1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes wrap the information about a call or function 10 // definition used to handle ABI compliancy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "TargetInfo.h" 15 #include "ABIInfo.h" 16 #include "CGBlocks.h" 17 #include "CGCXXABI.h" 18 #include "CGValue.h" 19 #include "CodeGenFunction.h" 20 #include "clang/AST/RecordLayout.h" 21 #include "clang/Basic/CodeGenOptions.h" 22 #include "clang/CodeGen/CGFunctionInfo.h" 23 #include "clang/CodeGen/SwiftCallingConv.h" 24 #include "llvm/ADT/StringExtras.h" 25 #include "llvm/ADT/StringSwitch.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/ADT/Twine.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Type.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include <algorithm> // std::sort 32 33 using namespace clang; 34 using namespace CodeGen; 35 36 // Helper for coercing an aggregate argument or return value into an integer 37 // array of the same size (including padding) and alignment. This alternate 38 // coercion happens only for the RenderScript ABI and can be removed after 39 // runtimes that rely on it are no longer supported. 40 // 41 // RenderScript assumes that the size of the argument / return value in the IR 42 // is the same as the size of the corresponding qualified type. This helper 43 // coerces the aggregate type into an array of the same size (including 44 // padding). This coercion is used in lieu of expansion of struct members or 45 // other canonical coercions that return a coerced-type of larger size. 46 // 47 // Ty - The argument / return value type 48 // Context - The associated ASTContext 49 // LLVMContext - The associated LLVMContext 50 static ABIArgInfo coerceToIntArray(QualType Ty, 51 ASTContext &Context, 52 llvm::LLVMContext &LLVMContext) { 53 // Alignment and Size are measured in bits. 54 const uint64_t Size = Context.getTypeSize(Ty); 55 const uint64_t Alignment = Context.getTypeAlign(Ty); 56 llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment); 57 const uint64_t NumElements = (Size + Alignment - 1) / Alignment; 58 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 59 } 60 61 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 62 llvm::Value *Array, 63 llvm::Value *Value, 64 unsigned FirstIndex, 65 unsigned LastIndex) { 66 // Alternatively, we could emit this as a loop in the source. 67 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 68 llvm::Value *Cell = 69 Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); 70 Builder.CreateAlignedStore(Value, Cell, CharUnits::One()); 71 } 72 } 73 74 static bool isAggregateTypeForABI(QualType T) { 75 return !CodeGenFunction::hasScalarEvaluationKind(T) || 76 T->isMemberFunctionPointerType(); 77 } 78 79 ABIArgInfo 80 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign, 81 llvm::Type *Padding) const { 82 return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), 83 ByRef, Realign, Padding); 84 } 85 86 ABIArgInfo 87 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const { 88 return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty), 89 /*ByRef*/ false, Realign); 90 } 91 92 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 93 QualType Ty) const { 94 return Address::invalid(); 95 } 96 97 ABIInfo::~ABIInfo() {} 98 99 /// Does the given lowering require more than the given number of 100 /// registers when expanded? 101 /// 102 /// This is intended to be the basis of a reasonable basic implementation 103 /// of should{Pass,Return}IndirectlyForSwift. 104 /// 105 /// For most targets, a limit of four total registers is reasonable; this 106 /// limits the amount of code required in order to move around the value 107 /// in case it wasn't produced immediately prior to the call by the caller 108 /// (or wasn't produced in exactly the right registers) or isn't used 109 /// immediately within the callee. But some targets may need to further 110 /// limit the register count due to an inability to support that many 111 /// return registers. 112 static bool occupiesMoreThan(CodeGenTypes &cgt, 113 ArrayRef<llvm::Type*> scalarTypes, 114 unsigned maxAllRegisters) { 115 unsigned intCount = 0, fpCount = 0; 116 for (llvm::Type *type : scalarTypes) { 117 if (type->isPointerTy()) { 118 intCount++; 119 } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) { 120 auto ptrWidth = cgt.getTarget().getPointerWidth(0); 121 intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth; 122 } else { 123 assert(type->isVectorTy() || type->isFloatingPointTy()); 124 fpCount++; 125 } 126 } 127 128 return (intCount + fpCount > maxAllRegisters); 129 } 130 131 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 132 llvm::Type *eltTy, 133 unsigned numElts) const { 134 // The default implementation of this assumes that the target guarantees 135 // 128-bit SIMD support but nothing more. 136 return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16); 137 } 138 139 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 140 CGCXXABI &CXXABI) { 141 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 142 if (!RD) { 143 if (!RT->getDecl()->canPassInRegisters()) 144 return CGCXXABI::RAA_Indirect; 145 return CGCXXABI::RAA_Default; 146 } 147 return CXXABI.getRecordArgABI(RD); 148 } 149 150 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 151 CGCXXABI &CXXABI) { 152 const RecordType *RT = T->getAs<RecordType>(); 153 if (!RT) 154 return CGCXXABI::RAA_Default; 155 return getRecordArgABI(RT, CXXABI); 156 } 157 158 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI, 159 const ABIInfo &Info) { 160 QualType Ty = FI.getReturnType(); 161 162 if (const auto *RT = Ty->getAs<RecordType>()) 163 if (!isa<CXXRecordDecl>(RT->getDecl()) && 164 !RT->getDecl()->canPassInRegisters()) { 165 FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty); 166 return true; 167 } 168 169 return CXXABI.classifyReturnType(FI); 170 } 171 172 /// Pass transparent unions as if they were the type of the first element. Sema 173 /// should ensure that all elements of the union have the same "machine type". 174 static QualType useFirstFieldIfTransparentUnion(QualType Ty) { 175 if (const RecordType *UT = Ty->getAsUnionType()) { 176 const RecordDecl *UD = UT->getDecl(); 177 if (UD->hasAttr<TransparentUnionAttr>()) { 178 assert(!UD->field_empty() && "sema created an empty transparent union"); 179 return UD->field_begin()->getType(); 180 } 181 } 182 return Ty; 183 } 184 185 CGCXXABI &ABIInfo::getCXXABI() const { 186 return CGT.getCXXABI(); 187 } 188 189 ASTContext &ABIInfo::getContext() const { 190 return CGT.getContext(); 191 } 192 193 llvm::LLVMContext &ABIInfo::getVMContext() const { 194 return CGT.getLLVMContext(); 195 } 196 197 const llvm::DataLayout &ABIInfo::getDataLayout() const { 198 return CGT.getDataLayout(); 199 } 200 201 const TargetInfo &ABIInfo::getTarget() const { 202 return CGT.getTarget(); 203 } 204 205 const CodeGenOptions &ABIInfo::getCodeGenOpts() const { 206 return CGT.getCodeGenOpts(); 207 } 208 209 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); } 210 211 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 212 return false; 213 } 214 215 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 216 uint64_t Members) const { 217 return false; 218 } 219 220 LLVM_DUMP_METHOD void ABIArgInfo::dump() const { 221 raw_ostream &OS = llvm::errs(); 222 OS << "(ABIArgInfo Kind="; 223 switch (TheKind) { 224 case Direct: 225 OS << "Direct Type="; 226 if (llvm::Type *Ty = getCoerceToType()) 227 Ty->print(OS); 228 else 229 OS << "null"; 230 break; 231 case Extend: 232 OS << "Extend"; 233 break; 234 case Ignore: 235 OS << "Ignore"; 236 break; 237 case InAlloca: 238 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 239 break; 240 case Indirect: 241 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 242 << " ByVal=" << getIndirectByVal() 243 << " Realign=" << getIndirectRealign(); 244 break; 245 case Expand: 246 OS << "Expand"; 247 break; 248 case CoerceAndExpand: 249 OS << "CoerceAndExpand Type="; 250 getCoerceAndExpandType()->print(OS); 251 break; 252 } 253 OS << ")\n"; 254 } 255 256 // Dynamically round a pointer up to a multiple of the given alignment. 257 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF, 258 llvm::Value *Ptr, 259 CharUnits Align) { 260 llvm::Value *PtrAsInt = Ptr; 261 // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align; 262 PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy); 263 PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt, 264 llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1)); 265 PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt, 266 llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity())); 267 PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt, 268 Ptr->getType(), 269 Ptr->getName() + ".aligned"); 270 return PtrAsInt; 271 } 272 273 /// Emit va_arg for a platform using the common void* representation, 274 /// where arguments are simply emitted in an array of slots on the stack. 275 /// 276 /// This version implements the core direct-value passing rules. 277 /// 278 /// \param SlotSize - The size and alignment of a stack slot. 279 /// Each argument will be allocated to a multiple of this number of 280 /// slots, and all the slots will be aligned to this value. 281 /// \param AllowHigherAlign - The slot alignment is not a cap; 282 /// an argument type with an alignment greater than the slot size 283 /// will be emitted on a higher-alignment address, potentially 284 /// leaving one or more empty slots behind as padding. If this 285 /// is false, the returned address might be less-aligned than 286 /// DirectAlign. 287 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF, 288 Address VAListAddr, 289 llvm::Type *DirectTy, 290 CharUnits DirectSize, 291 CharUnits DirectAlign, 292 CharUnits SlotSize, 293 bool AllowHigherAlign) { 294 // Cast the element type to i8* if necessary. Some platforms define 295 // va_list as a struct containing an i8* instead of just an i8*. 296 if (VAListAddr.getElementType() != CGF.Int8PtrTy) 297 VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy); 298 299 llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur"); 300 301 // If the CC aligns values higher than the slot size, do so if needed. 302 Address Addr = Address::invalid(); 303 if (AllowHigherAlign && DirectAlign > SlotSize) { 304 Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign), 305 DirectAlign); 306 } else { 307 Addr = Address(Ptr, SlotSize); 308 } 309 310 // Advance the pointer past the argument, then store that back. 311 CharUnits FullDirectSize = DirectSize.alignTo(SlotSize); 312 llvm::Value *NextPtr = 313 CGF.Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), FullDirectSize, 314 "argp.next"); 315 CGF.Builder.CreateStore(NextPtr, VAListAddr); 316 317 // If the argument is smaller than a slot, and this is a big-endian 318 // target, the argument will be right-adjusted in its slot. 319 if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() && 320 !DirectTy->isStructTy()) { 321 Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize); 322 } 323 324 Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy); 325 return Addr; 326 } 327 328 /// Emit va_arg for a platform using the common void* representation, 329 /// where arguments are simply emitted in an array of slots on the stack. 330 /// 331 /// \param IsIndirect - Values of this type are passed indirectly. 332 /// \param ValueInfo - The size and alignment of this type, generally 333 /// computed with getContext().getTypeInfoInChars(ValueTy). 334 /// \param SlotSizeAndAlign - The size and alignment of a stack slot. 335 /// Each argument will be allocated to a multiple of this number of 336 /// slots, and all the slots will be aligned to this value. 337 /// \param AllowHigherAlign - The slot alignment is not a cap; 338 /// an argument type with an alignment greater than the slot size 339 /// will be emitted on a higher-alignment address, potentially 340 /// leaving one or more empty slots behind as padding. 341 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr, 342 QualType ValueTy, bool IsIndirect, 343 std::pair<CharUnits, CharUnits> ValueInfo, 344 CharUnits SlotSizeAndAlign, 345 bool AllowHigherAlign) { 346 // The size and alignment of the value that was passed directly. 347 CharUnits DirectSize, DirectAlign; 348 if (IsIndirect) { 349 DirectSize = CGF.getPointerSize(); 350 DirectAlign = CGF.getPointerAlign(); 351 } else { 352 DirectSize = ValueInfo.first; 353 DirectAlign = ValueInfo.second; 354 } 355 356 // Cast the address we've calculated to the right type. 357 llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy); 358 if (IsIndirect) 359 DirectTy = DirectTy->getPointerTo(0); 360 361 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy, 362 DirectSize, DirectAlign, 363 SlotSizeAndAlign, 364 AllowHigherAlign); 365 366 if (IsIndirect) { 367 Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second); 368 } 369 370 return Addr; 371 372 } 373 374 static Address emitMergePHI(CodeGenFunction &CGF, 375 Address Addr1, llvm::BasicBlock *Block1, 376 Address Addr2, llvm::BasicBlock *Block2, 377 const llvm::Twine &Name = "") { 378 assert(Addr1.getType() == Addr2.getType()); 379 llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name); 380 PHI->addIncoming(Addr1.getPointer(), Block1); 381 PHI->addIncoming(Addr2.getPointer(), Block2); 382 CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment()); 383 return Address(PHI, Align); 384 } 385 386 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; } 387 388 // If someone can figure out a general rule for this, that would be great. 389 // It's probably just doomed to be platform-dependent, though. 390 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 391 // Verified for: 392 // x86-64 FreeBSD, Linux, Darwin 393 // x86-32 FreeBSD, Linux, Darwin 394 // PowerPC Linux, Darwin 395 // ARM Darwin (*not* EABI) 396 // AArch64 Linux 397 return 32; 398 } 399 400 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 401 const FunctionNoProtoType *fnType) const { 402 // The following conventions are known to require this to be false: 403 // x86_stdcall 404 // MIPS 405 // For everything else, we just prefer false unless we opt out. 406 return false; 407 } 408 409 void 410 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 411 llvm::SmallString<24> &Opt) const { 412 // This assumes the user is passing a library name like "rt" instead of a 413 // filename like "librt.a/so", and that they don't care whether it's static or 414 // dynamic. 415 Opt = "-l"; 416 Opt += Lib; 417 } 418 419 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const { 420 // OpenCL kernels are called via an explicit runtime API with arguments 421 // set with clSetKernelArg(), not as normal sub-functions. 422 // Return SPIR_KERNEL by default as the kernel calling convention to 423 // ensure the fingerprint is fixed such way that each OpenCL argument 424 // gets one matching argument in the produced kernel function argument 425 // list to enable feasible implementation of clSetKernelArg() with 426 // aggregates etc. In case we would use the default C calling conv here, 427 // clSetKernelArg() might break depending on the target-specific 428 // conventions; different targets might split structs passed as values 429 // to multiple function arguments etc. 430 return llvm::CallingConv::SPIR_KERNEL; 431 } 432 433 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM, 434 llvm::PointerType *T, QualType QT) const { 435 return llvm::ConstantPointerNull::get(T); 436 } 437 438 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 439 const VarDecl *D) const { 440 assert(!CGM.getLangOpts().OpenCL && 441 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 442 "Address space agnostic languages only"); 443 return D ? D->getType().getAddressSpace() : LangAS::Default; 444 } 445 446 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast( 447 CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr, 448 LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const { 449 // Since target may map different address spaces in AST to the same address 450 // space, an address space conversion may end up as a bitcast. 451 if (auto *C = dyn_cast<llvm::Constant>(Src)) 452 return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy); 453 return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DestTy); 454 } 455 456 llvm::Constant * 457 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src, 458 LangAS SrcAddr, LangAS DestAddr, 459 llvm::Type *DestTy) const { 460 // Since target may map different address spaces in AST to the same address 461 // space, an address space conversion may end up as a bitcast. 462 return llvm::ConstantExpr::getPointerCast(Src, DestTy); 463 } 464 465 llvm::SyncScope::ID 466 TargetCodeGenInfo::getLLVMSyncScopeID(SyncScope S, llvm::LLVMContext &C) const { 467 return C.getOrInsertSyncScopeID(""); /* default sync scope */ 468 } 469 470 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 471 472 /// isEmptyField - Return true iff a the field is "empty", that is it 473 /// is an unnamed bit-field or an (array of) empty record(s). 474 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 475 bool AllowArrays) { 476 if (FD->isUnnamedBitfield()) 477 return true; 478 479 QualType FT = FD->getType(); 480 481 // Constant arrays of empty records count as empty, strip them off. 482 // Constant arrays of zero length always count as empty. 483 if (AllowArrays) 484 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 485 if (AT->getSize() == 0) 486 return true; 487 FT = AT->getElementType(); 488 } 489 490 const RecordType *RT = FT->getAs<RecordType>(); 491 if (!RT) 492 return false; 493 494 // C++ record fields are never empty, at least in the Itanium ABI. 495 // 496 // FIXME: We should use a predicate for whether this behavior is true in the 497 // current ABI. 498 if (isa<CXXRecordDecl>(RT->getDecl())) 499 return false; 500 501 return isEmptyRecord(Context, FT, AllowArrays); 502 } 503 504 /// isEmptyRecord - Return true iff a structure contains only empty 505 /// fields. Note that a structure with a flexible array member is not 506 /// considered empty. 507 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 508 const RecordType *RT = T->getAs<RecordType>(); 509 if (!RT) 510 return false; 511 const RecordDecl *RD = RT->getDecl(); 512 if (RD->hasFlexibleArrayMember()) 513 return false; 514 515 // If this is a C++ record, check the bases first. 516 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 517 for (const auto &I : CXXRD->bases()) 518 if (!isEmptyRecord(Context, I.getType(), true)) 519 return false; 520 521 for (const auto *I : RD->fields()) 522 if (!isEmptyField(Context, I, AllowArrays)) 523 return false; 524 return true; 525 } 526 527 /// isSingleElementStruct - Determine if a structure is a "single 528 /// element struct", i.e. it has exactly one non-empty field or 529 /// exactly one field which is itself a single element 530 /// struct. Structures with flexible array members are never 531 /// considered single element structs. 532 /// 533 /// \return The field declaration for the single non-empty field, if 534 /// it exists. 535 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 536 const RecordType *RT = T->getAs<RecordType>(); 537 if (!RT) 538 return nullptr; 539 540 const RecordDecl *RD = RT->getDecl(); 541 if (RD->hasFlexibleArrayMember()) 542 return nullptr; 543 544 const Type *Found = nullptr; 545 546 // If this is a C++ record, check the bases first. 547 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 548 for (const auto &I : CXXRD->bases()) { 549 // Ignore empty records. 550 if (isEmptyRecord(Context, I.getType(), true)) 551 continue; 552 553 // If we already found an element then this isn't a single-element struct. 554 if (Found) 555 return nullptr; 556 557 // If this is non-empty and not a single element struct, the composite 558 // cannot be a single element struct. 559 Found = isSingleElementStruct(I.getType(), Context); 560 if (!Found) 561 return nullptr; 562 } 563 } 564 565 // Check for single element. 566 for (const auto *FD : RD->fields()) { 567 QualType FT = FD->getType(); 568 569 // Ignore empty fields. 570 if (isEmptyField(Context, FD, true)) 571 continue; 572 573 // If we already found an element then this isn't a single-element 574 // struct. 575 if (Found) 576 return nullptr; 577 578 // Treat single element arrays as the element. 579 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 580 if (AT->getSize().getZExtValue() != 1) 581 break; 582 FT = AT->getElementType(); 583 } 584 585 if (!isAggregateTypeForABI(FT)) { 586 Found = FT.getTypePtr(); 587 } else { 588 Found = isSingleElementStruct(FT, Context); 589 if (!Found) 590 return nullptr; 591 } 592 } 593 594 // We don't consider a struct a single-element struct if it has 595 // padding beyond the element type. 596 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 597 return nullptr; 598 599 return Found; 600 } 601 602 namespace { 603 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, 604 const ABIArgInfo &AI) { 605 // This default implementation defers to the llvm backend's va_arg 606 // instruction. It can handle only passing arguments directly 607 // (typically only handled in the backend for primitive types), or 608 // aggregates passed indirectly by pointer (NOTE: if the "byval" 609 // flag has ABI impact in the callee, this implementation cannot 610 // work.) 611 612 // Only a few cases are covered here at the moment -- those needed 613 // by the default abi. 614 llvm::Value *Val; 615 616 if (AI.isIndirect()) { 617 assert(!AI.getPaddingType() && 618 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 619 assert( 620 !AI.getIndirectRealign() && 621 "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!"); 622 623 auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty); 624 CharUnits TyAlignForABI = TyInfo.second; 625 626 llvm::Type *BaseTy = 627 llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 628 llvm::Value *Addr = 629 CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy); 630 return Address(Addr, TyAlignForABI); 631 } else { 632 assert((AI.isDirect() || AI.isExtend()) && 633 "Unexpected ArgInfo Kind in generic VAArg emitter!"); 634 635 assert(!AI.getInReg() && 636 "Unexpected InReg seen in arginfo in generic VAArg emitter!"); 637 assert(!AI.getPaddingType() && 638 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 639 assert(!AI.getDirectOffset() && 640 "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!"); 641 assert(!AI.getCoerceToType() && 642 "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!"); 643 644 Address Temp = CGF.CreateMemTemp(Ty, "varet"); 645 Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty)); 646 CGF.Builder.CreateStore(Val, Temp); 647 return Temp; 648 } 649 } 650 651 /// DefaultABIInfo - The default implementation for ABI specific 652 /// details. This implementation provides information which results in 653 /// self-consistent and sensible LLVM IR generation, but does not 654 /// conform to any particular ABI. 655 class DefaultABIInfo : public ABIInfo { 656 public: 657 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 658 659 ABIArgInfo classifyReturnType(QualType RetTy) const; 660 ABIArgInfo classifyArgumentType(QualType RetTy) const; 661 662 void computeInfo(CGFunctionInfo &FI) const override { 663 if (!getCXXABI().classifyReturnType(FI)) 664 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 665 for (auto &I : FI.arguments()) 666 I.info = classifyArgumentType(I.type); 667 } 668 669 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 670 QualType Ty) const override { 671 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 672 } 673 }; 674 675 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 676 public: 677 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 678 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 679 }; 680 681 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 682 Ty = useFirstFieldIfTransparentUnion(Ty); 683 684 if (isAggregateTypeForABI(Ty)) { 685 // Records with non-trivial destructors/copy-constructors should not be 686 // passed by value. 687 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 688 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 689 690 return getNaturalAlignIndirect(Ty); 691 } 692 693 // Treat an enum type as its underlying type. 694 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 695 Ty = EnumTy->getDecl()->getIntegerType(); 696 697 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 698 : ABIArgInfo::getDirect()); 699 } 700 701 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 702 if (RetTy->isVoidType()) 703 return ABIArgInfo::getIgnore(); 704 705 if (isAggregateTypeForABI(RetTy)) 706 return getNaturalAlignIndirect(RetTy); 707 708 // Treat an enum type as its underlying type. 709 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 710 RetTy = EnumTy->getDecl()->getIntegerType(); 711 712 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 713 : ABIArgInfo::getDirect()); 714 } 715 716 //===----------------------------------------------------------------------===// 717 // WebAssembly ABI Implementation 718 // 719 // This is a very simple ABI that relies a lot on DefaultABIInfo. 720 //===----------------------------------------------------------------------===// 721 722 class WebAssemblyABIInfo final : public SwiftABIInfo { 723 DefaultABIInfo defaultInfo; 724 725 public: 726 explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT) 727 : SwiftABIInfo(CGT), defaultInfo(CGT) {} 728 729 private: 730 ABIArgInfo classifyReturnType(QualType RetTy) const; 731 ABIArgInfo classifyArgumentType(QualType Ty) const; 732 733 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 734 // non-virtual, but computeInfo and EmitVAArg are virtual, so we 735 // overload them. 736 void computeInfo(CGFunctionInfo &FI) const override { 737 if (!getCXXABI().classifyReturnType(FI)) 738 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 739 for (auto &Arg : FI.arguments()) 740 Arg.info = classifyArgumentType(Arg.type); 741 } 742 743 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 744 QualType Ty) const override; 745 746 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 747 bool asReturnValue) const override { 748 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 749 } 750 751 bool isSwiftErrorInRegister() const override { 752 return false; 753 } 754 }; 755 756 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo { 757 public: 758 explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 759 : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT)) {} 760 761 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 762 CodeGen::CodeGenModule &CGM) const override { 763 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 764 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 765 if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) { 766 llvm::Function *Fn = cast<llvm::Function>(GV); 767 llvm::AttrBuilder B; 768 B.addAttribute("wasm-import-module", Attr->getImportModule()); 769 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 770 } 771 if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) { 772 llvm::Function *Fn = cast<llvm::Function>(GV); 773 llvm::AttrBuilder B; 774 B.addAttribute("wasm-import-name", Attr->getImportName()); 775 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 776 } 777 } 778 779 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 780 llvm::Function *Fn = cast<llvm::Function>(GV); 781 if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype()) 782 Fn->addFnAttr("no-prototype"); 783 } 784 } 785 }; 786 787 /// Classify argument of given type \p Ty. 788 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const { 789 Ty = useFirstFieldIfTransparentUnion(Ty); 790 791 if (isAggregateTypeForABI(Ty)) { 792 // Records with non-trivial destructors/copy-constructors should not be 793 // passed by value. 794 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 795 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 796 // Ignore empty structs/unions. 797 if (isEmptyRecord(getContext(), Ty, true)) 798 return ABIArgInfo::getIgnore(); 799 // Lower single-element structs to just pass a regular value. TODO: We 800 // could do reasonable-size multiple-element structs too, using getExpand(), 801 // though watch out for things like bitfields. 802 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 803 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 804 } 805 806 // Otherwise just do the default thing. 807 return defaultInfo.classifyArgumentType(Ty); 808 } 809 810 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const { 811 if (isAggregateTypeForABI(RetTy)) { 812 // Records with non-trivial destructors/copy-constructors should not be 813 // returned by value. 814 if (!getRecordArgABI(RetTy, getCXXABI())) { 815 // Ignore empty structs/unions. 816 if (isEmptyRecord(getContext(), RetTy, true)) 817 return ABIArgInfo::getIgnore(); 818 // Lower single-element structs to just return a regular value. TODO: We 819 // could do reasonable-size multiple-element structs too, using 820 // ABIArgInfo::getDirect(). 821 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 822 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 823 } 824 } 825 826 // Otherwise just do the default thing. 827 return defaultInfo.classifyReturnType(RetTy); 828 } 829 830 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 831 QualType Ty) const { 832 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect=*/ false, 833 getContext().getTypeInfoInChars(Ty), 834 CharUnits::fromQuantity(4), 835 /*AllowHigherAlign=*/ true); 836 } 837 838 //===----------------------------------------------------------------------===// 839 // le32/PNaCl bitcode ABI Implementation 840 // 841 // This is a simplified version of the x86_32 ABI. Arguments and return values 842 // are always passed on the stack. 843 //===----------------------------------------------------------------------===// 844 845 class PNaClABIInfo : public ABIInfo { 846 public: 847 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 848 849 ABIArgInfo classifyReturnType(QualType RetTy) const; 850 ABIArgInfo classifyArgumentType(QualType RetTy) const; 851 852 void computeInfo(CGFunctionInfo &FI) const override; 853 Address EmitVAArg(CodeGenFunction &CGF, 854 Address VAListAddr, QualType Ty) const override; 855 }; 856 857 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 858 public: 859 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 860 : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {} 861 }; 862 863 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 864 if (!getCXXABI().classifyReturnType(FI)) 865 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 866 867 for (auto &I : FI.arguments()) 868 I.info = classifyArgumentType(I.type); 869 } 870 871 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 872 QualType Ty) const { 873 // The PNaCL ABI is a bit odd, in that varargs don't use normal 874 // function classification. Structs get passed directly for varargs 875 // functions, through a rewriting transform in 876 // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows 877 // this target to actually support a va_arg instructions with an 878 // aggregate type, unlike other targets. 879 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 880 } 881 882 /// Classify argument of given type \p Ty. 883 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 884 if (isAggregateTypeForABI(Ty)) { 885 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 886 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 887 return getNaturalAlignIndirect(Ty); 888 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 889 // Treat an enum type as its underlying type. 890 Ty = EnumTy->getDecl()->getIntegerType(); 891 } else if (Ty->isFloatingType()) { 892 // Floating-point types don't go inreg. 893 return ABIArgInfo::getDirect(); 894 } 895 896 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 897 : ABIArgInfo::getDirect()); 898 } 899 900 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 901 if (RetTy->isVoidType()) 902 return ABIArgInfo::getIgnore(); 903 904 // In the PNaCl ABI we always return records/structures on the stack. 905 if (isAggregateTypeForABI(RetTy)) 906 return getNaturalAlignIndirect(RetTy); 907 908 // Treat an enum type as its underlying type. 909 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 910 RetTy = EnumTy->getDecl()->getIntegerType(); 911 912 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 913 : ABIArgInfo::getDirect()); 914 } 915 916 /// IsX86_MMXType - Return true if this is an MMX type. 917 bool IsX86_MMXType(llvm::Type *IRType) { 918 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 919 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 920 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 921 IRType->getScalarSizeInBits() != 64; 922 } 923 924 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 925 StringRef Constraint, 926 llvm::Type* Ty) { 927 bool IsMMXCons = llvm::StringSwitch<bool>(Constraint) 928 .Cases("y", "&y", "^Ym", true) 929 .Default(false); 930 if (IsMMXCons && Ty->isVectorTy()) { 931 if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) { 932 // Invalid MMX constraint 933 return nullptr; 934 } 935 936 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 937 } 938 939 // No operation needed 940 return Ty; 941 } 942 943 /// Returns true if this type can be passed in SSE registers with the 944 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 945 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 946 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 947 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) { 948 if (BT->getKind() == BuiltinType::LongDouble) { 949 if (&Context.getTargetInfo().getLongDoubleFormat() == 950 &llvm::APFloat::x87DoubleExtended()) 951 return false; 952 } 953 return true; 954 } 955 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 956 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 957 // registers specially. 958 unsigned VecSize = Context.getTypeSize(VT); 959 if (VecSize == 128 || VecSize == 256 || VecSize == 512) 960 return true; 961 } 962 return false; 963 } 964 965 /// Returns true if this aggregate is small enough to be passed in SSE registers 966 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 967 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 968 return NumMembers <= 4; 969 } 970 971 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86. 972 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) { 973 auto AI = ABIArgInfo::getDirect(T); 974 AI.setInReg(true); 975 AI.setCanBeFlattened(false); 976 return AI; 977 } 978 979 //===----------------------------------------------------------------------===// 980 // X86-32 ABI Implementation 981 //===----------------------------------------------------------------------===// 982 983 /// Similar to llvm::CCState, but for Clang. 984 struct CCState { 985 CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {} 986 987 unsigned CC; 988 unsigned FreeRegs; 989 unsigned FreeSSERegs; 990 }; 991 992 enum { 993 // Vectorcall only allows the first 6 parameters to be passed in registers. 994 VectorcallMaxParamNumAsReg = 6 995 }; 996 997 /// X86_32ABIInfo - The X86-32 ABI information. 998 class X86_32ABIInfo : public SwiftABIInfo { 999 enum Class { 1000 Integer, 1001 Float 1002 }; 1003 1004 static const unsigned MinABIStackAlignInBytes = 4; 1005 1006 bool IsDarwinVectorABI; 1007 bool IsRetSmallStructInRegABI; 1008 bool IsWin32StructABI; 1009 bool IsSoftFloatABI; 1010 bool IsMCUABI; 1011 unsigned DefaultNumRegisterParameters; 1012 1013 static bool isRegisterSize(unsigned Size) { 1014 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 1015 } 1016 1017 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 1018 // FIXME: Assumes vectorcall is in use. 1019 return isX86VectorTypeForVectorCall(getContext(), Ty); 1020 } 1021 1022 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 1023 uint64_t NumMembers) const override { 1024 // FIXME: Assumes vectorcall is in use. 1025 return isX86VectorCallAggregateSmallEnough(NumMembers); 1026 } 1027 1028 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 1029 1030 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1031 /// such that the argument will be passed in memory. 1032 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 1033 1034 ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; 1035 1036 /// Return the alignment to use for the given type on the stack. 1037 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 1038 1039 Class classify(QualType Ty) const; 1040 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 1041 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 1042 1043 /// Updates the number of available free registers, returns 1044 /// true if any registers were allocated. 1045 bool updateFreeRegs(QualType Ty, CCState &State) const; 1046 1047 bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, 1048 bool &NeedsPadding) const; 1049 bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; 1050 1051 bool canExpandIndirectArgument(QualType Ty) const; 1052 1053 /// Rewrite the function info so that all memory arguments use 1054 /// inalloca. 1055 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 1056 1057 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1058 CharUnits &StackOffset, ABIArgInfo &Info, 1059 QualType Type) const; 1060 void computeVectorCallArgs(CGFunctionInfo &FI, CCState &State, 1061 bool &UsedInAlloca) const; 1062 1063 public: 1064 1065 void computeInfo(CGFunctionInfo &FI) const override; 1066 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 1067 QualType Ty) const override; 1068 1069 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1070 bool RetSmallStructInRegABI, bool Win32StructABI, 1071 unsigned NumRegisterParameters, bool SoftFloatABI) 1072 : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), 1073 IsRetSmallStructInRegABI(RetSmallStructInRegABI), 1074 IsWin32StructABI(Win32StructABI), 1075 IsSoftFloatABI(SoftFloatABI), 1076 IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), 1077 DefaultNumRegisterParameters(NumRegisterParameters) {} 1078 1079 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 1080 bool asReturnValue) const override { 1081 // LLVM's x86-32 lowering currently only assigns up to three 1082 // integer registers and three fp registers. Oddly, it'll use up to 1083 // four vector registers for vectors, but those can overlap with the 1084 // scalar registers. 1085 return occupiesMoreThan(CGT, scalars, /*total*/ 3); 1086 } 1087 1088 bool isSwiftErrorInRegister() const override { 1089 // x86-32 lowering does not support passing swifterror in a register. 1090 return false; 1091 } 1092 }; 1093 1094 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 1095 public: 1096 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1097 bool RetSmallStructInRegABI, bool Win32StructABI, 1098 unsigned NumRegisterParameters, bool SoftFloatABI) 1099 : TargetCodeGenInfo(new X86_32ABIInfo( 1100 CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, 1101 NumRegisterParameters, SoftFloatABI)) {} 1102 1103 static bool isStructReturnInRegABI( 1104 const llvm::Triple &Triple, const CodeGenOptions &Opts); 1105 1106 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1107 CodeGen::CodeGenModule &CGM) const override; 1108 1109 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1110 // Darwin uses different dwarf register numbers for EH. 1111 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 1112 return 4; 1113 } 1114 1115 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1116 llvm::Value *Address) const override; 1117 1118 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1119 StringRef Constraint, 1120 llvm::Type* Ty) const override { 1121 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1122 } 1123 1124 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 1125 std::string &Constraints, 1126 std::vector<llvm::Type *> &ResultRegTypes, 1127 std::vector<llvm::Type *> &ResultTruncRegTypes, 1128 std::vector<LValue> &ResultRegDests, 1129 std::string &AsmString, 1130 unsigned NumOutputs) const override; 1131 1132 llvm::Constant * 1133 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1134 unsigned Sig = (0xeb << 0) | // jmp rel8 1135 (0x06 << 8) | // .+0x08 1136 ('v' << 16) | 1137 ('2' << 24); 1138 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1139 } 1140 1141 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 1142 return "movl\t%ebp, %ebp" 1143 "\t\t// marker for objc_retainAutoreleaseReturnValue"; 1144 } 1145 }; 1146 1147 } 1148 1149 /// Rewrite input constraint references after adding some output constraints. 1150 /// In the case where there is one output and one input and we add one output, 1151 /// we need to replace all operand references greater than or equal to 1: 1152 /// mov $0, $1 1153 /// mov eax, $1 1154 /// The result will be: 1155 /// mov $0, $2 1156 /// mov eax, $2 1157 static void rewriteInputConstraintReferences(unsigned FirstIn, 1158 unsigned NumNewOuts, 1159 std::string &AsmString) { 1160 std::string Buf; 1161 llvm::raw_string_ostream OS(Buf); 1162 size_t Pos = 0; 1163 while (Pos < AsmString.size()) { 1164 size_t DollarStart = AsmString.find('$', Pos); 1165 if (DollarStart == std::string::npos) 1166 DollarStart = AsmString.size(); 1167 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 1168 if (DollarEnd == std::string::npos) 1169 DollarEnd = AsmString.size(); 1170 OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 1171 Pos = DollarEnd; 1172 size_t NumDollars = DollarEnd - DollarStart; 1173 if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 1174 // We have an operand reference. 1175 size_t DigitStart = Pos; 1176 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 1177 if (DigitEnd == std::string::npos) 1178 DigitEnd = AsmString.size(); 1179 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 1180 unsigned OperandIndex; 1181 if (!OperandStr.getAsInteger(10, OperandIndex)) { 1182 if (OperandIndex >= FirstIn) 1183 OperandIndex += NumNewOuts; 1184 OS << OperandIndex; 1185 } else { 1186 OS << OperandStr; 1187 } 1188 Pos = DigitEnd; 1189 } 1190 } 1191 AsmString = std::move(OS.str()); 1192 } 1193 1194 /// Add output constraints for EAX:EDX because they are return registers. 1195 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 1196 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 1197 std::vector<llvm::Type *> &ResultRegTypes, 1198 std::vector<llvm::Type *> &ResultTruncRegTypes, 1199 std::vector<LValue> &ResultRegDests, std::string &AsmString, 1200 unsigned NumOutputs) const { 1201 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 1202 1203 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 1204 // larger. 