1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes wrap the information about a call or function 10 // definition used to handle ABI compliancy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "TargetInfo.h" 15 #include "ABIInfo.h" 16 #include "CGBlocks.h" 17 #include "CGCXXABI.h" 18 #include "CGValue.h" 19 #include "CodeGenFunction.h" 20 #include "clang/AST/RecordLayout.h" 21 #include "clang/Basic/CodeGenOptions.h" 22 #include "clang/CodeGen/CGFunctionInfo.h" 23 #include "clang/CodeGen/SwiftCallingConv.h" 24 #include "llvm/ADT/StringExtras.h" 25 #include "llvm/ADT/StringSwitch.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/ADT/Twine.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Type.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include <algorithm> // std::sort 32 33 using namespace clang; 34 using namespace CodeGen; 35 36 // Helper for coercing an aggregate argument or return value into an integer 37 // array of the same size (including padding) and alignment. This alternate 38 // coercion happens only for the RenderScript ABI and can be removed after 39 // runtimes that rely on it are no longer supported. 40 // 41 // RenderScript assumes that the size of the argument / return value in the IR 42 // is the same as the size of the corresponding qualified type. This helper 43 // coerces the aggregate type into an array of the same size (including 44 // padding). This coercion is used in lieu of expansion of struct members or 45 // other canonical coercions that return a coerced-type of larger size. 46 // 47 // Ty - The argument / return value type 48 // Context - The associated ASTContext 49 // LLVMContext - The associated LLVMContext 50 static ABIArgInfo coerceToIntArray(QualType Ty, 51 ASTContext &Context, 52 llvm::LLVMContext &LLVMContext) { 53 // Alignment and Size are measured in bits. 54 const uint64_t Size = Context.getTypeSize(Ty); 55 const uint64_t Alignment = Context.getTypeAlign(Ty); 56 llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment); 57 const uint64_t NumElements = (Size + Alignment - 1) / Alignment; 58 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 59 } 60 61 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 62 llvm::Value *Array, 63 llvm::Value *Value, 64 unsigned FirstIndex, 65 unsigned LastIndex) { 66 // Alternatively, we could emit this as a loop in the source. 67 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 68 llvm::Value *Cell = 69 Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); 70 Builder.CreateAlignedStore(Value, Cell, CharUnits::One()); 71 } 72 } 73 74 static bool isAggregateTypeForABI(QualType T) { 75 return !CodeGenFunction::hasScalarEvaluationKind(T) || 76 T->isMemberFunctionPointerType(); 77 } 78 79 ABIArgInfo 80 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign, 81 llvm::Type *Padding) const { 82 return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), 83 ByRef, Realign, Padding); 84 } 85 86 ABIArgInfo 87 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const { 88 return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty), 89 /*ByRef*/ false, Realign); 90 } 91 92 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 93 QualType Ty) const { 94 return Address::invalid(); 95 } 96 97 ABIInfo::~ABIInfo() {} 98 99 /// Does the given lowering require more than the given number of 100 /// registers when expanded? 101 /// 102 /// This is intended to be the basis of a reasonable basic implementation 103 /// of should{Pass,Return}IndirectlyForSwift. 104 /// 105 /// For most targets, a limit of four total registers is reasonable; this 106 /// limits the amount of code required in order to move around the value 107 /// in case it wasn't produced immediately prior to the call by the caller 108 /// (or wasn't produced in exactly the right registers) or isn't used 109 /// immediately within the callee. But some targets may need to further 110 /// limit the register count due to an inability to support that many 111 /// return registers. 112 static bool occupiesMoreThan(CodeGenTypes &cgt, 113 ArrayRef<llvm::Type*> scalarTypes, 114 unsigned maxAllRegisters) { 115 unsigned intCount = 0, fpCount = 0; 116 for (llvm::Type *type : scalarTypes) { 117 if (type->isPointerTy()) { 118 intCount++; 119 } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) { 120 auto ptrWidth = cgt.getTarget().getPointerWidth(0); 121 intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth; 122 } else { 123 assert(type->isVectorTy() || type->isFloatingPointTy()); 124 fpCount++; 125 } 126 } 127 128 return (intCount + fpCount > maxAllRegisters); 129 } 130 131 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 132 llvm::Type *eltTy, 133 unsigned numElts) const { 134 // The default implementation of this assumes that the target guarantees 135 // 128-bit SIMD support but nothing more. 136 return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16); 137 } 138 139 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 140 CGCXXABI &CXXABI) { 141 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 142 if (!RD) { 143 if (!RT->getDecl()->canPassInRegisters()) 144 return CGCXXABI::RAA_Indirect; 145 return CGCXXABI::RAA_Default; 146 } 147 return CXXABI.getRecordArgABI(RD); 148 } 149 150 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 151 CGCXXABI &CXXABI) { 152 const RecordType *RT = T->getAs<RecordType>(); 153 if (!RT) 154 return CGCXXABI::RAA_Default; 155 return getRecordArgABI(RT, CXXABI); 156 } 157 158 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI, 159 const ABIInfo &Info) { 160 QualType Ty = FI.getReturnType(); 161 162 if (const auto *RT = Ty->getAs<RecordType>()) 163 if (!isa<CXXRecordDecl>(RT->getDecl()) && 164 !RT->getDecl()->canPassInRegisters()) { 165 FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty); 166 return true; 167 } 168 169 return CXXABI.classifyReturnType(FI); 170 } 171 172 /// Pass transparent unions as if they were the type of the first element. Sema 173 /// should ensure that all elements of the union have the same "machine type". 174 static QualType useFirstFieldIfTransparentUnion(QualType Ty) { 175 if (const RecordType *UT = Ty->getAsUnionType()) { 176 const RecordDecl *UD = UT->getDecl(); 177 if (UD->hasAttr<TransparentUnionAttr>()) { 178 assert(!UD->field_empty() && "sema created an empty transparent union"); 179 return UD->field_begin()->getType(); 180 } 181 } 182 return Ty; 183 } 184 185 CGCXXABI &ABIInfo::getCXXABI() const { 186 return CGT.getCXXABI(); 187 } 188 189 ASTContext &ABIInfo::getContext() const { 190 return CGT.getContext(); 191 } 192 193 llvm::LLVMContext &ABIInfo::getVMContext() const { 194 return CGT.getLLVMContext(); 195 } 196 197 const llvm::DataLayout &ABIInfo::getDataLayout() const { 198 return CGT.getDataLayout(); 199 } 200 201 const TargetInfo &ABIInfo::getTarget() const { 202 return CGT.getTarget(); 203 } 204 205 const CodeGenOptions &ABIInfo::getCodeGenOpts() const { 206 return CGT.getCodeGenOpts(); 207 } 208 209 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); } 210 211 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 212 return false; 213 } 214 215 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 216 uint64_t Members) const { 217 return false; 218 } 219 220 LLVM_DUMP_METHOD void ABIArgInfo::dump() const { 221 raw_ostream &OS = llvm::errs(); 222 OS << "(ABIArgInfo Kind="; 223 switch (TheKind) { 224 case Direct: 225 OS << "Direct Type="; 226 if (llvm::Type *Ty = getCoerceToType()) 227 Ty->print(OS); 228 else 229 OS << "null"; 230 break; 231 case Extend: 232 OS << "Extend"; 233 break; 234 case Ignore: 235 OS << "Ignore"; 236 break; 237 case InAlloca: 238 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 239 break; 240 case Indirect: 241 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 242 << " ByVal=" << getIndirectByVal() 243 << " Realign=" << getIndirectRealign(); 244 break; 245 case Expand: 246 OS << "Expand"; 247 break; 248 case CoerceAndExpand: 249 OS << "CoerceAndExpand Type="; 250 getCoerceAndExpandType()->print(OS); 251 break; 252 } 253 OS << ")\n"; 254 } 255 256 // Dynamically round a pointer up to a multiple of the given alignment. 257 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF, 258 llvm::Value *Ptr, 259 CharUnits Align) { 260 llvm::Value *PtrAsInt = Ptr; 261 // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align; 262 PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy); 263 PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt, 264 llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1)); 265 PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt, 266 llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity())); 267 PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt, 268 Ptr->getType(), 269 Ptr->getName() + ".aligned"); 270 return PtrAsInt; 271 } 272 273 /// Emit va_arg for a platform using the common void* representation, 274 /// where arguments are simply emitted in an array of slots on the stack. 275 /// 276 /// This version implements the core direct-value passing rules. 277 /// 278 /// \param SlotSize - The size and alignment of a stack slot. 279 /// Each argument will be allocated to a multiple of this number of 280 /// slots, and all the slots will be aligned to this value. 281 /// \param AllowHigherAlign - The slot alignment is not a cap; 282 /// an argument type with an alignment greater than the slot size 283 /// will be emitted on a higher-alignment address, potentially 284 /// leaving one or more empty slots behind as padding. If this 285 /// is false, the returned address might be less-aligned than 286 /// DirectAlign. 287 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF, 288 Address VAListAddr, 289 llvm::Type *DirectTy, 290 CharUnits DirectSize, 291 CharUnits DirectAlign, 292 CharUnits SlotSize, 293 bool AllowHigherAlign) { 294 // Cast the element type to i8* if necessary. Some platforms define 295 // va_list as a struct containing an i8* instead of just an i8*. 296 if (VAListAddr.getElementType() != CGF.Int8PtrTy) 297 VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy); 298 299 llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur"); 300 301 // If the CC aligns values higher than the slot size, do so if needed. 302 Address Addr = Address::invalid(); 303 if (AllowHigherAlign && DirectAlign > SlotSize) { 304 Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign), 305 DirectAlign); 306 } else { 307 Addr = Address(Ptr, SlotSize); 308 } 309 310 // Advance the pointer past the argument, then store that back. 311 CharUnits FullDirectSize = DirectSize.alignTo(SlotSize); 312 llvm::Value *NextPtr = 313 CGF.Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), FullDirectSize, 314 "argp.next"); 315 CGF.Builder.CreateStore(NextPtr, VAListAddr); 316 317 // If the argument is smaller than a slot, and this is a big-endian 318 // target, the argument will be right-adjusted in its slot. 319 if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() && 320 !DirectTy->isStructTy()) { 321 Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize); 322 } 323 324 Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy); 325 return Addr; 326 } 327 328 /// Emit va_arg for a platform using the common void* representation, 329 /// where arguments are simply emitted in an array of slots on the stack. 330 /// 331 /// \param IsIndirect - Values of this type are passed indirectly. 332 /// \param ValueInfo - The size and alignment of this type, generally 333 /// computed with getContext().getTypeInfoInChars(ValueTy). 334 /// \param SlotSizeAndAlign - The size and alignment of a stack slot. 335 /// Each argument will be allocated to a multiple of this number of 336 /// slots, and all the slots will be aligned to this value. 337 /// \param AllowHigherAlign - The slot alignment is not a cap; 338 /// an argument type with an alignment greater than the slot size 339 /// will be emitted on a higher-alignment address, potentially 340 /// leaving one or more empty slots behind as padding. 341 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr, 342 QualType ValueTy, bool IsIndirect, 343 std::pair<CharUnits, CharUnits> ValueInfo, 344 CharUnits SlotSizeAndAlign, 345 bool AllowHigherAlign) { 346 // The size and alignment of the value that was passed directly. 347 CharUnits DirectSize, DirectAlign; 348 if (IsIndirect) { 349 DirectSize = CGF.getPointerSize(); 350 DirectAlign = CGF.getPointerAlign(); 351 } else { 352 DirectSize = ValueInfo.first; 353 DirectAlign = ValueInfo.second; 354 } 355 356 // Cast the address we've calculated to the right type. 357 llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy); 358 if (IsIndirect) 359 DirectTy = DirectTy->getPointerTo(0); 360 361 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy, 362 DirectSize, DirectAlign, 363 SlotSizeAndAlign, 364 AllowHigherAlign); 365 366 if (IsIndirect) { 367 Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second); 368 } 369 370 return Addr; 371 372 } 373 374 static Address emitMergePHI(CodeGenFunction &CGF, 375 Address Addr1, llvm::BasicBlock *Block1, 376 Address Addr2, llvm::BasicBlock *Block2, 377 const llvm::Twine &Name = "") { 378 assert(Addr1.getType() == Addr2.getType()); 379 llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name); 380 PHI->addIncoming(Addr1.getPointer(), Block1); 381 PHI->addIncoming(Addr2.getPointer(), Block2); 382 CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment()); 383 return Address(PHI, Align); 384 } 385 386 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; } 387 388 // If someone can figure out a general rule for this, that would be great. 389 // It's probably just doomed to be platform-dependent, though. 390 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 391 // Verified for: 392 // x86-64 FreeBSD, Linux, Darwin 393 // x86-32 FreeBSD, Linux, Darwin 394 // PowerPC Linux, Darwin 395 // ARM Darwin (*not* EABI) 396 // AArch64 Linux 397 return 32; 398 } 399 400 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 401 const FunctionNoProtoType *fnType) const { 402 // The following conventions are known to require this to be false: 403 // x86_stdcall 404 // MIPS 405 // For everything else, we just prefer false unless we opt out. 406 return false; 407 } 408 409 void 410 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 411 llvm::SmallString<24> &Opt) const { 412 // This assumes the user is passing a library name like "rt" instead of a 413 // filename like "librt.a/so", and that they don't care whether it's static or 414 // dynamic. 415 Opt = "-l"; 416 Opt += Lib; 417 } 418 419 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const { 420 // OpenCL kernels are called via an explicit runtime API with arguments 421 // set with clSetKernelArg(), not as normal sub-functions. 422 // Return SPIR_KERNEL by default as the kernel calling convention to 423 // ensure the fingerprint is fixed such way that each OpenCL argument 424 // gets one matching argument in the produced kernel function argument 425 // list to enable feasible implementation of clSetKernelArg() with 426 // aggregates etc. In case we would use the default C calling conv here, 427 // clSetKernelArg() might break depending on the target-specific 428 // conventions; different targets might split structs passed as values 429 // to multiple function arguments etc. 430 return llvm::CallingConv::SPIR_KERNEL; 431 } 432 433 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM, 434 llvm::PointerType *T, QualType QT) const { 435 return llvm::ConstantPointerNull::get(T); 436 } 437 438 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 439 const VarDecl *D) const { 440 assert(!CGM.getLangOpts().OpenCL && 441 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 442 "Address space agnostic languages only"); 443 return D ? D->getType().getAddressSpace() : LangAS::Default; 444 } 445 446 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast( 447 CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr, 448 LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const { 449 // Since target may map different address spaces in AST to the same address 450 // space, an address space conversion may end up as a bitcast. 451 if (auto *C = dyn_cast<llvm::Constant>(Src)) 452 return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy); 453 return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DestTy); 454 } 455 456 llvm::Constant * 457 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src, 458 LangAS SrcAddr, LangAS DestAddr, 459 llvm::Type *DestTy) const { 460 // Since target may map different address spaces in AST to the same address 461 // space, an address space conversion may end up as a bitcast. 462 return llvm::ConstantExpr::getPointerCast(Src, DestTy); 463 } 464 465 llvm::SyncScope::ID 466 TargetCodeGenInfo::getLLVMSyncScopeID(SyncScope S, llvm::LLVMContext &C) const { 467 return C.getOrInsertSyncScopeID(""); /* default sync scope */ 468 } 469 470 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 471 472 /// isEmptyField - Return true iff a the field is "empty", that is it 473 /// is an unnamed bit-field or an (array of) empty record(s). 474 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 475 bool AllowArrays) { 476 if (FD->isUnnamedBitfield()) 477 return true; 478 479 QualType FT = FD->getType(); 480 481 // Constant arrays of empty records count as empty, strip them off. 482 // Constant arrays of zero length always count as empty. 483 if (AllowArrays) 484 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 485 if (AT->getSize() == 0) 486 return true; 487 FT = AT->getElementType(); 488 } 489 490 const RecordType *RT = FT->getAs<RecordType>(); 491 if (!RT) 492 return false; 493 494 // C++ record fields are never empty, at least in the Itanium ABI. 495 // 496 // FIXME: We should use a predicate for whether this behavior is true in the 497 // current ABI. 498 if (isa<CXXRecordDecl>(RT->getDecl())) 499 return false; 500 501 return isEmptyRecord(Context, FT, AllowArrays); 502 } 503 504 /// isEmptyRecord - Return true iff a structure contains only empty 505 /// fields. Note that a structure with a flexible array member is not 506 /// considered empty. 507 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 508 const RecordType *RT = T->getAs<RecordType>(); 509 if (!RT) 510 return false; 511 const RecordDecl *RD = RT->getDecl(); 512 if (RD->hasFlexibleArrayMember()) 513 return false; 514 515 // If this is a C++ record, check the bases first. 516 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 517 for (const auto &I : CXXRD->bases()) 518 if (!isEmptyRecord(Context, I.getType(), true)) 519 return false; 520 521 for (const auto *I : RD->fields()) 522 if (!isEmptyField(Context, I, AllowArrays)) 523 return false; 524 return true; 525 } 526 527 /// isSingleElementStruct - Determine if a structure is a "single 528 /// element struct", i.e. it has exactly one non-empty field or 529 /// exactly one field which is itself a single element 530 /// struct. Structures with flexible array members are never 531 /// considered single element structs. 532 /// 533 /// \return The field declaration for the single non-empty field, if 534 /// it exists. 535 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 536 const RecordType *RT = T->getAs<RecordType>(); 537 if (!RT) 538 return nullptr; 539 540 const RecordDecl *RD = RT->getDecl(); 541 if (RD->hasFlexibleArrayMember()) 542 return nullptr; 543 544 const Type *Found = nullptr; 545 546 // If this is a C++ record, check the bases first. 547 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 548 for (const auto &I : CXXRD->bases()) { 549 // Ignore empty records. 550 if (isEmptyRecord(Context, I.getType(), true)) 551 continue; 552 553 // If we already found an element then this isn't a single-element struct. 554 if (Found) 555 return nullptr; 556 557 // If this is non-empty and not a single element struct, the composite 558 // cannot be a single element struct. 559 Found = isSingleElementStruct(I.getType(), Context); 560 if (!Found) 561 return nullptr; 562 } 563 } 564 565 // Check for single element. 566 for (const auto *FD : RD->fields()) { 567 QualType FT = FD->getType(); 568 569 // Ignore empty fields. 570 if (isEmptyField(Context, FD, true)) 571 continue; 572 573 // If we already found an element then this isn't a single-element 574 // struct. 575 if (Found) 576 return nullptr; 577 578 // Treat single element arrays as the element. 579 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 580 if (AT->getSize().getZExtValue() != 1) 581 break; 582 FT = AT->getElementType(); 583 } 584 585 if (!isAggregateTypeForABI(FT)) { 586 Found = FT.getTypePtr(); 587 } else { 588 Found = isSingleElementStruct(FT, Context); 589 if (!Found) 590 return nullptr; 591 } 592 } 593 594 // We don't consider a struct a single-element struct if it has 595 // padding beyond the element type. 596 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 597 return nullptr; 598 599 return Found; 600 } 601 602 namespace { 603 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, 604 const ABIArgInfo &AI) { 605 // This default implementation defers to the llvm backend's va_arg 606 // instruction. It can handle only passing arguments directly 607 // (typically only handled in the backend for primitive types), or 608 // aggregates passed indirectly by pointer (NOTE: if the "byval" 609 // flag has ABI impact in the callee, this implementation cannot 610 // work.) 611 612 // Only a few cases are covered here at the moment -- those needed 613 // by the default abi. 614 llvm::Value *Val; 615 616 if (AI.isIndirect()) { 617 assert(!AI.getPaddingType() && 618 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 619 assert( 620 !AI.getIndirectRealign() && 621 "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!"); 622 623 auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty); 624 CharUnits TyAlignForABI = TyInfo.second; 625 626 llvm::Type *BaseTy = 627 llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 628 llvm::Value *Addr = 629 CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy); 630 return Address(Addr, TyAlignForABI); 631 } else { 632 assert((AI.isDirect() || AI.isExtend()) && 633 "Unexpected ArgInfo Kind in generic VAArg emitter!"); 634 635 assert(!AI.getInReg() && 636 "Unexpected InReg seen in arginfo in generic VAArg emitter!"); 637 assert(!AI.getPaddingType() && 638 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 639 assert(!AI.getDirectOffset() && 640 "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!"); 641 assert(!AI.getCoerceToType() && 642 "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!"); 643 644 Address Temp = CGF.CreateMemTemp(Ty, "varet"); 645 Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty)); 646 CGF.Builder.CreateStore(Val, Temp); 647 return Temp; 648 } 649 } 650 651 /// DefaultABIInfo - The default implementation for ABI specific 652 /// details. This implementation provides information which results in 653 /// self-consistent and sensible LLVM IR generation, but does not 654 /// conform to any particular ABI. 655 class DefaultABIInfo : public ABIInfo { 656 public: 657 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 658 659 ABIArgInfo classifyReturnType(QualType RetTy) const; 660 ABIArgInfo classifyArgumentType(QualType RetTy) const; 661 662 void computeInfo(CGFunctionInfo &FI) const override { 663 if (!getCXXABI().classifyReturnType(FI)) 664 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 665 for (auto &I : FI.arguments()) 666 I.info = classifyArgumentType(I.type); 667 } 668 669 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 670 QualType Ty) const override { 671 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 672 } 673 }; 674 675 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 676 public: 677 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 678 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 679 }; 680 681 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 682 Ty = useFirstFieldIfTransparentUnion(Ty); 683 684 if (isAggregateTypeForABI(Ty)) { 685 // Records with non-trivial destructors/copy-constructors should not be 686 // passed by value. 687 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 688 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 689 690 return getNaturalAlignIndirect(Ty); 691 } 692 693 // Treat an enum type as its underlying type. 694 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 695 Ty = EnumTy->getDecl()->getIntegerType(); 696 697 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 698 : ABIArgInfo::getDirect()); 699 } 700 701 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 702 if (RetTy->isVoidType()) 703 return ABIArgInfo::getIgnore(); 704 705 if (isAggregateTypeForABI(RetTy)) 706 return getNaturalAlignIndirect(RetTy); 707 708 // Treat an enum type as its underlying type. 709 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 710 RetTy = EnumTy->getDecl()->getIntegerType(); 711 712 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 713 : ABIArgInfo::getDirect()); 714 } 715 716 //===----------------------------------------------------------------------===// 717 // WebAssembly ABI Implementation 718 // 719 // This is a very simple ABI that relies a lot on DefaultABIInfo. 720 //===----------------------------------------------------------------------===// 721 722 class WebAssemblyABIInfo final : public SwiftABIInfo { 723 DefaultABIInfo defaultInfo; 724 725 public: 726 explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT) 727 : SwiftABIInfo(CGT), defaultInfo(CGT) {} 728 729 private: 730 ABIArgInfo classifyReturnType(QualType RetTy) const; 731 ABIArgInfo classifyArgumentType(QualType Ty) const; 732 733 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 734 // non-virtual, but computeInfo and EmitVAArg are virtual, so we 735 // overload them. 736 void computeInfo(CGFunctionInfo &FI) const override { 737 if (!getCXXABI().classifyReturnType(FI)) 738 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 739 for (auto &Arg : FI.arguments()) 740 Arg.info = classifyArgumentType(Arg.type); 741 } 742 743 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 744 QualType Ty) const override; 745 746 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 747 bool asReturnValue) const override { 748 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 749 } 750 751 bool isSwiftErrorInRegister() const override { 752 return false; 753 } 754 }; 755 756 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo { 757 public: 758 explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 759 : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT)) {} 760 761 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 762 CodeGen::CodeGenModule &CGM) const override { 763 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 764 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 765 if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) { 766 llvm::Function *Fn = cast<llvm::Function>(GV); 767 llvm::AttrBuilder B; 768 B.addAttribute("wasm-import-module", Attr->getImportModuleName()); 769 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 770 } 771 } 772 773 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 774 llvm::Function *Fn = cast<llvm::Function>(GV); 775 if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype()) 776 Fn->addFnAttr("no-prototype"); 777 } 778 } 779 }; 780 781 /// Classify argument of given type \p Ty. 782 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const { 783 Ty = useFirstFieldIfTransparentUnion(Ty); 784 785 if (isAggregateTypeForABI(Ty)) { 786 // Records with non-trivial destructors/copy-constructors should not be 787 // passed by value. 788 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 789 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 790 // Ignore empty structs/unions. 791 if (isEmptyRecord(getContext(), Ty, true)) 792 return ABIArgInfo::getIgnore(); 793 // Lower single-element structs to just pass a regular value. TODO: We 794 // could do reasonable-size multiple-element structs too, using getExpand(), 795 // though watch out for things like bitfields. 796 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 797 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 798 } 799 800 // Otherwise just do the default thing. 801 return defaultInfo.classifyArgumentType(Ty); 802 } 803 804 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const { 805 if (isAggregateTypeForABI(RetTy)) { 806 // Records with non-trivial destructors/copy-constructors should not be 807 // returned by value. 808 if (!getRecordArgABI(RetTy, getCXXABI())) { 809 // Ignore empty structs/unions. 810 if (isEmptyRecord(getContext(), RetTy, true)) 811 return ABIArgInfo::getIgnore(); 812 // Lower single-element structs to just return a regular value. TODO: We 813 // could do reasonable-size multiple-element structs too, using 814 // ABIArgInfo::getDirect(). 815 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 816 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 817 } 818 } 819 820 // Otherwise just do the default thing. 821 return defaultInfo.classifyReturnType(RetTy); 822 } 823 824 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 825 QualType Ty) const { 826 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect=*/ false, 827 getContext().getTypeInfoInChars(Ty), 828 CharUnits::fromQuantity(4), 829 /*AllowHigherAlign=*/ true); 830 } 831 832 //===----------------------------------------------------------------------===// 833 // le32/PNaCl bitcode ABI Implementation 834 // 835 // This is a simplified version of the x86_32 ABI. Arguments and return values 836 // are always passed on the stack. 837 //===----------------------------------------------------------------------===// 838 839 class PNaClABIInfo : public ABIInfo { 840 public: 841 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 842 843 ABIArgInfo classifyReturnType(QualType RetTy) const; 844 ABIArgInfo classifyArgumentType(QualType RetTy) const; 845 846 void computeInfo(CGFunctionInfo &FI) const override; 847 Address EmitVAArg(CodeGenFunction &CGF, 848 Address VAListAddr, QualType Ty) const override; 849 }; 850 851 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 852 public: 853 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 854 : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {} 855 }; 856 857 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 858 if (!getCXXABI().classifyReturnType(FI)) 859 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 860 861 for (auto &I : FI.arguments()) 862 I.info = classifyArgumentType(I.type); 863 } 864 865 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 866 QualType Ty) const { 867 // The PNaCL ABI is a bit odd, in that varargs don't use normal 868 // function classification. Structs get passed directly for varargs 869 // functions, through a rewriting transform in 870 // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows 871 // this target to actually support a va_arg instructions with an 872 // aggregate type, unlike other targets. 873 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 874 } 875 876 /// Classify argument of given type \p Ty. 877 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 878 if (isAggregateTypeForABI(Ty)) { 879 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 880 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 881 return getNaturalAlignIndirect(Ty); 882 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 883 // Treat an enum type as its underlying type. 884 Ty = EnumTy->getDecl()->getIntegerType(); 885 } else if (Ty->isFloatingType()) { 886 // Floating-point types don't go inreg. 887 return ABIArgInfo::getDirect(); 888 } 889 890 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 891 : ABIArgInfo::getDirect()); 892 } 893 894 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 895 if (RetTy->isVoidType()) 896 return ABIArgInfo::getIgnore(); 897 898 // In the PNaCl ABI we always return records/structures on the stack. 899 if (isAggregateTypeForABI(RetTy)) 900 return getNaturalAlignIndirect(RetTy); 901 902 // Treat an enum type as its underlying type. 903 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 904 RetTy = EnumTy->getDecl()->getIntegerType(); 905 906 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 907 : ABIArgInfo::getDirect()); 908 } 909 910 /// IsX86_MMXType - Return true if this is an MMX type. 911 bool IsX86_MMXType(llvm::Type *IRType) { 912 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 913 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 914 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 915 IRType->getScalarSizeInBits() != 64; 916 } 917 918 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 919 StringRef Constraint, 920 llvm::Type* Ty) { 921 bool IsMMXCons = llvm::StringSwitch<bool>(Constraint) 922 .Cases("y", "&y", "^Ym", true) 923 .Default(false); 924 if (IsMMXCons && Ty->isVectorTy()) { 925 if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) { 926 // Invalid MMX constraint 927 return nullptr; 928 } 929 930 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 931 } 932 933 // No operation needed 934 return Ty; 935 } 936 937 /// Returns true if this type can be passed in SSE registers with the 938 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 939 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 940 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 941 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) { 942 if (BT->getKind() == BuiltinType::LongDouble) { 943 if (&Context.getTargetInfo().getLongDoubleFormat() == 944 &llvm::APFloat::x87DoubleExtended()) 945 return false; 946 } 947 return true; 948 } 949 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 950 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 951 // registers specially. 952 unsigned VecSize = Context.getTypeSize(VT); 953 if (VecSize == 128 || VecSize == 256 || VecSize == 512) 954 return true; 955 } 956 return false; 957 } 958 959 /// Returns true if this aggregate is small enough to be passed in SSE registers 960 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 961 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 962 return NumMembers <= 4; 963 } 964 965 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86. 966 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) { 967 auto AI = ABIArgInfo::getDirect(T); 968 AI.setInReg(true); 969 AI.setCanBeFlattened(false); 970 return AI; 971 } 972 973 //===----------------------------------------------------------------------===// 974 // X86-32 ABI Implementation 975 //===----------------------------------------------------------------------===// 976 977 /// Similar to llvm::CCState, but for Clang. 978 struct CCState { 979 CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {} 980 981 unsigned CC; 982 unsigned FreeRegs; 983 unsigned FreeSSERegs; 984 }; 985 986 enum { 987 // Vectorcall only allows the first 6 parameters to be passed in registers. 988 VectorcallMaxParamNumAsReg = 6 989 }; 990 991 /// X86_32ABIInfo - The X86-32 ABI information. 992 class X86_32ABIInfo : public SwiftABIInfo { 993 enum Class { 994 Integer, 995 Float 996 }; 997 998 static const unsigned MinABIStackAlignInBytes = 4; 999 1000 bool IsDarwinVectorABI; 1001 bool IsRetSmallStructInRegABI; 1002 bool IsWin32StructABI; 1003 bool IsSoftFloatABI; 1004 bool IsMCUABI; 1005 unsigned DefaultNumRegisterParameters; 1006 1007 static bool isRegisterSize(unsigned Size) { 1008 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 1009 } 1010 1011 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 1012 // FIXME: Assumes vectorcall is in use. 1013 return isX86VectorTypeForVectorCall(getContext(), Ty); 1014 } 1015 1016 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 1017 uint64_t NumMembers) const override { 1018 // FIXME: Assumes vectorcall is in use. 1019 return isX86VectorCallAggregateSmallEnough(NumMembers); 1020 } 1021 1022 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 1023 1024 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1025 /// such that the argument will be passed in memory. 1026 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 1027 1028 ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; 1029 1030 /// Return the alignment to use for the given type on the stack. 1031 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 1032 1033 Class classify(QualType Ty) const; 1034 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 1035 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 1036 1037 /// Updates the number of available free registers, returns 1038 /// true if any registers were allocated. 1039 bool updateFreeRegs(QualType Ty, CCState &State) const; 1040 1041 bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, 1042 bool &NeedsPadding) const; 1043 bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; 1044 1045 bool canExpandIndirectArgument(QualType Ty) const; 1046 1047 /// Rewrite the function info so that all memory arguments use 1048 /// inalloca. 1049 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 1050 1051 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1052 CharUnits &StackOffset, ABIArgInfo &Info, 1053 QualType Type) const; 1054 void computeVectorCallArgs(CGFunctionInfo &FI, CCState &State, 1055 bool &UsedInAlloca) const; 1056 1057 public: 1058 1059 void computeInfo(CGFunctionInfo &FI) const override; 1060 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 1061 QualType Ty) const override; 1062 1063 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1064 bool RetSmallStructInRegABI, bool Win32StructABI, 1065 unsigned NumRegisterParameters, bool SoftFloatABI) 1066 : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), 1067 IsRetSmallStructInRegABI(RetSmallStructInRegABI), 1068 IsWin32StructABI(Win32StructABI), 1069 IsSoftFloatABI(SoftFloatABI), 1070 IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), 1071 DefaultNumRegisterParameters(NumRegisterParameters) {} 1072 1073 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 1074 bool asReturnValue) const override { 1075 // LLVM's x86-32 lowering currently only assigns up to three 1076 // integer registers and three fp registers. Oddly, it'll use up to 1077 // four vector registers for vectors, but those can overlap with the 1078 // scalar registers. 1079 return occupiesMoreThan(CGT, scalars, /*total*/ 3); 1080 } 1081 1082 bool isSwiftErrorInRegister() const override { 1083 // x86-32 lowering does not support passing swifterror in a register. 1084 return false; 1085 } 1086 }; 1087 1088 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 1089 public: 1090 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1091 bool RetSmallStructInRegABI, bool Win32StructABI, 1092 unsigned NumRegisterParameters, bool SoftFloatABI) 1093 : TargetCodeGenInfo(new X86_32ABIInfo( 1094 CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, 1095 NumRegisterParameters, SoftFloatABI)) {} 1096 1097 static bool isStructReturnInRegABI( 1098 const llvm::Triple &Triple, const CodeGenOptions &Opts); 1099 1100 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1101 CodeGen::CodeGenModule &CGM) const override; 1102 1103 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1104 // Darwin uses different dwarf register numbers for EH. 1105 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 1106 return 4; 1107 } 1108 1109 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1110 llvm::Value *Address) const override; 1111 1112 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1113 StringRef Constraint, 1114 llvm::Type* Ty) const override { 1115 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1116 } 1117 1118 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 1119 std::string &Constraints, 1120 std::vector<llvm::Type *> &ResultRegTypes, 1121 std::vector<llvm::Type *> &ResultTruncRegTypes, 1122 std::vector<LValue> &ResultRegDests, 1123 std::string &AsmString, 1124 unsigned NumOutputs) const override; 1125 1126 llvm::Constant * 1127 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1128 unsigned Sig = (0xeb << 0) | // jmp rel8 1129 (0x06 << 8) | // .+0x08 1130 ('v' << 16) | 1131 ('2' << 24); 1132 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1133 } 1134 1135 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 1136 return "movl\t%ebp, %ebp" 1137 "\t\t// marker for objc_retainAutoreleaseReturnValue"; 1138 } 1139 }; 1140 1141 } 1142 1143 /// Rewrite input constraint references after adding some output constraints. 1144 /// In the case where there is one output and one input and we add one output, 1145 /// we need to replace all operand references greater than or equal to 1: 1146 /// mov $0, $1 1147 /// mov eax, $1 1148 /// The result will be: 1149 /// mov $0, $2 1150 /// mov eax, $2 1151 static void rewriteInputConstraintReferences(unsigned FirstIn, 1152 unsigned NumNewOuts, 1153 std::string &AsmString) { 1154 std::string Buf; 1155 llvm::raw_string_ostream OS(Buf); 1156 size_t Pos = 0; 1157 while (Pos < AsmString.size()) { 1158 size_t DollarStart = AsmString.find('$', Pos); 1159 if (DollarStart == std::string::npos) 1160 DollarStart = AsmString.size(); 1161 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 1162 if (DollarEnd == std::string::npos) 1163 DollarEnd = AsmString.size(); 1164 OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 1165 Pos = DollarEnd; 1166 size_t NumDollars = DollarEnd - DollarStart; 1167 if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 1168 // We have an operand reference. 1169 size_t DigitStart = Pos; 1170 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 1171 if (DigitEnd == std::string::npos) 1172 DigitEnd = AsmString.size(); 1173 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 1174 unsigned OperandIndex; 1175 if (!OperandStr.getAsInteger(10, OperandIndex)) { 1176 if (OperandIndex >= FirstIn) 1177 OperandIndex += NumNewOuts; 1178 OS << OperandIndex; 1179 } else { 1180 OS << OperandStr; 1181 } 1182 Pos = DigitEnd; 1183 } 1184 } 1185 AsmString = std::move(OS.str()); 1186 } 1187 1188 /// Add output constraints for EAX:EDX because they are return registers. 1189 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 1190 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 1191 std::vector<llvm::Type *> &ResultRegTypes, 1192 std::vector<llvm::Type *> &ResultTruncRegTypes, 1193 std::vector<LValue> &ResultRegDests, std::string &AsmString, 1194 unsigned NumOutputs) const { 1195 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 1196 1197 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 1198 // larger. 