorcallMaxParamNumAsReg = 6
980 };
981 
982 /// X86_32ABIInfo - The X86-32 ABI information.
983 class X86_32ABIInfo : public SwiftABIInfo {
984   enum Class {
985     Integer,
986     Float
987   };
988 
989   static const unsigned MinABIStackAlignInBytes = 4;
990 
991   bool IsDarwinVectorABI;
992   bool IsRetSmallStructInRegABI;
993   bool IsWin32StructABI;
994   bool IsSoftFloatABI;
995   bool IsMCUABI;
996   unsigned DefaultNumRegisterParameters;
997 
998   static bool isRegisterSize(unsigned Size) {
999     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
1000   }
1001 
1002   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
1003     // FIXME: Assumes vectorcall is in use.
1004     return isX86VectorTypeForVectorCall(getContext(), Ty);
1005   }
1006 
1007   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
1008                                          uint64_t NumMembers) const override {
1009     // FIXME: Assumes vectorcall is in use.
1010     return isX86VectorCallAggregateSmallEnough(NumMembers);
1011   }
1012 
1013   bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
1014 
1015   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1016   /// such that the argument will be passed in memory.
1017   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
1018 
1019   ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const;
1020 
1021   /// Return the alignment to use for the given type on the stack.
1022   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
1023 
1024   Class classify(QualType Ty) const;
1025   ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
1026   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
1027 
1028   /// Updates the number of available free registers, returns
1029   /// true if any registers were allocated.
1030   bool updateFreeRegs(QualType Ty, CCState &State) const;
1031 
1032   bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg,
1033                                 bool &NeedsPadding) const;
1034   bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const;
1035 
1036   bool canExpandIndirectArgument(QualType Ty) const;
1037 
1038   /// Rewrite the function info so that all memory arguments use
1039   /// inalloca.
1040   void rewriteWithInAlloca(CGFunctionInfo &FI) const;
1041 
1042   void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1043                            CharUnits &StackOffset, ABIArgInfo &Info,
1044                            QualType Type) const;
1045   void computeVectorCallArgs(CGFunctionInfo &FI, CCState &State,
1046                              bool &UsedInAlloca) const;
1047 
1048 public:
1049 
1050   void computeInfo(CGFunctionInfo &FI) const override;
1051   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1052                     QualType Ty) const override;
1053 
1054   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1055                 bool RetSmallStructInRegABI, bool Win32StructABI,
1056                 unsigned NumRegisterParameters, bool SoftFloatABI)
1057     : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI),
1058       IsRetSmallStructInRegABI(RetSmallStructInRegABI),
1059       IsWin32StructABI(Win32StructABI),
1060       IsSoftFloatABI(SoftFloatABI),
1061       IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()),
1062       DefaultNumRegisterParameters(NumRegisterParameters) {}
1063 
1064   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
1065                                     bool asReturnValue) const override {
1066     // LLVM's x86-32 lowering currently only assigns up to three
1067     // integer registers and three fp registers.  Oddly, it'll use up to
1068     // four vector registers for vectors, but those can overlap with the
1069     // scalar registers.
1070     return occupiesMoreThan(CGT, scalars, /*total*/ 3);
1071   }
1072 
1073   bool isSwiftErrorInRegister() const override {
1074     // x86-32 lowering does not support passing swifterror in a register.
1075     return false;
1076   }
1077 };
1078 
1079 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
1080 public:
1081   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1082                           bool RetSmallStructInRegABI, bool Win32StructABI,
1083                           unsigned NumRegisterParameters, bool SoftFloatABI)
1084       : TargetCodeGenInfo(new X86_32ABIInfo(
1085             CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
1086             NumRegisterParameters, SoftFloatABI)) {}
1087 
1088   static bool isStructReturnInRegABI(
1089       const llvm::Triple &Triple, const CodeGenOptions &Opts);
1090 
1091   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1092                            CodeGen::CodeGenModule &CGM) const override;
1093 
1094   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1095     // Darwin uses different dwarf register numbers for EH.
1096     if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
1097     return 4;
1098   }
1099 
1100   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1101                                llvm::Value *Address) const override;
1102 
1103   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1104                                   StringRef Constraint,
1105                                   llvm::Type* Ty) const override {
1106     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1107   }
1108 
1109   void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
1110                                 std::string &Constraints,
1111                                 std::vector<llvm::Type *> &ResultRegTypes,
1112                                 std::vector<llvm::Type *> &ResultTruncRegTypes,
1113                                 std::vector<LValue> &ResultRegDests,
1114                                 std::string &AsmString,
1115                                 unsigned NumOutputs) const override;
1116 
1117   llvm::Constant *
1118   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
1119     unsigned Sig = (0xeb << 0) |  // jmp rel8
1120                    (0x06 << 8) |  //           .+0x08
1121                    ('v' << 16) |
1122                    ('2' << 24);
1123     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
1124   }
1125 
1126   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
1127     return "movl\t%ebp, %ebp"
1128            "\t\t// marker for objc_retainAutoreleaseReturnValue";
1129   }
1130 };
1131 
1132 }
1133 
1134 /// Rewrite input constraint references after adding some output constraints.
1135 /// In the case where there is one output and one input and we add one output,
1136 /// we need to replace all operand references greater than or equal to 1:
1137 ///     mov $0, $1
1138 ///     mov eax, $1
1139 /// The result will be:
1140 ///     mov $0, $2
1141 ///     mov eax, $2
1142 static void rewriteInputConstraintReferences(unsigned FirstIn,
1143                                              unsigned NumNewOuts,
1144                                              std::string &AsmString) {
1145   std::string Buf;
1146   llvm::raw_string_ostream OS(Buf);
1147   size_t Pos = 0;
1148   while (Pos < AsmString.size()) {
1149     size_t DollarStart = AsmString.find('$', Pos);
1150     if (DollarStart == std::string::npos)
1151       DollarStart = AsmString.size();
1152     size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
1153     if (DollarEnd == std::string::npos)
1154       DollarEnd = AsmString.size();
1155     OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
1156     Pos = DollarEnd;
1157     size_t NumDollars = DollarEnd - DollarStart;
1158     if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
1159       // We have an operand reference.
1160       size_t DigitStart = Pos;
1161       size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
1162       if (DigitEnd == std::string::npos)
1163         DigitEnd = AsmString.size();
1164       StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
1165       unsigned OperandIndex;
1166       if (!OperandStr.getAsInteger(10, OperandIndex)) {
1167         if (OperandIndex >= FirstIn)
1168           OperandIndex += NumNewOuts;
1169         OS << OperandIndex;
1170       } else {
1171         OS << OperandStr;
1172       }
1173       Pos = DigitEnd;
1174     }
1175   }
1176   AsmString = std::move(OS.str());
1177 }
1178 
1179 /// Add output constraints for EAX:EDX because they are return registers.
1180 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
1181     CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
1182     std::vector<llvm::Type *> &ResultRegTypes,
1183     std::vector<llvm::Type *> &ResultTruncRegTypes,
1184     std::vector<LValue> &ResultRegDests, std::string &AsmString,
1185     unsigned NumOutputs) const {
1186   uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
1187 
1188   // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
1189   // larger.
1190   if (!Constraints.empty())
1191     Constraints += ',';
1192   if (RetWidth <= 32) {
1193     Constraints += "={eax}";
1194     ResultRegTypes.push_back(CGF.Int32Ty);
1195   } else {
1196     // Use the 'A' constraint for EAX:EDX.
1197     Constraints += "=A";
1198     ResultRegTypes.push_back(CGF.Int64Ty);
1199   }
1200 
1201   // Truncate EAX or EAX:EDX to an integer of the appropriate size.
1202   llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
1203   ResultTruncRegTypes.push_back(CoerceTy);
1204 
1205   // Coerce the integer by bitcasting the return slot pointer.
1206   ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(),
1207                                                   CoerceTy->getPointerTo()));
1208   ResultRegDests.push_back(ReturnSlot);
1209 
1210   rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
1211 }
1212 
1213 /// shouldReturnTypeInRegister - Determine if the given type should be
1214 /// returned in a register (for the Darwin and MCU ABI).
1215 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
1216                                                ASTContext &Context) const {
1217   uint64_t Size = Context.getTypeSize(Ty);
1218 
1219   // For i386, type must be register sized.
1220   // For the MCU ABI, it only needs to be <= 8-byte
1221   if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size)))
1222    return false;
1223 
1224   if (Ty->isVectorType()) {
1225     // 64- and 128- bit vectors inside structures are not returned in
1226     // registers.
1227     if (Size == 64 || Size == 128)
1228       return false;
1229 
1230     return true;
1231   }
1232 
1233   // If this is a builtin, pointer, enum, complex type, member pointer, or
1234   // member function pointer it is ok.
1235   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
1236       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
1237       Ty->isBlockPointerType() || Ty->isMemberPointerType())
1238     return true;
1239 
1240   // Arrays are treated like records.
1241   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
1242     return shouldReturnTypeInRegister(AT->getElementType(), Context);
1243 
1244   // Otherwise, it must be a record type.
1245   const RecordType *RT = Ty->getAs<RecordType>();
1246   if (!RT) return false;
1247 
1248   // FIXME: Traverse bases here too.
1249 
1250   // Structure types are passed in register if all fields would be
1251   // passed in a register.
1252   for (const auto *FD : RT->getDecl()->fields()) {
1253     // Empty fields are ignored.
1254     if (isEmptyField(Context, FD, true))
1255       continue;
1256 
1257     // Check fields recursively.
1258     if (!shouldReturnTypeInRegister(FD->getType(), Context))
1259       return false;
1260   }
1261   return true;
1262 }
1263 
1264 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
1265   // Treat complex types as the element type.
1266   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
1267     Ty = CTy->getElementType();
1268 
1269   // Check for a type which we know has a simple scalar argument-passing
1270   // convention without any padding.  (We're specifically looking for 32
1271   // and 64-bit integer and integer-equivalents, float, and double.)
1272   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
1273       !Ty->isEnumeralType() && !Ty->isBlockPointerType())
1274     return false;
1275 
1276   uint64_t Size = Context.getTypeSize(Ty);
1277   return Size == 32 || Size == 64;
1278 }
1279 
1280 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD,
1281                           uint64_t &Size) {
1282   for (const auto *FD : RD->fields()) {
1283     // Scalar arguments on the stack get 4 byte alignment on x86. If the
1284     // argument is smaller than 32-bits, expanding the struct will create
1285     // alignment padding.
1286     if (!is32Or64BitBasicType(FD->getType(), Context))
1287       return false;
1288 
1289     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
1290     // how to expand them yet, and the predicate for telling if a bitfield still
1291     // counts as "basic" is more complicated than what we were doing previously.
1292     if (FD->isBitField())
1293       return false;
1294 
1295     Size += Context.getTypeSize(FD->getType());
1296   }
1297   return true;
1298 }
1299 
1300 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD,
1301                                  uint64_t &Size) {
1302   // Don't do this if there are any non-empty bases.
1303   for (const CXXBaseSpecifier &Base : RD->bases()) {
1304     if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(),
1305                               Size))
1306       return false;
1307   }
1308   if (!addFieldSizes(Context, RD, Size))
1309     return false;
1310   return true;
1311 }
1312 
1313 /// Test whether an argument type which is to be passed indirectly (on the
1314 /// stack) would have the equivalent layout if it was expanded into separate
1315 /// arguments. If so, we prefer to do the latter to avoid inhibiting
1316 /// optimizations.
1317 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const {
1318   // We can only expand structure types.
1319   const RecordType *RT = Ty->getAs<RecordType>();
1320   if (!RT)
1321     return false;
1322   const RecordDecl *RD = RT->getDecl();
1323   uint64_t Size = 0;
1324   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1325     if (!IsWin32StructABI) {
1326       // On non-Windows, we have to conservatively match our old bitcode
1327       // prototypes in order to be ABI-compatible at the bitcode level.
1328       if (!CXXRD->isCLike())
1329         return false;
1330     } else {
1331       // Don't do this for dynamic classes.
1332       if (CXXRD->isDynamicClass())
1333         return false;
1334     }
1335     if (!addBaseAndFieldSizes(getContext(), CXXRD, Size))
1336       return false;
1337   } else {
1338     if (!addFieldSizes(getContext(), RD, Size))
1339       return false;
1340   }
1341 
1342   // We can do this if there was no alignment padding.
1343   return Size == getContext().getTypeSize(Ty);
1344 }
1345 
1346 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const {
1347   // If the return value is indirect, then the hidden argument is consuming one
1348   // integer register.
1349   if (State.FreeRegs) {
1350     --State.FreeRegs;
1351     if (!IsMCUABI)
1352       return getNaturalAlignIndirectInReg(RetTy);
1353   }
1354   return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
1355 }
1356 
1357 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
1358                                              CCState &State) const {
1359   if (RetTy->isVoidType())
1360     return ABIArgInfo::getIgnore();
1361 
1362   const Type *Base = nullptr;
1363   uint64_t NumElts = 0;
1364   if ((State.CC == llvm::CallingConv::X86_VectorCall ||
1365        State.CC == llvm::CallingConv::X86_RegCall) &&
1366       isHomogeneousAggregate(RetTy, Base, NumElts)) {
1367     // The LLVM struct type for such an aggregate should lower properly.
1368     return ABIArgInfo::getDirect();
1369   }
1370 
1371   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
1372     // On Darwin, some vectors are returned in registers.
1373     if (IsDarwinVectorABI) {
1374       uint64_t Size = getContext().getTypeSize(RetTy);
1375 
1376       // 128-bit vectors are a special case; they are returned in
1377       // registers and we need to make sure to pick a type the LLVM
1378       // backend will like.
1379       if (Size == 128)
1380         return ABIArgInfo::getDirect(llvm::VectorType::get(
1381                   llvm::Type::getInt64Ty(getVMContext()), 2));
1382 
1383       // Always return in register if it fits in a general purpose
1384       // register, or if it is 64 bits and has a single element.
1385       if ((Size == 8 || Size == 16 || Size == 32) ||
1386           (Size == 64 && VT->getNumElements() == 1))
1387         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1388                                                             Size));
1389 
1390       return getIndirectReturnResult(RetTy, State);
1391     }
1392 
1393     return ABIArgInfo::getDirect();
1394   }
1395 
1396   if (isAggregateTypeForABI(RetTy)) {
1397     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
1398       // Structures with flexible arrays are always indirect.
1399       if (RT->getDecl()->hasFlexibleArrayMember())
1400         return getIndirectReturnResult(RetTy, State);
1401     }
1402 
1403     // If specified, structs and unions are always indirect.
1404     if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType())
1405       return getIndirectReturnResult(RetTy, State);
1406 
1407     // Ignore empty structs/unions.
1408     if (isEmptyRecord(getContext(), RetTy, true))
1409       return ABIArgInfo::getIgnore();
1410 
1411     // Small structures which are register sized are generally returned
1412     // in a register.
1413     if (shouldReturnTypeInRegister(RetTy, getContext())) {
1414       uint64_t Size = getContext().getTypeSize(RetTy);
1415 
1416       // As a special-case, if the struct is a "single-element" struct, and
1417       // the field is of type "float" or "double", return it in a
1418       // floating-point register. (MSVC does not apply this special case.)
1419       // We apply a similar transformation for pointer types to improve the
1420       // quality of the generated IR.
1421       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
1422         if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
1423             || SeltTy->hasPointerRepresentation())
1424           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
1425 
1426       // FIXME: We should be able to narrow this integer in cases with dead
1427       // padding.
1428       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
1429     }
1430 
1431     return getIndirectReturnResult(RetTy, State);
1432   }
1433 
1434   // Treat an enum type as its underlying type.
1435   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1436     RetTy = EnumTy->getDecl()->getIntegerType();
1437 
1438   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
1439                                            : ABIArgInfo::getDirect());
1440 }
1441 
1442 static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
1443   return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
1444 }
1445 
1446 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
1447   const RecordType *RT = Ty->getAs<RecordType>();
1448   if (!RT)
1449     return 0;
1450   const RecordDecl *RD = RT->getDecl();
1451 
1452   // If this is a C++ record, check the bases first.
1453   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1454     for (const auto &I : CXXRD->bases())
1455       if (!isRecordWithSSEVectorType(Context, I.getType()))
1456         return false;
1457 
1458   for (const auto *i : RD->fields()) {
1459     QualType FT = i->getType();
1460 
1461     if (isSSEVectorType(Context, FT))
1462       return true;
1463 
1464     if (isRecordWithSSEVectorType(Context, FT))
1465       return true;
1466   }
1467 
1468   return false;
1469 }
1470 
1471 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
1472                                                  unsigned Align) const {
1473   // Otherwise, if the alignment is less than or equal to the minimum ABI
1474   // alignment, just use the default; the backend will handle this.
1475   if (Align <= MinABIStackAlignInBytes)
1476     return 0; // Use default alignment.
1477 
1478   // On non-Darwin, the stack type alignment is always 4.
1479   if (!IsDarwinVectorABI) {
1480     // Set explicit alignment, since we may need to realign the top.
1481     return MinABIStackAlignInBytes;
1482   }
1483 
1484   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
1485   if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
1486                       isRecordWithSSEVectorType(getContext(), Ty)))
1487     return 16;
1488 
1489   return MinABIStackAlignInBytes;
1490 }
1491 
1492 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
1493                                             CCState &State) const {
1494   if (!ByVal) {
1495     if (State.FreeRegs) {
1496       --State.FreeRegs; // Non-byval indirects just use one pointer.
1497       if (!IsMCUABI)
1498         return getNaturalAlignIndirectInReg(Ty);
1499     }
1500     return getNaturalAlignIndirect(Ty, false);
1501   }
1502 
1503   // Compute the byval alignment.
1504   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
1505   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
1506   if (StackAlign == 0)
1507     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true);
1508 
1509   // If the stack alignment is less than the type alignment, realign the
1510   // argument.
1511   bool Realign = TypeAlign > StackAlign;
1512   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign),
1513                                  /*ByVal=*/true, Realign);
1514 }
1515 
1516 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
1517   const Type *T = isSingleElementStruct(Ty, getContext());
1518   if (!T)
1519     T = Ty.getTypePtr();
1520 
1521   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
1522     BuiltinType::Kind K = BT->getKind();
1523     if (K == BuiltinType::Float || K == BuiltinType::Double)
1524       return Float;
1525   }
1526   return Integer;
1527 }
1528 
1529 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const {
1530   if (!IsSoftFloatABI) {
1531     Class C = classify(Ty);
1532     if (C == Float)
1533       return false;
1534   }
1535 
1536   unsigned Size = getContext().getTypeSize(Ty);
1537   unsigned SizeInRegs = (Size + 31) / 32;
1538 
1539   if (SizeInRegs == 0)
1540     return false;
1541 
1542   if (!IsMCUABI) {
1543     if (SizeInRegs > State.FreeRegs) {
1544       State.FreeRegs = 0;
1545       return false;
1546     }
1547   } else {
1548     // The MCU psABI allows passing parameters in-reg even if there are
1549     // earlier parameters that are passed on the stack. Also,
1550     // it does not allow passing >8-byte structs in-register,
1551     // even if there are 3 free registers available.
1552     if (SizeInRegs > State.FreeRegs || SizeInRegs > 2)
1553       return false;
1554   }
1555 
1556   State.FreeRegs -= SizeInRegs;
1557   return true;
1558 }
1559 
1560 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State,
1561                                              bool &InReg,
1562                                              bool &NeedsPadding) const {
1563   // On Windows, aggregates other than HFAs are never passed in registers, and
1564   // they do not consume register slots. Homogenous floating-point aggregates
1565   // (HFAs) have already been dealt with at this point.
1566   if (IsWin32StructABI && isAggregateTypeForABI(Ty))
1567     return false;
1568 
1569   NeedsPadding = false;
1570   InReg = !IsMCUABI;
1571 
1572   if (!updateFreeRegs(Ty, State))
1573     return false;
1574 
1575   if (IsMCUABI)
1576     return true;
1577 
1578   if (State.CC == llvm::CallingConv::X86_FastCall ||
1579       State.CC == llvm::CallingConv::X86_VectorCall ||
1580       State.CC == llvm::CallingConv::X86_RegCall) {
1581     if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs)
1582       NeedsPadding = true;
1583 
1584     return false;
1585   }
1586 
1587   return true;
1588 }
1589 
1590 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const {
1591   if (!updateFreeRegs(Ty, State))
1592     return false;
1593 
1594   if (IsMCUABI)
1595     return false;
1596 
1597   if (State.CC == llvm::CallingConv::X86_FastCall ||
1598       State.CC == llvm::CallingConv::X86_VectorCall ||
1599       State.CC == llvm::CallingConv::X86_RegCall) {
1600     if (getContext().getTypeSize(Ty) > 32)
1601       return false;
1602 
1603     return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() ||
1604         Ty->isReferenceType());
1605   }
1606 
1607   return true;
1608 }
1609 
1610 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
1611                                                CCState &State) const {
1612   // FIXME: Set alignment on indirect arguments.
1613 
1614   Ty = useFirstFieldIfTransparentUnion(Ty);
1615 
1616   // Check with the C++ ABI first.
1617   const RecordType *RT = Ty->getAs<RecordType>();
1618   if (RT) {
1619     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
1620     if (RAA == CGCXXABI::RAA_Indirect) {
1621       return getIndirectResult(Ty, false, State);
1622     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
1623       // The field index doesn't matter, we'll fix it up later.
1624       return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
1625     }
1626   }
1627 
1628   // Regcall uses the concept of a homogenous vector aggregate, similar
1629   // to other targets.
1630   const Type *Base = nullptr;
1631   uint64_t NumElts = 0;
1632   if (State.CC == llvm::CallingConv::X86_RegCall &&
1633       isHomogeneousAggregate(Ty, Base, NumElts)) {
1634 
1635     if (State.FreeSSERegs >= NumElts) {
1636       State.FreeSSERegs -= NumElts;
1637       if (Ty->isBuiltinType() || Ty->isVectorType())
1638         return ABIArgInfo::getDirect();
1639       return ABIArgInfo::getExpand();
1640     }
1641     return getIndirectResult(Ty, /*ByVal=*/false, State);
1642   }
1643 
1644   if (isAggregateTypeForABI(Ty)) {
1645     // Structures with flexible arrays are always indirect.
1646     // FIXME: This should not be byval!
1647     if (RT && RT->getDecl()->hasFlexibleArrayMember())
1648       return getIndirectResult(Ty, true, State);
1649 
1650     // Ignore empty structs/unions on non-Windows.
1651     if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true))
1652       return ABIArgInfo::getIgnore();
1653 
1654     llvm::LLVMContext &LLVMContext = getVMContext();
1655     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
1656     bool NeedsPadding = false;
1657     bool InReg;
1658     if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) {
1659       unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
1660       SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
1661       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
1662       if (InReg)
1663         return ABIArgInfo::getDirectInReg(Result);
1664       else
1665         return ABIArgInfo::getDirect(Result);
1666     }
1667     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
1668 
1669     // Expand small (<= 128-bit) record types when we know that the stack layout
1670     // of those arguments will match the struct. This is important because the
1671     // LLVM backend isn't smart enough to remove byval, which inhibits many
1672     // optimizations.
1673     // Don't do this for the MCU if there are still free integer registers
1674     // (see X86_64 ABI for full explanation).
1675     if (getContext().getTypeSize(Ty) <= 4 * 32 &&
1676         (!IsMCUABI || State.FreeRegs == 0) && canExpandIndirectArgument(Ty))
1677       return ABIArgInfo::getExpandWithPadding(
1678           State.CC == llvm::CallingConv::X86_FastCall ||
1679               State.CC == llvm::CallingConv::X86_VectorCall ||
1680               State.CC == llvm::CallingConv::X86_RegCall,
1681           PaddingType);
1682 
1683     return getIndirectResult(Ty, true, State);
1684   }
1685 
1686   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1687     // On Darwin, some vectors are passed in memory, we handle this by passing
1688     // it as an i8/i16/i32/i64.
1689     if (IsDarwinVectorABI) {
1690       uint64_t Size = getContext().getTypeSize(Ty);
1691       if ((Size == 8 || Size == 16 || Size == 32) ||
1692           (Size == 64 && VT->getNumElements() == 1))
1693         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1694                                                             Size));
1695     }
1696 
1697     if (IsX86_MMXType(CGT.ConvertType(Ty)))
1698       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
1699 
1700     return ABIArgInfo::getDirect();
1701   }
1702 
1703 
1704   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1705     Ty = EnumTy->getDecl()->getIntegerType();
1706 
1707   bool InReg = shouldPrimitiveUseInReg(Ty, State);
1708 
1709   if (Ty->isPromotableIntegerType()) {
1710     if (InReg)
1711       return ABIArgInfo::getExtendInReg(Ty);
1712     return ABIArgInfo::getExtend(Ty);
1713   }
1714 
1715   if (InReg)
1716     return ABIArgInfo::getDirectInReg();
1717   return ABIArgInfo::getDirect();
1718 }
1719 
1720 void X86_32ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, CCState &State,
1721                                           bool &UsedInAlloca) const {
1722   // Vectorcall x86 works subtly different than in x64, so the format is
1723   // a bit different than the x64 version.  First, all vector types (not HVAs)
1724   // are assigned, with the first 6 ending up in the YMM0-5 or XMM0-5 registers.
1725   // This differs from the x64 implementation, where the first 6 by INDEX get
1726   // registers.
1727   // After that, integers AND HVAs are assigned Left to Right in the same pass.
1728   // Integers are passed as ECX/EDX if one is available (in order).  HVAs will
1729   // first take up the remaining YMM/XMM registers. If insufficient registers
1730   // remain but an integer register (ECX/EDX) is available, it will be passed
1731   // in that, else, on the stack.
1732   for (auto &I : FI.arguments()) {
1733     // First pass do all the vector types.
1734     const Type *Base = nullptr;
1735     uint64_t NumElts = 0;
1736     const QualType& Ty = I.type;
1737     if ((Ty->isVectorType() || Ty->isBuiltinType()) &&
1738         isHomogeneousAggregate(Ty, Base, NumElts)) {
1739       if (State.FreeSSERegs >= NumElts) {
1740         State.FreeSSERegs -= NumElts;
1741         I.info = ABIArgInfo::getDirect();
1742       } else {
1743         I.info = classifyArgumentType(Ty, State);
1744       }
1745       UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1746     }
1747   }
1748 
1749   for (auto &I : FI.arguments()) {
1750     // Second pass, do the rest!
1751     const Type *Base = nullptr;
1752     uint64_t NumElts = 0;
1753     const QualType& Ty = I.type;
1754     bool IsHva = isHomogeneousAggregate(Ty, Base, NumElts);
1755 
1756     if (IsHva && !Ty->isVectorType() && !Ty->isBuiltinType()) {
1757       // Assign true HVAs (non vector/native FP types).
1758       if (State.FreeSSERegs >= NumElts) {
1759         State.FreeSSERegs -= NumElts;
1760         I.info = getDirectX86Hva();
1761       } else {
1762         I.info = getIndirectResult(Ty, /*ByVal=*/false, State);
1763       }
1764     } else if (!IsHva) {
1765       // Assign all Non-HVAs, so this will exclude Vector/FP args.
1766       I.info = classifyArgumentType(Ty, State);
1767       UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1768     }
1769   }
1770 }
1771 
1772 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1773   CCState State(FI.getCallingConvention());
1774   if (IsMCUABI)
1775     State.FreeRegs = 3;
1776   else if (State.CC == llvm::CallingConv::X86_FastCall)
1777     State.FreeRegs = 2;
1778   else if (State.CC == llvm::CallingConv::X86_VectorCall) {
1779     State.FreeRegs = 2;
1780     State.FreeSSERegs = 6;
1781   } else if (FI.getHasRegParm())
1782     State.FreeRegs = FI.getRegParm();
1783   else if (State.CC == llvm::CallingConv::X86_RegCall) {
1784     State.FreeRegs = 5;
1785     State.FreeSSERegs = 8;
1786   } else
1787     State.FreeRegs = DefaultNumRegisterParameters;
1788 
1789   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
1790     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
1791   } else if (FI.getReturnInfo().isIndirect()) {
1792     // The C++ ABI is not aware of register usage, so we have to check if the
1793     // return value was sret and put it in a register ourselves if appropriate.
1794     if (State.FreeRegs) {
1795       --State.FreeRegs;  // The sret parameter consumes a register.
1796       if (!IsMCUABI)
1797         FI.getReturnInfo().setInReg(true);
1798     }
1799   }
1800 
1801   // The chain argument effectively gives us another free register.
1802   if (FI.isChainCall())
1803     ++State.FreeRegs;
1804 
1805   bool UsedInAlloca = false;
1806   if (State.CC == llvm::CallingConv::X86_VectorCall) {
1807     computeVectorCallArgs(FI, State, UsedInAlloca);
1808   } else {
1809     // If not vectorcall, revert to normal behavior.
1810     for (auto &I : FI.arguments()) {
1811       I.info = classifyArgumentType(I.type, State);
1812       UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1813     }
1814   }
1815 
1816   // If we needed to use inalloca for any argument, do a second pass and rewrite
1817   // all the memory arguments to use inalloca.
1818   if (UsedInAlloca)
1819     rewriteWithInAlloca(FI);
1820 }
1821 
1822 void
1823 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1824                                    CharUnits &StackOffset, ABIArgInfo &Info,
1825                                    QualType Type) const {
1826   // Arguments are always 4-byte-aligned.
1827   CharUnits FieldAlign = CharUnits::fromQuantity(4);
1828 
1829   assert(StackOffset.isMultipleOf(FieldAlign) && "unaligned inalloca struct");
1830   Info = ABIArgInfo::getInAlloca(FrameFields.size());
1831   FrameFields.push_back(CGT.ConvertTypeForMem(Type));
1832   StackOffset += getContext().getTypeSizeInChars(Type);
1833 
1834   // Insert padding bytes to respect alignment.
1835   CharUnits FieldEnd = StackOffset;
1836   StackOffset = FieldEnd.alignTo(FieldAlign);
1837   if (StackOffset != FieldEnd) {
1838     CharUnits NumBytes = StackOffset - FieldEnd;
1839     llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
1840     Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity());
1841     FrameFields.push_back(Ty);
1842   }
1843 }
1844 
1845 static bool isArgInAlloca(const ABIArgInfo &Info) {
1846   // Leave ignored and inreg arguments alone.
1847   switch (Info.getKind()) {
1848   case ABIArgInfo::InAlloca:
1849     return true;
1850   case ABIArgInfo::Indirect:
1851     assert(Info.getIndirectByVal());
1852     return true;
1853   case ABIArgInfo::Ignore:
1854     return false;
1855   case ABIArgInfo::Direct:
1856   case ABIArgInfo::Extend:
1857     if (Info.getInReg())
1858       return false;
1859     return true;
1860   case ABIArgInfo::Expand:
1861   case ABIArgInfo::CoerceAndExpand:
1862     // These are aggregate types which are never passed in registers when
1863     // inalloca is involved.
1864     return true;
1865   }
1866   llvm_unreachable("invalid enum");
1867 }
1868 
1869 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
1870   assert(IsWin32StructABI && "inalloca only supported on win32");
1871 
1872   // Build a packed struct type for all of the arguments in memory.
1873   SmallVector<llvm::Type *, 6> FrameFields;
1874 
1875   // The stack alignment is always 4.
1876   CharUnits StackAlign = CharUnits::fromQuantity(4);
1877 
1878   CharUnits StackOffset;
1879   CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
1880 
1881   // Put 'this' into the struct before 'sret', if necessary.
1882   bool IsThisCall =
1883       FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
1884   ABIArgInfo &Ret = FI.getReturnInfo();
1885   if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
1886       isArgInAlloca(I->info)) {
1887     addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1888     ++I;
1889   }
1890 
1891   // Put the sret parameter into the inalloca struct if it's in memory.
1892   if (Ret.isIndirect() && !Ret.getInReg()) {
1893     CanQualType PtrTy = getContext().getPointerType(FI.getReturnType());
1894     addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy);
1895     // On Windows, the hidden sret parameter is always returned in eax.
1896     Ret.setInAllocaSRet(IsWin32StructABI);
1897   }
1898 
1899   // Skip the 'this' parameter in ecx.
1900   if (IsThisCall)
1901     ++I;
1902 
1903   // Put arguments passed in memory into the struct.
1904   for (; I != E; ++I) {
1905     if (isArgInAlloca(I->info))
1906       addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1907   }
1908 
1909   FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
1910                                         /*isPacked=*/true),
1911                   StackAlign);
1912 }
1913 
1914 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF,
1915                                  Address VAListAddr, QualType Ty) const {
1916 
1917   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
1918 
1919   // x86-32 changes the alignment of certain arguments on the stack.
1920   //
1921   // Just messing with TypeInfo like this works because we never pass
1922   // anything indirectly.
1923   TypeInfo.second = CharUnits::fromQuantity(
1924                 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity()));
1925 
1926   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
1927                           TypeInfo, CharUnits::fromQuantity(4),
1928                           /*AllowHigherAlign*/ true);
1929 }
1930 
1931 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
1932     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
1933   assert(Triple.getArch() == llvm::Triple::x86);
1934 
1935   switch (Opts.getStructReturnConvention()) {
1936   case CodeGenOptions::SRCK_Default:
1937     break;
1938   case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
1939     return false;
1940   case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
1941     return true;
1942   }
1943 
1944   if (Triple.isOSDarwin() || Triple.isOSIAMCU())
1945     return true;
1946 
1947   switch (Triple.getOS()) {
1948   case llvm::Triple::DragonFly:
1949   case llvm::Triple::FreeBSD:
1950   case llvm::Triple::OpenBSD:
1951   case llvm::Triple::Win32:
1952     return true;
1953   default:
1954     return false;
1955   }
1956 }
1957 
1958 void X86_32TargetCodeGenInfo::setTargetAttributes(
1959     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
1960   if (GV->isDeclaration())
1961     return;
1962   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
1963     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1964       llvm::Function *Fn = cast<llvm::Function>(GV);
1965       Fn->addFnAttr("stackrealign");
1966     }
1967     if (FD->hasAttr<AnyX86InterruptAttr>()) {
1968       llvm::Function *Fn = cast<llvm::Function>(GV);
1969       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
1970     }
1971   }
1972 }
1973 
1974 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
1975                                                CodeGen::CodeGenFunction &CGF,
1976                                                llvm::Value *Address) const {
1977   CodeGen::CGBuilderTy &Builder = CGF.Builder;
1978 
1979   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
1980 
1981   // 0-7 are the eight integer registers;  the order is different
1982   //   on Darwin (for EH), but the range is the same.
1983   // 8 is %eip.
1984   AssignToArrayRange(Builder, Address, Four8, 0, 8);
1985 
1986   if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
1987     // 12-16 are st(0..4).  Not sure why we stop at 4.
1988     // These have size 16, which is sizeof(long double) on
1989     // platforms with 8-byte alignment for that type.
1990     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
1991     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
1992 
1993   } else {
1994     // 9 is %eflags, which doesn't get a size on Darwin for some
1995     // reason.
1996     Builder.CreateAlignedStore(
1997         Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9),
1998                                CharUnits::One());
1999 
2000     // 11-16 are st(0..5).  Not sure why we stop at 5.
2001     // These have size 12, which is sizeof(long double) on
2002     // platforms with 4-byte alignment for that type.
2003     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
2004     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
2005   }
2006 
2007   return false;
2008 }
2009 
2010 //===----------------------------------------------------------------------===//
2011 // X86-64 ABI Implementation
2012 //===----------------------------------------------------------------------===//
2013 
2014 
2015 namespace {
2016 /// The AVX ABI level for X86 targets.