1205 if (!Constraints.empty()) 1206 Constraints += ','; 1207 if (RetWidth <= 32) { 1208 Constraints += "={eax}"; 1209 ResultRegTypes.push_back(CGF.Int32Ty); 1210 } else { 1211 // Use the 'A' constraint for EAX:EDX. 1212 Constraints += "=A"; 1213 ResultRegTypes.push_back(CGF.Int64Ty); 1214 } 1215 1216 // Truncate EAX or EAX:EDX to an integer of the appropriate size. 1217 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 1218 ResultTruncRegTypes.push_back(CoerceTy); 1219 1220 // Coerce the integer by bitcasting the return slot pointer. 1221 ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(), 1222 CoerceTy->getPointerTo())); 1223 ResultRegDests.push_back(ReturnSlot); 1224 1225 rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 1226 } 1227 1228 /// shouldReturnTypeInRegister - Determine if the given type should be 1229 /// returned in a register (for the Darwin and MCU ABI). 1230 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 1231 ASTContext &Context) const { 1232 uint64_t Size = Context.getTypeSize(Ty); 1233 1234 // For i386, type must be register sized. 1235 // For the MCU ABI, it only needs to be <= 8-byte 1236 if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) 1237 return false; 1238 1239 if (Ty->isVectorType()) { 1240 // 64- and 128- bit vectors inside structures are not returned in 1241 // registers. 1242 if (Size == 64 || Size == 128) 1243 return false; 1244 1245 return true; 1246 } 1247 1248 // If this is a builtin, pointer, enum, complex type, member pointer, or 1249 // member function pointer it is ok. 1250 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 1251 Ty->isAnyComplexType() || Ty->isEnumeralType() || 1252 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 1253 return true; 1254 1255 // Arrays are treated like records. 1256 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 1257 return shouldReturnTypeInRegister(AT->getElementType(), Context); 1258 1259 // Otherwise, it must be a record type. 1260 const RecordType *RT = Ty->getAs<RecordType>(); 1261 if (!RT) return false; 1262 1263 // FIXME: Traverse bases here too. 1264 1265 // Structure types are passed in register if all fields would be 1266 // passed in a register. 1267 for (const auto *FD : RT->getDecl()->fields()) { 1268 // Empty fields are ignored. 1269 if (isEmptyField(Context, FD, true)) 1270 continue; 1271 1272 // Check fields recursively. 1273 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 1274 return false; 1275 } 1276 return true; 1277 } 1278 1279 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 1280 // Treat complex types as the element type. 1281 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 1282 Ty = CTy->getElementType(); 1283 1284 // Check for a type which we know has a simple scalar argument-passing 1285 // convention without any padding. (We're specifically looking for 32 1286 // and 64-bit integer and integer-equivalents, float, and double.) 1287 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 1288 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 1289 return false; 1290 1291 uint64_t Size = Context.getTypeSize(Ty); 1292 return Size == 32 || Size == 64; 1293 } 1294 1295 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD, 1296 uint64_t &Size) { 1297 for (const auto *FD : RD->fields()) { 1298 // Scalar arguments on the stack get 4 byte alignment on x86. If the 1299 // argument is smaller than 32-bits, expanding the struct will create 1300 // alignment padding. 1301 if (!is32Or64BitBasicType(FD->getType(), Context)) 1302 return false; 1303 1304 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 1305 // how to expand them yet, and the predicate for telling if a bitfield still 1306 // counts as "basic" is more complicated than what we were doing previously. 1307 if (FD->isBitField()) 1308 return false; 1309 1310 Size += Context.getTypeSize(FD->getType()); 1311 } 1312 return true; 1313 } 1314 1315 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD, 1316 uint64_t &Size) { 1317 // Don't do this if there are any non-empty bases. 1318 for (const CXXBaseSpecifier &Base : RD->bases()) { 1319 if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(), 1320 Size)) 1321 return false; 1322 } 1323 if (!addFieldSizes(Context, RD, Size)) 1324 return false; 1325 return true; 1326 } 1327 1328 /// Test whether an argument type which is to be passed indirectly (on the 1329 /// stack) would have the equivalent layout if it was expanded into separate 1330 /// arguments. If so, we prefer to do the latter to avoid inhibiting 1331 /// optimizations. 1332 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const { 1333 // We can only expand structure types. 1334 const RecordType *RT = Ty->getAs<RecordType>(); 1335 if (!RT) 1336 return false; 1337 const RecordDecl *RD = RT->getDecl(); 1338 uint64_t Size = 0; 1339 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1340 if (!IsWin32StructABI) { 1341 // On non-Windows, we have to conservatively match our old bitcode 1342 // prototypes in order to be ABI-compatible at the bitcode level. 1343 if (!CXXRD->isCLike()) 1344 return false; 1345 } else { 1346 // Don't do this for dynamic classes. 1347 if (CXXRD->isDynamicClass()) 1348 return false; 1349 } 1350 if (!addBaseAndFieldSizes(getContext(), CXXRD, Size)) 1351 return false; 1352 } else { 1353 if (!addFieldSizes(getContext(), RD, Size)) 1354 return false; 1355 } 1356 1357 // We can do this if there was no alignment padding. 1358 return Size == getContext().getTypeSize(Ty); 1359 } 1360 1361 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { 1362 // If the return value is indirect, then the hidden argument is consuming one 1363 // integer register. 1364 if (State.FreeRegs) { 1365 --State.FreeRegs; 1366 if (!IsMCUABI) 1367 return getNaturalAlignIndirectInReg(RetTy); 1368 } 1369 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 1370 } 1371 1372 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 1373 CCState &State) const { 1374 if (RetTy->isVoidType()) 1375 return ABIArgInfo::getIgnore(); 1376 1377 const Type *Base = nullptr; 1378 uint64_t NumElts = 0; 1379 if ((State.CC == llvm::CallingConv::X86_VectorCall || 1380 State.CC == llvm::CallingConv::X86_RegCall) && 1381 isHomogeneousAggregate(RetTy, Base, NumElts)) { 1382 // The LLVM struct type for such an aggregate should lower properly. 1383 return ABIArgInfo::getDirect(); 1384 } 1385 1386 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 1387 // On Darwin, some vectors are returned in registers. 1388 if (IsDarwinVectorABI) { 1389 uint64_t Size = getContext().getTypeSize(RetTy); 1390 1391 // 128-bit vectors are a special case; they are returned in 1392 // registers and we need to make sure to pick a type the LLVM 1393 // backend will like. 1394 if (Size == 128) 1395 return ABIArgInfo::getDirect(llvm::VectorType::get( 1396 llvm::Type::getInt64Ty(getVMContext()), 2)); 1397 1398 // Always return in register if it fits in a general purpose 1399 // register, or if it is 64 bits and has a single element. 1400 if ((Size == 8 || Size == 16 || Size == 32) || 1401 (Size == 64 && VT->getNumElements() == 1)) 1402 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1403 Size)); 1404 1405 return getIndirectReturnResult(RetTy, State); 1406 } 1407 1408 return ABIArgInfo::getDirect(); 1409 } 1410 1411 if (isAggregateTypeForABI(RetTy)) { 1412 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 1413 // Structures with flexible arrays are always indirect. 1414 if (RT->getDecl()->hasFlexibleArrayMember()) 1415 return getIndirectReturnResult(RetTy, State); 1416 } 1417 1418 // If specified, structs and unions are always indirect. 1419 if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) 1420 return getIndirectReturnResult(RetTy, State); 1421 1422 // Ignore empty structs/unions. 1423 if (isEmptyRecord(getContext(), RetTy, true)) 1424 return ABIArgInfo::getIgnore(); 1425 1426 // Small structures which are register sized are generally returned 1427 // in a register. 1428 if (shouldReturnTypeInRegister(RetTy, getContext())) { 1429 uint64_t Size = getContext().getTypeSize(RetTy); 1430 1431 // As a special-case, if the struct is a "single-element" struct, and 1432 // the field is of type "float" or "double", return it in a 1433 // floating-point register. (MSVC does not apply this special case.) 1434 // We apply a similar transformation for pointer types to improve the 1435 // quality of the generated IR. 1436 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 1437 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 1438 || SeltTy->hasPointerRepresentation()) 1439 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 1440 1441 // FIXME: We should be able to narrow this integer in cases with dead 1442 // padding. 1443 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 1444 } 1445 1446 return getIndirectReturnResult(RetTy, State); 1447 } 1448 1449 // Treat an enum type as its underlying type. 1450 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1451 RetTy = EnumTy->getDecl()->getIntegerType(); 1452 1453 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 1454 : ABIArgInfo::getDirect()); 1455 } 1456 1457 static bool isSSEVectorType(ASTContext &Context, QualType Ty) { 1458 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 1459 } 1460 1461 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) { 1462 const RecordType *RT = Ty->getAs<RecordType>(); 1463 if (!RT) 1464 return 0; 1465 const RecordDecl *RD = RT->getDecl(); 1466 1467 // If this is a C++ record, check the bases first. 1468 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1469 for (const auto &I : CXXRD->bases()) 1470 if (!isRecordWithSSEVectorType(Context, I.getType())) 1471 return false; 1472 1473 for (const auto *i : RD->fields()) { 1474 QualType FT = i->getType(); 1475 1476 if (isSSEVectorType(Context, FT)) 1477 return true; 1478 1479 if (isRecordWithSSEVectorType(Context, FT)) 1480 return true; 1481 } 1482 1483 return false; 1484 } 1485 1486 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 1487 unsigned Align) const { 1488 // Otherwise, if the alignment is less than or equal to the minimum ABI 1489 // alignment, just use the default; the backend will handle this. 1490 if (Align <= MinABIStackAlignInBytes) 1491 return 0; // Use default alignment. 1492 1493 // On non-Darwin, the stack type alignment is always 4. 1494 if (!IsDarwinVectorABI) { 1495 // Set explicit alignment, since we may need to realign the top. 1496 return MinABIStackAlignInBytes; 1497 } 1498 1499 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 1500 if (Align >= 16 && (isSSEVectorType(getContext(), Ty) || 1501 isRecordWithSSEVectorType(getContext(), Ty))) 1502 return 16; 1503 1504 return MinABIStackAlignInBytes; 1505 } 1506 1507 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 1508 CCState &State) const { 1509 if (!ByVal) { 1510 if (State.FreeRegs) { 1511 --State.FreeRegs; // Non-byval indirects just use one pointer. 1512 if (!IsMCUABI) 1513 return getNaturalAlignIndirectInReg(Ty); 1514 } 1515 return getNaturalAlignIndirect(Ty, false); 1516 } 1517 1518 // Compute the byval alignment. 1519 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 1520 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 1521 if (StackAlign == 0) 1522 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); 1523 1524 // If the stack alignment is less than the type alignment, realign the 1525 // argument. 1526 bool Realign = TypeAlign > StackAlign; 1527 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), 1528 /*ByVal=*/true, Realign); 1529 } 1530 1531 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 1532 const Type *T = isSingleElementStruct(Ty, getContext()); 1533 if (!T) 1534 T = Ty.getTypePtr(); 1535 1536 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 1537 BuiltinType::Kind K = BT->getKind(); 1538 if (K == BuiltinType::Float || K == BuiltinType::Double) 1539 return Float; 1540 } 1541 return Integer; 1542 } 1543 1544 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { 1545 if (!IsSoftFloatABI) { 1546 Class C = classify(Ty); 1547 if (C == Float) 1548 return false; 1549 } 1550 1551 unsigned Size = getContext().getTypeSize(Ty); 1552 unsigned SizeInRegs = (Size + 31) / 32; 1553 1554 if (SizeInRegs == 0) 1555 return false; 1556 1557 if (!IsMCUABI) { 1558 if (SizeInRegs > State.FreeRegs) { 1559 State.FreeRegs = 0; 1560 return false; 1561 } 1562 } else { 1563 // The MCU psABI allows passing parameters in-reg even if there are 1564 // earlier parameters that are passed on the stack. Also, 1565 // it does not allow passing >8-byte structs in-register, 1566 // even if there are 3 free registers available. 1567 if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) 1568 return false; 1569 } 1570 1571 State.FreeRegs -= SizeInRegs; 1572 return true; 1573 } 1574 1575 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, 1576 bool &InReg, 1577 bool &NeedsPadding) const { 1578 // On Windows, aggregates other than HFAs are never passed in registers, and 1579 // they do not consume register slots. Homogenous floating-point aggregates 1580 // (HFAs) have already been dealt with at this point. 1581 if (IsWin32StructABI && isAggregateTypeForABI(Ty)) 1582 return false; 1583 1584 NeedsPadding = false; 1585 InReg = !IsMCUABI; 1586 1587 if (!updateFreeRegs(Ty, State)) 1588 return false; 1589 1590 if (IsMCUABI) 1591 return true; 1592 1593 if (State.CC == llvm::CallingConv::X86_FastCall || 1594 State.CC == llvm::CallingConv::X86_VectorCall || 1595 State.CC == llvm::CallingConv::X86_RegCall) { 1596 if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) 1597 NeedsPadding = true; 1598 1599 return false; 1600 } 1601 1602 return true; 1603 } 1604 1605 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { 1606 if (!updateFreeRegs(Ty, State)) 1607 return false; 1608 1609 if (IsMCUABI) 1610 return false; 1611 1612 if (State.CC == llvm::CallingConv::X86_FastCall || 1613 State.CC == llvm::CallingConv::X86_VectorCall || 1614 State.CC == llvm::CallingConv::X86_RegCall) { 1615 if (getContext().getTypeSize(Ty) > 32) 1616 return false; 1617 1618 return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || 1619 Ty->isReferenceType()); 1620 } 1621 1622 return true; 1623 } 1624 1625 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 1626 CCState &State) const { 1627 // FIXME: Set alignment on indirect arguments. 1628 1629 Ty = useFirstFieldIfTransparentUnion(Ty); 1630 1631 // Check with the C++ ABI first. 1632 const RecordType *RT = Ty->getAs<RecordType>(); 1633 if (RT) { 1634 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 1635 if (RAA == CGCXXABI::RAA_Indirect) { 1636 return getIndirectResult(Ty, false, State); 1637 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 1638 // The field index doesn't matter, we'll fix it up later. 1639 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 1640 } 1641 } 1642 1643 // Regcall uses the concept of a homogenous vector aggregate, similar 1644 // to other targets. 1645 const Type *Base = nullptr; 1646 uint64_t NumElts = 0; 1647 if (State.CC == llvm::CallingConv::X86_RegCall && 1648 isHomogeneousAggregate(Ty, Base, NumElts)) { 1649 1650 if (State.FreeSSERegs >= NumElts) { 1651 State.FreeSSERegs -= NumElts; 1652 if (Ty->isBuiltinType() || Ty->isVectorType()) 1653 return ABIArgInfo::getDirect(); 1654 return ABIArgInfo::getExpand(); 1655 } 1656 return getIndirectResult(Ty, /*ByVal=*/false, State); 1657 } 1658 1659 if (isAggregateTypeForABI(Ty)) { 1660 // Structures with flexible arrays are always indirect. 1661 // FIXME: This should not be byval! 1662 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 1663 return getIndirectResult(Ty, true, State); 1664 1665 // Ignore empty structs/unions on non-Windows. 1666 if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true)) 1667 return ABIArgInfo::getIgnore(); 1668 1669 llvm::LLVMContext &LLVMContext = getVMContext(); 1670 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 1671 bool NeedsPadding = false; 1672 bool InReg; 1673 if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { 1674 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 1675 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 1676 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 1677 if (InReg) 1678 return ABIArgInfo::getDirectInReg(Result); 1679 else 1680 return ABIArgInfo::getDirect(Result); 1681 } 1682 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 1683 1684 // Expand small (<= 128-bit) record types when we know that the stack layout 1685 // of those arguments will match the struct. This is important because the 1686 // LLVM backend isn't smart enough to remove byval, which inhibits many 1687 // optimizations. 1688 // Don't do this for the MCU if there are still free integer registers 1689 // (see X86_64 ABI for full explanation). 1690 if (getContext().getTypeSize(Ty) <= 4 * 32 && 1691 (!IsMCUABI || State.FreeRegs == 0) && canExpandIndirectArgument(Ty)) 1692 return ABIArgInfo::getExpandWithPadding( 1693 State.CC == llvm::CallingConv::X86_FastCall || 1694 State.CC == llvm::CallingConv::X86_VectorCall || 1695 State.CC == llvm::CallingConv::X86_RegCall, 1696 PaddingType); 1697 1698 return getIndirectResult(Ty, true, State); 1699 } 1700 1701 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1702 // On Darwin, some vectors are passed in memory, we handle this by passing 1703 // it as an i8/i16/i32/i64. 1704 if (IsDarwinVectorABI) { 1705 uint64_t Size = getContext().getTypeSize(Ty); 1706 if ((Size == 8 || Size == 16 || Size == 32) || 1707 (Size == 64 && VT->getNumElements() == 1)) 1708 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1709 Size)); 1710 } 1711 1712 if (IsX86_MMXType(CGT.ConvertType(Ty))) 1713 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 1714 1715 return ABIArgInfo::getDirect(); 1716 } 1717 1718 1719 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1720 Ty = EnumTy->getDecl()->getIntegerType(); 1721 1722 bool InReg = shouldPrimitiveUseInReg(Ty, State); 1723 1724 if (Ty->isPromotableIntegerType()) { 1725 if (InReg) 1726 return ABIArgInfo::getExtendInReg(Ty); 1727 return ABIArgInfo::getExtend(Ty); 1728 } 1729 1730 if (InReg) 1731 return ABIArgInfo::getDirectInReg(); 1732 return ABIArgInfo::getDirect(); 1733 } 1734 1735 void X86_32ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, CCState &State, 1736 bool &UsedInAlloca) const { 1737 // Vectorcall x86 works subtly different than in x64, so the format is 1738 // a bit different than the x64 version. First, all vector types (not HVAs) 1739 // are assigned, with the first 6 ending up in the YMM0-5 or XMM0-5 registers. 1740 // This differs from the x64 implementation, where the first 6 by INDEX get 1741 // registers. 1742 // After that, integers AND HVAs are assigned Left to Right in the same pass. 1743 // Integers are passed as ECX/EDX if one is available (in order). HVAs will 1744 // first take up the remaining YMM/XMM registers. If insufficient registers 1745 // remain but an integer register (ECX/EDX) is available, it will be passed 1746 // in that, else, on the stack. 1747 for (auto &I : FI.arguments()) { 1748 // First pass do all the vector types. 1749 const Type *Base = nullptr; 1750 uint64_t NumElts = 0; 1751 const QualType& Ty = I.type; 1752 if ((Ty->isVectorType() || Ty->isBuiltinType()) && 1753 isHomogeneousAggregate(Ty, Base, NumElts)) { 1754 if (State.FreeSSERegs >= NumElts) { 1755 State.FreeSSERegs -= NumElts; 1756 I.info = ABIArgInfo::getDirect(); 1757 } else { 1758 I.info = classifyArgumentType(Ty, State); 1759 } 1760 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1761 } 1762 } 1763 1764 for (auto &I : FI.arguments()) { 1765 // Second pass, do the rest! 1766 const Type *Base = nullptr; 1767 uint64_t NumElts = 0; 1768 const QualType& Ty = I.type; 1769 bool IsHva = isHomogeneousAggregate(Ty, Base, NumElts); 1770 1771 if (IsHva && !Ty->isVectorType() && !Ty->isBuiltinType()) { 1772 // Assign true HVAs (non vector/native FP types). 1773 if (State.FreeSSERegs >= NumElts) { 1774 State.FreeSSERegs -= NumElts; 1775 I.info = getDirectX86Hva(); 1776 } else { 1777 I.info = getIndirectResult(Ty, /*ByVal=*/false, State); 1778 } 1779 } else if (!IsHva) { 1780 // Assign all Non-HVAs, so this will exclude Vector/FP args. 1781 I.info = classifyArgumentType(Ty, State); 1782 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1783 } 1784 } 1785 } 1786 1787 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 1788 CCState State(FI.getCallingConvention()); 1789 if (IsMCUABI) 1790 State.FreeRegs = 3; 1791 else if (State.CC == llvm::CallingConv::X86_FastCall) 1792 State.FreeRegs = 2; 1793 else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1794 State.FreeRegs = 2; 1795 State.FreeSSERegs = 6; 1796 } else if (FI.getHasRegParm()) 1797 State.FreeRegs = FI.getRegParm(); 1798 else if (State.CC == llvm::CallingConv::X86_RegCall) { 1799 State.FreeRegs = 5; 1800 State.FreeSSERegs = 8; 1801 } else 1802 State.FreeRegs = DefaultNumRegisterParameters; 1803 1804 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 1805 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 1806 } else if (FI.getReturnInfo().isIndirect()) { 1807 // The C++ ABI is not aware of register usage, so we have to check if the 1808 // return value was sret and put it in a register ourselves if appropriate. 1809 if (State.FreeRegs) { 1810 --State.FreeRegs; // The sret parameter consumes a register. 1811 if (!IsMCUABI) 1812 FI.getReturnInfo().setInReg(true); 1813 } 1814 } 1815 1816 // The chain argument effectively gives us another free register. 1817 if (FI.isChainCall()) 1818 ++State.FreeRegs; 1819 1820 bool UsedInAlloca = false; 1821 if (State.CC == llvm::CallingConv::X86_VectorCall) { 1822 computeVectorCallArgs(FI, State, UsedInAlloca); 1823 } else { 1824 // If not vectorcall, revert to normal behavior. 1825 for (auto &I : FI.arguments()) { 1826 I.info = classifyArgumentType(I.type, State); 1827 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1828 } 1829 } 1830 1831 // If we needed to use inalloca for any argument, do a second pass and rewrite 1832 // all the memory arguments to use inalloca. 1833 if (UsedInAlloca) 1834 rewriteWithInAlloca(FI); 1835 } 1836 1837 void 1838 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1839 CharUnits &StackOffset, ABIArgInfo &Info, 1840 QualType Type) const { 1841 // Arguments are always 4-byte-aligned. 1842 CharUnits FieldAlign = CharUnits::fromQuantity(4); 1843 1844 assert(StackOffset.isMultipleOf(FieldAlign) && "unaligned inalloca struct"); 1845 Info = ABIArgInfo::getInAlloca(FrameFields.size()); 1846 FrameFields.push_back(CGT.ConvertTypeForMem(Type)); 1847 StackOffset += getContext().getTypeSizeInChars(Type); 1848 1849 // Insert padding bytes to respect alignment. 1850 CharUnits FieldEnd = StackOffset; 1851 StackOffset = FieldEnd.alignTo(FieldAlign); 1852 if (StackOffset != FieldEnd) { 1853 CharUnits NumBytes = StackOffset - FieldEnd; 1854 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 1855 Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); 1856 FrameFields.push_back(Ty); 1857 } 1858 } 1859 1860 static bool isArgInAlloca(const ABIArgInfo &Info) { 1861 // Leave ignored and inreg arguments alone. 1862 switch (Info.getKind()) { 1863 case ABIArgInfo::InAlloca: 1864 return true; 1865 case ABIArgInfo::Indirect: 1866 assert(Info.getIndirectByVal()); 1867 return true; 1868 case ABIArgInfo::Ignore: 1869 return false; 1870 case ABIArgInfo::Direct: 1871 case ABIArgInfo::Extend: 1872 if (Info.getInReg()) 1873 return false; 1874 return true; 1875 case ABIArgInfo::Expand: 1876 case ABIArgInfo::CoerceAndExpand: 1877 // These are aggregate types which are never passed in registers when 1878 // inalloca is involved. 1879 return true; 1880 } 1881 llvm_unreachable("invalid enum"); 1882 } 1883 1884 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 1885 assert(IsWin32StructABI && "inalloca only supported on win32"); 1886 1887 // Build a packed struct type for all of the arguments in memory. 1888 SmallVector<llvm::Type *, 6> FrameFields; 1889 1890 // The stack alignment is always 4. 1891 CharUnits StackAlign = CharUnits::fromQuantity(4); 1892 1893 CharUnits StackOffset; 1894 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 1895 1896 // Put 'this' into the struct before 'sret', if necessary. 1897 bool IsThisCall = 1898 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 1899 ABIArgInfo &Ret = FI.getReturnInfo(); 1900 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 1901 isArgInAlloca(I->info)) { 1902 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1903 ++I; 1904 } 1905 1906 // Put the sret parameter into the inalloca struct if it's in memory. 1907 if (Ret.isIndirect() && !Ret.getInReg()) { 1908 CanQualType PtrTy = getContext().getPointerType(FI.getReturnType()); 1909 addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy); 1910 // On Windows, the hidden sret parameter is always returned in eax. 1911 Ret.setInAllocaSRet(IsWin32StructABI); 1912 } 1913 1914 // Skip the 'this' parameter in ecx. 1915 if (IsThisCall) 1916 ++I; 1917 1918 // Put arguments passed in memory into the struct. 1919 for (; I != E; ++I) { 1920 if (isArgInAlloca(I->info)) 1921 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1922 } 1923 1924 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 1925 /*isPacked=*/true), 1926 StackAlign); 1927 } 1928 1929 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, 1930 Address VAListAddr, QualType Ty) const { 1931 1932 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 1933 1934 // x86-32 changes the alignment of certain arguments on the stack. 1935 // 1936 // Just messing with TypeInfo like this works because we never pass 1937 // anything indirectly. 1938 TypeInfo.second = CharUnits::fromQuantity( 1939 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity())); 1940 1941 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 1942 TypeInfo, CharUnits::fromQuantity(4), 1943 /*AllowHigherAlign*/ true); 1944 } 1945 1946 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 1947 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 1948 assert(Triple.getArch() == llvm::Triple::x86); 1949 1950 switch (Opts.getStructReturnConvention()) { 1951 case CodeGenOptions::SRCK_Default: 1952 break; 1953 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 1954 return false; 1955 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 1956 return true; 1957 } 1958 1959 if (Triple.isOSDarwin() || Triple.isOSIAMCU()) 1960 return true; 1961 1962 switch (Triple.getOS()) { 1963 case llvm::Triple::DragonFly: 1964 case llvm::Triple::FreeBSD: 1965 case llvm::Triple::OpenBSD: 1966 case llvm::Triple::Win32: 1967 return true; 1968 default: 1969 return false; 1970 } 1971 } 1972 1973 void X86_32TargetCodeGenInfo::setTargetAttributes( 1974 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 1975 if (GV->isDeclaration()) 1976 return; 1977 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 1978 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 1979 llvm::Function *Fn = cast<llvm::Function>(GV); 1980 Fn->addFnAttr("stackrealign"); 1981 } 1982 if (FD->hasAttr<AnyX86InterruptAttr>()) { 1983 llvm::Function *Fn = cast<llvm::Function>(GV); 1984 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 1985 } 1986 } 1987 } 1988 1989 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 1990 CodeGen::CodeGenFunction &CGF, 1991 llvm::Value *Address) const { 1992 CodeGen::CGBuilderTy &Builder = CGF.Builder; 1993 1994 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 1995 1996 // 0-7 are the eight integer registers; the order is different 1997 // on Darwin (for EH), but the range is the same. 1998 // 8 is %eip. 1999 AssignToArrayRange(Builder, Address, Four8, 0, 8); 2000 2001 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 2002 // 12-16 are st(0..4). Not sure why we stop at 4. 2003 // These have size 16, which is sizeof(long double) on 2004 // platforms with 8-byte alignment for that type. 2005 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 2006 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 2007 2008 } else { 2009 // 9 is %eflags, which doesn't get a size on Darwin for some 2010 // reason. 2011 Builder.CreateAlignedStore( 2012 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), 2013 CharUnits::One()); 2014 2015 // 11-16 are st(0..5). Not sure why we stop at 5. 2016 // These have size 12, which is sizeof(long double) on 2017 // platforms with 4-byte alignment for that type. 2018 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 2019 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 2020 } 2021 2022 return false; 2023 } 2024 2025 //===----------------------------------------------------------------------===// 2026 // X86-64 ABI Implementation 2027 //===----------------------------------------------------------------------===// 2028 2029 2030 namespace { 2031 /// The AVX ABI level for X86 targets. 2032 enum class X86AVXABILevel { 2033 None, 2034 AVX, 2035 AVX512 2036 }; 2037 2038 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. 2039 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { 2040 switch (AVXLevel) { 2041 case X86AVXABILevel::AVX512: 2042 return 512; 2043 case X86AVXABILevel::AVX: 2044 return 256; 2045 case X86AVXABILevel::None: 2046 return 128; 2047 } 2048 llvm_unreachable("Unknown AVXLevel"); 2049 } 2050 2051 /// X86_64ABIInfo - The X86_64 ABI information. 2052 class X86_64ABIInfo : public SwiftABIInfo { 2053 enum Class { 2054 Integer = 0, 2055 SSE, 2056 SSEUp, 2057 X87, 2058 X87Up, 2059 ComplexX87, 2060 NoClass, 2061 Memory 2062 }; 2063 2064 /// merge - Implement the X86_64 ABI merging algorithm. 2065 /// 2066 /// Merge an accumulating classification \arg Accum with a field 2067 /// classification \arg Field. 2068 /// 2069 /// \param Accum - The accumulating classification. This should 2070 /// always be either NoClass or the result of a previous merge 2071 /// call. In addition, this should never be Memory (the caller 2072 /// should just return Memory for the aggregate). 2073 static Class merge(Class Accum, Class Field); 2074 2075 /// postMerge - Implement the X86_64 ABI post merging algorithm. 2076 /// 2077 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 2078 /// final MEMORY or SSE classes when necessary. 2079 /// 2080 /// \param AggregateSize - The size of the current aggregate in 2081 /// the classification process. 2082 /// 2083 /// \param Lo - The classification for the parts of the type 2084 /// residing in the low word of the containing object. 2085 /// 2086 /// \param Hi - The classification for the parts of the type 2087 /// residing in the higher words of the containing object. 2088 /// 2089 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 2090 2091 /// classify - Determine the x86_64 register classes in which the 2092 /// given type T should be passed. 2093 /// 2094 /// \param Lo - The classification for the parts of the type 2095 /// residing in the low word of the containing object. 2096 /// 2097 /// \param Hi - The classification for the parts of the type 2098 /// residing in the high word of the containing object. 2099 /// 2100 /// \param OffsetBase - The bit offset of this type in the 2101 /// containing object. Some parameters are classified different 2102 /// depending on whether they straddle an eightbyte boundary. 2103 /// 2104 /// \param isNamedArg - Whether the argument in question is a "named" 2105 /// argument, as used in AMD64-ABI 3.5.7. 2106 /// 2107 /// If a word is unused its result will be NoClass; if a type should 2108 /// be passed in Memory then at least the classification of \arg Lo 2109 /// will be Memory. 2110 /// 2111 /// The \arg Lo class will be NoClass iff the argument is ignored. 2112 /// 2113 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 2114 /// also be ComplexX87. 2115 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 2116 bool isNamedArg) const; 2117 2118 llvm::Type *GetByteVectorType(QualType Ty) const; 2119 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 2120 unsigned IROffset, QualType SourceTy, 2121 unsigned SourceOffset) const; 2122 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 2123 unsigned IROffset, QualType SourceTy, 2124 unsigned SourceOffset) const; 2125 2126 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2127 /// such that the argument will be returned in memory. 2128 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 2129 2130 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2131 /// such that the argument will be passed in memory. 2132 /// 2133 /// \param freeIntRegs - The number of free integer registers remaining 2134 /// available. 2135 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 2136 2137 ABIArgInfo classifyReturnType(QualType RetTy) const; 2138 2139 ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs, 2140 unsigned &neededInt, unsigned &neededSSE, 2141 bool isNamedArg) const; 2142 2143 ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt, 2144 unsigned &NeededSSE) const; 2145 2146 ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 2147 unsigned &NeededSSE) const; 2148 2149 bool IsIllegalVectorType(QualType Ty) const; 2150 2151 /// The 0.98 ABI revision clarified a lot of ambiguities, 2152 /// unfortunately in ways that were not always consistent with 2153 /// certain previous compilers. In particular, platforms which 2154 /// required strict binary compatibility with older versions of GCC 2155 /// may need to exempt themselves. 2156 bool honorsRevision0_98() const { 2157 return !getTarget().getTriple().isOSDarwin(); 2158 } 2159 2160 /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to 2161 /// classify it as INTEGER (for compatibility with older clang compilers). 2162 bool classifyIntegerMMXAsSSE() const { 2163 // Clang <= 3.8 did not do this. 2164 if (getContext().getLangOpts().getClangABICompat() <= 2165 LangOptions::ClangABI::Ver3_8) 2166 return false; 2167 2168 const llvm::Triple &Triple = getTarget().getTriple(); 2169 if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4) 2170 return false; 2171 if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10) 2172 return false; 2173 return true; 2174 } 2175 2176 X86AVXABILevel AVXLevel; 2177 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 2178 // 64-bit hardware. 2179 bool Has64BitPointers; 2180 2181 public: 2182 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : 2183 SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2184 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 2185 } 2186 2187 bool isPassedUsingAVXType(QualType type) const { 2188 unsigned neededInt, neededSSE; 2189 // The freeIntRegs argument doesn't matter here. 2190 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 2191 /*isNamedArg*/true); 2192 if (info.isDirect()) { 2193 llvm::Type *ty = info.getCoerceToType(); 2194 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 2195 return (vectorTy->getBitWidth() > 128); 2196 } 2197 return false; 2198 } 2199 2200 void computeInfo(CGFunctionInfo &FI) const override; 2201 2202 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2203 QualType Ty) const override; 2204 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 2205 QualType Ty) const override; 2206 2207 bool has64BitPointers() const { 2208 return Has64BitPointers; 2209 } 2210 2211 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 2212 bool asReturnValue) const override { 2213 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2214 } 2215 bool isSwiftErrorInRegister() const override { 2216 return true; 2217 } 2218 }; 2219 2220 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 2221 class WinX86_64ABIInfo : public SwiftABIInfo { 2222 public: 2223 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) 2224 : SwiftABIInfo(CGT), 2225 IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} 2226 2227 void computeInfo(CGFunctionInfo &FI) const override; 2228 2229 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2230 QualType Ty) const override; 2231 2232 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 2233 // FIXME: Assumes vectorcall is in use. 2234 return isX86VectorTypeForVectorCall(getContext(), Ty); 2235 } 2236 2237 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 2238 uint64_t NumMembers) const override { 2239 // FIXME: Assumes vectorcall is in use. 2240 return isX86VectorCallAggregateSmallEnough(NumMembers); 2241 } 2242 2243 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars, 2244 bool asReturnValue) const override { 2245 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2246 } 2247 2248 bool isSwiftErrorInRegister() const override { 2249 return true; 2250 } 2251 2252 private: 2253 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType, 2254 bool IsVectorCall, bool IsRegCall) const; 2255 ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 2256 const ABIArgInfo ¤t) const; 2257 void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs, 2258 bool IsVectorCall, bool IsRegCall) const; 2259 2260 bool IsMingw64; 2261 }; 2262 2263 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2264 public: 2265 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2266 : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {} 2267 2268 const X86_64ABIInfo &getABIInfo() const { 2269 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 2270 } 2271 2272 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2273 return 7; 2274 } 2275 2276 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2277 llvm::Value *Address) const override { 2278 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2279 2280 // 0-15 are the 16 integer registers. 2281 // 16 is %rip. 2282 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2283 return false; 2284 } 2285 2286 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 2287 StringRef Constraint, 2288 llvm::Type* Ty) const override { 2289 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 2290 } 2291 2292 bool isNoProtoCallVariadic(const CallArgList &args, 2293 const FunctionNoProtoType *fnType) const override { 2294 // The default CC on x86-64 sets %al to the number of SSA 2295 // registers used, and GCC sets this when calling an unprototyped 2296 // function, so we override the default behavior. However, don't do 2297 // that when AVX types are involved: the ABI explicitly states it is 2298 // undefined, and it doesn't work in practice because of how the ABI 2299 // defines varargs anyway. 2300 if (fnType->getCallConv() == CC_C) { 2301 bool HasAVXType = false; 2302 for (CallArgList::const_iterator 2303 it = args.begin(), ie = args.end(); it != ie; ++it) { 2304 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 2305 HasAVXType = true; 2306 break; 2307 } 2308 } 2309 2310 if (!HasAVXType) 2311 return true; 2312 } 2313 2314 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 2315 } 2316 2317 llvm::Constant * 2318 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 2319 unsigned Sig = (0xeb << 0) | // jmp rel8 2320 (0x06 << 8) | // .+0x08 2321 ('v' << 16) | 2322 ('2' << 24); 2323 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 2324 } 2325 2326 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2327 CodeGen::CodeGenModule &CGM) const override { 2328 if (GV->isDeclaration()) 2329 return; 2330 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2331 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2332 llvm::Function *Fn = cast<llvm::Function>(GV); 2333 Fn->addFnAttr("stackrealign"); 2334 } 2335 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2336 llvm::Function *Fn = cast<llvm::Function>(GV); 2337 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2338 } 2339 } 2340 } 2341 }; 2342 2343 class PS4TargetCodeGenInfo : public X86_64TargetCodeGenInfo { 2344 public: 2345 PS4TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2346 : X86_64TargetCodeGenInfo(CGT, AVXLevel) {} 2347 2348 void getDependentLibraryOption(llvm::StringRef Lib, 2349 llvm::SmallString<24> &Opt) const override { 2350 Opt = "\01"; 2351 // If the argument contains a space, enclose it in quotes. 2352 if (Lib.find(" ") != StringRef::npos) 2353 Opt += "\"" + Lib.str() + "\""; 2354 else 2355 Opt += Lib; 2356 } 2357 }; 2358 2359 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 2360 // If the argument does not end in .lib, automatically add the suffix. 2361 // If the argument contains a space, enclose it in quotes. 2362 // This matches the behavior of MSVC. 2363 bool Quote = (Lib.find(" ") != StringRef::npos); 2364 std::string ArgStr = Quote ? "\"" : ""; 2365 ArgStr += Lib; 2366 if (!Lib.endswith_lower(".lib") && !Lib.endswith_lower(".a")) 2367 ArgStr += ".lib"; 2368 ArgStr += Quote ? "\"" : ""; 2369 return ArgStr; 2370 } 2371 2372 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 2373 public: 2374 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2375 bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, 2376 unsigned NumRegisterParameters) 2377 : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, 2378 Win32StructABI, NumRegisterParameters, false) {} 2379 2380 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2381 CodeGen::CodeGenModule &CGM) const override; 2382 2383 void getDependentLibraryOption(llvm::StringRef Lib, 2384 llvm::SmallString<24> &Opt) const override { 2385 Opt = "/DEFAULTLIB:"; 2386 Opt += qualifyWindowsLibrary(Lib); 2387 } 2388 2389 void getDetectMismatchOption(llvm::StringRef Name, 2390 llvm::StringRef Value, 2391 llvm::SmallString<32> &Opt) const override { 2392 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2393 } 2394 }; 2395 2396 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2397 CodeGen::CodeGenModule &CGM) { 2398 if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) { 2399 2400 if (CGM.getCodeGenOpts().StackProbeSize != 4096) 2401 Fn->addFnAttr("stack-probe-size", 2402 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 2403 if (CGM.getCodeGenOpts().NoStackArgProbe) 2404 Fn->addFnAttr("no-stack-arg-probe"); 2405 } 2406 } 2407 2408 void WinX86_32TargetCodeGenInfo::setTargetAttributes( 2409 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2410 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2411 if (GV->isDeclaration()) 2412 return; 2413 addStackProbeTargetAttributes(D, GV, CGM); 2414 } 2415 2416 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2417 public: 2418 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2419 X86AVXABILevel AVXLevel) 2420 : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {} 2421 2422 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2423 CodeGen::CodeGenModule &CGM) const override; 2424 2425 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2426 return 7; 2427 } 2428 2429 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2430 llvm::Value *Address) const override { 2431 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2432 2433 // 0-15 are the 16 integer registers. 