1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These classes wrap the information about a call or function
10 // definition used to handle ABI compliancy.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "TargetInfo.h"
15 #include "ABIInfo.h"
16 #include "CGBlocks.h"
17 #include "CGCXXABI.h"
18 #include "CGValue.h"
19 #include "CodeGenFunction.h"
20 #include "clang/AST/RecordLayout.h"
21 #include "clang/Basic/CodeGenOptions.h"
22 #include "clang/CodeGen/CGFunctionInfo.h"
23 #include "clang/CodeGen/SwiftCallingConv.h"
24 #include "llvm/ADT/StringExtras.h"
25 #include "llvm/ADT/StringSwitch.h"
26 #include "llvm/ADT/Triple.h"
27 #include "llvm/ADT/Twine.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Type.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include <algorithm>    // std::sort
32 
33 using namespace clang;
34 using namespace CodeGen;
35 
36 // Helper for coercing an aggregate argument or return value into an integer
37 // array of the same size (including padding) and alignment.  This alternate
38 // coercion happens only for the RenderScript ABI and can be removed after
39 // runtimes that rely on it are no longer supported.
40 //
41 // RenderScript assumes that the size of the argument / return value in the IR
42 // is the same as the size of the corresponding qualified type. This helper
43 // coerces the aggregate type into an array of the same size (including
44 // padding).  This coercion is used in lieu of expansion of struct members or
45 // other canonical coercions that return a coerced-type of larger size.
46 //
47 // Ty          - The argument / return value type
48 // Context     - The associated ASTContext
49 // LLVMContext - The associated LLVMContext
50 static ABIArgInfo coerceToIntArray(QualType Ty,
51                                    ASTContext &Context,
52                                    llvm::LLVMContext &LLVMContext) {
53   // Alignment and Size are measured in bits.
54   const uint64_t Size = Context.getTypeSize(Ty);
55   const uint64_t Alignment = Context.getTypeAlign(Ty);
56   llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment);
57   const uint64_t NumElements = (Size + Alignment - 1) / Alignment;
58   return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
59 }
60 
61 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
62                                llvm::Value *Array,
63                                llvm::Value *Value,
64                                unsigned FirstIndex,
65                                unsigned LastIndex) {
66   // Alternatively, we could emit this as a loop in the source.
67   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
68     llvm::Value *Cell =
69         Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I);
70     Builder.CreateAlignedStore(Value, Cell, CharUnits::One());
71   }
72 }
73 
74 static bool isAggregateTypeForABI(QualType T) {
75   return !CodeGenFunction::hasScalarEvaluationKind(T) ||
76          T->isMemberFunctionPointerType();
77 }
78 
79 ABIArgInfo
80 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign,
81                                  llvm::Type *Padding) const {
82   return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty),
83                                  ByRef, Realign, Padding);
84 }
85 
86 ABIArgInfo
87 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const {
88   return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty),
89                                       /*ByRef*/ false, Realign);
90 }
91 
92 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
93                              QualType Ty) const {
94   return Address::invalid();
95 }
96 
97 ABIInfo::~ABIInfo() {}
98 
99 /// Does the given lowering require more than the given number of
100 /// registers when expanded?
101 ///
102 /// This is intended to be the basis of a reasonable basic implementation
103 /// of should{Pass,Return}IndirectlyForSwift.
104 ///
105 /// For most targets, a limit of four total registers is reasonable; this
106 /// limits the amount of code required in order to move around the value
107 /// in case it wasn't produced immediately prior to the call by the caller
108 /// (or wasn't produced in exactly the right registers) or isn't used
109 /// immediately within the callee.  But some targets may need to further
110 /// limit the register count due to an inability to support that many
111 /// return registers.
112 static bool occupiesMoreThan(CodeGenTypes &cgt,
113                              ArrayRef<llvm::Type*> scalarTypes,
114                              unsigned maxAllRegisters) {
115   unsigned intCount = 0, fpCount = 0;
116   for (llvm::Type *type : scalarTypes) {
117     if (type->isPointerTy()) {
118       intCount++;
119     } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) {
120       auto ptrWidth = cgt.getTarget().getPointerWidth(0);
121       intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth;
122     } else {
123       assert(type->isVectorTy() || type->isFloatingPointTy());
124       fpCount++;
125     }
126   }
127 
128   return (intCount + fpCount > maxAllRegisters);
129 }
130 
131 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
132                                              llvm::Type *eltTy,
133                                              unsigned numElts) const {
134   // The default implementation of this assumes that the target guarantees
135   // 128-bit SIMD support but nothing more.
136   return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16);
137 }
138 
139 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
140                                               CGCXXABI &CXXABI) {
141   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
142   if (!RD) {
143     if (!RT->getDecl()->canPassInRegisters())
144       return CGCXXABI::RAA_Indirect;
145     return CGCXXABI::RAA_Default;
146   }
147   return CXXABI.getRecordArgABI(RD);
148 }
149 
150 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
151                                               CGCXXABI &CXXABI) {
152   const RecordType *RT = T->getAs<RecordType>();
153   if (!RT)
154     return CGCXXABI::RAA_Default;
155   return getRecordArgABI(RT, CXXABI);
156 }
157 
158 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI,
159                                const ABIInfo &Info) {
160   QualType Ty = FI.getReturnType();
161 
162   if (const auto *RT = Ty->getAs<RecordType>())
163     if (!isa<CXXRecordDecl>(RT->getDecl()) &&
164         !RT->getDecl()->canPassInRegisters()) {
165       FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty);
166       return true;
167     }
168 
169   return CXXABI.classifyReturnType(FI);
170 }
171 
172 /// Pass transparent unions as if they were the type of the first element. Sema
173 /// should ensure that all elements of the union have the same "machine type".
174 static QualType useFirstFieldIfTransparentUnion(QualType Ty) {
175   if (const RecordType *UT = Ty->getAsUnionType()) {
176     const RecordDecl *UD = UT->getDecl();
177     if (UD->hasAttr<TransparentUnionAttr>()) {
178       assert(!UD->field_empty() && "sema created an empty transparent union");
179       return UD->field_begin()->getType();
180     }
181   }
182   return Ty;
183 }
184 
185 CGCXXABI &ABIInfo::getCXXABI() const {
186   return CGT.getCXXABI();
187 }
188 
189 ASTContext &ABIInfo::getContext() const {
190   return CGT.getContext();
191 }
192 
193 llvm::LLVMContext &ABIInfo::getVMContext() const {
194   return CGT.getLLVMContext();
195 }
196 
197 const llvm::DataLayout &ABIInfo::getDataLayout() const {
198   return CGT.getDataLayout();
199 }
200 
201 const TargetInfo &ABIInfo::getTarget() const {
202   return CGT.getTarget();
203 }
204 
205 const CodeGenOptions &ABIInfo::getCodeGenOpts() const {
206   return CGT.getCodeGenOpts();
207 }
208 
209 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); }
210 
211 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
212   return false;
213 }
214 
215 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
216                                                 uint64_t Members) const {
217   return false;
218 }
219 
220 LLVM_DUMP_METHOD void ABIArgInfo::dump() const {
221   raw_ostream &OS = llvm::errs();
222   OS << "(ABIArgInfo Kind=";
223   switch (TheKind) {
224   case Direct:
225     OS << "Direct Type=";
226     if (llvm::Type *Ty = getCoerceToType())
227       Ty->print(OS);
228     else
229       OS << "null";
230     break;
231   case Extend:
232     OS << "Extend";
233     break;
234   case Ignore:
235     OS << "Ignore";
236     break;
237   case InAlloca:
238     OS << "InAlloca Offset=" << getInAllocaFieldIndex();
239     break;
240   case Indirect:
241     OS << "Indirect Align=" << getIndirectAlign().getQuantity()
242        << " ByVal=" << getIndirectByVal()
243        << " Realign=" << getIndirectRealign();
244     break;
245   case Expand:
246     OS << "Expand";
247     break;
248   case CoerceAndExpand:
249     OS << "CoerceAndExpand Type=";
250     getCoerceAndExpandType()->print(OS);
251     break;
252   }
253   OS << ")\n";
254 }
255 
256 // Dynamically round a pointer up to a multiple of the given alignment.
257 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF,
258                                                   llvm::Value *Ptr,
259                                                   CharUnits Align) {
260   llvm::Value *PtrAsInt = Ptr;
261   // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align;
262   PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy);
263   PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt,
264         llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1));
265   PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt,
266            llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity()));
267   PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt,
268                                         Ptr->getType(),
269                                         Ptr->getName() + ".aligned");
270   return PtrAsInt;
271 }
272 
273 /// Emit va_arg for a platform using the common void* representation,
274 /// where arguments are simply emitted in an array of slots on the stack.
275 ///
276 /// This version implements the core direct-value passing rules.
277 ///
278 /// \param SlotSize - The size and alignment of a stack slot.
279 ///   Each argument will be allocated to a multiple of this number of
280 ///   slots, and all the slots will be aligned to this value.
281 /// \param AllowHigherAlign - The slot alignment is not a cap;
282 ///   an argument type with an alignment greater than the slot size
283 ///   will be emitted on a higher-alignment address, potentially
284 ///   leaving one or more empty slots behind as padding.  If this
285 ///   is false, the returned address might be less-aligned than
286 ///   DirectAlign.
287 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF,
288                                       Address VAListAddr,
289                                       llvm::Type *DirectTy,
290                                       CharUnits DirectSize,
291                                       CharUnits DirectAlign,
292                                       CharUnits SlotSize,
293                                       bool AllowHigherAlign) {
294   // Cast the element type to i8* if necessary.  Some platforms define
295   // va_list as a struct containing an i8* instead of just an i8*.
296   if (VAListAddr.getElementType() != CGF.Int8PtrTy)
297     VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy);
298 
299   llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur");
300 
301   // If the CC aligns values higher than the slot size, do so if needed.
302   Address Addr = Address::invalid();
303   if (AllowHigherAlign && DirectAlign > SlotSize) {
304     Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign),
305                                                  DirectAlign);
306   } else {
307     Addr = Address(Ptr, SlotSize);
308   }
309 
310   // Advance the pointer past the argument, then store that back.
311   CharUnits FullDirectSize = DirectSize.alignTo(SlotSize);
312   llvm::Value *NextPtr =
313     CGF.Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), FullDirectSize,
314                                            "argp.next");
315   CGF.Builder.CreateStore(NextPtr, VAListAddr);
316 
317   // If the argument is smaller than a slot, and this is a big-endian
318   // target, the argument will be right-adjusted in its slot.
319   if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() &&
320       !DirectTy->isStructTy()) {
321     Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize);
322   }
323 
324   Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy);
325   return Addr;
326 }
327 
328 /// Emit va_arg for a platform using the common void* representation,
329 /// where arguments are simply emitted in an array of slots on the stack.
330 ///
331 /// \param IsIndirect - Values of this type are passed indirectly.
332 /// \param ValueInfo - The size and alignment of this type, generally
333 ///   computed with getContext().getTypeInfoInChars(ValueTy).
334 /// \param SlotSizeAndAlign - The size and alignment of a stack slot.
335 ///   Each argument will be allocated to a multiple of this number of
336 ///   slots, and all the slots will be aligned to this value.
337 /// \param AllowHigherAlign - The slot alignment is not a cap;
338 ///   an argument type with an alignment greater than the slot size
339 ///   will be emitted on a higher-alignment address, potentially
340 ///   leaving one or more empty slots behind as padding.
341 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr,
342                                 QualType ValueTy, bool IsIndirect,
343                                 std::pair<CharUnits, CharUnits> ValueInfo,
344                                 CharUnits SlotSizeAndAlign,
345                                 bool AllowHigherAlign) {
346   // The size and alignment of the value that was passed directly.
347   CharUnits DirectSize, DirectAlign;
348   if (IsIndirect) {
349     DirectSize = CGF.getPointerSize();
350     DirectAlign = CGF.getPointerAlign();
351   } else {
352     DirectSize = ValueInfo.first;
353     DirectAlign = ValueInfo.second;
354   }
355 
356   // Cast the address we've calculated to the right type.
357   llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy);
358   if (IsIndirect)
359     DirectTy = DirectTy->getPointerTo(0);
360 
361   Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy,
362                                         DirectSize, DirectAlign,
363                                         SlotSizeAndAlign,
364                                         AllowHigherAlign);
365 
366   if (IsIndirect) {
367     Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second);
368   }
369 
370   return Addr;
371 
372 }
373 
374 static Address emitMergePHI(CodeGenFunction &CGF,
375                             Address Addr1, llvm::BasicBlock *Block1,
376                             Address Addr2, llvm::BasicBlock *Block2,
377                             const llvm::Twine &Name = "") {
378   assert(Addr1.getType() == Addr2.getType());
379   llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name);
380   PHI->addIncoming(Addr1.getPointer(), Block1);
381   PHI->addIncoming(Addr2.getPointer(), Block2);
382   CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment());
383   return Address(PHI, Align);
384 }
385 
386 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
387 
388 // If someone can figure out a general rule for this, that would be great.
389 // It's probably just doomed to be platform-dependent, though.
390 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
391   // Verified for:
392   //   x86-64     FreeBSD, Linux, Darwin
393   //   x86-32     FreeBSD, Linux, Darwin
394   //   PowerPC    Linux, Darwin
395   //   ARM        Darwin (*not* EABI)
396   //   AArch64    Linux
397   return 32;
398 }
399 
400 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
401                                      const FunctionNoProtoType *fnType) const {
402   // The following conventions are known to require this to be false:
403   //   x86_stdcall
404   //   MIPS
405   // For everything else, we just prefer false unless we opt out.
406   return false;
407 }
408 
409 void
410 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
411                                              llvm::SmallString<24> &Opt) const {
412   // This assumes the user is passing a library name like "rt" instead of a
413   // filename like "librt.a/so", and that they don't care whether it's static or
414   // dynamic.
415   Opt = "-l";
416   Opt += Lib;
417 }
418 
419 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const {
420   // OpenCL kernels are called via an explicit runtime API with arguments
421   // set with clSetKernelArg(), not as normal sub-functions.
422   // Return SPIR_KERNEL by default as the kernel calling convention to
423   // ensure the fingerprint is fixed such way that each OpenCL argument
424   // gets one matching argument in the produced kernel function argument
425   // list to enable feasible implementation of clSetKernelArg() with
426   // aggregates etc. In case we would use the default C calling conv here,
427   // clSetKernelArg() might break depending on the target-specific
428   // conventions; different targets might split structs passed as values
429   // to multiple function arguments etc.
430   return llvm::CallingConv::SPIR_KERNEL;
431 }
432 
433 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM,
434     llvm::PointerType *T, QualType QT) const {
435   return llvm::ConstantPointerNull::get(T);
436 }
437 
438 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
439                                                    const VarDecl *D) const {
440   assert(!CGM.getLangOpts().OpenCL &&
441          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
442          "Address space agnostic languages only");
443   return D ? D->getType().getAddressSpace() : LangAS::Default;
444 }
445 
446 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast(
447     CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr,
448     LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const {
449   // Since target may map different address spaces in AST to the same address
450   // space, an address space conversion may end up as a bitcast.
451   if (auto *C = dyn_cast<llvm::Constant>(Src))
452     return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy);
453   return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DestTy);
454 }
455 
456 llvm::Constant *
457 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src,
458                                         LangAS SrcAddr, LangAS DestAddr,
459                                         llvm::Type *DestTy) const {
460   // Since target may map different address spaces in AST to the same address
461   // space, an address space conversion may end up as a bitcast.
462   return llvm::ConstantExpr::getPointerCast(Src, DestTy);
463 }
464 
465 llvm::SyncScope::ID
466 TargetCodeGenInfo::getLLVMSyncScopeID(SyncScope S, llvm::LLVMContext &C) const {
467   return C.getOrInsertSyncScopeID(""); /* default sync scope */
468 }
469 
470 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
471 
472 /// isEmptyField - Return true iff a the field is "empty", that is it
473 /// is an unnamed bit-field or an (array of) empty record(s).
474 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
475                          bool AllowArrays) {
476   if (FD->isUnnamedBitfield())
477     return true;
478 
479   QualType FT = FD->getType();
480 
481   // Constant arrays of empty records count as empty, strip them off.
482   // Constant arrays of zero length always count as empty.
483   if (AllowArrays)
484     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
485       if (AT->getSize() == 0)
486         return true;
487       FT = AT->getElementType();
488     }
489 
490   const RecordType *RT = FT->getAs<RecordType>();
491   if (!RT)
492     return false;
493 
494   // C++ record fields are never empty, at least in the Itanium ABI.
495   //
496   // FIXME: We should use a predicate for whether this behavior is true in the
497   // current ABI.
498   if (isa<CXXRecordDecl>(RT->getDecl()))
499     return false;
500 
501   return isEmptyRecord(Context, FT, AllowArrays);
502 }
503 
504 /// isEmptyRecord - Return true iff a structure contains only empty
505 /// fields. Note that a structure with a flexible array member is not
506 /// considered empty.
507 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
508   const RecordType *RT = T->getAs<RecordType>();
509   if (!RT)
510     return false;
511   const RecordDecl *RD = RT->getDecl();
512   if (RD->hasFlexibleArrayMember())
513     return false;
514 
515   // If this is a C++ record, check the bases first.
516   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
517     for (const auto &I : CXXRD->bases())
518       if (!isEmptyRecord(Context, I.getType(), true))
519         return false;
520 
521   for (const auto *I : RD->fields())
522     if (!isEmptyField(Context, I, AllowArrays))
523       return false;
524   return true;
525 }
526 
527 /// isSingleElementStruct - Determine if a structure is a "single
528 /// element struct", i.e. it has exactly one non-empty field or
529 /// exactly one field which is itself a single element
530 /// struct. Structures with flexible array members are never
531 /// considered single element structs.
532 ///
533 /// \return The field declaration for the single non-empty field, if
534 /// it exists.
535 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
536   const RecordType *RT = T->getAs<RecordType>();
537   if (!RT)
538     return nullptr;
539 
540   const RecordDecl *RD = RT->getDecl();
541   if (RD->hasFlexibleArrayMember())
542     return nullptr;
543 
544   const Type *Found = nullptr;
545 
546   // If this is a C++ record, check the bases first.
547   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
548     for (const auto &I : CXXRD->bases()) {
549       // Ignore empty records.
550       if (isEmptyRecord(Context, I.getType(), true))
551         continue;
552 
553       // If we already found an element then this isn't a single-element struct.
554       if (Found)
555         return nullptr;
556 
557       // If this is non-empty and not a single element struct, the composite
558       // cannot be a single element struct.
559       Found = isSingleElementStruct(I.getType(), Context);
560       if (!Found)
561         return nullptr;
562     }
563   }
564 
565   // Check for single element.
566   for (const auto *FD : RD->fields()) {
567     QualType FT = FD->getType();
568 
569     // Ignore empty fields.
570     if (isEmptyField(Context, FD, true))
571       continue;
572 
573     // If we already found an element then this isn't a single-element
574     // struct.
575     if (Found)
576       return nullptr;
577 
578     // Treat single element arrays as the element.
579     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
580       if (AT->getSize().getZExtValue() != 1)
581         break;
582       FT = AT->getElementType();
583     }
584 
585     if (!isAggregateTypeForABI(FT)) {
586       Found = FT.getTypePtr();
587     } else {
588       Found = isSingleElementStruct(FT, Context);
589       if (!Found)
590         return nullptr;
591     }
592   }
593 
594   // We don't consider a struct a single-element struct if it has
595   // padding beyond the element type.
596   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
597     return nullptr;
598 
599   return Found;
600 }
601 
602 namespace {
603 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
604                        const ABIArgInfo &AI) {
605   // This default implementation defers to the llvm backend's va_arg
606   // instruction. It can handle only passing arguments directly
607   // (typically only handled in the backend for primitive types), or
608   // aggregates passed indirectly by pointer (NOTE: if the "byval"
609   // flag has ABI impact in the callee, this implementation cannot
610   // work.)
611 
612   // Only a few cases are covered here at the moment -- those needed
613   // by the default abi.
614   llvm::Value *Val;
615 
616   if (AI.isIndirect()) {
617     assert(!AI.getPaddingType() &&
618            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
619     assert(
620         !AI.getIndirectRealign() &&
621         "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!");
622 
623     auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty);
624     CharUnits TyAlignForABI = TyInfo.second;
625 
626     llvm::Type *BaseTy =
627         llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
628     llvm::Value *Addr =
629         CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy);
630     return Address(Addr, TyAlignForABI);
631   } else {
632     assert((AI.isDirect() || AI.isExtend()) &&
633            "Unexpected ArgInfo Kind in generic VAArg emitter!");
634 
635     assert(!AI.getInReg() &&
636            "Unexpected InReg seen in arginfo in generic VAArg emitter!");
637     assert(!AI.getPaddingType() &&
638            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
639     assert(!AI.getDirectOffset() &&
640            "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!");
641     assert(!AI.getCoerceToType() &&
642            "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!");
643 
644     Address Temp = CGF.CreateMemTemp(Ty, "varet");
645     Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty));
646     CGF.Builder.CreateStore(Val, Temp);
647     return Temp;
648   }
649 }
650 
651 /// DefaultABIInfo - The default implementation for ABI specific
652 /// details. This implementation provides information which results in
653 /// self-consistent and sensible LLVM IR generation, but does not
654 /// conform to any particular ABI.
655 class DefaultABIInfo : public ABIInfo {
656 public:
657   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
658 
659   ABIArgInfo classifyReturnType(QualType RetTy) const;
660   ABIArgInfo classifyArgumentType(QualType RetTy) const;
661 
662   void computeInfo(CGFunctionInfo &FI) const override {
663     if (!getCXXABI().classifyReturnType(FI))
664       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
665     for (auto &I : FI.arguments())
666       I.info = classifyArgumentType(I.type);
667   }
668 
669   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
670                     QualType Ty) const override {
671     return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty));
672   }
673 };
674 
675 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
676 public:
677   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
678     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
679 };
680 
681 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
682   Ty = useFirstFieldIfTransparentUnion(Ty);
683 
684   if (isAggregateTypeForABI(Ty)) {
685     // Records with non-trivial destructors/copy-constructors should not be
686     // passed by value.
687     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
688       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
689 
690     return getNaturalAlignIndirect(Ty);
691   }
692 
693   // Treat an enum type as its underlying type.
694   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
695     Ty = EnumTy->getDecl()->getIntegerType();
696 
697   return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
698                                         : ABIArgInfo::getDirect());
699 }
700 
701 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
702   if (RetTy->isVoidType())
703     return ABIArgInfo::getIgnore();
704 
705   if (isAggregateTypeForABI(RetTy))
706     return getNaturalAlignIndirect(RetTy);
707 
708   // Treat an enum type as its underlying type.
709   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
710     RetTy = EnumTy->getDecl()->getIntegerType();
711 
712   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
713                                            : ABIArgInfo::getDirect());
714 }
715 
716 //===----------------------------------------------------------------------===//
717 // WebAssembly ABI Implementation
718 //
719 // This is a very simple ABI that relies a lot on DefaultABIInfo.
720 //===----------------------------------------------------------------------===//
721 
722 class WebAssemblyABIInfo final : public SwiftABIInfo {
723   DefaultABIInfo defaultInfo;
724 
725 public:
726   explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT)
727       : SwiftABIInfo(CGT), defaultInfo(CGT) {}
728 
729 private:
730   ABIArgInfo classifyReturnType(QualType RetTy) const;
731   ABIArgInfo classifyArgumentType(QualType Ty) const;
732 
733   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
734   // non-virtual, but computeInfo and EmitVAArg are virtual, so we
735   // overload them.
736   void computeInfo(CGFunctionInfo &FI) const override {
737     if (!getCXXABI().classifyReturnType(FI))
738       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
739     for (auto &Arg : FI.arguments())
740       Arg.info = classifyArgumentType(Arg.type);
741   }
742 
743   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
744                     QualType Ty) const override;
745 
746   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
747                                     bool asReturnValue) const override {
748     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
749   }
750 
751   bool isSwiftErrorInRegister() const override {
752     return false;
753   }
754 };
755 
756 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo {
757 public:
758   explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
759       : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT)) {}
760 
761   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
762                            CodeGen::CodeGenModule &CGM) const override {
763     TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
764     if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
765       if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) {
766         llvm::Function *Fn = cast<llvm::Function>(GV);
767         llvm::AttrBuilder B;
768         B.addAttribute("wasm-import-module", Attr->getImportModuleName());
769         Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
770       }
771     }
772 
773     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
774       llvm::Function *Fn = cast<llvm::Function>(GV);
775       if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype())
776         Fn->addFnAttr("no-prototype");
777     }
778   }
779 };
780 
781 /// Classify argument of given type \p Ty.
782 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const {
783   Ty = useFirstFieldIfTransparentUnion(Ty);
784 
785   if (isAggregateTypeForABI(Ty)) {
786     // Records with non-trivial destructors/copy-constructors should not be
787     // passed by value.
788     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
789       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
790     // Ignore empty structs/unions.
791     if (isEmptyRecord(getContext(), Ty, true))
792       return ABIArgInfo::getIgnore();
793     // Lower single-element structs to just pass a regular value. TODO: We
794     // could do reasonable-size multiple-element structs too, using getExpand(),
795     // though watch out for things like bitfields.
796     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
797       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
798   }
799 
800   // Otherwise just do the default thing.
801   return defaultInfo.classifyArgumentType(Ty);
802 }
803 
804 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const {
805   if (isAggregateTypeForABI(RetTy)) {
806     // Records with non-trivial destructors/copy-constructors should not be
807     // returned by value.
808     if (!getRecordArgABI(RetTy, getCXXABI())) {
809       // Ignore empty structs/unions.
810       if (isEmptyRecord(getContext(), RetTy, true))
811         return ABIArgInfo::getIgnore();
812       // Lower single-element structs to just return a regular value. TODO: We
813       // could do reasonable-size multiple-element structs too, using
814       // ABIArgInfo::getDirect().
815       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
816         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
817     }
818   }
819 
820   // Otherwise just do the default thing.
821   return defaultInfo.classifyReturnType(RetTy);
822 }
823 
824 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
825                                       QualType Ty) const {
826   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect=*/ false,
827                           getContext().getTypeInfoInChars(Ty),
828                           CharUnits::fromQuantity(4),
829                           /*AllowHigherAlign=*/ true);
830 }
831 
832 //===----------------------------------------------------------------------===//
833 // le32/PNaCl bitcode ABI Implementation
834 //
835 // This is a simplified version of the x86_32 ABI.  Arguments and return values
836 // are always passed on the stack.
837 //===----------------------------------------------------------------------===//
838 
839 class PNaClABIInfo : public ABIInfo {
840  public:
841   PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
842 
843   ABIArgInfo classifyReturnType(QualType RetTy) const;
844   ABIArgInfo classifyArgumentType(QualType RetTy) const;
845 
846   void computeInfo(CGFunctionInfo &FI) const override;
847   Address EmitVAArg(CodeGenFunction &CGF,
848                     Address VAListAddr, QualType Ty) const override;
849 };
850 
851 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
852  public:
853   PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
854     : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
855 };
856 
857 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
858   if (!getCXXABI().classifyReturnType(FI))
859     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
860 
861   for (auto &I : FI.arguments())
862     I.info = classifyArgumentType(I.type);
863 }
864 
865 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
866                                 QualType Ty) const {
867   // The PNaCL ABI is a bit odd, in that varargs don't use normal
868   // function classification. Structs get passed directly for varargs
869   // functions, through a rewriting transform in
870   // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows
871   // this target to actually support a va_arg instructions with an
872   // aggregate type, unlike other targets.
873   return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
874 }
875 
876 /// Classify argument of given type \p Ty.
877 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
878   if (isAggregateTypeForABI(Ty)) {
879     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
880       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
881     return getNaturalAlignIndirect(Ty);
882   } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
883     // Treat an enum type as its underlying type.
884     Ty = EnumTy->getDecl()->getIntegerType();
885   } else if (Ty->isFloatingType()) {
886     // Floating-point types don't go inreg.
887     return ABIArgInfo::getDirect();
888   }
889 
890   return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
891                                         : ABIArgInfo::getDirect());
892 }
893 
894 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
895   if (RetTy->isVoidType())
896     return ABIArgInfo::getIgnore();
897 
898   // In the PNaCl ABI we always return records/structures on the stack.
899   if (isAggregateTypeForABI(RetTy))
900     return getNaturalAlignIndirect(RetTy);
901 
902   // Treat an enum type as its underlying type.
903   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
904     RetTy = EnumTy->getDecl()->getIntegerType();
905 
906   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
907                                            : ABIArgInfo::getDirect());
908 }
909 
910 /// IsX86_MMXType - Return true if this is an MMX type.
911 bool IsX86_MMXType(llvm::Type *IRType) {
912   // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
913   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
914     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
915     IRType->getScalarSizeInBits() != 64;
916 }
917 
918 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
919                                           StringRef Constraint,
920                                           llvm::Type* Ty) {
921   bool IsMMXCons = llvm::StringSwitch<bool>(Constraint)
922                      .Cases("y", "&y", "^Ym", true)
923                      .Default(false);
924   if (IsMMXCons && Ty->isVectorTy()) {
925     if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) {
926       // Invalid MMX constraint
927       return nullptr;
928     }
929 
930     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
931   }
932 
933   // No operation needed
934   return Ty;
935 }
936 
937 /// Returns true if this type can be passed in SSE registers with the
938 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
939 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
940   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
941     if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) {
942       if (BT->getKind() == BuiltinType::LongDouble) {
943         if (&Context.getTargetInfo().getLongDoubleFormat() ==
944             &llvm::APFloat::x87DoubleExtended())
945           return false;
946       }
947       return true;
948     }
949   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
950     // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
951     // registers specially.
952     unsigned VecSize = Context.getTypeSize(VT);
953     if (VecSize == 128 || VecSize == 256 || VecSize == 512)
954       return true;
955   }
956   return false;
957 }
958 
959 /// Returns true if this aggregate is small enough to be passed in SSE registers
960 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
961 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
962   return NumMembers <= 4;
963 }
964 
965 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86.
966 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) {
967   auto AI = ABIArgInfo::getDirect(T);
968   AI.setInReg(true);
969   AI.setCanBeFlattened(false);
970   return AI;
971 }
972 
973 //===----------------------------------------------------------------------===//
974 // X86-32 ABI Implementation
975 //===----------------------------------------------------------------------===//
976 
977 /// Similar to llvm::CCState, but for Clang.
978 struct CCState {
979   CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {}
980 
981   unsigned CC;
982   unsigned FreeRegs;
983   unsigned FreeSSERegs;
984 };
985 
986 enum {
987   // Vectorcall only allows the first 6 parameters to be passed in registers.
988   VectorcallMaxParamNumAsReg = 6
989 };
990 
991 /// X86_32ABIInfo - The X86-32 ABI information.
992 class X86_32ABIInfo : public SwiftABIInfo {
993   enum Class {
994     Integer,
995     Float
996   };
997 
998   static const unsigned MinABIStackAlignInBytes = 4;
999 
1000   bool IsDarwinVectorABI;
1001   bool IsRetSmallStructInRegABI;
1002   bool IsWin32StructABI;
1003   bool IsSoftFloatABI;
1004   bool IsMCUABI;
1005   unsigned DefaultNumRegisterParameters;
1006 
1007   static bool isRegisterSize(unsigned Size) {
1008     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
1009   }
1010 
1011   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
1012     // FIXME: Assumes vectorcall is in use.
1013     return isX86VectorTypeForVectorCall(getContext(), Ty);
1014   }
1015 
1016   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
1017                                          uint64_t NumMembers) const override {
1018     // FIXME: Assumes vectorcall is in use.
1019     return isX86VectorCallAggregateSmallEnough(NumMembers);
1020   }
1021 
1022   bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
1023 
1024   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1025   /// such that the argument will be passed in memory.
1026   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
1027 
1028   ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const;
1029 
1030   /// Return the alignment to use for the given type on the stack.
1031   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
1032 
1033   Class classify(QualType Ty) const;
1034   ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
1035   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
1036 
1037   /// Updates the number of available free registers, returns
1038   /// true if any registers were allocated.
1039   bool updateFreeRegs(QualType Ty, CCState &State) const;
1040 
1041   bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg,
1042                                 bool &NeedsPadding) const;
1043   bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const;
1044 
1045   bool canExpandIndirectArgument(QualType Ty) const;
1046 
1047   /// Rewrite the function info so that all memory arguments use
1048   /// inalloca.
1049   void rewriteWithInAlloca(CGFunctionInfo &FI) const;
1050 
1051   void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1052                            CharUnits &StackOffset, ABIArgInfo &Info,
1053                            QualType Type) const;
1054   void computeVectorCallArgs(CGFunctionInfo &FI, CCState &State,
1055                              bool &UsedInAlloca) const;
1056 
1057 public:
1058 
1059   void computeInfo(CGFunctionInfo &FI) const override;
1060   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1061                     QualType Ty) const override;
1062 
1063   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1064                 bool RetSmallStructInRegABI, bool Win32StructABI,
1065                 unsigned NumRegisterParameters, bool SoftFloatABI)
1066     : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI),
1067       IsRetSmallStructInRegABI(RetSmallStructInRegABI),
1068       IsWin32StructABI(Win32StructABI),
1069       IsSoftFloatABI(SoftFloatABI),
1070       IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()),
1071       DefaultNumRegisterParameters(NumRegisterParameters) {}
1072 
1073   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
1074                                     bool asReturnValue) const override {
1075     // LLVM's x86-32 lowering currently only assigns up to three
1076     // integer registers and three fp registers.  Oddly, it'll use up to
1077     // four vector registers for vectors, but those can overlap with the
1078     // scalar registers.
1079     return occupiesMoreThan(CGT, scalars, /*total*/ 3);
1080   }
1081 
1082   bool isSwiftErrorInRegister() const override {
1083     // x86-32 lowering does not support passing swifterror in a register.
1084     return false;
1085   }
1086 };
1087 
1088 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
1089 public:
1090   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1091                           bool RetSmallStructInRegABI, bool Win32StructABI,
1092                           unsigned NumRegisterParameters, bool SoftFloatABI)
1093       : TargetCodeGenInfo(new X86_32ABIInfo(
1094             CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
1095             NumRegisterParameters, SoftFloatABI)) {}
1096 
1097   static bool isStructReturnInRegABI(
1098       const llvm::Triple &Triple, const CodeGenOptions &Opts);
1099 
1100   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1101                            CodeGen::CodeGenModule &CGM) const override;
1102 
1103   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1104     // Darwin uses different dwarf register numbers for EH.
1105     if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
1106     return 4;
1107   }
1108 
1109   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1110                                llvm::Value *Address) const override;
1111 
1112   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1113                                   StringRef Constraint,
1114                                   llvm::Type* Ty) const override {
1115     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1116   }
1117 
1118   void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
1119                                 std::string &Constraints,
1120                                 std::vector<llvm::Type *> &ResultRegTypes,
1121                                 std::vector<llvm::Type *> &ResultTruncRegTypes,
1122                                 std::vector<LValue> &ResultRegDests,
1123                                 std::string &AsmString,
1124                                 unsigned NumOutputs) const override;
1125 
1126   llvm::Constant *
1127   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
1128     unsigned Sig = (0xeb << 0) |  // jmp rel8
1129                    (0x06 << 8) |  //           .+0x08
1130                    ('v' << 16) |
1131                    ('2' << 24);
1132     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
1133   }
1134 
1135   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
1136     return "movl\t%ebp, %ebp"
1137            "\t\t// marker for objc_retainAutoreleaseReturnValue";
1138   }
1139 };
1140 
1141 }
1142 
1143 /// Rewrite input constraint references after adding some output constraints.
1144 /// In the case where there is one output and one input and we add one output,
1145 /// we need to replace all operand references greater than or equal to 1:
1146 ///     mov $0, $1
1147 ///     mov eax, $1
1148 /// The result will be:
1149 ///     mov $0, $2
1150 ///     mov eax, $2
1151 static void rewriteInputConstraintReferences(unsigned FirstIn,
1152                                              unsigned NumNewOuts,
1153                                              std::string &AsmString) {
1154   std::string Buf;
1155   llvm::raw_string_ostream OS(Buf);
1156   size_t Pos = 0;
1157   while (Pos < AsmString.size()) {
1158     size_t DollarStart = AsmString.find('$', Pos);
1159     if (DollarStart == std::string::npos)
1160       DollarStart = AsmString.size();
1161     size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
1162     if (DollarEnd == std::string::npos)
1163       DollarEnd = AsmString.size();
1164     OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
1165     Pos = DollarEnd;
1166     size_t NumDollars = DollarEnd - DollarStart;
1167     if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
1168       // We have an operand reference.
1169       size_t DigitStart = Pos;
1170       size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
1171       if (DigitEnd == std::string::npos)
1172         DigitEnd = AsmString.size();
1173       StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
1174       unsigned OperandIndex;
1175       if (!OperandStr.getAsInteger(10, OperandIndex)) {
1176         if (OperandIndex >= FirstIn)
1177           OperandIndex += NumNewOuts;
1178         OS << OperandIndex;
1179       } else {
1180         OS << OperandStr;
1181       }
1182       Pos = DigitEnd;
1183     }
1184   }
1185   AsmString = std::move(OS.str());
1186 }
1187 
1188 /// Add output constraints for EAX:EDX because they are return registers.
1189 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
1190     CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
1191     std::vector<llvm::Type *> &ResultRegTypes,
1192     std::vector<llvm::Type *> &ResultTruncRegTypes,
1193     std::vector<LValue> &ResultRegDests, std::string &AsmString,
1194     unsigned NumOutputs) const {
1195   uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
1196 
1197   // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
1198   // larger.
1199   if (!Constraints.empty())
1200     Constraints += ',';
1201   if (RetWidth <= 32) {
1202     Constraints += "={eax}";
1203     ResultRegTypes.push_back(CGF.Int32Ty);
1204   } else {
1205     // Use the 'A' constraint for EAX:EDX.
1206     Constraints += "=A";
1207     ResultRegTypes.push_back(CGF.Int64Ty);
1208   }
1209 
1210   // Truncate EAX or EAX:EDX to an integer of the appropriate size.
1211   llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
1212   ResultTruncRegTypes.push_back(CoerceTy);
1213 
1214   // Coerce the integer by bitcasting the return slot pointer.
1215   ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(),
1216                                                   CoerceTy->getPointerTo()));
1217   ResultRegDests.push_back(ReturnSlot);
1218 
1219   rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
1220 }
1221 
1222 /// shouldReturnTypeInRegister - Determine if the given type should be
1223 /// returned in a register (for the Darwin and MCU ABI).
1224 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
1225                                                ASTContext &Context) const {
1226   uint64_t Size = Context.getTypeSize(Ty);
1227 
1228   // For i386, type must be register sized.
1229   // For the MCU ABI, it only needs to be <= 8-byte
1230   if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size)))
1231    return false;
1232 
1233   if (Ty->isVectorType()) {
1234     // 64- and 128- bit vectors inside structures are not returned in
1235     // registers.
1236     if (Size == 64 || Size == 128)
1237       return false;
1238 
1239     return true;
1240   }
1241 
1242   // If this is a builtin, pointer, enum, complex type, member pointer, or
1243   // member function pointer it is ok.
1244   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
1245       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
1246       Ty->isBlockPointerType() || Ty->isMemberPointerType())
1247     return true;
1248 
1249   // Arrays are treated like records.