2017 enum class X86AVXABILevel {
2018   None,
2019   AVX,
2020   AVX512
2021 };
2022 
2023 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
2024 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
2025   switch (AVXLevel) {
2026   case X86AVXABILevel::AVX512:
2027     return 512;
2028   case X86AVXABILevel::AVX:
2029     return 256;
2030   case X86AVXABILevel::None:
2031     return 128;
2032   }
2033   llvm_unreachable("Unknown AVXLevel");
2034 }
2035 
2036 /// X86_64ABIInfo - The X86_64 ABI information.
2037 class X86_64ABIInfo : public SwiftABIInfo {
2038   enum Class {
2039     Integer = 0,
2040     SSE,
2041     SSEUp,
2042     X87,
2043     X87Up,
2044     ComplexX87,
2045     NoClass,
2046     Memory
2047   };
2048 
2049   /// merge - Implement the X86_64 ABI merging algorithm.
2050   ///
2051   /// Merge an accumulating classification \arg Accum with a field
2052   /// classification \arg Field.
2053   ///
2054   /// \param Accum - The accumulating classification. This should
2055   /// always be either NoClass or the result of a previous merge
2056   /// call. In addition, this should never be Memory (the caller
2057   /// should just return Memory for the aggregate).
2058   static Class merge(Class Accum, Class Field);
2059 
2060   /// postMerge - Implement the X86_64 ABI post merging algorithm.
2061   ///
2062   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
2063   /// final MEMORY or SSE classes when necessary.
2064   ///
2065   /// \param AggregateSize - The size of the current aggregate in
2066   /// the classification process.
2067   ///
2068   /// \param Lo - The classification for the parts of the type
2069   /// residing in the low word of the containing object.
2070   ///
2071   /// \param Hi - The classification for the parts of the type
2072   /// residing in the higher words of the containing object.
2073   ///
2074   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
2075 
2076   /// classify - Determine the x86_64 register classes in which the
2077   /// given type T should be passed.
2078   ///
2079   /// \param Lo - The classification for the parts of the type
2080   /// residing in the low word of the containing object.
2081   ///
2082   /// \param Hi - The classification for the parts of the type
2083   /// residing in the high word of the containing object.
2084   ///
2085   /// \param OffsetBase - The bit offset of this type in the
2086   /// containing object.  Some parameters are classified different
2087   /// depending on whether they straddle an eightbyte boundary.
2088   ///
2089   /// \param isNamedArg - Whether the argument in question is a "named"
2090   /// argument, as used in AMD64-ABI 3.5.7.
2091   ///
2092   /// If a word is unused its result will be NoClass; if a type should
2093   /// be passed in Memory then at least the classification of \arg Lo
2094   /// will be Memory.
2095   ///
2096   /// The \arg Lo class will be NoClass iff the argument is ignored.
2097   ///
2098   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
2099   /// also be ComplexX87.
2100   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
2101                 bool isNamedArg) const;
2102 
2103   llvm::Type *GetByteVectorType(QualType Ty) const;
2104   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
2105                                  unsigned IROffset, QualType SourceTy,
2106                                  unsigned SourceOffset) const;
2107   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
2108                                      unsigned IROffset, QualType SourceTy,
2109                                      unsigned SourceOffset) const;
2110 
2111   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2112   /// such that the argument will be returned in memory.
2113   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
2114 
2115   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2116   /// such that the argument will be passed in memory.
2117   ///
2118   /// \param freeIntRegs - The number of free integer registers remaining
2119   /// available.
2120   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
2121 
2122   ABIArgInfo classifyReturnType(QualType RetTy) const;
2123 
2124   ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs,
2125                                   unsigned &neededInt, unsigned &neededSSE,
2126                                   bool isNamedArg) const;
2127 
2128   ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt,
2129                                        unsigned &NeededSSE) const;
2130 
2131   ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
2132                                            unsigned &NeededSSE) const;
2133 
2134   bool IsIllegalVectorType(QualType Ty) const;
2135 
2136   /// The 0.98 ABI revision clarified a lot of ambiguities,
2137   /// unfortunately in ways that were not always consistent with
2138   /// certain previous compilers.  In particular, platforms which
2139   /// required strict binary compatibility with older versions of GCC
2140   /// may need to exempt themselves.
2141   bool honorsRevision0_98() const {
2142     return !getTarget().getTriple().isOSDarwin();
2143   }
2144 
2145   /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to
2146   /// classify it as INTEGER (for compatibility with older clang compilers).
2147   bool classifyIntegerMMXAsSSE() const {
2148     // Clang <= 3.8 did not do this.
2149     if (getContext().getLangOpts().getClangABICompat() <=
2150         LangOptions::ClangABI::Ver3_8)
2151       return false;
2152 
2153     const llvm::Triple &Triple = getTarget().getTriple();
2154     if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4)
2155       return false;
2156     if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10)
2157       return false;
2158     return true;
2159   }
2160 
2161   X86AVXABILevel AVXLevel;
2162   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
2163   // 64-bit hardware.
2164   bool Has64BitPointers;
2165 
2166 public:
2167   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) :
2168       SwiftABIInfo(CGT), AVXLevel(AVXLevel),
2169       Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
2170   }
2171 
2172   bool isPassedUsingAVXType(QualType type) const {
2173     unsigned neededInt, neededSSE;
2174     // The freeIntRegs argument doesn't matter here.
2175     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
2176                                            /*isNamedArg*/true);
2177     if (info.isDirect()) {
2178       llvm::Type *ty = info.getCoerceToType();
2179       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
2180         return (vectorTy->getBitWidth() > 128);
2181     }
2182     return false;
2183   }
2184 
2185   void computeInfo(CGFunctionInfo &FI) const override;
2186 
2187   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2188                     QualType Ty) const override;
2189   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
2190                       QualType Ty) const override;
2191 
2192   bool has64BitPointers() const {
2193     return Has64BitPointers;
2194   }
2195 
2196   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
2197                                     bool asReturnValue) const override {
2198     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2199   }
2200   bool isSwiftErrorInRegister() const override {
2201     return true;
2202   }
2203 };
2204 
2205 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
2206 class WinX86_64ABIInfo : public SwiftABIInfo {
2207 public:
2208   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT)
2209       : SwiftABIInfo(CGT),
2210         IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {}
2211 
2212   void computeInfo(CGFunctionInfo &FI) const override;
2213 
2214   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2215                     QualType Ty) const override;
2216 
2217   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
2218     // FIXME: Assumes vectorcall is in use.
2219     return isX86VectorTypeForVectorCall(getContext(), Ty);
2220   }
2221 
2222   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
2223                                          uint64_t NumMembers) const override {
2224     // FIXME: Assumes vectorcall is in use.
2225     return isX86VectorCallAggregateSmallEnough(NumMembers);
2226   }
2227 
2228   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars,
2229                                     bool asReturnValue) const override {
2230     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2231   }
2232 
2233   bool isSwiftErrorInRegister() const override {
2234     return true;
2235   }
2236 
2237 private:
2238   ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType,
2239                       bool IsVectorCall, bool IsRegCall) const;
2240   ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs,
2241                                       const ABIArgInfo &current) const;
2242   void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs,
2243                              bool IsVectorCall, bool IsRegCall) const;
2244 
2245     bool IsMingw64;
2246 };
2247 
2248 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2249 public:
2250   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2251       : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {}
2252 
2253   const X86_64ABIInfo &getABIInfo() const {
2254     return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
2255   }
2256 
2257   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2258     return 7;
2259   }
2260 
2261   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2262                                llvm::Value *Address) const override {
2263     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2264 
2265     // 0-15 are the 16 integer registers.
2266     // 16 is %rip.
2267     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2268     return false;
2269   }
2270 
2271   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
2272                                   StringRef Constraint,
2273                                   llvm::Type* Ty) const override {
2274     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
2275   }
2276 
2277   bool isNoProtoCallVariadic(const CallArgList &args,
2278                              const FunctionNoProtoType *fnType) const override {
2279     // The default CC on x86-64 sets %al to the number of SSA
2280     // registers used, and GCC sets this when calling an unprototyped
2281     // function, so we override the default behavior.  However, don't do
2282     // that when AVX types are involved: the ABI explicitly states it is
2283     // undefined, and it doesn't work in practice because of how the ABI
2284     // defines varargs anyway.
2285     if (fnType->getCallConv() == CC_C) {
2286       bool HasAVXType = false;
2287       for (CallArgList::const_iterator
2288              it = args.begin(), ie = args.end(); it != ie; ++it) {
2289         if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
2290           HasAVXType = true;
2291           break;
2292         }
2293       }
2294 
2295       if (!HasAVXType)
2296         return true;
2297     }
2298 
2299     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
2300   }
2301 
2302   llvm::Constant *
2303   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
2304     unsigned Sig = (0xeb << 0) | // jmp rel8
2305                    (0x06 << 8) | //           .+0x08
2306                    ('v' << 16) |
2307                    ('2' << 24);
2308     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
2309   }
2310 
2311   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2312                            CodeGen::CodeGenModule &CGM) const override {
2313     if (GV->isDeclaration())
2314       return;
2315     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2316       if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2317         llvm::Function *Fn = cast<llvm::Function>(GV);
2318         Fn->addFnAttr("stackrealign");
2319       }
2320       if (FD->hasAttr<AnyX86InterruptAttr>()) {
2321         llvm::Function *Fn = cast<llvm::Function>(GV);
2322         Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2323       }
2324     }
2325   }
2326 };
2327 
2328 class PS4TargetCodeGenInfo : public X86_64TargetCodeGenInfo {
2329 public:
2330   PS4TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2331     : X86_64TargetCodeGenInfo(CGT, AVXLevel) {}
2332 
2333   void getDependentLibraryOption(llvm::StringRef Lib,
2334                                  llvm::SmallString<24> &Opt) const override {
2335     Opt = "\01";
2336     // If the argument contains a space, enclose it in quotes.
2337     if (Lib.find(" ") != StringRef::npos)
2338       Opt += "\"" + Lib.str() + "\"";
2339     else
2340       Opt += Lib;
2341   }
2342 };
2343 
2344 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
2345   // If the argument does not end in .lib, automatically add the suffix.
2346   // If the argument contains a space, enclose it in quotes.
2347   // This matches the behavior of MSVC.
2348   bool Quote = (Lib.find(" ") != StringRef::npos);
2349   std::string ArgStr = Quote ? "\"" : "";
2350   ArgStr += Lib;
2351   if (!Lib.endswith_lower(".lib") && !Lib.endswith_lower(".a"))
2352     ArgStr += ".lib";
2353   ArgStr += Quote ? "\"" : "";
2354   return ArgStr;
2355 }
2356 
2357 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
2358 public:
2359   WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2360         bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI,
2361         unsigned NumRegisterParameters)
2362     : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI,
2363         Win32StructABI, NumRegisterParameters, false) {}
2364 
2365   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2366                            CodeGen::CodeGenModule &CGM) const override;
2367 
2368   void getDependentLibraryOption(llvm::StringRef Lib,
2369                                  llvm::SmallString<24> &Opt) const override {
2370     Opt = "/DEFAULTLIB:";
2371     Opt += qualifyWindowsLibrary(Lib);
2372   }
2373 
2374   void getDetectMismatchOption(llvm::StringRef Name,
2375                                llvm::StringRef Value,
2376                                llvm::SmallString<32> &Opt) const override {
2377     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2378   }
2379 };
2380 
2381 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2382                                           CodeGen::CodeGenModule &CGM) {
2383   if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) {
2384 
2385     if (CGM.getCodeGenOpts().StackProbeSize != 4096)
2386       Fn->addFnAttr("stack-probe-size",
2387                     llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
2388     if (CGM.getCodeGenOpts().NoStackArgProbe)
2389       Fn->addFnAttr("no-stack-arg-probe");
2390   }
2391 }
2392 
2393 void WinX86_32TargetCodeGenInfo::setTargetAttributes(
2394     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2395   X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2396   if (GV->isDeclaration())
2397     return;
2398   addStackProbeTargetAttributes(D, GV, CGM);
2399 }
2400 
2401 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2402 public:
2403   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2404                              X86AVXABILevel AVXLevel)
2405       : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
2406 
2407   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2408                            CodeGen::CodeGenModule &CGM) const override;
2409 
2410   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2411     return 7;
2412   }
2413 
2414   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2415                                llvm::Value *Address) const override {
2416     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2417 
2418     // 0-15 are the 16 integer registers.
2419     // 16 is %rip.
2420     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2421     return false;
2422   }
2423 
2424   void getDependentLibraryOption(llvm::StringRef Lib,
2425                                  llvm::SmallString<24> &Opt) const override {
2426     Opt = "/DEFAULTLIB:";
2427     Opt += qualifyWindowsLibrary(Lib);
2428   }
2429 
2430   void getDetectMismatchOption(llvm::StringRef Name,
2431                                llvm::StringRef Value,
2432                                llvm::SmallString<32> &Opt) const override {
2433     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2434   }
2435 };
2436 
2437 void WinX86_64TargetCodeGenInfo::setTargetAttributes(
2438     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2439   TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2440   if (GV->isDeclaration())
2441     return;
2442   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2443     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2444       llvm::Function *Fn = cast<llvm::Function>(GV);
2445       Fn->addFnAttr("stackrealign");
2446     }
2447     if (FD->hasAttr<AnyX86InterruptAttr>()) {
2448       llvm::Function *Fn = cast<llvm::Function>(GV);
2449       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2450     }
2451   }
2452 
2453   addStackProbeTargetAttributes(D, GV, CGM);
2454 }
2455 }
2456 
2457 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
2458                               Class &Hi) const {
2459   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
2460   //
2461   // (a) If one of the classes is Memory, the whole argument is passed in
2462   //     memory.
2463   //
2464   // (b) If X87UP is not preceded by X87, the whole argument is passed in
2465   //     memory.
2466   //
2467   // (c) If the size of the aggregate exceeds two eightbytes and the first
2468   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
2469   //     argument is passed in memory. NOTE: This is necessary to keep the
2470   //     ABI working for processors that don't support the __m256 type.
2471   //
2472   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
2473   //
2474   // Some of these are enforced by the merging logic.  Others can arise
2475   // only with unions; for example:
2476   //   union { _Complex double; unsigned; }
2477   //
2478   // Note that clauses (b) and (c) were added in 0.98.
2479   //
2480   if (Hi == Memory)
2481     Lo = Memory;
2482   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
2483     Lo = Memory;
2484   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
2485     Lo = Memory;
2486   if (Hi == SSEUp && Lo != SSE)
2487     Hi = SSE;
2488 }
2489 
2490 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
2491   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
2492   // classified recursively so that always two fields are
2493   // considered. The resulting class is calculated according to
2494   // the classes of the fields in the eightbyte:
2495   //
2496   // (a) If both classes are equal, this is the resulting class.
2497   //
2498   // (b) If one of the classes is NO_CLASS, the resulting class is
2499   // the other class.
2500   //
2501   // (c) If one of the classes is MEMORY, the result is the MEMORY
2502   // class.
2503   //
2504   // (d) If one of the classes is INTEGER, the result is the
2505   // INTEGER.
2506   //
2507   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
2508   // MEMORY is used as class.
2509   //
2510   // (f) Otherwise class SSE is used.
2511 
2512   // Accum should never be memory (we should have returned) or
2513   // ComplexX87 (because this cannot be passed in a structure).
2514   assert((Accum != Memory && Accum != ComplexX87) &&
2515          "Invalid accumulated classification during merge.");
2516   if (Accum == Field || Field == NoClass)
2517     return Accum;
2518   if (Field == Memory)
2519     return Memory;
2520   if (Accum == NoClass)
2521     return Field;
2522   if (Accum == Integer || Field == Integer)
2523     return Integer;
2524   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
2525       Accum == X87 || Accum == X87Up)
2526     return Memory;
2527   return SSE;
2528 }
2529 
2530 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
2531                              Class &Lo, Class &Hi, bool isNamedArg) const {
2532   // FIXME: This code can be simplified by introducing a simple value class for
2533   // Class pairs with appropriate constructor methods for the various
2534   // situations.
2535 
2536   // FIXME: Some of the split computations are wrong; unaligned vectors
2537   // shouldn't be passed in registers for example, so there is no chance they
2538   // can straddle an eightbyte. Verify & simplify.
2539 
2540   Lo = Hi = NoClass;
2541 
2542   Class &Current = OffsetBase < 64 ? Lo : Hi;
2543   Current = Memory;
2544 
2545   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
2546     BuiltinType::Kind k = BT->getKind();
2547 
2548     if (k == BuiltinType::Void) {
2549       Current = NoClass;
2550     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
2551       Lo = Integer;
2552       Hi = Integer;
2553     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
2554       Current = Integer;
2555     } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
2556       Current = SSE;
2557     } else if (k == BuiltinType::LongDouble) {
2558       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2559       if (LDF == &llvm::APFloat::IEEEquad()) {
2560         Lo = SSE;
2561         Hi = SSEUp;
2562       } else if (LDF == &llvm::APFloat::x87DoubleExtended()) {
2563         Lo = X87;
2564         Hi = X87Up;
2565       } else if (LDF == &llvm::APFloat::IEEEdouble()) {
2566         Current = SSE;
2567       } else
2568         llvm_unreachable("unexpected long double representation!");
2569     }
2570     // FIXME: _Decimal32 and _Decimal64 are SSE.
2571     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
2572     return;
2573   }
2574 
2575   if (const EnumType *ET = Ty->getAs<EnumType>()) {
2576     // Classify the underlying integer type.
2577     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
2578     return;
2579   }
2580 
2581   if (Ty->hasPointerRepresentation()) {
2582     Current = Integer;
2583     return;
2584   }
2585 
2586   if (Ty->isMemberPointerType()) {
2587     if (Ty->isMemberFunctionPointerType()) {
2588       if (Has64BitPointers) {
2589         // If Has64BitPointers, this is an {i64, i64}, so classify both
2590         // Lo and Hi now.
2591         Lo = Hi = Integer;
2592       } else {
2593         // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
2594         // straddles an eightbyte boundary, Hi should be classified as well.
2595         uint64_t EB_FuncPtr = (OffsetBase) / 64;
2596         uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
2597         if (EB_FuncPtr != EB_ThisAdj) {
2598           Lo = Hi = Integer;
2599         } else {
2600           Current = Integer;
2601         }
2602       }
2603     } else {
2604       Current = Integer;
2605     }
2606     return;
2607   }
2608 
2609   if (const VectorType *VT = Ty->getAs<VectorType>()) {
2610     uint64_t Size = getContext().getTypeSize(VT);
2611     if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
2612       // gcc passes the following as integer:
2613       // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
2614       // 2 bytes - <2 x char>, <1 x short>
2615       // 1 byte  - <1 x char>
2616       Current = Integer;
2617 
2618       // If this type crosses an eightbyte boundary, it should be
2619       // split.
2620       uint64_t EB_Lo = (OffsetBase) / 64;
2621       uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
2622       if (EB_Lo != EB_Hi)
2623         Hi = Lo;
2624     } else if (Size == 64) {
2625       QualType ElementType = VT->getElementType();
2626 
2627       // gcc passes <1 x double> in memory. :(
2628       if (ElementType->isSpecificBuiltinType(BuiltinType::Double))
2629         return;
2630 
2631       // gcc passes <1 x long long> as SSE but clang used to unconditionally
2632       // pass them as integer.  For platforms where clang is the de facto
2633       // platform compiler, we must continue to use integer.
2634       if (!classifyIntegerMMXAsSSE() &&
2635           (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) ||
2636            ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
2637            ElementType->isSpecificBuiltinType(BuiltinType::Long) ||
2638            ElementType->isSpecificBuiltinType(BuiltinType::ULong)))
2639         Current = Integer;
2640       else
2641         Current = SSE;
2642 
2643       // If this type crosses an eightbyte boundary, it should be
2644       // split.
2645       if (OffsetBase && OffsetBase != 64)
2646         Hi = Lo;
2647     } else if (Size == 128 ||
2648                (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
2649       // Arguments of 256-bits are split into four eightbyte chunks. The
2650       // least significant one belongs to class SSE and all the others to class
2651       // SSEUP. The original Lo and Hi design considers that types can't be
2652       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
2653       // This design isn't correct for 256-bits, but since there're no cases
2654       // where the upper parts would need to be inspected, avoid adding
2655       // complexity and just consider Hi to match the 64-256 part.
2656       //
2657       // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
2658       // registers if they are "named", i.e. not part of the "..." of a
2659       // variadic function.
2660       //
2661       // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
2662       // split into eight eightbyte chunks, one SSE and seven SSEUP.
2663       Lo = SSE;
2664       Hi = SSEUp;
2665     }
2666     return;
2667   }
2668 
2669   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
2670     QualType ET = getContext().getCanonicalType(CT->getElementType());
2671 
2672     uint64_t Size = getContext().getTypeSize(Ty);
2673     if (ET->isIntegralOrEnumerationType()) {
2674       if (Size <= 64)
2675         Current = Integer;
2676       else if (Size <= 128)
2677         Lo = Hi = Integer;
2678     } else if (ET == getContext().FloatTy) {
2679       Current = SSE;
2680     } else if (ET == getContext().DoubleTy) {
2681       Lo = Hi = SSE;
2682     } else if (ET == getContext().LongDoubleTy) {
2683       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2684       if (LDF == &llvm::APFloat::IEEEquad())
2685         Current = Memory;
2686       else if (LDF == &llvm::APFloat::x87DoubleExtended())
2687         Current = ComplexX87;
2688       else if (LDF == &llvm::APFloat::IEEEdouble())
2689         Lo = Hi = SSE;
2690       else
2691         llvm_unreachable("unexpected long double representation!");
2692     }
2693 
2694     // If this complex type crosses an eightbyte boundary then it
2695     // should be split.
2696     uint64_t EB_Real = (OffsetBase) / 64;
2697     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
2698     if (Hi == NoClass && EB_Real != EB_Imag)
2699       Hi = Lo;
2700 
2701     return;
2702   }
2703 
2704   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
2705     // Arrays are treated like structures.
2706 
2707     uint64_t Size = getContext().getTypeSize(Ty);
2708 
2709     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2710     // than eight eightbytes, ..., it has class MEMORY.
2711     if (Size > 512)
2712       return;
2713 
2714     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
2715     // fields, it has class MEMORY.
2716     //
2717     // Only need to check alignment of array base.
2718     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
2719       return;
2720 
2721     // Otherwise implement simplified merge. We could be smarter about
2722     // this, but it isn't worth it and would be harder to verify.
2723     Current = NoClass;
2724     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
2725     uint64_t ArraySize = AT->getSize().getZExtValue();
2726 
2727     // The only case a 256-bit wide vector could be used is when the array
2728     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2729     // to work for sizes wider than 128, early check and fallback to memory.
2730     //
2731     if (Size > 128 &&
2732         (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel)))
2733       return;
2734 
2735     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
2736       Class FieldLo, FieldHi;
2737       classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
2738       Lo = merge(Lo, FieldLo);
2739       Hi = merge(Hi, FieldHi);
2740       if (Lo == Memory || Hi == Memory)
2741         break;
2742     }
2743 
2744     postMerge(Size, Lo, Hi);
2745     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
2746     return;
2747   }
2748 
2749   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2750     uint64_t Size = getContext().getTypeSize(Ty);
2751 
2752     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2753     // than eight eightbytes, ..., it has class MEMORY.
2754     if (Size > 512)
2755       return;
2756 
2757     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
2758     // copy constructor or a non-trivial destructor, it is passed by invisible
2759     // reference.
2760     if (getRecordArgABI(RT, getCXXABI()))
2761       return;
2762 
2763     const RecordDecl *RD = RT->getDecl();
2764 
2765     // Assume variable sized types are passed in memory.
2766     if (RD->hasFlexibleArrayMember())
2767       return;
2768 
2769     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2770 
2771     // Reset Lo class, this will be recomputed.
2772     Current = NoClass;
2773 
2774     // If this is a C++ record, classify the bases first.
2775     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2776       for (const auto &I : CXXRD->bases()) {
2777         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2778                "Unexpected base class!");
2779         const CXXRecordDecl *Base =
2780           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2781 
2782         // Classify this field.
2783         //
2784         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
2785         // single eightbyte, each is classified separately. Each eightbyte gets
2786         // initialized to class NO_CLASS.
2787         Class FieldLo, FieldHi;
2788         uint64_t Offset =
2789           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
2790         classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
2791         Lo = merge(Lo, FieldLo);
2792         Hi = merge(Hi, FieldHi);
2793         if (Lo == Memory || Hi == Memory) {
2794           postMerge(Size, Lo, Hi);
2795           return;
2796         }
2797       }
2798     }
2799 
2800     // Classify the fields one at a time, merging the results.
2801     unsigned idx = 0;
2802     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2803            i != e; ++i, ++idx) {
2804       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2805       bool BitField = i->isBitField();
2806 
2807       // Ignore padding bit-fields.
2808       if (BitField && i->isUnnamedBitfield())
2809         continue;
2810 
2811       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
2812       // four eightbytes, or it contains unaligned fields, it has class MEMORY.
2813       //
2814       // The only case a 256-bit wide vector could be used is when the struct
2815       // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2816       // to work for sizes wider than 128, early check and fallback to memory.
2817       //
2818       if (Size > 128 && (Size != getContext().getTypeSize(i->getType()) ||
2819                          Size > getNativeVectorSizeForAVXABI(AVXLevel))) {
2820         Lo = Memory;
2821         postMerge(Size, Lo, Hi);
2822         return;
2823       }
2824       // Note, skip this test for bit-fields, see below.
2825       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
2826         Lo = Memory;
2827         postMerge(Size, Lo, Hi);
2828         return;
2829       }
2830 
2831       // Classify this field.
2832       //
2833       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
2834       // exceeds a single eightbyte, each is classified
2835       // separately. Each eightbyte gets initialized to class
2836       // NO_CLASS.
2837       Class FieldLo, FieldHi;
2838 
2839       // Bit-fields require special handling, they do not force the
2840       // structure to be passed in memory even if unaligned, and
2841       // therefore they can straddle an eightbyte.
2842       if (BitField) {
2843         assert(!i->isUnnamedBitfield());
2844         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2845         uint64_t Size = i->getBitWidthValue(getContext());
2846 
2847         uint64_t EB_Lo = Offset / 64;
2848         uint64_t EB_Hi = (Offset + Size - 1) / 64;
2849 
2850         if (EB_Lo) {
2851           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
2852           FieldLo = NoClass;
2853           FieldHi = Integer;
2854         } else {
2855           FieldLo = Integer;
2856           FieldHi = EB_Hi ? Integer : NoClass;
2857         }
2858       } else
2859         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
2860       Lo = merge(Lo, FieldLo);
2861       Hi = merge(Hi, FieldHi);
2862       if (Lo == Memory || Hi == Memory)
2863         break;
2864     }
2865 
2866     postMerge(Size, Lo, Hi);
2867   }
2868 }
2869 
2870 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
2871   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2872   // place naturally.
2873   if (!isAggregateTypeForABI(Ty)) {
2874     // Treat an enum type as its underlying type.
2875     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2876       Ty = EnumTy->getDecl()->getIntegerType();
2877 
2878     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
2879                                           : ABIArgInfo::getDirect());
2880   }
2881 
2882   return getNaturalAlignIndirect(Ty);
2883 }
2884 
2885 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
2886   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
2887     uint64_t Size = getContext().getTypeSize(VecTy);
2888     unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
2889     if (Size <= 64 || Size > LargestVector)
2890       return true;
2891   }
2892 
2893   return false;
2894 }
2895 
2896 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
2897                                             unsigned freeIntRegs) const {
2898   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2899   // place naturally.
2900   //
2901   // This assumption is optimistic, as there could be free registers available
2902   // when we need to pass this argument in memory, and LLVM could try to pass
2903   // the argument in the free register. This does not seem to happen currently,
2904   // but this code would be much safer if we could mark the argument with
2905   // 'onstack'. See PR12193.
2906   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
2907     // Treat an enum type as its underlying type.
2908     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2909       Ty = EnumTy->getDecl()->getIntegerType();
2910 
2911     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
2912                                           : ABIArgInfo::getDirect());
2913   }
2914 
2915   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
2916     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
2917 
2918   // Compute the byval alignment. We specify the alignment of the byval in all
2919   // cases so that the mid-level optimizer knows the alignment of the byval.
2920   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
2921 
2922   // Attempt to avoid passing indirect results using byval when possible. This
2923   // is important for good codegen.
2924   //
2925   // We do this by coercing the value into a scalar type which the backend can
2926   // handle naturally (i.e., without using byval).
2927   //
2928   // For simplicity, we currently only do this when we have exhausted all of the
2929   // free integer registers. Doing this when there are free integer registers
2930   // would require more care, as we would have to ensure that the coerced value
2931   // did not claim the unused register. That would require either reording the
2932   // arguments to the function (so that any subsequent inreg values came first),
2933   // or only doing this optimization when there were no following arguments that
2934   // might be inreg.
2935   //
2936   // We currently expect it to be rare (particularly in well written code) for
2937   // arguments to be passed on the stack when there are still free integer
2938   // registers available (this would typically imply large structs being passed
2939   // by value), so this seems like a fair tradeoff for now.
2940   //
2941   // We can revisit this if the backend grows support for 'onstack' parameter
2942   // attributes. See PR12193.
2943   if (freeIntRegs == 0) {
2944     uint64_t Size = getContext().getTypeSize(Ty);
2945 
2946     // If this type fits in an eightbyte, coerce it into the matching integral
2947     // type, which will end up on the stack (with alignment 8).
2948     if (Align == 8 && Size <= 64)
2949       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2950                                                           Size));
2951   }
2952 
2953   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align));
2954 }
2955 
2956 /// The ABI specifies that a value should be passed in a full vector XMM/YMM
2957 /// register. Pick an LLVM IR type that will be passed as a vector register.
2958 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
2959   // Wrapper structs/arrays that only contain vectors are passed just like
2960   // vectors; strip them off if present.
2961   if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
2962     Ty = QualType(InnerTy, 0);
2963 
2964   llvm::Type *IRType = CGT.ConvertType(Ty);
2965   if (isa<llvm::VectorType>(IRType) ||
2966       IRType->getTypeID() == llvm::Type::FP128TyID)
2967     return IRType;
2968 
2969   // We couldn't find the preferred IR vector type for 'Ty'.
2970   uint64_t Size = getContext().getTypeSize(Ty);
2971   assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!");
2972 
2973   // Return a LLVM IR vector type based on the size of 'Ty'.
2974   return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()),
2975                                Size / 64);
2976 }
2977 
2978 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
2979 /// is known to either be off the end of the specified type or being in
2980 /// alignment padding.  The user type specified is known to be at most 128 bits
2981 /// in size, and have passed through X86_64ABIInfo::classify with a successful
2982 /// classification that put one of the two halves in the INTEGER class.
2983 ///
2984 /// It is conservatively correct to return false.
2985 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
2986                                   unsigned EndBit, ASTContext &Context) {
2987   // If the bytes being queried are off the end of the type, there is no user
2988   // data hiding here.  This handles analysis of builtins, vectors and other
2989   // types that don't contain interesting padding.
2990   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
2991   if (TySize <= StartBit)
2992     return true;
2993 
2994   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
2995     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
2996     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
2997 
2998     // Check each element to see if the element overlaps with the queried range.
2999     for (unsigned i = 0; i != NumElts; ++i) {
3000       // If the element is after the span we care about, then we're done..
3001       unsigned EltOffset = i*EltSize;
3002       if (EltOffset >= EndBit) break;
3003 
3004       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
3005       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
3006                                  EndBit-EltOffset, Context))
3007         return false;
3008     }
3009     // If it overlaps no elements, then it is safe to process as padding.
3010     return true;
3011   }
3012 
3013   if (const RecordType *RT = Ty->getAs<RecordType>()) {
3014     const RecordDecl *RD = RT->getDecl();
3015     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3016 
3017     // If this is a C++ record, check the bases first.
3018     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3019       for (const auto &I : CXXRD->bases()) {
3020         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
3021                "Unexpected base class!");
3022         const CXXRecordDecl *Base =
3023           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
3024 
3025         // If the base is after the span we care about, ignore it.
3026         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
3027         if (BaseOffset >= EndBit) continue;
3028 
3029         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
3030         if (!BitsContainNoUserData(I.getType(), BaseStart,
3031                                    EndBit-BaseOffset, Context))
3032           return false;
3033       }
3034     }
3035 
3036     // Verify that no field has data that overlaps the region of interest.  Yes
3037     // this could be sped up a lot by being smarter about queried fields,
3038     // however we're only looking at structs up to 16 bytes, so we don't care
3039     // much.
3040     unsigned idx = 0;
3041     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3042          i != e; ++i, ++idx) {
3043       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
3044 
3045       // If we found a field after the region we care about, then we're done.
3046       if (FieldOffset >= EndBit) break;
3047 
3048       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
3049       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
3050                                  Context))
3051         return false;
3052     }
3053 
3054     // If nothing in this record overlapped the area of interest, then we're
3055     // clean.
3056     return true;
3057   }
3058 
3059   return false;
3060 }
3061 
3062 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
3063 /// float member at the specified offset.  For example, {int,{float}} has a
3064 /// float at offset 4.  It is conservatively correct for this routine to return
3065 /// false.
3066 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
3067                                   const llvm::DataLayout &TD) {
3068   // Base case if we find a float.
3069   if (IROffset == 0 && IRType->isFloatTy())
3070     return true;
3071 
3072   // If this is a struct, recurse into the field at the specified offset.
3073   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3074     const llvm::StructLayout *SL = TD.getStructLayout(STy);
3075     unsigned Elt = SL->getElementContainingOffset(IROffset);
3076     IROffset -= SL->getElementOffset(Elt);
3077     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
3078   }
3079 
3080   // If this is an array, recurse into the field at the specified offset.
3081   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3082     llvm::Type *EltTy = ATy->getElementType();
3083     unsigned EltSize = TD.getTypeAllocSize(EltTy);
3084     IROffset -= IROffset/EltSize*EltSize;
3085     return ContainsFloatAtOffset(EltTy, IROffset, TD);
3086   }
3087 
3088   return false;
3089 }
3090 
3091 
3092 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
3093 /// low 8 bytes of an XMM register, corresponding to the SSE class.
3094 llvm::Type *X86_64ABIInfo::
3095 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3096                    QualType SourceTy, unsigned SourceOffset) const {
3097   // The only three choices we have are either double, <2 x float>, or float. We
3098   // pass as float if the last 4 bytes is just padding.  This happens for
3099   // structs that contain 3 floats.
3100   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
3101                             SourceOffset*8+64, getContext()))
3102     return llvm::Type::getFloatTy(getVMContext());
3103 
3104   // We want to pass as <2 x float> if the LLVM IR type contains a float at
3105   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
3106   // case.
3107   if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
3108       ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
3109     return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
3110 
3111   return llvm::Type::getDoubleTy(getVMContext());
3112 }
3113 
3114 
3115 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
3116 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
3117 /// about the high or low part of an up-to-16-byte struct.  This routine picks
3118 /// the best LLVM IR type to represent this, which may be i64 or may be anything
3119 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
3120 /// etc).
3121 ///
3122 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
3123 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
3124 /// the 8-byte value references.  PrefType may be null.
3125 ///
3126 /// SourceTy is the source-level type for the entire argument.  SourceOffset is
3127 /// an offset into this that we're processing (which is always either 0 or 8).
3128 ///
3129 llvm::Type *X86_64ABIInfo::
3130 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3131                        QualType SourceTy, unsigned SourceOffset) const {
3132   // If we're dealing with an un-offset LLVM IR type, then it means that we're
3133   // returning an 8-byte unit starting with it.  See if we can safely use it.
