1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These classes wrap the information about a call or function
10 // definition used to handle ABI compliancy.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "TargetInfo.h"
15 #include "ABIInfo.h"
16 #include "CGBlocks.h"
17 #include "CGCXXABI.h"
18 #include "CGValue.h"
19 #include "CodeGenFunction.h"
20 #include "clang/AST/RecordLayout.h"
21 #include "clang/Basic/CodeGenOptions.h"
22 #include "clang/CodeGen/CGFunctionInfo.h"
23 #include "clang/CodeGen/SwiftCallingConv.h"
24 #include "llvm/ADT/StringExtras.h"
25 #include "llvm/ADT/StringSwitch.h"
26 #include "llvm/ADT/Triple.h"
27 #include "llvm/ADT/Twine.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Type.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include <algorithm>    // std::sort
32 
33 using namespace clang;
34 using namespace CodeGen;
35 
36 // Helper for coercing an aggregate argument or return value into an integer
37 // array of the same size (including padding) and alignment.  This alternate
38 // coercion happens only for the RenderScript ABI and can be removed after
39 // runtimes that rely on it are no longer supported.
40 //
41 // RenderScript assumes that the size of the argument / return value in the IR
42 // is the same as the size of the corresponding qualified type. This helper
43 // coerces the aggregate type into an array of the same size (including
44 // padding).  This coercion is used in lieu of expansion of struct members or
45 // other canonical coercions that return a coerced-type of larger size.
46 //
47 // Ty          - The argument / return value type
48 // Context     - The associated ASTContext
49 // LLVMContext - The associated LLVMContext
50 static ABIArgInfo coerceToIntArray(QualType Ty,
51                                    ASTContext &Context,
52                                    llvm::LLVMContext &LLVMContext) {
53   // Alignment and Size are measured in bits.
54   const uint64_t Size = Context.getTypeSize(Ty);
55   const uint64_t Alignment = Context.getTypeAlign(Ty);
56   llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment);
57   const uint64_t NumElements = (Size + Alignment - 1) / Alignment;
58   return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
59 }
60 
61 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
62                                llvm::Value *Array,
63                                llvm::Value *Value,
64                                unsigned FirstIndex,
65                                unsigned LastIndex) {
66   // Alternatively, we could emit this as a loop in the source.
67   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
68     llvm::Value *Cell =
69         Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I);
70     Builder.CreateAlignedStore(Value, Cell, CharUnits::One());
71   }
72 }
73 
74 static bool isAggregateTypeForABI(QualType T) {
75   return !CodeGenFunction::hasScalarEvaluationKind(T) ||
76          T->isMemberFunctionPointerType();
77 }
78 
79 ABIArgInfo
80 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign,
81                                  llvm::Type *Padding) const {
82   return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty),
83                                  ByRef, Realign, Padding);
84 }
85 
86 ABIArgInfo
87 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const {
88   return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty),
89                                       /*ByRef*/ false, Realign);
90 }
91 
92 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
93                              QualType Ty) const {
94   return Address::invalid();
95 }
96 
97 ABIInfo::~ABIInfo() {}
98 
99 /// Does the given lowering require more than the given number of
100 /// registers when expanded?
101 ///
102 /// This is intended to be the basis of a reasonable basic implementation
103 /// of should{Pass,Return}IndirectlyForSwift.
104 ///
105 /// For most targets, a limit of four total registers is reasonable; this
106 /// limits the amount of code required in order to move around the value
107 /// in case it wasn't produced immediately prior to the call by the caller
108 /// (or wasn't produced in exactly the right registers) or isn't used
109 /// immediately within the callee.  But some targets may need to further
110 /// limit the register count due to an inability to support that many
111 /// return registers.
112 static bool occupiesMoreThan(CodeGenTypes &cgt,
113                              ArrayRef<llvm::Type*> scalarTypes,
114                              unsigned maxAllRegisters) {
115   unsigned intCount = 0, fpCount = 0;
116   for (llvm::Type *type : scalarTypes) {
117     if (type->isPointerTy()) {
118       intCount++;
119     } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) {
120       auto ptrWidth = cgt.getTarget().getPointerWidth(0);
121       intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth;
122     } else {
123       assert(type->isVectorTy() || type->isFloatingPointTy());
124       fpCount++;
125     }
126   }
127 
128   return (intCount + fpCount > maxAllRegisters);
129 }
130 
131 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
132                                              llvm::Type *eltTy,
133                                              unsigned numElts) const {
134   // The default implementation of this assumes that the target guarantees
135   // 128-bit SIMD support but nothing more.
136   return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16);
137 }
138 
139 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
140                                               CGCXXABI &CXXABI) {
141   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
142   if (!RD) {
143     if (!RT->getDecl()->canPassInRegisters())
144       return CGCXXABI::RAA_Indirect;
145     return CGCXXABI::RAA_Default;
146   }
147   return CXXABI.getRecordArgABI(RD);
148 }
149 
150 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
151                                               CGCXXABI &CXXABI) {
152   const RecordType *RT = T->getAs<RecordType>();
153   if (!RT)
154     return CGCXXABI::RAA_Default;
155   return getRecordArgABI(RT, CXXABI);
156 }
157 
158 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI,
159                                const ABIInfo &Info) {
160   QualType Ty = FI.getReturnType();
161 
162   if (const auto *RT = Ty->getAs<RecordType>())
163     if (!isa<CXXRecordDecl>(RT->getDecl()) &&
164         !RT->getDecl()->canPassInRegisters()) {
165       FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty);
166       return true;
167     }
168 
169   return CXXABI.classifyReturnType(FI);
170 }
171 
172 /// Pass transparent unions as if they were the type of the first element. Sema
173 /// should ensure that all elements of the union have the same "machine type".
174 static QualType useFirstFieldIfTransparentUnion(QualType Ty) {
175   if (const RecordType *UT = Ty->getAsUnionType()) {
176     const RecordDecl *UD = UT->getDecl();
177     if (UD->hasAttr<TransparentUnionAttr>()) {
178       assert(!UD->field_empty() && "sema created an empty transparent union");
179       return UD->field_begin()->getType();
180     }
181   }
182   return Ty;
183 }
184 
185 CGCXXABI &ABIInfo::getCXXABI() const {
186   return CGT.getCXXABI();
187 }
188 
189 ASTContext &ABIInfo::getContext() const {
190   return CGT.getContext();
191 }
192 
193 llvm::LLVMContext &ABIInfo::getVMContext() const {
194   return CGT.getLLVMContext();
195 }
196 
197 const llvm::DataLayout &ABIInfo::getDataLayout() const {
198   return CGT.getDataLayout();
199 }
200 
201 const TargetInfo &ABIInfo::getTarget() const {
202   return CGT.getTarget();
203 }
204 
205 const CodeGenOptions &ABIInfo::getCodeGenOpts() const {
206   return CGT.getCodeGenOpts();
207 }
208 
209 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); }
210 
211 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
212   return false;
213 }
214 
215 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
216                                                 uint64_t Members) const {
217   return false;
218 }
219 
220 LLVM_DUMP_METHOD void ABIArgInfo::dump() const {
221   raw_ostream &OS = llvm::errs();
222   OS << "(ABIArgInfo Kind=";
223   switch (TheKind) {
224   case Direct:
225     OS << "Direct Type=";
226     if (llvm::Type *Ty = getCoerceToType())
227       Ty->print(OS);
228     else
229       OS << "null";
230     break;
231   case Extend:
232     OS << "Extend";
233     break;
234   case Ignore:
235     OS << "Ignore";
236     break;
237   case InAlloca:
238     OS << "InAlloca Offset=" << getInAllocaFieldIndex();
239     break;
240   case Indirect:
241     OS << "Indirect Align=" << getIndirectAlign().getQuantity()
242        << " ByVal=" << getIndirectByVal()
243        << " Realign=" << getIndirectRealign();
244     break;
245   case Expand:
246     OS << "Expand";
247     break;
248   case CoerceAndExpand:
249     OS << "CoerceAndExpand Type=";
250     getCoerceAndExpandType()->print(OS);
251     break;
252   }
253   OS << ")\n";
254 }
255 
256 // Dynamically round a pointer up to a multiple of the given alignment.
257 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF,
258                                                   llvm::Value *Ptr,
259                                                   CharUnits Align) {
260   llvm::Value *PtrAsInt = Ptr;
261   // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align;
262   PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy);
263   PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt,
264         llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1));
265   PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt,
266            llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity()));
267   PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt,
268                                         Ptr->getType(),
269                                         Ptr->getName() + ".aligned");
270   return PtrAsInt;
271 }
272 
273 /// Emit va_arg for a platform using the common void* representation,
274 /// where arguments are simply emitted in an array of slots on the stack.
275 ///
276 /// This version implements the core direct-value passing rules.
277 ///
278 /// \param SlotSize - The size and alignment of a stack slot.
279 ///   Each argument will be allocated to a multiple of this number of
280 ///   slots, and all the slots will be aligned to this value.
281 /// \param AllowHigherAlign - The slot alignment is not a cap;
282 ///   an argument type with an alignment greater than the slot size
283 ///   will be emitted on a higher-alignment address, potentially
284 ///   leaving one or more empty slots behind as padding.  If this
285 ///   is false, the returned address might be less-aligned than
286 ///   DirectAlign.
287 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF,
288                                       Address VAListAddr,
289                                       llvm::Type *DirectTy,
290                                       CharUnits DirectSize,
291                                       CharUnits DirectAlign,
292                                       CharUnits SlotSize,
293                                       bool AllowHigherAlign) {
294   // Cast the element type to i8* if necessary.  Some platforms define
295   // va_list as a struct containing an i8* instead of just an i8*.
296   if (VAListAddr.getElementType() != CGF.Int8PtrTy)
297     VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy);
298 
299   llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur");
300 
301   // If the CC aligns values higher than the slot size, do so if needed.
302   Address Addr = Address::invalid();
303   if (AllowHigherAlign && DirectAlign > SlotSize) {
304     Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign),
305                                                  DirectAlign);
306   } else {
307     Addr = Address(Ptr, SlotSize);
308   }
309 
310   // Advance the pointer past the argument, then store that back.
311   CharUnits FullDirectSize = DirectSize.alignTo(SlotSize);
312   llvm::Value *NextPtr =
313     CGF.Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), FullDirectSize,
314                                            "argp.next");
315   CGF.Builder.CreateStore(NextPtr, VAListAddr);
316 
317   // If the argument is smaller than a slot, and this is a big-endian
318   // target, the argument will be right-adjusted in its slot.
319   if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() &&
320       !DirectTy->isStructTy()) {
321     Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize);
322   }
323 
324   Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy);
325   return Addr;
326 }
327 
328 /// Emit va_arg for a platform using the common void* representation,
329 /// where arguments are simply emitted in an array of slots on the stack.
330 ///
331 /// \param IsIndirect - Values of this type are passed indirectly.
332 /// \param ValueInfo - The size and alignment of this type, generally
333 ///   computed with getContext().getTypeInfoInChars(ValueTy).
334 /// \param SlotSizeAndAlign - The size and alignment of a stack slot.
335 ///   Each argument will be allocated to a multiple of this number of
336 ///   slots, and all the slots will be aligned to this value.
337 /// \param AllowHigherAlign - The slot alignment is not a cap;
338 ///   an argument type with an alignment greater than the slot size
339 ///   will be emitted on a higher-alignment address, potentially
340 ///   leaving one or more empty slots behind as padding.
341 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr,
342                                 QualType ValueTy, bool IsIndirect,
343                                 std::pair<CharUnits, CharUnits> ValueInfo,
344                                 CharUnits SlotSizeAndAlign,
345                                 bool AllowHigherAlign) {
346   // The size and alignment of the value that was passed directly.
347   CharUnits DirectSize, DirectAlign;
348   if (IsIndirect) {
349     DirectSize = CGF.getPointerSize();
350     DirectAlign = CGF.getPointerAlign();
351   } else {
352     DirectSize = ValueInfo.first;
353     DirectAlign = ValueInfo.second;
354   }
355 
356   // Cast the address we've calculated to the right type.
357   llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy);
358   if (IsIndirect)
359     DirectTy = DirectTy->getPointerTo(0);
360 
361   Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy,
362                                         DirectSize, DirectAlign,
363                                         SlotSizeAndAlign,
364                                         AllowHigherAlign);
365 
366   if (IsIndirect) {
367     Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second);
368   }
369 
370   return Addr;
371 
372 }
373 
374 static Address emitMergePHI(CodeGenFunction &CGF,
375                             Address Addr1, llvm::BasicBlock *Block1,
376                             Address Addr2, llvm::BasicBlock *Block2,
377                             const llvm::Twine &Name = "") {
378   assert(Addr1.getType() == Addr2.getType());
379   llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name);
380   PHI->addIncoming(Addr1.getPointer(), Block1);
381   PHI->addIncoming(Addr2.getPointer(), Block2);
382   CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment());
383   return Address(PHI, Align);
384 }
385 
386 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
387 
388 // If someone can figure out a general rule for this, that would be great.
389 // It's probably just doomed to be platform-dependent, though.
390 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
391   // Verified for:
392   //   x86-64     FreeBSD, Linux, Darwin
393   //   x86-32     FreeBSD, Linux, Darwin
394   //   PowerPC    Linux, Darwin
395   //   ARM        Darwin (*not* EABI)
396   //   AArch64    Linux
397   return 32;
398 }
399 
400 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
401                                      const FunctionNoProtoType *fnType) const {
402   // The following conventions are known to require this to be false:
403   //   x86_stdcall
404   //   MIPS
405   // For everything else, we just prefer false unless we opt out.