1199 if (!Constraints.empty()) 1200 Constraints += ','; 1201 if (RetWidth <= 32) { 1202 Constraints += "={eax}"; 1203 ResultRegTypes.push_back(CGF.Int32Ty); 1204 } else { 1205 // Use the 'A' constraint for EAX:EDX. 1206 Constraints += "=A"; 1207 ResultRegTypes.push_back(CGF.Int64Ty); 1208 } 1209 1210 // Truncate EAX or EAX:EDX to an integer of the appropriate size. 1211 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 1212 ResultTruncRegTypes.push_back(CoerceTy); 1213 1214 // Coerce the integer by bitcasting the return slot pointer. 1215 ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(), 1216 CoerceTy->getPointerTo())); 1217 ResultRegDests.push_back(ReturnSlot); 1218 1219 rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 1220 } 1221 1222 /// shouldReturnTypeInRegister - Determine if the given type should be 1223 /// returned in a register (for the Darwin and MCU ABI). 1224 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 1225 ASTContext &Context) const { 1226 uint64_t Size = Context.getTypeSize(Ty); 1227 1228 // For i386, type must be register sized. 1229 // For the MCU ABI, it only needs to be <= 8-byte 1230 if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) 1231 return false; 1232 1233 if (Ty->isVectorType()) { 1234 // 64- and 128- bit vectors inside structures are not returned in 1235 // registers. 1236 if (Size == 64 || Size == 128) 1237 return false; 1238 1239 return true; 1240 } 1241 1242 // If this is a builtin, pointer, enum, complex type, member pointer, or 1243 // member function pointer it is ok. 1244 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 1245 Ty->isAnyComplexType() || Ty->isEnumeralType() || 1246 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 1247 return true; 1248 1249 // Arrays are treated like records. 1250 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 1251 return shouldReturnTypeInRegister(AT->getElementType(), Context); 1252 1253 // Otherwise, it must be a record type. 1254 const RecordType *RT = Ty->getAs<RecordType>(); 1255 if (!RT) return false; 1256 1257 // FIXME: Traverse bases here too. 1258 1259 // Structure types are passed in register if all fields would be 1260 // passed in a register. 1261 for (const auto *FD : RT->getDecl()->fields()) { 1262 // Empty fields are ignored. 1263 if (isEmptyField(Context, FD, true)) 1264 continue; 1265 1266 // Check fields recursively. 1267 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 1268 return false; 1269 } 1270 return true; 1271 } 1272 1273 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 1274 // Treat complex types as the element type. 1275 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 1276 Ty = CTy->getElementType(); 1277 1278 // Check for a type which we know has a simple scalar argument-passing 1279 // convention without any padding. (We're specifically looking for 32 1280 // and 64-bit integer and integer-equivalents, float, and double.) 1281 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 1282 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 1283 return false; 1284 1285 uint64_t Size = Context.getTypeSize(Ty); 1286 return Size == 32 || Size == 64; 1287 } 1288 1289 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD, 1290 uint64_t &Size) { 1291 for (const auto *FD : RD->fields()) { 1292 // Scalar arguments on the stack get 4 byte alignment on x86. If the 1293 // argument is smaller than 32-bits, expanding the struct will create 1294 // alignment padding. 1295 if (!is32Or64BitBasicType(FD->getType(), Context)) 1296 return false; 1297 1298 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 1299 // how to expand them yet, and the predicate for telling if a bitfield still 1300 // counts as "basic" is more complicated than what we were doing previously. 1301 if (FD->isBitField()) 1302 return false; 1303 1304 Size += Context.getTypeSize(FD->getType()); 1305 } 1306 return true; 1307 } 1308 1309 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD, 1310 uint64_t &Size) { 1311 // Don't do this if there are any non-empty bases. 1312 for (const CXXBaseSpecifier &Base : RD->bases()) { 1313 if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(), 1314 Size)) 1315 return false; 1316 } 1317 if (!addFieldSizes(Context, RD, Size)) 1318 return false; 1319 return true; 1320 } 1321 1322 /// Test whether an argument type which is to be passed indirectly (on the 1323 /// stack) would have the equivalent layout if it was expanded into separate 1324 /// arguments. If so, we prefer to do the latter to avoid inhibiting 1325 /// optimizations. 1326 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const { 1327 // We can only expand structure types. 1328 const RecordType *RT = Ty->getAs<RecordType>(); 1329 if (!RT) 1330 return false; 1331 const RecordDecl *RD = RT->getDecl(); 1332 uint64_t Size = 0; 1333 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1334 if (!IsWin32StructABI) { 1335 // On non-Windows, we have to conservatively match our old bitcode 1336 // prototypes in order to be ABI-compatible at the bitcode level. 1337 if (!CXXRD->isCLike()) 1338 return false; 1339 } else { 1340 // Don't do this for dynamic classes. 1341 if (CXXRD->isDynamicClass()) 1342 return false; 1343 } 1344 if (!addBaseAndFieldSizes(getContext(), CXXRD, Size)) 1345 return false; 1346 } else { 1347 if (!addFieldSizes(getContext(), RD, Size)) 1348 return false; 1349 } 1350 1351 // We can do this if there was no alignment padding. 1352 return Size == getContext().getTypeSize(Ty); 1353 } 1354 1355 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { 1356 // If the return value is indirect, then the hidden argument is consuming one 1357 // integer register. 1358 if (State.FreeRegs) { 1359 --State.FreeRegs; 1360 if (!IsMCUABI) 1361 return getNaturalAlignIndirectInReg(RetTy); 1362 } 1363 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 1364 } 1365 1366 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 1367 CCState &State) const { 1368 if (RetTy->isVoidType()) 1369 return ABIArgInfo::getIgnore(); 1370 1371 const Type *Base = nullptr; 1372 uint64_t NumElts = 0; 1373 if ((State.CC == llvm::CallingConv::X86_VectorCall || 1374 State.CC == llvm::CallingConv::X86_RegCall) && 1375 isHomogeneousAggregate(RetTy, Base, NumElts)) { 1376 // The LLVM struct type for such an aggregate should lower properly. 1377 return ABIArgInfo::getDirect(); 1378 } 1379 1380 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 1381 // On Darwin, some vectors are returned in registers. 1382 if (IsDarwinVectorABI) { 1383 uint64_t Size = getContext().getTypeSize(RetTy); 1384 1385 // 128-bit vectors are a special case; they are returned in 1386 // registers and we need to make sure to pick a type the LLVM 1387 // backend will like. 1388 if (Size == 128) 1389 return ABIArgInfo::getDirect(llvm::VectorType::get( 1390 llvm::Type::getInt64Ty(getVMContext()), 2)); 1391 1392 // Always return in register if it fits in a general purpose 1393 // register, or if it is 64 bits and has a single element. 1394 if ((Size == 8 || Size == 16 || Size == 32) || 1395 (Size == 64 && VT->getNumElements() == 1)) 1396 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1397 Size)); 1398 1399 return getIndirectReturnResult(RetTy, State); 1400 } 1401 1402 return ABIArgInfo::getDirect(); 1403 } 1404 1405 if (isAggregateTypeForABI(RetTy)) { 1406 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 1407 // Structures with flexible arrays are always indirect. 1408 if (RT->getDecl()->hasFlexibleArrayMember()) 1409 return getIndirectReturnResult(RetTy, State); 1410 } 1411 1412 // If specified, structs and unions are always indirect. 1413 if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) 1414 return getIndirectReturnResult(RetTy, State); 1415 1416 // Ignore empty structs/unions. 1417 if (isEmptyRecord(getContext(), RetTy, true)) 1418 return ABIArgInfo::getIgnore(); 1419 1420 // Small structures which are register sized are generally returned 1421 // in a register. 1422 if (shouldReturnTypeInRegister(RetTy, getContext())) { 1423 uint64_t Size = getContext().getTypeSize(RetTy); 1424 1425 // As a special-case, if the struct is a "single-element" struct, and 1426 // the field is of type "float" or "double", return it in a 1427 // floating-point register. (MSVC does not apply this special case.) 1428 // We apply a similar transformation for pointer types to improve the 1429 // quality of the generated IR. 1430 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 1431 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 1432 || SeltTy->hasPointerRepresentation()) 1433 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 1434 1435 // FIXME: We should be able to narrow this integer in cases with dead 1436 // padding. 1437 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 1438 } 1439 1440 return getIndirectReturnResult(RetTy, State); 1441 } 1442 1443 // Treat an enum type as its underlying type. 1444 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1445 RetTy = EnumTy->getDecl()->getIntegerType(); 1446 1447 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 1448 : ABIArgInfo::getDirect()); 1449 } 1450 1451 static bool isSSEVectorType(ASTContext &Context, QualType Ty) { 1452 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 1453 } 1454 1455 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) { 1456 const RecordType *RT = Ty->getAs<RecordType>(); 1457 if (!RT) 1458 return 0; 1459 const RecordDecl *RD = RT->getDecl(); 1460 1461 // If this is a C++ record, check the bases first. 1462 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1463 for (const auto &I : CXXRD->bases()) 1464 if (!isRecordWithSSEVectorType(Context, I.getType())) 1465 return false; 1466 1467 for (const auto *i : RD->fields()) { 1468 QualType FT = i->getType(); 1469 1470 if (isSSEVectorType(Context, FT)) 1471 return true; 1472 1473 if (isRecordWithSSEVectorType(Context, FT)) 1474 return true; 1475 } 1476 1477 return false; 1478 } 1479 1480 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 1481 unsigned Align) const { 1482 // Otherwise, if the alignment is less than or equal to the minimum ABI 1483 // alignment, just use the default; the backend will handle this. 1484 if (Align <= MinABIStackAlignInBytes) 1485 return 0; // Use default alignment. 1486 1487 // On non-Darwin, the stack type alignment is always 4. 1488 if (!IsDarwinVectorABI) { 1489 // Set explicit alignment, since we may need to realign the top. 1490 return MinABIStackAlignInBytes; 1491 } 1492 1493 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 1494 if (Align >= 16 && (isSSEVectorType(getContext(), Ty) || 1495 isRecordWithSSEVectorType(getContext(), Ty))) 1496 return 16; 1497 1498 return MinABIStackAlignInBytes; 1499 } 1500 1501 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 1502 CCState &State) const { 1503 if (!ByVal) { 1504 if (State.FreeRegs) { 1505 --State.FreeRegs; // Non-byval indirects just use one pointer. 1506 if (!IsMCUABI) 1507 return getNaturalAlignIndirectInReg(Ty); 1508 } 1509 return getNaturalAlignIndirect(Ty, false); 1510 } 1511 1512 // Compute the byval alignment. 1513 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 1514 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 1515 if (StackAlign == 0) 1516 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); 1517 1518 // If the stack alignment is less than the type alignment, realign the 1519 // argument. 1520 bool Realign = TypeAlign > StackAlign; 1521 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), 1522 /*ByVal=*/true, Realign); 1523 } 1524 1525 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 1526 const Type *T = isSingleElementStruct(Ty, getContext()); 1527 if (!T) 1528 T = Ty.getTypePtr(); 1529 1530 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 1531 BuiltinType::Kind K = BT->getKind(); 1532 if (K == BuiltinType::Float || K == BuiltinType::Double) 1533 return Float; 1534 } 1535 return Integer; 1536 } 1537 1538 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { 1539 if (!IsSoftFloatABI) { 1540 Class C = classify(Ty); 1541 if (C == Float) 1542 return false; 1543 } 1544 1545 unsigned Size = getContext().getTypeSize(Ty); 1546 unsigned SizeInRegs = (Size + 31) / 32; 1547 1548 if (SizeInRegs == 0) 1549 return false; 1550 1551 if (!IsMCUABI) { 1552 if (SizeInRegs > State.FreeRegs) { 1553 State.FreeRegs = 0; 1554 return false; 1555 } 1556 } else { 1557 // The MCU psABI allows passing parameters in-reg even if there are 1558 // earlier parameters that are passed on the stack. Also, 1559 // it does not allow passing >8-byte structs in-register, 1560 // even if there are 3 free registers available. 1561 if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) 1562 return false; 1563 } 1564 1565 State.FreeRegs -= SizeInRegs; 1566 return true; 1567 } 1568 1569 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, 1570 bool &InReg, 1571 bool &NeedsPadding) const { 1572 // On Windows, aggregates other than HFAs are never passed in registers, and 1573 // they do not consume register slots. Homogenous floating-point aggregates 1574 // (HFAs) have already been dealt with at this point. 1575 if (IsWin32StructABI && isAggregateTypeForABI(Ty)) 1576 return false; 1577 1578 NeedsPadding = false; 1579 InReg = !IsMCUABI; 1580 1581 if (!updateFreeRegs(Ty, State)) 1582 return false; 1583 1584 if (IsMCUABI) 1585 return true; 1586 1587 if (State.CC == llvm::CallingConv::X86_FastCall || 1588 State.CC == llvm::CallingConv::X86_VectorCall || 1589 State.CC == llvm::CallingConv::X86_RegCall) { 1590 if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) 1591 NeedsPadding = true; 1592 1593 return false; 1594 } 1595 1596 return true; 1597 } 1598 1599 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { 1600 if (!updateFreeRegs(Ty, State)) 1601 return false; 1602 1603 if (IsMCUABI) 1604 return false; 1605 1606 if (State.CC == llvm::CallingConv::X86_FastCall || 1607 State.CC == llvm::CallingConv::X86_VectorCall || 1608 State.CC == llvm::CallingConv::X86_RegCall) { 1609 if (getContext().getTypeSize(Ty) > 32) 1610 return false; 1611 1612 return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || 1613 Ty->isReferenceType()); 1614 } 1615 1616 return true; 1617 } 1618 1619 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 1620 CCState &State) const { 1621 // FIXME: Set alignment on indirect arguments. 1622 1623 Ty = useFirstFieldIfTransparentUnion(Ty); 1624 1625 // Check with the C++ ABI first. 1626 const RecordType *RT = Ty->getAs<RecordType>(); 1627 if (RT) { 1628 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 1629 if (RAA == CGCXXABI::RAA_Indirect) { 1630 return getIndirectResult(Ty, false, State); 1631 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 1632 // The field index doesn't matter, we'll fix it up later. 1633 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 1634 } 1635 } 1636 1637 // Regcall uses the concept of a homogenous vector aggregate, similar 1638 // to other targets. 1639 const Type *Base = nullptr; 1640 uint64_t NumElts = 0; 1641 if (State.CC == llvm::CallingConv::X86_RegCall && 1642 isHomogeneousAggregate(Ty, Base, NumElts)) { 1643 1644 if (State.FreeSSERegs >= NumElts) { 1645 State.FreeSSERegs -= NumElts; 1646 if (Ty->isBuiltinType() || Ty->isVectorType()) 1647 return ABIArgInfo::getDirect(); 1648 return ABIArgInfo::getExpand(); 1649 } 1650 return getIndirectResult(Ty, /*ByVal=*/false, State); 1651 } 1652 1653 if (isAggregateTypeForABI(Ty)) { 1654 // Structures with flexible arrays are always indirect. 1655 // FIXME: This should not be byval! 1656 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 1657 return getIndirectResult(Ty, true, State); 1658 1659 // Ignore empty structs/unions on non-Windows. 1660 if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true)) 1661 return ABIArgInfo::getIgnore(); 1662 1663 llvm::LLVMContext &LLVMContext = getVMContext(); 1664 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 1665 bool NeedsPadding = false; 1666 bool InReg; 1667 if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { 1668 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 1669 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 1670 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 1671 if (InReg) 1672 return ABIArgInfo::getDirectInReg(Result); 1673 else 1674 return ABIArgInfo::getDirect(Result); 1675 } 1676 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 1677 1678 // Expand small (<= 128-bit) record types when we know that the stack layout 1679 // of those arguments will match the struct. This is important because the 1680 // LLVM backend isn't smart enough to remove byval, which inhibits many 1681 // optimizations. 1682 // Don't do this for the MCU if there are still free integer registers 1683 // (see X86_64 ABI for full explanation). 1684 if (getContext().getTypeSize(Ty) <= 4 * 32 && 1685 (!IsMCUABI || State.FreeRegs == 0) && canExpandIndirectArgument(Ty)) 1686 return ABIArgInfo::getExpandWithPadding( 1687 State.CC == llvm::CallingConv::X86_FastCall || 1688 State.CC == llvm::CallingConv::X86_VectorCall || 1689 State.CC == llvm::CallingConv::X86_RegCall, 1690 PaddingType); 1691 1692 return getIndirectResult(Ty, true, State); 1693 } 1694 1695 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1696 // On Darwin, some vectors are passed in memory, we handle this by passing 1697 // it as an i8/i16/i32/i64. 1698 if (IsDarwinVectorABI) { 1699 uint64_t Size = getContext().getTypeSize(Ty); 1700 if ((Size == 8 || Size == 16 || Size == 32) || 1701 (Size == 64 && VT->getNumElements() == 1)) 1702 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1703 Size)); 1704 } 1705 1706 if (IsX86_MMXType(CGT.ConvertType(Ty))) 1707 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 1708 1709 return ABIArgInfo::getDirect(); 1710 } 1711 1712 1713 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1714 Ty = EnumTy->getDecl()->getIntegerType(); 1715 1716 bool InReg = shouldPrimitiveUseInReg(Ty, State); 1717 1718 if (Ty->isPromotableIntegerType()) { 1719 if (InReg) 1720 return ABIArgInfo::getExtendInReg(Ty); 1721 return ABIArgInfo::getExtend(Ty); 1722 } 1723 1724 if (InReg) 1725 return ABIArgInfo::getDirectInReg(); 1726 return ABIArgInfo::getDirect(); 1727 } 1728 1729 void X86_32ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, CCState &State, 1730 bool &UsedInAlloca) const { 1731 // Vectorcall x86 works subtly different than in x64, so the format is 1732 // a bit different than the x64 version. First, all vector types (not HVAs) 1733 // are assigned, with the first 6 ending up in the YMM0-5 or XMM0-5 registers. 1734 // This differs from the x64 implementation, where the first 6 by INDEX get 1735 // registers. 1736 // After that, integers AND HVAs are assigned Left to Right in the same pass. 1737 // Integers are passed as ECX/EDX if one is available (in order). HVAs will 1738 // first take up the remaining YMM/XMM registers. If insufficient registers 1739 // remain but an integer register (ECX/EDX) is available, it will be passed 1740 // in that, else, on the stack. 1741 for (auto &I : FI.arguments()) { 1742 // First pass do all the vector types. 1743 const Type *Base = nullptr; 1744 uint64_t NumElts = 0; 1745 const QualType& Ty = I.type; 1746 if ((Ty->isVectorType() || Ty->isBuiltinType()) && 1747 isHomogeneousAggregate(Ty, Base, NumElts)) { 1748 if (State.FreeSSERegs >= NumElts) { 1749 State.FreeSSERegs -= NumElts; 1750 I.info = ABIArgInfo::getDirect(); 1751 } else { 1752 I.info = classifyArgumentType(Ty, State); 1753 } 1754 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1755 } 1756 } 1757 1758 for (auto &I : FI.arguments()) { 1759 // Second pass, do the rest! 1760 const Type *Base = nullptr; 1761 uint64_t NumElts = 0; 1762 const QualType& Ty = I.type; 1763 bool IsHva = isHomogeneousAggregate(Ty, Base, NumElts); 1764 1765 if (IsHva && !Ty->isVectorType() && !Ty->isBuiltinType()) { 1766 // Assign true HVAs (non vector/native FP types). 1767 if (State.FreeSSERegs >= NumElts) { 1768 State.FreeSSERegs -= NumElts; 1769 I.info = getDirectX86Hva(); 1770 } else { 1771 I.info = getIndirectResult(Ty, /*ByVal=*/false, State); 1772 } 1773 } else if (!IsHva) { 1774 // Assign all Non-HVAs, so this will exclude Vector/FP args. 1775 I.info = classifyArgumentType(Ty, State); 1776 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1777 } 1778 } 1779 } 1780 1781 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 1782 CCState State(FI.getCallingConvention()); 1783 if (IsMCUABI) 1784 State.FreeRegs = 3; 1785 else if (State.CC == llvm::CallingConv::X86_FastCall) 1786 State.FreeRegs = 2; 1787 else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1788 State.FreeRegs = 2; 1789 State.FreeSSERegs = 6; 1790 } else if (FI.getHasRegParm()) 1791 State.FreeRegs = FI.getRegParm(); 1792 else if (State.CC == llvm::CallingConv::X86_RegCall) { 1793 State.FreeRegs = 5; 1794 State.FreeSSERegs = 8; 1795 } else 1796 State.FreeRegs = DefaultNumRegisterParameters; 1797 1798 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 1799 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 1800 } else if (FI.getReturnInfo().isIndirect()) { 1801 // The C++ ABI is not aware of register usage, so we have to check if the 1802 // return value was sret and put it in a register ourselves if appropriate. 1803 if (State.FreeRegs) { 1804 --State.FreeRegs; // The sret parameter consumes a register. 1805 if (!IsMCUABI) 1806 FI.getReturnInfo().setInReg(true); 1807 } 1808 } 1809 1810 // The chain argument effectively gives us another free register. 1811 if (FI.isChainCall()) 1812 ++State.FreeRegs; 1813 1814 bool UsedInAlloca = false; 1815 if (State.CC == llvm::CallingConv::X86_VectorCall) { 1816 computeVectorCallArgs(FI, State, UsedInAlloca); 1817 } else { 1818 // If not vectorcall, revert to normal behavior. 1819 for (auto &I : FI.arguments()) { 1820 I.info = classifyArgumentType(I.type, State); 1821 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1822 } 1823 } 1824 1825 // If we needed to use inalloca for any argument, do a second pass and rewrite 1826 // all the memory arguments to use inalloca. 1827 if (UsedInAlloca) 1828 rewriteWithInAlloca(FI); 1829 } 1830 1831 void 1832 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1833 CharUnits &StackOffset, ABIArgInfo &Info, 1834 QualType Type) const { 1835 // Arguments are always 4-byte-aligned. 1836 CharUnits FieldAlign = CharUnits::fromQuantity(4); 1837 1838 assert(StackOffset.isMultipleOf(FieldAlign) && "unaligned inalloca struct"); 1839 Info = ABIArgInfo::getInAlloca(FrameFields.size()); 1840 FrameFields.push_back(CGT.ConvertTypeForMem(Type)); 1841 StackOffset += getContext().getTypeSizeInChars(Type); 1842 1843 // Insert padding bytes to respect alignment. 1844 CharUnits FieldEnd = StackOffset; 1845 StackOffset = FieldEnd.alignTo(FieldAlign); 1846 if (StackOffset != FieldEnd) { 1847 CharUnits NumBytes = StackOffset - FieldEnd; 1848 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 1849 Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); 1850 FrameFields.push_back(Ty); 1851 } 1852 } 1853 1854 static bool isArgInAlloca(const ABIArgInfo &Info) { 1855 // Leave ignored and inreg arguments alone. 1856 switch (Info.getKind()) { 1857 case ABIArgInfo::InAlloca: 1858 return true; 1859 case ABIArgInfo::Indirect: 1860 assert(Info.getIndirectByVal()); 1861 return true; 1862 case ABIArgInfo::Ignore: 1863 return false; 1864 case ABIArgInfo::Direct: 1865 case ABIArgInfo::Extend: 1866 if (Info.getInReg()) 1867 return false; 1868 return true; 1869 case ABIArgInfo::Expand: 1870 case ABIArgInfo::CoerceAndExpand: 1871 // These are aggregate types which are never passed in registers when 1872 // inalloca is involved. 1873 return true; 1874 } 1875 llvm_unreachable("invalid enum"); 1876 } 1877 1878 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 1879 assert(IsWin32StructABI && "inalloca only supported on win32"); 1880 1881 // Build a packed struct type for all of the arguments in memory. 1882 SmallVector<llvm::Type *, 6> FrameFields; 1883 1884 // The stack alignment is always 4. 1885 CharUnits StackAlign = CharUnits::fromQuantity(4); 1886 1887 CharUnits StackOffset; 1888 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 1889 1890 // Put 'this' into the struct before 'sret', if necessary. 1891 bool IsThisCall = 1892 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 1893 ABIArgInfo &Ret = FI.getReturnInfo(); 1894 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 1895 isArgInAlloca(I->info)) { 1896 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1897 ++I; 1898 } 1899 1900 // Put the sret parameter into the inalloca struct if it's in memory. 1901 if (Ret.isIndirect() && !Ret.getInReg()) { 1902 CanQualType PtrTy = getContext().getPointerType(FI.getReturnType()); 1903 addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy); 1904 // On Windows, the hidden sret parameter is always returned in eax. 1905 Ret.setInAllocaSRet(IsWin32StructABI); 1906 } 1907 1908 // Skip the 'this' parameter in ecx. 1909 if (IsThisCall) 1910 ++I; 1911 1912 // Put arguments passed in memory into the struct. 1913 for (; I != E; ++I) { 1914 if (isArgInAlloca(I->info)) 1915 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1916 } 1917 1918 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 1919 /*isPacked=*/true), 1920 StackAlign); 1921 } 1922 1923 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, 1924 Address VAListAddr, QualType Ty) const { 1925 1926 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 1927 1928 // x86-32 changes the alignment of certain arguments on the stack. 1929 // 1930 // Just messing with TypeInfo like this works because we never pass 1931 // anything indirectly. 1932 TypeInfo.second = CharUnits::fromQuantity( 1933 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity())); 1934 1935 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 1936 TypeInfo, CharUnits::fromQuantity(4), 1937 /*AllowHigherAlign*/ true); 1938 } 1939 1940 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 1941 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 1942 assert(Triple.getArch() == llvm::Triple::x86); 1943 1944 switch (Opts.getStructReturnConvention()) { 1945 case CodeGenOptions::SRCK_Default: 1946 break; 1947 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 1948 return false; 1949 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 1950 return true; 1951 } 1952 1953 if (Triple.isOSDarwin() || Triple.isOSIAMCU()) 1954 return true; 1955 1956 switch (Triple.getOS()) { 1957 case llvm::Triple::DragonFly: 1958 case llvm::Triple::FreeBSD: 1959 case llvm::Triple::OpenBSD: 1960 case llvm::Triple::Win32: 1961 return true; 1962 default: 1963 return false; 1964 } 1965 } 1966 1967 void X86_32TargetCodeGenInfo::setTargetAttributes( 1968 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 1969 if (GV->isDeclaration()) 1970 return; 1971 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 1972 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 1973 llvm::Function *Fn = cast<llvm::Function>(GV); 1974 Fn->addFnAttr("stackrealign"); 1975 } 1976 if (FD->hasAttr<AnyX86InterruptAttr>()) { 1977 llvm::Function *Fn = cast<llvm::Function>(GV); 1978 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 1979 } 1980 } 1981 } 1982 1983 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 1984 CodeGen::CodeGenFunction &CGF, 1985 llvm::Value *Address) const { 1986 CodeGen::CGBuilderTy &Builder = CGF.Builder; 1987 1988 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 1989 1990 // 0-7 are the eight integer registers; the order is different 1991 // on Darwin (for EH), but the range is the same. 1992 // 8 is %eip. 1993 AssignToArrayRange(Builder, Address, Four8, 0, 8); 1994 1995 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 1996 // 12-16 are st(0..4). Not sure why we stop at 4. 1997 // These have size 16, which is sizeof(long double) on 1998 // platforms with 8-byte alignment for that type. 1999 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 2000 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 2001 2002 } else { 2003 // 9 is %eflags, which doesn't get a size on Darwin for some 2004 // reason. 2005 Builder.CreateAlignedStore( 2006 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), 2007 CharUnits::One()); 2008 2009 // 11-16 are st(0..5). Not sure why we stop at 5. 2010 // These have size 12, which is sizeof(long double) on 2011 // platforms with 4-byte alignment for that type. 2012 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 2013 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 2014 } 2015 2016 return false; 2017 } 2018 2019 //===----------------------------------------------------------------------===// 2020 // X86-64 ABI Implementation 2021 //===----------------------------------------------------------------------===// 2022 2023 2024 namespace { 2025 /// The AVX ABI level for X86 targets. 2026 enum class X86AVXABILevel { 2027 None, 2028 AVX, 2029 AVX512 2030 }; 2031 2032 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. 2033 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { 2034 switch (AVXLevel) { 2035 case X86AVXABILevel::AVX512: 2036 return 512; 2037 case X86AVXABILevel::AVX: 2038 return 256; 2039 case X86AVXABILevel::None: 2040 return 128; 2041 } 2042 llvm_unreachable("Unknown AVXLevel"); 2043 } 2044 2045 /// X86_64ABIInfo - The X86_64 ABI information. 2046 class X86_64ABIInfo : public SwiftABIInfo { 2047 enum Class { 2048 Integer = 0, 2049 SSE, 2050 SSEUp, 2051 X87, 2052 X87Up, 2053 ComplexX87, 2054 NoClass, 2055 Memory 2056 }; 2057 2058 /// merge - Implement the X86_64 ABI merging algorithm. 2059 /// 2060 /// Merge an accumulating classification \arg Accum with a field 2061 /// classification \arg Field. 2062 /// 2063 /// \param Accum - The accumulating classification. This should 2064 /// always be either NoClass or the result of a previous merge 2065 /// call. In addition, this should never be Memory (the caller 2066 /// should just return Memory for the aggregate). 2067 static Class merge(Class Accum, Class Field); 2068 2069 /// postMerge - Implement the X86_64 ABI post merging algorithm. 2070 /// 2071 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 2072 /// final MEMORY or SSE classes when necessary. 2073 /// 2074 /// \param AggregateSize - The size of the current aggregate in 2075 /// the classification process. 2076 /// 2077 /// \param Lo - The classification for the parts of the type 2078 /// residing in the low word of the containing object. 2079 /// 2080 /// \param Hi - The classification for the parts of the type 2081 /// residing in the higher words of the containing object. 2082 /// 2083 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 2084 2085 /// classify - Determine the x86_64 register classes in which the 2086 /// given type T should be passed. 2087 /// 2088 /// \param Lo - The classification for the parts of the type 2089 /// residing in the low word of the containing object. 2090 /// 2091 /// \param Hi - The classification for the parts of the type 2092 /// residing in the high word of the containing object. 2093 /// 2094 /// \param OffsetBase - The bit offset of this type in the 2095 /// containing object. Some parameters are classified different 2096 /// depending on whether they straddle an eightbyte boundary. 2097 /// 2098 /// \param isNamedArg - Whether the argument in question is a "named" 2099 /// argument, as used in AMD64-ABI 3.5.7. 2100 /// 2101 /// If a word is unused its result will be NoClass; if a type should 2102 /// be passed in Memory then at least the classification of \arg Lo 2103 /// will be Memory. 2104 /// 2105 /// The \arg Lo class will be NoClass iff the argument is ignored. 2106 /// 2107 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 2108 /// also be ComplexX87. 2109 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 2110 bool isNamedArg) const; 2111 2112 llvm::Type *GetByteVectorType(QualType Ty) const; 2113 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 2114 unsigned IROffset, QualType SourceTy, 2115 unsigned SourceOffset) const; 2116 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 2117 unsigned IROffset, QualType SourceTy, 2118 unsigned SourceOffset) const; 2119 2120 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2121 /// such that the argument will be returned in memory. 2122 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 2123 2124 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2125 /// such that the argument will be passed in memory. 2126 /// 2127 /// \param freeIntRegs - The number of free integer registers remaining 2128 /// available. 2129 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 2130 2131 ABIArgInfo classifyReturnType(QualType RetTy) const; 2132 2133 ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs, 2134 unsigned &neededInt, unsigned &neededSSE, 2135 bool isNamedArg) const; 2136 2137 ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt, 2138 unsigned &NeededSSE) const; 2139 2140 ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 2141 unsigned &NeededSSE) const; 2142 2143 bool IsIllegalVectorType(QualType Ty) const; 2144 2145 /// The 0.98 ABI revision clarified a lot of ambiguities, 2146 /// unfortunately in ways that were not always consistent with 2147 /// certain previous compilers. In particular, platforms which 2148 /// required strict binary compatibility with older versions of GCC 2149 /// may need to exempt themselves. 2150 bool honorsRevision0_98() const { 2151 return !getTarget().getTriple().isOSDarwin(); 2152 } 2153 2154 /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to 2155 /// classify it as INTEGER (for compatibility with older clang compilers). 2156 bool classifyIntegerMMXAsSSE() const { 2157 // Clang <= 3.8 did not do this. 2158 if (getContext().getLangOpts().getClangABICompat() <= 2159 LangOptions::ClangABI::Ver3_8) 2160 return false; 2161 2162 const llvm::Triple &Triple = getTarget().getTriple(); 2163 if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4) 2164 return false; 2165 if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10) 2166 return false; 2167 return true; 2168 } 2169 2170 X86AVXABILevel AVXLevel; 2171 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 2172 // 64-bit hardware. 2173 bool Has64BitPointers; 2174 2175 public: 2176 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : 2177 SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2178 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 2179 } 2180 2181 bool isPassedUsingAVXType(QualType type) const { 2182 unsigned neededInt, neededSSE; 2183 // The freeIntRegs argument doesn't matter here. 2184 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 2185 /*isNamedArg*/true); 2186 if (info.isDirect()) { 2187 llvm::Type *ty = info.getCoerceToType(); 2188 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 2189 return (vectorTy->getBitWidth() > 128); 2190 } 2191 return false; 2192 } 2193 2194 void computeInfo(CGFunctionInfo &FI) const override; 2195 2196 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2197 QualType Ty) const override; 2198 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 2199 QualType Ty) const override; 2200 2201 bool has64BitPointers() const { 2202 return Has64BitPointers; 2203 } 2204 2205 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 2206 bool asReturnValue) const override { 2207 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2208 } 2209 bool isSwiftErrorInRegister() const override { 2210 return true; 2211 } 2212 }; 2213 2214 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 2215 class WinX86_64ABIInfo : public SwiftABIInfo { 2216 public: 2217 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) 2218 : SwiftABIInfo(CGT), 2219 IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} 2220 2221 void computeInfo(CGFunctionInfo &FI) const override; 2222 2223 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2224 QualType Ty) const override; 2225 2226 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 2227 // FIXME: Assumes vectorcall is in use. 2228 return isX86VectorTypeForVectorCall(getContext(), Ty); 2229 } 2230 2231 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 2232 uint64_t NumMembers) const override { 2233 // FIXME: Assumes vectorcall is in use. 2234 return isX86VectorCallAggregateSmallEnough(NumMembers); 2235 } 2236 2237 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars, 2238 bool asReturnValue) const override { 2239 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2240 } 2241 2242 bool isSwiftErrorInRegister() const override { 2243 return true; 2244 } 2245 2246 private: 2247 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType, 2248 bool IsVectorCall, bool IsRegCall) const; 2249 ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 2250 const ABIArgInfo ¤t) const; 2251 void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs, 2252 bool IsVectorCall, bool IsRegCall) const; 2253 2254 bool IsMingw64; 2255 }; 2256 2257 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2258 public: 2259 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2260 : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {} 2261 2262 const X86_64ABIInfo &getABIInfo() const { 2263 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 2264 } 2265 2266 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2267 return 7; 2268 } 2269 2270 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2271 llvm::Value *Address) const override { 2272 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2273 2274 // 0-15 are the 16 integer registers. 2275 // 16 is %rip. 2276 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2277 return false; 2278 } 2279 2280 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 2281 StringRef Constraint, 2282 llvm::Type* Ty) const override { 2283 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 2284 } 2285 2286 bool isNoProtoCallVariadic(const CallArgList &args, 2287 const FunctionNoProtoType *fnType) const override { 2288 // The default CC on x86-64 sets %al to the number of SSA 2289 // registers used, and GCC sets this when calling an unprototyped 2290 // function, so we override the default behavior. However, don't do 2291 // that when AVX types are involved: the ABI explicitly states it is 2292 // undefined, and it doesn't work in practice because of how the ABI 2293 // defines varargs anyway. 2294 if (fnType->getCallConv() == CC_C) { 2295 bool HasAVXType = false; 2296 for (CallArgList::const_iterator 2297 it = args.begin(), ie = args.end(); it != ie; ++it) { 2298 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 2299 HasAVXType = true; 2300 break; 2301 } 2302 } 2303 2304 if (!HasAVXType) 2305 return true; 2306 } 2307 2308 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 2309 } 2310 2311 llvm::Constant * 2312 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 2313 unsigned Sig = (0xeb << 0) | // jmp rel8 2314 (0x06 << 8) | // .+0x08 2315 ('v' << 16) | 2316 ('2' << 24); 2317 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 2318 } 2319 2320 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2321 CodeGen::CodeGenModule &CGM) const override { 2322 if (GV->isDeclaration()) 2323 return; 2324 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2325 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2326 llvm::Function *Fn = cast<llvm::Function>(GV); 2327 Fn->addFnAttr("stackrealign"); 2328 } 2329 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2330 llvm::Function *Fn = cast<llvm::Function>(GV); 2331 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2332 } 2333 } 2334 } 2335 }; 2336 2337 class PS4TargetCodeGenInfo : public X86_64TargetCodeGenInfo { 2338 public: 2339 PS4TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2340 : X86_64TargetCodeGenInfo(CGT, AVXLevel) {} 2341 2342 void getDependentLibraryOption(llvm::StringRef Lib, 2343 llvm::SmallString<24> &Opt) const override { 2344 Opt = "\01"; 2345 // If the argument contains a space, enclose it in quotes. 2346 if (Lib.find(" ") != StringRef::npos) 2347 Opt += "\"" + Lib.str() + "\""; 2348 else 2349 Opt += Lib; 2350 } 2351 }; 2352 2353 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 2354 // If the argument does not end in .lib, automatically add the suffix. 2355 // If the argument contains a space, enclose it in quotes. 2356 // This matches the behavior of MSVC. 2357 bool Quote = (Lib.find(" ") != StringRef::npos); 2358 std::string ArgStr = Quote ? "\"" : ""; 2359 ArgStr += Lib; 2360 if (!Lib.endswith_lower(".lib") && !Lib.endswith_lower(".a")) 2361 ArgStr += ".lib"; 2362 ArgStr += Quote ? "\"" : ""; 2363 return ArgStr; 2364 } 2365 2366 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 2367 public: 2368 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2369 bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, 2370 unsigned NumRegisterParameters) 2371 : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, 2372 Win32StructABI, NumRegisterParameters, false) {} 2373 2374 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2375 CodeGen::CodeGenModule &CGM) const override; 2376 2377 void getDependentLibraryOption(llvm::StringRef Lib, 2378 llvm::SmallString<24> &Opt) const override { 2379 Opt = "/DEFAULTLIB:"; 2380 Opt += qualifyWindowsLibrary(Lib); 2381 } 2382 2383 void getDetectMismatchOption(llvm::StringRef Name, 2384 llvm::StringRef Value, 2385 llvm::SmallString<32> &Opt) const override { 2386 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2387 } 2388 }; 2389 2390 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2391 CodeGen::CodeGenModule &CGM) { 2392 if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) { 2393 2394 if (CGM.getCodeGenOpts().StackProbeSize != 4096) 2395 Fn->addFnAttr("stack-probe-size", 2396 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 2397 if (CGM.getCodeGenOpts().NoStackArgProbe) 2398 Fn->addFnAttr("no-stack-arg-probe"); 2399 } 2400 } 2401 2402 void WinX86_32TargetCodeGenInfo::setTargetAttributes( 2403 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2404 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2405 if (GV->isDeclaration()) 2406 return; 2407 addStackProbeTargetAttributes(D, GV, CGM); 2408 } 2409 2410 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2411 public: 2412 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2413 X86AVXABILevel AVXLevel) 2414 : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {} 2415 2416 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2417 CodeGen::CodeGenModule &CGM) const override; 2418 2419 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2420 return 7; 2421 } 2422 2423 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2424 llvm::Value *Address) const override { 2425 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2426 2427 // 0-15 are the 16 integer registers. 