3134   if (IROffset == 0) {
3135     // Pointers and int64's always fill the 8-byte unit.
3136     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
3137         IRType->isIntegerTy(64))
3138       return IRType;
3139 
3140     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
3141     // goodness in the source type is just tail padding.  This is allowed to
3142     // kick in for struct {double,int} on the int, but not on
3143     // struct{double,int,int} because we wouldn't return the second int.  We
3144     // have to do this analysis on the source type because we can't depend on
3145     // unions being lowered a specific way etc.
3146     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
3147         IRType->isIntegerTy(32) ||
3148         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
3149       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
3150           cast<llvm::IntegerType>(IRType)->getBitWidth();
3151 
3152       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
3153                                 SourceOffset*8+64, getContext()))
3154         return IRType;
3155     }
3156   }
3157 
3158   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3159     // If this is a struct, recurse into the field at the specified offset.
3160     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
3161     if (IROffset < SL->getSizeInBytes()) {
3162       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
3163       IROffset -= SL->getElementOffset(FieldIdx);
3164 
3165       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
3166                                     SourceTy, SourceOffset);
3167     }
3168   }
3169 
3170   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3171     llvm::Type *EltTy = ATy->getElementType();
3172     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
3173     unsigned EltOffset = IROffset/EltSize*EltSize;
3174     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
3175                                   SourceOffset);
3176   }
3177 
3178   // Okay, we don't have any better idea of what to pass, so we pass this in an
3179   // integer register that isn't too big to fit the rest of the struct.
3180   unsigned TySizeInBytes =
3181     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
3182 
3183   assert(TySizeInBytes != SourceOffset && "Empty field?");
3184 
3185   // It is always safe to classify this as an integer type up to i64 that
3186   // isn't larger than the structure.
3187   return llvm::IntegerType::get(getVMContext(),
3188                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
3189 }
3190 
3191 
3192 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
3193 /// be used as elements of a two register pair to pass or return, return a
3194 /// first class aggregate to represent them.  For example, if the low part of
3195 /// a by-value argument should be passed as i32* and the high part as float,
3196 /// return {i32*, float}.
3197 static llvm::Type *
3198 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
3199                            const llvm::DataLayout &TD) {
3200   // In order to correctly satisfy the ABI, we need to the high part to start
3201   // at offset 8.  If the high and low parts we inferred are both 4-byte types
3202   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
3203   // the second element at offset 8.  Check for this:
3204   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
3205   unsigned HiAlign = TD.getABITypeAlignment(Hi);
3206   unsigned HiStart = llvm::alignTo(LoSize, HiAlign);
3207   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
3208 
3209   // To handle this, we have to increase the size of the low part so that the
3210   // second element will start at an 8 byte offset.  We can't increase the size
3211   // of the second element because it might make us access off the end of the
3212   // struct.
3213   if (HiStart != 8) {
3214     // There are usually two sorts of types the ABI generation code can produce
3215     // for the low part of a pair that aren't 8 bytes in size: float or
3216     // i8/i16/i32.  This can also include pointers when they are 32-bit (X32 and
3217     // NaCl).
3218     // Promote these to a larger type.
3219     if (Lo->isFloatTy())
3220       Lo = llvm::Type::getDoubleTy(Lo->getContext());
3221     else {
3222       assert((Lo->isIntegerTy() || Lo->isPointerTy())
3223              && "Invalid/unknown lo type");
3224       Lo = llvm::Type::getInt64Ty(Lo->getContext());
3225     }
3226   }
3227 
3228   llvm::StructType *Result = llvm::StructType::get(Lo, Hi);
3229 
3230   // Verify that the second element is at an 8-byte offset.
3231   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
3232          "Invalid x86-64 argument pair!");
3233   return Result;
3234 }
3235 
3236 ABIArgInfo X86_64ABIInfo::
3237 classifyReturnType(QualType RetTy) const {
3238   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
3239   // classification algorithm.
3240   X86_64ABIInfo::Class Lo, Hi;
3241   classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
3242 
3243   // Check some invariants.
3244   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3245   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3246 
3247   llvm::Type *ResType = nullptr;
3248   switch (Lo) {
3249   case NoClass:
3250     if (Hi == NoClass)
3251       return ABIArgInfo::getIgnore();
3252     // If the low part is just padding, it takes no register, leave ResType
3253     // null.
3254     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3255            "Unknown missing lo part");
3256     break;
3257 
3258   case SSEUp:
3259   case X87Up:
3260     llvm_unreachable("Invalid classification for lo word.");
3261 
3262     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
3263     // hidden argument.
3264   case Memory:
3265     return getIndirectReturnResult(RetTy);
3266 
3267     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
3268     // available register of the sequence %rax, %rdx is used.
3269   case Integer:
3270     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3271 
3272     // If we have a sign or zero extended integer, make sure to return Extend
3273     // so that the parameter gets the right LLVM IR attributes.
3274     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3275       // Treat an enum type as its underlying type.
3276       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3277         RetTy = EnumTy->getDecl()->getIntegerType();
3278 
3279       if (RetTy->isIntegralOrEnumerationType() &&
3280           RetTy->isPromotableIntegerType())
3281         return ABIArgInfo::getExtend(RetTy);
3282     }
3283     break;
3284 
3285     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
3286     // available SSE register of the sequence %xmm0, %xmm1 is used.
3287   case SSE:
3288     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3289     break;
3290 
3291     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
3292     // returned on the X87 stack in %st0 as 80-bit x87 number.
3293   case X87:
3294     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
3295     break;
3296 
3297     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
3298     // part of the value is returned in %st0 and the imaginary part in
3299     // %st1.
3300   case ComplexX87:
3301     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
3302     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
3303                                     llvm::Type::getX86_FP80Ty(getVMContext()));
3304     break;
3305   }
3306 
3307   llvm::Type *HighPart = nullptr;
3308   switch (Hi) {
3309     // Memory was handled previously and X87 should
3310     // never occur as a hi class.
3311   case Memory:
3312   case X87:
3313     llvm_unreachable("Invalid classification for hi word.");
3314 
3315   case ComplexX87: // Previously handled.
3316   case NoClass:
3317     break;
3318 
3319   case Integer:
3320     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3321     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3322       return ABIArgInfo::getDirect(HighPart, 8);
3323     break;
3324   case SSE:
3325     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3326     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3327       return ABIArgInfo::getDirect(HighPart, 8);
3328     break;
3329 
3330     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
3331     // is passed in the next available eightbyte chunk if the last used
3332     // vector register.
3333     //
3334     // SSEUP should always be preceded by SSE, just widen.
3335   case SSEUp:
3336     assert(Lo == SSE && "Unexpected SSEUp classification.");
3337     ResType = GetByteVectorType(RetTy);
3338     break;
3339 
3340     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
3341     // returned together with the previous X87 value in %st0.
3342   case X87Up:
3343     // If X87Up is preceded by X87, we don't need to do
3344     // anything. However, in some cases with unions it may not be
3345     // preceded by X87. In such situations we follow gcc and pass the
3346     // extra bits in an SSE reg.
3347     if (Lo != X87) {
3348       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3349       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3350         return ABIArgInfo::getDirect(HighPart, 8);
3351     }
3352     break;
3353   }
3354 
3355   // If a high part was specified, merge it together with the low part.  It is
3356   // known to pass in the high eightbyte of the result.  We do this by forming a
3357   // first class struct aggregate with the high and low part: {low, high}
3358   if (HighPart)
3359     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3360 
3361   return ABIArgInfo::getDirect(ResType);
3362 }
3363 
3364 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
3365   QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
3366   bool isNamedArg)
3367   const
3368 {
3369   Ty = useFirstFieldIfTransparentUnion(Ty);
3370 
3371   X86_64ABIInfo::Class Lo, Hi;
3372   classify(Ty, 0, Lo, Hi, isNamedArg);
3373 
3374   // Check some invariants.
3375   // FIXME: Enforce these by construction.
3376   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3377   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3378 
3379   neededInt = 0;
3380   neededSSE = 0;
3381   llvm::Type *ResType = nullptr;
3382   switch (Lo) {
3383   case NoClass:
3384     if (Hi == NoClass)
3385       return ABIArgInfo::getIgnore();
3386     // If the low part is just padding, it takes no register, leave ResType
3387     // null.
3388     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3389            "Unknown missing lo part");
3390     break;
3391 
3392     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
3393     // on the stack.
3394   case Memory:
3395 
3396     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
3397     // COMPLEX_X87, it is passed in memory.
3398   case X87:
3399   case ComplexX87:
3400     if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
3401       ++neededInt;
3402     return getIndirectResult(Ty, freeIntRegs);
3403 
3404   case SSEUp:
3405   case X87Up:
3406     llvm_unreachable("Invalid classification for lo word.");
3407 
3408     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
3409     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
3410     // and %r9 is used.
3411   case Integer:
3412     ++neededInt;
3413 
3414     // Pick an 8-byte type based on the preferred type.
3415     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
3416 
3417     // If we have a sign or zero extended integer, make sure to return Extend
3418     // so that the parameter gets the right LLVM IR attributes.
3419     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3420       // Treat an enum type as its underlying type.
3421       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3422         Ty = EnumTy->getDecl()->getIntegerType();
3423 
3424       if (Ty->isIntegralOrEnumerationType() &&
3425           Ty->isPromotableIntegerType())
3426         return ABIArgInfo::getExtend(Ty);
3427     }
3428 
3429     break;
3430 
3431     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
3432     // available SSE register is used, the registers are taken in the
3433     // order from %xmm0 to %xmm7.
3434   case SSE: {
3435     llvm::Type *IRType = CGT.ConvertType(Ty);
3436     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
3437     ++neededSSE;
3438     break;
3439   }
3440   }
3441 
3442   llvm::Type *HighPart = nullptr;
3443   switch (Hi) {
3444     // Memory was handled previously, ComplexX87 and X87 should
3445     // never occur as hi classes, and X87Up must be preceded by X87,
3446     // which is passed in memory.
3447   case Memory:
3448   case X87:
3449   case ComplexX87:
3450     llvm_unreachable("Invalid classification for hi word.");
3451 
3452   case NoClass: break;
3453 
3454   case Integer:
3455     ++neededInt;
3456     // Pick an 8-byte type based on the preferred type.
3457     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3458 
3459     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3460       return ABIArgInfo::getDirect(HighPart, 8);
3461     break;
3462 
3463     // X87Up generally doesn't occur here (long double is passed in
3464     // memory), except in situations involving unions.
3465   case X87Up:
3466   case SSE:
3467     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3468 
3469     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3470       return ABIArgInfo::getDirect(HighPart, 8);
3471 
3472     ++neededSSE;
3473     break;
3474 
3475     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
3476     // eightbyte is passed in the upper half of the last used SSE
3477     // register.  This only happens when 128-bit vectors are passed.
3478   case SSEUp:
3479     assert(Lo == SSE && "Unexpected SSEUp classification");
3480     ResType = GetByteVectorType(Ty);
3481     break;
3482   }
3483 
3484   // If a high part was specified, merge it together with the low part.  It is
3485   // known to pass in the high eightbyte of the result.  We do this by forming a
3486   // first class struct aggregate with the high and low part: {low, high}
3487   if (HighPart)
3488     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3489 
3490   return ABIArgInfo::getDirect(ResType);
3491 }
3492 
3493 ABIArgInfo
3494 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
3495                                              unsigned &NeededSSE) const {
3496   auto RT = Ty->getAs<RecordType>();
3497   assert(RT && "classifyRegCallStructType only valid with struct types");
3498 
3499   if (RT->getDecl()->hasFlexibleArrayMember())
3500     return getIndirectReturnResult(Ty);
3501 
3502   // Sum up bases
3503   if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
3504     if (CXXRD->isDynamicClass()) {
3505       NeededInt = NeededSSE = 0;
3506       return getIndirectReturnResult(Ty);
3507     }
3508 
3509     for (const auto &I : CXXRD->bases())
3510       if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE)
3511               .isIndirect()) {
3512         NeededInt = NeededSSE = 0;
3513         return getIndirectReturnResult(Ty);
3514       }
3515   }
3516 
3517   // Sum up members
3518   for (const auto *FD : RT->getDecl()->fields()) {
3519     if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) {
3520       if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE)
3521               .isIndirect()) {
3522         NeededInt = NeededSSE = 0;
3523         return getIndirectReturnResult(Ty);
3524       }
3525     } else {
3526       unsigned LocalNeededInt, LocalNeededSSE;
3527       if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt,
3528                                LocalNeededSSE, true)
3529               .isIndirect()) {
3530         NeededInt = NeededSSE = 0;
3531         return getIndirectReturnResult(Ty);
3532       }
3533       NeededInt += LocalNeededInt;
3534       NeededSSE += LocalNeededSSE;
3535     }
3536   }
3537 
3538   return ABIArgInfo::getDirect();
3539 }
3540 
3541 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty,
3542                                                     unsigned &NeededInt,
3543                                                     unsigned &NeededSSE) const {
3544 
3545   NeededInt = 0;
3546   NeededSSE = 0;
3547 
3548   return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE);
3549 }
3550 
3551 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3552 
3553   const unsigned CallingConv = FI.getCallingConvention();
3554   // It is possible to force Win64 calling convention on any x86_64 target by
3555   // using __attribute__((ms_abi)). In such case to correctly emit Win64
3556   // compatible code delegate this call to WinX86_64ABIInfo::computeInfo.
3557   if (CallingConv == llvm::CallingConv::Win64) {
3558     WinX86_64ABIInfo Win64ABIInfo(CGT);
3559     Win64ABIInfo.computeInfo(FI);
3560     return;
3561   }
3562 
3563   bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall;
3564 
3565   // Keep track of the number of assigned registers.
3566   unsigned FreeIntRegs = IsRegCall ? 11 : 6;
3567   unsigned FreeSSERegs = IsRegCall ? 16 : 8;
3568   unsigned NeededInt, NeededSSE;
3569 
3570   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
3571     if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() &&
3572         !FI.getReturnType()->getTypePtr()->isUnionType()) {
3573       FI.getReturnInfo() =
3574           classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE);
3575       if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3576         FreeIntRegs -= NeededInt;
3577         FreeSSERegs -= NeededSSE;
3578       } else {
3579         FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3580       }
3581     } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>()) {
3582       // Complex Long Double Type is passed in Memory when Regcall
3583       // calling convention is used.
3584       const ComplexType *CT = FI.getReturnType()->getAs<ComplexType>();
3585       if (getContext().getCanonicalType(CT->getElementType()) ==
3586           getContext().LongDoubleTy)
3587         FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3588     } else
3589       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3590   }
3591 
3592   // If the return value is indirect, then the hidden argument is consuming one
3593   // integer register.
3594   if (FI.getReturnInfo().isIndirect())
3595     --FreeIntRegs;
3596 
3597   // The chain argument effectively gives us another free register.
3598   if (FI.isChainCall())
3599     ++FreeIntRegs;
3600 
3601   unsigned NumRequiredArgs = FI.getNumRequiredArgs();
3602   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
3603   // get assigned (in left-to-right order) for passing as follows...
3604   unsigned ArgNo = 0;
3605   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3606        it != ie; ++it, ++ArgNo) {
3607     bool IsNamedArg = ArgNo < NumRequiredArgs;
3608 
3609     if (IsRegCall && it->type->isStructureOrClassType())
3610       it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE);
3611     else
3612       it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt,
3613                                       NeededSSE, IsNamedArg);
3614 
3615     // AMD64-ABI 3.2.3p3: If there are no registers available for any
3616     // eightbyte of an argument, the whole argument is passed on the
3617     // stack. If registers have already been assigned for some
3618     // eightbytes of such an argument, the assignments get reverted.
3619     if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3620       FreeIntRegs -= NeededInt;
3621       FreeSSERegs -= NeededSSE;
3622     } else {
3623       it->info = getIndirectResult(it->type, FreeIntRegs);
3624     }
3625   }
3626 }
3627 
3628 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF,
3629                                          Address VAListAddr, QualType Ty) {
3630   Address overflow_arg_area_p = CGF.Builder.CreateStructGEP(
3631       VAListAddr, 2, CharUnits::fromQuantity(8), "overflow_arg_area_p");
3632   llvm::Value *overflow_arg_area =
3633     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
3634 
3635   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
3636   // byte boundary if alignment needed by type exceeds 8 byte boundary.
3637   // It isn't stated explicitly in the standard, but in practice we use
3638   // alignment greater than 16 where necessary.
3639   CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
3640   if (Align > CharUnits::fromQuantity(8)) {
3641     overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area,
3642                                                       Align);
3643   }
3644 
3645   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
3646   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3647   llvm::Value *Res =
3648     CGF.Builder.CreateBitCast(overflow_arg_area,
3649                               llvm::PointerType::getUnqual(LTy));
3650 
3651   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
3652   // l->overflow_arg_area + sizeof(type).
3653   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
3654   // an 8 byte boundary.
3655 
3656   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
3657   llvm::Value *Offset =
3658       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
3659   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
3660                                             "overflow_arg_area.next");
3661   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
3662 
3663   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
3664   return Address(Res, Align);
3665 }
3666 
3667 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3668                                  QualType Ty) const {
3669   // Assume that va_list type is correct; should be pointer to LLVM type:
3670   // struct {
3671   //   i32 gp_offset;
3672   //   i32 fp_offset;
3673   //   i8* overflow_arg_area;
3674   //   i8* reg_save_area;
3675   // };
3676   unsigned neededInt, neededSSE;
3677 
3678   Ty = getContext().getCanonicalType(Ty);
3679   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
3680                                        /*isNamedArg*/false);
3681 
3682   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
3683   // in the registers. If not go to step 7.
3684   if (!neededInt && !neededSSE)
3685     return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3686 
3687   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
3688   // general purpose registers needed to pass type and num_fp to hold
3689   // the number of floating point registers needed.
3690 
3691   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
3692   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
3693   // l->fp_offset > 304 - num_fp * 16 go to step 7.
3694   //
3695   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
3696   // register save space).
3697 
3698   llvm::Value *InRegs = nullptr;
3699   Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid();
3700   llvm::Value *gp_offset = nullptr, *fp_offset = nullptr;
3701   if (neededInt) {
3702     gp_offset_p =
3703         CGF.Builder.CreateStructGEP(VAListAddr, 0, CharUnits::Zero(),
3704                                     "gp_offset_p");
3705     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
3706     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
3707     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
3708   }
3709 
3710   if (neededSSE) {
3711     fp_offset_p =
3712         CGF.Builder.CreateStructGEP(VAListAddr, 1, CharUnits::fromQuantity(4),
3713                                     "fp_offset_p");
3714     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
3715     llvm::Value *FitsInFP =
3716       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
3717     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
3718     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
3719   }
3720 
3721   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
3722   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
3723   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
3724   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
3725 
3726   // Emit code to load the value if it was passed in registers.
3727 
3728   CGF.EmitBlock(InRegBlock);
3729 
3730   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
3731   // an offset of l->gp_offset and/or l->fp_offset. This may require
3732   // copying to a temporary location in case the parameter is passed
3733   // in different register classes or requires an alignment greater
3734   // than 8 for general purpose registers and 16 for XMM registers.
3735   //
3736   // FIXME: This really results in shameful code when we end up needing to
3737   // collect arguments from different places; often what should result in a
3738   // simple assembling of a structure from scattered addresses has many more
3739   // loads than necessary. Can we clean this up?
3740   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3741   llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(
3742       CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(16)),
3743                                   "reg_save_area");
3744 
3745   Address RegAddr = Address::invalid();
3746   if (neededInt && neededSSE) {
3747     // FIXME: Cleanup.
3748     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
3749     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
3750     Address Tmp = CGF.CreateMemTemp(Ty);
3751     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
3752     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
3753     llvm::Type *TyLo = ST->getElementType(0);
3754     llvm::Type *TyHi = ST->getElementType(1);
3755     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
3756            "Unexpected ABI info for mixed regs");
3757     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
3758     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
3759     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset);
3760     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset);
3761     llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
3762     llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
3763 
3764     // Copy the first element.
3765     // FIXME: Our choice of alignment here and below is probably pessimistic.
3766     llvm::Value *V = CGF.Builder.CreateAlignedLoad(
3767         TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo),
3768         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo)));
3769     CGF.Builder.CreateStore(V,
3770                     CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero()));
3771 
3772     // Copy the second element.
3773     V = CGF.Builder.CreateAlignedLoad(
3774         TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi),
3775         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi)));
3776     CharUnits Offset = CharUnits::fromQuantity(
3777                    getDataLayout().getStructLayout(ST)->getElementOffset(1));
3778     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1, Offset));
3779 
3780     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
3781   } else if (neededInt) {
3782     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset),
3783                       CharUnits::fromQuantity(8));
3784     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
3785 
3786     // Copy to a temporary if necessary to ensure the appropriate alignment.
3787     std::pair<CharUnits, CharUnits> SizeAlign =
3788         getContext().getTypeInfoInChars(Ty);
3789     uint64_t TySize = SizeAlign.first.getQuantity();
3790     CharUnits TyAlign = SizeAlign.second;
3791 
3792     // Copy into a temporary if the type is more aligned than the
3793     // register save area.
3794     if (TyAlign.getQuantity() > 8) {
3795       Address Tmp = CGF.CreateMemTemp(Ty);
3796       CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false);
3797       RegAddr = Tmp;
3798     }
3799 
3800   } else if (neededSSE == 1) {
3801     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
3802                       CharUnits::fromQuantity(16));
3803     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
3804   } else {
3805     assert(neededSSE == 2 && "Invalid number of needed registers!");
3806     // SSE registers are spaced 16 bytes apart in the register save
3807     // area, we need to collect the two eightbytes together.
3808     // The ABI isn't explicit about this, but it seems reasonable
3809     // to assume that the slots are 16-byte aligned, since the stack is
3810     // naturally 16-byte aligned and the prologue is expected to store
3811     // all the SSE registers to the RSA.
3812     Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
3813                                 CharUnits::fromQuantity(16));
3814     Address RegAddrHi =
3815       CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo,
3816                                              CharUnits::fromQuantity(16));
3817     llvm::Type *ST = AI.canHaveCoerceToType()
3818                          ? AI.getCoerceToType()
3819                          : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy);
3820     llvm::Value *V;
3821     Address Tmp = CGF.CreateMemTemp(Ty);
3822     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
3823     V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
3824         RegAddrLo, ST->getStructElementType(0)));
3825     CGF.Builder.CreateStore(V,
3826                    CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero()));
3827     V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
3828         RegAddrHi, ST->getStructElementType(1)));
3829     CGF.Builder.CreateStore(V,
3830           CGF.Builder.CreateStructGEP(Tmp, 1, CharUnits::fromQuantity(8)));
3831 
3832     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
3833   }
3834 
3835   // AMD64-ABI 3.5.7p5: Step 5. Set:
3836   // l->gp_offset = l->gp_offset + num_gp * 8
3837   // l->fp_offset = l->fp_offset + num_fp * 16.
3838   if (neededInt) {
3839     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
3840     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
3841                             gp_offset_p);
3842   }
3843   if (neededSSE) {
3844     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
3845     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
3846                             fp_offset_p);
3847   }
3848   CGF.EmitBranch(ContBlock);
3849 
3850   // Emit code to load the value if it was passed in memory.
3851 
3852   CGF.EmitBlock(InMemBlock);
3853   Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3854 
3855   // Return the appropriate result.
3856 
3857   CGF.EmitBlock(ContBlock);
3858   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
3859                                  "vaarg.addr");
3860   return ResAddr;
3861 }
3862 
3863 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
3864                                    QualType Ty) const {
3865   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
3866                           CGF.getContext().getTypeInfoInChars(Ty),
3867                           CharUnits::fromQuantity(8),
3868                           /*allowHigherAlign*/ false);
3869 }
3870 
3871 ABIArgInfo
3872 WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs,
3873                                     const ABIArgInfo &current) const {
3874   // Assumes vectorCall calling convention.
3875   const Type *Base = nullptr;
3876   uint64_t NumElts = 0;
3877 
3878   if (!Ty->isBuiltinType() && !Ty->isVectorType() &&
3879       isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) {
3880     FreeSSERegs -= NumElts;
3881     return getDirectX86Hva();
3882   }
3883   return current;
3884 }
3885 
3886 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
3887                                       bool IsReturnType, bool IsVectorCall,
3888                                       bool IsRegCall) const {
3889 
3890   if (Ty->isVoidType())
3891     return ABIArgInfo::getIgnore();
3892 
3893   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3894     Ty = EnumTy->getDecl()->getIntegerType();
3895 
3896   TypeInfo Info = getContext().getTypeInfo(Ty);
3897   uint64_t Width = Info.Width;
3898   CharUnits Align = getContext().toCharUnitsFromBits(Info.Align);
3899 
3900   const RecordType *RT = Ty->getAs<RecordType>();
3901   if (RT) {
3902     if (!IsReturnType) {
3903       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
3904         return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
3905     }
3906 
3907     if (RT->getDecl()->hasFlexibleArrayMember())
3908       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3909 
3910   }
3911 
3912   const Type *Base = nullptr;
3913   uint64_t NumElts = 0;
3914   // vectorcall adds the concept of a homogenous vector aggregate, similar to
3915   // other targets.
3916   if ((IsVectorCall || IsRegCall) &&
3917       isHomogeneousAggregate(Ty, Base, NumElts)) {
3918     if (IsRegCall) {
3919       if (FreeSSERegs >= NumElts) {
3920         FreeSSERegs -= NumElts;
3921         if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
3922           return ABIArgInfo::getDirect();
3923         return ABIArgInfo::getExpand();
3924       }
3925       return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3926     } else if (IsVectorCall) {
3927       if (FreeSSERegs >= NumElts &&
3928           (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) {
3929         FreeSSERegs -= NumElts;
3930         return ABIArgInfo::getDirect();
3931       } else if (IsReturnType) {
3932         return ABIArgInfo::getExpand();
3933       } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) {
3934         // HVAs are delayed and reclassified in the 2nd step.
3935         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3936       }
3937     }
3938   }
3939 
3940   if (Ty->isMemberPointerType()) {
3941     // If the member pointer is represented by an LLVM int or ptr, pass it
3942     // directly.
3943     llvm::Type *LLTy = CGT.ConvertType(Ty);
3944     if (LLTy->isPointerTy() || LLTy->isIntegerTy())
3945       return ABIArgInfo::getDirect();
3946   }
3947 
3948   if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
3949     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
3950     // not 1, 2, 4, or 8 bytes, must be passed by reference."
3951     if (Width > 64 || !llvm::isPowerOf2_64(Width))
3952       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3953 
3954     // Otherwise, coerce it to a small integer.
3955     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
3956   }
3957 
3958   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
3959     switch (BT->getKind()) {
3960     case BuiltinType::Bool:
3961       // Bool type is always extended to the ABI, other builtin types are not
3962       // extended.
3963       return ABIArgInfo::getExtend(Ty);
3964 
3965     case BuiltinType::LongDouble:
3966       // Mingw64 GCC uses the old 80 bit extended precision floating point
3967       // unit. It passes them indirectly through memory.
3968       if (IsMingw64) {
3969         const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
3970         if (LDF == &llvm::APFloat::x87DoubleExtended())
3971           return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3972       }
3973       break;
3974 
3975     case BuiltinType::Int128:
3976     case BuiltinType::UInt128:
3977       // If it's a parameter type, the normal ABI rule is that arguments larger
3978       // than 8 bytes are passed indirectly. GCC follows it. We follow it too,
3979       // even though it isn't particularly efficient.
3980       if (!IsReturnType)
3981         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3982 
3983       // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that.
3984       // Clang matches them for compatibility.
3985       return ABIArgInfo::getDirect(
3986           llvm::VectorType::get(llvm::Type::getInt64Ty(getVMContext()), 2));
3987 
3988     default:
3989       break;
3990     }
3991   }
3992 
3993   return ABIArgInfo::getDirect();
3994 }
3995 
3996 void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI,
3997                                              unsigned FreeSSERegs,
3998                                              bool IsVectorCall,
3999                                              bool IsRegCall) const {
4000   unsigned Count = 0;
4001   for (auto &I : FI.arguments()) {
4002     // Vectorcall in x64 only permits the first 6 arguments to be passed
4003     // as XMM/YMM registers.
4004     if (Count < VectorcallMaxParamNumAsReg)
4005       I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall);
4006     else {
4007       // Since these cannot be passed in registers, pretend no registers
4008       // are left.
4009       unsigned ZeroSSERegsAvail = 0;
4010       I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false,
4011                         IsVectorCall, IsRegCall);
4012     }
4013     ++Count;
4014   }
4015 
4016   for (auto &I : FI.arguments()) {
4017     I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info);
4018   }
4019 }
4020 
4021 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
4022   bool IsVectorCall =
4023       FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall;
4024   bool IsRegCall = FI.getCallingConvention() == llvm::CallingConv::X86_RegCall;
4025 
4026   unsigned FreeSSERegs = 0;
4027   if (IsVectorCall) {
4028     // We can use up to 4 SSE return registers with vectorcall.
4029     FreeSSERegs = 4;
4030   } else if (IsRegCall) {
4031     // RegCall gives us 16 SSE registers.
4032     FreeSSERegs = 16;
4033   }
4034 
4035   if (!getCXXABI().classifyReturnType(FI))
4036     FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true,
4037                                   IsVectorCall, IsRegCall);
4038 
4039   if (IsVectorCall) {
4040     // We can use up to 6 SSE register parameters with vectorcall.
4041     FreeSSERegs = 6;
4042   } else if (IsRegCall) {
4043     // RegCall gives us 16 SSE registers, we can reuse the return registers.
4044     FreeSSERegs = 16;
4045   }
4046 
4047   if (IsVectorCall) {
4048     computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall);
4049   } else {
4050     for (auto &I : FI.arguments())
4051       I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall);
4052   }
4053 
4054 }
4055 
4056 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4057                                     QualType Ty) const {
4058 
4059   bool IsIndirect = false;
4060 
4061   // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4062   // not 1, 2, 4, or 8 bytes, must be passed by reference."
4063   if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) {
4064     uint64_t Width = getContext().getTypeSize(Ty);
4065     IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
4066   }
4067 
4068   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
4069                           CGF.getContext().getTypeInfoInChars(Ty),
4070                           CharUnits::fromQuantity(8),
4071                           /*allowHigherAlign*/ false);
4072 }
4073 
4074 // PowerPC-32
4075 namespace {
4076 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
4077 class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
4078   bool IsSoftFloatABI;
4079 
4080   CharUnits getParamTypeAlignment(QualType Ty) const;
4081 
4082 public:
4083   PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI)
4084       : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI) {}
4085 
4086   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4087                     QualType Ty) const override;
4088 };
4089 
4090 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
4091 public:
4092   PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI)
4093       : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT, SoftFloatABI)) {}
4094 
4095   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4096     // This is recovered from gcc output.
4097     return 1; // r1 is the dedicated stack pointer
4098   }
4099 
4100   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4101                                llvm::Value *Address) const override;
4102 };
4103 }
4104 
4105 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
4106   // Complex types are passed just like their elements
4107   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4108     Ty = CTy->getElementType();
4109 
4110   if (Ty->isVectorType())
4111     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16
4112                                                                        : 4);
4113 
4114   // For single-element float/vector structs, we consider the whole type
4115   // to have the same alignment requirements as its single element.
4116   const Type *AlignTy = nullptr;
4117   if (const Type *EltType = isSingleElementStruct(Ty, getContext())) {
4118     const BuiltinType *BT = EltType->getAs<BuiltinType>();
4119     if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) ||
4120         (BT && BT->isFloatingPoint()))
4121       AlignTy = EltType;
4122   }
4123 
4124   if (AlignTy)
4125     return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4);
4126   return CharUnits::fromQuantity(4);
4127 }
4128 
4129 // TODO: this implementation is now likely redundant with
4130 // DefaultABIInfo::EmitVAArg.
4131 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList,
4132                                       QualType Ty) const {
4133   if (getTarget().getTriple().isOSDarwin()) {
4134     auto TI = getContext().getTypeInfoInChars(Ty);
4135     TI.second = getParamTypeAlignment(Ty);
4136 
4137     CharUnits SlotSize = CharUnits::fromQuantity(4);
4138     return emitVoidPtrVAArg(CGF, VAList, Ty,
4139                             classifyArgumentType(Ty).isIndirect(), TI, SlotSize,
4140                             /*AllowHigherAlign=*/true);
4141   }
4142 
4143   const unsigned OverflowLimit = 8;
4144   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4145     // TODO: Implement this. For now ignore.
4146     (void)CTy;
4147     return Address::invalid(); // FIXME?
4148   }
4149 
4150   // struct __va_list_tag {
4151   //   unsigned char gpr;
4152   //   unsigned char fpr;
4153   //   unsigned short reserved;
4154   //   void *overflow_arg_area;
4155   //   void *reg_save_area;
4156   // };
4157 
4158   bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
4159   bool isInt =
4160       Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType();
4161   bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64;
4162 
4163   // All aggregates are passed indirectly?  That doesn't seem consistent
4164   // with the argument-lowering code.
4165   bool isIndirect = Ty->isAggregateType();
4166 
4167   CGBuilderTy &Builder = CGF.Builder;
4168 
4169   // The calling convention either uses 1-2 GPRs or 1 FPR.
4170   Address NumRegsAddr = Address::invalid();
4171   if (isInt || IsSoftFloatABI) {
4172     NumRegsAddr = Builder.CreateStructGEP(VAList, 0, CharUnits::Zero(), "gpr");
4173   } else {
4174     NumRegsAddr = Builder.CreateStructGEP(VAList, 1, CharUnits::One(), "fpr");
4175   }
4176 
4177   llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs");
4178 
4179   // "Align" the register count when TY is i64.
4180   if (isI64 || (isF64 && IsSoftFloatABI)) {
4181     NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1));
4182     NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U));
4183   }
4184 
4185   llvm::Value *CC =
4186       Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond");
4187 
4188   llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
4189   llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
4190   llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
4191 
4192   Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
4193 
4194   llvm::Type *DirectTy = CGF.ConvertType(Ty);
4195   if (isIndirect) DirectTy = DirectTy->getPointerTo(0);
4196 
4197   // Case 1: consume registers.
4198   Address RegAddr = Address::invalid();
4199   {
4200     CGF.EmitBlock(UsingRegs);
4201 
4202     Address RegSaveAreaPtr =
4203       Builder.CreateStructGEP(VAList, 4, CharUnits::fromQuantity(8));
4204     RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr),
4205                       CharUnits::fromQuantity(8));
4206     assert(RegAddr.getElementType() == CGF.Int8Ty);
4207 
4208     // Floating-point registers start after the general-purpose registers.
4209     if (!(isInt || IsSoftFloatABI)) {
4210       RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr,
4211                                                    CharUnits::fromQuantity(32));
4212     }
4213 
4214     // Get the address of the saved value by scaling the number of
4215     // registers we've used by the number of
4216     CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8);
4217     llvm::Value *RegOffset =
4218       Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity()));
4219     RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty,
4220                                             RegAddr.getPointer(), RegOffset),
4221                       RegAddr.getAlignment().alignmentOfArrayElement(RegSize));
4222     RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy);
4223 
4224     // Increase the used-register count.
4225     NumRegs =
4226       Builder.CreateAdd(NumRegs,
4227                         Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1));
4228     Builder.CreateStore(NumRegs, NumRegsAddr);
4229 
4230     CGF.EmitBranch(Cont);
4231   }
4232 
4233   // Case 2: consume space in the overflow area.
4234   Address MemAddr = Address::invalid();
4235   {
4236     CGF.EmitBlock(UsingOverflow);
4237 
4238     Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr);
4239 
4240     // Everything in the overflow area is rounded up to a size of at least 4.
