1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "TargetInfo.h"
16 #include "ABIInfo.h"
17 #include "CodeGenFunction.h"
18 #include "clang/AST/RecordLayout.h"
19 #include "llvm/Type.h"
20 #include "llvm/ADT/StringExtras.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/Support/raw_ostream.h"
23 using namespace clang;
24 using namespace CodeGen;
25 
26 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
27                                llvm::Value *Array,
28                                llvm::Value *Value,
29                                unsigned FirstIndex,
30                                unsigned LastIndex) {
31   // Alternatively, we could emit this as a loop in the source.
32   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
33     llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I);
34     Builder.CreateStore(Value, Cell);
35   }
36 }
37 
38 ABIInfo::~ABIInfo() {}
39 
40 void ABIArgInfo::dump() const {
41   llvm::raw_ostream &OS = llvm::errs();
42   OS << "(ABIArgInfo Kind=";
43   switch (TheKind) {
44   case Direct:
45     OS << "Direct";
46     break;
47   case Extend:
48     OS << "Extend";
49     break;
50   case Ignore:
51     OS << "Ignore";
52     break;
53   case Coerce:
54     OS << "Coerce Type=";
55     getCoerceToType()->print(OS);
56     break;
57   case Indirect:
58     OS << "Indirect Align=" << getIndirectAlign()
59        << " Byal=" << getIndirectByVal();
60     break;
61   case Expand:
62     OS << "Expand";
63     break;
64   }
65   OS << ")\n";
66 }
67 
68 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
69 
70 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
71 
72 /// isEmptyField - Return true iff a the field is "empty", that is it
73 /// is an unnamed bit-field or an (array of) empty record(s).
74 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
75                          bool AllowArrays) {
76   if (FD->isUnnamedBitfield())
77     return true;
78 
79   QualType FT = FD->getType();
80 
81     // Constant arrays of empty records count as empty, strip them off.
82   if (AllowArrays)
83     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT))
84       FT = AT->getElementType();
85 
86   const RecordType *RT = FT->getAs<RecordType>();
87   if (!RT)
88     return false;
89 
90   // C++ record fields are never empty, at least in the Itanium ABI.
91   //
92   // FIXME: We should use a predicate for whether this behavior is true in the
93   // current ABI.
94   if (isa<CXXRecordDecl>(RT->getDecl()))
95     return false;
96 
97   return isEmptyRecord(Context, FT, AllowArrays);
98 }
99 
100 /// isEmptyRecord - Return true iff a structure contains only empty
101 /// fields. Note that a structure with a flexible array member is not
102 /// considered empty.
103 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
104   const RecordType *RT = T->getAs<RecordType>();
105   if (!RT)
106     return 0;
107   const RecordDecl *RD = RT->getDecl();
108   if (RD->hasFlexibleArrayMember())
109     return false;
110 
111   // If this is a C++ record, check the bases first.
112   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
113     for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
114            e = CXXRD->bases_end(); i != e; ++i)
115       if (!isEmptyRecord(Context, i->getType(), true))
116         return false;
117 
118   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
119          i != e; ++i)
120     if (!isEmptyField(Context, *i, AllowArrays))
121       return false;
122   return true;
123 }
124 
125 /// hasNonTrivialDestructorOrCopyConstructor - Determine if a type has either
126 /// a non-trivial destructor or a non-trivial copy constructor.
127 static bool hasNonTrivialDestructorOrCopyConstructor(const RecordType *RT) {
128   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
129   if (!RD)
130     return false;
131 
132   return !RD->hasTrivialDestructor() || !RD->hasTrivialCopyConstructor();
133 }
134 
135 /// isRecordWithNonTrivialDestructorOrCopyConstructor - Determine if a type is
136 /// a record type with either a non-trivial destructor or a non-trivial copy
137 /// constructor.
138 static bool isRecordWithNonTrivialDestructorOrCopyConstructor(QualType T) {
139   const RecordType *RT = T->getAs<RecordType>();
140   if (!RT)
141     return false;
142 
143   return hasNonTrivialDestructorOrCopyConstructor(RT);
144 }
145 
146 /// isSingleElementStruct - Determine if a structure is a "single
147 /// element struct", i.e. it has exactly one non-empty field or
148 /// exactly one field which is itself a single element
149 /// struct. Structures with flexible array members are never
150 /// considered single element structs.
151 ///
152 /// \return The field declaration for the single non-empty field, if
153 /// it exists.
154 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
155   const RecordType *RT = T->getAsStructureType();
156   if (!RT)
157     return 0;
158 
159   const RecordDecl *RD = RT->getDecl();
160   if (RD->hasFlexibleArrayMember())
161     return 0;
162 
163   const Type *Found = 0;
164 
165   // If this is a C++ record, check the bases first.
166   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
167     for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
168            e = CXXRD->bases_end(); i != e; ++i) {
169       // Ignore empty records.
170       if (isEmptyRecord(Context, i->getType(), true))
171         continue;
172 
173       // If we already found an element then this isn't a single-element struct.
174       if (Found)
175         return 0;
176 
177       // If this is non-empty and not a single element struct, the composite
178       // cannot be a single element struct.
179       Found = isSingleElementStruct(i->getType(), Context);
180       if (!Found)
181         return 0;
182     }
183   }
184 
185   // Check for single element.
186   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
187          i != e; ++i) {
188     const FieldDecl *FD = *i;
189     QualType FT = FD->getType();
190 
191     // Ignore empty fields.
192     if (isEmptyField(Context, FD, true))
193       continue;
194 
195     // If we already found an element then this isn't a single-element
196     // struct.
197     if (Found)
198       return 0;
199 
200     // Treat single element arrays as the element.
201     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
202       if (AT->getSize().getZExtValue() != 1)
203         break;
204       FT = AT->getElementType();
205     }
206 
207     if (!CodeGenFunction::hasAggregateLLVMType(FT)) {
208       Found = FT.getTypePtr();
209     } else {
210       Found = isSingleElementStruct(FT, Context);
211       if (!Found)
212         return 0;
213     }
214   }
215 
216   return Found;
217 }
218 
219 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
220   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
221       !Ty->isAnyComplexType() && !Ty->isEnumeralType() &&
222       !Ty->isBlockPointerType())
223     return false;
224 
225   uint64_t Size = Context.getTypeSize(Ty);
226   return Size == 32 || Size == 64;
227 }
228 
229 /// canExpandIndirectArgument - Test whether an argument type which is to be
230 /// passed indirectly (on the stack) would have the equivalent layout if it was
231 /// expanded into separate arguments. If so, we prefer to do the latter to avoid
232 /// inhibiting optimizations.
233 ///
234 // FIXME: This predicate is missing many cases, currently it just follows
235 // llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
236 // should probably make this smarter, or better yet make the LLVM backend
237 // capable of handling it.
238 static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
239   // We can only expand structure types.
240   const RecordType *RT = Ty->getAs<RecordType>();
241   if (!RT)
242     return false;
243 
244   // We can only expand (C) structures.
245   //
246   // FIXME: This needs to be generalized to handle classes as well.
247   const RecordDecl *RD = RT->getDecl();
248   if (!RD->isStruct() || isa<CXXRecordDecl>(RD))
249     return false;
250 
251   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
252          i != e; ++i) {
253     const FieldDecl *FD = *i;
254 
255     if (!is32Or64BitBasicType(FD->getType(), Context))
256       return false;
257 
258     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
259     // how to expand them yet, and the predicate for telling if a bitfield still
260     // counts as "basic" is more complicated than what we were doing previously.
261     if (FD->isBitField())
262       return false;
263   }
264 
265   return true;
266 }
267 
268 namespace {
269 /// DefaultABIInfo - The default implementation for ABI specific
270 /// details. This implementation provides information which results in
271 /// self-consistent and sensible LLVM IR generation, but does not
272 /// conform to any particular ABI.
273 class DefaultABIInfo : public ABIInfo {
274   ABIArgInfo classifyReturnType(QualType RetTy,
275                                 ASTContext &Context,
276                                 llvm::LLVMContext &VMContext) const;
277 
278   ABIArgInfo classifyArgumentType(QualType RetTy,
279                                   ASTContext &Context,
280                                   llvm::LLVMContext &VMContext) const;
281 
282   virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context,
283                            llvm::LLVMContext &VMContext) const {
284     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context,
285                                             VMContext);
286     for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
287          it != ie; ++it)
288       it->info = classifyArgumentType(it->type, Context, VMContext);
289   }
290 
291   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
292                                  CodeGenFunction &CGF) const;
293 };
294 
295 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
296 public:
297   DefaultTargetCodeGenInfo():TargetCodeGenInfo(new DefaultABIInfo()) {}
298 };
299 
300 llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
301                                        CodeGenFunction &CGF) const {
302   return 0;
303 }
304 
305 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty,
306                                                 ASTContext &Context,
307                                           llvm::LLVMContext &VMContext) const {
308   if (CodeGenFunction::hasAggregateLLVMType(Ty))
309     return ABIArgInfo::getIndirect(0);
310 
311   // Treat an enum type as its underlying type.
312   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
313     Ty = EnumTy->getDecl()->getIntegerType();
314 
315   return (Ty->isPromotableIntegerType() ?
316           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
317 }
318 
319 /// X86_32ABIInfo - The X86-32 ABI information.
320 class X86_32ABIInfo : public ABIInfo {
321   ASTContext &Context;
322   bool IsDarwinVectorABI;
323   bool IsSmallStructInRegABI;
324 
325   static bool isRegisterSize(unsigned Size) {
326     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
327   }
328 
329   static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context);
330 
331   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
332   /// such that the argument will be passed in memory.