1250   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
1251     return shouldReturnTypeInRegister(AT->getElementType(), Context);
1252 
1253   // Otherwise, it must be a record type.
1254   const RecordType *RT = Ty->getAs<RecordType>();
1255   if (!RT) return false;
1256 
1257   // FIXME: Traverse bases here too.
1258 
1259   // Structure types are passed in register if all fields would be
1260   // passed in a register.
1261   for (const auto *FD : RT->getDecl()->fields()) {
1262     // Empty fields are ignored.
1263     if (isEmptyField(Context, FD, true))
1264       continue;
1265 
1266     // Check fields recursively.
1267     if (!shouldReturnTypeInRegister(FD->getType(), Context))
1268       return false;
1269   }
1270   return true;
1271 }
1272 
1273 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
1274   // Treat complex types as the element type.
1275   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
1276     Ty = CTy->getElementType();
1277 
1278   // Check for a type which we know has a simple scalar argument-passing
1279   // convention without any padding.  (We're specifically looking for 32
1280   // and 64-bit integer and integer-equivalents, float, and double.)
1281   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
1282       !Ty->isEnumeralType() && !Ty->isBlockPointerType())
1283     return false;
1284 
1285   uint64_t Size = Context.getTypeSize(Ty);
1286   return Size == 32 || Size == 64;
1287 }
1288 
1289 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD,
1290                           uint64_t &Size) {
1291   for (const auto *FD : RD->fields()) {
1292     // Scalar arguments on the stack get 4 byte alignment on x86. If the
1293     // argument is smaller than 32-bits, expanding the struct will create
1294     // alignment padding.
1295     if (!is32Or64BitBasicType(FD->getType(), Context))
1296       return false;
1297 
1298     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
1299     // how to expand them yet, and the predicate for telling if a bitfield still
1300     // counts as "basic" is more complicated than what we were doing previously.
1301     if (FD->isBitField())
1302       return false;
1303 
1304     Size += Context.getTypeSize(FD->getType());
1305   }
1306   return true;
1307 }
1308 
1309 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD,
1310                                  uint64_t &Size) {
1311   // Don't do this if there are any non-empty bases.
1312   for (const CXXBaseSpecifier &Base : RD->bases()) {
1313     if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(),
1314                               Size))
1315       return false;
1316   }
1317   if (!addFieldSizes(Context, RD, Size))
1318     return false;
1319   return true;
1320 }
1321 
1322 /// Test whether an argument type which is to be passed indirectly (on the
1323 /// stack) would have the equivalent layout if it was expanded into separate
1324 /// arguments. If so, we prefer to do the latter to avoid inhibiting
1325 /// optimizations.
1326 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const {
1327   // We can only expand structure types.
1328   const RecordType *RT = Ty->getAs<RecordType>();
1329   if (!RT)
1330     return false;
1331   const RecordDecl *RD = RT->getDecl();
1332   uint64_t Size = 0;
1333   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1334     if (!IsWin32StructABI) {
1335       // On non-Windows, we have to conservatively match our old bitcode
1336       // prototypes in order to be ABI-compatible at the bitcode level.
1337       if (!CXXRD->isCLike())
1338         return false;
1339     } else {
1340       // Don't do this for dynamic classes.
1341       if (CXXRD->isDynamicClass())
1342         return false;
1343     }
1344     if (!addBaseAndFieldSizes(getContext(), CXXRD, Size))
1345       return false;
1346   } else {
1347     if (!addFieldSizes(getContext(), RD, Size))
1348       return false;
1349   }
1350 
1351   // We can do this if there was no alignment padding.
1352   return Size == getContext().getTypeSize(Ty);
1353 }
1354 
1355 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const {
1356   // If the return value is indirect, then the hidden argument is consuming one
1357   // integer register.
1358   if (State.FreeRegs) {
1359     --State.FreeRegs;
1360     if (!IsMCUABI)
1361       return getNaturalAlignIndirectInReg(RetTy);
1362   }
1363   return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
1364 }
1365 
1366 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
1367                                              CCState &State) const {
1368   if (RetTy->isVoidType())
1369     return ABIArgInfo::getIgnore();
1370 
1371   const Type *Base = nullptr;
1372   uint64_t NumElts = 0;
1373   if ((State.CC == llvm::CallingConv::X86_VectorCall ||
1374        State.CC == llvm::CallingConv::X86_RegCall) &&
1375       isHomogeneousAggregate(RetTy, Base, NumElts)) {
1376     // The LLVM struct type for such an aggregate should lower properly.
1377     return ABIArgInfo::getDirect();
1378   }
1379 
1380   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
1381     // On Darwin, some vectors are returned in registers.
1382     if (IsDarwinVectorABI) {
1383       uint64_t Size = getContext().getTypeSize(RetTy);
1384 
1385       // 128-bit vectors are a special case; they are returned in
1386       // registers and we need to make sure to pick a type the LLVM
1387       // backend will like.
1388       if (Size == 128)
1389         return ABIArgInfo::getDirect(llvm::VectorType::get(
1390                   llvm::Type::getInt64Ty(getVMContext()), 2));
1391 
1392       // Always return in register if it fits in a general purpose
1393       // register, or if it is 64 bits and has a single element.
1394       if ((Size == 8 || Size == 16 || Size == 32) ||
1395           (Size == 64 && VT->getNumElements() == 1))
1396         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1397                                                             Size));
1398 
1399       return getIndirectReturnResult(RetTy, State);
1400     }
1401 
1402     return ABIArgInfo::getDirect();
1403   }
1404 
1405   if (isAggregateTypeForABI(RetTy)) {
1406     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
1407       // Structures with flexible arrays are always indirect.
1408       if (RT->getDecl()->hasFlexibleArrayMember())
1409         return getIndirectReturnResult(RetTy, State);
1410     }
1411 
1412     // If specified, structs and unions are always indirect.
1413     if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType())
1414       return getIndirectReturnResult(RetTy, State);
1415 
1416     // Ignore empty structs/unions.
1417     if (isEmptyRecord(getContext(), RetTy, true))
1418       return ABIArgInfo::getIgnore();
1419 
1420     // Small structures which are register sized are generally returned
1421     // in a register.
1422     if (shouldReturnTypeInRegister(RetTy, getContext())) {
1423       uint64_t Size = getContext().getTypeSize(RetTy);
1424 
1425       // As a special-case, if the struct is a "single-element" struct, and
1426       // the field is of type "float" or "double", return it in a
1427       // floating-point register. (MSVC does not apply this special case.)
1428       // We apply a similar transformation for pointer types to improve the
1429       // quality of the generated IR.
1430       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
1431         if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
1432             || SeltTy->hasPointerRepresentation())
1433           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
1434 
1435       // FIXME: We should be able to narrow this integer in cases with dead
1436       // padding.
1437       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
1438     }
1439 
1440     return getIndirectReturnResult(RetTy, State);
1441   }
1442 
1443   // Treat an enum type as its underlying type.
1444   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1445     RetTy = EnumTy->getDecl()->getIntegerType();
1446 
1447   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
1448                                            : ABIArgInfo::getDirect());
1449 }
1450 
1451 static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
1452   return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
1453 }
1454 
1455 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
1456   const RecordType *RT = Ty->getAs<RecordType>();
1457   if (!RT)
1458     return 0;
1459   const RecordDecl *RD = RT->getDecl();
1460 
1461   // If this is a C++ record, check the bases first.
1462   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1463     for (const auto &I : CXXRD->bases())
1464       if (!isRecordWithSSEVectorType(Context, I.getType()))
1465         return false;
1466 
1467   for (const auto *i : RD->fields()) {
1468     QualType FT = i->getType();
1469 
1470     if (isSSEVectorType(Context, FT))
1471       return true;
1472 
1473     if (isRecordWithSSEVectorType(Context, FT))
1474       return true;
1475   }
1476 
1477   return false;
1478 }
1479 
1480 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
1481                                                  unsigned Align) const {
1482   // Otherwise, if the alignment is less than or equal to the minimum ABI
1483   // alignment, just use the default; the backend will handle this.
1484   if (Align <= MinABIStackAlignInBytes)
1485     return 0; // Use default alignment.
1486 
1487   // On non-Darwin, the stack type alignment is always 4.
1488   if (!IsDarwinVectorABI) {
1489     // Set explicit alignment, since we may need to realign the top.
1490     return MinABIStackAlignInBytes;
1491   }
1492 
1493   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
1494   if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
1495                       isRecordWithSSEVectorType(getContext(), Ty)))
1496     return 16;
1497 
1498   return MinABIStackAlignInBytes;
1499 }
1500 
1501 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
1502                                             CCState &State) const {
1503   if (!ByVal) {
1504     if (State.FreeRegs) {
1505       --State.FreeRegs; // Non-byval indirects just use one pointer.
1506       if (!IsMCUABI)
1507         return getNaturalAlignIndirectInReg(Ty);
1508     }
1509     return getNaturalAlignIndirect(Ty, false);
1510   }
1511 
1512   // Compute the byval alignment.
1513   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
1514   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
1515   if (StackAlign == 0)
1516     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true);
1517 
1518   // If the stack alignment is less than the type alignment, realign the
1519   // argument.
1520   bool Realign = TypeAlign > StackAlign;
1521   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign),
1522                                  /*ByVal=*/true, Realign);
1523 }
1524 
1525 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
1526   const Type *T = isSingleElementStruct(Ty, getContext());
1527   if (!T)
1528     T = Ty.getTypePtr();
1529 
1530   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
1531     BuiltinType::Kind K = BT->getKind();
1532     if (K == BuiltinType::Float || K == BuiltinType::Double)
1533       return Float;
1534   }
1535   return Integer;
1536 }
1537 
1538 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const {
1539   if (!IsSoftFloatABI) {
1540     Class C = classify(Ty);
1541     if (C == Float)
1542       return false;
1543   }
1544 
1545   unsigned Size = getContext().getTypeSize(Ty);
1546   unsigned SizeInRegs = (Size + 31) / 32;
1547 
1548   if (SizeInRegs == 0)
1549     return false;
1550 
1551   if (!IsMCUABI) {
1552     if (SizeInRegs > State.FreeRegs) {
1553       State.FreeRegs = 0;
1554       return false;
1555     }
1556   } else {
1557     // The MCU psABI allows passing parameters in-reg even if there are
1558     // earlier parameters that are passed on the stack. Also,
1559     // it does not allow passing >8-byte structs in-register,
1560     // even if there are 3 free registers available.
1561     if (SizeInRegs > State.FreeRegs || SizeInRegs > 2)
1562       return false;
1563   }
1564 
1565   State.FreeRegs -= SizeInRegs;
1566   return true;
1567 }
1568 
1569 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State,
1570                                              bool &InReg,
1571                                              bool &NeedsPadding) const {
1572   // On Windows, aggregates other than HFAs are never passed in registers, and
1573   // they do not consume register slots. Homogenous floating-point aggregates
1574   // (HFAs) have already been dealt with at this point.
1575   if (IsWin32StructABI && isAggregateTypeForABI(Ty))
1576     return false;
1577 
1578   NeedsPadding = false;
1579   InReg = !IsMCUABI;
1580 
1581   if (!updateFreeRegs(Ty, State))
1582     return false;
1583 
1584   if (IsMCUABI)
1585     return true;
1586 
1587   if (State.CC == llvm::CallingConv::X86_FastCall ||
1588       State.CC == llvm::CallingConv::X86_VectorCall ||
1589       State.CC == llvm::CallingConv::X86_RegCall) {
1590     if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs)
1591       NeedsPadding = true;
1592 
1593     return false;
1594   }
1595 
1596   return true;
1597 }
1598 
1599 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const {
1600   if (!updateFreeRegs(Ty, State))
1601     return false;
1602 
1603   if (IsMCUABI)
1604     return false;
1605 
1606   if (State.CC == llvm::CallingConv::X86_FastCall ||
1607       State.CC == llvm::CallingConv::X86_VectorCall ||
1608       State.CC == llvm::CallingConv::X86_RegCall) {
1609     if (getContext().getTypeSize(Ty) > 32)
1610       return false;
1611 
1612     return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() ||
1613         Ty->isReferenceType());
1614   }
1615 
1616   return true;
1617 }
1618 
1619 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
1620                                                CCState &State) const {
1621   // FIXME: Set alignment on indirect arguments.
1622 
1623   Ty = useFirstFieldIfTransparentUnion(Ty);
1624 
1625   // Check with the C++ ABI first.
1626   const RecordType *RT = Ty->getAs<RecordType>();
1627   if (RT) {
1628     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
1629     if (RAA == CGCXXABI::RAA_Indirect) {
1630       return getIndirectResult(Ty, false, State);
1631     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
1632       // The field index doesn't matter, we'll fix it up later.
1633       return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
1634     }
1635   }
1636 
1637   // Regcall uses the concept of a homogenous vector aggregate, similar
1638   // to other targets.
1639   const Type *Base = nullptr;
1640   uint64_t NumElts = 0;
1641   if (State.CC == llvm::CallingConv::X86_RegCall &&
1642       isHomogeneousAggregate(Ty, Base, NumElts)) {
1643 
1644     if (State.FreeSSERegs >= NumElts) {
1645       State.FreeSSERegs -= NumElts;
1646       if (Ty->isBuiltinType() || Ty->isVectorType())
1647         return ABIArgInfo::getDirect();
1648       return ABIArgInfo::getExpand();
1649     }
1650     return getIndirectResult(Ty, /*ByVal=*/false, State);
1651   }
1652 
1653   if (isAggregateTypeForABI(Ty)) {
1654     // Structures with flexible arrays are always indirect.
1655     // FIXME: This should not be byval!
1656     if (RT && RT->getDecl()->hasFlexibleArrayMember())
1657       return getIndirectResult(Ty, true, State);
1658 
1659     // Ignore empty structs/unions on non-Windows.
1660     if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true))
1661       return ABIArgInfo::getIgnore();
1662 
1663     llvm::LLVMContext &LLVMContext = getVMContext();
1664     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
1665     bool NeedsPadding = false;
1666     bool InReg;
1667     if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) {
1668       unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
1669       SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
1670       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
1671       if (InReg)
1672         return ABIArgInfo::getDirectInReg(Result);
1673       else
1674         return ABIArgInfo::getDirect(Result);
1675     }
1676     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
1677 
1678     // Expand small (<= 128-bit) record types when we know that the stack layout
1679     // of those arguments will match the struct. This is important because the
1680     // LLVM backend isn't smart enough to remove byval, which inhibits many
1681     // optimizations.
1682     // Don't do this for the MCU if there are still free integer registers
1683     // (see X86_64 ABI for full explanation).
1684     if (getContext().getTypeSize(Ty) <= 4 * 32 &&
1685         (!IsMCUABI || State.FreeRegs == 0) && canExpandIndirectArgument(Ty))
1686       return ABIArgInfo::getExpandWithPadding(
1687           State.CC == llvm::CallingConv::X86_FastCall ||
1688               State.CC == llvm::CallingConv::X86_VectorCall ||
1689               State.CC == llvm::CallingConv::X86_RegCall,
1690           PaddingType);
1691 
1692     return getIndirectResult(Ty, true, State);
1693   }
1694 
1695   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1696     // On Darwin, some vectors are passed in memory, we handle this by passing
1697     // it as an i8/i16/i32/i64.
1698     if (IsDarwinVectorABI) {
1699       uint64_t Size = getContext().getTypeSize(Ty);
1700       if ((Size == 8 || Size == 16 || Size == 32) ||
1701           (Size == 64 && VT->getNumElements() == 1))
1702         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1703                                                             Size));
1704     }
1705 
1706     if (IsX86_MMXType(CGT.ConvertType(Ty)))
1707       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
1708 
1709     return ABIArgInfo::getDirect();
1710   }
1711 
1712 
1713   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1714     Ty = EnumTy->getDecl()->getIntegerType();
1715 
1716   bool InReg = shouldPrimitiveUseInReg(Ty, State);
1717 
1718   if (Ty->isPromotableIntegerType()) {
1719     if (InReg)
1720       return ABIArgInfo::getExtendInReg(Ty);
1721     return ABIArgInfo::getExtend(Ty);
1722   }
1723 
1724   if (InReg)
1725     return ABIArgInfo::getDirectInReg();
1726   return ABIArgInfo::getDirect();
1727 }
1728 
1729 void X86_32ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, CCState &State,
1730                                           bool &UsedInAlloca) const {
1731   // Vectorcall x86 works subtly different than in x64, so the format is
1732   // a bit different than the x64 version.  First, all vector types (not HVAs)
1733   // are assigned, with the first 6 ending up in the YMM0-5 or XMM0-5 registers.
1734   // This differs from the x64 implementation, where the first 6 by INDEX get
1735   // registers.
1736   // After that, integers AND HVAs are assigned Left to Right in the same pass.
1737   // Integers are passed as ECX/EDX if one is available (in order).  HVAs will
1738   // first take up the remaining YMM/XMM registers. If insufficient registers
1739   // remain but an integer register (ECX/EDX) is available, it will be passed
1740   // in that, else, on the stack.
1741   for (auto &I : FI.arguments()) {
1742     // First pass do all the vector types.
1743     const Type *Base = nullptr;
1744     uint64_t NumElts = 0;
1745     const QualType& Ty = I.type;
1746     if ((Ty->isVectorType() || Ty->isBuiltinType()) &&
1747         isHomogeneousAggregate(Ty, Base, NumElts)) {
1748       if (State.FreeSSERegs >= NumElts) {
1749         State.FreeSSERegs -= NumElts;
1750         I.info = ABIArgInfo::getDirect();
1751       } else {
1752         I.info = classifyArgumentType(Ty, State);
1753       }
1754       UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1755     }
1756   }
1757 
1758   for (auto &I : FI.arguments()) {
1759     // Second pass, do the rest!
1760     const Type *Base = nullptr;
1761     uint64_t NumElts = 0;
1762     const QualType& Ty = I.type;
1763     bool IsHva = isHomogeneousAggregate(Ty, Base, NumElts);
1764 
1765     if (IsHva && !Ty->isVectorType() && !Ty->isBuiltinType()) {
1766       // Assign true HVAs (non vector/native FP types).
1767       if (State.FreeSSERegs >= NumElts) {
1768         State.FreeSSERegs -= NumElts;
1769         I.info = getDirectX86Hva();
1770       } else {
1771         I.info = getIndirectResult(Ty, /*ByVal=*/false, State);
1772       }
1773     } else if (!IsHva) {
1774       // Assign all Non-HVAs, so this will exclude Vector/FP args.
1775       I.info = classifyArgumentType(Ty, State);
1776       UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1777     }
1778   }
1779 }
1780 
1781 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1782   CCState State(FI.getCallingConvention());
1783   if (IsMCUABI)
1784     State.FreeRegs = 3;
1785   else if (State.CC == llvm::CallingConv::X86_FastCall)
1786     State.FreeRegs = 2;
1787   else if (State.CC == llvm::CallingConv::X86_VectorCall) {
1788     State.FreeRegs = 2;
1789     State.FreeSSERegs = 6;
1790   } else if (FI.getHasRegParm())
1791     State.FreeRegs = FI.getRegParm();
1792   else if (State.CC == llvm::CallingConv::X86_RegCall) {
1793     State.FreeRegs = 5;
1794     State.FreeSSERegs = 8;
1795   } else
1796     State.FreeRegs = DefaultNumRegisterParameters;
1797 
1798   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
1799     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
1800   } else if (FI.getReturnInfo().isIndirect()) {
1801     // The C++ ABI is not aware of register usage, so we have to check if the
1802     // return value was sret and put it in a register ourselves if appropriate.
1803     if (State.FreeRegs) {
1804       --State.FreeRegs;  // The sret parameter consumes a register.
1805       if (!IsMCUABI)
1806         FI.getReturnInfo().setInReg(true);
1807     }
1808   }
1809 
1810   // The chain argument effectively gives us another free register.
1811   if (FI.isChainCall())
1812     ++State.FreeRegs;
1813 
1814   bool UsedInAlloca = false;
1815   if (State.CC == llvm::CallingConv::X86_VectorCall) {
1816     computeVectorCallArgs(FI, State, UsedInAlloca);
1817   } else {
1818     // If not vectorcall, revert to normal behavior.
1819     for (auto &I : FI.arguments()) {
1820       I.info = classifyArgumentType(I.type, State);
1821       UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1822     }
1823   }
1824 
1825   // If we needed to use inalloca for any argument, do a second pass and rewrite
1826   // all the memory arguments to use inalloca.
1827   if (UsedInAlloca)
1828     rewriteWithInAlloca(FI);
1829 }
1830 
1831 void
1832 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1833                                    CharUnits &StackOffset, ABIArgInfo &Info,
1834                                    QualType Type) const {
1835   // Arguments are always 4-byte-aligned.
1836   CharUnits FieldAlign = CharUnits::fromQuantity(4);
1837 
1838   assert(StackOffset.isMultipleOf(FieldAlign) && "unaligned inalloca struct");
1839   Info = ABIArgInfo::getInAlloca(FrameFields.size());
1840   FrameFields.push_back(CGT.ConvertTypeForMem(Type));
1841   StackOffset += getContext().getTypeSizeInChars(Type);
1842 
1843   // Insert padding bytes to respect alignment.
1844   CharUnits FieldEnd = StackOffset;
1845   StackOffset = FieldEnd.alignTo(FieldAlign);
1846   if (StackOffset != FieldEnd) {
1847     CharUnits NumBytes = StackOffset - FieldEnd;
1848     llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
1849     Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity());
1850     FrameFields.push_back(Ty);
1851   }
1852 }
1853 
1854 static bool isArgInAlloca(const ABIArgInfo &Info) {
1855   // Leave ignored and inreg arguments alone.
1856   switch (Info.getKind()) {
1857   case ABIArgInfo::InAlloca:
1858     return true;
1859   case ABIArgInfo::Indirect:
1860     assert(Info.getIndirectByVal());
1861     return true;
1862   case ABIArgInfo::Ignore:
1863     return false;
1864   case ABIArgInfo::Direct:
1865   case ABIArgInfo::Extend:
1866     if (Info.getInReg())
1867       return false;
1868     return true;
1869   case ABIArgInfo::Expand:
1870   case ABIArgInfo::CoerceAndExpand:
1871     // These are aggregate types which are never passed in registers when
1872     // inalloca is involved.
1873     return true;
1874   }
1875   llvm_unreachable("invalid enum");
1876 }
1877 
1878 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
1879   assert(IsWin32StructABI && "inalloca only supported on win32");
1880 
1881   // Build a packed struct type for all of the arguments in memory.
1882   SmallVector<llvm::Type *, 6> FrameFields;
1883 
1884   // The stack alignment is always 4.
1885   CharUnits StackAlign = CharUnits::fromQuantity(4);
1886 
1887   CharUnits StackOffset;
1888   CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
1889 
1890   // Put 'this' into the struct before 'sret', if necessary.
1891   bool IsThisCall =
1892       FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
1893   ABIArgInfo &Ret = FI.getReturnInfo();
1894   if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
1895       isArgInAlloca(I->info)) {
1896     addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1897     ++I;
1898   }
1899 
1900   // Put the sret parameter into the inalloca struct if it's in memory.
1901   if (Ret.isIndirect() && !Ret.getInReg()) {
1902     CanQualType PtrTy = getContext().getPointerType(FI.getReturnType());
1903     addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy);
1904     // On Windows, the hidden sret parameter is always returned in eax.
1905     Ret.setInAllocaSRet(IsWin32StructABI);
1906   }
1907 
1908   // Skip the 'this' parameter in ecx.
1909   if (IsThisCall)
1910     ++I;
1911 
1912   // Put arguments passed in memory into the struct.
1913   for (; I != E; ++I) {
1914     if (isArgInAlloca(I->info))
1915       addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1916   }
1917 
1918   FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
1919                                         /*isPacked=*/true),
1920                   StackAlign);
1921 }
1922 
1923 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF,
1924                                  Address VAListAddr, QualType Ty) const {
1925 
1926   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
1927 
1928   // x86-32 changes the alignment of certain arguments on the stack.
1929   //
1930   // Just messing with TypeInfo like this works because we never pass
1931   // anything indirectly.
1932   TypeInfo.second = CharUnits::fromQuantity(
1933                 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity()));
1934 
1935   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
1936                           TypeInfo, CharUnits::fromQuantity(4),
1937                           /*AllowHigherAlign*/ true);
1938 }
1939 
1940 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
1941     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
1942   assert(Triple.getArch() == llvm::Triple::x86);
1943 
1944   switch (Opts.getStructReturnConvention()) {
1945   case CodeGenOptions::SRCK_Default:
1946     break;
1947   case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
1948     return false;
1949   case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
1950     return true;
1951   }
1952 
1953   if (Triple.isOSDarwin() || Triple.isOSIAMCU())
1954     return true;
1955 
1956   switch (Triple.getOS()) {
1957   case llvm::Triple::DragonFly:
1958   case llvm::Triple::FreeBSD:
1959   case llvm::Triple::OpenBSD:
1960   case llvm::Triple::Win32:
1961     return true;
1962   default:
1963     return false;
1964   }
1965 }
1966 
1967 void X86_32TargetCodeGenInfo::setTargetAttributes(
1968     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
1969   if (GV->isDeclaration())
1970     return;
1971   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
1972     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1973       llvm::Function *Fn = cast<llvm::Function>(GV);
1974       Fn->addFnAttr("stackrealign");
1975     }
1976     if (FD->hasAttr<AnyX86InterruptAttr>()) {
1977       llvm::Function *Fn = cast<llvm::Function>(GV);
1978       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
1979     }
1980   }
1981 }
1982 
1983 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
1984                                                CodeGen::CodeGenFunction &CGF,
1985                                                llvm::Value *Address) const {
1986   CodeGen::CGBuilderTy &Builder = CGF.Builder;
1987 
1988   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
1989 
1990   // 0-7 are the eight integer registers;  the order is different
1991   //   on Darwin (for EH), but the range is the same.
1992   // 8 is %eip.
1993   AssignToArrayRange(Builder, Address, Four8, 0, 8);
1994 
1995   if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
1996     // 12-16 are st(0..4).  Not sure why we stop at 4.
1997     // These have size 16, which is sizeof(long double) on
1998     // platforms with 8-byte alignment for that type.
1999     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
2000     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
2001 
2002   } else {
2003     // 9 is %eflags, which doesn't get a size on Darwin for some
2004     // reason.
2005     Builder.CreateAlignedStore(
2006         Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9),
2007                                CharUnits::One());
2008 
2009     // 11-16 are st(0..5).  Not sure why we stop at 5.
2010     // These have size 12, which is sizeof(long double) on
2011     // platforms with 4-byte alignment for that type.
2012     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
2013     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
2014   }
2015 
2016   return false;
2017 }
2018 
2019 //===----------------------------------------------------------------------===//
2020 // X86-64 ABI Implementation
2021 //===----------------------------------------------------------------------===//
2022 
2023 
2024 namespace {
2025 /// The AVX ABI level for X86 targets.
2026 enum class X86AVXABILevel {
2027   None,
2028   AVX,
2029   AVX512
2030 };
2031 
2032 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
2033 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
2034   switch (AVXLevel) {
2035   case X86AVXABILevel::AVX512:
2036     return 512;
2037   case X86AVXABILevel::AVX:
2038     return 256;
2039   case X86AVXABILevel::None:
2040     return 128;
2041   }
2042   llvm_unreachable("Unknown AVXLevel");
2043 }
2044 
2045 /// X86_64ABIInfo - The X86_64 ABI information.
2046 class X86_64ABIInfo : public SwiftABIInfo {
2047   enum Class {
2048     Integer = 0,
2049     SSE,
2050     SSEUp,
2051     X87,
2052     X87Up,
2053     ComplexX87,
2054     NoClass,
2055     Memory
2056   };
2057 
2058   /// merge - Implement the X86_64 ABI merging algorithm.
2059   ///
2060   /// Merge an accumulating classification \arg Accum with a field
2061   /// classification \arg Field.
2062   ///
2063   /// \param Accum - The accumulating classification. This should
2064   /// always be either NoClass or the result of a previous merge
2065   /// call. In addition, this should never be Memory (the caller
2066   /// should just return Memory for the aggregate).
2067   static Class merge(Class Accum, Class Field);
2068 
2069   /// postMerge - Implement the X86_64 ABI post merging algorithm.
2070   ///
2071   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
2072   /// final MEMORY or SSE classes when necessary.
2073   ///
2074   /// \param AggregateSize - The size of the current aggregate in
2075   /// the classification process.
2076   ///
2077   /// \param Lo - The classification for the parts of the type
2078   /// residing in the low word of the containing object.
2079   ///
2080   /// \param Hi - The classification for the parts of the type
2081   /// residing in the higher words of the containing object.
2082   ///
2083   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
2084 
2085   /// classify - Determine the x86_64 register classes in which the
2086   /// given type T should be passed.
2087   ///
2088   /// \param Lo - The classification for the parts of the type
2089   /// residing in the low word of the containing object.
2090   ///
2091   /// \param Hi - The classification for the parts of the type
2092   /// residing in the high word of the containing object.
2093   ///
2094   /// \param OffsetBase - The bit offset of this type in the
2095   /// containing object.  Some parameters are classified different
2096   /// depending on whether they straddle an eightbyte boundary.
2097   ///
2098   /// \param isNamedArg - Whether the argument in question is a "named"
2099   /// argument, as used in AMD64-ABI 3.5.7.
2100   ///
2101   /// If a word is unused its result will be NoClass; if a type should
2102   /// be passed in Memory then at least the classification of \arg Lo
2103   /// will be Memory.
2104   ///
2105   /// The \arg Lo class will be NoClass iff the argument is ignored.
2106   ///
2107   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
2108   /// also be ComplexX87.
2109   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
2110                 bool isNamedArg) const;
2111 
2112   llvm::Type *GetByteVectorType(QualType Ty) const;
2113   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
2114                                  unsigned IROffset, QualType SourceTy,
2115                                  unsigned SourceOffset) const;
2116   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
2117                                      unsigned IROffset, QualType SourceTy,
2118                                      unsigned SourceOffset) const;
2119 
2120   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2121   /// such that the argument will be returned in memory.
2122   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
2123 
2124   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2125   /// such that the argument will be passed in memory.
2126   ///
2127   /// \param freeIntRegs - The number of free integer registers remaining
2128   /// available.
2129   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
2130 
2131   ABIArgInfo classifyReturnType(QualType RetTy) const;
2132 
2133   ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs,
2134                                   unsigned &neededInt, unsigned &neededSSE,
2135                                   bool isNamedArg) const;
2136 
2137   ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt,
2138                                        unsigned &NeededSSE) const;
2139 
2140   ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
2141                                            unsigned &NeededSSE) const;
2142 
2143   bool IsIllegalVectorType(QualType Ty) const;
2144 
2145   /// The 0.98 ABI revision clarified a lot of ambiguities,
2146   /// unfortunately in ways that were not always consistent with
2147   /// certain previous compilers.  In particular, platforms which
2148   /// required strict binary compatibility with older versions of GCC
2149   /// may need to exempt themselves.
2150   bool honorsRevision0_98() const {
2151     return !getTarget().getTriple().isOSDarwin();
2152   }
2153 
2154   /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to
2155   /// classify it as INTEGER (for compatibility with older clang compilers).
2156   bool classifyIntegerMMXAsSSE() const {
2157     // Clang <= 3.8 did not do this.
2158     if (getContext().getLangOpts().getClangABICompat() <=
2159         LangOptions::ClangABI::Ver3_8)
2160       return false;
2161 
2162     const llvm::Triple &Triple = getTarget().getTriple();
2163     if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4)
2164       return false;
2165     if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10)
2166       return false;
2167     return true;
2168   }
2169 
2170   X86AVXABILevel AVXLevel;
2171   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
2172   // 64-bit hardware.
2173   bool Has64BitPointers;
2174 
2175 public:
2176   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) :
2177       SwiftABIInfo(CGT), AVXLevel(AVXLevel),
2178       Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
2179   }
2180 
2181   bool isPassedUsingAVXType(QualType type) const {
2182     unsigned neededInt, neededSSE;
2183     // The freeIntRegs argument doesn't matter here.
2184     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
2185                                            /*isNamedArg*/true);
2186     if (info.isDirect()) {
2187       llvm::Type *ty = info.getCoerceToType();
2188       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
2189         return (vectorTy->getBitWidth() > 128);
2190     }
2191     return false;
2192   }
2193 
2194   void computeInfo(CGFunctionInfo &FI) const override;
2195 
2196   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2197                     QualType Ty) const override;
2198   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
2199                       QualType Ty) const override;
2200 
2201   bool has64BitPointers() const {
2202     return Has64BitPointers;
2203   }
2204 
2205   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
2206                                     bool asReturnValue) const override {
2207     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2208   }
2209   bool isSwiftErrorInRegister() const override {
2210     return true;
2211   }
2212 };
2213 
2214 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
2215 class WinX86_64ABIInfo : public SwiftABIInfo {
2216 public:
2217   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT)
2218       : SwiftABIInfo(CGT),
2219         IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {}
2220 
2221   void computeInfo(CGFunctionInfo &FI) const override;
2222 
2223   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2224                     QualType Ty) const override;
2225 
2226   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
2227     // FIXME: Assumes vectorcall is in use.
2228     return isX86VectorTypeForVectorCall(getContext(), Ty);
2229   }
2230 
2231   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
2232                                          uint64_t NumMembers) const override {
2233     // FIXME: Assumes vectorcall is in use.
2234     return isX86VectorCallAggregateSmallEnough(NumMembers);
2235   }
2236 
2237   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars,
2238                                     bool asReturnValue) const override {
2239     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2240   }
2241 
2242   bool isSwiftErrorInRegister() const override {
2243     return true;
2244   }
2245 
2246 private:
2247   ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType,
2248                       bool IsVectorCall, bool IsRegCall) const;
2249   ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs,
2250                                       const ABIArgInfo &current) const;
2251   void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs,
2252                              bool IsVectorCall, bool IsRegCall) const;
2253 
2254     bool IsMingw64;
2255 };
2256 
2257 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2258 public:
2259   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2260       : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {}
2261 
2262   const X86_64ABIInfo &getABIInfo() const {
2263     return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
2264   }
2265 
2266   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2267     return 7;
2268   }
2269 
2270   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2271                                llvm::Value *Address) const override {
2272     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2273 
2274     // 0-15 are the 16 integer registers.
2275     // 16 is %rip.
2276     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2277     return false;
2278   }
2279 
2280   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
2281                                   StringRef Constraint,
2282                                   llvm::Type* Ty) const override {
2283     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
2284   }
2285 
2286   bool isNoProtoCallVariadic(const CallArgList &args,
2287                              const FunctionNoProtoType *fnType) const override {
2288     // The default CC on x86-64 sets %al to the number of SSA
2289     // registers used, and GCC sets this when calling an unprototyped
2290     // function, so we override the default behavior.  However, don't do
2291     // that when AVX types are involved: the ABI explicitly states it is
2292     // undefined, and it doesn't work in practice because of how the ABI
2293     // defines varargs anyway.
2294     if (fnType->getCallConv() == CC_C) {
2295       bool HasAVXType = false;
2296       for (CallArgList::const_iterator
2297              it = args.begin(), ie = args.end(); it != ie; ++it) {
2298         if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
2299           HasAVXType = true;
2300           break;
2301         }
2302       }
2303 
2304       if (!HasAVXType)
2305         return true;
2306     }
2307 
2308     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
2309   }
2310 
2311   llvm::Constant *
2312   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
2313     unsigned Sig = (0xeb << 0) | // jmp rel8
2314                    (0x06 << 8) | //           .+0x08
2315                    ('v' << 16) |
2316                    ('2' << 24);
2317     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
2318   }
2319 
2320   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2321                            CodeGen::CodeGenModule &CGM) const override {
2322     if (GV->isDeclaration())
2323       return;
2324     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2325       if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2326         llvm::Function *Fn = cast<llvm::Function>(GV);
2327         Fn->addFnAttr("stackrealign");
2328       }
2329       if (FD->hasAttr<AnyX86InterruptAttr>()) {
2330         llvm::Function *Fn = cast<llvm::Function>(GV);
2331         Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2332       }
2333     }
2334   }
2335 };
2336 
2337 class PS4TargetCodeGenInfo : public X86_64TargetCodeGenInfo {
2338 public:
2339   PS4TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2340     : X86_64TargetCodeGenInfo(CGT, AVXLevel) {}
2341 
2342   void getDependentLibraryOption(llvm::StringRef Lib,
2343                                  llvm::SmallString<24> &Opt) const override {
2344     Opt = "\01";
2345     // If the argument contains a space, enclose it in quotes.
2346     if (Lib.find(" ") != StringRef::npos)
2347       Opt += "\"" + Lib.str() + "\"";
2348     else
2349       Opt += Lib;
2350   }
2351 };
2352 
2353 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
2354   // If the argument does not end in .lib, automatically add the suffix.
2355   // If the argument contains a space, enclose it in quotes.
2356   // This matches the behavior of MSVC.
2357   bool Quote = (Lib.find(" ") != StringRef::npos);
2358   std::string ArgStr = Quote ? "\"" : "";
2359   ArgStr += Lib;
2360   if (!Lib.endswith_lower(".lib") && !Lib.endswith_lower(".a"))
2361     ArgStr += ".lib";
2362   ArgStr += Quote ? "\"" : "";
2363   return ArgStr;
2364 }
2365 
2366 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
2367 public:
2368   WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2369         bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI,
2370         unsigned NumRegisterParameters)
2371     : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI,
2372         Win32StructABI, NumRegisterParameters, false) {}
2373 
2374   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2375                            CodeGen::CodeGenModule &CGM) const override;
2376 
2377   void getDependentLibraryOption(llvm::StringRef Lib,
2378                                  llvm::SmallString<24> &Opt) const override {
2379     Opt = "/DEFAULTLIB:";
2380     Opt += qualifyWindowsLibrary(Lib);
2381   }
2382 
2383   void getDetectMismatchOption(llvm::StringRef Name,
2384                                llvm::StringRef Value,
2385                                llvm::SmallString<32> &Opt) const override {
2386     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2387   }
2388 };
2389 
2390 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2391                                           CodeGen::CodeGenModule &CGM) {
2392   if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) {
2393 
2394     if (CGM.getCodeGenOpts().StackProbeSize != 4096)
2395       Fn->addFnAttr("stack-probe-size",
2396                     llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
2397     if (CGM.getCodeGenOpts().NoStackArgProbe)
2398       Fn->addFnAttr("no-stack-arg-probe");
2399   }
2400 }
2401 
2402 void WinX86_32TargetCodeGenInfo::setTargetAttributes(
2403     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2404   X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2405   if (GV->isDeclaration())
2406     return;
2407   addStackProbeTargetAttributes(D, GV, CGM);
2408 }
2409 
2410 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2411 public:
2412   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2413                              X86AVXABILevel AVXLevel)
2414       : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
2415 
2416   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2417                            CodeGen::CodeGenModule &CGM) const override;
2418 
2419   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2420     return 7;
2421   }
2422 
2423   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2424                                llvm::Value *Address) const override {
2425     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2426 
2427     // 0-15 are the 16 integer registers.
2428     // 16 is %rip.