2434 // 16 is %rip. 2435 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2436 return false; 2437 } 2438 2439 void getDependentLibraryOption(llvm::StringRef Lib, 2440 llvm::SmallString<24> &Opt) const override { 2441 Opt = "/DEFAULTLIB:"; 2442 Opt += qualifyWindowsLibrary(Lib); 2443 } 2444 2445 void getDetectMismatchOption(llvm::StringRef Name, 2446 llvm::StringRef Value, 2447 llvm::SmallString<32> &Opt) const override { 2448 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2449 } 2450 }; 2451 2452 void WinX86_64TargetCodeGenInfo::setTargetAttributes( 2453 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2454 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2455 if (GV->isDeclaration()) 2456 return; 2457 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2458 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2459 llvm::Function *Fn = cast<llvm::Function>(GV); 2460 Fn->addFnAttr("stackrealign"); 2461 } 2462 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2463 llvm::Function *Fn = cast<llvm::Function>(GV); 2464 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2465 } 2466 } 2467 2468 addStackProbeTargetAttributes(D, GV, CGM); 2469 } 2470 } 2471 2472 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 2473 Class &Hi) const { 2474 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 2475 // 2476 // (a) If one of the classes is Memory, the whole argument is passed in 2477 // memory. 2478 // 2479 // (b) If X87UP is not preceded by X87, the whole argument is passed in 2480 // memory. 2481 // 2482 // (c) If the size of the aggregate exceeds two eightbytes and the first 2483 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 2484 // argument is passed in memory. NOTE: This is necessary to keep the 2485 // ABI working for processors that don't support the __m256 type. 2486 // 2487 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 2488 // 2489 // Some of these are enforced by the merging logic. Others can arise 2490 // only with unions; for example: 2491 // union { _Complex double; unsigned; } 2492 // 2493 // Note that clauses (b) and (c) were added in 0.98. 2494 // 2495 if (Hi == Memory) 2496 Lo = Memory; 2497 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 2498 Lo = Memory; 2499 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 2500 Lo = Memory; 2501 if (Hi == SSEUp && Lo != SSE) 2502 Hi = SSE; 2503 } 2504 2505 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 2506 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 2507 // classified recursively so that always two fields are 2508 // considered. The resulting class is calculated according to 2509 // the classes of the fields in the eightbyte: 2510 // 2511 // (a) If both classes are equal, this is the resulting class. 2512 // 2513 // (b) If one of the classes is NO_CLASS, the resulting class is 2514 // the other class. 2515 // 2516 // (c) If one of the classes is MEMORY, the result is the MEMORY 2517 // class. 2518 // 2519 // (d) If one of the classes is INTEGER, the result is the 2520 // INTEGER. 2521 // 2522 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 2523 // MEMORY is used as class. 2524 // 2525 // (f) Otherwise class SSE is used. 2526 2527 // Accum should never be memory (we should have returned) or 2528 // ComplexX87 (because this cannot be passed in a structure). 2529 assert((Accum != Memory && Accum != ComplexX87) && 2530 "Invalid accumulated classification during merge."); 2531 if (Accum == Field || Field == NoClass) 2532 return Accum; 2533 if (Field == Memory) 2534 return Memory; 2535 if (Accum == NoClass) 2536 return Field; 2537 if (Accum == Integer || Field == Integer) 2538 return Integer; 2539 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 2540 Accum == X87 || Accum == X87Up) 2541 return Memory; 2542 return SSE; 2543 } 2544 2545 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 2546 Class &Lo, Class &Hi, bool isNamedArg) const { 2547 // FIXME: This code can be simplified by introducing a simple value class for 2548 // Class pairs with appropriate constructor methods for the various 2549 // situations. 2550 2551 // FIXME: Some of the split computations are wrong; unaligned vectors 2552 // shouldn't be passed in registers for example, so there is no chance they 2553 // can straddle an eightbyte. Verify & simplify. 2554 2555 Lo = Hi = NoClass; 2556 2557 Class &Current = OffsetBase < 64 ? Lo : Hi; 2558 Current = Memory; 2559 2560 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 2561 BuiltinType::Kind k = BT->getKind(); 2562 2563 if (k == BuiltinType::Void) { 2564 Current = NoClass; 2565 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 2566 Lo = Integer; 2567 Hi = Integer; 2568 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 2569 Current = Integer; 2570 } else if (k == BuiltinType::Float || k == BuiltinType::Double) { 2571 Current = SSE; 2572 } else if (k == BuiltinType::LongDouble) { 2573 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2574 if (LDF == &llvm::APFloat::IEEEquad()) { 2575 Lo = SSE; 2576 Hi = SSEUp; 2577 } else if (LDF == &llvm::APFloat::x87DoubleExtended()) { 2578 Lo = X87; 2579 Hi = X87Up; 2580 } else if (LDF == &llvm::APFloat::IEEEdouble()) { 2581 Current = SSE; 2582 } else 2583 llvm_unreachable("unexpected long double representation!"); 2584 } 2585 // FIXME: _Decimal32 and _Decimal64 are SSE. 2586 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 2587 return; 2588 } 2589 2590 if (const EnumType *ET = Ty->getAs<EnumType>()) { 2591 // Classify the underlying integer type. 2592 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 2593 return; 2594 } 2595 2596 if (Ty->hasPointerRepresentation()) { 2597 Current = Integer; 2598 return; 2599 } 2600 2601 if (Ty->isMemberPointerType()) { 2602 if (Ty->isMemberFunctionPointerType()) { 2603 if (Has64BitPointers) { 2604 // If Has64BitPointers, this is an {i64, i64}, so classify both 2605 // Lo and Hi now. 2606 Lo = Hi = Integer; 2607 } else { 2608 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 2609 // straddles an eightbyte boundary, Hi should be classified as well. 2610 uint64_t EB_FuncPtr = (OffsetBase) / 64; 2611 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 2612 if (EB_FuncPtr != EB_ThisAdj) { 2613 Lo = Hi = Integer; 2614 } else { 2615 Current = Integer; 2616 } 2617 } 2618 } else { 2619 Current = Integer; 2620 } 2621 return; 2622 } 2623 2624 if (const VectorType *VT = Ty->getAs<VectorType>()) { 2625 uint64_t Size = getContext().getTypeSize(VT); 2626 if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { 2627 // gcc passes the following as integer: 2628 // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> 2629 // 2 bytes - <2 x char>, <1 x short> 2630 // 1 byte - <1 x char> 2631 Current = Integer; 2632 2633 // If this type crosses an eightbyte boundary, it should be 2634 // split. 2635 uint64_t EB_Lo = (OffsetBase) / 64; 2636 uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; 2637 if (EB_Lo != EB_Hi) 2638 Hi = Lo; 2639 } else if (Size == 64) { 2640 QualType ElementType = VT->getElementType(); 2641 2642 // gcc passes <1 x double> in memory. :( 2643 if (ElementType->isSpecificBuiltinType(BuiltinType::Double)) 2644 return; 2645 2646 // gcc passes <1 x long long> as SSE but clang used to unconditionally 2647 // pass them as integer. For platforms where clang is the de facto 2648 // platform compiler, we must continue to use integer. 2649 if (!classifyIntegerMMXAsSSE() && 2650 (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) || 2651 ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) || 2652 ElementType->isSpecificBuiltinType(BuiltinType::Long) || 2653 ElementType->isSpecificBuiltinType(BuiltinType::ULong))) 2654 Current = Integer; 2655 else 2656 Current = SSE; 2657 2658 // If this type crosses an eightbyte boundary, it should be 2659 // split. 2660 if (OffsetBase && OffsetBase != 64) 2661 Hi = Lo; 2662 } else if (Size == 128 || 2663 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { 2664 // Arguments of 256-bits are split into four eightbyte chunks. The 2665 // least significant one belongs to class SSE and all the others to class 2666 // SSEUP. The original Lo and Hi design considers that types can't be 2667 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 2668 // This design isn't correct for 256-bits, but since there're no cases 2669 // where the upper parts would need to be inspected, avoid adding 2670 // complexity and just consider Hi to match the 64-256 part. 2671 // 2672 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 2673 // registers if they are "named", i.e. not part of the "..." of a 2674 // variadic function. 2675 // 2676 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are 2677 // split into eight eightbyte chunks, one SSE and seven SSEUP. 2678 Lo = SSE; 2679 Hi = SSEUp; 2680 } 2681 return; 2682 } 2683 2684 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 2685 QualType ET = getContext().getCanonicalType(CT->getElementType()); 2686 2687 uint64_t Size = getContext().getTypeSize(Ty); 2688 if (ET->isIntegralOrEnumerationType()) { 2689 if (Size <= 64) 2690 Current = Integer; 2691 else if (Size <= 128) 2692 Lo = Hi = Integer; 2693 } else if (ET == getContext().FloatTy) { 2694 Current = SSE; 2695 } else if (ET == getContext().DoubleTy) { 2696 Lo = Hi = SSE; 2697 } else if (ET == getContext().LongDoubleTy) { 2698 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2699 if (LDF == &llvm::APFloat::IEEEquad()) 2700 Current = Memory; 2701 else if (LDF == &llvm::APFloat::x87DoubleExtended()) 2702 Current = ComplexX87; 2703 else if (LDF == &llvm::APFloat::IEEEdouble()) 2704 Lo = Hi = SSE; 2705 else 2706 llvm_unreachable("unexpected long double representation!"); 2707 } 2708 2709 // If this complex type crosses an eightbyte boundary then it 2710 // should be split. 2711 uint64_t EB_Real = (OffsetBase) / 64; 2712 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 2713 if (Hi == NoClass && EB_Real != EB_Imag) 2714 Hi = Lo; 2715 2716 return; 2717 } 2718 2719 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 2720 // Arrays are treated like structures. 2721 2722 uint64_t Size = getContext().getTypeSize(Ty); 2723 2724 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2725 // than eight eightbytes, ..., it has class MEMORY. 2726 if (Size > 512) 2727 return; 2728 2729 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 2730 // fields, it has class MEMORY. 2731 // 2732 // Only need to check alignment of array base. 2733 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 2734 return; 2735 2736 // Otherwise implement simplified merge. We could be smarter about 2737 // this, but it isn't worth it and would be harder to verify. 2738 Current = NoClass; 2739 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 2740 uint64_t ArraySize = AT->getSize().getZExtValue(); 2741 2742 // The only case a 256-bit wide vector could be used is when the array 2743 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2744 // to work for sizes wider than 128, early check and fallback to memory. 2745 // 2746 if (Size > 128 && 2747 (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel))) 2748 return; 2749 2750 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 2751 Class FieldLo, FieldHi; 2752 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 2753 Lo = merge(Lo, FieldLo); 2754 Hi = merge(Hi, FieldHi); 2755 if (Lo == Memory || Hi == Memory) 2756 break; 2757 } 2758 2759 postMerge(Size, Lo, Hi); 2760 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 2761 return; 2762 } 2763 2764 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2765 uint64_t Size = getContext().getTypeSize(Ty); 2766 2767 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2768 // than eight eightbytes, ..., it has class MEMORY. 2769 if (Size > 512) 2770 return; 2771 2772 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 2773 // copy constructor or a non-trivial destructor, it is passed by invisible 2774 // reference. 2775 if (getRecordArgABI(RT, getCXXABI())) 2776 return; 2777 2778 const RecordDecl *RD = RT->getDecl(); 2779 2780 // Assume variable sized types are passed in memory. 2781 if (RD->hasFlexibleArrayMember()) 2782 return; 2783 2784 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2785 2786 // Reset Lo class, this will be recomputed. 2787 Current = NoClass; 2788 2789 // If this is a C++ record, classify the bases first. 2790 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2791 for (const auto &I : CXXRD->bases()) { 2792 assert(!I.isVirtual() && !I.getType()->isDependentType() && 2793 "Unexpected base class!"); 2794 const CXXRecordDecl *Base = 2795 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2796 2797 // Classify this field. 2798 // 2799 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 2800 // single eightbyte, each is classified separately. Each eightbyte gets 2801 // initialized to class NO_CLASS. 2802 Class FieldLo, FieldHi; 2803 uint64_t Offset = 2804 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 2805 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 2806 Lo = merge(Lo, FieldLo); 2807 Hi = merge(Hi, FieldHi); 2808 if (Lo == Memory || Hi == Memory) { 2809 postMerge(Size, Lo, Hi); 2810 return; 2811 } 2812 } 2813 } 2814 2815 // Classify the fields one at a time, merging the results. 2816 unsigned idx = 0; 2817 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2818 i != e; ++i, ++idx) { 2819 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2820 bool BitField = i->isBitField(); 2821 2822 // Ignore padding bit-fields. 2823 if (BitField && i->isUnnamedBitfield()) 2824 continue; 2825 2826 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 2827 // four eightbytes, or it contains unaligned fields, it has class MEMORY. 2828 // 2829 // The only case a 256-bit wide vector could be used is when the struct 2830 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2831 // to work for sizes wider than 128, early check and fallback to memory. 2832 // 2833 if (Size > 128 && (Size != getContext().getTypeSize(i->getType()) || 2834 Size > getNativeVectorSizeForAVXABI(AVXLevel))) { 2835 Lo = Memory; 2836 postMerge(Size, Lo, Hi); 2837 return; 2838 } 2839 // Note, skip this test for bit-fields, see below. 2840 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 2841 Lo = Memory; 2842 postMerge(Size, Lo, Hi); 2843 return; 2844 } 2845 2846 // Classify this field. 2847 // 2848 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 2849 // exceeds a single eightbyte, each is classified 2850 // separately. Each eightbyte gets initialized to class 2851 // NO_CLASS. 2852 Class FieldLo, FieldHi; 2853 2854 // Bit-fields require special handling, they do not force the 2855 // structure to be passed in memory even if unaligned, and 2856 // therefore they can straddle an eightbyte. 2857 if (BitField) { 2858 assert(!i->isUnnamedBitfield()); 2859 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2860 uint64_t Size = i->getBitWidthValue(getContext()); 2861 2862 uint64_t EB_Lo = Offset / 64; 2863 uint64_t EB_Hi = (Offset + Size - 1) / 64; 2864 2865 if (EB_Lo) { 2866 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 2867 FieldLo = NoClass; 2868 FieldHi = Integer; 2869 } else { 2870 FieldLo = Integer; 2871 FieldHi = EB_Hi ? Integer : NoClass; 2872 } 2873 } else 2874 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 2875 Lo = merge(Lo, FieldLo); 2876 Hi = merge(Hi, FieldHi); 2877 if (Lo == Memory || Hi == Memory) 2878 break; 2879 } 2880 2881 postMerge(Size, Lo, Hi); 2882 } 2883 } 2884 2885 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 2886 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2887 // place naturally. 2888 if (!isAggregateTypeForABI(Ty)) { 2889 // Treat an enum type as its underlying type. 2890 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2891 Ty = EnumTy->getDecl()->getIntegerType(); 2892 2893 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 2894 : ABIArgInfo::getDirect()); 2895 } 2896 2897 return getNaturalAlignIndirect(Ty); 2898 } 2899 2900 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 2901 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 2902 uint64_t Size = getContext().getTypeSize(VecTy); 2903 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); 2904 if (Size <= 64 || Size > LargestVector) 2905 return true; 2906 } 2907 2908 return false; 2909 } 2910 2911 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 2912 unsigned freeIntRegs) const { 2913 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2914 // place naturally. 2915 // 2916 // This assumption is optimistic, as there could be free registers available 2917 // when we need to pass this argument in memory, and LLVM could try to pass 2918 // the argument in the free register. This does not seem to happen currently, 2919 // but this code would be much safer if we could mark the argument with 2920 // 'onstack'. See PR12193. 2921 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) { 2922 // Treat an enum type as its underlying type. 2923 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2924 Ty = EnumTy->getDecl()->getIntegerType(); 2925 2926 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 2927 : ABIArgInfo::getDirect()); 2928 } 2929 2930 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 2931 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 2932 2933 // Compute the byval alignment. We specify the alignment of the byval in all 2934 // cases so that the mid-level optimizer knows the alignment of the byval. 2935 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 2936 2937 // Attempt to avoid passing indirect results using byval when possible. This 2938 // is important for good codegen. 2939 // 2940 // We do this by coercing the value into a scalar type which the backend can 2941 // handle naturally (i.e., without using byval). 2942 // 2943 // For simplicity, we currently only do this when we have exhausted all of the 2944 // free integer registers. Doing this when there are free integer registers 2945 // would require more care, as we would have to ensure that the coerced value 2946 // did not claim the unused register. That would require either reording the 2947 // arguments to the function (so that any subsequent inreg values came first), 2948 // or only doing this optimization when there were no following arguments that 2949 // might be inreg. 2950 // 2951 // We currently expect it to be rare (particularly in well written code) for 2952 // arguments to be passed on the stack when there are still free integer 2953 // registers available (this would typically imply large structs being passed 2954 // by value), so this seems like a fair tradeoff for now. 2955 // 2956 // We can revisit this if the backend grows support for 'onstack' parameter 2957 // attributes. See PR12193. 2958 if (freeIntRegs == 0) { 2959 uint64_t Size = getContext().getTypeSize(Ty); 2960 2961 // If this type fits in an eightbyte, coerce it into the matching integral 2962 // type, which will end up on the stack (with alignment 8). 2963 if (Align == 8 && Size <= 64) 2964 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 2965 Size)); 2966 } 2967 2968 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); 2969 } 2970 2971 /// The ABI specifies that a value should be passed in a full vector XMM/YMM 2972 /// register. Pick an LLVM IR type that will be passed as a vector register. 2973 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 2974 // Wrapper structs/arrays that only contain vectors are passed just like 2975 // vectors; strip them off if present. 2976 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) 2977 Ty = QualType(InnerTy, 0); 2978 2979 llvm::Type *IRType = CGT.ConvertType(Ty); 2980 if (isa<llvm::VectorType>(IRType) || 2981 IRType->getTypeID() == llvm::Type::FP128TyID) 2982 return IRType; 2983 2984 // We couldn't find the preferred IR vector type for 'Ty'. 2985 uint64_t Size = getContext().getTypeSize(Ty); 2986 assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!"); 2987 2988 // Return a LLVM IR vector type based on the size of 'Ty'. 2989 return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2990 Size / 64); 2991 } 2992 2993 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 2994 /// is known to either be off the end of the specified type or being in 2995 /// alignment padding. The user type specified is known to be at most 128 bits 2996 /// in size, and have passed through X86_64ABIInfo::classify with a successful 2997 /// classification that put one of the two halves in the INTEGER class. 2998 /// 2999 /// It is conservatively correct to return false. 3000 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 3001 unsigned EndBit, ASTContext &Context) { 3002 // If the bytes being queried are off the end of the type, there is no user 3003 // data hiding here. This handles analysis of builtins, vectors and other 3004 // types that don't contain interesting padding. 3005 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 3006 if (TySize <= StartBit) 3007 return true; 3008 3009 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 3010 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 3011 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 3012 3013 // Check each element to see if the element overlaps with the queried range. 3014 for (unsigned i = 0; i != NumElts; ++i) { 3015 // If the element is after the span we care about, then we're done.. 3016 unsigned EltOffset = i*EltSize; 3017 if (EltOffset >= EndBit) break; 3018 3019 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 3020 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 3021 EndBit-EltOffset, Context)) 3022 return false; 3023 } 3024 // If it overlaps no elements, then it is safe to process as padding. 3025 return true; 3026 } 3027 3028 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3029 const RecordDecl *RD = RT->getDecl(); 3030 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3031 3032 // If this is a C++ record, check the bases first. 3033 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3034 for (const auto &I : CXXRD->bases()) { 3035 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3036 "Unexpected base class!"); 3037 const CXXRecordDecl *Base = 3038 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 3039 3040 // If the base is after the span we care about, ignore it. 3041 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 3042 if (BaseOffset >= EndBit) continue; 3043 3044 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 3045 if (!BitsContainNoUserData(I.getType(), BaseStart, 3046 EndBit-BaseOffset, Context)) 3047 return false; 3048 } 3049 } 3050 3051 // Verify that no field has data that overlaps the region of interest. Yes 3052 // this could be sped up a lot by being smarter about queried fields, 3053 // however we're only looking at structs up to 16 bytes, so we don't care 3054 // much. 3055 unsigned idx = 0; 3056 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3057 i != e; ++i, ++idx) { 3058 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 3059 3060 // If we found a field after the region we care about, then we're done. 3061 if (FieldOffset >= EndBit) break; 3062 3063 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 3064 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 3065 Context)) 3066 return false; 3067 } 3068 3069 // If nothing in this record overlapped the area of interest, then we're 3070 // clean. 3071 return true; 3072 } 3073 3074 return false; 3075 } 3076 3077 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a 3078 /// float member at the specified offset. For example, {int,{float}} has a 3079 /// float at offset 4. It is conservatively correct for this routine to return 3080 /// false. 3081 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, 3082 const llvm::DataLayout &TD) { 3083 // Base case if we find a float. 3084 if (IROffset == 0 && IRType->isFloatTy()) 3085 return true; 3086 3087 // If this is a struct, recurse into the field at the specified offset. 3088 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3089 const llvm::StructLayout *SL = TD.getStructLayout(STy); 3090 unsigned Elt = SL->getElementContainingOffset(IROffset); 3091 IROffset -= SL->getElementOffset(Elt); 3092 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); 3093 } 3094 3095 // If this is an array, recurse into the field at the specified offset. 3096 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3097 llvm::Type *EltTy = ATy->getElementType(); 3098 unsigned EltSize = TD.getTypeAllocSize(EltTy); 3099 IROffset -= IROffset/EltSize*EltSize; 3100 return ContainsFloatAtOffset(EltTy, IROffset, TD); 3101 } 3102 3103 return false; 3104 } 3105 3106 3107 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 3108 /// low 8 bytes of an XMM register, corresponding to the SSE class. 3109 llvm::Type *X86_64ABIInfo:: 3110 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3111 QualType SourceTy, unsigned SourceOffset) const { 3112 // The only three choices we have are either double, <2 x float>, or float. We 3113 // pass as float if the last 4 bytes is just padding. This happens for 3114 // structs that contain 3 floats. 3115 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, 3116 SourceOffset*8+64, getContext())) 3117 return llvm::Type::getFloatTy(getVMContext()); 3118 3119 // We want to pass as <2 x float> if the LLVM IR type contains a float at 3120 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the 3121 // case. 3122 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && 3123 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) 3124 return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2); 3125 3126 return llvm::Type::getDoubleTy(getVMContext()); 3127 } 3128 3129 3130 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 3131 /// an 8-byte GPR. This means that we either have a scalar or we are talking 3132 /// about the high or low part of an up-to-16-byte struct. This routine picks 3133 /// the best LLVM IR type to represent this, which may be i64 or may be anything 3134 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 3135 /// etc). 3136 /// 3137 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 3138 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 3139 /// the 8-byte value references. PrefType may be null. 3140 /// 3141 /// SourceTy is the source-level type for the entire argument. SourceOffset is 3142 /// an offset into this that we're processing (which is always either 0 or 8). 3143 /// 3144 llvm::Type *X86_64ABIInfo:: 3145 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3146 QualType SourceTy, unsigned SourceOffset) const { 3147 // If we're dealing with an un-offset LLVM IR type, then it means that we're 3148 // returning an 8-byte unit starting with it. See if we can safely use it. 3149 if (IROffset == 0) { 3150 // Pointers and int64's always fill the 8-byte unit. 3151 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 3152 IRType->isIntegerTy(64)) 3153 return IRType; 3154 3155 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 3156 // goodness in the source type is just tail padding. This is allowed to 3157 // kick in for struct {double,int} on the int, but not on 3158 // struct{double,int,int} because we wouldn't return the second int. We 3159 // have to do this analysis on the source type because we can't depend on 3160 // unions being lowered a specific way etc. 3161 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 3162 IRType->isIntegerTy(32) || 3163 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 3164 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 3165 cast<llvm::IntegerType>(IRType)->getBitWidth(); 3166 3167 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 3168 SourceOffset*8+64, getContext())) 3169 return IRType; 3170 } 3171 } 3172 3173 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3174 // If this is a struct, recurse into the field at the specified offset. 3175 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 3176 if (IROffset < SL->getSizeInBytes()) { 3177 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 3178 IROffset -= SL->getElementOffset(FieldIdx); 3179 3180 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 3181 SourceTy, SourceOffset); 3182 } 3183 } 3184 3185 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3186 llvm::Type *EltTy = ATy->getElementType(); 3187 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 3188 unsigned EltOffset = IROffset/EltSize*EltSize; 3189 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 3190 SourceOffset); 3191 } 3192 3193 // Okay, we don't have any better idea of what to pass, so we pass this in an 3194 // integer register that isn't too big to fit the rest of the struct. 3195 unsigned TySizeInBytes = 3196 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 3197 3198 assert(TySizeInBytes != SourceOffset && "Empty field?"); 3199 3200 // It is always safe to classify this as an integer type up to i64 that 3201 // isn't larger than the structure. 3202 return llvm::IntegerType::get(getVMContext(), 3203 std::min(TySizeInBytes-SourceOffset, 8U)*8); 3204 } 3205 3206 3207 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 3208 /// be used as elements of a two register pair to pass or return, return a 3209 /// first class aggregate to represent them. For example, if the low part of 3210 /// a by-value argument should be passed as i32* and the high part as float, 3211 /// return {i32*, float}. 3212 static llvm::Type * 3213 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 3214 const llvm::DataLayout &TD) { 3215 // In order to correctly satisfy the ABI, we need to the high part to start 3216 // at offset 8. If the high and low parts we inferred are both 4-byte types 3217 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 3218 // the second element at offset 8. Check for this: 3219 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 3220 unsigned HiAlign = TD.getABITypeAlignment(Hi); 3221 unsigned HiStart = llvm::alignTo(LoSize, HiAlign); 3222 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 3223 3224 // To handle this, we have to increase the size of the low part so that the 3225 // second element will start at an 8 byte offset. We can't increase the size 3226 // of the second element because it might make us access off the end of the 3227 // struct. 3228 if (HiStart != 8) { 3229 // There are usually two sorts of types the ABI generation code can produce 3230 // for the low part of a pair that aren't 8 bytes in size: float or 3231 // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and 3232 // NaCl). 3233 // Promote these to a larger type. 3234 if (Lo->isFloatTy()) 3235 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 3236 else { 3237 assert((Lo->isIntegerTy() || Lo->isPointerTy()) 3238 && "Invalid/unknown lo type"); 3239 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 3240 } 3241 } 3242 3243 llvm::StructType *Result = llvm::StructType::get(Lo, Hi); 3244 3245 // Verify that the second element is at an 8-byte offset. 3246 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 3247 "Invalid x86-64 argument pair!"); 3248 return Result; 3249 } 3250 3251 ABIArgInfo X86_64ABIInfo:: 3252 classifyReturnType(QualType RetTy) const { 3253 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 3254 // classification algorithm. 3255 X86_64ABIInfo::Class Lo, Hi; 3256 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 3257 3258 // Check some invariants. 3259 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3260 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3261 3262 llvm::Type *ResType = nullptr; 3263 switch (Lo) { 3264 case NoClass: 3265 if (Hi == NoClass) 3266 return ABIArgInfo::getIgnore(); 3267 // If the low part is just padding, it takes no register, leave ResType 3268 // null. 3269 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3270 "Unknown missing lo part"); 3271 break; 3272 3273 case SSEUp: 3274 case X87Up: 3275 llvm_unreachable("Invalid classification for lo word."); 3276 3277 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 3278 // hidden argument. 3279 case Memory: 3280 return getIndirectReturnResult(RetTy); 3281 3282 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 3283 // available register of the sequence %rax, %rdx is used. 3284 case Integer: 3285 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3286 3287 // If we have a sign or zero extended integer, make sure to return Extend 3288 // so that the parameter gets the right LLVM IR attributes. 3289 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3290 // Treat an enum type as its underlying type. 3291 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3292 RetTy = EnumTy->getDecl()->getIntegerType(); 3293 3294 if (RetTy->isIntegralOrEnumerationType() && 3295 RetTy->isPromotableIntegerType()) 3296 return ABIArgInfo::getExtend(RetTy); 3297 } 3298 break; 3299 3300 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 3301 // available SSE register of the sequence %xmm0, %xmm1 is used. 3302 case SSE: 3303 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3304 break; 3305 3306 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 3307 // returned on the X87 stack in %st0 as 80-bit x87 number. 3308 case X87: 3309 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 3310 break; 3311 3312 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 3313 // part of the value is returned in %st0 and the imaginary part in 3314 // %st1. 3315 case ComplexX87: 3316 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 3317 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 3318 llvm::Type::getX86_FP80Ty(getVMContext())); 3319 break; 3320 } 3321 3322 llvm::Type *HighPart = nullptr; 3323 switch (Hi) { 3324 // Memory was handled previously and X87 should 3325 // never occur as a hi class. 3326 case Memory: 3327 case X87: 3328 llvm_unreachable("Invalid classification for hi word."); 3329 3330 case ComplexX87: // Previously handled. 3331 case NoClass: 3332 break; 3333 3334 case Integer: 3335 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3336 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3337 return ABIArgInfo::getDirect(HighPart, 8); 3338 break; 3339 case SSE: 3340 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3341 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3342 return ABIArgInfo::getDirect(HighPart, 8); 3343 break; 3344 3345 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 3346 // is passed in the next available eightbyte chunk if the last used 3347 // vector register. 3348 // 3349 // SSEUP should always be preceded by SSE, just widen. 3350 case SSEUp: 3351 assert(Lo == SSE && "Unexpected SSEUp classification."); 3352 ResType = GetByteVectorType(RetTy); 3353 break; 3354 3355 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 3356 // returned together with the previous X87 value in %st0. 3357 case X87Up: 3358 // If X87Up is preceded by X87, we don't need to do 3359 // anything. However, in some cases with unions it may not be 3360 // preceded by X87. In such situations we follow gcc and pass the 3361 // extra bits in an SSE reg. 3362 if (Lo != X87) { 3363 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3364 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3365 return ABIArgInfo::getDirect(HighPart, 8); 3366 } 3367 break; 3368 } 3369 3370 // If a high part was specified, merge it together with the low part. It is 3371 // known to pass in the high eightbyte of the result. We do this by forming a 3372 // first class struct aggregate with the high and low part: {low, high} 3373 if (HighPart) 3374 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3375 3376 return ABIArgInfo::getDirect(ResType); 3377 } 3378 3379 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 3380 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 3381 bool isNamedArg) 3382 const 3383 { 3384 Ty = useFirstFieldIfTransparentUnion(Ty); 3385 3386 X86_64ABIInfo::Class Lo, Hi; 3387 classify(Ty, 0, Lo, Hi, isNamedArg); 3388 3389 // Check some invariants. 3390 // FIXME: Enforce these by construction. 3391 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3392 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3393 3394 neededInt = 0; 3395 neededSSE = 0; 3396 llvm::Type *ResType = nullptr; 3397 switch (Lo) { 3398 case NoClass: 3399 if (Hi == NoClass) 3400 return ABIArgInfo::getIgnore(); 3401 // If the low part is just padding, it takes no register, leave ResType 3402 // null. 3403 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3404 "Unknown missing lo part"); 3405 break; 3406 3407 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 3408 // on the stack. 3409 case Memory: 3410 3411 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 3412 // COMPLEX_X87, it is passed in memory. 3413 case X87: 3414 case ComplexX87: 3415 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 3416 ++neededInt; 3417 return getIndirectResult(Ty, freeIntRegs); 3418 3419 case SSEUp: 3420 case X87Up: 3421 llvm_unreachable("Invalid classification for lo word."); 3422 3423 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 3424 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 3425 // and %r9 is used. 3426 case Integer: 3427 ++neededInt; 3428 3429 // Pick an 8-byte type based on the preferred type. 3430 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 3431 3432 // If we have a sign or zero extended integer, make sure to return Extend 3433 // so that the parameter gets the right LLVM IR attributes. 3434 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3435 // Treat an enum type as its underlying type. 3436 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3437 Ty = EnumTy->getDecl()->getIntegerType(); 3438 3439 if (Ty->isIntegralOrEnumerationType() && 3440 Ty->isPromotableIntegerType()) 3441 return ABIArgInfo::getExtend(Ty); 3442 } 3443 3444 break; 3445 3446 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 3447 // available SSE register is used, the registers are taken in the 3448 // order from %xmm0 to %xmm7. 3449 case SSE: { 3450 llvm::Type *IRType = CGT.ConvertType(Ty); 3451 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 3452 ++neededSSE; 3453 break; 3454 } 3455 } 3456 3457 llvm::Type *HighPart = nullptr; 3458 switch (Hi) { 3459 // Memory was handled previously, ComplexX87 and X87 should 3460 // never occur as hi classes, and X87Up must be preceded by X87, 3461 // which is passed in memory. 3462 case Memory: 3463 case X87: 3464 case ComplexX87: 3465 llvm_unreachable("Invalid classification for hi word."); 3466 3467 case NoClass: break; 3468 3469 case Integer: 3470 ++neededInt; 3471 // Pick an 8-byte type based on the preferred type. 3472 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3473 3474 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3475 return ABIArgInfo::getDirect(HighPart, 8); 3476 break; 3477 3478 // X87Up generally doesn't occur here (long double is passed in 3479 // memory), except in situations involving unions. 3480 case X87Up: 3481 case SSE: 3482 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3483 3484 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3485 return ABIArgInfo::getDirect(HighPart, 8); 3486 3487 ++neededSSE; 3488 break; 3489 3490 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 3491 // eightbyte is passed in the upper half of the last used SSE 3492 // register. This only happens when 128-bit vectors are passed. 3493 case SSEUp: 3494 assert(Lo == SSE && "Unexpected SSEUp classification"); 3495 ResType = GetByteVectorType(Ty); 3496 break; 3497 } 3498 3499 // If a high part was specified, merge it together with the low part. It is 3500 // known to pass in the high eightbyte of the result. We do this by forming a 3501 // first class struct aggregate with the high and low part: {low, high} 3502 if (HighPart) 3503 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3504 3505 return ABIArgInfo::getDirect(ResType); 3506 } 3507 3508 ABIArgInfo 3509 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 3510 unsigned &NeededSSE) const { 3511 auto RT = Ty->getAs<RecordType>(); 3512 assert(RT && "classifyRegCallStructType only valid with struct types"); 3513 3514 if (RT->getDecl()->hasFlexibleArrayMember()) 3515 return getIndirectReturnResult(Ty); 3516 3517 // Sum up bases 3518 if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 3519 if (CXXRD->isDynamicClass()) { 3520 NeededInt = NeededSSE = 0; 3521 return getIndirectReturnResult(Ty); 3522 } 3523 3524 for (const auto &I : CXXRD->bases()) 3525 if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE) 3526 .isIndirect()) { 3527 NeededInt = NeededSSE = 0; 3528 return getIndirectReturnResult(Ty); 3529 } 3530 } 3531 3532 // Sum up members 3533 for (const auto *FD : RT->getDecl()->fields()) { 3534 if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) { 3535 if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE) 3536 .isIndirect()) { 3537 NeededInt = NeededSSE = 0; 3538 return getIndirectReturnResult(Ty); 3539 } 3540 } else { 3541 unsigned LocalNeededInt, LocalNeededSSE; 3542 if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt, 3543 LocalNeededSSE, true) 3544 .isIndirect()) { 3545 NeededInt = NeededSSE = 0; 3546 return getIndirectReturnResult(Ty); 3547 } 3548 NeededInt += LocalNeededInt; 3549 NeededSSE += LocalNeededSSE; 3550 } 3551 } 3552 3553 return ABIArgInfo::getDirect(); 3554 } 3555 3556 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty, 3557 unsigned &NeededInt, 3558 unsigned &NeededSSE) const { 3559 3560 NeededInt = 0; 3561 NeededSSE = 0; 3562 3563 return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE); 3564 } 3565 3566 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3567 3568 const unsigned CallingConv = FI.getCallingConvention(); 3569 // It is possible to force Win64 calling convention on any x86_64 target by 3570 // using __attribute__((ms_abi)). In such case to correctly emit Win64 3571 // compatible code delegate this call to WinX86_64ABIInfo::computeInfo. 3572 if (CallingConv == llvm::CallingConv::Win64) { 3573 WinX86_64ABIInfo Win64ABIInfo(CGT); 3574 Win64ABIInfo.computeInfo(FI); 3575 return; 3576 } 3577 3578 bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall; 3579 3580 // Keep track of the number of assigned registers. 3581 unsigned FreeIntRegs = IsRegCall ? 