333   ABIArgInfo getIndirectResult(QualType Ty, ASTContext &Context,
334                                bool ByVal = true) const;
335 
336 public:
337   ABIArgInfo classifyReturnType(QualType RetTy,
338                                 ASTContext &Context,
339                                 llvm::LLVMContext &VMContext) const;
340 
341   ABIArgInfo classifyArgumentType(QualType RetTy,
342                                   ASTContext &Context,
343                                   llvm::LLVMContext &VMContext) const;
344 
345   virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context,
346                            llvm::LLVMContext &VMContext) const {
347     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context,
348                                             VMContext);
349     for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
350          it != ie; ++it)
351       it->info = classifyArgumentType(it->type, Context, VMContext);
352   }
353 
354   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
355                                  CodeGenFunction &CGF) const;
356 
357   X86_32ABIInfo(ASTContext &Context, bool d, bool p)
358     : ABIInfo(), Context(Context), IsDarwinVectorABI(d),
359       IsSmallStructInRegABI(p) {}
360 };
361 
362 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
363 public:
364   X86_32TargetCodeGenInfo(ASTContext &Context, bool d, bool p)
365     :TargetCodeGenInfo(new X86_32ABIInfo(Context, d, p)) {}
366 
367   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
368                            CodeGen::CodeGenModule &CGM) const;
369 
370   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
371     // Darwin uses different dwarf register numbers for EH.
372     if (CGM.isTargetDarwin()) return 5;
373 
374     return 4;
375   }
376 
377   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
378                                llvm::Value *Address) const;
379 };
380 
381 }
382 
383 /// shouldReturnTypeInRegister - Determine if the given type should be
384 /// passed in a register (for the Darwin ABI).
385 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
386                                                ASTContext &Context) {
387   uint64_t Size = Context.getTypeSize(Ty);
388 
389   // Type must be register sized.
390   if (!isRegisterSize(Size))
391     return false;
392 
393   if (Ty->isVectorType()) {
394     // 64- and 128- bit vectors inside structures are not returned in
395     // registers.
396     if (Size == 64 || Size == 128)
397       return false;
398 
399     return true;
400   }
401 
402   // If this is a builtin, pointer, enum, complex type, member pointer, or
403   // member function pointer it is ok.
404   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
405       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
406       Ty->isBlockPointerType() || Ty->isMemberPointerType())
407     return true;
408 
409   // Arrays are treated like records.
410   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
411     return shouldReturnTypeInRegister(AT->getElementType(), Context);
412 
413   // Otherwise, it must be a record type.
414   const RecordType *RT = Ty->getAs<RecordType>();
415   if (!RT) return false;
416 
417   // FIXME: Traverse bases here too.
418 
419   // Structure types are passed in register if all fields would be
420   // passed in a register.
421   for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(),
422          e = RT->getDecl()->field_end(); i != e; ++i) {
423     const FieldDecl *FD = *i;
424 
425     // Empty fields are ignored.
426     if (isEmptyField(Context, FD, true))
427       continue;
428 
429     // Check fields recursively.
430     if (!shouldReturnTypeInRegister(FD->getType(), Context))
431       return false;
432   }
433 
434   return true;
435 }
436 
437 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
438                                             ASTContext &Context,
439                                           llvm::LLVMContext &VMContext) const {
440   if (RetTy->isVoidType()) {
441     return ABIArgInfo::getIgnore();
442   } else if (const VectorType *VT = RetTy->getAs<VectorType>()) {
443     // On Darwin, some vectors are returned in registers.
444     if (IsDarwinVectorABI) {
445       uint64_t Size = Context.getTypeSize(RetTy);
446 
447       // 128-bit vectors are a special case; they are returned in
448       // registers and we need to make sure to pick a type the LLVM
449       // backend will like.
450       if (Size == 128)
451         return ABIArgInfo::getCoerce(llvm::VectorType::get(
452                   llvm::Type::getInt64Ty(VMContext), 2));
453 
454       // Always return in register if it fits in a general purpose
455       // register, or if it is 64 bits and has a single element.
456       if ((Size == 8 || Size == 16 || Size == 32) ||
457           (Size == 64 && VT->getNumElements() == 1))
458         return ABIArgInfo::getCoerce(llvm::IntegerType::get(VMContext, Size));
459 
460       return ABIArgInfo::getIndirect(0);
461     }
462 
463     return ABIArgInfo::getDirect();
464   } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
465     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
466       // Structures with either a non-trivial destructor or a non-trivial
467       // copy constructor are always indirect.
468       if (hasNonTrivialDestructorOrCopyConstructor(RT))
469         return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
470 
471       // Structures with flexible arrays are always indirect.
472       if (RT->getDecl()->hasFlexibleArrayMember())
473         return ABIArgInfo::getIndirect(0);
474     }
475 
476     // If specified, structs and unions are always indirect.
477     if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
478       return ABIArgInfo::getIndirect(0);
479 
480     // Classify "single element" structs as their element type.
481     if (const Type *SeltTy = isSingleElementStruct(RetTy, Context)) {
482       if (const BuiltinType *BT = SeltTy->getAs<BuiltinType>()) {
483         if (BT->isIntegerType()) {
484           // We need to use the size of the structure, padding
485           // bit-fields can adjust that to be larger than the single
486           // element type.
487           uint64_t Size = Context.getTypeSize(RetTy);
488           return ABIArgInfo::getCoerce(
489             llvm::IntegerType::get(VMContext, (unsigned) Size));
490         } else if (BT->getKind() == BuiltinType::Float) {
491           assert(Context.getTypeSize(RetTy) == Context.getTypeSize(SeltTy) &&
492                  "Unexpect single element structure size!");
493           return ABIArgInfo::getCoerce(llvm::Type::getFloatTy(VMContext));
494         } else if (BT->getKind() == BuiltinType::Double) {
495           assert(Context.getTypeSize(RetTy) == Context.getTypeSize(SeltTy) &&
496                  "Unexpect single element structure size!");
497           return ABIArgInfo::getCoerce(llvm::Type::getDoubleTy(VMContext));
498         }
499       } else if (SeltTy->isPointerType()) {
500         // FIXME: It would be really nice if this could come out as the proper
501         // pointer type.
502         const llvm::Type *PtrTy = llvm::Type::getInt8PtrTy(VMContext);
503         return ABIArgInfo::getCoerce(PtrTy);
504       } else if (SeltTy->isVectorType()) {
505         // 64- and 128-bit vectors are never returned in a
506         // register when inside a structure.
507         uint64_t Size = Context.getTypeSize(RetTy);
508         if (Size == 64 || Size == 128)
509           return ABIArgInfo::getIndirect(0);
510 
511         return classifyReturnType(QualType(SeltTy, 0), Context, VMContext);
512       }
513     }
514 
515     // Small structures which are register sized are generally returned
516     // in a register.
517     if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, Context)) {
518       uint64_t Size = Context.getTypeSize(RetTy);
519       return ABIArgInfo::getCoerce(llvm::IntegerType::get(VMContext, Size));
520     }
521 
522     return ABIArgInfo::getIndirect(0);
523   } else {
524     // Treat an enum type as its underlying type.
525     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
526       RetTy = EnumTy->getDecl()->getIntegerType();
527 
528     return (RetTy->isPromotableIntegerType() ?
529             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
530   }
531 }
532 
533 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty,
534                                             ASTContext &Context,
535                                             bool ByVal) const {
536   if (!ByVal)
537     return ABIArgInfo::getIndirect(0, false);
538 
539   // Compute the byval alignment. We trust the back-end to honor the
540   // minimum ABI alignment for byval, to make cleaner IR.
541   const unsigned MinABIAlign = 4;
542   unsigned Align = Context.getTypeAlign(Ty) / 8;
543   if (Align > MinABIAlign)
544     return ABIArgInfo::getIndirect(Align);
545   return ABIArgInfo::getIndirect(0);
546 }
547 
548 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
549                                                ASTContext &Context,
550                                            llvm::LLVMContext &VMContext) const {
551   // FIXME: Set alignment on indirect arguments.
552   if (CodeGenFunction::hasAggregateLLVMType(Ty)) {
553     // Structures with flexible arrays are always indirect.
554     if (const RecordType *RT = Ty->getAs<RecordType>()) {
555       // Structures with either a non-trivial destructor or a non-trivial
556       // copy constructor are always indirect.
557       if (hasNonTrivialDestructorOrCopyConstructor(RT))
558         return getIndirectResult(Ty, Context, /*ByVal=*/false);
559 
560       if (RT->getDecl()->hasFlexibleArrayMember())
561         return getIndirectResult(Ty, Context);
562     }
563 
564     // Ignore empty structs.
565     if (Ty->isStructureType() && Context.getTypeSize(Ty) == 0)
566       return ABIArgInfo::getIgnore();
567 
568     // Expand small (<= 128-bit) record types when we know that the stack layout
569     // of those arguments will match the struct. This is important because the
570     // LLVM backend isn't smart enough to remove byval, which inhibits many
571     // optimizations.
572     if (Context.getTypeSize(Ty) <= 4*32 &&
573         canExpandIndirectArgument(Ty, Context))
574       return ABIArgInfo::getExpand();
575 
576     return getIndirectResult(Ty, Context);
577   } else {
578     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
579       Ty = EnumTy->getDecl()->getIntegerType();
580 
581     return (Ty->isPromotableIntegerType() ?