2429     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2430     return false;
2431   }
2432 
2433   void getDependentLibraryOption(llvm::StringRef Lib,
2434                                  llvm::SmallString<24> &Opt) const override {
2435     Opt = "/DEFAULTLIB:";
2436     Opt += qualifyWindowsLibrary(Lib);
2437   }
2438 
2439   void getDetectMismatchOption(llvm::StringRef Name,
2440                                llvm::StringRef Value,
2441                                llvm::SmallString<32> &Opt) const override {
2442     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2443   }
2444 };
2445 
2446 void WinX86_64TargetCodeGenInfo::setTargetAttributes(
2447     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2448   TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2449   if (GV->isDeclaration())
2450     return;
2451   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2452     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2453       llvm::Function *Fn = cast<llvm::Function>(GV);
2454       Fn->addFnAttr("stackrealign");
2455     }
2456     if (FD->hasAttr<AnyX86InterruptAttr>()) {
2457       llvm::Function *Fn = cast<llvm::Function>(GV);
2458       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2459     }
2460   }
2461 
2462   addStackProbeTargetAttributes(D, GV, CGM);
2463 }
2464 }
2465 
2466 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
2467                               Class &Hi) const {
2468   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
2469   //
2470   // (a) If one of the classes is Memory, the whole argument is passed in
2471   //     memory.
2472   //
2473   // (b) If X87UP is not preceded by X87, the whole argument is passed in
2474   //     memory.
2475   //
2476   // (c) If the size of the aggregate exceeds two eightbytes and the first
2477   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
2478   //     argument is passed in memory. NOTE: This is necessary to keep the
2479   //     ABI working for processors that don't support the __m256 type.
2480   //
2481   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
2482   //
2483   // Some of these are enforced by the merging logic.  Others can arise
2484   // only with unions; for example:
2485   //   union { _Complex double; unsigned; }
2486   //
2487   // Note that clauses (b) and (c) were added in 0.98.
2488   //
2489   if (Hi == Memory)
2490     Lo = Memory;
2491   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
2492     Lo = Memory;
2493   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
2494     Lo = Memory;
2495   if (Hi == SSEUp && Lo != SSE)
2496     Hi = SSE;
2497 }
2498 
2499 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
2500   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
2501   // classified recursively so that always two fields are
2502   // considered. The resulting class is calculated according to
2503   // the classes of the fields in the eightbyte:
2504   //
2505   // (a) If both classes are equal, this is the resulting class.
2506   //
2507   // (b) If one of the classes is NO_CLASS, the resulting class is
2508   // the other class.
2509   //
2510   // (c) If one of the classes is MEMORY, the result is the MEMORY
2511   // class.
2512   //
2513   // (d) If one of the classes is INTEGER, the result is the
2514   // INTEGER.
2515   //
2516   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
2517   // MEMORY is used as class.
2518   //
2519   // (f) Otherwise class SSE is used.
2520 
2521   // Accum should never be memory (we should have returned) or
2522   // ComplexX87 (because this cannot be passed in a structure).
2523   assert((Accum != Memory && Accum != ComplexX87) &&
2524          "Invalid accumulated classification during merge.");
2525   if (Accum == Field || Field == NoClass)
2526     return Accum;
2527   if (Field == Memory)
2528     return Memory;
2529   if (Accum == NoClass)
2530     return Field;
2531   if (Accum == Integer || Field == Integer)
2532     return Integer;
2533   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
2534       Accum == X87 || Accum == X87Up)
2535     return Memory;
2536   return SSE;
2537 }
2538 
2539 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
2540                              Class &Lo, Class &Hi, bool isNamedArg) const {
2541   // FIXME: This code can be simplified by introducing a simple value class for
2542   // Class pairs with appropriate constructor methods for the various
2543   // situations.
2544 
2545   // FIXME: Some of the split computations are wrong; unaligned vectors
2546   // shouldn't be passed in registers for example, so there is no chance they
2547   // can straddle an eightbyte. Verify & simplify.
2548 
2549   Lo = Hi = NoClass;
2550 
2551   Class &Current = OffsetBase < 64 ? Lo : Hi;
2552   Current = Memory;
2553 
2554   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
2555     BuiltinType::Kind k = BT->getKind();
2556 
2557     if (k == BuiltinType::Void) {
2558       Current = NoClass;
2559     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
2560       Lo = Integer;
2561       Hi = Integer;
2562     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
2563       Current = Integer;
2564     } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
2565       Current = SSE;
2566     } else if (k == BuiltinType::LongDouble) {
2567       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2568       if (LDF == &llvm::APFloat::IEEEquad()) {
2569         Lo = SSE;
2570         Hi = SSEUp;
2571       } else if (LDF == &llvm::APFloat::x87DoubleExtended()) {
2572         Lo = X87;
2573         Hi = X87Up;
2574       } else if (LDF == &llvm::APFloat::IEEEdouble()) {
2575         Current = SSE;
2576       } else
2577         llvm_unreachable("unexpected long double representation!");
2578     }
2579     // FIXME: _Decimal32 and _Decimal64 are SSE.
2580     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
2581     return;
2582   }
2583 
2584   if (const EnumType *ET = Ty->getAs<EnumType>()) {
2585     // Classify the underlying integer type.
2586     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
2587     return;
2588   }
2589 
2590   if (Ty->hasPointerRepresentation()) {
2591     Current = Integer;
2592     return;
2593   }
2594 
2595   if (Ty->isMemberPointerType()) {
2596     if (Ty->isMemberFunctionPointerType()) {
2597       if (Has64BitPointers) {
2598         // If Has64BitPointers, this is an {i64, i64}, so classify both
2599         // Lo and Hi now.
2600         Lo = Hi = Integer;
2601       } else {
2602         // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
2603         // straddles an eightbyte boundary, Hi should be classified as well.
2604         uint64_t EB_FuncPtr = (OffsetBase) / 64;
2605         uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
2606         if (EB_FuncPtr != EB_ThisAdj) {
2607           Lo = Hi = Integer;
2608         } else {
2609           Current = Integer;
2610         }
2611       }
2612     } else {
2613       Current = Integer;
2614     }
2615     return;
2616   }
2617 
2618   if (const VectorType *VT = Ty->getAs<VectorType>()) {
2619     uint64_t Size = getContext().getTypeSize(VT);
2620     if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
2621       // gcc passes the following as integer:
2622       // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
2623       // 2 bytes - <2 x char>, <1 x short>
2624       // 1 byte  - <1 x char>
2625       Current = Integer;
2626 
2627       // If this type crosses an eightbyte boundary, it should be
2628       // split.
2629       uint64_t EB_Lo = (OffsetBase) / 64;
2630       uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
2631       if (EB_Lo != EB_Hi)
2632         Hi = Lo;
2633     } else if (Size == 64) {
2634       QualType ElementType = VT->getElementType();
2635 
2636       // gcc passes <1 x double> in memory. :(
2637       if (ElementType->isSpecificBuiltinType(BuiltinType::Double))
2638         return;
2639 
2640       // gcc passes <1 x long long> as SSE but clang used to unconditionally
2641       // pass them as integer.  For platforms where clang is the de facto
2642       // platform compiler, we must continue to use integer.
2643       if (!classifyIntegerMMXAsSSE() &&
2644           (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) ||
2645            ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
2646            ElementType->isSpecificBuiltinType(BuiltinType::Long) ||
2647            ElementType->isSpecificBuiltinType(BuiltinType::ULong)))
2648         Current = Integer;
2649       else
2650         Current = SSE;
2651 
2652       // If this type crosses an eightbyte boundary, it should be
2653       // split.
2654       if (OffsetBase && OffsetBase != 64)
2655         Hi = Lo;
2656     } else if (Size == 128 ||
2657                (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
2658       // Arguments of 256-bits are split into four eightbyte chunks. The
2659       // least significant one belongs to class SSE and all the others to class
2660       // SSEUP. The original Lo and Hi design considers that types can't be
2661       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
2662       // This design isn't correct for 256-bits, but since there're no cases
2663       // where the upper parts would need to be inspected, avoid adding
2664       // complexity and just consider Hi to match the 64-256 part.
2665       //
2666       // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
2667       // registers if they are "named", i.e. not part of the "..." of a
2668       // variadic function.
2669       //
2670       // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
2671       // split into eight eightbyte chunks, one SSE and seven SSEUP.
2672       Lo = SSE;
2673       Hi = SSEUp;
2674     }
2675     return;
2676   }
2677 
2678   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
2679     QualType ET = getContext().getCanonicalType(CT->getElementType());
2680 
2681     uint64_t Size = getContext().getTypeSize(Ty);
2682     if (ET->isIntegralOrEnumerationType()) {
2683       if (Size <= 64)
2684         Current = Integer;
2685       else if (Size <= 128)
2686         Lo = Hi = Integer;
2687     } else if (ET == getContext().FloatTy) {
2688       Current = SSE;
2689     } else if (ET == getContext().DoubleTy) {
2690       Lo = Hi = SSE;
2691     } else if (ET == getContext().LongDoubleTy) {
2692       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2693       if (LDF == &llvm::APFloat::IEEEquad())
2694         Current = Memory;
2695       else if (LDF == &llvm::APFloat::x87DoubleExtended())
2696         Current = ComplexX87;
2697       else if (LDF == &llvm::APFloat::IEEEdouble())
2698         Lo = Hi = SSE;
2699       else
2700         llvm_unreachable("unexpected long double representation!");
2701     }
2702 
2703     // If this complex type crosses an eightbyte boundary then it
2704     // should be split.
2705     uint64_t EB_Real = (OffsetBase) / 64;
2706     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
2707     if (Hi == NoClass && EB_Real != EB_Imag)
2708       Hi = Lo;
2709 
2710     return;
2711   }
2712 
2713   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
2714     // Arrays are treated like structures.
2715 
2716     uint64_t Size = getContext().getTypeSize(Ty);
2717 
2718     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2719     // than eight eightbytes, ..., it has class MEMORY.
2720     if (Size > 512)
2721       return;
2722 
2723     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
2724     // fields, it has class MEMORY.
2725     //
2726     // Only need to check alignment of array base.
2727     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
2728       return;
2729 
2730     // Otherwise implement simplified merge. We could be smarter about
2731     // this, but it isn't worth it and would be harder to verify.
2732     Current = NoClass;
2733     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
2734     uint64_t ArraySize = AT->getSize().getZExtValue();
2735 
2736     // The only case a 256-bit wide vector could be used is when the array
2737     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2738     // to work for sizes wider than 128, early check and fallback to memory.
2739     //
2740     if (Size > 128 &&
2741         (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel)))
2742       return;
2743 
2744     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
2745       Class FieldLo, FieldHi;
2746       classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
2747       Lo = merge(Lo, FieldLo);
2748       Hi = merge(Hi, FieldHi);
2749       if (Lo == Memory || Hi == Memory)
2750         break;
2751     }
2752 
2753     postMerge(Size, Lo, Hi);
2754     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
2755     return;
2756   }
2757 
2758   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2759     uint64_t Size = getContext().getTypeSize(Ty);
2760 
2761     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2762     // than eight eightbytes, ..., it has class MEMORY.
2763     if (Size > 512)
2764       return;
2765 
2766     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
2767     // copy constructor or a non-trivial destructor, it is passed by invisible
2768     // reference.
2769     if (getRecordArgABI(RT, getCXXABI()))
2770       return;
2771 
2772     const RecordDecl *RD = RT->getDecl();
2773 
2774     // Assume variable sized types are passed in memory.
2775     if (RD->hasFlexibleArrayMember())
2776       return;
2777 
2778     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2779 
2780     // Reset Lo class, this will be recomputed.
2781     Current = NoClass;
2782 
2783     // If this is a C++ record, classify the bases first.
2784     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2785       for (const auto &I : CXXRD->bases()) {
2786         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2787                "Unexpected base class!");
2788         const CXXRecordDecl *Base =
2789           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2790 
2791         // Classify this field.
2792         //
2793         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
2794         // single eightbyte, each is classified separately. Each eightbyte gets
2795         // initialized to class NO_CLASS.
2796         Class FieldLo, FieldHi;
2797         uint64_t Offset =
2798           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
2799         classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
2800         Lo = merge(Lo, FieldLo);
2801         Hi = merge(Hi, FieldHi);
2802         if (Lo == Memory || Hi == Memory) {
2803           postMerge(Size, Lo, Hi);
2804           return;
2805         }
2806       }
2807     }
2808 
2809     // Classify the fields one at a time, merging the results.
2810     unsigned idx = 0;
2811     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2812            i != e; ++i, ++idx) {
2813       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2814       bool BitField = i->isBitField();
2815 
2816       // Ignore padding bit-fields.
2817       if (BitField && i->isUnnamedBitfield())
2818         continue;
2819 
2820       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
2821       // four eightbytes, or it contains unaligned fields, it has class MEMORY.
2822       //
2823       // The only case a 256-bit wide vector could be used is when the struct
2824       // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2825       // to work for sizes wider than 128, early check and fallback to memory.
2826       //
2827       if (Size > 128 && (Size != getContext().getTypeSize(i->getType()) ||
2828                          Size > getNativeVectorSizeForAVXABI(AVXLevel))) {
2829         Lo = Memory;
2830         postMerge(Size, Lo, Hi);
2831         return;
2832       }
2833       // Note, skip this test for bit-fields, see below.
2834       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
2835         Lo = Memory;
2836         postMerge(Size, Lo, Hi);
2837         return;
2838       }
2839 
2840       // Classify this field.
2841       //
2842       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
2843       // exceeds a single eightbyte, each is classified
2844       // separately. Each eightbyte gets initialized to class
2845       // NO_CLASS.
2846       Class FieldLo, FieldHi;
2847 
2848       // Bit-fields require special handling, they do not force the
2849       // structure to be passed in memory even if unaligned, and
2850       // therefore they can straddle an eightbyte.
2851       if (BitField) {
2852         assert(!i->isUnnamedBitfield());
2853         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2854         uint64_t Size = i->getBitWidthValue(getContext());
2855 
2856         uint64_t EB_Lo = Offset / 64;
2857         uint64_t EB_Hi = (Offset + Size - 1) / 64;
2858 
2859         if (EB_Lo) {
2860           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
2861           FieldLo = NoClass;
2862           FieldHi = Integer;
2863         } else {
2864           FieldLo = Integer;
2865           FieldHi = EB_Hi ? Integer : NoClass;
2866         }
2867       } else
2868         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
2869       Lo = merge(Lo, FieldLo);
2870       Hi = merge(Hi, FieldHi);
2871       if (Lo == Memory || Hi == Memory)
2872         break;
2873     }
2874 
2875     postMerge(Size, Lo, Hi);
2876   }
2877 }
2878 
2879 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
2880   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2881   // place naturally.
2882   if (!isAggregateTypeForABI(Ty)) {
2883     // Treat an enum type as its underlying type.
2884     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2885       Ty = EnumTy->getDecl()->getIntegerType();
2886 
2887     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
2888                                           : ABIArgInfo::getDirect());
2889   }
2890 
2891   return getNaturalAlignIndirect(Ty);
2892 }
2893 
2894 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
2895   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
2896     uint64_t Size = getContext().getTypeSize(VecTy);
2897     unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
2898     if (Size <= 64 || Size > LargestVector)
2899       return true;
2900   }
2901 
2902   return false;
2903 }
2904 
2905 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
2906                                             unsigned freeIntRegs) const {
2907   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2908   // place naturally.
2909   //
2910   // This assumption is optimistic, as there could be free registers available
2911   // when we need to pass this argument in memory, and LLVM could try to pass
2912   // the argument in the free register. This does not seem to happen currently,
2913   // but this code would be much safer if we could mark the argument with
2914   // 'onstack'. See PR12193.
2915   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
2916     // Treat an enum type as its underlying type.
2917     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2918       Ty = EnumTy->getDecl()->getIntegerType();
2919 
2920     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
2921                                           : ABIArgInfo::getDirect());
2922   }
2923 
2924   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
2925     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
2926 
2927   // Compute the byval alignment. We specify the alignment of the byval in all
2928   // cases so that the mid-level optimizer knows the alignment of the byval.
2929   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
2930 
2931   // Attempt to avoid passing indirect results using byval when possible. This
2932   // is important for good codegen.
2933   //
2934   // We do this by coercing the value into a scalar type which the backend can
2935   // handle naturally (i.e., without using byval).
2936   //
2937   // For simplicity, we currently only do this when we have exhausted all of the
2938   // free integer registers. Doing this when there are free integer registers
2939   // would require more care, as we would have to ensure that the coerced value
2940   // did not claim the unused register. That would require either reording the
2941   // arguments to the function (so that any subsequent inreg values came first),
2942   // or only doing this optimization when there were no following arguments that
2943   // might be inreg.
2944   //
2945   // We currently expect it to be rare (particularly in well written code) for
2946   // arguments to be passed on the stack when there are still free integer
2947   // registers available (this would typically imply large structs being passed
2948   // by value), so this seems like a fair tradeoff for now.
2949   //
2950   // We can revisit this if the backend grows support for 'onstack' parameter
2951   // attributes. See PR12193.
2952   if (freeIntRegs == 0) {
2953     uint64_t Size = getContext().getTypeSize(Ty);
2954 
2955     // If this type fits in an eightbyte, coerce it into the matching integral
2956     // type, which will end up on the stack (with alignment 8).
2957     if (Align == 8 && Size <= 64)
2958       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2959                                                           Size));
2960   }
2961 
2962   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align));
2963 }
2964 
2965 /// The ABI specifies that a value should be passed in a full vector XMM/YMM
2966 /// register. Pick an LLVM IR type that will be passed as a vector register.
2967 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
2968   // Wrapper structs/arrays that only contain vectors are passed just like
2969   // vectors; strip them off if present.
2970   if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
2971     Ty = QualType(InnerTy, 0);
2972 
2973   llvm::Type *IRType = CGT.ConvertType(Ty);
2974   if (isa<llvm::VectorType>(IRType) ||
2975       IRType->getTypeID() == llvm::Type::FP128TyID)
2976     return IRType;
2977 
2978   // We couldn't find the preferred IR vector type for 'Ty'.
2979   uint64_t Size = getContext().getTypeSize(Ty);
2980   assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!");
2981 
2982   // Return a LLVM IR vector type based on the size of 'Ty'.
2983   return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()),
2984                                Size / 64);
2985 }
2986 
2987 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
2988 /// is known to either be off the end of the specified type or being in
2989 /// alignment padding.  The user type specified is known to be at most 128 bits
2990 /// in size, and have passed through X86_64ABIInfo::classify with a successful
2991 /// classification that put one of the two halves in the INTEGER class.
2992 ///
2993 /// It is conservatively correct to return false.
2994 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
2995                                   unsigned EndBit, ASTContext &Context) {
2996   // If the bytes being queried are off the end of the type, there is no user
2997   // data hiding here.  This handles analysis of builtins, vectors and other
2998   // types that don't contain interesting padding.
2999   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
3000   if (TySize <= StartBit)
3001     return true;
3002 
3003   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
3004     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
3005     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
3006 
3007     // Check each element to see if the element overlaps with the queried range.
3008     for (unsigned i = 0; i != NumElts; ++i) {
3009       // If the element is after the span we care about, then we're done..
3010       unsigned EltOffset = i*EltSize;
3011       if (EltOffset >= EndBit) break;
3012 
3013       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
3014       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
3015                                  EndBit-EltOffset, Context))
3016         return false;
3017     }
3018     // If it overlaps no elements, then it is safe to process as padding.
3019     return true;
3020   }
3021 
3022   if (const RecordType *RT = Ty->getAs<RecordType>()) {
3023     const RecordDecl *RD = RT->getDecl();
3024     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3025 
3026     // If this is a C++ record, check the bases first.
3027     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3028       for (const auto &I : CXXRD->bases()) {
3029         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
3030                "Unexpected base class!");
3031         const CXXRecordDecl *Base =
3032           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
3033 
3034         // If the base is after the span we care about, ignore it.
3035         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
3036         if (BaseOffset >= EndBit) continue;
3037 
3038         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
3039         if (!BitsContainNoUserData(I.getType(), BaseStart,
3040                                    EndBit-BaseOffset, Context))
3041           return false;
3042       }
3043     }
3044 
3045     // Verify that no field has data that overlaps the region of interest.  Yes
3046     // this could be sped up a lot by being smarter about queried fields,
3047     // however we're only looking at structs up to 16 bytes, so we don't care
3048     // much.
3049     unsigned idx = 0;
3050     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3051          i != e; ++i, ++idx) {
3052       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
3053 
3054       // If we found a field after the region we care about, then we're done.
3055       if (FieldOffset >= EndBit) break;
3056 
3057       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
3058       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
3059                                  Context))
3060         return false;
3061     }
3062 
3063     // If nothing in this record overlapped the area of interest, then we're
3064     // clean.
3065     return true;
3066   }
3067 
3068   return false;
3069 }
3070 
3071 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
3072 /// float member at the specified offset.  For example, {int,{float}} has a
3073 /// float at offset 4.  It is conservatively correct for this routine to return
3074 /// false.
3075 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
3076                                   const llvm::DataLayout &TD) {
3077   // Base case if we find a float.
3078   if (IROffset == 0 && IRType->isFloatTy())
3079     return true;
3080 
3081   // If this is a struct, recurse into the field at the specified offset.
3082   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3083     const llvm::StructLayout *SL = TD.getStructLayout(STy);
3084     unsigned Elt = SL->getElementContainingOffset(IROffset);
3085     IROffset -= SL->getElementOffset(Elt);
3086     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
3087   }
3088 
3089   // If this is an array, recurse into the field at the specified offset.
3090   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3091     llvm::Type *EltTy = ATy->getElementType();
3092     unsigned EltSize = TD.getTypeAllocSize(EltTy);
3093     IROffset -= IROffset/EltSize*EltSize;
3094     return ContainsFloatAtOffset(EltTy, IROffset, TD);
3095   }
3096 
3097   return false;
3098 }
3099 
3100 
3101 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
3102 /// low 8 bytes of an XMM register, corresponding to the SSE class.
3103 llvm::Type *X86_64ABIInfo::
3104 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3105                    QualType SourceTy, unsigned SourceOffset) const {
3106   // The only three choices we have are either double, <2 x float>, or float. We
3107   // pass as float if the last 4 bytes is just padding.  This happens for
3108   // structs that contain 3 floats.
3109   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
3110                             SourceOffset*8+64, getContext()))
3111     return llvm::Type::getFloatTy(getVMContext());
3112 
3113   // We want to pass as <2 x float> if the LLVM IR type contains a float at
3114   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
3115   // case.
3116   if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
3117       ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
3118     return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
3119 
3120   return llvm::Type::getDoubleTy(getVMContext());
3121 }
3122 
3123 
3124 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
3125 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
3126 /// about the high or low part of an up-to-16-byte struct.  This routine picks
3127 /// the best LLVM IR type to represent this, which may be i64 or may be anything
3128 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
3129 /// etc).
3130 ///
3131 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
3132 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
3133 /// the 8-byte value references.  PrefType may be null.
3134 ///
3135 /// SourceTy is the source-level type for the entire argument.  SourceOffset is
3136 /// an offset into this that we're processing (which is always either 0 or 8).
3137 ///
3138 llvm::Type *X86_64ABIInfo::
3139 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3140                        QualType SourceTy, unsigned SourceOffset) const {
3141   // If we're dealing with an un-offset LLVM IR type, then it means that we're
3142   // returning an 8-byte unit starting with it.  See if we can safely use it.
3143   if (IROffset == 0) {
3144     // Pointers and int64's always fill the 8-byte unit.
3145     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
3146         IRType->isIntegerTy(64))
3147       return IRType;
3148 
3149     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
3150     // goodness in the source type is just tail padding.  This is allowed to
3151     // kick in for struct {double,int} on the int, but not on
3152     // struct{double,int,int} because we wouldn't return the second int.  We
3153     // have to do this analysis on the source type because we can't depend on
3154     // unions being lowered a specific way etc.
3155     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
3156         IRType->isIntegerTy(32) ||
3157         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
3158       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
3159           cast<llvm::IntegerType>(IRType)->getBitWidth();
3160 
3161       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
3162                                 SourceOffset*8+64, getContext()))
3163         return IRType;
3164     }
3165   }
3166 
3167   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3168     // If this is a struct, recurse into the field at the specified offset.
3169     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
3170     if (IROffset < SL->getSizeInBytes()) {
3171       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
3172       IROffset -= SL->getElementOffset(FieldIdx);
3173 
3174       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
3175                                     SourceTy, SourceOffset);
3176     }
3177   }
3178 
3179   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3180     llvm::Type *EltTy = ATy->getElementType();
3181     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
3182     unsigned EltOffset = IROffset/EltSize*EltSize;
3183     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
3184                                   SourceOffset);
3185   }
3186 
3187   // Okay, we don't have any better idea of what to pass, so we pass this in an
3188   // integer register that isn't too big to fit the rest of the struct.
3189   unsigned TySizeInBytes =
3190     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
3191 
3192   assert(TySizeInBytes != SourceOffset && "Empty field?");
3193 
3194   // It is always safe to classify this as an integer type up to i64 that
3195   // isn't larger than the structure.
3196   return llvm::IntegerType::get(getVMContext(),
3197                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
3198 }
3199 
3200 
3201 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
3202 /// be used as elements of a two register pair to pass or return, return a
3203 /// first class aggregate to represent them.  For example, if the low part of
3204 /// a by-value argument should be passed as i32* and the high part as float,
3205 /// return {i32*, float}.
3206 static llvm::Type *
3207 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
3208                            const llvm::DataLayout &TD) {
3209   // In order to correctly satisfy the ABI, we need to the high part to start
3210   // at offset 8.  If the high and low parts we inferred are both 4-byte types
3211   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
3212   // the second element at offset 8.  Check for this:
3213   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
3214   unsigned HiAlign = TD.getABITypeAlignment(Hi);
3215   unsigned HiStart = llvm::alignTo(LoSize, HiAlign);
3216   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
3217 
3218   // To handle this, we have to increase the size of the low part so that the
3219   // second element will start at an 8 byte offset.  We can't increase the size
3220   // of the second element because it might make us access off the end of the
3221   // struct.
3222   if (HiStart != 8) {
3223     // There are usually two sorts of types the ABI generation code can produce
3224     // for the low part of a pair that aren't 8 bytes in size: float or
3225     // i8/i16/i32.  This can also include pointers when they are 32-bit (X32 and
3226     // NaCl).
3227     // Promote these to a larger type.
3228     if (Lo->isFloatTy())
3229       Lo = llvm::Type::getDoubleTy(Lo->getContext());
3230     else {
3231       assert((Lo->isIntegerTy() || Lo->isPointerTy())
3232              && "Invalid/unknown lo type");
3233       Lo = llvm::Type::getInt64Ty(Lo->getContext());
3234     }
3235   }
3236 
3237   llvm::StructType *Result = llvm::StructType::get(Lo, Hi);
3238 
3239   // Verify that the second element is at an 8-byte offset.
3240   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
3241          "Invalid x86-64 argument pair!");
3242   return Result;
3243 }
3244 
3245 ABIArgInfo X86_64ABIInfo::
3246 classifyReturnType(QualType RetTy) const {
3247   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
3248   // classification algorithm.
3249   X86_64ABIInfo::Class Lo, Hi;
3250   classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
3251 
3252   // Check some invariants.
3253   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3254   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3255 
3256   llvm::Type *ResType = nullptr;
3257   switch (Lo) {
3258   case NoClass:
3259     if (Hi == NoClass)
3260       return ABIArgInfo::getIgnore();
3261     // If the low part is just padding, it takes no register, leave ResType
3262     // null.
3263     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3264            "Unknown missing lo part");
3265     break;
3266 
3267   case SSEUp:
3268   case X87Up:
3269     llvm_unreachable("Invalid classification for lo word.");
3270 
3271     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
3272     // hidden argument.
3273   case Memory:
3274     return getIndirectReturnResult(RetTy);
3275 
3276     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
3277     // available register of the sequence %rax, %rdx is used.
3278   case Integer:
3279     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3280 
3281     // If we have a sign or zero extended integer, make sure to return Extend
3282     // so that the parameter gets the right LLVM IR attributes.
3283     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3284       // Treat an enum type as its underlying type.
3285       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3286         RetTy = EnumTy->getDecl()->getIntegerType();
3287 
3288       if (RetTy->isIntegralOrEnumerationType() &&
3289           RetTy->isPromotableIntegerType())
3290         return ABIArgInfo::getExtend(RetTy);
3291     }
3292     break;
3293 
3294     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
3295     // available SSE register of the sequence %xmm0, %xmm1 is used.
3296   case SSE:
3297     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3298     break;
3299 
3300     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
3301     // returned on the X87 stack in %st0 as 80-bit x87 number.
3302   case X87:
3303     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
3304     break;
3305 
3306     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
3307     // part of the value is returned in %st0 and the imaginary part in
3308     // %st1.
3309   case ComplexX87:
3310     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
3311     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
3312                                     llvm::Type::getX86_FP80Ty(getVMContext()));
3313     break;
3314   }
3315 
3316   llvm::Type *HighPart = nullptr;
3317   switch (Hi) {
3318     // Memory was handled previously and X87 should
3319     // never occur as a hi class.
3320   case Memory:
3321   case X87:
3322     llvm_unreachable("Invalid classification for hi word.");
3323 
3324   case ComplexX87: // Previously handled.
3325   case NoClass:
3326     break;
3327 
3328   case Integer:
3329     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3330     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3331       return ABIArgInfo::getDirect(HighPart, 8);
3332     break;
3333   case SSE:
3334     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3335     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3336       return ABIArgInfo::getDirect(HighPart, 8);
3337     break;
3338 
3339     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
3340     // is passed in the next available eightbyte chunk if the last used
3341     // vector register.
3342     //
3343     // SSEUP should always be preceded by SSE, just widen.
3344   case SSEUp:
3345     assert(Lo == SSE && "Unexpected SSEUp classification.");
3346     ResType = GetByteVectorType(RetTy);
3347     break;
3348 
3349     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
3350     // returned together with the previous X87 value in %st0.
3351   case X87Up:
3352     // If X87Up is preceded by X87, we don't need to do
3353     // anything. However, in some cases with unions it may not be
3354     // preceded by X87. In such situations we follow gcc and pass the
3355     // extra bits in an SSE reg.
3356     if (Lo != X87) {
3357       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3358       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3359         return ABIArgInfo::getDirect(HighPart, 8);
3360     }
3361     break;
3362   }
3363 
3364   // If a high part was specified, merge it together with the low part.  It is
3365   // known to pass in the high eightbyte of the result.  We do this by forming a
3366   // first class struct aggregate with the high and low part: {low, high}
3367   if (HighPart)
3368     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3369 
3370   return ABIArgInfo::getDirect(ResType);
3371 }
3372 
3373 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
3374   QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
3375   bool isNamedArg)
3376   const
3377 {
3378   Ty = useFirstFieldIfTransparentUnion(Ty);
3379 
3380   X86_64ABIInfo::Class Lo, Hi;
3381   classify(Ty, 0, Lo, Hi, isNamedArg);
3382 
3383   // Check some invariants.
3384   // FIXME: Enforce these by construction.
3385   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3386   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3387 
3388   neededInt = 0;
3389   neededSSE = 0;
3390   llvm::Type *ResType = nullptr;
3391   switch (Lo) {
3392   case NoClass:
3393     if (Hi == NoClass)
3394       return ABIArgInfo::getIgnore();
3395     // If the low part is just padding, it takes no register, leave ResType
3396     // null.
3397     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3398            "Unknown missing lo part");
3399     break;
3400 
3401     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
3402     // on the stack.
3403   case Memory:
3404 
3405     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
3406     // COMPLEX_X87, it is passed in memory.
3407   case X87:
3408   case ComplexX87:
3409     if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
3410       ++neededInt;
3411     return getIndirectResult(Ty, freeIntRegs);
3412 
3413   case SSEUp:
3414   case X87Up:
3415     llvm_unreachable("Invalid classification for lo word.");
3416 
3417     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
3418     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
3419     // and %r9 is used.
3420   case Integer:
3421     ++neededInt;
3422 
3423     // Pick an 8-byte type based on the preferred type.
3424     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
3425 
3426     // If we have a sign or zero extended integer, make sure to return Extend
3427     // so that the parameter gets the right LLVM IR attributes.
3428     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3429       // Treat an enum type as its underlying type.
3430       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3431         Ty = EnumTy->getDecl()->getIntegerType();
3432 
3433       if (Ty->isIntegralOrEnumerationType() &&
3434           Ty->isPromotableIntegerType())
3435         return ABIArgInfo::getExtend(Ty);
3436     }
3437 
3438     break;
3439 
3440     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
3441     // available SSE register is used, the registers are taken in the
3442     // order from %xmm0 to %xmm7.
3443   case SSE: {
3444     llvm::Type *IRType = CGT.ConvertType(Ty);
3445     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
3446     ++neededSSE;
3447     break;
3448   }
3449   }
3450 
3451   llvm::Type *HighPart = nullptr;
3452   switch (Hi) {
3453     // Memory was handled previously, ComplexX87 and X87 should
3454     // never occur as hi classes, and X87Up must be preceded by X87,
3455     // which is passed in memory.
3456   case Memory:
3457   case X87:
3458   case ComplexX87:
3459     llvm_unreachable("Invalid classification for hi word.");
3460 
3461   case NoClass: break;
3462 
3463   case Integer:
3464     ++neededInt;
3465     // Pick an 8-byte type based on the preferred type.
3466     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3467 
3468     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3469       return ABIArgInfo::getDirect(HighPart, 8);
3470     break;
3471 
3472     // X87Up generally doesn't occur here (long double is passed in
3473     // memory), except in situations involving unions.
3474   case X87Up:
3475   case SSE:
3476     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3477 
3478     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3479       return ABIArgInfo::getDirect(HighPart, 8);
3480 
3481     ++neededSSE;
3482     break;
3483 
3484     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
3485     // eightbyte is passed in the upper half of the last used SSE
3486     // register.  This only happens when 128-bit vectors are passed.
3487   case SSEUp:
3488     assert(Lo == SSE && "Unexpected SSEUp classification");
3489     ResType = GetByteVectorType(Ty);
3490     break;
3491   }
3492 
3493   // If a high part was specified, merge it together with the low part.  It is
3494   // known to pass in the high eightbyte of the result.  We do this by forming a
3495   // first class struct aggregate with the high and low part: {low, high}
3496   if (HighPart)
3497     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3498 
3499   return ABIArgInfo::getDirect(ResType);
3500 }
3501 
3502 ABIArgInfo
3503 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
3504                                              unsigned &NeededSSE) const {
3505   auto RT = Ty->getAs<RecordType>();
3506   assert(RT && "classifyRegCallStructType only valid with struct types");
3507 
3508   if (RT->getDecl()->hasFlexibleArrayMember())
3509     return getIndirectReturnResult(Ty);
3510 
3511   // Sum up bases
3512   if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
3513     if (CXXRD->isDynamicClass()) {
3514       NeededInt = NeededSSE = 0;
3515       return getIndirectReturnResult(Ty);
3516     }
3517 
3518     for (const auto &I : CXXRD->bases())
3519       if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE)
3520               .isIndirect()) {
3521         NeededInt = NeededSSE = 0;
3522         return getIndirectReturnResult(Ty);
3523       }
3524   }
3525 
3526   // Sum up members
3527   for (const auto *FD : RT->getDecl()->fields()) {
3528     if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) {
3529       if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE)
3530               .isIndirect()) {
3531         NeededInt = NeededSSE = 0;
3532         return getIndirectReturnResult(Ty);
3533       }
3534     } else {
3535       unsigned LocalNeededInt, LocalNeededSSE;
3536       if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt,
3537                                LocalNeededSSE, true)
3538               .isIndirect()) {
3539         NeededInt = NeededSSE = 0;
3540         return getIndirectReturnResult(Ty);
3541       }
3542       NeededInt += LocalNeededInt;
3543       NeededSSE += LocalNeededSSE;
3544     }
3545   }
3546 
3547   return ABIArgInfo::getDirect();
3548 }
3549 
3550 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty,
3551                                                     unsigned &NeededInt,
3552                                                     unsigned &NeededSSE) const {
3553 
3554   NeededInt = 0;
3555   NeededSSE = 0;
3556 
3557   return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE);
3558 }
3559 
3560 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3561 
3562   const unsigned CallingConv = FI.getCallingConvention();
3563   // It is possible to force Win64 calling convention on any x86_64 target by
3564   // using __attribute__((ms_abi)). In such case to correctly emit Win64
3565   // compatible code delegate this call to WinX86_64ABIInfo::computeInfo.
3566   if (CallingConv == llvm::CallingConv::Win64) {
3567     WinX86_64ABIInfo Win64ABIInfo(CGT);
3568     Win64ABIInfo.computeInfo(FI);
3569     return;
3570   }
3571 
3572   bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall;
3573 
3574   // Keep track of the number of assigned registers.
3575   unsigned FreeIntRegs = IsRegCall ? 11 : 6;
3576   unsigned FreeSSERegs = IsRegCall ? 16 : 8;
3577   unsigned NeededInt, NeededSSE;
3578 
3579   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
3580     if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() &&
3581         !FI.getReturnType()->getTypePtr()->isUnionType()) {
3582       FI.getReturnInfo() =
3583           classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE);
3584       if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3585         FreeIntRegs -= NeededInt;
3586         FreeSSERegs -= NeededSSE;
3587       } else {
3588         FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3589       }
3590     } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>()) {
3591       // Complex Long Double Type is passed in Memory when Regcall
3592       // calling convention is used.
3593       const ComplexType *CT = FI.getReturnType()->getAs<ComplexType>();
3594       if (getContext().getCanonicalType(CT->getElementType()) ==
3595           getContext().LongDoubleTy)
3596         FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3597     } else
3598       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3599   }
3600 
3601   // If the return value is indirect, then the hidden argument is consuming one
3602   // integer register.
3603   if (FI.getReturnInfo().isIndirect())
3604     --FreeIntRegs;
3605 
3606   // The chain argument effectively gives us another free register.
3607   if (FI.isChainCall())
3608     ++FreeIntRegs;
3609 
3610   unsigned NumRequiredArgs = FI.getNumRequiredArgs();
3611   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
3612   // get assigned (in left-to-right order) for passing as follows...
3613   unsigned ArgNo = 0;
3614   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3615        it != ie; ++it, ++ArgNo) {
3616     bool IsNamedArg = ArgNo < NumRequiredArgs;
3617 
3618     if (IsRegCall && it->type->isStructureOrClassType())
3619       it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE);
3620     else
3621       it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt,
3622                                       NeededSSE, IsNamedArg);
3623 
3624     // AMD64-ABI 3.2.3p3: If there are no registers available for any
3625     // eightbyte of an argument, the whole argument is passed on the
3626     // stack. If registers have already been assigned for some
3627     // eightbytes of such an argument, the assignments get reverted.
3628     if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3629       FreeIntRegs -= NeededInt;
3630       FreeSSERegs -= NeededSSE;
3631     } else {
3632       it->info = getIndirectResult(it->type, FreeIntRegs);
3633     }
3634   }
3635 }
3636 
3637 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF,
3638                                          Address VAListAddr, QualType Ty) {
3639   Address overflow_arg_area_p = CGF.Builder.CreateStructGEP(
3640       VAListAddr, 2, CharUnits::fromQuantity(8), "overflow_arg_area_p");
3641   llvm::Value *overflow_arg_area =
3642     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
3643 
3644   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
3645   // byte boundary if alignment needed by type exceeds 8 byte boundary.
3646   // It isn't stated explicitly in the standard, but in practice we use
3647   // alignment greater than 16 where necessary.