4241     CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4);
4242 
4243     CharUnits Size;
4244     if (!isIndirect) {
4245       auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty);
4246       Size = TypeInfo.first.alignTo(OverflowAreaAlign);
4247     } else {
4248       Size = CGF.getPointerSize();
4249     }
4250 
4251     Address OverflowAreaAddr =
4252       Builder.CreateStructGEP(VAList, 3, CharUnits::fromQuantity(4));
4253     Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"),
4254                          OverflowAreaAlign);
4255     // Round up address of argument to alignment
4256     CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
4257     if (Align > OverflowAreaAlign) {
4258       llvm::Value *Ptr = OverflowArea.getPointer();
4259       OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align),
4260                                                            Align);
4261     }
4262 
4263     MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy);
4264 
4265     // Increase the overflow area.
4266     OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size);
4267     Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr);
4268     CGF.EmitBranch(Cont);
4269   }
4270 
4271   CGF.EmitBlock(Cont);
4272 
4273   // Merge the cases with a phi.
4274   Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow,
4275                                 "vaarg.addr");
4276 
4277   // Load the pointer if the argument was passed indirectly.
4278   if (isIndirect) {
4279     Result = Address(Builder.CreateLoad(Result, "aggr"),
4280                      getContext().getTypeAlignInChars(Ty));
4281   }
4282 
4283   return Result;
4284 }
4285 
4286 bool
4287 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4288                                                 llvm::Value *Address) const {
4289   // This is calculated from the LLVM and GCC tables and verified
4290   // against gcc output.  AFAIK all ABIs use the same encoding.
4291 
4292   CodeGen::CGBuilderTy &Builder = CGF.Builder;
4293 
4294   llvm::IntegerType *i8 = CGF.Int8Ty;
4295   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
4296   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
4297   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
4298 
4299   // 0-31: r0-31, the 4-byte general-purpose registers
4300   AssignToArrayRange(Builder, Address, Four8, 0, 31);
4301 
4302   // 32-63: fp0-31, the 8-byte floating-point registers
4303   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
4304 
4305   // 64-76 are various 4-byte special-purpose registers:
4306   // 64: mq
4307   // 65: lr
4308   // 66: ctr
4309   // 67: ap
4310   // 68-75 cr0-7
4311   // 76: xer
4312   AssignToArrayRange(Builder, Address, Four8, 64, 76);
4313 
4314   // 77-108: v0-31, the 16-byte vector registers
4315   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
4316 
4317   // 109: vrsave
4318   // 110: vscr
4319   // 111: spe_acc
4320   // 112: spefscr
4321   // 113: sfp
4322   AssignToArrayRange(Builder, Address, Four8, 109, 113);
4323 
4324   return false;
4325 }
4326 
4327 // PowerPC-64
4328 
4329 namespace {
4330 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
4331 class PPC64_SVR4_ABIInfo : public SwiftABIInfo {
4332 public:
4333   enum ABIKind {
4334     ELFv1 = 0,
4335     ELFv2
4336   };
4337 
4338 private:
4339   static const unsigned GPRBits = 64;
4340   ABIKind Kind;
4341   bool HasQPX;
4342   bool IsSoftFloatABI;
4343 
4344   // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and
4345   // will be passed in a QPX register.
4346   bool IsQPXVectorTy(const Type *Ty) const {
4347     if (!HasQPX)
4348       return false;
4349 
4350     if (const VectorType *VT = Ty->getAs<VectorType>()) {
4351       unsigned NumElements = VT->getNumElements();
4352       if (NumElements == 1)
4353         return false;
4354 
4355       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) {
4356         if (getContext().getTypeSize(Ty) <= 256)
4357           return true;
4358       } else if (VT->getElementType()->
4359                    isSpecificBuiltinType(BuiltinType::Float)) {
4360         if (getContext().getTypeSize(Ty) <= 128)
4361           return true;
4362       }
4363     }
4364 
4365     return false;
4366   }
4367 
4368   bool IsQPXVectorTy(QualType Ty) const {
4369     return IsQPXVectorTy(Ty.getTypePtr());
4370   }
4371 
4372 public:
4373   PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX,
4374                      bool SoftFloatABI)
4375       : SwiftABIInfo(CGT), Kind(Kind), HasQPX(HasQPX),
4376         IsSoftFloatABI(SoftFloatABI) {}
4377 
4378   bool isPromotableTypeForABI(QualType Ty) const;
4379   CharUnits getParamTypeAlignment(QualType Ty) const;
4380 
4381   ABIArgInfo classifyReturnType(QualType RetTy) const;
4382   ABIArgInfo classifyArgumentType(QualType Ty) const;
4383 
4384   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4385   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4386                                          uint64_t Members) const override;
4387 
4388   // TODO: We can add more logic to computeInfo to improve performance.
4389   // Example: For aggregate arguments that fit in a register, we could
4390   // use getDirectInReg (as is done below for structs containing a single
4391   // floating-point value) to avoid pushing them to memory on function
4392   // entry.  This would require changing the logic in PPCISelLowering
4393   // when lowering the parameters in the caller and args in the callee.
4394   void computeInfo(CGFunctionInfo &FI) const override {
4395     if (!getCXXABI().classifyReturnType(FI))
4396       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4397     for (auto &I : FI.arguments()) {
4398       // We rely on the default argument classification for the most part.
4399       // One exception:  An aggregate containing a single floating-point
4400       // or vector item must be passed in a register if one is available.
4401       const Type *T = isSingleElementStruct(I.type, getContext());
4402       if (T) {
4403         const BuiltinType *BT = T->getAs<BuiltinType>();
4404         if (IsQPXVectorTy(T) ||
4405             (T->isVectorType() && getContext().getTypeSize(T) == 128) ||
4406             (BT && BT->isFloatingPoint())) {
4407           QualType QT(T, 0);
4408           I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
4409           continue;
4410         }
4411       }
4412       I.info = classifyArgumentType(I.type);
4413     }
4414   }
4415 
4416   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4417                     QualType Ty) const override;
4418 
4419   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
4420                                     bool asReturnValue) const override {
4421     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
4422   }
4423 
4424   bool isSwiftErrorInRegister() const override {
4425     return false;
4426   }
4427 };
4428 
4429 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
4430 
4431 public:
4432   PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT,
4433                                PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX,
4434                                bool SoftFloatABI)
4435       : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX,
4436                                                  SoftFloatABI)) {}
4437 
4438   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4439     // This is recovered from gcc output.
4440     return 1; // r1 is the dedicated stack pointer
4441   }
4442 
4443   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4444                                llvm::Value *Address) const override;
4445 };
4446 
4447 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
4448 public:
4449   PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
4450 
4451   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4452     // This is recovered from gcc output.
4453     return 1; // r1 is the dedicated stack pointer
4454   }
4455 
4456   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4457                                llvm::Value *Address) const override;
4458 };
4459 
4460 }
4461 
4462 // Return true if the ABI requires Ty to be passed sign- or zero-
4463 // extended to 64 bits.
4464 bool
4465 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
4466   // Treat an enum type as its underlying type.
4467   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4468     Ty = EnumTy->getDecl()->getIntegerType();
4469 
4470   // Promotable integer types are required to be promoted by the ABI.
4471   if (Ty->isPromotableIntegerType())
4472     return true;
4473 
4474   // In addition to the usual promotable integer types, we also need to
4475   // extend all 32-bit types, since the ABI requires promotion to 64 bits.
4476   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4477     switch (BT->getKind()) {
4478     case BuiltinType::Int:
4479     case BuiltinType::UInt:
4480       return true;
4481     default:
4482       break;
4483     }
4484 
4485   return false;
4486 }
4487 
4488 /// isAlignedParamType - Determine whether a type requires 16-byte or
4489 /// higher alignment in the parameter area.  Always returns at least 8.
4490 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
4491   // Complex types are passed just like their elements.
4492   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4493     Ty = CTy->getElementType();
4494 
4495   // Only vector types of size 16 bytes need alignment (larger types are
4496   // passed via reference, smaller types are not aligned).
4497   if (IsQPXVectorTy(Ty)) {
4498     if (getContext().getTypeSize(Ty) > 128)
4499       return CharUnits::fromQuantity(32);
4500 
4501     return CharUnits::fromQuantity(16);
4502   } else if (Ty->isVectorType()) {
4503     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8);
4504   }
4505 
4506   // For single-element float/vector structs, we consider the whole type
4507   // to have the same alignment requirements as its single element.
4508   const Type *AlignAsType = nullptr;
4509   const Type *EltType = isSingleElementStruct(Ty, getContext());
4510   if (EltType) {
4511     const BuiltinType *BT = EltType->getAs<BuiltinType>();
4512     if (IsQPXVectorTy(EltType) || (EltType->isVectorType() &&
4513          getContext().getTypeSize(EltType) == 128) ||
4514         (BT && BT->isFloatingPoint()))
4515       AlignAsType = EltType;
4516   }
4517 
4518   // Likewise for ELFv2 homogeneous aggregates.
4519   const Type *Base = nullptr;
4520   uint64_t Members = 0;
4521   if (!AlignAsType && Kind == ELFv2 &&
4522       isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
4523     AlignAsType = Base;
4524 
4525   // With special case aggregates, only vector base types need alignment.
4526   if (AlignAsType && IsQPXVectorTy(AlignAsType)) {
4527     if (getContext().getTypeSize(AlignAsType) > 128)
4528       return CharUnits::fromQuantity(32);
4529 
4530     return CharUnits::fromQuantity(16);
4531   } else if (AlignAsType) {
4532     return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8);
4533   }
4534 
4535   // Otherwise, we only need alignment for any aggregate type that
4536   // has an alignment requirement of >= 16 bytes.
4537   if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) {
4538     if (HasQPX && getContext().getTypeAlign(Ty) >= 256)
4539       return CharUnits::fromQuantity(32);
4540     return CharUnits::fromQuantity(16);
4541   }
4542 
4543   return CharUnits::fromQuantity(8);
4544 }
4545 
4546 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
4547 /// aggregate.  Base is set to the base element type, and Members is set
4548 /// to the number of base elements.
4549 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
4550                                      uint64_t &Members) const {
4551   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
4552     uint64_t NElements = AT->getSize().getZExtValue();
4553     if (NElements == 0)
4554       return false;
4555     if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
4556       return false;
4557     Members *= NElements;
4558   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
4559     const RecordDecl *RD = RT->getDecl();
4560     if (RD->hasFlexibleArrayMember())
4561       return false;
4562 
4563     Members = 0;
4564 
4565     // If this is a C++ record, check the bases first.
4566     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
4567       for (const auto &I : CXXRD->bases()) {
4568         // Ignore empty records.
4569         if (isEmptyRecord(getContext(), I.getType(), true))
4570           continue;
4571 
4572         uint64_t FldMembers;
4573         if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
4574           return false;
4575 
4576         Members += FldMembers;
4577       }
4578     }
4579 
4580     for (const auto *FD : RD->fields()) {
4581       // Ignore (non-zero arrays of) empty records.
4582       QualType FT = FD->getType();
4583       while (const ConstantArrayType *AT =
4584              getContext().getAsConstantArrayType(FT)) {
4585         if (AT->getSize().getZExtValue() == 0)
4586           return false;
4587         FT = AT->getElementType();
4588       }
4589       if (isEmptyRecord(getContext(), FT, true))
4590         continue;
4591 
4592       // For compatibility with GCC, ignore empty bitfields in C++ mode.
4593       if (getContext().getLangOpts().CPlusPlus &&
4594           FD->isZeroLengthBitField(getContext()))
4595         continue;
4596 
4597       uint64_t FldMembers;
4598       if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
4599         return false;
4600 
4601       Members = (RD->isUnion() ?
4602                  std::max(Members, FldMembers) : Members + FldMembers);
4603     }
4604 
4605     if (!Base)
4606       return false;
4607 
4608     // Ensure there is no padding.
4609     if (getContext().getTypeSize(Base) * Members !=
4610         getContext().getTypeSize(Ty))
4611       return false;
4612   } else {
4613     Members = 1;
4614     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
4615       Members = 2;
4616       Ty = CT->getElementType();
4617     }
4618 
4619     // Most ABIs only support float, double, and some vector type widths.
4620     if (!isHomogeneousAggregateBaseType(Ty))
4621       return false;
4622 
4623     // The base type must be the same for all members.  Types that
4624     // agree in both total size and mode (float vs. vector) are
4625     // treated as being equivalent here.
4626     const Type *TyPtr = Ty.getTypePtr();
4627     if (!Base) {
4628       Base = TyPtr;
4629       // If it's a non-power-of-2 vector, its size is already a power-of-2,
4630       // so make sure to widen it explicitly.
4631       if (const VectorType *VT = Base->getAs<VectorType>()) {
4632         QualType EltTy = VT->getElementType();
4633         unsigned NumElements =
4634             getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy);
4635         Base = getContext()
4636                    .getVectorType(EltTy, NumElements, VT->getVectorKind())
4637                    .getTypePtr();
4638       }
4639     }
4640 
4641     if (Base->isVectorType() != TyPtr->isVectorType() ||
4642         getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
4643       return false;
4644   }
4645   return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
4646 }
4647 
4648 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
4649   // Homogeneous aggregates for ELFv2 must have base types of float,
4650   // double, long double, or 128-bit vectors.
4651   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4652     if (BT->getKind() == BuiltinType::Float ||
4653         BT->getKind() == BuiltinType::Double ||
4654         BT->getKind() == BuiltinType::LongDouble ||
4655         (getContext().getTargetInfo().hasFloat128Type() &&
4656           (BT->getKind() == BuiltinType::Float128))) {
4657       if (IsSoftFloatABI)
4658         return false;
4659       return true;
4660     }
4661   }
4662   if (const VectorType *VT = Ty->getAs<VectorType>()) {
4663     if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty))
4664       return true;
4665   }
4666   return false;
4667 }
4668 
4669 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough(
4670     const Type *Base, uint64_t Members) const {
4671   // Vector and fp128 types require one register, other floating point types
4672   // require one or two registers depending on their size.
4673   uint32_t NumRegs =
4674       ((getContext().getTargetInfo().hasFloat128Type() &&
4675           Base->isFloat128Type()) ||
4676         Base->isVectorType()) ? 1
4677                               : (getContext().getTypeSize(Base) + 63) / 64;
4678 
4679   // Homogeneous Aggregates may occupy at most 8 registers.
4680   return Members * NumRegs <= 8;
4681 }
4682 
4683 ABIArgInfo
4684 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
4685   Ty = useFirstFieldIfTransparentUnion(Ty);
4686 
4687   if (Ty->isAnyComplexType())
4688     return ABIArgInfo::getDirect();
4689 
4690   // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
4691   // or via reference (larger than 16 bytes).
4692   if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) {
4693     uint64_t Size = getContext().getTypeSize(Ty);
4694     if (Size > 128)
4695       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4696     else if (Size < 128) {
4697       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
4698       return ABIArgInfo::getDirect(CoerceTy);
4699     }
4700   }
4701 
4702   if (isAggregateTypeForABI(Ty)) {
4703     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
4704       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
4705 
4706     uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity();
4707     uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
4708 
4709     // ELFv2 homogeneous aggregates are passed as array types.
4710     const Type *Base = nullptr;
4711     uint64_t Members = 0;
4712     if (Kind == ELFv2 &&
4713         isHomogeneousAggregate(Ty, Base, Members)) {
4714       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
4715       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
4716       return ABIArgInfo::getDirect(CoerceTy);
4717     }
4718 
4719     // If an aggregate may end up fully in registers, we do not
4720     // use the ByVal method, but pass the aggregate as array.
4721     // This is usually beneficial since we avoid forcing the
4722     // back-end to store the argument to memory.
4723     uint64_t Bits = getContext().getTypeSize(Ty);
4724     if (Bits > 0 && Bits <= 8 * GPRBits) {
4725       llvm::Type *CoerceTy;
4726 
4727       // Types up to 8 bytes are passed as integer type (which will be
4728       // properly aligned in the argument save area doubleword).
4729       if (Bits <= GPRBits)
4730         CoerceTy =
4731             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
4732       // Larger types are passed as arrays, with the base type selected
4733       // according to the required alignment in the save area.
4734       else {
4735         uint64_t RegBits = ABIAlign * 8;
4736         uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits;
4737         llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
4738         CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
4739       }
4740 
4741       return ABIArgInfo::getDirect(CoerceTy);
4742     }
4743 
4744     // All other aggregates are passed ByVal.
4745     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
4746                                    /*ByVal=*/true,
4747                                    /*Realign=*/TyAlign > ABIAlign);
4748   }
4749 
4750   return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
4751                                      : ABIArgInfo::getDirect());
4752 }
4753 
4754 ABIArgInfo
4755 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
4756   if (RetTy->isVoidType())
4757     return ABIArgInfo::getIgnore();
4758 
4759   if (RetTy->isAnyComplexType())
4760     return ABIArgInfo::getDirect();
4761 
4762   // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
4763   // or via reference (larger than 16 bytes).
4764   if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) {
4765     uint64_t Size = getContext().getTypeSize(RetTy);
4766     if (Size > 128)
4767       return getNaturalAlignIndirect(RetTy);
4768     else if (Size < 128) {
4769       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
4770       return ABIArgInfo::getDirect(CoerceTy);
4771     }
4772   }
4773 
4774   if (isAggregateTypeForABI(RetTy)) {
4775     // ELFv2 homogeneous aggregates are returned as array types.
4776     const Type *Base = nullptr;
4777     uint64_t Members = 0;
4778     if (Kind == ELFv2 &&
4779         isHomogeneousAggregate(RetTy, Base, Members)) {
4780       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
4781       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
4782       return ABIArgInfo::getDirect(CoerceTy);
4783     }
4784 
4785     // ELFv2 small aggregates are returned in up to two registers.
4786     uint64_t Bits = getContext().getTypeSize(RetTy);
4787     if (Kind == ELFv2 && Bits <= 2 * GPRBits) {
4788       if (Bits == 0)
4789         return ABIArgInfo::getIgnore();
4790 
4791       llvm::Type *CoerceTy;
4792       if (Bits > GPRBits) {
4793         CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
4794         CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy);
4795       } else
4796         CoerceTy =
4797             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
4798       return ABIArgInfo::getDirect(CoerceTy);
4799     }
4800 
4801     // All other aggregates are returned indirectly.
4802     return getNaturalAlignIndirect(RetTy);
4803   }
4804 
4805   return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
4806                                         : ABIArgInfo::getDirect());
4807 }
4808 
4809 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
4810 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4811                                       QualType Ty) const {
4812   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
4813   TypeInfo.second = getParamTypeAlignment(Ty);
4814 
4815   CharUnits SlotSize = CharUnits::fromQuantity(8);
4816 
4817   // If we have a complex type and the base type is smaller than 8 bytes,
4818   // the ABI calls for the real and imaginary parts to be right-adjusted
4819   // in separate doublewords.  However, Clang expects us to produce a
4820   // pointer to a structure with the two parts packed tightly.  So generate
4821   // loads of the real and imaginary parts relative to the va_list pointer,
4822   // and store them to a temporary structure.
4823   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4824     CharUnits EltSize = TypeInfo.first / 2;
4825     if (EltSize < SlotSize) {
4826       Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty,
4827                                             SlotSize * 2, SlotSize,
4828                                             SlotSize, /*AllowHigher*/ true);
4829 
4830       Address RealAddr = Addr;
4831       Address ImagAddr = RealAddr;
4832       if (CGF.CGM.getDataLayout().isBigEndian()) {
4833         RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr,
4834                                                           SlotSize - EltSize);
4835         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr,
4836                                                       2 * SlotSize - EltSize);
4837       } else {
4838         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize);
4839       }
4840 
4841       llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType());
4842       RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy);
4843       ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy);
4844       llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal");
4845       llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag");
4846 
4847       Address Temp = CGF.CreateMemTemp(Ty, "vacplx");
4848       CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty),
4849                              /*init*/ true);
4850       return Temp;
4851     }
4852   }
4853 
4854   // Otherwise, just use the general rule.
4855   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
4856                           TypeInfo, SlotSize, /*AllowHigher*/ true);
4857 }
4858 
4859 static bool
4860 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4861                               llvm::Value *Address) {
4862   // This is calculated from the LLVM and GCC tables and verified
4863   // against gcc output.  AFAIK all ABIs use the same encoding.
4864 
4865   CodeGen::CGBuilderTy &Builder = CGF.Builder;
4866 
4867   llvm::IntegerType *i8 = CGF.Int8Ty;
4868   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
4869   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
4870   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
4871 
4872   // 0-31: r0-31, the 8-byte general-purpose registers
4873   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
4874 
4875   // 32-63: fp0-31, the 8-byte floating-point registers
4876   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
4877 
4878   // 64-67 are various 8-byte special-purpose registers:
4879   // 64: mq
4880   // 65: lr
4881   // 66: ctr
4882   // 67: ap
4883   AssignToArrayRange(Builder, Address, Eight8, 64, 67);
4884 
4885   // 68-76 are various 4-byte special-purpose registers:
4886   // 68-75 cr0-7
4887   // 76: xer
4888   AssignToArrayRange(Builder, Address, Four8, 68, 76);
4889 
4890   // 77-108: v0-31, the 16-byte vector registers
4891   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
4892 
4893   // 109: vrsave
4894   // 110: vscr
4895   // 111: spe_acc
4896   // 112: spefscr
4897   // 113: sfp
4898   // 114: tfhar
4899   // 115: tfiar
4900   // 116: texasr
4901   AssignToArrayRange(Builder, Address, Eight8, 109, 116);
4902 
4903   return false;
4904 }
4905 
4906 bool
4907 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
4908   CodeGen::CodeGenFunction &CGF,
4909   llvm::Value *Address) const {
4910 
4911   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
4912 }
4913 
4914 bool
4915 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4916                                                 llvm::Value *Address) const {
4917 
4918   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
4919 }
4920 
4921 //===----------------------------------------------------------------------===//
4922 // AArch64 ABI Implementation
4923 //===----------------------------------------------------------------------===//
4924 
4925 namespace {
4926 
4927 class AArch64ABIInfo : public SwiftABIInfo {
4928 public:
4929   enum ABIKind {
4930     AAPCS = 0,
4931     DarwinPCS,
4932     Win64
4933   };
4934 
4935 private:
4936   ABIKind Kind;
4937 
4938 public:
4939   AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind)
4940     : SwiftABIInfo(CGT), Kind(Kind) {}
4941 
4942 private:
4943   ABIKind getABIKind() const { return Kind; }
4944   bool isDarwinPCS() const { return Kind == DarwinPCS; }
4945 
4946   ABIArgInfo classifyReturnType(QualType RetTy) const;
4947   ABIArgInfo classifyArgumentType(QualType RetTy) const;
4948   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4949   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4950                                          uint64_t Members) const override;
4951 
4952   bool isIllegalVectorType(QualType Ty) const;
4953 
4954   void computeInfo(CGFunctionInfo &FI) const override {
4955     if (!::classifyReturnType(getCXXABI(), FI, *this))
4956       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4957 
4958     for (auto &it : FI.arguments())
4959       it.info = classifyArgumentType(it.type);
4960   }
4961 
4962   Address EmitDarwinVAArg(Address VAListAddr, QualType Ty,
4963                           CodeGenFunction &CGF) const;
4964 
4965   Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
4966                          CodeGenFunction &CGF) const;
4967 
4968   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4969                     QualType Ty) const override {
4970     return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty)
4971                          : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
4972                                          : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
4973   }
4974 
4975   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
4976                       QualType Ty) const override;
4977 
4978   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
4979                                     bool asReturnValue) const override {
4980     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
4981   }
4982   bool isSwiftErrorInRegister() const override {
4983     return true;
4984   }
4985 
4986   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
4987                                  unsigned elts) const override;
4988 };
4989 
4990 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
4991 public:
4992   AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
4993       : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {}
4994 
4995   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
4996     return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue";
4997   }
4998 
4999   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5000     return 31;
5001   }
5002 
5003   bool doesReturnSlotInterfereWithArgs() const override { return false; }
5004 
5005   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5006                            CodeGen::CodeGenModule &CGM) const override {
5007     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5008     if (!FD)
5009       return;
5010     llvm::Function *Fn = cast<llvm::Function>(GV);
5011 
5012     auto Kind = CGM.getCodeGenOpts().getSignReturnAddress();
5013     if (Kind != CodeGenOptions::SignReturnAddressScope::None) {
5014       Fn->addFnAttr("sign-return-address",
5015                     Kind == CodeGenOptions::SignReturnAddressScope::All
5016                         ? "all"
5017                         : "non-leaf");
5018 
5019       auto Key = CGM.getCodeGenOpts().getSignReturnAddressKey();
5020       Fn->addFnAttr("sign-return-address-key",
5021                     Key == CodeGenOptions::SignReturnAddressKeyValue::AKey
5022                         ? "a_key"
5023                         : "b_key");
5024     }
5025 
5026     if (CGM.getCodeGenOpts().BranchTargetEnforcement)
5027       Fn->addFnAttr("branch-target-enforcement");
5028   }
5029 };
5030 
5031 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo {
5032 public:
5033   WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K)
5034       : AArch64TargetCodeGenInfo(CGT, K) {}
5035 
5036   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5037                            CodeGen::CodeGenModule &CGM) const override;
5038 
5039   void getDependentLibraryOption(llvm::StringRef Lib,
5040                                  llvm::SmallString<24> &Opt) const override {
5041     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
5042   }
5043 
5044   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
5045                                llvm::SmallString<32> &Opt) const override {
5046     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
5047   }
5048 };
5049 
5050 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes(
5051     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
5052   AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
5053   if (GV->isDeclaration())
5054     return;
5055   addStackProbeTargetAttributes(D, GV, CGM);
5056 }
5057 }
5058 
5059 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const {
5060   Ty = useFirstFieldIfTransparentUnion(Ty);
5061 
5062   // Handle illegal vector types here.
5063   if (isIllegalVectorType(Ty)) {
5064     uint64_t Size = getContext().getTypeSize(Ty);
5065     // Android promotes <2 x i8> to i16, not i32
5066     if (isAndroid() && (Size <= 16)) {
5067       llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext());
5068       return ABIArgInfo::getDirect(ResType);
5069     }
5070     if (Size <= 32) {
5071       llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
5072       return ABIArgInfo::getDirect(ResType);
5073     }
5074     if (Size == 64) {
5075       llvm::Type *ResType =
5076           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
5077       return ABIArgInfo::getDirect(ResType);
5078     }
5079     if (Size == 128) {
5080       llvm::Type *ResType =
5081           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
5082       return ABIArgInfo::getDirect(ResType);
5083     }
5084     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5085   }
5086 
5087   if (!isAggregateTypeForABI(Ty)) {
5088     // Treat an enum type as its underlying type.
5089     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5090       Ty = EnumTy->getDecl()->getIntegerType();
5091 
5092     return (Ty->isPromotableIntegerType() && isDarwinPCS()
5093                 ? ABIArgInfo::getExtend(Ty)
5094                 : ABIArgInfo::getDirect());
5095   }
5096 
5097   // Structures with either a non-trivial destructor or a non-trivial
5098   // copy constructor are always indirect.
5099   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5100     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
5101                                      CGCXXABI::RAA_DirectInMemory);
5102   }
5103 
5104   // Empty records are always ignored on Darwin, but actually passed in C++ mode
5105   // elsewhere for GNU compatibility.
5106   uint64_t Size = getContext().getTypeSize(Ty);
5107   bool IsEmpty = isEmptyRecord(getContext(), Ty, true);
5108   if (IsEmpty || Size == 0) {
5109     if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
5110       return ABIArgInfo::getIgnore();
5111 
5112     // GNU C mode. The only argument that gets ignored is an empty one with size
5113     // 0.
5114     if (IsEmpty && Size == 0)
5115       return ABIArgInfo::getIgnore();
5116     return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5117   }
5118 
5119   // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
5120   const Type *Base = nullptr;
5121   uint64_t Members = 0;
5122   if (isHomogeneousAggregate(Ty, Base, Members)) {
5123     return ABIArgInfo::getDirect(
5124         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
5125   }
5126 
5127   // Aggregates <= 16 bytes are passed directly in registers or on the stack.
5128   if (Size <= 128) {
5129     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5130     // same size and alignment.
5131     if (getTarget().isRenderScriptTarget()) {
5132       return coerceToIntArray(Ty, getContext(), getVMContext());
5133     }
5134     unsigned Alignment;
5135     if (Kind == AArch64ABIInfo::AAPCS) {
5136       Alignment = getContext().getTypeUnadjustedAlign(Ty);
5137       Alignment = Alignment < 128 ? 64 : 128;
5138     } else {
5139       Alignment = getContext().getTypeAlign(Ty);
5140     }
5141     Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes
5142 
5143     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5144     // For aggregates with 16-byte alignment, we use i128.
5145     if (Alignment < 128 && Size == 128) {
5146       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
5147       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
5148     }
5149     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
5150   }
5151 
5152   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5153 }
5154 
5155 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const {
5156   if (RetTy->isVoidType())
5157     return ABIArgInfo::getIgnore();
5158 
5159   // Large vector types should be returned via memory.
5160   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
5161     return getNaturalAlignIndirect(RetTy);
5162 
5163   if (!isAggregateTypeForABI(RetTy)) {
5164     // Treat an enum type as its underlying type.
5165     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5166       RetTy = EnumTy->getDecl()->getIntegerType();
5167 
5168     return (RetTy->isPromotableIntegerType() && isDarwinPCS()
5169                 ? ABIArgInfo::getExtend(RetTy)
5170                 : ABIArgInfo::getDirect());
5171   }
5172 
5173   uint64_t Size = getContext().getTypeSize(RetTy);
5174   if (isEmptyRecord(getContext(), RetTy, true) || Size == 0)
5175     return ABIArgInfo::getIgnore();
5176 
5177   const Type *Base = nullptr;
5178   uint64_t Members = 0;
5179   if (isHomogeneousAggregate(RetTy, Base, Members))
5180     // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
5181     return ABIArgInfo::getDirect();
5182 
5183   // Aggregates <= 16 bytes are returned directly in registers or on the stack.
5184   if (Size <= 128) {
5185     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5186     // same size and alignment.
5187     if (getTarget().isRenderScriptTarget()) {
5188       return coerceToIntArray(RetTy, getContext(), getVMContext());
5189     }
5190     unsigned Alignment = getContext().getTypeAlign(RetTy);
5191     Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes
5192 
5193     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5194     // For aggregates with 16-byte alignment, we use i128.
5195     if (Alignment < 128 && Size == 128) {
5196       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
5197       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
5198     }
5199     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
5200   }
5201 
5202   return getNaturalAlignIndirect(RetTy);
5203 }
5204 
5205 /// isIllegalVectorType - check whether the vector type is legal for AArch64.
5206 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
5207   if (const VectorType *VT = Ty->getAs<VectorType>()) {
5208     // Check whether VT is legal.
5209     unsigned NumElements = VT->getNumElements();
5210     uint64_t Size = getContext().getTypeSize(VT);
5211     // NumElements should be power of 2.
5212     if (!llvm::isPowerOf2_32(NumElements))
5213       return true;
5214     return Size != 64 && (Size != 128 || NumElements == 1);
5215   }
5216   return false;
5217 }
5218 
5219 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize,
5220                                                llvm::Type *eltTy,
5221                                                unsigned elts) const {
5222   if (!llvm::isPowerOf2_32(elts))
5223     return false;
5224   if (totalSize.getQuantity() != 8 &&
5225       (totalSize.getQuantity() != 16 || elts == 1))
5226     return false;
5227   return true;
5228 }
5229 
5230 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
5231   // Homogeneous aggregates for AAPCS64 must have base types of a floating
5232   // point type or a short-vector type. This is the same as the 32-bit ABI,
5233   // but with the difference that any floating-point type is allowed,
5234   // including __fp16.
5235   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
5236     if (BT->isFloatingPoint())
5237       return true;
5238   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
5239     unsigned VecSize = getContext().getTypeSize(VT);
5240     if (VecSize == 64 || VecSize == 128)
5241       return true;
5242   }
5243   return false;
5244 }
5245 
5246 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
5247                                                        uint64_t Members) const {
5248   return Members <= 4;
5249 }
5250 
5251 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr,
5252                                             QualType Ty,
5253                                             CodeGenFunction &CGF) const {
5254   ABIArgInfo AI = classifyArgumentType(Ty);
5255   bool IsIndirect = AI.isIndirect();
5256 
5257   llvm::Type *BaseTy = CGF.ConvertType(Ty);
5258   if (IsIndirect)
5259     BaseTy = llvm::PointerType::getUnqual(BaseTy);
5260   else if (AI.getCoerceToType())
5261     BaseTy = AI.getCoerceToType();
5262 
5263   unsigned NumRegs = 1;
5264   if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
5265     BaseTy = ArrTy->getElementType();
5266     NumRegs = ArrTy->getNumElements();
5267   }
5268   bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy();
5269 
5270   // The AArch64 va_list type and handling is specified in the Procedure Call
5271   // Standard, section B.4:
5272   //
5273   // struct {
5274   //   void *__stack;
5275   //   void *__gr_top;
5276   //   void *__vr_top;
5277   //   int __gr_offs;
5278   //   int __vr_offs;
5279   // };
5280 
5281   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
5282   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
5283   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
5284   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
5285 
5286   auto TyInfo = getContext().getTypeInfoInChars(Ty);
5287   CharUnits TyAlign = TyInfo.second;
5288 
5289   Address reg_offs_p = Address::invalid();
5290   llvm::Value *reg_offs = nullptr;
5291   int reg_top_index;
5292   CharUnits reg_top_offset;
5293   int RegSize = IsIndirect ? 8 : TyInfo.first.getQuantity();
5294   if (!IsFPR) {
5295     // 3 is the field number of __gr_offs
5296     reg_offs_p =
5297         CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24),
5298                                     "gr_offs_p");
5299     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
5300     reg_top_index = 1; // field number for __gr_top
5301     reg_top_offset = CharUnits::fromQuantity(8);
5302     RegSize = llvm::alignTo(RegSize, 8);
5303   } else {
5304     // 4 is the field number of __vr_offs.
5305     reg_offs_p =
5306         CGF.Builder.CreateStructGEP(VAListAddr, 4, CharUnits::fromQuantity(28),
5307                                     "vr_offs_p");
5308     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
5309     reg_top_index = 2; // field number for __vr_top
5310     reg_top_offset = CharUnits::fromQuantity(16);
5311     RegSize = 16 * NumRegs;
5312   }
5313 
5314   //=======================================
5315   // Find out where argument was passed
5316   //=======================================
5317 
5318   // If reg_offs >= 0 we're already using the stack for this type of
5319   // argument. We don't want to keep updating reg_offs (in case it overflows,
5320   // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
5321   // whatever they get).
5322   llvm::Value *UsingStack = nullptr;
5323   UsingStack = CGF.Builder.CreateICmpSGE(
5324       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
5325 
5326   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
5327 
5328   // Otherwise, at least some kind of argument could go in these registers, the
5329   // question is whether this particular type is too big.
5330   CGF.EmitBlock(MaybeRegBlock);
5331 
5332   // Integer arguments may need to correct register alignment (for example a
5333   // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
5334   // align __gr_offs to calculate the potential address.
5335   if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) {
5336     int Align = TyAlign.getQuantity();
5337 
5338     reg_offs = CGF.Builder.CreateAdd(
5339         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
5340         "align_regoffs");
5341     reg_offs = CGF.Builder.CreateAnd(
5342         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
5343         "aligned_regoffs");
5344   }
5345 
5346   // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
5347   // The fact that this is done unconditionally reflects the fact that
5348   // allocating an argument to the stack also uses up all the remaining
5349   // registers of the appropriate kind.