2428 // 16 is %rip. 2429 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2430 return false; 2431 } 2432 2433 void getDependentLibraryOption(llvm::StringRef Lib, 2434 llvm::SmallString<24> &Opt) const override { 2435 Opt = "/DEFAULTLIB:"; 2436 Opt += qualifyWindowsLibrary(Lib); 2437 } 2438 2439 void getDetectMismatchOption(llvm::StringRef Name, 2440 llvm::StringRef Value, 2441 llvm::SmallString<32> &Opt) const override { 2442 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2443 } 2444 }; 2445 2446 void WinX86_64TargetCodeGenInfo::setTargetAttributes( 2447 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2448 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2449 if (GV->isDeclaration()) 2450 return; 2451 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2452 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2453 llvm::Function *Fn = cast<llvm::Function>(GV); 2454 Fn->addFnAttr("stackrealign"); 2455 } 2456 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2457 llvm::Function *Fn = cast<llvm::Function>(GV); 2458 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2459 } 2460 } 2461 2462 addStackProbeTargetAttributes(D, GV, CGM); 2463 } 2464 } 2465 2466 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 2467 Class &Hi) const { 2468 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 2469 // 2470 // (a) If one of the classes is Memory, the whole argument is passed in 2471 // memory. 2472 // 2473 // (b) If X87UP is not preceded by X87, the whole argument is passed in 2474 // memory. 2475 // 2476 // (c) If the size of the aggregate exceeds two eightbytes and the first 2477 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 2478 // argument is passed in memory. NOTE: This is necessary to keep the 2479 // ABI working for processors that don't support the __m256 type. 2480 // 2481 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 2482 // 2483 // Some of these are enforced by the merging logic. Others can arise 2484 // only with unions; for example: 2485 // union { _Complex double; unsigned; } 2486 // 2487 // Note that clauses (b) and (c) were added in 0.98. 2488 // 2489 if (Hi == Memory) 2490 Lo = Memory; 2491 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 2492 Lo = Memory; 2493 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 2494 Lo = Memory; 2495 if (Hi == SSEUp && Lo != SSE) 2496 Hi = SSE; 2497 } 2498 2499 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 2500 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 2501 // classified recursively so that always two fields are 2502 // considered. The resulting class is calculated according to 2503 // the classes of the fields in the eightbyte: 2504 // 2505 // (a) If both classes are equal, this is the resulting class. 2506 // 2507 // (b) If one of the classes is NO_CLASS, the resulting class is 2508 // the other class. 2509 // 2510 // (c) If one of the classes is MEMORY, the result is the MEMORY 2511 // class. 2512 // 2513 // (d) If one of the classes is INTEGER, the result is the 2514 // INTEGER. 2515 // 2516 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 2517 // MEMORY is used as class. 2518 // 2519 // (f) Otherwise class SSE is used. 2520 2521 // Accum should never be memory (we should have returned) or 2522 // ComplexX87 (because this cannot be passed in a structure). 2523 assert((Accum != Memory && Accum != ComplexX87) && 2524 "Invalid accumulated classification during merge."); 2525 if (Accum == Field || Field == NoClass) 2526 return Accum; 2527 if (Field == Memory) 2528 return Memory; 2529 if (Accum == NoClass) 2530 return Field; 2531 if (Accum == Integer || Field == Integer) 2532 return Integer; 2533 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 2534 Accum == X87 || Accum == X87Up) 2535 return Memory; 2536 return SSE; 2537 } 2538 2539 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 2540 Class &Lo, Class &Hi, bool isNamedArg) const { 2541 // FIXME: This code can be simplified by introducing a simple value class for 2542 // Class pairs with appropriate constructor methods for the various 2543 // situations. 2544 2545 // FIXME: Some of the split computations are wrong; unaligned vectors 2546 // shouldn't be passed in registers for example, so there is no chance they 2547 // can straddle an eightbyte. Verify & simplify. 2548 2549 Lo = Hi = NoClass; 2550 2551 Class &Current = OffsetBase < 64 ? Lo : Hi; 2552 Current = Memory; 2553 2554 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 2555 BuiltinType::Kind k = BT->getKind(); 2556 2557 if (k == BuiltinType::Void) { 2558 Current = NoClass; 2559 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 2560 Lo = Integer; 2561 Hi = Integer; 2562 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 2563 Current = Integer; 2564 } else if (k == BuiltinType::Float || k == BuiltinType::Double) { 2565 Current = SSE; 2566 } else if (k == BuiltinType::LongDouble) { 2567 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2568 if (LDF == &llvm::APFloat::IEEEquad()) { 2569 Lo = SSE; 2570 Hi = SSEUp; 2571 } else if (LDF == &llvm::APFloat::x87DoubleExtended()) { 2572 Lo = X87; 2573 Hi = X87Up; 2574 } else if (LDF == &llvm::APFloat::IEEEdouble()) { 2575 Current = SSE; 2576 } else 2577 llvm_unreachable("unexpected long double representation!"); 2578 } 2579 // FIXME: _Decimal32 and _Decimal64 are SSE. 2580 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 2581 return; 2582 } 2583 2584 if (const EnumType *ET = Ty->getAs<EnumType>()) { 2585 // Classify the underlying integer type. 2586 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 2587 return; 2588 } 2589 2590 if (Ty->hasPointerRepresentation()) { 2591 Current = Integer; 2592 return; 2593 } 2594 2595 if (Ty->isMemberPointerType()) { 2596 if (Ty->isMemberFunctionPointerType()) { 2597 if (Has64BitPointers) { 2598 // If Has64BitPointers, this is an {i64, i64}, so classify both 2599 // Lo and Hi now. 2600 Lo = Hi = Integer; 2601 } else { 2602 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 2603 // straddles an eightbyte boundary, Hi should be classified as well. 2604 uint64_t EB_FuncPtr = (OffsetBase) / 64; 2605 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 2606 if (EB_FuncPtr != EB_ThisAdj) { 2607 Lo = Hi = Integer; 2608 } else { 2609 Current = Integer; 2610 } 2611 } 2612 } else { 2613 Current = Integer; 2614 } 2615 return; 2616 } 2617 2618 if (const VectorType *VT = Ty->getAs<VectorType>()) { 2619 uint64_t Size = getContext().getTypeSize(VT); 2620 if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { 2621 // gcc passes the following as integer: 2622 // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> 2623 // 2 bytes - <2 x char>, <1 x short> 2624 // 1 byte - <1 x char> 2625 Current = Integer; 2626 2627 // If this type crosses an eightbyte boundary, it should be 2628 // split. 2629 uint64_t EB_Lo = (OffsetBase) / 64; 2630 uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; 2631 if (EB_Lo != EB_Hi) 2632 Hi = Lo; 2633 } else if (Size == 64) { 2634 QualType ElementType = VT->getElementType(); 2635 2636 // gcc passes <1 x double> in memory. :( 2637 if (ElementType->isSpecificBuiltinType(BuiltinType::Double)) 2638 return; 2639 2640 // gcc passes <1 x long long> as SSE but clang used to unconditionally 2641 // pass them as integer. For platforms where clang is the de facto 2642 // platform compiler, we must continue to use integer. 2643 if (!classifyIntegerMMXAsSSE() && 2644 (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) || 2645 ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) || 2646 ElementType->isSpecificBuiltinType(BuiltinType::Long) || 2647 ElementType->isSpecificBuiltinType(BuiltinType::ULong))) 2648 Current = Integer; 2649 else 2650 Current = SSE; 2651 2652 // If this type crosses an eightbyte boundary, it should be 2653 // split. 2654 if (OffsetBase && OffsetBase != 64) 2655 Hi = Lo; 2656 } else if (Size == 128 || 2657 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { 2658 // Arguments of 256-bits are split into four eightbyte chunks. The 2659 // least significant one belongs to class SSE and all the others to class 2660 // SSEUP. The original Lo and Hi design considers that types can't be 2661 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 2662 // This design isn't correct for 256-bits, but since there're no cases 2663 // where the upper parts would need to be inspected, avoid adding 2664 // complexity and just consider Hi to match the 64-256 part. 2665 // 2666 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 2667 // registers if they are "named", i.e. not part of the "..." of a 2668 // variadic function. 2669 // 2670 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are 2671 // split into eight eightbyte chunks, one SSE and seven SSEUP. 2672 Lo = SSE; 2673 Hi = SSEUp; 2674 } 2675 return; 2676 } 2677 2678 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 2679 QualType ET = getContext().getCanonicalType(CT->getElementType()); 2680 2681 uint64_t Size = getContext().getTypeSize(Ty); 2682 if (ET->isIntegralOrEnumerationType()) { 2683 if (Size <= 64) 2684 Current = Integer; 2685 else if (Size <= 128) 2686 Lo = Hi = Integer; 2687 } else if (ET == getContext().FloatTy) { 2688 Current = SSE; 2689 } else if (ET == getContext().DoubleTy) { 2690 Lo = Hi = SSE; 2691 } else if (ET == getContext().LongDoubleTy) { 2692 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2693 if (LDF == &llvm::APFloat::IEEEquad()) 2694 Current = Memory; 2695 else if (LDF == &llvm::APFloat::x87DoubleExtended()) 2696 Current = ComplexX87; 2697 else if (LDF == &llvm::APFloat::IEEEdouble()) 2698 Lo = Hi = SSE; 2699 else 2700 llvm_unreachable("unexpected long double representation!"); 2701 } 2702 2703 // If this complex type crosses an eightbyte boundary then it 2704 // should be split. 2705 uint64_t EB_Real = (OffsetBase) / 64; 2706 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 2707 if (Hi == NoClass && EB_Real != EB_Imag) 2708 Hi = Lo; 2709 2710 return; 2711 } 2712 2713 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 2714 // Arrays are treated like structures. 2715 2716 uint64_t Size = getContext().getTypeSize(Ty); 2717 2718 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2719 // than eight eightbytes, ..., it has class MEMORY. 2720 if (Size > 512) 2721 return; 2722 2723 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 2724 // fields, it has class MEMORY. 2725 // 2726 // Only need to check alignment of array base. 2727 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 2728 return; 2729 2730 // Otherwise implement simplified merge. We could be smarter about 2731 // this, but it isn't worth it and would be harder to verify. 2732 Current = NoClass; 2733 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 2734 uint64_t ArraySize = AT->getSize().getZExtValue(); 2735 2736 // The only case a 256-bit wide vector could be used is when the array 2737 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2738 // to work for sizes wider than 128, early check and fallback to memory. 2739 // 2740 if (Size > 128 && 2741 (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel))) 2742 return; 2743 2744 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 2745 Class FieldLo, FieldHi; 2746 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 2747 Lo = merge(Lo, FieldLo); 2748 Hi = merge(Hi, FieldHi); 2749 if (Lo == Memory || Hi == Memory) 2750 break; 2751 } 2752 2753 postMerge(Size, Lo, Hi); 2754 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 2755 return; 2756 } 2757 2758 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2759 uint64_t Size = getContext().getTypeSize(Ty); 2760 2761 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2762 // than eight eightbytes, ..., it has class MEMORY. 2763 if (Size > 512) 2764 return; 2765 2766 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 2767 // copy constructor or a non-trivial destructor, it is passed by invisible 2768 // reference. 2769 if (getRecordArgABI(RT, getCXXABI())) 2770 return; 2771 2772 const RecordDecl *RD = RT->getDecl(); 2773 2774 // Assume variable sized types are passed in memory. 2775 if (RD->hasFlexibleArrayMember()) 2776 return; 2777 2778 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2779 2780 // Reset Lo class, this will be recomputed. 2781 Current = NoClass; 2782 2783 // If this is a C++ record, classify the bases first. 2784 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2785 for (const auto &I : CXXRD->bases()) { 2786 assert(!I.isVirtual() && !I.getType()->isDependentType() && 2787 "Unexpected base class!"); 2788 const CXXRecordDecl *Base = 2789 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2790 2791 // Classify this field. 2792 // 2793 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 2794 // single eightbyte, each is classified separately. Each eightbyte gets 2795 // initialized to class NO_CLASS. 2796 Class FieldLo, FieldHi; 2797 uint64_t Offset = 2798 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 2799 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 2800 Lo = merge(Lo, FieldLo); 2801 Hi = merge(Hi, FieldHi); 2802 if (Lo == Memory || Hi == Memory) { 2803 postMerge(Size, Lo, Hi); 2804 return; 2805 } 2806 } 2807 } 2808 2809 // Classify the fields one at a time, merging the results. 2810 unsigned idx = 0; 2811 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2812 i != e; ++i, ++idx) { 2813 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2814 bool BitField = i->isBitField(); 2815 2816 // Ignore padding bit-fields. 2817 if (BitField && i->isUnnamedBitfield()) 2818 continue; 2819 2820 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 2821 // four eightbytes, or it contains unaligned fields, it has class MEMORY. 2822 // 2823 // The only case a 256-bit wide vector could be used is when the struct 2824 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2825 // to work for sizes wider than 128, early check and fallback to memory. 2826 // 2827 if (Size > 128 && (Size != getContext().getTypeSize(i->getType()) || 2828 Size > getNativeVectorSizeForAVXABI(AVXLevel))) { 2829 Lo = Memory; 2830 postMerge(Size, Lo, Hi); 2831 return; 2832 } 2833 // Note, skip this test for bit-fields, see below. 2834 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 2835 Lo = Memory; 2836 postMerge(Size, Lo, Hi); 2837 return; 2838 } 2839 2840 // Classify this field. 2841 // 2842 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 2843 // exceeds a single eightbyte, each is classified 2844 // separately. Each eightbyte gets initialized to class 2845 // NO_CLASS. 2846 Class FieldLo, FieldHi; 2847 2848 // Bit-fields require special handling, they do not force the 2849 // structure to be passed in memory even if unaligned, and 2850 // therefore they can straddle an eightbyte. 2851 if (BitField) { 2852 assert(!i->isUnnamedBitfield()); 2853 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2854 uint64_t Size = i->getBitWidthValue(getContext()); 2855 2856 uint64_t EB_Lo = Offset / 64; 2857 uint64_t EB_Hi = (Offset + Size - 1) / 64; 2858 2859 if (EB_Lo) { 2860 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 2861 FieldLo = NoClass; 2862 FieldHi = Integer; 2863 } else { 2864 FieldLo = Integer; 2865 FieldHi = EB_Hi ? Integer : NoClass; 2866 } 2867 } else 2868 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 2869 Lo = merge(Lo, FieldLo); 2870 Hi = merge(Hi, FieldHi); 2871 if (Lo == Memory || Hi == Memory) 2872 break; 2873 } 2874 2875 postMerge(Size, Lo, Hi); 2876 } 2877 } 2878 2879 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 2880 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2881 // place naturally. 2882 if (!isAggregateTypeForABI(Ty)) { 2883 // Treat an enum type as its underlying type. 2884 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2885 Ty = EnumTy->getDecl()->getIntegerType(); 2886 2887 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 2888 : ABIArgInfo::getDirect()); 2889 } 2890 2891 return getNaturalAlignIndirect(Ty); 2892 } 2893 2894 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 2895 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 2896 uint64_t Size = getContext().getTypeSize(VecTy); 2897 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); 2898 if (Size <= 64 || Size > LargestVector) 2899 return true; 2900 } 2901 2902 return false; 2903 } 2904 2905 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 2906 unsigned freeIntRegs) const { 2907 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2908 // place naturally. 2909 // 2910 // This assumption is optimistic, as there could be free registers available 2911 // when we need to pass this argument in memory, and LLVM could try to pass 2912 // the argument in the free register. This does not seem to happen currently, 2913 // but this code would be much safer if we could mark the argument with 2914 // 'onstack'. See PR12193. 2915 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) { 2916 // Treat an enum type as its underlying type. 2917 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2918 Ty = EnumTy->getDecl()->getIntegerType(); 2919 2920 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 2921 : ABIArgInfo::getDirect()); 2922 } 2923 2924 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 2925 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 2926 2927 // Compute the byval alignment. We specify the alignment of the byval in all 2928 // cases so that the mid-level optimizer knows the alignment of the byval. 2929 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 2930 2931 // Attempt to avoid passing indirect results using byval when possible. This 2932 // is important for good codegen. 2933 // 2934 // We do this by coercing the value into a scalar type which the backend can 2935 // handle naturally (i.e., without using byval). 2936 // 2937 // For simplicity, we currently only do this when we have exhausted all of the 2938 // free integer registers. Doing this when there are free integer registers 2939 // would require more care, as we would have to ensure that the coerced value 2940 // did not claim the unused register. That would require either reording the 2941 // arguments to the function (so that any subsequent inreg values came first), 2942 // or only doing this optimization when there were no following arguments that 2943 // might be inreg. 2944 // 2945 // We currently expect it to be rare (particularly in well written code) for 2946 // arguments to be passed on the stack when there are still free integer 2947 // registers available (this would typically imply large structs being passed 2948 // by value), so this seems like a fair tradeoff for now. 2949 // 2950 // We can revisit this if the backend grows support for 'onstack' parameter 2951 // attributes. See PR12193. 2952 if (freeIntRegs == 0) { 2953 uint64_t Size = getContext().getTypeSize(Ty); 2954 2955 // If this type fits in an eightbyte, coerce it into the matching integral 2956 // type, which will end up on the stack (with alignment 8). 2957 if (Align == 8 && Size <= 64) 2958 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 2959 Size)); 2960 } 2961 2962 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); 2963 } 2964 2965 /// The ABI specifies that a value should be passed in a full vector XMM/YMM 2966 /// register. Pick an LLVM IR type that will be passed as a vector register. 2967 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 2968 // Wrapper structs/arrays that only contain vectors are passed just like 2969 // vectors; strip them off if present. 2970 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) 2971 Ty = QualType(InnerTy, 0); 2972 2973 llvm::Type *IRType = CGT.ConvertType(Ty); 2974 if (isa<llvm::VectorType>(IRType) || 2975 IRType->getTypeID() == llvm::Type::FP128TyID) 2976 return IRType; 2977 2978 // We couldn't find the preferred IR vector type for 'Ty'. 2979 uint64_t Size = getContext().getTypeSize(Ty); 2980 assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!"); 2981 2982 // Return a LLVM IR vector type based on the size of 'Ty'. 2983 return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2984 Size / 64); 2985 } 2986 2987 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 2988 /// is known to either be off the end of the specified type or being in 2989 /// alignment padding. The user type specified is known to be at most 128 bits 2990 /// in size, and have passed through X86_64ABIInfo::classify with a successful 2991 /// classification that put one of the two halves in the INTEGER class. 2992 /// 2993 /// It is conservatively correct to return false. 2994 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 2995 unsigned EndBit, ASTContext &Context) { 2996 // If the bytes being queried are off the end of the type, there is no user 2997 // data hiding here. This handles analysis of builtins, vectors and other 2998 // types that don't contain interesting padding. 2999 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 3000 if (TySize <= StartBit) 3001 return true; 3002 3003 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 3004 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 3005 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 3006 3007 // Check each element to see if the element overlaps with the queried range. 3008 for (unsigned i = 0; i != NumElts; ++i) { 3009 // If the element is after the span we care about, then we're done.. 3010 unsigned EltOffset = i*EltSize; 3011 if (EltOffset >= EndBit) break; 3012 3013 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 3014 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 3015 EndBit-EltOffset, Context)) 3016 return false; 3017 } 3018 // If it overlaps no elements, then it is safe to process as padding. 3019 return true; 3020 } 3021 3022 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3023 const RecordDecl *RD = RT->getDecl(); 3024 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3025 3026 // If this is a C++ record, check the bases first. 3027 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3028 for (const auto &I : CXXRD->bases()) { 3029 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3030 "Unexpected base class!"); 3031 const CXXRecordDecl *Base = 3032 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 3033 3034 // If the base is after the span we care about, ignore it. 3035 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 3036 if (BaseOffset >= EndBit) continue; 3037 3038 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 3039 if (!BitsContainNoUserData(I.getType(), BaseStart, 3040 EndBit-BaseOffset, Context)) 3041 return false; 3042 } 3043 } 3044 3045 // Verify that no field has data that overlaps the region of interest. Yes 3046 // this could be sped up a lot by being smarter about queried fields, 3047 // however we're only looking at structs up to 16 bytes, so we don't care 3048 // much. 3049 unsigned idx = 0; 3050 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3051 i != e; ++i, ++idx) { 3052 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 3053 3054 // If we found a field after the region we care about, then we're done. 3055 if (FieldOffset >= EndBit) break; 3056 3057 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 3058 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 3059 Context)) 3060 return false; 3061 } 3062 3063 // If nothing in this record overlapped the area of interest, then we're 3064 // clean. 3065 return true; 3066 } 3067 3068 return false; 3069 } 3070 3071 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a 3072 /// float member at the specified offset. For example, {int,{float}} has a 3073 /// float at offset 4. It is conservatively correct for this routine to return 3074 /// false. 3075 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, 3076 const llvm::DataLayout &TD) { 3077 // Base case if we find a float. 3078 if (IROffset == 0 && IRType->isFloatTy()) 3079 return true; 3080 3081 // If this is a struct, recurse into the field at the specified offset. 3082 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3083 const llvm::StructLayout *SL = TD.getStructLayout(STy); 3084 unsigned Elt = SL->getElementContainingOffset(IROffset); 3085 IROffset -= SL->getElementOffset(Elt); 3086 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); 3087 } 3088 3089 // If this is an array, recurse into the field at the specified offset. 3090 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3091 llvm::Type *EltTy = ATy->getElementType(); 3092 unsigned EltSize = TD.getTypeAllocSize(EltTy); 3093 IROffset -= IROffset/EltSize*EltSize; 3094 return ContainsFloatAtOffset(EltTy, IROffset, TD); 3095 } 3096 3097 return false; 3098 } 3099 3100 3101 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 3102 /// low 8 bytes of an XMM register, corresponding to the SSE class. 3103 llvm::Type *X86_64ABIInfo:: 3104 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3105 QualType SourceTy, unsigned SourceOffset) const { 3106 // The only three choices we have are either double, <2 x float>, or float. We 3107 // pass as float if the last 4 bytes is just padding. This happens for 3108 // structs that contain 3 floats. 3109 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, 3110 SourceOffset*8+64, getContext())) 3111 return llvm::Type::getFloatTy(getVMContext()); 3112 3113 // We want to pass as <2 x float> if the LLVM IR type contains a float at 3114 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the 3115 // case. 3116 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && 3117 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) 3118 return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2); 3119 3120 return llvm::Type::getDoubleTy(getVMContext()); 3121 } 3122 3123 3124 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 3125 /// an 8-byte GPR. This means that we either have a scalar or we are talking 3126 /// about the high or low part of an up-to-16-byte struct. This routine picks 3127 /// the best LLVM IR type to represent this, which may be i64 or may be anything 3128 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 3129 /// etc). 3130 /// 3131 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 3132 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 3133 /// the 8-byte value references. PrefType may be null. 3134 /// 3135 /// SourceTy is the source-level type for the entire argument. SourceOffset is 3136 /// an offset into this that we're processing (which is always either 0 or 8). 3137 /// 3138 llvm::Type *X86_64ABIInfo:: 3139 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3140 QualType SourceTy, unsigned SourceOffset) const { 3141 // If we're dealing with an un-offset LLVM IR type, then it means that we're 3142 // returning an 8-byte unit starting with it. See if we can safely use it. 3143 if (IROffset == 0) { 3144 // Pointers and int64's always fill the 8-byte unit. 3145 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 3146 IRType->isIntegerTy(64)) 3147 return IRType; 3148 3149 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 3150 // goodness in the source type is just tail padding. This is allowed to 3151 // kick in for struct {double,int} on the int, but not on 3152 // struct{double,int,int} because we wouldn't return the second int. We 3153 // have to do this analysis on the source type because we can't depend on 3154 // unions being lowered a specific way etc. 3155 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 3156 IRType->isIntegerTy(32) || 3157 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 3158 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 3159 cast<llvm::IntegerType>(IRType)->getBitWidth(); 3160 3161 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 3162 SourceOffset*8+64, getContext())) 3163 return IRType; 3164 } 3165 } 3166 3167 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3168 // If this is a struct, recurse into the field at the specified offset. 3169 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 3170 if (IROffset < SL->getSizeInBytes()) { 3171 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 3172 IROffset -= SL->getElementOffset(FieldIdx); 3173 3174 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 3175 SourceTy, SourceOffset); 3176 } 3177 } 3178 3179 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3180 llvm::Type *EltTy = ATy->getElementType(); 3181 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 3182 unsigned EltOffset = IROffset/EltSize*EltSize; 3183 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 3184 SourceOffset); 3185 } 3186 3187 // Okay, we don't have any better idea of what to pass, so we pass this in an 3188 // integer register that isn't too big to fit the rest of the struct. 3189 unsigned TySizeInBytes = 3190 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 3191 3192 assert(TySizeInBytes != SourceOffset && "Empty field?"); 3193 3194 // It is always safe to classify this as an integer type up to i64 that 3195 // isn't larger than the structure. 3196 return llvm::IntegerType::get(getVMContext(), 3197 std::min(TySizeInBytes-SourceOffset, 8U)*8); 3198 } 3199 3200 3201 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 3202 /// be used as elements of a two register pair to pass or return, return a 3203 /// first class aggregate to represent them. For example, if the low part of 3204 /// a by-value argument should be passed as i32* and the high part as float, 3205 /// return {i32*, float}. 3206 static llvm::Type * 3207 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 3208 const llvm::DataLayout &TD) { 3209 // In order to correctly satisfy the ABI, we need to the high part to start 3210 // at offset 8. If the high and low parts we inferred are both 4-byte types 3211 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 3212 // the second element at offset 8. Check for this: 3213 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 3214 unsigned HiAlign = TD.getABITypeAlignment(Hi); 3215 unsigned HiStart = llvm::alignTo(LoSize, HiAlign); 3216 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 3217 3218 // To handle this, we have to increase the size of the low part so that the 3219 // second element will start at an 8 byte offset. We can't increase the size 3220 // of the second element because it might make us access off the end of the 3221 // struct. 3222 if (HiStart != 8) { 3223 // There are usually two sorts of types the ABI generation code can produce 3224 // for the low part of a pair that aren't 8 bytes in size: float or 3225 // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and 3226 // NaCl). 3227 // Promote these to a larger type. 3228 if (Lo->isFloatTy()) 3229 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 3230 else { 3231 assert((Lo->isIntegerTy() || Lo->isPointerTy()) 3232 && "Invalid/unknown lo type"); 3233 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 3234 } 3235 } 3236 3237 llvm::StructType *Result = llvm::StructType::get(Lo, Hi); 3238 3239 // Verify that the second element is at an 8-byte offset. 3240 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 3241 "Invalid x86-64 argument pair!"); 3242 return Result; 3243 } 3244 3245 ABIArgInfo X86_64ABIInfo:: 3246 classifyReturnType(QualType RetTy) const { 3247 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 3248 // classification algorithm. 3249 X86_64ABIInfo::Class Lo, Hi; 3250 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 3251 3252 // Check some invariants. 3253 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3254 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3255 3256 llvm::Type *ResType = nullptr; 3257 switch (Lo) { 3258 case NoClass: 3259 if (Hi == NoClass) 3260 return ABIArgInfo::getIgnore(); 3261 // If the low part is just padding, it takes no register, leave ResType 3262 // null. 3263 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3264 "Unknown missing lo part"); 3265 break; 3266 3267 case SSEUp: 3268 case X87Up: 3269 llvm_unreachable("Invalid classification for lo word."); 3270 3271 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 3272 // hidden argument. 3273 case Memory: 3274 return getIndirectReturnResult(RetTy); 3275 3276 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 3277 // available register of the sequence %rax, %rdx is used. 3278 case Integer: 3279 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3280 3281 // If we have a sign or zero extended integer, make sure to return Extend 3282 // so that the parameter gets the right LLVM IR attributes. 3283 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3284 // Treat an enum type as its underlying type. 3285 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3286 RetTy = EnumTy->getDecl()->getIntegerType(); 3287 3288 if (RetTy->isIntegralOrEnumerationType() && 3289 RetTy->isPromotableIntegerType()) 3290 return ABIArgInfo::getExtend(RetTy); 3291 } 3292 break; 3293 3294 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 3295 // available SSE register of the sequence %xmm0, %xmm1 is used. 3296 case SSE: 3297 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3298 break; 3299 3300 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 3301 // returned on the X87 stack in %st0 as 80-bit x87 number. 3302 case X87: 3303 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 3304 break; 3305 3306 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 3307 // part of the value is returned in %st0 and the imaginary part in 3308 // %st1. 3309 case ComplexX87: 3310 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 3311 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 3312 llvm::Type::getX86_FP80Ty(getVMContext())); 3313 break; 3314 } 3315 3316 llvm::Type *HighPart = nullptr; 3317 switch (Hi) { 3318 // Memory was handled previously and X87 should 3319 // never occur as a hi class. 3320 case Memory: 3321 case X87: 3322 llvm_unreachable("Invalid classification for hi word."); 3323 3324 case ComplexX87: // Previously handled. 3325 case NoClass: 3326 break; 3327 3328 case Integer: 3329 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3330 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3331 return ABIArgInfo::getDirect(HighPart, 8); 3332 break; 3333 case SSE: 3334 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3335 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3336 return ABIArgInfo::getDirect(HighPart, 8); 3337 break; 3338 3339 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 3340 // is passed in the next available eightbyte chunk if the last used 3341 // vector register. 3342 // 3343 // SSEUP should always be preceded by SSE, just widen. 3344 case SSEUp: 3345 assert(Lo == SSE && "Unexpected SSEUp classification."); 3346 ResType = GetByteVectorType(RetTy); 3347 break; 3348 3349 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 3350 // returned together with the previous X87 value in %st0. 3351 case X87Up: 3352 // If X87Up is preceded by X87, we don't need to do 3353 // anything. However, in some cases with unions it may not be 3354 // preceded by X87. In such situations we follow gcc and pass the 3355 // extra bits in an SSE reg. 3356 if (Lo != X87) { 3357 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3358 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3359 return ABIArgInfo::getDirect(HighPart, 8); 3360 } 3361 break; 3362 } 3363 3364 // If a high part was specified, merge it together with the low part. It is 3365 // known to pass in the high eightbyte of the result. We do this by forming a 3366 // first class struct aggregate with the high and low part: {low, high} 3367 if (HighPart) 3368 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3369 3370 return ABIArgInfo::getDirect(ResType); 3371 } 3372 3373 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 3374 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 3375 bool isNamedArg) 3376 const 3377 { 3378 Ty = useFirstFieldIfTransparentUnion(Ty); 3379 3380 X86_64ABIInfo::Class Lo, Hi; 3381 classify(Ty, 0, Lo, Hi, isNamedArg); 3382 3383 // Check some invariants. 3384 // FIXME: Enforce these by construction. 3385 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3386 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3387 3388 neededInt = 0; 3389 neededSSE = 0; 3390 llvm::Type *ResType = nullptr; 3391 switch (Lo) { 3392 case NoClass: 3393 if (Hi == NoClass) 3394 return ABIArgInfo::getIgnore(); 3395 // If the low part is just padding, it takes no register, leave ResType 3396 // null. 3397 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3398 "Unknown missing lo part"); 3399 break; 3400 3401 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 3402 // on the stack. 3403 case Memory: 3404 3405 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 3406 // COMPLEX_X87, it is passed in memory. 3407 case X87: 3408 case ComplexX87: 3409 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 3410 ++neededInt; 3411 return getIndirectResult(Ty, freeIntRegs); 3412 3413 case SSEUp: 3414 case X87Up: 3415 llvm_unreachable("Invalid classification for lo word."); 3416 3417 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 3418 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 3419 // and %r9 is used. 3420 case Integer: 3421 ++neededInt; 3422 3423 // Pick an 8-byte type based on the preferred type. 3424 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 3425 3426 // If we have a sign or zero extended integer, make sure to return Extend 3427 // so that the parameter gets the right LLVM IR attributes. 3428 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3429 // Treat an enum type as its underlying type. 3430 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3431 Ty = EnumTy->getDecl()->getIntegerType(); 3432 3433 if (Ty->isIntegralOrEnumerationType() && 3434 Ty->isPromotableIntegerType()) 3435 return ABIArgInfo::getExtend(Ty); 3436 } 3437 3438 break; 3439 3440 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 3441 // available SSE register is used, the registers are taken in the 3442 // order from %xmm0 to %xmm7. 3443 case SSE: { 3444 llvm::Type *IRType = CGT.ConvertType(Ty); 3445 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 3446 ++neededSSE; 3447 break; 3448 } 3449 } 3450 3451 llvm::Type *HighPart = nullptr; 3452 switch (Hi) { 3453 // Memory was handled previously, ComplexX87 and X87 should 3454 // never occur as hi classes, and X87Up must be preceded by X87, 3455 // which is passed in memory. 3456 case Memory: 3457 case X87: 3458 case ComplexX87: 3459 llvm_unreachable("Invalid classification for hi word."); 3460 3461 case NoClass: break; 3462 3463 case Integer: 3464 ++neededInt; 3465 // Pick an 8-byte type based on the preferred type. 3466 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3467 3468 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3469 return ABIArgInfo::getDirect(HighPart, 8); 3470 break; 3471 3472 // X87Up generally doesn't occur here (long double is passed in 3473 // memory), except in situations involving unions. 3474 case X87Up: 3475 case SSE: 3476 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3477 3478 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3479 return ABIArgInfo::getDirect(HighPart, 8); 3480 3481 ++neededSSE; 3482 break; 3483 3484 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 3485 // eightbyte is passed in the upper half of the last used SSE 3486 // register. This only happens when 128-bit vectors are passed. 3487 case SSEUp: 3488 assert(Lo == SSE && "Unexpected SSEUp classification"); 3489 ResType = GetByteVectorType(Ty); 3490 break; 3491 } 3492 3493 // If a high part was specified, merge it together with the low part. It is 3494 // known to pass in the high eightbyte of the result. We do this by forming a 3495 // first class struct aggregate with the high and low part: {low, high} 3496 if (HighPart) 3497 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3498 3499 return ABIArgInfo::getDirect(ResType); 3500 } 3501 3502 ABIArgInfo 3503 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 3504 unsigned &NeededSSE) const { 3505 auto RT = Ty->getAs<RecordType>(); 3506 assert(RT && "classifyRegCallStructType only valid with struct types"); 3507 3508 if (RT->getDecl()->hasFlexibleArrayMember()) 3509 return getIndirectReturnResult(Ty); 3510 3511 // Sum up bases 3512 if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 3513 if (CXXRD->isDynamicClass()) { 3514 NeededInt = NeededSSE = 0; 3515 return getIndirectReturnResult(Ty); 3516 } 3517 3518 for (const auto &I : CXXRD->bases()) 3519 if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE) 3520 .isIndirect()) { 3521 NeededInt = NeededSSE = 0; 3522 return getIndirectReturnResult(Ty); 3523 } 3524 } 3525 3526 // Sum up members 3527 for (const auto *FD : RT->getDecl()->fields()) { 3528 if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) { 3529 if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE) 3530 .isIndirect()) { 3531 NeededInt = NeededSSE = 0; 3532 return getIndirectReturnResult(Ty); 3533 } 3534 } else { 3535 unsigned LocalNeededInt, LocalNeededSSE; 3536 if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt, 3537 LocalNeededSSE, true) 3538 .isIndirect()) { 3539 NeededInt = NeededSSE = 0; 3540 return getIndirectReturnResult(Ty); 3541 } 3542 NeededInt += LocalNeededInt; 3543 NeededSSE += LocalNeededSSE; 3544 } 3545 } 3546 3547 return ABIArgInfo::getDirect(); 3548 } 3549 3550 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty, 3551 unsigned &NeededInt, 3552 unsigned &NeededSSE) const { 3553 3554 NeededInt = 0; 3555 NeededSSE = 0; 3556 3557 return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE); 3558 } 3559 3560 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3561 3562 const unsigned CallingConv = FI.getCallingConvention(); 3563 // It is possible to force Win64 calling convention on any x86_64 target by 3564 // using __attribute__((ms_abi)). In such case to correctly emit Win64 3565 // compatible code delegate this call to WinX86_64ABIInfo::computeInfo. 3566 if (CallingConv == llvm::CallingConv::Win64) { 3567 WinX86_64ABIInfo Win64ABIInfo(CGT); 3568 Win64ABIInfo.computeInfo(FI); 3569 return; 3570 } 3571 3572 bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall; 3573 3574 // Keep track of the number of assigned registers. 3575 unsigned FreeIntRegs = IsRegCall ? 11 : 6; 3576 unsigned FreeSSERegs = IsRegCall ? 