11 : 6; 3582 unsigned FreeSSERegs = IsRegCall ? 16 : 8; 3583 unsigned NeededInt, NeededSSE; 3584 3585 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 3586 if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() && 3587 !FI.getReturnType()->getTypePtr()->isUnionType()) { 3588 FI.getReturnInfo() = 3589 classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE); 3590 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3591 FreeIntRegs -= NeededInt; 3592 FreeSSERegs -= NeededSSE; 3593 } else { 3594 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3595 } 3596 } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>()) { 3597 // Complex Long Double Type is passed in Memory when Regcall 3598 // calling convention is used. 3599 const ComplexType *CT = FI.getReturnType()->getAs<ComplexType>(); 3600 if (getContext().getCanonicalType(CT->getElementType()) == 3601 getContext().LongDoubleTy) 3602 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3603 } else 3604 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3605 } 3606 3607 // If the return value is indirect, then the hidden argument is consuming one 3608 // integer register. 3609 if (FI.getReturnInfo().isIndirect()) 3610 --FreeIntRegs; 3611 3612 // The chain argument effectively gives us another free register. 3613 if (FI.isChainCall()) 3614 ++FreeIntRegs; 3615 3616 unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 3617 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 3618 // get assigned (in left-to-right order) for passing as follows... 3619 unsigned ArgNo = 0; 3620 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3621 it != ie; ++it, ++ArgNo) { 3622 bool IsNamedArg = ArgNo < NumRequiredArgs; 3623 3624 if (IsRegCall && it->type->isStructureOrClassType()) 3625 it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE); 3626 else 3627 it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt, 3628 NeededSSE, IsNamedArg); 3629 3630 // AMD64-ABI 3.2.3p3: If there are no registers available for any 3631 // eightbyte of an argument, the whole argument is passed on the 3632 // stack. If registers have already been assigned for some 3633 // eightbytes of such an argument, the assignments get reverted. 3634 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3635 FreeIntRegs -= NeededInt; 3636 FreeSSERegs -= NeededSSE; 3637 } else { 3638 it->info = getIndirectResult(it->type, FreeIntRegs); 3639 } 3640 } 3641 } 3642 3643 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, 3644 Address VAListAddr, QualType Ty) { 3645 Address overflow_arg_area_p = CGF.Builder.CreateStructGEP( 3646 VAListAddr, 2, CharUnits::fromQuantity(8), "overflow_arg_area_p"); 3647 llvm::Value *overflow_arg_area = 3648 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 3649 3650 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 3651 // byte boundary if alignment needed by type exceeds 8 byte boundary. 3652 // It isn't stated explicitly in the standard, but in practice we use 3653 // alignment greater than 16 where necessary. 3654 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 3655 if (Align > CharUnits::fromQuantity(8)) { 3656 overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, 3657 Align); 3658 } 3659 3660 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 3661 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3662 llvm::Value *Res = 3663 CGF.Builder.CreateBitCast(overflow_arg_area, 3664 llvm::PointerType::getUnqual(LTy)); 3665 3666 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 3667 // l->overflow_arg_area + sizeof(type). 3668 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 3669 // an 8 byte boundary. 3670 3671 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 3672 llvm::Value *Offset = 3673 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 3674 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 3675 "overflow_arg_area.next"); 3676 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 3677 3678 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 3679 return Address(Res, Align); 3680 } 3681 3682 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3683 QualType Ty) const { 3684 // Assume that va_list type is correct; should be pointer to LLVM type: 3685 // struct { 3686 // i32 gp_offset; 3687 // i32 fp_offset; 3688 // i8* overflow_arg_area; 3689 // i8* reg_save_area; 3690 // }; 3691 unsigned neededInt, neededSSE; 3692 3693 Ty = getContext().getCanonicalType(Ty); 3694 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 3695 /*isNamedArg*/false); 3696 3697 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 3698 // in the registers. If not go to step 7. 3699 if (!neededInt && !neededSSE) 3700 return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3701 3702 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 3703 // general purpose registers needed to pass type and num_fp to hold 3704 // the number of floating point registers needed. 3705 3706 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 3707 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 3708 // l->fp_offset > 304 - num_fp * 16 go to step 7. 3709 // 3710 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 3711 // register save space). 3712 3713 llvm::Value *InRegs = nullptr; 3714 Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); 3715 llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; 3716 if (neededInt) { 3717 gp_offset_p = 3718 CGF.Builder.CreateStructGEP(VAListAddr, 0, CharUnits::Zero(), 3719 "gp_offset_p"); 3720 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 3721 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 3722 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 3723 } 3724 3725 if (neededSSE) { 3726 fp_offset_p = 3727 CGF.Builder.CreateStructGEP(VAListAddr, 1, CharUnits::fromQuantity(4), 3728 "fp_offset_p"); 3729 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 3730 llvm::Value *FitsInFP = 3731 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 3732 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 3733 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 3734 } 3735 3736 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 3737 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 3738 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 3739 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 3740 3741 // Emit code to load the value if it was passed in registers. 3742 3743 CGF.EmitBlock(InRegBlock); 3744 3745 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 3746 // an offset of l->gp_offset and/or l->fp_offset. This may require 3747 // copying to a temporary location in case the parameter is passed 3748 // in different register classes or requires an alignment greater 3749 // than 8 for general purpose registers and 16 for XMM registers. 3750 // 3751 // FIXME: This really results in shameful code when we end up needing to 3752 // collect arguments from different places; often what should result in a 3753 // simple assembling of a structure from scattered addresses has many more 3754 // loads than necessary. Can we clean this up? 3755 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3756 llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( 3757 CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(16)), 3758 "reg_save_area"); 3759 3760 Address RegAddr = Address::invalid(); 3761 if (neededInt && neededSSE) { 3762 // FIXME: Cleanup. 3763 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 3764 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 3765 Address Tmp = CGF.CreateMemTemp(Ty); 3766 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3767 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 3768 llvm::Type *TyLo = ST->getElementType(0); 3769 llvm::Type *TyHi = ST->getElementType(1); 3770 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 3771 "Unexpected ABI info for mixed regs"); 3772 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 3773 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 3774 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset); 3775 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset); 3776 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 3777 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 3778 3779 // Copy the first element. 3780 // FIXME: Our choice of alignment here and below is probably pessimistic. 3781 llvm::Value *V = CGF.Builder.CreateAlignedLoad( 3782 TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo), 3783 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo))); 3784 CGF.Builder.CreateStore(V, 3785 CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero())); 3786 3787 // Copy the second element. 3788 V = CGF.Builder.CreateAlignedLoad( 3789 TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi), 3790 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi))); 3791 CharUnits Offset = CharUnits::fromQuantity( 3792 getDataLayout().getStructLayout(ST)->getElementOffset(1)); 3793 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1, Offset)); 3794 3795 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3796 } else if (neededInt) { 3797 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset), 3798 CharUnits::fromQuantity(8)); 3799 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3800 3801 // Copy to a temporary if necessary to ensure the appropriate alignment. 3802 std::pair<CharUnits, CharUnits> SizeAlign = 3803 getContext().getTypeInfoInChars(Ty); 3804 uint64_t TySize = SizeAlign.first.getQuantity(); 3805 CharUnits TyAlign = SizeAlign.second; 3806 3807 // Copy into a temporary if the type is more aligned than the 3808 // register save area. 3809 if (TyAlign.getQuantity() > 8) { 3810 Address Tmp = CGF.CreateMemTemp(Ty); 3811 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); 3812 RegAddr = Tmp; 3813 } 3814 3815 } else if (neededSSE == 1) { 3816 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3817 CharUnits::fromQuantity(16)); 3818 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3819 } else { 3820 assert(neededSSE == 2 && "Invalid number of needed registers!"); 3821 // SSE registers are spaced 16 bytes apart in the register save 3822 // area, we need to collect the two eightbytes together. 3823 // The ABI isn't explicit about this, but it seems reasonable 3824 // to assume that the slots are 16-byte aligned, since the stack is 3825 // naturally 16-byte aligned and the prologue is expected to store 3826 // all the SSE registers to the RSA. 3827 Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3828 CharUnits::fromQuantity(16)); 3829 Address RegAddrHi = 3830 CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, 3831 CharUnits::fromQuantity(16)); 3832 llvm::Type *ST = AI.canHaveCoerceToType() 3833 ? AI.getCoerceToType() 3834 : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy); 3835 llvm::Value *V; 3836 Address Tmp = CGF.CreateMemTemp(Ty); 3837 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3838 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 3839 RegAddrLo, ST->getStructElementType(0))); 3840 CGF.Builder.CreateStore(V, 3841 CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero())); 3842 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 3843 RegAddrHi, ST->getStructElementType(1))); 3844 CGF.Builder.CreateStore(V, 3845 CGF.Builder.CreateStructGEP(Tmp, 1, CharUnits::fromQuantity(8))); 3846 3847 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3848 } 3849 3850 // AMD64-ABI 3.5.7p5: Step 5. Set: 3851 // l->gp_offset = l->gp_offset + num_gp * 8 3852 // l->fp_offset = l->fp_offset + num_fp * 16. 3853 if (neededInt) { 3854 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 3855 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 3856 gp_offset_p); 3857 } 3858 if (neededSSE) { 3859 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 3860 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 3861 fp_offset_p); 3862 } 3863 CGF.EmitBranch(ContBlock); 3864 3865 // Emit code to load the value if it was passed in memory. 3866 3867 CGF.EmitBlock(InMemBlock); 3868 Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3869 3870 // Return the appropriate result. 3871 3872 CGF.EmitBlock(ContBlock); 3873 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, 3874 "vaarg.addr"); 3875 return ResAddr; 3876 } 3877 3878 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 3879 QualType Ty) const { 3880 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 3881 CGF.getContext().getTypeInfoInChars(Ty), 3882 CharUnits::fromQuantity(8), 3883 /*allowHigherAlign*/ false); 3884 } 3885 3886 ABIArgInfo 3887 WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 3888 const ABIArgInfo ¤t) const { 3889 // Assumes vectorCall calling convention. 3890 const Type *Base = nullptr; 3891 uint64_t NumElts = 0; 3892 3893 if (!Ty->isBuiltinType() && !Ty->isVectorType() && 3894 isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) { 3895 FreeSSERegs -= NumElts; 3896 return getDirectX86Hva(); 3897 } 3898 return current; 3899 } 3900 3901 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 3902 bool IsReturnType, bool IsVectorCall, 3903 bool IsRegCall) const { 3904 3905 if (Ty->isVoidType()) 3906 return ABIArgInfo::getIgnore(); 3907 3908 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3909 Ty = EnumTy->getDecl()->getIntegerType(); 3910 3911 TypeInfo Info = getContext().getTypeInfo(Ty); 3912 uint64_t Width = Info.Width; 3913 CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); 3914 3915 const RecordType *RT = Ty->getAs<RecordType>(); 3916 if (RT) { 3917 if (!IsReturnType) { 3918 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 3919 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 3920 } 3921 3922 if (RT->getDecl()->hasFlexibleArrayMember()) 3923 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 3924 3925 } 3926 3927 const Type *Base = nullptr; 3928 uint64_t NumElts = 0; 3929 // vectorcall adds the concept of a homogenous vector aggregate, similar to 3930 // other targets. 3931 if ((IsVectorCall || IsRegCall) && 3932 isHomogeneousAggregate(Ty, Base, NumElts)) { 3933 if (IsRegCall) { 3934 if (FreeSSERegs >= NumElts) { 3935 FreeSSERegs -= NumElts; 3936 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 3937 return ABIArgInfo::getDirect(); 3938 return ABIArgInfo::getExpand(); 3939 } 3940 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3941 } else if (IsVectorCall) { 3942 if (FreeSSERegs >= NumElts && 3943 (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) { 3944 FreeSSERegs -= NumElts; 3945 return ABIArgInfo::getDirect(); 3946 } else if (IsReturnType) { 3947 return ABIArgInfo::getExpand(); 3948 } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) { 3949 // HVAs are delayed and reclassified in the 2nd step. 3950 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3951 } 3952 } 3953 } 3954 3955 if (Ty->isMemberPointerType()) { 3956 // If the member pointer is represented by an LLVM int or ptr, pass it 3957 // directly. 3958 llvm::Type *LLTy = CGT.ConvertType(Ty); 3959 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 3960 return ABIArgInfo::getDirect(); 3961 } 3962 3963 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { 3964 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 3965 // not 1, 2, 4, or 8 bytes, must be passed by reference." 3966 if (Width > 64 || !llvm::isPowerOf2_64(Width)) 3967 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 3968 3969 // Otherwise, coerce it to a small integer. 3970 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 3971 } 3972 3973 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 3974 switch (BT->getKind()) { 3975 case BuiltinType::Bool: 3976 // Bool type is always extended to the ABI, other builtin types are not 3977 // extended. 3978 return ABIArgInfo::getExtend(Ty); 3979 3980 case BuiltinType::LongDouble: 3981 // Mingw64 GCC uses the old 80 bit extended precision floating point 3982 // unit. It passes them indirectly through memory. 3983 if (IsMingw64) { 3984 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 3985 if (LDF == &llvm::APFloat::x87DoubleExtended()) 3986 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3987 } 3988 break; 3989 3990 case BuiltinType::Int128: 3991 case BuiltinType::UInt128: 3992 // If it's a parameter type, the normal ABI rule is that arguments larger 3993 // than 8 bytes are passed indirectly. GCC follows it. We follow it too, 3994 // even though it isn't particularly efficient. 3995 if (!IsReturnType) 3996 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3997 3998 // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that. 3999 // Clang matches them for compatibility. 4000 return ABIArgInfo::getDirect( 4001 llvm::VectorType::get(llvm::Type::getInt64Ty(getVMContext()), 2)); 4002 4003 default: 4004 break; 4005 } 4006 } 4007 4008 return ABIArgInfo::getDirect(); 4009 } 4010 4011 void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, 4012 unsigned FreeSSERegs, 4013 bool IsVectorCall, 4014 bool IsRegCall) const { 4015 unsigned Count = 0; 4016 for (auto &I : FI.arguments()) { 4017 // Vectorcall in x64 only permits the first 6 arguments to be passed 4018 // as XMM/YMM registers. 4019 if (Count < VectorcallMaxParamNumAsReg) 4020 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 4021 else { 4022 // Since these cannot be passed in registers, pretend no registers 4023 // are left. 4024 unsigned ZeroSSERegsAvail = 0; 4025 I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false, 4026 IsVectorCall, IsRegCall); 4027 } 4028 ++Count; 4029 } 4030 4031 for (auto &I : FI.arguments()) { 4032 I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info); 4033 } 4034 } 4035 4036 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 4037 bool IsVectorCall = 4038 FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall; 4039 bool IsRegCall = FI.getCallingConvention() == llvm::CallingConv::X86_RegCall; 4040 4041 unsigned FreeSSERegs = 0; 4042 if (IsVectorCall) { 4043 // We can use up to 4 SSE return registers with vectorcall. 4044 FreeSSERegs = 4; 4045 } else if (IsRegCall) { 4046 // RegCall gives us 16 SSE registers. 4047 FreeSSERegs = 16; 4048 } 4049 4050 if (!getCXXABI().classifyReturnType(FI)) 4051 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true, 4052 IsVectorCall, IsRegCall); 4053 4054 if (IsVectorCall) { 4055 // We can use up to 6 SSE register parameters with vectorcall. 4056 FreeSSERegs = 6; 4057 } else if (IsRegCall) { 4058 // RegCall gives us 16 SSE registers, we can reuse the return registers. 4059 FreeSSERegs = 16; 4060 } 4061 4062 if (IsVectorCall) { 4063 computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall); 4064 } else { 4065 for (auto &I : FI.arguments()) 4066 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 4067 } 4068 4069 } 4070 4071 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4072 QualType Ty) const { 4073 4074 bool IsIndirect = false; 4075 4076 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4077 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4078 if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) { 4079 uint64_t Width = getContext().getTypeSize(Ty); 4080 IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 4081 } 4082 4083 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 4084 CGF.getContext().getTypeInfoInChars(Ty), 4085 CharUnits::fromQuantity(8), 4086 /*allowHigherAlign*/ false); 4087 } 4088 4089 // PowerPC-32 4090 namespace { 4091 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. 4092 class PPC32_SVR4_ABIInfo : public DefaultABIInfo { 4093 bool IsSoftFloatABI; 4094 4095 CharUnits getParamTypeAlignment(QualType Ty) const; 4096 4097 public: 4098 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI) 4099 : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI) {} 4100 4101 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4102 QualType Ty) const override; 4103 }; 4104 4105 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { 4106 public: 4107 PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI) 4108 : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT, SoftFloatABI)) {} 4109 4110 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4111 // This is recovered from gcc output. 4112 return 1; // r1 is the dedicated stack pointer 4113 } 4114 4115 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4116 llvm::Value *Address) const override; 4117 }; 4118 } 4119 4120 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4121 // Complex types are passed just like their elements 4122 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4123 Ty = CTy->getElementType(); 4124 4125 if (Ty->isVectorType()) 4126 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 4127 : 4); 4128 4129 // For single-element float/vector structs, we consider the whole type 4130 // to have the same alignment requirements as its single element. 4131 const Type *AlignTy = nullptr; 4132 if (const Type *EltType = isSingleElementStruct(Ty, getContext())) { 4133 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4134 if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || 4135 (BT && BT->isFloatingPoint())) 4136 AlignTy = EltType; 4137 } 4138 4139 if (AlignTy) 4140 return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4); 4141 return CharUnits::fromQuantity(4); 4142 } 4143 4144 // TODO: this implementation is now likely redundant with 4145 // DefaultABIInfo::EmitVAArg. 4146 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList, 4147 QualType Ty) const { 4148 if (getTarget().getTriple().isOSDarwin()) { 4149 auto TI = getContext().getTypeInfoInChars(Ty); 4150 TI.second = getParamTypeAlignment(Ty); 4151 4152 CharUnits SlotSize = CharUnits::fromQuantity(4); 4153 return emitVoidPtrVAArg(CGF, VAList, Ty, 4154 classifyArgumentType(Ty).isIndirect(), TI, SlotSize, 4155 /*AllowHigherAlign=*/true); 4156 } 4157 4158 const unsigned OverflowLimit = 8; 4159 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4160 // TODO: Implement this. For now ignore. 4161 (void)CTy; 4162 return Address::invalid(); // FIXME? 4163 } 4164 4165 // struct __va_list_tag { 4166 // unsigned char gpr; 4167 // unsigned char fpr; 4168 // unsigned short reserved; 4169 // void *overflow_arg_area; 4170 // void *reg_save_area; 4171 // }; 4172 4173 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; 4174 bool isInt = 4175 Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType(); 4176 bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64; 4177 4178 // All aggregates are passed indirectly? That doesn't seem consistent 4179 // with the argument-lowering code. 4180 bool isIndirect = Ty->isAggregateType(); 4181 4182 CGBuilderTy &Builder = CGF.Builder; 4183 4184 // The calling convention either uses 1-2 GPRs or 1 FPR. 4185 Address NumRegsAddr = Address::invalid(); 4186 if (isInt || IsSoftFloatABI) { 4187 NumRegsAddr = Builder.CreateStructGEP(VAList, 0, CharUnits::Zero(), "gpr"); 4188 } else { 4189 NumRegsAddr = Builder.CreateStructGEP(VAList, 1, CharUnits::One(), "fpr"); 4190 } 4191 4192 llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs"); 4193 4194 // "Align" the register count when TY is i64. 4195 if (isI64 || (isF64 && IsSoftFloatABI)) { 4196 NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1)); 4197 NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U)); 4198 } 4199 4200 llvm::Value *CC = 4201 Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond"); 4202 4203 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); 4204 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); 4205 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 4206 4207 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); 4208 4209 llvm::Type *DirectTy = CGF.ConvertType(Ty); 4210 if (isIndirect) DirectTy = DirectTy->getPointerTo(0); 4211 4212 // Case 1: consume registers. 4213 Address RegAddr = Address::invalid(); 4214 { 4215 CGF.EmitBlock(UsingRegs); 4216 4217 Address RegSaveAreaPtr = 4218 Builder.CreateStructGEP(VAList, 4, CharUnits::fromQuantity(8)); 4219 RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr), 4220 CharUnits::fromQuantity(8)); 4221 assert(RegAddr.getElementType() == CGF.Int8Ty); 4222 4223 // Floating-point registers start after the general-purpose registers. 4224 if (!(isInt || IsSoftFloatABI)) { 4225 RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr, 4226 CharUnits::fromQuantity(32)); 4227 } 4228 4229 // Get the address of the saved value by scaling the number of 4230 // registers we've used by the number of 4231 CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8); 4232 llvm::Value *RegOffset = 4233 Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity())); 4234 RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty, 4235 RegAddr.getPointer(), RegOffset), 4236 RegAddr.getAlignment().alignmentOfArrayElement(RegSize)); 4237 RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy); 4238 4239 // Increase the used-register count. 4240 NumRegs = 4241 Builder.CreateAdd(NumRegs, 4242 Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1)); 4243 Builder.CreateStore(NumRegs, NumRegsAddr); 4244 4245 CGF.EmitBranch(Cont); 4246 } 4247 4248 // Case 2: consume space in the overflow area. 4249 Address MemAddr = Address::invalid(); 4250 { 4251 CGF.EmitBlock(UsingOverflow); 4252 4253 Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr); 4254 4255 // Everything in the overflow area is rounded up to a size of at least 4. 4256 CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4); 4257 4258 CharUnits Size; 4259 if (!isIndirect) { 4260 auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty); 4261 Size = TypeInfo.first.alignTo(OverflowAreaAlign); 4262 } else { 4263 Size = CGF.getPointerSize(); 4264 } 4265 4266 Address OverflowAreaAddr = 4267 Builder.CreateStructGEP(VAList, 3, CharUnits::fromQuantity(4)); 4268 Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), 4269 OverflowAreaAlign); 4270 // Round up address of argument to alignment 4271 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 4272 if (Align > OverflowAreaAlign) { 4273 llvm::Value *Ptr = OverflowArea.getPointer(); 4274 OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align), 4275 Align); 4276 } 4277 4278 MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy); 4279 4280 // Increase the overflow area. 4281 OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size); 4282 Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr); 4283 CGF.EmitBranch(Cont); 4284 } 4285 4286 CGF.EmitBlock(Cont); 4287 4288 // Merge the cases with a phi. 4289 Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow, 4290 "vaarg.addr"); 4291 4292 // Load the pointer if the argument was passed indirectly. 4293 if (isIndirect) { 4294 Result = Address(Builder.CreateLoad(Result, "aggr"), 4295 getContext().getTypeAlignInChars(Ty)); 4296 } 4297 4298 return Result; 4299 } 4300 4301 bool 4302 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4303 llvm::Value *Address) const { 4304 // This is calculated from the LLVM and GCC tables and verified 4305 // against gcc output. AFAIK all ABIs use the same encoding. 4306 4307 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4308 4309 llvm::IntegerType *i8 = CGF.Int8Ty; 4310 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4311 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4312 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4313 4314 // 0-31: r0-31, the 4-byte general-purpose registers 4315 AssignToArrayRange(Builder, Address, Four8, 0, 31); 4316 4317 // 32-63: fp0-31, the 8-byte floating-point registers 4318 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4319 4320 // 64-76 are various 4-byte special-purpose registers: 4321 // 64: mq 4322 // 65: lr 4323 // 66: ctr 4324 // 67: ap 4325 // 68-75 cr0-7 4326 // 76: xer 4327 AssignToArrayRange(Builder, Address, Four8, 64, 76); 4328 4329 // 77-108: v0-31, the 16-byte vector registers 4330 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4331 4332 // 109: vrsave 4333 // 110: vscr 4334 // 111: spe_acc 4335 // 112: spefscr 4336 // 113: sfp 4337 AssignToArrayRange(Builder, Address, Four8, 109, 113); 4338 4339 return false; 4340 } 4341 4342 // PowerPC-64 4343 4344 namespace { 4345 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 4346 class PPC64_SVR4_ABIInfo : public SwiftABIInfo { 4347 public: 4348 enum ABIKind { 4349 ELFv1 = 0, 4350 ELFv2 4351 }; 4352 4353 private: 4354 static const unsigned GPRBits = 64; 4355 ABIKind Kind; 4356 bool HasQPX; 4357 bool IsSoftFloatABI; 4358 4359 // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and 4360 // will be passed in a QPX register. 4361 bool IsQPXVectorTy(const Type *Ty) const { 4362 if (!HasQPX) 4363 return false; 4364 4365 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4366 unsigned NumElements = VT->getNumElements(); 4367 if (NumElements == 1) 4368 return false; 4369 4370 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) { 4371 if (getContext().getTypeSize(Ty) <= 256) 4372 return true; 4373 } else if (VT->getElementType()-> 4374 isSpecificBuiltinType(BuiltinType::Float)) { 4375 if (getContext().getTypeSize(Ty) <= 128) 4376 return true; 4377 } 4378 } 4379 4380 return false; 4381 } 4382 4383 bool IsQPXVectorTy(QualType Ty) const { 4384 return IsQPXVectorTy(Ty.getTypePtr()); 4385 } 4386 4387 public: 4388 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX, 4389 bool SoftFloatABI) 4390 : SwiftABIInfo(CGT), Kind(Kind), HasQPX(HasQPX), 4391 IsSoftFloatABI(SoftFloatABI) {} 4392 4393 bool isPromotableTypeForABI(QualType Ty) const; 4394 CharUnits getParamTypeAlignment(QualType Ty) const; 4395 4396 ABIArgInfo classifyReturnType(QualType RetTy) const; 4397 ABIArgInfo classifyArgumentType(QualType Ty) const; 4398 4399 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4400 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4401 uint64_t Members) const override; 4402 4403 // TODO: We can add more logic to computeInfo to improve performance. 4404 // Example: For aggregate arguments that fit in a register, we could 4405 // use getDirectInReg (as is done below for structs containing a single 4406 // floating-point value) to avoid pushing them to memory on function 4407 // entry. This would require changing the logic in PPCISelLowering 4408 // when lowering the parameters in the caller and args in the callee. 4409 void computeInfo(CGFunctionInfo &FI) const override { 4410 if (!getCXXABI().classifyReturnType(FI)) 4411 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4412 for (auto &I : FI.arguments()) { 4413 // We rely on the default argument classification for the most part. 4414 // One exception: An aggregate containing a single floating-point 4415 // or vector item must be passed in a register if one is available. 4416 const Type *T = isSingleElementStruct(I.type, getContext()); 4417 if (T) { 4418 const BuiltinType *BT = T->getAs<BuiltinType>(); 4419 if (IsQPXVectorTy(T) || 4420 (T->isVectorType() && getContext().getTypeSize(T) == 128) || 4421 (BT && BT->isFloatingPoint())) { 4422 QualType QT(T, 0); 4423 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 4424 continue; 4425 } 4426 } 4427 I.info = classifyArgumentType(I.type); 4428 } 4429 } 4430 4431 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4432 QualType Ty) const override; 4433 4434 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 4435 bool asReturnValue) const override { 4436 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 4437 } 4438 4439 bool isSwiftErrorInRegister() const override { 4440 return false; 4441 } 4442 }; 4443 4444 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 4445 4446 public: 4447 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 4448 PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX, 4449 bool SoftFloatABI) 4450 : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX, 4451 SoftFloatABI)) {} 4452 4453 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4454 // This is recovered from gcc output. 4455 return 1; // r1 is the dedicated stack pointer 4456 } 4457 4458 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4459 llvm::Value *Address) const override; 4460 }; 4461 4462 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 4463 public: 4464 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 4465 4466 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4467 // This is recovered from gcc output. 4468 return 1; // r1 is the dedicated stack pointer 4469 } 4470 4471 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4472 llvm::Value *Address) const override; 4473 }; 4474 4475 } 4476 4477 // Return true if the ABI requires Ty to be passed sign- or zero- 4478 // extended to 64 bits. 4479 bool 4480 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 4481 // Treat an enum type as its underlying type. 4482 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4483 Ty = EnumTy->getDecl()->getIntegerType(); 4484 4485 // Promotable integer types are required to be promoted by the ABI. 4486 if (Ty->isPromotableIntegerType()) 4487 return true; 4488 4489 // In addition to the usual promotable integer types, we also need to 4490 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 4491 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4492 switch (BT->getKind()) { 4493 case BuiltinType::Int: 4494 case BuiltinType::UInt: 4495 return true; 4496 default: 4497 break; 4498 } 4499 4500 return false; 4501 } 4502 4503 /// isAlignedParamType - Determine whether a type requires 16-byte or 4504 /// higher alignment in the parameter area. Always returns at least 8. 4505 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4506 // Complex types are passed just like their elements. 4507 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4508 Ty = CTy->getElementType(); 4509 4510 // Only vector types of size 16 bytes need alignment (larger types are 4511 // passed via reference, smaller types are not aligned). 4512 if (IsQPXVectorTy(Ty)) { 4513 if (getContext().getTypeSize(Ty) > 128) 4514 return CharUnits::fromQuantity(32); 4515 4516 return CharUnits::fromQuantity(16); 4517 } else if (Ty->isVectorType()) { 4518 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8); 4519 } 4520 4521 // For single-element float/vector structs, we consider the whole type 4522 // to have the same alignment requirements as its single element. 4523 const Type *AlignAsType = nullptr; 4524 const Type *EltType = isSingleElementStruct(Ty, getContext()); 4525 if (EltType) { 4526 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4527 if (IsQPXVectorTy(EltType) || (EltType->isVectorType() && 4528 getContext().getTypeSize(EltType) == 128) || 4529 (BT && BT->isFloatingPoint())) 4530 AlignAsType = EltType; 4531 } 4532 4533 // Likewise for ELFv2 homogeneous aggregates. 4534 const Type *Base = nullptr; 4535 uint64_t Members = 0; 4536 if (!AlignAsType && Kind == ELFv2 && 4537 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 4538 AlignAsType = Base; 4539 4540 // With special case aggregates, only vector base types need alignment. 4541 if (AlignAsType && IsQPXVectorTy(AlignAsType)) { 4542 if (getContext().getTypeSize(AlignAsType) > 128) 4543 return CharUnits::fromQuantity(32); 4544 4545 return CharUnits::fromQuantity(16); 4546 } else if (AlignAsType) { 4547 return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8); 4548 } 4549 4550 // Otherwise, we only need alignment for any aggregate type that 4551 // has an alignment requirement of >= 16 bytes. 4552 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { 4553 if (HasQPX && getContext().getTypeAlign(Ty) >= 256) 4554 return CharUnits::fromQuantity(32); 4555 return CharUnits::fromQuantity(16); 4556 } 4557 4558 return CharUnits::fromQuantity(8); 4559 } 4560 4561 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 4562 /// aggregate. Base is set to the base element type, and Members is set 4563 /// to the number of base elements. 4564 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 4565 uint64_t &Members) const { 4566 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 4567 uint64_t NElements = AT->getSize().getZExtValue(); 4568 if (NElements == 0) 4569 return false; 4570 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 4571 return false; 4572 Members *= NElements; 4573 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 4574 const RecordDecl *RD = RT->getDecl(); 4575 if (RD->hasFlexibleArrayMember()) 4576 return false; 4577 4578 Members = 0; 4579 4580 // If this is a C++ record, check the bases first. 4581 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 4582 for (const auto &I : CXXRD->bases()) { 4583 // Ignore empty records. 4584 if (isEmptyRecord(getContext(), I.getType(), true)) 4585 continue; 4586 4587 uint64_t FldMembers; 4588 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) 4589 return false; 4590 4591 Members += FldMembers; 4592 } 4593 } 4594 4595 for (const auto *FD : RD->fields()) { 4596 // Ignore (non-zero arrays of) empty records. 4597 QualType FT = FD->getType(); 4598 while (const ConstantArrayType *AT = 4599 getContext().getAsConstantArrayType(FT)) { 4600 if (AT->getSize().getZExtValue() == 0) 4601 return false; 4602 FT = AT->getElementType(); 4603 } 4604 if (isEmptyRecord(getContext(), FT, true)) 4605 continue; 4606 4607 // For compatibility with GCC, ignore empty bitfields in C++ mode. 4608 if (getContext().getLangOpts().CPlusPlus && 4609 FD->isZeroLengthBitField(getContext())) 4610 continue; 4611 4612 uint64_t FldMembers; 4613 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 4614 return false; 4615 4616 Members = (RD->isUnion() ? 4617 std::max(Members, FldMembers) : Members + FldMembers); 4618 } 4619 4620 if (!Base) 4621 return false; 4622 4623 // Ensure there is no padding. 4624 if (getContext().getTypeSize(Base) * Members != 4625 getContext().getTypeSize(Ty)) 4626 return false; 4627 } else { 4628 Members = 1; 4629 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 4630 Members = 2; 4631 Ty = CT->getElementType(); 4632 } 4633 4634 // Most ABIs only support float, double, and some vector type widths. 4635 if (!isHomogeneousAggregateBaseType(Ty)) 4636 return false; 4637 4638 // The base type must be the same for all members. Types that 4639 // agree in both total size and mode (float vs. vector) are 4640 // treated as being equivalent here. 4641 const Type *TyPtr = Ty.getTypePtr(); 4642 if (!Base) { 4643 Base = TyPtr; 4644 // If it's a non-power-of-2 vector, its size is already a power-of-2, 4645 // so make sure to widen it explicitly. 4646 if (const VectorType *VT = Base->getAs<VectorType>()) { 4647 QualType EltTy = VT->getElementType(); 4648 unsigned NumElements = 4649 getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy); 4650 Base = getContext() 4651 .getVectorType(EltTy, NumElements, VT->getVectorKind()) 4652 .getTypePtr(); 4653 } 4654 } 4655 4656 if (Base->isVectorType() != TyPtr->isVectorType() || 4657 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 4658 return false; 4659 } 4660 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); 4661 } 4662 4663 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 4664 // Homogeneous aggregates for ELFv2 must have base types of float, 4665 // double, long double, or 128-bit vectors. 4666 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4667 if (BT->getKind() == BuiltinType::Float || 4668 BT->getKind() == BuiltinType::Double || 4669 BT->getKind() == BuiltinType::LongDouble || 4670 (getContext().getTargetInfo().hasFloat128Type() && 4671 (BT->getKind() == BuiltinType::Float128))) { 4672 if (IsSoftFloatABI) 4673 return false; 4674 return true; 4675 } 4676 } 4677 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4678 if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty)) 4679 return true; 4680 } 4681 return false; 4682 } 4683 4684 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( 4685 const Type *Base, uint64_t Members) const { 4686 // Vector and fp128 types require one register, other floating point types 4687 // require one or two registers depending on their size. 4688 uint32_t NumRegs = 4689 ((getContext().getTargetInfo().hasFloat128Type() && 4690 Base->isFloat128Type()) || 4691 Base->isVectorType()) ? 1 4692 : (getContext().getTypeSize(Base) + 63) / 64; 4693 4694 // Homogeneous Aggregates may occupy at most 8 registers. 4695 return Members * NumRegs <= 8; 4696 } 4697 4698 ABIArgInfo 4699 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 4700 Ty = useFirstFieldIfTransparentUnion(Ty); 4701 4702 if (Ty->isAnyComplexType()) 4703 return ABIArgInfo::getDirect(); 4704 4705 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 4706 // or via reference (larger than 16 bytes). 4707 if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) { 4708 uint64_t Size = getContext().getTypeSize(Ty); 4709 if (Size > 128) 4710 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4711 else if (Size < 128) { 4712 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 4713 return ABIArgInfo::getDirect(CoerceTy); 4714 } 4715 } 4716 4717 if (isAggregateTypeForABI(Ty)) { 4718 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 4719 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4720 4721 uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity(); 4722 uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 4723 4724 // ELFv2 homogeneous aggregates are passed as array types. 4725 const Type *Base = nullptr; 4726 uint64_t Members = 0; 4727 if (Kind == ELFv2 && 4728 isHomogeneousAggregate(Ty, Base, Members)) { 4729 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 4730 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 4731 return ABIArgInfo::getDirect(CoerceTy); 4732 } 4733 4734 // If an aggregate may end up fully in registers, we do not 4735 // use the ByVal method, but pass the aggregate as array. 4736 // This is usually beneficial since we avoid forcing the 4737 // back-end to store the argument to memory. 4738 uint64_t Bits = getContext().getTypeSize(Ty); 4739 if (Bits > 0 && Bits <= 8 * GPRBits) { 4740 llvm::Type *CoerceTy; 4741 4742 // Types up to 8 bytes are passed as integer type (which will be 4743 // properly aligned in the argument save area doubleword). 4744 if (Bits <= GPRBits) 4745 CoerceTy = 4746 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 4747 // Larger types are passed as arrays, with the base type selected 4748 // according to the required alignment in the save area. 4749 else { 4750 uint64_t RegBits = ABIAlign * 8; 4751 uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits; 4752 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 4753 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 4754 } 4755 4756 return ABIArgInfo::getDirect(CoerceTy); 4757 } 4758 4759 // All other aggregates are passed ByVal. 