406   return false;
407 }
408 
409 void
410 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
411                                              llvm::SmallString<24> &Opt) const {
412   // This assumes the user is passing a library name like "rt" instead of a
413   // filename like "librt.a/so", and that they don't care whether it's static or
414   // dynamic.
415   Opt = "-l";
416   Opt += Lib;
417 }
418 
419 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const {
420   // OpenCL kernels are called via an explicit runtime API with arguments
421   // set with clSetKernelArg(), not as normal sub-functions.
422   // Return SPIR_KERNEL by default as the kernel calling convention to
423   // ensure the fingerprint is fixed such way that each OpenCL argument
424   // gets one matching argument in the produced kernel function argument
425   // list to enable feasible implementation of clSetKernelArg() with
426   // aggregates etc. In case we would use the default C calling conv here,
427   // clSetKernelArg() might break depending on the target-specific
428   // conventions; different targets might split structs passed as values
429   // to multiple function arguments etc.
430   return llvm::CallingConv::SPIR_KERNEL;
431 }
432 
433 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM,
434     llvm::PointerType *T, QualType QT) const {
435   return llvm::ConstantPointerNull::get(T);
436 }
437 
438 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
439                                                    const VarDecl *D) const {
440   assert(!CGM.getLangOpts().OpenCL &&
441          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
442          "Address space agnostic languages only");
443   return D ? D->getType().getAddressSpace() : LangAS::Default;
444 }
445 
446 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast(
447     CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr,
448     LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const {
449   // Since target may map different address spaces in AST to the same address
450   // space, an address space conversion may end up as a bitcast.
451   if (auto *C = dyn_cast<llvm::Constant>(Src))
452     return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy);
453   return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DestTy);
454 }
455 
456 llvm::Constant *
457 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src,
458                                         LangAS SrcAddr, LangAS DestAddr,
459                                         llvm::Type *DestTy) const {
460   // Since target may map different address spaces in AST to the same address
461   // space, an address space conversion may end up as a bitcast.
462   return llvm::ConstantExpr::getPointerCast(Src, DestTy);
463 }
464 
465 llvm::SyncScope::ID
466 TargetCodeGenInfo::getLLVMSyncScopeID(SyncScope S, llvm::LLVMContext &C) const {
467   return C.getOrInsertSyncScopeID(""); /* default sync scope */
468 }
469 
470 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
471 
472 /// isEmptyField - Return true iff a the field is "empty", that is it
473 /// is an unnamed bit-field or an (array of) empty record(s).
474 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
475                          bool AllowArrays) {
476   if (FD->isUnnamedBitfield())
477     return true;
478 
479   QualType FT = FD->getType();
480 
481   // Constant arrays of empty records count as empty, strip them off.
482   // Constant arrays of zero length always count as empty.
483   if (AllowArrays)
484     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
485       if (AT->getSize() == 0)
486         return true;
487       FT = AT->getElementType();
488     }
489 
490   const RecordType *RT = FT->getAs<RecordType>();
491   if (!RT)
492     return false;
493 
494   // C++ record fields are never empty, at least in the Itanium ABI.
495   //
496   // FIXME: We should use a predicate for whether this behavior is true in the
497   // current ABI.
498   if (isa<CXXRecordDecl>(RT->getDecl()))
499     return false;
500 
501   return isEmptyRecord(Context, FT, AllowArrays);
502 }
503 
504 /// isEmptyRecord - Return true iff a structure contains only empty
505 /// fields. Note that a structure with a flexible array member is not
506 /// considered empty.
507 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
508   const RecordType *RT = T->getAs<RecordType>();
509   if (!RT)
510     return false;
511   const RecordDecl *RD = RT->getDecl();
512   if (RD->hasFlexibleArrayMember())
513     return false;
514 
515   // If this is a C++ record, check the bases first.
516   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
517     for (const auto &I : CXXRD->bases())
518       if (!isEmptyRecord(Context, I.getType(), true))
519         return false;
520 
521   for (const auto *I : RD->fields())
522     if (!isEmptyField(Context, I, AllowArrays))
523       return false;
524   return true;
525 }
526 
527 /// isSingleElementStruct - Determine if a structure is a "single
528 /// element struct", i.e. it has exactly one non-empty field or
529 /// exactly one field which is itself a single element
530 /// struct. Structures with flexible array members are never
531 /// considered single element structs.
532 ///
533 /// \return The field declaration for the single non-empty field, if
534 /// it exists.
535 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
536   const RecordType *RT = T->getAs<RecordType>();
537   if (!RT)
538     return nullptr;
539 
540   const RecordDecl *RD = RT->getDecl();
541   if (RD->hasFlexibleArrayMember())
542     return nullptr;
543 
544   const Type *Found = nullptr;
545 
546   // If this is a C++ record, check the bases first.
547   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
548     for (const auto &I : CXXRD->bases()) {
549       // Ignore empty records.
550       if (isEmptyRecord(Context, I.getType(), true))
551         continue;
552 
553       // If we already found an element then this isn't a single-element struct.
554       if (Found)
555         return nullptr;
556 
557       // If this is non-empty and not a single element struct, the composite
558       // cannot be a single element struct.
559       Found = isSingleElementStruct(I.getType(), Context);
560       if (!Found)
561         return nullptr;
562     }
563   }
564 
565   // Check for single element.
566   for (const auto *FD : RD->fields()) {
567     QualType FT = FD->getType();
568 
569     // Ignore empty fields.
570     if (isEmptyField(Context, FD, true))
571       continue;
572 
573     // If we already found an element then this isn't a single-element
574     // struct.
575     if (Found)
576       return nullptr;
577 
578     // Treat single element arrays as the element.
579     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
580       if (AT->getSize().getZExtValue() != 1)
581         break;
582       FT = AT->getElementType();
583     }
584 
585     if (!isAggregateTypeForABI(FT)) {
586       Found = FT.getTypePtr();
587     } else {
588       Found = isSingleElementStruct(FT, Context);
589       if (!Found)
590         return nullptr;
591     }
592   }
593 
594   // We don't consider a struct a single-element struct if it has
595   // padding beyond the element type.
596   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
597     return nullptr;
598 
599   return Found;
600 }
601 
602 namespace {
603 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
604                        const ABIArgInfo &AI) {
605   // This default implementation defers to the llvm backend's va_arg
606   // instruction. It can handle only passing arguments directly
607   // (typically only handled in the backend for primitive types), or
608   // aggregates passed indirectly by pointer (NOTE: if the "byval"
609   // flag has ABI impact in the callee, this implementation cannot
610   // work.)
611 
612   // Only a few cases are covered here at the moment -- those needed
613   // by the default abi.
614   llvm::Value *Val;
615 
616   if (AI.isIndirect()) {
617     assert(!AI.getPaddingType() &&
618            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
619     assert(
620         !AI.getIndirectRealign() &&
621         "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!");
622 
623     auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty);
624     CharUnits TyAlignForABI = TyInfo.second;
625 
626     llvm::Type *BaseTy =
627         llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
628     llvm::Value *Addr =
629         CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy);
630     return Address(Addr, TyAlignForABI);
631   } else {
632     assert((AI.isDirect() || AI.isExtend()) &&
633            "Unexpected ArgInfo Kind in generic VAArg emitter!");
634 
635     assert(!AI.getInReg() &&
636            "Unexpected InReg seen in arginfo in generic VAArg emitter!");
637     assert(!AI.getPaddingType() &&
638            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
639     assert(!AI.getDirectOffset() &&
640            "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!");
641     assert(!AI.getCoerceToType() &&
642            "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!");
643 
644     Address Temp = CGF.CreateMemTemp(Ty, "varet");
645     Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty));
646     CGF.Builder.CreateStore(Val, Temp);
647     return Temp;
648   }
649 }
650 
651 /// DefaultABIInfo - The default implementation for ABI specific
652 /// details. This implementation provides information which results in
653 /// self-consistent and sensible LLVM IR generation, but does not
654 /// conform to any particular ABI.
655 class DefaultABIInfo : public ABIInfo {
656 public:
657   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
658 
659   ABIArgInfo classifyReturnType(QualType RetTy) const;
660   ABIArgInfo classifyArgumentType(QualType RetTy) const;
661 
662   void computeInfo(CGFunctionInfo &FI) const override {
663     if (!getCXXABI().classifyReturnType(FI))
664       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
665     for (auto &I : FI.arguments())
666       I.info = classifyArgumentType(I.type);
667   }
668 
669   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
670                     QualType Ty) const override {
671     return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty));
672   }
673 };
674 
675 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
676 public:
677   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
678     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
679 };
680 
681 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
682   Ty = useFirstFieldIfTransparentUnion(Ty);
683 
684   if (isAggregateTypeForABI(Ty)) {
685     // Records with non-trivial destructors/copy-constructors should not be
686     // passed by value.
687     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
688       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
689 
690     return getNaturalAlignIndirect(Ty);
691   }
692 
693   // Treat an enum type as its underlying type.
694   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
695     Ty = EnumTy->getDecl()->getIntegerType();
696 
697   return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
698                                         : ABIArgInfo::getDirect());
699 }
700 
701 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
702   if (RetTy->isVoidType())
703     return ABIArgInfo::getIgnore();
704 
705   if (isAggregateTypeForABI(RetTy))
706     return getNaturalAlignIndirect(RetTy);
707 
708   // Treat an enum type as its underlying type.
709   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
710     RetTy = EnumTy->getDecl()->getIntegerType();
711 
712   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
713                                            : ABIArgInfo::getDirect());
714 }
715 
716 //===----------------------------------------------------------------------===//
717 // WebAssembly ABI Implementation
718 //
719 // This is a very simple ABI that relies a lot on DefaultABIInfo.
720 //===----------------------------------------------------------------------===//
721 
722 class WebAssemblyABIInfo final : public SwiftABIInfo {
723   DefaultABIInfo defaultInfo;
724 
725 public:
726   explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT)
727       : SwiftABIInfo(CGT), defaultInfo(CGT) {}
728 
729 private:
730   ABIArgInfo classifyReturnType(QualType RetTy) const;
731   ABIArgInfo classifyArgumentType(QualType Ty) const;
732 
733   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
734   // non-virtual, but computeInfo and EmitVAArg are virtual, so we
735   // overload them.
736   void computeInfo(CGFunctionInfo &FI) const override {
737     if (!getCXXABI().classifyReturnType(FI))
738       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
739     for (auto &Arg : FI.arguments())
740       Arg.info = classifyArgumentType(Arg.type);
741   }
742 
743   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
744                     QualType Ty) const override;
745 
746   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
747                                     bool asReturnValue) const override {
748     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
749   }
750 
751   bool isSwiftErrorInRegister() const override {
752     return false;
753   }
754 };
755 
756 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo {
757 public:
758   explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
759       : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT)) {}
760 
761   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
762                            CodeGen::CodeGenModule &CGM) const override {
763     TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
764     if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
765       if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) {
766         llvm::Function *Fn = cast<llvm::Function>(GV);
767         llvm::AttrBuilder B;
768         B.addAttribute("wasm-import-module", Attr->getImportModule());
769         Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
770       }
771       if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) {
772         llvm::Function *Fn = cast<llvm::Function>(GV);
773         llvm::AttrBuilder B;
774         B.addAttribute("wasm-import-name", Attr->getImportName());
775         Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
776       }
777     }
778 
779     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
780       llvm::Function *Fn = cast<llvm::Function>(GV);
781       if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype())
782         Fn->addFnAttr("no-prototype");
783     }
784   }
785 };
786 
787 /// Classify argument of given type \p Ty.
788 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const {
789   Ty = useFirstFieldIfTransparentUnion(Ty);
790 
791   if (isAggregateTypeForABI(Ty)) {
792     // Records with non-trivial destructors/copy-constructors should not be
793     // passed by value.
794     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
795       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
796     // Ignore empty structs/unions.
797     if (isEmptyRecord(getContext(), Ty, true))
798       return ABIArgInfo::getIgnore();
799     // Lower single-element structs to just pass a regular value. TODO: We
800     // could do reasonable-size multiple-element structs too, using getExpand(),
801     // though watch out for things like bitfields.
802     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
803       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
804   }
805 
806   // Otherwise just do the default thing.
807   return defaultInfo.classifyArgumentType(Ty);
808 }
809 
810 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const {
811   if (isAggregateTypeForABI(RetTy)) {
812     // Records with non-trivial destructors/copy-constructors should not be
813     // returned by value.
814     if (!getRecordArgABI(RetTy, getCXXABI())) {
815       // Ignore empty structs/unions.
816       if (isEmptyRecord(getContext(), RetTy, true))
817         return ABIArgInfo::getIgnore();
818       // Lower single-element structs to just return a regular value. TODO: We
819       // could do reasonable-size multiple-element structs too, using
820       // ABIArgInfo::getDirect().
821       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
822         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
823     }
824   }
825 
826   // Otherwise just do the default thing.
827   return defaultInfo.classifyReturnType(RetTy);
828 }
829 
830 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
831                                       QualType Ty) const {
832   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect=*/ false,
833                           getContext().getTypeInfoInChars(Ty),
834                           CharUnits::fromQuantity(4),
835                           /*AllowHigherAlign=*/ true);
836 }
837 
838 //===----------------------------------------------------------------------===//
839 // le32/PNaCl bitcode ABI Implementation
840 //
841 // This is a simplified version of the x86_32 ABI.  Arguments and return values
842 // are always passed on the stack.