3648   CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
3649   if (Align > CharUnits::fromQuantity(8)) {
3650     overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area,
3651                                                       Align);
3652   }
3653 
3654   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
3655   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3656   llvm::Value *Res =
3657     CGF.Builder.CreateBitCast(overflow_arg_area,
3658                               llvm::PointerType::getUnqual(LTy));
3659 
3660   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
3661   // l->overflow_arg_area + sizeof(type).
3662   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
3663   // an 8 byte boundary.
3664 
3665   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
3666   llvm::Value *Offset =
3667       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
3668   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
3669                                             "overflow_arg_area.next");
3670   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
3671 
3672   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
3673   return Address(Res, Align);
3674 }
3675 
3676 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3677                                  QualType Ty) const {
3678   // Assume that va_list type is correct; should be pointer to LLVM type:
3679   // struct {
3680   //   i32 gp_offset;
3681   //   i32 fp_offset;
3682   //   i8* overflow_arg_area;
3683   //   i8* reg_save_area;
3684   // };
3685   unsigned neededInt, neededSSE;
3686 
3687   Ty = getContext().getCanonicalType(Ty);
3688   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
3689                                        /*isNamedArg*/false);
3690 
3691   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
3692   // in the registers. If not go to step 7.
3693   if (!neededInt && !neededSSE)
3694     return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3695 
3696   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
3697   // general purpose registers needed to pass type and num_fp to hold
3698   // the number of floating point registers needed.
3699 
3700   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
3701   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
3702   // l->fp_offset > 304 - num_fp * 16 go to step 7.
3703   //
3704   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
3705   // register save space).
3706 
3707   llvm::Value *InRegs = nullptr;
3708   Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid();
3709   llvm::Value *gp_offset = nullptr, *fp_offset = nullptr;
3710   if (neededInt) {
3711     gp_offset_p =
3712         CGF.Builder.CreateStructGEP(VAListAddr, 0, CharUnits::Zero(),
3713                                     "gp_offset_p");
3714     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
3715     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
3716     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
3717   }
3718 
3719   if (neededSSE) {
3720     fp_offset_p =
3721         CGF.Builder.CreateStructGEP(VAListAddr, 1, CharUnits::fromQuantity(4),
3722                                     "fp_offset_p");
3723     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
3724     llvm::Value *FitsInFP =
3725       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
3726     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
3727     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
3728   }
3729 
3730   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
3731   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
3732   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
3733   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
3734 
3735   // Emit code to load the value if it was passed in registers.
3736 
3737   CGF.EmitBlock(InRegBlock);
3738 
3739   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
3740   // an offset of l->gp_offset and/or l->fp_offset. This may require
3741   // copying to a temporary location in case the parameter is passed
3742   // in different register classes or requires an alignment greater
3743   // than 8 for general purpose registers and 16 for XMM registers.
3744   //
3745   // FIXME: This really results in shameful code when we end up needing to
3746   // collect arguments from different places; often what should result in a
3747   // simple assembling of a structure from scattered addresses has many more
3748   // loads than necessary. Can we clean this up?
3749   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3750   llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(
3751       CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(16)),
3752                                   "reg_save_area");
3753 
3754   Address RegAddr = Address::invalid();
3755   if (neededInt && neededSSE) {
3756     // FIXME: Cleanup.
3757     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
3758     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
3759     Address Tmp = CGF.CreateMemTemp(Ty);
3760     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
3761     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
3762     llvm::Type *TyLo = ST->getElementType(0);
3763     llvm::Type *TyHi = ST->getElementType(1);
3764     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
3765            "Unexpected ABI info for mixed regs");
3766     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
3767     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
3768     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset);
3769     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset);
3770     llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
3771     llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
3772 
3773     // Copy the first element.
3774     // FIXME: Our choice of alignment here and below is probably pessimistic.
3775     llvm::Value *V = CGF.Builder.CreateAlignedLoad(
3776         TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo),
3777         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo)));
3778     CGF.Builder.CreateStore(V,
3779                     CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero()));
3780 
3781     // Copy the second element.
3782     V = CGF.Builder.CreateAlignedLoad(
3783         TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi),
3784         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi)));
3785     CharUnits Offset = CharUnits::fromQuantity(
3786                    getDataLayout().getStructLayout(ST)->getElementOffset(1));
3787     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1, Offset));
3788 
3789     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
3790   } else if (neededInt) {
3791     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset),
3792                       CharUnits::fromQuantity(8));
3793     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
3794 
3795     // Copy to a temporary if necessary to ensure the appropriate alignment.
3796     std::pair<CharUnits, CharUnits> SizeAlign =
3797         getContext().getTypeInfoInChars(Ty);
3798     uint64_t TySize = SizeAlign.first.getQuantity();
3799     CharUnits TyAlign = SizeAlign.second;
3800 
3801     // Copy into a temporary if the type is more aligned than the
3802     // register save area.
3803     if (TyAlign.getQuantity() > 8) {
3804       Address Tmp = CGF.CreateMemTemp(Ty);
3805       CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false);
3806       RegAddr = Tmp;
3807     }
3808 
3809   } else if (neededSSE == 1) {
3810     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
3811                       CharUnits::fromQuantity(16));
3812     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
3813   } else {
3814     assert(neededSSE == 2 && "Invalid number of needed registers!");
3815     // SSE registers are spaced 16 bytes apart in the register save
3816     // area, we need to collect the two eightbytes together.
3817     // The ABI isn't explicit about this, but it seems reasonable
3818     // to assume that the slots are 16-byte aligned, since the stack is
3819     // naturally 16-byte aligned and the prologue is expected to store
3820     // all the SSE registers to the RSA.
3821     Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
3822                                 CharUnits::fromQuantity(16));
3823     Address RegAddrHi =
3824       CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo,
3825                                              CharUnits::fromQuantity(16));
3826     llvm::Type *ST = AI.canHaveCoerceToType()
3827                          ? AI.getCoerceToType()
3828                          : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy);
3829     llvm::Value *V;
3830     Address Tmp = CGF.CreateMemTemp(Ty);
3831     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
3832     V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
3833         RegAddrLo, ST->getStructElementType(0)));
3834     CGF.Builder.CreateStore(V,
3835                    CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero()));
3836     V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
3837         RegAddrHi, ST->getStructElementType(1)));
3838     CGF.Builder.CreateStore(V,
3839           CGF.Builder.CreateStructGEP(Tmp, 1, CharUnits::fromQuantity(8)));
3840 
3841     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
3842   }
3843 
3844   // AMD64-ABI 3.5.7p5: Step 5. Set:
3845   // l->gp_offset = l->gp_offset + num_gp * 8
3846   // l->fp_offset = l->fp_offset + num_fp * 16.
3847   if (neededInt) {
3848     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
3849     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
3850                             gp_offset_p);
3851   }
3852   if (neededSSE) {
3853     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
3854     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
3855                             fp_offset_p);
3856   }
3857   CGF.EmitBranch(ContBlock);
3858 
3859   // Emit code to load the value if it was passed in memory.
3860 
3861   CGF.EmitBlock(InMemBlock);
3862   Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3863 
3864   // Return the appropriate result.
3865 
3866   CGF.EmitBlock(ContBlock);
3867   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
3868                                  "vaarg.addr");
3869   return ResAddr;
3870 }
3871 
3872 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
3873                                    QualType Ty) const {
3874   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
3875                           CGF.getContext().getTypeInfoInChars(Ty),
3876                           CharUnits::fromQuantity(8),
3877                           /*allowHigherAlign*/ false);
3878 }
3879 
3880 ABIArgInfo
3881 WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs,
3882                                     const ABIArgInfo &current) const {
3883   // Assumes vectorCall calling convention.
3884   const Type *Base = nullptr;
3885   uint64_t NumElts = 0;
3886 
3887   if (!Ty->isBuiltinType() && !Ty->isVectorType() &&
3888       isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) {
3889     FreeSSERegs -= NumElts;
3890     return getDirectX86Hva();
3891   }
3892   return current;
3893 }
3894 
3895 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
3896                                       bool IsReturnType, bool IsVectorCall,
3897                                       bool IsRegCall) const {
3898 
3899   if (Ty->isVoidType())
3900     return ABIArgInfo::getIgnore();
3901 
3902   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3903     Ty = EnumTy->getDecl()->getIntegerType();
3904 
3905   TypeInfo Info = getContext().getTypeInfo(Ty);
3906   uint64_t Width = Info.Width;
3907   CharUnits Align = getContext().toCharUnitsFromBits(Info.Align);
3908 
3909   const RecordType *RT = Ty->getAs<RecordType>();
3910   if (RT) {
3911     if (!IsReturnType) {
3912       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
3913         return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
3914     }
3915 
3916     if (RT->getDecl()->hasFlexibleArrayMember())
3917       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3918 
3919   }
3920 
3921   const Type *Base = nullptr;
3922   uint64_t NumElts = 0;
3923   // vectorcall adds the concept of a homogenous vector aggregate, similar to
3924   // other targets.
3925   if ((IsVectorCall || IsRegCall) &&
3926       isHomogeneousAggregate(Ty, Base, NumElts)) {
3927     if (IsRegCall) {
3928       if (FreeSSERegs >= NumElts) {
3929         FreeSSERegs -= NumElts;
3930         if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
3931           return ABIArgInfo::getDirect();
3932         return ABIArgInfo::getExpand();
3933       }
3934       return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3935     } else if (IsVectorCall) {
3936       if (FreeSSERegs >= NumElts &&
3937           (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) {
3938         FreeSSERegs -= NumElts;
3939         return ABIArgInfo::getDirect();
3940       } else if (IsReturnType) {
3941         return ABIArgInfo::getExpand();
3942       } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) {
3943         // HVAs are delayed and reclassified in the 2nd step.
3944         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3945       }
3946     }
3947   }
3948 
3949   if (Ty->isMemberPointerType()) {
3950     // If the member pointer is represented by an LLVM int or ptr, pass it
3951     // directly.
3952     llvm::Type *LLTy = CGT.ConvertType(Ty);
3953     if (LLTy->isPointerTy() || LLTy->isIntegerTy())
3954       return ABIArgInfo::getDirect();
3955   }
3956 
3957   if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
3958     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
3959     // not 1, 2, 4, or 8 bytes, must be passed by reference."
3960     if (Width > 64 || !llvm::isPowerOf2_64(Width))
3961       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3962 
3963     // Otherwise, coerce it to a small integer.
3964     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
3965   }
3966 
3967   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
3968     switch (BT->getKind()) {
3969     case BuiltinType::Bool:
3970       // Bool type is always extended to the ABI, other builtin types are not
3971       // extended.
3972       return ABIArgInfo::getExtend(Ty);
3973 
3974     case BuiltinType::LongDouble:
3975       // Mingw64 GCC uses the old 80 bit extended precision floating point
3976       // unit. It passes them indirectly through memory.
3977       if (IsMingw64) {
3978         const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
3979         if (LDF == &llvm::APFloat::x87DoubleExtended())
3980           return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3981       }
3982       break;
3983 
3984     case BuiltinType::Int128:
3985     case BuiltinType::UInt128:
3986       // If it's a parameter type, the normal ABI rule is that arguments larger
3987       // than 8 bytes are passed indirectly. GCC follows it. We follow it too,
3988       // even though it isn't particularly efficient.
3989       if (!IsReturnType)
3990         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3991 
3992       // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that.
3993       // Clang matches them for compatibility.
3994       return ABIArgInfo::getDirect(
3995           llvm::VectorType::get(llvm::Type::getInt64Ty(getVMContext()), 2));
3996 
3997     default:
3998       break;
3999     }
4000   }
4001 
4002   return ABIArgInfo::getDirect();
4003 }
4004 
4005 void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI,
4006                                              unsigned FreeSSERegs,
4007                                              bool IsVectorCall,
4008                                              bool IsRegCall) const {
4009   unsigned Count = 0;
4010   for (auto &I : FI.arguments()) {
4011     // Vectorcall in x64 only permits the first 6 arguments to be passed
4012     // as XMM/YMM registers.
4013     if (Count < VectorcallMaxParamNumAsReg)
4014       I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall);
4015     else {
4016       // Since these cannot be passed in registers, pretend no registers
4017       // are left.
4018       unsigned ZeroSSERegsAvail = 0;
4019       I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false,
4020                         IsVectorCall, IsRegCall);
4021     }
4022     ++Count;
4023   }
4024 
4025   for (auto &I : FI.arguments()) {
4026     I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info);
4027   }
4028 }
4029 
4030 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
4031   bool IsVectorCall =
4032       FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall;
4033   bool IsRegCall = FI.getCallingConvention() == llvm::CallingConv::X86_RegCall;
4034 
4035   unsigned FreeSSERegs = 0;
4036   if (IsVectorCall) {
4037     // We can use up to 4 SSE return registers with vectorcall.
4038     FreeSSERegs = 4;
4039   } else if (IsRegCall) {
4040     // RegCall gives us 16 SSE registers.
4041     FreeSSERegs = 16;
4042   }
4043 
4044   if (!getCXXABI().classifyReturnType(FI))
4045     FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true,
4046                                   IsVectorCall, IsRegCall);
4047 
4048   if (IsVectorCall) {
4049     // We can use up to 6 SSE register parameters with vectorcall.
4050     FreeSSERegs = 6;
4051   } else if (IsRegCall) {
4052     // RegCall gives us 16 SSE registers, we can reuse the return registers.
4053     FreeSSERegs = 16;
4054   }
4055 
4056   if (IsVectorCall) {
4057     computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall);
4058   } else {
4059     for (auto &I : FI.arguments())
4060       I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall);
4061   }
4062 
4063 }
4064 
4065 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4066                                     QualType Ty) const {
4067 
4068   bool IsIndirect = false;
4069 
4070   // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4071   // not 1, 2, 4, or 8 bytes, must be passed by reference."
4072   if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) {
4073     uint64_t Width = getContext().getTypeSize(Ty);
4074     IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
4075   }
4076 
4077   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
4078                           CGF.getContext().getTypeInfoInChars(Ty),
4079                           CharUnits::fromQuantity(8),
4080                           /*allowHigherAlign*/ false);
4081 }
4082 
4083 // PowerPC-32
4084 namespace {
4085 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
4086 class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
4087   bool IsSoftFloatABI;
4088 
4089   CharUnits getParamTypeAlignment(QualType Ty) const;
4090 
4091 public:
4092   PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI)
4093       : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI) {}
4094 
4095   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4096                     QualType Ty) const override;
4097 };
4098 
4099 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
4100 public:
4101   PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI)
4102       : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT, SoftFloatABI)) {}
4103 
4104   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4105     // This is recovered from gcc output.
4106     return 1; // r1 is the dedicated stack pointer
4107   }
4108 
4109   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4110                                llvm::Value *Address) const override;
4111 };
4112 }
4113 
4114 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
4115   // Complex types are passed just like their elements
4116   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4117     Ty = CTy->getElementType();
4118 
4119   if (Ty->isVectorType())
4120     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16
4121                                                                        : 4);
4122 
4123   // For single-element float/vector structs, we consider the whole type
4124   // to have the same alignment requirements as its single element.
4125   const Type *AlignTy = nullptr;
4126   if (const Type *EltType = isSingleElementStruct(Ty, getContext())) {
4127     const BuiltinType *BT = EltType->getAs<BuiltinType>();
4128     if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) ||
4129         (BT && BT->isFloatingPoint()))
4130       AlignTy = EltType;
4131   }
4132 
4133   if (AlignTy)
4134     return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4);
4135   return CharUnits::fromQuantity(4);
4136 }
4137 
4138 // TODO: this implementation is now likely redundant with
4139 // DefaultABIInfo::EmitVAArg.
4140 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList,
4141                                       QualType Ty) const {
4142   if (getTarget().getTriple().isOSDarwin()) {
4143     auto TI = getContext().getTypeInfoInChars(Ty);
4144     TI.second = getParamTypeAlignment(Ty);
4145 
4146     CharUnits SlotSize = CharUnits::fromQuantity(4);
4147     return emitVoidPtrVAArg(CGF, VAList, Ty,
4148                             classifyArgumentType(Ty).isIndirect(), TI, SlotSize,
4149                             /*AllowHigherAlign=*/true);
4150   }
4151 
4152   const unsigned OverflowLimit = 8;
4153   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4154     // TODO: Implement this. For now ignore.
4155     (void)CTy;
4156     return Address::invalid(); // FIXME?
4157   }
4158 
4159   // struct __va_list_tag {
4160   //   unsigned char gpr;
4161   //   unsigned char fpr;
4162   //   unsigned short reserved;
4163   //   void *overflow_arg_area;
4164   //   void *reg_save_area;
4165   // };
4166 
4167   bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
4168   bool isInt =
4169       Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType();
4170   bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64;
4171 
4172   // All aggregates are passed indirectly?  That doesn't seem consistent
4173   // with the argument-lowering code.
4174   bool isIndirect = Ty->isAggregateType();
4175 
4176   CGBuilderTy &Builder = CGF.Builder;
4177 
4178   // The calling convention either uses 1-2 GPRs or 1 FPR.
4179   Address NumRegsAddr = Address::invalid();
4180   if (isInt || IsSoftFloatABI) {
4181     NumRegsAddr = Builder.CreateStructGEP(VAList, 0, CharUnits::Zero(), "gpr");
4182   } else {
4183     NumRegsAddr = Builder.CreateStructGEP(VAList, 1, CharUnits::One(), "fpr");
4184   }
4185 
4186   llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs");
4187 
4188   // "Align" the register count when TY is i64.
4189   if (isI64 || (isF64 && IsSoftFloatABI)) {
4190     NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1));
4191     NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U));
4192   }
4193 
4194   llvm::Value *CC =
4195       Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond");
4196 
4197   llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
4198   llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
4199   llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
4200 
4201   Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
4202 
4203   llvm::Type *DirectTy = CGF.ConvertType(Ty);
4204   if (isIndirect) DirectTy = DirectTy->getPointerTo(0);
4205 
4206   // Case 1: consume registers.
4207   Address RegAddr = Address::invalid();
4208   {
4209     CGF.EmitBlock(UsingRegs);
4210 
4211     Address RegSaveAreaPtr =
4212       Builder.CreateStructGEP(VAList, 4, CharUnits::fromQuantity(8));
4213     RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr),
4214                       CharUnits::fromQuantity(8));
4215     assert(RegAddr.getElementType() == CGF.Int8Ty);
4216 
4217     // Floating-point registers start after the general-purpose registers.
4218     if (!(isInt || IsSoftFloatABI)) {
4219       RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr,
4220                                                    CharUnits::fromQuantity(32));
4221     }
4222 
4223     // Get the address of the saved value by scaling the number of
4224     // registers we've used by the number of
4225     CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8);
4226     llvm::Value *RegOffset =
4227       Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity()));
4228     RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty,
4229                                             RegAddr.getPointer(), RegOffset),
4230                       RegAddr.getAlignment().alignmentOfArrayElement(RegSize));
4231     RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy);
4232 
4233     // Increase the used-register count.
4234     NumRegs =
4235       Builder.CreateAdd(NumRegs,
4236                         Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1));
4237     Builder.CreateStore(NumRegs, NumRegsAddr);
4238 
4239     CGF.EmitBranch(Cont);
4240   }
4241 
4242   // Case 2: consume space in the overflow area.
4243   Address MemAddr = Address::invalid();
4244   {
4245     CGF.EmitBlock(UsingOverflow);
4246 
4247     Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr);
4248 
4249     // Everything in the overflow area is rounded up to a size of at least 4.
4250     CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4);
4251 
4252     CharUnits Size;
4253     if (!isIndirect) {
4254       auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty);
4255       Size = TypeInfo.first.alignTo(OverflowAreaAlign);
4256     } else {
4257       Size = CGF.getPointerSize();
4258     }
4259 
4260     Address OverflowAreaAddr =
4261       Builder.CreateStructGEP(VAList, 3, CharUnits::fromQuantity(4));
4262     Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"),
4263                          OverflowAreaAlign);
4264     // Round up address of argument to alignment
4265     CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
4266     if (Align > OverflowAreaAlign) {
4267       llvm::Value *Ptr = OverflowArea.getPointer();
4268       OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align),
4269                                                            Align);
4270     }
4271 
4272     MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy);
4273 
4274     // Increase the overflow area.
4275     OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size);
4276     Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr);
4277     CGF.EmitBranch(Cont);
4278   }
4279 
4280   CGF.EmitBlock(Cont);
4281 
4282   // Merge the cases with a phi.
4283   Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow,
4284                                 "vaarg.addr");
4285 
4286   // Load the pointer if the argument was passed indirectly.
4287   if (isIndirect) {
4288     Result = Address(Builder.CreateLoad(Result, "aggr"),
4289                      getContext().getTypeAlignInChars(Ty));
4290   }
4291 
4292   return Result;
4293 }
4294 
4295 bool
4296 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4297                                                 llvm::Value *Address) const {
4298   // This is calculated from the LLVM and GCC tables and verified
4299   // against gcc output.  AFAIK all ABIs use the same encoding.
4300 
4301   CodeGen::CGBuilderTy &Builder = CGF.Builder;
4302 
4303   llvm::IntegerType *i8 = CGF.Int8Ty;
4304   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
4305   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
4306   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
4307 
4308   // 0-31: r0-31, the 4-byte general-purpose registers
4309   AssignToArrayRange(Builder, Address, Four8, 0, 31);
4310 
4311   // 32-63: fp0-31, the 8-byte floating-point registers
4312   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
4313 
4314   // 64-76 are various 4-byte special-purpose registers:
4315   // 64: mq
4316   // 65: lr
4317   // 66: ctr
4318   // 67: ap
4319   // 68-75 cr0-7
4320   // 76: xer
4321   AssignToArrayRange(Builder, Address, Four8, 64, 76);
4322 
4323   // 77-108: v0-31, the 16-byte vector registers
4324   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
4325 
4326   // 109: vrsave
4327   // 110: vscr
4328   // 111: spe_acc
4329   // 112: spefscr
4330   // 113: sfp
4331   AssignToArrayRange(Builder, Address, Four8, 109, 113);
4332 
4333   return false;
4334 }
4335 
4336 // PowerPC-64
4337 
4338 namespace {
4339 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
4340 class PPC64_SVR4_ABIInfo : public SwiftABIInfo {
4341 public:
4342   enum ABIKind {
4343     ELFv1 = 0,
4344     ELFv2
4345   };
4346 
4347 private:
4348   static const unsigned GPRBits = 64;
4349   ABIKind Kind;
4350   bool HasQPX;
4351   bool IsSoftFloatABI;
4352 
4353   // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and
4354   // will be passed in a QPX register.
4355   bool IsQPXVectorTy(const Type *Ty) const {
4356     if (!HasQPX)
4357       return false;
4358 
4359     if (const VectorType *VT = Ty->getAs<VectorType>()) {
4360       unsigned NumElements = VT->getNumElements();
4361       if (NumElements == 1)
4362         return false;
4363 
4364       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) {
4365         if (getContext().getTypeSize(Ty) <= 256)
4366           return true;
4367       } else if (VT->getElementType()->
4368                    isSpecificBuiltinType(BuiltinType::Float)) {
4369         if (getContext().getTypeSize(Ty) <= 128)
4370           return true;
4371       }
4372     }
4373 
4374     return false;
4375   }
4376 
4377   bool IsQPXVectorTy(QualType Ty) const {
4378     return IsQPXVectorTy(Ty.getTypePtr());
4379   }
4380 
4381 public:
4382   PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX,
4383                      bool SoftFloatABI)
4384       : SwiftABIInfo(CGT), Kind(Kind), HasQPX(HasQPX),
4385         IsSoftFloatABI(SoftFloatABI) {}
4386 
4387   bool isPromotableTypeForABI(QualType Ty) const;
4388   CharUnits getParamTypeAlignment(QualType Ty) const;
4389 
4390   ABIArgInfo classifyReturnType(QualType RetTy) const;
4391   ABIArgInfo classifyArgumentType(QualType Ty) const;
4392 
4393   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4394   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4395                                          uint64_t Members) const override;
4396 
4397   // TODO: We can add more logic to computeInfo to improve performance.
4398   // Example: For aggregate arguments that fit in a register, we could
4399   // use getDirectInReg (as is done below for structs containing a single
4400   // floating-point value) to avoid pushing them to memory on function
4401   // entry.  This would require changing the logic in PPCISelLowering
4402   // when lowering the parameters in the caller and args in the callee.
4403   void computeInfo(CGFunctionInfo &FI) const override {
4404     if (!getCXXABI().classifyReturnType(FI))
4405       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4406     for (auto &I : FI.arguments()) {
4407       // We rely on the default argument classification for the most part.
4408       // One exception:  An aggregate containing a single floating-point
4409       // or vector item must be passed in a register if one is available.
4410       const Type *T = isSingleElementStruct(I.type, getContext());
4411       if (T) {
4412         const BuiltinType *BT = T->getAs<BuiltinType>();
4413         if (IsQPXVectorTy(T) ||
4414             (T->isVectorType() && getContext().getTypeSize(T) == 128) ||
4415             (BT && BT->isFloatingPoint())) {
4416           QualType QT(T, 0);
4417           I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
4418           continue;
4419         }
4420       }
4421       I.info = classifyArgumentType(I.type);
4422     }
4423   }
4424 
4425   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4426                     QualType Ty) const override;
4427 
4428   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
4429                                     bool asReturnValue) const override {
4430     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
4431   }
4432 
4433   bool isSwiftErrorInRegister() const override {
4434     return false;
4435   }
4436 };
4437 
4438 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
4439 
4440 public:
4441   PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT,
4442                                PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX,
4443                                bool SoftFloatABI)
4444       : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX,
4445                                                  SoftFloatABI)) {}
4446 
4447   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4448     // This is recovered from gcc output.
4449     return 1; // r1 is the dedicated stack pointer
4450   }
4451 
4452   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4453                                llvm::Value *Address) const override;
4454 };
4455 
4456 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
4457 public:
4458   PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
4459 
4460   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4461     // This is recovered from gcc output.
4462     return 1; // r1 is the dedicated stack pointer
4463   }
4464 
4465   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4466                                llvm::Value *Address) const override;
4467 };
4468 
4469 }
4470 
4471 // Return true if the ABI requires Ty to be passed sign- or zero-
4472 // extended to 64 bits.
4473 bool
4474 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
4475   // Treat an enum type as its underlying type.
4476   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4477     Ty = EnumTy->getDecl()->getIntegerType();
4478 
4479   // Promotable integer types are required to be promoted by the ABI.
4480   if (Ty->isPromotableIntegerType())
4481     return true;
4482 
4483   // In addition to the usual promotable integer types, we also need to
4484   // extend all 32-bit types, since the ABI requires promotion to 64 bits.
4485   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4486     switch (BT->getKind()) {
4487     case BuiltinType::Int:
4488     case BuiltinType::UInt:
4489       return true;
4490     default:
4491       break;
4492     }
4493 
4494   return false;
4495 }
4496 
4497 /// isAlignedParamType - Determine whether a type requires 16-byte or
4498 /// higher alignment in the parameter area.  Always returns at least 8.
4499 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
4500   // Complex types are passed just like their elements.
4501   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4502     Ty = CTy->getElementType();
4503 
4504   // Only vector types of size 16 bytes need alignment (larger types are
4505   // passed via reference, smaller types are not aligned).
4506   if (IsQPXVectorTy(Ty)) {
4507     if (getContext().getTypeSize(Ty) > 128)
4508       return CharUnits::fromQuantity(32);
4509 
4510     return CharUnits::fromQuantity(16);
4511   } else if (Ty->isVectorType()) {
4512     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8);
4513   }
4514 
4515   // For single-element float/vector structs, we consider the whole type
4516   // to have the same alignment requirements as its single element.
4517   const Type *AlignAsType = nullptr;
4518   const Type *EltType = isSingleElementStruct(Ty, getContext());
4519   if (EltType) {
4520     const BuiltinType *BT = EltType->getAs<BuiltinType>();
4521     if (IsQPXVectorTy(EltType) || (EltType->isVectorType() &&
4522          getContext().getTypeSize(EltType) == 128) ||
4523         (BT && BT->isFloatingPoint()))
4524       AlignAsType = EltType;
4525   }
4526 
4527   // Likewise for ELFv2 homogeneous aggregates.
4528   const Type *Base = nullptr;
4529   uint64_t Members = 0;
4530   if (!AlignAsType && Kind == ELFv2 &&
4531       isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
4532     AlignAsType = Base;
4533 
4534   // With special case aggregates, only vector base types need alignment.
4535   if (AlignAsType && IsQPXVectorTy(AlignAsType)) {
4536     if (getContext().getTypeSize(AlignAsType) > 128)
4537       return CharUnits::fromQuantity(32);
4538 
4539     return CharUnits::fromQuantity(16);
4540   } else if (AlignAsType) {
4541     return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8);
4542   }
4543 
4544   // Otherwise, we only need alignment for any aggregate type that
4545   // has an alignment requirement of >= 16 bytes.
4546   if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) {
4547     if (HasQPX && getContext().getTypeAlign(Ty) >= 256)
4548       return CharUnits::fromQuantity(32);
4549     return CharUnits::fromQuantity(16);
4550   }
4551 
4552   return CharUnits::fromQuantity(8);
4553 }
4554 
4555 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
4556 /// aggregate.  Base is set to the base element type, and Members is set
4557 /// to the number of base elements.
4558 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
4559                                      uint64_t &Members) const {
4560   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
4561     uint64_t NElements = AT->getSize().getZExtValue();
4562     if (NElements == 0)
4563       return false;
4564     if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
4565       return false;
4566     Members *= NElements;
4567   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
4568     const RecordDecl *RD = RT->getDecl();
4569     if (RD->hasFlexibleArrayMember())
4570       return false;
4571 
4572     Members = 0;
4573 
4574     // If this is a C++ record, check the bases first.
4575     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
4576       for (const auto &I : CXXRD->bases()) {
4577         // Ignore empty records.
4578         if (isEmptyRecord(getContext(), I.getType(), true))
4579           continue;
4580 
4581         uint64_t FldMembers;
4582         if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
4583           return false;
4584 
4585         Members += FldMembers;
4586       }
4587     }
4588 
4589     for (const auto *FD : RD->fields()) {
4590       // Ignore (non-zero arrays of) empty records.
4591       QualType FT = FD->getType();
4592       while (const ConstantArrayType *AT =
4593              getContext().getAsConstantArrayType(FT)) {
4594         if (AT->getSize().getZExtValue() == 0)
4595           return false;
4596         FT = AT->getElementType();
4597       }
4598       if (isEmptyRecord(getContext(), FT, true))
4599         continue;
4600 
4601       // For compatibility with GCC, ignore empty bitfields in C++ mode.
4602       if (getContext().getLangOpts().CPlusPlus &&
4603           FD->isZeroLengthBitField(getContext()))
4604         continue;
4605 
4606       uint64_t FldMembers;
4607       if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
4608         return false;
4609 
4610       Members = (RD->isUnion() ?
4611                  std::max(Members, FldMembers) : Members + FldMembers);
4612     }
4613 
4614     if (!Base)
4615       return false;
4616 
4617     // Ensure there is no padding.
4618     if (getContext().getTypeSize(Base) * Members !=
4619         getContext().getTypeSize(Ty))
4620       return false;
4621   } else {
4622     Members = 1;
4623     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
4624       Members = 2;
4625       Ty = CT->getElementType();
4626     }
4627 
4628     // Most ABIs only support float, double, and some vector type widths.
4629     if (!isHomogeneousAggregateBaseType(Ty))
4630       return false;
4631 
4632     // The base type must be the same for all members.  Types that
4633     // agree in both total size and mode (float vs. vector) are
4634     // treated as being equivalent here.
4635     const Type *TyPtr = Ty.getTypePtr();
4636     if (!Base) {
4637       Base = TyPtr;
4638       // If it's a non-power-of-2 vector, its size is already a power-of-2,
4639       // so make sure to widen it explicitly.
4640       if (const VectorType *VT = Base->getAs<VectorType>()) {
4641         QualType EltTy = VT->getElementType();
4642         unsigned NumElements =
4643             getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy);
4644         Base = getContext()
4645                    .getVectorType(EltTy, NumElements, VT->getVectorKind())
4646                    .getTypePtr();
4647       }
4648     }
4649 
4650     if (Base->isVectorType() != TyPtr->isVectorType() ||
4651         getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
4652       return false;
4653   }
4654   return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
4655 }
4656 
4657 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
4658   // Homogeneous aggregates for ELFv2 must have base types of float,
4659   // double, long double, or 128-bit vectors.
4660   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4661     if (BT->getKind() == BuiltinType::Float ||
4662         BT->getKind() == BuiltinType::Double ||
4663         BT->getKind() == BuiltinType::LongDouble ||
4664         (getContext().getTargetInfo().hasFloat128Type() &&
4665           (BT->getKind() == BuiltinType::Float128))) {
4666       if (IsSoftFloatABI)
4667         return false;
4668       return true;
4669     }
4670   }
4671   if (const VectorType *VT = Ty->getAs<VectorType>()) {
4672     if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty))
4673       return true;
4674   }
4675   return false;
4676 }
4677 
4678 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough(
4679     const Type *Base, uint64_t Members) const {
4680   // Vector and fp128 types require one register, other floating point types
4681   // require one or two registers depending on their size.
4682   uint32_t NumRegs =
4683       ((getContext().getTargetInfo().hasFloat128Type() &&
4684           Base->isFloat128Type()) ||
4685         Base->isVectorType()) ? 1
4686                               : (getContext().getTypeSize(Base) + 63) / 64;
4687 
4688   // Homogeneous Aggregates may occupy at most 8 registers.
4689   return Members * NumRegs <= 8;
4690 }
4691 
4692 ABIArgInfo
4693 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
4694   Ty = useFirstFieldIfTransparentUnion(Ty);
4695 
4696   if (Ty->isAnyComplexType())
4697     return ABIArgInfo::getDirect();
4698 
4699   // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
4700   // or via reference (larger than 16 bytes).
4701   if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) {
4702     uint64_t Size = getContext().getTypeSize(Ty);
4703     if (Size > 128)
4704       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4705     else if (Size < 128) {
4706       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
4707       return ABIArgInfo::getDirect(CoerceTy);
4708     }
4709   }
4710 
4711   if (isAggregateTypeForABI(Ty)) {
4712     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
4713       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
4714 
4715     uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity();
4716     uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
4717 
4718     // ELFv2 homogeneous aggregates are passed as array types.
4719     const Type *Base = nullptr;
4720     uint64_t Members = 0;
4721     if (Kind == ELFv2 &&
4722         isHomogeneousAggregate(Ty, Base, Members)) {
4723       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
4724       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
4725       return ABIArgInfo::getDirect(CoerceTy);
4726     }
4727 
4728     // If an aggregate may end up fully in registers, we do not
4729     // use the ByVal method, but pass the aggregate as array.
4730     // This is usually beneficial since we avoid forcing the
4731     // back-end to store the argument to memory.
4732     uint64_t Bits = getContext().getTypeSize(Ty);
4733     if (Bits > 0 && Bits <= 8 * GPRBits) {
4734       llvm::Type *CoerceTy;
4735 
4736       // Types up to 8 bytes are passed as integer type (which will be
4737       // properly aligned in the argument save area doubleword).
4738       if (Bits <= GPRBits)
4739         CoerceTy =
4740             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
4741       // Larger types are passed as arrays, with the base type selected
4742       // according to the required alignment in the save area.
4743       else {
4744         uint64_t RegBits = ABIAlign * 8;
4745         uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits;
4746         llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
4747         CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
4748       }
4749 
4750       return ABIArgInfo::getDirect(CoerceTy);
4751     }
4752 
4753     // All other aggregates are passed ByVal.
4754     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
4755                                    /*ByVal=*/true,
4756                                    /*Realign=*/TyAlign > ABIAlign);
4757   }
4758 
4759   return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
4760                                      : ABIArgInfo::getDirect());
4761 }
4762 
4763 ABIArgInfo
4764 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
4765   if (RetTy->isVoidType())
4766     return ABIArgInfo::getIgnore();
4767 
4768   if (RetTy->isAnyComplexType())
4769     return ABIArgInfo::getDirect();
4770 
4771   // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
4772   // or via reference (larger than 16 bytes).
4773   if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) {
4774     uint64_t Size = getContext().getTypeSize(RetTy);
4775     if (Size > 128)
4776       return getNaturalAlignIndirect(RetTy);
4777     else if (Size < 128) {
4778       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
4779       return ABIArgInfo::getDirect(CoerceTy);
4780     }
4781   }
4782 
4783   if (isAggregateTypeForABI(RetTy)) {
4784     // ELFv2 homogeneous aggregates are returned as array types.
4785     const Type *Base = nullptr;
4786     uint64_t Members = 0;
4787     if (Kind == ELFv2 &&
4788         isHomogeneousAggregate(RetTy, Base, Members)) {
4789       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
4790       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
4791       return ABIArgInfo::getDirect(CoerceTy);
4792     }
4793 
4794     // ELFv2 small aggregates are returned in up to two registers.
4795     uint64_t Bits = getContext().getTypeSize(RetTy);
4796     if (Kind == ELFv2 && Bits <= 2 * GPRBits) {
4797       if (Bits == 0)
4798         return ABIArgInfo::getIgnore();
4799 
4800       llvm::Type *CoerceTy;
4801       if (Bits > GPRBits) {
4802         CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
4803         CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy);
4804       } else
4805         CoerceTy =
4806             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
4807       return ABIArgInfo::getDirect(CoerceTy);
4808     }
4809 
4810     // All other aggregates are returned indirectly.
4811     return getNaturalAlignIndirect(RetTy);
4812   }
4813 
4814   return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
4815                                         : ABIArgInfo::getDirect());
4816 }
4817 
4818 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
4819 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4820                                       QualType Ty) const {
4821   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
4822   TypeInfo.second = getParamTypeAlignment(Ty);
4823 
4824   CharUnits SlotSize = CharUnits::fromQuantity(8);
4825 
4826   // If we have a complex type and the base type is smaller than 8 bytes,
4827   // the ABI calls for the real and imaginary parts to be right-adjusted
4828   // in separate doublewords.  However, Clang expects us to produce a
4829   // pointer to a structure with the two parts packed tightly.  So generate
4830   // loads of the real and imaginary parts relative to the va_list pointer,
4831   // and store them to a temporary structure.
4832   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4833     CharUnits EltSize = TypeInfo.first / 2;
4834     if (EltSize < SlotSize) {
4835       Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty,
4836                                             SlotSize * 2, SlotSize,
4837                                             SlotSize, /*AllowHigher*/ true);
4838 
4839       Address RealAddr = Addr;
4840       Address ImagAddr = RealAddr;
4841       if (CGF.CGM.getDataLayout().isBigEndian()) {
4842         RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr,
4843                                                           SlotSize - EltSize);
4844         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr,
4845                                                       2 * SlotSize - EltSize);
4846       } else {
4847         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize);
4848       }
4849 
4850       llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType());
4851       RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy);
4852       ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy);
4853       llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal");
4854       llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag");
4855 
4856       Address Temp = CGF.CreateMemTemp(Ty, "vacplx");
4857       CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty),
4858                              /*init*/ true);
4859       return Temp;
4860     }
4861   }
4862 
4863   // Otherwise, just use the general rule.
4864   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
4865                           TypeInfo, SlotSize, /*AllowHigher*/ true);
4866 }
4867 
4868 static bool
4869 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4870                               llvm::Value *Address) {
4871   // This is calculated from the LLVM and GCC tables and verified
4872   // against gcc output.  AFAIK all ABIs use the same encoding.