4760 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 4761 /*ByVal=*/true, 4762 /*Realign=*/TyAlign > ABIAlign); 4763 } 4764 4765 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 4766 : ABIArgInfo::getDirect()); 4767 } 4768 4769 ABIArgInfo 4770 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 4771 if (RetTy->isVoidType()) 4772 return ABIArgInfo::getIgnore(); 4773 4774 if (RetTy->isAnyComplexType()) 4775 return ABIArgInfo::getDirect(); 4776 4777 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 4778 // or via reference (larger than 16 bytes). 4779 if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) { 4780 uint64_t Size = getContext().getTypeSize(RetTy); 4781 if (Size > 128) 4782 return getNaturalAlignIndirect(RetTy); 4783 else if (Size < 128) { 4784 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 4785 return ABIArgInfo::getDirect(CoerceTy); 4786 } 4787 } 4788 4789 if (isAggregateTypeForABI(RetTy)) { 4790 // ELFv2 homogeneous aggregates are returned as array types. 4791 const Type *Base = nullptr; 4792 uint64_t Members = 0; 4793 if (Kind == ELFv2 && 4794 isHomogeneousAggregate(RetTy, Base, Members)) { 4795 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 4796 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 4797 return ABIArgInfo::getDirect(CoerceTy); 4798 } 4799 4800 // ELFv2 small aggregates are returned in up to two registers. 4801 uint64_t Bits = getContext().getTypeSize(RetTy); 4802 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 4803 if (Bits == 0) 4804 return ABIArgInfo::getIgnore(); 4805 4806 llvm::Type *CoerceTy; 4807 if (Bits > GPRBits) { 4808 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 4809 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy); 4810 } else 4811 CoerceTy = 4812 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 4813 return ABIArgInfo::getDirect(CoerceTy); 4814 } 4815 4816 // All other aggregates are returned indirectly. 4817 return getNaturalAlignIndirect(RetTy); 4818 } 4819 4820 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 4821 : ABIArgInfo::getDirect()); 4822 } 4823 4824 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 4825 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4826 QualType Ty) const { 4827 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 4828 TypeInfo.second = getParamTypeAlignment(Ty); 4829 4830 CharUnits SlotSize = CharUnits::fromQuantity(8); 4831 4832 // If we have a complex type and the base type is smaller than 8 bytes, 4833 // the ABI calls for the real and imaginary parts to be right-adjusted 4834 // in separate doublewords. However, Clang expects us to produce a 4835 // pointer to a structure with the two parts packed tightly. So generate 4836 // loads of the real and imaginary parts relative to the va_list pointer, 4837 // and store them to a temporary structure. 4838 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4839 CharUnits EltSize = TypeInfo.first / 2; 4840 if (EltSize < SlotSize) { 4841 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, 4842 SlotSize * 2, SlotSize, 4843 SlotSize, /*AllowHigher*/ true); 4844 4845 Address RealAddr = Addr; 4846 Address ImagAddr = RealAddr; 4847 if (CGF.CGM.getDataLayout().isBigEndian()) { 4848 RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, 4849 SlotSize - EltSize); 4850 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr, 4851 2 * SlotSize - EltSize); 4852 } else { 4853 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize); 4854 } 4855 4856 llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType()); 4857 RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy); 4858 ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy); 4859 llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal"); 4860 llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag"); 4861 4862 Address Temp = CGF.CreateMemTemp(Ty, "vacplx"); 4863 CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty), 4864 /*init*/ true); 4865 return Temp; 4866 } 4867 } 4868 4869 // Otherwise, just use the general rule. 4870 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 4871 TypeInfo, SlotSize, /*AllowHigher*/ true); 4872 } 4873 4874 static bool 4875 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4876 llvm::Value *Address) { 4877 // This is calculated from the LLVM and GCC tables and verified 4878 // against gcc output. AFAIK all ABIs use the same encoding. 4879 4880 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4881 4882 llvm::IntegerType *i8 = CGF.Int8Ty; 4883 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4884 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4885 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4886 4887 // 0-31: r0-31, the 8-byte general-purpose registers 4888 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 4889 4890 // 32-63: fp0-31, the 8-byte floating-point registers 4891 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4892 4893 // 64-67 are various 8-byte special-purpose registers: 4894 // 64: mq 4895 // 65: lr 4896 // 66: ctr 4897 // 67: ap 4898 AssignToArrayRange(Builder, Address, Eight8, 64, 67); 4899 4900 // 68-76 are various 4-byte special-purpose registers: 4901 // 68-75 cr0-7 4902 // 76: xer 4903 AssignToArrayRange(Builder, Address, Four8, 68, 76); 4904 4905 // 77-108: v0-31, the 16-byte vector registers 4906 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4907 4908 // 109: vrsave 4909 // 110: vscr 4910 // 111: spe_acc 4911 // 112: spefscr 4912 // 113: sfp 4913 // 114: tfhar 4914 // 115: tfiar 4915 // 116: texasr 4916 AssignToArrayRange(Builder, Address, Eight8, 109, 116); 4917 4918 return false; 4919 } 4920 4921 bool 4922 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 4923 CodeGen::CodeGenFunction &CGF, 4924 llvm::Value *Address) const { 4925 4926 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 4927 } 4928 4929 bool 4930 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4931 llvm::Value *Address) const { 4932 4933 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 4934 } 4935 4936 //===----------------------------------------------------------------------===// 4937 // AArch64 ABI Implementation 4938 //===----------------------------------------------------------------------===// 4939 4940 namespace { 4941 4942 class AArch64ABIInfo : public SwiftABIInfo { 4943 public: 4944 enum ABIKind { 4945 AAPCS = 0, 4946 DarwinPCS, 4947 Win64 4948 }; 4949 4950 private: 4951 ABIKind Kind; 4952 4953 public: 4954 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) 4955 : SwiftABIInfo(CGT), Kind(Kind) {} 4956 4957 private: 4958 ABIKind getABIKind() const { return Kind; } 4959 bool isDarwinPCS() const { return Kind == DarwinPCS; } 4960 4961 ABIArgInfo classifyReturnType(QualType RetTy) const; 4962 ABIArgInfo classifyArgumentType(QualType RetTy) const; 4963 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4964 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4965 uint64_t Members) const override; 4966 4967 bool isIllegalVectorType(QualType Ty) const; 4968 4969 void computeInfo(CGFunctionInfo &FI) const override { 4970 if (!::classifyReturnType(getCXXABI(), FI, *this)) 4971 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4972 4973 for (auto &it : FI.arguments()) 4974 it.info = classifyArgumentType(it.type); 4975 } 4976 4977 Address EmitDarwinVAArg(Address VAListAddr, QualType Ty, 4978 CodeGenFunction &CGF) const; 4979 4980 Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 4981 CodeGenFunction &CGF) const; 4982 4983 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4984 QualType Ty) const override { 4985 return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty) 4986 : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 4987 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 4988 } 4989 4990 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 4991 QualType Ty) const override; 4992 4993 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 4994 bool asReturnValue) const override { 4995 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 4996 } 4997 bool isSwiftErrorInRegister() const override { 4998 return true; 4999 } 5000 5001 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 5002 unsigned elts) const override; 5003 }; 5004 5005 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 5006 public: 5007 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 5008 : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {} 5009 5010 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 5011 return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue"; 5012 } 5013 5014 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5015 return 31; 5016 } 5017 5018 bool doesReturnSlotInterfereWithArgs() const override { return false; } 5019 5020 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5021 CodeGen::CodeGenModule &CGM) const override { 5022 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5023 if (!FD) 5024 return; 5025 llvm::Function *Fn = cast<llvm::Function>(GV); 5026 5027 auto Kind = CGM.getCodeGenOpts().getSignReturnAddress(); 5028 if (Kind != CodeGenOptions::SignReturnAddressScope::None) { 5029 Fn->addFnAttr("sign-return-address", 5030 Kind == CodeGenOptions::SignReturnAddressScope::All 5031 ? "all" 5032 : "non-leaf"); 5033 5034 auto Key = CGM.getCodeGenOpts().getSignReturnAddressKey(); 5035 Fn->addFnAttr("sign-return-address-key", 5036 Key == CodeGenOptions::SignReturnAddressKeyValue::AKey 5037 ? "a_key" 5038 : "b_key"); 5039 } 5040 5041 if (CGM.getCodeGenOpts().BranchTargetEnforcement) 5042 Fn->addFnAttr("branch-target-enforcement"); 5043 } 5044 }; 5045 5046 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo { 5047 public: 5048 WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K) 5049 : AArch64TargetCodeGenInfo(CGT, K) {} 5050 5051 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5052 CodeGen::CodeGenModule &CGM) const override; 5053 5054 void getDependentLibraryOption(llvm::StringRef Lib, 5055 llvm::SmallString<24> &Opt) const override { 5056 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5057 } 5058 5059 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5060 llvm::SmallString<32> &Opt) const override { 5061 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5062 } 5063 }; 5064 5065 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes( 5066 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 5067 AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 5068 if (GV->isDeclaration()) 5069 return; 5070 addStackProbeTargetAttributes(D, GV, CGM); 5071 } 5072 } 5073 5074 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const { 5075 Ty = useFirstFieldIfTransparentUnion(Ty); 5076 5077 // Handle illegal vector types here. 5078 if (isIllegalVectorType(Ty)) { 5079 uint64_t Size = getContext().getTypeSize(Ty); 5080 // Android promotes <2 x i8> to i16, not i32 5081 if (isAndroid() && (Size <= 16)) { 5082 llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext()); 5083 return ABIArgInfo::getDirect(ResType); 5084 } 5085 if (Size <= 32) { 5086 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 5087 return ABIArgInfo::getDirect(ResType); 5088 } 5089 if (Size == 64) { 5090 llvm::Type *ResType = 5091 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 5092 return ABIArgInfo::getDirect(ResType); 5093 } 5094 if (Size == 128) { 5095 llvm::Type *ResType = 5096 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 5097 return ABIArgInfo::getDirect(ResType); 5098 } 5099 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5100 } 5101 5102 if (!isAggregateTypeForABI(Ty)) { 5103 // Treat an enum type as its underlying type. 5104 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5105 Ty = EnumTy->getDecl()->getIntegerType(); 5106 5107 return (Ty->isPromotableIntegerType() && isDarwinPCS() 5108 ? ABIArgInfo::getExtend(Ty) 5109 : ABIArgInfo::getDirect()); 5110 } 5111 5112 // Structures with either a non-trivial destructor or a non-trivial 5113 // copy constructor are always indirect. 5114 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5115 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 5116 CGCXXABI::RAA_DirectInMemory); 5117 } 5118 5119 // Empty records are always ignored on Darwin, but actually passed in C++ mode 5120 // elsewhere for GNU compatibility. 5121 uint64_t Size = getContext().getTypeSize(Ty); 5122 bool IsEmpty = isEmptyRecord(getContext(), Ty, true); 5123 if (IsEmpty || Size == 0) { 5124 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 5125 return ABIArgInfo::getIgnore(); 5126 5127 // GNU C mode. The only argument that gets ignored is an empty one with size 5128 // 0. 5129 if (IsEmpty && Size == 0) 5130 return ABIArgInfo::getIgnore(); 5131 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5132 } 5133 5134 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 5135 const Type *Base = nullptr; 5136 uint64_t Members = 0; 5137 if (isHomogeneousAggregate(Ty, Base, Members)) { 5138 return ABIArgInfo::getDirect( 5139 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); 5140 } 5141 5142 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 5143 if (Size <= 128) { 5144 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5145 // same size and alignment. 5146 if (getTarget().isRenderScriptTarget()) { 5147 return coerceToIntArray(Ty, getContext(), getVMContext()); 5148 } 5149 unsigned Alignment; 5150 if (Kind == AArch64ABIInfo::AAPCS) { 5151 Alignment = getContext().getTypeUnadjustedAlign(Ty); 5152 Alignment = Alignment < 128 ? 64 : 128; 5153 } else { 5154 Alignment = getContext().getTypeAlign(Ty); 5155 } 5156 Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes 5157 5158 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5159 // For aggregates with 16-byte alignment, we use i128. 5160 if (Alignment < 128 && Size == 128) { 5161 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 5162 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 5163 } 5164 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 5165 } 5166 5167 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5168 } 5169 5170 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const { 5171 if (RetTy->isVoidType()) 5172 return ABIArgInfo::getIgnore(); 5173 5174 // Large vector types should be returned via memory. 5175 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 5176 return getNaturalAlignIndirect(RetTy); 5177 5178 if (!isAggregateTypeForABI(RetTy)) { 5179 // Treat an enum type as its underlying type. 5180 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5181 RetTy = EnumTy->getDecl()->getIntegerType(); 5182 5183 return (RetTy->isPromotableIntegerType() && isDarwinPCS() 5184 ? ABIArgInfo::getExtend(RetTy) 5185 : ABIArgInfo::getDirect()); 5186 } 5187 5188 uint64_t Size = getContext().getTypeSize(RetTy); 5189 if (isEmptyRecord(getContext(), RetTy, true) || Size == 0) 5190 return ABIArgInfo::getIgnore(); 5191 5192 const Type *Base = nullptr; 5193 uint64_t Members = 0; 5194 if (isHomogeneousAggregate(RetTy, Base, Members)) 5195 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 5196 return ABIArgInfo::getDirect(); 5197 5198 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 5199 if (Size <= 128) { 5200 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5201 // same size and alignment. 5202 if (getTarget().isRenderScriptTarget()) { 5203 return coerceToIntArray(RetTy, getContext(), getVMContext()); 5204 } 5205 unsigned Alignment = getContext().getTypeAlign(RetTy); 5206 Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes 5207 5208 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5209 // For aggregates with 16-byte alignment, we use i128. 5210 if (Alignment < 128 && Size == 128) { 5211 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 5212 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 5213 } 5214 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 5215 } 5216 5217 return getNaturalAlignIndirect(RetTy); 5218 } 5219 5220 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 5221 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 5222 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5223 // Check whether VT is legal. 5224 unsigned NumElements = VT->getNumElements(); 5225 uint64_t Size = getContext().getTypeSize(VT); 5226 // NumElements should be power of 2. 5227 if (!llvm::isPowerOf2_32(NumElements)) 5228 return true; 5229 return Size != 64 && (Size != 128 || NumElements == 1); 5230 } 5231 return false; 5232 } 5233 5234 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize, 5235 llvm::Type *eltTy, 5236 unsigned elts) const { 5237 if (!llvm::isPowerOf2_32(elts)) 5238 return false; 5239 if (totalSize.getQuantity() != 8 && 5240 (totalSize.getQuantity() != 16 || elts == 1)) 5241 return false; 5242 return true; 5243 } 5244 5245 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5246 // Homogeneous aggregates for AAPCS64 must have base types of a floating 5247 // point type or a short-vector type. This is the same as the 32-bit ABI, 5248 // but with the difference that any floating-point type is allowed, 5249 // including __fp16. 5250 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5251 if (BT->isFloatingPoint()) 5252 return true; 5253 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 5254 unsigned VecSize = getContext().getTypeSize(VT); 5255 if (VecSize == 64 || VecSize == 128) 5256 return true; 5257 } 5258 return false; 5259 } 5260 5261 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 5262 uint64_t Members) const { 5263 return Members <= 4; 5264 } 5265 5266 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, 5267 QualType Ty, 5268 CodeGenFunction &CGF) const { 5269 ABIArgInfo AI = classifyArgumentType(Ty); 5270 bool IsIndirect = AI.isIndirect(); 5271 5272 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5273 if (IsIndirect) 5274 BaseTy = llvm::PointerType::getUnqual(BaseTy); 5275 else if (AI.getCoerceToType()) 5276 BaseTy = AI.getCoerceToType(); 5277 5278 unsigned NumRegs = 1; 5279 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { 5280 BaseTy = ArrTy->getElementType(); 5281 NumRegs = ArrTy->getNumElements(); 5282 } 5283 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); 5284 5285 // The AArch64 va_list type and handling is specified in the Procedure Call 5286 // Standard, section B.4: 5287 // 5288 // struct { 5289 // void *__stack; 5290 // void *__gr_top; 5291 // void *__vr_top; 5292 // int __gr_offs; 5293 // int __vr_offs; 5294 // }; 5295 5296 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 5297 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 5298 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 5299 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 5300 5301 auto TyInfo = getContext().getTypeInfoInChars(Ty); 5302 CharUnits TyAlign = TyInfo.second; 5303 5304 Address reg_offs_p = Address::invalid(); 5305 llvm::Value *reg_offs = nullptr; 5306 int reg_top_index; 5307 CharUnits reg_top_offset; 5308 int RegSize = IsIndirect ? 8 : TyInfo.first.getQuantity(); 5309 if (!IsFPR) { 5310 // 3 is the field number of __gr_offs 5311 reg_offs_p = 5312 CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24), 5313 "gr_offs_p"); 5314 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 5315 reg_top_index = 1; // field number for __gr_top 5316 reg_top_offset = CharUnits::fromQuantity(8); 5317 RegSize = llvm::alignTo(RegSize, 8); 5318 } else { 5319 // 4 is the field number of __vr_offs. 5320 reg_offs_p = 5321 CGF.Builder.CreateStructGEP(VAListAddr, 4, CharUnits::fromQuantity(28), 5322 "vr_offs_p"); 5323 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 5324 reg_top_index = 2; // field number for __vr_top 5325 reg_top_offset = CharUnits::fromQuantity(16); 5326 RegSize = 16 * NumRegs; 5327 } 5328 5329 //======================================= 5330 // Find out where argument was passed 5331 //======================================= 5332 5333 // If reg_offs >= 0 we're already using the stack for this type of 5334 // argument. We don't want to keep updating reg_offs (in case it overflows, 5335 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 5336 // whatever they get). 5337 llvm::Value *UsingStack = nullptr; 5338 UsingStack = CGF.Builder.CreateICmpSGE( 5339 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 5340 5341 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 5342 5343 // Otherwise, at least some kind of argument could go in these registers, the 5344 // question is whether this particular type is too big. 5345 CGF.EmitBlock(MaybeRegBlock); 5346 5347 // Integer arguments may need to correct register alignment (for example a 5348 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 5349 // align __gr_offs to calculate the potential address. 5350 if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) { 5351 int Align = TyAlign.getQuantity(); 5352 5353 reg_offs = CGF.Builder.CreateAdd( 5354 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 5355 "align_regoffs"); 5356 reg_offs = CGF.Builder.CreateAnd( 5357 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 5358 "aligned_regoffs"); 5359 } 5360 5361 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 5362 // The fact that this is done unconditionally reflects the fact that 5363 // allocating an argument to the stack also uses up all the remaining 5364 // registers of the appropriate kind. 5365 llvm::Value *NewOffset = nullptr; 5366 NewOffset = CGF.Builder.CreateAdd( 5367 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 5368 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 5369 5370 // Now we're in a position to decide whether this argument really was in 5371 // registers or not. 5372 llvm::Value *InRegs = nullptr; 5373 InRegs = CGF.Builder.CreateICmpSLE( 5374 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 5375 5376 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 5377 5378 //======================================= 5379 // Argument was in registers 5380 //======================================= 5381 5382 // Now we emit the code for if the argument was originally passed in 5383 // registers. First start the appropriate block: 5384 CGF.EmitBlock(InRegBlock); 5385 5386 llvm::Value *reg_top = nullptr; 5387 Address reg_top_p = CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, 5388 reg_top_offset, "reg_top_p"); 5389 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 5390 Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs), 5391 CharUnits::fromQuantity(IsFPR ? 16 : 8)); 5392 Address RegAddr = Address::invalid(); 5393 llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty); 5394 5395 if (IsIndirect) { 5396 // If it's been passed indirectly (actually a struct), whatever we find from 5397 // stored registers or on the stack will actually be a struct **. 5398 MemTy = llvm::PointerType::getUnqual(MemTy); 5399 } 5400 5401 const Type *Base = nullptr; 5402 uint64_t NumMembers = 0; 5403 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); 5404 if (IsHFA && NumMembers > 1) { 5405 // Homogeneous aggregates passed in registers will have their elements split 5406 // and stored 16-bytes apart regardless of size (they're notionally in qN, 5407 // qN+1, ...). We reload and store into a temporary local variable 5408 // contiguously. 5409 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 5410 auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0)); 5411 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 5412 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 5413 Address Tmp = CGF.CreateTempAlloca(HFATy, 5414 std::max(TyAlign, BaseTyInfo.second)); 5415 5416 // On big-endian platforms, the value will be right-aligned in its slot. 5417 int Offset = 0; 5418 if (CGF.CGM.getDataLayout().isBigEndian() && 5419 BaseTyInfo.first.getQuantity() < 16) 5420 Offset = 16 - BaseTyInfo.first.getQuantity(); 5421 5422 for (unsigned i = 0; i < NumMembers; ++i) { 5423 CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset); 5424 Address LoadAddr = 5425 CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset); 5426 LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy); 5427 5428 Address StoreAddr = 5429 CGF.Builder.CreateConstArrayGEP(Tmp, i, BaseTyInfo.first); 5430 5431 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 5432 CGF.Builder.CreateStore(Elem, StoreAddr); 5433 } 5434 5435 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy); 5436 } else { 5437 // Otherwise the object is contiguous in memory. 5438 5439 // It might be right-aligned in its slot. 5440 CharUnits SlotSize = BaseAddr.getAlignment(); 5441 if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect && 5442 (IsHFA || !isAggregateTypeForABI(Ty)) && 5443 TyInfo.first < SlotSize) { 5444 CharUnits Offset = SlotSize - TyInfo.first; 5445 BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset); 5446 } 5447 5448 RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy); 5449 } 5450 5451 CGF.EmitBranch(ContBlock); 5452 5453 //======================================= 5454 // Argument was on the stack 5455 //======================================= 5456 CGF.EmitBlock(OnStackBlock); 5457 5458 Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, 5459 CharUnits::Zero(), "stack_p"); 5460 llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack"); 5461 5462 // Again, stack arguments may need realignment. In this case both integer and 5463 // floating-point ones might be affected. 5464 if (!IsIndirect && TyAlign.getQuantity() > 8) { 5465 int Align = TyAlign.getQuantity(); 5466 5467 OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty); 5468 5469 OnStackPtr = CGF.Builder.CreateAdd( 5470 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 5471 "align_stack"); 5472 OnStackPtr = CGF.Builder.CreateAnd( 5473 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 5474 "align_stack"); 5475 5476 OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy); 5477 } 5478 Address OnStackAddr(OnStackPtr, 5479 std::max(CharUnits::fromQuantity(8), TyAlign)); 5480 5481 // All stack slots are multiples of 8 bytes. 5482 CharUnits StackSlotSize = CharUnits::fromQuantity(8); 5483 CharUnits StackSize; 5484 if (IsIndirect) 5485 StackSize = StackSlotSize; 5486 else 5487 StackSize = TyInfo.first.alignTo(StackSlotSize); 5488 5489 llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize); 5490 llvm::Value *NewStack = 5491 CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack"); 5492 5493 // Write the new value of __stack for the next call to va_arg 5494 CGF.Builder.CreateStore(NewStack, stack_p); 5495 5496 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 5497 TyInfo.first < StackSlotSize) { 5498 CharUnits Offset = StackSlotSize - TyInfo.first; 5499 OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset); 5500 } 5501 5502 OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy); 5503 5504 CGF.EmitBranch(ContBlock); 5505 5506 //======================================= 5507 // Tidy up 5508 //======================================= 5509 CGF.EmitBlock(ContBlock); 5510 5511 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 5512 OnStackAddr, OnStackBlock, "vaargs.addr"); 5513 5514 if (IsIndirect) 5515 return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), 5516 TyInfo.second); 5517 5518 return ResAddr; 5519 } 5520 5521 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty, 5522 CodeGenFunction &CGF) const { 5523 // The backend's lowering doesn't support va_arg for aggregates or 5524 // illegal vector types. Lower VAArg here for these cases and use 5525 // the LLVM va_arg instruction for everything else. 5526 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 5527 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 5528 5529 CharUnits SlotSize = CharUnits::fromQuantity(8); 5530 5531 // Empty records are ignored for parameter passing purposes. 5532 if (isEmptyRecord(getContext(), Ty, true)) { 5533 Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 5534 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 5535 return Addr; 5536 } 5537 5538 // The size of the actual thing passed, which might end up just 5539 // being a pointer for indirect types. 5540 auto TyInfo = getContext().getTypeInfoInChars(Ty); 5541 5542 // Arguments bigger than 16 bytes which aren't homogeneous 5543 // aggregates should be passed indirectly. 5544 bool IsIndirect = false; 5545 if (TyInfo.first.getQuantity() > 16) { 5546 const Type *Base = nullptr; 5547 uint64_t Members = 0; 5548 IsIndirect = !isHomogeneousAggregate(Ty, Base, Members); 5549 } 5550 5551 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 5552 TyInfo, SlotSize, /*AllowHigherAlign*/ true); 5553 } 5554 5555 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 5556 QualType Ty) const { 5557 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 5558 CGF.getContext().getTypeInfoInChars(Ty), 5559 CharUnits::fromQuantity(8), 5560 /*allowHigherAlign*/ false); 5561 } 5562 5563 //===----------------------------------------------------------------------===// 5564 // ARM ABI Implementation 5565 //===----------------------------------------------------------------------===// 5566 5567 namespace { 5568 5569 class ARMABIInfo : public SwiftABIInfo { 5570 public: 5571 enum ABIKind { 5572 APCS = 0, 5573 AAPCS = 1, 5574 AAPCS_VFP = 2, 5575 AAPCS16_VFP = 3, 5576 }; 5577 5578 private: 5579 ABIKind Kind; 5580 5581 public: 5582 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) 5583 : SwiftABIInfo(CGT), Kind(_Kind) { 5584 setCCs(); 5585 } 5586 5587 bool isEABI() const { 5588 switch (getTarget().getTriple().getEnvironment()) { 5589 case llvm::Triple::Android: 5590 case llvm::Triple::EABI: 5591 case llvm::Triple::EABIHF: 5592 case llvm::Triple::GNUEABI: 5593 case llvm::Triple::GNUEABIHF: 5594 case llvm::Triple::MuslEABI: 5595 case llvm::Triple::MuslEABIHF: 5596 return true; 5597 default: 5598 return false; 5599 } 5600 } 5601 5602 bool isEABIHF() const { 5603 switch (getTarget().getTriple().getEnvironment()) { 5604 case llvm::Triple::EABIHF: 5605 case llvm::Triple::GNUEABIHF: 5606 case llvm::Triple::MuslEABIHF: 5607 return true; 5608 default: 5609 return false; 5610 } 5611 } 5612 5613 ABIKind getABIKind() const { return Kind; } 5614 5615 private: 5616 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const; 5617 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic) const; 5618 ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base, 5619 uint64_t Members) const; 5620 ABIArgInfo coerceIllegalVector(QualType Ty) const; 5621 bool isIllegalVectorType(QualType Ty) const; 5622 5623 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 5624 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 5625 uint64_t Members) const override; 5626 5627 void computeInfo(CGFunctionInfo &FI) const override; 5628 5629 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5630 QualType Ty) const override; 5631 5632 llvm::CallingConv::ID getLLVMDefaultCC() const; 5633 llvm::CallingConv::ID getABIDefaultCC() const; 5634 void setCCs(); 5635 5636 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 5637 bool asReturnValue) const override { 5638 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5639 } 5640 bool isSwiftErrorInRegister() const override { 5641 return true; 5642 } 5643 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 5644 unsigned elts) const override; 5645 }; 5646 5647 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 5648 public: 5649 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 5650 :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {} 5651 5652 const ARMABIInfo &getABIInfo() const { 5653 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 5654 } 5655 5656 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5657 return 13; 5658 } 5659 5660 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 5661 return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue"; 5662 } 5663 5664 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5665 llvm::Value *Address) const override { 5666 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 5667 5668 // 0-15 are the 16 integer registers. 5669 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 5670 return false; 5671 } 5672 5673 unsigned getSizeOfUnwindException() const override { 5674 if (getABIInfo().isEABI()) return 88; 5675 return TargetCodeGenInfo::getSizeOfUnwindException(); 5676 } 5677 5678 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5679 CodeGen::CodeGenModule &CGM) const override { 5680 if (GV->isDeclaration()) 5681 return; 5682 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5683 if (!FD) 5684 return; 5685 5686 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 5687 if (!Attr) 5688 return; 5689 5690 const char *Kind; 5691 switch (Attr->getInterrupt()) { 5692 case ARMInterruptAttr::Generic: Kind = ""; break; 5693 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 5694 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 5695 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 5696 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 5697 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 5698 } 5699 5700 llvm::Function *Fn = cast<llvm::Function>(GV); 5701 5702 Fn->addFnAttr("interrupt", Kind); 5703 5704 ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind(); 5705 if (ABI == ARMABIInfo::APCS) 5706 return; 5707 5708 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 5709 // however this is not necessarily true on taking any interrupt. Instruct 5710 // the backend to perform a realignment as part of the function prologue. 5711 llvm::AttrBuilder B; 5712 B.addStackAlignmentAttr(8); 5713 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 5714 } 5715 }; 5716 5717 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { 5718 public: 5719 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 5720 : ARMTargetCodeGenInfo(CGT, K) {} 5721 5722 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5723 CodeGen::CodeGenModule &CGM) const override; 5724 5725 void getDependentLibraryOption(llvm::StringRef Lib, 5726 llvm::SmallString<24> &Opt) const override { 5727 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5728 } 5729 5730 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5731 llvm::SmallString<32> &Opt) const override { 5732 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5733 } 5734 }; 5735 5736 void WindowsARMTargetCodeGenInfo::setTargetAttributes( 5737 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 5738 ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 5739 if (GV->isDeclaration()) 5740 return; 5741 addStackProbeTargetAttributes(D, GV, CGM); 5742 } 5743 } 5744 5745 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 5746 if (!::classifyReturnType(getCXXABI(), FI, *this)) 5747 FI.getReturnInfo() = 5748 classifyReturnType(FI.getReturnType(), FI.isVariadic()); 5749 5750 for (auto &I : FI.arguments()) 5751 I.info = classifyArgumentType(I.type, FI.isVariadic()); 5752 5753 // Always honor user-specified calling convention. 5754 if (FI.getCallingConvention() != llvm::CallingConv::C) 5755 return; 5756 5757 llvm::CallingConv::ID cc = getRuntimeCC(); 5758 if (cc != llvm::CallingConv::C) 5759 FI.setEffectiveCallingConvention(cc); 5760 } 5761 5762 /// Return the default calling convention that LLVM will use. 5763 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 5764 // The default calling convention that LLVM will infer. 5765 if (isEABIHF() || getTarget().getTriple().isWatchABI()) 5766 return llvm::CallingConv::ARM_AAPCS_VFP; 5767 else if (isEABI()) 5768 return llvm::CallingConv::ARM_AAPCS; 5769 else 5770 return llvm::CallingConv::ARM_APCS; 5771 } 5772 5773 /// Return the calling convention that our ABI would like us to use 5774 /// as the C calling convention. 5775 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 5776 switch (getABIKind()) { 5777 case APCS: return llvm::CallingConv::ARM_APCS; 5778 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 5779 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 5780 case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 5781 } 5782 llvm_unreachable("bad ABI kind"); 5783 } 5784 5785 void ARMABIInfo::setCCs() { 5786 assert(getRuntimeCC() == llvm::CallingConv::C); 5787 5788 // Don't muddy up the IR with a ton of explicit annotations if 5789 // they'd just match what LLVM will infer from the triple. 5790 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 5791 if (abiCC != getLLVMDefaultCC()) 5792 RuntimeCC = abiCC; 5793 } 5794 5795 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const { 5796 uint64_t Size = getContext().getTypeSize(Ty); 5797 if (Size <= 32) { 5798 llvm::Type *ResType = 5799 llvm::Type::getInt32Ty(getVMContext()); 5800 return ABIArgInfo::getDirect(ResType); 5801 } 5802 if (Size == 64 || Size == 128) { 5803 llvm::Type *ResType = llvm::VectorType::get( 5804 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 5805 return ABIArgInfo::getDirect(ResType); 5806 } 5807 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5808 } 5809 5810 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty, 5811 const Type *Base, 5812 uint64_t Members) const { 5813 assert(Base && "Base class should be set for homogeneous aggregate"); 5814 // Base can be a floating-point or a vector. 5815 if (const VectorType *VT = Base->getAs<VectorType>()) { 5816 // FP16 vectors should be converted to integer vectors 5817 if (!getTarget().hasLegalHalfType() && 5818 (VT->getElementType()->isFloat16Type() || 5819 VT->getElementType()->isHalfType())) { 5820 uint64_t Size = getContext().getTypeSize(VT); 5821 llvm::Type *NewVecTy = llvm::VectorType::get( 5822 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 5823 llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members); 5824 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 5825 } 5826 } 5827 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 5828 } 5829 5830 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, 5831 bool isVariadic) const { 5832 // 6.1.2.1 The following argument types are VFP CPRCs: 5833 // A single-precision floating-point type (including promoted 5834 // half-precision types); A double-precision floating-point type; 5835 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 5836 // with a Base Type of a single- or double-precision floating-point type, 5837 // 64-bit containerized vectors or 128-bit containerized vectors with one 5838 // to four Elements. 5839 bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic; 5840 5841 Ty = useFirstFieldIfTransparentUnion(Ty); 5842 5843 // Handle illegal vector types here. 5844 if (isIllegalVectorType(Ty)) 5845 return coerceIllegalVector(Ty); 5846 5847 // _Float16 and __fp16 get passed as if it were an int or float, but with 5848 // the top 16 bits unspecified. This is not done for OpenCL as it handles the 5849 // half type natively, and does not need to interwork with AAPCS code. 5850 if ((Ty->isFloat16Type() || Ty->isHalfType()) && 5851 !getContext().getLangOpts().NativeHalfArgsAndReturns) { 5852 llvm::Type *ResType = IsEffectivelyAAPCS_VFP ? 5853 llvm::Type::getFloatTy(getVMContext()) : 5854 llvm::Type::getInt32Ty(getVMContext()); 5855 return ABIArgInfo::getDirect(ResType); 5856 } 5857 5858 if (!isAggregateTypeForABI(Ty)) { 5859 // Treat an enum type as its underlying type. 5860 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 5861 Ty = EnumTy->getDecl()->getIntegerType(); 5862 } 5863 5864 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 5865 : ABIArgInfo::getDirect()); 5866 } 5867 5868 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5869 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 5870 } 5871 5872 // Ignore empty records. 5873 if (isEmptyRecord(getContext(), Ty, true)) 5874 return ABIArgInfo::getIgnore(); 5875 5876 if (IsEffectivelyAAPCS_VFP) { 5877 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 5878 // into VFP registers. 5879 const Type *Base = nullptr; 5880 uint64_t Members = 0; 5881 if (isHomogeneousAggregate(Ty, Base, Members)) 5882 return classifyHomogeneousAggregate(Ty, Base, Members); 5883 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 5884 // WatchOS does have homogeneous aggregates. Note that we intentionally use 5885 // this convention even for a variadic function: the backend will use GPRs 5886 // if needed. 5887 const Type *Base = nullptr; 5888 uint64_t Members = 0; 5889 if (isHomogeneousAggregate(Ty, Base, Members)) { 5890 assert(Base && Members <= 4 && "unexpected homogeneous aggregate"); 5891 llvm::Type *Ty = 5892 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members); 5893 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 5894 } 5895 } 5896 5897 if (getABIKind() == ARMABIInfo::AAPCS16_VFP && 5898 getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) { 5899 // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're 5900 // bigger than 128-bits, they get placed in space allocated by the caller, 5901 // and a pointer is passed. 5902 return ABIArgInfo::getIndirect( 5903 CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false); 5904 } 5905 5906 // Support byval for ARM. 5907 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 5908 // most 8-byte. We realign the indirect argument if type alignment is bigger 5909 // than ABI alignment. 5910 uint64_t ABIAlign = 4; 5911 uint64_t TyAlign; 5912 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 5913 getABIKind() == ARMABIInfo::AAPCS) { 5914 TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); 5915 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 5916 } else { 5917 TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 5918 } 5919 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 5920 assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval"); 5921 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 5922 /*ByVal=*/true, 5923 /*Realign=*/TyAlign > ABIAlign); 5924 } 5925 5926 // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of 5927 // same size and alignment. 5928 if (getTarget().isRenderScriptTarget()) { 5929 return coerceToIntArray(Ty, getContext(), getVMContext()); 5930 } 5931 5932 // Otherwise, pass by coercing to a structure of the appropriate size. 5933 llvm::Type* ElemTy; 5934 unsigned SizeRegs; 5935 // FIXME: Try to match the types of the arguments more accurately where 5936 // we can. 5937 if (TyAlign <= 4) { 5938 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 5939 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 5940 } else { 5941 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 5942 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 5943 } 5944 5945 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); 5946 } 5947 5948 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 5949 llvm::LLVMContext &VMContext) { 5950 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 5951 // is called integer-like if its size is less than or equal to one word, and 5952 // the offset of each of its addressable sub-fields is zero. 5953 5954 uint64_t Size = Context.getTypeSize(Ty); 5955 5956 // Check that the type fits in a word. 5957 if (Size > 32) 5958 return false; 5959 5960 // FIXME: Handle vector types! 