16 : 8; 3577 unsigned NeededInt, NeededSSE; 3578 3579 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 3580 if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() && 3581 !FI.getReturnType()->getTypePtr()->isUnionType()) { 3582 FI.getReturnInfo() = 3583 classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE); 3584 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3585 FreeIntRegs -= NeededInt; 3586 FreeSSERegs -= NeededSSE; 3587 } else { 3588 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3589 } 3590 } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>()) { 3591 // Complex Long Double Type is passed in Memory when Regcall 3592 // calling convention is used. 3593 const ComplexType *CT = FI.getReturnType()->getAs<ComplexType>(); 3594 if (getContext().getCanonicalType(CT->getElementType()) == 3595 getContext().LongDoubleTy) 3596 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3597 } else 3598 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3599 } 3600 3601 // If the return value is indirect, then the hidden argument is consuming one 3602 // integer register. 3603 if (FI.getReturnInfo().isIndirect()) 3604 --FreeIntRegs; 3605 3606 // The chain argument effectively gives us another free register. 3607 if (FI.isChainCall()) 3608 ++FreeIntRegs; 3609 3610 unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 3611 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 3612 // get assigned (in left-to-right order) for passing as follows... 3613 unsigned ArgNo = 0; 3614 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3615 it != ie; ++it, ++ArgNo) { 3616 bool IsNamedArg = ArgNo < NumRequiredArgs; 3617 3618 if (IsRegCall && it->type->isStructureOrClassType()) 3619 it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE); 3620 else 3621 it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt, 3622 NeededSSE, IsNamedArg); 3623 3624 // AMD64-ABI 3.2.3p3: If there are no registers available for any 3625 // eightbyte of an argument, the whole argument is passed on the 3626 // stack. If registers have already been assigned for some 3627 // eightbytes of such an argument, the assignments get reverted. 3628 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3629 FreeIntRegs -= NeededInt; 3630 FreeSSERegs -= NeededSSE; 3631 } else { 3632 it->info = getIndirectResult(it->type, FreeIntRegs); 3633 } 3634 } 3635 } 3636 3637 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, 3638 Address VAListAddr, QualType Ty) { 3639 Address overflow_arg_area_p = CGF.Builder.CreateStructGEP( 3640 VAListAddr, 2, CharUnits::fromQuantity(8), "overflow_arg_area_p"); 3641 llvm::Value *overflow_arg_area = 3642 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 3643 3644 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 3645 // byte boundary if alignment needed by type exceeds 8 byte boundary. 3646 // It isn't stated explicitly in the standard, but in practice we use 3647 // alignment greater than 16 where necessary. 3648 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 3649 if (Align > CharUnits::fromQuantity(8)) { 3650 overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, 3651 Align); 3652 } 3653 3654 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 3655 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3656 llvm::Value *Res = 3657 CGF.Builder.CreateBitCast(overflow_arg_area, 3658 llvm::PointerType::getUnqual(LTy)); 3659 3660 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 3661 // l->overflow_arg_area + sizeof(type). 3662 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 3663 // an 8 byte boundary. 3664 3665 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 3666 llvm::Value *Offset = 3667 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 3668 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 3669 "overflow_arg_area.next"); 3670 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 3671 3672 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 3673 return Address(Res, Align); 3674 } 3675 3676 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3677 QualType Ty) const { 3678 // Assume that va_list type is correct; should be pointer to LLVM type: 3679 // struct { 3680 // i32 gp_offset; 3681 // i32 fp_offset; 3682 // i8* overflow_arg_area; 3683 // i8* reg_save_area; 3684 // }; 3685 unsigned neededInt, neededSSE; 3686 3687 Ty = getContext().getCanonicalType(Ty); 3688 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 3689 /*isNamedArg*/false); 3690 3691 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 3692 // in the registers. If not go to step 7. 3693 if (!neededInt && !neededSSE) 3694 return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3695 3696 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 3697 // general purpose registers needed to pass type and num_fp to hold 3698 // the number of floating point registers needed. 3699 3700 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 3701 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 3702 // l->fp_offset > 304 - num_fp * 16 go to step 7. 3703 // 3704 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 3705 // register save space). 3706 3707 llvm::Value *InRegs = nullptr; 3708 Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); 3709 llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; 3710 if (neededInt) { 3711 gp_offset_p = 3712 CGF.Builder.CreateStructGEP(VAListAddr, 0, CharUnits::Zero(), 3713 "gp_offset_p"); 3714 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 3715 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 3716 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 3717 } 3718 3719 if (neededSSE) { 3720 fp_offset_p = 3721 CGF.Builder.CreateStructGEP(VAListAddr, 1, CharUnits::fromQuantity(4), 3722 "fp_offset_p"); 3723 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 3724 llvm::Value *FitsInFP = 3725 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 3726 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 3727 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 3728 } 3729 3730 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 3731 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 3732 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 3733 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 3734 3735 // Emit code to load the value if it was passed in registers. 3736 3737 CGF.EmitBlock(InRegBlock); 3738 3739 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 3740 // an offset of l->gp_offset and/or l->fp_offset. This may require 3741 // copying to a temporary location in case the parameter is passed 3742 // in different register classes or requires an alignment greater 3743 // than 8 for general purpose registers and 16 for XMM registers. 3744 // 3745 // FIXME: This really results in shameful code when we end up needing to 3746 // collect arguments from different places; often what should result in a 3747 // simple assembling of a structure from scattered addresses has many more 3748 // loads than necessary. Can we clean this up? 3749 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3750 llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( 3751 CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(16)), 3752 "reg_save_area"); 3753 3754 Address RegAddr = Address::invalid(); 3755 if (neededInt && neededSSE) { 3756 // FIXME: Cleanup. 3757 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 3758 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 3759 Address Tmp = CGF.CreateMemTemp(Ty); 3760 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3761 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 3762 llvm::Type *TyLo = ST->getElementType(0); 3763 llvm::Type *TyHi = ST->getElementType(1); 3764 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 3765 "Unexpected ABI info for mixed regs"); 3766 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 3767 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 3768 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset); 3769 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset); 3770 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 3771 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 3772 3773 // Copy the first element. 3774 // FIXME: Our choice of alignment here and below is probably pessimistic. 3775 llvm::Value *V = CGF.Builder.CreateAlignedLoad( 3776 TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo), 3777 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo))); 3778 CGF.Builder.CreateStore(V, 3779 CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero())); 3780 3781 // Copy the second element. 3782 V = CGF.Builder.CreateAlignedLoad( 3783 TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi), 3784 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi))); 3785 CharUnits Offset = CharUnits::fromQuantity( 3786 getDataLayout().getStructLayout(ST)->getElementOffset(1)); 3787 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1, Offset)); 3788 3789 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3790 } else if (neededInt) { 3791 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset), 3792 CharUnits::fromQuantity(8)); 3793 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3794 3795 // Copy to a temporary if necessary to ensure the appropriate alignment. 3796 std::pair<CharUnits, CharUnits> SizeAlign = 3797 getContext().getTypeInfoInChars(Ty); 3798 uint64_t TySize = SizeAlign.first.getQuantity(); 3799 CharUnits TyAlign = SizeAlign.second; 3800 3801 // Copy into a temporary if the type is more aligned than the 3802 // register save area. 3803 if (TyAlign.getQuantity() > 8) { 3804 Address Tmp = CGF.CreateMemTemp(Ty); 3805 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); 3806 RegAddr = Tmp; 3807 } 3808 3809 } else if (neededSSE == 1) { 3810 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3811 CharUnits::fromQuantity(16)); 3812 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3813 } else { 3814 assert(neededSSE == 2 && "Invalid number of needed registers!"); 3815 // SSE registers are spaced 16 bytes apart in the register save 3816 // area, we need to collect the two eightbytes together. 3817 // The ABI isn't explicit about this, but it seems reasonable 3818 // to assume that the slots are 16-byte aligned, since the stack is 3819 // naturally 16-byte aligned and the prologue is expected to store 3820 // all the SSE registers to the RSA. 3821 Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3822 CharUnits::fromQuantity(16)); 3823 Address RegAddrHi = 3824 CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, 3825 CharUnits::fromQuantity(16)); 3826 llvm::Type *ST = AI.canHaveCoerceToType() 3827 ? AI.getCoerceToType() 3828 : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy); 3829 llvm::Value *V; 3830 Address Tmp = CGF.CreateMemTemp(Ty); 3831 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3832 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 3833 RegAddrLo, ST->getStructElementType(0))); 3834 CGF.Builder.CreateStore(V, 3835 CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero())); 3836 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 3837 RegAddrHi, ST->getStructElementType(1))); 3838 CGF.Builder.CreateStore(V, 3839 CGF.Builder.CreateStructGEP(Tmp, 1, CharUnits::fromQuantity(8))); 3840 3841 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3842 } 3843 3844 // AMD64-ABI 3.5.7p5: Step 5. Set: 3845 // l->gp_offset = l->gp_offset + num_gp * 8 3846 // l->fp_offset = l->fp_offset + num_fp * 16. 3847 if (neededInt) { 3848 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 3849 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 3850 gp_offset_p); 3851 } 3852 if (neededSSE) { 3853 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 3854 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 3855 fp_offset_p); 3856 } 3857 CGF.EmitBranch(ContBlock); 3858 3859 // Emit code to load the value if it was passed in memory. 3860 3861 CGF.EmitBlock(InMemBlock); 3862 Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3863 3864 // Return the appropriate result. 3865 3866 CGF.EmitBlock(ContBlock); 3867 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, 3868 "vaarg.addr"); 3869 return ResAddr; 3870 } 3871 3872 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 3873 QualType Ty) const { 3874 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 3875 CGF.getContext().getTypeInfoInChars(Ty), 3876 CharUnits::fromQuantity(8), 3877 /*allowHigherAlign*/ false); 3878 } 3879 3880 ABIArgInfo 3881 WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 3882 const ABIArgInfo ¤t) const { 3883 // Assumes vectorCall calling convention. 3884 const Type *Base = nullptr; 3885 uint64_t NumElts = 0; 3886 3887 if (!Ty->isBuiltinType() && !Ty->isVectorType() && 3888 isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) { 3889 FreeSSERegs -= NumElts; 3890 return getDirectX86Hva(); 3891 } 3892 return current; 3893 } 3894 3895 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 3896 bool IsReturnType, bool IsVectorCall, 3897 bool IsRegCall) const { 3898 3899 if (Ty->isVoidType()) 3900 return ABIArgInfo::getIgnore(); 3901 3902 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3903 Ty = EnumTy->getDecl()->getIntegerType(); 3904 3905 TypeInfo Info = getContext().getTypeInfo(Ty); 3906 uint64_t Width = Info.Width; 3907 CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); 3908 3909 const RecordType *RT = Ty->getAs<RecordType>(); 3910 if (RT) { 3911 if (!IsReturnType) { 3912 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 3913 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 3914 } 3915 3916 if (RT->getDecl()->hasFlexibleArrayMember()) 3917 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 3918 3919 } 3920 3921 const Type *Base = nullptr; 3922 uint64_t NumElts = 0; 3923 // vectorcall adds the concept of a homogenous vector aggregate, similar to 3924 // other targets. 3925 if ((IsVectorCall || IsRegCall) && 3926 isHomogeneousAggregate(Ty, Base, NumElts)) { 3927 if (IsRegCall) { 3928 if (FreeSSERegs >= NumElts) { 3929 FreeSSERegs -= NumElts; 3930 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 3931 return ABIArgInfo::getDirect(); 3932 return ABIArgInfo::getExpand(); 3933 } 3934 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3935 } else if (IsVectorCall) { 3936 if (FreeSSERegs >= NumElts && 3937 (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) { 3938 FreeSSERegs -= NumElts; 3939 return ABIArgInfo::getDirect(); 3940 } else if (IsReturnType) { 3941 return ABIArgInfo::getExpand(); 3942 } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) { 3943 // HVAs are delayed and reclassified in the 2nd step. 3944 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3945 } 3946 } 3947 } 3948 3949 if (Ty->isMemberPointerType()) { 3950 // If the member pointer is represented by an LLVM int or ptr, pass it 3951 // directly. 3952 llvm::Type *LLTy = CGT.ConvertType(Ty); 3953 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 3954 return ABIArgInfo::getDirect(); 3955 } 3956 3957 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { 3958 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 3959 // not 1, 2, 4, or 8 bytes, must be passed by reference." 3960 if (Width > 64 || !llvm::isPowerOf2_64(Width)) 3961 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 3962 3963 // Otherwise, coerce it to a small integer. 3964 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 3965 } 3966 3967 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 3968 switch (BT->getKind()) { 3969 case BuiltinType::Bool: 3970 // Bool type is always extended to the ABI, other builtin types are not 3971 // extended. 3972 return ABIArgInfo::getExtend(Ty); 3973 3974 case BuiltinType::LongDouble: 3975 // Mingw64 GCC uses the old 80 bit extended precision floating point 3976 // unit. It passes them indirectly through memory. 3977 if (IsMingw64) { 3978 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 3979 if (LDF == &llvm::APFloat::x87DoubleExtended()) 3980 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3981 } 3982 break; 3983 3984 case BuiltinType::Int128: 3985 case BuiltinType::UInt128: 3986 // If it's a parameter type, the normal ABI rule is that arguments larger 3987 // than 8 bytes are passed indirectly. GCC follows it. We follow it too, 3988 // even though it isn't particularly efficient. 3989 if (!IsReturnType) 3990 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3991 3992 // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that. 3993 // Clang matches them for compatibility. 3994 return ABIArgInfo::getDirect( 3995 llvm::VectorType::get(llvm::Type::getInt64Ty(getVMContext()), 2)); 3996 3997 default: 3998 break; 3999 } 4000 } 4001 4002 return ABIArgInfo::getDirect(); 4003 } 4004 4005 void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, 4006 unsigned FreeSSERegs, 4007 bool IsVectorCall, 4008 bool IsRegCall) const { 4009 unsigned Count = 0; 4010 for (auto &I : FI.arguments()) { 4011 // Vectorcall in x64 only permits the first 6 arguments to be passed 4012 // as XMM/YMM registers. 4013 if (Count < VectorcallMaxParamNumAsReg) 4014 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 4015 else { 4016 // Since these cannot be passed in registers, pretend no registers 4017 // are left. 4018 unsigned ZeroSSERegsAvail = 0; 4019 I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false, 4020 IsVectorCall, IsRegCall); 4021 } 4022 ++Count; 4023 } 4024 4025 for (auto &I : FI.arguments()) { 4026 I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info); 4027 } 4028 } 4029 4030 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 4031 bool IsVectorCall = 4032 FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall; 4033 bool IsRegCall = FI.getCallingConvention() == llvm::CallingConv::X86_RegCall; 4034 4035 unsigned FreeSSERegs = 0; 4036 if (IsVectorCall) { 4037 // We can use up to 4 SSE return registers with vectorcall. 4038 FreeSSERegs = 4; 4039 } else if (IsRegCall) { 4040 // RegCall gives us 16 SSE registers. 4041 FreeSSERegs = 16; 4042 } 4043 4044 if (!getCXXABI().classifyReturnType(FI)) 4045 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true, 4046 IsVectorCall, IsRegCall); 4047 4048 if (IsVectorCall) { 4049 // We can use up to 6 SSE register parameters with vectorcall. 4050 FreeSSERegs = 6; 4051 } else if (IsRegCall) { 4052 // RegCall gives us 16 SSE registers, we can reuse the return registers. 4053 FreeSSERegs = 16; 4054 } 4055 4056 if (IsVectorCall) { 4057 computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall); 4058 } else { 4059 for (auto &I : FI.arguments()) 4060 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 4061 } 4062 4063 } 4064 4065 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4066 QualType Ty) const { 4067 4068 bool IsIndirect = false; 4069 4070 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4071 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4072 if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) { 4073 uint64_t Width = getContext().getTypeSize(Ty); 4074 IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 4075 } 4076 4077 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 4078 CGF.getContext().getTypeInfoInChars(Ty), 4079 CharUnits::fromQuantity(8), 4080 /*allowHigherAlign*/ false); 4081 } 4082 4083 // PowerPC-32 4084 namespace { 4085 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. 4086 class PPC32_SVR4_ABIInfo : public DefaultABIInfo { 4087 bool IsSoftFloatABI; 4088 4089 CharUnits getParamTypeAlignment(QualType Ty) const; 4090 4091 public: 4092 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI) 4093 : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI) {} 4094 4095 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4096 QualType Ty) const override; 4097 }; 4098 4099 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { 4100 public: 4101 PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI) 4102 : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT, SoftFloatABI)) {} 4103 4104 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4105 // This is recovered from gcc output. 4106 return 1; // r1 is the dedicated stack pointer 4107 } 4108 4109 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4110 llvm::Value *Address) const override; 4111 }; 4112 } 4113 4114 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4115 // Complex types are passed just like their elements 4116 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4117 Ty = CTy->getElementType(); 4118 4119 if (Ty->isVectorType()) 4120 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 4121 : 4); 4122 4123 // For single-element float/vector structs, we consider the whole type 4124 // to have the same alignment requirements as its single element. 4125 const Type *AlignTy = nullptr; 4126 if (const Type *EltType = isSingleElementStruct(Ty, getContext())) { 4127 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4128 if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || 4129 (BT && BT->isFloatingPoint())) 4130 AlignTy = EltType; 4131 } 4132 4133 if (AlignTy) 4134 return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4); 4135 return CharUnits::fromQuantity(4); 4136 } 4137 4138 // TODO: this implementation is now likely redundant with 4139 // DefaultABIInfo::EmitVAArg. 4140 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList, 4141 QualType Ty) const { 4142 if (getTarget().getTriple().isOSDarwin()) { 4143 auto TI = getContext().getTypeInfoInChars(Ty); 4144 TI.second = getParamTypeAlignment(Ty); 4145 4146 CharUnits SlotSize = CharUnits::fromQuantity(4); 4147 return emitVoidPtrVAArg(CGF, VAList, Ty, 4148 classifyArgumentType(Ty).isIndirect(), TI, SlotSize, 4149 /*AllowHigherAlign=*/true); 4150 } 4151 4152 const unsigned OverflowLimit = 8; 4153 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4154 // TODO: Implement this. For now ignore. 4155 (void)CTy; 4156 return Address::invalid(); // FIXME? 4157 } 4158 4159 // struct __va_list_tag { 4160 // unsigned char gpr; 4161 // unsigned char fpr; 4162 // unsigned short reserved; 4163 // void *overflow_arg_area; 4164 // void *reg_save_area; 4165 // }; 4166 4167 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; 4168 bool isInt = 4169 Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType(); 4170 bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64; 4171 4172 // All aggregates are passed indirectly? That doesn't seem consistent 4173 // with the argument-lowering code. 4174 bool isIndirect = Ty->isAggregateType(); 4175 4176 CGBuilderTy &Builder = CGF.Builder; 4177 4178 // The calling convention either uses 1-2 GPRs or 1 FPR. 4179 Address NumRegsAddr = Address::invalid(); 4180 if (isInt || IsSoftFloatABI) { 4181 NumRegsAddr = Builder.CreateStructGEP(VAList, 0, CharUnits::Zero(), "gpr"); 4182 } else { 4183 NumRegsAddr = Builder.CreateStructGEP(VAList, 1, CharUnits::One(), "fpr"); 4184 } 4185 4186 llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs"); 4187 4188 // "Align" the register count when TY is i64. 4189 if (isI64 || (isF64 && IsSoftFloatABI)) { 4190 NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1)); 4191 NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U)); 4192 } 4193 4194 llvm::Value *CC = 4195 Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond"); 4196 4197 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); 4198 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); 4199 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 4200 4201 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); 4202 4203 llvm::Type *DirectTy = CGF.ConvertType(Ty); 4204 if (isIndirect) DirectTy = DirectTy->getPointerTo(0); 4205 4206 // Case 1: consume registers. 4207 Address RegAddr = Address::invalid(); 4208 { 4209 CGF.EmitBlock(UsingRegs); 4210 4211 Address RegSaveAreaPtr = 4212 Builder.CreateStructGEP(VAList, 4, CharUnits::fromQuantity(8)); 4213 RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr), 4214 CharUnits::fromQuantity(8)); 4215 assert(RegAddr.getElementType() == CGF.Int8Ty); 4216 4217 // Floating-point registers start after the general-purpose registers. 4218 if (!(isInt || IsSoftFloatABI)) { 4219 RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr, 4220 CharUnits::fromQuantity(32)); 4221 } 4222 4223 // Get the address of the saved value by scaling the number of 4224 // registers we've used by the number of 4225 CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8); 4226 llvm::Value *RegOffset = 4227 Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity())); 4228 RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty, 4229 RegAddr.getPointer(), RegOffset), 4230 RegAddr.getAlignment().alignmentOfArrayElement(RegSize)); 4231 RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy); 4232 4233 // Increase the used-register count. 4234 NumRegs = 4235 Builder.CreateAdd(NumRegs, 4236 Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1)); 4237 Builder.CreateStore(NumRegs, NumRegsAddr); 4238 4239 CGF.EmitBranch(Cont); 4240 } 4241 4242 // Case 2: consume space in the overflow area. 4243 Address MemAddr = Address::invalid(); 4244 { 4245 CGF.EmitBlock(UsingOverflow); 4246 4247 Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr); 4248 4249 // Everything in the overflow area is rounded up to a size of at least 4. 4250 CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4); 4251 4252 CharUnits Size; 4253 if (!isIndirect) { 4254 auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty); 4255 Size = TypeInfo.first.alignTo(OverflowAreaAlign); 4256 } else { 4257 Size = CGF.getPointerSize(); 4258 } 4259 4260 Address OverflowAreaAddr = 4261 Builder.CreateStructGEP(VAList, 3, CharUnits::fromQuantity(4)); 4262 Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), 4263 OverflowAreaAlign); 4264 // Round up address of argument to alignment 4265 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 4266 if (Align > OverflowAreaAlign) { 4267 llvm::Value *Ptr = OverflowArea.getPointer(); 4268 OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align), 4269 Align); 4270 } 4271 4272 MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy); 4273 4274 // Increase the overflow area. 4275 OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size); 4276 Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr); 4277 CGF.EmitBranch(Cont); 4278 } 4279 4280 CGF.EmitBlock(Cont); 4281 4282 // Merge the cases with a phi. 4283 Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow, 4284 "vaarg.addr"); 4285 4286 // Load the pointer if the argument was passed indirectly. 4287 if (isIndirect) { 4288 Result = Address(Builder.CreateLoad(Result, "aggr"), 4289 getContext().getTypeAlignInChars(Ty)); 4290 } 4291 4292 return Result; 4293 } 4294 4295 bool 4296 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4297 llvm::Value *Address) const { 4298 // This is calculated from the LLVM and GCC tables and verified 4299 // against gcc output. AFAIK all ABIs use the same encoding. 4300 4301 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4302 4303 llvm::IntegerType *i8 = CGF.Int8Ty; 4304 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4305 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4306 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4307 4308 // 0-31: r0-31, the 4-byte general-purpose registers 4309 AssignToArrayRange(Builder, Address, Four8, 0, 31); 4310 4311 // 32-63: fp0-31, the 8-byte floating-point registers 4312 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4313 4314 // 64-76 are various 4-byte special-purpose registers: 4315 // 64: mq 4316 // 65: lr 4317 // 66: ctr 4318 // 67: ap 4319 // 68-75 cr0-7 4320 // 76: xer 4321 AssignToArrayRange(Builder, Address, Four8, 64, 76); 4322 4323 // 77-108: v0-31, the 16-byte vector registers 4324 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4325 4326 // 109: vrsave 4327 // 110: vscr 4328 // 111: spe_acc 4329 // 112: spefscr 4330 // 113: sfp 4331 AssignToArrayRange(Builder, Address, Four8, 109, 113); 4332 4333 return false; 4334 } 4335 4336 // PowerPC-64 4337 4338 namespace { 4339 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 4340 class PPC64_SVR4_ABIInfo : public SwiftABIInfo { 4341 public: 4342 enum ABIKind { 4343 ELFv1 = 0, 4344 ELFv2 4345 }; 4346 4347 private: 4348 static const unsigned GPRBits = 64; 4349 ABIKind Kind; 4350 bool HasQPX; 4351 bool IsSoftFloatABI; 4352 4353 // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and 4354 // will be passed in a QPX register. 4355 bool IsQPXVectorTy(const Type *Ty) const { 4356 if (!HasQPX) 4357 return false; 4358 4359 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4360 unsigned NumElements = VT->getNumElements(); 4361 if (NumElements == 1) 4362 return false; 4363 4364 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) { 4365 if (getContext().getTypeSize(Ty) <= 256) 4366 return true; 4367 } else if (VT->getElementType()-> 4368 isSpecificBuiltinType(BuiltinType::Float)) { 4369 if (getContext().getTypeSize(Ty) <= 128) 4370 return true; 4371 } 4372 } 4373 4374 return false; 4375 } 4376 4377 bool IsQPXVectorTy(QualType Ty) const { 4378 return IsQPXVectorTy(Ty.getTypePtr()); 4379 } 4380 4381 public: 4382 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX, 4383 bool SoftFloatABI) 4384 : SwiftABIInfo(CGT), Kind(Kind), HasQPX(HasQPX), 4385 IsSoftFloatABI(SoftFloatABI) {} 4386 4387 bool isPromotableTypeForABI(QualType Ty) const; 4388 CharUnits getParamTypeAlignment(QualType Ty) const; 4389 4390 ABIArgInfo classifyReturnType(QualType RetTy) const; 4391 ABIArgInfo classifyArgumentType(QualType Ty) const; 4392 4393 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4394 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4395 uint64_t Members) const override; 4396 4397 // TODO: We can add more logic to computeInfo to improve performance. 4398 // Example: For aggregate arguments that fit in a register, we could 4399 // use getDirectInReg (as is done below for structs containing a single 4400 // floating-point value) to avoid pushing them to memory on function 4401 // entry. This would require changing the logic in PPCISelLowering 4402 // when lowering the parameters in the caller and args in the callee. 4403 void computeInfo(CGFunctionInfo &FI) const override { 4404 if (!getCXXABI().classifyReturnType(FI)) 4405 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4406 for (auto &I : FI.arguments()) { 4407 // We rely on the default argument classification for the most part. 4408 // One exception: An aggregate containing a single floating-point 4409 // or vector item must be passed in a register if one is available. 4410 const Type *T = isSingleElementStruct(I.type, getContext()); 4411 if (T) { 4412 const BuiltinType *BT = T->getAs<BuiltinType>(); 4413 if (IsQPXVectorTy(T) || 4414 (T->isVectorType() && getContext().getTypeSize(T) == 128) || 4415 (BT && BT->isFloatingPoint())) { 4416 QualType QT(T, 0); 4417 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 4418 continue; 4419 } 4420 } 4421 I.info = classifyArgumentType(I.type); 4422 } 4423 } 4424 4425 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4426 QualType Ty) const override; 4427 4428 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 4429 bool asReturnValue) const override { 4430 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 4431 } 4432 4433 bool isSwiftErrorInRegister() const override { 4434 return false; 4435 } 4436 }; 4437 4438 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 4439 4440 public: 4441 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 4442 PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX, 4443 bool SoftFloatABI) 4444 : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX, 4445 SoftFloatABI)) {} 4446 4447 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4448 // This is recovered from gcc output. 4449 return 1; // r1 is the dedicated stack pointer 4450 } 4451 4452 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4453 llvm::Value *Address) const override; 4454 }; 4455 4456 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 4457 public: 4458 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 4459 4460 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4461 // This is recovered from gcc output. 4462 return 1; // r1 is the dedicated stack pointer 4463 } 4464 4465 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4466 llvm::Value *Address) const override; 4467 }; 4468 4469 } 4470 4471 // Return true if the ABI requires Ty to be passed sign- or zero- 4472 // extended to 64 bits. 4473 bool 4474 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 4475 // Treat an enum type as its underlying type. 4476 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4477 Ty = EnumTy->getDecl()->getIntegerType(); 4478 4479 // Promotable integer types are required to be promoted by the ABI. 4480 if (Ty->isPromotableIntegerType()) 4481 return true; 4482 4483 // In addition to the usual promotable integer types, we also need to 4484 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 4485 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4486 switch (BT->getKind()) { 4487 case BuiltinType::Int: 4488 case BuiltinType::UInt: 4489 return true; 4490 default: 4491 break; 4492 } 4493 4494 return false; 4495 } 4496 4497 /// isAlignedParamType - Determine whether a type requires 16-byte or 4498 /// higher alignment in the parameter area. Always returns at least 8. 4499 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4500 // Complex types are passed just like their elements. 4501 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4502 Ty = CTy->getElementType(); 4503 4504 // Only vector types of size 16 bytes need alignment (larger types are 4505 // passed via reference, smaller types are not aligned). 4506 if (IsQPXVectorTy(Ty)) { 4507 if (getContext().getTypeSize(Ty) > 128) 4508 return CharUnits::fromQuantity(32); 4509 4510 return CharUnits::fromQuantity(16); 4511 } else if (Ty->isVectorType()) { 4512 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8); 4513 } 4514 4515 // For single-element float/vector structs, we consider the whole type 4516 // to have the same alignment requirements as its single element. 4517 const Type *AlignAsType = nullptr; 4518 const Type *EltType = isSingleElementStruct(Ty, getContext()); 4519 if (EltType) { 4520 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4521 if (IsQPXVectorTy(EltType) || (EltType->isVectorType() && 4522 getContext().getTypeSize(EltType) == 128) || 4523 (BT && BT->isFloatingPoint())) 4524 AlignAsType = EltType; 4525 } 4526 4527 // Likewise for ELFv2 homogeneous aggregates. 4528 const Type *Base = nullptr; 4529 uint64_t Members = 0; 4530 if (!AlignAsType && Kind == ELFv2 && 4531 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 4532 AlignAsType = Base; 4533 4534 // With special case aggregates, only vector base types need alignment. 4535 if (AlignAsType && IsQPXVectorTy(AlignAsType)) { 4536 if (getContext().getTypeSize(AlignAsType) > 128) 4537 return CharUnits::fromQuantity(32); 4538 4539 return CharUnits::fromQuantity(16); 4540 } else if (AlignAsType) { 4541 return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8); 4542 } 4543 4544 // Otherwise, we only need alignment for any aggregate type that 4545 // has an alignment requirement of >= 16 bytes. 4546 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { 4547 if (HasQPX && getContext().getTypeAlign(Ty) >= 256) 4548 return CharUnits::fromQuantity(32); 4549 return CharUnits::fromQuantity(16); 4550 } 4551 4552 return CharUnits::fromQuantity(8); 4553 } 4554 4555 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 4556 /// aggregate. Base is set to the base element type, and Members is set 4557 /// to the number of base elements. 4558 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 4559 uint64_t &Members) const { 4560 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 4561 uint64_t NElements = AT->getSize().getZExtValue(); 4562 if (NElements == 0) 4563 return false; 4564 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 4565 return false; 4566 Members *= NElements; 4567 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 4568 const RecordDecl *RD = RT->getDecl(); 4569 if (RD->hasFlexibleArrayMember()) 4570 return false; 4571 4572 Members = 0; 4573 4574 // If this is a C++ record, check the bases first. 4575 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 4576 for (const auto &I : CXXRD->bases()) { 4577 // Ignore empty records. 4578 if (isEmptyRecord(getContext(), I.getType(), true)) 4579 continue; 4580 4581 uint64_t FldMembers; 4582 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) 4583 return false; 4584 4585 Members += FldMembers; 4586 } 4587 } 4588 4589 for (const auto *FD : RD->fields()) { 4590 // Ignore (non-zero arrays of) empty records. 4591 QualType FT = FD->getType(); 4592 while (const ConstantArrayType *AT = 4593 getContext().getAsConstantArrayType(FT)) { 4594 if (AT->getSize().getZExtValue() == 0) 4595 return false; 4596 FT = AT->getElementType(); 4597 } 4598 if (isEmptyRecord(getContext(), FT, true)) 4599 continue; 4600 4601 // For compatibility with GCC, ignore empty bitfields in C++ mode. 4602 if (getContext().getLangOpts().CPlusPlus && 4603 FD->isZeroLengthBitField(getContext())) 4604 continue; 4605 4606 uint64_t FldMembers; 4607 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 4608 return false; 4609 4610 Members = (RD->isUnion() ? 4611 std::max(Members, FldMembers) : Members + FldMembers); 4612 } 4613 4614 if (!Base) 4615 return false; 4616 4617 // Ensure there is no padding. 4618 if (getContext().getTypeSize(Base) * Members != 4619 getContext().getTypeSize(Ty)) 4620 return false; 4621 } else { 4622 Members = 1; 4623 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 4624 Members = 2; 4625 Ty = CT->getElementType(); 4626 } 4627 4628 // Most ABIs only support float, double, and some vector type widths. 4629 if (!isHomogeneousAggregateBaseType(Ty)) 4630 return false; 4631 4632 // The base type must be the same for all members. Types that 4633 // agree in both total size and mode (float vs. vector) are 4634 // treated as being equivalent here. 4635 const Type *TyPtr = Ty.getTypePtr(); 4636 if (!Base) { 4637 Base = TyPtr; 4638 // If it's a non-power-of-2 vector, its size is already a power-of-2, 4639 // so make sure to widen it explicitly. 4640 if (const VectorType *VT = Base->getAs<VectorType>()) { 4641 QualType EltTy = VT->getElementType(); 4642 unsigned NumElements = 4643 getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy); 4644 Base = getContext() 4645 .getVectorType(EltTy, NumElements, VT->getVectorKind()) 4646 .getTypePtr(); 4647 } 4648 } 4649 4650 if (Base->isVectorType() != TyPtr->isVectorType() || 4651 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 4652 return false; 4653 } 4654 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); 4655 } 4656 4657 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 4658 // Homogeneous aggregates for ELFv2 must have base types of float, 4659 // double, long double, or 128-bit vectors. 4660 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4661 if (BT->getKind() == BuiltinType::Float || 4662 BT->getKind() == BuiltinType::Double || 4663 BT->getKind() == BuiltinType::LongDouble || 4664 (getContext().getTargetInfo().hasFloat128Type() && 4665 (BT->getKind() == BuiltinType::Float128))) { 4666 if (IsSoftFloatABI) 4667 return false; 4668 return true; 4669 } 4670 } 4671 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4672 if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty)) 4673 return true; 4674 } 4675 return false; 4676 } 4677 4678 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( 4679 const Type *Base, uint64_t Members) const { 4680 // Vector and fp128 types require one register, other floating point types 4681 // require one or two registers depending on their size. 4682 uint32_t NumRegs = 4683 ((getContext().getTargetInfo().hasFloat128Type() && 4684 Base->isFloat128Type()) || 4685 Base->isVectorType()) ? 1 4686 : (getContext().getTypeSize(Base) + 63) / 64; 4687 4688 // Homogeneous Aggregates may occupy at most 8 registers. 4689 return Members * NumRegs <= 8; 4690 } 4691 4692 ABIArgInfo 4693 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 4694 Ty = useFirstFieldIfTransparentUnion(Ty); 4695 4696 if (Ty->isAnyComplexType()) 4697 return ABIArgInfo::getDirect(); 4698 4699 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 4700 // or via reference (larger than 16 bytes). 4701 if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) { 4702 uint64_t Size = getContext().getTypeSize(Ty); 4703 if (Size > 128) 4704 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4705 else if (Size < 128) { 4706 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 4707 return ABIArgInfo::getDirect(CoerceTy); 4708 } 4709 } 4710 4711 if (isAggregateTypeForABI(Ty)) { 4712 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 4713 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4714 4715 uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity(); 4716 uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 4717 4718 // ELFv2 homogeneous aggregates are passed as array types. 4719 const Type *Base = nullptr; 4720 uint64_t Members = 0; 4721 if (Kind == ELFv2 && 4722 isHomogeneousAggregate(Ty, Base, Members)) { 4723 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 4724 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 4725 return ABIArgInfo::getDirect(CoerceTy); 4726 } 4727 4728 // If an aggregate may end up fully in registers, we do not 4729 // use the ByVal method, but pass the aggregate as array. 4730 // This is usually beneficial since we avoid forcing the 4731 // back-end to store the argument to memory. 4732 uint64_t Bits = getContext().getTypeSize(Ty); 4733 if (Bits > 0 && Bits <= 8 * GPRBits) { 4734 llvm::Type *CoerceTy; 4735 4736 // Types up to 8 bytes are passed as integer type (which will be 4737 // properly aligned in the argument save area doubleword). 4738 if (Bits <= GPRBits) 4739 CoerceTy = 4740 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 4741 // Larger types are passed as arrays, with the base type selected 4742 // according to the required alignment in the save area. 4743 else { 4744 uint64_t RegBits = ABIAlign * 8; 4745 uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits; 4746 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 4747 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 4748 } 4749 4750 return ABIArgInfo::getDirect(CoerceTy); 4751 } 4752 4753 // All other aggregates are passed ByVal. 