5350   llvm::Value *NewOffset = nullptr;
5351   NewOffset = CGF.Builder.CreateAdd(
5352       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
5353   CGF.Builder.CreateStore(NewOffset, reg_offs_p);
5354 
5355   // Now we're in a position to decide whether this argument really was in
5356   // registers or not.
5357   llvm::Value *InRegs = nullptr;
5358   InRegs = CGF.Builder.CreateICmpSLE(
5359       NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
5360 
5361   CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
5362 
5363   //=======================================
5364   // Argument was in registers
5365   //=======================================
5366 
5367   // Now we emit the code for if the argument was originally passed in
5368   // registers. First start the appropriate block:
5369   CGF.EmitBlock(InRegBlock);
5370 
5371   llvm::Value *reg_top = nullptr;
5372   Address reg_top_p = CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index,
5373                                                   reg_top_offset, "reg_top_p");
5374   reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
5375   Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs),
5376                    CharUnits::fromQuantity(IsFPR ? 16 : 8));
5377   Address RegAddr = Address::invalid();
5378   llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty);
5379 
5380   if (IsIndirect) {
5381     // If it's been passed indirectly (actually a struct), whatever we find from
5382     // stored registers or on the stack will actually be a struct **.
5383     MemTy = llvm::PointerType::getUnqual(MemTy);
5384   }
5385 
5386   const Type *Base = nullptr;
5387   uint64_t NumMembers = 0;
5388   bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
5389   if (IsHFA && NumMembers > 1) {
5390     // Homogeneous aggregates passed in registers will have their elements split
5391     // and stored 16-bytes apart regardless of size (they're notionally in qN,
5392     // qN+1, ...). We reload and store into a temporary local variable
5393     // contiguously.
5394     assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
5395     auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0));
5396     llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
5397     llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
5398     Address Tmp = CGF.CreateTempAlloca(HFATy,
5399                                        std::max(TyAlign, BaseTyInfo.second));
5400 
5401     // On big-endian platforms, the value will be right-aligned in its slot.
5402     int Offset = 0;
5403     if (CGF.CGM.getDataLayout().isBigEndian() &&
5404         BaseTyInfo.first.getQuantity() < 16)
5405       Offset = 16 - BaseTyInfo.first.getQuantity();
5406 
5407     for (unsigned i = 0; i < NumMembers; ++i) {
5408       CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset);
5409       Address LoadAddr =
5410         CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset);
5411       LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy);
5412 
5413       Address StoreAddr =
5414         CGF.Builder.CreateConstArrayGEP(Tmp, i, BaseTyInfo.first);
5415 
5416       llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
5417       CGF.Builder.CreateStore(Elem, StoreAddr);
5418     }
5419 
5420     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy);
5421   } else {
5422     // Otherwise the object is contiguous in memory.
5423 
5424     // It might be right-aligned in its slot.
5425     CharUnits SlotSize = BaseAddr.getAlignment();
5426     if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect &&
5427         (IsHFA || !isAggregateTypeForABI(Ty)) &&
5428         TyInfo.first < SlotSize) {
5429       CharUnits Offset = SlotSize - TyInfo.first;
5430       BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset);
5431     }
5432 
5433     RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy);
5434   }
5435 
5436   CGF.EmitBranch(ContBlock);
5437 
5438   //=======================================
5439   // Argument was on the stack
5440   //=======================================
5441   CGF.EmitBlock(OnStackBlock);
5442 
5443   Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0,
5444                                                 CharUnits::Zero(), "stack_p");
5445   llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack");
5446 
5447   // Again, stack arguments may need realignment. In this case both integer and
5448   // floating-point ones might be affected.
5449   if (!IsIndirect && TyAlign.getQuantity() > 8) {
5450     int Align = TyAlign.getQuantity();
5451 
5452     OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty);
5453 
5454     OnStackPtr = CGF.Builder.CreateAdd(
5455         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
5456         "align_stack");
5457     OnStackPtr = CGF.Builder.CreateAnd(
5458         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
5459         "align_stack");
5460 
5461     OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy);
5462   }
5463   Address OnStackAddr(OnStackPtr,
5464                       std::max(CharUnits::fromQuantity(8), TyAlign));
5465 
5466   // All stack slots are multiples of 8 bytes.
5467   CharUnits StackSlotSize = CharUnits::fromQuantity(8);
5468   CharUnits StackSize;
5469   if (IsIndirect)
5470     StackSize = StackSlotSize;
5471   else
5472     StackSize = TyInfo.first.alignTo(StackSlotSize);
5473 
5474   llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize);
5475   llvm::Value *NewStack =
5476       CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack");
5477 
5478   // Write the new value of __stack for the next call to va_arg
5479   CGF.Builder.CreateStore(NewStack, stack_p);
5480 
5481   if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
5482       TyInfo.first < StackSlotSize) {
5483     CharUnits Offset = StackSlotSize - TyInfo.first;
5484     OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset);
5485   }
5486 
5487   OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy);
5488 
5489   CGF.EmitBranch(ContBlock);
5490 
5491   //=======================================
5492   // Tidy up
5493   //=======================================
5494   CGF.EmitBlock(ContBlock);
5495 
5496   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
5497                                  OnStackAddr, OnStackBlock, "vaargs.addr");
5498 
5499   if (IsIndirect)
5500     return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"),
5501                    TyInfo.second);
5502 
5503   return ResAddr;
5504 }
5505 
5506 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty,
5507                                         CodeGenFunction &CGF) const {
5508   // The backend's lowering doesn't support va_arg for aggregates or
5509   // illegal vector types.  Lower VAArg here for these cases and use
5510   // the LLVM va_arg instruction for everything else.
5511   if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
5512     return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
5513 
5514   CharUnits SlotSize = CharUnits::fromQuantity(8);
5515 
5516   // Empty records are ignored for parameter passing purposes.
5517   if (isEmptyRecord(getContext(), Ty, true)) {
5518     Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
5519     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
5520     return Addr;
5521   }
5522 
5523   // The size of the actual thing passed, which might end up just
5524   // being a pointer for indirect types.
5525   auto TyInfo = getContext().getTypeInfoInChars(Ty);
5526 
5527   // Arguments bigger than 16 bytes which aren't homogeneous
5528   // aggregates should be passed indirectly.
5529   bool IsIndirect = false;
5530   if (TyInfo.first.getQuantity() > 16) {
5531     const Type *Base = nullptr;
5532     uint64_t Members = 0;
5533     IsIndirect = !isHomogeneousAggregate(Ty, Base, Members);
5534   }
5535 
5536   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
5537                           TyInfo, SlotSize, /*AllowHigherAlign*/ true);
5538 }
5539 
5540 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
5541                                     QualType Ty) const {
5542   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
5543                           CGF.getContext().getTypeInfoInChars(Ty),
5544                           CharUnits::fromQuantity(8),
5545                           /*allowHigherAlign*/ false);
5546 }
5547 
5548 //===----------------------------------------------------------------------===//
5549 // ARM ABI Implementation
5550 //===----------------------------------------------------------------------===//
5551 
5552 namespace {
5553 
5554 class ARMABIInfo : public SwiftABIInfo {
5555 public:
5556   enum ABIKind {
5557     APCS = 0,
5558     AAPCS = 1,
5559     AAPCS_VFP = 2,
5560     AAPCS16_VFP = 3,
5561   };
5562 
5563 private:
5564   ABIKind Kind;
5565 
5566 public:
5567   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind)
5568       : SwiftABIInfo(CGT), Kind(_Kind) {
5569     setCCs();
5570   }
5571 
5572   bool isEABI() const {
5573     switch (getTarget().getTriple().getEnvironment()) {
5574     case llvm::Triple::Android:
5575     case llvm::Triple::EABI:
5576     case llvm::Triple::EABIHF:
5577     case llvm::Triple::GNUEABI:
5578     case llvm::Triple::GNUEABIHF:
5579     case llvm::Triple::MuslEABI:
5580     case llvm::Triple::MuslEABIHF:
5581       return true;
5582     default:
5583       return false;
5584     }
5585   }
5586 
5587   bool isEABIHF() const {
5588     switch (getTarget().getTriple().getEnvironment()) {
5589     case llvm::Triple::EABIHF:
5590     case llvm::Triple::GNUEABIHF:
5591     case llvm::Triple::MuslEABIHF:
5592       return true;
5593     default:
5594       return false;
5595     }
5596   }
5597 
5598   ABIKind getABIKind() const { return Kind; }
5599 
5600 private:
5601   ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const;
5602   ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic) const;
5603   ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base,
5604                                           uint64_t Members) const;
5605   ABIArgInfo coerceIllegalVector(QualType Ty) const;
5606   bool isIllegalVectorType(QualType Ty) const;
5607 
5608   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
5609   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
5610                                          uint64_t Members) const override;
5611 
5612   void computeInfo(CGFunctionInfo &FI) const override;
5613 
5614   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5615                     QualType Ty) const override;
5616 
5617   llvm::CallingConv::ID getLLVMDefaultCC() const;
5618   llvm::CallingConv::ID getABIDefaultCC() const;
5619   void setCCs();
5620 
5621   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
5622                                     bool asReturnValue) const override {
5623     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
5624   }
5625   bool isSwiftErrorInRegister() const override {
5626     return true;
5627   }
5628   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
5629                                  unsigned elts) const override;
5630 };
5631 
5632 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
5633 public:
5634   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
5635     :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
5636 
5637   const ARMABIInfo &getABIInfo() const {
5638     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
5639   }
5640 
5641   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5642     return 13;
5643   }
5644 
5645   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
5646     return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue";
5647   }
5648 
5649   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5650                                llvm::Value *Address) const override {
5651     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
5652 
5653     // 0-15 are the 16 integer registers.
5654     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
5655     return false;
5656   }
5657 
5658   unsigned getSizeOfUnwindException() const override {
5659     if (getABIInfo().isEABI()) return 88;
5660     return TargetCodeGenInfo::getSizeOfUnwindException();
5661   }
5662 
5663   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5664                            CodeGen::CodeGenModule &CGM) const override {
5665     if (GV->isDeclaration())
5666       return;
5667     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5668     if (!FD)
5669       return;
5670 
5671     const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
5672     if (!Attr)
5673       return;
5674 
5675     const char *Kind;
5676     switch (Attr->getInterrupt()) {
5677     case ARMInterruptAttr::Generic: Kind = ""; break;
5678     case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break;
5679     case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break;
5680     case ARMInterruptAttr::SWI:     Kind = "SWI"; break;
5681     case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break;
5682     case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break;
5683     }
5684 
5685     llvm::Function *Fn = cast<llvm::Function>(GV);
5686 
5687     Fn->addFnAttr("interrupt", Kind);
5688 
5689     ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind();
5690     if (ABI == ARMABIInfo::APCS)
5691       return;
5692 
5693     // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
5694     // however this is not necessarily true on taking any interrupt. Instruct
5695     // the backend to perform a realignment as part of the function prologue.
5696     llvm::AttrBuilder B;
5697     B.addStackAlignmentAttr(8);
5698     Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
5699   }
5700 };
5701 
5702 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo {
5703 public:
5704   WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
5705       : ARMTargetCodeGenInfo(CGT, K) {}
5706 
5707   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5708                            CodeGen::CodeGenModule &CGM) const override;
5709 
5710   void getDependentLibraryOption(llvm::StringRef Lib,
5711                                  llvm::SmallString<24> &Opt) const override {
5712     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
5713   }
5714 
5715   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
5716                                llvm::SmallString<32> &Opt) const override {
5717     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
5718   }
5719 };
5720 
5721 void WindowsARMTargetCodeGenInfo::setTargetAttributes(
5722     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
5723   ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
5724   if (GV->isDeclaration())
5725     return;
5726   addStackProbeTargetAttributes(D, GV, CGM);
5727 }
5728 }
5729 
5730 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
5731   if (!::classifyReturnType(getCXXABI(), FI, *this))
5732     FI.getReturnInfo() =
5733         classifyReturnType(FI.getReturnType(), FI.isVariadic());
5734 
5735   for (auto &I : FI.arguments())
5736     I.info = classifyArgumentType(I.type, FI.isVariadic());
5737 
5738   // Always honor user-specified calling convention.
5739   if (FI.getCallingConvention() != llvm::CallingConv::C)
5740     return;
5741 
5742   llvm::CallingConv::ID cc = getRuntimeCC();
5743   if (cc != llvm::CallingConv::C)
5744     FI.setEffectiveCallingConvention(cc);
5745 }
5746 
5747 /// Return the default calling convention that LLVM will use.
5748 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
5749   // The default calling convention that LLVM will infer.
5750   if (isEABIHF() || getTarget().getTriple().isWatchABI())
5751     return llvm::CallingConv::ARM_AAPCS_VFP;
5752   else if (isEABI())
5753     return llvm::CallingConv::ARM_AAPCS;
5754   else
5755     return llvm::CallingConv::ARM_APCS;
5756 }
5757 
5758 /// Return the calling convention that our ABI would like us to use
5759 /// as the C calling convention.
5760 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
5761   switch (getABIKind()) {
5762   case APCS: return llvm::CallingConv::ARM_APCS;
5763   case AAPCS: return llvm::CallingConv::ARM_AAPCS;
5764   case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
5765   case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
5766   }
5767   llvm_unreachable("bad ABI kind");
5768 }
5769 
5770 void ARMABIInfo::setCCs() {
5771   assert(getRuntimeCC() == llvm::CallingConv::C);
5772 
5773   // Don't muddy up the IR with a ton of explicit annotations if
5774   // they'd just match what LLVM will infer from the triple.
5775   llvm::CallingConv::ID abiCC = getABIDefaultCC();
5776   if (abiCC != getLLVMDefaultCC())
5777     RuntimeCC = abiCC;
5778 }
5779 
5780 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const {
5781   uint64_t Size = getContext().getTypeSize(Ty);
5782   if (Size <= 32) {
5783     llvm::Type *ResType =
5784         llvm::Type::getInt32Ty(getVMContext());
5785     return ABIArgInfo::getDirect(ResType);
5786   }
5787   if (Size == 64 || Size == 128) {
5788     llvm::Type *ResType = llvm::VectorType::get(
5789         llvm::Type::getInt32Ty(getVMContext()), Size / 32);
5790     return ABIArgInfo::getDirect(ResType);
5791   }
5792   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5793 }
5794 
5795 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty,
5796                                                     const Type *Base,
5797                                                     uint64_t Members) const {
5798   assert(Base && "Base class should be set for homogeneous aggregate");
5799   // Base can be a floating-point or a vector.
5800   if (const VectorType *VT = Base->getAs<VectorType>()) {
5801     // FP16 vectors should be converted to integer vectors
5802     if (!getTarget().hasLegalHalfType() &&
5803         (VT->getElementType()->isFloat16Type() ||
5804           VT->getElementType()->isHalfType())) {
5805       uint64_t Size = getContext().getTypeSize(VT);
5806       llvm::Type *NewVecTy = llvm::VectorType::get(
5807           llvm::Type::getInt32Ty(getVMContext()), Size / 32);
5808       llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members);
5809       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
5810     }
5811   }
5812   return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
5813 }
5814 
5815 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty,
5816                                             bool isVariadic) const {
5817   // 6.1.2.1 The following argument types are VFP CPRCs:
5818   //   A single-precision floating-point type (including promoted
5819   //   half-precision types); A double-precision floating-point type;
5820   //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
5821   //   with a Base Type of a single- or double-precision floating-point type,
5822   //   64-bit containerized vectors or 128-bit containerized vectors with one
5823   //   to four Elements.
5824   bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic;
5825 
5826   Ty = useFirstFieldIfTransparentUnion(Ty);
5827 
5828   // Handle illegal vector types here.
5829   if (isIllegalVectorType(Ty))
5830     return coerceIllegalVector(Ty);
5831 
5832   // _Float16 and __fp16 get passed as if it were an int or float, but with
5833   // the top 16 bits unspecified. This is not done for OpenCL as it handles the
5834   // half type natively, and does not need to interwork with AAPCS code.
5835   if ((Ty->isFloat16Type() || Ty->isHalfType()) &&
5836       !getContext().getLangOpts().NativeHalfArgsAndReturns) {
5837     llvm::Type *ResType = IsEffectivelyAAPCS_VFP ?
5838       llvm::Type::getFloatTy(getVMContext()) :
5839       llvm::Type::getInt32Ty(getVMContext());
5840     return ABIArgInfo::getDirect(ResType);
5841   }
5842 
5843   if (!isAggregateTypeForABI(Ty)) {
5844     // Treat an enum type as its underlying type.
5845     if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
5846       Ty = EnumTy->getDecl()->getIntegerType();
5847     }
5848 
5849     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
5850                                           : ABIArgInfo::getDirect());
5851   }
5852 
5853   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5854     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
5855   }
5856 
5857   // Ignore empty records.
5858   if (isEmptyRecord(getContext(), Ty, true))
5859     return ABIArgInfo::getIgnore();
5860 
5861   if (IsEffectivelyAAPCS_VFP) {
5862     // Homogeneous Aggregates need to be expanded when we can fit the aggregate
5863     // into VFP registers.
5864     const Type *Base = nullptr;
5865     uint64_t Members = 0;
5866     if (isHomogeneousAggregate(Ty, Base, Members))
5867       return classifyHomogeneousAggregate(Ty, Base, Members);
5868   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
5869     // WatchOS does have homogeneous aggregates. Note that we intentionally use
5870     // this convention even for a variadic function: the backend will use GPRs
5871     // if needed.
5872     const Type *Base = nullptr;
5873     uint64_t Members = 0;
5874     if (isHomogeneousAggregate(Ty, Base, Members)) {
5875       assert(Base && Members <= 4 && "unexpected homogeneous aggregate");
5876       llvm::Type *Ty =
5877         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members);
5878       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
5879     }
5880   }
5881 
5882   if (getABIKind() == ARMABIInfo::AAPCS16_VFP &&
5883       getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) {
5884     // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're
5885     // bigger than 128-bits, they get placed in space allocated by the caller,
5886     // and a pointer is passed.
5887     return ABIArgInfo::getIndirect(
5888         CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false);
5889   }
5890 
5891   // Support byval for ARM.
5892   // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
5893   // most 8-byte. We realign the indirect argument if type alignment is bigger
5894   // than ABI alignment.
5895   uint64_t ABIAlign = 4;
5896   uint64_t TyAlign;
5897   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
5898       getABIKind() == ARMABIInfo::AAPCS) {
5899     TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity();
5900     ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
5901   } else {
5902     TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
5903   }
5904   if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
5905     assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval");
5906     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
5907                                    /*ByVal=*/true,
5908                                    /*Realign=*/TyAlign > ABIAlign);
5909   }
5910 
5911   // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of
5912   // same size and alignment.
5913   if (getTarget().isRenderScriptTarget()) {
5914     return coerceToIntArray(Ty, getContext(), getVMContext());
5915   }
5916 
5917   // Otherwise, pass by coercing to a structure of the appropriate size.
5918   llvm::Type* ElemTy;
5919   unsigned SizeRegs;
5920   // FIXME: Try to match the types of the arguments more accurately where
5921   // we can.
5922   if (TyAlign <= 4) {
5923     ElemTy = llvm::Type::getInt32Ty(getVMContext());
5924     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
5925   } else {
5926     ElemTy = llvm::Type::getInt64Ty(getVMContext());
5927     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
5928   }
5929 
5930   return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
5931 }
5932 
5933 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
5934                               llvm::LLVMContext &VMContext) {
5935   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
5936   // is called integer-like if its size is less than or equal to one word, and
5937   // the offset of each of its addressable sub-fields is zero.
5938 
5939   uint64_t Size = Context.getTypeSize(Ty);
5940 
5941   // Check that the type fits in a word.
5942   if (Size > 32)
5943     return false;
5944 
5945   // FIXME: Handle vector types!
5946   if (Ty->isVectorType())
5947     return false;
5948 
5949   // Float types are never treated as "integer like".
5950   if (Ty->isRealFloatingType())
5951     return false;
5952 
5953   // If this is a builtin or pointer type then it is ok.
5954   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
5955     return true;
5956 
5957   // Small complex integer types are "integer like".
5958   if (const ComplexType *CT = Ty->getAs<ComplexType>())
5959     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
5960 
5961   // Single element and zero sized arrays should be allowed, by the definition
5962   // above, but they are not.
5963 
5964   // Otherwise, it must be a record type.
5965   const RecordType *RT = Ty->getAs<RecordType>();
5966   if (!RT) return false;
5967 
5968   // Ignore records with flexible arrays.
5969   const RecordDecl *RD = RT->getDecl();
5970   if (RD->hasFlexibleArrayMember())
5971     return false;
5972 
5973   // Check that all sub-fields are at offset 0, and are themselves "integer
5974   // like".
5975   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
5976 
5977   bool HadField = false;
5978   unsigned idx = 0;
5979   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
5980        i != e; ++i, ++idx) {
5981     const FieldDecl *FD = *i;
5982 
5983     // Bit-fields are not addressable, we only need to verify they are "integer
5984     // like". We still have to disallow a subsequent non-bitfield, for example:
5985     //   struct { int : 0; int x }
5986     // is non-integer like according to gcc.
5987     if (FD->isBitField()) {
5988       if (!RD->isUnion())
5989         HadField = true;
5990 
5991       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
5992         return false;
5993 
5994       continue;
5995     }
5996 
5997     // Check if this field is at offset 0.
5998     if (Layout.getFieldOffset(idx) != 0)
5999       return false;
6000 
6001     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
6002       return false;
6003 
6004     // Only allow at most one field in a structure. This doesn't match the
6005     // wording above, but follows gcc in situations with a field following an
6006     // empty structure.
6007     if (!RD->isUnion()) {
6008       if (HadField)
6009         return false;
6010 
6011       HadField = true;
6012     }
6013   }
6014 
6015   return true;
6016 }
6017 
6018 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy,
6019                                           bool isVariadic) const {
6020   bool IsEffectivelyAAPCS_VFP =
6021       (getABIKind() == AAPCS_VFP || getABIKind() == AAPCS16_VFP) && !isVariadic;
6022 
6023   if (RetTy->isVoidType())
6024     return ABIArgInfo::getIgnore();
6025 
6026   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
6027     // Large vector types should be returned via memory.
6028     if (getContext().getTypeSize(RetTy) > 128)
6029       return getNaturalAlignIndirect(RetTy);
6030     // FP16 vectors should be converted to integer vectors
6031     if (!getTarget().hasLegalHalfType() &&
6032         (VT->getElementType()->isFloat16Type() ||
6033          VT->getElementType()->isHalfType()))
6034       return coerceIllegalVector(RetTy);
6035   }
6036 
6037   // _Float16 and __fp16 get returned as if it were an int or float, but with
6038   // the top 16 bits unspecified. This is not done for OpenCL as it handles the
6039   // half type natively, and does not need to interwork with AAPCS code.
6040   if ((RetTy->isFloat16Type() || RetTy->isHalfType()) &&
6041       !getContext().getLangOpts().NativeHalfArgsAndReturns) {
6042     llvm::Type *ResType = IsEffectivelyAAPCS_VFP ?
6043       llvm::Type::getFloatTy(getVMContext()) :
6044       llvm::Type::getInt32Ty(getVMContext());
6045     return ABIArgInfo::getDirect(ResType);
6046   }
6047 
6048   if (!isAggregateTypeForABI(RetTy)) {
6049     // Treat an enum type as its underlying type.
6050     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6051       RetTy = EnumTy->getDecl()->getIntegerType();
6052 
6053     return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
6054                                             : ABIArgInfo::getDirect();
6055   }
6056 
6057   // Are we following APCS?
6058   if (getABIKind() == APCS) {
6059     if (isEmptyRecord(getContext(), RetTy, false))
6060       return ABIArgInfo::getIgnore();
6061 
6062     // Complex types are all returned as packed integers.
6063     //
6064     // FIXME: Consider using 2 x vector types if the back end handles them
6065     // correctly.
6066     if (RetTy->isAnyComplexType())
6067       return ABIArgInfo::getDirect(llvm::IntegerType::get(
6068           getVMContext(), getContext().getTypeSize(RetTy)));
6069 
6070     // Integer like structures are returned in r0.
6071     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
6072       // Return in the smallest viable integer type.
6073       uint64_t Size = getContext().getTypeSize(RetTy);
6074       if (Size <= 8)
6075         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6076       if (Size <= 16)
6077         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6078       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6079     }
6080 
6081     // Otherwise return in memory.
6082     return getNaturalAlignIndirect(RetTy);
6083   }
6084 
6085   // Otherwise this is an AAPCS variant.
6086 
6087   if (isEmptyRecord(getContext(), RetTy, true))
6088     return ABIArgInfo::getIgnore();
6089 
6090   // Check for homogeneous aggregates with AAPCS-VFP.
6091   if (IsEffectivelyAAPCS_VFP) {
6092     const Type *Base = nullptr;
6093     uint64_t Members = 0;
6094     if (isHomogeneousAggregate(RetTy, Base, Members))
6095       return classifyHomogeneousAggregate(RetTy, Base, Members);
6096   }
6097 
6098   // Aggregates <= 4 bytes are returned in r0; other aggregates
6099   // are returned indirectly.
6100   uint64_t Size = getContext().getTypeSize(RetTy);
6101   if (Size <= 32) {
6102     // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of
6103     // same size and alignment.
6104     if (getTarget().isRenderScriptTarget()) {
6105       return coerceToIntArray(RetTy, getContext(), getVMContext());
6106     }
6107     if (getDataLayout().isBigEndian())
6108       // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
6109       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6110 
6111     // Return in the smallest viable integer type.
6112     if (Size <= 8)
6113       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6114     if (Size <= 16)
6115       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6116     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6117   } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) {
6118     llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext());
6119     llvm::Type *CoerceTy =
6120         llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32);
6121     return ABIArgInfo::getDirect(CoerceTy);
6122   }
6123 
6124   return getNaturalAlignIndirect(RetTy);
6125 }
6126 
6127 /// isIllegalVector - check whether Ty is an illegal vector type.
6128 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
6129   if (const VectorType *VT = Ty->getAs<VectorType> ()) {
6130     // On targets that don't support FP16, FP16 is expanded into float, and we
6131     // don't want the ABI to depend on whether or not FP16 is supported in
6132     // hardware. Thus return false to coerce FP16 vectors into integer vectors.
6133     if (!getTarget().hasLegalHalfType() &&
6134         (VT->getElementType()->isFloat16Type() ||
6135          VT->getElementType()->isHalfType()))
6136       return true;
6137     if (isAndroid()) {
6138       // Android shipped using Clang 3.1, which supported a slightly different
6139       // vector ABI. The primary differences were that 3-element vector types
6140       // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path
6141       // accepts that legacy behavior for Android only.
6142       // Check whether VT is legal.
6143       unsigned NumElements = VT->getNumElements();
6144       // NumElements should be power of 2 or equal to 3.
6145       if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3)
6146         return true;
6147     } else {
6148       // Check whether VT is legal.
6149       unsigned NumElements = VT->getNumElements();
6150       uint64_t Size = getContext().getTypeSize(VT);
6151       // NumElements should be power of 2.
6152       if (!llvm::isPowerOf2_32(NumElements))
6153         return true;
6154       // Size should be greater than 32 bits.
6155       return Size <= 32;
6156     }
6157   }
6158   return false;
6159 }
6160 
6161 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
6162                                            llvm::Type *eltTy,
6163                                            unsigned numElts) const {
6164   if (!llvm::isPowerOf2_32(numElts))
6165     return false;
6166   unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy);
6167   if (size > 64)
6168     return false;
6169   if (vectorSize.getQuantity() != 8 &&
6170       (vectorSize.getQuantity() != 16 || numElts == 1))
6171     return false;
6172   return true;
6173 }
6174 
6175 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
6176   // Homogeneous aggregates for AAPCS-VFP must have base types of float,
6177   // double, or 64-bit or 128-bit vectors.
6178   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
6179     if (BT->getKind() == BuiltinType::Float ||
6180         BT->getKind() == BuiltinType::Double ||
6181         BT->getKind() == BuiltinType::LongDouble)
6182       return true;
6183   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
6184     unsigned VecSize = getContext().getTypeSize(VT);
6185     if (VecSize == 64 || VecSize == 128)
6186       return true;
6187   }
6188   return false;
6189 }
6190 
6191 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
6192                                                    uint64_t Members) const {
6193   return Members <= 4;
6194 }
6195 
6196 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6197                               QualType Ty) const {
6198   CharUnits SlotSize = CharUnits::fromQuantity(4);
6199 
6200   // Empty records are ignored for parameter passing purposes.
6201   if (isEmptyRecord(getContext(), Ty, true)) {
6202     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
6203     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
6204     return Addr;
6205   }
6206 
6207   auto TyInfo = getContext().getTypeInfoInChars(Ty);
6208   CharUnits TyAlignForABI = TyInfo.second;
6209 
6210   // Use indirect if size of the illegal vector is bigger than 16 bytes.
6211   bool IsIndirect = false;
6212   const Type *Base = nullptr;
6213   uint64_t Members = 0;
6214   if (TyInfo.first > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) {
6215     IsIndirect = true;
6216 
6217   // ARMv7k passes structs bigger than 16 bytes indirectly, in space
6218   // allocated by the caller.
6219   } else if (TyInfo.first > CharUnits::fromQuantity(16) &&
6220              getABIKind() == ARMABIInfo::AAPCS16_VFP &&
6221              !isHomogeneousAggregate(Ty, Base, Members)) {
6222     IsIndirect = true;
6223 
6224   // Otherwise, bound the type's ABI alignment.
6225   // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
6226   // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
6227   // Our callers should be prepared to handle an under-aligned address.
6228   } else if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
6229              getABIKind() == ARMABIInfo::AAPCS) {
6230     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6231     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8));
6232   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
6233     // ARMv7k allows type alignment up to 16 bytes.
6234     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6235     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16));
6236   } else {
6237     TyAlignForABI = CharUnits::fromQuantity(4);
6238   }
6239   TyInfo.second = TyAlignForABI;
6240 
6241   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo,
6242                           SlotSize, /*AllowHigherAlign*/ true);
6243 }
6244 
6245 //===----------------------------------------------------------------------===//
6246 // NVPTX ABI Implementation
6247 //===----------------------------------------------------------------------===//
6248 
6249 namespace {
6250 
6251 class NVPTXABIInfo : public ABIInfo {
6252 public:
6253   NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
6254 
6255   ABIArgInfo classifyReturnType(QualType RetTy) const;
6256   ABIArgInfo classifyArgumentType(QualType Ty) const;
6257 
6258   void computeInfo(CGFunctionInfo &FI) const override;
6259   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6260                     QualType Ty) const override;
6261 };
6262 
6263 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
6264 public:
6265   NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
6266     : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
6267 
6268   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6269                            CodeGen::CodeGenModule &M) const override;
6270   bool shouldEmitStaticExternCAliases() const override;
6271 
6272 private:
6273   // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the
6274   // resulting MDNode to the nvvm.annotations MDNode.
6275   static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand);
6276 };
6277 
6278 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
6279   if (RetTy->isVoidType())
6280     return ABIArgInfo::getIgnore();
6281 
6282   // note: this is different from default ABI
6283   if (!RetTy->isScalarType())
6284     return ABIArgInfo::getDirect();
6285 
6286   // Treat an enum type as its underlying type.
6287   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6288     RetTy = EnumTy->getDecl()->getIntegerType();
6289 
6290   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
6291                                            : ABIArgInfo::getDirect());
6292 }
6293 
6294 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
6295   // Treat an enum type as its underlying type.
6296   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6297     Ty = EnumTy->getDecl()->getIntegerType();
6298 
6299   // Return aggregates type as indirect by value
6300   if (isAggregateTypeForABI(Ty))
6301     return getNaturalAlignIndirect(Ty, /* byval */ true);
6302 
6303   return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
6304                                         : ABIArgInfo::getDirect());
6305 }
6306 
6307 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
6308   if (!getCXXABI().classifyReturnType(FI))
6309     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
6310   for (auto &I : FI.arguments())
6311     I.info = classifyArgumentType(I.type);
6312 
6313   // Always honor user-specified calling convention.
6314   if (FI.getCallingConvention() != llvm::CallingConv::C)
6315     return;
6316 
6317   FI.setEffectiveCallingConvention(getRuntimeCC());
6318 }
6319 
6320 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6321                                 QualType Ty) const {
6322   llvm_unreachable("NVPTX does not support varargs");
6323 }
6324 
6325 void NVPTXTargetCodeGenInfo::setTargetAttributes(
6326     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
6327   if (GV->isDeclaration())
6328     return;
6329   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6330   if (!FD) return;
6331 
6332   llvm::Function *F = cast<llvm::Function>(GV);
6333 
6334   // Perform special handling in OpenCL mode
6335   if (M.getLangOpts().OpenCL) {
6336     // Use OpenCL function attributes to check for kernel functions
6337     // By default, all functions are device functions
6338     if (FD->hasAttr<OpenCLKernelAttr>()) {
6339       // OpenCL __kernel functions get kernel metadata
6340       // Create !{<func-ref>, metadata !"kernel", i32 1} node
6341       addNVVMMetadata(F, "kernel", 1);
6342       // And kernel functions are not subject to inlining
6343       F->addFnAttr(llvm::Attribute::NoInline);
6344     }
6345   }
6346 
6347   // Perform special handling in CUDA mode.
6348   if (M.getLangOpts().CUDA) {
6349     // CUDA __global__ functions get a kernel metadata entry.  Since
6350     // __global__ functions cannot be called from the device, we do not
6351     // need to set the noinline attribute.
6352     if (FD->hasAttr<CUDAGlobalAttr>()) {
6353       // Create !{<func-ref>, metadata !"kernel", i32 1} node
6354       addNVVMMetadata(F, "kernel", 1);
6355     }
6356     if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) {
6357       // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
6358       llvm::APSInt MaxThreads(32);
6359       MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext());
6360       if (MaxThreads > 0)
6361         addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue());
6362 
6363       // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was
6364       // not specified in __launch_bounds__ or if the user specified a 0 value,
6365       // we don't have to add a PTX directive.
6366       if (Attr->getMinBlocks()) {
6367         llvm::APSInt MinBlocks(32);
6368         MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext());
6369         if (MinBlocks > 0)
6370           // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
6371           addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue());
6372       }
6373     }
6374   }
6375 }
6376 
6377 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name,
6378                                              int Operand) {
6379   llvm::Module *M = F->getParent();
6380   llvm::LLVMContext &Ctx = M->getContext();
6381 
6382   // Get "nvvm.annotations" metadata node
6383   llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
6384 
6385   llvm::Metadata *MDVals[] = {
6386       llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name),
6387       llvm::ConstantAsMetadata::get(
6388           llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
6389   // Append metadata to nvvm.annotations
6390   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
6391 }
6392 
6393 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
6394   return false;
6395 }
6396 }
6397 
6398 //===----------------------------------------------------------------------===//
6399 // SystemZ ABI Implementation
6400 //===----------------------------------------------------------------------===//
6401 
6402 namespace {
6403 
6404 class SystemZABIInfo : public SwiftABIInfo {
6405   bool HasVector;
6406 
6407 public:
6408   SystemZABIInfo(CodeGenTypes &CGT, bool HV)
6409     : SwiftABIInfo(CGT), HasVector(HV) {}
6410 
6411   bool isPromotableIntegerType(QualType Ty) const;
6412   bool isCompoundType(QualType Ty) const;
6413   bool isVectorArgumentType(QualType Ty) const;
6414   bool isFPArgumentType(QualType Ty) const;
6415   QualType GetSingleElementType(QualType Ty) const;
6416 
6417   ABIArgInfo classifyReturnType(QualType RetTy) const;
6418   ABIArgInfo classifyArgumentType(QualType ArgTy) const;
6419 
6420   void computeInfo(CGFunctionInfo &FI) const override {
6421     if (!getCXXABI().classifyReturnType(FI))
6422       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
6423     for (auto &I : FI.arguments())
6424       I.info = classifyArgumentType(I.type);
6425   }
6426 
6427   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6428                     QualType Ty) const override;
6429 
6430   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
6431                                     bool asReturnValue) const override {
6432     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
6433   }
6434   bool isSwiftErrorInRegister() const override {
6435     return false;
6436   }
6437 };
6438 
6439 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
6440 public:
6441   SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector)
6442     : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {}
6443 };
6444 
6445 }
6446 
6447 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
6448   // Treat an enum type as its underlying type.