5961 if (Ty->isVectorType()) 5962 return false; 5963 5964 // Float types are never treated as "integer like". 5965 if (Ty->isRealFloatingType()) 5966 return false; 5967 5968 // If this is a builtin or pointer type then it is ok. 5969 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 5970 return true; 5971 5972 // Small complex integer types are "integer like". 5973 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 5974 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 5975 5976 // Single element and zero sized arrays should be allowed, by the definition 5977 // above, but they are not. 5978 5979 // Otherwise, it must be a record type. 5980 const RecordType *RT = Ty->getAs<RecordType>(); 5981 if (!RT) return false; 5982 5983 // Ignore records with flexible arrays. 5984 const RecordDecl *RD = RT->getDecl(); 5985 if (RD->hasFlexibleArrayMember()) 5986 return false; 5987 5988 // Check that all sub-fields are at offset 0, and are themselves "integer 5989 // like". 5990 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 5991 5992 bool HadField = false; 5993 unsigned idx = 0; 5994 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 5995 i != e; ++i, ++idx) { 5996 const FieldDecl *FD = *i; 5997 5998 // Bit-fields are not addressable, we only need to verify they are "integer 5999 // like". We still have to disallow a subsequent non-bitfield, for example: 6000 // struct { int : 0; int x } 6001 // is non-integer like according to gcc. 6002 if (FD->isBitField()) { 6003 if (!RD->isUnion()) 6004 HadField = true; 6005 6006 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6007 return false; 6008 6009 continue; 6010 } 6011 6012 // Check if this field is at offset 0. 6013 if (Layout.getFieldOffset(idx) != 0) 6014 return false; 6015 6016 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6017 return false; 6018 6019 // Only allow at most one field in a structure. This doesn't match the 6020 // wording above, but follows gcc in situations with a field following an 6021 // empty structure. 6022 if (!RD->isUnion()) { 6023 if (HadField) 6024 return false; 6025 6026 HadField = true; 6027 } 6028 } 6029 6030 return true; 6031 } 6032 6033 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, 6034 bool isVariadic) const { 6035 bool IsEffectivelyAAPCS_VFP = 6036 (getABIKind() == AAPCS_VFP || getABIKind() == AAPCS16_VFP) && !isVariadic; 6037 6038 if (RetTy->isVoidType()) 6039 return ABIArgInfo::getIgnore(); 6040 6041 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 6042 // Large vector types should be returned via memory. 6043 if (getContext().getTypeSize(RetTy) > 128) 6044 return getNaturalAlignIndirect(RetTy); 6045 // FP16 vectors should be converted to integer vectors 6046 if (!getTarget().hasLegalHalfType() && 6047 (VT->getElementType()->isFloat16Type() || 6048 VT->getElementType()->isHalfType())) 6049 return coerceIllegalVector(RetTy); 6050 } 6051 6052 // _Float16 and __fp16 get returned as if it were an int or float, but with 6053 // the top 16 bits unspecified. This is not done for OpenCL as it handles the 6054 // half type natively, and does not need to interwork with AAPCS code. 6055 if ((RetTy->isFloat16Type() || RetTy->isHalfType()) && 6056 !getContext().getLangOpts().NativeHalfArgsAndReturns) { 6057 llvm::Type *ResType = IsEffectivelyAAPCS_VFP ? 6058 llvm::Type::getFloatTy(getVMContext()) : 6059 llvm::Type::getInt32Ty(getVMContext()); 6060 return ABIArgInfo::getDirect(ResType); 6061 } 6062 6063 if (!isAggregateTypeForABI(RetTy)) { 6064 // Treat an enum type as its underlying type. 6065 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6066 RetTy = EnumTy->getDecl()->getIntegerType(); 6067 6068 return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 6069 : ABIArgInfo::getDirect(); 6070 } 6071 6072 // Are we following APCS? 6073 if (getABIKind() == APCS) { 6074 if (isEmptyRecord(getContext(), RetTy, false)) 6075 return ABIArgInfo::getIgnore(); 6076 6077 // Complex types are all returned as packed integers. 6078 // 6079 // FIXME: Consider using 2 x vector types if the back end handles them 6080 // correctly. 6081 if (RetTy->isAnyComplexType()) 6082 return ABIArgInfo::getDirect(llvm::IntegerType::get( 6083 getVMContext(), getContext().getTypeSize(RetTy))); 6084 6085 // Integer like structures are returned in r0. 6086 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 6087 // Return in the smallest viable integer type. 6088 uint64_t Size = getContext().getTypeSize(RetTy); 6089 if (Size <= 8) 6090 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6091 if (Size <= 16) 6092 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6093 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6094 } 6095 6096 // Otherwise return in memory. 6097 return getNaturalAlignIndirect(RetTy); 6098 } 6099 6100 // Otherwise this is an AAPCS variant. 6101 6102 if (isEmptyRecord(getContext(), RetTy, true)) 6103 return ABIArgInfo::getIgnore(); 6104 6105 // Check for homogeneous aggregates with AAPCS-VFP. 6106 if (IsEffectivelyAAPCS_VFP) { 6107 const Type *Base = nullptr; 6108 uint64_t Members = 0; 6109 if (isHomogeneousAggregate(RetTy, Base, Members)) 6110 return classifyHomogeneousAggregate(RetTy, Base, Members); 6111 } 6112 6113 // Aggregates <= 4 bytes are returned in r0; other aggregates 6114 // are returned indirectly. 6115 uint64_t Size = getContext().getTypeSize(RetTy); 6116 if (Size <= 32) { 6117 // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of 6118 // same size and alignment. 6119 if (getTarget().isRenderScriptTarget()) { 6120 return coerceToIntArray(RetTy, getContext(), getVMContext()); 6121 } 6122 if (getDataLayout().isBigEndian()) 6123 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 6124 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6125 6126 // Return in the smallest viable integer type. 6127 if (Size <= 8) 6128 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6129 if (Size <= 16) 6130 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6131 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6132 } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) { 6133 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext()); 6134 llvm::Type *CoerceTy = 6135 llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32); 6136 return ABIArgInfo::getDirect(CoerceTy); 6137 } 6138 6139 return getNaturalAlignIndirect(RetTy); 6140 } 6141 6142 /// isIllegalVector - check whether Ty is an illegal vector type. 6143 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 6144 if (const VectorType *VT = Ty->getAs<VectorType> ()) { 6145 // On targets that don't support FP16, FP16 is expanded into float, and we 6146 // don't want the ABI to depend on whether or not FP16 is supported in 6147 // hardware. Thus return false to coerce FP16 vectors into integer vectors. 6148 if (!getTarget().hasLegalHalfType() && 6149 (VT->getElementType()->isFloat16Type() || 6150 VT->getElementType()->isHalfType())) 6151 return true; 6152 if (isAndroid()) { 6153 // Android shipped using Clang 3.1, which supported a slightly different 6154 // vector ABI. The primary differences were that 3-element vector types 6155 // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path 6156 // accepts that legacy behavior for Android only. 6157 // Check whether VT is legal. 6158 unsigned NumElements = VT->getNumElements(); 6159 // NumElements should be power of 2 or equal to 3. 6160 if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3) 6161 return true; 6162 } else { 6163 // Check whether VT is legal. 6164 unsigned NumElements = VT->getNumElements(); 6165 uint64_t Size = getContext().getTypeSize(VT); 6166 // NumElements should be power of 2. 6167 if (!llvm::isPowerOf2_32(NumElements)) 6168 return true; 6169 // Size should be greater than 32 bits. 6170 return Size <= 32; 6171 } 6172 } 6173 return false; 6174 } 6175 6176 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 6177 llvm::Type *eltTy, 6178 unsigned numElts) const { 6179 if (!llvm::isPowerOf2_32(numElts)) 6180 return false; 6181 unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy); 6182 if (size > 64) 6183 return false; 6184 if (vectorSize.getQuantity() != 8 && 6185 (vectorSize.getQuantity() != 16 || numElts == 1)) 6186 return false; 6187 return true; 6188 } 6189 6190 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 6191 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 6192 // double, or 64-bit or 128-bit vectors. 6193 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 6194 if (BT->getKind() == BuiltinType::Float || 6195 BT->getKind() == BuiltinType::Double || 6196 BT->getKind() == BuiltinType::LongDouble) 6197 return true; 6198 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 6199 unsigned VecSize = getContext().getTypeSize(VT); 6200 if (VecSize == 64 || VecSize == 128) 6201 return true; 6202 } 6203 return false; 6204 } 6205 6206 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 6207 uint64_t Members) const { 6208 return Members <= 4; 6209 } 6210 6211 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6212 QualType Ty) const { 6213 CharUnits SlotSize = CharUnits::fromQuantity(4); 6214 6215 // Empty records are ignored for parameter passing purposes. 6216 if (isEmptyRecord(getContext(), Ty, true)) { 6217 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 6218 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 6219 return Addr; 6220 } 6221 6222 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6223 CharUnits TyAlignForABI = TyInfo.second; 6224 6225 // Use indirect if size of the illegal vector is bigger than 16 bytes. 6226 bool IsIndirect = false; 6227 const Type *Base = nullptr; 6228 uint64_t Members = 0; 6229 if (TyInfo.first > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) { 6230 IsIndirect = true; 6231 6232 // ARMv7k passes structs bigger than 16 bytes indirectly, in space 6233 // allocated by the caller. 6234 } else if (TyInfo.first > CharUnits::fromQuantity(16) && 6235 getABIKind() == ARMABIInfo::AAPCS16_VFP && 6236 !isHomogeneousAggregate(Ty, Base, Members)) { 6237 IsIndirect = true; 6238 6239 // Otherwise, bound the type's ABI alignment. 6240 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 6241 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 6242 // Our callers should be prepared to handle an under-aligned address. 6243 } else if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6244 getABIKind() == ARMABIInfo::AAPCS) { 6245 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6246 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8)); 6247 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6248 // ARMv7k allows type alignment up to 16 bytes. 6249 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6250 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16)); 6251 } else { 6252 TyAlignForABI = CharUnits::fromQuantity(4); 6253 } 6254 TyInfo.second = TyAlignForABI; 6255 6256 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo, 6257 SlotSize, /*AllowHigherAlign*/ true); 6258 } 6259 6260 //===----------------------------------------------------------------------===// 6261 // NVPTX ABI Implementation 6262 //===----------------------------------------------------------------------===// 6263 6264 namespace { 6265 6266 class NVPTXABIInfo : public ABIInfo { 6267 public: 6268 NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 6269 6270 ABIArgInfo classifyReturnType(QualType RetTy) const; 6271 ABIArgInfo classifyArgumentType(QualType Ty) const; 6272 6273 void computeInfo(CGFunctionInfo &FI) const override; 6274 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6275 QualType Ty) const override; 6276 }; 6277 6278 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 6279 public: 6280 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 6281 : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {} 6282 6283 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6284 CodeGen::CodeGenModule &M) const override; 6285 bool shouldEmitStaticExternCAliases() const override; 6286 6287 private: 6288 // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the 6289 // resulting MDNode to the nvvm.annotations MDNode. 6290 static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand); 6291 }; 6292 6293 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 6294 if (RetTy->isVoidType()) 6295 return ABIArgInfo::getIgnore(); 6296 6297 // note: this is different from default ABI 6298 if (!RetTy->isScalarType()) 6299 return ABIArgInfo::getDirect(); 6300 6301 // Treat an enum type as its underlying type. 6302 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6303 RetTy = EnumTy->getDecl()->getIntegerType(); 6304 6305 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 6306 : ABIArgInfo::getDirect()); 6307 } 6308 6309 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 6310 // Treat an enum type as its underlying type. 6311 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6312 Ty = EnumTy->getDecl()->getIntegerType(); 6313 6314 // Return aggregates type as indirect by value 6315 if (isAggregateTypeForABI(Ty)) 6316 return getNaturalAlignIndirect(Ty, /* byval */ true); 6317 6318 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 6319 : ABIArgInfo::getDirect()); 6320 } 6321 6322 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 6323 if (!getCXXABI().classifyReturnType(FI)) 6324 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6325 for (auto &I : FI.arguments()) 6326 I.info = classifyArgumentType(I.type); 6327 6328 // Always honor user-specified calling convention. 6329 if (FI.getCallingConvention() != llvm::CallingConv::C) 6330 return; 6331 6332 FI.setEffectiveCallingConvention(getRuntimeCC()); 6333 } 6334 6335 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6336 QualType Ty) const { 6337 llvm_unreachable("NVPTX does not support varargs"); 6338 } 6339 6340 void NVPTXTargetCodeGenInfo::setTargetAttributes( 6341 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 6342 if (GV->isDeclaration()) 6343 return; 6344 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6345 if (!FD) return; 6346 6347 llvm::Function *F = cast<llvm::Function>(GV); 6348 6349 // Perform special handling in OpenCL mode 6350 if (M.getLangOpts().OpenCL) { 6351 // Use OpenCL function attributes to check for kernel functions 6352 // By default, all functions are device functions 6353 if (FD->hasAttr<OpenCLKernelAttr>()) { 6354 // OpenCL __kernel functions get kernel metadata 6355 // Create !{<func-ref>, metadata !"kernel", i32 1} node 6356 addNVVMMetadata(F, "kernel", 1); 6357 // And kernel functions are not subject to inlining 6358 F->addFnAttr(llvm::Attribute::NoInline); 6359 } 6360 } 6361 6362 // Perform special handling in CUDA mode. 6363 if (M.getLangOpts().CUDA) { 6364 // CUDA __global__ functions get a kernel metadata entry. Since 6365 // __global__ functions cannot be called from the device, we do not 6366 // need to set the noinline attribute. 6367 if (FD->hasAttr<CUDAGlobalAttr>()) { 6368 // Create !{<func-ref>, metadata !"kernel", i32 1} node 6369 addNVVMMetadata(F, "kernel", 1); 6370 } 6371 if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) { 6372 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 6373 llvm::APSInt MaxThreads(32); 6374 MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); 6375 if (MaxThreads > 0) 6376 addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); 6377 6378 // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was 6379 // not specified in __launch_bounds__ or if the user specified a 0 value, 6380 // we don't have to add a PTX directive. 6381 if (Attr->getMinBlocks()) { 6382 llvm::APSInt MinBlocks(32); 6383 MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); 6384 if (MinBlocks > 0) 6385 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 6386 addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); 6387 } 6388 } 6389 } 6390 } 6391 6392 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name, 6393 int Operand) { 6394 llvm::Module *M = F->getParent(); 6395 llvm::LLVMContext &Ctx = M->getContext(); 6396 6397 // Get "nvvm.annotations" metadata node 6398 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 6399 6400 llvm::Metadata *MDVals[] = { 6401 llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name), 6402 llvm::ConstantAsMetadata::get( 6403 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; 6404 // Append metadata to nvvm.annotations 6405 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 6406 } 6407 6408 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 6409 return false; 6410 } 6411 } 6412 6413 //===----------------------------------------------------------------------===// 6414 // SystemZ ABI Implementation 6415 //===----------------------------------------------------------------------===// 6416 6417 namespace { 6418 6419 class SystemZABIInfo : public SwiftABIInfo { 6420 bool HasVector; 6421 6422 public: 6423 SystemZABIInfo(CodeGenTypes &CGT, bool HV) 6424 : SwiftABIInfo(CGT), HasVector(HV) {} 6425 6426 bool isPromotableIntegerType(QualType Ty) const; 6427 bool isCompoundType(QualType Ty) const; 6428 bool isVectorArgumentType(QualType Ty) const; 6429 bool isFPArgumentType(QualType Ty) const; 6430 QualType GetSingleElementType(QualType Ty) const; 6431 6432 ABIArgInfo classifyReturnType(QualType RetTy) const; 6433 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 6434 6435 void computeInfo(CGFunctionInfo &FI) const override { 6436 if (!getCXXABI().classifyReturnType(FI)) 6437 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6438 for (auto &I : FI.arguments()) 6439 I.info = classifyArgumentType(I.type); 6440 } 6441 6442 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6443 QualType Ty) const override; 6444 6445 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 6446 bool asReturnValue) const override { 6447 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 6448 } 6449 bool isSwiftErrorInRegister() const override { 6450 return false; 6451 } 6452 }; 6453 6454 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 6455 public: 6456 SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector) 6457 : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {} 6458 }; 6459 6460 } 6461 6462 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const { 6463 // Treat an enum type as its underlying type. 6464 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6465 Ty = EnumTy->getDecl()->getIntegerType(); 6466 6467 // Promotable integer types are required to be promoted by the ABI. 6468 if (Ty->isPromotableIntegerType()) 6469 return true; 6470 6471 // 32-bit values must also be promoted. 6472 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 6473 switch (BT->getKind()) { 6474 case BuiltinType::Int: 6475 case BuiltinType::UInt: 6476 return true; 6477 default: 6478 return false; 6479 } 6480 return false; 6481 } 6482 6483 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 6484 return (Ty->isAnyComplexType() || 6485 Ty->isVectorType() || 6486 isAggregateTypeForABI(Ty)); 6487 } 6488 6489 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { 6490 return (HasVector && 6491 Ty->isVectorType() && 6492 getContext().getTypeSize(Ty) <= 128); 6493 } 6494 6495 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 6496 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 6497 switch (BT->getKind()) { 6498 case BuiltinType::Float: 6499 case BuiltinType::Double: 6500 return true; 6501 default: 6502 return false; 6503 } 6504 6505 return false; 6506 } 6507 6508 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { 6509 if (const RecordType *RT = Ty->getAsStructureType()) { 6510 const RecordDecl *RD = RT->getDecl(); 6511 QualType Found; 6512 6513 // If this is a C++ record, check the bases first. 6514 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6515 for (const auto &I : CXXRD->bases()) { 6516 QualType Base = I.getType(); 6517 6518 // Empty bases don't affect things either way. 6519 if (isEmptyRecord(getContext(), Base, true)) 6520 continue; 6521 6522 if (!Found.isNull()) 6523 return Ty; 6524 Found = GetSingleElementType(Base); 6525 } 6526 6527 // Check the fields. 6528 for (const auto *FD : RD->fields()) { 6529 // For compatibility with GCC, ignore empty bitfields in C++ mode. 6530 // Unlike isSingleElementStruct(), empty structure and array fields 6531 // do count. So do anonymous bitfields that aren't zero-sized. 6532 if (getContext().getLangOpts().CPlusPlus && 6533 FD->isZeroLengthBitField(getContext())) 6534 continue; 6535 6536 // Unlike isSingleElementStruct(), arrays do not count. 6537 // Nested structures still do though. 6538 if (!Found.isNull()) 6539 return Ty; 6540 Found = GetSingleElementType(FD->getType()); 6541 } 6542 6543 // Unlike isSingleElementStruct(), trailing padding is allowed. 6544 // An 8-byte aligned struct s { float f; } is passed as a double. 6545 if (!Found.isNull()) 6546 return Found; 6547 } 6548 6549 return Ty; 6550 } 6551 6552 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6553 QualType Ty) const { 6554 // Assume that va_list type is correct; should be pointer to LLVM type: 6555 // struct { 6556 // i64 __gpr; 6557 // i64 __fpr; 6558 // i8 *__overflow_arg_area; 6559 // i8 *__reg_save_area; 6560 // }; 6561 6562 // Every non-vector argument occupies 8 bytes and is passed by preference 6563 // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are 6564 // always passed on the stack. 6565 Ty = getContext().getCanonicalType(Ty); 6566 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6567 llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); 6568 llvm::Type *DirectTy = ArgTy; 6569 ABIArgInfo AI = classifyArgumentType(Ty); 6570 bool IsIndirect = AI.isIndirect(); 6571 bool InFPRs = false; 6572 bool IsVector = false; 6573 CharUnits UnpaddedSize; 6574 CharUnits DirectAlign; 6575 if (IsIndirect) { 6576 DirectTy = llvm::PointerType::getUnqual(DirectTy); 6577 UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8); 6578 } else { 6579 if (AI.getCoerceToType()) 6580 ArgTy = AI.getCoerceToType(); 6581 InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy(); 6582 IsVector = ArgTy->isVectorTy(); 6583 UnpaddedSize = TyInfo.first; 6584 DirectAlign = TyInfo.second; 6585 } 6586 CharUnits PaddedSize = CharUnits::fromQuantity(8); 6587 if (IsVector && UnpaddedSize > PaddedSize) 6588 PaddedSize = CharUnits::fromQuantity(16); 6589 assert((UnpaddedSize <= PaddedSize) && "Invalid argument size."); 6590 6591 CharUnits Padding = (PaddedSize - UnpaddedSize); 6592 6593 llvm::Type *IndexTy = CGF.Int64Ty; 6594 llvm::Value *PaddedSizeV = 6595 llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity()); 6596 6597 if (IsVector) { 6598 // Work out the address of a vector argument on the stack. 6599 // Vector arguments are always passed in the high bits of a 6600 // single (8 byte) or double (16 byte) stack slot. 6601 Address OverflowArgAreaPtr = 6602 CGF.Builder.CreateStructGEP(VAListAddr, 2, CharUnits::fromQuantity(16), 6603 "overflow_arg_area_ptr"); 6604 Address OverflowArgArea = 6605 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 6606 TyInfo.second); 6607 Address MemAddr = 6608 CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr"); 6609 6610 // Update overflow_arg_area_ptr pointer 6611 llvm::Value *NewOverflowArgArea = 6612 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 6613 "overflow_arg_area"); 6614 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 6615 6616 return MemAddr; 6617 } 6618 6619 assert(PaddedSize.getQuantity() == 8); 6620 6621 unsigned MaxRegs, RegCountField, RegSaveIndex; 6622 CharUnits RegPadding; 6623 if (InFPRs) { 6624 MaxRegs = 4; // Maximum of 4 FPR arguments 6625 RegCountField = 1; // __fpr 6626 RegSaveIndex = 16; // save offset for f0 6627 RegPadding = CharUnits(); // floats are passed in the high bits of an FPR 6628 } else { 6629 MaxRegs = 5; // Maximum of 5 GPR arguments 6630 RegCountField = 0; // __gpr 6631 RegSaveIndex = 2; // save offset for r2 6632 RegPadding = Padding; // values are passed in the low bits of a GPR 6633 } 6634 6635 Address RegCountPtr = CGF.Builder.CreateStructGEP( 6636 VAListAddr, RegCountField, RegCountField * CharUnits::fromQuantity(8), 6637 "reg_count_ptr"); 6638 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 6639 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 6640 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 6641 "fits_in_regs"); 6642 6643 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 6644 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 6645 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 6646 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 6647 6648 // Emit code to load the value if it was passed in registers. 6649 CGF.EmitBlock(InRegBlock); 6650 6651 // Work out the address of an argument register. 6652 llvm::Value *ScaledRegCount = 6653 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 6654 llvm::Value *RegBase = 6655 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity() 6656 + RegPadding.getQuantity()); 6657 llvm::Value *RegOffset = 6658 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 6659 Address RegSaveAreaPtr = 6660 CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24), 6661 "reg_save_area_ptr"); 6662 llvm::Value *RegSaveArea = 6663 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 6664 Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset, 6665 "raw_reg_addr"), 6666 PaddedSize); 6667 Address RegAddr = 6668 CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr"); 6669 6670 // Update the register count 6671 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 6672 llvm::Value *NewRegCount = 6673 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 6674 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 6675 CGF.EmitBranch(ContBlock); 6676 6677 // Emit code to load the value if it was passed in memory. 6678 CGF.EmitBlock(InMemBlock); 6679 6680 // Work out the address of a stack argument. 6681 Address OverflowArgAreaPtr = CGF.Builder.CreateStructGEP( 6682 VAListAddr, 2, CharUnits::fromQuantity(16), "overflow_arg_area_ptr"); 6683 Address OverflowArgArea = 6684 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 6685 PaddedSize); 6686 Address RawMemAddr = 6687 CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr"); 6688 Address MemAddr = 6689 CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr"); 6690 6691 // Update overflow_arg_area_ptr pointer 6692 llvm::Value *NewOverflowArgArea = 6693 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 6694 "overflow_arg_area"); 6695 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 6696 CGF.EmitBranch(ContBlock); 6697 6698 // Return the appropriate result. 6699 CGF.EmitBlock(ContBlock); 6700 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 6701 MemAddr, InMemBlock, "va_arg.addr"); 6702 6703 if (IsIndirect) 6704 ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), 6705 TyInfo.second); 6706 6707 return ResAddr; 6708 } 6709 6710 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 6711 if (RetTy->isVoidType()) 6712 return ABIArgInfo::getIgnore(); 6713 if (isVectorArgumentType(RetTy)) 6714 return ABIArgInfo::getDirect(); 6715 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 6716 return getNaturalAlignIndirect(RetTy); 6717 return (isPromotableIntegerType(RetTy) ? ABIArgInfo::getExtend(RetTy) 6718 : ABIArgInfo::getDirect()); 6719 } 6720 6721 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 6722 // Handle the generic C++ ABI. 6723 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 6724 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6725 6726 // Integers and enums are extended to full register width. 6727 if (isPromotableIntegerType(Ty)) 6728 return ABIArgInfo::getExtend(Ty); 6729 6730 // Handle vector types and vector-like structure types. Note that 6731 // as opposed to float-like structure types, we do not allow any 6732 // padding for vector-like structures, so verify the sizes match. 6733 uint64_t Size = getContext().getTypeSize(Ty); 6734 QualType SingleElementTy = GetSingleElementType(Ty); 6735 if (isVectorArgumentType(SingleElementTy) && 6736 getContext().getTypeSize(SingleElementTy) == Size) 6737 return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); 6738 6739 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 6740 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 6741 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6742 6743 // Handle small structures. 6744 if (const RecordType *RT = Ty->getAs<RecordType>()) { 6745 // Structures with flexible arrays have variable length, so really 6746 // fail the size test above. 6747 const RecordDecl *RD = RT->getDecl(); 6748 if (RD->hasFlexibleArrayMember()) 6749 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6750 6751 // The structure is passed as an unextended integer, a float, or a double. 6752 llvm::Type *PassTy; 6753 if (isFPArgumentType(SingleElementTy)) { 6754 assert(Size == 32 || Size == 64); 6755 if (Size == 32) 6756 PassTy = llvm::Type::getFloatTy(getVMContext()); 6757 else 6758 PassTy = llvm::Type::getDoubleTy(getVMContext()); 6759 } else 6760 PassTy = llvm::IntegerType::get(getVMContext(), Size); 6761 return ABIArgInfo::getDirect(PassTy); 6762 } 6763 6764 // Non-structure compounds are passed indirectly. 6765 if (isCompoundType(Ty)) 6766 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6767 6768 return ABIArgInfo::getDirect(nullptr); 6769 } 6770 6771 //===----------------------------------------------------------------------===// 6772 // MSP430 ABI Implementation 6773 //===----------------------------------------------------------------------===// 6774 6775 namespace { 6776 6777 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 6778 public: 6779 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 6780 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 6781 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6782 CodeGen::CodeGenModule &M) const override; 6783 }; 6784 6785 } 6786 6787 void MSP430TargetCodeGenInfo::setTargetAttributes( 6788 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 6789 if (GV->isDeclaration()) 6790 return; 6791 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 6792 const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>(); 6793 if (!InterruptAttr) 6794 return; 6795 6796 // Handle 'interrupt' attribute: 6797 llvm::Function *F = cast<llvm::Function>(GV); 6798 6799 // Step 1: Set ISR calling convention. 6800 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 6801 6802 // Step 2: Add attributes goodness. 6803 F->addFnAttr(llvm::Attribute::NoInline); 6804 F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber())); 6805 } 6806 } 6807 6808 //===----------------------------------------------------------------------===// 6809 // MIPS ABI Implementation. This works for both little-endian and 6810 // big-endian variants. 6811 //===----------------------------------------------------------------------===// 6812 6813 namespace { 6814 class MipsABIInfo : public ABIInfo { 6815 bool IsO32; 6816 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 6817 void CoerceToIntArgs(uint64_t TySize, 6818 SmallVectorImpl<llvm::Type *> &ArgList) const; 6819 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 6820 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 6821 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 6822 public: 6823 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 6824 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 6825 StackAlignInBytes(IsO32 ? 8 : 16) {} 6826 6827 ABIArgInfo classifyReturnType(QualType RetTy) const; 6828 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 6829 void computeInfo(CGFunctionInfo &FI) const override; 6830 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6831 QualType Ty) const override; 6832 ABIArgInfo extendType(QualType Ty) const; 6833 }; 6834 6835 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 6836 unsigned SizeOfUnwindException; 6837 public: 6838 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 6839 : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)), 6840 SizeOfUnwindException(IsO32 ? 24 : 32) {} 6841 6842 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 6843 return 29; 6844 } 6845 6846 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6847 CodeGen::CodeGenModule &CGM) const override { 6848 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6849 if (!FD) return; 6850 llvm::Function *Fn = cast<llvm::Function>(GV); 6851 6852 if (FD->hasAttr<MipsLongCallAttr>()) 6853 Fn->addFnAttr("long-call"); 6854 else if (FD->hasAttr<MipsShortCallAttr>()) 6855 Fn->addFnAttr("short-call"); 6856 6857 // Other attributes do not have a meaning for declarations. 6858 if (GV->isDeclaration()) 6859 return; 6860 6861 if (FD->hasAttr<Mips16Attr>()) { 6862 Fn->addFnAttr("mips16"); 6863 } 6864 else if (FD->hasAttr<NoMips16Attr>()) { 6865 Fn->addFnAttr("nomips16"); 6866 } 6867 6868 if (FD->hasAttr<MicroMipsAttr>()) 6869 Fn->addFnAttr("micromips"); 6870 else if (FD->hasAttr<NoMicroMipsAttr>()) 6871 Fn->addFnAttr("nomicromips"); 6872 6873 const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>(); 6874 if (!Attr) 6875 return; 6876 6877 const char *Kind; 6878 switch (Attr->getInterrupt()) { 6879 case MipsInterruptAttr::eic: Kind = "eic"; break; 6880 case MipsInterruptAttr::sw0: Kind = "sw0"; break; 6881 case MipsInterruptAttr::sw1: Kind = "sw1"; break; 6882 case MipsInterruptAttr::hw0: Kind = "hw0"; break; 6883 case MipsInterruptAttr::hw1: Kind = "hw1"; break; 6884 case MipsInterruptAttr::hw2: Kind = "hw2"; break; 6885 case MipsInterruptAttr::hw3: Kind = "hw3"; break; 6886 case MipsInterruptAttr::hw4: Kind = "hw4"; break; 6887 case MipsInterruptAttr::hw5: Kind = "hw5"; break; 6888 } 6889 6890 Fn->addFnAttr("interrupt", Kind); 6891 6892 } 6893 6894 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6895 llvm::Value *Address) const override; 6896 6897 unsigned getSizeOfUnwindException() const override { 6898 return SizeOfUnwindException; 6899 } 6900 }; 6901 } 6902 6903 void MipsABIInfo::CoerceToIntArgs( 6904 uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const { 6905 llvm::IntegerType *IntTy = 6906 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 6907 6908 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 6909 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 6910 ArgList.push_back(IntTy); 6911 6912 // If necessary, add one more integer type to ArgList. 6913 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 6914 6915 if (R) 6916 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 6917 } 6918 6919 // In N32/64, an aligned double precision floating point field is passed in 6920 // a register. 6921 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 6922 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 6923 6924 if (IsO32) { 6925 CoerceToIntArgs(TySize, ArgList); 6926 return llvm::StructType::get(getVMContext(), ArgList); 6927 } 6928 6929 if (Ty->isComplexType()) 6930 return CGT.ConvertType(Ty); 6931 6932 const RecordType *RT = Ty->getAs<RecordType>(); 6933 6934 // Unions/vectors are passed in integer registers. 6935 if (!RT || !RT->isStructureOrClassType()) { 6936 CoerceToIntArgs(TySize, ArgList); 6937 return llvm::StructType::get(getVMContext(), ArgList); 6938 } 6939 6940 const RecordDecl *RD = RT->getDecl(); 6941 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 6942 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 6943 6944 uint64_t LastOffset = 0; 6945 unsigned idx = 0; 6946 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 6947 6948 // Iterate over fields in the struct/class and check if there are any aligned 6949 // double fields. 6950 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 6951 i != e; ++i, ++idx) { 6952 const QualType Ty = i->getType(); 6953 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 6954 6955 if (!BT || BT->getKind() != BuiltinType::Double) 6956 continue; 6957 6958 uint64_t Offset = Layout.getFieldOffset(idx); 6959 if (Offset % 64) // Ignore doubles that are not aligned. 6960 continue; 6961 6962 // Add ((Offset - LastOffset) / 64) args of type i64. 6963 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 6964 ArgList.push_back(I64); 6965 6966 // Add double type. 6967 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 6968 LastOffset = Offset + 64; 6969 } 6970 6971 CoerceToIntArgs(TySize - LastOffset, IntArgList); 6972 ArgList.append(IntArgList.begin(), IntArgList.end()); 6973 6974 return llvm::StructType::get(getVMContext(), ArgList); 6975 } 6976 6977 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 6978 uint64_t Offset) const { 6979 if (OrigOffset + MinABIStackAlignInBytes > Offset) 6980 return nullptr; 6981 6982 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 6983 } 6984 6985 ABIArgInfo 6986 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 6987 Ty = useFirstFieldIfTransparentUnion(Ty); 6988 6989 uint64_t OrigOffset = Offset; 6990 uint64_t TySize = getContext().getTypeSize(Ty); 6991 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 6992 6993 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 6994 (uint64_t)StackAlignInBytes); 6995 unsigned CurrOffset = llvm::alignTo(Offset, Align); 6996 Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8; 6997 6998 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 6999 // Ignore empty aggregates. 7000 if (TySize == 0) 7001 return ABIArgInfo::getIgnore(); 7002 7003 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 7004 Offset = OrigOffset + MinABIStackAlignInBytes; 7005 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7006 } 7007 7008 // If we have reached here, aggregates are passed directly by coercing to 7009 // another structure type. Padding is inserted if the offset of the 7010 // aggregate is unaligned. 7011 ABIArgInfo ArgInfo = 7012 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 7013 getPaddingType(OrigOffset, CurrOffset)); 7014 ArgInfo.setInReg(true); 7015 return ArgInfo; 7016 } 7017 7018 // Treat an enum type as its underlying type. 7019 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7020 Ty = EnumTy->getDecl()->getIntegerType(); 7021 7022 // All integral types are promoted to the GPR width. 7023 if (Ty->isIntegralOrEnumerationType()) 7024 return extendType(Ty); 7025 7026 return ABIArgInfo::getDirect( 7027 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 7028 } 7029 7030 llvm::Type* 7031 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 7032 const RecordType *RT = RetTy->getAs<RecordType>(); 7033 SmallVector<llvm::Type*, 8> RTList; 7034 7035 if (RT && RT->isStructureOrClassType()) { 7036 const RecordDecl *RD = RT->getDecl(); 7037 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 7038 unsigned FieldCnt = Layout.getFieldCount(); 7039 7040 // N32/64 returns struct/classes in floating point registers if the 7041 // following conditions are met: 7042 // 1. The size of the struct/class is no larger than 128-bit. 7043 // 2. The struct/class has one or two fields all of which are floating 7044 // point types. 7045 // 3. The offset of the first field is zero (this follows what gcc does). 7046 // 7047 // Any other composite results are returned in integer registers. 7048 // 7049 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 7050 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 7051 for (; b != e; ++b) { 7052 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 7053 7054 if (!BT || !BT->isFloatingPoint()) 7055 break; 7056 7057 RTList.push_back(CGT.ConvertType(b->getType())); 7058 } 7059 7060 if (b == e) 7061 return llvm::StructType::get(getVMContext(), RTList, 7062 RD->hasAttr<PackedAttr>()); 7063 7064 RTList.clear(); 7065 } 7066 } 7067 7068 CoerceToIntArgs(Size, RTList); 7069 return llvm::StructType::get(getVMContext(), RTList); 7070 } 7071 7072 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 7073 uint64_t Size = getContext().getTypeSize(RetTy); 7074 7075 if (RetTy->isVoidType()) 7076 return ABIArgInfo::getIgnore(); 7077 7078 // O32 doesn't treat zero-sized structs differently from other structs. 7079 // However, N32/N64 ignores zero sized return values. 7080 if (!IsO32 && Size == 0) 7081 return ABIArgInfo::getIgnore(); 7082 7083 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 7084 if (Size <= 128) { 7085 if (RetTy->isAnyComplexType()) 7086 return ABIArgInfo::getDirect(); 7087 7088 // O32 returns integer vectors in registers and N32/N64 returns all small 7089 // aggregates in registers. 7090 if (!IsO32 || 7091 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { 7092 ABIArgInfo ArgInfo = 7093 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 7094 ArgInfo.setInReg(true); 7095 return ArgInfo; 7096 } 7097 } 7098 7099 return getNaturalAlignIndirect(RetTy); 7100 } 7101 7102 // Treat an enum type as its underlying type. 7103 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7104 RetTy = EnumTy->getDecl()->getIntegerType(); 7105 7106 if (RetTy->isPromotableIntegerType()) 7107 return ABIArgInfo::getExtend(RetTy); 7108 7109 if ((RetTy->isUnsignedIntegerOrEnumerationType() || 7110 RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32) 7111 return ABIArgInfo::getSignExtend(RetTy); 7112 7113 return ABIArgInfo::getDirect(); 7114 } 7115 7116 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 7117 ABIArgInfo &RetInfo = FI.getReturnInfo(); 7118 if (!getCXXABI().classifyReturnType(FI)) 7119 RetInfo = classifyReturnType(FI.getReturnType()); 7120 7121 // Check if a pointer to an aggregate is passed as a hidden argument. 7122 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 7123 7124 for (auto &I : FI.arguments()) 7125 I.info = classifyArgumentType(I.type, Offset); 7126 } 7127 7128 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7129 QualType OrigTy) const { 7130 QualType Ty = OrigTy; 7131 7132 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. 7133 // Pointers are also promoted in the same way but this only matters for N32. 7134 unsigned SlotSizeInBits = IsO32 ? 32 : 64; 7135 unsigned PtrWidth = getTarget().getPointerWidth(0); 7136 bool DidPromote = false; 7137 if ((Ty->isIntegerType() && 7138 getContext().getIntWidth(Ty) < SlotSizeInBits) || 7139 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { 7140 DidPromote = true; 7141 Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits, 7142 Ty->isSignedIntegerType()); 7143 } 7144 7145 auto TyInfo = getContext().getTypeInfoInChars(Ty); 7146 7147 // The alignment of things in the argument area is never larger than 7148 // StackAlignInBytes. 