843 //===----------------------------------------------------------------------===//
844 
845 class PNaClABIInfo : public ABIInfo {
846  public:
847   PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
848 
849   ABIArgInfo classifyReturnType(QualType RetTy) const;
850   ABIArgInfo classifyArgumentType(QualType RetTy) const;
851 
852   void computeInfo(CGFunctionInfo &FI) const override;
853   Address EmitVAArg(CodeGenFunction &CGF,
854                     Address VAListAddr, QualType Ty) const override;
855 };
856 
857 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
858  public:
859   PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
860     : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
861 };
862 
863 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
864   if (!getCXXABI().classifyReturnType(FI))
865     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
866 
867   for (auto &I : FI.arguments())
868     I.info = classifyArgumentType(I.type);
869 }
870 
871 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
872                                 QualType Ty) const {
873   // The PNaCL ABI is a bit odd, in that varargs don't use normal
874   // function classification. Structs get passed directly for varargs
875   // functions, through a rewriting transform in
876   // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows
877   // this target to actually support a va_arg instructions with an
878   // aggregate type, unlike other targets.
879   return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
880 }
881 
882 /// Classify argument of given type \p Ty.
883 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
884   if (isAggregateTypeForABI(Ty)) {
885     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
886       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
887     return getNaturalAlignIndirect(Ty);
888   } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
889     // Treat an enum type as its underlying type.
890     Ty = EnumTy->getDecl()->getIntegerType();
891   } else if (Ty->isFloatingType()) {
892     // Floating-point types don't go inreg.
893     return ABIArgInfo::getDirect();
894   }
895 
896   return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
897                                         : ABIArgInfo::getDirect());
898 }
899 
900 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
901   if (RetTy->isVoidType())
902     return ABIArgInfo::getIgnore();
903 
904   // In the PNaCl ABI we always return records/structures on the stack.
905   if (isAggregateTypeForABI(RetTy))
906     return getNaturalAlignIndirect(RetTy);
907 
908   // Treat an enum type as its underlying type.
909   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
910     RetTy = EnumTy->getDecl()->getIntegerType();
911 
912   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
913                                            : ABIArgInfo::getDirect());
914 }
915 
916 /// IsX86_MMXType - Return true if this is an MMX type.
917 bool IsX86_MMXType(llvm::Type *IRType) {
918   // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
919   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
920     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
921     IRType->getScalarSizeInBits() != 64;
922 }
923 
924 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
925                                           StringRef Constraint,
926                                           llvm::Type* Ty) {
927   bool IsMMXCons = llvm::StringSwitch<bool>(Constraint)
928                      .Cases("y", "&y", "^Ym", true)
929                      .Default(false);
930   if (IsMMXCons && Ty->isVectorTy()) {
931     if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) {
932       // Invalid MMX constraint
933       return nullptr;
934     }
935 
936     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
937   }
938 
939   // No operation needed
940   return Ty;
941 }
942 
943 /// Returns true if this type can be passed in SSE registers with the
944 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
945 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
946   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
947     if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) {
948       if (BT->getKind() == BuiltinType::LongDouble) {
949         if (&Context.getTargetInfo().getLongDoubleFormat() ==
950             &llvm::APFloat::x87DoubleExtended())
951           return false;
952       }
953       return true;
954     }
955   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
956     // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
957     // registers specially.
958     unsigned VecSize = Context.getTypeSize(VT);
959     if (VecSize == 128 || VecSize == 256 || VecSize == 512)
960       return true;
961   }
962   return false;
963 }
964 
965 /// Returns true if this aggregate is small enough to be passed in SSE registers
966 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
967 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
968   return NumMembers <= 4;
969 }
970 
971 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86.
972 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) {
973   auto AI = ABIArgInfo::getDirect(T);
974   AI.setInReg(true);
975   AI.setCanBeFlattened(false);
976   return AI;
977 }
978 
979 //===----------------------------------------------------------------------===//
980 // X86-32 ABI Implementation
981 //===----------------------------------------------------------------------===//
982 
983 /// Similar to llvm::CCState, but for Clang.
984 struct CCState {
985   CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {}
986 
987   unsigned CC;
988   unsigned FreeRegs;
989   unsigned FreeSSERegs;
990 };
991 
992 enum {
993   // Vectorcall only allows the first 6 parameters to be passed in registers.
994   VectorcallMaxParamNumAsReg = 6
995 };
996 
997 /// X86_32ABIInfo - The X86-32 ABI information.
998 class X86_32ABIInfo : public SwiftABIInfo {
999   enum Class {
1000     Integer,
1001     Float
1002   };
1003 
1004   static const unsigned MinABIStackAlignInBytes = 4;
1005 
1006   bool IsDarwinVectorABI;
1007   bool IsRetSmallStructInRegABI;
1008   bool IsWin32StructABI;
1009   bool IsSoftFloatABI;
1010   bool IsMCUABI;
1011   unsigned DefaultNumRegisterParameters;
1012 
1013   static bool isRegisterSize(unsigned Size) {
1014     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
1015   }
1016 
1017   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
1018     // FIXME: Assumes vectorcall is in use.
1019     return isX86VectorTypeForVectorCall(getContext(), Ty);
1020   }
1021 
1022   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
1023                                          uint64_t NumMembers) const override {
1024     // FIXME: Assumes vectorcall is in use.
1025     return isX86VectorCallAggregateSmallEnough(NumMembers);
1026   }
1027 
1028   bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
1029 
1030   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1031   /// such that the argument will be passed in memory.
1032   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
1033 
1034   ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const;
1035 
1036   /// Return the alignment to use for the given type on the stack.
1037   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
1038 
1039   Class classify(QualType Ty) const;
1040   ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
1041   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
1042 
1043   /// Updates the number of available free registers, returns
1044   /// true if any registers were allocated.
1045   bool updateFreeRegs(QualType Ty, CCState &State) const;
1046 
1047   bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg,
1048                                 bool &NeedsPadding) const;
1049   bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const;
1050 
1051   bool canExpandIndirectArgument(QualType Ty) const;
1052 
1053   /// Rewrite the function info so that all memory arguments use
1054   /// inalloca.
1055   void rewriteWithInAlloca(CGFunctionInfo &FI) const;
1056 
1057   void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1058                            CharUnits &StackOffset, ABIArgInfo &Info,
1059                            QualType Type) const;
1060   void computeVectorCallArgs(CGFunctionInfo &FI, CCState &State,
1061                              bool &UsedInAlloca) const;
1062 
1063 public:
1064 
1065   void computeInfo(CGFunctionInfo &FI) const override;
1066   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1067                     QualType Ty) const override;
1068 
1069   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1070                 bool RetSmallStructInRegABI, bool Win32StructABI,
1071                 unsigned NumRegisterParameters, bool SoftFloatABI)
1072     : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI),
1073       IsRetSmallStructInRegABI(RetSmallStructInRegABI),
1074       IsWin32StructABI(Win32StructABI),
1075       IsSoftFloatABI(SoftFloatABI),
1076       IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()),
1077       DefaultNumRegisterParameters(NumRegisterParameters) {}
1078 
1079   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
1080                                     bool asReturnValue) const override {
1081     // LLVM's x86-32 lowering currently only assigns up to three
1082     // integer registers and three fp registers.  Oddly, it'll use up to
1083     // four vector registers for vectors, but those can overlap with the
1084     // scalar registers.
1085     return occupiesMoreThan(CGT, scalars, /*total*/ 3);
1086   }
1087 
1088   bool isSwiftErrorInRegister() const override {
1089     // x86-32 lowering does not support passing swifterror in a register.
1090     return false;
1091   }
1092 };
1093 
1094 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
1095 public:
1096   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1097                           bool RetSmallStructInRegABI, bool Win32StructABI,
1098                           unsigned NumRegisterParameters, bool SoftFloatABI)
1099       : TargetCodeGenInfo(new X86_32ABIInfo(
1100             CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
1101             NumRegisterParameters, SoftFloatABI)) {}
1102 
1103   static bool isStructReturnInRegABI(
1104       const llvm::Triple &Triple, const CodeGenOptions &Opts);
1105 
1106   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1107                            CodeGen::CodeGenModule &CGM) const override;
1108 
1109   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1110     // Darwin uses different dwarf register numbers for EH.
1111     if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
1112     return 4;
1113   }
1114 
1115   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1116                                llvm::Value *Address) const override;
1117 
1118   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1119                                   StringRef Constraint,
1120                                   llvm::Type* Ty) const override {
1121     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1122   }
1123 
1124   void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
1125                                 std::string &Constraints,
1126                                 std::vector<llvm::Type *> &ResultRegTypes,
1127                                 std::vector<llvm::Type *> &ResultTruncRegTypes,
1128                                 std::vector<LValue> &ResultRegDests,
1129                                 std::string &AsmString,
1130                                 unsigned NumOutputs) const override;
1131 
1132   llvm::Constant *
1133   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
1134     unsigned Sig = (0xeb << 0) |  // jmp rel8
1135                    (0x06 << 8) |  //           .+0x08
1136                    ('v' << 16) |
1137                    ('2' << 24);
1138     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
1139   }
1140 
1141   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
1142     return "movl\t%ebp, %ebp"
1143            "\t\t// marker for objc_retainAutoreleaseReturnValue";
1144   }
1145 };
1146 
1147 }
1148 
1149 /// Rewrite input constraint references after adding some output constraints.
1150 /// In the case where there is one output and one input and we add one output,
1151 /// we need to replace all operand references greater than or equal to 1:
1152 ///     mov $0, $1
1153 ///     mov eax, $1
1154 /// The result will be:
1155 ///     mov $0, $2
1156 ///     mov eax, $2
1157 static void rewriteInputConstraintReferences(unsigned FirstIn,
1158                                              unsigned NumNewOuts,
1159                                              std::string &AsmString) {
1160   std::string Buf;
1161   llvm::raw_string_ostream OS(Buf);
1162   size_t Pos = 0;
1163   while (Pos < AsmString.size()) {
1164     size_t DollarStart = AsmString.find('$', Pos);
1165     if (DollarStart == std::string::npos)
1166       DollarStart = AsmString.size();
1167     size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
1168     if (DollarEnd == std::string::npos)
1169       DollarEnd = AsmString.size();
1170     OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
1171     Pos = DollarEnd;
1172     size_t NumDollars = DollarEnd - DollarStart;
1173     if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
1174       // We have an operand reference.
1175       size_t DigitStart = Pos;
1176       size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
1177       if (DigitEnd == std::string::npos)
1178         DigitEnd = AsmString.size();
1179       StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
1180       unsigned OperandIndex;
1181       if (!OperandStr.getAsInteger(10, OperandIndex)) {
1182         if (OperandIndex >= FirstIn)
1183           OperandIndex += NumNewOuts;
1184         OS << OperandIndex;
1185       } else {
1186         OS << OperandStr;
1187       }
1188       Pos = DigitEnd;
1189     }
1190   }
1191   AsmString = std::move(OS.str());
1192 }
1193 
1194 /// Add output constraints for EAX:EDX because they are return registers.
1195 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
1196     CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
1197     std::vector<llvm::Type *> &ResultRegTypes,
1198     std::vector<llvm::Type *> &ResultTruncRegTypes,
1199     std::vector<LValue> &ResultRegDests, std::string &AsmString,
1200     unsigned NumOutputs) const {
1201   uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
1202 
1203   // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
1204   // larger.
1205   if (!Constraints.empty())
1206     Constraints += ',';
1207   if (RetWidth <= 32) {
1208     Constraints += "={eax}";
1209     ResultRegTypes.push_back(CGF.Int32Ty);
1210   } else {
1211     // Use the 'A' constraint for EAX:EDX.
1212     Constraints += "=A";
1213     ResultRegTypes.push_back(CGF.Int64Ty);
1214   }
1215 
1216   // Truncate EAX or EAX:EDX to an integer of the appropriate size.
1217   llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
1218   ResultTruncRegTypes.push_back(CoerceTy);
1219 
1220   // Coerce the integer by bitcasting the return slot pointer.
1221   ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(),
1222                                                   CoerceTy->getPointerTo()));
1223   ResultRegDests.push_back(ReturnSlot);
1224 
1225   rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
1226 }
1227 
1228 /// shouldReturnTypeInRegister - Determine if the given type should be
1229 /// returned in a register (for the Darwin and MCU ABI).
1230 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
1231                                                ASTContext &Context) const {
1232   uint64_t Size = Context.getTypeSize(Ty);
1233 
1234   // For i386, type must be register sized.
1235   // For the MCU ABI, it only needs to be <= 8-byte
1236   if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size)))
1237    return false;
1238 
1239   if (Ty->isVectorType()) {
1240     // 64- and 128- bit vectors inside structures are not returned in
1241     // registers.
1242     if (Size == 64 || Size == 128)
1243       return false;
1244 
1245     return true;
1246   }
1247 
1248   // If this is a builtin, pointer, enum, complex type, member pointer, or
1249   // member function pointer it is ok.
1250   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
1251       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
1252       Ty->isBlockPointerType() || Ty->isMemberPointerType())
1253     return true;
1254 
1255   // Arrays are treated like records.
1256   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
1257     return shouldReturnTypeInRegister(AT->getElementType(), Context);
1258 
1259   // Otherwise, it must be a record type.
1260   const RecordType *RT = Ty->getAs<RecordType>();
1261   if (!RT) return false;
1262 
1263   // FIXME: Traverse bases here too.
1264 
1265   // Structure types are passed in register if all fields would be
1266   // passed in a register.
1267   for (const auto *FD : RT->getDecl()->fields()) {
1268     // Empty fields are ignored.
1269     if (isEmptyField(Context, FD, true))
1270       continue;
1271 
1272     // Check fields recursively.
1273     if (!shouldReturnTypeInRegister(FD->getType(), Context))
1274       return false;
1275   }
1276   return true;
1277 }
1278 
1279 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
1280   // Treat complex types as the element type.