582             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
583   }
584 }
585 
586 llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
587                                       CodeGenFunction &CGF) const {
588   const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
589   const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
590 
591   CGBuilderTy &Builder = CGF.Builder;
592   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
593                                                        "ap");
594   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
595   llvm::Type *PTy =
596     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
597   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
598 
599   uint64_t Offset =
600     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
601   llvm::Value *NextAddr =
602     Builder.CreateGEP(Addr, llvm::ConstantInt::get(
603                           llvm::Type::getInt32Ty(CGF.getLLVMContext()), Offset),
604                       "ap.next");
605   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
606 
607   return AddrTyped;
608 }
609 
610 void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
611                                                   llvm::GlobalValue *GV,
612                                             CodeGen::CodeGenModule &CGM) const {
613   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
614     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
615       // Get the LLVM function.
616       llvm::Function *Fn = cast<llvm::Function>(GV);
617 
618       // Now add the 'alignstack' attribute with a value of 16.
619       Fn->addFnAttr(llvm::Attribute::constructStackAlignmentFromInt(16));
620     }
621   }
622 }
623 
624 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
625                                                CodeGen::CodeGenFunction &CGF,
626                                                llvm::Value *Address) const {
627   CodeGen::CGBuilderTy &Builder = CGF.Builder;
628   llvm::LLVMContext &Context = CGF.getLLVMContext();
629 
630   const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
631   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
632 
633   // 0-7 are the eight integer registers;  the order is different
634   //   on Darwin (for EH), but the range is the same.
635   // 8 is %eip.
636   AssignToArrayRange(Builder, Address, Four8, 0, 8);
637 
638   if (CGF.CGM.isTargetDarwin()) {
639     // 12-16 are st(0..4).  Not sure why we stop at 4.
640     // These have size 16, which is sizeof(long double) on
641     // platforms with 8-byte alignment for that type.
642     llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
643     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
644 
645   } else {
646     // 9 is %eflags, which doesn't get a size on Darwin for some
647     // reason.
648     Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9));
649 
650     // 11-16 are st(0..5).  Not sure why we stop at 5.
651     // These have size 12, which is sizeof(long double) on
652     // platforms with 4-byte alignment for that type.
653     llvm::Value *Twelve8 = llvm::ConstantInt::get(i8, 12);
654     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
655   }
656 
657   return false;
658 }
659 
660 namespace {
661 /// X86_64ABIInfo - The X86_64 ABI information.
662 class X86_64ABIInfo : public ABIInfo {
663   enum Class {
664     Integer = 0,
665     SSE,
666     SSEUp,
667     X87,
668     X87Up,
669     ComplexX87,
670     NoClass,
671     Memory
672   };
673 
674   /// merge - Implement the X86_64 ABI merging algorithm.
675   ///
676   /// Merge an accumulating classification \arg Accum with a field
677   /// classification \arg Field.
678   ///
679   /// \param Accum - The accumulating classification. This should
680   /// always be either NoClass or the result of a previous merge
681   /// call. In addition, this should never be Memory (the caller
682   /// should just return Memory for the aggregate).
683   Class merge(Class Accum, Class Field) const;
684 
685   /// classify - Determine the x86_64 register classes in which the
686   /// given type T should be passed.
687   ///
688   /// \param Lo - The classification for the parts of the type
689   /// residing in the low word of the containing object.
690   ///
691   /// \param Hi - The classification for the parts of the type
692   /// residing in the high word of the containing object.
693   ///
694   /// \param OffsetBase - The bit offset of this type in the
695   /// containing object.  Some parameters are classified different
696   /// depending on whether they straddle an eightbyte boundary.
697   ///
698   /// If a word is unused its result will be NoClass; if a type should
699   /// be passed in Memory then at least the classification of \arg Lo
700   /// will be Memory.
701   ///
702   /// The \arg Lo class will be NoClass iff the argument is ignored.
703   ///
704   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
705   /// also be ComplexX87.
706   void classify(QualType T, ASTContext &Context, uint64_t OffsetBase,
707                 Class &Lo, Class &Hi) const;
708 
709   /// getCoerceResult - Given a source type \arg Ty and an LLVM type
710   /// to coerce to, chose the best way to pass Ty in the same place
711   /// that \arg CoerceTo would be passed, but while keeping the
712   /// emitted code as simple as possible.
713   ///
714   /// FIXME: Note, this should be cleaned up to just take an enumeration of all
715   /// the ways we might want to pass things, instead of constructing an LLVM
716   /// type. This makes this code more explicit, and it makes it clearer that we
717   /// are also doing this for correctness in the case of passing scalar types.
718   ABIArgInfo getCoerceResult(QualType Ty,
719                              const llvm::Type *CoerceTo,
720                              ASTContext &Context) const;
721 
722   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
723   /// such that the argument will be returned in memory.
724   ABIArgInfo getIndirectReturnResult(QualType Ty, ASTContext &Context) const;
725 
726   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
727   /// such that the argument will be passed in memory.
728   ABIArgInfo getIndirectResult(QualType Ty, ASTContext &Context) const;
729 
730   ABIArgInfo classifyReturnType(QualType RetTy,
731                                 ASTContext &Context,
732                                 llvm::LLVMContext &VMContext) const;
733 
734   ABIArgInfo classifyArgumentType(QualType Ty,
735                                   ASTContext &Context,
736                                   llvm::LLVMContext &VMContext,
737                                   unsigned &neededInt,
738                                   unsigned &neededSSE) const;
739 
740 public:
741   virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context,
742                            llvm::LLVMContext &VMContext) const;
743 
744   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
745                                  CodeGenFunction &CGF) const;
746 };
747 
748 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
749 public:
750   X86_64TargetCodeGenInfo():TargetCodeGenInfo(new X86_64ABIInfo()) {}
751 
752   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
753     return 7;
754   }
755 
756   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
757                                llvm::Value *Address) const {
758     CodeGen::CGBuilderTy &Builder = CGF.Builder;
759     llvm::LLVMContext &Context = CGF.getLLVMContext();
760 
761     const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
762     llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
763 
764     // 0-15 are the 16 integer registers.
765     // 16 is %rip.
766     AssignToArrayRange(Builder, Address, Eight8, 0, 16);
767 
768     return false;
769   }
770 };
771 
772 }
773 
774 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum,
775                                           Class Field) const {
776   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
777   // classified recursively so that always two fields are
778   // considered. The resulting class is calculated according to
779   // the classes of the fields in the eightbyte:
780   //
781   // (a) If both classes are equal, this is the resulting class.
782   //
783   // (b) If one of the classes is NO_CLASS, the resulting class is
784   // the other class.
785   //
786   // (c) If one of the classes is MEMORY, the result is the MEMORY
787   // class.
788   //
789   // (d) If one of the classes is INTEGER, the result is the
790   // INTEGER.
791   //
792   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
793   // MEMORY is used as class.
794   //
795   // (f) Otherwise class SSE is used.
796 
797   // Accum should never be memory (we should have returned) or
798   // ComplexX87 (because this cannot be passed in a structure).
799   assert((Accum != Memory && Accum != ComplexX87) &&
800          "Invalid accumulated classification during merge.");
801   if (Accum == Field || Field == NoClass)
802     return Accum;
803   else if (Field == Memory)
804     return Memory;
805   else if (Accum == NoClass)
806     return Field;
807   else if (Accum == Integer || Field == Integer)
808     return Integer;
809   else if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
810            Accum == X87 || Accum == X87Up)
811     return Memory;
812   else
813     return SSE;
814 }
815 
816 void X86_64ABIInfo::classify(QualType Ty,
817                              ASTContext &Context,
818                              uint64_t OffsetBase,
819                              Class &Lo, Class &Hi) const {
820   // FIXME: This code can be simplified by introducing a simple value class for
821   // Class pairs with appropriate constructor methods for the various
822   // situations.
823 
824   // FIXME: Some of the split computations are wrong; unaligned vectors
825   // shouldn't be passed in registers for example, so there is no chance they
826   // can straddle an eightbyte. Verify & simplify.
827 
828   Lo = Hi = NoClass;
829 
830   Class &Current = OffsetBase < 64 ? Lo : Hi;
831   Current = Memory;
832 
833   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
834     BuiltinType::Kind k = BT->getKind();
835 
836     if (k == BuiltinType::Void) {
837       Current = NoClass;
838     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
839       Lo = Integer;
840       Hi = Integer;
841     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
842       Current = Integer;
843     } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
844       Current = SSE;
845     } else if (k == BuiltinType::LongDouble) {
846       Lo = X87;
847       Hi = X87Up;
848     }
849     // FIXME: _Decimal32 and _Decimal64 are SSE.
850     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
851   } else if (const EnumType *ET = Ty->getAs<EnumType>()) {
852     // Classify the underlying integer type.
853     classify(ET->getDecl()->getIntegerType(), Context, OffsetBase, Lo, Hi);
854   } else if (Ty->hasPointerRepresentation()) {
855     Current = Integer;
856   } else if (Ty->isMemberPointerType()) {
857     if (Ty->isMemberFunctionPointerType())
858       Lo = Hi = Integer;
859     else
860       Current = Integer;
861   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
862     uint64_t Size = Context.getTypeSize(VT);
863     if (Size == 32) {
864       // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
865       // float> as integer.
866       Current = Integer;
867 
868       // If this type crosses an eightbyte boundary, it should be
869       // split.
870       uint64_t EB_Real = (OffsetBase) / 64;
871       uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
872       if (EB_Real != EB_Imag)
873         Hi = Lo;
874     } else if (Size == 64) {
875       // gcc passes <1 x double> in memory. :(
876       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
877         return;
878 
879       // gcc passes <1 x long long> as INTEGER.
880       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong))
881         Current = Integer;
882       else
883         Current = SSE;
884 
885       // If this type crosses an eightbyte boundary, it should be
886       // split.