4873 
4874   CodeGen::CGBuilderTy &Builder = CGF.Builder;
4875 
4876   llvm::IntegerType *i8 = CGF.Int8Ty;
4877   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
4878   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
4879   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
4880 
4881   // 0-31: r0-31, the 8-byte general-purpose registers
4882   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
4883 
4884   // 32-63: fp0-31, the 8-byte floating-point registers
4885   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
4886 
4887   // 64-67 are various 8-byte special-purpose registers:
4888   // 64: mq
4889   // 65: lr
4890   // 66: ctr
4891   // 67: ap
4892   AssignToArrayRange(Builder, Address, Eight8, 64, 67);
4893 
4894   // 68-76 are various 4-byte special-purpose registers:
4895   // 68-75 cr0-7
4896   // 76: xer
4897   AssignToArrayRange(Builder, Address, Four8, 68, 76);
4898 
4899   // 77-108: v0-31, the 16-byte vector registers
4900   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
4901 
4902   // 109: vrsave
4903   // 110: vscr
4904   // 111: spe_acc
4905   // 112: spefscr
4906   // 113: sfp
4907   // 114: tfhar
4908   // 115: tfiar
4909   // 116: texasr
4910   AssignToArrayRange(Builder, Address, Eight8, 109, 116);
4911 
4912   return false;
4913 }
4914 
4915 bool
4916 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
4917   CodeGen::CodeGenFunction &CGF,
4918   llvm::Value *Address) const {
4919 
4920   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
4921 }
4922 
4923 bool
4924 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4925                                                 llvm::Value *Address) const {
4926 
4927   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
4928 }
4929 
4930 //===----------------------------------------------------------------------===//
4931 // AArch64 ABI Implementation
4932 //===----------------------------------------------------------------------===//
4933 
4934 namespace {
4935 
4936 class AArch64ABIInfo : public SwiftABIInfo {
4937 public:
4938   enum ABIKind {
4939     AAPCS = 0,
4940     DarwinPCS,
4941     Win64
4942   };
4943 
4944 private:
4945   ABIKind Kind;
4946 
4947 public:
4948   AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind)
4949     : SwiftABIInfo(CGT), Kind(Kind) {}
4950 
4951 private:
4952   ABIKind getABIKind() const { return Kind; }
4953   bool isDarwinPCS() const { return Kind == DarwinPCS; }
4954 
4955   ABIArgInfo classifyReturnType(QualType RetTy) const;
4956   ABIArgInfo classifyArgumentType(QualType RetTy) const;
4957   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4958   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4959                                          uint64_t Members) const override;
4960 
4961   bool isIllegalVectorType(QualType Ty) const;
4962 
4963   void computeInfo(CGFunctionInfo &FI) const override {
4964     if (!::classifyReturnType(getCXXABI(), FI, *this))
4965       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4966 
4967     for (auto &it : FI.arguments())
4968       it.info = classifyArgumentType(it.type);
4969   }
4970 
4971   Address EmitDarwinVAArg(Address VAListAddr, QualType Ty,
4972                           CodeGenFunction &CGF) const;
4973 
4974   Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
4975                          CodeGenFunction &CGF) const;
4976 
4977   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4978                     QualType Ty) const override {
4979     return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty)
4980                          : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
4981                                          : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
4982   }
4983 
4984   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
4985                       QualType Ty) const override;
4986 
4987   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
4988                                     bool asReturnValue) const override {
4989     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
4990   }
4991   bool isSwiftErrorInRegister() const override {
4992     return true;
4993   }
4994 
4995   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
4996                                  unsigned elts) const override;
4997 };
4998 
4999 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
5000 public:
5001   AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
5002       : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {}
5003 
5004   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
5005     return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue";
5006   }
5007 
5008   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5009     return 31;
5010   }
5011 
5012   bool doesReturnSlotInterfereWithArgs() const override { return false; }
5013 
5014   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5015                            CodeGen::CodeGenModule &CGM) const override {
5016     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5017     if (!FD)
5018       return;
5019     llvm::Function *Fn = cast<llvm::Function>(GV);
5020 
5021     auto Kind = CGM.getCodeGenOpts().getSignReturnAddress();
5022     if (Kind != CodeGenOptions::SignReturnAddressScope::None) {
5023       Fn->addFnAttr("sign-return-address",
5024                     Kind == CodeGenOptions::SignReturnAddressScope::All
5025                         ? "all"
5026                         : "non-leaf");
5027 
5028       auto Key = CGM.getCodeGenOpts().getSignReturnAddressKey();
5029       Fn->addFnAttr("sign-return-address-key",
5030                     Key == CodeGenOptions::SignReturnAddressKeyValue::AKey
5031                         ? "a_key"
5032                         : "b_key");
5033     }
5034 
5035     if (CGM.getCodeGenOpts().BranchTargetEnforcement)
5036       Fn->addFnAttr("branch-target-enforcement");
5037   }
5038 };
5039 
5040 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo {
5041 public:
5042   WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K)
5043       : AArch64TargetCodeGenInfo(CGT, K) {}
5044 
5045   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5046                            CodeGen::CodeGenModule &CGM) const override;
5047 
5048   void getDependentLibraryOption(llvm::StringRef Lib,
5049                                  llvm::SmallString<24> &Opt) const override {
5050     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
5051   }
5052 
5053   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
5054                                llvm::SmallString<32> &Opt) const override {
5055     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
5056   }
5057 };
5058 
5059 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes(
5060     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
5061   AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
5062   if (GV->isDeclaration())
5063     return;
5064   addStackProbeTargetAttributes(D, GV, CGM);
5065 }
5066 }
5067 
5068 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const {
5069   Ty = useFirstFieldIfTransparentUnion(Ty);
5070 
5071   // Handle illegal vector types here.
5072   if (isIllegalVectorType(Ty)) {
5073     uint64_t Size = getContext().getTypeSize(Ty);
5074     // Android promotes <2 x i8> to i16, not i32
5075     if (isAndroid() && (Size <= 16)) {
5076       llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext());
5077       return ABIArgInfo::getDirect(ResType);
5078     }
5079     if (Size <= 32) {
5080       llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
5081       return ABIArgInfo::getDirect(ResType);
5082     }
5083     if (Size == 64) {
5084       llvm::Type *ResType =
5085           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
5086       return ABIArgInfo::getDirect(ResType);
5087     }
5088     if (Size == 128) {
5089       llvm::Type *ResType =
5090           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
5091       return ABIArgInfo::getDirect(ResType);
5092     }
5093     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5094   }
5095 
5096   if (!isAggregateTypeForABI(Ty)) {
5097     // Treat an enum type as its underlying type.
5098     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5099       Ty = EnumTy->getDecl()->getIntegerType();
5100 
5101     return (Ty->isPromotableIntegerType() && isDarwinPCS()
5102                 ? ABIArgInfo::getExtend(Ty)
5103                 : ABIArgInfo::getDirect());
5104   }
5105 
5106   // Structures with either a non-trivial destructor or a non-trivial
5107   // copy constructor are always indirect.
5108   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5109     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
5110                                      CGCXXABI::RAA_DirectInMemory);
5111   }
5112 
5113   // Empty records are always ignored on Darwin, but actually passed in C++ mode
5114   // elsewhere for GNU compatibility.
5115   uint64_t Size = getContext().getTypeSize(Ty);
5116   bool IsEmpty = isEmptyRecord(getContext(), Ty, true);
5117   if (IsEmpty || Size == 0) {
5118     if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
5119       return ABIArgInfo::getIgnore();
5120 
5121     // GNU C mode. The only argument that gets ignored is an empty one with size
5122     // 0.
5123     if (IsEmpty && Size == 0)
5124       return ABIArgInfo::getIgnore();
5125     return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5126   }
5127 
5128   // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
5129   const Type *Base = nullptr;
5130   uint64_t Members = 0;
5131   if (isHomogeneousAggregate(Ty, Base, Members)) {
5132     return ABIArgInfo::getDirect(
5133         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
5134   }
5135 
5136   // Aggregates <= 16 bytes are passed directly in registers or on the stack.
5137   if (Size <= 128) {
5138     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5139     // same size and alignment.
5140     if (getTarget().isRenderScriptTarget()) {
5141       return coerceToIntArray(Ty, getContext(), getVMContext());
5142     }
5143     unsigned Alignment;
5144     if (Kind == AArch64ABIInfo::AAPCS) {
5145       Alignment = getContext().getTypeUnadjustedAlign(Ty);
5146       Alignment = Alignment < 128 ? 64 : 128;
5147     } else {
5148       Alignment = getContext().getTypeAlign(Ty);
5149     }
5150     Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes
5151 
5152     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5153     // For aggregates with 16-byte alignment, we use i128.
5154     if (Alignment < 128 && Size == 128) {
5155       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
5156       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
5157     }
5158     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
5159   }
5160 
5161   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5162 }
5163 
5164 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const {
5165   if (RetTy->isVoidType())
5166     return ABIArgInfo::getIgnore();
5167 
5168   // Large vector types should be returned via memory.
5169   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
5170     return getNaturalAlignIndirect(RetTy);
5171 
5172   if (!isAggregateTypeForABI(RetTy)) {
5173     // Treat an enum type as its underlying type.
5174     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5175       RetTy = EnumTy->getDecl()->getIntegerType();
5176 
5177     return (RetTy->isPromotableIntegerType() && isDarwinPCS()
5178                 ? ABIArgInfo::getExtend(RetTy)
5179                 : ABIArgInfo::getDirect());
5180   }
5181 
5182   uint64_t Size = getContext().getTypeSize(RetTy);
5183   if (isEmptyRecord(getContext(), RetTy, true) || Size == 0)
5184     return ABIArgInfo::getIgnore();
5185 
5186   const Type *Base = nullptr;
5187   uint64_t Members = 0;
5188   if (isHomogeneousAggregate(RetTy, Base, Members))
5189     // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
5190     return ABIArgInfo::getDirect();
5191 
5192   // Aggregates <= 16 bytes are returned directly in registers or on the stack.
5193   if (Size <= 128) {
5194     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5195     // same size and alignment.
5196     if (getTarget().isRenderScriptTarget()) {
5197       return coerceToIntArray(RetTy, getContext(), getVMContext());
5198     }
5199     unsigned Alignment = getContext().getTypeAlign(RetTy);
5200     Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes
5201 
5202     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5203     // For aggregates with 16-byte alignment, we use i128.
5204     if (Alignment < 128 && Size == 128) {
5205       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
5206       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
5207     }
5208     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
5209   }
5210 
5211   return getNaturalAlignIndirect(RetTy);
5212 }
5213 
5214 /// isIllegalVectorType - check whether the vector type is legal for AArch64.
5215 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
5216   if (const VectorType *VT = Ty->getAs<VectorType>()) {
5217     // Check whether VT is legal.
5218     unsigned NumElements = VT->getNumElements();
5219     uint64_t Size = getContext().getTypeSize(VT);
5220     // NumElements should be power of 2.
5221     if (!llvm::isPowerOf2_32(NumElements))
5222       return true;
5223     return Size != 64 && (Size != 128 || NumElements == 1);
5224   }
5225   return false;
5226 }
5227 
5228 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize,
5229                                                llvm::Type *eltTy,
5230                                                unsigned elts) const {
5231   if (!llvm::isPowerOf2_32(elts))
5232     return false;
5233   if (totalSize.getQuantity() != 8 &&
5234       (totalSize.getQuantity() != 16 || elts == 1))
5235     return false;
5236   return true;
5237 }
5238 
5239 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
5240   // Homogeneous aggregates for AAPCS64 must have base types of a floating
5241   // point type or a short-vector type. This is the same as the 32-bit ABI,
5242   // but with the difference that any floating-point type is allowed,
5243   // including __fp16.
5244   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
5245     if (BT->isFloatingPoint())
5246       return true;
5247   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
5248     unsigned VecSize = getContext().getTypeSize(VT);
5249     if (VecSize == 64 || VecSize == 128)
5250       return true;
5251   }
5252   return false;
5253 }
5254 
5255 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
5256                                                        uint64_t Members) const {
5257   return Members <= 4;
5258 }
5259 
5260 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr,
5261                                             QualType Ty,
5262                                             CodeGenFunction &CGF) const {
5263   ABIArgInfo AI = classifyArgumentType(Ty);
5264   bool IsIndirect = AI.isIndirect();
5265 
5266   llvm::Type *BaseTy = CGF.ConvertType(Ty);
5267   if (IsIndirect)
5268     BaseTy = llvm::PointerType::getUnqual(BaseTy);
5269   else if (AI.getCoerceToType())
5270     BaseTy = AI.getCoerceToType();
5271 
5272   unsigned NumRegs = 1;
5273   if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
5274     BaseTy = ArrTy->getElementType();
5275     NumRegs = ArrTy->getNumElements();
5276   }
5277   bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy();
5278 
5279   // The AArch64 va_list type and handling is specified in the Procedure Call
5280   // Standard, section B.4:
5281   //
5282   // struct {
5283   //   void *__stack;
5284   //   void *__gr_top;
5285   //   void *__vr_top;
5286   //   int __gr_offs;
5287   //   int __vr_offs;
5288   // };
5289 
5290   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
5291   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
5292   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
5293   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
5294 
5295   auto TyInfo = getContext().getTypeInfoInChars(Ty);
5296   CharUnits TyAlign = TyInfo.second;
5297 
5298   Address reg_offs_p = Address::invalid();
5299   llvm::Value *reg_offs = nullptr;
5300   int reg_top_index;
5301   CharUnits reg_top_offset;
5302   int RegSize = IsIndirect ? 8 : TyInfo.first.getQuantity();
5303   if (!IsFPR) {
5304     // 3 is the field number of __gr_offs
5305     reg_offs_p =
5306         CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24),
5307                                     "gr_offs_p");
5308     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
5309     reg_top_index = 1; // field number for __gr_top
5310     reg_top_offset = CharUnits::fromQuantity(8);
5311     RegSize = llvm::alignTo(RegSize, 8);
5312   } else {
5313     // 4 is the field number of __vr_offs.
5314     reg_offs_p =
5315         CGF.Builder.CreateStructGEP(VAListAddr, 4, CharUnits::fromQuantity(28),
5316                                     "vr_offs_p");
5317     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
5318     reg_top_index = 2; // field number for __vr_top
5319     reg_top_offset = CharUnits::fromQuantity(16);
5320     RegSize = 16 * NumRegs;
5321   }
5322 
5323   //=======================================
5324   // Find out where argument was passed
5325   //=======================================
5326 
5327   // If reg_offs >= 0 we're already using the stack for this type of
5328   // argument. We don't want to keep updating reg_offs (in case it overflows,
5329   // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
5330   // whatever they get).
5331   llvm::Value *UsingStack = nullptr;
5332   UsingStack = CGF.Builder.CreateICmpSGE(
5333       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
5334 
5335   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
5336 
5337   // Otherwise, at least some kind of argument could go in these registers, the
5338   // question is whether this particular type is too big.
5339   CGF.EmitBlock(MaybeRegBlock);
5340 
5341   // Integer arguments may need to correct register alignment (for example a
5342   // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
5343   // align __gr_offs to calculate the potential address.
5344   if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) {
5345     int Align = TyAlign.getQuantity();
5346 
5347     reg_offs = CGF.Builder.CreateAdd(
5348         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
5349         "align_regoffs");
5350     reg_offs = CGF.Builder.CreateAnd(
5351         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
5352         "aligned_regoffs");
5353   }
5354 
5355   // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
5356   // The fact that this is done unconditionally reflects the fact that
5357   // allocating an argument to the stack also uses up all the remaining
5358   // registers of the appropriate kind.
5359   llvm::Value *NewOffset = nullptr;
5360   NewOffset = CGF.Builder.CreateAdd(
5361       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
5362   CGF.Builder.CreateStore(NewOffset, reg_offs_p);
5363 
5364   // Now we're in a position to decide whether this argument really was in
5365   // registers or not.
5366   llvm::Value *InRegs = nullptr;
5367   InRegs = CGF.Builder.CreateICmpSLE(
5368       NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
5369 
5370   CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
5371 
5372   //=======================================
5373   // Argument was in registers
5374   //=======================================
5375 
5376   // Now we emit the code for if the argument was originally passed in
5377   // registers. First start the appropriate block:
5378   CGF.EmitBlock(InRegBlock);
5379 
5380   llvm::Value *reg_top = nullptr;
5381   Address reg_top_p = CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index,
5382                                                   reg_top_offset, "reg_top_p");
5383   reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
5384   Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs),
5385                    CharUnits::fromQuantity(IsFPR ? 16 : 8));
5386   Address RegAddr = Address::invalid();
5387   llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty);
5388 
5389   if (IsIndirect) {
5390     // If it's been passed indirectly (actually a struct), whatever we find from
5391     // stored registers or on the stack will actually be a struct **.
5392     MemTy = llvm::PointerType::getUnqual(MemTy);
5393   }
5394 
5395   const Type *Base = nullptr;
5396   uint64_t NumMembers = 0;
5397   bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
5398   if (IsHFA && NumMembers > 1) {
5399     // Homogeneous aggregates passed in registers will have their elements split
5400     // and stored 16-bytes apart regardless of size (they're notionally in qN,
5401     // qN+1, ...). We reload and store into a temporary local variable
5402     // contiguously.
5403     assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
5404     auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0));
5405     llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
5406     llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
5407     Address Tmp = CGF.CreateTempAlloca(HFATy,
5408                                        std::max(TyAlign, BaseTyInfo.second));
5409 
5410     // On big-endian platforms, the value will be right-aligned in its slot.
5411     int Offset = 0;
5412     if (CGF.CGM.getDataLayout().isBigEndian() &&
5413         BaseTyInfo.first.getQuantity() < 16)
5414       Offset = 16 - BaseTyInfo.first.getQuantity();
5415 
5416     for (unsigned i = 0; i < NumMembers; ++i) {
5417       CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset);
5418       Address LoadAddr =
5419         CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset);
5420       LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy);
5421 
5422       Address StoreAddr =
5423         CGF.Builder.CreateConstArrayGEP(Tmp, i, BaseTyInfo.first);
5424 
5425       llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
5426       CGF.Builder.CreateStore(Elem, StoreAddr);
5427     }
5428 
5429     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy);
5430   } else {
5431     // Otherwise the object is contiguous in memory.
5432 
5433     // It might be right-aligned in its slot.
5434     CharUnits SlotSize = BaseAddr.getAlignment();
5435     if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect &&
5436         (IsHFA || !isAggregateTypeForABI(Ty)) &&
5437         TyInfo.first < SlotSize) {
5438       CharUnits Offset = SlotSize - TyInfo.first;
5439       BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset);
5440     }
5441 
5442     RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy);
5443   }
5444 
5445   CGF.EmitBranch(ContBlock);
5446 
5447   //=======================================
5448   // Argument was on the stack
5449   //=======================================
5450   CGF.EmitBlock(OnStackBlock);
5451 
5452   Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0,
5453                                                 CharUnits::Zero(), "stack_p");
5454   llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack");
5455 
5456   // Again, stack arguments may need realignment. In this case both integer and
5457   // floating-point ones might be affected.
5458   if (!IsIndirect && TyAlign.getQuantity() > 8) {
5459     int Align = TyAlign.getQuantity();
5460 
5461     OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty);
5462 
5463     OnStackPtr = CGF.Builder.CreateAdd(
5464         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
5465         "align_stack");
5466     OnStackPtr = CGF.Builder.CreateAnd(
5467         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
5468         "align_stack");
5469 
5470     OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy);
5471   }
5472   Address OnStackAddr(OnStackPtr,
5473                       std::max(CharUnits::fromQuantity(8), TyAlign));
5474 
5475   // All stack slots are multiples of 8 bytes.
5476   CharUnits StackSlotSize = CharUnits::fromQuantity(8);
5477   CharUnits StackSize;
5478   if (IsIndirect)
5479     StackSize = StackSlotSize;
5480   else
5481     StackSize = TyInfo.first.alignTo(StackSlotSize);
5482 
5483   llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize);
5484   llvm::Value *NewStack =
5485       CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack");
5486 
5487   // Write the new value of __stack for the next call to va_arg
5488   CGF.Builder.CreateStore(NewStack, stack_p);
5489 
5490   if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
5491       TyInfo.first < StackSlotSize) {
5492     CharUnits Offset = StackSlotSize - TyInfo.first;
5493     OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset);
5494   }
5495 
5496   OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy);
5497 
5498   CGF.EmitBranch(ContBlock);
5499 
5500   //=======================================
5501   // Tidy up
5502   //=======================================
5503   CGF.EmitBlock(ContBlock);
5504 
5505   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
5506                                  OnStackAddr, OnStackBlock, "vaargs.addr");
5507 
5508   if (IsIndirect)
5509     return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"),
5510                    TyInfo.second);
5511 
5512   return ResAddr;
5513 }
5514 
5515 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty,
5516                                         CodeGenFunction &CGF) const {
5517   // The backend's lowering doesn't support va_arg for aggregates or
5518   // illegal vector types.  Lower VAArg here for these cases and use
5519   // the LLVM va_arg instruction for everything else.
5520   if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
5521     return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
5522 
5523   CharUnits SlotSize = CharUnits::fromQuantity(8);
5524 
5525   // Empty records are ignored for parameter passing purposes.
5526   if (isEmptyRecord(getContext(), Ty, true)) {
5527     Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
5528     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
5529     return Addr;
5530   }
5531 
5532   // The size of the actual thing passed, which might end up just
5533   // being a pointer for indirect types.
5534   auto TyInfo = getContext().getTypeInfoInChars(Ty);
5535 
5536   // Arguments bigger than 16 bytes which aren't homogeneous
5537   // aggregates should be passed indirectly.
5538   bool IsIndirect = false;
5539   if (TyInfo.first.getQuantity() > 16) {
5540     const Type *Base = nullptr;
5541     uint64_t Members = 0;
5542     IsIndirect = !isHomogeneousAggregate(Ty, Base, Members);
5543   }
5544 
5545   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
5546                           TyInfo, SlotSize, /*AllowHigherAlign*/ true);
5547 }
5548 
5549 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
5550                                     QualType Ty) const {
5551   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
5552                           CGF.getContext().getTypeInfoInChars(Ty),
5553                           CharUnits::fromQuantity(8),
5554                           /*allowHigherAlign*/ false);
5555 }
5556 
5557 //===----------------------------------------------------------------------===//
5558 // ARM ABI Implementation
5559 //===----------------------------------------------------------------------===//
5560 
5561 namespace {
5562 
5563 class ARMABIInfo : public SwiftABIInfo {
5564 public:
5565   enum ABIKind {
5566     APCS = 0,
5567     AAPCS = 1,
5568     AAPCS_VFP = 2,
5569     AAPCS16_VFP = 3,
5570   };
5571 
5572 private:
5573   ABIKind Kind;
5574 
5575 public:
5576   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind)
5577       : SwiftABIInfo(CGT), Kind(_Kind) {
5578     setCCs();
5579   }
5580 
5581   bool isEABI() const {
5582     switch (getTarget().getTriple().getEnvironment()) {
5583     case llvm::Triple::Android:
5584     case llvm::Triple::EABI:
5585     case llvm::Triple::EABIHF:
5586     case llvm::Triple::GNUEABI:
5587     case llvm::Triple::GNUEABIHF:
5588     case llvm::Triple::MuslEABI:
5589     case llvm::Triple::MuslEABIHF:
5590       return true;
5591     default:
5592       return false;
5593     }
5594   }
5595 
5596   bool isEABIHF() const {
5597     switch (getTarget().getTriple().getEnvironment()) {
5598     case llvm::Triple::EABIHF:
5599     case llvm::Triple::GNUEABIHF:
5600     case llvm::Triple::MuslEABIHF:
5601       return true;
5602     default:
5603       return false;
5604     }
5605   }
5606 
5607   ABIKind getABIKind() const { return Kind; }
5608 
5609 private:
5610   ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const;
5611   ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic) const;
5612   ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base,
5613                                           uint64_t Members) const;
5614   ABIArgInfo coerceIllegalVector(QualType Ty) const;
5615   bool isIllegalVectorType(QualType Ty) const;
5616 
5617   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
5618   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
5619                                          uint64_t Members) const override;
5620 
5621   void computeInfo(CGFunctionInfo &FI) const override;
5622 
5623   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5624                     QualType Ty) const override;
5625 
5626   llvm::CallingConv::ID getLLVMDefaultCC() const;
5627   llvm::CallingConv::ID getABIDefaultCC() const;
5628   void setCCs();
5629 
5630   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
5631                                     bool asReturnValue) const override {
5632     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
5633   }
5634   bool isSwiftErrorInRegister() const override {
5635     return true;
5636   }
5637   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
5638                                  unsigned elts) const override;
5639 };
5640 
5641 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
5642 public:
5643   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
5644     :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
5645 
5646   const ARMABIInfo &getABIInfo() const {
5647     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
5648   }
5649 
5650   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5651     return 13;
5652   }
5653 
5654   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
5655     return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue";
5656   }
5657 
5658   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5659                                llvm::Value *Address) const override {
5660     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
5661 
5662     // 0-15 are the 16 integer registers.
5663     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
5664     return false;
5665   }
5666 
5667   unsigned getSizeOfUnwindException() const override {
5668     if (getABIInfo().isEABI()) return 88;
5669     return TargetCodeGenInfo::getSizeOfUnwindException();
5670   }
5671 
5672   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5673                            CodeGen::CodeGenModule &CGM) const override {
5674     if (GV->isDeclaration())
5675       return;
5676     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5677     if (!FD)
5678       return;
5679 
5680     const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
5681     if (!Attr)
5682       return;
5683 
5684     const char *Kind;
5685     switch (Attr->getInterrupt()) {
5686     case ARMInterruptAttr::Generic: Kind = ""; break;
5687     case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break;
5688     case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break;
5689     case ARMInterruptAttr::SWI:     Kind = "SWI"; break;
5690     case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break;
5691     case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break;
5692     }
5693 
5694     llvm::Function *Fn = cast<llvm::Function>(GV);
5695 
5696     Fn->addFnAttr("interrupt", Kind);
5697 
5698     ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind();
5699     if (ABI == ARMABIInfo::APCS)
5700       return;
5701 
5702     // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
5703     // however this is not necessarily true on taking any interrupt. Instruct
5704     // the backend to perform a realignment as part of the function prologue.
5705     llvm::AttrBuilder B;
5706     B.addStackAlignmentAttr(8);
5707     Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
5708   }
5709 };
5710 
5711 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo {
5712 public:
5713   WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
5714       : ARMTargetCodeGenInfo(CGT, K) {}
5715 
5716   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5717                            CodeGen::CodeGenModule &CGM) const override;
5718 
5719   void getDependentLibraryOption(llvm::StringRef Lib,
5720                                  llvm::SmallString<24> &Opt) const override {
5721     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
5722   }
5723 
5724   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
5725                                llvm::SmallString<32> &Opt) const override {
5726     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
5727   }
5728 };
5729 
5730 void WindowsARMTargetCodeGenInfo::setTargetAttributes(
5731     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
5732   ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
5733   if (GV->isDeclaration())
5734     return;
5735   addStackProbeTargetAttributes(D, GV, CGM);
5736 }
5737 }
5738 
5739 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
5740   if (!::classifyReturnType(getCXXABI(), FI, *this))
5741     FI.getReturnInfo() =
5742         classifyReturnType(FI.getReturnType(), FI.isVariadic());
5743 
5744   for (auto &I : FI.arguments())
5745     I.info = classifyArgumentType(I.type, FI.isVariadic());
5746 
5747   // Always honor user-specified calling convention.
5748   if (FI.getCallingConvention() != llvm::CallingConv::C)
5749     return;
5750 
5751   llvm::CallingConv::ID cc = getRuntimeCC();
5752   if (cc != llvm::CallingConv::C)
5753     FI.setEffectiveCallingConvention(cc);
5754 }
5755 
5756 /// Return the default calling convention that LLVM will use.
5757 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
5758   // The default calling convention that LLVM will infer.
5759   if (isEABIHF() || getTarget().getTriple().isWatchABI())
5760     return llvm::CallingConv::ARM_AAPCS_VFP;
5761   else if (isEABI())
5762     return llvm::CallingConv::ARM_AAPCS;
5763   else
5764     return llvm::CallingConv::ARM_APCS;
5765 }
5766 
5767 /// Return the calling convention that our ABI would like us to use
5768 /// as the C calling convention.
5769 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
5770   switch (getABIKind()) {
5771   case APCS: return llvm::CallingConv::ARM_APCS;
5772   case AAPCS: return llvm::CallingConv::ARM_AAPCS;
5773   case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
5774   case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
5775   }
5776   llvm_unreachable("bad ABI kind");
5777 }
5778 
5779 void ARMABIInfo::setCCs() {
5780   assert(getRuntimeCC() == llvm::CallingConv::C);
5781 
5782   // Don't muddy up the IR with a ton of explicit annotations if
5783   // they'd just match what LLVM will infer from the triple.
5784   llvm::CallingConv::ID abiCC = getABIDefaultCC();
5785   if (abiCC != getLLVMDefaultCC())
5786     RuntimeCC = abiCC;
5787 }
5788 
5789 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const {
5790   uint64_t Size = getContext().getTypeSize(Ty);
5791   if (Size <= 32) {
5792     llvm::Type *ResType =
5793         llvm::Type::getInt32Ty(getVMContext());
5794     return ABIArgInfo::getDirect(ResType);
5795   }
5796   if (Size == 64 || Size == 128) {
5797     llvm::Type *ResType = llvm::VectorType::get(
5798         llvm::Type::getInt32Ty(getVMContext()), Size / 32);
5799     return ABIArgInfo::getDirect(ResType);
5800   }
5801   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5802 }
5803 
5804 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty,
5805                                                     const Type *Base,
5806                                                     uint64_t Members) const {
5807   assert(Base && "Base class should be set for homogeneous aggregate");
5808   // Base can be a floating-point or a vector.
5809   if (const VectorType *VT = Base->getAs<VectorType>()) {
5810     // FP16 vectors should be converted to integer vectors
5811     if (!getTarget().hasLegalHalfType() &&
5812         (VT->getElementType()->isFloat16Type() ||
5813           VT->getElementType()->isHalfType())) {
5814       uint64_t Size = getContext().getTypeSize(VT);
5815       llvm::Type *NewVecTy = llvm::VectorType::get(
5816           llvm::Type::getInt32Ty(getVMContext()), Size / 32);
5817       llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members);
5818       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
5819     }
5820   }
5821   return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
5822 }
5823 
5824 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty,
5825                                             bool isVariadic) const {
5826   // 6.1.2.1 The following argument types are VFP CPRCs:
5827   //   A single-precision floating-point type (including promoted
5828   //   half-precision types); A double-precision floating-point type;
5829   //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
5830   //   with a Base Type of a single- or double-precision floating-point type,
5831   //   64-bit containerized vectors or 128-bit containerized vectors with one
5832   //   to four Elements.
5833   bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic;
5834 
5835   Ty = useFirstFieldIfTransparentUnion(Ty);
5836 
5837   // Handle illegal vector types here.
5838   if (isIllegalVectorType(Ty))
5839     return coerceIllegalVector(Ty);
5840 
5841   // _Float16 and __fp16 get passed as if it were an int or float, but with
5842   // the top 16 bits unspecified. This is not done for OpenCL as it handles the
5843   // half type natively, and does not need to interwork with AAPCS code.
5844   if ((Ty->isFloat16Type() || Ty->isHalfType()) &&
5845       !getContext().getLangOpts().NativeHalfArgsAndReturns) {
5846     llvm::Type *ResType = IsEffectivelyAAPCS_VFP ?
5847       llvm::Type::getFloatTy(getVMContext()) :
5848       llvm::Type::getInt32Ty(getVMContext());
5849     return ABIArgInfo::getDirect(ResType);
5850   }
5851 
5852   if (!isAggregateTypeForABI(Ty)) {
5853     // Treat an enum type as its underlying type.
5854     if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
5855       Ty = EnumTy->getDecl()->getIntegerType();
5856     }
5857 
5858     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
5859                                           : ABIArgInfo::getDirect());
5860   }
5861 
5862   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5863     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
5864   }
5865 
5866   // Ignore empty records.
5867   if (isEmptyRecord(getContext(), Ty, true))
5868     return ABIArgInfo::getIgnore();
5869 
5870   if (IsEffectivelyAAPCS_VFP) {
5871     // Homogeneous Aggregates need to be expanded when we can fit the aggregate
5872     // into VFP registers.
5873     const Type *Base = nullptr;
5874     uint64_t Members = 0;
5875     if (isHomogeneousAggregate(Ty, Base, Members))
5876       return classifyHomogeneousAggregate(Ty, Base, Members);
5877   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
5878     // WatchOS does have homogeneous aggregates. Note that we intentionally use
5879     // this convention even for a variadic function: the backend will use GPRs
5880     // if needed.
5881     const Type *Base = nullptr;
5882     uint64_t Members = 0;
5883     if (isHomogeneousAggregate(Ty, Base, Members)) {
5884       assert(Base && Members <= 4 && "unexpected homogeneous aggregate");
5885       llvm::Type *Ty =
5886         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members);
5887       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
5888     }
5889   }
5890 
5891   if (getABIKind() == ARMABIInfo::AAPCS16_VFP &&
5892       getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) {
5893     // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're
5894     // bigger than 128-bits, they get placed in space allocated by the caller,
5895     // and a pointer is passed.
5896     return ABIArgInfo::getIndirect(
5897         CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false);
5898   }
5899 
5900   // Support byval for ARM.
5901   // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
5902   // most 8-byte. We realign the indirect argument if type alignment is bigger
5903   // than ABI alignment.
5904   uint64_t ABIAlign = 4;
5905   uint64_t TyAlign;
5906   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
5907       getABIKind() == ARMABIInfo::AAPCS) {
5908     TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity();
5909     ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
5910   } else {
5911     TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
5912   }
5913   if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
5914     assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval");
5915     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
5916                                    /*ByVal=*/true,
5917                                    /*Realign=*/TyAlign > ABIAlign);
5918   }
5919 
5920   // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of
5921   // same size and alignment.
5922   if (getTarget().isRenderScriptTarget()) {
5923     return coerceToIntArray(Ty, getContext(), getVMContext());
5924   }
5925 
5926   // Otherwise, pass by coercing to a structure of the appropriate size.
5927   llvm::Type* ElemTy;
5928   unsigned SizeRegs;
5929   // FIXME: Try to match the types of the arguments more accurately where
5930   // we can.
5931   if (TyAlign <= 4) {
5932     ElemTy = llvm::Type::getInt32Ty(getVMContext());
5933     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
5934   } else {
5935     ElemTy = llvm::Type::getInt64Ty(getVMContext());
5936     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
5937   }
5938 
5939   return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
5940 }
5941 
5942 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
5943                               llvm::LLVMContext &VMContext) {
5944   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
5945   // is called integer-like if its size is less than or equal to one word, and
5946   // the offset of each of its addressable sub-fields is zero.
5947 
5948   uint64_t Size = Context.getTypeSize(Ty);
5949 
5950   // Check that the type fits in a word.
5951   if (Size > 32)
5952     return false;
5953 
5954   // FIXME: Handle vector types!
5955   if (Ty->isVectorType())
5956     return false;
5957 
5958   // Float types are never treated as "integer like".
5959   if (Ty->isRealFloatingType())
5960     return false;
5961 
5962   // If this is a builtin or pointer type then it is ok.
5963   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
5964     return true;
5965 
5966   // Small complex integer types are "integer like".
5967   if (const ComplexType *CT = Ty->getAs<ComplexType>())
5968     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
5969 
5970   // Single element and zero sized arrays should be allowed, by the definition
5971   // above, but they are not.
5972 
5973   // Otherwise, it must be a record type.
5974   const RecordType *RT = Ty->getAs<RecordType>();
5975   if (!RT) return false;
5976 
5977   // Ignore records with flexible arrays.
5978   const RecordDecl *RD = RT->getDecl();
5979   if (RD->hasFlexibleArrayMember())
5980     return false;
5981 
5982   // Check that all sub-fields are at offset 0, and are themselves "integer
5983   // like".
5984   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
5985 
5986   bool HadField = false;
5987   unsigned idx = 0;
5988   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
5989        i != e; ++i, ++idx) {
5990     const FieldDecl *FD = *i;
5991 
5992     // Bit-fields are not addressable, we only need to verify they are "integer
5993     // like". We still have to disallow a subsequent non-bitfield, for example:
5994     //   struct { int : 0; int x }
5995     // is non-integer like according to gcc.
5996     if (FD->isBitField()) {
5997       if (!RD->isUnion())
5998         HadField = true;
5999 
6000       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
6001         return false;
6002 
6003       continue;
6004     }
6005 
6006     // Check if this field is at offset 0.
6007     if (Layout.getFieldOffset(idx) != 0)
6008       return false;
6009 
6010     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
6011       return false;
6012 
6013     // Only allow at most one field in a structure. This doesn't match the
6014     // wording above, but follows gcc in situations with a field following an
6015     // empty structure.
6016     if (!RD->isUnion()) {
6017       if (HadField)
6018         return false;
6019 
6020       HadField = true;
6021     }
6022   }
6023 
6024   return true;
6025 }
6026 
6027 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy,
6028                                           bool isVariadic) const {
6029   bool IsEffectivelyAAPCS_VFP =
6030       (getABIKind() == AAPCS_VFP || getABIKind() == AAPCS16_VFP) && !isVariadic;
6031 
6032   if (RetTy->isVoidType())
6033     return ABIArgInfo::getIgnore();
6034 
6035   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
6036     // Large vector types should be returned via memory.
6037     if (getContext().getTypeSize(RetTy) > 128)
6038       return getNaturalAlignIndirect(RetTy);
6039     // FP16 vectors should be converted to integer vectors
6040     if (!getTarget().hasLegalHalfType() &&
6041         (VT->getElementType()->isFloat16Type() ||
6042          VT->getElementType()->isHalfType()))
6043       return coerceIllegalVector(RetTy);
6044   }
6045 
6046   // _Float16 and __fp16 get returned as if it were an int or float, but with
6047   // the top 16 bits unspecified. This is not done for OpenCL as it handles the
6048   // half type natively, and does not need to interwork with AAPCS code.
6049   if ((RetTy->isFloat16Type() || RetTy->isHalfType()) &&
6050       !getContext().getLangOpts().NativeHalfArgsAndReturns) {
6051     llvm::Type *ResType = IsEffectivelyAAPCS_VFP ?
6052       llvm::Type::getFloatTy(getVMContext()) :
6053       llvm::Type::getInt32Ty(getVMContext());
6054     return ABIArgInfo::getDirect(ResType);
6055   }
6056 
6057   if (!isAggregateTypeForABI(RetTy)) {
6058     // Treat an enum type as its underlying type.
6059     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6060       RetTy = EnumTy->getDecl()->getIntegerType();
6061 
6062     return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
6063                                             : ABIArgInfo::getDirect();
6064   }
6065 
6066   // Are we following APCS?
6067   if (getABIKind() == APCS) {
6068     if (isEmptyRecord(getContext(), RetTy, false))
6069       return ABIArgInfo::getIgnore();
6070 
6071     // Complex types are all returned as packed integers.
6072     //
6073     // FIXME: Consider using 2 x vector types if the back end handles them
6074     // correctly.