1281   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
1282     Ty = CTy->getElementType();
1283 
1284   // Check for a type which we know has a simple scalar argument-passing
1285   // convention without any padding.  (We're specifically looking for 32
1286   // and 64-bit integer and integer-equivalents, float, and double.)
1287   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
1288       !Ty->isEnumeralType() && !Ty->isBlockPointerType())
1289     return false;
1290 
1291   uint64_t Size = Context.getTypeSize(Ty);
1292   return Size == 32 || Size == 64;
1293 }
1294 
1295 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD,
1296                           uint64_t &Size) {
1297   for (const auto *FD : RD->fields()) {
1298     // Scalar arguments on the stack get 4 byte alignment on x86. If the
1299     // argument is smaller than 32-bits, expanding the struct will create
1300     // alignment padding.
1301     if (!is32Or64BitBasicType(FD->getType(), Context))
1302       return false;
1303 
1304     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
1305     // how to expand them yet, and the predicate for telling if a bitfield still
1306     // counts as "basic" is more complicated than what we were doing previously.
1307     if (FD->isBitField())
1308       return false;
1309 
1310     Size += Context.getTypeSize(FD->getType());
1311   }
1312   return true;
1313 }
1314 
1315 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD,
1316                                  uint64_t &Size) {
1317   // Don't do this if there are any non-empty bases.
1318   for (const CXXBaseSpecifier &Base : RD->bases()) {
1319     if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(),
1320                               Size))
1321       return false;
1322   }
1323   if (!addFieldSizes(Context, RD, Size))
1324     return false;
1325   return true;
1326 }
1327 
1328 /// Test whether an argument type which is to be passed indirectly (on the
1329 /// stack) would have the equivalent layout if it was expanded into separate
1330 /// arguments. If so, we prefer to do the latter to avoid inhibiting
1331 /// optimizations.
1332 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const {
1333   // We can only expand structure types.
1334   const RecordType *RT = Ty->getAs<RecordType>();
1335   if (!RT)
1336     return false;
1337   const RecordDecl *RD = RT->getDecl();
1338   uint64_t Size = 0;
1339   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1340     if (!IsWin32StructABI) {
1341       // On non-Windows, we have to conservatively match our old bitcode
1342       // prototypes in order to be ABI-compatible at the bitcode level.
1343       if (!CXXRD->isCLike())
1344         return false;
1345     } else {
1346       // Don't do this for dynamic classes.
1347       if (CXXRD->isDynamicClass())
1348         return false;
1349     }
1350     if (!addBaseAndFieldSizes(getContext(), CXXRD, Size))
1351       return false;
1352   } else {
1353     if (!addFieldSizes(getContext(), RD, Size))
1354       return false;
1355   }
1356 
1357   // We can do this if there was no alignment padding.
1358   return Size == getContext().getTypeSize(Ty);
1359 }
1360 
1361 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const {
1362   // If the return value is indirect, then the hidden argument is consuming one
1363   // integer register.
1364   if (State.FreeRegs) {
1365     --State.FreeRegs;
1366     if (!IsMCUABI)
1367       return getNaturalAlignIndirectInReg(RetTy);
1368   }
1369   return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
1370 }
1371 
1372 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
1373                                              CCState &State) const {
1374   if (RetTy->isVoidType())
1375     return ABIArgInfo::getIgnore();
1376 
1377   const Type *Base = nullptr;
1378   uint64_t NumElts = 0;
1379   if ((State.CC == llvm::CallingConv::X86_VectorCall ||
1380        State.CC == llvm::CallingConv::X86_RegCall) &&
1381       isHomogeneousAggregate(RetTy, Base, NumElts)) {
1382     // The LLVM struct type for such an aggregate should lower properly.
1383     return ABIArgInfo::getDirect();
1384   }
1385 
1386   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
1387     // On Darwin, some vectors are returned in registers.
1388     if (IsDarwinVectorABI) {
1389       uint64_t Size = getContext().getTypeSize(RetTy);
1390 
1391       // 128-bit vectors are a special case; they are returned in
1392       // registers and we need to make sure to pick a type the LLVM
1393       // backend will like.
1394       if (Size == 128)
1395         return ABIArgInfo::getDirect(llvm::VectorType::get(
1396                   llvm::Type::getInt64Ty(getVMContext()), 2));
1397 
1398       // Always return in register if it fits in a general purpose
1399       // register, or if it is 64 bits and has a single element.
1400       if ((Size == 8 || Size == 16 || Size == 32) ||
1401           (Size == 64 && VT->getNumElements() == 1))
1402         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1403                                                             Size));
1404 
1405       return getIndirectReturnResult(RetTy, State);
1406     }
1407 
1408     return ABIArgInfo::getDirect();
1409   }
1410 
1411   if (isAggregateTypeForABI(RetTy)) {
1412     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
1413       // Structures with flexible arrays are always indirect.
1414       if (RT->getDecl()->hasFlexibleArrayMember())
1415         return getIndirectReturnResult(RetTy, State);
1416     }
1417 
1418     // If specified, structs and unions are always indirect.
1419     if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType())
1420       return getIndirectReturnResult(RetTy, State);
1421 
1422     // Ignore empty structs/unions.
1423     if (isEmptyRecord(getContext(), RetTy, true))
1424       return ABIArgInfo::getIgnore();
1425 
1426     // Small structures which are register sized are generally returned
1427     // in a register.
1428     if (shouldReturnTypeInRegister(RetTy, getContext())) {
1429       uint64_t Size = getContext().getTypeSize(RetTy);
1430 
1431       // As a special-case, if the struct is a "single-element" struct, and
1432       // the field is of type "float" or "double", return it in a
1433       // floating-point register. (MSVC does not apply this special case.)
1434       // We apply a similar transformation for pointer types to improve the
1435       // quality of the generated IR.
1436       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
1437         if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
1438             || SeltTy->hasPointerRepresentation())
1439           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
1440 
1441       // FIXME: We should be able to narrow this integer in cases with dead
1442       // padding.
1443       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
1444     }
1445 
1446     return getIndirectReturnResult(RetTy, State);
1447   }
1448 
1449   // Treat an enum type as its underlying type.
1450   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1451     RetTy = EnumTy->getDecl()->getIntegerType();
1452 
1453   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
1454                                            : ABIArgInfo::getDirect());
1455 }
1456 
1457 static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
1458   return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
1459 }
1460 
1461 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
1462   const RecordType *RT = Ty->getAs<RecordType>();
1463   if (!RT)
1464     return 0;
1465   const RecordDecl *RD = RT->getDecl();
1466 
1467   // If this is a C++ record, check the bases first.
1468   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1469     for (const auto &I : CXXRD->bases())
1470       if (!isRecordWithSSEVectorType(Context, I.getType()))
1471         return false;
1472 
1473   for (const auto *i : RD->fields()) {
1474     QualType FT = i->getType();
1475 
1476     if (isSSEVectorType(Context, FT))
1477       return true;
1478 
1479     if (isRecordWithSSEVectorType(Context, FT))
1480       return true;
1481   }
1482 
1483   return false;
1484 }
1485 
1486 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
1487                                                  unsigned Align) const {
1488   // Otherwise, if the alignment is less than or equal to the minimum ABI
1489   // alignment, just use the default; the backend will handle this.
1490   if (Align <= MinABIStackAlignInBytes)
1491     return 0; // Use default alignment.
1492 
1493   // On non-Darwin, the stack type alignment is always 4.
1494   if (!IsDarwinVectorABI) {
1495     // Set explicit alignment, since we may need to realign the top.
1496     return MinABIStackAlignInBytes;
1497   }
1498 
1499   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
1500   if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
1501                       isRecordWithSSEVectorType(getContext(), Ty)))
1502     return 16;
1503 
1504   return MinABIStackAlignInBytes;
1505 }
1506 
1507 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
1508                                             CCState &State) const {
1509   if (!ByVal) {
1510     if (State.FreeRegs) {
1511       --State.FreeRegs; // Non-byval indirects just use one pointer.
1512       if (!IsMCUABI)
1513         return getNaturalAlignIndirectInReg(Ty);
1514     }
1515     return getNaturalAlignIndirect(Ty, false);
1516   }
1517 
1518   // Compute the byval alignment.
1519   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
1520   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
1521   if (StackAlign == 0)
1522     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true);
1523 
1524   // If the stack alignment is less than the type alignment, realign the
1525   // argument.
1526   bool Realign = TypeAlign > StackAlign;
1527   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign),
1528                                  /*ByVal=*/true, Realign);
1529 }
1530 
1531 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
1532   const Type *T = isSingleElementStruct(Ty, getContext());
1533   if (!T)
1534     T = Ty.getTypePtr();
1535 
1536   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
1537     BuiltinType::Kind K = BT->getKind();
1538     if (K == BuiltinType::Float || K == BuiltinType::Double)
1539       return Float;
1540   }
1541   return Integer;
1542 }
1543 
1544 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const {
1545   if (!IsSoftFloatABI) {
1546     Class C = classify(Ty);
1547     if (C == Float)
1548       return false;
1549   }
1550 
1551   unsigned Size = getContext().getTypeSize(Ty);
1552   unsigned SizeInRegs = (Size + 31) / 32;
1553 
1554   if (SizeInRegs == 0)
1555     return false;
1556 
1557   if (!IsMCUABI) {
1558     if (SizeInRegs > State.FreeRegs) {
1559       State.FreeRegs = 0;
1560       return false;
1561     }
1562   } else {
1563     // The MCU psABI allows passing parameters in-reg even if there are
1564     // earlier parameters that are passed on the stack. Also,
1565     // it does not allow passing >8-byte structs in-register,
1566     // even if there are 3 free registers available.
1567     if (SizeInRegs > State.FreeRegs || SizeInRegs > 2)
1568       return false;
1569   }
1570 
1571   State.FreeRegs -= SizeInRegs;
1572   return true;
1573 }
1574 
1575 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State,
1576                                              bool &InReg,
1577                                              bool &NeedsPadding) const {
1578   // On Windows, aggregates other than HFAs are never passed in registers, and
1579   // they do not consume register slots. Homogenous floating-point aggregates
1580   // (HFAs) have already been dealt with at this point.
1581   if (IsWin32StructABI && isAggregateTypeForABI(Ty))
1582     return false;
1583 
1584   NeedsPadding = false;
1585   InReg = !IsMCUABI;
1586 
1587   if (!updateFreeRegs(Ty, State))
1588     return false;
1589 
1590   if (IsMCUABI)
1591     return true;
1592 
1593   if (State.CC == llvm::CallingConv::X86_FastCall ||
1594       State.CC == llvm::CallingConv::X86_VectorCall ||
1595       State.CC == llvm::CallingConv::X86_RegCall) {
1596     if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs)
1597       NeedsPadding = true;
1598 
1599     return false;
1600   }
1601 
1602   return true;
1603 }
1604 
1605 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const {
1606   if (!updateFreeRegs(Ty, State))
1607     return false;
1608 
1609   if (IsMCUABI)
1610     return false;
1611 
1612   if (State.CC == llvm::CallingConv::X86_FastCall ||
1613       State.CC == llvm::CallingConv::X86_VectorCall ||
1614       State.CC == llvm::CallingConv::X86_RegCall) {
1615     if (getContext().getTypeSize(Ty) > 32)
1616       return false;
1617 
1618     return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() ||
1619         Ty->isReferenceType());
1620   }
1621 
1622   return true;
1623 }
1624 
1625 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
1626                                                CCState &State) const {
1627   // FIXME: Set alignment on indirect arguments.
1628 
1629   Ty = useFirstFieldIfTransparentUnion(Ty);
1630 
1631   // Check with the C++ ABI first.
1632   const RecordType *RT = Ty->getAs<RecordType>();
1633   if (RT) {
1634     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
1635     if (RAA == CGCXXABI::RAA_Indirect) {
1636       return getIndirectResult(Ty, false, State);
1637     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
1638       // The field index doesn't matter, we'll fix it up later.
1639       return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
1640     }
1641   }
1642 
1643   // Regcall uses the concept of a homogenous vector aggregate, similar
1644   // to other targets.
1645   const Type *Base = nullptr;
1646   uint64_t NumElts = 0;
1647   if (State.CC == llvm::CallingConv::X86_RegCall &&
1648       isHomogeneousAggregate(Ty, Base, NumElts)) {
1649 
1650     if (State.FreeSSERegs >= NumElts) {
1651       State.FreeSSERegs -= NumElts;
1652       if (Ty->isBuiltinType() || Ty->isVectorType())
1653         return ABIArgInfo::getDirect();
1654       return ABIArgInfo::getExpand();
1655     }
1656     return getIndirectResult(Ty, /*ByVal=*/false, State);
1657   }
1658 
1659   if (isAggregateTypeForABI(Ty)) {
1660     // Structures with flexible arrays are always indirect.
1661     // FIXME: This should not be byval!
1662     if (RT && RT->getDecl()->hasFlexibleArrayMember())
1663       return getIndirectResult(Ty, true, State);
1664 
1665     // Ignore empty structs/unions on non-Windows.
1666     if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true))
1667       return ABIArgInfo::getIgnore();
1668 
1669     llvm::LLVMContext &LLVMContext = getVMContext();
1670     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
1671     bool NeedsPadding = false;
1672     bool InReg;
1673     if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) {
1674       unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
1675       SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
1676       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
1677       if (InReg)
1678         return ABIArgInfo::getDirectInReg(Result);
1679       else
1680         return ABIArgInfo::getDirect(Result);
1681     }
1682     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
1683 
1684     // Expand small (<= 128-bit) record types when we know that the stack layout
1685     // of those arguments will match the struct. This is important because the
1686     // LLVM backend isn't smart enough to remove byval, which inhibits many
1687     // optimizations.