887       if (OffsetBase && OffsetBase != 64)
888         Hi = Lo;
889     } else if (Size == 128) {
890       Lo = SSE;
891       Hi = SSEUp;
892     }
893   } else if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
894     QualType ET = Context.getCanonicalType(CT->getElementType());
895 
896     uint64_t Size = Context.getTypeSize(Ty);
897     if (ET->isIntegralType()) {
898       if (Size <= 64)
899         Current = Integer;
900       else if (Size <= 128)
901         Lo = Hi = Integer;
902     } else if (ET == Context.FloatTy)
903       Current = SSE;
904     else if (ET == Context.DoubleTy)
905       Lo = Hi = SSE;
906     else if (ET == Context.LongDoubleTy)
907       Current = ComplexX87;
908 
909     // If this complex type crosses an eightbyte boundary then it
910     // should be split.
911     uint64_t EB_Real = (OffsetBase) / 64;
912     uint64_t EB_Imag = (OffsetBase + Context.getTypeSize(ET)) / 64;
913     if (Hi == NoClass && EB_Real != EB_Imag)
914       Hi = Lo;
915   } else if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
916     // Arrays are treated like structures.
917 
918     uint64_t Size = Context.getTypeSize(Ty);
919 
920     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
921     // than two eightbytes, ..., it has class MEMORY.
922     if (Size > 128)
923       return;
924 
925     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
926     // fields, it has class MEMORY.
927     //
928     // Only need to check alignment of array base.
929     if (OffsetBase % Context.getTypeAlign(AT->getElementType()))
930       return;
931 
932     // Otherwise implement simplified merge. We could be smarter about
933     // this, but it isn't worth it and would be harder to verify.
934     Current = NoClass;
935     uint64_t EltSize = Context.getTypeSize(AT->getElementType());
936     uint64_t ArraySize = AT->getSize().getZExtValue();
937     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
938       Class FieldLo, FieldHi;
939       classify(AT->getElementType(), Context, Offset, FieldLo, FieldHi);
940       Lo = merge(Lo, FieldLo);
941       Hi = merge(Hi, FieldHi);
942       if (Lo == Memory || Hi == Memory)
943         break;
944     }
945 
946     // Do post merger cleanup (see below). Only case we worry about is Memory.
947     if (Hi == Memory)
948       Lo = Memory;
949     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
950   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
951     uint64_t Size = Context.getTypeSize(Ty);
952 
953     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
954     // than two eightbytes, ..., it has class MEMORY.
955     if (Size > 128)
956       return;
957 
958     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
959     // copy constructor or a non-trivial destructor, it is passed by invisible
960     // reference.
961     if (hasNonTrivialDestructorOrCopyConstructor(RT))
962       return;
963 
964     const RecordDecl *RD = RT->getDecl();
965 
966     // Assume variable sized types are passed in memory.
967     if (RD->hasFlexibleArrayMember())
968       return;
969 
970     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
971 
972     // Reset Lo class, this will be recomputed.
973     Current = NoClass;
974 
975     // If this is a C++ record, classify the bases first.
976     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
977       for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
978              e = CXXRD->bases_end(); i != e; ++i) {
979         assert(!i->isVirtual() && !i->getType()->isDependentType() &&
980                "Unexpected base class!");
981         const CXXRecordDecl *Base =
982           cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
983 
984         // Classify this field.
985         //
986         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
987         // single eightbyte, each is classified separately. Each eightbyte gets
988         // initialized to class NO_CLASS.
989         Class FieldLo, FieldHi;
990         uint64_t Offset = OffsetBase + Layout.getBaseClassOffset(Base);
991         classify(i->getType(), Context, Offset, FieldLo, FieldHi);
992         Lo = merge(Lo, FieldLo);
993         Hi = merge(Hi, FieldHi);
994         if (Lo == Memory || Hi == Memory)
995           break;
996       }
997 
998       // If this record has no fields but isn't empty, classify as INTEGER.
999       if (RD->field_empty() && Size)
1000         Current = Integer;
1001     }
1002 
1003     // Classify the fields one at a time, merging the results.
1004     unsigned idx = 0;
1005     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1006            i != e; ++i, ++idx) {
1007       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1008       bool BitField = i->isBitField();
1009 
1010       // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
1011       // fields, it has class MEMORY.
1012       //
1013       // Note, skip this test for bit-fields, see below.
1014       if (!BitField && Offset % Context.getTypeAlign(i->getType())) {
1015         Lo = Memory;
1016         return;
1017       }
1018 
1019       // Classify this field.
1020       //
1021       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
1022       // exceeds a single eightbyte, each is classified
1023       // separately. Each eightbyte gets initialized to class
1024       // NO_CLASS.
1025       Class FieldLo, FieldHi;
1026 
1027       // Bit-fields require special handling, they do not force the
1028       // structure to be passed in memory even if unaligned, and
1029       // therefore they can straddle an eightbyte.
1030       if (BitField) {
1031         // Ignore padding bit-fields.
1032         if (i->isUnnamedBitfield())
1033           continue;
1034 
1035         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1036         uint64_t Size = i->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
1037 
1038         uint64_t EB_Lo = Offset / 64;
1039         uint64_t EB_Hi = (Offset + Size - 1) / 64;
1040         FieldLo = FieldHi = NoClass;
1041         if (EB_Lo) {
1042           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
1043           FieldLo = NoClass;
1044           FieldHi = Integer;
1045         } else {
1046           FieldLo = Integer;
1047           FieldHi = EB_Hi ? Integer : NoClass;
1048         }
1049       } else
1050         classify(i->getType(), Context, Offset, FieldLo, FieldHi);
1051       Lo = merge(Lo, FieldLo);
1052       Hi = merge(Hi, FieldHi);
1053       if (Lo == Memory || Hi == Memory)
1054         break;
1055     }
1056 
1057     // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
1058     //
1059     // (a) If one of the classes is MEMORY, the whole argument is
1060     // passed in memory.
1061     //
1062     // (b) If SSEUP is not preceeded by SSE, it is converted to SSE.
1063 
1064     // The first of these conditions is guaranteed by how we implement
1065     // the merge (just bail).
1066     //
1067     // The second condition occurs in the case of unions; for example
1068     // union { _Complex double; unsigned; }.
1069     if (Hi == Memory)
1070       Lo = Memory;
1071     if (Hi == SSEUp && Lo != SSE)
1072       Hi = SSE;
1073   }
1074 }
1075 
1076 ABIArgInfo X86_64ABIInfo::getCoerceResult(QualType Ty,
1077                                           const llvm::Type *CoerceTo,
1078                                           ASTContext &Context) const {
1079   if (CoerceTo == llvm::Type::getInt64Ty(CoerceTo->getContext())) {
1080     // Integer and pointer types will end up in a general purpose
1081     // register.
1082 
1083     // Treat an enum type as its underlying type.
1084     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1085       Ty = EnumTy->getDecl()->getIntegerType();
1086 
1087     if (Ty->isIntegralType() || Ty->hasPointerRepresentation())
1088       return (Ty->isPromotableIntegerType() ?
1089               ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1090   } else if (CoerceTo == llvm::Type::getDoubleTy(CoerceTo->getContext())) {
1091     assert(Ty.isCanonical() && "should always have a canonical type here");
1092     assert(!Ty.hasQualifiers() && "should never have a qualified type here");
1093 
1094     // Float and double end up in a single SSE reg.
1095     if (Ty == Context.FloatTy || Ty == Context.DoubleTy)
1096       return ABIArgInfo::getDirect();
1097 
1098   }
1099 
1100   return ABIArgInfo::getCoerce(CoerceTo);
1101 }
1102 
1103 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty,
1104                                                   ASTContext &Context) const {
1105   // If this is a scalar LLVM value then assume LLVM will pass it in the right
1106   // place naturally.
1107   if (!CodeGenFunction::hasAggregateLLVMType(Ty)) {
1108     // Treat an enum type as its underlying type.
1109     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1110       Ty = EnumTy->getDecl()->getIntegerType();
1111 
1112     return (Ty->isPromotableIntegerType() ?
1113             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1114   }
1115 
1116   return ABIArgInfo::getIndirect(0);
1117 }
1118 
1119 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
1120                                             ASTContext &Context) const {
1121   // If this is a scalar LLVM value then assume LLVM will pass it in the right
1122   // place naturally.
1123   if (!CodeGenFunction::hasAggregateLLVMType(Ty)) {
1124     // Treat an enum type as its underlying type.
1125     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1126       Ty = EnumTy->getDecl()->getIntegerType();
1127 
1128     return (Ty->isPromotableIntegerType() ?
1129             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1130   }
1131 
1132   if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
1133     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
1134 
1135   // Compute the byval alignment. We trust the back-end to honor the
1136   // minimum ABI alignment for byval, to make cleaner IR.
1137   const unsigned MinABIAlign = 8;
1138   unsigned Align = Context.getTypeAlign(Ty) / 8;
1139   if (Align > MinABIAlign)
1140     return ABIArgInfo::getIndirect(Align);
1141   return ABIArgInfo::getIndirect(0);
1142 }
1143 
1144 ABIArgInfo X86_64ABIInfo::classifyReturnType(QualType RetTy,
1145                                             ASTContext &Context,
1146                                           llvm::LLVMContext &VMContext) const {
1147   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
1148   // classification algorithm.
1149   X86_64ABIInfo::Class Lo, Hi;
1150   classify(RetTy, Context, 0, Lo, Hi);
1151 
1152   // Check some invariants.