6449   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6450     Ty = EnumTy->getDecl()->getIntegerType();
6451 
6452   // Promotable integer types are required to be promoted by the ABI.
6453   if (Ty->isPromotableIntegerType())
6454     return true;
6455 
6456   // 32-bit values must also be promoted.
6457   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
6458     switch (BT->getKind()) {
6459     case BuiltinType::Int:
6460     case BuiltinType::UInt:
6461       return true;
6462     default:
6463       return false;
6464     }
6465   return false;
6466 }
6467 
6468 bool SystemZABIInfo::isCompoundType(QualType Ty) const {
6469   return (Ty->isAnyComplexType() ||
6470           Ty->isVectorType() ||
6471           isAggregateTypeForABI(Ty));
6472 }
6473 
6474 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const {
6475   return (HasVector &&
6476           Ty->isVectorType() &&
6477           getContext().getTypeSize(Ty) <= 128);
6478 }
6479 
6480 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
6481   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
6482     switch (BT->getKind()) {
6483     case BuiltinType::Float:
6484     case BuiltinType::Double:
6485       return true;
6486     default:
6487       return false;
6488     }
6489 
6490   return false;
6491 }
6492 
6493 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const {
6494   if (const RecordType *RT = Ty->getAsStructureType()) {
6495     const RecordDecl *RD = RT->getDecl();
6496     QualType Found;
6497 
6498     // If this is a C++ record, check the bases first.
6499     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
6500       for (const auto &I : CXXRD->bases()) {
6501         QualType Base = I.getType();
6502 
6503         // Empty bases don't affect things either way.
6504         if (isEmptyRecord(getContext(), Base, true))
6505           continue;
6506 
6507         if (!Found.isNull())
6508           return Ty;
6509         Found = GetSingleElementType(Base);
6510       }
6511 
6512     // Check the fields.
6513     for (const auto *FD : RD->fields()) {
6514       // For compatibility with GCC, ignore empty bitfields in C++ mode.
6515       // Unlike isSingleElementStruct(), empty structure and array fields
6516       // do count.  So do anonymous bitfields that aren't zero-sized.
6517       if (getContext().getLangOpts().CPlusPlus &&
6518           FD->isZeroLengthBitField(getContext()))
6519         continue;
6520 
6521       // Unlike isSingleElementStruct(), arrays do not count.
6522       // Nested structures still do though.
6523       if (!Found.isNull())
6524         return Ty;
6525       Found = GetSingleElementType(FD->getType());
6526     }
6527 
6528     // Unlike isSingleElementStruct(), trailing padding is allowed.
6529     // An 8-byte aligned struct s { float f; } is passed as a double.
6530     if (!Found.isNull())
6531       return Found;
6532   }
6533 
6534   return Ty;
6535 }
6536 
6537 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6538                                   QualType Ty) const {
6539   // Assume that va_list type is correct; should be pointer to LLVM type:
6540   // struct {
6541   //   i64 __gpr;
6542   //   i64 __fpr;
6543   //   i8 *__overflow_arg_area;
6544   //   i8 *__reg_save_area;
6545   // };
6546 
6547   // Every non-vector argument occupies 8 bytes and is passed by preference
6548   // in either GPRs or FPRs.  Vector arguments occupy 8 or 16 bytes and are
6549   // always passed on the stack.
6550   Ty = getContext().getCanonicalType(Ty);
6551   auto TyInfo = getContext().getTypeInfoInChars(Ty);
6552   llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty);
6553   llvm::Type *DirectTy = ArgTy;
6554   ABIArgInfo AI = classifyArgumentType(Ty);
6555   bool IsIndirect = AI.isIndirect();
6556   bool InFPRs = false;
6557   bool IsVector = false;
6558   CharUnits UnpaddedSize;
6559   CharUnits DirectAlign;
6560   if (IsIndirect) {
6561     DirectTy = llvm::PointerType::getUnqual(DirectTy);
6562     UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8);
6563   } else {
6564     if (AI.getCoerceToType())
6565       ArgTy = AI.getCoerceToType();
6566     InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy();
6567     IsVector = ArgTy->isVectorTy();
6568     UnpaddedSize = TyInfo.first;
6569     DirectAlign = TyInfo.second;
6570   }
6571   CharUnits PaddedSize = CharUnits::fromQuantity(8);
6572   if (IsVector && UnpaddedSize > PaddedSize)
6573     PaddedSize = CharUnits::fromQuantity(16);
6574   assert((UnpaddedSize <= PaddedSize) && "Invalid argument size.");
6575 
6576   CharUnits Padding = (PaddedSize - UnpaddedSize);
6577 
6578   llvm::Type *IndexTy = CGF.Int64Ty;
6579   llvm::Value *PaddedSizeV =
6580     llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity());
6581 
6582   if (IsVector) {
6583     // Work out the address of a vector argument on the stack.
6584     // Vector arguments are always passed in the high bits of a
6585     // single (8 byte) or double (16 byte) stack slot.
6586     Address OverflowArgAreaPtr =
6587       CGF.Builder.CreateStructGEP(VAListAddr, 2, CharUnits::fromQuantity(16),
6588                                   "overflow_arg_area_ptr");
6589     Address OverflowArgArea =
6590       Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
6591               TyInfo.second);
6592     Address MemAddr =
6593       CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr");
6594 
6595     // Update overflow_arg_area_ptr pointer
6596     llvm::Value *NewOverflowArgArea =
6597       CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
6598                             "overflow_arg_area");
6599     CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
6600 
6601     return MemAddr;
6602   }
6603 
6604   assert(PaddedSize.getQuantity() == 8);
6605 
6606   unsigned MaxRegs, RegCountField, RegSaveIndex;
6607   CharUnits RegPadding;
6608   if (InFPRs) {
6609     MaxRegs = 4; // Maximum of 4 FPR arguments
6610     RegCountField = 1; // __fpr
6611     RegSaveIndex = 16; // save offset for f0
6612     RegPadding = CharUnits(); // floats are passed in the high bits of an FPR
6613   } else {
6614     MaxRegs = 5; // Maximum of 5 GPR arguments
6615     RegCountField = 0; // __gpr
6616     RegSaveIndex = 2; // save offset for r2
6617     RegPadding = Padding; // values are passed in the low bits of a GPR
6618   }
6619 
6620   Address RegCountPtr = CGF.Builder.CreateStructGEP(
6621       VAListAddr, RegCountField, RegCountField * CharUnits::fromQuantity(8),
6622       "reg_count_ptr");
6623   llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
6624   llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
6625   llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
6626                                                  "fits_in_regs");
6627 
6628   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
6629   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
6630   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
6631   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
6632 
6633   // Emit code to load the value if it was passed in registers.
6634   CGF.EmitBlock(InRegBlock);
6635 
6636   // Work out the address of an argument register.
6637   llvm::Value *ScaledRegCount =
6638     CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
6639   llvm::Value *RegBase =
6640     llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity()
6641                                       + RegPadding.getQuantity());
6642   llvm::Value *RegOffset =
6643     CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
6644   Address RegSaveAreaPtr =
6645       CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24),
6646                                   "reg_save_area_ptr");
6647   llvm::Value *RegSaveArea =
6648     CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
6649   Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset,
6650                                            "raw_reg_addr"),
6651                      PaddedSize);
6652   Address RegAddr =
6653     CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr");
6654 
6655   // Update the register count
6656   llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
6657   llvm::Value *NewRegCount =
6658     CGF.Builder.CreateAdd(RegCount, One, "reg_count");
6659   CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
6660   CGF.EmitBranch(ContBlock);
6661 
6662   // Emit code to load the value if it was passed in memory.
6663   CGF.EmitBlock(InMemBlock);
6664 
6665   // Work out the address of a stack argument.
6666   Address OverflowArgAreaPtr = CGF.Builder.CreateStructGEP(
6667       VAListAddr, 2, CharUnits::fromQuantity(16), "overflow_arg_area_ptr");
6668   Address OverflowArgArea =
6669     Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
6670             PaddedSize);
6671   Address RawMemAddr =
6672     CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr");
6673   Address MemAddr =
6674     CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr");
6675 
6676   // Update overflow_arg_area_ptr pointer
6677   llvm::Value *NewOverflowArgArea =
6678     CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
6679                           "overflow_arg_area");
6680   CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
6681   CGF.EmitBranch(ContBlock);
6682 
6683   // Return the appropriate result.
6684   CGF.EmitBlock(ContBlock);
6685   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
6686                                  MemAddr, InMemBlock, "va_arg.addr");
6687 
6688   if (IsIndirect)
6689     ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"),
6690                       TyInfo.second);
6691 
6692   return ResAddr;
6693 }
6694 
6695 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
6696   if (RetTy->isVoidType())
6697     return ABIArgInfo::getIgnore();
6698   if (isVectorArgumentType(RetTy))
6699     return ABIArgInfo::getDirect();
6700   if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
6701     return getNaturalAlignIndirect(RetTy);
6702   return (isPromotableIntegerType(RetTy) ? ABIArgInfo::getExtend(RetTy)
6703                                          : ABIArgInfo::getDirect());
6704 }
6705 
6706 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
6707   // Handle the generic C++ ABI.
6708   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
6709     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6710 
6711   // Integers and enums are extended to full register width.
6712   if (isPromotableIntegerType(Ty))
6713     return ABIArgInfo::getExtend(Ty);
6714 
6715   // Handle vector types and vector-like structure types.  Note that
6716   // as opposed to float-like structure types, we do not allow any
6717   // padding for vector-like structures, so verify the sizes match.
6718   uint64_t Size = getContext().getTypeSize(Ty);
6719   QualType SingleElementTy = GetSingleElementType(Ty);
6720   if (isVectorArgumentType(SingleElementTy) &&
6721       getContext().getTypeSize(SingleElementTy) == Size)
6722     return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy));
6723 
6724   // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
6725   if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
6726     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6727 
6728   // Handle small structures.
6729   if (const RecordType *RT = Ty->getAs<RecordType>()) {
6730     // Structures with flexible arrays have variable length, so really
6731     // fail the size test above.
6732     const RecordDecl *RD = RT->getDecl();
6733     if (RD->hasFlexibleArrayMember())
6734       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6735 
6736     // The structure is passed as an unextended integer, a float, or a double.
6737     llvm::Type *PassTy;
6738     if (isFPArgumentType(SingleElementTy)) {
6739       assert(Size == 32 || Size == 64);
6740       if (Size == 32)
6741         PassTy = llvm::Type::getFloatTy(getVMContext());
6742       else
6743         PassTy = llvm::Type::getDoubleTy(getVMContext());
6744     } else
6745       PassTy = llvm::IntegerType::get(getVMContext(), Size);
6746     return ABIArgInfo::getDirect(PassTy);
6747   }
6748 
6749   // Non-structure compounds are passed indirectly.
6750   if (isCompoundType(Ty))
6751     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6752 
6753   return ABIArgInfo::getDirect(nullptr);
6754 }
6755 
6756 //===----------------------------------------------------------------------===//
6757 // MSP430 ABI Implementation
6758 //===----------------------------------------------------------------------===//
6759 
6760 namespace {
6761 
6762 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
6763 public:
6764   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
6765     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
6766   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6767                            CodeGen::CodeGenModule &M) const override;
6768 };
6769 
6770 }
6771 
6772 void MSP430TargetCodeGenInfo::setTargetAttributes(
6773     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
6774   if (GV->isDeclaration())
6775     return;
6776   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
6777     if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
6778       // Handle 'interrupt' attribute:
6779       llvm::Function *F = cast<llvm::Function>(GV);
6780 
6781       // Step 1: Set ISR calling convention.
6782       F->setCallingConv(llvm::CallingConv::MSP430_INTR);
6783 
6784       // Step 2: Add attributes goodness.
6785       F->addFnAttr(llvm::Attribute::NoInline);
6786 
6787       // Step 3: Emit ISR vector alias.
6788       unsigned Num = attr->getNumber() / 2;
6789       llvm::GlobalAlias::create(llvm::Function::ExternalLinkage,
6790                                 "__isr_" + Twine(Num), F);
6791     }
6792   }
6793 }
6794 
6795 //===----------------------------------------------------------------------===//
6796 // MIPS ABI Implementation.  This works for both little-endian and
6797 // big-endian variants.
6798 //===----------------------------------------------------------------------===//
6799 
6800 namespace {
6801 class MipsABIInfo : public ABIInfo {
6802   bool IsO32;
6803   unsigned MinABIStackAlignInBytes, StackAlignInBytes;
6804   void CoerceToIntArgs(uint64_t TySize,
6805                        SmallVectorImpl<llvm::Type *> &ArgList) const;
6806   llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
6807   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
6808   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
6809 public:
6810   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
6811     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
6812     StackAlignInBytes(IsO32 ? 8 : 16) {}
6813 
6814   ABIArgInfo classifyReturnType(QualType RetTy) const;
6815   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
6816   void computeInfo(CGFunctionInfo &FI) const override;
6817   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6818                     QualType Ty) const override;
6819   ABIArgInfo extendType(QualType Ty) const;
6820 };
6821 
6822 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
6823   unsigned SizeOfUnwindException;
6824 public:
6825   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
6826     : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
6827       SizeOfUnwindException(IsO32 ? 24 : 32) {}
6828 
6829   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
6830     return 29;
6831   }
6832 
6833   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6834                            CodeGen::CodeGenModule &CGM) const override {
6835     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6836     if (!FD) return;
6837     llvm::Function *Fn = cast<llvm::Function>(GV);
6838 
6839     if (FD->hasAttr<MipsLongCallAttr>())
6840       Fn->addFnAttr("long-call");
6841     else if (FD->hasAttr<MipsShortCallAttr>())
6842       Fn->addFnAttr("short-call");
6843 
6844     // Other attributes do not have a meaning for declarations.
6845     if (GV->isDeclaration())
6846       return;
6847 
6848     if (FD->hasAttr<Mips16Attr>()) {
6849       Fn->addFnAttr("mips16");
6850     }
6851     else if (FD->hasAttr<NoMips16Attr>()) {
6852       Fn->addFnAttr("nomips16");
6853     }
6854 
6855     if (FD->hasAttr<MicroMipsAttr>())
6856       Fn->addFnAttr("micromips");
6857     else if (FD->hasAttr<NoMicroMipsAttr>())
6858       Fn->addFnAttr("nomicromips");
6859 
6860     const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>();
6861     if (!Attr)
6862       return;
6863 
6864     const char *Kind;
6865     switch (Attr->getInterrupt()) {
6866     case MipsInterruptAttr::eic:     Kind = "eic"; break;
6867     case MipsInterruptAttr::sw0:     Kind = "sw0"; break;
6868     case MipsInterruptAttr::sw1:     Kind = "sw1"; break;
6869     case MipsInterruptAttr::hw0:     Kind = "hw0"; break;
6870     case MipsInterruptAttr::hw1:     Kind = "hw1"; break;
6871     case MipsInterruptAttr::hw2:     Kind = "hw2"; break;
6872     case MipsInterruptAttr::hw3:     Kind = "hw3"; break;
6873     case MipsInterruptAttr::hw4:     Kind = "hw4"; break;
6874     case MipsInterruptAttr::hw5:     Kind = "hw5"; break;
6875     }
6876 
6877     Fn->addFnAttr("interrupt", Kind);
6878 
6879   }
6880 
6881   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6882                                llvm::Value *Address) const override;
6883 
6884   unsigned getSizeOfUnwindException() const override {
6885     return SizeOfUnwindException;
6886   }
6887 };
6888 }
6889 
6890 void MipsABIInfo::CoerceToIntArgs(
6891     uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const {
6892   llvm::IntegerType *IntTy =
6893     llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
6894 
6895   // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
6896   for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
6897     ArgList.push_back(IntTy);
6898 
6899   // If necessary, add one more integer type to ArgList.
6900   unsigned R = TySize % (MinABIStackAlignInBytes * 8);
6901 
6902   if (R)
6903     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
6904 }
6905 
6906 // In N32/64, an aligned double precision floating point field is passed in
6907 // a register.
6908 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
6909   SmallVector<llvm::Type*, 8> ArgList, IntArgList;
6910 
6911   if (IsO32) {
6912     CoerceToIntArgs(TySize, ArgList);
6913     return llvm::StructType::get(getVMContext(), ArgList);
6914   }
6915 
6916   if (Ty->isComplexType())
6917     return CGT.ConvertType(Ty);
6918 
6919   const RecordType *RT = Ty->getAs<RecordType>();
6920 
6921   // Unions/vectors are passed in integer registers.
6922   if (!RT || !RT->isStructureOrClassType()) {
6923     CoerceToIntArgs(TySize, ArgList);
6924     return llvm::StructType::get(getVMContext(), ArgList);
6925   }
6926 
6927   const RecordDecl *RD = RT->getDecl();
6928   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
6929   assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
6930 
6931   uint64_t LastOffset = 0;
6932   unsigned idx = 0;
6933   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
6934 
6935   // Iterate over fields in the struct/class and check if there are any aligned
6936   // double fields.
6937   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
6938        i != e; ++i, ++idx) {
6939     const QualType Ty = i->getType();
6940     const BuiltinType *BT = Ty->getAs<BuiltinType>();
6941 
6942     if (!BT || BT->getKind() != BuiltinType::Double)
6943       continue;
6944 
6945     uint64_t Offset = Layout.getFieldOffset(idx);
6946     if (Offset % 64) // Ignore doubles that are not aligned.
6947       continue;
6948 
6949     // Add ((Offset - LastOffset) / 64) args of type i64.
6950     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
6951       ArgList.push_back(I64);
6952 
6953     // Add double type.
6954     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
6955     LastOffset = Offset + 64;
6956   }
6957 
6958   CoerceToIntArgs(TySize - LastOffset, IntArgList);
6959   ArgList.append(IntArgList.begin(), IntArgList.end());
6960 
6961   return llvm::StructType::get(getVMContext(), ArgList);
6962 }
6963 
6964 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
6965                                         uint64_t Offset) const {
6966   if (OrigOffset + MinABIStackAlignInBytes > Offset)
6967     return nullptr;
6968 
6969   return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
6970 }
6971 
6972 ABIArgInfo
6973 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
6974   Ty = useFirstFieldIfTransparentUnion(Ty);
6975 
6976   uint64_t OrigOffset = Offset;
6977   uint64_t TySize = getContext().getTypeSize(Ty);
6978   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
6979 
6980   Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
6981                    (uint64_t)StackAlignInBytes);
6982   unsigned CurrOffset = llvm::alignTo(Offset, Align);
6983   Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8;
6984 
6985   if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
6986     // Ignore empty aggregates.
6987     if (TySize == 0)
6988       return ABIArgInfo::getIgnore();
6989 
6990     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
6991       Offset = OrigOffset + MinABIStackAlignInBytes;
6992       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6993     }
6994 
6995     // If we have reached here, aggregates are passed directly by coercing to
6996     // another structure type. Padding is inserted if the offset of the
6997     // aggregate is unaligned.
6998     ABIArgInfo ArgInfo =
6999         ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
7000                               getPaddingType(OrigOffset, CurrOffset));
7001     ArgInfo.setInReg(true);
7002     return ArgInfo;
7003   }
7004 
7005   // Treat an enum type as its underlying type.
7006   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7007     Ty = EnumTy->getDecl()->getIntegerType();
7008 
7009   // All integral types are promoted to the GPR width.
7010   if (Ty->isIntegralOrEnumerationType())
7011     return extendType(Ty);
7012 
7013   return ABIArgInfo::getDirect(
7014       nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
7015 }
7016 
7017 llvm::Type*
7018 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
7019   const RecordType *RT = RetTy->getAs<RecordType>();
7020   SmallVector<llvm::Type*, 8> RTList;
7021 
7022   if (RT && RT->isStructureOrClassType()) {
7023     const RecordDecl *RD = RT->getDecl();
7024     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
7025     unsigned FieldCnt = Layout.getFieldCount();
7026 
7027     // N32/64 returns struct/classes in floating point registers if the
7028     // following conditions are met:
7029     // 1. The size of the struct/class is no larger than 128-bit.
7030     // 2. The struct/class has one or two fields all of which are floating
7031     //    point types.
7032     // 3. The offset of the first field is zero (this follows what gcc does).
7033     //
7034     // Any other composite results are returned in integer registers.
7035     //
7036     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
7037       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
7038       for (; b != e; ++b) {
7039         const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
7040 
7041         if (!BT || !BT->isFloatingPoint())
7042           break;
7043 
7044         RTList.push_back(CGT.ConvertType(b->getType()));
7045       }
7046 
7047       if (b == e)
7048         return llvm::StructType::get(getVMContext(), RTList,
7049                                      RD->hasAttr<PackedAttr>());
7050 
7051       RTList.clear();
7052     }
7053   }
7054 
7055   CoerceToIntArgs(Size, RTList);
7056   return llvm::StructType::get(getVMContext(), RTList);
7057 }
7058 
7059 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
7060   uint64_t Size = getContext().getTypeSize(RetTy);
7061 
7062   if (RetTy->isVoidType())
7063     return ABIArgInfo::getIgnore();
7064 
7065   // O32 doesn't treat zero-sized structs differently from other structs.
7066   // However, N32/N64 ignores zero sized return values.
7067   if (!IsO32 && Size == 0)
7068     return ABIArgInfo::getIgnore();
7069 
7070   if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
7071     if (Size <= 128) {
7072       if (RetTy->isAnyComplexType())
7073         return ABIArgInfo::getDirect();
7074 
7075       // O32 returns integer vectors in registers and N32/N64 returns all small
7076       // aggregates in registers.
7077       if (!IsO32 ||
7078           (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
7079         ABIArgInfo ArgInfo =
7080             ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
7081         ArgInfo.setInReg(true);
7082         return ArgInfo;
7083       }
7084     }
7085 
7086     return getNaturalAlignIndirect(RetTy);
7087   }
7088 
7089   // Treat an enum type as its underlying type.
7090   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
7091     RetTy = EnumTy->getDecl()->getIntegerType();
7092 
7093   if (RetTy->isPromotableIntegerType())
7094     return ABIArgInfo::getExtend(RetTy);
7095 
7096   if ((RetTy->isUnsignedIntegerOrEnumerationType() ||
7097       RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32)
7098     return ABIArgInfo::getSignExtend(RetTy);
7099 
7100   return ABIArgInfo::getDirect();
7101 }
7102 
7103 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
7104   ABIArgInfo &RetInfo = FI.getReturnInfo();
7105   if (!getCXXABI().classifyReturnType(FI))
7106     RetInfo = classifyReturnType(FI.getReturnType());
7107 
7108   // Check if a pointer to an aggregate is passed as a hidden argument.
7109   uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
7110 
7111   for (auto &I : FI.arguments())
7112     I.info = classifyArgumentType(I.type, Offset);
7113 }
7114 
7115 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7116                                QualType OrigTy) const {
7117   QualType Ty = OrigTy;
7118 
7119   // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64.
7120   // Pointers are also promoted in the same way but this only matters for N32.
7121   unsigned SlotSizeInBits = IsO32 ? 32 : 64;
7122   unsigned PtrWidth = getTarget().getPointerWidth(0);
7123   bool DidPromote = false;
7124   if ((Ty->isIntegerType() &&
7125           getContext().getIntWidth(Ty) < SlotSizeInBits) ||
7126       (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) {
7127     DidPromote = true;
7128     Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits,
7129                                             Ty->isSignedIntegerType());
7130   }
7131 
7132   auto TyInfo = getContext().getTypeInfoInChars(Ty);
7133 
7134   // The alignment of things in the argument area is never larger than
7135   // StackAlignInBytes.
7136   TyInfo.second =
7137     std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes));
7138 
7139   // MinABIStackAlignInBytes is the size of argument slots on the stack.
7140   CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes);
7141 
7142   Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
7143                           TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true);
7144 
7145 
7146   // If there was a promotion, "unpromote" into a temporary.
7147   // TODO: can we just use a pointer into a subset of the original slot?
7148   if (DidPromote) {
7149     Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp");
7150     llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr);
7151 
7152     // Truncate down to the right width.
7153     llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType()
7154                                                  : CGF.IntPtrTy);
7155     llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy);
7156     if (OrigTy->isPointerType())
7157       V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType());
7158 
7159     CGF.Builder.CreateStore(V, Temp);
7160     Addr = Temp;
7161   }
7162 
7163   return Addr;
7164 }
7165 
7166 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const {
7167   int TySize = getContext().getTypeSize(Ty);
7168 
7169   // MIPS64 ABI requires unsigned 32 bit integers to be sign extended.
7170   if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
7171     return ABIArgInfo::getSignExtend(Ty);
7172 
7173   return ABIArgInfo::getExtend(Ty);
7174 }
7175 
7176 bool
7177 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
7178                                                llvm::Value *Address) const {
7179   // This information comes from gcc's implementation, which seems to
7180   // as canonical as it gets.
7181 
7182   // Everything on MIPS is 4 bytes.  Double-precision FP registers
7183   // are aliased to pairs of single-precision FP registers.
7184   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
7185 
7186   // 0-31 are the general purpose registers, $0 - $31.
7187   // 32-63 are the floating-point registers, $f0 - $f31.
7188   // 64 and 65 are the multiply/divide registers, $hi and $lo.
7189   // 66 is the (notional, I think) register for signal-handler return.
7190   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
7191 
7192   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
7193   // They are one bit wide and ignored here.
7194 
7195   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
7196   // (coprocessor 1 is the FP unit)
7197   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
7198   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
7199   // 176-181 are the DSP accumulator registers.
7200   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
7201   return false;
7202 }
7203 
7204 //===----------------------------------------------------------------------===//
7205 // AVR ABI Implementation.
7206 //===----------------------------------------------------------------------===//
7207 
7208 namespace {
7209 class AVRTargetCodeGenInfo : public TargetCodeGenInfo {
7210 public:
7211   AVRTargetCodeGenInfo(CodeGenTypes &CGT)
7212     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) { }
7213 
7214   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7215                            CodeGen::CodeGenModule &CGM) const override {
7216     if (GV->isDeclaration())
7217       return;
7218     const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
7219     if (!FD) return;
7220     auto *Fn = cast<llvm::Function>(GV);
7221 
7222     if (FD->getAttr<AVRInterruptAttr>())
7223       Fn->addFnAttr("interrupt");
7224 
7225     if (FD->getAttr<AVRSignalAttr>())
7226       Fn->addFnAttr("signal");
7227   }
7228 };
7229 }
7230 
7231 //===----------------------------------------------------------------------===//
7232 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
7233 // Currently subclassed only to implement custom OpenCL C function attribute
7234 // handling.
7235 //===----------------------------------------------------------------------===//
7236 
7237 namespace {
7238 
7239 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
7240 public:
7241   TCETargetCodeGenInfo(CodeGenTypes &CGT)
7242     : DefaultTargetCodeGenInfo(CGT) {}
7243 
7244   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7245                            CodeGen::CodeGenModule &M) const override;
7246 };
7247 
7248 void TCETargetCodeGenInfo::setTargetAttributes(
7249     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
7250   if (GV->isDeclaration())
7251     return;
7252   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7253   if (!FD) return;
7254 
7255   llvm::Function *F = cast<llvm::Function>(GV);
7256 
7257   if (M.getLangOpts().OpenCL) {
7258     if (FD->hasAttr<OpenCLKernelAttr>()) {
7259       // OpenCL C Kernel functions are not subject to inlining
7260       F->addFnAttr(llvm::Attribute::NoInline);
7261       const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
7262       if (Attr) {
7263         // Convert the reqd_work_group_size() attributes to metadata.
7264         llvm::LLVMContext &Context = F->getContext();
7265         llvm::NamedMDNode *OpenCLMetadata =
7266             M.getModule().getOrInsertNamedMetadata(
7267                 "opencl.kernel_wg_size_info");
7268 
7269         SmallVector<llvm::Metadata *, 5> Operands;
7270         Operands.push_back(llvm::ConstantAsMetadata::get(F));
7271 
7272         Operands.push_back(
7273             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
7274                 M.Int32Ty, llvm::APInt(32, Attr->getXDim()))));
7275         Operands.push_back(
7276             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
7277                 M.Int32Ty, llvm::APInt(32, Attr->getYDim()))));
7278         Operands.push_back(
7279             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
7280                 M.Int32Ty, llvm::APInt(32, Attr->getZDim()))));
7281 
7282         // Add a boolean constant operand for "required" (true) or "hint"
7283         // (false) for implementing the work_group_size_hint attr later.
7284         // Currently always true as the hint is not yet implemented.
7285         Operands.push_back(
7286             llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context)));
7287         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
7288       }
7289     }
7290   }
7291 }
7292 
7293 }
7294 
7295 //===----------------------------------------------------------------------===//
7296 // Hexagon ABI Implementation
7297 //===----------------------------------------------------------------------===//
7298 
7299 namespace {
7300 
7301 class HexagonABIInfo : public ABIInfo {
7302 
7303 
7304 public:
7305   HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
7306 
7307 private:
7308 
7309   ABIArgInfo classifyReturnType(QualType RetTy) const;
7310   ABIArgInfo classifyArgumentType(QualType RetTy) const;
7311 
7312   void computeInfo(CGFunctionInfo &FI) const override;
7313 
7314   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7315                     QualType Ty) const override;
7316 };
7317 
7318 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
7319 public:
7320   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
7321     :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
7322 
7323   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
7324     return 29;
7325   }
7326 };
7327 
7328 }
7329 
7330 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
7331   if (!getCXXABI().classifyReturnType(FI))
7332     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7333   for (auto &I : FI.arguments())
7334     I.info = classifyArgumentType(I.type);
7335 }
7336 
7337 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
7338   if (!isAggregateTypeForABI(Ty)) {
7339     // Treat an enum type as its underlying type.
7340     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7341       Ty = EnumTy->getDecl()->getIntegerType();
7342 
7343     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
7344                                           : ABIArgInfo::getDirect());
7345   }
7346 
7347   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
7348     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7349 
7350   // Ignore empty records.
7351   if (isEmptyRecord(getContext(), Ty, true))
7352     return ABIArgInfo::getIgnore();
7353 
7354   uint64_t Size = getContext().getTypeSize(Ty);
7355   if (Size > 64)
7356     return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
7357     // Pass in the smallest viable integer type.
7358   else if (Size > 32)
7359       return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
7360   else if (Size > 16)
7361       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
7362   else if (Size > 8)
7363       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
7364   else
7365       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
7366 }
7367 
7368 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
7369   if (RetTy->isVoidType())
7370     return ABIArgInfo::getIgnore();
7371 
7372   // Large vector types should be returned via memory.
7373   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
7374     return getNaturalAlignIndirect(RetTy);
7375 
7376   if (!isAggregateTypeForABI(RetTy)) {
7377     // Treat an enum type as its underlying type.
7378     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
7379       RetTy = EnumTy->getDecl()->getIntegerType();
7380 
7381     return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
7382                                              : ABIArgInfo::getDirect());
7383   }
7384 
7385   if (isEmptyRecord(getContext(), RetTy, true))
7386     return ABIArgInfo::getIgnore();
7387 
7388   // Aggregates <= 8 bytes are returned in r0; other aggregates
7389   // are returned indirectly.
7390   uint64_t Size = getContext().getTypeSize(RetTy);
7391   if (Size <= 64) {
7392     // Return in the smallest viable integer type.
7393     if (Size <= 8)
7394       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
7395     if (Size <= 16)
7396       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
7397     if (Size <= 32)
7398       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
7399     return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
7400   }
7401 
7402   return getNaturalAlignIndirect(RetTy, /*ByVal=*/true);
7403 }
7404 
7405 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7406                                   QualType Ty) const {
7407   // FIXME: Someone needs to audit that this handle alignment correctly.
7408   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
7409                           getContext().getTypeInfoInChars(Ty),
7410                           CharUnits::fromQuantity(4),
7411                           /*AllowHigherAlign*/ true);
7412 }
7413 
7414 //===----------------------------------------------------------------------===//
7415 // Lanai ABI Implementation
7416 //===----------------------------------------------------------------------===//
7417 
7418 namespace {
7419 class LanaiABIInfo : public DefaultABIInfo {
7420 public:
7421   LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
7422 
7423   bool shouldUseInReg(QualType Ty, CCState &State) const;
7424 
7425   void computeInfo(CGFunctionInfo &FI) const override {
7426     CCState State(FI.getCallingConvention());
7427     // Lanai uses 4 registers to pass arguments unless the function has the
7428     // regparm attribute set.
7429     if (FI.getHasRegParm()) {
7430       State.FreeRegs = FI.getRegParm();
7431     } else {
7432       State.FreeRegs = 4;
7433     }
7434 
7435     if (!getCXXABI().classifyReturnType(FI))
7436       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7437     for (auto &I : FI.arguments())
7438       I.info = classifyArgumentType(I.type, State);
7439   }
7440 
7441   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
7442   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
7443 };
7444 } // end anonymous namespace
7445 
7446 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const {
7447   unsigned Size = getContext().getTypeSize(Ty);
7448   unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U;
7449 
7450   if (SizeInRegs == 0)
7451     return false;
7452 
7453   if (SizeInRegs > State.FreeRegs) {
7454     State.FreeRegs = 0;
7455     return false;
7456   }
7457 
7458   State.FreeRegs -= SizeInRegs;
7459 
7460   return true;
7461 }
7462 
7463 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal,
7464                                            CCState &State) const {
7465   if (!ByVal) {
7466     if (State.FreeRegs) {
7467       --State.FreeRegs; // Non-byval indirects just use one pointer.
7468       return getNaturalAlignIndirectInReg(Ty);
7469     }
7470     return getNaturalAlignIndirect(Ty, false);
7471   }
7472 
7473   // Compute the byval alignment.
7474   const unsigned MinABIStackAlignInBytes = 4;
7475   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
7476   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
7477                                  /*Realign=*/TypeAlign >
7478                                      MinABIStackAlignInBytes);
7479 }
7480 
7481 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty,
7482                                               CCState &State) const {
7483   // Check with the C++ ABI first.
7484   const RecordType *RT = Ty->getAs<RecordType>();
7485   if (RT) {
7486     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
7487     if (RAA == CGCXXABI::RAA_Indirect) {
7488       return getIndirectResult(Ty, /*ByVal=*/false, State);
7489     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
7490       return getNaturalAlignIndirect(Ty, /*ByRef=*/true);
7491     }
7492   }
7493 
7494   if (isAggregateTypeForABI(Ty)) {
7495     // Structures with flexible arrays are always indirect.
7496     if (RT && RT->getDecl()->hasFlexibleArrayMember())
7497       return getIndirectResult(Ty, /*ByVal=*/true, State);
7498 
7499     // Ignore empty structs/unions.