1688     // Don't do this for the MCU if there are still free integer registers
1689     // (see X86_64 ABI for full explanation).
1690     if (getContext().getTypeSize(Ty) <= 4 * 32 &&
1691         (!IsMCUABI || State.FreeRegs == 0) && canExpandIndirectArgument(Ty))
1692       return ABIArgInfo::getExpandWithPadding(
1693           State.CC == llvm::CallingConv::X86_FastCall ||
1694               State.CC == llvm::CallingConv::X86_VectorCall ||
1695               State.CC == llvm::CallingConv::X86_RegCall,
1696           PaddingType);
1697 
1698     return getIndirectResult(Ty, true, State);
1699   }
1700 
1701   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1702     // On Darwin, some vectors are passed in memory, we handle this by passing
1703     // it as an i8/i16/i32/i64.
1704     if (IsDarwinVectorABI) {
1705       uint64_t Size = getContext().getTypeSize(Ty);
1706       if ((Size == 8 || Size == 16 || Size == 32) ||
1707           (Size == 64 && VT->getNumElements() == 1))
1708         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1709                                                             Size));
1710     }
1711 
1712     if (IsX86_MMXType(CGT.ConvertType(Ty)))
1713       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
1714 
1715     return ABIArgInfo::getDirect();
1716   }
1717 
1718 
1719   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1720     Ty = EnumTy->getDecl()->getIntegerType();
1721 
1722   bool InReg = shouldPrimitiveUseInReg(Ty, State);
1723 
1724   if (Ty->isPromotableIntegerType()) {
1725     if (InReg)
1726       return ABIArgInfo::getExtendInReg(Ty);
1727     return ABIArgInfo::getExtend(Ty);
1728   }
1729 
1730   if (InReg)
1731     return ABIArgInfo::getDirectInReg();
1732   return ABIArgInfo::getDirect();
1733 }
1734 
1735 void X86_32ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, CCState &State,
1736                                           bool &UsedInAlloca) const {
1737   // Vectorcall x86 works subtly different than in x64, so the format is
1738   // a bit different than the x64 version.  First, all vector types (not HVAs)
1739   // are assigned, with the first 6 ending up in the YMM0-5 or XMM0-5 registers.
1740   // This differs from the x64 implementation, where the first 6 by INDEX get
1741   // registers.
1742   // After that, integers AND HVAs are assigned Left to Right in the same pass.
1743   // Integers are passed as ECX/EDX if one is available (in order).  HVAs will
1744   // first take up the remaining YMM/XMM registers. If insufficient registers
1745   // remain but an integer register (ECX/EDX) is available, it will be passed
1746   // in that, else, on the stack.
1747   for (auto &I : FI.arguments()) {
1748     // First pass do all the vector types.
1749     const Type *Base = nullptr;
1750     uint64_t NumElts = 0;
1751     const QualType& Ty = I.type;
1752     if ((Ty->isVectorType() || Ty->isBuiltinType()) &&
1753         isHomogeneousAggregate(Ty, Base, NumElts)) {
1754       if (State.FreeSSERegs >= NumElts) {
1755         State.FreeSSERegs -= NumElts;
1756         I.info = ABIArgInfo::getDirect();
1757       } else {
1758         I.info = classifyArgumentType(Ty, State);
1759       }
1760       UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1761     }
1762   }
1763 
1764   for (auto &I : FI.arguments()) {
1765     // Second pass, do the rest!
1766     const Type *Base = nullptr;
1767     uint64_t NumElts = 0;
1768     const QualType& Ty = I.type;
1769     bool IsHva = isHomogeneousAggregate(Ty, Base, NumElts);
1770 
1771     if (IsHva && !Ty->isVectorType() && !Ty->isBuiltinType()) {
1772       // Assign true HVAs (non vector/native FP types).
1773       if (State.FreeSSERegs >= NumElts) {
1774         State.FreeSSERegs -= NumElts;
1775         I.info = getDirectX86Hva();
1776       } else {
1777         I.info = getIndirectResult(Ty, /*ByVal=*/false, State);
1778       }
1779     } else if (!IsHva) {
1780       // Assign all Non-HVAs, so this will exclude Vector/FP args.
1781       I.info = classifyArgumentType(Ty, State);
1782       UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1783     }
1784   }
1785 }
1786 
1787 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1788   CCState State(FI.getCallingConvention());
1789   if (IsMCUABI)
1790     State.FreeRegs = 3;
1791   else if (State.CC == llvm::CallingConv::X86_FastCall)
1792     State.FreeRegs = 2;
1793   else if (State.CC == llvm::CallingConv::X86_VectorCall) {
1794     State.FreeRegs = 2;
1795     State.FreeSSERegs = 6;
1796   } else if (FI.getHasRegParm())
1797     State.FreeRegs = FI.getRegParm();
1798   else if (State.CC == llvm::CallingConv::X86_RegCall) {
1799     State.FreeRegs = 5;
1800     State.FreeSSERegs = 8;
1801   } else
1802     State.FreeRegs = DefaultNumRegisterParameters;
1803 
1804   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
1805     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
1806   } else if (FI.getReturnInfo().isIndirect()) {
1807     // The C++ ABI is not aware of register usage, so we have to check if the
1808     // return value was sret and put it in a register ourselves if appropriate.
1809     if (State.FreeRegs) {
1810       --State.FreeRegs;  // The sret parameter consumes a register.
1811       if (!IsMCUABI)
1812         FI.getReturnInfo().setInReg(true);
1813     }
1814   }
1815 
1816   // The chain argument effectively gives us another free register.
1817   if (FI.isChainCall())
1818     ++State.FreeRegs;
1819 
1820   bool UsedInAlloca = false;
1821   if (State.CC == llvm::CallingConv::X86_VectorCall) {
1822     computeVectorCallArgs(FI, State, UsedInAlloca);
1823   } else {
1824     // If not vectorcall, revert to normal behavior.
1825     for (auto &I : FI.arguments()) {
1826       I.info = classifyArgumentType(I.type, State);
1827       UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1828     }
1829   }
1830 
1831   // If we needed to use inalloca for any argument, do a second pass and rewrite
1832   // all the memory arguments to use inalloca.
1833   if (UsedInAlloca)
1834     rewriteWithInAlloca(FI);
1835 }
1836 
1837 void
1838 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1839                                    CharUnits &StackOffset, ABIArgInfo &Info,
1840                                    QualType Type) const {
1841   // Arguments are always 4-byte-aligned.
1842   CharUnits FieldAlign = CharUnits::fromQuantity(4);
1843 
1844   assert(StackOffset.isMultipleOf(FieldAlign) && "unaligned inalloca struct");
1845   Info = ABIArgInfo::getInAlloca(FrameFields.size());
1846   FrameFields.push_back(CGT.ConvertTypeForMem(Type));
1847   StackOffset += getContext().getTypeSizeInChars(Type);
1848 
1849   // Insert padding bytes to respect alignment.
1850   CharUnits FieldEnd = StackOffset;
1851   StackOffset = FieldEnd.alignTo(FieldAlign);
1852   if (StackOffset != FieldEnd) {
1853     CharUnits NumBytes = StackOffset - FieldEnd;
1854     llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
1855     Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity());
1856     FrameFields.push_back(Ty);
1857   }
1858 }
1859 
1860 static bool isArgInAlloca(const ABIArgInfo &Info) {
1861   // Leave ignored and inreg arguments alone.
1862   switch (Info.getKind()) {
1863   case ABIArgInfo::InAlloca:
1864     return true;
1865   case ABIArgInfo::Indirect:
1866     assert(Info.getIndirectByVal());
1867     return true;
1868   case ABIArgInfo::Ignore:
1869     return false;
1870   case ABIArgInfo::Direct:
1871   case ABIArgInfo::Extend:
1872     if (Info.getInReg())
1873       return false;
1874     return true;
1875   case ABIArgInfo::Expand:
1876   case ABIArgInfo::CoerceAndExpand:
1877     // These are aggregate types which are never passed in registers when
1878     // inalloca is involved.
1879     return true;
1880   }
1881   llvm_unreachable("invalid enum");
1882 }
1883 
1884 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
1885   assert(IsWin32StructABI && "inalloca only supported on win32");
1886 
1887   // Build a packed struct type for all of the arguments in memory.
1888   SmallVector<llvm::Type *, 6> FrameFields;
1889 
1890   // The stack alignment is always 4.
1891   CharUnits StackAlign = CharUnits::fromQuantity(4);
1892 
1893   CharUnits StackOffset;
1894   CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
1895 
1896   // Put 'this' into the struct before 'sret', if necessary.
1897   bool IsThisCall =
1898       FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
1899   ABIArgInfo &Ret = FI.getReturnInfo();
1900   if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
1901       isArgInAlloca(I->info)) {
1902     addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1903     ++I;
1904   }
1905 
1906   // Put the sret parameter into the inalloca struct if it's in memory.
1907   if (Ret.isIndirect() && !Ret.getInReg()) {
1908     CanQualType PtrTy = getContext().getPointerType(FI.getReturnType());
1909     addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy);
1910     // On Windows, the hidden sret parameter is always returned in eax.
1911     Ret.setInAllocaSRet(IsWin32StructABI);
1912   }
1913 
1914   // Skip the 'this' parameter in ecx.
1915   if (IsThisCall)
1916     ++I;
1917 
1918   // Put arguments passed in memory into the struct.
1919   for (; I != E; ++I) {
1920     if (isArgInAlloca(I->info))
1921       addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1922   }
1923 
1924   FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
1925                                         /*isPacked=*/true),
1926                   StackAlign);
1927 }
1928 
1929 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF,
1930                                  Address VAListAddr, QualType Ty) const {
1931 
1932   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
1933 
1934   // x86-32 changes the alignment of certain arguments on the stack.
1935   //
1936   // Just messing with TypeInfo like this works because we never pass
1937   // anything indirectly.
1938   TypeInfo.second = CharUnits::fromQuantity(
1939                 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity()));
1940 
1941   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
1942                           TypeInfo, CharUnits::fromQuantity(4),
1943                           /*AllowHigherAlign*/ true);
1944 }
1945 
1946 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
1947     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
1948   assert(Triple.getArch() == llvm::Triple::x86);
1949 
1950   switch (Opts.getStructReturnConvention()) {
1951   case CodeGenOptions::SRCK_Default:
1952     break;
1953   case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
1954     return false;
1955   case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
1956     return true;
1957   }
1958 
1959   if (Triple.isOSDarwin() || Triple.isOSIAMCU())
1960     return true;
1961 
1962   switch (Triple.getOS()) {
1963   case llvm::Triple::DragonFly:
1964   case llvm::Triple::FreeBSD:
1965   case llvm::Triple::OpenBSD:
1966   case llvm::Triple::Win32:
1967     return true;
1968   default:
1969     return false;
1970   }
1971 }
1972 
1973 void X86_32TargetCodeGenInfo::setTargetAttributes(
1974     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
1975   if (GV->isDeclaration())
1976     return;
1977   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
1978     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1979       llvm::Function *Fn = cast<llvm::Function>(GV);
1980       Fn->addFnAttr("stackrealign");
1981     }
1982     if (FD->hasAttr<AnyX86InterruptAttr>()) {
1983       llvm::Function *Fn = cast<llvm::Function>(GV);
1984       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
1985     }
1986   }
1987 }
1988 
1989 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
1990                                                CodeGen::CodeGenFunction &CGF,
1991                                                llvm::Value *Address) const {
1992   CodeGen::CGBuilderTy &Builder = CGF.Builder;
1993 
1994   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
1995 
1996   // 0-7 are the eight integer registers;  the order is different
1997   //   on Darwin (for EH), but the range is the same.
1998   // 8 is %eip.
1999   AssignToArrayRange(Builder, Address, Four8, 0, 8);
2000 
2001   if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
2002     // 12-16 are st(0..4).  Not sure why we stop at 4.
2003     // These have size 16, which is sizeof(long double) on
2004     // platforms with 8-byte alignment for that type.
2005     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
2006     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
2007 
2008   } else {
2009     // 9 is %eflags, which doesn't get a size on Darwin for some
2010     // reason.
2011     Builder.CreateAlignedStore(
2012         Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9),
2013                                CharUnits::One());
2014 
2015     // 11-16 are st(0..5).  Not sure why we stop at 5.
2016     // These have size 12, which is sizeof(long double) on
2017     // platforms with 4-byte alignment for that type.
2018     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
2019     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
2020   }
2021 
2022   return false;
2023 }
2024 
2025 //===----------------------------------------------------------------------===//
2026 // X86-64 ABI Implementation
2027 //===----------------------------------------------------------------------===//
2028 
2029 
2030 namespace {
2031 /// The AVX ABI level for X86 targets.
2032 enum class X86AVXABILevel {
2033   None,
2034   AVX,
2035   AVX512
2036 };
2037 
2038 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
2039 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
2040   switch (AVXLevel) {
2041   case X86AVXABILevel::AVX512:
2042     return 512;
2043   case X86AVXABILevel::AVX:
2044     return 256;
2045   case X86AVXABILevel::None:
2046     return 128;
2047   }
2048   llvm_unreachable("Unknown AVXLevel");
2049 }
2050 
2051 /// X86_64ABIInfo - The X86_64 ABI information.
2052 class X86_64ABIInfo : public SwiftABIInfo {
2053   enum Class {
2054     Integer = 0,
2055     SSE,
2056     SSEUp,
2057     X87,
2058     X87Up,
2059     ComplexX87,
2060     NoClass,
2061     Memory
2062   };
2063 
2064   /// merge - Implement the X86_64 ABI merging algorithm.