1153   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
1154   assert((Lo != NoClass || Hi == NoClass) && "Invalid null classification.");
1155   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
1156 
1157   const llvm::Type *ResType = 0;
1158   switch (Lo) {
1159   case NoClass:
1160     return ABIArgInfo::getIgnore();
1161 
1162   case SSEUp:
1163   case X87Up:
1164     assert(0 && "Invalid classification for lo word.");
1165 
1166     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
1167     // hidden argument.
1168   case Memory:
1169     return getIndirectReturnResult(RetTy, Context);
1170 
1171     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
1172     // available register of the sequence %rax, %rdx is used.
1173   case Integer:
1174     ResType = llvm::Type::getInt64Ty(VMContext); break;
1175 
1176     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
1177     // available SSE register of the sequence %xmm0, %xmm1 is used.
1178   case SSE:
1179     ResType = llvm::Type::getDoubleTy(VMContext); break;
1180 
1181     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
1182     // returned on the X87 stack in %st0 as 80-bit x87 number.
1183   case X87:
1184     ResType = llvm::Type::getX86_FP80Ty(VMContext); break;
1185 
1186     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
1187     // part of the value is returned in %st0 and the imaginary part in
1188     // %st1.
1189   case ComplexX87:
1190     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
1191     ResType = llvm::StructType::get(VMContext,
1192                                     llvm::Type::getX86_FP80Ty(VMContext),
1193                                     llvm::Type::getX86_FP80Ty(VMContext),
1194                                     NULL);
1195     break;
1196   }
1197 
1198   switch (Hi) {
1199     // Memory was handled previously and X87 should
1200     // never occur as a hi class.
1201   case Memory:
1202   case X87:
1203     assert(0 && "Invalid classification for hi word.");
1204 
1205   case ComplexX87: // Previously handled.
1206   case NoClass: break;
1207 
1208   case Integer:
1209     ResType = llvm::StructType::get(VMContext, ResType,
1210                                     llvm::Type::getInt64Ty(VMContext), NULL);
1211     break;
1212   case SSE:
1213     ResType = llvm::StructType::get(VMContext, ResType,
1214                                     llvm::Type::getDoubleTy(VMContext), NULL);
1215     break;
1216 
1217     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
1218     // is passed in the upper half of the last used SSE register.
1219     //
1220     // SSEUP should always be preceeded by SSE, just widen.
1221   case SSEUp:
1222     assert(Lo == SSE && "Unexpected SSEUp classification.");
1223     ResType = llvm::VectorType::get(llvm::Type::getDoubleTy(VMContext), 2);
1224     break;
1225 
1226     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
1227     // returned together with the previous X87 value in %st0.
1228   case X87Up:
1229     // If X87Up is preceeded by X87, we don't need to do
1230     // anything. However, in some cases with unions it may not be
1231     // preceeded by X87. In such situations we follow gcc and pass the
1232     // extra bits in an SSE reg.
1233     if (Lo != X87)
1234       ResType = llvm::StructType::get(VMContext, ResType,
1235                                       llvm::Type::getDoubleTy(VMContext), NULL);
1236     break;
1237   }
1238 
1239   return getCoerceResult(RetTy, ResType, Context);
1240 }
1241 
1242 ABIArgInfo X86_64ABIInfo::classifyArgumentType(QualType Ty, ASTContext &Context,
1243                                                llvm::LLVMContext &VMContext,
1244                                                unsigned &neededInt,
1245                                                unsigned &neededSSE) const {
1246   X86_64ABIInfo::Class Lo, Hi;
1247   classify(Ty, Context, 0, Lo, Hi);
1248 
1249   // Check some invariants.
1250   // FIXME: Enforce these by construction.
1251   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
1252   assert((Lo != NoClass || Hi == NoClass) && "Invalid null classification.");
1253   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
1254 
1255   neededInt = 0;
1256   neededSSE = 0;
1257   const llvm::Type *ResType = 0;
1258   switch (Lo) {
1259   case NoClass:
1260     return ABIArgInfo::getIgnore();
1261 
1262     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
1263     // on the stack.
1264   case Memory:
1265 
1266     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
1267     // COMPLEX_X87, it is passed in memory.
1268   case X87:
1269   case ComplexX87:
1270     return getIndirectResult(Ty, Context);
1271 
1272   case SSEUp:
1273   case X87Up:
1274     assert(0 && "Invalid classification for lo word.");
1275 
1276     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
1277     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
1278     // and %r9 is used.
1279   case Integer:
1280     ++neededInt;
1281     ResType = llvm::Type::getInt64Ty(VMContext);
1282     break;
1283 
1284     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
1285     // available SSE register is used, the registers are taken in the
1286     // order from %xmm0 to %xmm7.
1287   case SSE:
1288     ++neededSSE;
1289     ResType = llvm::Type::getDoubleTy(VMContext);
1290     break;
1291   }
1292 
1293   switch (Hi) {
1294     // Memory was handled previously, ComplexX87 and X87 should
1295     // never occur as hi classes, and X87Up must be preceed by X87,
1296     // which is passed in memory.
1297   case Memory:
1298   case X87:
1299   case ComplexX87:
1300     assert(0 && "Invalid classification for hi word.");
1301     break;
1302 
1303   case NoClass: break;
1304   case Integer:
1305     ResType = llvm::StructType::get(VMContext, ResType,
1306                                     llvm::Type::getInt64Ty(VMContext), NULL);
1307     ++neededInt;
1308     break;
1309 
1310     // X87Up generally doesn't occur here (long double is passed in
1311     // memory), except in situations involving unions.
1312   case X87Up:
1313   case SSE:
1314     ResType = llvm::StructType::get(VMContext, ResType,
1315                                     llvm::Type::getDoubleTy(VMContext), NULL);
1316     ++neededSSE;
1317     break;
1318 
1319     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
1320     // eightbyte is passed in the upper half of the last used SSE
1321     // register.
1322   case SSEUp:
1323     assert(Lo == SSE && "Unexpected SSEUp classification.");
1324     ResType = llvm::VectorType::get(llvm::Type::getDoubleTy(VMContext), 2);
1325     break;
1326   }
1327 
1328   return getCoerceResult(Ty, ResType, Context);
1329 }
1330 
1331 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI, ASTContext &Context,
1332                                 llvm::LLVMContext &VMContext) const {
1333   FI.getReturnInfo() = classifyReturnType(FI.getReturnType(),
1334                                           Context, VMContext);
1335 
1336   // Keep track of the number of assigned registers.
1337   unsigned freeIntRegs = 6, freeSSERegs = 8;
1338 
1339   // If the return value is indirect, then the hidden argument is consuming one
1340   // integer register.
1341   if (FI.getReturnInfo().isIndirect())
1342     --freeIntRegs;
1343 
1344   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
1345   // get assigned (in left-to-right order) for passing as follows...
1346   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
1347        it != ie; ++it) {
1348     unsigned neededInt, neededSSE;
1349     it->info = classifyArgumentType(it->type, Context, VMContext,
1350                                     neededInt, neededSSE);
1351 
1352     // AMD64-ABI 3.2.3p3: If there are no registers available for any
1353     // eightbyte of an argument, the whole argument is passed on the
1354     // stack. If registers have already been assigned for some
1355     // eightbytes of such an argument, the assignments get reverted.
1356     if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
1357       freeIntRegs -= neededInt;
1358       freeSSERegs -= neededSSE;
1359     } else {
1360       it->info = getIndirectResult(it->type, Context);
1361     }
1362   }
1363 }
1364 
1365 static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
1366                                         QualType Ty,
1367                                         CodeGenFunction &CGF) {
1368   llvm::Value *overflow_arg_area_p =
1369     CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
1370   llvm::Value *overflow_arg_area =
1371     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
1372 
1373   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
1374   // byte boundary if alignment needed by type exceeds 8 byte boundary.
1375   uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
1376   if (Align > 8) {
1377     // Note that we follow the ABI & gcc here, even though the type
1378     // could in theory have an alignment greater than 16. This case
1379     // shouldn't ever matter in practice.
1380 
1381     // overflow_arg_area = (overflow_arg_area + 15) & ~15;
1382     llvm::Value *Offset =
1383       llvm::ConstantInt::get(llvm::Type::getInt32Ty(CGF.getLLVMContext()), 15);
1384     overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
1385     llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
1386                                  llvm::Type::getInt64Ty(CGF.getLLVMContext()));
1387     llvm::Value *Mask = llvm::ConstantInt::get(
1388         llvm::Type::getInt64Ty(CGF.getLLVMContext()), ~15LL);
1389     overflow_arg_area =
1390       CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
1391                                  overflow_arg_area->getType(),
1392                                  "overflow_arg_area.align");
1393   }
1394 
1395   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
1396   const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
1397   llvm::Value *Res =
1398     CGF.Builder.CreateBitCast(overflow_arg_area,
1399                               llvm::PointerType::getUnqual(LTy));
1400 
1401   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
1402   // l->overflow_arg_area + sizeof(type).
1403   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
1404   // an 8 byte boundary.
1405 
1406   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
1407   llvm::Value *Offset =
1408       llvm::ConstantInt::get(llvm::Type::getInt32Ty(CGF.getLLVMContext()),
1409                                                (SizeInBytes + 7)  & ~7);
1410   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
1411                                             "overflow_arg_area.next");
1412   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
1413 
1414   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
1415   return Res;
1416 }
1417 
1418 llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1419                                       CodeGenFunction &CGF) const {
1420   llvm::LLVMContext &VMContext = CGF.getLLVMContext();
1421   const llvm::Type *i32Ty = llvm::Type::getInt32Ty(VMContext);
1422   const llvm::Type *DoubleTy = llvm::Type::getDoubleTy(VMContext);
1423 
1424   // Assume that va_list type is correct; should be pointer to LLVM type:
1425   // struct {
1426   //   i32 gp_offset;
1427   //   i32 fp_offset;
1428   //   i8* overflow_arg_area;
1429   //   i8* reg_save_area;
1430   // };
1431   unsigned neededInt, neededSSE;
1432 
1433   Ty = CGF.getContext().getCanonicalType(Ty);
1434   ABIArgInfo AI = classifyArgumentType(Ty, CGF.getContext(), VMContext,
1435                                        neededInt, neededSSE);
1436 
1437   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
1438   // in the registers. If not go to step 7.