6075     if (RetTy->isAnyComplexType())
6076       return ABIArgInfo::getDirect(llvm::IntegerType::get(
6077           getVMContext(), getContext().getTypeSize(RetTy)));
6078 
6079     // Integer like structures are returned in r0.
6080     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
6081       // Return in the smallest viable integer type.
6082       uint64_t Size = getContext().getTypeSize(RetTy);
6083       if (Size <= 8)
6084         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6085       if (Size <= 16)
6086         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6087       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6088     }
6089 
6090     // Otherwise return in memory.
6091     return getNaturalAlignIndirect(RetTy);
6092   }
6093 
6094   // Otherwise this is an AAPCS variant.
6095 
6096   if (isEmptyRecord(getContext(), RetTy, true))
6097     return ABIArgInfo::getIgnore();
6098 
6099   // Check for homogeneous aggregates with AAPCS-VFP.
6100   if (IsEffectivelyAAPCS_VFP) {
6101     const Type *Base = nullptr;
6102     uint64_t Members = 0;
6103     if (isHomogeneousAggregate(RetTy, Base, Members))
6104       return classifyHomogeneousAggregate(RetTy, Base, Members);
6105   }
6106 
6107   // Aggregates <= 4 bytes are returned in r0; other aggregates
6108   // are returned indirectly.
6109   uint64_t Size = getContext().getTypeSize(RetTy);
6110   if (Size <= 32) {
6111     // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of
6112     // same size and alignment.
6113     if (getTarget().isRenderScriptTarget()) {
6114       return coerceToIntArray(RetTy, getContext(), getVMContext());
6115     }
6116     if (getDataLayout().isBigEndian())
6117       // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
6118       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6119 
6120     // Return in the smallest viable integer type.
6121     if (Size <= 8)
6122       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6123     if (Size <= 16)
6124       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6125     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6126   } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) {
6127     llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext());
6128     llvm::Type *CoerceTy =
6129         llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32);
6130     return ABIArgInfo::getDirect(CoerceTy);
6131   }
6132 
6133   return getNaturalAlignIndirect(RetTy);
6134 }
6135 
6136 /// isIllegalVector - check whether Ty is an illegal vector type.
6137 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
6138   if (const VectorType *VT = Ty->getAs<VectorType> ()) {
6139     // On targets that don't support FP16, FP16 is expanded into float, and we
6140     // don't want the ABI to depend on whether or not FP16 is supported in
6141     // hardware. Thus return false to coerce FP16 vectors into integer vectors.
6142     if (!getTarget().hasLegalHalfType() &&
6143         (VT->getElementType()->isFloat16Type() ||
6144          VT->getElementType()->isHalfType()))
6145       return true;
6146     if (isAndroid()) {
6147       // Android shipped using Clang 3.1, which supported a slightly different
6148       // vector ABI. The primary differences were that 3-element vector types
6149       // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path
6150       // accepts that legacy behavior for Android only.
6151       // Check whether VT is legal.
6152       unsigned NumElements = VT->getNumElements();
6153       // NumElements should be power of 2 or equal to 3.
6154       if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3)
6155         return true;
6156     } else {
6157       // Check whether VT is legal.
6158       unsigned NumElements = VT->getNumElements();
6159       uint64_t Size = getContext().getTypeSize(VT);
6160       // NumElements should be power of 2.
6161       if (!llvm::isPowerOf2_32(NumElements))
6162         return true;
6163       // Size should be greater than 32 bits.
6164       return Size <= 32;
6165     }
6166   }
6167   return false;
6168 }
6169 
6170 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
6171                                            llvm::Type *eltTy,
6172                                            unsigned numElts) const {
6173   if (!llvm::isPowerOf2_32(numElts))
6174     return false;
6175   unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy);
6176   if (size > 64)
6177     return false;
6178   if (vectorSize.getQuantity() != 8 &&
6179       (vectorSize.getQuantity() != 16 || numElts == 1))
6180     return false;
6181   return true;
6182 }
6183 
6184 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
6185   // Homogeneous aggregates for AAPCS-VFP must have base types of float,
6186   // double, or 64-bit or 128-bit vectors.
6187   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
6188     if (BT->getKind() == BuiltinType::Float ||
6189         BT->getKind() == BuiltinType::Double ||
6190         BT->getKind() == BuiltinType::LongDouble)
6191       return true;
6192   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
6193     unsigned VecSize = getContext().getTypeSize(VT);
6194     if (VecSize == 64 || VecSize == 128)
6195       return true;
6196   }
6197   return false;
6198 }
6199 
6200 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
6201                                                    uint64_t Members) const {
6202   return Members <= 4;
6203 }
6204 
6205 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6206                               QualType Ty) const {
6207   CharUnits SlotSize = CharUnits::fromQuantity(4);
6208 
6209   // Empty records are ignored for parameter passing purposes.
6210   if (isEmptyRecord(getContext(), Ty, true)) {
6211     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
6212     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
6213     return Addr;
6214   }
6215 
6216   auto TyInfo = getContext().getTypeInfoInChars(Ty);
6217   CharUnits TyAlignForABI = TyInfo.second;
6218 
6219   // Use indirect if size of the illegal vector is bigger than 16 bytes.
6220   bool IsIndirect = false;
6221   const Type *Base = nullptr;
6222   uint64_t Members = 0;
6223   if (TyInfo.first > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) {
6224     IsIndirect = true;
6225 
6226   // ARMv7k passes structs bigger than 16 bytes indirectly, in space
6227   // allocated by the caller.
6228   } else if (TyInfo.first > CharUnits::fromQuantity(16) &&
6229              getABIKind() == ARMABIInfo::AAPCS16_VFP &&
6230              !isHomogeneousAggregate(Ty, Base, Members)) {
6231     IsIndirect = true;
6232 
6233   // Otherwise, bound the type's ABI alignment.
6234   // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
6235   // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
6236   // Our callers should be prepared to handle an under-aligned address.
6237   } else if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
6238              getABIKind() == ARMABIInfo::AAPCS) {
6239     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6240     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8));
6241   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
6242     // ARMv7k allows type alignment up to 16 bytes.
6243     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6244     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16));
6245   } else {
6246     TyAlignForABI = CharUnits::fromQuantity(4);
6247   }
6248   TyInfo.second = TyAlignForABI;
6249 
6250   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo,
6251                           SlotSize, /*AllowHigherAlign*/ true);
6252 }
6253 
6254 //===----------------------------------------------------------------------===//
6255 // NVPTX ABI Implementation
6256 //===----------------------------------------------------------------------===//
6257 
6258 namespace {
6259 
6260 class NVPTXABIInfo : public ABIInfo {
6261 public:
6262   NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
6263 
6264   ABIArgInfo classifyReturnType(QualType RetTy) const;
6265   ABIArgInfo classifyArgumentType(QualType Ty) const;
6266 
6267   void computeInfo(CGFunctionInfo &FI) const override;
6268   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6269                     QualType Ty) const override;
6270 };
6271 
6272 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
6273 public:
6274   NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
6275     : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
6276 
6277   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6278                            CodeGen::CodeGenModule &M) const override;
6279   bool shouldEmitStaticExternCAliases() const override;
6280 
6281 private:
6282   // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the
6283   // resulting MDNode to the nvvm.annotations MDNode.
6284   static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand);
6285 };
6286 
6287 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
6288   if (RetTy->isVoidType())
6289     return ABIArgInfo::getIgnore();
6290 
6291   // note: this is different from default ABI
6292   if (!RetTy->isScalarType())
6293     return ABIArgInfo::getDirect();
6294 
6295   // Treat an enum type as its underlying type.
6296   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6297     RetTy = EnumTy->getDecl()->getIntegerType();
6298 
6299   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
6300                                            : ABIArgInfo::getDirect());
6301 }
6302 
6303 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
6304   // Treat an enum type as its underlying type.
6305   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6306     Ty = EnumTy->getDecl()->getIntegerType();
6307 
6308   // Return aggregates type as indirect by value
6309   if (isAggregateTypeForABI(Ty))
6310     return getNaturalAlignIndirect(Ty, /* byval */ true);
6311 
6312   return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
6313                                         : ABIArgInfo::getDirect());
6314 }
6315 
6316 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
6317   if (!getCXXABI().classifyReturnType(FI))
6318     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
6319   for (auto &I : FI.arguments())
6320     I.info = classifyArgumentType(I.type);
6321 
6322   // Always honor user-specified calling convention.
6323   if (FI.getCallingConvention() != llvm::CallingConv::C)
6324     return;
6325 
6326   FI.setEffectiveCallingConvention(getRuntimeCC());
6327 }
6328 
6329 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6330                                 QualType Ty) const {
6331   llvm_unreachable("NVPTX does not support varargs");
6332 }
6333 
6334 void NVPTXTargetCodeGenInfo::setTargetAttributes(
6335     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
6336   if (GV->isDeclaration())
6337     return;
6338   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6339   if (!FD) return;
6340 
6341   llvm::Function *F = cast<llvm::Function>(GV);
6342 
6343   // Perform special handling in OpenCL mode
6344   if (M.getLangOpts().OpenCL) {
6345     // Use OpenCL function attributes to check for kernel functions
6346     // By default, all functions are device functions
6347     if (FD->hasAttr<OpenCLKernelAttr>()) {
6348       // OpenCL __kernel functions get kernel metadata
6349       // Create !{<func-ref>, metadata !"kernel", i32 1} node
6350       addNVVMMetadata(F, "kernel", 1);
6351       // And kernel functions are not subject to inlining
6352       F->addFnAttr(llvm::Attribute::NoInline);
6353     }
6354   }
6355 
6356   // Perform special handling in CUDA mode.
6357   if (M.getLangOpts().CUDA) {
6358     // CUDA __global__ functions get a kernel metadata entry.  Since
6359     // __global__ functions cannot be called from the device, we do not
6360     // need to set the noinline attribute.
6361     if (FD->hasAttr<CUDAGlobalAttr>()) {
6362       // Create !{<func-ref>, metadata !"kernel", i32 1} node
6363       addNVVMMetadata(F, "kernel", 1);
6364     }
6365     if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) {
6366       // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
6367       llvm::APSInt MaxThreads(32);
6368       MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext());
6369       if (MaxThreads > 0)
6370         addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue());
6371 
6372       // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was
6373       // not specified in __launch_bounds__ or if the user specified a 0 value,
6374       // we don't have to add a PTX directive.
6375       if (Attr->getMinBlocks()) {
6376         llvm::APSInt MinBlocks(32);
6377         MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext());
6378         if (MinBlocks > 0)
6379           // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
6380           addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue());
6381       }
6382     }
6383   }
6384 }
6385 
6386 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name,
6387                                              int Operand) {
6388   llvm::Module *M = F->getParent();
6389   llvm::LLVMContext &Ctx = M->getContext();
6390 
6391   // Get "nvvm.annotations" metadata node
6392   llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
6393 
6394   llvm::Metadata *MDVals[] = {
6395       llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name),
6396       llvm::ConstantAsMetadata::get(
6397           llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
6398   // Append metadata to nvvm.annotations
6399   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
6400 }
6401 
6402 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
6403   return false;
6404 }
6405 }
6406 
6407 //===----------------------------------------------------------------------===//
6408 // SystemZ ABI Implementation
6409 //===----------------------------------------------------------------------===//
6410 
6411 namespace {
6412 
6413 class SystemZABIInfo : public SwiftABIInfo {
6414   bool HasVector;
6415 
6416 public:
6417   SystemZABIInfo(CodeGenTypes &CGT, bool HV)
6418     : SwiftABIInfo(CGT), HasVector(HV) {}
6419 
6420   bool isPromotableIntegerType(QualType Ty) const;
6421   bool isCompoundType(QualType Ty) const;
6422   bool isVectorArgumentType(QualType Ty) const;
6423   bool isFPArgumentType(QualType Ty) const;
6424   QualType GetSingleElementType(QualType Ty) const;
6425 
6426   ABIArgInfo classifyReturnType(QualType RetTy) const;
6427   ABIArgInfo classifyArgumentType(QualType ArgTy) const;
6428 
6429   void computeInfo(CGFunctionInfo &FI) const override {
6430     if (!getCXXABI().classifyReturnType(FI))
6431       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
6432     for (auto &I : FI.arguments())
6433       I.info = classifyArgumentType(I.type);
6434   }
6435 
6436   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6437                     QualType Ty) const override;
6438 
6439   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
6440                                     bool asReturnValue) const override {
6441     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
6442   }
6443   bool isSwiftErrorInRegister() const override {
6444     return false;
6445   }
6446 };
6447 
6448 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
6449 public:
6450   SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector)
6451     : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {}
6452 };
6453 
6454 }
6455 
6456 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
6457   // Treat an enum type as its underlying type.
6458   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6459     Ty = EnumTy->getDecl()->getIntegerType();
6460 
6461   // Promotable integer types are required to be promoted by the ABI.
6462   if (Ty->isPromotableIntegerType())
6463     return true;
6464 
6465   // 32-bit values must also be promoted.
6466   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
6467     switch (BT->getKind()) {
6468     case BuiltinType::Int:
6469     case BuiltinType::UInt:
6470       return true;
6471     default:
6472       return false;
6473     }
6474   return false;
6475 }
6476 
6477 bool SystemZABIInfo::isCompoundType(QualType Ty) const {
6478   return (Ty->isAnyComplexType() ||
6479           Ty->isVectorType() ||
6480           isAggregateTypeForABI(Ty));
6481 }
6482 
6483 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const {
6484   return (HasVector &&
6485           Ty->isVectorType() &&
6486           getContext().getTypeSize(Ty) <= 128);
6487 }
6488 
6489 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
6490   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
6491     switch (BT->getKind()) {
6492     case BuiltinType::Float:
6493     case BuiltinType::Double:
6494       return true;
6495     default:
6496       return false;
6497     }
6498 
6499   return false;
6500 }
6501 
6502 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const {
6503   if (const RecordType *RT = Ty->getAsStructureType()) {
6504     const RecordDecl *RD = RT->getDecl();
6505     QualType Found;
6506 
6507     // If this is a C++ record, check the bases first.
6508     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
6509       for (const auto &I : CXXRD->bases()) {
6510         QualType Base = I.getType();
6511 
6512         // Empty bases don't affect things either way.
6513         if (isEmptyRecord(getContext(), Base, true))
6514           continue;
6515 
6516         if (!Found.isNull())
6517           return Ty;
6518         Found = GetSingleElementType(Base);
6519       }
6520 
6521     // Check the fields.
6522     for (const auto *FD : RD->fields()) {
6523       // For compatibility with GCC, ignore empty bitfields in C++ mode.
6524       // Unlike isSingleElementStruct(), empty structure and array fields
6525       // do count.  So do anonymous bitfields that aren't zero-sized.
6526       if (getContext().getLangOpts().CPlusPlus &&
6527           FD->isZeroLengthBitField(getContext()))
6528         continue;
6529 
6530       // Unlike isSingleElementStruct(), arrays do not count.
6531       // Nested structures still do though.
6532       if (!Found.isNull())
6533         return Ty;
6534       Found = GetSingleElementType(FD->getType());
6535     }
6536 
6537     // Unlike isSingleElementStruct(), trailing padding is allowed.
6538     // An 8-byte aligned struct s { float f; } is passed as a double.
6539     if (!Found.isNull())
6540       return Found;
6541   }
6542 
6543   return Ty;
6544 }
6545 
6546 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6547                                   QualType Ty) const {
6548   // Assume that va_list type is correct; should be pointer to LLVM type:
6549   // struct {
6550   //   i64 __gpr;
6551   //   i64 __fpr;
6552   //   i8 *__overflow_arg_area;
6553   //   i8 *__reg_save_area;
6554   // };
6555 
6556   // Every non-vector argument occupies 8 bytes and is passed by preference
6557   // in either GPRs or FPRs.  Vector arguments occupy 8 or 16 bytes and are
6558   // always passed on the stack.
6559   Ty = getContext().getCanonicalType(Ty);
6560   auto TyInfo = getContext().getTypeInfoInChars(Ty);
6561   llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty);
6562   llvm::Type *DirectTy = ArgTy;
6563   ABIArgInfo AI = classifyArgumentType(Ty);
6564   bool IsIndirect = AI.isIndirect();
6565   bool InFPRs = false;
6566   bool IsVector = false;
6567   CharUnits UnpaddedSize;
6568   CharUnits DirectAlign;
6569   if (IsIndirect) {
6570     DirectTy = llvm::PointerType::getUnqual(DirectTy);
6571     UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8);
6572   } else {
6573     if (AI.getCoerceToType())
6574       ArgTy = AI.getCoerceToType();
6575     InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy();
6576     IsVector = ArgTy->isVectorTy();
6577     UnpaddedSize = TyInfo.first;
6578     DirectAlign = TyInfo.second;
6579   }
6580   CharUnits PaddedSize = CharUnits::fromQuantity(8);
6581   if (IsVector && UnpaddedSize > PaddedSize)
6582     PaddedSize = CharUnits::fromQuantity(16);
6583   assert((UnpaddedSize <= PaddedSize) && "Invalid argument size.");
6584 
6585   CharUnits Padding = (PaddedSize - UnpaddedSize);
6586 
6587   llvm::Type *IndexTy = CGF.Int64Ty;
6588   llvm::Value *PaddedSizeV =
6589     llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity());
6590 
6591   if (IsVector) {
6592     // Work out the address of a vector argument on the stack.
6593     // Vector arguments are always passed in the high bits of a
6594     // single (8 byte) or double (16 byte) stack slot.
6595     Address OverflowArgAreaPtr =
6596       CGF.Builder.CreateStructGEP(VAListAddr, 2, CharUnits::fromQuantity(16),
6597                                   "overflow_arg_area_ptr");
6598     Address OverflowArgArea =
6599       Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
6600               TyInfo.second);
6601     Address MemAddr =
6602       CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr");
6603 
6604     // Update overflow_arg_area_ptr pointer
6605     llvm::Value *NewOverflowArgArea =
6606       CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
6607                             "overflow_arg_area");
6608     CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
6609 
6610     return MemAddr;
6611   }
6612 
6613   assert(PaddedSize.getQuantity() == 8);
6614 
6615   unsigned MaxRegs, RegCountField, RegSaveIndex;
6616   CharUnits RegPadding;
6617   if (InFPRs) {
6618     MaxRegs = 4; // Maximum of 4 FPR arguments
6619     RegCountField = 1; // __fpr
6620     RegSaveIndex = 16; // save offset for f0
6621     RegPadding = CharUnits(); // floats are passed in the high bits of an FPR
6622   } else {
6623     MaxRegs = 5; // Maximum of 5 GPR arguments
6624     RegCountField = 0; // __gpr
6625     RegSaveIndex = 2; // save offset for r2
6626     RegPadding = Padding; // values are passed in the low bits of a GPR
6627   }
6628 
6629   Address RegCountPtr = CGF.Builder.CreateStructGEP(
6630       VAListAddr, RegCountField, RegCountField * CharUnits::fromQuantity(8),
6631       "reg_count_ptr");
6632   llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
6633   llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
6634   llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
6635                                                  "fits_in_regs");
6636 
6637   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
6638   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
6639   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
6640   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
6641 
6642   // Emit code to load the value if it was passed in registers.
6643   CGF.EmitBlock(InRegBlock);
6644 
6645   // Work out the address of an argument register.
6646   llvm::Value *ScaledRegCount =
6647     CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
6648   llvm::Value *RegBase =
6649     llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity()
6650                                       + RegPadding.getQuantity());
6651   llvm::Value *RegOffset =
6652     CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
6653   Address RegSaveAreaPtr =
6654       CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24),
6655                                   "reg_save_area_ptr");
6656   llvm::Value *RegSaveArea =
6657     CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
6658   Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset,
6659                                            "raw_reg_addr"),
6660                      PaddedSize);
6661   Address RegAddr =
6662     CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr");
6663 
6664   // Update the register count
6665   llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
6666   llvm::Value *NewRegCount =
6667     CGF.Builder.CreateAdd(RegCount, One, "reg_count");
6668   CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
6669   CGF.EmitBranch(ContBlock);
6670 
6671   // Emit code to load the value if it was passed in memory.
6672   CGF.EmitBlock(InMemBlock);
6673 
6674   // Work out the address of a stack argument.
6675   Address OverflowArgAreaPtr = CGF.Builder.CreateStructGEP(
6676       VAListAddr, 2, CharUnits::fromQuantity(16), "overflow_arg_area_ptr");
6677   Address OverflowArgArea =
6678     Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
6679             PaddedSize);
6680   Address RawMemAddr =
6681     CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr");
6682   Address MemAddr =
6683     CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr");
6684 
6685   // Update overflow_arg_area_ptr pointer
6686   llvm::Value *NewOverflowArgArea =
6687     CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
6688                           "overflow_arg_area");
6689   CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
6690   CGF.EmitBranch(ContBlock);
6691 
6692   // Return the appropriate result.
6693   CGF.EmitBlock(ContBlock);
6694   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
6695                                  MemAddr, InMemBlock, "va_arg.addr");
6696 
6697   if (IsIndirect)
6698     ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"),
6699                       TyInfo.second);
6700 
6701   return ResAddr;
6702 }
6703 
6704 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
6705   if (RetTy->isVoidType())
6706     return ABIArgInfo::getIgnore();
6707   if (isVectorArgumentType(RetTy))
6708     return ABIArgInfo::getDirect();
6709   if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
6710     return getNaturalAlignIndirect(RetTy);
6711   return (isPromotableIntegerType(RetTy) ? ABIArgInfo::getExtend(RetTy)
6712                                          : ABIArgInfo::getDirect());
6713 }
6714 
6715 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
6716   // Handle the generic C++ ABI.
6717   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
6718     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6719 
6720   // Integers and enums are extended to full register width.
6721   if (isPromotableIntegerType(Ty))
6722     return ABIArgInfo::getExtend(Ty);
6723 
6724   // Handle vector types and vector-like structure types.  Note that
6725   // as opposed to float-like structure types, we do not allow any
6726   // padding for vector-like structures, so verify the sizes match.
6727   uint64_t Size = getContext().getTypeSize(Ty);
6728   QualType SingleElementTy = GetSingleElementType(Ty);
6729   if (isVectorArgumentType(SingleElementTy) &&
6730       getContext().getTypeSize(SingleElementTy) == Size)
6731     return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy));
6732 
6733   // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
6734   if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
6735     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6736 
6737   // Handle small structures.
6738   if (const RecordType *RT = Ty->getAs<RecordType>()) {
6739     // Structures with flexible arrays have variable length, so really
6740     // fail the size test above.
6741     const RecordDecl *RD = RT->getDecl();
6742     if (RD->hasFlexibleArrayMember())
6743       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6744 
6745     // The structure is passed as an unextended integer, a float, or a double.
6746     llvm::Type *PassTy;
6747     if (isFPArgumentType(SingleElementTy)) {
6748       assert(Size == 32 || Size == 64);
6749       if (Size == 32)
6750         PassTy = llvm::Type::getFloatTy(getVMContext());
6751       else
6752         PassTy = llvm::Type::getDoubleTy(getVMContext());
6753     } else
6754       PassTy = llvm::IntegerType::get(getVMContext(), Size);
6755     return ABIArgInfo::getDirect(PassTy);
6756   }
6757 
6758   // Non-structure compounds are passed indirectly.
6759   if (isCompoundType(Ty))
6760     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6761 
6762   return ABIArgInfo::getDirect(nullptr);
6763 }
6764 
6765 //===----------------------------------------------------------------------===//
6766 // MSP430 ABI Implementation
6767 //===----------------------------------------------------------------------===//
6768 
6769 namespace {
6770 
6771 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
6772 public:
6773   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
6774     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
6775   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6776                            CodeGen::CodeGenModule &M) const override;
6777 };
6778 
6779 }
6780 
6781 void MSP430TargetCodeGenInfo::setTargetAttributes(
6782     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
6783   if (GV->isDeclaration())
6784     return;
6785   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
6786     const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>();
6787     if (!InterruptAttr)
6788       return;
6789 
6790     // Handle 'interrupt' attribute:
6791     llvm::Function *F = cast<llvm::Function>(GV);
6792 
6793     // Step 1: Set ISR calling convention.
6794     F->setCallingConv(llvm::CallingConv::MSP430_INTR);
6795 
6796     // Step 2: Add attributes goodness.
6797     F->addFnAttr(llvm::Attribute::NoInline);
6798     F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber()));
6799   }
6800 }
6801 
6802 //===----------------------------------------------------------------------===//
6803 // MIPS ABI Implementation.  This works for both little-endian and
6804 // big-endian variants.
6805 //===----------------------------------------------------------------------===//
6806 
6807 namespace {
6808 class MipsABIInfo : public ABIInfo {
6809   bool IsO32;
6810   unsigned MinABIStackAlignInBytes, StackAlignInBytes;
6811   void CoerceToIntArgs(uint64_t TySize,
6812                        SmallVectorImpl<llvm::Type *> &ArgList) const;
6813   llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
6814   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
6815   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
6816 public:
6817   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
6818     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
6819     StackAlignInBytes(IsO32 ? 8 : 16) {}
6820 
6821   ABIArgInfo classifyReturnType(QualType RetTy) const;
6822   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
6823   void computeInfo(CGFunctionInfo &FI) const override;
6824   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6825                     QualType Ty) const override;
6826   ABIArgInfo extendType(QualType Ty) const;
6827 };
6828 
6829 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
6830   unsigned SizeOfUnwindException;
6831 public:
6832   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
6833     : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
6834       SizeOfUnwindException(IsO32 ? 24 : 32) {}
6835 
6836   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
6837     return 29;
6838   }
6839 
6840   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6841                            CodeGen::CodeGenModule &CGM) const override {
6842     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6843     if (!FD) return;
6844     llvm::Function *Fn = cast<llvm::Function>(GV);
6845 
6846     if (FD->hasAttr<MipsLongCallAttr>())
6847       Fn->addFnAttr("long-call");
6848     else if (FD->hasAttr<MipsShortCallAttr>())
6849       Fn->addFnAttr("short-call");
6850 
6851     // Other attributes do not have a meaning for declarations.
6852     if (GV->isDeclaration())
6853       return;
6854 
6855     if (FD->hasAttr<Mips16Attr>()) {
6856       Fn->addFnAttr("mips16");
6857     }
6858     else if (FD->hasAttr<NoMips16Attr>()) {
6859       Fn->addFnAttr("nomips16");
6860     }
6861 
6862     if (FD->hasAttr<MicroMipsAttr>())
6863       Fn->addFnAttr("micromips");
6864     else if (FD->hasAttr<NoMicroMipsAttr>())
6865       Fn->addFnAttr("nomicromips");
6866 
6867     const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>();
6868     if (!Attr)
6869       return;
6870 
6871     const char *Kind;
6872     switch (Attr->getInterrupt()) {
6873     case MipsInterruptAttr::eic:     Kind = "eic"; break;
6874     case MipsInterruptAttr::sw0:     Kind = "sw0"; break;
6875     case MipsInterruptAttr::sw1:     Kind = "sw1"; break;
6876     case MipsInterruptAttr::hw0:     Kind = "hw0"; break;
6877     case MipsInterruptAttr::hw1:     Kind = "hw1"; break;
6878     case MipsInterruptAttr::hw2:     Kind = "hw2"; break;
6879     case MipsInterruptAttr::hw3:     Kind = "hw3"; break;
6880     case MipsInterruptAttr::hw4:     Kind = "hw4"; break;
6881     case MipsInterruptAttr::hw5:     Kind = "hw5"; break;
6882     }
6883 
6884     Fn->addFnAttr("interrupt", Kind);
6885 
6886   }
6887 
6888   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6889                                llvm::Value *Address) const override;
6890 
6891   unsigned getSizeOfUnwindException() const override {
6892     return SizeOfUnwindException;
6893   }
6894 };
6895 }
6896 
6897 void MipsABIInfo::CoerceToIntArgs(
6898     uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const {
6899   llvm::IntegerType *IntTy =
6900     llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
6901 
6902   // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
6903   for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
6904     ArgList.push_back(IntTy);
6905 
6906   // If necessary, add one more integer type to ArgList.
6907   unsigned R = TySize % (MinABIStackAlignInBytes * 8);
6908 
6909   if (R)
6910     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
6911 }
6912 
6913 // In N32/64, an aligned double precision floating point field is passed in
6914 // a register.
6915 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
6916   SmallVector<llvm::Type*, 8> ArgList, IntArgList;
6917 
6918   if (IsO32) {
6919     CoerceToIntArgs(TySize, ArgList);
6920     return llvm::StructType::get(getVMContext(), ArgList);
6921   }
6922 
6923   if (Ty->isComplexType())
6924     return CGT.ConvertType(Ty);
6925 
6926   const RecordType *RT = Ty->getAs<RecordType>();
6927 
6928   // Unions/vectors are passed in integer registers.
6929   if (!RT || !RT->isStructureOrClassType()) {
6930     CoerceToIntArgs(TySize, ArgList);
6931     return llvm::StructType::get(getVMContext(), ArgList);
6932   }
6933 
6934   const RecordDecl *RD = RT->getDecl();
6935   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
6936   assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
6937 
6938   uint64_t LastOffset = 0;
6939   unsigned idx = 0;
6940   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
6941 
6942   // Iterate over fields in the struct/class and check if there are any aligned
6943   // double fields.
6944   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
6945        i != e; ++i, ++idx) {
6946     const QualType Ty = i->getType();
6947     const BuiltinType *BT = Ty->getAs<BuiltinType>();
6948 
6949     if (!BT || BT->getKind() != BuiltinType::Double)
6950       continue;
6951 
6952     uint64_t Offset = Layout.getFieldOffset(idx);
6953     if (Offset % 64) // Ignore doubles that are not aligned.
6954       continue;
6955 
6956     // Add ((Offset - LastOffset) / 64) args of type i64.
6957     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
6958       ArgList.push_back(I64);
6959 
6960     // Add double type.
6961     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
6962     LastOffset = Offset + 64;
6963   }
6964 
6965   CoerceToIntArgs(TySize - LastOffset, IntArgList);
6966   ArgList.append(IntArgList.begin(), IntArgList.end());
6967 
6968   return llvm::StructType::get(getVMContext(), ArgList);
6969 }
6970 
6971 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
6972                                         uint64_t Offset) const {
6973   if (OrigOffset + MinABIStackAlignInBytes > Offset)
6974     return nullptr;
6975 
6976   return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
6977 }
6978 
6979 ABIArgInfo
6980 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
6981   Ty = useFirstFieldIfTransparentUnion(Ty);
6982 
6983   uint64_t OrigOffset = Offset;
6984   uint64_t TySize = getContext().getTypeSize(Ty);
6985   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
6986 
6987   Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
6988                    (uint64_t)StackAlignInBytes);
6989   unsigned CurrOffset = llvm::alignTo(Offset, Align);
6990   Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8;
6991 
6992   if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
6993     // Ignore empty aggregates.
6994     if (TySize == 0)
6995       return ABIArgInfo::getIgnore();
6996 
6997     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
6998       Offset = OrigOffset + MinABIStackAlignInBytes;
6999       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7000     }
7001 
7002     // If we have reached here, aggregates are passed directly by coercing to
7003     // another structure type. Padding is inserted if the offset of the
7004     // aggregate is unaligned.
7005     ABIArgInfo ArgInfo =
7006         ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
7007                               getPaddingType(OrigOffset, CurrOffset));
7008     ArgInfo.setInReg(true);
7009     return ArgInfo;
7010   }
7011 
7012   // Treat an enum type as its underlying type.
7013   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7014     Ty = EnumTy->getDecl()->getIntegerType();
7015 
7016   // All integral types are promoted to the GPR width.
7017   if (Ty->isIntegralOrEnumerationType())
7018     return extendType(Ty);
7019 
7020   return ABIArgInfo::getDirect(
7021       nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
7022 }
7023 
7024 llvm::Type*
7025 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
7026   const RecordType *RT = RetTy->getAs<RecordType>();
7027   SmallVector<llvm::Type*, 8> RTList;
7028 
7029   if (RT && RT->isStructureOrClassType()) {
7030     const RecordDecl *RD = RT->getDecl();
7031     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
7032     unsigned FieldCnt = Layout.getFieldCount();
7033 
7034     // N32/64 returns struct/classes in floating point registers if the
7035     // following conditions are met:
7036     // 1. The size of the struct/class is no larger than 128-bit.
7037     // 2. The struct/class has one or two fields all of which are floating
7038     //    point types.
7039     // 3. The offset of the first field is zero (this follows what gcc does).
7040     //
7041     // Any other composite results are returned in integer registers.
7042     //
7043     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
7044       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
7045       for (; b != e; ++b) {
7046         const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
7047 
7048         if (!BT || !BT->isFloatingPoint())
7049           break;
7050 
7051         RTList.push_back(CGT.ConvertType(b->getType()));
7052       }
7053 
7054       if (b == e)
7055         return llvm::StructType::get(getVMContext(), RTList,
7056                                      RD->hasAttr<PackedAttr>());
7057 
7058       RTList.clear();
7059     }
7060   }
7061 
7062   CoerceToIntArgs(Size, RTList);
7063   return llvm::StructType::get(getVMContext(), RTList);
7064 }
7065 
7066 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
7067   uint64_t Size = getContext().getTypeSize(RetTy);
7068 
7069   if (RetTy->isVoidType())
7070     return ABIArgInfo::getIgnore();
7071 
7072   // O32 doesn't treat zero-sized structs differently from other structs.
7073   // However, N32/N64 ignores zero sized return values.
7074   if (!IsO32 && Size == 0)
7075     return ABIArgInfo::getIgnore();
7076 
7077   if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
7078     if (Size <= 128) {
7079       if (RetTy->isAnyComplexType())
7080         return ABIArgInfo::getDirect();
7081 
7082       // O32 returns integer vectors in registers and N32/N64 returns all small
7083       // aggregates in registers.
7084       if (!IsO32 ||
7085           (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
7086         ABIArgInfo ArgInfo =
7087             ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
7088         ArgInfo.setInReg(true);
7089         return ArgInfo;
7090       }
7091     }
7092 
7093     return getNaturalAlignIndirect(RetTy);
7094   }
7095 
7096   // Treat an enum type as its underlying type.
7097   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
7098     RetTy = EnumTy->getDecl()->getIntegerType();
7099 
7100   if (RetTy->isPromotableIntegerType())
7101     return ABIArgInfo::getExtend(RetTy);
7102 
7103   if ((RetTy->isUnsignedIntegerOrEnumerationType() ||
7104       RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32)
7105     return ABIArgInfo::getSignExtend(RetTy);
7106 
7107   return ABIArgInfo::getDirect();
7108 }
7109 
7110 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
7111   ABIArgInfo &RetInfo = FI.getReturnInfo();
7112   if (!getCXXABI().classifyReturnType(FI))
7113     RetInfo = classifyReturnType(FI.getReturnType());
7114 
7115   // Check if a pointer to an aggregate is passed as a hidden argument.
7116   uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
7117 
7118   for (auto &I : FI.arguments())
7119     I.info = classifyArgumentType(I.type, Offset);
7120 }
7121 
7122 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7123                                QualType OrigTy) const {
7124   QualType Ty = OrigTy;
7125 
7126   // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64.
7127   // Pointers are also promoted in the same way but this only matters for N32.
7128   unsigned SlotSizeInBits = IsO32 ? 32 : 64;
7129   unsigned PtrWidth = getTarget().getPointerWidth(0);
7130   bool DidPromote = false;
7131   if ((Ty->isIntegerType() &&
7132           getContext().getIntWidth(Ty) < SlotSizeInBits) ||
7133       (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) {
7134     DidPromote = true;
7135     Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits,
7136                                             Ty->isSignedIntegerType());
7137   }
7138 
7139   auto TyInfo = getContext().getTypeInfoInChars(Ty);
7140 
7141   // The alignment of things in the argument area is never larger than
7142   // StackAlignInBytes.
7143   TyInfo.second =
7144     std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes));
7145 
7146   // MinABIStackAlignInBytes is the size of argument slots on the stack.
7147   CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes);
7148 
7149   Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
7150                           TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true);
7151 
7152 
7153   // If there was a promotion, "unpromote" into a temporary.
7154   // TODO: can we just use a pointer into a subset of the original slot?
7155   if (DidPromote) {
7156     Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp");
7157     llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr);
7158 
7159     // Truncate down to the right width.
7160     llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType()
7161                                                  : CGF.IntPtrTy);
7162     llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy);
7163     if (OrigTy->isPointerType())
7164       V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType());
7165 
7166     CGF.Builder.CreateStore(V, Temp);
7167     Addr = Temp;
7168   }
7169 
7170   return Addr;
7171 }
7172 
7173 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const {
7174   int TySize = getContext().getTypeSize(Ty);
7175 
7176   // MIPS64 ABI requires unsigned 32 bit integers to be sign extended.
7177   if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
7178     return ABIArgInfo::getSignExtend(Ty);
7179 
7180   return ABIArgInfo::getExtend(Ty);
7181 }
7182 
7183 bool
7184 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
7185                                                llvm::Value *Address) const {
7186   // This information comes from gcc's implementation, which seems to
7187   // as canonical as it gets.
7188 
7189   // Everything on MIPS is 4 bytes.  Double-precision FP registers
7190   // are aliased to pairs of single-precision FP registers.
7191   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
7192 
7193   // 0-31 are the general purpose registers, $0 - $31.
7194   // 32-63 are the floating-point registers, $f0 - $f31.
7195   // 64 and 65 are the multiply/divide registers, $hi and $lo.
7196   // 66 is the (notional, I think) register for signal-handler return.
7197   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
7198 
7199   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
7200   // They are one bit wide and ignored here.
7201 
7202   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
7203   // (coprocessor 1 is the FP unit)
7204   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
7205   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
7206   // 176-181 are the DSP accumulator registers.
7207   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
7208   return false;
7209 }
7210 
7211 //===----------------------------------------------------------------------===//
7212 // AVR ABI Implementation.
7213 //===----------------------------------------------------------------------===//
7214 
7215 namespace {
7216 class AVRTargetCodeGenInfo : public TargetCodeGenInfo {
7217 public:
7218   AVRTargetCodeGenInfo(CodeGenTypes &CGT)
7219     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) { }
7220 
7221   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7222                            CodeGen::CodeGenModule &CGM) const override {
7223     if (GV->isDeclaration())
7224       return;
7225     const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
7226     if (!FD) return;
7227     auto *Fn = cast<llvm::Function>(GV);
7228 
7229     if (FD->getAttr<AVRInterruptAttr>())
7230       Fn->addFnAttr("interrupt");
7231 
7232     if (FD->getAttr<AVRSignalAttr>())
7233       Fn->addFnAttr("signal");
7234   }
7235 };
7236 }
7237 
7238 //===----------------------------------------------------------------------===//
7239 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
7240 // Currently subclassed only to implement custom OpenCL C function attribute
7241 // handling.
7242 //===----------------------------------------------------------------------===//
7243 
7244 namespace {
7245 
7246 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
7247 public:
7248   TCETargetCodeGenInfo(CodeGenTypes &CGT)
7249     : DefaultTargetCodeGenInfo(CGT) {}
7250 
7251   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7252                            CodeGen::CodeGenModule &M) const override;
7253 };
7254 
7255 void TCETargetCodeGenInfo::setTargetAttributes(
7256     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
7257   if (GV->isDeclaration())
7258     return;
7259   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7260   if (!FD) return;
7261 
7262   llvm::Function *F = cast<llvm::Function>(GV);
7263 
7264   if (M.getLangOpts().OpenCL) {
7265     if (FD->hasAttr<OpenCLKernelAttr>()) {
7266       // OpenCL C Kernel functions are not subject to inlining
7267       F->addFnAttr(llvm::Attribute::NoInline);
7268       const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
7269       if (Attr) {
7270         // Convert the reqd_work_group_size() attributes to metadata.