4754 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 4755 /*ByVal=*/true, 4756 /*Realign=*/TyAlign > ABIAlign); 4757 } 4758 4759 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 4760 : ABIArgInfo::getDirect()); 4761 } 4762 4763 ABIArgInfo 4764 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 4765 if (RetTy->isVoidType()) 4766 return ABIArgInfo::getIgnore(); 4767 4768 if (RetTy->isAnyComplexType()) 4769 return ABIArgInfo::getDirect(); 4770 4771 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 4772 // or via reference (larger than 16 bytes). 4773 if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) { 4774 uint64_t Size = getContext().getTypeSize(RetTy); 4775 if (Size > 128) 4776 return getNaturalAlignIndirect(RetTy); 4777 else if (Size < 128) { 4778 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 4779 return ABIArgInfo::getDirect(CoerceTy); 4780 } 4781 } 4782 4783 if (isAggregateTypeForABI(RetTy)) { 4784 // ELFv2 homogeneous aggregates are returned as array types. 4785 const Type *Base = nullptr; 4786 uint64_t Members = 0; 4787 if (Kind == ELFv2 && 4788 isHomogeneousAggregate(RetTy, Base, Members)) { 4789 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 4790 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 4791 return ABIArgInfo::getDirect(CoerceTy); 4792 } 4793 4794 // ELFv2 small aggregates are returned in up to two registers. 4795 uint64_t Bits = getContext().getTypeSize(RetTy); 4796 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 4797 if (Bits == 0) 4798 return ABIArgInfo::getIgnore(); 4799 4800 llvm::Type *CoerceTy; 4801 if (Bits > GPRBits) { 4802 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 4803 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy); 4804 } else 4805 CoerceTy = 4806 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 4807 return ABIArgInfo::getDirect(CoerceTy); 4808 } 4809 4810 // All other aggregates are returned indirectly. 4811 return getNaturalAlignIndirect(RetTy); 4812 } 4813 4814 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 4815 : ABIArgInfo::getDirect()); 4816 } 4817 4818 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 4819 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4820 QualType Ty) const { 4821 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 4822 TypeInfo.second = getParamTypeAlignment(Ty); 4823 4824 CharUnits SlotSize = CharUnits::fromQuantity(8); 4825 4826 // If we have a complex type and the base type is smaller than 8 bytes, 4827 // the ABI calls for the real and imaginary parts to be right-adjusted 4828 // in separate doublewords. However, Clang expects us to produce a 4829 // pointer to a structure with the two parts packed tightly. So generate 4830 // loads of the real and imaginary parts relative to the va_list pointer, 4831 // and store them to a temporary structure. 4832 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4833 CharUnits EltSize = TypeInfo.first / 2; 4834 if (EltSize < SlotSize) { 4835 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, 4836 SlotSize * 2, SlotSize, 4837 SlotSize, /*AllowHigher*/ true); 4838 4839 Address RealAddr = Addr; 4840 Address ImagAddr = RealAddr; 4841 if (CGF.CGM.getDataLayout().isBigEndian()) { 4842 RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, 4843 SlotSize - EltSize); 4844 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr, 4845 2 * SlotSize - EltSize); 4846 } else { 4847 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize); 4848 } 4849 4850 llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType()); 4851 RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy); 4852 ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy); 4853 llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal"); 4854 llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag"); 4855 4856 Address Temp = CGF.CreateMemTemp(Ty, "vacplx"); 4857 CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty), 4858 /*init*/ true); 4859 return Temp; 4860 } 4861 } 4862 4863 // Otherwise, just use the general rule. 4864 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 4865 TypeInfo, SlotSize, /*AllowHigher*/ true); 4866 } 4867 4868 static bool 4869 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4870 llvm::Value *Address) { 4871 // This is calculated from the LLVM and GCC tables and verified 4872 // against gcc output. AFAIK all ABIs use the same encoding. 4873 4874 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4875 4876 llvm::IntegerType *i8 = CGF.Int8Ty; 4877 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4878 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4879 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4880 4881 // 0-31: r0-31, the 8-byte general-purpose registers 4882 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 4883 4884 // 32-63: fp0-31, the 8-byte floating-point registers 4885 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4886 4887 // 64-67 are various 8-byte special-purpose registers: 4888 // 64: mq 4889 // 65: lr 4890 // 66: ctr 4891 // 67: ap 4892 AssignToArrayRange(Builder, Address, Eight8, 64, 67); 4893 4894 // 68-76 are various 4-byte special-purpose registers: 4895 // 68-75 cr0-7 4896 // 76: xer 4897 AssignToArrayRange(Builder, Address, Four8, 68, 76); 4898 4899 // 77-108: v0-31, the 16-byte vector registers 4900 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4901 4902 // 109: vrsave 4903 // 110: vscr 4904 // 111: spe_acc 4905 // 112: spefscr 4906 // 113: sfp 4907 // 114: tfhar 4908 // 115: tfiar 4909 // 116: texasr 4910 AssignToArrayRange(Builder, Address, Eight8, 109, 116); 4911 4912 return false; 4913 } 4914 4915 bool 4916 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 4917 CodeGen::CodeGenFunction &CGF, 4918 llvm::Value *Address) const { 4919 4920 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 4921 } 4922 4923 bool 4924 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4925 llvm::Value *Address) const { 4926 4927 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 4928 } 4929 4930 //===----------------------------------------------------------------------===// 4931 // AArch64 ABI Implementation 4932 //===----------------------------------------------------------------------===// 4933 4934 namespace { 4935 4936 class AArch64ABIInfo : public SwiftABIInfo { 4937 public: 4938 enum ABIKind { 4939 AAPCS = 0, 4940 DarwinPCS, 4941 Win64 4942 }; 4943 4944 private: 4945 ABIKind Kind; 4946 4947 public: 4948 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) 4949 : SwiftABIInfo(CGT), Kind(Kind) {} 4950 4951 private: 4952 ABIKind getABIKind() const { return Kind; } 4953 bool isDarwinPCS() const { return Kind == DarwinPCS; } 4954 4955 ABIArgInfo classifyReturnType(QualType RetTy) const; 4956 ABIArgInfo classifyArgumentType(QualType RetTy) const; 4957 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4958 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4959 uint64_t Members) const override; 4960 4961 bool isIllegalVectorType(QualType Ty) const; 4962 4963 void computeInfo(CGFunctionInfo &FI) const override { 4964 if (!::classifyReturnType(getCXXABI(), FI, *this)) 4965 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4966 4967 for (auto &it : FI.arguments()) 4968 it.info = classifyArgumentType(it.type); 4969 } 4970 4971 Address EmitDarwinVAArg(Address VAListAddr, QualType Ty, 4972 CodeGenFunction &CGF) const; 4973 4974 Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 4975 CodeGenFunction &CGF) const; 4976 4977 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4978 QualType Ty) const override { 4979 return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty) 4980 : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 4981 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 4982 } 4983 4984 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 4985 QualType Ty) const override; 4986 4987 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 4988 bool asReturnValue) const override { 4989 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 4990 } 4991 bool isSwiftErrorInRegister() const override { 4992 return true; 4993 } 4994 4995 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 4996 unsigned elts) const override; 4997 }; 4998 4999 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 5000 public: 5001 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 5002 : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {} 5003 5004 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 5005 return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue"; 5006 } 5007 5008 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5009 return 31; 5010 } 5011 5012 bool doesReturnSlotInterfereWithArgs() const override { return false; } 5013 5014 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5015 CodeGen::CodeGenModule &CGM) const override { 5016 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5017 if (!FD) 5018 return; 5019 llvm::Function *Fn = cast<llvm::Function>(GV); 5020 5021 auto Kind = CGM.getCodeGenOpts().getSignReturnAddress(); 5022 if (Kind != CodeGenOptions::SignReturnAddressScope::None) { 5023 Fn->addFnAttr("sign-return-address", 5024 Kind == CodeGenOptions::SignReturnAddressScope::All 5025 ? "all" 5026 : "non-leaf"); 5027 5028 auto Key = CGM.getCodeGenOpts().getSignReturnAddressKey(); 5029 Fn->addFnAttr("sign-return-address-key", 5030 Key == CodeGenOptions::SignReturnAddressKeyValue::AKey 5031 ? "a_key" 5032 : "b_key"); 5033 } 5034 5035 if (CGM.getCodeGenOpts().BranchTargetEnforcement) 5036 Fn->addFnAttr("branch-target-enforcement"); 5037 } 5038 }; 5039 5040 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo { 5041 public: 5042 WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K) 5043 : AArch64TargetCodeGenInfo(CGT, K) {} 5044 5045 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5046 CodeGen::CodeGenModule &CGM) const override; 5047 5048 void getDependentLibraryOption(llvm::StringRef Lib, 5049 llvm::SmallString<24> &Opt) const override { 5050 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5051 } 5052 5053 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5054 llvm::SmallString<32> &Opt) const override { 5055 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5056 } 5057 }; 5058 5059 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes( 5060 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 5061 AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 5062 if (GV->isDeclaration()) 5063 return; 5064 addStackProbeTargetAttributes(D, GV, CGM); 5065 } 5066 } 5067 5068 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const { 5069 Ty = useFirstFieldIfTransparentUnion(Ty); 5070 5071 // Handle illegal vector types here. 5072 if (isIllegalVectorType(Ty)) { 5073 uint64_t Size = getContext().getTypeSize(Ty); 5074 // Android promotes <2 x i8> to i16, not i32 5075 if (isAndroid() && (Size <= 16)) { 5076 llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext()); 5077 return ABIArgInfo::getDirect(ResType); 5078 } 5079 if (Size <= 32) { 5080 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 5081 return ABIArgInfo::getDirect(ResType); 5082 } 5083 if (Size == 64) { 5084 llvm::Type *ResType = 5085 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 5086 return ABIArgInfo::getDirect(ResType); 5087 } 5088 if (Size == 128) { 5089 llvm::Type *ResType = 5090 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 5091 return ABIArgInfo::getDirect(ResType); 5092 } 5093 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5094 } 5095 5096 if (!isAggregateTypeForABI(Ty)) { 5097 // Treat an enum type as its underlying type. 5098 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5099 Ty = EnumTy->getDecl()->getIntegerType(); 5100 5101 return (Ty->isPromotableIntegerType() && isDarwinPCS() 5102 ? ABIArgInfo::getExtend(Ty) 5103 : ABIArgInfo::getDirect()); 5104 } 5105 5106 // Structures with either a non-trivial destructor or a non-trivial 5107 // copy constructor are always indirect. 5108 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5109 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 5110 CGCXXABI::RAA_DirectInMemory); 5111 } 5112 5113 // Empty records are always ignored on Darwin, but actually passed in C++ mode 5114 // elsewhere for GNU compatibility. 5115 uint64_t Size = getContext().getTypeSize(Ty); 5116 bool IsEmpty = isEmptyRecord(getContext(), Ty, true); 5117 if (IsEmpty || Size == 0) { 5118 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 5119 return ABIArgInfo::getIgnore(); 5120 5121 // GNU C mode. The only argument that gets ignored is an empty one with size 5122 // 0. 5123 if (IsEmpty && Size == 0) 5124 return ABIArgInfo::getIgnore(); 5125 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5126 } 5127 5128 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 5129 const Type *Base = nullptr; 5130 uint64_t Members = 0; 5131 if (isHomogeneousAggregate(Ty, Base, Members)) { 5132 return ABIArgInfo::getDirect( 5133 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); 5134 } 5135 5136 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 5137 if (Size <= 128) { 5138 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5139 // same size and alignment. 5140 if (getTarget().isRenderScriptTarget()) { 5141 return coerceToIntArray(Ty, getContext(), getVMContext()); 5142 } 5143 unsigned Alignment; 5144 if (Kind == AArch64ABIInfo::AAPCS) { 5145 Alignment = getContext().getTypeUnadjustedAlign(Ty); 5146 Alignment = Alignment < 128 ? 64 : 128; 5147 } else { 5148 Alignment = getContext().getTypeAlign(Ty); 5149 } 5150 Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes 5151 5152 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5153 // For aggregates with 16-byte alignment, we use i128. 5154 if (Alignment < 128 && Size == 128) { 5155 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 5156 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 5157 } 5158 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 5159 } 5160 5161 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5162 } 5163 5164 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const { 5165 if (RetTy->isVoidType()) 5166 return ABIArgInfo::getIgnore(); 5167 5168 // Large vector types should be returned via memory. 5169 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 5170 return getNaturalAlignIndirect(RetTy); 5171 5172 if (!isAggregateTypeForABI(RetTy)) { 5173 // Treat an enum type as its underlying type. 5174 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5175 RetTy = EnumTy->getDecl()->getIntegerType(); 5176 5177 return (RetTy->isPromotableIntegerType() && isDarwinPCS() 5178 ? ABIArgInfo::getExtend(RetTy) 5179 : ABIArgInfo::getDirect()); 5180 } 5181 5182 uint64_t Size = getContext().getTypeSize(RetTy); 5183 if (isEmptyRecord(getContext(), RetTy, true) || Size == 0) 5184 return ABIArgInfo::getIgnore(); 5185 5186 const Type *Base = nullptr; 5187 uint64_t Members = 0; 5188 if (isHomogeneousAggregate(RetTy, Base, Members)) 5189 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 5190 return ABIArgInfo::getDirect(); 5191 5192 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 5193 if (Size <= 128) { 5194 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5195 // same size and alignment. 5196 if (getTarget().isRenderScriptTarget()) { 5197 return coerceToIntArray(RetTy, getContext(), getVMContext()); 5198 } 5199 unsigned Alignment = getContext().getTypeAlign(RetTy); 5200 Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes 5201 5202 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5203 // For aggregates with 16-byte alignment, we use i128. 5204 if (Alignment < 128 && Size == 128) { 5205 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 5206 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 5207 } 5208 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 5209 } 5210 5211 return getNaturalAlignIndirect(RetTy); 5212 } 5213 5214 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 5215 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 5216 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5217 // Check whether VT is legal. 5218 unsigned NumElements = VT->getNumElements(); 5219 uint64_t Size = getContext().getTypeSize(VT); 5220 // NumElements should be power of 2. 5221 if (!llvm::isPowerOf2_32(NumElements)) 5222 return true; 5223 return Size != 64 && (Size != 128 || NumElements == 1); 5224 } 5225 return false; 5226 } 5227 5228 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize, 5229 llvm::Type *eltTy, 5230 unsigned elts) const { 5231 if (!llvm::isPowerOf2_32(elts)) 5232 return false; 5233 if (totalSize.getQuantity() != 8 && 5234 (totalSize.getQuantity() != 16 || elts == 1)) 5235 return false; 5236 return true; 5237 } 5238 5239 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5240 // Homogeneous aggregates for AAPCS64 must have base types of a floating 5241 // point type or a short-vector type. This is the same as the 32-bit ABI, 5242 // but with the difference that any floating-point type is allowed, 5243 // including __fp16. 5244 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5245 if (BT->isFloatingPoint()) 5246 return true; 5247 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 5248 unsigned VecSize = getContext().getTypeSize(VT); 5249 if (VecSize == 64 || VecSize == 128) 5250 return true; 5251 } 5252 return false; 5253 } 5254 5255 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 5256 uint64_t Members) const { 5257 return Members <= 4; 5258 } 5259 5260 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, 5261 QualType Ty, 5262 CodeGenFunction &CGF) const { 5263 ABIArgInfo AI = classifyArgumentType(Ty); 5264 bool IsIndirect = AI.isIndirect(); 5265 5266 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5267 if (IsIndirect) 5268 BaseTy = llvm::PointerType::getUnqual(BaseTy); 5269 else if (AI.getCoerceToType()) 5270 BaseTy = AI.getCoerceToType(); 5271 5272 unsigned NumRegs = 1; 5273 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { 5274 BaseTy = ArrTy->getElementType(); 5275 NumRegs = ArrTy->getNumElements(); 5276 } 5277 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); 5278 5279 // The AArch64 va_list type and handling is specified in the Procedure Call 5280 // Standard, section B.4: 5281 // 5282 // struct { 5283 // void *__stack; 5284 // void *__gr_top; 5285 // void *__vr_top; 5286 // int __gr_offs; 5287 // int __vr_offs; 5288 // }; 5289 5290 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 5291 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 5292 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 5293 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 5294 5295 auto TyInfo = getContext().getTypeInfoInChars(Ty); 5296 CharUnits TyAlign = TyInfo.second; 5297 5298 Address reg_offs_p = Address::invalid(); 5299 llvm::Value *reg_offs = nullptr; 5300 int reg_top_index; 5301 CharUnits reg_top_offset; 5302 int RegSize = IsIndirect ? 8 : TyInfo.first.getQuantity(); 5303 if (!IsFPR) { 5304 // 3 is the field number of __gr_offs 5305 reg_offs_p = 5306 CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24), 5307 "gr_offs_p"); 5308 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 5309 reg_top_index = 1; // field number for __gr_top 5310 reg_top_offset = CharUnits::fromQuantity(8); 5311 RegSize = llvm::alignTo(RegSize, 8); 5312 } else { 5313 // 4 is the field number of __vr_offs. 5314 reg_offs_p = 5315 CGF.Builder.CreateStructGEP(VAListAddr, 4, CharUnits::fromQuantity(28), 5316 "vr_offs_p"); 5317 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 5318 reg_top_index = 2; // field number for __vr_top 5319 reg_top_offset = CharUnits::fromQuantity(16); 5320 RegSize = 16 * NumRegs; 5321 } 5322 5323 //======================================= 5324 // Find out where argument was passed 5325 //======================================= 5326 5327 // If reg_offs >= 0 we're already using the stack for this type of 5328 // argument. We don't want to keep updating reg_offs (in case it overflows, 5329 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 5330 // whatever they get). 5331 llvm::Value *UsingStack = nullptr; 5332 UsingStack = CGF.Builder.CreateICmpSGE( 5333 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 5334 5335 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 5336 5337 // Otherwise, at least some kind of argument could go in these registers, the 5338 // question is whether this particular type is too big. 5339 CGF.EmitBlock(MaybeRegBlock); 5340 5341 // Integer arguments may need to correct register alignment (for example a 5342 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 5343 // align __gr_offs to calculate the potential address. 5344 if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) { 5345 int Align = TyAlign.getQuantity(); 5346 5347 reg_offs = CGF.Builder.CreateAdd( 5348 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 5349 "align_regoffs"); 5350 reg_offs = CGF.Builder.CreateAnd( 5351 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 5352 "aligned_regoffs"); 5353 } 5354 5355 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 5356 // The fact that this is done unconditionally reflects the fact that 5357 // allocating an argument to the stack also uses up all the remaining 5358 // registers of the appropriate kind. 5359 llvm::Value *NewOffset = nullptr; 5360 NewOffset = CGF.Builder.CreateAdd( 5361 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 5362 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 5363 5364 // Now we're in a position to decide whether this argument really was in 5365 // registers or not. 5366 llvm::Value *InRegs = nullptr; 5367 InRegs = CGF.Builder.CreateICmpSLE( 5368 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 5369 5370 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 5371 5372 //======================================= 5373 // Argument was in registers 5374 //======================================= 5375 5376 // Now we emit the code for if the argument was originally passed in 5377 // registers. First start the appropriate block: 5378 CGF.EmitBlock(InRegBlock); 5379 5380 llvm::Value *reg_top = nullptr; 5381 Address reg_top_p = CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, 5382 reg_top_offset, "reg_top_p"); 5383 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 5384 Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs), 5385 CharUnits::fromQuantity(IsFPR ? 16 : 8)); 5386 Address RegAddr = Address::invalid(); 5387 llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty); 5388 5389 if (IsIndirect) { 5390 // If it's been passed indirectly (actually a struct), whatever we find from 5391 // stored registers or on the stack will actually be a struct **. 5392 MemTy = llvm::PointerType::getUnqual(MemTy); 5393 } 5394 5395 const Type *Base = nullptr; 5396 uint64_t NumMembers = 0; 5397 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); 5398 if (IsHFA && NumMembers > 1) { 5399 // Homogeneous aggregates passed in registers will have their elements split 5400 // and stored 16-bytes apart regardless of size (they're notionally in qN, 5401 // qN+1, ...). We reload and store into a temporary local variable 5402 // contiguously. 5403 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 5404 auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0)); 5405 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 5406 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 5407 Address Tmp = CGF.CreateTempAlloca(HFATy, 5408 std::max(TyAlign, BaseTyInfo.second)); 5409 5410 // On big-endian platforms, the value will be right-aligned in its slot. 5411 int Offset = 0; 5412 if (CGF.CGM.getDataLayout().isBigEndian() && 5413 BaseTyInfo.first.getQuantity() < 16) 5414 Offset = 16 - BaseTyInfo.first.getQuantity(); 5415 5416 for (unsigned i = 0; i < NumMembers; ++i) { 5417 CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset); 5418 Address LoadAddr = 5419 CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset); 5420 LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy); 5421 5422 Address StoreAddr = 5423 CGF.Builder.CreateConstArrayGEP(Tmp, i, BaseTyInfo.first); 5424 5425 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 5426 CGF.Builder.CreateStore(Elem, StoreAddr); 5427 } 5428 5429 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy); 5430 } else { 5431 // Otherwise the object is contiguous in memory. 5432 5433 // It might be right-aligned in its slot. 5434 CharUnits SlotSize = BaseAddr.getAlignment(); 5435 if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect && 5436 (IsHFA || !isAggregateTypeForABI(Ty)) && 5437 TyInfo.first < SlotSize) { 5438 CharUnits Offset = SlotSize - TyInfo.first; 5439 BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset); 5440 } 5441 5442 RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy); 5443 } 5444 5445 CGF.EmitBranch(ContBlock); 5446 5447 //======================================= 5448 // Argument was on the stack 5449 //======================================= 5450 CGF.EmitBlock(OnStackBlock); 5451 5452 Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, 5453 CharUnits::Zero(), "stack_p"); 5454 llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack"); 5455 5456 // Again, stack arguments may need realignment. In this case both integer and 5457 // floating-point ones might be affected. 5458 if (!IsIndirect && TyAlign.getQuantity() > 8) { 5459 int Align = TyAlign.getQuantity(); 5460 5461 OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty); 5462 5463 OnStackPtr = CGF.Builder.CreateAdd( 5464 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 5465 "align_stack"); 5466 OnStackPtr = CGF.Builder.CreateAnd( 5467 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 5468 "align_stack"); 5469 5470 OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy); 5471 } 5472 Address OnStackAddr(OnStackPtr, 5473 std::max(CharUnits::fromQuantity(8), TyAlign)); 5474 5475 // All stack slots are multiples of 8 bytes. 5476 CharUnits StackSlotSize = CharUnits::fromQuantity(8); 5477 CharUnits StackSize; 5478 if (IsIndirect) 5479 StackSize = StackSlotSize; 5480 else 5481 StackSize = TyInfo.first.alignTo(StackSlotSize); 5482 5483 llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize); 5484 llvm::Value *NewStack = 5485 CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack"); 5486 5487 // Write the new value of __stack for the next call to va_arg 5488 CGF.Builder.CreateStore(NewStack, stack_p); 5489 5490 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 5491 TyInfo.first < StackSlotSize) { 5492 CharUnits Offset = StackSlotSize - TyInfo.first; 5493 OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset); 5494 } 5495 5496 OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy); 5497 5498 CGF.EmitBranch(ContBlock); 5499 5500 //======================================= 5501 // Tidy up 5502 //======================================= 5503 CGF.EmitBlock(ContBlock); 5504 5505 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 5506 OnStackAddr, OnStackBlock, "vaargs.addr"); 5507 5508 if (IsIndirect) 5509 return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), 5510 TyInfo.second); 5511 5512 return ResAddr; 5513 } 5514 5515 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty, 5516 CodeGenFunction &CGF) const { 5517 // The backend's lowering doesn't support va_arg for aggregates or 5518 // illegal vector types. Lower VAArg here for these cases and use 5519 // the LLVM va_arg instruction for everything else. 5520 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 5521 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 5522 5523 CharUnits SlotSize = CharUnits::fromQuantity(8); 5524 5525 // Empty records are ignored for parameter passing purposes. 5526 if (isEmptyRecord(getContext(), Ty, true)) { 5527 Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 5528 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 5529 return Addr; 5530 } 5531 5532 // The size of the actual thing passed, which might end up just 5533 // being a pointer for indirect types. 5534 auto TyInfo = getContext().getTypeInfoInChars(Ty); 5535 5536 // Arguments bigger than 16 bytes which aren't homogeneous 5537 // aggregates should be passed indirectly. 5538 bool IsIndirect = false; 5539 if (TyInfo.first.getQuantity() > 16) { 5540 const Type *Base = nullptr; 5541 uint64_t Members = 0; 5542 IsIndirect = !isHomogeneousAggregate(Ty, Base, Members); 5543 } 5544 5545 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 5546 TyInfo, SlotSize, /*AllowHigherAlign*/ true); 5547 } 5548 5549 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 5550 QualType Ty) const { 5551 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 5552 CGF.getContext().getTypeInfoInChars(Ty), 5553 CharUnits::fromQuantity(8), 5554 /*allowHigherAlign*/ false); 5555 } 5556 5557 //===----------------------------------------------------------------------===// 5558 // ARM ABI Implementation 5559 //===----------------------------------------------------------------------===// 5560 5561 namespace { 5562 5563 class ARMABIInfo : public SwiftABIInfo { 5564 public: 5565 enum ABIKind { 5566 APCS = 0, 5567 AAPCS = 1, 5568 AAPCS_VFP = 2, 5569 AAPCS16_VFP = 3, 5570 }; 5571 5572 private: 5573 ABIKind Kind; 5574 5575 public: 5576 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) 5577 : SwiftABIInfo(CGT), Kind(_Kind) { 5578 setCCs(); 5579 } 5580 5581 bool isEABI() const { 5582 switch (getTarget().getTriple().getEnvironment()) { 5583 case llvm::Triple::Android: 5584 case llvm::Triple::EABI: 5585 case llvm::Triple::EABIHF: 5586 case llvm::Triple::GNUEABI: 5587 case llvm::Triple::GNUEABIHF: 5588 case llvm::Triple::MuslEABI: 5589 case llvm::Triple::MuslEABIHF: 5590 return true; 5591 default: 5592 return false; 5593 } 5594 } 5595 5596 bool isEABIHF() const { 5597 switch (getTarget().getTriple().getEnvironment()) { 5598 case llvm::Triple::EABIHF: 5599 case llvm::Triple::GNUEABIHF: 5600 case llvm::Triple::MuslEABIHF: 5601 return true; 5602 default: 5603 return false; 5604 } 5605 } 5606 5607 ABIKind getABIKind() const { return Kind; } 5608 5609 private: 5610 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const; 5611 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic) const; 5612 ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base, 5613 uint64_t Members) const; 5614 ABIArgInfo coerceIllegalVector(QualType Ty) const; 5615 bool isIllegalVectorType(QualType Ty) const; 5616 5617 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 5618 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 5619 uint64_t Members) const override; 5620 5621 void computeInfo(CGFunctionInfo &FI) const override; 5622 5623 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5624 QualType Ty) const override; 5625 5626 llvm::CallingConv::ID getLLVMDefaultCC() const; 5627 llvm::CallingConv::ID getABIDefaultCC() const; 5628 void setCCs(); 5629 5630 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 5631 bool asReturnValue) const override { 5632 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5633 } 5634 bool isSwiftErrorInRegister() const override { 5635 return true; 5636 } 5637 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 5638 unsigned elts) const override; 5639 }; 5640 5641 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 5642 public: 5643 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 5644 :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {} 5645 5646 const ARMABIInfo &getABIInfo() const { 5647 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 5648 } 5649 5650 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5651 return 13; 5652 } 5653 5654 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 5655 return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue"; 5656 } 5657 5658 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5659 llvm::Value *Address) const override { 5660 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 5661 5662 // 0-15 are the 16 integer registers. 5663 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 5664 return false; 5665 } 5666 5667 unsigned getSizeOfUnwindException() const override { 5668 if (getABIInfo().isEABI()) return 88; 5669 return TargetCodeGenInfo::getSizeOfUnwindException(); 5670 } 5671 5672 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5673 CodeGen::CodeGenModule &CGM) const override { 5674 if (GV->isDeclaration()) 5675 return; 5676 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5677 if (!FD) 5678 return; 5679 5680 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 5681 if (!Attr) 5682 return; 5683 5684 const char *Kind; 5685 switch (Attr->getInterrupt()) { 5686 case ARMInterruptAttr::Generic: Kind = ""; break; 5687 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 5688 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 5689 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 5690 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 5691 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 5692 } 5693 5694 llvm::Function *Fn = cast<llvm::Function>(GV); 5695 5696 Fn->addFnAttr("interrupt", Kind); 5697 5698 ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind(); 5699 if (ABI == ARMABIInfo::APCS) 5700 return; 5701 5702 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 5703 // however this is not necessarily true on taking any interrupt. Instruct 5704 // the backend to perform a realignment as part of the function prologue. 5705 llvm::AttrBuilder B; 5706 B.addStackAlignmentAttr(8); 5707 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 5708 } 5709 }; 5710 5711 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { 5712 public: 5713 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 5714 : ARMTargetCodeGenInfo(CGT, K) {} 5715 5716 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5717 CodeGen::CodeGenModule &CGM) const override; 5718 5719 void getDependentLibraryOption(llvm::StringRef Lib, 5720 llvm::SmallString<24> &Opt) const override { 5721 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5722 } 5723 5724 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5725 llvm::SmallString<32> &Opt) const override { 5726 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5727 } 5728 }; 5729 5730 void WindowsARMTargetCodeGenInfo::setTargetAttributes( 5731 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 5732 ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 5733 if (GV->isDeclaration()) 5734 return; 5735 addStackProbeTargetAttributes(D, GV, CGM); 5736 } 5737 } 5738 5739 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 5740 if (!::classifyReturnType(getCXXABI(), FI, *this)) 5741 FI.getReturnInfo() = 5742 classifyReturnType(FI.getReturnType(), FI.isVariadic()); 5743 5744 for (auto &I : FI.arguments()) 5745 I.info = classifyArgumentType(I.type, FI.isVariadic()); 5746 5747 // Always honor user-specified calling convention. 5748 if (FI.getCallingConvention() != llvm::CallingConv::C) 5749 return; 5750 5751 llvm::CallingConv::ID cc = getRuntimeCC(); 5752 if (cc != llvm::CallingConv::C) 5753 FI.setEffectiveCallingConvention(cc); 5754 } 5755 5756 /// Return the default calling convention that LLVM will use. 5757 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 5758 // The default calling convention that LLVM will infer. 5759 if (isEABIHF() || getTarget().getTriple().isWatchABI()) 5760 return llvm::CallingConv::ARM_AAPCS_VFP; 5761 else if (isEABI()) 5762 return llvm::CallingConv::ARM_AAPCS; 5763 else 5764 return llvm::CallingConv::ARM_APCS; 5765 } 5766 5767 /// Return the calling convention that our ABI would like us to use 5768 /// as the C calling convention. 5769 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 5770 switch (getABIKind()) { 5771 case APCS: return llvm::CallingConv::ARM_APCS; 5772 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 5773 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 5774 case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 5775 } 5776 llvm_unreachable("bad ABI kind"); 5777 } 5778 5779 void ARMABIInfo::setCCs() { 5780 assert(getRuntimeCC() == llvm::CallingConv::C); 5781 5782 // Don't muddy up the IR with a ton of explicit annotations if 5783 // they'd just match what LLVM will infer from the triple. 5784 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 5785 if (abiCC != getLLVMDefaultCC()) 5786 RuntimeCC = abiCC; 5787 } 5788 5789 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const { 5790 uint64_t Size = getContext().getTypeSize(Ty); 5791 if (Size <= 32) { 5792 llvm::Type *ResType = 5793 llvm::Type::getInt32Ty(getVMContext()); 5794 return ABIArgInfo::getDirect(ResType); 5795 } 5796 if (Size == 64 || Size == 128) { 5797 llvm::Type *ResType = llvm::VectorType::get( 5798 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 5799 return ABIArgInfo::getDirect(ResType); 5800 } 5801 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5802 } 5803 5804 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty, 5805 const Type *Base, 5806 uint64_t Members) const { 5807 assert(Base && "Base class should be set for homogeneous aggregate"); 5808 // Base can be a floating-point or a vector. 5809 if (const VectorType *VT = Base->getAs<VectorType>()) { 5810 // FP16 vectors should be converted to integer vectors 5811 if (!getTarget().hasLegalHalfType() && 5812 (VT->getElementType()->isFloat16Type() || 5813 VT->getElementType()->isHalfType())) { 5814 uint64_t Size = getContext().getTypeSize(VT); 5815 llvm::Type *NewVecTy = llvm::VectorType::get( 5816 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 5817 llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members); 5818 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 5819 } 5820 } 5821 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 5822 } 5823 5824 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, 5825 bool isVariadic) const { 5826 // 6.1.2.1 The following argument types are VFP CPRCs: 5827 // A single-precision floating-point type (including promoted 5828 // half-precision types); A double-precision floating-point type; 5829 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 5830 // with a Base Type of a single- or double-precision floating-point type, 5831 // 64-bit containerized vectors or 128-bit containerized vectors with one 5832 // to four Elements. 5833 bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic; 5834 5835 Ty = useFirstFieldIfTransparentUnion(Ty); 5836 5837 // Handle illegal vector types here. 5838 if (isIllegalVectorType(Ty)) 5839 return coerceIllegalVector(Ty); 5840 5841 // _Float16 and __fp16 get passed as if it were an int or float, but with 5842 // the top 16 bits unspecified. This is not done for OpenCL as it handles the 5843 // half type natively, and does not need to interwork with AAPCS code. 5844 if ((Ty->isFloat16Type() || Ty->isHalfType()) && 5845 !getContext().getLangOpts().NativeHalfArgsAndReturns) { 5846 llvm::Type *ResType = IsEffectivelyAAPCS_VFP ? 5847 llvm::Type::getFloatTy(getVMContext()) : 5848 llvm::Type::getInt32Ty(getVMContext()); 5849 return ABIArgInfo::getDirect(ResType); 5850 } 5851 5852 if (!isAggregateTypeForABI(Ty)) { 5853 // Treat an enum type as its underlying type. 5854 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 5855 Ty = EnumTy->getDecl()->getIntegerType(); 5856 } 5857 5858 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 5859 : ABIArgInfo::getDirect()); 5860 } 5861 5862 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5863 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 5864 } 5865 5866 // Ignore empty records. 5867 if (isEmptyRecord(getContext(), Ty, true)) 5868 return ABIArgInfo::getIgnore(); 5869 5870 if (IsEffectivelyAAPCS_VFP) { 5871 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 5872 // into VFP registers. 5873 const Type *Base = nullptr; 5874 uint64_t Members = 0; 5875 if (isHomogeneousAggregate(Ty, Base, Members)) 5876 return classifyHomogeneousAggregate(Ty, Base, Members); 5877 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 5878 // WatchOS does have homogeneous aggregates. Note that we intentionally use 5879 // this convention even for a variadic function: the backend will use GPRs 5880 // if needed. 5881 const Type *Base = nullptr; 5882 uint64_t Members = 0; 5883 if (isHomogeneousAggregate(Ty, Base, Members)) { 5884 assert(Base && Members <= 4 && "unexpected homogeneous aggregate"); 5885 llvm::Type *Ty = 5886 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members); 5887 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 5888 } 5889 } 5890 5891 if (getABIKind() == ARMABIInfo::AAPCS16_VFP && 5892 getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) { 5893 // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're 5894 // bigger than 128-bits, they get placed in space allocated by the caller, 5895 // and a pointer is passed. 5896 return ABIArgInfo::getIndirect( 5897 CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false); 5898 } 5899 5900 // Support byval for ARM. 5901 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 5902 // most 8-byte. We realign the indirect argument if type alignment is bigger 5903 // than ABI alignment. 5904 uint64_t ABIAlign = 4; 5905 uint64_t TyAlign; 5906 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 5907 getABIKind() == ARMABIInfo::AAPCS) { 5908 TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); 5909 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 5910 } else { 5911 TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 5912 } 5913 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 5914 assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval"); 5915 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 5916 /*ByVal=*/true, 5917 /*Realign=*/TyAlign > ABIAlign); 5918 } 5919 5920 // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of 5921 // same size and alignment. 5922 if (getTarget().isRenderScriptTarget()) { 5923 return coerceToIntArray(Ty, getContext(), getVMContext()); 5924 } 5925 5926 // Otherwise, pass by coercing to a structure of the appropriate size. 5927 llvm::Type* ElemTy; 5928 unsigned SizeRegs; 5929 // FIXME: Try to match the types of the arguments more accurately where 5930 // we can. 5931 if (TyAlign <= 4) { 5932 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 5933 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 5934 } else { 5935 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 5936 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 5937 } 5938 5939 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); 5940 } 5941 5942 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 5943 llvm::LLVMContext &VMContext) { 5944 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 5945 // is called integer-like if its size is less than or equal to one word, and 5946 // the offset of each of its addressable sub-fields is zero. 5947 5948 uint64_t Size = Context.getTypeSize(Ty); 5949 5950 // Check that the type fits in a word. 5951 if (Size > 32) 5952 return false; 5953 5954 // FIXME: Handle vector types! 