1439   if (!neededInt && !neededSSE)
1440     return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
1441 
1442   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
1443   // general purpose registers needed to pass type and num_fp to hold
1444   // the number of floating point registers needed.
1445 
1446   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
1447   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
1448   // l->fp_offset > 304 - num_fp * 16 go to step 7.
1449   //
1450   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
1451   // register save space).
1452 
1453   llvm::Value *InRegs = 0;
1454   llvm::Value *gp_offset_p = 0, *gp_offset = 0;
1455   llvm::Value *fp_offset_p = 0, *fp_offset = 0;
1456   if (neededInt) {
1457     gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
1458     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
1459     InRegs =
1460       CGF.Builder.CreateICmpULE(gp_offset,
1461                                 llvm::ConstantInt::get(i32Ty,
1462                                                        48 - neededInt * 8),
1463                                 "fits_in_gp");
1464   }
1465 
1466   if (neededSSE) {
1467     fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
1468     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
1469     llvm::Value *FitsInFP =
1470       CGF.Builder.CreateICmpULE(fp_offset,
1471                                 llvm::ConstantInt::get(i32Ty,
1472                                                        176 - neededSSE * 16),
1473                                 "fits_in_fp");
1474     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
1475   }
1476 
1477   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
1478   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
1479   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
1480   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
1481 
1482   // Emit code to load the value if it was passed in registers.
1483 
1484   CGF.EmitBlock(InRegBlock);
1485 
1486   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
1487   // an offset of l->gp_offset and/or l->fp_offset. This may require
1488   // copying to a temporary location in case the parameter is passed
1489   // in different register classes or requires an alignment greater
1490   // than 8 for general purpose registers and 16 for XMM registers.
1491   //
1492   // FIXME: This really results in shameful code when we end up needing to
1493   // collect arguments from different places; often what should result in a
1494   // simple assembling of a structure from scattered addresses has many more
1495   // loads than necessary. Can we clean this up?
1496   const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
1497   llvm::Value *RegAddr =
1498     CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
1499                            "reg_save_area");
1500   if (neededInt && neededSSE) {
1501     // FIXME: Cleanup.
1502     assert(AI.isCoerce() && "Unexpected ABI info for mixed regs");
1503     const llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
1504     llvm::Value *Tmp = CGF.CreateTempAlloca(ST);
1505     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
1506     const llvm::Type *TyLo = ST->getElementType(0);
1507     const llvm::Type *TyHi = ST->getElementType(1);
1508     assert((TyLo->isFloatingPointTy() ^ TyHi->isFloatingPointTy()) &&
1509            "Unexpected ABI info for mixed regs");
1510     const llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
1511     const llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
1512     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
1513     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
1514     llvm::Value *RegLoAddr = TyLo->isFloatingPointTy() ? FPAddr : GPAddr;
1515     llvm::Value *RegHiAddr = TyLo->isFloatingPointTy() ? GPAddr : FPAddr;
1516     llvm::Value *V =
1517       CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
1518     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
1519     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
1520     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
1521 
1522     RegAddr = CGF.Builder.CreateBitCast(Tmp,
1523                                         llvm::PointerType::getUnqual(LTy));
1524   } else if (neededInt) {
1525     RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
1526     RegAddr = CGF.Builder.CreateBitCast(RegAddr,
1527                                         llvm::PointerType::getUnqual(LTy));
1528   } else {
1529     if (neededSSE == 1) {
1530       RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
1531       RegAddr = CGF.Builder.CreateBitCast(RegAddr,
1532                                           llvm::PointerType::getUnqual(LTy));
1533     } else {
1534       assert(neededSSE == 2 && "Invalid number of needed registers!");
1535       // SSE registers are spaced 16 bytes apart in the register save
1536       // area, we need to collect the two eightbytes together.
1537       llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
1538       llvm::Value *RegAddrHi =
1539         CGF.Builder.CreateGEP(RegAddrLo,
1540                             llvm::ConstantInt::get(i32Ty, 16));
1541       const llvm::Type *DblPtrTy =
1542         llvm::PointerType::getUnqual(DoubleTy);
1543       const llvm::StructType *ST = llvm::StructType::get(VMContext, DoubleTy,
1544                                                          DoubleTy, NULL);
1545       llvm::Value *V, *Tmp = CGF.CreateTempAlloca(ST);
1546       V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
1547                                                            DblPtrTy));
1548       CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
1549       V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
1550                                                            DblPtrTy));
1551       CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
1552       RegAddr = CGF.Builder.CreateBitCast(Tmp,
1553                                           llvm::PointerType::getUnqual(LTy));
1554     }
1555   }
1556 
1557   // AMD64-ABI 3.5.7p5: Step 5. Set:
1558   // l->gp_offset = l->gp_offset + num_gp * 8
1559   // l->fp_offset = l->fp_offset + num_fp * 16.
1560   if (neededInt) {
1561     llvm::Value *Offset = llvm::ConstantInt::get(i32Ty, neededInt * 8);
1562     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
1563                             gp_offset_p);
1564   }
1565   if (neededSSE) {
1566     llvm::Value *Offset = llvm::ConstantInt::get(i32Ty, neededSSE * 16);
1567     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
1568                             fp_offset_p);
1569   }
1570   CGF.EmitBranch(ContBlock);
1571 
1572   // Emit code to load the value if it was passed in memory.
1573 
1574   CGF.EmitBlock(InMemBlock);
1575   llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
1576 
1577   // Return the appropriate result.
1578 
1579   CGF.EmitBlock(ContBlock);
1580   llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(),
1581                                                  "vaarg.addr");
1582   ResAddr->reserveOperandSpace(2);
1583   ResAddr->addIncoming(RegAddr, InRegBlock);
1584   ResAddr->addIncoming(MemAddr, InMemBlock);
1585 
1586   return ResAddr;
1587 }
1588 
1589 // PIC16 ABI Implementation
1590 
1591 namespace {
1592 
1593 class PIC16ABIInfo : public ABIInfo {
1594   ABIArgInfo classifyReturnType(QualType RetTy,
1595                                 ASTContext &Context,
1596                                 llvm::LLVMContext &VMContext) const;
1597 
1598   ABIArgInfo classifyArgumentType(QualType RetTy,
1599                                   ASTContext &Context,
1600                                   llvm::LLVMContext &VMContext) const;
1601 
1602   virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context,
1603                            llvm::LLVMContext &VMContext) const {
1604     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context,
1605                                             VMContext);
1606     for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
1607          it != ie; ++it)
1608       it->info = classifyArgumentType(it->type, Context, VMContext);
1609   }
1610 
1611   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1612                                  CodeGenFunction &CGF) const;
1613 };
1614 
1615 class PIC16TargetCodeGenInfo : public TargetCodeGenInfo {
1616 public:
1617   PIC16TargetCodeGenInfo():TargetCodeGenInfo(new PIC16ABIInfo()) {}
1618 };
1619 
1620 }
1621 
1622 ABIArgInfo PIC16ABIInfo::classifyReturnType(QualType RetTy,
1623                                             ASTContext &Context,
1624                                           llvm::LLVMContext &VMContext) const {
1625   if (RetTy->isVoidType()) {
1626     return ABIArgInfo::getIgnore();
1627   } else {
1628     return ABIArgInfo::getDirect();
1629   }
1630 }
1631 
1632 ABIArgInfo PIC16ABIInfo::classifyArgumentType(QualType Ty,
1633                                               ASTContext &Context,
1634                                           llvm::LLVMContext &VMContext) const {
1635   return ABIArgInfo::getDirect();
1636 }
1637 
1638 llvm::Value *PIC16ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1639                                        CodeGenFunction &CGF) const {
1640   const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
1641   const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
1642 
1643   CGBuilderTy &Builder = CGF.Builder;
1644   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
1645                                                        "ap");
1646   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
1647   llvm::Type *PTy =
1648     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
1649   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
1650 
1651   uint64_t Offset = CGF.getContext().getTypeSize(Ty) / 8;
1652 
1653   llvm::Value *NextAddr =
1654     Builder.CreateGEP(Addr, llvm::ConstantInt::get(
1655                           llvm::Type::getInt32Ty(CGF.getLLVMContext()), Offset),
1656                       "ap.next");
1657   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
1658 
1659   return AddrTyped;
1660 }
1661 
1662 
1663 // PowerPC-32
1664 
1665 namespace {
1666 class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
1667 public:
1668   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
1669     // This is recovered from gcc output.
1670     return 1; // r1 is the dedicated stack pointer
1671   }
1672 
1673   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1674                                llvm::Value *Address) const;
1675 };
1676 
1677 }
1678 
1679 bool
1680 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1681                                                 llvm::Value *Address) const {
1682   // This is calculated from the LLVM and GCC tables and verified
1683   // against gcc output.  AFAIK all ABIs use the same encoding.