7271         llvm::LLVMContext &Context = F->getContext();
7272         llvm::NamedMDNode *OpenCLMetadata =
7273             M.getModule().getOrInsertNamedMetadata(
7274                 "opencl.kernel_wg_size_info");
7275 
7276         SmallVector<llvm::Metadata *, 5> Operands;
7277         Operands.push_back(llvm::ConstantAsMetadata::get(F));
7278 
7279         Operands.push_back(
7280             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
7281                 M.Int32Ty, llvm::APInt(32, Attr->getXDim()))));
7282         Operands.push_back(
7283             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
7284                 M.Int32Ty, llvm::APInt(32, Attr->getYDim()))));
7285         Operands.push_back(
7286             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
7287                 M.Int32Ty, llvm::APInt(32, Attr->getZDim()))));
7288 
7289         // Add a boolean constant operand for "required" (true) or "hint"
7290         // (false) for implementing the work_group_size_hint attr later.
7291         // Currently always true as the hint is not yet implemented.
7292         Operands.push_back(
7293             llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context)));
7294         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
7295       }
7296     }
7297   }
7298 }
7299 
7300 }
7301 
7302 //===----------------------------------------------------------------------===//
7303 // Hexagon ABI Implementation
7304 //===----------------------------------------------------------------------===//
7305 
7306 namespace {
7307 
7308 class HexagonABIInfo : public ABIInfo {
7309 
7310 
7311 public:
7312   HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
7313 
7314 private:
7315 
7316   ABIArgInfo classifyReturnType(QualType RetTy) const;
7317   ABIArgInfo classifyArgumentType(QualType RetTy) const;
7318 
7319   void computeInfo(CGFunctionInfo &FI) const override;
7320 
7321   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7322                     QualType Ty) const override;
7323 };
7324 
7325 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
7326 public:
7327   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
7328     :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
7329 
7330   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
7331     return 29;
7332   }
7333 };
7334 
7335 }
7336 
7337 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
7338   if (!getCXXABI().classifyReturnType(FI))
7339     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7340   for (auto &I : FI.arguments())
7341     I.info = classifyArgumentType(I.type);
7342 }
7343 
7344 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
7345   if (!isAggregateTypeForABI(Ty)) {
7346     // Treat an enum type as its underlying type.
7347     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7348       Ty = EnumTy->getDecl()->getIntegerType();
7349 
7350     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
7351                                           : ABIArgInfo::getDirect());
7352   }
7353 
7354   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
7355     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7356 
7357   // Ignore empty records.
7358   if (isEmptyRecord(getContext(), Ty, true))
7359     return ABIArgInfo::getIgnore();
7360 
7361   uint64_t Size = getContext().getTypeSize(Ty);
7362   if (Size > 64)
7363     return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
7364     // Pass in the smallest viable integer type.
7365   else if (Size > 32)
7366       return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
7367   else if (Size > 16)
7368       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
7369   else if (Size > 8)
7370       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
7371   else
7372       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
7373 }
7374 
7375 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
7376   if (RetTy->isVoidType())
7377     return ABIArgInfo::getIgnore();
7378 
7379   // Large vector types should be returned via memory.
7380   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
7381     return getNaturalAlignIndirect(RetTy);
7382 
7383   if (!isAggregateTypeForABI(RetTy)) {
7384     // Treat an enum type as its underlying type.
7385     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
7386       RetTy = EnumTy->getDecl()->getIntegerType();
7387 
7388     return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
7389                                              : ABIArgInfo::getDirect());
7390   }
7391 
7392   if (isEmptyRecord(getContext(), RetTy, true))
7393     return ABIArgInfo::getIgnore();
7394 
7395   // Aggregates <= 8 bytes are returned in r0; other aggregates
7396   // are returned indirectly.
7397   uint64_t Size = getContext().getTypeSize(RetTy);
7398   if (Size <= 64) {
7399     // Return in the smallest viable integer type.
7400     if (Size <= 8)
7401       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
7402     if (Size <= 16)
7403       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
7404     if (Size <= 32)
7405       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
7406     return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
7407   }
7408 
7409   return getNaturalAlignIndirect(RetTy, /*ByVal=*/true);
7410 }
7411 
7412 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7413                                   QualType Ty) const {
7414   // FIXME: Someone needs to audit that this handle alignment correctly.
7415   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
7416                           getContext().getTypeInfoInChars(Ty),
7417                           CharUnits::fromQuantity(4),
7418                           /*AllowHigherAlign*/ true);
7419 }
7420 
7421 //===----------------------------------------------------------------------===//
7422 // Lanai ABI Implementation
7423 //===----------------------------------------------------------------------===//
7424 
7425 namespace {
7426 class LanaiABIInfo : public DefaultABIInfo {
7427 public:
7428   LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
7429 
7430   bool shouldUseInReg(QualType Ty, CCState &State) const;
7431 
7432   void computeInfo(CGFunctionInfo &FI) const override {
7433     CCState State(FI.getCallingConvention());
7434     // Lanai uses 4 registers to pass arguments unless the function has the
7435     // regparm attribute set.
7436     if (FI.getHasRegParm()) {
7437       State.FreeRegs = FI.getRegParm();
7438     } else {
7439       State.FreeRegs = 4;
7440     }
7441 
7442     if (!getCXXABI().classifyReturnType(FI))
7443       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7444     for (auto &I : FI.arguments())
7445       I.info = classifyArgumentType(I.type, State);
7446   }
7447 
7448   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
7449   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
7450 };
7451 } // end anonymous namespace
7452 
7453 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const {
7454   unsigned Size = getContext().getTypeSize(Ty);
7455   unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U;
7456 
7457   if (SizeInRegs == 0)
7458     return false;
7459 
7460   if (SizeInRegs > State.FreeRegs) {
7461     State.FreeRegs = 0;
7462     return false;
7463   }
7464 
7465   State.FreeRegs -= SizeInRegs;
7466 
7467   return true;
7468 }
7469 
7470 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal,
7471                                            CCState &State) const {
7472   if (!ByVal) {
7473     if (State.FreeRegs) {
7474       --State.FreeRegs; // Non-byval indirects just use one pointer.
7475       return getNaturalAlignIndirectInReg(Ty);
7476     }
7477     return getNaturalAlignIndirect(Ty, false);
7478   }
7479 
7480   // Compute the byval alignment.
7481   const unsigned MinABIStackAlignInBytes = 4;
7482   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
7483   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
7484                                  /*Realign=*/TypeAlign >
7485                                      MinABIStackAlignInBytes);
7486 }
7487 
7488 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty,
7489                                               CCState &State) const {
7490   // Check with the C++ ABI first.
7491   const RecordType *RT = Ty->getAs<RecordType>();
7492   if (RT) {
7493     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
7494     if (RAA == CGCXXABI::RAA_Indirect) {
7495       return getIndirectResult(Ty, /*ByVal=*/false, State);
7496     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
7497       return getNaturalAlignIndirect(Ty, /*ByRef=*/true);
7498     }
7499   }
7500 
7501   if (isAggregateTypeForABI(Ty)) {
7502     // Structures with flexible arrays are always indirect.
7503     if (RT && RT->getDecl()->hasFlexibleArrayMember())
7504       return getIndirectResult(Ty, /*ByVal=*/true, State);
7505 
7506     // Ignore empty structs/unions.
7507     if (isEmptyRecord(getContext(), Ty, true))
7508       return ABIArgInfo::getIgnore();
7509 
7510     llvm::LLVMContext &LLVMContext = getVMContext();
7511     unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
7512     if (SizeInRegs <= State.FreeRegs) {
7513       llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
7514       SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
7515       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
7516       State.FreeRegs -= SizeInRegs;
7517       return ABIArgInfo::getDirectInReg(Result);
7518     } else {
7519       State.FreeRegs = 0;
7520     }
7521     return getIndirectResult(Ty, true, State);
7522   }
7523 
7524   // Treat an enum type as its underlying type.
7525   if (const auto *EnumTy = Ty->getAs<EnumType>())
7526     Ty = EnumTy->getDecl()->getIntegerType();
7527 
7528   bool InReg = shouldUseInReg(Ty, State);
7529   if (Ty->isPromotableIntegerType()) {
7530     if (InReg)
7531       return ABIArgInfo::getDirectInReg();
7532     return ABIArgInfo::getExtend(Ty);
7533   }
7534   if (InReg)
7535     return ABIArgInfo::getDirectInReg();
7536   return ABIArgInfo::getDirect();
7537 }
7538 
7539 namespace {
7540 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo {
7541 public:
7542   LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
7543       : TargetCodeGenInfo(new LanaiABIInfo(CGT)) {}
7544 };
7545 }
7546 
7547 //===----------------------------------------------------------------------===//
7548 // AMDGPU ABI Implementation
7549 //===----------------------------------------------------------------------===//
7550 
7551 namespace {
7552 
7553 class AMDGPUABIInfo final : public DefaultABIInfo {
7554 private:
7555   static const unsigned MaxNumRegsForArgsRet = 16;
7556 
7557   unsigned numRegsForType(QualType Ty) const;
7558 
7559   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
7560   bool isHomogeneousAggregateSmallEnough(const Type *Base,
7561                                          uint64_t Members) const override;
7562 
7563 public:
7564   explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) :
7565     DefaultABIInfo(CGT) {}
7566 
7567   ABIArgInfo classifyReturnType(QualType RetTy) const;
7568   ABIArgInfo classifyKernelArgumentType(QualType Ty) const;
7569   ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const;
7570 
7571   void computeInfo(CGFunctionInfo &FI) const override;
7572 };
7573 
7574 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
7575   return true;
7576 }
7577 
7578 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough(
7579   const Type *Base, uint64_t Members) const {
7580   uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32;
7581 
7582   // Homogeneous Aggregates may occupy at most 16 registers.
7583   return Members * NumRegs <= MaxNumRegsForArgsRet;
7584 }
7585 
7586 /// Estimate number of registers the type will use when passed in registers.
7587 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const {
7588   unsigned NumRegs = 0;
7589 
7590   if (const VectorType *VT = Ty->getAs<VectorType>()) {
7591     // Compute from the number of elements. The reported size is based on the
7592     // in-memory size, which includes the padding 4th element for 3-vectors.
7593     QualType EltTy = VT->getElementType();
7594     unsigned EltSize = getContext().getTypeSize(EltTy);
7595 
7596     // 16-bit element vectors should be passed as packed.
7597     if (EltSize == 16)
7598       return (VT->getNumElements() + 1) / 2;
7599 
7600     unsigned EltNumRegs = (EltSize + 31) / 32;
7601     return EltNumRegs * VT->getNumElements();
7602   }
7603 
7604   if (const RecordType *RT = Ty->getAs<RecordType>()) {
7605     const RecordDecl *RD = RT->getDecl();
7606     assert(!RD->hasFlexibleArrayMember());
7607 
7608     for (const FieldDecl *Field : RD->fields()) {
7609       QualType FieldTy = Field->getType();
7610       NumRegs += numRegsForType(FieldTy);
7611     }
7612 
7613     return NumRegs;
7614   }
7615 
7616   return (getContext().getTypeSize(Ty) + 31) / 32;
7617 }
7618 
7619 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const {
7620   llvm::CallingConv::ID CC = FI.getCallingConvention();
7621 
7622   if (!getCXXABI().classifyReturnType(FI))
7623     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7624 
7625   unsigned NumRegsLeft = MaxNumRegsForArgsRet;
7626   for (auto &Arg : FI.arguments()) {
7627     if (CC == llvm::CallingConv::AMDGPU_KERNEL) {
7628       Arg.info = classifyKernelArgumentType(Arg.type);
7629     } else {
7630       Arg.info = classifyArgumentType(Arg.type, NumRegsLeft);
7631     }
7632   }
7633 }
7634 
7635 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const {
7636   if (isAggregateTypeForABI(RetTy)) {
7637     // Records with non-trivial destructors/copy-constructors should not be
7638     // returned by value.
7639     if (!getRecordArgABI(RetTy, getCXXABI())) {
7640       // Ignore empty structs/unions.
7641       if (isEmptyRecord(getContext(), RetTy, true))
7642         return ABIArgInfo::getIgnore();
7643 
7644       // Lower single-element structs to just return a regular value.
7645       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
7646         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
7647 
7648       if (const RecordType *RT = RetTy->getAs<RecordType>()) {
7649         const RecordDecl *RD = RT->getDecl();
7650         if (RD->hasFlexibleArrayMember())
7651           return DefaultABIInfo::classifyReturnType(RetTy);
7652       }
7653 
7654       // Pack aggregates <= 4 bytes into single VGPR or pair.
7655       uint64_t Size = getContext().getTypeSize(RetTy);
7656       if (Size <= 16)
7657         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
7658 
7659       if (Size <= 32)
7660         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
7661 
7662       if (Size <= 64) {
7663         llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
7664         return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
7665       }
7666 
7667       if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet)
7668         return ABIArgInfo::getDirect();
7669     }
7670   }
7671 
7672   // Otherwise just do the default thing.
7673   return DefaultABIInfo::classifyReturnType(RetTy);
7674 }
7675 
7676 /// For kernels all parameters are really passed in a special buffer. It doesn't
7677 /// make sense to pass anything byval, so everything must be direct.
7678 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const {
7679   Ty = useFirstFieldIfTransparentUnion(Ty);
7680 
7681   // TODO: Can we omit empty structs?
7682 
7683   // Coerce single element structs to its element.
7684   if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
7685     return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
7686 
7687   // If we set CanBeFlattened to true, CodeGen will expand the struct to its
7688   // individual elements, which confuses the Clover OpenCL backend; therefore we
7689   // have to set it to false here. Other args of getDirect() are just defaults.
7690   return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
7691 }
7692 
7693 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty,
7694                                                unsigned &NumRegsLeft) const {
7695   assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow");
7696 
7697   Ty = useFirstFieldIfTransparentUnion(Ty);
7698 
7699   if (isAggregateTypeForABI(Ty)) {
7700     // Records with non-trivial destructors/copy-constructors should not be
7701     // passed by value.
7702     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
7703       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7704 
7705     // Ignore empty structs/unions.
7706     if (isEmptyRecord(getContext(), Ty, true))
7707       return ABIArgInfo::getIgnore();
7708 
7709     // Lower single-element structs to just pass a regular value. TODO: We
7710     // could do reasonable-size multiple-element structs too, using getExpand(),
7711     // though watch out for things like bitfields.
7712     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
7713       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
7714 
7715     if (const RecordType *RT = Ty->getAs<RecordType>()) {
7716       const RecordDecl *RD = RT->getDecl();
7717       if (RD->hasFlexibleArrayMember())
7718         return DefaultABIInfo::classifyArgumentType(Ty);
7719     }
7720 
7721     // Pack aggregates <= 8 bytes into single VGPR or pair.
7722     uint64_t Size = getContext().getTypeSize(Ty);
7723     if (Size <= 64) {
7724       unsigned NumRegs = (Size + 31) / 32;
7725       NumRegsLeft -= std::min(NumRegsLeft, NumRegs);
7726 
7727       if (Size <= 16)
7728         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
7729 
7730       if (Size <= 32)
7731         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
7732 
7733       // XXX: Should this be i64 instead, and should the limit increase?
7734       llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
7735       return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
7736     }
7737 
7738     if (NumRegsLeft > 0) {
7739       unsigned NumRegs = numRegsForType(Ty);
7740       if (NumRegsLeft >= NumRegs) {
7741         NumRegsLeft -= NumRegs;
7742         return ABIArgInfo::getDirect();
7743       }
7744     }
7745   }
7746 
7747   // Otherwise just do the default thing.
7748   ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty);
7749   if (!ArgInfo.isIndirect()) {
7750     unsigned NumRegs = numRegsForType(Ty);
7751     NumRegsLeft -= std::min(NumRegs, NumRegsLeft);
7752   }
7753 
7754   return ArgInfo;
7755 }
7756 
7757 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
7758 public:
7759   AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
7760     : TargetCodeGenInfo(new AMDGPUABIInfo(CGT)) {}
7761   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7762                            CodeGen::CodeGenModule &M) const override;
7763   unsigned getOpenCLKernelCallingConv() const override;
7764 
7765   llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM,
7766       llvm::PointerType *T, QualType QT) const override;
7767 
7768   LangAS getASTAllocaAddressSpace() const override {
7769     return getLangASFromTargetAS(
7770         getABIInfo().getDataLayout().getAllocaAddrSpace());
7771   }
7772   LangAS getGlobalVarAddressSpace(CodeGenModule &CGM,
7773                                   const VarDecl *D) const override;
7774   llvm::SyncScope::ID getLLVMSyncScopeID(SyncScope S,
7775                                          llvm::LLVMContext &C) const override;
7776   llvm::Function *
7777   createEnqueuedBlockKernel(CodeGenFunction &CGF,
7778                             llvm::Function *BlockInvokeFunc,
7779                             llvm::Value *BlockLiteral) const override;
7780   bool shouldEmitStaticExternCAliases() const override;
7781   void setCUDAKernelCallingConvention(const FunctionType *&FT) const override;
7782 };
7783 }
7784 
7785 void AMDGPUTargetCodeGenInfo::setTargetAttributes(
7786     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
7787   if (GV->isDeclaration())
7788     return;
7789   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7790   if (!FD)
7791     return;
7792 
7793   llvm::Function *F = cast<llvm::Function>(GV);
7794 
7795   const auto *ReqdWGS = M.getLangOpts().OpenCL ?
7796     FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr;
7797 
7798   if (M.getLangOpts().OpenCL && FD->hasAttr<OpenCLKernelAttr>() &&
7799       (M.getTriple().getOS() == llvm::Triple::AMDHSA))
7800     F->addFnAttr("amdgpu-implicitarg-num-bytes", "48");
7801 
7802   const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>();
7803   if (ReqdWGS || FlatWGS) {
7804     unsigned Min = FlatWGS ? FlatWGS->getMin() : 0;
7805     unsigned Max = FlatWGS ? FlatWGS->getMax() : 0;
7806     if (ReqdWGS && Min == 0 && Max == 0)
7807       Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim();
7808 
7809     if (Min != 0) {
7810       assert(Min <= Max && "Min must be less than or equal Max");
7811 
7812       std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max);
7813       F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
7814     } else
7815       assert(Max == 0 && "Max must be zero");
7816   }
7817 
7818   if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) {
7819     unsigned Min = Attr->getMin();
7820     unsigned Max = Attr->getMax();
7821 
7822     if (Min != 0) {
7823       assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max");
7824 
7825       std::string AttrVal = llvm::utostr(Min);
7826       if (Max != 0)
7827         AttrVal = AttrVal + "," + llvm::utostr(Max);
7828       F->addFnAttr("amdgpu-waves-per-eu", AttrVal);
7829     } else
7830       assert(Max == 0 && "Max must be zero");
7831   }
7832 
7833   if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
7834     unsigned NumSGPR = Attr->getNumSGPR();
7835 
7836     if (NumSGPR != 0)
7837       F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR));
7838   }
7839 
7840   if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
7841     uint32_t NumVGPR = Attr->getNumVGPR();
7842 
7843     if (NumVGPR != 0)
7844       F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR));
7845   }
7846 }
7847 
7848 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
7849   return llvm::CallingConv::AMDGPU_KERNEL;
7850 }
7851 
7852 // Currently LLVM assumes null pointers always have value 0,
7853 // which results in incorrectly transformed IR. Therefore, instead of
7854 // emitting null pointers in private and local address spaces, a null
7855 // pointer in generic address space is emitted which is casted to a
7856 // pointer in local or private address space.
7857 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer(
7858     const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT,
7859     QualType QT) const {
7860   if (CGM.getContext().getTargetNullPointerValue(QT) == 0)
7861     return llvm::ConstantPointerNull::get(PT);
7862 
7863   auto &Ctx = CGM.getContext();
7864   auto NPT = llvm::PointerType::get(PT->getElementType(),
7865       Ctx.getTargetAddressSpace(LangAS::opencl_generic));
7866   return llvm::ConstantExpr::getAddrSpaceCast(
7867       llvm::ConstantPointerNull::get(NPT), PT);
7868 }
7869 
7870 LangAS
7871 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
7872                                                   const VarDecl *D) const {
7873   assert(!CGM.getLangOpts().OpenCL &&
7874          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
7875          "Address space agnostic languages only");
7876   LangAS DefaultGlobalAS = getLangASFromTargetAS(
7877       CGM.getContext().getTargetAddressSpace(LangAS::opencl_global));
7878   if (!D)
7879     return DefaultGlobalAS;
7880 
7881   LangAS AddrSpace = D->getType().getAddressSpace();
7882   assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace));
7883   if (AddrSpace != LangAS::Default)
7884     return AddrSpace;
7885 
7886   if (CGM.isTypeConstant(D->getType(), false)) {
7887     if (auto ConstAS = CGM.getTarget().getConstantAddressSpace())
7888       return ConstAS.getValue();
7889   }
7890   return DefaultGlobalAS;
7891 }
7892 
7893 llvm::SyncScope::ID
7894 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(SyncScope S,
7895                                             llvm::LLVMContext &C) const {
7896   StringRef Name;
7897   switch (S) {
7898   case SyncScope::OpenCLWorkGroup:
7899     Name = "workgroup";
7900     break;
7901   case SyncScope::OpenCLDevice:
7902     Name = "agent";
7903     break;
7904   case SyncScope::OpenCLAllSVMDevices:
7905     Name = "";
7906     break;
7907   case SyncScope::OpenCLSubGroup:
7908     Name = "subgroup";
7909   }
7910   return C.getOrInsertSyncScopeID(Name);
7911 }
7912 
7913 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
7914   return false;
7915 }
7916 
7917 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention(
7918     const FunctionType *&FT) const {
7919   FT = getABIInfo().getContext().adjustFunctionType(
7920       FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel));
7921 }
7922 
7923 //===----------------------------------------------------------------------===//
7924 // SPARC v8 ABI Implementation.
7925 // Based on the SPARC Compliance Definition version 2.4.1.
7926 //
7927 // Ensures that complex values are passed in registers.
7928 //
7929 namespace {
7930 class SparcV8ABIInfo : public DefaultABIInfo {
7931 public:
7932   SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
7933 
7934 private:
7935   ABIArgInfo classifyReturnType(QualType RetTy) const;
7936   void computeInfo(CGFunctionInfo &FI) const override;
7937 };
7938 } // end anonymous namespace
7939 
7940 
7941 ABIArgInfo
7942 SparcV8ABIInfo::classifyReturnType(QualType Ty) const {
7943   if (Ty->isAnyComplexType()) {
7944     return ABIArgInfo::getDirect();
7945   }
7946   else {
7947     return DefaultABIInfo::classifyReturnType(Ty);
7948   }
7949 }
7950 
7951 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const {
7952 
7953   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7954   for (auto &Arg : FI.arguments())
7955     Arg.info = classifyArgumentType(Arg.type);
7956 }
7957 
7958 namespace {
7959 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo {
7960 public:
7961   SparcV8TargetCodeGenInfo(CodeGenTypes &CGT)
7962     : TargetCodeGenInfo(new SparcV8ABIInfo(CGT)) {}
7963 };
7964 } // end anonymous namespace
7965 
7966 //===----------------------------------------------------------------------===//
7967 // SPARC v9 ABI Implementation.
7968 // Based on the SPARC Compliance Definition version 2.4.1.
7969 //
7970 // Function arguments a mapped to a nominal "parameter array" and promoted to
7971 // registers depending on their type. Each argument occupies 8 or 16 bytes in
7972 // the array, structs larger than 16 bytes are passed indirectly.
7973 //
7974 // One case requires special care:
7975 //
7976 //   struct mixed {
7977 //     int i;
7978 //     float f;
7979 //   };
7980 //
7981 // When a struct mixed is passed by value, it only occupies 8 bytes in the
7982 // parameter array, but the int is passed in an integer register, and the float
7983 // is passed in a floating point register. This is represented as two arguments
7984 // with the LLVM IR inreg attribute:
7985 //
7986 //   declare void f(i32 inreg %i, float inreg %f)
7987 //
7988 // The code generator will only allocate 4 bytes from the parameter array for
7989 // the inreg arguments. All other arguments are allocated a multiple of 8
7990 // bytes.
7991 //
7992 namespace {
7993 class SparcV9ABIInfo : public ABIInfo {
7994 public:
7995   SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
7996 
7997 private:
7998   ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
7999   void computeInfo(CGFunctionInfo &FI) const override;
8000   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8001                     QualType Ty) const override;
8002 
8003   // Coercion type builder for structs passed in registers. The coercion type
8004   // serves two purposes:
8005   //
8006   // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
8007   //    in registers.
8008   // 2. Expose aligned floating point elements as first-level elements, so the
8009   //    code generator knows to pass them in floating point registers.
8010   //
8011   // We also compute the InReg flag which indicates that the struct contains
8012   // aligned 32-bit floats.
8013   //
8014   struct CoerceBuilder {
8015     llvm::LLVMContext &Context;
8016     const llvm::DataLayout &DL;
8017     SmallVector<llvm::Type*, 8> Elems;
8018     uint64_t Size;
8019     bool InReg;
8020 
8021     CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
8022       : Context(c), DL(dl), Size(0), InReg(false) {}
8023 
8024     // Pad Elems with integers until Size is ToSize.
8025     void pad(uint64_t ToSize) {
8026       assert(ToSize >= Size && "Cannot remove elements");
8027       if (ToSize == Size)
8028         return;
8029 
8030       // Finish the current 64-bit word.
8031       uint64_t Aligned = llvm::alignTo(Size, 64);
8032       if (Aligned > Size && Aligned <= ToSize) {
8033         Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
8034         Size = Aligned;
8035       }
8036 
8037       // Add whole 64-bit words.
8038       while (Size + 64 <= ToSize) {
8039         Elems.push_back(llvm::Type::getInt64Ty(Context));
8040         Size += 64;
8041       }
8042 
8043       // Final in-word padding.
8044       if (Size < ToSize) {
8045         Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
8046         Size = ToSize;
8047       }
8048     }
8049 
8050     // Add a floating point element at Offset.
8051     void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
8052       // Unaligned floats are treated as integers.
8053       if (Offset % Bits)
8054         return;
8055       // The InReg flag is only required if there are any floats < 64 bits.
8056       if (Bits < 64)
8057         InReg = true;
8058       pad(Offset);
8059       Elems.push_back(Ty);
8060       Size = Offset + Bits;
8061     }
8062 
8063     // Add a struct type to the coercion type, starting at Offset (in bits).
8064     void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
8065       const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
8066       for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
8067         llvm::Type *ElemTy = StrTy->getElementType(i);
8068         uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
8069         switch (ElemTy->getTypeID()) {
8070         case llvm::Type::StructTyID:
8071           addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
8072           break;
8073         case llvm::Type::FloatTyID:
8074           addFloat(ElemOffset, ElemTy, 32);
8075           break;
8076         case llvm::Type::DoubleTyID:
8077           addFloat(ElemOffset, ElemTy, 64);
8078           break;
8079         case llvm::Type::FP128TyID:
8080           addFloat(ElemOffset, ElemTy, 128);
8081           break;
8082         case llvm::Type::PointerTyID:
8083           if (ElemOffset % 64 == 0) {
8084             pad(ElemOffset);
8085             Elems.push_back(ElemTy);
8086             Size += 64;
8087           }
8088           break;
8089         default:
8090           break;
8091         }
8092       }
8093     }
8094 
8095     // Check if Ty is a usable substitute for the coercion type.
8096     bool isUsableType(llvm::StructType *Ty) const {
8097       return llvm::makeArrayRef(Elems) == Ty->elements();
8098     }
8099 
8100     // Get the coercion type as a literal struct type.
8101     llvm::Type *getType() const {
8102       if (Elems.size() == 1)
8103         return Elems.front();
8104       else
8105         return llvm::StructType::get(Context, Elems);
8106     }
8107   };
8108 };
8109 } // end anonymous namespace
8110 
8111 ABIArgInfo
8112 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
8113   if (Ty->isVoidType())
8114     return ABIArgInfo::getIgnore();
8115 
8116   uint64_t Size = getContext().getTypeSize(Ty);
8117 
8118   // Anything too big to fit in registers is passed with an explicit indirect
8119   // pointer / sret pointer.
8120   if (Size > SizeLimit)
8121     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
8122 
8123   // Treat an enum type as its underlying type.
8124   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
8125     Ty = EnumTy->getDecl()->getIntegerType();
8126 
8127   // Integer types smaller than a register are extended.
8128   if (Size < 64 && Ty->isIntegerType())
8129     return ABIArgInfo::getExtend(Ty);
8130 
8131   // Other non-aggregates go in registers.
8132   if (!isAggregateTypeForABI(Ty))
8133     return ABIArgInfo::getDirect();
8134 
8135   // If a C++ object has either a non-trivial copy constructor or a non-trivial
8136   // destructor, it is passed with an explicit indirect pointer / sret pointer.
8137   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
8138     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
8139 
8140   // This is a small aggregate type that should be passed in registers.
8141   // Build a coercion type from the LLVM struct type.
8142   llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
8143   if (!StrTy)
8144     return ABIArgInfo::getDirect();
8145 
8146   CoerceBuilder CB(getVMContext(), getDataLayout());
8147   CB.addStruct(0, StrTy);
8148   CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64));
8149 
8150   // Try to use the original type for coercion.
8151   llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
8152 
8153   if (CB.InReg)
8154     return ABIArgInfo::getDirectInReg(CoerceTy);
8155   else
8156     return ABIArgInfo::getDirect(CoerceTy);
8157 }
8158 
8159 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8160                                   QualType Ty) const {
8161   ABIArgInfo AI = classifyType(Ty, 16 * 8);
8162   llvm::Type *ArgTy = CGT.ConvertType(Ty);
8163   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
8164     AI.setCoerceToType(ArgTy);
8165 
8166   CharUnits SlotSize = CharUnits::fromQuantity(8);
8167 
8168   CGBuilderTy &Builder = CGF.Builder;
8169   Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
8170   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
8171 
8172   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
8173 
8174   Address ArgAddr = Address::invalid();
8175   CharUnits Stride;
8176   switch (AI.getKind()) {
8177   case ABIArgInfo::Expand:
8178   case ABIArgInfo::CoerceAndExpand:
8179   case ABIArgInfo::InAlloca:
8180     llvm_unreachable("Unsupported ABI kind for va_arg");
8181 
8182   case ABIArgInfo::Extend: {
8183     Stride = SlotSize;
8184     CharUnits Offset = SlotSize - TypeInfo.first;
8185     ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend");
8186     break;
8187   }
8188 
8189   case ABIArgInfo::Direct: {
8190     auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
8191     Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize);
8192     ArgAddr = Addr;
8193     break;
8194   }
8195 
8196   case ABIArgInfo::Indirect:
8197     Stride = SlotSize;
8198     ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect");
8199     ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"),
8200                       TypeInfo.second);
8201     break;
8202 
8203   case ABIArgInfo::Ignore:
8204     return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second);
8205   }
8206 
8207   // Update VAList.
8208   llvm::Value *NextPtr =
8209     Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), Stride, "ap.next");
8210   Builder.CreateStore(NextPtr, VAListAddr);
8211 
8212   return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr");
8213 }
8214 
8215 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
8216   FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
8217   for (auto &I : FI.arguments())
8218     I.info = classifyType(I.type, 16 * 8);
8219 }
8220 
8221 namespace {
8222 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
8223 public:
8224   SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
8225     : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {}
8226 
8227   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
8228     return 14;
8229   }
8230 
8231   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
8232                                llvm::Value *Address) const override;
8233 };
8234 } // end anonymous namespace
8235 
8236 bool
8237 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
8238                                                 llvm::Value *Address) const {
8239   // This is calculated from the LLVM and GCC tables and verified
8240   // against gcc output.  AFAIK all ABIs use the same encoding.
8241 
8242   CodeGen::CGBuilderTy &Builder = CGF.Builder;
8243 
8244   llvm::IntegerType *i8 = CGF.Int8Ty;
8245   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
8246   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
8247 
8248   // 0-31: the 8-byte general-purpose registers
8249   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
8250 
8251   // 32-63: f0-31, the 4-byte floating-point registers
8252   AssignToArrayRange(Builder, Address, Four8, 32, 63);
8253 
8254   //   Y   = 64
8255   //   PSR = 65
8256   //   WIM = 66
8257   //   TBR = 67
8258   //   PC  = 68
8259   //   NPC = 69
8260   //   FSR = 70
8261   //   CSR = 71
8262   AssignToArrayRange(Builder, Address, Eight8, 64, 71);
8263 
8264   // 72-87: d0-15, the 8-byte floating-point registers
8265   AssignToArrayRange(Builder, Address, Eight8, 72, 87);
8266 
8267   return false;
8268 }
8269 
8270 // ARC ABI implementation.
8271 namespace {
8272 
8273 class ARCABIInfo : public DefaultABIInfo {
8274 public:
8275   using DefaultABIInfo::DefaultABIInfo;
8276 
8277 private:
8278   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8279                     QualType Ty) const override;
8280 
8281   void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const {
8282     if (!State.FreeRegs)
8283       return;
8284     if (Info.isIndirect() && Info.getInReg())
8285       State.FreeRegs--;
8286     else if (Info.isDirect() && Info.getInReg()) {
8287       unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32;
8288       if (sz < State.FreeRegs)
8289         State.FreeRegs -= sz;
8290       else
8291         State.FreeRegs = 0;
8292     }
8293   }
8294 
8295   void computeInfo(CGFunctionInfo &FI) const override {
8296     CCState State(FI.getCallingConvention());
8297     // ARC uses 8 registers to pass arguments.
8298     State.FreeRegs = 8;
8299 
8300     if (!getCXXABI().classifyReturnType(FI))
8301       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8302     updateState(FI.getReturnInfo(), FI.getReturnType(), State);
8303     for (auto &I : FI.arguments()) {
8304       I.info = classifyArgumentType(I.type, State.FreeRegs);
8305       updateState(I.info, I.type, State);
8306     }
8307   }
8308 
8309   ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const;
8310   ABIArgInfo getIndirectByValue(QualType Ty) const;
8311   ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const;
8312   ABIArgInfo classifyReturnType(QualType RetTy) const;
8313 };
8314 
8315 class ARCTargetCodeGenInfo : public TargetCodeGenInfo {
8316 public:
8317   ARCTargetCodeGenInfo(CodeGenTypes &CGT)
8318       : TargetCodeGenInfo(new ARCABIInfo(CGT)) {}
8319 };
8320 
8321 
8322 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const {
8323   return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) :
8324                        getNaturalAlignIndirect(Ty, false);
8325 }
8326 
8327 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const {
8328   // Compute the byval alignment.
8329   const unsigned MinABIStackAlignInBytes = 4;
8330   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
8331   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
8332                                  TypeAlign > MinABIStackAlignInBytes);
8333 }
8334 
8335 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8336                               QualType Ty) const {
8337   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
8338                           getContext().getTypeInfoInChars(Ty),
8339                           CharUnits::fromQuantity(4), true);
8340 }
8341 
8342 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty,
8343                                             uint8_t FreeRegs) const {
8344   // Handle the generic C++ ABI.
8345   const RecordType *RT = Ty->getAs<RecordType>();
8346   if (RT) {
8347     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
8348     if (RAA == CGCXXABI::RAA_Indirect)
8349       return getIndirectByRef(Ty, FreeRegs > 0);
8350 
8351     if (RAA == CGCXXABI::RAA_DirectInMemory)
8352       return getIndirectByValue(Ty);
8353   }
8354 
8355   // Treat an enum type as its underlying type.
8356   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
8357     Ty = EnumTy->getDecl()->getIntegerType();
8358 
8359   auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32;
8360 
8361   if (isAggregateTypeForABI(Ty)) {
8362     // Structures with flexible arrays are always indirect.
8363     if (RT && RT->getDecl()->hasFlexibleArrayMember())
8364       return getIndirectByValue(Ty);
8365 
8366     // Ignore empty structs/unions.
8367     if (isEmptyRecord(getContext(), Ty, true))
8368       return ABIArgInfo::getIgnore();
8369 
8370     llvm::LLVMContext &LLVMContext = getVMContext();
8371 
8372     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
8373     SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
8374     llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
8375 
8376     return FreeRegs >= SizeInRegs ?
8377         ABIArgInfo::getDirectInReg(Result) :
8378         ABIArgInfo::getDirect(Result, 0, nullptr, false);
8379   }
8380 
8381   return Ty->isPromotableIntegerType() ?
8382       (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty) :
8383                                 ABIArgInfo::getExtend(Ty)) :
8384       (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg() :
8385                                 ABIArgInfo::getDirect());
8386 }
8387 
8388 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const {
8389   if (RetTy->isAnyComplexType())
8390     return ABIArgInfo::getDirectInReg();
8391 
8392   // Arguments of size > 4 registers are indirect.
8393   auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32;
8394   if (RetSize > 4)
8395     return getIndirectByRef(RetTy, /*HasFreeRegs*/ true);
8396 
8397   return DefaultABIInfo::classifyReturnType(RetTy);
8398 }
8399 
8400 } // End anonymous namespace.
8401 
8402 //===----------------------------------------------------------------------===//
8403 // XCore ABI Implementation
8404 //===----------------------------------------------------------------------===//
8405 
8406 namespace {
8407 
8408 /// A SmallStringEnc instance is used to build up the TypeString by passing
8409 /// it by reference between functions that append to it.
8410 typedef llvm::SmallString<128> SmallStringEnc;
8411 
8412 /// TypeStringCache caches the meta encodings of Types.
8413 ///
8414 /// The reason for caching TypeStrings is two fold:
8415 ///   1. To cache a type's encoding for later uses;
8416 ///   2. As a means to break recursive member type inclusion.
8417 ///
8418 /// A cache Entry can have a Status of:
8419 ///   NonRecursive:   The type encoding is not recursive;
8420 ///   Recursive:      The type encoding is recursive;
8421 ///   Incomplete:     An incomplete TypeString;
8422 ///   IncompleteUsed: An incomplete TypeString that has been used in a
8423 ///                   Recursive type encoding.
8424 ///
8425 /// A NonRecursive entry will have all of its sub-members expanded as fully
8426 /// as possible. Whilst it may contain types which are recursive, the type
8427 /// itself is not recursive and thus its encoding may be safely used whenever
8428 /// the type is encountered.
8429 ///
8430 /// A Recursive entry will have all of its sub-members expanded as fully as
8431 /// possible. The type itself is recursive and it may contain other types which
8432 /// are recursive. The Recursive encoding must not be used during the expansion
8433 /// of a recursive type's recursive branch. For simplicity the code uses
8434 /// IncompleteCount to reject all usage of Recursive encodings for member types.
8435 ///
8436 /// An Incomplete entry is always a RecordType and only encodes its
8437 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
8438 /// are placed into the cache during type expansion as a means to identify and
8439 /// handle recursive inclusion of types as sub-members. If there is recursion
8440 /// the entry becomes IncompleteUsed.
8441 ///
8442 /// During the expansion of a RecordType's members:
8443 ///
8444 ///   If the cache contains a NonRecursive encoding for the member type, the
8445 ///   cached encoding is used;
8446 ///
8447 ///   If the cache contains a Recursive encoding for the member type, the
8448 ///   cached encoding is 'Swapped' out, as it may be incorrect, and...