2065   ///
2066   /// Merge an accumulating classification \arg Accum with a field
2067   /// classification \arg Field.
2068   ///
2069   /// \param Accum - The accumulating classification. This should
2070   /// always be either NoClass or the result of a previous merge
2071   /// call. In addition, this should never be Memory (the caller
2072   /// should just return Memory for the aggregate).
2073   static Class merge(Class Accum, Class Field);
2074 
2075   /// postMerge - Implement the X86_64 ABI post merging algorithm.
2076   ///
2077   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
2078   /// final MEMORY or SSE classes when necessary.
2079   ///
2080   /// \param AggregateSize - The size of the current aggregate in
2081   /// the classification process.
2082   ///
2083   /// \param Lo - The classification for the parts of the type
2084   /// residing in the low word of the containing object.
2085   ///
2086   /// \param Hi - The classification for the parts of the type
2087   /// residing in the higher words of the containing object.
2088   ///
2089   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
2090 
2091   /// classify - Determine the x86_64 register classes in which the
2092   /// given type T should be passed.
2093   ///
2094   /// \param Lo - The classification for the parts of the type
2095   /// residing in the low word of the containing object.
2096   ///
2097   /// \param Hi - The classification for the parts of the type
2098   /// residing in the high word of the containing object.
2099   ///
2100   /// \param OffsetBase - The bit offset of this type in the
2101   /// containing object.  Some parameters are classified different
2102   /// depending on whether they straddle an eightbyte boundary.
2103   ///
2104   /// \param isNamedArg - Whether the argument in question is a "named"
2105   /// argument, as used in AMD64-ABI 3.5.7.
2106   ///
2107   /// If a word is unused its result will be NoClass; if a type should
2108   /// be passed in Memory then at least the classification of \arg Lo
2109   /// will be Memory.
2110   ///
2111   /// The \arg Lo class will be NoClass iff the argument is ignored.
2112   ///
2113   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
2114   /// also be ComplexX87.
2115   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
2116                 bool isNamedArg) const;
2117 
2118   llvm::Type *GetByteVectorType(QualType Ty) const;
2119   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
2120                                  unsigned IROffset, QualType SourceTy,
2121                                  unsigned SourceOffset) const;
2122   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
2123                                      unsigned IROffset, QualType SourceTy,
2124                                      unsigned SourceOffset) const;
2125 
2126   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2127   /// such that the argument will be returned in memory.
2128   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
2129 
2130   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2131   /// such that the argument will be passed in memory.
2132   ///
2133   /// \param freeIntRegs - The number of free integer registers remaining
2134   /// available.
2135   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
2136 
2137   ABIArgInfo classifyReturnType(QualType RetTy) const;
2138 
2139   ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs,
2140                                   unsigned &neededInt, unsigned &neededSSE,
2141                                   bool isNamedArg) const;
2142 
2143   ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt,
2144                                        unsigned &NeededSSE) const;
2145 
2146   ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
2147                                            unsigned &NeededSSE) const;
2148 
2149   bool IsIllegalVectorType(QualType Ty) const;
2150 
2151   /// The 0.98 ABI revision clarified a lot of ambiguities,
2152   /// unfortunately in ways that were not always consistent with
2153   /// certain previous compilers.  In particular, platforms which
2154   /// required strict binary compatibility with older versions of GCC
2155   /// may need to exempt themselves.
2156   bool honorsRevision0_98() const {
2157     return !getTarget().getTriple().isOSDarwin();
2158   }
2159 
2160   /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to
2161   /// classify it as INTEGER (for compatibility with older clang compilers).
2162   bool classifyIntegerMMXAsSSE() const {
2163     // Clang <= 3.8 did not do this.
2164     if (getContext().getLangOpts().getClangABICompat() <=
2165         LangOptions::ClangABI::Ver3_8)
2166       return false;
2167 
2168     const llvm::Triple &Triple = getTarget().getTriple();
2169     if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4)
2170       return false;
2171     if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10)
2172       return false;
2173     return true;
2174   }
2175 
2176   X86AVXABILevel AVXLevel;
2177   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
2178   // 64-bit hardware.
2179   bool Has64BitPointers;
2180 
2181 public:
2182   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) :
2183       SwiftABIInfo(CGT), AVXLevel(AVXLevel),
2184       Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
2185   }
2186 
2187   bool isPassedUsingAVXType(QualType type) const {
2188     unsigned neededInt, neededSSE;
2189     // The freeIntRegs argument doesn't matter here.
2190     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
2191                                            /*isNamedArg*/true);
2192     if (info.isDirect()) {
2193       llvm::Type *ty = info.getCoerceToType();
2194       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
2195         return (vectorTy->getBitWidth() > 128);
2196     }
2197     return false;
2198   }
2199 
2200   void computeInfo(CGFunctionInfo &FI) const override;
2201 
2202   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2203                     QualType Ty) const override;
2204   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
2205                       QualType Ty) const override;
2206 
2207   bool has64BitPointers() const {
2208     return Has64BitPointers;
2209   }
2210 
2211   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
2212                                     bool asReturnValue) const override {
2213     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2214   }
2215   bool isSwiftErrorInRegister() const override {
2216     return true;
2217   }
2218 };
2219 
2220 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
2221 class WinX86_64ABIInfo : public SwiftABIInfo {
2222 public:
2223   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT)
2224       : SwiftABIInfo(CGT),
2225         IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {}
2226 
2227   void computeInfo(CGFunctionInfo &FI) const override;
2228 
2229   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2230                     QualType Ty) const override;
2231 
2232   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
2233     // FIXME: Assumes vectorcall is in use.
2234     return isX86VectorTypeForVectorCall(getContext(), Ty);
2235   }
2236 
2237   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
2238                                          uint64_t NumMembers) const override {
2239     // FIXME: Assumes vectorcall is in use.
2240     return isX86VectorCallAggregateSmallEnough(NumMembers);
2241   }
2242 
2243   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars,
2244                                     bool asReturnValue) const override {
2245     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2246   }
2247 
2248   bool isSwiftErrorInRegister() const override {
2249     return true;
2250   }
2251 
2252 private:
2253   ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType,
2254                       bool IsVectorCall, bool IsRegCall) const;
2255   ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs,
2256                                       const ABIArgInfo &current) const;
2257   void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs,
2258                              bool IsVectorCall, bool IsRegCall) const;
2259 
2260     bool IsMingw64;
2261 };
2262 
2263 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2264 public:
2265   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2266       : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {}
2267 
2268   const X86_64ABIInfo &getABIInfo() const {
2269     return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
2270   }
2271 
2272   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2273     return 7;
2274   }
2275 
2276   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2277                                llvm::Value *Address) const override {
2278     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2279 
2280     // 0-15 are the 16 integer registers.
2281     // 16 is %rip.
2282     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2283     return false;
2284   }
2285 
2286   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
2287                                   StringRef Constraint,
2288                                   llvm::Type* Ty) const override {
2289     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
2290   }
2291 
2292   bool isNoProtoCallVariadic(const CallArgList &args,
2293                              const FunctionNoProtoType *fnType) const override {
2294     // The default CC on x86-64 sets %al to the number of SSA
2295     // registers used, and GCC sets this when calling an unprototyped
2296     // function, so we override the default behavior.  However, don't do
2297     // that when AVX types are involved: the ABI explicitly states it is
2298     // undefined, and it doesn't work in practice because of how the ABI
2299     // defines varargs anyway.
2300     if (fnType->getCallConv() == CC_C) {
2301       bool HasAVXType = false;
2302       for (CallArgList::const_iterator
2303              it = args.begin(), ie = args.end(); it != ie; ++it) {
2304         if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
2305           HasAVXType = true;
2306           break;
2307         }
2308       }
2309 
2310       if (!HasAVXType)
2311         return true;
2312     }
2313 
2314     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
2315   }
2316 
2317   llvm::Constant *
2318   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
2319     unsigned Sig = (0xeb << 0) | // jmp rel8
2320                    (0x06 << 8) | //           .+0x08
2321                    ('v' << 16) |
2322                    ('2' << 24);
2323     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
2324   }
2325 
2326   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2327                            CodeGen::CodeGenModule &CGM) const override {
2328     if (GV->isDeclaration())
2329       return;
2330     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2331       if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2332         llvm::Function *Fn = cast<llvm::Function>(GV);
2333         Fn->addFnAttr("stackrealign");
2334       }
2335       if (FD->hasAttr<AnyX86InterruptAttr>()) {
2336         llvm::Function *Fn = cast<llvm::Function>(GV);
2337         Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2338       }
2339     }
2340   }
2341 };
2342 
2343 class PS4TargetCodeGenInfo : public X86_64TargetCodeGenInfo {
2344 public:
2345   PS4TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2346     : X86_64TargetCodeGenInfo(CGT, AVXLevel) {}
2347 
2348   void getDependentLibraryOption(llvm::StringRef Lib,
2349                                  llvm::SmallString<24> &Opt) const override {
2350     Opt = "\01";
2351     // If the argument contains a space, enclose it in quotes.
2352     if (Lib.find(" ") != StringRef::npos)
2353       Opt += "\"" + Lib.str() + "\"";
2354     else
2355       Opt += Lib;
2356   }
2357 };
2358 
2359 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
2360   // If the argument does not end in .lib, automatically add the suffix.
2361   // If the argument contains a space, enclose it in quotes.
2362   // This matches the behavior of MSVC.
2363   bool Quote = (Lib.find(" ") != StringRef::npos);
2364   std::string ArgStr = Quote ? "\"" : "";
2365   ArgStr += Lib;
2366   if (!Lib.endswith_lower(".lib") && !Lib.endswith_lower(".a"))
2367     ArgStr += ".lib";
2368   ArgStr += Quote ? "\"" : "";
2369   return ArgStr;
2370 }
2371 
2372 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
2373 public:
2374   WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2375         bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI,
2376         unsigned NumRegisterParameters)
2377     : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI,
2378         Win32StructABI, NumRegisterParameters, false) {}
2379 
2380   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2381                            CodeGen::CodeGenModule &CGM) const override;
2382 
2383   void getDependentLibraryOption(llvm::StringRef Lib,
2384                                  llvm::SmallString<24> &Opt) const override {
2385     Opt = "/DEFAULTLIB:";
2386     Opt += qualifyWindowsLibrary(Lib);
2387   }
2388 
2389   void getDetectMismatchOption(llvm::StringRef Name,
2390                                llvm::StringRef Value,
2391                                llvm::SmallString<32> &Opt) const override {
2392     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2393   }
2394 };
2395 
2396 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2397                                           CodeGen::CodeGenModule &CGM) {
2398   if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) {
2399 
2400     if (CGM.getCodeGenOpts().StackProbeSize != 4096)
2401       Fn->addFnAttr("stack-probe-size",
2402                     llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
2403     if (CGM.getCodeGenOpts().NoStackArgProbe)
2404       Fn->addFnAttr("no-stack-arg-probe");
2405   }
2406 }
2407 
2408 void WinX86_32TargetCodeGenInfo::setTargetAttributes(
2409     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2410   X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2411   if (GV->isDeclaration())
2412     return;
2413   addStackProbeTargetAttributes(D, GV, CGM);
2414 }
2415 
2416 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2417 public:
2418   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2419                              X86AVXABILevel AVXLevel)
2420       : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
2421 
2422   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2423                            CodeGen::CodeGenModule &CGM) const override;
2424 
2425   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2426     return 7;
2427   }
2428 
2429   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2430                                llvm::Value *Address) const override {
2431     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2432 
2433     // 0-15 are the 16 integer registers.
2434     // 16 is %rip.
2435     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2436     return false;
2437   }
2438 
2439   void getDependentLibraryOption(llvm::StringRef Lib,
2440                                  llvm::SmallString<24> &Opt) const override {
2441     Opt = "/DEFAULTLIB:";
2442     Opt += qualifyWindowsLibrary(Lib);
2443   }
2444 
2445   void getDetectMismatchOption(llvm::StringRef Name,
2446                                llvm::StringRef Value,
2447                                llvm::SmallString<32> &Opt) const override {
2448     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2449   }
2450 };
2451 
2452 void WinX86_64TargetCodeGenInfo::setTargetAttributes(
2453     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2454   TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2455   if (GV->isDeclaration())
2456     return;
2457   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2458     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2459       llvm::Function *Fn = cast<llvm::Function>(GV);
2460       Fn->addFnAttr("stackrealign");
2461     }
2462     if (FD->hasAttr<AnyX86InterruptAttr>()) {
2463       llvm::Function *Fn = cast<llvm::Function>(GV);
2464       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2465     }
2466   }
2467 
2468   addStackProbeTargetAttributes(D, GV, CGM);
2469 }
2470 }
2471 
2472 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
2473                               Class &Hi) const {
2474   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
2475   //
2476   // (a) If one of the classes is Memory, the whole argument is passed in
2477   //     memory.
2478   //
2479   // (b) If X87UP is not preceded by X87, the whole argument is passed in
2480   //     memory.
2481   //
2482   // (c) If the size of the aggregate exceeds two eightbytes and the first
2483   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
2484   //     argument is passed in memory. NOTE: This is necessary to keep the
2485   //     ABI working for processors that don't support the __m256 type.
2486   //
2487   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
2488   //
2489   // Some of these are enforced by the merging logic.  Others can arise
2490   // only with unions; for example:
2491   //   union { _Complex double; unsigned; }
2492   //
2493   // Note that clauses (b) and (c) were added in 0.98.