1684 
1685   CodeGen::CGBuilderTy &Builder = CGF.Builder;
1686   llvm::LLVMContext &Context = CGF.getLLVMContext();
1687 
1688   const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
1689   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
1690   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
1691   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
1692 
1693   // 0-31: r0-31, the 4-byte general-purpose registers
1694   AssignToArrayRange(Builder, Address, Four8, 0, 31);
1695 
1696   // 32-63: fp0-31, the 8-byte floating-point registers
1697   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
1698 
1699   // 64-76 are various 4-byte special-purpose registers:
1700   // 64: mq
1701   // 65: lr
1702   // 66: ctr
1703   // 67: ap
1704   // 68-75 cr0-7
1705   // 76: xer
1706   AssignToArrayRange(Builder, Address, Four8, 64, 76);
1707 
1708   // 77-108: v0-31, the 16-byte vector registers
1709   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
1710 
1711   // 109: vrsave
1712   // 110: vscr
1713   // 111: spe_acc
1714   // 112: spefscr
1715   // 113: sfp
1716   AssignToArrayRange(Builder, Address, Four8, 109, 113);
1717 
1718   return false;
1719 }
1720 
1721 
1722 // ARM ABI Implementation
1723 
1724 namespace {
1725 
1726 class ARMABIInfo : public ABIInfo {
1727 public:
1728   enum ABIKind {
1729     APCS = 0,
1730     AAPCS = 1,
1731     AAPCS_VFP
1732   };
1733 
1734 private:
1735   ABIKind Kind;
1736 
1737 public:
1738   ARMABIInfo(ABIKind _Kind) : Kind(_Kind) {}
1739 
1740 private:
1741   ABIKind getABIKind() const { return Kind; }
1742 
1743   ABIArgInfo classifyReturnType(QualType RetTy,
1744                                 ASTContext &Context,
1745                                 llvm::LLVMContext &VMCOntext) const;
1746 
1747   ABIArgInfo classifyArgumentType(QualType RetTy,
1748                                   ASTContext &Context,
1749                                   llvm::LLVMContext &VMContext) const;
1750 
1751   virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context,
1752                            llvm::LLVMContext &VMContext) const;
1753 
1754   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1755                                  CodeGenFunction &CGF) const;
1756 };
1757 
1758 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
1759 public:
1760   ARMTargetCodeGenInfo(ARMABIInfo::ABIKind K)
1761     :TargetCodeGenInfo(new ARMABIInfo(K)) {}
1762 
1763   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
1764     return 13;
1765   }
1766 };
1767 
1768 }
1769 
1770 void ARMABIInfo::computeInfo(CGFunctionInfo &FI, ASTContext &Context,
1771                              llvm::LLVMContext &VMContext) const {
1772   FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context,
1773                                           VMContext);
1774   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
1775        it != ie; ++it) {
1776     it->info = classifyArgumentType(it->type, Context, VMContext);
1777   }
1778 
1779   // ARM always overrides the calling convention.
1780   switch (getABIKind()) {
1781   case APCS:
1782     FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_APCS);
1783     break;
1784 
1785   case AAPCS:
1786     FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS);
1787     break;
1788 
1789   case AAPCS_VFP:
1790     FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS_VFP);
1791     break;
1792   }
1793 }
1794 
1795 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty,
1796                                             ASTContext &Context,
1797                                           llvm::LLVMContext &VMContext) const {
1798   if (!CodeGenFunction::hasAggregateLLVMType(Ty)) {
1799     // Treat an enum type as its underlying type.
1800     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1801       Ty = EnumTy->getDecl()->getIntegerType();
1802 
1803     return (Ty->isPromotableIntegerType() ?
1804             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1805   }
1806 
1807   // Ignore empty records.
1808   if (isEmptyRecord(Context, Ty, true))
1809     return ABIArgInfo::getIgnore();
1810 
1811   // Structures with either a non-trivial destructor or a non-trivial
1812   // copy constructor are always indirect.
1813   if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
1814     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
1815 
1816   // FIXME: This is kind of nasty... but there isn't much choice because the ARM
1817   // backend doesn't support byval.
1818   // FIXME: This doesn't handle alignment > 64 bits.
1819   const llvm::Type* ElemTy;
1820   unsigned SizeRegs;
1821   if (Context.getTypeAlign(Ty) > 32) {
1822     ElemTy = llvm::Type::getInt64Ty(VMContext);
1823     SizeRegs = (Context.getTypeSize(Ty) + 63) / 64;
1824   } else {
1825     ElemTy = llvm::Type::getInt32Ty(VMContext);
1826     SizeRegs = (Context.getTypeSize(Ty) + 31) / 32;
1827   }
1828   std::vector<const llvm::Type*> LLVMFields;
1829   LLVMFields.push_back(llvm::ArrayType::get(ElemTy, SizeRegs));
1830   const llvm::Type* STy = llvm::StructType::get(VMContext, LLVMFields, true);
1831   return ABIArgInfo::getCoerce(STy);
1832 }
1833 
1834 static bool isIntegerLikeType(QualType Ty,
1835                               ASTContext &Context,
1836                               llvm::LLVMContext &VMContext) {
1837   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
1838   // is called integer-like if its size is less than or equal to one word, and
1839   // the offset of each of its addressable sub-fields is zero.
1840 
1841   uint64_t Size = Context.getTypeSize(Ty);
1842 
1843   // Check that the type fits in a word.
1844   if (Size > 32)
1845     return false;
1846 
1847   // FIXME: Handle vector types!
1848   if (Ty->isVectorType())
1849     return false;
1850 
1851   // Float types are never treated as "integer like".
1852   if (Ty->isRealFloatingType())
1853     return false;
1854 
1855   // If this is a builtin or pointer type then it is ok.
1856   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
1857     return true;
1858 
1859   // Small complex integer types are "integer like".
1860   if (const ComplexType *CT = Ty->getAs<ComplexType>())
1861     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
1862 
1863   // Single element and zero sized arrays should be allowed, by the definition
1864   // above, but they are not.
1865 
1866   // Otherwise, it must be a record type.
1867   const RecordType *RT = Ty->getAs<RecordType>();
1868   if (!RT) return false;
1869 
1870   // Ignore records with flexible arrays.
1871   const RecordDecl *RD = RT->getDecl();
1872   if (RD->hasFlexibleArrayMember())
1873     return false;
1874 
1875   // Check that all sub-fields are at offset 0, and are themselves "integer
1876   // like".
1877   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1878 
1879   bool HadField = false;
1880   unsigned idx = 0;
1881   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1882        i != e; ++i, ++idx) {
1883     const FieldDecl *FD = *i;
1884 
1885     // Bit-fields are not addressable, we only need to verify they are "integer
1886     // like". We still have to disallow a subsequent non-bitfield, for example:
1887     //   struct { int : 0; int x }
1888     // is non-integer like according to gcc.
1889     if (FD->isBitField()) {
1890       if (!RD->isUnion())
1891         HadField = true;
1892 
1893       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
1894         return false;
1895 
1896       continue;
1897     }
1898 
1899     // Check if this field is at offset 0.
1900     if (Layout.getFieldOffset(idx) != 0)
1901       return false;
1902 
1903     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
1904       return false;
1905 
1906     // Only allow at most one field in a structure. This doesn't match the
1907     // wording above, but follows gcc in situations with a field following an
1908     // empty structure.
1909     if (!RD->isUnion()) {
1910       if (HadField)
1911         return false;
1912 
1913       HadField = true;
1914     }
1915   }
1916 
1917   return true;
1918 }
1919 
1920 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy,
1921                                           ASTContext &Context,
1922                                           llvm::LLVMContext &VMContext) const {
1923   if (RetTy->isVoidType())
1924     return ABIArgInfo::getIgnore();
1925 
1926   if (!CodeGenFunction::hasAggregateLLVMType(RetTy)) {
1927     // Treat an enum type as its underlying type.
1928     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1929       RetTy = EnumTy->getDecl()->getIntegerType();
1930 
1931     return (RetTy->isPromotableIntegerType() ?
1932             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1933   }
1934 
1935   // Structures with either a non-trivial destructor or a non-trivial
1936   // copy constructor are always indirect.
1937   if (isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
1938     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
1939 
1940   // Are we following APCS?
1941   if (getABIKind() == APCS) {
1942     if (isEmptyRecord(Context, RetTy, false))
1943       return ABIArgInfo::getIgnore();
1944 
1945     // Complex types are all returned as packed integers.
1946     //
1947     // FIXME: Consider using 2 x vector types if the back end handles them
1948     // correctly.
1949     if (RetTy->isAnyComplexType())
1950       return ABIArgInfo::getCoerce(llvm::IntegerType::get(
1951                                      VMContext, Context.getTypeSize(RetTy)));
1952 
1953     // Integer like structures are returned in r0.
1954     if (isIntegerLikeType(RetTy, Context, VMContext)) {
1955       // Return in the smallest viable integer type.
1956       uint64_t Size = Context.getTypeSize(RetTy);
1957       if (Size <= 8)
1958         return ABIArgInfo::getCoerce(llvm::Type::getInt8Ty(VMContext));
1959       if (Size <= 16)
1960         return ABIArgInfo::getCoerce(llvm::Type::getInt16Ty(VMContext));
1961       return ABIArgInfo::getCoerce(llvm::Type::getInt32Ty(VMContext));
1962     }
1963 
1964     // Otherwise return in memory.
1965     return ABIArgInfo::getIndirect(0);
1966   }
1967 
1968   // Otherwise this is an AAPCS variant.
1969 
1970   if (isEmptyRecord(Context, RetTy, true))
1971     return ABIArgInfo::getIgnore();
1972 
1973   // Aggregates <= 4 bytes are returned in r0; other aggregates
1974   // are returned indirectly.