8449 ///
8450 ///   If the member is a RecordType, an Incomplete encoding is placed into the
8451 ///   cache to break potential recursive inclusion of itself as a sub-member;
8452 ///
8453 ///   Once a member RecordType has been expanded, its temporary incomplete
8454 ///   entry is removed from the cache. If a Recursive encoding was swapped out
8455 ///   it is swapped back in;
8456 ///
8457 ///   If an incomplete entry is used to expand a sub-member, the incomplete
8458 ///   entry is marked as IncompleteUsed. The cache keeps count of how many
8459 ///   IncompleteUsed entries it currently contains in IncompleteUsedCount;
8460 ///
8461 ///   If a member's encoding is found to be a NonRecursive or Recursive viz:
8462 ///   IncompleteUsedCount==0, the member's encoding is added to the cache.
8463 ///   Else the member is part of a recursive type and thus the recursion has
8464 ///   been exited too soon for the encoding to be correct for the member.
8465 ///
8466 class TypeStringCache {
8467   enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
8468   struct Entry {
8469     std::string Str;     // The encoded TypeString for the type.
8470     enum Status State;   // Information about the encoding in 'Str'.
8471     std::string Swapped; // A temporary place holder for a Recursive encoding
8472                          // during the expansion of RecordType's members.
8473   };
8474   std::map<const IdentifierInfo *, struct Entry> Map;
8475   unsigned IncompleteCount;     // Number of Incomplete entries in the Map.
8476   unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
8477 public:
8478   TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}
8479   void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
8480   bool removeIncomplete(const IdentifierInfo *ID);
8481   void addIfComplete(const IdentifierInfo *ID, StringRef Str,
8482                      bool IsRecursive);
8483   StringRef lookupStr(const IdentifierInfo *ID);
8484 };
8485 
8486 /// TypeString encodings for enum & union fields must be order.
8487 /// FieldEncoding is a helper for this ordering process.
8488 class FieldEncoding {
8489   bool HasName;
8490   std::string Enc;
8491 public:
8492   FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}
8493   StringRef str() { return Enc; }
8494   bool operator<(const FieldEncoding &rhs) const {
8495     if (HasName != rhs.HasName) return HasName;
8496     return Enc < rhs.Enc;
8497   }
8498 };
8499 
8500 class XCoreABIInfo : public DefaultABIInfo {
8501 public:
8502   XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
8503   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8504                     QualType Ty) const override;
8505 };
8506 
8507 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
8508   mutable TypeStringCache TSC;
8509 public:
8510   XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
8511     :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {}
8512   void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
8513                     CodeGen::CodeGenModule &M) const override;
8514 };
8515 
8516 } // End anonymous namespace.
8517 
8518 // TODO: this implementation is likely now redundant with the default
8519 // EmitVAArg.
8520 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8521                                 QualType Ty) const {
8522   CGBuilderTy &Builder = CGF.Builder;
8523 
8524   // Get the VAList.
8525   CharUnits SlotSize = CharUnits::fromQuantity(4);
8526   Address AP(Builder.CreateLoad(VAListAddr), SlotSize);
8527 
8528   // Handle the argument.
8529   ABIArgInfo AI = classifyArgumentType(Ty);
8530   CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty);
8531   llvm::Type *ArgTy = CGT.ConvertType(Ty);
8532   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
8533     AI.setCoerceToType(ArgTy);
8534   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
8535 
8536   Address Val = Address::invalid();
8537   CharUnits ArgSize = CharUnits::Zero();
8538   switch (AI.getKind()) {
8539   case ABIArgInfo::Expand:
8540   case ABIArgInfo::CoerceAndExpand:
8541   case ABIArgInfo::InAlloca:
8542     llvm_unreachable("Unsupported ABI kind for va_arg");
8543   case ABIArgInfo::Ignore:
8544     Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign);
8545     ArgSize = CharUnits::Zero();
8546     break;
8547   case ABIArgInfo::Extend:
8548   case ABIArgInfo::Direct:
8549     Val = Builder.CreateBitCast(AP, ArgPtrTy);
8550     ArgSize = CharUnits::fromQuantity(
8551                        getDataLayout().getTypeAllocSize(AI.getCoerceToType()));
8552     ArgSize = ArgSize.alignTo(SlotSize);
8553     break;
8554   case ABIArgInfo::Indirect:
8555     Val = Builder.CreateElementBitCast(AP, ArgPtrTy);
8556     Val = Address(Builder.CreateLoad(Val), TypeAlign);
8557     ArgSize = SlotSize;
8558     break;
8559   }
8560 
8561   // Increment the VAList.
8562   if (!ArgSize.isZero()) {
8563     llvm::Value *APN =
8564       Builder.CreateConstInBoundsByteGEP(AP.getPointer(), ArgSize);
8565     Builder.CreateStore(APN, VAListAddr);
8566   }
8567 
8568   return Val;
8569 }
8570 
8571 /// During the expansion of a RecordType, an incomplete TypeString is placed
8572 /// into the cache as a means to identify and break recursion.
8573 /// If there is a Recursive encoding in the cache, it is swapped out and will
8574 /// be reinserted by removeIncomplete().
8575 /// All other types of encoding should have been used rather than arriving here.
8576 void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
8577                                     std::string StubEnc) {
8578   if (!ID)
8579     return;
8580   Entry &E = Map[ID];
8581   assert( (E.Str.empty() || E.State == Recursive) &&
8582          "Incorrectly use of addIncomplete");
8583   assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
8584   E.Swapped.swap(E.Str); // swap out the Recursive
8585   E.Str.swap(StubEnc);
8586   E.State = Incomplete;
8587   ++IncompleteCount;
8588 }
8589 
8590 /// Once the RecordType has been expanded, the temporary incomplete TypeString
8591 /// must be removed from the cache.
8592 /// If a Recursive was swapped out by addIncomplete(), it will be replaced.
8593 /// Returns true if the RecordType was defined recursively.
8594 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
8595   if (!ID)
8596     return false;
8597   auto I = Map.find(ID);
8598   assert(I != Map.end() && "Entry not present");
8599   Entry &E = I->second;
8600   assert( (E.State == Incomplete ||
8601            E.State == IncompleteUsed) &&
8602          "Entry must be an incomplete type");
8603   bool IsRecursive = false;
8604   if (E.State == IncompleteUsed) {
8605     // We made use of our Incomplete encoding, thus we are recursive.
8606     IsRecursive = true;
8607     --IncompleteUsedCount;
8608   }
8609   if (E.Swapped.empty())
8610     Map.erase(I);
8611   else {
8612     // Swap the Recursive back.
8613     E.Swapped.swap(E.Str);
8614     E.Swapped.clear();
8615     E.State = Recursive;
8616   }
8617   --IncompleteCount;
8618   return IsRecursive;
8619 }
8620 
8621 /// Add the encoded TypeString to the cache only if it is NonRecursive or
8622 /// Recursive (viz: all sub-members were expanded as fully as possible).
8623 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
8624                                     bool IsRecursive) {
8625   if (!ID || IncompleteUsedCount)
8626     return; // No key or it is is an incomplete sub-type so don't add.
8627   Entry &E = Map[ID];
8628   if (IsRecursive && !E.Str.empty()) {
8629     assert(E.State==Recursive && E.Str.size() == Str.size() &&
8630            "This is not the same Recursive entry");
8631     // The parent container was not recursive after all, so we could have used
8632     // this Recursive sub-member entry after all, but we assumed the worse when
8633     // we started viz: IncompleteCount!=0.
8634     return;
8635   }
8636   assert(E.Str.empty() && "Entry already present");
8637   E.Str = Str.str();
8638   E.State = IsRecursive? Recursive : NonRecursive;
8639 }
8640 
8641 /// Return a cached TypeString encoding for the ID. If there isn't one, or we
8642 /// are recursively expanding a type (IncompleteCount != 0) and the cached
8643 /// encoding is Recursive, return an empty StringRef.
8644 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
8645   if (!ID)
8646     return StringRef();   // We have no key.
8647   auto I = Map.find(ID);
8648   if (I == Map.end())
8649     return StringRef();   // We have no encoding.
8650   Entry &E = I->second;
8651   if (E.State == Recursive && IncompleteCount)
8652     return StringRef();   // We don't use Recursive encodings for member types.
8653 
8654   if (E.State == Incomplete) {
8655     // The incomplete type is being used to break out of recursion.
8656     E.State = IncompleteUsed;
8657     ++IncompleteUsedCount;
8658   }
8659   return E.Str;
8660 }
8661 
8662 /// The XCore ABI includes a type information section that communicates symbol
8663 /// type information to the linker. The linker uses this information to verify
8664 /// safety/correctness of things such as array bound and pointers et al.
8665 /// The ABI only requires C (and XC) language modules to emit TypeStrings.
8666 /// This type information (TypeString) is emitted into meta data for all global
8667 /// symbols: definitions, declarations, functions & variables.
8668 ///
8669 /// The TypeString carries type, qualifier, name, size & value details.
8670 /// Please see 'Tools Development Guide' section 2.16.2 for format details:
8671 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf
8672 /// The output is tested by test/CodeGen/xcore-stringtype.c.
8673 ///
8674 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
8675                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC);
8676 
8677 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
8678 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
8679                                           CodeGen::CodeGenModule &CGM) const {
8680   SmallStringEnc Enc;
8681   if (getTypeString(Enc, D, CGM, TSC)) {
8682     llvm::LLVMContext &Ctx = CGM.getModule().getContext();
8683     llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV),
8684                                 llvm::MDString::get(Ctx, Enc.str())};
8685     llvm::NamedMDNode *MD =
8686       CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
8687     MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
8688   }
8689 }
8690 
8691 //===----------------------------------------------------------------------===//
8692 // SPIR ABI Implementation
8693 //===----------------------------------------------------------------------===//
8694 
8695 namespace {
8696 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo {
8697 public:
8698   SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
8699     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
8700   unsigned getOpenCLKernelCallingConv() const override;
8701 };
8702 
8703 } // End anonymous namespace.
8704 
8705 namespace clang {
8706 namespace CodeGen {
8707 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) {
8708   DefaultABIInfo SPIRABI(CGM.getTypes());
8709   SPIRABI.computeInfo(FI);
8710 }
8711 }
8712 }
8713 
8714 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
8715   return llvm::CallingConv::SPIR_KERNEL;
8716 }
8717 
8718 static bool appendType(SmallStringEnc &Enc, QualType QType,
8719                        const CodeGen::CodeGenModule &CGM,
8720                        TypeStringCache &TSC);
8721 
8722 /// Helper function for appendRecordType().
8723 /// Builds a SmallVector containing the encoded field types in declaration
8724 /// order.
8725 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
8726                              const RecordDecl *RD,
8727                              const CodeGen::CodeGenModule &CGM,
8728                              TypeStringCache &TSC) {
8729   for (const auto *Field : RD->fields()) {
8730     SmallStringEnc Enc;
8731     Enc += "m(";
8732     Enc += Field->getName();
8733     Enc += "){";
8734     if (Field->isBitField()) {
8735       Enc += "b(";
8736       llvm::raw_svector_ostream OS(Enc);
8737       OS << Field->getBitWidthValue(CGM.getContext());
8738       Enc += ':';
8739     }
8740     if (!appendType(Enc, Field->getType(), CGM, TSC))
8741       return false;
8742     if (Field->isBitField())
8743       Enc += ')';
8744     Enc += '}';
8745     FE.emplace_back(!Field->getName().empty(), Enc);
8746   }
8747   return true;
8748 }
8749 
8750 /// Appends structure and union types to Enc and adds encoding to cache.
8751 /// Recursively calls appendType (via extractFieldType) for each field.
8752 /// Union types have their fields ordered according to the ABI.
8753 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
8754                              const CodeGen::CodeGenModule &CGM,
8755                              TypeStringCache &TSC, const IdentifierInfo *ID) {
8756   // Append the cached TypeString if we have one.
8757   StringRef TypeString = TSC.lookupStr(ID);
8758   if (!TypeString.empty()) {
8759     Enc += TypeString;
8760     return true;
8761   }
8762 
8763   // Start to emit an incomplete TypeString.
8764   size_t Start = Enc.size();
8765   Enc += (RT->isUnionType()? 'u' : 's');
8766   Enc += '(';
8767   if (ID)
8768     Enc += ID->getName();
8769   Enc += "){";
8770 
8771   // We collect all encoded fields and order as necessary.
8772   bool IsRecursive = false;
8773   const RecordDecl *RD = RT->getDecl()->getDefinition();
8774   if (RD && !RD->field_empty()) {
8775     // An incomplete TypeString stub is placed in the cache for this RecordType
8776     // so that recursive calls to this RecordType will use it whilst building a
8777     // complete TypeString for this RecordType.
8778     SmallVector<FieldEncoding, 16> FE;
8779     std::string StubEnc(Enc.substr(Start).str());
8780     StubEnc += '}';  // StubEnc now holds a valid incomplete TypeString.
8781     TSC.addIncomplete(ID, std::move(StubEnc));
8782     if (!extractFieldType(FE, RD, CGM, TSC)) {
8783       (void) TSC.removeIncomplete(ID);
8784       return false;
8785     }
8786     IsRecursive = TSC.removeIncomplete(ID);
8787     // The ABI requires unions to be sorted but not structures.
8788     // See FieldEncoding::operator< for sort algorithm.
8789     if (RT->isUnionType())
8790       llvm::sort(FE);
8791     // We can now complete the TypeString.
8792     unsigned E = FE.size();
8793     for (unsigned I = 0; I != E; ++I) {
8794       if (I)
8795         Enc += ',';
8796       Enc += FE[I].str();
8797     }
8798   }
8799   Enc += '}';
8800   TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
8801   return true;
8802 }
8803 
8804 /// Appends enum types to Enc and adds the encoding to the cache.
8805 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
8806                            TypeStringCache &TSC,
8807                            const IdentifierInfo *ID) {
8808   // Append the cached TypeString if we have one.
8809   StringRef TypeString = TSC.lookupStr(ID);
8810   if (!TypeString.empty()) {
8811     Enc += TypeString;
8812     return true;
8813   }
8814 
8815   size_t Start = Enc.size();
8816   Enc += "e(";
8817   if (ID)
8818     Enc += ID->getName();
8819   Enc += "){";
8820 
8821   // We collect all encoded enumerations and order them alphanumerically.
8822   if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
8823     SmallVector<FieldEncoding, 16> FE;
8824     for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
8825          ++I) {
8826       SmallStringEnc EnumEnc;
8827       EnumEnc += "m(";
8828       EnumEnc += I->getName();
8829       EnumEnc += "){";
8830       I->getInitVal().toString(EnumEnc);
8831       EnumEnc += '}';
8832       FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
8833     }
8834     llvm::sort(FE);
8835     unsigned E = FE.size();
8836     for (unsigned I = 0; I != E; ++I) {
8837       if (I)
8838         Enc += ',';
8839       Enc += FE[I].str();
8840     }
8841   }
8842   Enc += '}';
8843   TSC.addIfComplete(ID, Enc.substr(Start), false);
8844   return true;
8845 }
8846 
8847 /// Appends type's qualifier to Enc.
8848 /// This is done prior to appending the type's encoding.
8849 static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
8850   // Qualifiers are emitted in alphabetical order.
8851   static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"};
8852   int Lookup = 0;
8853   if (QT.isConstQualified())
8854     Lookup += 1<<0;
8855   if (QT.isRestrictQualified())
8856     Lookup += 1<<1;
8857   if (QT.isVolatileQualified())
8858     Lookup += 1<<2;
8859   Enc += Table[Lookup];
8860 }
8861 
8862 /// Appends built-in types to Enc.
8863 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
8864   const char *EncType;
8865   switch (BT->getKind()) {
8866     case BuiltinType::Void:
8867       EncType = "0";
8868       break;
8869     case BuiltinType::Bool:
8870       EncType = "b";
8871       break;
8872     case BuiltinType::Char_U:
8873       EncType = "uc";
8874       break;
8875     case BuiltinType::UChar:
8876       EncType = "uc";
8877       break;
8878     case BuiltinType::SChar:
8879       EncType = "sc";
8880       break;
8881     case BuiltinType::UShort:
8882       EncType = "us";
8883       break;
8884     case BuiltinType::Short:
8885       EncType = "ss";
8886       break;
8887     case BuiltinType::UInt:
8888       EncType = "ui";
8889       break;
8890     case BuiltinType::Int:
8891       EncType = "si";
8892       break;
8893     case BuiltinType::ULong:
8894       EncType = "ul";
8895       break;
8896     case BuiltinType::Long:
8897       EncType = "sl";
8898       break;
8899     case BuiltinType::ULongLong:
8900       EncType = "ull";
8901       break;
8902     case BuiltinType::LongLong:
8903       EncType = "sll";
8904       break;
8905     case BuiltinType::Float:
8906       EncType = "ft";
8907       break;
8908     case BuiltinType::Double:
8909       EncType = "d";
8910       break;
8911     case BuiltinType::LongDouble:
8912       EncType = "ld";
8913       break;
8914     default:
8915       return false;
8916   }
8917   Enc += EncType;
8918   return true;
8919 }
8920 
8921 /// Appends a pointer encoding to Enc before calling appendType for the pointee.
8922 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
8923                               const CodeGen::CodeGenModule &CGM,
8924                               TypeStringCache &TSC) {
8925   Enc += "p(";
8926   if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
8927     return false;
8928   Enc += ')';
8929   return true;
8930 }
8931 
8932 /// Appends array encoding to Enc before calling appendType for the element.
8933 static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
8934                             const ArrayType *AT,
8935                             const CodeGen::CodeGenModule &CGM,
8936                             TypeStringCache &TSC, StringRef NoSizeEnc) {
8937   if (AT->getSizeModifier() != ArrayType::Normal)
8938     return false;
8939   Enc += "a(";
8940   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
8941     CAT->getSize().toStringUnsigned(Enc);
8942   else
8943     Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
8944   Enc += ':';
8945   // The Qualifiers should be attached to the type rather than the array.
8946   appendQualifier(Enc, QT);
8947   if (!appendType(Enc, AT->getElementType(), CGM, TSC))
8948     return false;
8949   Enc += ')';
8950   return true;
8951 }
8952 
8953 /// Appends a function encoding to Enc, calling appendType for the return type
8954 /// and the arguments.
8955 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
8956                              const CodeGen::CodeGenModule &CGM,
8957                              TypeStringCache &TSC) {
8958   Enc += "f{";
8959   if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
8960     return false;
8961   Enc += "}(";
8962   if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
8963     // N.B. we are only interested in the adjusted param types.
8964     auto I = FPT->param_type_begin();
8965     auto E = FPT->param_type_end();
8966     if (I != E) {
8967       do {
8968         if (!appendType(Enc, *I, CGM, TSC))
8969           return false;
8970         ++I;
8971         if (I != E)
8972           Enc += ',';
8973       } while (I != E);
8974       if (FPT->isVariadic())
8975         Enc += ",va";
8976     } else {
8977       if (FPT->isVariadic())
8978         Enc += "va";
8979       else
8980         Enc += '0';
8981     }
8982   }
8983   Enc += ')';
8984   return true;
8985 }
8986 
8987 /// Handles the type's qualifier before dispatching a call to handle specific
8988 /// type encodings.
8989 static bool appendType(SmallStringEnc &Enc, QualType QType,
8990                        const CodeGen::CodeGenModule &CGM,
8991                        TypeStringCache &TSC) {
8992 
8993   QualType QT = QType.getCanonicalType();
8994 
8995   if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
8996     // The Qualifiers should be attached to the type rather than the array.
8997     // Thus we don't call appendQualifier() here.
8998     return appendArrayType(Enc, QT, AT, CGM, TSC, "");
8999 
9000   appendQualifier(Enc, QT);
9001 
9002   if (const BuiltinType *BT = QT->getAs<BuiltinType>())
9003     return appendBuiltinType(Enc, BT);
9004 
9005   if (const PointerType *PT = QT->getAs<PointerType>())
9006     return appendPointerType(Enc, PT, CGM, TSC);
9007 
9008   if (const EnumType *ET = QT->getAs<EnumType>())
9009     return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
9010 
9011   if (const RecordType *RT = QT->getAsStructureType())
9012     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
9013 
9014   if (const RecordType *RT = QT->getAsUnionType())
9015     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
9016 
9017   if (const FunctionType *FT = QT->getAs<FunctionType>())
9018     return appendFunctionType(Enc, FT, CGM, TSC);
9019 
9020   return false;
9021 }
9022 
9023 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
9024                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) {
9025   if (!D)
9026     return false;
9027 
9028   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
9029     if (FD->getLanguageLinkage() != CLanguageLinkage)
9030       return false;
9031     return appendType(Enc, FD->getType(), CGM, TSC);
9032   }
9033 
9034   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
9035     if (VD->getLanguageLinkage() != CLanguageLinkage)
9036       return false;
9037     QualType QT = VD->getType().getCanonicalType();
9038     if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
9039       // Global ArrayTypes are given a size of '*' if the size is unknown.
9040       // The Qualifiers should be attached to the type rather than the array.
9041       // Thus we don't call appendQualifier() here.
9042       return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
9043     }
9044     return appendType(Enc, QT, CGM, TSC);
9045   }
9046   return false;
9047 }
9048 
9049 //===----------------------------------------------------------------------===//
9050 // RISCV ABI Implementation
9051 //===----------------------------------------------------------------------===//
9052 
9053 namespace {
9054 class RISCVABIInfo : public DefaultABIInfo {
9055 private:
9056   unsigned XLen; // Size of the integer ('x') registers in bits.
9057   static const int NumArgGPRs = 8;
9058 
9059 public:
9060   RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen)
9061       : DefaultABIInfo(CGT), XLen(XLen) {}
9062 
9063   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
9064   // non-virtual, but computeInfo is virtual, so we overload it.
9065   void computeInfo(CGFunctionInfo &FI) const override;
9066 
9067   ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed,
9068                                   int &ArgGPRsLeft) const;
9069   ABIArgInfo classifyReturnType(QualType RetTy) const;
9070 
9071   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9072                     QualType Ty) const override;
9073 
9074   ABIArgInfo extendType(QualType Ty) const;
9075 };
9076 } // end anonymous namespace
9077 
9078 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const {
9079   QualType RetTy = FI.getReturnType();
9080   if (!getCXXABI().classifyReturnType(FI))
9081     FI.getReturnInfo() = classifyReturnType(RetTy);
9082 
9083   // IsRetIndirect is true if classifyArgumentType indicated the value should
9084   // be passed indirect or if the type size is greater than 2*xlen. e.g. fp128
9085   // is passed direct in LLVM IR, relying on the backend lowering code to
9086   // rewrite the argument list and pass indirectly on RV32.
9087   bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect ||
9088                        getContext().getTypeSize(RetTy) > (2 * XLen);
9089 
9090   // We must track the number of GPRs used in order to conform to the RISC-V
9091   // ABI, as integer scalars passed in registers should have signext/zeroext
9092   // when promoted, but are anyext if passed on the stack. As GPR usage is
9093   // different for variadic arguments, we must also track whether we are
9094   // examining a vararg or not.
9095   int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs;
9096   int NumFixedArgs = FI.getNumRequiredArgs();
9097 
9098   int ArgNum = 0;
9099   for (auto &ArgInfo : FI.arguments()) {
9100     bool IsFixed = ArgNum < NumFixedArgs;
9101     ArgInfo.info = classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft);
9102     ArgNum++;
9103   }
9104 }
9105 
9106 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed,
9107                                               int &ArgGPRsLeft) const {
9108   assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow");
9109   Ty = useFirstFieldIfTransparentUnion(Ty);
9110 
9111   // Structures with either a non-trivial destructor or a non-trivial
9112   // copy constructor are always passed indirectly.
9113   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
9114     if (ArgGPRsLeft)
9115       ArgGPRsLeft -= 1;
9116     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
9117                                            CGCXXABI::RAA_DirectInMemory);
9118   }
9119 
9120   // Ignore empty structs/unions.
9121   if (isEmptyRecord(getContext(), Ty, true))
9122     return ABIArgInfo::getIgnore();
9123 
9124   uint64_t Size = getContext().getTypeSize(Ty);
9125   uint64_t NeededAlign = getContext().getTypeAlign(Ty);
9126   bool MustUseStack = false;
9127   // Determine the number of GPRs needed to pass the current argument
9128   // according to the ABI. 2*XLen-aligned varargs are passed in "aligned"
9129   // register pairs, so may consume 3 registers.
9130   int NeededArgGPRs = 1;
9131   if (!IsFixed && NeededAlign == 2 * XLen)
9132     NeededArgGPRs = 2 + (ArgGPRsLeft % 2);
9133   else if (Size > XLen && Size <= 2 * XLen)
9134     NeededArgGPRs = 2;
9135 
9136   if (NeededArgGPRs > ArgGPRsLeft) {
9137     MustUseStack = true;
9138     NeededArgGPRs = ArgGPRsLeft;
9139   }
9140 
9141   ArgGPRsLeft -= NeededArgGPRs;
9142 
9143   if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) {
9144     // Treat an enum type as its underlying type.
9145     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
9146       Ty = EnumTy->getDecl()->getIntegerType();
9147 
9148     // All integral types are promoted to XLen width, unless passed on the
9149     // stack.
9150     if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) {
9151       return extendType(Ty);
9152     }
9153 
9154     return ABIArgInfo::getDirect();
9155   }
9156 
9157   // Aggregates which are <= 2*XLen will be passed in registers if possible,
9158   // so coerce to integers.
9159   if (Size <= 2 * XLen) {
9160     unsigned Alignment = getContext().getTypeAlign(Ty);
9161 
9162     // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is
9163     // required, and a 2-element XLen array if only XLen alignment is required.
9164     if (Size <= XLen) {
9165       return ABIArgInfo::getDirect(
9166           llvm::IntegerType::get(getVMContext(), XLen));
9167     } else if (Alignment == 2 * XLen) {
9168       return ABIArgInfo::getDirect(
9169           llvm::IntegerType::get(getVMContext(), 2 * XLen));
9170     } else {
9171       return ABIArgInfo::getDirect(llvm::ArrayType::get(
9172           llvm::IntegerType::get(getVMContext(), XLen), 2));
9173     }
9174   }
9175   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
9176 }
9177 
9178 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const {
9179   if (RetTy->isVoidType())
9180     return ABIArgInfo::getIgnore();
9181 
9182   int ArgGPRsLeft = 2;
9183 
9184   // The rules for return and argument types are the same, so defer to
9185   // classifyArgumentType.
9186   return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft);
9187 }
9188 
9189 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9190                                 QualType Ty) const {
9191   CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8);
9192 
9193   // Empty records are ignored for parameter passing purposes.
9194   if (isEmptyRecord(getContext(), Ty, true)) {
9195     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
9196     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
9197     return Addr;
9198   }
9199 
9200   std::pair<CharUnits, CharUnits> SizeAndAlign =
9201       getContext().getTypeInfoInChars(Ty);
9202 
9203   // Arguments bigger than 2*Xlen bytes are passed indirectly.
9204   bool IsIndirect = SizeAndAlign.first > 2 * SlotSize;
9205 
9206   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, SizeAndAlign,
9207                           SlotSize, /*AllowHigherAlign=*/true);
9208 }
9209 
9210 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const {
9211   int TySize = getContext().getTypeSize(Ty);
9212   // RV64 ABI requires unsigned 32 bit integers to be sign extended.
9213   if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
9214     return ABIArgInfo::getSignExtend(Ty);
9215   return ABIArgInfo::getExtend(Ty);
9216 }
9217 
9218 namespace {
9219 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo {
9220 public:
9221   RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen)
9222       : TargetCodeGenInfo(new RISCVABIInfo(CGT, XLen)) {}
9223 
9224   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
9225                            CodeGen::CodeGenModule &CGM) const override {
9226     const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
9227     if (!FD) return;
9228 
9229     const auto *Attr = FD->getAttr<RISCVInterruptAttr>();
9230     if (!Attr)
9231       return;
9232 
9233     const char *Kind;
9234     switch (Attr->getInterrupt()) {
9235     case RISCVInterruptAttr::user: Kind = "user"; break;
9236     case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break;
9237     case RISCVInterruptAttr::machine: Kind = "machine"; break;
9238     }
9239 
9240     auto *Fn = cast<llvm::Function>(GV);
9241 
9242     Fn->addFnAttr("interrupt", Kind);
9243   }
9244 };
9245 } // namespace
9246 
9247 //===----------------------------------------------------------------------===//
9248 // Driver code
9249 //===----------------------------------------------------------------------===//
9250 
9251 bool CodeGenModule::supportsCOMDAT() const {
9252   return getTriple().supportsCOMDAT();
9253 }
9254 
9255 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
9256   if (TheTargetCodeGenInfo)
9257     return *TheTargetCodeGenInfo;
9258 
9259   // Helper to set the unique_ptr while still keeping the return value.
9260   auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & {
9261     this->TheTargetCodeGenInfo.reset(P);
9262     return *P;
9263   };
9264 
9265   const llvm::Triple &Triple = getTarget().getTriple();
9266   switch (Triple.getArch()) {
9267   default:
9268     return SetCGInfo(new DefaultTargetCodeGenInfo(Types));
9269 
9270   case llvm::Triple::le32:
9271     return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
9272   case llvm::Triple::mips:
9273   case llvm::Triple::mipsel:
9274     if (Triple.getOS() == llvm::Triple::NaCl)
9275       return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
9276     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true));
9277 
9278   case llvm::Triple::mips64:
9279   case llvm::Triple::mips64el:
9280     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false));
9281 
9282   case llvm::Triple::avr:
9283     return SetCGInfo(new AVRTargetCodeGenInfo(Types));
9284 
9285   case llvm::Triple::aarch64:
9286   case llvm::Triple::aarch64_be: {
9287     AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
9288     if (getTarget().getABI() == "darwinpcs")
9289       Kind = AArch64ABIInfo::DarwinPCS;
9290     else if (Triple.isOSWindows())
9291       return SetCGInfo(
9292           new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64));
9293 
9294     return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind));
9295   }
9296 
9297   case llvm::Triple::wasm32:
9298   case llvm::Triple::wasm64:
9299     return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types));
9300 
9301   case llvm::Triple::arm:
9302   case llvm::Triple::armeb:
9303   case llvm::Triple::thumb:
9304   case llvm::Triple::thumbeb: {
9305     if (Triple.getOS() == llvm::Triple::Win32) {
9306       return SetCGInfo(
9307           new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP));
9308     }
9309 
9310     ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
9311     StringRef ABIStr = getTarget().getABI();
9312     if (ABIStr == "apcs-gnu")
9313       Kind = ARMABIInfo::APCS;
9314     else if (ABIStr == "aapcs16")
9315       Kind = ARMABIInfo::AAPCS16_VFP;
9316     else if (CodeGenOpts.FloatABI == "hard" ||
9317              (CodeGenOpts.FloatABI != "soft" &&
9318               (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
9319                Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
9320                Triple.getEnvironment() == llvm::Triple::EABIHF)))
9321       Kind = ARMABIInfo::AAPCS_VFP;
9322 
9323     return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind));
9324   }
9325 
9326   case llvm::Triple::ppc:
9327     return SetCGInfo(
9328         new PPC32TargetCodeGenInfo(Types, CodeGenOpts.FloatABI == "soft"));
9329   case llvm::Triple::ppc64:
9330     if (Triple.isOSBinFormatELF()) {
9331       PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1;
9332       if (getTarget().getABI() == "elfv2")
9333         Kind = PPC64_SVR4_ABIInfo::ELFv2;
9334       bool HasQPX = getTarget().getABI() == "elfv1-qpx";
9335       bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
9336 
9337       return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX,
9338                                                         IsSoftFloat));
9339     } else
9340       return SetCGInfo(new PPC64TargetCodeGenInfo(Types));
9341   case llvm::Triple::ppc64le: {
9342     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
9343     PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2;
9344     if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx")
9345       Kind = PPC64_SVR4_ABIInfo::ELFv1;
9346     bool HasQPX = getTarget().getABI() == "elfv1-qpx";
9347     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
9348 
9349     return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX,
9350                                                       IsSoftFloat));
9351   }
9352 
9353   case llvm::Triple::nvptx:
9354   case llvm::Triple::nvptx64:
9355     return SetCGInfo(new NVPTXTargetCodeGenInfo(Types));
9356 
9357   case llvm::Triple::msp430:
9358     return SetCGInfo(new MSP430TargetCodeGenInfo(Types));
9359 
9360   case llvm::Triple::riscv32:
9361     return SetCGInfo(new RISCVTargetCodeGenInfo(Types, 32));
9362   case llvm::Triple::riscv64:
9363     return SetCGInfo(new RISCVTargetCodeGenInfo(Types, 64));
9364 
9365   case llvm::Triple::systemz: {
9366     bool HasVector = getTarget().getABI() == "vector";
9367     return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector));
9368   }
9369 
9370   case llvm::Triple::tce:
9371   case llvm::Triple::tcele:
9372     return SetCGInfo(new TCETargetCodeGenInfo(Types));
9373 
9374   case llvm::Triple::x86: {
9375     bool IsDarwinVectorABI = Triple.isOSDarwin();
9376     bool RetSmallStructInRegABI =
9377         X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
9378     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
9379 
9380     if (Triple.getOS() == llvm::Triple::Win32) {
9381       return SetCGInfo(new WinX86_32TargetCodeGenInfo(
9382           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
9383           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters));
9384     } else {
9385       return SetCGInfo(new X86_32TargetCodeGenInfo(
9386           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
9387           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters,
9388           CodeGenOpts.FloatABI == "soft"));
9389     }
9390   }
9391 
9392   case llvm::Triple::x86_64: {
9393     StringRef ABI = getTarget().getABI();
9394     X86AVXABILevel AVXLevel =
9395         (ABI == "avx512"
9396              ? X86AVXABILevel::AVX512
9397              : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None);
9398 
9399     switch (Triple.getOS()) {
9400     case llvm::Triple::Win32:
9401       return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel));
9402     case llvm::Triple::PS4:
9403       return SetCGInfo(new PS4TargetCodeGenInfo(Types, AVXLevel));
9404     default:
9405       return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel));
9406     }
9407   }
9408   case llvm::Triple::hexagon:
9409     return SetCGInfo(new HexagonTargetCodeGenInfo(Types));
9410   case llvm::Triple::lanai:
9411     return SetCGInfo(new LanaiTargetCodeGenInfo(Types));
9412   case llvm::Triple::r600:
9413     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
9414   case llvm::Triple::amdgcn:
9415     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
9416   case llvm::Triple::sparc:
9417     return SetCGInfo(new SparcV8TargetCodeGenInfo(Types));
9418   case llvm::Triple::sparcv9:
9419     return SetCGInfo(new SparcV9TargetCodeGenInfo(Types));
9420   case llvm::Triple::xcore:
9421     return SetCGInfo(new XCoreTargetCodeGenInfo(Types));
9422   case llvm::Triple::arc:
9423     return SetCGInfo(new ARCTargetCodeGenInfo(Types));
9424   case llvm::Triple::spir:
9425   case llvm::Triple::spir64:
9426     return SetCGInfo(new SPIRTargetCodeGenInfo(Types));
9427   }
9428 }
9429 
9430 /// Create an OpenCL kernel for an enqueued block.
9431 ///
9432 /// The kernel has the same function type as the block invoke function. Its
9433 /// name is the name of the block invoke function postfixed with "_kernel".
9434 /// It simply calls the block invoke function then returns.
9435 llvm::Function *
9436 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF,
9437                                              llvm::Function *Invoke,
9438                                              llvm::Value *BlockLiteral) const {
9439   auto *InvokeFT = Invoke->getFunctionType();
9440   llvm::SmallVector<llvm::Type *, 2> ArgTys;
9441   for (auto &P : InvokeFT->params())
9442     ArgTys.push_back(P);
9443   auto &C = CGF.getLLVMContext();
9444   std::string Name = Invoke->getName().str() + "_kernel";
9445   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
9446   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
9447                                    &CGF.CGM.getModule());
9448   auto IP = CGF.Builder.saveIP();
9449   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
9450   auto &Builder = CGF.Builder;
9451   Builder.SetInsertPoint(BB);
9452   llvm::SmallVector<llvm::Value *, 2> Args;
9453   for (auto &A : F->args())
9454     Args.push_back(&A);
9455   Builder.CreateCall(Invoke, Args);
9456   Builder.CreateRetVoid();
9457   Builder.restoreIP(IP);
9458   return F;
9459 }
9460 
9461 /// Create an OpenCL kernel for an enqueued block.
9462 ///
9463 /// The type of the first argument (the block literal) is the struct type
9464 /// of the block literal instead of a pointer type. The first argument
9465 /// (block literal) is passed directly by value to the kernel. The kernel
9466 /// allocates the same type of struct on stack and stores the block literal
9467 /// to it and passes its pointer to the block invoke function. The kernel
9468 /// has "enqueued-block" function attribute and kernel argument metadata.
9469 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel(
9470     CodeGenFunction &CGF, llvm::Function *Invoke,
9471     llvm::Value *BlockLiteral) const {
9472   auto &Builder = CGF.Builder;
9473   auto &C = CGF.getLLVMContext();
9474 
9475   auto *BlockTy = BlockLiteral->getType()->getPointerElementType();
9476   auto *InvokeFT = Invoke->getFunctionType();
9477   llvm::SmallVector<llvm::Type *, 2> ArgTys;
9478   llvm::SmallVector<llvm::Metadata *, 8> AddressQuals;
9479   llvm::SmallVector<llvm::Metadata *, 8> AccessQuals;
9480   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames;
9481   llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames;
9482   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals;
9483   llvm::SmallVector<llvm::Metadata *, 8> ArgNames;
9484 
9485   ArgTys.push_back(BlockTy);
9486   ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
9487   AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0)));
9488   ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
9489   ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
9490   AccessQuals.push_back(llvm::MDString::get(C, "none"));
9491   ArgNames.push_back(llvm::MDString::get(C, "block_literal"));
9492   for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) {
9493     ArgTys.push_back(InvokeFT->getParamType(I));
9494     ArgTypeNames.push_back(llvm::MDString::get(C, "void*"));
9495     AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3)));
9496     AccessQuals.push_back(llvm::MDString::get(C, "none"));
9497     ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*"));
9498     ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
9499     ArgNames.push_back(
9500         llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str()));
9501   }
9502   std::string Name = Invoke->getName().str() + "_kernel";
9503   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
9504   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
9505                                    &CGF.CGM.getModule());
9506   F->addFnAttr("enqueued-block");
9507   auto IP = CGF.Builder.saveIP();
9508   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
9509   Builder.SetInsertPoint(BB);
9510   unsigned BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(BlockTy);
9511   auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr);
9512   BlockPtr->setAlignment(BlockAlign);
9513   Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign);
9514   auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0));
9515   llvm::SmallVector<llvm::Value *, 2> Args;
9516   Args.push_back(Cast);
9517   for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I)
9518     Args.push_back(I);
9519   Builder.CreateCall(Invoke, Args);
9520   Builder.CreateRetVoid();
9521   Builder.restoreIP(IP);
9522 
9523   F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals));
9524   F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals));
9525   F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames));
9526   F->setMetadata("kernel_arg_base_type",
9527                  llvm::MDNode::get(C, ArgBaseTypeNames));
9528   F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals));
9529   if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
9530     F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames));
9531 
9532   return F;
9533 }
9534