7149 TyInfo.second = 7150 std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes)); 7151 7152 // MinABIStackAlignInBytes is the size of argument slots on the stack. 7153 CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes); 7154 7155 Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 7156 TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true); 7157 7158 7159 // If there was a promotion, "unpromote" into a temporary. 7160 // TODO: can we just use a pointer into a subset of the original slot? 7161 if (DidPromote) { 7162 Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp"); 7163 llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr); 7164 7165 // Truncate down to the right width. 7166 llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType() 7167 : CGF.IntPtrTy); 7168 llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy); 7169 if (OrigTy->isPointerType()) 7170 V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType()); 7171 7172 CGF.Builder.CreateStore(V, Temp); 7173 Addr = Temp; 7174 } 7175 7176 return Addr; 7177 } 7178 7179 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const { 7180 int TySize = getContext().getTypeSize(Ty); 7181 7182 // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. 7183 if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 7184 return ABIArgInfo::getSignExtend(Ty); 7185 7186 return ABIArgInfo::getExtend(Ty); 7187 } 7188 7189 bool 7190 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7191 llvm::Value *Address) const { 7192 // This information comes from gcc's implementation, which seems to 7193 // as canonical as it gets. 7194 7195 // Everything on MIPS is 4 bytes. Double-precision FP registers 7196 // are aliased to pairs of single-precision FP registers. 7197 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 7198 7199 // 0-31 are the general purpose registers, $0 - $31. 7200 // 32-63 are the floating-point registers, $f0 - $f31. 7201 // 64 and 65 are the multiply/divide registers, $hi and $lo. 7202 // 66 is the (notional, I think) register for signal-handler return. 7203 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 7204 7205 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 7206 // They are one bit wide and ignored here. 7207 7208 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 7209 // (coprocessor 1 is the FP unit) 7210 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 7211 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 7212 // 176-181 are the DSP accumulator registers. 7213 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 7214 return false; 7215 } 7216 7217 //===----------------------------------------------------------------------===// 7218 // AVR ABI Implementation. 7219 //===----------------------------------------------------------------------===// 7220 7221 namespace { 7222 class AVRTargetCodeGenInfo : public TargetCodeGenInfo { 7223 public: 7224 AVRTargetCodeGenInfo(CodeGenTypes &CGT) 7225 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) { } 7226 7227 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7228 CodeGen::CodeGenModule &CGM) const override { 7229 if (GV->isDeclaration()) 7230 return; 7231 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 7232 if (!FD) return; 7233 auto *Fn = cast<llvm::Function>(GV); 7234 7235 if (FD->getAttr<AVRInterruptAttr>()) 7236 Fn->addFnAttr("interrupt"); 7237 7238 if (FD->getAttr<AVRSignalAttr>()) 7239 Fn->addFnAttr("signal"); 7240 } 7241 }; 7242 } 7243 7244 //===----------------------------------------------------------------------===// 7245 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 7246 // Currently subclassed only to implement custom OpenCL C function attribute 7247 // handling. 7248 //===----------------------------------------------------------------------===// 7249 7250 namespace { 7251 7252 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 7253 public: 7254 TCETargetCodeGenInfo(CodeGenTypes &CGT) 7255 : DefaultTargetCodeGenInfo(CGT) {} 7256 7257 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7258 CodeGen::CodeGenModule &M) const override; 7259 }; 7260 7261 void TCETargetCodeGenInfo::setTargetAttributes( 7262 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7263 if (GV->isDeclaration()) 7264 return; 7265 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7266 if (!FD) return; 7267 7268 llvm::Function *F = cast<llvm::Function>(GV); 7269 7270 if (M.getLangOpts().OpenCL) { 7271 if (FD->hasAttr<OpenCLKernelAttr>()) { 7272 // OpenCL C Kernel functions are not subject to inlining 7273 F->addFnAttr(llvm::Attribute::NoInline); 7274 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 7275 if (Attr) { 7276 // Convert the reqd_work_group_size() attributes to metadata. 7277 llvm::LLVMContext &Context = F->getContext(); 7278 llvm::NamedMDNode *OpenCLMetadata = 7279 M.getModule().getOrInsertNamedMetadata( 7280 "opencl.kernel_wg_size_info"); 7281 7282 SmallVector<llvm::Metadata *, 5> Operands; 7283 Operands.push_back(llvm::ConstantAsMetadata::get(F)); 7284 7285 Operands.push_back( 7286 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7287 M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); 7288 Operands.push_back( 7289 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7290 M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); 7291 Operands.push_back( 7292 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7293 M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); 7294 7295 // Add a boolean constant operand for "required" (true) or "hint" 7296 // (false) for implementing the work_group_size_hint attr later. 7297 // Currently always true as the hint is not yet implemented. 7298 Operands.push_back( 7299 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); 7300 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 7301 } 7302 } 7303 } 7304 } 7305 7306 } 7307 7308 //===----------------------------------------------------------------------===// 7309 // Hexagon ABI Implementation 7310 //===----------------------------------------------------------------------===// 7311 7312 namespace { 7313 7314 class HexagonABIInfo : public ABIInfo { 7315 7316 7317 public: 7318 HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 7319 7320 private: 7321 7322 ABIArgInfo classifyReturnType(QualType RetTy) const; 7323 ABIArgInfo classifyArgumentType(QualType RetTy) const; 7324 7325 void computeInfo(CGFunctionInfo &FI) const override; 7326 7327 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7328 QualType Ty) const override; 7329 }; 7330 7331 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 7332 public: 7333 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 7334 :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {} 7335 7336 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 7337 return 29; 7338 } 7339 }; 7340 7341 } 7342 7343 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 7344 if (!getCXXABI().classifyReturnType(FI)) 7345 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7346 for (auto &I : FI.arguments()) 7347 I.info = classifyArgumentType(I.type); 7348 } 7349 7350 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const { 7351 if (!isAggregateTypeForABI(Ty)) { 7352 // Treat an enum type as its underlying type. 7353 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7354 Ty = EnumTy->getDecl()->getIntegerType(); 7355 7356 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 7357 : ABIArgInfo::getDirect()); 7358 } 7359 7360 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 7361 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7362 7363 // Ignore empty records. 7364 if (isEmptyRecord(getContext(), Ty, true)) 7365 return ABIArgInfo::getIgnore(); 7366 7367 uint64_t Size = getContext().getTypeSize(Ty); 7368 if (Size > 64) 7369 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 7370 // Pass in the smallest viable integer type. 7371 else if (Size > 32) 7372 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 7373 else if (Size > 16) 7374 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7375 else if (Size > 8) 7376 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7377 else 7378 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 7379 } 7380 7381 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 7382 if (RetTy->isVoidType()) 7383 return ABIArgInfo::getIgnore(); 7384 7385 // Large vector types should be returned via memory. 7386 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64) 7387 return getNaturalAlignIndirect(RetTy); 7388 7389 if (!isAggregateTypeForABI(RetTy)) { 7390 // Treat an enum type as its underlying type. 7391 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7392 RetTy = EnumTy->getDecl()->getIntegerType(); 7393 7394 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 7395 : ABIArgInfo::getDirect()); 7396 } 7397 7398 if (isEmptyRecord(getContext(), RetTy, true)) 7399 return ABIArgInfo::getIgnore(); 7400 7401 // Aggregates <= 8 bytes are returned in r0; other aggregates 7402 // are returned indirectly. 7403 uint64_t Size = getContext().getTypeSize(RetTy); 7404 if (Size <= 64) { 7405 // Return in the smallest viable integer type. 7406 if (Size <= 8) 7407 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 7408 if (Size <= 16) 7409 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7410 if (Size <= 32) 7411 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7412 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 7413 } 7414 7415 return getNaturalAlignIndirect(RetTy, /*ByVal=*/true); 7416 } 7417 7418 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7419 QualType Ty) const { 7420 // FIXME: Someone needs to audit that this handle alignment correctly. 7421 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 7422 getContext().getTypeInfoInChars(Ty), 7423 CharUnits::fromQuantity(4), 7424 /*AllowHigherAlign*/ true); 7425 } 7426 7427 //===----------------------------------------------------------------------===// 7428 // Lanai ABI Implementation 7429 //===----------------------------------------------------------------------===// 7430 7431 namespace { 7432 class LanaiABIInfo : public DefaultABIInfo { 7433 public: 7434 LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7435 7436 bool shouldUseInReg(QualType Ty, CCState &State) const; 7437 7438 void computeInfo(CGFunctionInfo &FI) const override { 7439 CCState State(FI.getCallingConvention()); 7440 // Lanai uses 4 registers to pass arguments unless the function has the 7441 // regparm attribute set. 7442 if (FI.getHasRegParm()) { 7443 State.FreeRegs = FI.getRegParm(); 7444 } else { 7445 State.FreeRegs = 4; 7446 } 7447 7448 if (!getCXXABI().classifyReturnType(FI)) 7449 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7450 for (auto &I : FI.arguments()) 7451 I.info = classifyArgumentType(I.type, State); 7452 } 7453 7454 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 7455 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 7456 }; 7457 } // end anonymous namespace 7458 7459 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const { 7460 unsigned Size = getContext().getTypeSize(Ty); 7461 unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U; 7462 7463 if (SizeInRegs == 0) 7464 return false; 7465 7466 if (SizeInRegs > State.FreeRegs) { 7467 State.FreeRegs = 0; 7468 return false; 7469 } 7470 7471 State.FreeRegs -= SizeInRegs; 7472 7473 return true; 7474 } 7475 7476 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal, 7477 CCState &State) const { 7478 if (!ByVal) { 7479 if (State.FreeRegs) { 7480 --State.FreeRegs; // Non-byval indirects just use one pointer. 7481 return getNaturalAlignIndirectInReg(Ty); 7482 } 7483 return getNaturalAlignIndirect(Ty, false); 7484 } 7485 7486 // Compute the byval alignment. 7487 const unsigned MinABIStackAlignInBytes = 4; 7488 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 7489 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 7490 /*Realign=*/TypeAlign > 7491 MinABIStackAlignInBytes); 7492 } 7493 7494 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty, 7495 CCState &State) const { 7496 // Check with the C++ ABI first. 7497 const RecordType *RT = Ty->getAs<RecordType>(); 7498 if (RT) { 7499 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 7500 if (RAA == CGCXXABI::RAA_Indirect) { 7501 return getIndirectResult(Ty, /*ByVal=*/false, State); 7502 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 7503 return getNaturalAlignIndirect(Ty, /*ByRef=*/true); 7504 } 7505 } 7506 7507 if (isAggregateTypeForABI(Ty)) { 7508 // Structures with flexible arrays are always indirect. 7509 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 7510 return getIndirectResult(Ty, /*ByVal=*/true, State); 7511 7512 // Ignore empty structs/unions. 7513 if (isEmptyRecord(getContext(), Ty, true)) 7514 return ABIArgInfo::getIgnore(); 7515 7516 llvm::LLVMContext &LLVMContext = getVMContext(); 7517 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 7518 if (SizeInRegs <= State.FreeRegs) { 7519 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 7520 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 7521 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 7522 State.FreeRegs -= SizeInRegs; 7523 return ABIArgInfo::getDirectInReg(Result); 7524 } else { 7525 State.FreeRegs = 0; 7526 } 7527 return getIndirectResult(Ty, true, State); 7528 } 7529 7530 // Treat an enum type as its underlying type. 7531 if (const auto *EnumTy = Ty->getAs<EnumType>()) 7532 Ty = EnumTy->getDecl()->getIntegerType(); 7533 7534 bool InReg = shouldUseInReg(Ty, State); 7535 if (Ty->isPromotableIntegerType()) { 7536 if (InReg) 7537 return ABIArgInfo::getDirectInReg(); 7538 return ABIArgInfo::getExtend(Ty); 7539 } 7540 if (InReg) 7541 return ABIArgInfo::getDirectInReg(); 7542 return ABIArgInfo::getDirect(); 7543 } 7544 7545 namespace { 7546 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo { 7547 public: 7548 LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 7549 : TargetCodeGenInfo(new LanaiABIInfo(CGT)) {} 7550 }; 7551 } 7552 7553 //===----------------------------------------------------------------------===// 7554 // AMDGPU ABI Implementation 7555 //===----------------------------------------------------------------------===// 7556 7557 namespace { 7558 7559 class AMDGPUABIInfo final : public DefaultABIInfo { 7560 private: 7561 static const unsigned MaxNumRegsForArgsRet = 16; 7562 7563 unsigned numRegsForType(QualType Ty) const; 7564 7565 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 7566 bool isHomogeneousAggregateSmallEnough(const Type *Base, 7567 uint64_t Members) const override; 7568 7569 public: 7570 explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) : 7571 DefaultABIInfo(CGT) {} 7572 7573 ABIArgInfo classifyReturnType(QualType RetTy) const; 7574 ABIArgInfo classifyKernelArgumentType(QualType Ty) const; 7575 ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const; 7576 7577 void computeInfo(CGFunctionInfo &FI) const override; 7578 }; 7579 7580 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 7581 return true; 7582 } 7583 7584 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough( 7585 const Type *Base, uint64_t Members) const { 7586 uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32; 7587 7588 // Homogeneous Aggregates may occupy at most 16 registers. 7589 return Members * NumRegs <= MaxNumRegsForArgsRet; 7590 } 7591 7592 /// Estimate number of registers the type will use when passed in registers. 7593 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const { 7594 unsigned NumRegs = 0; 7595 7596 if (const VectorType *VT = Ty->getAs<VectorType>()) { 7597 // Compute from the number of elements. The reported size is based on the 7598 // in-memory size, which includes the padding 4th element for 3-vectors. 7599 QualType EltTy = VT->getElementType(); 7600 unsigned EltSize = getContext().getTypeSize(EltTy); 7601 7602 // 16-bit element vectors should be passed as packed. 7603 if (EltSize == 16) 7604 return (VT->getNumElements() + 1) / 2; 7605 7606 unsigned EltNumRegs = (EltSize + 31) / 32; 7607 return EltNumRegs * VT->getNumElements(); 7608 } 7609 7610 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7611 const RecordDecl *RD = RT->getDecl(); 7612 assert(!RD->hasFlexibleArrayMember()); 7613 7614 for (const FieldDecl *Field : RD->fields()) { 7615 QualType FieldTy = Field->getType(); 7616 NumRegs += numRegsForType(FieldTy); 7617 } 7618 7619 return NumRegs; 7620 } 7621 7622 return (getContext().getTypeSize(Ty) + 31) / 32; 7623 } 7624 7625 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const { 7626 llvm::CallingConv::ID CC = FI.getCallingConvention(); 7627 7628 if (!getCXXABI().classifyReturnType(FI)) 7629 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7630 7631 unsigned NumRegsLeft = MaxNumRegsForArgsRet; 7632 for (auto &Arg : FI.arguments()) { 7633 if (CC == llvm::CallingConv::AMDGPU_KERNEL) { 7634 Arg.info = classifyKernelArgumentType(Arg.type); 7635 } else { 7636 Arg.info = classifyArgumentType(Arg.type, NumRegsLeft); 7637 } 7638 } 7639 } 7640 7641 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const { 7642 if (isAggregateTypeForABI(RetTy)) { 7643 // Records with non-trivial destructors/copy-constructors should not be 7644 // returned by value. 7645 if (!getRecordArgABI(RetTy, getCXXABI())) { 7646 // Ignore empty structs/unions. 7647 if (isEmptyRecord(getContext(), RetTy, true)) 7648 return ABIArgInfo::getIgnore(); 7649 7650 // Lower single-element structs to just return a regular value. 7651 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 7652 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 7653 7654 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 7655 const RecordDecl *RD = RT->getDecl(); 7656 if (RD->hasFlexibleArrayMember()) 7657 return DefaultABIInfo::classifyReturnType(RetTy); 7658 } 7659 7660 // Pack aggregates <= 4 bytes into single VGPR or pair. 7661 uint64_t Size = getContext().getTypeSize(RetTy); 7662 if (Size <= 16) 7663 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7664 7665 if (Size <= 32) 7666 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7667 7668 if (Size <= 64) { 7669 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 7670 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 7671 } 7672 7673 if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet) 7674 return ABIArgInfo::getDirect(); 7675 } 7676 } 7677 7678 // Otherwise just do the default thing. 7679 return DefaultABIInfo::classifyReturnType(RetTy); 7680 } 7681 7682 /// For kernels all parameters are really passed in a special buffer. It doesn't 7683 /// make sense to pass anything byval, so everything must be direct. 7684 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const { 7685 Ty = useFirstFieldIfTransparentUnion(Ty); 7686 7687 // TODO: Can we omit empty structs? 7688 7689 // Coerce single element structs to its element. 7690 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 7691 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 7692 7693 // If we set CanBeFlattened to true, CodeGen will expand the struct to its 7694 // individual elements, which confuses the Clover OpenCL backend; therefore we 7695 // have to set it to false here. Other args of getDirect() are just defaults. 7696 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 7697 } 7698 7699 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty, 7700 unsigned &NumRegsLeft) const { 7701 assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow"); 7702 7703 Ty = useFirstFieldIfTransparentUnion(Ty); 7704 7705 if (isAggregateTypeForABI(Ty)) { 7706 // Records with non-trivial destructors/copy-constructors should not be 7707 // passed by value. 7708 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 7709 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7710 7711 // Ignore empty structs/unions. 7712 if (isEmptyRecord(getContext(), Ty, true)) 7713 return ABIArgInfo::getIgnore(); 7714 7715 // Lower single-element structs to just pass a regular value. TODO: We 7716 // could do reasonable-size multiple-element structs too, using getExpand(), 7717 // though watch out for things like bitfields. 7718 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 7719 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 7720 7721 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7722 const RecordDecl *RD = RT->getDecl(); 7723 if (RD->hasFlexibleArrayMember()) 7724 return DefaultABIInfo::classifyArgumentType(Ty); 7725 } 7726 7727 // Pack aggregates <= 8 bytes into single VGPR or pair. 7728 uint64_t Size = getContext().getTypeSize(Ty); 7729 if (Size <= 64) { 7730 unsigned NumRegs = (Size + 31) / 32; 7731 NumRegsLeft -= std::min(NumRegsLeft, NumRegs); 7732 7733 if (Size <= 16) 7734 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7735 7736 if (Size <= 32) 7737 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7738 7739 // XXX: Should this be i64 instead, and should the limit increase? 7740 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 7741 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 7742 } 7743 7744 if (NumRegsLeft > 0) { 7745 unsigned NumRegs = numRegsForType(Ty); 7746 if (NumRegsLeft >= NumRegs) { 7747 NumRegsLeft -= NumRegs; 7748 return ABIArgInfo::getDirect(); 7749 } 7750 } 7751 } 7752 7753 // Otherwise just do the default thing. 7754 ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty); 7755 if (!ArgInfo.isIndirect()) { 7756 unsigned NumRegs = numRegsForType(Ty); 7757 NumRegsLeft -= std::min(NumRegs, NumRegsLeft); 7758 } 7759 7760 return ArgInfo; 7761 } 7762 7763 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { 7764 public: 7765 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) 7766 : TargetCodeGenInfo(new AMDGPUABIInfo(CGT)) {} 7767 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7768 CodeGen::CodeGenModule &M) const override; 7769 unsigned getOpenCLKernelCallingConv() const override; 7770 7771 llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM, 7772 llvm::PointerType *T, QualType QT) const override; 7773 7774 LangAS getASTAllocaAddressSpace() const override { 7775 return getLangASFromTargetAS( 7776 getABIInfo().getDataLayout().getAllocaAddrSpace()); 7777 } 7778 LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, 7779 const VarDecl *D) const override; 7780 llvm::SyncScope::ID getLLVMSyncScopeID(SyncScope S, 7781 llvm::LLVMContext &C) const override; 7782 llvm::Function * 7783 createEnqueuedBlockKernel(CodeGenFunction &CGF, 7784 llvm::Function *BlockInvokeFunc, 7785 llvm::Value *BlockLiteral) const override; 7786 bool shouldEmitStaticExternCAliases() const override; 7787 void setCUDAKernelCallingConvention(const FunctionType *&FT) const override; 7788 }; 7789 } 7790 7791 void AMDGPUTargetCodeGenInfo::setTargetAttributes( 7792 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7793 if (GV->isDeclaration()) 7794 return; 7795 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7796 if (!FD) 7797 return; 7798 7799 llvm::Function *F = cast<llvm::Function>(GV); 7800 7801 const auto *ReqdWGS = M.getLangOpts().OpenCL ? 7802 FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr; 7803 7804 if (M.getLangOpts().OpenCL && FD->hasAttr<OpenCLKernelAttr>() && 7805 (M.getTriple().getOS() == llvm::Triple::AMDHSA)) 7806 F->addFnAttr("amdgpu-implicitarg-num-bytes", "48"); 7807 7808 const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>(); 7809 if (ReqdWGS || FlatWGS) { 7810 unsigned Min = FlatWGS ? FlatWGS->getMin() : 0; 7811 unsigned Max = FlatWGS ? FlatWGS->getMax() : 0; 7812 if (ReqdWGS && Min == 0 && Max == 0) 7813 Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim(); 7814 7815 if (Min != 0) { 7816 assert(Min <= Max && "Min must be less than or equal Max"); 7817 7818 std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max); 7819 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 7820 } else 7821 assert(Max == 0 && "Max must be zero"); 7822 } 7823 7824 if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) { 7825 unsigned Min = Attr->getMin(); 7826 unsigned Max = Attr->getMax(); 7827 7828 if (Min != 0) { 7829 assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max"); 7830 7831 std::string AttrVal = llvm::utostr(Min); 7832 if (Max != 0) 7833 AttrVal = AttrVal + "," + llvm::utostr(Max); 7834 F->addFnAttr("amdgpu-waves-per-eu", AttrVal); 7835 } else 7836 assert(Max == 0 && "Max must be zero"); 7837 } 7838 7839 if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { 7840 unsigned NumSGPR = Attr->getNumSGPR(); 7841 7842 if (NumSGPR != 0) 7843 F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR)); 7844 } 7845 7846 if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { 7847 uint32_t NumVGPR = Attr->getNumVGPR(); 7848 7849 if (NumVGPR != 0) 7850 F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR)); 7851 } 7852 } 7853 7854 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 7855 return llvm::CallingConv::AMDGPU_KERNEL; 7856 } 7857 7858 // Currently LLVM assumes null pointers always have value 0, 7859 // which results in incorrectly transformed IR. Therefore, instead of 7860 // emitting null pointers in private and local address spaces, a null 7861 // pointer in generic address space is emitted which is casted to a 7862 // pointer in local or private address space. 7863 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer( 7864 const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT, 7865 QualType QT) const { 7866 if (CGM.getContext().getTargetNullPointerValue(QT) == 0) 7867 return llvm::ConstantPointerNull::get(PT); 7868 7869 auto &Ctx = CGM.getContext(); 7870 auto NPT = llvm::PointerType::get(PT->getElementType(), 7871 Ctx.getTargetAddressSpace(LangAS::opencl_generic)); 7872 return llvm::ConstantExpr::getAddrSpaceCast( 7873 llvm::ConstantPointerNull::get(NPT), PT); 7874 } 7875 7876 LangAS 7877 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 7878 const VarDecl *D) const { 7879 assert(!CGM.getLangOpts().OpenCL && 7880 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 7881 "Address space agnostic languages only"); 7882 LangAS DefaultGlobalAS = getLangASFromTargetAS( 7883 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global)); 7884 if (!D) 7885 return DefaultGlobalAS; 7886 7887 LangAS AddrSpace = D->getType().getAddressSpace(); 7888 assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace)); 7889 if (AddrSpace != LangAS::Default) 7890 return AddrSpace; 7891 7892 if (CGM.isTypeConstant(D->getType(), false)) { 7893 if (auto ConstAS = CGM.getTarget().getConstantAddressSpace()) 7894 return ConstAS.getValue(); 7895 } 7896 return DefaultGlobalAS; 7897 } 7898 7899 llvm::SyncScope::ID 7900 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(SyncScope S, 7901 llvm::LLVMContext &C) const { 7902 StringRef Name; 7903 switch (S) { 7904 case SyncScope::OpenCLWorkGroup: 7905 Name = "workgroup"; 7906 break; 7907 case SyncScope::OpenCLDevice: 7908 Name = "agent"; 7909 break; 7910 case SyncScope::OpenCLAllSVMDevices: 7911 Name = ""; 7912 break; 7913 case SyncScope::OpenCLSubGroup: 7914 Name = "subgroup"; 7915 } 7916 return C.getOrInsertSyncScopeID(Name); 7917 } 7918 7919 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 7920 return false; 7921 } 7922 7923 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention( 7924 const FunctionType *&FT) const { 7925 FT = getABIInfo().getContext().adjustFunctionType( 7926 FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel)); 7927 } 7928 7929 //===----------------------------------------------------------------------===// 7930 // SPARC v8 ABI Implementation. 7931 // Based on the SPARC Compliance Definition version 2.4.1. 7932 // 7933 // Ensures that complex values are passed in registers. 7934 // 7935 namespace { 7936 class SparcV8ABIInfo : public DefaultABIInfo { 7937 public: 7938 SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7939 7940 private: 7941 ABIArgInfo classifyReturnType(QualType RetTy) const; 7942 void computeInfo(CGFunctionInfo &FI) const override; 7943 }; 7944 } // end anonymous namespace 7945 7946 7947 ABIArgInfo 7948 SparcV8ABIInfo::classifyReturnType(QualType Ty) const { 7949 if (Ty->isAnyComplexType()) { 7950 return ABIArgInfo::getDirect(); 7951 } 7952 else { 7953 return DefaultABIInfo::classifyReturnType(Ty); 7954 } 7955 } 7956 7957 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const { 7958 7959 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7960 for (auto &Arg : FI.arguments()) 7961 Arg.info = classifyArgumentType(Arg.type); 7962 } 7963 7964 namespace { 7965 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo { 7966 public: 7967 SparcV8TargetCodeGenInfo(CodeGenTypes &CGT) 7968 : TargetCodeGenInfo(new SparcV8ABIInfo(CGT)) {} 7969 }; 7970 } // end anonymous namespace 7971 7972 //===----------------------------------------------------------------------===// 7973 // SPARC v9 ABI Implementation. 7974 // Based on the SPARC Compliance Definition version 2.4.1. 7975 // 7976 // Function arguments a mapped to a nominal "parameter array" and promoted to 7977 // registers depending on their type. Each argument occupies 8 or 16 bytes in 7978 // the array, structs larger than 16 bytes are passed indirectly. 7979 // 7980 // One case requires special care: 7981 // 7982 // struct mixed { 7983 // int i; 7984 // float f; 7985 // }; 7986 // 7987 // When a struct mixed is passed by value, it only occupies 8 bytes in the 7988 // parameter array, but the int is passed in an integer register, and the float 7989 // is passed in a floating point register. This is represented as two arguments 7990 // with the LLVM IR inreg attribute: 7991 // 7992 // declare void f(i32 inreg %i, float inreg %f) 7993 // 7994 // The code generator will only allocate 4 bytes from the parameter array for 7995 // the inreg arguments. All other arguments are allocated a multiple of 8 7996 // bytes. 7997 // 7998 namespace { 7999 class SparcV9ABIInfo : public ABIInfo { 8000 public: 8001 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 8002 8003 private: 8004 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 8005 void computeInfo(CGFunctionInfo &FI) const override; 8006 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8007 QualType Ty) const override; 8008 8009 // Coercion type builder for structs passed in registers. The coercion type 8010 // serves two purposes: 8011 // 8012 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 8013 // in registers. 8014 // 2. Expose aligned floating point elements as first-level elements, so the 8015 // code generator knows to pass them in floating point registers. 8016 // 8017 // We also compute the InReg flag which indicates that the struct contains 8018 // aligned 32-bit floats. 8019 // 8020 struct CoerceBuilder { 8021 llvm::LLVMContext &Context; 8022 const llvm::DataLayout &DL; 8023 SmallVector<llvm::Type*, 8> Elems; 8024 uint64_t Size; 8025 bool InReg; 8026 8027 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 8028 : Context(c), DL(dl), Size(0), InReg(false) {} 8029 8030 // Pad Elems with integers until Size is ToSize. 8031 void pad(uint64_t ToSize) { 8032 assert(ToSize >= Size && "Cannot remove elements"); 8033 if (ToSize == Size) 8034 return; 8035 8036 // Finish the current 64-bit word. 8037 uint64_t Aligned = llvm::alignTo(Size, 64); 8038 if (Aligned > Size && Aligned <= ToSize) { 8039 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 8040 Size = Aligned; 8041 } 8042 8043 // Add whole 64-bit words. 8044 while (Size + 64 <= ToSize) { 8045 Elems.push_back(llvm::Type::getInt64Ty(Context)); 8046 Size += 64; 8047 } 8048 8049 // Final in-word padding. 8050 if (Size < ToSize) { 8051 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 8052 Size = ToSize; 8053 } 8054 } 8055 8056 // Add a floating point element at Offset. 8057 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 8058 // Unaligned floats are treated as integers. 8059 if (Offset % Bits) 8060 return; 8061 // The InReg flag is only required if there are any floats < 64 bits. 8062 if (Bits < 64) 8063 InReg = true; 8064 pad(Offset); 8065 Elems.push_back(Ty); 8066 Size = Offset + Bits; 8067 } 8068 8069 // Add a struct type to the coercion type, starting at Offset (in bits). 8070 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 8071 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 8072 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 8073 llvm::Type *ElemTy = StrTy->getElementType(i); 8074 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 8075 switch (ElemTy->getTypeID()) { 8076 case llvm::Type::StructTyID: 8077 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 8078 break; 8079 case llvm::Type::FloatTyID: 8080 addFloat(ElemOffset, ElemTy, 32); 8081 break; 8082 case llvm::Type::DoubleTyID: 8083 addFloat(ElemOffset, ElemTy, 64); 8084 break; 8085 case llvm::Type::FP128TyID: 8086 addFloat(ElemOffset, ElemTy, 128); 8087 break; 8088 case llvm::Type::PointerTyID: 8089 if (ElemOffset % 64 == 0) { 8090 pad(ElemOffset); 8091 Elems.push_back(ElemTy); 8092 Size += 64; 8093 } 8094 break; 8095 default: 8096 break; 8097 } 8098 } 8099 } 8100 8101 // Check if Ty is a usable substitute for the coercion type. 8102 bool isUsableType(llvm::StructType *Ty) const { 8103 return llvm::makeArrayRef(Elems) == Ty->elements(); 8104 } 8105 8106 // Get the coercion type as a literal struct type. 8107 llvm::Type *getType() const { 8108 if (Elems.size() == 1) 8109 return Elems.front(); 8110 else 8111 return llvm::StructType::get(Context, Elems); 8112 } 8113 }; 8114 }; 8115 } // end anonymous namespace 8116 8117 ABIArgInfo 8118 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 8119 if (Ty->isVoidType()) 8120 return ABIArgInfo::getIgnore(); 8121 8122 uint64_t Size = getContext().getTypeSize(Ty); 8123 8124 // Anything too big to fit in registers is passed with an explicit indirect 8125 // pointer / sret pointer. 8126 if (Size > SizeLimit) 8127 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 8128 8129 // Treat an enum type as its underlying type. 8130 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 8131 Ty = EnumTy->getDecl()->getIntegerType(); 8132 8133 // Integer types smaller than a register are extended. 8134 if (Size < 64 && Ty->isIntegerType()) 8135 return ABIArgInfo::getExtend(Ty); 8136 8137 // Other non-aggregates go in registers. 8138 if (!isAggregateTypeForABI(Ty)) 8139 return ABIArgInfo::getDirect(); 8140 8141 // If a C++ object has either a non-trivial copy constructor or a non-trivial 8142 // destructor, it is passed with an explicit indirect pointer / sret pointer. 8143 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 8144 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 8145 8146 // This is a small aggregate type that should be passed in registers. 8147 // Build a coercion type from the LLVM struct type. 8148 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 8149 if (!StrTy) 8150 return ABIArgInfo::getDirect(); 8151 8152 CoerceBuilder CB(getVMContext(), getDataLayout()); 8153 CB.addStruct(0, StrTy); 8154 CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64)); 8155 8156 // Try to use the original type for coercion. 8157 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 8158 8159 if (CB.InReg) 8160 return ABIArgInfo::getDirectInReg(CoerceTy); 8161 else 8162 return ABIArgInfo::getDirect(CoerceTy); 8163 } 8164 8165 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8166 QualType Ty) const { 8167 ABIArgInfo AI = classifyType(Ty, 16 * 8); 8168 llvm::Type *ArgTy = CGT.ConvertType(Ty); 8169 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 8170 AI.setCoerceToType(ArgTy); 8171 8172 CharUnits SlotSize = CharUnits::fromQuantity(8); 8173 8174 CGBuilderTy &Builder = CGF.Builder; 8175 Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 8176 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 8177 8178 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 8179 8180 Address ArgAddr = Address::invalid(); 8181 CharUnits Stride; 8182 switch (AI.getKind()) { 8183 case ABIArgInfo::Expand: 8184 case ABIArgInfo::CoerceAndExpand: 8185 case ABIArgInfo::InAlloca: 8186 llvm_unreachable("Unsupported ABI kind for va_arg"); 8187 8188 case ABIArgInfo::Extend: { 8189 Stride = SlotSize; 8190 CharUnits Offset = SlotSize - TypeInfo.first; 8191 ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend"); 8192 break; 8193 } 8194 8195 case ABIArgInfo::Direct: { 8196 auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 8197 Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize); 8198 ArgAddr = Addr; 8199 break; 8200 } 8201 8202 case ABIArgInfo::Indirect: 8203 Stride = SlotSize; 8204 ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect"); 8205 ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), 8206 TypeInfo.second); 8207 break; 8208 8209 case ABIArgInfo::Ignore: 8210 return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second); 8211 } 8212 8213 // Update VAList. 8214 llvm::Value *NextPtr = 8215 Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), Stride, "ap.next"); 8216 Builder.CreateStore(NextPtr, VAListAddr); 8217 8218 return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr"); 8219 } 8220 8221 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 8222 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 8223 for (auto &I : FI.arguments()) 8224 I.info = classifyType(I.type, 16 * 8); 8225 } 8226 8227 namespace { 8228 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 8229 public: 8230 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 8231 : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {} 8232 8233 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 8234 return 14; 8235 } 8236 8237 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 8238 llvm::Value *Address) const override; 8239 }; 8240 } // end anonymous namespace 8241 8242 bool 8243 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 8244 llvm::Value *Address) const { 8245 // This is calculated from the LLVM and GCC tables and verified 8246 // against gcc output. AFAIK all ABIs use the same encoding. 8247 8248 CodeGen::CGBuilderTy &Builder = CGF.Builder; 8249 8250 llvm::IntegerType *i8 = CGF.Int8Ty; 8251 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 8252 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 8253 8254 // 0-31: the 8-byte general-purpose registers 8255 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 8256 8257 // 32-63: f0-31, the 4-byte floating-point registers 8258 AssignToArrayRange(Builder, Address, Four8, 32, 63); 8259 8260 // Y = 64 8261 // PSR = 65 8262 // WIM = 66 8263 // TBR = 67 8264 // PC = 68 8265 // NPC = 69 8266 // FSR = 70 8267 // CSR = 71 8268 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 8269 8270 // 72-87: d0-15, the 8-byte floating-point registers 8271 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 8272 8273 return false; 8274 } 8275 8276 // ARC ABI implementation. 8277 namespace { 8278 8279 class ARCABIInfo : public DefaultABIInfo { 8280 public: 8281 using DefaultABIInfo::DefaultABIInfo; 8282 8283 private: 8284 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8285 QualType Ty) const override; 8286 8287 void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const { 8288 if (!State.FreeRegs) 8289 return; 8290 if (Info.isIndirect() && Info.getInReg()) 8291 State.FreeRegs--; 8292 else if (Info.isDirect() && Info.getInReg()) { 8293 unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32; 8294 if (sz < State.FreeRegs) 8295 State.FreeRegs -= sz; 8296 else 8297 State.FreeRegs = 0; 8298 } 8299 } 8300 8301 void computeInfo(CGFunctionInfo &FI) const override { 8302 CCState State(FI.getCallingConvention()); 8303 // ARC uses 8 registers to pass arguments. 8304 State.FreeRegs = 8; 8305 8306 if (!getCXXABI().classifyReturnType(FI)) 8307 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8308 updateState(FI.getReturnInfo(), FI.getReturnType(), State); 8309 for (auto &I : FI.arguments()) { 8310 I.info = classifyArgumentType(I.type, State.FreeRegs); 8311 updateState(I.info, I.type, State); 8312 } 8313 } 8314 8315 ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const; 8316 ABIArgInfo getIndirectByValue(QualType Ty) const; 8317 ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const; 8318 ABIArgInfo classifyReturnType(QualType RetTy) const; 8319 }; 8320 8321 class ARCTargetCodeGenInfo : public TargetCodeGenInfo { 8322 public: 8323 ARCTargetCodeGenInfo(CodeGenTypes &CGT) 8324 : TargetCodeGenInfo(new ARCABIInfo(CGT)) {} 8325 }; 8326 8327 8328 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const { 8329 return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) : 8330 getNaturalAlignIndirect(Ty, false); 8331 } 8332 8333 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const { 8334 // Compute the byval alignment. 8335 const unsigned MinABIStackAlignInBytes = 4; 8336 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 8337 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 8338 TypeAlign > MinABIStackAlignInBytes); 8339 } 8340 8341 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8342 QualType Ty) const { 8343 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 8344 getContext().getTypeInfoInChars(Ty), 8345 CharUnits::fromQuantity(4), true); 8346 } 8347 8348 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty, 8349 uint8_t FreeRegs) const { 8350 // Handle the generic C++ ABI. 8351 const RecordType *RT = Ty->getAs<RecordType>(); 8352 if (RT) { 8353 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 8354 if (RAA == CGCXXABI::RAA_Indirect) 8355 return getIndirectByRef(Ty, FreeRegs > 0); 8356 8357 if (RAA == CGCXXABI::RAA_DirectInMemory) 8358 return getIndirectByValue(Ty); 8359 } 8360 8361 // Treat an enum type as its underlying type. 8362 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 8363 Ty = EnumTy->getDecl()->getIntegerType(); 8364 8365 auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32; 8366 8367 if (isAggregateTypeForABI(Ty)) { 8368 // Structures with flexible arrays are always indirect. 8369 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 8370 return getIndirectByValue(Ty); 8371 8372 // Ignore empty structs/unions. 8373 if (isEmptyRecord(getContext(), Ty, true)) 8374 return ABIArgInfo::getIgnore(); 8375 8376 llvm::LLVMContext &LLVMContext = getVMContext(); 8377 8378 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 8379 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 8380 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 8381 8382 return FreeRegs >= SizeInRegs ? 8383 ABIArgInfo::getDirectInReg(Result) : 8384 ABIArgInfo::getDirect(Result, 0, nullptr, false); 8385 } 8386 8387 return Ty->isPromotableIntegerType() ? 