5955 if (Ty->isVectorType()) 5956 return false; 5957 5958 // Float types are never treated as "integer like". 5959 if (Ty->isRealFloatingType()) 5960 return false; 5961 5962 // If this is a builtin or pointer type then it is ok. 5963 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 5964 return true; 5965 5966 // Small complex integer types are "integer like". 5967 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 5968 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 5969 5970 // Single element and zero sized arrays should be allowed, by the definition 5971 // above, but they are not. 5972 5973 // Otherwise, it must be a record type. 5974 const RecordType *RT = Ty->getAs<RecordType>(); 5975 if (!RT) return false; 5976 5977 // Ignore records with flexible arrays. 5978 const RecordDecl *RD = RT->getDecl(); 5979 if (RD->hasFlexibleArrayMember()) 5980 return false; 5981 5982 // Check that all sub-fields are at offset 0, and are themselves "integer 5983 // like". 5984 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 5985 5986 bool HadField = false; 5987 unsigned idx = 0; 5988 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 5989 i != e; ++i, ++idx) { 5990 const FieldDecl *FD = *i; 5991 5992 // Bit-fields are not addressable, we only need to verify they are "integer 5993 // like". We still have to disallow a subsequent non-bitfield, for example: 5994 // struct { int : 0; int x } 5995 // is non-integer like according to gcc. 5996 if (FD->isBitField()) { 5997 if (!RD->isUnion()) 5998 HadField = true; 5999 6000 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6001 return false; 6002 6003 continue; 6004 } 6005 6006 // Check if this field is at offset 0. 6007 if (Layout.getFieldOffset(idx) != 0) 6008 return false; 6009 6010 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6011 return false; 6012 6013 // Only allow at most one field in a structure. This doesn't match the 6014 // wording above, but follows gcc in situations with a field following an 6015 // empty structure. 6016 if (!RD->isUnion()) { 6017 if (HadField) 6018 return false; 6019 6020 HadField = true; 6021 } 6022 } 6023 6024 return true; 6025 } 6026 6027 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, 6028 bool isVariadic) const { 6029 bool IsEffectivelyAAPCS_VFP = 6030 (getABIKind() == AAPCS_VFP || getABIKind() == AAPCS16_VFP) && !isVariadic; 6031 6032 if (RetTy->isVoidType()) 6033 return ABIArgInfo::getIgnore(); 6034 6035 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 6036 // Large vector types should be returned via memory. 6037 if (getContext().getTypeSize(RetTy) > 128) 6038 return getNaturalAlignIndirect(RetTy); 6039 // FP16 vectors should be converted to integer vectors 6040 if (!getTarget().hasLegalHalfType() && 6041 (VT->getElementType()->isFloat16Type() || 6042 VT->getElementType()->isHalfType())) 6043 return coerceIllegalVector(RetTy); 6044 } 6045 6046 // _Float16 and __fp16 get returned as if it were an int or float, but with 6047 // the top 16 bits unspecified. This is not done for OpenCL as it handles the 6048 // half type natively, and does not need to interwork with AAPCS code. 6049 if ((RetTy->isFloat16Type() || RetTy->isHalfType()) && 6050 !getContext().getLangOpts().NativeHalfArgsAndReturns) { 6051 llvm::Type *ResType = IsEffectivelyAAPCS_VFP ? 6052 llvm::Type::getFloatTy(getVMContext()) : 6053 llvm::Type::getInt32Ty(getVMContext()); 6054 return ABIArgInfo::getDirect(ResType); 6055 } 6056 6057 if (!isAggregateTypeForABI(RetTy)) { 6058 // Treat an enum type as its underlying type. 6059 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6060 RetTy = EnumTy->getDecl()->getIntegerType(); 6061 6062 return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 6063 : ABIArgInfo::getDirect(); 6064 } 6065 6066 // Are we following APCS? 6067 if (getABIKind() == APCS) { 6068 if (isEmptyRecord(getContext(), RetTy, false)) 6069 return ABIArgInfo::getIgnore(); 6070 6071 // Complex types are all returned as packed integers. 6072 // 6073 // FIXME: Consider using 2 x vector types if the back end handles them 6074 // correctly. 6075 if (RetTy->isAnyComplexType()) 6076 return ABIArgInfo::getDirect(llvm::IntegerType::get( 6077 getVMContext(), getContext().getTypeSize(RetTy))); 6078 6079 // Integer like structures are returned in r0. 6080 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 6081 // Return in the smallest viable integer type. 6082 uint64_t Size = getContext().getTypeSize(RetTy); 6083 if (Size <= 8) 6084 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6085 if (Size <= 16) 6086 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6087 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6088 } 6089 6090 // Otherwise return in memory. 6091 return getNaturalAlignIndirect(RetTy); 6092 } 6093 6094 // Otherwise this is an AAPCS variant. 6095 6096 if (isEmptyRecord(getContext(), RetTy, true)) 6097 return ABIArgInfo::getIgnore(); 6098 6099 // Check for homogeneous aggregates with AAPCS-VFP. 6100 if (IsEffectivelyAAPCS_VFP) { 6101 const Type *Base = nullptr; 6102 uint64_t Members = 0; 6103 if (isHomogeneousAggregate(RetTy, Base, Members)) 6104 return classifyHomogeneousAggregate(RetTy, Base, Members); 6105 } 6106 6107 // Aggregates <= 4 bytes are returned in r0; other aggregates 6108 // are returned indirectly. 6109 uint64_t Size = getContext().getTypeSize(RetTy); 6110 if (Size <= 32) { 6111 // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of 6112 // same size and alignment. 6113 if (getTarget().isRenderScriptTarget()) { 6114 return coerceToIntArray(RetTy, getContext(), getVMContext()); 6115 } 6116 if (getDataLayout().isBigEndian()) 6117 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 6118 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6119 6120 // Return in the smallest viable integer type. 6121 if (Size <= 8) 6122 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6123 if (Size <= 16) 6124 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6125 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6126 } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) { 6127 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext()); 6128 llvm::Type *CoerceTy = 6129 llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32); 6130 return ABIArgInfo::getDirect(CoerceTy); 6131 } 6132 6133 return getNaturalAlignIndirect(RetTy); 6134 } 6135 6136 /// isIllegalVector - check whether Ty is an illegal vector type. 6137 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 6138 if (const VectorType *VT = Ty->getAs<VectorType> ()) { 6139 // On targets that don't support FP16, FP16 is expanded into float, and we 6140 // don't want the ABI to depend on whether or not FP16 is supported in 6141 // hardware. Thus return false to coerce FP16 vectors into integer vectors. 6142 if (!getTarget().hasLegalHalfType() && 6143 (VT->getElementType()->isFloat16Type() || 6144 VT->getElementType()->isHalfType())) 6145 return true; 6146 if (isAndroid()) { 6147 // Android shipped using Clang 3.1, which supported a slightly different 6148 // vector ABI. The primary differences were that 3-element vector types 6149 // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path 6150 // accepts that legacy behavior for Android only. 6151 // Check whether VT is legal. 6152 unsigned NumElements = VT->getNumElements(); 6153 // NumElements should be power of 2 or equal to 3. 6154 if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3) 6155 return true; 6156 } else { 6157 // Check whether VT is legal. 6158 unsigned NumElements = VT->getNumElements(); 6159 uint64_t Size = getContext().getTypeSize(VT); 6160 // NumElements should be power of 2. 6161 if (!llvm::isPowerOf2_32(NumElements)) 6162 return true; 6163 // Size should be greater than 32 bits. 6164 return Size <= 32; 6165 } 6166 } 6167 return false; 6168 } 6169 6170 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 6171 llvm::Type *eltTy, 6172 unsigned numElts) const { 6173 if (!llvm::isPowerOf2_32(numElts)) 6174 return false; 6175 unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy); 6176 if (size > 64) 6177 return false; 6178 if (vectorSize.getQuantity() != 8 && 6179 (vectorSize.getQuantity() != 16 || numElts == 1)) 6180 return false; 6181 return true; 6182 } 6183 6184 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 6185 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 6186 // double, or 64-bit or 128-bit vectors. 6187 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 6188 if (BT->getKind() == BuiltinType::Float || 6189 BT->getKind() == BuiltinType::Double || 6190 BT->getKind() == BuiltinType::LongDouble) 6191 return true; 6192 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 6193 unsigned VecSize = getContext().getTypeSize(VT); 6194 if (VecSize == 64 || VecSize == 128) 6195 return true; 6196 } 6197 return false; 6198 } 6199 6200 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 6201 uint64_t Members) const { 6202 return Members <= 4; 6203 } 6204 6205 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6206 QualType Ty) const { 6207 CharUnits SlotSize = CharUnits::fromQuantity(4); 6208 6209 // Empty records are ignored for parameter passing purposes. 6210 if (isEmptyRecord(getContext(), Ty, true)) { 6211 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 6212 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 6213 return Addr; 6214 } 6215 6216 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6217 CharUnits TyAlignForABI = TyInfo.second; 6218 6219 // Use indirect if size of the illegal vector is bigger than 16 bytes. 6220 bool IsIndirect = false; 6221 const Type *Base = nullptr; 6222 uint64_t Members = 0; 6223 if (TyInfo.first > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) { 6224 IsIndirect = true; 6225 6226 // ARMv7k passes structs bigger than 16 bytes indirectly, in space 6227 // allocated by the caller. 6228 } else if (TyInfo.first > CharUnits::fromQuantity(16) && 6229 getABIKind() == ARMABIInfo::AAPCS16_VFP && 6230 !isHomogeneousAggregate(Ty, Base, Members)) { 6231 IsIndirect = true; 6232 6233 // Otherwise, bound the type's ABI alignment. 6234 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 6235 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 6236 // Our callers should be prepared to handle an under-aligned address. 6237 } else if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6238 getABIKind() == ARMABIInfo::AAPCS) { 6239 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6240 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8)); 6241 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6242 // ARMv7k allows type alignment up to 16 bytes. 6243 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6244 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16)); 6245 } else { 6246 TyAlignForABI = CharUnits::fromQuantity(4); 6247 } 6248 TyInfo.second = TyAlignForABI; 6249 6250 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo, 6251 SlotSize, /*AllowHigherAlign*/ true); 6252 } 6253 6254 //===----------------------------------------------------------------------===// 6255 // NVPTX ABI Implementation 6256 //===----------------------------------------------------------------------===// 6257 6258 namespace { 6259 6260 class NVPTXABIInfo : public ABIInfo { 6261 public: 6262 NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 6263 6264 ABIArgInfo classifyReturnType(QualType RetTy) const; 6265 ABIArgInfo classifyArgumentType(QualType Ty) const; 6266 6267 void computeInfo(CGFunctionInfo &FI) const override; 6268 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6269 QualType Ty) const override; 6270 }; 6271 6272 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 6273 public: 6274 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 6275 : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {} 6276 6277 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6278 CodeGen::CodeGenModule &M) const override; 6279 bool shouldEmitStaticExternCAliases() const override; 6280 6281 private: 6282 // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the 6283 // resulting MDNode to the nvvm.annotations MDNode. 6284 static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand); 6285 }; 6286 6287 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 6288 if (RetTy->isVoidType()) 6289 return ABIArgInfo::getIgnore(); 6290 6291 // note: this is different from default ABI 6292 if (!RetTy->isScalarType()) 6293 return ABIArgInfo::getDirect(); 6294 6295 // Treat an enum type as its underlying type. 6296 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6297 RetTy = EnumTy->getDecl()->getIntegerType(); 6298 6299 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 6300 : ABIArgInfo::getDirect()); 6301 } 6302 6303 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 6304 // Treat an enum type as its underlying type. 6305 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6306 Ty = EnumTy->getDecl()->getIntegerType(); 6307 6308 // Return aggregates type as indirect by value 6309 if (isAggregateTypeForABI(Ty)) 6310 return getNaturalAlignIndirect(Ty, /* byval */ true); 6311 6312 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 6313 : ABIArgInfo::getDirect()); 6314 } 6315 6316 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 6317 if (!getCXXABI().classifyReturnType(FI)) 6318 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6319 for (auto &I : FI.arguments()) 6320 I.info = classifyArgumentType(I.type); 6321 6322 // Always honor user-specified calling convention. 6323 if (FI.getCallingConvention() != llvm::CallingConv::C) 6324 return; 6325 6326 FI.setEffectiveCallingConvention(getRuntimeCC()); 6327 } 6328 6329 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6330 QualType Ty) const { 6331 llvm_unreachable("NVPTX does not support varargs"); 6332 } 6333 6334 void NVPTXTargetCodeGenInfo::setTargetAttributes( 6335 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 6336 if (GV->isDeclaration()) 6337 return; 6338 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6339 if (!FD) return; 6340 6341 llvm::Function *F = cast<llvm::Function>(GV); 6342 6343 // Perform special handling in OpenCL mode 6344 if (M.getLangOpts().OpenCL) { 6345 // Use OpenCL function attributes to check for kernel functions 6346 // By default, all functions are device functions 6347 if (FD->hasAttr<OpenCLKernelAttr>()) { 6348 // OpenCL __kernel functions get kernel metadata 6349 // Create !{<func-ref>, metadata !"kernel", i32 1} node 6350 addNVVMMetadata(F, "kernel", 1); 6351 // And kernel functions are not subject to inlining 6352 F->addFnAttr(llvm::Attribute::NoInline); 6353 } 6354 } 6355 6356 // Perform special handling in CUDA mode. 6357 if (M.getLangOpts().CUDA) { 6358 // CUDA __global__ functions get a kernel metadata entry. Since 6359 // __global__ functions cannot be called from the device, we do not 6360 // need to set the noinline attribute. 6361 if (FD->hasAttr<CUDAGlobalAttr>()) { 6362 // Create !{<func-ref>, metadata !"kernel", i32 1} node 6363 addNVVMMetadata(F, "kernel", 1); 6364 } 6365 if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) { 6366 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 6367 llvm::APSInt MaxThreads(32); 6368 MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); 6369 if (MaxThreads > 0) 6370 addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); 6371 6372 // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was 6373 // not specified in __launch_bounds__ or if the user specified a 0 value, 6374 // we don't have to add a PTX directive. 6375 if (Attr->getMinBlocks()) { 6376 llvm::APSInt MinBlocks(32); 6377 MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); 6378 if (MinBlocks > 0) 6379 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 6380 addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); 6381 } 6382 } 6383 } 6384 } 6385 6386 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name, 6387 int Operand) { 6388 llvm::Module *M = F->getParent(); 6389 llvm::LLVMContext &Ctx = M->getContext(); 6390 6391 // Get "nvvm.annotations" metadata node 6392 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 6393 6394 llvm::Metadata *MDVals[] = { 6395 llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name), 6396 llvm::ConstantAsMetadata::get( 6397 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; 6398 // Append metadata to nvvm.annotations 6399 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 6400 } 6401 6402 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 6403 return false; 6404 } 6405 } 6406 6407 //===----------------------------------------------------------------------===// 6408 // SystemZ ABI Implementation 6409 //===----------------------------------------------------------------------===// 6410 6411 namespace { 6412 6413 class SystemZABIInfo : public SwiftABIInfo { 6414 bool HasVector; 6415 6416 public: 6417 SystemZABIInfo(CodeGenTypes &CGT, bool HV) 6418 : SwiftABIInfo(CGT), HasVector(HV) {} 6419 6420 bool isPromotableIntegerType(QualType Ty) const; 6421 bool isCompoundType(QualType Ty) const; 6422 bool isVectorArgumentType(QualType Ty) const; 6423 bool isFPArgumentType(QualType Ty) const; 6424 QualType GetSingleElementType(QualType Ty) const; 6425 6426 ABIArgInfo classifyReturnType(QualType RetTy) const; 6427 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 6428 6429 void computeInfo(CGFunctionInfo &FI) const override { 6430 if (!getCXXABI().classifyReturnType(FI)) 6431 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6432 for (auto &I : FI.arguments()) 6433 I.info = classifyArgumentType(I.type); 6434 } 6435 6436 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6437 QualType Ty) const override; 6438 6439 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 6440 bool asReturnValue) const override { 6441 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 6442 } 6443 bool isSwiftErrorInRegister() const override { 6444 return false; 6445 } 6446 }; 6447 6448 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 6449 public: 6450 SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector) 6451 : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {} 6452 }; 6453 6454 } 6455 6456 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const { 6457 // Treat an enum type as its underlying type. 6458 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6459 Ty = EnumTy->getDecl()->getIntegerType(); 6460 6461 // Promotable integer types are required to be promoted by the ABI. 6462 if (Ty->isPromotableIntegerType()) 6463 return true; 6464 6465 // 32-bit values must also be promoted. 6466 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 6467 switch (BT->getKind()) { 6468 case BuiltinType::Int: 6469 case BuiltinType::UInt: 6470 return true; 6471 default: 6472 return false; 6473 } 6474 return false; 6475 } 6476 6477 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 6478 return (Ty->isAnyComplexType() || 6479 Ty->isVectorType() || 6480 isAggregateTypeForABI(Ty)); 6481 } 6482 6483 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { 6484 return (HasVector && 6485 Ty->isVectorType() && 6486 getContext().getTypeSize(Ty) <= 128); 6487 } 6488 6489 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 6490 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 6491 switch (BT->getKind()) { 6492 case BuiltinType::Float: 6493 case BuiltinType::Double: 6494 return true; 6495 default: 6496 return false; 6497 } 6498 6499 return false; 6500 } 6501 6502 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { 6503 if (const RecordType *RT = Ty->getAsStructureType()) { 6504 const RecordDecl *RD = RT->getDecl(); 6505 QualType Found; 6506 6507 // If this is a C++ record, check the bases first. 6508 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6509 for (const auto &I : CXXRD->bases()) { 6510 QualType Base = I.getType(); 6511 6512 // Empty bases don't affect things either way. 6513 if (isEmptyRecord(getContext(), Base, true)) 6514 continue; 6515 6516 if (!Found.isNull()) 6517 return Ty; 6518 Found = GetSingleElementType(Base); 6519 } 6520 6521 // Check the fields. 6522 for (const auto *FD : RD->fields()) { 6523 // For compatibility with GCC, ignore empty bitfields in C++ mode. 6524 // Unlike isSingleElementStruct(), empty structure and array fields 6525 // do count. So do anonymous bitfields that aren't zero-sized. 6526 if (getContext().getLangOpts().CPlusPlus && 6527 FD->isZeroLengthBitField(getContext())) 6528 continue; 6529 6530 // Unlike isSingleElementStruct(), arrays do not count. 6531 // Nested structures still do though. 6532 if (!Found.isNull()) 6533 return Ty; 6534 Found = GetSingleElementType(FD->getType()); 6535 } 6536 6537 // Unlike isSingleElementStruct(), trailing padding is allowed. 6538 // An 8-byte aligned struct s { float f; } is passed as a double. 6539 if (!Found.isNull()) 6540 return Found; 6541 } 6542 6543 return Ty; 6544 } 6545 6546 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6547 QualType Ty) const { 6548 // Assume that va_list type is correct; should be pointer to LLVM type: 6549 // struct { 6550 // i64 __gpr; 6551 // i64 __fpr; 6552 // i8 *__overflow_arg_area; 6553 // i8 *__reg_save_area; 6554 // }; 6555 6556 // Every non-vector argument occupies 8 bytes and is passed by preference 6557 // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are 6558 // always passed on the stack. 6559 Ty = getContext().getCanonicalType(Ty); 6560 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6561 llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); 6562 llvm::Type *DirectTy = ArgTy; 6563 ABIArgInfo AI = classifyArgumentType(Ty); 6564 bool IsIndirect = AI.isIndirect(); 6565 bool InFPRs = false; 6566 bool IsVector = false; 6567 CharUnits UnpaddedSize; 6568 CharUnits DirectAlign; 6569 if (IsIndirect) { 6570 DirectTy = llvm::PointerType::getUnqual(DirectTy); 6571 UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8); 6572 } else { 6573 if (AI.getCoerceToType()) 6574 ArgTy = AI.getCoerceToType(); 6575 InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy(); 6576 IsVector = ArgTy->isVectorTy(); 6577 UnpaddedSize = TyInfo.first; 6578 DirectAlign = TyInfo.second; 6579 } 6580 CharUnits PaddedSize = CharUnits::fromQuantity(8); 6581 if (IsVector && UnpaddedSize > PaddedSize) 6582 PaddedSize = CharUnits::fromQuantity(16); 6583 assert((UnpaddedSize <= PaddedSize) && "Invalid argument size."); 6584 6585 CharUnits Padding = (PaddedSize - UnpaddedSize); 6586 6587 llvm::Type *IndexTy = CGF.Int64Ty; 6588 llvm::Value *PaddedSizeV = 6589 llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity()); 6590 6591 if (IsVector) { 6592 // Work out the address of a vector argument on the stack. 6593 // Vector arguments are always passed in the high bits of a 6594 // single (8 byte) or double (16 byte) stack slot. 6595 Address OverflowArgAreaPtr = 6596 CGF.Builder.CreateStructGEP(VAListAddr, 2, CharUnits::fromQuantity(16), 6597 "overflow_arg_area_ptr"); 6598 Address OverflowArgArea = 6599 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 6600 TyInfo.second); 6601 Address MemAddr = 6602 CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr"); 6603 6604 // Update overflow_arg_area_ptr pointer 6605 llvm::Value *NewOverflowArgArea = 6606 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 6607 "overflow_arg_area"); 6608 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 6609 6610 return MemAddr; 6611 } 6612 6613 assert(PaddedSize.getQuantity() == 8); 6614 6615 unsigned MaxRegs, RegCountField, RegSaveIndex; 6616 CharUnits RegPadding; 6617 if (InFPRs) { 6618 MaxRegs = 4; // Maximum of 4 FPR arguments 6619 RegCountField = 1; // __fpr 6620 RegSaveIndex = 16; // save offset for f0 6621 RegPadding = CharUnits(); // floats are passed in the high bits of an FPR 6622 } else { 6623 MaxRegs = 5; // Maximum of 5 GPR arguments 6624 RegCountField = 0; // __gpr 6625 RegSaveIndex = 2; // save offset for r2 6626 RegPadding = Padding; // values are passed in the low bits of a GPR 6627 } 6628 6629 Address RegCountPtr = CGF.Builder.CreateStructGEP( 6630 VAListAddr, RegCountField, RegCountField * CharUnits::fromQuantity(8), 6631 "reg_count_ptr"); 6632 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 6633 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 6634 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 6635 "fits_in_regs"); 6636 6637 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 6638 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 6639 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 6640 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 6641 6642 // Emit code to load the value if it was passed in registers. 6643 CGF.EmitBlock(InRegBlock); 6644 6645 // Work out the address of an argument register. 6646 llvm::Value *ScaledRegCount = 6647 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 6648 llvm::Value *RegBase = 6649 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity() 6650 + RegPadding.getQuantity()); 6651 llvm::Value *RegOffset = 6652 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 6653 Address RegSaveAreaPtr = 6654 CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24), 6655 "reg_save_area_ptr"); 6656 llvm::Value *RegSaveArea = 6657 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 6658 Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset, 6659 "raw_reg_addr"), 6660 PaddedSize); 6661 Address RegAddr = 6662 CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr"); 6663 6664 // Update the register count 6665 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 6666 llvm::Value *NewRegCount = 6667 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 6668 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 6669 CGF.EmitBranch(ContBlock); 6670 6671 // Emit code to load the value if it was passed in memory. 6672 CGF.EmitBlock(InMemBlock); 6673 6674 // Work out the address of a stack argument. 6675 Address OverflowArgAreaPtr = CGF.Builder.CreateStructGEP( 6676 VAListAddr, 2, CharUnits::fromQuantity(16), "overflow_arg_area_ptr"); 6677 Address OverflowArgArea = 6678 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 6679 PaddedSize); 6680 Address RawMemAddr = 6681 CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr"); 6682 Address MemAddr = 6683 CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr"); 6684 6685 // Update overflow_arg_area_ptr pointer 6686 llvm::Value *NewOverflowArgArea = 6687 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 6688 "overflow_arg_area"); 6689 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 6690 CGF.EmitBranch(ContBlock); 6691 6692 // Return the appropriate result. 6693 CGF.EmitBlock(ContBlock); 6694 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 6695 MemAddr, InMemBlock, "va_arg.addr"); 6696 6697 if (IsIndirect) 6698 ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), 6699 TyInfo.second); 6700 6701 return ResAddr; 6702 } 6703 6704 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 6705 if (RetTy->isVoidType()) 6706 return ABIArgInfo::getIgnore(); 6707 if (isVectorArgumentType(RetTy)) 6708 return ABIArgInfo::getDirect(); 6709 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 6710 return getNaturalAlignIndirect(RetTy); 6711 return (isPromotableIntegerType(RetTy) ? ABIArgInfo::getExtend(RetTy) 6712 : ABIArgInfo::getDirect()); 6713 } 6714 6715 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 6716 // Handle the generic C++ ABI. 6717 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 6718 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6719 6720 // Integers and enums are extended to full register width. 6721 if (isPromotableIntegerType(Ty)) 6722 return ABIArgInfo::getExtend(Ty); 6723 6724 // Handle vector types and vector-like structure types. Note that 6725 // as opposed to float-like structure types, we do not allow any 6726 // padding for vector-like structures, so verify the sizes match. 6727 uint64_t Size = getContext().getTypeSize(Ty); 6728 QualType SingleElementTy = GetSingleElementType(Ty); 6729 if (isVectorArgumentType(SingleElementTy) && 6730 getContext().getTypeSize(SingleElementTy) == Size) 6731 return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); 6732 6733 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 6734 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 6735 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6736 6737 // Handle small structures. 6738 if (const RecordType *RT = Ty->getAs<RecordType>()) { 6739 // Structures with flexible arrays have variable length, so really 6740 // fail the size test above. 6741 const RecordDecl *RD = RT->getDecl(); 6742 if (RD->hasFlexibleArrayMember()) 6743 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6744 6745 // The structure is passed as an unextended integer, a float, or a double. 6746 llvm::Type *PassTy; 6747 if (isFPArgumentType(SingleElementTy)) { 6748 assert(Size == 32 || Size == 64); 6749 if (Size == 32) 6750 PassTy = llvm::Type::getFloatTy(getVMContext()); 6751 else 6752 PassTy = llvm::Type::getDoubleTy(getVMContext()); 6753 } else 6754 PassTy = llvm::IntegerType::get(getVMContext(), Size); 6755 return ABIArgInfo::getDirect(PassTy); 6756 } 6757 6758 // Non-structure compounds are passed indirectly. 6759 if (isCompoundType(Ty)) 6760 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6761 6762 return ABIArgInfo::getDirect(nullptr); 6763 } 6764 6765 //===----------------------------------------------------------------------===// 6766 // MSP430 ABI Implementation 6767 //===----------------------------------------------------------------------===// 6768 6769 namespace { 6770 6771 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 6772 public: 6773 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 6774 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 6775 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6776 CodeGen::CodeGenModule &M) const override; 6777 }; 6778 6779 } 6780 6781 void MSP430TargetCodeGenInfo::setTargetAttributes( 6782 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 6783 if (GV->isDeclaration()) 6784 return; 6785 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 6786 const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>(); 6787 if (!InterruptAttr) 6788 return; 6789 6790 // Handle 'interrupt' attribute: 6791 llvm::Function *F = cast<llvm::Function>(GV); 6792 6793 // Step 1: Set ISR calling convention. 6794 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 6795 6796 // Step 2: Add attributes goodness. 6797 F->addFnAttr(llvm::Attribute::NoInline); 6798 F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber())); 6799 } 6800 } 6801 6802 //===----------------------------------------------------------------------===// 6803 // MIPS ABI Implementation. This works for both little-endian and 6804 // big-endian variants. 6805 //===----------------------------------------------------------------------===// 6806 6807 namespace { 6808 class MipsABIInfo : public ABIInfo { 6809 bool IsO32; 6810 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 6811 void CoerceToIntArgs(uint64_t TySize, 6812 SmallVectorImpl<llvm::Type *> &ArgList) const; 6813 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 6814 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 6815 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 6816 public: 6817 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 6818 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 6819 StackAlignInBytes(IsO32 ? 8 : 16) {} 6820 6821 ABIArgInfo classifyReturnType(QualType RetTy) const; 6822 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 6823 void computeInfo(CGFunctionInfo &FI) const override; 6824 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6825 QualType Ty) const override; 6826 ABIArgInfo extendType(QualType Ty) const; 6827 }; 6828 6829 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 6830 unsigned SizeOfUnwindException; 6831 public: 6832 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 6833 : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)), 6834 SizeOfUnwindException(IsO32 ? 24 : 32) {} 6835 6836 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 6837 return 29; 6838 } 6839 6840 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6841 CodeGen::CodeGenModule &CGM) const override { 6842 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6843 if (!FD) return; 6844 llvm::Function *Fn = cast<llvm::Function>(GV); 6845 6846 if (FD->hasAttr<MipsLongCallAttr>()) 6847 Fn->addFnAttr("long-call"); 6848 else if (FD->hasAttr<MipsShortCallAttr>()) 6849 Fn->addFnAttr("short-call"); 6850 6851 // Other attributes do not have a meaning for declarations. 6852 if (GV->isDeclaration()) 6853 return; 6854 6855 if (FD->hasAttr<Mips16Attr>()) { 6856 Fn->addFnAttr("mips16"); 6857 } 6858 else if (FD->hasAttr<NoMips16Attr>()) { 6859 Fn->addFnAttr("nomips16"); 6860 } 6861 6862 if (FD->hasAttr<MicroMipsAttr>()) 6863 Fn->addFnAttr("micromips"); 6864 else if (FD->hasAttr<NoMicroMipsAttr>()) 6865 Fn->addFnAttr("nomicromips"); 6866 6867 const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>(); 6868 if (!Attr) 6869 return; 6870 6871 const char *Kind; 6872 switch (Attr->getInterrupt()) { 6873 case MipsInterruptAttr::eic: Kind = "eic"; break; 6874 case MipsInterruptAttr::sw0: Kind = "sw0"; break; 6875 case MipsInterruptAttr::sw1: Kind = "sw1"; break; 6876 case MipsInterruptAttr::hw0: Kind = "hw0"; break; 6877 case MipsInterruptAttr::hw1: Kind = "hw1"; break; 6878 case MipsInterruptAttr::hw2: Kind = "hw2"; break; 6879 case MipsInterruptAttr::hw3: Kind = "hw3"; break; 6880 case MipsInterruptAttr::hw4: Kind = "hw4"; break; 6881 case MipsInterruptAttr::hw5: Kind = "hw5"; break; 6882 } 6883 6884 Fn->addFnAttr("interrupt", Kind); 6885 6886 } 6887 6888 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6889 llvm::Value *Address) const override; 6890 6891 unsigned getSizeOfUnwindException() const override { 6892 return SizeOfUnwindException; 6893 } 6894 }; 6895 } 6896 6897 void MipsABIInfo::CoerceToIntArgs( 6898 uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const { 6899 llvm::IntegerType *IntTy = 6900 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 6901 6902 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 6903 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 6904 ArgList.push_back(IntTy); 6905 6906 // If necessary, add one more integer type to ArgList. 6907 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 6908 6909 if (R) 6910 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 6911 } 6912 6913 // In N32/64, an aligned double precision floating point field is passed in 6914 // a register. 6915 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 6916 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 6917 6918 if (IsO32) { 6919 CoerceToIntArgs(TySize, ArgList); 6920 return llvm::StructType::get(getVMContext(), ArgList); 6921 } 6922 6923 if (Ty->isComplexType()) 6924 return CGT.ConvertType(Ty); 6925 6926 const RecordType *RT = Ty->getAs<RecordType>(); 6927 6928 // Unions/vectors are passed in integer registers. 6929 if (!RT || !RT->isStructureOrClassType()) { 6930 CoerceToIntArgs(TySize, ArgList); 6931 return llvm::StructType::get(getVMContext(), ArgList); 6932 } 6933 6934 const RecordDecl *RD = RT->getDecl(); 6935 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 6936 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 6937 6938 uint64_t LastOffset = 0; 6939 unsigned idx = 0; 6940 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 6941 6942 // Iterate over fields in the struct/class and check if there are any aligned 6943 // double fields. 6944 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 6945 i != e; ++i, ++idx) { 6946 const QualType Ty = i->getType(); 6947 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 6948 6949 if (!BT || BT->getKind() != BuiltinType::Double) 6950 continue; 6951 6952 uint64_t Offset = Layout.getFieldOffset(idx); 6953 if (Offset % 64) // Ignore doubles that are not aligned. 6954 continue; 6955 6956 // Add ((Offset - LastOffset) / 64) args of type i64. 6957 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 6958 ArgList.push_back(I64); 6959 6960 // Add double type. 6961 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 6962 LastOffset = Offset + 64; 6963 } 6964 6965 CoerceToIntArgs(TySize - LastOffset, IntArgList); 6966 ArgList.append(IntArgList.begin(), IntArgList.end()); 6967 6968 return llvm::StructType::get(getVMContext(), ArgList); 6969 } 6970 6971 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 6972 uint64_t Offset) const { 6973 if (OrigOffset + MinABIStackAlignInBytes > Offset) 6974 return nullptr; 6975 6976 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 6977 } 6978 6979 ABIArgInfo 6980 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 6981 Ty = useFirstFieldIfTransparentUnion(Ty); 6982 6983 uint64_t OrigOffset = Offset; 6984 uint64_t TySize = getContext().getTypeSize(Ty); 6985 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 6986 6987 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 6988 (uint64_t)StackAlignInBytes); 6989 unsigned CurrOffset = llvm::alignTo(Offset, Align); 6990 Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8; 6991 6992 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 6993 // Ignore empty aggregates. 6994 if (TySize == 0) 6995 return ABIArgInfo::getIgnore(); 6996 6997 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 6998 Offset = OrigOffset + MinABIStackAlignInBytes; 6999 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7000 } 7001 7002 // If we have reached here, aggregates are passed directly by coercing to 7003 // another structure type. Padding is inserted if the offset of the 7004 // aggregate is unaligned. 7005 ABIArgInfo ArgInfo = 7006 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 7007 getPaddingType(OrigOffset, CurrOffset)); 7008 ArgInfo.setInReg(true); 7009 return ArgInfo; 7010 } 7011 7012 // Treat an enum type as its underlying type. 7013 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7014 Ty = EnumTy->getDecl()->getIntegerType(); 7015 7016 // All integral types are promoted to the GPR width. 7017 if (Ty->isIntegralOrEnumerationType()) 7018 return extendType(Ty); 7019 7020 return ABIArgInfo::getDirect( 7021 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 7022 } 7023 7024 llvm::Type* 7025 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 7026 const RecordType *RT = RetTy->getAs<RecordType>(); 7027 SmallVector<llvm::Type*, 8> RTList; 7028 7029 if (RT && RT->isStructureOrClassType()) { 7030 const RecordDecl *RD = RT->getDecl(); 7031 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 7032 unsigned FieldCnt = Layout.getFieldCount(); 7033 7034 // N32/64 returns struct/classes in floating point registers if the 7035 // following conditions are met: 7036 // 1. The size of the struct/class is no larger than 128-bit. 7037 // 2. The struct/class has one or two fields all of which are floating 7038 // point types. 7039 // 3. The offset of the first field is zero (this follows what gcc does). 7040 // 7041 // Any other composite results are returned in integer registers. 7042 // 7043 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 7044 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 7045 for (; b != e; ++b) { 7046 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 7047 7048 if (!BT || !BT->isFloatingPoint()) 7049 break; 7050 7051 RTList.push_back(CGT.ConvertType(b->getType())); 7052 } 7053 7054 if (b == e) 7055 return llvm::StructType::get(getVMContext(), RTList, 7056 RD->hasAttr<PackedAttr>()); 7057 7058 RTList.clear(); 7059 } 7060 } 7061 7062 CoerceToIntArgs(Size, RTList); 7063 return llvm::StructType::get(getVMContext(), RTList); 7064 } 7065 7066 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 7067 uint64_t Size = getContext().getTypeSize(RetTy); 7068 7069 if (RetTy->isVoidType()) 7070 return ABIArgInfo::getIgnore(); 7071 7072 // O32 doesn't treat zero-sized structs differently from other structs. 7073 // However, N32/N64 ignores zero sized return values. 7074 if (!IsO32 && Size == 0) 7075 return ABIArgInfo::getIgnore(); 7076 7077 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 7078 if (Size <= 128) { 7079 if (RetTy->isAnyComplexType()) 7080 return ABIArgInfo::getDirect(); 7081 7082 // O32 returns integer vectors in registers and N32/N64 returns all small 7083 // aggregates in registers. 7084 if (!IsO32 || 7085 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { 7086 ABIArgInfo ArgInfo = 7087 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 7088 ArgInfo.setInReg(true); 7089 return ArgInfo; 7090 } 7091 } 7092 7093 return getNaturalAlignIndirect(RetTy); 7094 } 7095 7096 // Treat an enum type as its underlying type. 7097 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7098 RetTy = EnumTy->getDecl()->getIntegerType(); 7099 7100 if (RetTy->isPromotableIntegerType()) 7101 return ABIArgInfo::getExtend(RetTy); 7102 7103 if ((RetTy->isUnsignedIntegerOrEnumerationType() || 7104 RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32) 7105 return ABIArgInfo::getSignExtend(RetTy); 7106 7107 return ABIArgInfo::getDirect(); 7108 } 7109 7110 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 7111 ABIArgInfo &RetInfo = FI.getReturnInfo(); 7112 if (!getCXXABI().classifyReturnType(FI)) 7113 RetInfo = classifyReturnType(FI.getReturnType()); 7114 7115 // Check if a pointer to an aggregate is passed as a hidden argument. 7116 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 7117 7118 for (auto &I : FI.arguments()) 7119 I.info = classifyArgumentType(I.type, Offset); 7120 } 7121 7122 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7123 QualType OrigTy) const { 7124 QualType Ty = OrigTy; 7125 7126 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. 7127 // Pointers are also promoted in the same way but this only matters for N32. 7128 unsigned SlotSizeInBits = IsO32 ? 32 : 64; 7129 unsigned PtrWidth = getTarget().getPointerWidth(0); 7130 bool DidPromote = false; 7131 if ((Ty->isIntegerType() && 7132 getContext().getIntWidth(Ty) < SlotSizeInBits) || 7133 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { 7134 DidPromote = true; 7135 Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits, 7136 Ty->isSignedIntegerType()); 7137 } 7138 7139 auto TyInfo = getContext().getTypeInfoInChars(Ty); 7140 7141 // The alignment of things in the argument area is never larger than 7142 // StackAlignInBytes. 