7500     if (isEmptyRecord(getContext(), Ty, true))
7501       return ABIArgInfo::getIgnore();
7502 
7503     llvm::LLVMContext &LLVMContext = getVMContext();
7504     unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
7505     if (SizeInRegs <= State.FreeRegs) {
7506       llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
7507       SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
7508       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
7509       State.FreeRegs -= SizeInRegs;
7510       return ABIArgInfo::getDirectInReg(Result);
7511     } else {
7512       State.FreeRegs = 0;
7513     }
7514     return getIndirectResult(Ty, true, State);
7515   }
7516 
7517   // Treat an enum type as its underlying type.
7518   if (const auto *EnumTy = Ty->getAs<EnumType>())
7519     Ty = EnumTy->getDecl()->getIntegerType();
7520 
7521   bool InReg = shouldUseInReg(Ty, State);
7522   if (Ty->isPromotableIntegerType()) {
7523     if (InReg)
7524       return ABIArgInfo::getDirectInReg();
7525     return ABIArgInfo::getExtend(Ty);
7526   }
7527   if (InReg)
7528     return ABIArgInfo::getDirectInReg();
7529   return ABIArgInfo::getDirect();
7530 }
7531 
7532 namespace {
7533 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo {
7534 public:
7535   LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
7536       : TargetCodeGenInfo(new LanaiABIInfo(CGT)) {}
7537 };
7538 }
7539 
7540 //===----------------------------------------------------------------------===//
7541 // AMDGPU ABI Implementation
7542 //===----------------------------------------------------------------------===//
7543 
7544 namespace {
7545 
7546 class AMDGPUABIInfo final : public DefaultABIInfo {
7547 private:
7548   static const unsigned MaxNumRegsForArgsRet = 16;
7549 
7550   unsigned numRegsForType(QualType Ty) const;
7551 
7552   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
7553   bool isHomogeneousAggregateSmallEnough(const Type *Base,
7554                                          uint64_t Members) const override;
7555 
7556 public:
7557   explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) :
7558     DefaultABIInfo(CGT) {}
7559 
7560   ABIArgInfo classifyReturnType(QualType RetTy) const;
7561   ABIArgInfo classifyKernelArgumentType(QualType Ty) const;
7562   ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const;
7563 
7564   void computeInfo(CGFunctionInfo &FI) const override;
7565 };
7566 
7567 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
7568   return true;
7569 }
7570 
7571 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough(
7572   const Type *Base, uint64_t Members) const {
7573   uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32;
7574 
7575   // Homogeneous Aggregates may occupy at most 16 registers.
7576   return Members * NumRegs <= MaxNumRegsForArgsRet;
7577 }
7578 
7579 /// Estimate number of registers the type will use when passed in registers.
7580 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const {
7581   unsigned NumRegs = 0;
7582 
7583   if (const VectorType *VT = Ty->getAs<VectorType>()) {
7584     // Compute from the number of elements. The reported size is based on the
7585     // in-memory size, which includes the padding 4th element for 3-vectors.
7586     QualType EltTy = VT->getElementType();
7587     unsigned EltSize = getContext().getTypeSize(EltTy);
7588 
7589     // 16-bit element vectors should be passed as packed.
7590     if (EltSize == 16)
7591       return (VT->getNumElements() + 1) / 2;
7592 
7593     unsigned EltNumRegs = (EltSize + 31) / 32;
7594     return EltNumRegs * VT->getNumElements();
7595   }
7596 
7597   if (const RecordType *RT = Ty->getAs<RecordType>()) {
7598     const RecordDecl *RD = RT->getDecl();
7599     assert(!RD->hasFlexibleArrayMember());
7600 
7601     for (const FieldDecl *Field : RD->fields()) {
7602       QualType FieldTy = Field->getType();
7603       NumRegs += numRegsForType(FieldTy);
7604     }
7605 
7606     return NumRegs;
7607   }
7608 
7609   return (getContext().getTypeSize(Ty) + 31) / 32;
7610 }
7611 
7612 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const {
7613   llvm::CallingConv::ID CC = FI.getCallingConvention();
7614 
7615   if (!getCXXABI().classifyReturnType(FI))
7616     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7617 
7618   unsigned NumRegsLeft = MaxNumRegsForArgsRet;
7619   for (auto &Arg : FI.arguments()) {
7620     if (CC == llvm::CallingConv::AMDGPU_KERNEL) {
7621       Arg.info = classifyKernelArgumentType(Arg.type);
7622     } else {
7623       Arg.info = classifyArgumentType(Arg.type, NumRegsLeft);
7624     }
7625   }
7626 }
7627 
7628 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const {
7629   if (isAggregateTypeForABI(RetTy)) {
7630     // Records with non-trivial destructors/copy-constructors should not be
7631     // returned by value.
7632     if (!getRecordArgABI(RetTy, getCXXABI())) {
7633       // Ignore empty structs/unions.
7634       if (isEmptyRecord(getContext(), RetTy, true))
7635         return ABIArgInfo::getIgnore();
7636 
7637       // Lower single-element structs to just return a regular value.
7638       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
7639         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
7640 
7641       if (const RecordType *RT = RetTy->getAs<RecordType>()) {
7642         const RecordDecl *RD = RT->getDecl();
7643         if (RD->hasFlexibleArrayMember())
7644           return DefaultABIInfo::classifyReturnType(RetTy);
7645       }
7646 
7647       // Pack aggregates <= 4 bytes into single VGPR or pair.
7648       uint64_t Size = getContext().getTypeSize(RetTy);
7649       if (Size <= 16)
7650         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
7651 
7652       if (Size <= 32)
7653         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
7654 
7655       if (Size <= 64) {
7656         llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
7657         return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
7658       }
7659 
7660       if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet)
7661         return ABIArgInfo::getDirect();
7662     }
7663   }
7664 
7665   // Otherwise just do the default thing.
7666   return DefaultABIInfo::classifyReturnType(RetTy);
7667 }
7668 
7669 /// For kernels all parameters are really passed in a special buffer. It doesn't
7670 /// make sense to pass anything byval, so everything must be direct.
7671 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const {
7672   Ty = useFirstFieldIfTransparentUnion(Ty);
7673 
7674   // TODO: Can we omit empty structs?
7675 
7676   // Coerce single element structs to its element.
7677   if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
7678     return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
7679 
7680   // If we set CanBeFlattened to true, CodeGen will expand the struct to its
7681   // individual elements, which confuses the Clover OpenCL backend; therefore we
7682   // have to set it to false here. Other args of getDirect() are just defaults.
7683   return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
7684 }
7685 
7686 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty,
7687                                                unsigned &NumRegsLeft) const {
7688   assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow");
7689 
7690   Ty = useFirstFieldIfTransparentUnion(Ty);
7691 
7692   if (isAggregateTypeForABI(Ty)) {
7693     // Records with non-trivial destructors/copy-constructors should not be
7694     // passed by value.
7695     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
7696       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7697 
7698     // Ignore empty structs/unions.
7699     if (isEmptyRecord(getContext(), Ty, true))
7700       return ABIArgInfo::getIgnore();
7701 
7702     // Lower single-element structs to just pass a regular value. TODO: We
7703     // could do reasonable-size multiple-element structs too, using getExpand(),
7704     // though watch out for things like bitfields.
7705     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
7706       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
7707 
7708     if (const RecordType *RT = Ty->getAs<RecordType>()) {
7709       const RecordDecl *RD = RT->getDecl();
7710       if (RD->hasFlexibleArrayMember())
7711         return DefaultABIInfo::classifyArgumentType(Ty);
7712     }
7713 
7714     // Pack aggregates <= 8 bytes into single VGPR or pair.
7715     uint64_t Size = getContext().getTypeSize(Ty);
7716     if (Size <= 64) {
7717       unsigned NumRegs = (Size + 31) / 32;
7718       NumRegsLeft -= std::min(NumRegsLeft, NumRegs);
7719 
7720       if (Size <= 16)
7721         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
7722 
7723       if (Size <= 32)
7724         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
7725 
7726       // XXX: Should this be i64 instead, and should the limit increase?
7727       llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
7728       return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
7729     }
7730 
7731     if (NumRegsLeft > 0) {
7732       unsigned NumRegs = numRegsForType(Ty);
7733       if (NumRegsLeft >= NumRegs) {
7734         NumRegsLeft -= NumRegs;
7735         return ABIArgInfo::getDirect();
7736       }
7737     }
7738   }
7739 
7740   // Otherwise just do the default thing.
7741   ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty);
7742   if (!ArgInfo.isIndirect()) {
7743     unsigned NumRegs = numRegsForType(Ty);
7744     NumRegsLeft -= std::min(NumRegs, NumRegsLeft);
7745   }
7746 
7747   return ArgInfo;
7748 }
7749 
7750 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
7751 public:
7752   AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
7753     : TargetCodeGenInfo(new AMDGPUABIInfo(CGT)) {}
7754   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7755                            CodeGen::CodeGenModule &M) const override;
7756   unsigned getOpenCLKernelCallingConv() const override;
7757 
7758   llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM,
7759       llvm::PointerType *T, QualType QT) const override;
7760 
7761   LangAS getASTAllocaAddressSpace() const override {
7762     return getLangASFromTargetAS(
7763         getABIInfo().getDataLayout().getAllocaAddrSpace());
7764   }
7765   LangAS getGlobalVarAddressSpace(CodeGenModule &CGM,
7766                                   const VarDecl *D) const override;
7767   llvm::SyncScope::ID getLLVMSyncScopeID(SyncScope S,
7768                                          llvm::LLVMContext &C) const override;
7769   llvm::Function *
7770   createEnqueuedBlockKernel(CodeGenFunction &CGF,
7771                             llvm::Function *BlockInvokeFunc,
7772                             llvm::Value *BlockLiteral) const override;
7773   bool shouldEmitStaticExternCAliases() const override;
7774   void setCUDAKernelCallingConvention(const FunctionType *&FT) const override;
7775 };
7776 }
7777 
7778 void AMDGPUTargetCodeGenInfo::setTargetAttributes(
7779     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
7780   if (GV->isDeclaration())
7781     return;
7782   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7783   if (!FD)
7784     return;
7785 
7786   llvm::Function *F = cast<llvm::Function>(GV);
7787 
7788   const auto *ReqdWGS = M.getLangOpts().OpenCL ?
7789     FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr;
7790 
7791   if (M.getLangOpts().OpenCL && FD->hasAttr<OpenCLKernelAttr>() &&
7792       (M.getTriple().getOS() == llvm::Triple::AMDHSA))
7793     F->addFnAttr("amdgpu-implicitarg-num-bytes", "48");
7794 
7795   const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>();
7796   if (ReqdWGS || FlatWGS) {
7797     unsigned Min = FlatWGS ? FlatWGS->getMin() : 0;
7798     unsigned Max = FlatWGS ? FlatWGS->getMax() : 0;
7799     if (ReqdWGS && Min == 0 && Max == 0)
7800       Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim();
7801 
7802     if (Min != 0) {
7803       assert(Min <= Max && "Min must be less than or equal Max");
7804 
7805       std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max);
7806       F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
7807     } else
7808       assert(Max == 0 && "Max must be zero");
7809   }
7810 
7811   if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) {
7812     unsigned Min = Attr->getMin();
7813     unsigned Max = Attr->getMax();
7814 
7815     if (Min != 0) {
7816       assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max");
7817 
7818       std::string AttrVal = llvm::utostr(Min);
7819       if (Max != 0)
7820         AttrVal = AttrVal + "," + llvm::utostr(Max);
7821       F->addFnAttr("amdgpu-waves-per-eu", AttrVal);
7822     } else
7823       assert(Max == 0 && "Max must be zero");
7824   }
7825 
7826   if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
7827     unsigned NumSGPR = Attr->getNumSGPR();
7828 
7829     if (NumSGPR != 0)
7830       F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR));
7831   }
7832 
7833   if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
7834     uint32_t NumVGPR = Attr->getNumVGPR();
7835 
7836     if (NumVGPR != 0)
7837       F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR));
7838   }
7839 }
7840 
7841 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
7842   return llvm::CallingConv::AMDGPU_KERNEL;
7843 }
7844 
7845 // Currently LLVM assumes null pointers always have value 0,
7846 // which results in incorrectly transformed IR. Therefore, instead of
7847 // emitting null pointers in private and local address spaces, a null
7848 // pointer in generic address space is emitted which is casted to a
7849 // pointer in local or private address space.
7850 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer(
7851     const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT,
7852     QualType QT) const {
7853   if (CGM.getContext().getTargetNullPointerValue(QT) == 0)
7854     return llvm::ConstantPointerNull::get(PT);
7855 
7856   auto &Ctx = CGM.getContext();
7857   auto NPT = llvm::PointerType::get(PT->getElementType(),
7858       Ctx.getTargetAddressSpace(LangAS::opencl_generic));
7859   return llvm::ConstantExpr::getAddrSpaceCast(
7860       llvm::ConstantPointerNull::get(NPT), PT);
7861 }
7862 
7863 LangAS
7864 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
7865                                                   const VarDecl *D) const {
7866   assert(!CGM.getLangOpts().OpenCL &&
7867          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
7868          "Address space agnostic languages only");
7869   LangAS DefaultGlobalAS = getLangASFromTargetAS(
7870       CGM.getContext().getTargetAddressSpace(LangAS::opencl_global));
7871   if (!D)
7872     return DefaultGlobalAS;
7873 
7874   LangAS AddrSpace = D->getType().getAddressSpace();
7875   assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace));
7876   if (AddrSpace != LangAS::Default)
7877     return AddrSpace;
7878 
7879   if (CGM.isTypeConstant(D->getType(), false)) {
7880     if (auto ConstAS = CGM.getTarget().getConstantAddressSpace())
7881       return ConstAS.getValue();
7882   }
7883   return DefaultGlobalAS;
7884 }
7885 
7886 llvm::SyncScope::ID
7887 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(SyncScope S,
7888                                             llvm::LLVMContext &C) const {
7889   StringRef Name;
7890   switch (S) {
7891   case SyncScope::OpenCLWorkGroup:
7892     Name = "workgroup";
7893     break;
7894   case SyncScope::OpenCLDevice:
7895     Name = "agent";
7896     break;
7897   case SyncScope::OpenCLAllSVMDevices:
7898     Name = "";
7899     break;
7900   case SyncScope::OpenCLSubGroup:
7901     Name = "subgroup";
7902   }
7903   return C.getOrInsertSyncScopeID(Name);
7904 }
7905 
7906 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
7907   return false;
7908 }
7909 
7910 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention(
7911     const FunctionType *&FT) const {
7912   FT = getABIInfo().getContext().adjustFunctionType(
7913       FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel));
7914 }
7915 
7916 //===----------------------------------------------------------------------===//
7917 // SPARC v8 ABI Implementation.
7918 // Based on the SPARC Compliance Definition version 2.4.1.
7919 //
7920 // Ensures that complex values are passed in registers.
7921 //
7922 namespace {
7923 class SparcV8ABIInfo : public DefaultABIInfo {
7924 public:
7925   SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
7926 
7927 private:
7928   ABIArgInfo classifyReturnType(QualType RetTy) const;
7929   void computeInfo(CGFunctionInfo &FI) const override;
7930 };
7931 } // end anonymous namespace
7932 
7933 
7934 ABIArgInfo
7935 SparcV8ABIInfo::classifyReturnType(QualType Ty) const {
7936   if (Ty->isAnyComplexType()) {
7937     return ABIArgInfo::getDirect();
7938   }
7939   else {
7940     return DefaultABIInfo::classifyReturnType(Ty);
7941   }
7942 }
7943 
7944 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const {
7945 
7946   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7947   for (auto &Arg : FI.arguments())
7948     Arg.info = classifyArgumentType(Arg.type);
7949 }
7950 
7951 namespace {
7952 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo {
7953 public:
7954   SparcV8TargetCodeGenInfo(CodeGenTypes &CGT)
7955     : TargetCodeGenInfo(new SparcV8ABIInfo(CGT)) {}
7956 };
7957 } // end anonymous namespace
7958 
7959 //===----------------------------------------------------------------------===//
7960 // SPARC v9 ABI Implementation.
7961 // Based on the SPARC Compliance Definition version 2.4.1.
7962 //
7963 // Function arguments a mapped to a nominal "parameter array" and promoted to
7964 // registers depending on their type. Each argument occupies 8 or 16 bytes in
7965 // the array, structs larger than 16 bytes are passed indirectly.
7966 //
7967 // One case requires special care:
7968 //
7969 //   struct mixed {
7970 //     int i;
7971 //     float f;
7972 //   };
7973 //
7974 // When a struct mixed is passed by value, it only occupies 8 bytes in the
7975 // parameter array, but the int is passed in an integer register, and the float
7976 // is passed in a floating point register. This is represented as two arguments
7977 // with the LLVM IR inreg attribute:
7978 //
7979 //   declare void f(i32 inreg %i, float inreg %f)
7980 //
7981 // The code generator will only allocate 4 bytes from the parameter array for
7982 // the inreg arguments. All other arguments are allocated a multiple of 8
7983 // bytes.
7984 //
7985 namespace {
7986 class SparcV9ABIInfo : public ABIInfo {
7987 public:
7988   SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
7989 
7990 private:
7991   ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
7992   void computeInfo(CGFunctionInfo &FI) const override;
7993   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7994                     QualType Ty) const override;
7995 
7996   // Coercion type builder for structs passed in registers. The coercion type
7997   // serves two purposes:
7998   //
7999   // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
8000   //    in registers.
8001   // 2. Expose aligned floating point elements as first-level elements, so the
8002   //    code generator knows to pass them in floating point registers.
8003   //
8004   // We also compute the InReg flag which indicates that the struct contains
8005   // aligned 32-bit floats.
8006   //
8007   struct CoerceBuilder {
8008     llvm::LLVMContext &Context;
8009     const llvm::DataLayout &DL;
8010     SmallVector<llvm::Type*, 8> Elems;
8011     uint64_t Size;
8012     bool InReg;
8013 
8014     CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
8015       : Context(c), DL(dl), Size(0), InReg(false) {}
8016 
8017     // Pad Elems with integers until Size is ToSize.
8018     void pad(uint64_t ToSize) {
8019       assert(ToSize >= Size && "Cannot remove elements");
8020       if (ToSize == Size)
8021         return;
8022 
8023       // Finish the current 64-bit word.
8024       uint64_t Aligned = llvm::alignTo(Size, 64);
8025       if (Aligned > Size && Aligned <= ToSize) {
8026         Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
8027         Size = Aligned;
8028       }
8029 
8030       // Add whole 64-bit words.
8031       while (Size + 64 <= ToSize) {
8032         Elems.push_back(llvm::Type::getInt64Ty(Context));
8033         Size += 64;
8034       }
8035 
8036       // Final in-word padding.
8037       if (Size < ToSize) {
8038         Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
8039         Size = ToSize;
8040       }
8041     }
8042 
8043     // Add a floating point element at Offset.
8044     void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
8045       // Unaligned floats are treated as integers.
8046       if (Offset % Bits)
8047         return;
8048       // The InReg flag is only required if there are any floats < 64 bits.
8049       if (Bits < 64)
8050         InReg = true;
8051       pad(Offset);
8052       Elems.push_back(Ty);
8053       Size = Offset + Bits;
8054     }
8055 
8056     // Add a struct type to the coercion type, starting at Offset (in bits).
8057     void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
8058       const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
8059       for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
8060         llvm::Type *ElemTy = StrTy->getElementType(i);
8061         uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
8062         switch (ElemTy->getTypeID()) {
8063         case llvm::Type::StructTyID:
8064           addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
8065           break;
8066         case llvm::Type::FloatTyID:
8067           addFloat(ElemOffset, ElemTy, 32);
8068           break;
8069         case llvm::Type::DoubleTyID:
8070           addFloat(ElemOffset, ElemTy, 64);
8071           break;
8072         case llvm::Type::FP128TyID:
8073           addFloat(ElemOffset, ElemTy, 128);
8074           break;
8075         case llvm::Type::PointerTyID:
8076           if (ElemOffset % 64 == 0) {
8077             pad(ElemOffset);
8078             Elems.push_back(ElemTy);
8079             Size += 64;
8080           }
8081           break;
8082         default:
8083           break;
8084         }
8085       }
8086     }
8087 
8088     // Check if Ty is a usable substitute for the coercion type.
8089     bool isUsableType(llvm::StructType *Ty) const {
8090       return llvm::makeArrayRef(Elems) == Ty->elements();
8091     }
8092 
8093     // Get the coercion type as a literal struct type.
8094     llvm::Type *getType() const {
8095       if (Elems.size() == 1)
8096         return Elems.front();
8097       else
8098         return llvm::StructType::get(Context, Elems);
8099     }
8100   };
8101 };
8102 } // end anonymous namespace
8103 
8104 ABIArgInfo
8105 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
8106   if (Ty->isVoidType())
8107     return ABIArgInfo::getIgnore();
8108 
8109   uint64_t Size = getContext().getTypeSize(Ty);
8110 
8111   // Anything too big to fit in registers is passed with an explicit indirect
8112   // pointer / sret pointer.
8113   if (Size > SizeLimit)
8114     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
8115 
8116   // Treat an enum type as its underlying type.
8117   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
8118     Ty = EnumTy->getDecl()->getIntegerType();
8119 
8120   // Integer types smaller than a register are extended.
8121   if (Size < 64 && Ty->isIntegerType())
8122     return ABIArgInfo::getExtend(Ty);
8123 
8124   // Other non-aggregates go in registers.
8125   if (!isAggregateTypeForABI(Ty))
8126     return ABIArgInfo::getDirect();
8127 
8128   // If a C++ object has either a non-trivial copy constructor or a non-trivial
8129   // destructor, it is passed with an explicit indirect pointer / sret pointer.
8130   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
8131     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
8132 
8133   // This is a small aggregate type that should be passed in registers.
8134   // Build a coercion type from the LLVM struct type.
8135   llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
8136   if (!StrTy)
8137     return ABIArgInfo::getDirect();
8138 
8139   CoerceBuilder CB(getVMContext(), getDataLayout());
8140   CB.addStruct(0, StrTy);
8141   CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64));
8142 
8143   // Try to use the original type for coercion.
8144   llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
8145 
8146   if (CB.InReg)
8147     return ABIArgInfo::getDirectInReg(CoerceTy);
8148   else
8149     return ABIArgInfo::getDirect(CoerceTy);
8150 }
8151 
8152 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8153                                   QualType Ty) const {
8154   ABIArgInfo AI = classifyType(Ty, 16 * 8);
8155   llvm::Type *ArgTy = CGT.ConvertType(Ty);
8156   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
8157     AI.setCoerceToType(ArgTy);
8158 
8159   CharUnits SlotSize = CharUnits::fromQuantity(8);
8160 
8161   CGBuilderTy &Builder = CGF.Builder;
8162   Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
8163   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
8164 
8165   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
8166 
8167   Address ArgAddr = Address::invalid();
8168   CharUnits Stride;
8169   switch (AI.getKind()) {
8170   case ABIArgInfo::Expand:
8171   case ABIArgInfo::CoerceAndExpand:
8172   case ABIArgInfo::InAlloca:
8173     llvm_unreachable("Unsupported ABI kind for va_arg");
8174 
8175   case ABIArgInfo::Extend: {
8176     Stride = SlotSize;
8177     CharUnits Offset = SlotSize - TypeInfo.first;
8178     ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend");
8179     break;
8180   }
8181 
8182   case ABIArgInfo::Direct: {
8183     auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
8184     Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize);
8185     ArgAddr = Addr;
8186     break;
8187   }
8188 
8189   case ABIArgInfo::Indirect:
8190     Stride = SlotSize;
8191     ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect");
8192     ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"),
8193                       TypeInfo.second);
8194     break;
8195 
8196   case ABIArgInfo::Ignore:
8197     return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second);
8198   }
8199 
8200   // Update VAList.
8201   llvm::Value *NextPtr =
8202     Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), Stride, "ap.next");
8203   Builder.CreateStore(NextPtr, VAListAddr);
8204 
8205   return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr");
8206 }
8207 
8208 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
8209   FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
8210   for (auto &I : FI.arguments())
8211     I.info = classifyType(I.type, 16 * 8);
8212 }
8213 
8214 namespace {
8215 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
8216 public:
8217   SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
8218     : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {}
8219 
8220   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
8221     return 14;
8222   }
8223 
8224   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
8225                                llvm::Value *Address) const override;
8226 };
8227 } // end anonymous namespace
8228 
8229 bool
8230 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
8231                                                 llvm::Value *Address) const {
8232   // This is calculated from the LLVM and GCC tables and verified
8233   // against gcc output.  AFAIK all ABIs use the same encoding.
8234 
8235   CodeGen::CGBuilderTy &Builder = CGF.Builder;
8236 
8237   llvm::IntegerType *i8 = CGF.Int8Ty;
8238   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
8239   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
8240 
8241   // 0-31: the 8-byte general-purpose registers
8242   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
8243 
8244   // 32-63: f0-31, the 4-byte floating-point registers
8245   AssignToArrayRange(Builder, Address, Four8, 32, 63);
8246 
8247   //   Y   = 64
8248   //   PSR = 65
8249   //   WIM = 66
8250   //   TBR = 67
8251   //   PC  = 68
8252   //   NPC = 69
8253   //   FSR = 70
8254   //   CSR = 71
8255   AssignToArrayRange(Builder, Address, Eight8, 64, 71);
8256 
8257   // 72-87: d0-15, the 8-byte floating-point registers
8258   AssignToArrayRange(Builder, Address, Eight8, 72, 87);
8259 
8260   return false;
8261 }
8262 
8263 // ARC ABI implementation.
8264 namespace {
8265 
8266 class ARCABIInfo : public DefaultABIInfo {
8267 public:
8268   using DefaultABIInfo::DefaultABIInfo;
8269 
8270 private:
8271   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8272                     QualType Ty) const override;
8273 
8274   void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const {
8275     if (!State.FreeRegs)
8276       return;
8277     if (Info.isIndirect() && Info.getInReg())
8278       State.FreeRegs--;
8279     else if (Info.isDirect() && Info.getInReg()) {
8280       unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32;
8281       if (sz < State.FreeRegs)
8282         State.FreeRegs -= sz;
8283       else
8284         State.FreeRegs = 0;
8285     }
8286   }
8287 
8288   void computeInfo(CGFunctionInfo &FI) const override {
8289     CCState State(FI.getCallingConvention());
8290     // ARC uses 8 registers to pass arguments.
8291     State.FreeRegs = 8;
8292 
8293     if (!getCXXABI().classifyReturnType(FI))
8294       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8295     updateState(FI.getReturnInfo(), FI.getReturnType(), State);
8296     for (auto &I : FI.arguments()) {
8297       I.info = classifyArgumentType(I.type, State.FreeRegs);
8298       updateState(I.info, I.type, State);
8299     }
8300   }
8301 
8302   ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const;
8303   ABIArgInfo getIndirectByValue(QualType Ty) const;
8304   ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const;
8305   ABIArgInfo classifyReturnType(QualType RetTy) const;
8306 };
8307 
8308 class ARCTargetCodeGenInfo : public TargetCodeGenInfo {
8309 public:
8310   ARCTargetCodeGenInfo(CodeGenTypes &CGT)
8311       : TargetCodeGenInfo(new ARCABIInfo(CGT)) {}
8312 };
8313 
8314 
8315 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const {
8316   return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) :
8317                        getNaturalAlignIndirect(Ty, false);
8318 }
8319 
8320 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const {
8321   // Compute the byval alignment.
8322   const unsigned MinABIStackAlignInBytes = 4;
8323   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
8324   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
8325                                  TypeAlign > MinABIStackAlignInBytes);
8326 }
8327 
8328 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8329                               QualType Ty) const {
8330   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
8331                           getContext().getTypeInfoInChars(Ty),
8332                           CharUnits::fromQuantity(4), true);
8333 }
8334 
8335 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty,
8336                                             uint8_t FreeRegs) const {
8337   // Handle the generic C++ ABI.
8338   const RecordType *RT = Ty->getAs<RecordType>();
8339   if (RT) {
8340     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
8341     if (RAA == CGCXXABI::RAA_Indirect)
8342       return getIndirectByRef(Ty, FreeRegs > 0);
8343 
8344     if (RAA == CGCXXABI::RAA_DirectInMemory)
8345       return getIndirectByValue(Ty);
8346   }
8347 
8348   // Treat an enum type as its underlying type.
8349   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
8350     Ty = EnumTy->getDecl()->getIntegerType();
8351 
8352   auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32;
8353 
8354   if (isAggregateTypeForABI(Ty)) {
8355     // Structures with flexible arrays are always indirect.
8356     if (RT && RT->getDecl()->hasFlexibleArrayMember())
8357       return getIndirectByValue(Ty);
8358 
8359     // Ignore empty structs/unions.
8360     if (isEmptyRecord(getContext(), Ty, true))
8361       return ABIArgInfo::getIgnore();
8362 
8363     llvm::LLVMContext &LLVMContext = getVMContext();
8364 
8365     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
8366     SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
8367     llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
8368 
8369     return FreeRegs >= SizeInRegs ?
8370         ABIArgInfo::getDirectInReg(Result) :
8371         ABIArgInfo::getDirect(Result, 0, nullptr, false);
8372   }
8373 
8374   return Ty->isPromotableIntegerType() ?
8375       (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty) :
8376                                 ABIArgInfo::getExtend(Ty)) :
8377       (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg() :
8378                                 ABIArgInfo::getDirect());
8379 }
8380 
8381 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const {
8382   if (RetTy->isAnyComplexType())
8383     return ABIArgInfo::getDirectInReg();
8384 
8385   // Arguments of size > 4 registers are indirect.
8386   auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32;
8387   if (RetSize > 4)
8388     return getIndirectByRef(RetTy, /*HasFreeRegs*/ true);
8389 
8390   return DefaultABIInfo::classifyReturnType(RetTy);
8391 }
8392 
8393 } // End anonymous namespace.
8394 
8395 //===----------------------------------------------------------------------===//
8396 // XCore ABI Implementation
8397 //===----------------------------------------------------------------------===//
8398 
8399 namespace {
8400 
8401 /// A SmallStringEnc instance is used to build up the TypeString by passing
8402 /// it by reference between functions that append to it.
8403 typedef llvm::SmallString<128> SmallStringEnc;
8404 
8405 /// TypeStringCache caches the meta encodings of Types.
8406 ///
8407 /// The reason for caching TypeStrings is two fold:
8408 ///   1. To cache a type's encoding for later uses;
8409 ///   2. As a means to break recursive member type inclusion.
8410 ///
8411 /// A cache Entry can have a Status of:
8412 ///   NonRecursive:   The type encoding is not recursive;
8413 ///   Recursive:      The type encoding is recursive;
8414 ///   Incomplete:     An incomplete TypeString;
8415 ///   IncompleteUsed: An incomplete TypeString that has been used in a
8416 ///                   Recursive type encoding.
8417 ///
8418 /// A NonRecursive entry will have all of its sub-members expanded as fully
8419 /// as possible. Whilst it may contain types which are recursive, the type
8420 /// itself is not recursive and thus its encoding may be safely used whenever
8421 /// the type is encountered.
8422 ///
8423 /// A Recursive entry will have all of its sub-members expanded as fully as
8424 /// possible. The type itself is recursive and it may contain other types which
8425 /// are recursive. The Recursive encoding must not be used during the expansion
8426 /// of a recursive type's recursive branch. For simplicity the code uses
8427 /// IncompleteCount to reject all usage of Recursive encodings for member types.
8428 ///
8429 /// An Incomplete entry is always a RecordType and only encodes its
8430 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
8431 /// are placed into the cache during type expansion as a means to identify and
8432 /// handle recursive inclusion of types as sub-members. If there is recursion
8433 /// the entry becomes IncompleteUsed.
8434 ///
8435 /// During the expansion of a RecordType's members:
8436 ///
8437 ///   If the cache contains a NonRecursive encoding for the member type, the
8438 ///   cached encoding is used;
8439 ///
8440 ///   If the cache contains a Recursive encoding for the member type, the
8441 ///   cached encoding is 'Swapped' out, as it may be incorrect, and...
8442 ///
8443 ///   If the member is a RecordType, an Incomplete encoding is placed into the
8444 ///   cache to break potential recursive inclusion of itself as a sub-member;
8445 ///
8446 ///   Once a member RecordType has been expanded, its temporary incomplete
8447 ///   entry is removed from the cache. If a Recursive encoding was swapped out
8448 ///   it is swapped back in;
8449 ///
8450 ///   If an incomplete entry is used to expand a sub-member, the incomplete
8451 ///   entry is marked as IncompleteUsed. The cache keeps count of how many
8452 ///   IncompleteUsed entries it currently contains in IncompleteUsedCount;
8453 ///
8454 ///   If a member's encoding is found to be a NonRecursive or Recursive viz:
8455 ///   IncompleteUsedCount==0, the member's encoding is added to the cache.
8456 ///   Else the member is part of a recursive type and thus the recursion has
8457 ///   been exited too soon for the encoding to be correct for the member.
8458 ///
8459 class TypeStringCache {
8460   enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
8461   struct Entry {
8462     std::string Str;     // The encoded TypeString for the type.
8463     enum Status State;   // Information about the encoding in 'Str'.
8464     std::string Swapped; // A temporary place holder for a Recursive encoding
8465                          // during the expansion of RecordType's members.
8466   };
8467   std::map<const IdentifierInfo *, struct Entry> Map;
8468   unsigned IncompleteCount;     // Number of Incomplete entries in the Map.
8469   unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
8470 public:
8471   TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}
8472   void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
8473   bool removeIncomplete(const IdentifierInfo *ID);
8474   void addIfComplete(const IdentifierInfo *ID, StringRef Str,
8475                      bool IsRecursive);
8476   StringRef lookupStr(const IdentifierInfo *ID);
8477 };
8478 
8479 /// TypeString encodings for enum & union fields must be order.
8480 /// FieldEncoding is a helper for this ordering process.
8481 class FieldEncoding {
8482   bool HasName;
8483   std::string Enc;
8484 public:
8485   FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}
8486   StringRef str() { return Enc; }
8487   bool operator<(const FieldEncoding &rhs) const {
8488     if (HasName != rhs.HasName) return HasName;
8489     return Enc < rhs.Enc;
8490   }
8491 };
8492 
8493 class XCoreABIInfo : public DefaultABIInfo {
8494 public:
8495   XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
8496   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8497                     QualType Ty) const override;
8498 };
8499 
8500 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
8501   mutable TypeStringCache TSC;
8502 public:
8503   XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
8504     :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {}
8505   void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
8506                     CodeGen::CodeGenModule &M) const override;
8507 };
8508 
8509 } // End anonymous namespace.
8510 
8511 // TODO: this implementation is likely now redundant with the default
8512 // EmitVAArg.
8513 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8514                                 QualType Ty) const {
8515   CGBuilderTy &Builder = CGF.Builder;
8516 
8517   // Get the VAList.
8518   CharUnits SlotSize = CharUnits::fromQuantity(4);
8519   Address AP(Builder.CreateLoad(VAListAddr), SlotSize);
8520 
8521   // Handle the argument.
8522   ABIArgInfo AI = classifyArgumentType(Ty);
8523   CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty);
8524   llvm::Type *ArgTy = CGT.ConvertType(Ty);
8525   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
8526     AI.setCoerceToType(ArgTy);
8527   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
8528 
8529   Address Val = Address::invalid();
8530   CharUnits ArgSize = CharUnits::Zero();
8531   switch (AI.getKind()) {
8532   case ABIArgInfo::Expand:
8533   case ABIArgInfo::CoerceAndExpand:
8534   case ABIArgInfo::InAlloca:
8535     llvm_unreachable("Unsupported ABI kind for va_arg");
8536   case ABIArgInfo::Ignore:
8537     Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign);
8538     ArgSize = CharUnits::Zero();
8539     break;
8540   case ABIArgInfo::Extend:
8541   case ABIArgInfo::Direct:
8542     Val = Builder.CreateBitCast(AP, ArgPtrTy);
8543     ArgSize = CharUnits::fromQuantity(
8544                        getDataLayout().getTypeAllocSize(AI.getCoerceToType()));
8545     ArgSize = ArgSize.alignTo(SlotSize);
8546     break;
8547   case ABIArgInfo::Indirect:
8548     Val = Builder.CreateElementBitCast(AP, ArgPtrTy);
8549     Val = Address(Builder.CreateLoad(Val), TypeAlign);
8550     ArgSize = SlotSize;
8551     break;
8552   }
8553 
8554   // Increment the VAList.