8388 (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty) : 8389 ABIArgInfo::getExtend(Ty)) : 8390 (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg() : 8391 ABIArgInfo::getDirect()); 8392 } 8393 8394 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const { 8395 if (RetTy->isAnyComplexType()) 8396 return ABIArgInfo::getDirectInReg(); 8397 8398 // Arguments of size > 4 registers are indirect. 8399 auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32; 8400 if (RetSize > 4) 8401 return getIndirectByRef(RetTy, /*HasFreeRegs*/ true); 8402 8403 return DefaultABIInfo::classifyReturnType(RetTy); 8404 } 8405 8406 } // End anonymous namespace. 8407 8408 //===----------------------------------------------------------------------===// 8409 // XCore ABI Implementation 8410 //===----------------------------------------------------------------------===// 8411 8412 namespace { 8413 8414 /// A SmallStringEnc instance is used to build up the TypeString by passing 8415 /// it by reference between functions that append to it. 8416 typedef llvm::SmallString<128> SmallStringEnc; 8417 8418 /// TypeStringCache caches the meta encodings of Types. 8419 /// 8420 /// The reason for caching TypeStrings is two fold: 8421 /// 1. To cache a type's encoding for later uses; 8422 /// 2. As a means to break recursive member type inclusion. 8423 /// 8424 /// A cache Entry can have a Status of: 8425 /// NonRecursive: The type encoding is not recursive; 8426 /// Recursive: The type encoding is recursive; 8427 /// Incomplete: An incomplete TypeString; 8428 /// IncompleteUsed: An incomplete TypeString that has been used in a 8429 /// Recursive type encoding. 8430 /// 8431 /// A NonRecursive entry will have all of its sub-members expanded as fully 8432 /// as possible. Whilst it may contain types which are recursive, the type 8433 /// itself is not recursive and thus its encoding may be safely used whenever 8434 /// the type is encountered. 8435 /// 8436 /// A Recursive entry will have all of its sub-members expanded as fully as 8437 /// possible. The type itself is recursive and it may contain other types which 8438 /// are recursive. The Recursive encoding must not be used during the expansion 8439 /// of a recursive type's recursive branch. For simplicity the code uses 8440 /// IncompleteCount to reject all usage of Recursive encodings for member types. 8441 /// 8442 /// An Incomplete entry is always a RecordType and only encodes its 8443 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 8444 /// are placed into the cache during type expansion as a means to identify and 8445 /// handle recursive inclusion of types as sub-members. If there is recursion 8446 /// the entry becomes IncompleteUsed. 8447 /// 8448 /// During the expansion of a RecordType's members: 8449 /// 8450 /// If the cache contains a NonRecursive encoding for the member type, the 8451 /// cached encoding is used; 8452 /// 8453 /// If the cache contains a Recursive encoding for the member type, the 8454 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 8455 /// 8456 /// If the member is a RecordType, an Incomplete encoding is placed into the 8457 /// cache to break potential recursive inclusion of itself as a sub-member; 8458 /// 8459 /// Once a member RecordType has been expanded, its temporary incomplete 8460 /// entry is removed from the cache. If a Recursive encoding was swapped out 8461 /// it is swapped back in; 8462 /// 8463 /// If an incomplete entry is used to expand a sub-member, the incomplete 8464 /// entry is marked as IncompleteUsed. The cache keeps count of how many 8465 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 8466 /// 8467 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 8468 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 8469 /// Else the member is part of a recursive type and thus the recursion has 8470 /// been exited too soon for the encoding to be correct for the member. 8471 /// 8472 class TypeStringCache { 8473 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 8474 struct Entry { 8475 std::string Str; // The encoded TypeString for the type. 8476 enum Status State; // Information about the encoding in 'Str'. 8477 std::string Swapped; // A temporary place holder for a Recursive encoding 8478 // during the expansion of RecordType's members. 8479 }; 8480 std::map<const IdentifierInfo *, struct Entry> Map; 8481 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 8482 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 8483 public: 8484 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {} 8485 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 8486 bool removeIncomplete(const IdentifierInfo *ID); 8487 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 8488 bool IsRecursive); 8489 StringRef lookupStr(const IdentifierInfo *ID); 8490 }; 8491 8492 /// TypeString encodings for enum & union fields must be order. 8493 /// FieldEncoding is a helper for this ordering process. 8494 class FieldEncoding { 8495 bool HasName; 8496 std::string Enc; 8497 public: 8498 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {} 8499 StringRef str() { return Enc; } 8500 bool operator<(const FieldEncoding &rhs) const { 8501 if (HasName != rhs.HasName) return HasName; 8502 return Enc < rhs.Enc; 8503 } 8504 }; 8505 8506 class XCoreABIInfo : public DefaultABIInfo { 8507 public: 8508 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8509 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8510 QualType Ty) const override; 8511 }; 8512 8513 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 8514 mutable TypeStringCache TSC; 8515 public: 8516 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 8517 :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {} 8518 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 8519 CodeGen::CodeGenModule &M) const override; 8520 }; 8521 8522 } // End anonymous namespace. 8523 8524 // TODO: this implementation is likely now redundant with the default 8525 // EmitVAArg. 8526 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8527 QualType Ty) const { 8528 CGBuilderTy &Builder = CGF.Builder; 8529 8530 // Get the VAList. 8531 CharUnits SlotSize = CharUnits::fromQuantity(4); 8532 Address AP(Builder.CreateLoad(VAListAddr), SlotSize); 8533 8534 // Handle the argument. 8535 ABIArgInfo AI = classifyArgumentType(Ty); 8536 CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty); 8537 llvm::Type *ArgTy = CGT.ConvertType(Ty); 8538 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 8539 AI.setCoerceToType(ArgTy); 8540 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 8541 8542 Address Val = Address::invalid(); 8543 CharUnits ArgSize = CharUnits::Zero(); 8544 switch (AI.getKind()) { 8545 case ABIArgInfo::Expand: 8546 case ABIArgInfo::CoerceAndExpand: 8547 case ABIArgInfo::InAlloca: 8548 llvm_unreachable("Unsupported ABI kind for va_arg"); 8549 case ABIArgInfo::Ignore: 8550 Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign); 8551 ArgSize = CharUnits::Zero(); 8552 break; 8553 case ABIArgInfo::Extend: 8554 case ABIArgInfo::Direct: 8555 Val = Builder.CreateBitCast(AP, ArgPtrTy); 8556 ArgSize = CharUnits::fromQuantity( 8557 getDataLayout().getTypeAllocSize(AI.getCoerceToType())); 8558 ArgSize = ArgSize.alignTo(SlotSize); 8559 break; 8560 case ABIArgInfo::Indirect: 8561 Val = Builder.CreateElementBitCast(AP, ArgPtrTy); 8562 Val = Address(Builder.CreateLoad(Val), TypeAlign); 8563 ArgSize = SlotSize; 8564 break; 8565 } 8566 8567 // Increment the VAList. 8568 if (!ArgSize.isZero()) { 8569 llvm::Value *APN = 8570 Builder.CreateConstInBoundsByteGEP(AP.getPointer(), ArgSize); 8571 Builder.CreateStore(APN, VAListAddr); 8572 } 8573 8574 return Val; 8575 } 8576 8577 /// During the expansion of a RecordType, an incomplete TypeString is placed 8578 /// into the cache as a means to identify and break recursion. 8579 /// If there is a Recursive encoding in the cache, it is swapped out and will 8580 /// be reinserted by removeIncomplete(). 8581 /// All other types of encoding should have been used rather than arriving here. 8582 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 8583 std::string StubEnc) { 8584 if (!ID) 8585 return; 8586 Entry &E = Map[ID]; 8587 assert( (E.Str.empty() || E.State == Recursive) && 8588 "Incorrectly use of addIncomplete"); 8589 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 8590 E.Swapped.swap(E.Str); // swap out the Recursive 8591 E.Str.swap(StubEnc); 8592 E.State = Incomplete; 8593 ++IncompleteCount; 8594 } 8595 8596 /// Once the RecordType has been expanded, the temporary incomplete TypeString 8597 /// must be removed from the cache. 8598 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 8599 /// Returns true if the RecordType was defined recursively. 8600 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 8601 if (!ID) 8602 return false; 8603 auto I = Map.find(ID); 8604 assert(I != Map.end() && "Entry not present"); 8605 Entry &E = I->second; 8606 assert( (E.State == Incomplete || 8607 E.State == IncompleteUsed) && 8608 "Entry must be an incomplete type"); 8609 bool IsRecursive = false; 8610 if (E.State == IncompleteUsed) { 8611 // We made use of our Incomplete encoding, thus we are recursive. 8612 IsRecursive = true; 8613 --IncompleteUsedCount; 8614 } 8615 if (E.Swapped.empty()) 8616 Map.erase(I); 8617 else { 8618 // Swap the Recursive back. 8619 E.Swapped.swap(E.Str); 8620 E.Swapped.clear(); 8621 E.State = Recursive; 8622 } 8623 --IncompleteCount; 8624 return IsRecursive; 8625 } 8626 8627 /// Add the encoded TypeString to the cache only if it is NonRecursive or 8628 /// Recursive (viz: all sub-members were expanded as fully as possible). 8629 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 8630 bool IsRecursive) { 8631 if (!ID || IncompleteUsedCount) 8632 return; // No key or it is is an incomplete sub-type so don't add. 8633 Entry &E = Map[ID]; 8634 if (IsRecursive && !E.Str.empty()) { 8635 assert(E.State==Recursive && E.Str.size() == Str.size() && 8636 "This is not the same Recursive entry"); 8637 // The parent container was not recursive after all, so we could have used 8638 // this Recursive sub-member entry after all, but we assumed the worse when 8639 // we started viz: IncompleteCount!=0. 8640 return; 8641 } 8642 assert(E.Str.empty() && "Entry already present"); 8643 E.Str = Str.str(); 8644 E.State = IsRecursive? Recursive : NonRecursive; 8645 } 8646 8647 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 8648 /// are recursively expanding a type (IncompleteCount != 0) and the cached 8649 /// encoding is Recursive, return an empty StringRef. 8650 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 8651 if (!ID) 8652 return StringRef(); // We have no key. 8653 auto I = Map.find(ID); 8654 if (I == Map.end()) 8655 return StringRef(); // We have no encoding. 8656 Entry &E = I->second; 8657 if (E.State == Recursive && IncompleteCount) 8658 return StringRef(); // We don't use Recursive encodings for member types. 8659 8660 if (E.State == Incomplete) { 8661 // The incomplete type is being used to break out of recursion. 8662 E.State = IncompleteUsed; 8663 ++IncompleteUsedCount; 8664 } 8665 return E.Str; 8666 } 8667 8668 /// The XCore ABI includes a type information section that communicates symbol 8669 /// type information to the linker. The linker uses this information to verify 8670 /// safety/correctness of things such as array bound and pointers et al. 8671 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 8672 /// This type information (TypeString) is emitted into meta data for all global 8673 /// symbols: definitions, declarations, functions & variables. 8674 /// 8675 /// The TypeString carries type, qualifier, name, size & value details. 8676 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 8677 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf 8678 /// The output is tested by test/CodeGen/xcore-stringtype.c. 8679 /// 8680 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 8681 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC); 8682 8683 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 8684 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 8685 CodeGen::CodeGenModule &CGM) const { 8686 SmallStringEnc Enc; 8687 if (getTypeString(Enc, D, CGM, TSC)) { 8688 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 8689 llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV), 8690 llvm::MDString::get(Ctx, Enc.str())}; 8691 llvm::NamedMDNode *MD = 8692 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 8693 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 8694 } 8695 } 8696 8697 //===----------------------------------------------------------------------===// 8698 // SPIR ABI Implementation 8699 //===----------------------------------------------------------------------===// 8700 8701 namespace { 8702 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo { 8703 public: 8704 SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 8705 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 8706 unsigned getOpenCLKernelCallingConv() const override; 8707 }; 8708 8709 } // End anonymous namespace. 8710 8711 namespace clang { 8712 namespace CodeGen { 8713 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) { 8714 DefaultABIInfo SPIRABI(CGM.getTypes()); 8715 SPIRABI.computeInfo(FI); 8716 } 8717 } 8718 } 8719 8720 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 8721 return llvm::CallingConv::SPIR_KERNEL; 8722 } 8723 8724 static bool appendType(SmallStringEnc &Enc, QualType QType, 8725 const CodeGen::CodeGenModule &CGM, 8726 TypeStringCache &TSC); 8727 8728 /// Helper function for appendRecordType(). 8729 /// Builds a SmallVector containing the encoded field types in declaration 8730 /// order. 8731 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 8732 const RecordDecl *RD, 8733 const CodeGen::CodeGenModule &CGM, 8734 TypeStringCache &TSC) { 8735 for (const auto *Field : RD->fields()) { 8736 SmallStringEnc Enc; 8737 Enc += "m("; 8738 Enc += Field->getName(); 8739 Enc += "){"; 8740 if (Field->isBitField()) { 8741 Enc += "b("; 8742 llvm::raw_svector_ostream OS(Enc); 8743 OS << Field->getBitWidthValue(CGM.getContext()); 8744 Enc += ':'; 8745 } 8746 if (!appendType(Enc, Field->getType(), CGM, TSC)) 8747 return false; 8748 if (Field->isBitField()) 8749 Enc += ')'; 8750 Enc += '}'; 8751 FE.emplace_back(!Field->getName().empty(), Enc); 8752 } 8753 return true; 8754 } 8755 8756 /// Appends structure and union types to Enc and adds encoding to cache. 8757 /// Recursively calls appendType (via extractFieldType) for each field. 8758 /// Union types have their fields ordered according to the ABI. 8759 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 8760 const CodeGen::CodeGenModule &CGM, 8761 TypeStringCache &TSC, const IdentifierInfo *ID) { 8762 // Append the cached TypeString if we have one. 8763 StringRef TypeString = TSC.lookupStr(ID); 8764 if (!TypeString.empty()) { 8765 Enc += TypeString; 8766 return true; 8767 } 8768 8769 // Start to emit an incomplete TypeString. 8770 size_t Start = Enc.size(); 8771 Enc += (RT->isUnionType()? 'u' : 's'); 8772 Enc += '('; 8773 if (ID) 8774 Enc += ID->getName(); 8775 Enc += "){"; 8776 8777 // We collect all encoded fields and order as necessary. 8778 bool IsRecursive = false; 8779 const RecordDecl *RD = RT->getDecl()->getDefinition(); 8780 if (RD && !RD->field_empty()) { 8781 // An incomplete TypeString stub is placed in the cache for this RecordType 8782 // so that recursive calls to this RecordType will use it whilst building a 8783 // complete TypeString for this RecordType. 8784 SmallVector<FieldEncoding, 16> FE; 8785 std::string StubEnc(Enc.substr(Start).str()); 8786 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 8787 TSC.addIncomplete(ID, std::move(StubEnc)); 8788 if (!extractFieldType(FE, RD, CGM, TSC)) { 8789 (void) TSC.removeIncomplete(ID); 8790 return false; 8791 } 8792 IsRecursive = TSC.removeIncomplete(ID); 8793 // The ABI requires unions to be sorted but not structures. 8794 // See FieldEncoding::operator< for sort algorithm. 8795 if (RT->isUnionType()) 8796 llvm::sort(FE); 8797 // We can now complete the TypeString. 8798 unsigned E = FE.size(); 8799 for (unsigned I = 0; I != E; ++I) { 8800 if (I) 8801 Enc += ','; 8802 Enc += FE[I].str(); 8803 } 8804 } 8805 Enc += '}'; 8806 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 8807 return true; 8808 } 8809 8810 /// Appends enum types to Enc and adds the encoding to the cache. 8811 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 8812 TypeStringCache &TSC, 8813 const IdentifierInfo *ID) { 8814 // Append the cached TypeString if we have one. 8815 StringRef TypeString = TSC.lookupStr(ID); 8816 if (!TypeString.empty()) { 8817 Enc += TypeString; 8818 return true; 8819 } 8820 8821 size_t Start = Enc.size(); 8822 Enc += "e("; 8823 if (ID) 8824 Enc += ID->getName(); 8825 Enc += "){"; 8826 8827 // We collect all encoded enumerations and order them alphanumerically. 8828 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 8829 SmallVector<FieldEncoding, 16> FE; 8830 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 8831 ++I) { 8832 SmallStringEnc EnumEnc; 8833 EnumEnc += "m("; 8834 EnumEnc += I->getName(); 8835 EnumEnc += "){"; 8836 I->getInitVal().toString(EnumEnc); 8837 EnumEnc += '}'; 8838 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 8839 } 8840 llvm::sort(FE); 8841 unsigned E = FE.size(); 8842 for (unsigned I = 0; I != E; ++I) { 8843 if (I) 8844 Enc += ','; 8845 Enc += FE[I].str(); 8846 } 8847 } 8848 Enc += '}'; 8849 TSC.addIfComplete(ID, Enc.substr(Start), false); 8850 return true; 8851 } 8852 8853 /// Appends type's qualifier to Enc. 8854 /// This is done prior to appending the type's encoding. 8855 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 8856 // Qualifiers are emitted in alphabetical order. 8857 static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 8858 int Lookup = 0; 8859 if (QT.isConstQualified()) 8860 Lookup += 1<<0; 8861 if (QT.isRestrictQualified()) 8862 Lookup += 1<<1; 8863 if (QT.isVolatileQualified()) 8864 Lookup += 1<<2; 8865 Enc += Table[Lookup]; 8866 } 8867 8868 /// Appends built-in types to Enc. 8869 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 8870 const char *EncType; 8871 switch (BT->getKind()) { 8872 case BuiltinType::Void: 8873 EncType = "0"; 8874 break; 8875 case BuiltinType::Bool: 8876 EncType = "b"; 8877 break; 8878 case BuiltinType::Char_U: 8879 EncType = "uc"; 8880 break; 8881 case BuiltinType::UChar: 8882 EncType = "uc"; 8883 break; 8884 case BuiltinType::SChar: 8885 EncType = "sc"; 8886 break; 8887 case BuiltinType::UShort: 8888 EncType = "us"; 8889 break; 8890 case BuiltinType::Short: 8891 EncType = "ss"; 8892 break; 8893 case BuiltinType::UInt: 8894 EncType = "ui"; 8895 break; 8896 case BuiltinType::Int: 8897 EncType = "si"; 8898 break; 8899 case BuiltinType::ULong: 8900 EncType = "ul"; 8901 break; 8902 case BuiltinType::Long: 8903 EncType = "sl"; 8904 break; 8905 case BuiltinType::ULongLong: 8906 EncType = "ull"; 8907 break; 8908 case BuiltinType::LongLong: 8909 EncType = "sll"; 8910 break; 8911 case BuiltinType::Float: 8912 EncType = "ft"; 8913 break; 8914 case BuiltinType::Double: 8915 EncType = "d"; 8916 break; 8917 case BuiltinType::LongDouble: 8918 EncType = "ld"; 8919 break; 8920 default: 8921 return false; 8922 } 8923 Enc += EncType; 8924 return true; 8925 } 8926 8927 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 8928 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 8929 const CodeGen::CodeGenModule &CGM, 8930 TypeStringCache &TSC) { 8931 Enc += "p("; 8932 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 8933 return false; 8934 Enc += ')'; 8935 return true; 8936 } 8937 8938 /// Appends array encoding to Enc before calling appendType for the element. 8939 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 8940 const ArrayType *AT, 8941 const CodeGen::CodeGenModule &CGM, 8942 TypeStringCache &TSC, StringRef NoSizeEnc) { 8943 if (AT->getSizeModifier() != ArrayType::Normal) 8944 return false; 8945 Enc += "a("; 8946 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 8947 CAT->getSize().toStringUnsigned(Enc); 8948 else 8949 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 8950 Enc += ':'; 8951 // The Qualifiers should be attached to the type rather than the array. 8952 appendQualifier(Enc, QT); 8953 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 8954 return false; 8955 Enc += ')'; 8956 return true; 8957 } 8958 8959 /// Appends a function encoding to Enc, calling appendType for the return type 8960 /// and the arguments. 8961 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 8962 const CodeGen::CodeGenModule &CGM, 8963 TypeStringCache &TSC) { 8964 Enc += "f{"; 8965 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 8966 return false; 8967 Enc += "}("; 8968 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 8969 // N.B. we are only interested in the adjusted param types. 8970 auto I = FPT->param_type_begin(); 8971 auto E = FPT->param_type_end(); 8972 if (I != E) { 8973 do { 8974 if (!appendType(Enc, *I, CGM, TSC)) 8975 return false; 8976 ++I; 8977 if (I != E) 8978 Enc += ','; 8979 } while (I != E); 8980 if (FPT->isVariadic()) 8981 Enc += ",va"; 8982 } else { 8983 if (FPT->isVariadic()) 8984 Enc += "va"; 8985 else 8986 Enc += '0'; 8987 } 8988 } 8989 Enc += ')'; 8990 return true; 8991 } 8992 8993 /// Handles the type's qualifier before dispatching a call to handle specific 8994 /// type encodings. 8995 static bool appendType(SmallStringEnc &Enc, QualType QType, 8996 const CodeGen::CodeGenModule &CGM, 8997 TypeStringCache &TSC) { 8998 8999 QualType QT = QType.getCanonicalType(); 9000 9001 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 9002 // The Qualifiers should be attached to the type rather than the array. 9003 // Thus we don't call appendQualifier() here. 9004 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 9005 9006 appendQualifier(Enc, QT); 9007 9008 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 9009 return appendBuiltinType(Enc, BT); 9010 9011 if (const PointerType *PT = QT->getAs<PointerType>()) 9012 return appendPointerType(Enc, PT, CGM, TSC); 9013 9014 if (const EnumType *ET = QT->getAs<EnumType>()) 9015 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 9016 9017 if (const RecordType *RT = QT->getAsStructureType()) 9018 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 9019 9020 if (const RecordType *RT = QT->getAsUnionType()) 9021 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 9022 9023 if (const FunctionType *FT = QT->getAs<FunctionType>()) 9024 return appendFunctionType(Enc, FT, CGM, TSC); 9025 9026 return false; 9027 } 9028 9029 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 9030 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) { 9031 if (!D) 9032 return false; 9033 9034 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 9035 if (FD->getLanguageLinkage() != CLanguageLinkage) 9036 return false; 9037 return appendType(Enc, FD->getType(), CGM, TSC); 9038 } 9039 9040 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 9041 if (VD->getLanguageLinkage() != CLanguageLinkage) 9042 return false; 9043 QualType QT = VD->getType().getCanonicalType(); 9044 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 9045 // Global ArrayTypes are given a size of '*' if the size is unknown. 9046 // The Qualifiers should be attached to the type rather than the array. 9047 // Thus we don't call appendQualifier() here. 9048 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 9049 } 9050 return appendType(Enc, QT, CGM, TSC); 9051 } 9052 return false; 9053 } 9054 9055 //===----------------------------------------------------------------------===// 9056 // RISCV ABI Implementation 9057 //===----------------------------------------------------------------------===// 9058 9059 namespace { 9060 class RISCVABIInfo : public DefaultABIInfo { 9061 private: 9062 unsigned XLen; // Size of the integer ('x') registers in bits. 9063 static const int NumArgGPRs = 8; 9064 9065 public: 9066 RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen) 9067 : DefaultABIInfo(CGT), XLen(XLen) {} 9068 9069 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 9070 // non-virtual, but computeInfo is virtual, so we overload it. 9071 void computeInfo(CGFunctionInfo &FI) const override; 9072 9073 ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, 9074 int &ArgGPRsLeft) const; 9075 ABIArgInfo classifyReturnType(QualType RetTy) const; 9076 9077 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9078 QualType Ty) const override; 9079 9080 ABIArgInfo extendType(QualType Ty) const; 9081 }; 9082 } // end anonymous namespace 9083 9084 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const { 9085 QualType RetTy = FI.getReturnType(); 9086 if (!getCXXABI().classifyReturnType(FI)) 9087 FI.getReturnInfo() = classifyReturnType(RetTy); 9088 9089 // IsRetIndirect is true if classifyArgumentType indicated the value should 9090 // be passed indirect or if the type size is greater than 2*xlen. e.g. fp128 9091 // is passed direct in LLVM IR, relying on the backend lowering code to 9092 // rewrite the argument list and pass indirectly on RV32. 9093 bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect || 9094 getContext().getTypeSize(RetTy) > (2 * XLen); 9095 9096 // We must track the number of GPRs used in order to conform to the RISC-V 9097 // ABI, as integer scalars passed in registers should have signext/zeroext 9098 // when promoted, but are anyext if passed on the stack. As GPR usage is 9099 // different for variadic arguments, we must also track whether we are 9100 // examining a vararg or not. 9101 int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs; 9102 int NumFixedArgs = FI.getNumRequiredArgs(); 9103 9104 int ArgNum = 0; 9105 for (auto &ArgInfo : FI.arguments()) { 9106 bool IsFixed = ArgNum < NumFixedArgs; 9107 ArgInfo.info = classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft); 9108 ArgNum++; 9109 } 9110 } 9111 9112 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed, 9113 int &ArgGPRsLeft) const { 9114 assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow"); 9115 Ty = useFirstFieldIfTransparentUnion(Ty); 9116 9117 // Structures with either a non-trivial destructor or a non-trivial 9118 // copy constructor are always passed indirectly. 9119 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 9120 if (ArgGPRsLeft) 9121 ArgGPRsLeft -= 1; 9122 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 9123 CGCXXABI::RAA_DirectInMemory); 9124 } 9125 9126 // Ignore empty structs/unions. 9127 if (isEmptyRecord(getContext(), Ty, true)) 9128 return ABIArgInfo::getIgnore(); 9129 9130 uint64_t Size = getContext().getTypeSize(Ty); 9131 uint64_t NeededAlign = getContext().getTypeAlign(Ty); 9132 bool MustUseStack = false; 9133 // Determine the number of GPRs needed to pass the current argument 9134 // according to the ABI. 2*XLen-aligned varargs are passed in "aligned" 9135 // register pairs, so may consume 3 registers. 9136 int NeededArgGPRs = 1; 9137 if (!IsFixed && NeededAlign == 2 * XLen) 9138 NeededArgGPRs = 2 + (ArgGPRsLeft % 2); 9139 else if (Size > XLen && Size <= 2 * XLen) 9140 NeededArgGPRs = 2; 9141 9142 if (NeededArgGPRs > ArgGPRsLeft) { 9143 MustUseStack = true; 9144 NeededArgGPRs = ArgGPRsLeft; 9145 } 9146 9147 ArgGPRsLeft -= NeededArgGPRs; 9148 9149 if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) { 9150 // Treat an enum type as its underlying type. 9151 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 9152 Ty = EnumTy->getDecl()->getIntegerType(); 9153 9154 // All integral types are promoted to XLen width, unless passed on the 9155 // stack. 9156 if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) { 9157 return extendType(Ty); 9158 } 9159 9160 return ABIArgInfo::getDirect(); 9161 } 9162 9163 // Aggregates which are <= 2*XLen will be passed in registers if possible, 9164 // so coerce to integers. 9165 if (Size <= 2 * XLen) { 9166 unsigned Alignment = getContext().getTypeAlign(Ty); 9167 9168 // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is 9169 // required, and a 2-element XLen array if only XLen alignment is required. 9170 if (Size <= XLen) { 9171 return ABIArgInfo::getDirect( 9172 llvm::IntegerType::get(getVMContext(), XLen)); 9173 } else if (Alignment == 2 * XLen) { 9174 return ABIArgInfo::getDirect( 9175 llvm::IntegerType::get(getVMContext(), 2 * XLen)); 9176 } else { 9177 return ABIArgInfo::getDirect(llvm::ArrayType::get( 9178 llvm::IntegerType::get(getVMContext(), XLen), 2)); 9179 } 9180 } 9181 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 9182 } 9183 9184 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const { 9185 if (RetTy->isVoidType()) 9186 return ABIArgInfo::getIgnore(); 9187 9188 int ArgGPRsLeft = 2; 9189 9190 // The rules for return and argument types are the same, so defer to 9191 // classifyArgumentType. 9192 return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft); 9193 } 9194 9195 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9196 QualType Ty) const { 9197 CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8); 9198 9199 // Empty records are ignored for parameter passing purposes. 9200 if (isEmptyRecord(getContext(), Ty, true)) { 9201 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 9202 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 9203 return Addr; 9204 } 9205 9206 std::pair<CharUnits, CharUnits> SizeAndAlign = 9207 getContext().getTypeInfoInChars(Ty); 9208 9209 // Arguments bigger than 2*Xlen bytes are passed indirectly. 9210 bool IsIndirect = SizeAndAlign.first > 2 * SlotSize; 9211 9212 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, SizeAndAlign, 9213 SlotSize, /*AllowHigherAlign=*/true); 9214 } 9215 9216 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const { 9217 int TySize = getContext().getTypeSize(Ty); 9218 // RV64 ABI requires unsigned 32 bit integers to be sign extended. 9219 if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 9220 return ABIArgInfo::getSignExtend(Ty); 9221 return ABIArgInfo::getExtend(Ty); 9222 } 9223 9224 namespace { 9225 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo { 9226 public: 9227 RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen) 9228 : TargetCodeGenInfo(new RISCVABIInfo(CGT, XLen)) {} 9229 9230 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 9231 CodeGen::CodeGenModule &CGM) const override { 9232 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 9233 if (!FD) return; 9234 9235 const auto *Attr = FD->getAttr<RISCVInterruptAttr>(); 9236 if (!Attr) 9237 return; 9238 9239 const char *Kind; 9240 switch (Attr->getInterrupt()) { 9241 case RISCVInterruptAttr::user: Kind = "user"; break; 9242 case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break; 9243 case RISCVInterruptAttr::machine: Kind = "machine"; break; 9244 } 9245 9246 auto *Fn = cast<llvm::Function>(GV); 9247 9248 Fn->addFnAttr("interrupt", Kind); 9249 } 9250 }; 9251 } // namespace 9252 9253 //===----------------------------------------------------------------------===// 9254 // Driver code 9255 //===----------------------------------------------------------------------===// 9256 9257 bool CodeGenModule::supportsCOMDAT() const { 9258 return getTriple().supportsCOMDAT(); 9259 } 9260 9261 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 9262 if (TheTargetCodeGenInfo) 9263 return *TheTargetCodeGenInfo; 9264 9265 // Helper to set the unique_ptr while still keeping the return value. 9266 auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & { 9267 this->TheTargetCodeGenInfo.reset(P); 9268 return *P; 9269 }; 9270 9271 const llvm::Triple &Triple = getTarget().getTriple(); 9272 switch (Triple.getArch()) { 9273 default: 9274 return SetCGInfo(new DefaultTargetCodeGenInfo(Types)); 9275 9276 case llvm::Triple::le32: 9277 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 9278 case llvm::Triple::mips: 9279 case llvm::Triple::mipsel: 9280 if (Triple.getOS() == llvm::Triple::NaCl) 9281 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 9282 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true)); 9283 9284 case llvm::Triple::mips64: 9285 case llvm::Triple::mips64el: 9286 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false)); 9287 9288 case llvm::Triple::avr: 9289 return SetCGInfo(new AVRTargetCodeGenInfo(Types)); 9290 9291 case llvm::Triple::aarch64: 9292 case llvm::Triple::aarch64_be: { 9293 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 9294 if (getTarget().getABI() == "darwinpcs") 9295 Kind = AArch64ABIInfo::DarwinPCS; 9296 else if (Triple.isOSWindows()) 9297 return SetCGInfo( 9298 new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64)); 9299 9300 return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind)); 9301 } 9302 9303 case llvm::Triple::wasm32: 9304 case llvm::Triple::wasm64: 9305 return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types)); 9306 9307 case llvm::Triple::arm: 9308 case llvm::Triple::armeb: 9309 case llvm::Triple::thumb: 9310 case llvm::Triple::thumbeb: { 9311 if (Triple.getOS() == llvm::Triple::Win32) { 9312 return SetCGInfo( 9313 new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP)); 9314 } 9315 9316 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 9317 StringRef ABIStr = getTarget().getABI(); 9318 if (ABIStr == "apcs-gnu") 9319 Kind = ARMABIInfo::APCS; 9320 else if (ABIStr == "aapcs16") 9321 Kind = ARMABIInfo::AAPCS16_VFP; 9322 else if (CodeGenOpts.FloatABI == "hard" || 9323 (CodeGenOpts.FloatABI != "soft" && 9324 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 9325 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 9326 Triple.getEnvironment() == llvm::Triple::EABIHF))) 9327 Kind = ARMABIInfo::AAPCS_VFP; 9328 9329 return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind)); 9330 } 9331 9332 case llvm::Triple::ppc: 9333 return SetCGInfo( 9334 new PPC32TargetCodeGenInfo(Types, CodeGenOpts.FloatABI == "soft")); 9335 case llvm::Triple::ppc64: 9336 if (Triple.isOSBinFormatELF()) { 9337 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 9338 if (getTarget().getABI() == "elfv2") 9339 Kind = PPC64_SVR4_ABIInfo::ELFv2; 9340 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 9341 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 9342 9343 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 9344 IsSoftFloat)); 9345 } else 9346 return SetCGInfo(new PPC64TargetCodeGenInfo(Types)); 9347 case llvm::Triple::ppc64le: { 9348 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 9349 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 9350 if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx") 9351 Kind = PPC64_SVR4_ABIInfo::ELFv1; 9352 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 9353 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 9354 9355 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 9356 IsSoftFloat)); 9357 } 9358 9359 case llvm::Triple::nvptx: 9360 case llvm::Triple::nvptx64: 9361 return SetCGInfo(new NVPTXTargetCodeGenInfo(Types)); 9362 9363 case llvm::Triple::msp430: 9364 return SetCGInfo(new MSP430TargetCodeGenInfo(Types)); 9365 9366 case llvm::Triple::riscv32: 9367 return SetCGInfo(new RISCVTargetCodeGenInfo(Types, 32)); 9368 case llvm::Triple::riscv64: 9369 return SetCGInfo(new RISCVTargetCodeGenInfo(Types, 64)); 9370 9371 case llvm::Triple::systemz: { 9372 bool HasVector = getTarget().getABI() == "vector"; 9373 return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector)); 9374 } 9375 9376 case llvm::Triple::tce: 9377 case llvm::Triple::tcele: 9378 return SetCGInfo(new TCETargetCodeGenInfo(Types)); 9379 9380 case llvm::Triple::x86: { 9381 bool IsDarwinVectorABI = Triple.isOSDarwin(); 9382 bool RetSmallStructInRegABI = 9383 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 9384 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 9385 9386 if (Triple.getOS() == llvm::Triple::Win32) { 9387 return SetCGInfo(new WinX86_32TargetCodeGenInfo( 9388 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 9389 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); 9390 } else { 9391 return SetCGInfo(new X86_32TargetCodeGenInfo( 9392 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 9393 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters, 9394 CodeGenOpts.FloatABI == "soft")); 9395 } 9396 } 9397 9398 case llvm::Triple::x86_64: { 9399 StringRef ABI = getTarget().getABI(); 9400 X86AVXABILevel AVXLevel = 9401 (ABI == "avx512" 9402 ? X86AVXABILevel::AVX512 9403 : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None); 9404 9405 switch (Triple.getOS()) { 9406 case llvm::Triple::Win32: 9407 return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel)); 9408 case llvm::Triple::PS4: 9409 return SetCGInfo(new PS4TargetCodeGenInfo(Types, AVXLevel)); 9410 default: 9411 return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel)); 9412 } 9413 } 9414 case llvm::Triple::hexagon: 9415 return SetCGInfo(new HexagonTargetCodeGenInfo(Types)); 9416 case llvm::Triple::lanai: 9417 return SetCGInfo(new LanaiTargetCodeGenInfo(Types)); 9418 case llvm::Triple::r600: 9419 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 9420 case llvm::Triple::amdgcn: 9421 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 9422 case llvm::Triple::sparc: 9423 return SetCGInfo(new SparcV8TargetCodeGenInfo(Types)); 9424 case llvm::Triple::sparcv9: 9425 return SetCGInfo(new SparcV9TargetCodeGenInfo(Types)); 9426 case llvm::Triple::xcore: 9427 return SetCGInfo(new XCoreTargetCodeGenInfo(Types)); 9428 case llvm::Triple::arc: 9429 return SetCGInfo(new ARCTargetCodeGenInfo(Types)); 9430 case llvm::Triple::spir: 9431 case llvm::Triple::spir64: 9432 return SetCGInfo(new SPIRTargetCodeGenInfo(Types)); 9433 } 9434 } 9435 9436 /// Create an OpenCL kernel for an enqueued block. 9437 /// 9438 /// The kernel has the same function type as the block invoke function. Its 9439 /// name is the name of the block invoke function postfixed with "_kernel". 9440 /// It simply calls the block invoke function then returns. 9441 llvm::Function * 9442 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF, 9443 llvm::Function *Invoke, 9444 llvm::Value *BlockLiteral) const { 9445 auto *InvokeFT = Invoke->getFunctionType(); 9446 llvm::SmallVector<llvm::Type *, 2> ArgTys; 9447 for (auto &P : InvokeFT->params()) 9448 ArgTys.push_back(P); 9449 auto &C = CGF.getLLVMContext(); 9450 std::string Name = Invoke->getName().str() + "_kernel"; 9451 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 9452 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 9453 &CGF.CGM.getModule()); 9454 auto IP = CGF.Builder.saveIP(); 9455 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 9456 auto &Builder = CGF.Builder; 9457 Builder.SetInsertPoint(BB); 9458 llvm::SmallVector<llvm::Value *, 2> Args; 9459 for (auto &A : F->args()) 9460 Args.push_back(&A); 9461 Builder.CreateCall(Invoke, Args); 9462 Builder.CreateRetVoid(); 9463 Builder.restoreIP(IP); 9464 return F; 9465 } 9466 9467 /// Create an OpenCL kernel for an enqueued block. 9468 /// 9469 /// The type of the first argument (the block literal) is the struct type 9470 /// of the block literal instead of a pointer type. The first argument 9471 /// (block literal) is passed directly by value to the kernel. The kernel 9472 /// allocates the same type of struct on stack and stores the block literal 9473 /// to it and passes its pointer to the block invoke function. The kernel 9474 /// has "enqueued-block" function attribute and kernel argument metadata. 9475 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel( 9476 CodeGenFunction &CGF, llvm::Function *Invoke, 9477 llvm::Value *BlockLiteral) const { 9478 auto &Builder = CGF.Builder; 9479 auto &C = CGF.getLLVMContext(); 9480 9481 auto *BlockTy = BlockLiteral->getType()->getPointerElementType(); 9482 auto *InvokeFT = Invoke->getFunctionType(); 9483 llvm::SmallVector<llvm::Type *, 2> ArgTys; 9484 llvm::SmallVector<llvm::Metadata *, 8> AddressQuals; 9485 llvm::SmallVector<llvm::Metadata *, 8> AccessQuals; 9486 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames; 9487 llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames; 9488 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals; 9489 llvm::SmallVector<llvm::Metadata *, 8> ArgNames; 9490 9491 ArgTys.push_back(BlockTy); 9492 ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 9493 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0))); 9494 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 9495 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 9496 AccessQuals.push_back(llvm::MDString::get(C, "none")); 9497 ArgNames.push_back(llvm::MDString::get(C, "block_literal")); 9498 for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) { 9499 ArgTys.push_back(InvokeFT->getParamType(I)); 9500 ArgTypeNames.push_back(llvm::MDString::get(C, "void*")); 9501 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3))); 9502 AccessQuals.push_back(llvm::MDString::get(C, "none")); 9503 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*")); 9504 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 9505 ArgNames.push_back( 9506 llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str())); 9507 } 9508 std::string Name = Invoke->getName().str() + "_kernel"; 9509 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 9510 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 9511 &CGF.CGM.getModule()); 9512 F->addFnAttr("enqueued-block"); 9513 auto IP = CGF.Builder.saveIP(); 9514 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 9515 Builder.SetInsertPoint(BB); 9516 unsigned BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(BlockTy); 9517 auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr); 9518 BlockPtr->setAlignment(BlockAlign); 9519 Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign); 9520 auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0)); 9521 llvm::SmallVector<llvm::Value *, 2> Args; 9522 Args.push_back(Cast); 9523 for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I) 9524 Args.push_back(I); 9525 Builder.CreateCall(Invoke, Args); 9526 Builder.CreateRetVoid(); 9527 Builder.restoreIP(IP); 9528 9529 F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals)); 9530 F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals)); 9531 F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames)); 9532 F->setMetadata("kernel_arg_base_type", 9533 llvm::MDNode::get(C, ArgBaseTypeNames)); 9534 F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals)); 9535 if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 9536 F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames)); 9537 9538 return F; 9539 } 9540