7143 TyInfo.second = 7144 std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes)); 7145 7146 // MinABIStackAlignInBytes is the size of argument slots on the stack. 7147 CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes); 7148 7149 Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 7150 TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true); 7151 7152 7153 // If there was a promotion, "unpromote" into a temporary. 7154 // TODO: can we just use a pointer into a subset of the original slot? 7155 if (DidPromote) { 7156 Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp"); 7157 llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr); 7158 7159 // Truncate down to the right width. 7160 llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType() 7161 : CGF.IntPtrTy); 7162 llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy); 7163 if (OrigTy->isPointerType()) 7164 V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType()); 7165 7166 CGF.Builder.CreateStore(V, Temp); 7167 Addr = Temp; 7168 } 7169 7170 return Addr; 7171 } 7172 7173 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const { 7174 int TySize = getContext().getTypeSize(Ty); 7175 7176 // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. 7177 if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 7178 return ABIArgInfo::getSignExtend(Ty); 7179 7180 return ABIArgInfo::getExtend(Ty); 7181 } 7182 7183 bool 7184 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7185 llvm::Value *Address) const { 7186 // This information comes from gcc's implementation, which seems to 7187 // as canonical as it gets. 7188 7189 // Everything on MIPS is 4 bytes. Double-precision FP registers 7190 // are aliased to pairs of single-precision FP registers. 7191 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 7192 7193 // 0-31 are the general purpose registers, $0 - $31. 7194 // 32-63 are the floating-point registers, $f0 - $f31. 7195 // 64 and 65 are the multiply/divide registers, $hi and $lo. 7196 // 66 is the (notional, I think) register for signal-handler return. 7197 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 7198 7199 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 7200 // They are one bit wide and ignored here. 7201 7202 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 7203 // (coprocessor 1 is the FP unit) 7204 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 7205 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 7206 // 176-181 are the DSP accumulator registers. 7207 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 7208 return false; 7209 } 7210 7211 //===----------------------------------------------------------------------===// 7212 // AVR ABI Implementation. 7213 //===----------------------------------------------------------------------===// 7214 7215 namespace { 7216 class AVRTargetCodeGenInfo : public TargetCodeGenInfo { 7217 public: 7218 AVRTargetCodeGenInfo(CodeGenTypes &CGT) 7219 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) { } 7220 7221 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7222 CodeGen::CodeGenModule &CGM) const override { 7223 if (GV->isDeclaration()) 7224 return; 7225 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 7226 if (!FD) return; 7227 auto *Fn = cast<llvm::Function>(GV); 7228 7229 if (FD->getAttr<AVRInterruptAttr>()) 7230 Fn->addFnAttr("interrupt"); 7231 7232 if (FD->getAttr<AVRSignalAttr>()) 7233 Fn->addFnAttr("signal"); 7234 } 7235 }; 7236 } 7237 7238 //===----------------------------------------------------------------------===// 7239 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 7240 // Currently subclassed only to implement custom OpenCL C function attribute 7241 // handling. 7242 //===----------------------------------------------------------------------===// 7243 7244 namespace { 7245 7246 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 7247 public: 7248 TCETargetCodeGenInfo(CodeGenTypes &CGT) 7249 : DefaultTargetCodeGenInfo(CGT) {} 7250 7251 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7252 CodeGen::CodeGenModule &M) const override; 7253 }; 7254 7255 void TCETargetCodeGenInfo::setTargetAttributes( 7256 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7257 if (GV->isDeclaration()) 7258 return; 7259 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7260 if (!FD) return; 7261 7262 llvm::Function *F = cast<llvm::Function>(GV); 7263 7264 if (M.getLangOpts().OpenCL) { 7265 if (FD->hasAttr<OpenCLKernelAttr>()) { 7266 // OpenCL C Kernel functions are not subject to inlining 7267 F->addFnAttr(llvm::Attribute::NoInline); 7268 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 7269 if (Attr) { 7270 // Convert the reqd_work_group_size() attributes to metadata. 7271 llvm::LLVMContext &Context = F->getContext(); 7272 llvm::NamedMDNode *OpenCLMetadata = 7273 M.getModule().getOrInsertNamedMetadata( 7274 "opencl.kernel_wg_size_info"); 7275 7276 SmallVector<llvm::Metadata *, 5> Operands; 7277 Operands.push_back(llvm::ConstantAsMetadata::get(F)); 7278 7279 Operands.push_back( 7280 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7281 M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); 7282 Operands.push_back( 7283 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7284 M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); 7285 Operands.push_back( 7286 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7287 M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); 7288 7289 // Add a boolean constant operand for "required" (true) or "hint" 7290 // (false) for implementing the work_group_size_hint attr later. 7291 // Currently always true as the hint is not yet implemented. 7292 Operands.push_back( 7293 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); 7294 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 7295 } 7296 } 7297 } 7298 } 7299 7300 } 7301 7302 //===----------------------------------------------------------------------===// 7303 // Hexagon ABI Implementation 7304 //===----------------------------------------------------------------------===// 7305 7306 namespace { 7307 7308 class HexagonABIInfo : public ABIInfo { 7309 7310 7311 public: 7312 HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 7313 7314 private: 7315 7316 ABIArgInfo classifyReturnType(QualType RetTy) const; 7317 ABIArgInfo classifyArgumentType(QualType RetTy) const; 7318 7319 void computeInfo(CGFunctionInfo &FI) const override; 7320 7321 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7322 QualType Ty) const override; 7323 }; 7324 7325 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 7326 public: 7327 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 7328 :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {} 7329 7330 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 7331 return 29; 7332 } 7333 }; 7334 7335 } 7336 7337 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 7338 if (!getCXXABI().classifyReturnType(FI)) 7339 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7340 for (auto &I : FI.arguments()) 7341 I.info = classifyArgumentType(I.type); 7342 } 7343 7344 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const { 7345 if (!isAggregateTypeForABI(Ty)) { 7346 // Treat an enum type as its underlying type. 7347 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7348 Ty = EnumTy->getDecl()->getIntegerType(); 7349 7350 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 7351 : ABIArgInfo::getDirect()); 7352 } 7353 7354 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 7355 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7356 7357 // Ignore empty records. 7358 if (isEmptyRecord(getContext(), Ty, true)) 7359 return ABIArgInfo::getIgnore(); 7360 7361 uint64_t Size = getContext().getTypeSize(Ty); 7362 if (Size > 64) 7363 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 7364 // Pass in the smallest viable integer type. 7365 else if (Size > 32) 7366 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 7367 else if (Size > 16) 7368 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7369 else if (Size > 8) 7370 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7371 else 7372 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 7373 } 7374 7375 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 7376 if (RetTy->isVoidType()) 7377 return ABIArgInfo::getIgnore(); 7378 7379 // Large vector types should be returned via memory. 7380 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64) 7381 return getNaturalAlignIndirect(RetTy); 7382 7383 if (!isAggregateTypeForABI(RetTy)) { 7384 // Treat an enum type as its underlying type. 7385 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7386 RetTy = EnumTy->getDecl()->getIntegerType(); 7387 7388 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 7389 : ABIArgInfo::getDirect()); 7390 } 7391 7392 if (isEmptyRecord(getContext(), RetTy, true)) 7393 return ABIArgInfo::getIgnore(); 7394 7395 // Aggregates <= 8 bytes are returned in r0; other aggregates 7396 // are returned indirectly. 7397 uint64_t Size = getContext().getTypeSize(RetTy); 7398 if (Size <= 64) { 7399 // Return in the smallest viable integer type. 7400 if (Size <= 8) 7401 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 7402 if (Size <= 16) 7403 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7404 if (Size <= 32) 7405 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7406 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 7407 } 7408 7409 return getNaturalAlignIndirect(RetTy, /*ByVal=*/true); 7410 } 7411 7412 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7413 QualType Ty) const { 7414 // FIXME: Someone needs to audit that this handle alignment correctly. 7415 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 7416 getContext().getTypeInfoInChars(Ty), 7417 CharUnits::fromQuantity(4), 7418 /*AllowHigherAlign*/ true); 7419 } 7420 7421 //===----------------------------------------------------------------------===// 7422 // Lanai ABI Implementation 7423 //===----------------------------------------------------------------------===// 7424 7425 namespace { 7426 class LanaiABIInfo : public DefaultABIInfo { 7427 public: 7428 LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7429 7430 bool shouldUseInReg(QualType Ty, CCState &State) const; 7431 7432 void computeInfo(CGFunctionInfo &FI) const override { 7433 CCState State(FI.getCallingConvention()); 7434 // Lanai uses 4 registers to pass arguments unless the function has the 7435 // regparm attribute set. 7436 if (FI.getHasRegParm()) { 7437 State.FreeRegs = FI.getRegParm(); 7438 } else { 7439 State.FreeRegs = 4; 7440 } 7441 7442 if (!getCXXABI().classifyReturnType(FI)) 7443 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7444 for (auto &I : FI.arguments()) 7445 I.info = classifyArgumentType(I.type, State); 7446 } 7447 7448 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 7449 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 7450 }; 7451 } // end anonymous namespace 7452 7453 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const { 7454 unsigned Size = getContext().getTypeSize(Ty); 7455 unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U; 7456 7457 if (SizeInRegs == 0) 7458 return false; 7459 7460 if (SizeInRegs > State.FreeRegs) { 7461 State.FreeRegs = 0; 7462 return false; 7463 } 7464 7465 State.FreeRegs -= SizeInRegs; 7466 7467 return true; 7468 } 7469 7470 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal, 7471 CCState &State) const { 7472 if (!ByVal) { 7473 if (State.FreeRegs) { 7474 --State.FreeRegs; // Non-byval indirects just use one pointer. 7475 return getNaturalAlignIndirectInReg(Ty); 7476 } 7477 return getNaturalAlignIndirect(Ty, false); 7478 } 7479 7480 // Compute the byval alignment. 7481 const unsigned MinABIStackAlignInBytes = 4; 7482 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 7483 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 7484 /*Realign=*/TypeAlign > 7485 MinABIStackAlignInBytes); 7486 } 7487 7488 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty, 7489 CCState &State) const { 7490 // Check with the C++ ABI first. 7491 const RecordType *RT = Ty->getAs<RecordType>(); 7492 if (RT) { 7493 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 7494 if (RAA == CGCXXABI::RAA_Indirect) { 7495 return getIndirectResult(Ty, /*ByVal=*/false, State); 7496 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 7497 return getNaturalAlignIndirect(Ty, /*ByRef=*/true); 7498 } 7499 } 7500 7501 if (isAggregateTypeForABI(Ty)) { 7502 // Structures with flexible arrays are always indirect. 7503 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 7504 return getIndirectResult(Ty, /*ByVal=*/true, State); 7505 7506 // Ignore empty structs/unions. 7507 if (isEmptyRecord(getContext(), Ty, true)) 7508 return ABIArgInfo::getIgnore(); 7509 7510 llvm::LLVMContext &LLVMContext = getVMContext(); 7511 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 7512 if (SizeInRegs <= State.FreeRegs) { 7513 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 7514 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 7515 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 7516 State.FreeRegs -= SizeInRegs; 7517 return ABIArgInfo::getDirectInReg(Result); 7518 } else { 7519 State.FreeRegs = 0; 7520 } 7521 return getIndirectResult(Ty, true, State); 7522 } 7523 7524 // Treat an enum type as its underlying type. 7525 if (const auto *EnumTy = Ty->getAs<EnumType>()) 7526 Ty = EnumTy->getDecl()->getIntegerType(); 7527 7528 bool InReg = shouldUseInReg(Ty, State); 7529 if (Ty->isPromotableIntegerType()) { 7530 if (InReg) 7531 return ABIArgInfo::getDirectInReg(); 7532 return ABIArgInfo::getExtend(Ty); 7533 } 7534 if (InReg) 7535 return ABIArgInfo::getDirectInReg(); 7536 return ABIArgInfo::getDirect(); 7537 } 7538 7539 namespace { 7540 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo { 7541 public: 7542 LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 7543 : TargetCodeGenInfo(new LanaiABIInfo(CGT)) {} 7544 }; 7545 } 7546 7547 //===----------------------------------------------------------------------===// 7548 // AMDGPU ABI Implementation 7549 //===----------------------------------------------------------------------===// 7550 7551 namespace { 7552 7553 class AMDGPUABIInfo final : public DefaultABIInfo { 7554 private: 7555 static const unsigned MaxNumRegsForArgsRet = 16; 7556 7557 unsigned numRegsForType(QualType Ty) const; 7558 7559 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 7560 bool isHomogeneousAggregateSmallEnough(const Type *Base, 7561 uint64_t Members) const override; 7562 7563 public: 7564 explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) : 7565 DefaultABIInfo(CGT) {} 7566 7567 ABIArgInfo classifyReturnType(QualType RetTy) const; 7568 ABIArgInfo classifyKernelArgumentType(QualType Ty) const; 7569 ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const; 7570 7571 void computeInfo(CGFunctionInfo &FI) const override; 7572 }; 7573 7574 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 7575 return true; 7576 } 7577 7578 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough( 7579 const Type *Base, uint64_t Members) const { 7580 uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32; 7581 7582 // Homogeneous Aggregates may occupy at most 16 registers. 7583 return Members * NumRegs <= MaxNumRegsForArgsRet; 7584 } 7585 7586 /// Estimate number of registers the type will use when passed in registers. 7587 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const { 7588 unsigned NumRegs = 0; 7589 7590 if (const VectorType *VT = Ty->getAs<VectorType>()) { 7591 // Compute from the number of elements. The reported size is based on the 7592 // in-memory size, which includes the padding 4th element for 3-vectors. 7593 QualType EltTy = VT->getElementType(); 7594 unsigned EltSize = getContext().getTypeSize(EltTy); 7595 7596 // 16-bit element vectors should be passed as packed. 7597 if (EltSize == 16) 7598 return (VT->getNumElements() + 1) / 2; 7599 7600 unsigned EltNumRegs = (EltSize + 31) / 32; 7601 return EltNumRegs * VT->getNumElements(); 7602 } 7603 7604 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7605 const RecordDecl *RD = RT->getDecl(); 7606 assert(!RD->hasFlexibleArrayMember()); 7607 7608 for (const FieldDecl *Field : RD->fields()) { 7609 QualType FieldTy = Field->getType(); 7610 NumRegs += numRegsForType(FieldTy); 7611 } 7612 7613 return NumRegs; 7614 } 7615 7616 return (getContext().getTypeSize(Ty) + 31) / 32; 7617 } 7618 7619 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const { 7620 llvm::CallingConv::ID CC = FI.getCallingConvention(); 7621 7622 if (!getCXXABI().classifyReturnType(FI)) 7623 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7624 7625 unsigned NumRegsLeft = MaxNumRegsForArgsRet; 7626 for (auto &Arg : FI.arguments()) { 7627 if (CC == llvm::CallingConv::AMDGPU_KERNEL) { 7628 Arg.info = classifyKernelArgumentType(Arg.type); 7629 } else { 7630 Arg.info = classifyArgumentType(Arg.type, NumRegsLeft); 7631 } 7632 } 7633 } 7634 7635 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const { 7636 if (isAggregateTypeForABI(RetTy)) { 7637 // Records with non-trivial destructors/copy-constructors should not be 7638 // returned by value. 7639 if (!getRecordArgABI(RetTy, getCXXABI())) { 7640 // Ignore empty structs/unions. 7641 if (isEmptyRecord(getContext(), RetTy, true)) 7642 return ABIArgInfo::getIgnore(); 7643 7644 // Lower single-element structs to just return a regular value. 7645 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 7646 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 7647 7648 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 7649 const RecordDecl *RD = RT->getDecl(); 7650 if (RD->hasFlexibleArrayMember()) 7651 return DefaultABIInfo::classifyReturnType(RetTy); 7652 } 7653 7654 // Pack aggregates <= 4 bytes into single VGPR or pair. 7655 uint64_t Size = getContext().getTypeSize(RetTy); 7656 if (Size <= 16) 7657 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7658 7659 if (Size <= 32) 7660 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7661 7662 if (Size <= 64) { 7663 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 7664 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 7665 } 7666 7667 if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet) 7668 return ABIArgInfo::getDirect(); 7669 } 7670 } 7671 7672 // Otherwise just do the default thing. 7673 return DefaultABIInfo::classifyReturnType(RetTy); 7674 } 7675 7676 /// For kernels all parameters are really passed in a special buffer. It doesn't 7677 /// make sense to pass anything byval, so everything must be direct. 7678 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const { 7679 Ty = useFirstFieldIfTransparentUnion(Ty); 7680 7681 // TODO: Can we omit empty structs? 7682 7683 // Coerce single element structs to its element. 7684 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 7685 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 7686 7687 // If we set CanBeFlattened to true, CodeGen will expand the struct to its 7688 // individual elements, which confuses the Clover OpenCL backend; therefore we 7689 // have to set it to false here. Other args of getDirect() are just defaults. 7690 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 7691 } 7692 7693 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty, 7694 unsigned &NumRegsLeft) const { 7695 assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow"); 7696 7697 Ty = useFirstFieldIfTransparentUnion(Ty); 7698 7699 if (isAggregateTypeForABI(Ty)) { 7700 // Records with non-trivial destructors/copy-constructors should not be 7701 // passed by value. 7702 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 7703 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7704 7705 // Ignore empty structs/unions. 7706 if (isEmptyRecord(getContext(), Ty, true)) 7707 return ABIArgInfo::getIgnore(); 7708 7709 // Lower single-element structs to just pass a regular value. TODO: We 7710 // could do reasonable-size multiple-element structs too, using getExpand(), 7711 // though watch out for things like bitfields. 7712 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 7713 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 7714 7715 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7716 const RecordDecl *RD = RT->getDecl(); 7717 if (RD->hasFlexibleArrayMember()) 7718 return DefaultABIInfo::classifyArgumentType(Ty); 7719 } 7720 7721 // Pack aggregates <= 8 bytes into single VGPR or pair. 7722 uint64_t Size = getContext().getTypeSize(Ty); 7723 if (Size <= 64) { 7724 unsigned NumRegs = (Size + 31) / 32; 7725 NumRegsLeft -= std::min(NumRegsLeft, NumRegs); 7726 7727 if (Size <= 16) 7728 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7729 7730 if (Size <= 32) 7731 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7732 7733 // XXX: Should this be i64 instead, and should the limit increase? 7734 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 7735 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 7736 } 7737 7738 if (NumRegsLeft > 0) { 7739 unsigned NumRegs = numRegsForType(Ty); 7740 if (NumRegsLeft >= NumRegs) { 7741 NumRegsLeft -= NumRegs; 7742 return ABIArgInfo::getDirect(); 7743 } 7744 } 7745 } 7746 7747 // Otherwise just do the default thing. 7748 ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty); 7749 if (!ArgInfo.isIndirect()) { 7750 unsigned NumRegs = numRegsForType(Ty); 7751 NumRegsLeft -= std::min(NumRegs, NumRegsLeft); 7752 } 7753 7754 return ArgInfo; 7755 } 7756 7757 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { 7758 public: 7759 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) 7760 : TargetCodeGenInfo(new AMDGPUABIInfo(CGT)) {} 7761 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7762 CodeGen::CodeGenModule &M) const override; 7763 unsigned getOpenCLKernelCallingConv() const override; 7764 7765 llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM, 7766 llvm::PointerType *T, QualType QT) const override; 7767 7768 LangAS getASTAllocaAddressSpace() const override { 7769 return getLangASFromTargetAS( 7770 getABIInfo().getDataLayout().getAllocaAddrSpace()); 7771 } 7772 LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, 7773 const VarDecl *D) const override; 7774 llvm::SyncScope::ID getLLVMSyncScopeID(SyncScope S, 7775 llvm::LLVMContext &C) const override; 7776 llvm::Function * 7777 createEnqueuedBlockKernel(CodeGenFunction &CGF, 7778 llvm::Function *BlockInvokeFunc, 7779 llvm::Value *BlockLiteral) const override; 7780 bool shouldEmitStaticExternCAliases() const override; 7781 void setCUDAKernelCallingConvention(const FunctionType *&FT) const override; 7782 }; 7783 } 7784 7785 void AMDGPUTargetCodeGenInfo::setTargetAttributes( 7786 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7787 if (GV->isDeclaration()) 7788 return; 7789 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7790 if (!FD) 7791 return; 7792 7793 llvm::Function *F = cast<llvm::Function>(GV); 7794 7795 const auto *ReqdWGS = M.getLangOpts().OpenCL ? 7796 FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr; 7797 7798 if (M.getLangOpts().OpenCL && FD->hasAttr<OpenCLKernelAttr>() && 7799 (M.getTriple().getOS() == llvm::Triple::AMDHSA)) 7800 F->addFnAttr("amdgpu-implicitarg-num-bytes", "48"); 7801 7802 const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>(); 7803 if (ReqdWGS || FlatWGS) { 7804 unsigned Min = FlatWGS ? FlatWGS->getMin() : 0; 7805 unsigned Max = FlatWGS ? FlatWGS->getMax() : 0; 7806 if (ReqdWGS && Min == 0 && Max == 0) 7807 Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim(); 7808 7809 if (Min != 0) { 7810 assert(Min <= Max && "Min must be less than or equal Max"); 7811 7812 std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max); 7813 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 7814 } else 7815 assert(Max == 0 && "Max must be zero"); 7816 } 7817 7818 if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) { 7819 unsigned Min = Attr->getMin(); 7820 unsigned Max = Attr->getMax(); 7821 7822 if (Min != 0) { 7823 assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max"); 7824 7825 std::string AttrVal = llvm::utostr(Min); 7826 if (Max != 0) 7827 AttrVal = AttrVal + "," + llvm::utostr(Max); 7828 F->addFnAttr("amdgpu-waves-per-eu", AttrVal); 7829 } else 7830 assert(Max == 0 && "Max must be zero"); 7831 } 7832 7833 if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { 7834 unsigned NumSGPR = Attr->getNumSGPR(); 7835 7836 if (NumSGPR != 0) 7837 F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR)); 7838 } 7839 7840 if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { 7841 uint32_t NumVGPR = Attr->getNumVGPR(); 7842 7843 if (NumVGPR != 0) 7844 F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR)); 7845 } 7846 } 7847 7848 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 7849 return llvm::CallingConv::AMDGPU_KERNEL; 7850 } 7851 7852 // Currently LLVM assumes null pointers always have value 0, 7853 // which results in incorrectly transformed IR. Therefore, instead of 7854 // emitting null pointers in private and local address spaces, a null 7855 // pointer in generic address space is emitted which is casted to a 7856 // pointer in local or private address space. 7857 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer( 7858 const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT, 7859 QualType QT) const { 7860 if (CGM.getContext().getTargetNullPointerValue(QT) == 0) 7861 return llvm::ConstantPointerNull::get(PT); 7862 7863 auto &Ctx = CGM.getContext(); 7864 auto NPT = llvm::PointerType::get(PT->getElementType(), 7865 Ctx.getTargetAddressSpace(LangAS::opencl_generic)); 7866 return llvm::ConstantExpr::getAddrSpaceCast( 7867 llvm::ConstantPointerNull::get(NPT), PT); 7868 } 7869 7870 LangAS 7871 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 7872 const VarDecl *D) const { 7873 assert(!CGM.getLangOpts().OpenCL && 7874 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 7875 "Address space agnostic languages only"); 7876 LangAS DefaultGlobalAS = getLangASFromTargetAS( 7877 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global)); 7878 if (!D) 7879 return DefaultGlobalAS; 7880 7881 LangAS AddrSpace = D->getType().getAddressSpace(); 7882 assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace)); 7883 if (AddrSpace != LangAS::Default) 7884 return AddrSpace; 7885 7886 if (CGM.isTypeConstant(D->getType(), false)) { 7887 if (auto ConstAS = CGM.getTarget().getConstantAddressSpace()) 7888 return ConstAS.getValue(); 7889 } 7890 return DefaultGlobalAS; 7891 } 7892 7893 llvm::SyncScope::ID 7894 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(SyncScope S, 7895 llvm::LLVMContext &C) const { 7896 StringRef Name; 7897 switch (S) { 7898 case SyncScope::OpenCLWorkGroup: 7899 Name = "workgroup"; 7900 break; 7901 case SyncScope::OpenCLDevice: 7902 Name = "agent"; 7903 break; 7904 case SyncScope::OpenCLAllSVMDevices: 7905 Name = ""; 7906 break; 7907 case SyncScope::OpenCLSubGroup: 7908 Name = "subgroup"; 7909 } 7910 return C.getOrInsertSyncScopeID(Name); 7911 } 7912 7913 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 7914 return false; 7915 } 7916 7917 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention( 7918 const FunctionType *&FT) const { 7919 FT = getABIInfo().getContext().adjustFunctionType( 7920 FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel)); 7921 } 7922 7923 //===----------------------------------------------------------------------===// 7924 // SPARC v8 ABI Implementation. 7925 // Based on the SPARC Compliance Definition version 2.4.1. 7926 // 7927 // Ensures that complex values are passed in registers. 7928 // 7929 namespace { 7930 class SparcV8ABIInfo : public DefaultABIInfo { 7931 public: 7932 SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7933 7934 private: 7935 ABIArgInfo classifyReturnType(QualType RetTy) const; 7936 void computeInfo(CGFunctionInfo &FI) const override; 7937 }; 7938 } // end anonymous namespace 7939 7940 7941 ABIArgInfo 7942 SparcV8ABIInfo::classifyReturnType(QualType Ty) const { 7943 if (Ty->isAnyComplexType()) { 7944 return ABIArgInfo::getDirect(); 7945 } 7946 else { 7947 return DefaultABIInfo::classifyReturnType(Ty); 7948 } 7949 } 7950 7951 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const { 7952 7953 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7954 for (auto &Arg : FI.arguments()) 7955 Arg.info = classifyArgumentType(Arg.type); 7956 } 7957 7958 namespace { 7959 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo { 7960 public: 7961 SparcV8TargetCodeGenInfo(CodeGenTypes &CGT) 7962 : TargetCodeGenInfo(new SparcV8ABIInfo(CGT)) {} 7963 }; 7964 } // end anonymous namespace 7965 7966 //===----------------------------------------------------------------------===// 7967 // SPARC v9 ABI Implementation. 7968 // Based on the SPARC Compliance Definition version 2.4.1. 7969 // 7970 // Function arguments a mapped to a nominal "parameter array" and promoted to 7971 // registers depending on their type. Each argument occupies 8 or 16 bytes in 7972 // the array, structs larger than 16 bytes are passed indirectly. 7973 // 7974 // One case requires special care: 7975 // 7976 // struct mixed { 7977 // int i; 7978 // float f; 7979 // }; 7980 // 7981 // When a struct mixed is passed by value, it only occupies 8 bytes in the 7982 // parameter array, but the int is passed in an integer register, and the float 7983 // is passed in a floating point register. This is represented as two arguments 7984 // with the LLVM IR inreg attribute: 7985 // 7986 // declare void f(i32 inreg %i, float inreg %f) 7987 // 7988 // The code generator will only allocate 4 bytes from the parameter array for 7989 // the inreg arguments. All other arguments are allocated a multiple of 8 7990 // bytes. 7991 // 7992 namespace { 7993 class SparcV9ABIInfo : public ABIInfo { 7994 public: 7995 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 7996 7997 private: 7998 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 7999 void computeInfo(CGFunctionInfo &FI) const override; 8000 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8001 QualType Ty) const override; 8002 8003 // Coercion type builder for structs passed in registers. The coercion type 8004 // serves two purposes: 8005 // 8006 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 8007 // in registers. 8008 // 2. Expose aligned floating point elements as first-level elements, so the 8009 // code generator knows to pass them in floating point registers. 8010 // 8011 // We also compute the InReg flag which indicates that the struct contains 8012 // aligned 32-bit floats. 8013 // 8014 struct CoerceBuilder { 8015 llvm::LLVMContext &Context; 8016 const llvm::DataLayout &DL; 8017 SmallVector<llvm::Type*, 8> Elems; 8018 uint64_t Size; 8019 bool InReg; 8020 8021 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 8022 : Context(c), DL(dl), Size(0), InReg(false) {} 8023 8024 // Pad Elems with integers until Size is ToSize. 8025 void pad(uint64_t ToSize) { 8026 assert(ToSize >= Size && "Cannot remove elements"); 8027 if (ToSize == Size) 8028 return; 8029 8030 // Finish the current 64-bit word. 8031 uint64_t Aligned = llvm::alignTo(Size, 64); 8032 if (Aligned > Size && Aligned <= ToSize) { 8033 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 8034 Size = Aligned; 8035 } 8036 8037 // Add whole 64-bit words. 8038 while (Size + 64 <= ToSize) { 8039 Elems.push_back(llvm::Type::getInt64Ty(Context)); 8040 Size += 64; 8041 } 8042 8043 // Final in-word padding. 8044 if (Size < ToSize) { 8045 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 8046 Size = ToSize; 8047 } 8048 } 8049 8050 // Add a floating point element at Offset. 8051 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 8052 // Unaligned floats are treated as integers. 8053 if (Offset % Bits) 8054 return; 8055 // The InReg flag is only required if there are any floats < 64 bits. 8056 if (Bits < 64) 8057 InReg = true; 8058 pad(Offset); 8059 Elems.push_back(Ty); 8060 Size = Offset + Bits; 8061 } 8062 8063 // Add a struct type to the coercion type, starting at Offset (in bits). 8064 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 8065 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 8066 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 8067 llvm::Type *ElemTy = StrTy->getElementType(i); 8068 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 8069 switch (ElemTy->getTypeID()) { 8070 case llvm::Type::StructTyID: 8071 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 8072 break; 8073 case llvm::Type::FloatTyID: 8074 addFloat(ElemOffset, ElemTy, 32); 8075 break; 8076 case llvm::Type::DoubleTyID: 8077 addFloat(ElemOffset, ElemTy, 64); 8078 break; 8079 case llvm::Type::FP128TyID: 8080 addFloat(ElemOffset, ElemTy, 128); 8081 break; 8082 case llvm::Type::PointerTyID: 8083 if (ElemOffset % 64 == 0) { 8084 pad(ElemOffset); 8085 Elems.push_back(ElemTy); 8086 Size += 64; 8087 } 8088 break; 8089 default: 8090 break; 8091 } 8092 } 8093 } 8094 8095 // Check if Ty is a usable substitute for the coercion type. 8096 bool isUsableType(llvm::StructType *Ty) const { 8097 return llvm::makeArrayRef(Elems) == Ty->elements(); 8098 } 8099 8100 // Get the coercion type as a literal struct type. 8101 llvm::Type *getType() const { 8102 if (Elems.size() == 1) 8103 return Elems.front(); 8104 else 8105 return llvm::StructType::get(Context, Elems); 8106 } 8107 }; 8108 }; 8109 } // end anonymous namespace 8110 8111 ABIArgInfo 8112 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 8113 if (Ty->isVoidType()) 8114 return ABIArgInfo::getIgnore(); 8115 8116 uint64_t Size = getContext().getTypeSize(Ty); 8117 8118 // Anything too big to fit in registers is passed with an explicit indirect 8119 // pointer / sret pointer. 8120 if (Size > SizeLimit) 8121 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 8122 8123 // Treat an enum type as its underlying type. 8124 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 8125 Ty = EnumTy->getDecl()->getIntegerType(); 8126 8127 // Integer types smaller than a register are extended. 8128 if (Size < 64 && Ty->isIntegerType()) 8129 return ABIArgInfo::getExtend(Ty); 8130 8131 // Other non-aggregates go in registers. 8132 if (!isAggregateTypeForABI(Ty)) 8133 return ABIArgInfo::getDirect(); 8134 8135 // If a C++ object has either a non-trivial copy constructor or a non-trivial 8136 // destructor, it is passed with an explicit indirect pointer / sret pointer. 8137 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 8138 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 8139 8140 // This is a small aggregate type that should be passed in registers. 8141 // Build a coercion type from the LLVM struct type. 8142 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 8143 if (!StrTy) 8144 return ABIArgInfo::getDirect(); 8145 8146 CoerceBuilder CB(getVMContext(), getDataLayout()); 8147 CB.addStruct(0, StrTy); 8148 CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64)); 8149 8150 // Try to use the original type for coercion. 8151 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 8152 8153 if (CB.InReg) 8154 return ABIArgInfo::getDirectInReg(CoerceTy); 8155 else 8156 return ABIArgInfo::getDirect(CoerceTy); 8157 } 8158 8159 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8160 QualType Ty) const { 8161 ABIArgInfo AI = classifyType(Ty, 16 * 8); 8162 llvm::Type *ArgTy = CGT.ConvertType(Ty); 8163 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 8164 AI.setCoerceToType(ArgTy); 8165 8166 CharUnits SlotSize = CharUnits::fromQuantity(8); 8167 8168 CGBuilderTy &Builder = CGF.Builder; 8169 Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 8170 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 8171 8172 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 8173 8174 Address ArgAddr = Address::invalid(); 8175 CharUnits Stride; 8176 switch (AI.getKind()) { 8177 case ABIArgInfo::Expand: 8178 case ABIArgInfo::CoerceAndExpand: 8179 case ABIArgInfo::InAlloca: 8180 llvm_unreachable("Unsupported ABI kind for va_arg"); 8181 8182 case ABIArgInfo::Extend: { 8183 Stride = SlotSize; 8184 CharUnits Offset = SlotSize - TypeInfo.first; 8185 ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend"); 8186 break; 8187 } 8188 8189 case ABIArgInfo::Direct: { 8190 auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 8191 Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize); 8192 ArgAddr = Addr; 8193 break; 8194 } 8195 8196 case ABIArgInfo::Indirect: 8197 Stride = SlotSize; 8198 ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect"); 8199 ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), 8200 TypeInfo.second); 8201 break; 8202 8203 case ABIArgInfo::Ignore: 8204 return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second); 8205 } 8206 8207 // Update VAList. 8208 llvm::Value *NextPtr = 8209 Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), Stride, "ap.next"); 8210 Builder.CreateStore(NextPtr, VAListAddr); 8211 8212 return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr"); 8213 } 8214 8215 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 8216 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 8217 for (auto &I : FI.arguments()) 8218 I.info = classifyType(I.type, 16 * 8); 8219 } 8220 8221 namespace { 8222 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 8223 public: 8224 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 8225 : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {} 8226 8227 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 8228 return 14; 8229 } 8230 8231 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 8232 llvm::Value *Address) const override; 8233 }; 8234 } // end anonymous namespace 8235 8236 bool 8237 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 8238 llvm::Value *Address) const { 8239 // This is calculated from the LLVM and GCC tables and verified 8240 // against gcc output. AFAIK all ABIs use the same encoding. 8241 8242 CodeGen::CGBuilderTy &Builder = CGF.Builder; 8243 8244 llvm::IntegerType *i8 = CGF.Int8Ty; 8245 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 8246 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 8247 8248 // 0-31: the 8-byte general-purpose registers 8249 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 8250 8251 // 32-63: f0-31, the 4-byte floating-point registers 8252 AssignToArrayRange(Builder, Address, Four8, 32, 63); 8253 8254 // Y = 64 8255 // PSR = 65 8256 // WIM = 66 8257 // TBR = 67 8258 // PC = 68 8259 // NPC = 69 8260 // FSR = 70 8261 // CSR = 71 8262 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 8263 8264 // 72-87: d0-15, the 8-byte floating-point registers 8265 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 8266 8267 return false; 8268 } 8269 8270 // ARC ABI implementation. 8271 namespace { 8272 8273 class ARCABIInfo : public DefaultABIInfo { 8274 public: 8275 using DefaultABIInfo::DefaultABIInfo; 8276 8277 private: 8278 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8279 QualType Ty) const override; 8280 8281 void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const { 8282 if (!State.FreeRegs) 8283 return; 8284 if (Info.isIndirect() && Info.getInReg()) 8285 State.FreeRegs--; 8286 else if (Info.isDirect() && Info.getInReg()) { 8287 unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32; 8288 if (sz < State.FreeRegs) 8289 State.FreeRegs -= sz; 8290 else 8291 State.FreeRegs = 0; 8292 } 8293 } 8294 8295 void computeInfo(CGFunctionInfo &FI) const override { 8296 CCState State(FI.getCallingConvention()); 8297 // ARC uses 8 registers to pass arguments. 8298 State.FreeRegs = 8; 8299 8300 if (!getCXXABI().classifyReturnType(FI)) 8301 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8302 updateState(FI.getReturnInfo(), FI.getReturnType(), State); 8303 for (auto &I : FI.arguments()) { 8304 I.info = classifyArgumentType(I.type, State.FreeRegs); 8305 updateState(I.info, I.type, State); 8306 } 8307 } 8308 8309 ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const; 8310 ABIArgInfo getIndirectByValue(QualType Ty) const; 8311 ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const; 8312 ABIArgInfo classifyReturnType(QualType RetTy) const; 8313 }; 8314 8315 class ARCTargetCodeGenInfo : public TargetCodeGenInfo { 8316 public: 8317 ARCTargetCodeGenInfo(CodeGenTypes &CGT) 8318 : TargetCodeGenInfo(new ARCABIInfo(CGT)) {} 8319 }; 8320 8321 8322 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const { 8323 return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) : 8324 getNaturalAlignIndirect(Ty, false); 8325 } 8326 8327 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const { 8328 // Compute the byval alignment. 8329 const unsigned MinABIStackAlignInBytes = 4; 8330 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 8331 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 8332 TypeAlign > MinABIStackAlignInBytes); 8333 } 8334 8335 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8336 QualType Ty) const { 8337 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 8338 getContext().getTypeInfoInChars(Ty), 8339 CharUnits::fromQuantity(4), true); 8340 } 8341 8342 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty, 8343 uint8_t FreeRegs) const { 8344 // Handle the generic C++ ABI. 8345 const RecordType *RT = Ty->getAs<RecordType>(); 8346 if (RT) { 8347 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 8348 if (RAA == CGCXXABI::RAA_Indirect) 8349 return getIndirectByRef(Ty, FreeRegs > 0); 8350 8351 if (RAA == CGCXXABI::RAA_DirectInMemory) 8352 return getIndirectByValue(Ty); 8353 } 8354 8355 // Treat an enum type as its underlying type. 8356 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 8357 Ty = EnumTy->getDecl()->getIntegerType(); 8358 8359 auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32; 8360 8361 if (isAggregateTypeForABI(Ty)) { 8362 // Structures with flexible arrays are always indirect. 8363 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 8364 return getIndirectByValue(Ty); 8365 8366 // Ignore empty structs/unions. 8367 if (isEmptyRecord(getContext(), Ty, true)) 8368 return ABIArgInfo::getIgnore(); 8369 8370 llvm::LLVMContext &LLVMContext = getVMContext(); 8371 8372 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 8373 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 8374 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 8375 8376 return FreeRegs >= SizeInRegs ? 8377 ABIArgInfo::getDirectInReg(Result) : 8378 ABIArgInfo::getDirect(Result, 0, nullptr, false); 8379 } 8380 8381 return Ty->isPromotableIntegerType() ? 