1975   uint64_t Size = Context.getTypeSize(RetTy);
1976   if (Size <= 32) {
1977     // Return in the smallest viable integer type.
1978     if (Size <= 8)
1979       return ABIArgInfo::getCoerce(llvm::Type::getInt8Ty(VMContext));
1980     if (Size <= 16)
1981       return ABIArgInfo::getCoerce(llvm::Type::getInt16Ty(VMContext));
1982     return ABIArgInfo::getCoerce(llvm::Type::getInt32Ty(VMContext));
1983   }
1984 
1985   return ABIArgInfo::getIndirect(0);
1986 }
1987 
1988 llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1989                                       CodeGenFunction &CGF) const {
1990   // FIXME: Need to handle alignment
1991   const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
1992   const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
1993 
1994   CGBuilderTy &Builder = CGF.Builder;
1995   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
1996                                                        "ap");
1997   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
1998   llvm::Type *PTy =
1999     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2000   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
2001 
2002   uint64_t Offset =
2003     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
2004   llvm::Value *NextAddr =
2005     Builder.CreateGEP(Addr, llvm::ConstantInt::get(
2006                           llvm::Type::getInt32Ty(CGF.getLLVMContext()), Offset),
2007                       "ap.next");
2008   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2009 
2010   return AddrTyped;
2011 }
2012 
2013 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy,
2014                                               ASTContext &Context,
2015                                           llvm::LLVMContext &VMContext) const {
2016   if (RetTy->isVoidType()) {
2017     return ABIArgInfo::getIgnore();
2018   } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
2019     return ABIArgInfo::getIndirect(0);
2020   } else {
2021     // Treat an enum type as its underlying type.
2022     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2023       RetTy = EnumTy->getDecl()->getIntegerType();
2024 
2025     return (RetTy->isPromotableIntegerType() ?
2026             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2027   }
2028 }
2029 
2030 // SystemZ ABI Implementation
2031 
2032 namespace {
2033 
2034 class SystemZABIInfo : public ABIInfo {
2035   bool isPromotableIntegerType(QualType Ty) const;
2036 
2037   ABIArgInfo classifyReturnType(QualType RetTy, ASTContext &Context,
2038                                 llvm::LLVMContext &VMContext) const;
2039 
2040   ABIArgInfo classifyArgumentType(QualType RetTy, ASTContext &Context,
2041                                   llvm::LLVMContext &VMContext) const;
2042 
2043   virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context,
2044                           llvm::LLVMContext &VMContext) const {
2045     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(),
2046                                             Context, VMContext);
2047     for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2048          it != ie; ++it)
2049       it->info = classifyArgumentType(it->type, Context, VMContext);
2050   }
2051 
2052   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2053                                  CodeGenFunction &CGF) const;
2054 };
2055 
2056 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
2057 public:
2058   SystemZTargetCodeGenInfo():TargetCodeGenInfo(new SystemZABIInfo()) {}
2059 };
2060 
2061 }
2062 
2063 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
2064   // SystemZ ABI requires all 8, 16 and 32 bit quantities to be extended.
2065   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
2066     switch (BT->getKind()) {
2067     case BuiltinType::Bool:
2068     case BuiltinType::Char_S:
2069     case BuiltinType::Char_U:
2070     case BuiltinType::SChar:
2071     case BuiltinType::UChar:
2072     case BuiltinType::Short:
2073     case BuiltinType::UShort:
2074     case BuiltinType::Int:
2075     case BuiltinType::UInt:
2076       return true;
2077     default:
2078       return false;
2079     }
2080   return false;
2081 }
2082 
2083 llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2084                                        CodeGenFunction &CGF) const {
2085   // FIXME: Implement
2086   return 0;
2087 }
2088 
2089 
2090 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy,
2091                                               ASTContext &Context,
2092                                            llvm::LLVMContext &VMContext) const {
2093   if (RetTy->isVoidType()) {
2094     return ABIArgInfo::getIgnore();
2095   } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
2096     return ABIArgInfo::getIndirect(0);
2097   } else {
2098     return (isPromotableIntegerType(RetTy) ?
2099             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2100   }
2101 }
2102 
2103 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty,
2104                                                 ASTContext &Context,
2105                                            llvm::LLVMContext &VMContext) const {
2106   if (CodeGenFunction::hasAggregateLLVMType(Ty)) {
2107     return ABIArgInfo::getIndirect(0);
2108   } else {
2109     return (isPromotableIntegerType(Ty) ?
2110             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2111   }
2112 }
2113 
2114 // MSP430 ABI Implementation
2115 
2116 namespace {
2117 
2118 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
2119 public:
2120   MSP430TargetCodeGenInfo():TargetCodeGenInfo(new DefaultABIInfo()) {}
2121   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2122                            CodeGen::CodeGenModule &M) const;
2123 };
2124 
2125 }
2126 
2127 void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
2128                                                   llvm::GlobalValue *GV,
2129                                              CodeGen::CodeGenModule &M) const {
2130   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2131     if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
2132       // Handle 'interrupt' attribute:
2133       llvm::Function *F = cast<llvm::Function>(GV);
2134 
2135       // Step 1: Set ISR calling convention.
2136       F->setCallingConv(llvm::CallingConv::MSP430_INTR);
2137 
2138       // Step 2: Add attributes goodness.
2139       F->addFnAttr(llvm::Attribute::NoInline);
2140 
2141       // Step 3: Emit ISR vector alias.
2142       unsigned Num = attr->getNumber() + 0xffe0;
2143       new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
2144                             "vector_" +
2145                             llvm::LowercaseString(llvm::utohexstr(Num)),
2146                             GV, &M.getModule());
2147     }
2148   }
2149 }
2150 
2151 // MIPS ABI Implementation.  This works for both little-endian and
2152 // big-endian variants.
2153 namespace {
2154 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
2155 public:
2156   MIPSTargetCodeGenInfo(): TargetCodeGenInfo(new DefaultABIInfo()) {}
2157 
2158   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
2159     return 29;
2160   }
2161 
2162   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2163                                llvm::Value *Address) const;
2164 };
2165 }
2166 
2167 bool
2168 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2169                                                llvm::Value *Address) const {
2170   // This information comes from gcc's implementation, which seems to
2171   // as canonical as it gets.
2172 
2173   CodeGen::CGBuilderTy &Builder = CGF.Builder;
2174   llvm::LLVMContext &Context = CGF.getLLVMContext();
2175 
2176   // Everything on MIPS is 4 bytes.  Double-precision FP registers
2177   // are aliased to pairs of single-precision FP registers.
2178   const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
2179   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2180 
2181   // 0-31 are the general purpose registers, $0 - $31.
2182   // 32-63 are the floating-point registers, $f0 - $f31.
2183   // 64 and 65 are the multiply/divide registers, $hi and $lo.
2184   // 66 is the (notional, I think) register for signal-handler return.
2185   AssignToArrayRange(Builder, Address, Four8, 0, 65);
2186 
2187   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
2188   // They are one bit wide and ignored here.
2189 
2190   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
2191   // (coprocessor 1 is the FP unit)
2192   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
2193   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
2194   // 176-181 are the DSP accumulator registers.
2195   AssignToArrayRange(Builder, Address, Four8, 80, 181);
2196 
2197   return false;
2198 }
2199 
2200 
2201 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() const {
2202   if (TheTargetCodeGenInfo)
2203     return *TheTargetCodeGenInfo;
2204 
2205   // For now we just cache the TargetCodeGenInfo in CodeGenModule and don't
2206   // free it.
2207 
2208   const llvm::Triple &Triple(getContext().Target.getTriple());
2209   switch (Triple.getArch()) {
2210   default:
2211     return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo);
2212 
2213   case llvm::Triple::mips:
2214   case llvm::Triple::mipsel:
2215     return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo());
2216 
2217   case llvm::Triple::arm:
2218   case llvm::Triple::thumb:
2219     // FIXME: We want to know the float calling convention as well.
2220     if (strcmp(getContext().Target.getABI(), "apcs-gnu") == 0)
2221       return *(TheTargetCodeGenInfo =
2222                new ARMTargetCodeGenInfo(ARMABIInfo::APCS));
2223 
2224     return *(TheTargetCodeGenInfo =
2225              new ARMTargetCodeGenInfo(ARMABIInfo::AAPCS));
2226 
2227   case llvm::Triple::pic16:
2228     return *(TheTargetCodeGenInfo = new PIC16TargetCodeGenInfo());
2229 
2230   case llvm::Triple::ppc:
2231     return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo());
2232 
2233   case llvm::Triple::systemz:
2234     return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo());
2235 
2236   case llvm::Triple::msp430:
2237     return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo());
2238 
2239   case llvm::Triple::x86:
2240     switch (Triple.getOS()) {
2241     case llvm::Triple::Darwin:
2242       return *(TheTargetCodeGenInfo =
2243                new X86_32TargetCodeGenInfo(Context, true, true));
2244     case llvm::Triple::Cygwin:
2245     case llvm::Triple::MinGW32:
2246     case llvm::Triple::MinGW64:
2247     case llvm::Triple::AuroraUX:
2248     case llvm::Triple::DragonFly:
2249     case llvm::Triple::FreeBSD:
2250     case llvm::Triple::OpenBSD:
2251       return *(TheTargetCodeGenInfo =
2252                new X86_32TargetCodeGenInfo(Context, false, true));
2253 
2254     default:
2255       return *(TheTargetCodeGenInfo =
2256                new X86_32TargetCodeGenInfo(Context, false, false));
2257     }
2258 
2259   case llvm::Triple::x86_64:
2260     return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo());
2261   }
2262 }
2263