2494   //
2495   if (Hi == Memory)
2496     Lo = Memory;
2497   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
2498     Lo = Memory;
2499   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
2500     Lo = Memory;
2501   if (Hi == SSEUp && Lo != SSE)
2502     Hi = SSE;
2503 }
2504 
2505 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
2506   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
2507   // classified recursively so that always two fields are
2508   // considered. The resulting class is calculated according to
2509   // the classes of the fields in the eightbyte:
2510   //
2511   // (a) If both classes are equal, this is the resulting class.
2512   //
2513   // (b) If one of the classes is NO_CLASS, the resulting class is
2514   // the other class.
2515   //
2516   // (c) If one of the classes is MEMORY, the result is the MEMORY
2517   // class.
2518   //
2519   // (d) If one of the classes is INTEGER, the result is the
2520   // INTEGER.
2521   //
2522   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
2523   // MEMORY is used as class.
2524   //
2525   // (f) Otherwise class SSE is used.
2526 
2527   // Accum should never be memory (we should have returned) or
2528   // ComplexX87 (because this cannot be passed in a structure).
2529   assert((Accum != Memory && Accum != ComplexX87) &&
2530          "Invalid accumulated classification during merge.");
2531   if (Accum == Field || Field == NoClass)
2532     return Accum;
2533   if (Field == Memory)
2534     return Memory;
2535   if (Accum == NoClass)
2536     return Field;
2537   if (Accum == Integer || Field == Integer)
2538     return Integer;
2539   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
2540       Accum == X87 || Accum == X87Up)
2541     return Memory;
2542   return SSE;
2543 }
2544 
2545 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
2546                              Class &Lo, Class &Hi, bool isNamedArg) const {
2547   // FIXME: This code can be simplified by introducing a simple value class for
2548   // Class pairs with appropriate constructor methods for the various
2549   // situations.
2550 
2551   // FIXME: Some of the split computations are wrong; unaligned vectors
2552   // shouldn't be passed in registers for example, so there is no chance they
2553   // can straddle an eightbyte. Verify & simplify.
2554 
2555   Lo = Hi = NoClass;
2556 
2557   Class &Current = OffsetBase < 64 ? Lo : Hi;
2558   Current = Memory;
2559 
2560   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
2561     BuiltinType::Kind k = BT->getKind();
2562 
2563     if (k == BuiltinType::Void) {
2564       Current = NoClass;
2565     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
2566       Lo = Integer;
2567       Hi = Integer;
2568     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
2569       Current = Integer;
2570     } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
2571       Current = SSE;
2572     } else if (k == BuiltinType::LongDouble) {
2573       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2574       if (LDF == &llvm::APFloat::IEEEquad()) {
2575         Lo = SSE;
2576         Hi = SSEUp;
2577       } else if (LDF == &llvm::APFloat::x87DoubleExtended()) {
2578         Lo = X87;
2579         Hi = X87Up;
2580       } else if (LDF == &llvm::APFloat::IEEEdouble()) {
2581         Current = SSE;
2582       } else
2583         llvm_unreachable("unexpected long double representation!");
2584     }
2585     // FIXME: _Decimal32 and _Decimal64 are SSE.
2586     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
2587     return;
2588   }
2589 
2590   if (const EnumType *ET = Ty->getAs<EnumType>()) {
2591     // Classify the underlying integer type.
2592     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
2593     return;
2594   }
2595 
2596   if (Ty->hasPointerRepresentation()) {
2597     Current = Integer;
2598     return;
2599   }
2600 
2601   if (Ty->isMemberPointerType()) {
2602     if (Ty->isMemberFunctionPointerType()) {
2603       if (Has64BitPointers) {
2604         // If Has64BitPointers, this is an {i64, i64}, so classify both
2605         // Lo and Hi now.
2606         Lo = Hi = Integer;
2607       } else {
2608         // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
2609         // straddles an eightbyte boundary, Hi should be classified as well.
2610         uint64_t EB_FuncPtr = (OffsetBase) / 64;
2611         uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
2612         if (EB_FuncPtr != EB_ThisAdj) {
2613           Lo = Hi = Integer;
2614         } else {
2615           Current = Integer;
2616         }
2617       }
2618     } else {
2619       Current = Integer;
2620     }
2621     return;
2622   }
2623 
2624   if (const VectorType *VT = Ty->getAs<VectorType>()) {
2625     uint64_t Size = getContext().getTypeSize(VT);
2626     if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
2627       // gcc passes the following as integer:
2628       // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
2629       // 2 bytes - <2 x char>, <1 x short>
2630       // 1 byte  - <1 x char>
2631       Current = Integer;
2632 
2633       // If this type crosses an eightbyte boundary, it should be
2634       // split.
2635       uint64_t EB_Lo = (OffsetBase) / 64;
2636       uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
2637       if (EB_Lo != EB_Hi)
2638         Hi = Lo;
2639     } else if (Size == 64) {
2640       QualType ElementType = VT->getElementType();
2641 
2642       // gcc passes <1 x double> in memory. :(
2643       if (ElementType->isSpecificBuiltinType(BuiltinType::Double))
2644         return;
2645 
2646       // gcc passes <1 x long long> as SSE but clang used to unconditionally
2647       // pass them as integer.  For platforms where clang is the de facto
2648       // platform compiler, we must continue to use integer.
2649       if (!classifyIntegerMMXAsSSE() &&
2650           (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) ||
2651            ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
2652            ElementType->isSpecificBuiltinType(BuiltinType::Long) ||
2653            ElementType->isSpecificBuiltinType(BuiltinType::ULong)))
2654         Current = Integer;
2655       else
2656         Current = SSE;
2657 
2658       // If this type crosses an eightbyte boundary, it should be
2659       // split.
2660       if (OffsetBase && OffsetBase != 64)
2661         Hi = Lo;
2662     } else if (Size == 128 ||
2663                (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
2664       // Arguments of 256-bits are split into four eightbyte chunks. The
2665       // least significant one belongs to class SSE and all the others to class
2666       // SSEUP. The original Lo and Hi design considers that types can't be
2667       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
2668       // This design isn't correct for 256-bits, but since there're no cases
2669       // where the upper parts would need to be inspected, avoid adding
2670       // complexity and just consider Hi to match the 64-256 part.
2671       //
2672       // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
2673       // registers if they are "named", i.e. not part of the "..." of a
2674       // variadic function.
2675       //
2676       // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
2677       // split into eight eightbyte chunks, one SSE and seven SSEUP.
2678       Lo = SSE;
2679       Hi = SSEUp;
2680     }
2681     return;
2682   }
2683 
2684   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
2685     QualType ET = getContext().getCanonicalType(CT->getElementType());
2686 
2687     uint64_t Size = getContext().getTypeSize(Ty);
2688     if (ET->isIntegralOrEnumerationType()) {
2689       if (Size <= 64)
2690         Current = Integer;
2691       else if (Size <= 128)
2692         Lo = Hi = Integer;
2693     } else if (ET == getContext().FloatTy) {
2694       Current = SSE;
2695     } else if (ET == getContext().DoubleTy) {
2696       Lo = Hi = SSE;
2697     } else if (ET == getContext().LongDoubleTy) {
2698       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2699       if (LDF == &llvm::APFloat::IEEEquad())
2700         Current = Memory;
2701       else if (LDF == &llvm::APFloat::x87DoubleExtended())
2702         Current = ComplexX87;
2703       else if (LDF == &llvm::APFloat::IEEEdouble())
2704         Lo = Hi = SSE;
2705       else
2706         llvm_unreachable("unexpected long double representation!");
2707     }
2708 
2709     // If this complex type crosses an eightbyte boundary then it
2710     // should be split.
2711     uint64_t EB_Real = (OffsetBase) / 64;
2712     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
2713     if (Hi == NoClass && EB_Real != EB_Imag)
2714       Hi = Lo;
2715 
2716     return;
2717   }
2718 
2719   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
2720     // Arrays are treated like structures.
2721 
2722     uint64_t Size = getContext().getTypeSize(Ty);
2723 
2724     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2725     // than eight eightbytes, ..., it has class MEMORY.
2726     if (Size > 512)
2727       return;
2728 
2729     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
2730     // fields, it has class MEMORY.
2731     //
2732     // Only need to check alignment of array base.
2733     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
2734       return;
2735 
2736     // Otherwise implement simplified merge. We could be smarter about
2737     // this, but it isn't worth it and would be harder to verify.
2738     Current = NoClass;
2739     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
2740     uint64_t ArraySize = AT->getSize().getZExtValue();
2741 
2742     // The only case a 256-bit wide vector could be used is when the array
2743     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2744     // to work for sizes wider than 128, early check and fallback to memory.
2745     //
2746     if (Size > 128 &&
2747         (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel)))
2748       return;
2749 
2750     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
2751       Class FieldLo, FieldHi;
2752       classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
2753       Lo = merge(Lo, FieldLo);
2754       Hi = merge(Hi, FieldHi);
2755       if (Lo == Memory || Hi == Memory)
2756         break;
2757     }
2758 
2759     postMerge(Size, Lo, Hi);
2760     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
2761     return;
2762   }
2763 
2764   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2765     uint64_t Size = getContext().getTypeSize(Ty);
2766 
2767     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2768     // than eight eightbytes, ..., it has class MEMORY.
2769     if (Size > 512)
2770       return;
2771 
2772     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
2773     // copy constructor or a non-trivial destructor, it is passed by invisible
2774     // reference.
2775     if (getRecordArgABI(RT, getCXXABI()))
2776       return;
2777 
2778     const RecordDecl *RD = RT->getDecl();
2779 
2780     // Assume variable sized types are passed in memory.
2781     if (RD->hasFlexibleArrayMember())
2782       return;
2783 
2784     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2785 
2786     // Reset Lo class, this will be recomputed.
2787     Current = NoClass;
2788 
2789     // If this is a C++ record, classify the bases first.
2790     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2791       for (const auto &I : CXXRD->bases()) {
2792         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2793                "Unexpected base class!");
2794         const CXXRecordDecl *Base =
2795           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2796 
2797         // Classify this field.
2798         //
2799         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
2800         // single eightbyte, each is classified separately. Each eightbyte gets
2801         // initialized to class NO_CLASS.
2802         Class FieldLo, FieldHi;
2803         uint64_t Offset =
2804           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
2805         classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
2806         Lo = merge(Lo, FieldLo);
2807         Hi = merge(Hi, FieldHi);
2808         if (Lo == Memory || Hi == Memory) {
2809           postMerge(Size, Lo, Hi);
2810           return;
2811         }
2812       }
2813     }
2814 
2815     // Classify the fields one at a time, merging the results.
2816     unsigned idx = 0;
2817     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2818            i != e; ++i, ++idx) {
2819       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2820       bool BitField = i->isBitField();
2821 
2822       // Ignore padding bit-fields.
2823       if (BitField && i->isUnnamedBitfield())
2824         continue;
2825 
2826       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
2827       // four eightbytes, or it contains unaligned fields, it has class MEMORY.
2828       //
2829       // The only case a 256-bit wide vector could be used is when the struct
2830       // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2831       // to work for sizes wider than 128, early check and fallback to memory.
2832       //
2833       if (Size > 128 && (Size != getContext().getTypeSize(i->getType()) ||
2834                          Size > getNativeVectorSizeForAVXABI(AVXLevel))) {
2835         Lo = Memory;
2836         postMerge(Size, Lo, Hi);
2837         return;
2838       }
2839       // Note, skip this test for bit-fields, see below.
2840       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
2841         Lo = Memory;
2842         postMerge(Size, Lo, Hi);
2843         return;
2844       }
2845 
2846       // Classify this field.
2847       //
2848       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
2849       // exceeds a single eightbyte, each is classified
2850       // separately. Each eightbyte gets initialized to class
2851       // NO_CLASS.
2852       Class FieldLo, FieldHi;
2853 
2854       // Bit-fields require special handling, they do not force the
2855       // structure to be passed in memory even if unaligned, and
2856       // therefore they can straddle an eightbyte.
2857       if (BitField) {
2858         assert(!i->isUnnamedBitfield());
2859         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2860         uint64_t Size = i->getBitWidthValue(getContext());
2861 
2862         uint64_t EB_Lo = Offset / 64;
2863         uint64_t EB_Hi = (Offset + Size - 1) / 64;
2864 
2865         if (EB_Lo) {
2866           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
2867           FieldLo = NoClass;
2868           FieldHi = Integer;
2869         } else {
2870           FieldLo = Integer;
2871           FieldHi = EB_Hi ? Integer : NoClass;
2872         }
2873       } else
2874         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
2875       Lo = merge(Lo, FieldLo);
2876       Hi = merge(Hi, FieldHi);
2877       if (Lo == Memory || Hi == Memory)
2878         break;
2879     }
2880 
2881     postMerge(Size, Lo, Hi);
2882   }
2883 }
2884 
2885 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
2886   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2887   // place naturally.
2888   if (!isAggregateTypeForABI(Ty)) {
2889     // Treat an enum type as its underlying type.
2890     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2891       Ty = EnumTy->getDecl()->getIntegerType();
2892 
2893     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
2894                                           : ABIArgInfo::getDirect());
2895   }
2896 
2897   return getNaturalAlignIndirect(Ty);
2898 }
2899 
2900 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
2901   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
2902     uint64_t Size = getContext().getTypeSize(VecTy);
2903     unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
2904     if (Size <= 64 || Size > LargestVector)
2905       return true;
2906   }
2907 
2908   return false;
2909 }
2910 
2911 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
2912                                             unsigned freeIntRegs) const {
2913   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2914   // place naturally.
2915   //
2916   // This assumption is optimistic, as there could be free registers available
2917   // when we need to pass this argument in memory, and LLVM could try to pass
2918   // the argument in the free register. This does not seem to happen currently,
2919   // but this code would be much safer if we could mark the argument with
2920   // 'onstack'. See PR12193.