8555   if (!ArgSize.isZero()) {
8556     llvm::Value *APN =
8557       Builder.CreateConstInBoundsByteGEP(AP.getPointer(), ArgSize);
8558     Builder.CreateStore(APN, VAListAddr);
8559   }
8560 
8561   return Val;
8562 }
8563 
8564 /// During the expansion of a RecordType, an incomplete TypeString is placed
8565 /// into the cache as a means to identify and break recursion.
8566 /// If there is a Recursive encoding in the cache, it is swapped out and will
8567 /// be reinserted by removeIncomplete().
8568 /// All other types of encoding should have been used rather than arriving here.
8569 void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
8570                                     std::string StubEnc) {
8571   if (!ID)
8572     return;
8573   Entry &E = Map[ID];
8574   assert( (E.Str.empty() || E.State == Recursive) &&
8575          "Incorrectly use of addIncomplete");
8576   assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
8577   E.Swapped.swap(E.Str); // swap out the Recursive
8578   E.Str.swap(StubEnc);
8579   E.State = Incomplete;
8580   ++IncompleteCount;
8581 }
8582 
8583 /// Once the RecordType has been expanded, the temporary incomplete TypeString
8584 /// must be removed from the cache.
8585 /// If a Recursive was swapped out by addIncomplete(), it will be replaced.
8586 /// Returns true if the RecordType was defined recursively.
8587 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
8588   if (!ID)
8589     return false;
8590   auto I = Map.find(ID);
8591   assert(I != Map.end() && "Entry not present");
8592   Entry &E = I->second;
8593   assert( (E.State == Incomplete ||
8594            E.State == IncompleteUsed) &&
8595          "Entry must be an incomplete type");
8596   bool IsRecursive = false;
8597   if (E.State == IncompleteUsed) {
8598     // We made use of our Incomplete encoding, thus we are recursive.
8599     IsRecursive = true;
8600     --IncompleteUsedCount;
8601   }
8602   if (E.Swapped.empty())
8603     Map.erase(I);
8604   else {
8605     // Swap the Recursive back.
8606     E.Swapped.swap(E.Str);
8607     E.Swapped.clear();
8608     E.State = Recursive;
8609   }
8610   --IncompleteCount;
8611   return IsRecursive;
8612 }
8613 
8614 /// Add the encoded TypeString to the cache only if it is NonRecursive or
8615 /// Recursive (viz: all sub-members were expanded as fully as possible).
8616 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
8617                                     bool IsRecursive) {
8618   if (!ID || IncompleteUsedCount)
8619     return; // No key or it is is an incomplete sub-type so don't add.
8620   Entry &E = Map[ID];
8621   if (IsRecursive && !E.Str.empty()) {
8622     assert(E.State==Recursive && E.Str.size() == Str.size() &&
8623            "This is not the same Recursive entry");
8624     // The parent container was not recursive after all, so we could have used
8625     // this Recursive sub-member entry after all, but we assumed the worse when
8626     // we started viz: IncompleteCount!=0.
8627     return;
8628   }
8629   assert(E.Str.empty() && "Entry already present");
8630   E.Str = Str.str();
8631   E.State = IsRecursive? Recursive : NonRecursive;
8632 }
8633 
8634 /// Return a cached TypeString encoding for the ID. If there isn't one, or we
8635 /// are recursively expanding a type (IncompleteCount != 0) and the cached
8636 /// encoding is Recursive, return an empty StringRef.
8637 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
8638   if (!ID)
8639     return StringRef();   // We have no key.
8640   auto I = Map.find(ID);
8641   if (I == Map.end())
8642     return StringRef();   // We have no encoding.
8643   Entry &E = I->second;
8644   if (E.State == Recursive && IncompleteCount)
8645     return StringRef();   // We don't use Recursive encodings for member types.
8646 
8647   if (E.State == Incomplete) {
8648     // The incomplete type is being used to break out of recursion.
8649     E.State = IncompleteUsed;
8650     ++IncompleteUsedCount;
8651   }
8652   return E.Str;
8653 }
8654 
8655 /// The XCore ABI includes a type information section that communicates symbol
8656 /// type information to the linker. The linker uses this information to verify
8657 /// safety/correctness of things such as array bound and pointers et al.
8658 /// The ABI only requires C (and XC) language modules to emit TypeStrings.
8659 /// This type information (TypeString) is emitted into meta data for all global
8660 /// symbols: definitions, declarations, functions & variables.
8661 ///
8662 /// The TypeString carries type, qualifier, name, size & value details.
8663 /// Please see 'Tools Development Guide' section 2.16.2 for format details:
8664 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf
8665 /// The output is tested by test/CodeGen/xcore-stringtype.c.
8666 ///
8667 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
8668                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC);
8669 
8670 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
8671 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
8672                                           CodeGen::CodeGenModule &CGM) const {
8673   SmallStringEnc Enc;
8674   if (getTypeString(Enc, D, CGM, TSC)) {
8675     llvm::LLVMContext &Ctx = CGM.getModule().getContext();
8676     llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV),
8677                                 llvm::MDString::get(Ctx, Enc.str())};
8678     llvm::NamedMDNode *MD =
8679       CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
8680     MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
8681   }
8682 }
8683 
8684 //===----------------------------------------------------------------------===//
8685 // SPIR ABI Implementation
8686 //===----------------------------------------------------------------------===//
8687 
8688 namespace {
8689 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo {
8690 public:
8691   SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
8692     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
8693   unsigned getOpenCLKernelCallingConv() const override;
8694 };
8695 
8696 } // End anonymous namespace.
8697 
8698 namespace clang {
8699 namespace CodeGen {
8700 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) {
8701   DefaultABIInfo SPIRABI(CGM.getTypes());
8702   SPIRABI.computeInfo(FI);
8703 }
8704 }
8705 }
8706 
8707 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
8708   return llvm::CallingConv::SPIR_KERNEL;
8709 }
8710 
8711 static bool appendType(SmallStringEnc &Enc, QualType QType,
8712                        const CodeGen::CodeGenModule &CGM,
8713                        TypeStringCache &TSC);
8714 
8715 /// Helper function for appendRecordType().
8716 /// Builds a SmallVector containing the encoded field types in declaration
8717 /// order.
8718 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
8719                              const RecordDecl *RD,
8720                              const CodeGen::CodeGenModule &CGM,
8721                              TypeStringCache &TSC) {
8722   for (const auto *Field : RD->fields()) {
8723     SmallStringEnc Enc;
8724     Enc += "m(";
8725     Enc += Field->getName();
8726     Enc += "){";
8727     if (Field->isBitField()) {
8728       Enc += "b(";
8729       llvm::raw_svector_ostream OS(Enc);
8730       OS << Field->getBitWidthValue(CGM.getContext());
8731       Enc += ':';
8732     }
8733     if (!appendType(Enc, Field->getType(), CGM, TSC))
8734       return false;
8735     if (Field->isBitField())
8736       Enc += ')';
8737     Enc += '}';
8738     FE.emplace_back(!Field->getName().empty(), Enc);
8739   }
8740   return true;
8741 }
8742 
8743 /// Appends structure and union types to Enc and adds encoding to cache.
8744 /// Recursively calls appendType (via extractFieldType) for each field.
8745 /// Union types have their fields ordered according to the ABI.
8746 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
8747                              const CodeGen::CodeGenModule &CGM,
8748                              TypeStringCache &TSC, const IdentifierInfo *ID) {
8749   // Append the cached TypeString if we have one.
8750   StringRef TypeString = TSC.lookupStr(ID);
8751   if (!TypeString.empty()) {
8752     Enc += TypeString;
8753     return true;
8754   }
8755 
8756   // Start to emit an incomplete TypeString.
8757   size_t Start = Enc.size();
8758   Enc += (RT->isUnionType()? 'u' : 's');
8759   Enc += '(';
8760   if (ID)
8761     Enc += ID->getName();
8762   Enc += "){";
8763 
8764   // We collect all encoded fields and order as necessary.
8765   bool IsRecursive = false;
8766   const RecordDecl *RD = RT->getDecl()->getDefinition();
8767   if (RD && !RD->field_empty()) {
8768     // An incomplete TypeString stub is placed in the cache for this RecordType
8769     // so that recursive calls to this RecordType will use it whilst building a
8770     // complete TypeString for this RecordType.
8771     SmallVector<FieldEncoding, 16> FE;
8772     std::string StubEnc(Enc.substr(Start).str());
8773     StubEnc += '}';  // StubEnc now holds a valid incomplete TypeString.
8774     TSC.addIncomplete(ID, std::move(StubEnc));
8775     if (!extractFieldType(FE, RD, CGM, TSC)) {
8776       (void) TSC.removeIncomplete(ID);
8777       return false;
8778     }
8779     IsRecursive = TSC.removeIncomplete(ID);
8780     // The ABI requires unions to be sorted but not structures.
8781     // See FieldEncoding::operator< for sort algorithm.
8782     if (RT->isUnionType())
8783       llvm::sort(FE);
8784     // We can now complete the TypeString.
8785     unsigned E = FE.size();
8786     for (unsigned I = 0; I != E; ++I) {
8787       if (I)
8788         Enc += ',';
8789       Enc += FE[I].str();
8790     }
8791   }
8792   Enc += '}';
8793   TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
8794   return true;
8795 }
8796 
8797 /// Appends enum types to Enc and adds the encoding to the cache.
8798 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
8799                            TypeStringCache &TSC,
8800                            const IdentifierInfo *ID) {
8801   // Append the cached TypeString if we have one.
8802   StringRef TypeString = TSC.lookupStr(ID);
8803   if (!TypeString.empty()) {
8804     Enc += TypeString;
8805     return true;
8806   }
8807 
8808   size_t Start = Enc.size();
8809   Enc += "e(";
8810   if (ID)
8811     Enc += ID->getName();
8812   Enc += "){";
8813 
8814   // We collect all encoded enumerations and order them alphanumerically.
8815   if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
8816     SmallVector<FieldEncoding, 16> FE;
8817     for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
8818          ++I) {
8819       SmallStringEnc EnumEnc;
8820       EnumEnc += "m(";
8821       EnumEnc += I->getName();
8822       EnumEnc += "){";
8823       I->getInitVal().toString(EnumEnc);
8824       EnumEnc += '}';
8825       FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
8826     }
8827     llvm::sort(FE);
8828     unsigned E = FE.size();
8829     for (unsigned I = 0; I != E; ++I) {
8830       if (I)
8831         Enc += ',';
8832       Enc += FE[I].str();
8833     }
8834   }
8835   Enc += '}';
8836   TSC.addIfComplete(ID, Enc.substr(Start), false);
8837   return true;
8838 }
8839 
8840 /// Appends type's qualifier to Enc.
8841 /// This is done prior to appending the type's encoding.
8842 static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
8843   // Qualifiers are emitted in alphabetical order.
8844   static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"};
8845   int Lookup = 0;
8846   if (QT.isConstQualified())
8847     Lookup += 1<<0;
8848   if (QT.isRestrictQualified())
8849     Lookup += 1<<1;
8850   if (QT.isVolatileQualified())
8851     Lookup += 1<<2;
8852   Enc += Table[Lookup];
8853 }
8854 
8855 /// Appends built-in types to Enc.
8856 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
8857   const char *EncType;
8858   switch (BT->getKind()) {
8859     case BuiltinType::Void:
8860       EncType = "0";
8861       break;
8862     case BuiltinType::Bool:
8863       EncType = "b";
8864       break;
8865     case BuiltinType::Char_U:
8866       EncType = "uc";
8867       break;
8868     case BuiltinType::UChar:
8869       EncType = "uc";
8870       break;
8871     case BuiltinType::SChar:
8872       EncType = "sc";
8873       break;
8874     case BuiltinType::UShort:
8875       EncType = "us";
8876       break;
8877     case BuiltinType::Short:
8878       EncType = "ss";
8879       break;
8880     case BuiltinType::UInt:
8881       EncType = "ui";
8882       break;
8883     case BuiltinType::Int:
8884       EncType = "si";
8885       break;
8886     case BuiltinType::ULong:
8887       EncType = "ul";
8888       break;
8889     case BuiltinType::Long:
8890       EncType = "sl";
8891       break;
8892     case BuiltinType::ULongLong:
8893       EncType = "ull";
8894       break;
8895     case BuiltinType::LongLong:
8896       EncType = "sll";
8897       break;
8898     case BuiltinType::Float:
8899       EncType = "ft";
8900       break;
8901     case BuiltinType::Double:
8902       EncType = "d";
8903       break;
8904     case BuiltinType::LongDouble:
8905       EncType = "ld";
8906       break;
8907     default:
8908       return false;
8909   }
8910   Enc += EncType;
8911   return true;
8912 }
8913 
8914 /// Appends a pointer encoding to Enc before calling appendType for the pointee.
8915 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
8916                               const CodeGen::CodeGenModule &CGM,
8917                               TypeStringCache &TSC) {
8918   Enc += "p(";
8919   if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
8920     return false;
8921   Enc += ')';
8922   return true;
8923 }
8924 
8925 /// Appends array encoding to Enc before calling appendType for the element.
8926 static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
8927                             const ArrayType *AT,
8928                             const CodeGen::CodeGenModule &CGM,
8929                             TypeStringCache &TSC, StringRef NoSizeEnc) {
8930   if (AT->getSizeModifier() != ArrayType::Normal)
8931     return false;
8932   Enc += "a(";
8933   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
8934     CAT->getSize().toStringUnsigned(Enc);
8935   else
8936     Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
8937   Enc += ':';
8938   // The Qualifiers should be attached to the type rather than the array.
8939   appendQualifier(Enc, QT);
8940   if (!appendType(Enc, AT->getElementType(), CGM, TSC))
8941     return false;
8942   Enc += ')';
8943   return true;
8944 }
8945 
8946 /// Appends a function encoding to Enc, calling appendType for the return type
8947 /// and the arguments.
8948 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
8949                              const CodeGen::CodeGenModule &CGM,
8950                              TypeStringCache &TSC) {
8951   Enc += "f{";
8952   if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
8953     return false;
8954   Enc += "}(";
8955   if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
8956     // N.B. we are only interested in the adjusted param types.
8957     auto I = FPT->param_type_begin();
8958     auto E = FPT->param_type_end();
8959     if (I != E) {
8960       do {
8961         if (!appendType(Enc, *I, CGM, TSC))
8962           return false;
8963         ++I;
8964         if (I != E)
8965           Enc += ',';
8966       } while (I != E);
8967       if (FPT->isVariadic())
8968         Enc += ",va";
8969     } else {
8970       if (FPT->isVariadic())
8971         Enc += "va";
8972       else
8973         Enc += '0';
8974     }
8975   }
8976   Enc += ')';
8977   return true;
8978 }
8979 
8980 /// Handles the type's qualifier before dispatching a call to handle specific
8981 /// type encodings.
8982 static bool appendType(SmallStringEnc &Enc, QualType QType,
8983                        const CodeGen::CodeGenModule &CGM,
8984                        TypeStringCache &TSC) {
8985 
8986   QualType QT = QType.getCanonicalType();
8987 
8988   if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
8989     // The Qualifiers should be attached to the type rather than the array.
8990     // Thus we don't call appendQualifier() here.
8991     return appendArrayType(Enc, QT, AT, CGM, TSC, "");
8992 
8993   appendQualifier(Enc, QT);
8994 
8995   if (const BuiltinType *BT = QT->getAs<BuiltinType>())
8996     return appendBuiltinType(Enc, BT);
8997 
8998   if (const PointerType *PT = QT->getAs<PointerType>())
8999     return appendPointerType(Enc, PT, CGM, TSC);
9000 
9001   if (const EnumType *ET = QT->getAs<EnumType>())
9002     return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
9003 
9004   if (const RecordType *RT = QT->getAsStructureType())
9005     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
9006 
9007   if (const RecordType *RT = QT->getAsUnionType())
9008     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
9009 
9010   if (const FunctionType *FT = QT->getAs<FunctionType>())
9011     return appendFunctionType(Enc, FT, CGM, TSC);
9012 
9013   return false;
9014 }
9015 
9016 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
9017                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) {
9018   if (!D)
9019     return false;
9020 
9021   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
9022     if (FD->getLanguageLinkage() != CLanguageLinkage)
9023       return false;
9024     return appendType(Enc, FD->getType(), CGM, TSC);
9025   }
9026 
9027   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
9028     if (VD->getLanguageLinkage() != CLanguageLinkage)
9029       return false;
9030     QualType QT = VD->getType().getCanonicalType();
9031     if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
9032       // Global ArrayTypes are given a size of '*' if the size is unknown.
9033       // The Qualifiers should be attached to the type rather than the array.
9034       // Thus we don't call appendQualifier() here.
9035       return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
9036     }
9037     return appendType(Enc, QT, CGM, TSC);
9038   }
9039   return false;
9040 }
9041 
9042 //===----------------------------------------------------------------------===//
9043 // RISCV ABI Implementation
9044 //===----------------------------------------------------------------------===//
9045 
9046 namespace {
9047 class RISCVABIInfo : public DefaultABIInfo {
9048 private:
9049   unsigned XLen; // Size of the integer ('x') registers in bits.
9050   static const int NumArgGPRs = 8;
9051 
9052 public:
9053   RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen)
9054       : DefaultABIInfo(CGT), XLen(XLen) {}
9055 
9056   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
9057   // non-virtual, but computeInfo is virtual, so we overload it.
9058   void computeInfo(CGFunctionInfo &FI) const override;
9059 
9060   ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed,
9061                                   int &ArgGPRsLeft) const;
9062   ABIArgInfo classifyReturnType(QualType RetTy) const;
9063 
9064   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9065                     QualType Ty) const override;
9066 
9067   ABIArgInfo extendType(QualType Ty) const;
9068 };
9069 } // end anonymous namespace
9070 
9071 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const {
9072   QualType RetTy = FI.getReturnType();
9073   if (!getCXXABI().classifyReturnType(FI))
9074     FI.getReturnInfo() = classifyReturnType(RetTy);
9075 
9076   // IsRetIndirect is true if classifyArgumentType indicated the value should
9077   // be passed indirect or if the type size is greater than 2*xlen. e.g. fp128
9078   // is passed direct in LLVM IR, relying on the backend lowering code to
9079   // rewrite the argument list and pass indirectly on RV32.
9080   bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect ||
9081                        getContext().getTypeSize(RetTy) > (2 * XLen);
9082 
9083   // We must track the number of GPRs used in order to conform to the RISC-V
9084   // ABI, as integer scalars passed in registers should have signext/zeroext
9085   // when promoted, but are anyext if passed on the stack. As GPR usage is
9086   // different for variadic arguments, we must also track whether we are
9087   // examining a vararg or not.
9088   int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs;
9089   int NumFixedArgs = FI.getNumRequiredArgs();
9090 
9091   int ArgNum = 0;
9092   for (auto &ArgInfo : FI.arguments()) {
9093     bool IsFixed = ArgNum < NumFixedArgs;
9094     ArgInfo.info = classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft);
9095     ArgNum++;
9096   }
9097 }
9098 
9099 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed,
9100                                               int &ArgGPRsLeft) const {
9101   assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow");
9102   Ty = useFirstFieldIfTransparentUnion(Ty);
9103 
9104   // Structures with either a non-trivial destructor or a non-trivial
9105   // copy constructor are always passed indirectly.
9106   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
9107     if (ArgGPRsLeft)
9108       ArgGPRsLeft -= 1;
9109     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
9110                                            CGCXXABI::RAA_DirectInMemory);
9111   }
9112 
9113   // Ignore empty structs/unions.
9114   if (isEmptyRecord(getContext(), Ty, true))
9115     return ABIArgInfo::getIgnore();
9116 
9117   uint64_t Size = getContext().getTypeSize(Ty);
9118   uint64_t NeededAlign = getContext().getTypeAlign(Ty);
9119   bool MustUseStack = false;
9120   // Determine the number of GPRs needed to pass the current argument
9121   // according to the ABI. 2*XLen-aligned varargs are passed in "aligned"
9122   // register pairs, so may consume 3 registers.
9123   int NeededArgGPRs = 1;
9124   if (!IsFixed && NeededAlign == 2 * XLen)
9125     NeededArgGPRs = 2 + (ArgGPRsLeft % 2);
9126   else if (Size > XLen && Size <= 2 * XLen)
9127     NeededArgGPRs = 2;
9128 
9129   if (NeededArgGPRs > ArgGPRsLeft) {
9130     MustUseStack = true;
9131     NeededArgGPRs = ArgGPRsLeft;
9132   }
9133 
9134   ArgGPRsLeft -= NeededArgGPRs;
9135 
9136   if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) {
9137     // Treat an enum type as its underlying type.
9138     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
9139       Ty = EnumTy->getDecl()->getIntegerType();
9140 
9141     // All integral types are promoted to XLen width, unless passed on the
9142     // stack.
9143     if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) {
9144       return extendType(Ty);
9145     }
9146 
9147     return ABIArgInfo::getDirect();
9148   }
9149 
9150   // Aggregates which are <= 2*XLen will be passed in registers if possible,
9151   // so coerce to integers.
9152   if (Size <= 2 * XLen) {
9153     unsigned Alignment = getContext().getTypeAlign(Ty);
9154 
9155     // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is
9156     // required, and a 2-element XLen array if only XLen alignment is required.
9157     if (Size <= XLen) {
9158       return ABIArgInfo::getDirect(
9159           llvm::IntegerType::get(getVMContext(), XLen));
9160     } else if (Alignment == 2 * XLen) {
9161       return ABIArgInfo::getDirect(
9162           llvm::IntegerType::get(getVMContext(), 2 * XLen));
9163     } else {
9164       return ABIArgInfo::getDirect(llvm::ArrayType::get(
9165           llvm::IntegerType::get(getVMContext(), XLen), 2));
9166     }
9167   }
9168   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
9169 }
9170 
9171 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const {
9172   if (RetTy->isVoidType())
9173     return ABIArgInfo::getIgnore();
9174 
9175   int ArgGPRsLeft = 2;
9176 
9177   // The rules for return and argument types are the same, so defer to
9178   // classifyArgumentType.
9179   return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft);
9180 }
9181 
9182 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9183                                 QualType Ty) const {
9184   CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8);
9185 
9186   // Empty records are ignored for parameter passing purposes.
9187   if (isEmptyRecord(getContext(), Ty, true)) {
9188     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
9189     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
9190     return Addr;
9191   }
9192 
9193   std::pair<CharUnits, CharUnits> SizeAndAlign =
9194       getContext().getTypeInfoInChars(Ty);
9195 
9196   // Arguments bigger than 2*Xlen bytes are passed indirectly.
9197   bool IsIndirect = SizeAndAlign.first > 2 * SlotSize;
9198 
9199   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, SizeAndAlign,
9200                           SlotSize, /*AllowHigherAlign=*/true);
9201 }
9202 
9203 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const {
9204   int TySize = getContext().getTypeSize(Ty);
9205   // RV64 ABI requires unsigned 32 bit integers to be sign extended.
9206   if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
9207     return ABIArgInfo::getSignExtend(Ty);
9208   return ABIArgInfo::getExtend(Ty);
9209 }
9210 
9211 namespace {
9212 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo {
9213 public:
9214   RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen)
9215       : TargetCodeGenInfo(new RISCVABIInfo(CGT, XLen)) {}
9216 
9217   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
9218                            CodeGen::CodeGenModule &CGM) const override {
9219     const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
9220     if (!FD) return;
9221 
9222     const auto *Attr = FD->getAttr<RISCVInterruptAttr>();
9223     if (!Attr)
9224       return;
9225 
9226     const char *Kind;
9227     switch (Attr->getInterrupt()) {
9228     case RISCVInterruptAttr::user: Kind = "user"; break;
9229     case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break;
9230     case RISCVInterruptAttr::machine: Kind = "machine"; break;
9231     }
9232 
9233     auto *Fn = cast<llvm::Function>(GV);
9234 
9235     Fn->addFnAttr("interrupt", Kind);
9236   }
9237 };
9238 } // namespace
9239 
9240 //===----------------------------------------------------------------------===//
9241 // Driver code
9242 //===----------------------------------------------------------------------===//
9243 
9244 bool CodeGenModule::supportsCOMDAT() const {
9245   return getTriple().supportsCOMDAT();
9246 }
9247 
9248 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
9249   if (TheTargetCodeGenInfo)
9250     return *TheTargetCodeGenInfo;
9251 
9252   // Helper to set the unique_ptr while still keeping the return value.
9253   auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & {
9254     this->TheTargetCodeGenInfo.reset(P);
9255     return *P;
9256   };
9257 
9258   const llvm::Triple &Triple = getTarget().getTriple();
9259   switch (Triple.getArch()) {
9260   default:
9261     return SetCGInfo(new DefaultTargetCodeGenInfo(Types));
9262 
9263   case llvm::Triple::le32:
9264     return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
9265   case llvm::Triple::mips:
9266   case llvm::Triple::mipsel:
9267     if (Triple.getOS() == llvm::Triple::NaCl)
9268       return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
9269     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true));
9270 
9271   case llvm::Triple::mips64:
9272   case llvm::Triple::mips64el:
9273     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false));
9274 
9275   case llvm::Triple::avr:
9276     return SetCGInfo(new AVRTargetCodeGenInfo(Types));
9277 
9278   case llvm::Triple::aarch64:
9279   case llvm::Triple::aarch64_be: {
9280     AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
9281     if (getTarget().getABI() == "darwinpcs")
9282       Kind = AArch64ABIInfo::DarwinPCS;
9283     else if (Triple.isOSWindows())
9284       return SetCGInfo(
9285           new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64));
9286 
9287     return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind));
9288   }
9289 
9290   case llvm::Triple::wasm32:
9291   case llvm::Triple::wasm64:
9292     return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types));
9293 
9294   case llvm::Triple::arm:
9295   case llvm::Triple::armeb:
9296   case llvm::Triple::thumb:
9297   case llvm::Triple::thumbeb: {
9298     if (Triple.getOS() == llvm::Triple::Win32) {
9299       return SetCGInfo(
9300           new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP));
9301     }
9302 
9303     ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
9304     StringRef ABIStr = getTarget().getABI();
9305     if (ABIStr == "apcs-gnu")
9306       Kind = ARMABIInfo::APCS;
9307     else if (ABIStr == "aapcs16")
9308       Kind = ARMABIInfo::AAPCS16_VFP;
9309     else if (CodeGenOpts.FloatABI == "hard" ||
9310              (CodeGenOpts.FloatABI != "soft" &&
9311               (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
9312                Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
9313                Triple.getEnvironment() == llvm::Triple::EABIHF)))
9314       Kind = ARMABIInfo::AAPCS_VFP;
9315 
9316     return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind));
9317   }
9318 
9319   case llvm::Triple::ppc:
9320     return SetCGInfo(
9321         new PPC32TargetCodeGenInfo(Types, CodeGenOpts.FloatABI == "soft"));
9322   case llvm::Triple::ppc64:
9323     if (Triple.isOSBinFormatELF()) {
9324       PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1;
9325       if (getTarget().getABI() == "elfv2")
9326         Kind = PPC64_SVR4_ABIInfo::ELFv2;
9327       bool HasQPX = getTarget().getABI() == "elfv1-qpx";
9328       bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
9329 
9330       return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX,
9331                                                         IsSoftFloat));
9332     } else
9333       return SetCGInfo(new PPC64TargetCodeGenInfo(Types));
9334   case llvm::Triple::ppc64le: {
9335     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
9336     PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2;
9337     if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx")
9338       Kind = PPC64_SVR4_ABIInfo::ELFv1;
9339     bool HasQPX = getTarget().getABI() == "elfv1-qpx";
9340     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
9341 
9342     return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX,
9343                                                       IsSoftFloat));
9344   }
9345 
9346   case llvm::Triple::nvptx:
9347   case llvm::Triple::nvptx64:
9348     return SetCGInfo(new NVPTXTargetCodeGenInfo(Types));
9349 
9350   case llvm::Triple::msp430:
9351     return SetCGInfo(new MSP430TargetCodeGenInfo(Types));
9352 
9353   case llvm::Triple::riscv32:
9354     return SetCGInfo(new RISCVTargetCodeGenInfo(Types, 32));
9355   case llvm::Triple::riscv64:
9356     return SetCGInfo(new RISCVTargetCodeGenInfo(Types, 64));
9357 
9358   case llvm::Triple::systemz: {
9359     bool HasVector = getTarget().getABI() == "vector";
9360     return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector));
9361   }
9362 
9363   case llvm::Triple::tce:
9364   case llvm::Triple::tcele:
9365     return SetCGInfo(new TCETargetCodeGenInfo(Types));
9366 
9367   case llvm::Triple::x86: {
9368     bool IsDarwinVectorABI = Triple.isOSDarwin();
9369     bool RetSmallStructInRegABI =
9370         X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
9371     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
9372 
9373     if (Triple.getOS() == llvm::Triple::Win32) {
9374       return SetCGInfo(new WinX86_32TargetCodeGenInfo(
9375           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
9376           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters));
9377     } else {
9378       return SetCGInfo(new X86_32TargetCodeGenInfo(
9379           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
9380           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters,
9381           CodeGenOpts.FloatABI == "soft"));
9382     }
9383   }
9384 
9385   case llvm::Triple::x86_64: {
9386     StringRef ABI = getTarget().getABI();
9387     X86AVXABILevel AVXLevel =
9388         (ABI == "avx512"
9389              ? X86AVXABILevel::AVX512
9390              : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None);
9391 
9392     switch (Triple.getOS()) {
9393     case llvm::Triple::Win32:
9394       return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel));
9395     case llvm::Triple::PS4:
9396       return SetCGInfo(new PS4TargetCodeGenInfo(Types, AVXLevel));
9397     default:
9398       return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel));
9399     }
9400   }
9401   case llvm::Triple::hexagon:
9402     return SetCGInfo(new HexagonTargetCodeGenInfo(Types));
9403   case llvm::Triple::lanai:
9404     return SetCGInfo(new LanaiTargetCodeGenInfo(Types));
9405   case llvm::Triple::r600:
9406     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
9407   case llvm::Triple::amdgcn:
9408     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
9409   case llvm::Triple::sparc:
9410     return SetCGInfo(new SparcV8TargetCodeGenInfo(Types));
9411   case llvm::Triple::sparcv9:
9412     return SetCGInfo(new SparcV9TargetCodeGenInfo(Types));
9413   case llvm::Triple::xcore:
9414     return SetCGInfo(new XCoreTargetCodeGenInfo(Types));
9415   case llvm::Triple::arc:
9416     return SetCGInfo(new ARCTargetCodeGenInfo(Types));
9417   case llvm::Triple::spir:
9418   case llvm::Triple::spir64:
9419     return SetCGInfo(new SPIRTargetCodeGenInfo(Types));
9420   }
9421 }
9422 
9423 /// Create an OpenCL kernel for an enqueued block.
9424 ///
9425 /// The kernel has the same function type as the block invoke function. Its
9426 /// name is the name of the block invoke function postfixed with "_kernel".
9427 /// It simply calls the block invoke function then returns.
9428 llvm::Function *
9429 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF,
9430                                              llvm::Function *Invoke,
9431                                              llvm::Value *BlockLiteral) const {
9432   auto *InvokeFT = Invoke->getFunctionType();
9433   llvm::SmallVector<llvm::Type *, 2> ArgTys;
9434   for (auto &P : InvokeFT->params())
9435     ArgTys.push_back(P);
9436   auto &C = CGF.getLLVMContext();
9437   std::string Name = Invoke->getName().str() + "_kernel";
9438   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
9439   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
9440                                    &CGF.CGM.getModule());
9441   auto IP = CGF.Builder.saveIP();
9442   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
9443   auto &Builder = CGF.Builder;
9444   Builder.SetInsertPoint(BB);
9445   llvm::SmallVector<llvm::Value *, 2> Args;
9446   for (auto &A : F->args())
9447     Args.push_back(&A);
9448   Builder.CreateCall(Invoke, Args);
9449   Builder.CreateRetVoid();
9450   Builder.restoreIP(IP);
9451   return F;
9452 }
9453 
9454 /// Create an OpenCL kernel for an enqueued block.
9455 ///
9456 /// The type of the first argument (the block literal) is the struct type
9457 /// of the block literal instead of a pointer type. The first argument
9458 /// (block literal) is passed directly by value to the kernel. The kernel
9459 /// allocates the same type of struct on stack and stores the block literal
9460 /// to it and passes its pointer to the block invoke function. The kernel
9461 /// has "enqueued-block" function attribute and kernel argument metadata.
9462 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel(
9463     CodeGenFunction &CGF, llvm::Function *Invoke,
9464     llvm::Value *BlockLiteral) const {
9465   auto &Builder = CGF.Builder;
9466   auto &C = CGF.getLLVMContext();
9467 
9468   auto *BlockTy = BlockLiteral->getType()->getPointerElementType();
9469   auto *InvokeFT = Invoke->getFunctionType();
9470   llvm::SmallVector<llvm::Type *, 2> ArgTys;
9471   llvm::SmallVector<llvm::Metadata *, 8> AddressQuals;
9472   llvm::SmallVector<llvm::Metadata *, 8> AccessQuals;
9473   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames;
9474   llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames;
9475   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals;
9476   llvm::SmallVector<llvm::Metadata *, 8> ArgNames;
9477 
9478   ArgTys.push_back(BlockTy);
9479   ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
9480   AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0)));
9481   ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
9482   ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
9483   AccessQuals.push_back(llvm::MDString::get(C, "none"));
9484   ArgNames.push_back(llvm::MDString::get(C, "block_literal"));
9485   for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) {
9486     ArgTys.push_back(InvokeFT->getParamType(I));
9487     ArgTypeNames.push_back(llvm::MDString::get(C, "void*"));
9488     AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3)));
9489     AccessQuals.push_back(llvm::MDString::get(C, "none"));
9490     ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*"));
9491     ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
9492     ArgNames.push_back(
9493         llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str()));
9494   }
9495   std::string Name = Invoke->getName().str() + "_kernel";
9496   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
9497   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
9498                                    &CGF.CGM.getModule());
9499   F->addFnAttr("enqueued-block");
9500   auto IP = CGF.Builder.saveIP();
9501   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
9502   Builder.SetInsertPoint(BB);
9503   unsigned BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(BlockTy);
9504   auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr);
9505   BlockPtr->setAlignment(BlockAlign);
9506   Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign);
9507   auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0));
9508   llvm::SmallVector<llvm::Value *, 2> Args;
9509   Args.push_back(Cast);
9510   for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I)
9511     Args.push_back(I);
9512   Builder.CreateCall(Invoke, Args);
9513   Builder.CreateRetVoid();
9514   Builder.restoreIP(IP);
9515 
9516   F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals));
9517   F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals));
9518   F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames));
9519   F->setMetadata("kernel_arg_base_type",
9520                  llvm::MDNode::get(C, ArgBaseTypeNames));
9521   F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals));
9522   if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
9523     F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames));
9524 
9525   return F;
9526 }
9527