8382 (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty) : 8383 ABIArgInfo::getExtend(Ty)) : 8384 (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg() : 8385 ABIArgInfo::getDirect()); 8386 } 8387 8388 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const { 8389 if (RetTy->isAnyComplexType()) 8390 return ABIArgInfo::getDirectInReg(); 8391 8392 // Arguments of size > 4 registers are indirect. 8393 auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32; 8394 if (RetSize > 4) 8395 return getIndirectByRef(RetTy, /*HasFreeRegs*/ true); 8396 8397 return DefaultABIInfo::classifyReturnType(RetTy); 8398 } 8399 8400 } // End anonymous namespace. 8401 8402 //===----------------------------------------------------------------------===// 8403 // XCore ABI Implementation 8404 //===----------------------------------------------------------------------===// 8405 8406 namespace { 8407 8408 /// A SmallStringEnc instance is used to build up the TypeString by passing 8409 /// it by reference between functions that append to it. 8410 typedef llvm::SmallString<128> SmallStringEnc; 8411 8412 /// TypeStringCache caches the meta encodings of Types. 8413 /// 8414 /// The reason for caching TypeStrings is two fold: 8415 /// 1. To cache a type's encoding for later uses; 8416 /// 2. As a means to break recursive member type inclusion. 8417 /// 8418 /// A cache Entry can have a Status of: 8419 /// NonRecursive: The type encoding is not recursive; 8420 /// Recursive: The type encoding is recursive; 8421 /// Incomplete: An incomplete TypeString; 8422 /// IncompleteUsed: An incomplete TypeString that has been used in a 8423 /// Recursive type encoding. 8424 /// 8425 /// A NonRecursive entry will have all of its sub-members expanded as fully 8426 /// as possible. Whilst it may contain types which are recursive, the type 8427 /// itself is not recursive and thus its encoding may be safely used whenever 8428 /// the type is encountered. 8429 /// 8430 /// A Recursive entry will have all of its sub-members expanded as fully as 8431 /// possible. The type itself is recursive and it may contain other types which 8432 /// are recursive. The Recursive encoding must not be used during the expansion 8433 /// of a recursive type's recursive branch. For simplicity the code uses 8434 /// IncompleteCount to reject all usage of Recursive encodings for member types. 8435 /// 8436 /// An Incomplete entry is always a RecordType and only encodes its 8437 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 8438 /// are placed into the cache during type expansion as a means to identify and 8439 /// handle recursive inclusion of types as sub-members. If there is recursion 8440 /// the entry becomes IncompleteUsed. 8441 /// 8442 /// During the expansion of a RecordType's members: 8443 /// 8444 /// If the cache contains a NonRecursive encoding for the member type, the 8445 /// cached encoding is used; 8446 /// 8447 /// If the cache contains a Recursive encoding for the member type, the 8448 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 8449 /// 8450 /// If the member is a RecordType, an Incomplete encoding is placed into the 8451 /// cache to break potential recursive inclusion of itself as a sub-member; 8452 /// 8453 /// Once a member RecordType has been expanded, its temporary incomplete 8454 /// entry is removed from the cache. If a Recursive encoding was swapped out 8455 /// it is swapped back in; 8456 /// 8457 /// If an incomplete entry is used to expand a sub-member, the incomplete 8458 /// entry is marked as IncompleteUsed. The cache keeps count of how many 8459 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 8460 /// 8461 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 8462 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 8463 /// Else the member is part of a recursive type and thus the recursion has 8464 /// been exited too soon for the encoding to be correct for the member. 8465 /// 8466 class TypeStringCache { 8467 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 8468 struct Entry { 8469 std::string Str; // The encoded TypeString for the type. 8470 enum Status State; // Information about the encoding in 'Str'. 8471 std::string Swapped; // A temporary place holder for a Recursive encoding 8472 // during the expansion of RecordType's members. 8473 }; 8474 std::map<const IdentifierInfo *, struct Entry> Map; 8475 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 8476 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 8477 public: 8478 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {} 8479 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 8480 bool removeIncomplete(const IdentifierInfo *ID); 8481 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 8482 bool IsRecursive); 8483 StringRef lookupStr(const IdentifierInfo *ID); 8484 }; 8485 8486 /// TypeString encodings for enum & union fields must be order. 8487 /// FieldEncoding is a helper for this ordering process. 8488 class FieldEncoding { 8489 bool HasName; 8490 std::string Enc; 8491 public: 8492 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {} 8493 StringRef str() { return Enc; } 8494 bool operator<(const FieldEncoding &rhs) const { 8495 if (HasName != rhs.HasName) return HasName; 8496 return Enc < rhs.Enc; 8497 } 8498 }; 8499 8500 class XCoreABIInfo : public DefaultABIInfo { 8501 public: 8502 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8503 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8504 QualType Ty) const override; 8505 }; 8506 8507 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 8508 mutable TypeStringCache TSC; 8509 public: 8510 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 8511 :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {} 8512 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 8513 CodeGen::CodeGenModule &M) const override; 8514 }; 8515 8516 } // End anonymous namespace. 8517 8518 // TODO: this implementation is likely now redundant with the default 8519 // EmitVAArg. 8520 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8521 QualType Ty) const { 8522 CGBuilderTy &Builder = CGF.Builder; 8523 8524 // Get the VAList. 8525 CharUnits SlotSize = CharUnits::fromQuantity(4); 8526 Address AP(Builder.CreateLoad(VAListAddr), SlotSize); 8527 8528 // Handle the argument. 8529 ABIArgInfo AI = classifyArgumentType(Ty); 8530 CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty); 8531 llvm::Type *ArgTy = CGT.ConvertType(Ty); 8532 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 8533 AI.setCoerceToType(ArgTy); 8534 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 8535 8536 Address Val = Address::invalid(); 8537 CharUnits ArgSize = CharUnits::Zero(); 8538 switch (AI.getKind()) { 8539 case ABIArgInfo::Expand: 8540 case ABIArgInfo::CoerceAndExpand: 8541 case ABIArgInfo::InAlloca: 8542 llvm_unreachable("Unsupported ABI kind for va_arg"); 8543 case ABIArgInfo::Ignore: 8544 Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign); 8545 ArgSize = CharUnits::Zero(); 8546 break; 8547 case ABIArgInfo::Extend: 8548 case ABIArgInfo::Direct: 8549 Val = Builder.CreateBitCast(AP, ArgPtrTy); 8550 ArgSize = CharUnits::fromQuantity( 8551 getDataLayout().getTypeAllocSize(AI.getCoerceToType())); 8552 ArgSize = ArgSize.alignTo(SlotSize); 8553 break; 8554 case ABIArgInfo::Indirect: 8555 Val = Builder.CreateElementBitCast(AP, ArgPtrTy); 8556 Val = Address(Builder.CreateLoad(Val), TypeAlign); 8557 ArgSize = SlotSize; 8558 break; 8559 } 8560 8561 // Increment the VAList. 8562 if (!ArgSize.isZero()) { 8563 llvm::Value *APN = 8564 Builder.CreateConstInBoundsByteGEP(AP.getPointer(), ArgSize); 8565 Builder.CreateStore(APN, VAListAddr); 8566 } 8567 8568 return Val; 8569 } 8570 8571 /// During the expansion of a RecordType, an incomplete TypeString is placed 8572 /// into the cache as a means to identify and break recursion. 8573 /// If there is a Recursive encoding in the cache, it is swapped out and will 8574 /// be reinserted by removeIncomplete(). 8575 /// All other types of encoding should have been used rather than arriving here. 8576 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 8577 std::string StubEnc) { 8578 if (!ID) 8579 return; 8580 Entry &E = Map[ID]; 8581 assert( (E.Str.empty() || E.State == Recursive) && 8582 "Incorrectly use of addIncomplete"); 8583 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 8584 E.Swapped.swap(E.Str); // swap out the Recursive 8585 E.Str.swap(StubEnc); 8586 E.State = Incomplete; 8587 ++IncompleteCount; 8588 } 8589 8590 /// Once the RecordType has been expanded, the temporary incomplete TypeString 8591 /// must be removed from the cache. 8592 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 8593 /// Returns true if the RecordType was defined recursively. 8594 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 8595 if (!ID) 8596 return false; 8597 auto I = Map.find(ID); 8598 assert(I != Map.end() && "Entry not present"); 8599 Entry &E = I->second; 8600 assert( (E.State == Incomplete || 8601 E.State == IncompleteUsed) && 8602 "Entry must be an incomplete type"); 8603 bool IsRecursive = false; 8604 if (E.State == IncompleteUsed) { 8605 // We made use of our Incomplete encoding, thus we are recursive. 8606 IsRecursive = true; 8607 --IncompleteUsedCount; 8608 } 8609 if (E.Swapped.empty()) 8610 Map.erase(I); 8611 else { 8612 // Swap the Recursive back. 8613 E.Swapped.swap(E.Str); 8614 E.Swapped.clear(); 8615 E.State = Recursive; 8616 } 8617 --IncompleteCount; 8618 return IsRecursive; 8619 } 8620 8621 /// Add the encoded TypeString to the cache only if it is NonRecursive or 8622 /// Recursive (viz: all sub-members were expanded as fully as possible). 8623 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 8624 bool IsRecursive) { 8625 if (!ID || IncompleteUsedCount) 8626 return; // No key or it is is an incomplete sub-type so don't add. 8627 Entry &E = Map[ID]; 8628 if (IsRecursive && !E.Str.empty()) { 8629 assert(E.State==Recursive && E.Str.size() == Str.size() && 8630 "This is not the same Recursive entry"); 8631 // The parent container was not recursive after all, so we could have used 8632 // this Recursive sub-member entry after all, but we assumed the worse when 8633 // we started viz: IncompleteCount!=0. 8634 return; 8635 } 8636 assert(E.Str.empty() && "Entry already present"); 8637 E.Str = Str.str(); 8638 E.State = IsRecursive? Recursive : NonRecursive; 8639 } 8640 8641 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 8642 /// are recursively expanding a type (IncompleteCount != 0) and the cached 8643 /// encoding is Recursive, return an empty StringRef. 8644 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 8645 if (!ID) 8646 return StringRef(); // We have no key. 8647 auto I = Map.find(ID); 8648 if (I == Map.end()) 8649 return StringRef(); // We have no encoding. 8650 Entry &E = I->second; 8651 if (E.State == Recursive && IncompleteCount) 8652 return StringRef(); // We don't use Recursive encodings for member types. 8653 8654 if (E.State == Incomplete) { 8655 // The incomplete type is being used to break out of recursion. 8656 E.State = IncompleteUsed; 8657 ++IncompleteUsedCount; 8658 } 8659 return E.Str; 8660 } 8661 8662 /// The XCore ABI includes a type information section that communicates symbol 8663 /// type information to the linker. The linker uses this information to verify 8664 /// safety/correctness of things such as array bound and pointers et al. 8665 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 8666 /// This type information (TypeString) is emitted into meta data for all global 8667 /// symbols: definitions, declarations, functions & variables. 8668 /// 8669 /// The TypeString carries type, qualifier, name, size & value details. 8670 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 8671 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf 8672 /// The output is tested by test/CodeGen/xcore-stringtype.c. 8673 /// 8674 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 8675 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC); 8676 8677 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 8678 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 8679 CodeGen::CodeGenModule &CGM) const { 8680 SmallStringEnc Enc; 8681 if (getTypeString(Enc, D, CGM, TSC)) { 8682 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 8683 llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV), 8684 llvm::MDString::get(Ctx, Enc.str())}; 8685 llvm::NamedMDNode *MD = 8686 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 8687 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 8688 } 8689 } 8690 8691 //===----------------------------------------------------------------------===// 8692 // SPIR ABI Implementation 8693 //===----------------------------------------------------------------------===// 8694 8695 namespace { 8696 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo { 8697 public: 8698 SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 8699 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 8700 unsigned getOpenCLKernelCallingConv() const override; 8701 }; 8702 8703 } // End anonymous namespace. 8704 8705 namespace clang { 8706 namespace CodeGen { 8707 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) { 8708 DefaultABIInfo SPIRABI(CGM.getTypes()); 8709 SPIRABI.computeInfo(FI); 8710 } 8711 } 8712 } 8713 8714 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 8715 return llvm::CallingConv::SPIR_KERNEL; 8716 } 8717 8718 static bool appendType(SmallStringEnc &Enc, QualType QType, 8719 const CodeGen::CodeGenModule &CGM, 8720 TypeStringCache &TSC); 8721 8722 /// Helper function for appendRecordType(). 8723 /// Builds a SmallVector containing the encoded field types in declaration 8724 /// order. 8725 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 8726 const RecordDecl *RD, 8727 const CodeGen::CodeGenModule &CGM, 8728 TypeStringCache &TSC) { 8729 for (const auto *Field : RD->fields()) { 8730 SmallStringEnc Enc; 8731 Enc += "m("; 8732 Enc += Field->getName(); 8733 Enc += "){"; 8734 if (Field->isBitField()) { 8735 Enc += "b("; 8736 llvm::raw_svector_ostream OS(Enc); 8737 OS << Field->getBitWidthValue(CGM.getContext()); 8738 Enc += ':'; 8739 } 8740 if (!appendType(Enc, Field->getType(), CGM, TSC)) 8741 return false; 8742 if (Field->isBitField()) 8743 Enc += ')'; 8744 Enc += '}'; 8745 FE.emplace_back(!Field->getName().empty(), Enc); 8746 } 8747 return true; 8748 } 8749 8750 /// Appends structure and union types to Enc and adds encoding to cache. 8751 /// Recursively calls appendType (via extractFieldType) for each field. 8752 /// Union types have their fields ordered according to the ABI. 8753 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 8754 const CodeGen::CodeGenModule &CGM, 8755 TypeStringCache &TSC, const IdentifierInfo *ID) { 8756 // Append the cached TypeString if we have one. 8757 StringRef TypeString = TSC.lookupStr(ID); 8758 if (!TypeString.empty()) { 8759 Enc += TypeString; 8760 return true; 8761 } 8762 8763 // Start to emit an incomplete TypeString. 8764 size_t Start = Enc.size(); 8765 Enc += (RT->isUnionType()? 'u' : 's'); 8766 Enc += '('; 8767 if (ID) 8768 Enc += ID->getName(); 8769 Enc += "){"; 8770 8771 // We collect all encoded fields and order as necessary. 8772 bool IsRecursive = false; 8773 const RecordDecl *RD = RT->getDecl()->getDefinition(); 8774 if (RD && !RD->field_empty()) { 8775 // An incomplete TypeString stub is placed in the cache for this RecordType 8776 // so that recursive calls to this RecordType will use it whilst building a 8777 // complete TypeString for this RecordType. 8778 SmallVector<FieldEncoding, 16> FE; 8779 std::string StubEnc(Enc.substr(Start).str()); 8780 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 8781 TSC.addIncomplete(ID, std::move(StubEnc)); 8782 if (!extractFieldType(FE, RD, CGM, TSC)) { 8783 (void) TSC.removeIncomplete(ID); 8784 return false; 8785 } 8786 IsRecursive = TSC.removeIncomplete(ID); 8787 // The ABI requires unions to be sorted but not structures. 8788 // See FieldEncoding::operator< for sort algorithm. 8789 if (RT->isUnionType()) 8790 llvm::sort(FE); 8791 // We can now complete the TypeString. 8792 unsigned E = FE.size(); 8793 for (unsigned I = 0; I != E; ++I) { 8794 if (I) 8795 Enc += ','; 8796 Enc += FE[I].str(); 8797 } 8798 } 8799 Enc += '}'; 8800 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 8801 return true; 8802 } 8803 8804 /// Appends enum types to Enc and adds the encoding to the cache. 8805 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 8806 TypeStringCache &TSC, 8807 const IdentifierInfo *ID) { 8808 // Append the cached TypeString if we have one. 8809 StringRef TypeString = TSC.lookupStr(ID); 8810 if (!TypeString.empty()) { 8811 Enc += TypeString; 8812 return true; 8813 } 8814 8815 size_t Start = Enc.size(); 8816 Enc += "e("; 8817 if (ID) 8818 Enc += ID->getName(); 8819 Enc += "){"; 8820 8821 // We collect all encoded enumerations and order them alphanumerically. 8822 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 8823 SmallVector<FieldEncoding, 16> FE; 8824 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 8825 ++I) { 8826 SmallStringEnc EnumEnc; 8827 EnumEnc += "m("; 8828 EnumEnc += I->getName(); 8829 EnumEnc += "){"; 8830 I->getInitVal().toString(EnumEnc); 8831 EnumEnc += '}'; 8832 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 8833 } 8834 llvm::sort(FE); 8835 unsigned E = FE.size(); 8836 for (unsigned I = 0; I != E; ++I) { 8837 if (I) 8838 Enc += ','; 8839 Enc += FE[I].str(); 8840 } 8841 } 8842 Enc += '}'; 8843 TSC.addIfComplete(ID, Enc.substr(Start), false); 8844 return true; 8845 } 8846 8847 /// Appends type's qualifier to Enc. 8848 /// This is done prior to appending the type's encoding. 8849 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 8850 // Qualifiers are emitted in alphabetical order. 8851 static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 8852 int Lookup = 0; 8853 if (QT.isConstQualified()) 8854 Lookup += 1<<0; 8855 if (QT.isRestrictQualified()) 8856 Lookup += 1<<1; 8857 if (QT.isVolatileQualified()) 8858 Lookup += 1<<2; 8859 Enc += Table[Lookup]; 8860 } 8861 8862 /// Appends built-in types to Enc. 8863 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 8864 const char *EncType; 8865 switch (BT->getKind()) { 8866 case BuiltinType::Void: 8867 EncType = "0"; 8868 break; 8869 case BuiltinType::Bool: 8870 EncType = "b"; 8871 break; 8872 case BuiltinType::Char_U: 8873 EncType = "uc"; 8874 break; 8875 case BuiltinType::UChar: 8876 EncType = "uc"; 8877 break; 8878 case BuiltinType::SChar: 8879 EncType = "sc"; 8880 break; 8881 case BuiltinType::UShort: 8882 EncType = "us"; 8883 break; 8884 case BuiltinType::Short: 8885 EncType = "ss"; 8886 break; 8887 case BuiltinType::UInt: 8888 EncType = "ui"; 8889 break; 8890 case BuiltinType::Int: 8891 EncType = "si"; 8892 break; 8893 case BuiltinType::ULong: 8894 EncType = "ul"; 8895 break; 8896 case BuiltinType::Long: 8897 EncType = "sl"; 8898 break; 8899 case BuiltinType::ULongLong: 8900 EncType = "ull"; 8901 break; 8902 case BuiltinType::LongLong: 8903 EncType = "sll"; 8904 break; 8905 case BuiltinType::Float: 8906 EncType = "ft"; 8907 break; 8908 case BuiltinType::Double: 8909 EncType = "d"; 8910 break; 8911 case BuiltinType::LongDouble: 8912 EncType = "ld"; 8913 break; 8914 default: 8915 return false; 8916 } 8917 Enc += EncType; 8918 return true; 8919 } 8920 8921 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 8922 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 8923 const CodeGen::CodeGenModule &CGM, 8924 TypeStringCache &TSC) { 8925 Enc += "p("; 8926 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 8927 return false; 8928 Enc += ')'; 8929 return true; 8930 } 8931 8932 /// Appends array encoding to Enc before calling appendType for the element. 8933 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 8934 const ArrayType *AT, 8935 const CodeGen::CodeGenModule &CGM, 8936 TypeStringCache &TSC, StringRef NoSizeEnc) { 8937 if (AT->getSizeModifier() != ArrayType::Normal) 8938 return false; 8939 Enc += "a("; 8940 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 8941 CAT->getSize().toStringUnsigned(Enc); 8942 else 8943 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 8944 Enc += ':'; 8945 // The Qualifiers should be attached to the type rather than the array. 8946 appendQualifier(Enc, QT); 8947 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 8948 return false; 8949 Enc += ')'; 8950 return true; 8951 } 8952 8953 /// Appends a function encoding to Enc, calling appendType for the return type 8954 /// and the arguments. 8955 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 8956 const CodeGen::CodeGenModule &CGM, 8957 TypeStringCache &TSC) { 8958 Enc += "f{"; 8959 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 8960 return false; 8961 Enc += "}("; 8962 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 8963 // N.B. we are only interested in the adjusted param types. 8964 auto I = FPT->param_type_begin(); 8965 auto E = FPT->param_type_end(); 8966 if (I != E) { 8967 do { 8968 if (!appendType(Enc, *I, CGM, TSC)) 8969 return false; 8970 ++I; 8971 if (I != E) 8972 Enc += ','; 8973 } while (I != E); 8974 if (FPT->isVariadic()) 8975 Enc += ",va"; 8976 } else { 8977 if (FPT->isVariadic()) 8978 Enc += "va"; 8979 else 8980 Enc += '0'; 8981 } 8982 } 8983 Enc += ')'; 8984 return true; 8985 } 8986 8987 /// Handles the type's qualifier before dispatching a call to handle specific 8988 /// type encodings. 8989 static bool appendType(SmallStringEnc &Enc, QualType QType, 8990 const CodeGen::CodeGenModule &CGM, 8991 TypeStringCache &TSC) { 8992 8993 QualType QT = QType.getCanonicalType(); 8994 8995 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 8996 // The Qualifiers should be attached to the type rather than the array. 8997 // Thus we don't call appendQualifier() here. 8998 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 8999 9000 appendQualifier(Enc, QT); 9001 9002 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 9003 return appendBuiltinType(Enc, BT); 9004 9005 if (const PointerType *PT = QT->getAs<PointerType>()) 9006 return appendPointerType(Enc, PT, CGM, TSC); 9007 9008 if (const EnumType *ET = QT->getAs<EnumType>()) 9009 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 9010 9011 if (const RecordType *RT = QT->getAsStructureType()) 9012 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 9013 9014 if (const RecordType *RT = QT->getAsUnionType()) 9015 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 9016 9017 if (const FunctionType *FT = QT->getAs<FunctionType>()) 9018 return appendFunctionType(Enc, FT, CGM, TSC); 9019 9020 return false; 9021 } 9022 9023 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 9024 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) { 9025 if (!D) 9026 return false; 9027 9028 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 9029 if (FD->getLanguageLinkage() != CLanguageLinkage) 9030 return false; 9031 return appendType(Enc, FD->getType(), CGM, TSC); 9032 } 9033 9034 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 9035 if (VD->getLanguageLinkage() != CLanguageLinkage) 9036 return false; 9037 QualType QT = VD->getType().getCanonicalType(); 9038 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 9039 // Global ArrayTypes are given a size of '*' if the size is unknown. 9040 // The Qualifiers should be attached to the type rather than the array. 9041 // Thus we don't call appendQualifier() here. 9042 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 9043 } 9044 return appendType(Enc, QT, CGM, TSC); 9045 } 9046 return false; 9047 } 9048 9049 //===----------------------------------------------------------------------===// 9050 // RISCV ABI Implementation 9051 //===----------------------------------------------------------------------===// 9052 9053 namespace { 9054 class RISCVABIInfo : public DefaultABIInfo { 9055 private: 9056 unsigned XLen; // Size of the integer ('x') registers in bits. 9057 static const int NumArgGPRs = 8; 9058 9059 public: 9060 RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen) 9061 : DefaultABIInfo(CGT), XLen(XLen) {} 9062 9063 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 9064 // non-virtual, but computeInfo is virtual, so we overload it. 9065 void computeInfo(CGFunctionInfo &FI) const override; 9066 9067 ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, 9068 int &ArgGPRsLeft) const; 9069 ABIArgInfo classifyReturnType(QualType RetTy) const; 9070 9071 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9072 QualType Ty) const override; 9073 9074 ABIArgInfo extendType(QualType Ty) const; 9075 }; 9076 } // end anonymous namespace 9077 9078 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const { 9079 QualType RetTy = FI.getReturnType(); 9080 if (!getCXXABI().classifyReturnType(FI)) 9081 FI.getReturnInfo() = classifyReturnType(RetTy); 9082 9083 // IsRetIndirect is true if classifyArgumentType indicated the value should 9084 // be passed indirect or if the type size is greater than 2*xlen. e.g. fp128 9085 // is passed direct in LLVM IR, relying on the backend lowering code to 9086 // rewrite the argument list and pass indirectly on RV32. 9087 bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect || 9088 getContext().getTypeSize(RetTy) > (2 * XLen); 9089 9090 // We must track the number of GPRs used in order to conform to the RISC-V 9091 // ABI, as integer scalars passed in registers should have signext/zeroext 9092 // when promoted, but are anyext if passed on the stack. As GPR usage is 9093 // different for variadic arguments, we must also track whether we are 9094 // examining a vararg or not. 9095 int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs; 9096 int NumFixedArgs = FI.getNumRequiredArgs(); 9097 9098 int ArgNum = 0; 9099 for (auto &ArgInfo : FI.arguments()) { 9100 bool IsFixed = ArgNum < NumFixedArgs; 9101 ArgInfo.info = classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft); 9102 ArgNum++; 9103 } 9104 } 9105 9106 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed, 9107 int &ArgGPRsLeft) const { 9108 assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow"); 9109 Ty = useFirstFieldIfTransparentUnion(Ty); 9110 9111 // Structures with either a non-trivial destructor or a non-trivial 9112 // copy constructor are always passed indirectly. 9113 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 9114 if (ArgGPRsLeft) 9115 ArgGPRsLeft -= 1; 9116 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 9117 CGCXXABI::RAA_DirectInMemory); 9118 } 9119 9120 // Ignore empty structs/unions. 9121 if (isEmptyRecord(getContext(), Ty, true)) 9122 return ABIArgInfo::getIgnore(); 9123 9124 uint64_t Size = getContext().getTypeSize(Ty); 9125 uint64_t NeededAlign = getContext().getTypeAlign(Ty); 9126 bool MustUseStack = false; 9127 // Determine the number of GPRs needed to pass the current argument 9128 // according to the ABI. 2*XLen-aligned varargs are passed in "aligned" 9129 // register pairs, so may consume 3 registers. 9130 int NeededArgGPRs = 1; 9131 if (!IsFixed && NeededAlign == 2 * XLen) 9132 NeededArgGPRs = 2 + (ArgGPRsLeft % 2); 9133 else if (Size > XLen && Size <= 2 * XLen) 9134 NeededArgGPRs = 2; 9135 9136 if (NeededArgGPRs > ArgGPRsLeft) { 9137 MustUseStack = true; 9138 NeededArgGPRs = ArgGPRsLeft; 9139 } 9140 9141 ArgGPRsLeft -= NeededArgGPRs; 9142 9143 if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) { 9144 // Treat an enum type as its underlying type. 9145 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 9146 Ty = EnumTy->getDecl()->getIntegerType(); 9147 9148 // All integral types are promoted to XLen width, unless passed on the 9149 // stack. 9150 if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) { 9151 return extendType(Ty); 9152 } 9153 9154 return ABIArgInfo::getDirect(); 9155 } 9156 9157 // Aggregates which are <= 2*XLen will be passed in registers if possible, 9158 // so coerce to integers. 9159 if (Size <= 2 * XLen) { 9160 unsigned Alignment = getContext().getTypeAlign(Ty); 9161 9162 // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is 9163 // required, and a 2-element XLen array if only XLen alignment is required. 9164 if (Size <= XLen) { 9165 return ABIArgInfo::getDirect( 9166 llvm::IntegerType::get(getVMContext(), XLen)); 9167 } else if (Alignment == 2 * XLen) { 9168 return ABIArgInfo::getDirect( 9169 llvm::IntegerType::get(getVMContext(), 2 * XLen)); 9170 } else { 9171 return ABIArgInfo::getDirect(llvm::ArrayType::get( 9172 llvm::IntegerType::get(getVMContext(), XLen), 2)); 9173 } 9174 } 9175 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 9176 } 9177 9178 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const { 9179 if (RetTy->isVoidType()) 9180 return ABIArgInfo::getIgnore(); 9181 9182 int ArgGPRsLeft = 2; 9183 9184 // The rules for return and argument types are the same, so defer to 9185 // classifyArgumentType. 9186 return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft); 9187 } 9188 9189 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9190 QualType Ty) const { 9191 CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8); 9192 9193 // Empty records are ignored for parameter passing purposes. 9194 if (isEmptyRecord(getContext(), Ty, true)) { 9195 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 9196 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 9197 return Addr; 9198 } 9199 9200 std::pair<CharUnits, CharUnits> SizeAndAlign = 9201 getContext().getTypeInfoInChars(Ty); 9202 9203 // Arguments bigger than 2*Xlen bytes are passed indirectly. 9204 bool IsIndirect = SizeAndAlign.first > 2 * SlotSize; 9205 9206 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, SizeAndAlign, 9207 SlotSize, /*AllowHigherAlign=*/true); 9208 } 9209 9210 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const { 9211 int TySize = getContext().getTypeSize(Ty); 9212 // RV64 ABI requires unsigned 32 bit integers to be sign extended. 9213 if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 9214 return ABIArgInfo::getSignExtend(Ty); 9215 return ABIArgInfo::getExtend(Ty); 9216 } 9217 9218 namespace { 9219 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo { 9220 public: 9221 RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen) 9222 : TargetCodeGenInfo(new RISCVABIInfo(CGT, XLen)) {} 9223 9224 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 9225 CodeGen::CodeGenModule &CGM) const override { 9226 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 9227 if (!FD) return; 9228 9229 const auto *Attr = FD->getAttr<RISCVInterruptAttr>(); 9230 if (!Attr) 9231 return; 9232 9233 const char *Kind; 9234 switch (Attr->getInterrupt()) { 9235 case RISCVInterruptAttr::user: Kind = "user"; break; 9236 case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break; 9237 case RISCVInterruptAttr::machine: Kind = "machine"; break; 9238 } 9239 9240 auto *Fn = cast<llvm::Function>(GV); 9241 9242 Fn->addFnAttr("interrupt", Kind); 9243 } 9244 }; 9245 } // namespace 9246 9247 //===----------------------------------------------------------------------===// 9248 // Driver code 9249 //===----------------------------------------------------------------------===// 9250 9251 bool CodeGenModule::supportsCOMDAT() const { 9252 return getTriple().supportsCOMDAT(); 9253 } 9254 9255 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 9256 if (TheTargetCodeGenInfo) 9257 return *TheTargetCodeGenInfo; 9258 9259 // Helper to set the unique_ptr while still keeping the return value. 9260 auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & { 9261 this->TheTargetCodeGenInfo.reset(P); 9262 return *P; 9263 }; 9264 9265 const llvm::Triple &Triple = getTarget().getTriple(); 9266 switch (Triple.getArch()) { 9267 default: 9268 return SetCGInfo(new DefaultTargetCodeGenInfo(Types)); 9269 9270 case llvm::Triple::le32: 9271 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 9272 case llvm::Triple::mips: 9273 case llvm::Triple::mipsel: 9274 if (Triple.getOS() == llvm::Triple::NaCl) 9275 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 9276 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true)); 9277 9278 case llvm::Triple::mips64: 9279 case llvm::Triple::mips64el: 9280 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false)); 9281 9282 case llvm::Triple::avr: 9283 return SetCGInfo(new AVRTargetCodeGenInfo(Types)); 9284 9285 case llvm::Triple::aarch64: 9286 case llvm::Triple::aarch64_be: { 9287 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 9288 if (getTarget().getABI() == "darwinpcs") 9289 Kind = AArch64ABIInfo::DarwinPCS; 9290 else if (Triple.isOSWindows()) 9291 return SetCGInfo( 9292 new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64)); 9293 9294 return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind)); 9295 } 9296 9297 case llvm::Triple::wasm32: 9298 case llvm::Triple::wasm64: 9299 return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types)); 9300 9301 case llvm::Triple::arm: 9302 case llvm::Triple::armeb: 9303 case llvm::Triple::thumb: 9304 case llvm::Triple::thumbeb: { 9305 if (Triple.getOS() == llvm::Triple::Win32) { 9306 return SetCGInfo( 9307 new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP)); 9308 } 9309 9310 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 9311 StringRef ABIStr = getTarget().getABI(); 9312 if (ABIStr == "apcs-gnu") 9313 Kind = ARMABIInfo::APCS; 9314 else if (ABIStr == "aapcs16") 9315 Kind = ARMABIInfo::AAPCS16_VFP; 9316 else if (CodeGenOpts.FloatABI == "hard" || 9317 (CodeGenOpts.FloatABI != "soft" && 9318 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 9319 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 9320 Triple.getEnvironment() == llvm::Triple::EABIHF))) 9321 Kind = ARMABIInfo::AAPCS_VFP; 9322 9323 return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind)); 9324 } 9325 9326 case llvm::Triple::ppc: 9327 return SetCGInfo( 9328 new PPC32TargetCodeGenInfo(Types, CodeGenOpts.FloatABI == "soft")); 9329 case llvm::Triple::ppc64: 9330 if (Triple.isOSBinFormatELF()) { 9331 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 9332 if (getTarget().getABI() == "elfv2") 9333 Kind = PPC64_SVR4_ABIInfo::ELFv2; 9334 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 9335 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 9336 9337 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 9338 IsSoftFloat)); 9339 } else 9340 return SetCGInfo(new PPC64TargetCodeGenInfo(Types)); 9341 case llvm::Triple::ppc64le: { 9342 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 9343 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 9344 if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx") 9345 Kind = PPC64_SVR4_ABIInfo::ELFv1; 9346 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 9347 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 9348 9349 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 9350 IsSoftFloat)); 9351 } 9352 9353 case llvm::Triple::nvptx: 9354 case llvm::Triple::nvptx64: 9355 return SetCGInfo(new NVPTXTargetCodeGenInfo(Types)); 9356 9357 case llvm::Triple::msp430: 9358 return SetCGInfo(new MSP430TargetCodeGenInfo(Types)); 9359 9360 case llvm::Triple::riscv32: 9361 return SetCGInfo(new RISCVTargetCodeGenInfo(Types, 32)); 9362 case llvm::Triple::riscv64: 9363 return SetCGInfo(new RISCVTargetCodeGenInfo(Types, 64)); 9364 9365 case llvm::Triple::systemz: { 9366 bool HasVector = getTarget().getABI() == "vector"; 9367 return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector)); 9368 } 9369 9370 case llvm::Triple::tce: 9371 case llvm::Triple::tcele: 9372 return SetCGInfo(new TCETargetCodeGenInfo(Types)); 9373 9374 case llvm::Triple::x86: { 9375 bool IsDarwinVectorABI = Triple.isOSDarwin(); 9376 bool RetSmallStructInRegABI = 9377 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 9378 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 9379 9380 if (Triple.getOS() == llvm::Triple::Win32) { 9381 return SetCGInfo(new WinX86_32TargetCodeGenInfo( 9382 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 9383 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); 9384 } else { 9385 return SetCGInfo(new X86_32TargetCodeGenInfo( 9386 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 9387 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters, 9388 CodeGenOpts.FloatABI == "soft")); 9389 } 9390 } 9391 9392 case llvm::Triple::x86_64: { 9393 StringRef ABI = getTarget().getABI(); 9394 X86AVXABILevel AVXLevel = 9395 (ABI == "avx512" 9396 ? X86AVXABILevel::AVX512 9397 : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None); 9398 9399 switch (Triple.getOS()) { 9400 case llvm::Triple::Win32: 9401 return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel)); 9402 case llvm::Triple::PS4: 9403 return SetCGInfo(new PS4TargetCodeGenInfo(Types, AVXLevel)); 9404 default: 9405 return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel)); 9406 } 9407 } 9408 case llvm::Triple::hexagon: 9409 return SetCGInfo(new HexagonTargetCodeGenInfo(Types)); 9410 case llvm::Triple::lanai: 9411 return SetCGInfo(new LanaiTargetCodeGenInfo(Types)); 9412 case llvm::Triple::r600: 9413 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 9414 case llvm::Triple::amdgcn: 9415 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 9416 case llvm::Triple::sparc: 9417 return SetCGInfo(new SparcV8TargetCodeGenInfo(Types)); 9418 case llvm::Triple::sparcv9: 9419 return SetCGInfo(new SparcV9TargetCodeGenInfo(Types)); 9420 case llvm::Triple::xcore: 9421 return SetCGInfo(new XCoreTargetCodeGenInfo(Types)); 9422 case llvm::Triple::arc: 9423 return SetCGInfo(new ARCTargetCodeGenInfo(Types)); 9424 case llvm::Triple::spir: 9425 case llvm::Triple::spir64: 9426 return SetCGInfo(new SPIRTargetCodeGenInfo(Types)); 9427 } 9428 } 9429 9430 /// Create an OpenCL kernel for an enqueued block. 9431 /// 9432 /// The kernel has the same function type as the block invoke function. Its 9433 /// name is the name of the block invoke function postfixed with "_kernel". 9434 /// It simply calls the block invoke function then returns. 9435 llvm::Function * 9436 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF, 9437 llvm::Function *Invoke, 9438 llvm::Value *BlockLiteral) const { 9439 auto *InvokeFT = Invoke->getFunctionType(); 9440 llvm::SmallVector<llvm::Type *, 2> ArgTys; 9441 for (auto &P : InvokeFT->params()) 9442 ArgTys.push_back(P); 9443 auto &C = CGF.getLLVMContext(); 9444 std::string Name = Invoke->getName().str() + "_kernel"; 9445 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 9446 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 9447 &CGF.CGM.getModule()); 9448 auto IP = CGF.Builder.saveIP(); 9449 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 9450 auto &Builder = CGF.Builder; 9451 Builder.SetInsertPoint(BB); 9452 llvm::SmallVector<llvm::Value *, 2> Args; 9453 for (auto &A : F->args()) 9454 Args.push_back(&A); 9455 Builder.CreateCall(Invoke, Args); 9456 Builder.CreateRetVoid(); 9457 Builder.restoreIP(IP); 9458 return F; 9459 } 9460 9461 /// Create an OpenCL kernel for an enqueued block. 9462 /// 9463 /// The type of the first argument (the block literal) is the struct type 9464 /// of the block literal instead of a pointer type. The first argument 9465 /// (block literal) is passed directly by value to the kernel. The kernel 9466 /// allocates the same type of struct on stack and stores the block literal 9467 /// to it and passes its pointer to the block invoke function. The kernel 9468 /// has "enqueued-block" function attribute and kernel argument metadata. 9469 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel( 9470 CodeGenFunction &CGF, llvm::Function *Invoke, 9471 llvm::Value *BlockLiteral) const { 9472 auto &Builder = CGF.Builder; 9473 auto &C = CGF.getLLVMContext(); 9474 9475 auto *BlockTy = BlockLiteral->getType()->getPointerElementType(); 9476 auto *InvokeFT = Invoke->getFunctionType(); 9477 llvm::SmallVector<llvm::Type *, 2> ArgTys; 9478 llvm::SmallVector<llvm::Metadata *, 8> AddressQuals; 9479 llvm::SmallVector<llvm::Metadata *, 8> AccessQuals; 9480 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames; 9481 llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames; 9482 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals; 9483 llvm::SmallVector<llvm::Metadata *, 8> ArgNames; 9484 9485 ArgTys.push_back(BlockTy); 9486 ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 9487 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0))); 9488 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 9489 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 9490 AccessQuals.push_back(llvm::MDString::get(C, "none")); 9491 ArgNames.push_back(llvm::MDString::get(C, "block_literal")); 9492 for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) { 9493 ArgTys.push_back(InvokeFT->getParamType(I)); 9494 ArgTypeNames.push_back(llvm::MDString::get(C, "void*")); 9495 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3))); 9496 AccessQuals.push_back(llvm::MDString::get(C, "none")); 9497 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*")); 9498 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 9499 ArgNames.push_back( 9500 llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str())); 9501 } 9502 std::string Name = Invoke->getName().str() + "_kernel"; 9503 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 9504 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 9505 &CGF.CGM.getModule()); 9506 F->addFnAttr("enqueued-block"); 9507 auto IP = CGF.Builder.saveIP(); 9508 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 9509 Builder.SetInsertPoint(BB); 9510 unsigned BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(BlockTy); 9511 auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr); 9512 BlockPtr->setAlignment(BlockAlign); 9513 Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign); 9514 auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0)); 9515 llvm::SmallVector<llvm::Value *, 2> Args; 9516 Args.push_back(Cast); 9517 for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I) 9518 Args.push_back(I); 9519 Builder.CreateCall(Invoke, Args); 9520 Builder.CreateRetVoid(); 9521 Builder.restoreIP(IP); 9522 9523 F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals)); 9524 F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals)); 9525 F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames)); 9526 F->setMetadata("kernel_arg_base_type", 9527 llvm::MDNode::get(C, ArgBaseTypeNames)); 9528 F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals)); 9529 if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 9530 F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames)); 9531 9532 return F; 9533 } 9534