2921   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
2922     // Treat an enum type as its underlying type.
2923     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2924       Ty = EnumTy->getDecl()->getIntegerType();
2925 
2926     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
2927                                           : ABIArgInfo::getDirect());
2928   }
2929 
2930   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
2931     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
2932 
2933   // Compute the byval alignment. We specify the alignment of the byval in all
2934   // cases so that the mid-level optimizer knows the alignment of the byval.
2935   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
2936 
2937   // Attempt to avoid passing indirect results using byval when possible. This
2938   // is important for good codegen.
2939   //
2940   // We do this by coercing the value into a scalar type which the backend can
2941   // handle naturally (i.e., without using byval).
2942   //
2943   // For simplicity, we currently only do this when we have exhausted all of the
2944   // free integer registers. Doing this when there are free integer registers
2945   // would require more care, as we would have to ensure that the coerced value
2946   // did not claim the unused register. That would require either reording the
2947   // arguments to the function (so that any subsequent inreg values came first),
2948   // or only doing this optimization when there were no following arguments that
2949   // might be inreg.
2950   //
2951   // We currently expect it to be rare (particularly in well written code) for
2952   // arguments to be passed on the stack when there are still free integer
2953   // registers available (this would typically imply large structs being passed
2954   // by value), so this seems like a fair tradeoff for now.
2955   //
2956   // We can revisit this if the backend grows support for 'onstack' parameter
2957   // attributes. See PR12193.
2958   if (freeIntRegs == 0) {
2959     uint64_t Size = getContext().getTypeSize(Ty);
2960 
2961     // If this type fits in an eightbyte, coerce it into the matching integral
2962     // type, which will end up on the stack (with alignment 8).
2963     if (Align == 8 && Size <= 64)
2964       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2965                                                           Size));
2966   }
2967 
2968   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align));
2969 }
2970 
2971 /// The ABI specifies that a value should be passed in a full vector XMM/YMM
2972 /// register. Pick an LLVM IR type that will be passed as a vector register.
2973 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
2974   // Wrapper structs/arrays that only contain vectors are passed just like
2975   // vectors; strip them off if present.
2976   if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
2977     Ty = QualType(InnerTy, 0);
2978 
2979   llvm::Type *IRType = CGT.ConvertType(Ty);
2980   if (isa<llvm::VectorType>(IRType) ||
2981       IRType->getTypeID() == llvm::Type::FP128TyID)
2982     return IRType;
2983 
2984   // We couldn't find the preferred IR vector type for 'Ty'.
2985   uint64_t Size = getContext().getTypeSize(Ty);
2986   assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!");
2987 
2988   // Return a LLVM IR vector type based on the size of 'Ty'.
2989   return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()),
2990                                Size / 64);
2991 }
2992 
2993 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
2994 /// is known to either be off the end of the specified type or being in
2995 /// alignment padding.  The user type specified is known to be at most 128 bits
2996 /// in size, and have passed through X86_64ABIInfo::classify with a successful
2997 /// classification that put one of the two halves in the INTEGER class.
2998 ///
2999 /// It is conservatively correct to return false.
3000 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
3001                                   unsigned EndBit, ASTContext &Context) {
3002   // If the bytes being queried are off the end of the type, there is no user
3003   // data hiding here.  This handles analysis of builtins, vectors and other
3004   // types that don't contain interesting padding.
3005   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
3006   if (TySize <= StartBit)
3007     return true;
3008 
3009   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
3010     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
3011     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
3012 
3013     // Check each element to see if the element overlaps with the queried range.
3014     for (unsigned i = 0; i != NumElts; ++i) {
3015       // If the element is after the span we care about, then we're done..
3016       unsigned EltOffset = i*EltSize;
3017       if (EltOffset >= EndBit) break;
3018 
3019       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
3020       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
3021                                  EndBit-EltOffset, Context))
3022         return false;
3023     }
3024     // If it overlaps no elements, then it is safe to process as padding.
3025     return true;
3026   }
3027 
3028   if (const RecordType *RT = Ty->getAs<RecordType>()) {
3029     const RecordDecl *RD = RT->getDecl();
3030     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3031 
3032     // If this is a C++ record, check the bases first.
3033     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3034       for (const auto &I : CXXRD->bases()) {
3035         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
3036                "Unexpected base class!");
3037         const CXXRecordDecl *Base =
3038           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
3039 
3040         // If the base is after the span we care about, ignore it.
3041         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
3042         if (BaseOffset >= EndBit) continue;
3043 
3044         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
3045         if (!BitsContainNoUserData(I.getType(), BaseStart,
3046                                    EndBit-BaseOffset, Context))
3047           return false;
3048       }
3049     }
3050 
3051     // Verify that no field has data that overlaps the region of interest.  Yes
3052     // this could be sped up a lot by being smarter about queried fields,
3053     // however we're only looking at structs up to 16 bytes, so we don't care
3054     // much.
3055     unsigned idx = 0;
3056     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3057          i != e; ++i, ++idx) {
3058       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
3059 
3060       // If we found a field after the region we care about, then we're done.
3061       if (FieldOffset >= EndBit) break;
3062 
3063       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
3064       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
3065                                  Context))
3066         return false;
3067     }
3068 
3069     // If nothing in this record overlapped the area of interest, then we're
3070     // clean.
3071     return true;
3072   }
3073 
3074   return false;
3075 }
3076 
3077 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
3078 /// float member at the specified offset.  For example, {int,{float}} has a
3079 /// float at offset 4.  It is conservatively correct for this routine to return
3080 /// false.
3081 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
3082                                   const llvm::DataLayout &TD) {
3083   // Base case if we find a float.
3084   if (IROffset == 0 && IRType->isFloatTy())
3085     return true;
3086 
3087   // If this is a struct, recurse into the field at the specified offset.
3088   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3089     const llvm::StructLayout *SL = TD.getStructLayout(STy);
3090     unsigned Elt = SL->getElementContainingOffset(IROffset);
3091     IROffset -= SL->getElementOffset(Elt);
3092     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
3093   }
3094 
3095   // If this is an array, recurse into the field at the specified offset.
3096   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3097     llvm::Type *EltTy = ATy->getElementType();
3098     unsigned EltSize = TD.getTypeAllocSize(EltTy);
3099     IROffset -= IROffset/EltSize*EltSize;
3100     return ContainsFloatAtOffset(EltTy, IROffset, TD);
3101   }
3102 
3103   return false;
3104 }
3105 
3106 
3107 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
3108 /// low 8 bytes of an XMM register, corresponding to the SSE class.
3109 llvm::Type *X86_64ABIInfo::
3110 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3111                    QualType SourceTy, unsigned SourceOffset) const {
3112   // The only three choices we have are either double, <2 x float>, or float. We
3113   // pass as float if the last 4 bytes is just padding.  This happens for
3114   // structs that contain 3 floats.
3115   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
3116                             SourceOffset*8+64, getContext()))
3117     return llvm::Type::getFloatTy(getVMContext());
3118 
3119   // We want to pass as <2 x float> if the LLVM IR type contains a float at
3120   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
3121   // case.
3122   if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
3123       ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
3124     return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
3125 
3126   return llvm::Type::getDoubleTy(getVMContext());
3127 }
3128 
3129 
3130 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
3131 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
3132 /// about the high or low part of an up-to-16-byte struct.  This routine picks
3133 /// the best LLVM IR type to represent this, which may be i64 or may be anything
3134 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
3135 /// etc).
3136 ///
3137 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
3138 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
3139 /// the 8-byte value references.  PrefType may be null.
3140 ///
3141 /// SourceTy is the source-level type for the entire argument.  SourceOffset is
3142 /// an offset into this that we're processing (which is always either 0 or 8).
3143 ///
3144 llvm::Type *X86_64ABIInfo::
3145 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3146                        QualType SourceTy, unsigned SourceOffset) const {
3147   // If we're dealing with an un-offset LLVM IR type, then it means that we're
3148   // returning an 8-byte unit starting with it.  See if we can safely use it.
3149   if (IROffset == 0) {
3150     // Pointers and int64's always fill the 8-byte unit.
3151     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
3152         IRType->isIntegerTy(64))
3153       return IRType;
3154 
3155     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
3156     // goodness in the source type is just tail padding.  This is allowed to
3157     // kick in for struct {double,int} on the int, but not on
3158     // struct{double,int,int} because we wouldn't return the second int.  We
3159     // have to do this analysis on the source type because we can't depend on
3160     // unions being lowered a specific way etc.
3161     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
3162         IRType->isIntegerTy(32) ||
3163         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
3164       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
3165           cast<llvm::IntegerType>(IRType)->getBitWidth();
3166 
3167       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
3168                                 SourceOffset*8+64, getContext()))
3169         return IRType;
3170     }
3171   }
3172 
3173   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3174     // If this is a struct, recurse into the field at the specified offset.
3175     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
3176     if (IROffset < SL->getSizeInBytes()) {
3177       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
3178       IROffset -= SL->getElementOffset(FieldIdx);
3179 
3180       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
3181                                     SourceTy, SourceOffset);
3182     }
3183   }
3184 
3185   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3186     llvm::Type *EltTy = ATy->getElementType();
3187     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
3188     unsigned EltOffset = IROffset/EltSize*EltSize;
3189     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
3190                                   SourceOffset);
3191   }
3192 
3193   // Okay, we don't have any better idea of what to pass, so we pass this in an
3194   // integer register that isn't too big to fit the rest of the struct.
3195   unsigned TySizeInBytes =
3196     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
3197 
3198   assert(TySizeInBytes != SourceOffset && "Empty field?");
3199 
3200   // It is always safe to classify this as an integer type up to i64 that
3201   // isn't larger than the structure.
3202   return llvm::IntegerType::get(getVMContext(),
3203                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
3204 }
3205 
3206 
3207 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
3208 /// be used as elements of a two register pair to pass or return, return a
3209 /// first class aggregate to represent them.  For example, if the low part of
3210 /// a by-value argument should be passed as i32* and the high part as float,
3211 /// return {i32*, float}.
3212 static llvm::Type *
3213 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
3214                            const llvm::DataLayout &TD) {
3215   // In order to correctly satisfy the ABI, we need to the high part to start
3216   // at offset 8.  If the high and low parts we inferred are both 4-byte types
3217   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
3218   // the second element at offset 8.  Check for this:
3219   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
3220   unsigned HiAlign = TD.getABITypeAlignment(Hi);
3221   unsigned HiStart = llvm::alignTo(LoSize, HiAlign);
3222   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
3223 
3224   // To handle this, we have to increase the size of the low part so that the
3225   // second element will start at an 8 byte offset.  We can't increase the size
3226   // of the second element because it might make us access off the end of the
3227   // struct.
3228   if (HiStart != 8) {
3229     // There are usually two sorts of types the ABI generation code can produce
3230     // for the low part of a pair that aren't 8 bytes in size: float or
3231     // i8/i16/i32.  This can also include pointers when they are 32-bit (X32 and
3232     // NaCl).
3233     // Promote these to a larger type.
3234     if (Lo->isFloatTy())
3235       Lo = llvm::Type::getDoubleTy(Lo->getContext());
3236     else {
3237       assert((Lo->isIntegerTy() || Lo->isPointerTy())
3238              && "Invalid/unknown lo type");
3239       Lo = llvm::Type::getInt64Ty(Lo->getContext());
3240     }
3241   }
3242 
3243   llvm::StructType *Result = llvm::StructType::get(Lo, Hi);
3244 
3245   // Verify that the second element is at an 8-byte offset.
3246   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
3247          "Invalid x86-64 argument pair!");
3248   return Result;
3249 }
3250 
3251 ABIArgInfo X86_64ABIInfo::
3252 classifyReturnType(QualType RetTy) const {
3253   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
3254   // classification algorithm.
3255   X86_64ABIInfo::Class Lo, Hi;
3256   classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
3257 
3258   // Check some invariants.
3259   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3260   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3261 
3262   llvm::Type *ResType = nullptr;
3263   switch (Lo) {
3264   case NoClass:
3265     if (Hi == NoClass)
3266       return ABIArgInfo::getIgnore();
3267     // If the low part is just padding, it takes no register, leave ResType
3268     // null.
3269     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3270            "Unknown missing lo part");
3271     break;
3272 
3273   case SSEUp:
3274   case X87Up:
3275     llvm_unreachable("Invalid classification for lo word.");
3276 
3277     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
3278     // hidden argument.
3279   case Memory:
3280     return getIndirectReturnResult(RetTy);
3281 
3282     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
3283     // available register of the sequence %rax, %rdx is used.
3284   case Integer:
3285     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3286 
3287     // If we have a sign or zero extended integer, make sure to return Extend
3288     // so that the parameter gets the right LLVM IR attributes.
3289     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3290       // Treat an enum type as its underlying type.
3291       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3292         RetTy = EnumTy->getDecl()->getIntegerType();
3293 
3294       if (RetTy->isIntegralOrEnumerationType() &&
3295           RetTy->isPromotableIntegerType())
3296         return ABIArgInfo::getExtend(RetTy);
3297     }
3298     break;
3299 
3300     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
3301     // available SSE register of the sequence %xmm0, %xmm1 is used.
3302   case SSE:
3303     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3304     break;
3305 
3306     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
3307     // returned on the X87 stack in %st0 as 80-bit x87 number.
3308   case X87:
3309     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
3310     break;
3311 
3312     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
3313     // part of the value is returned in %st0 and the imaginary part in
3314     // %st1.
3315   case ComplexX87:
3316     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
3317     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
3318                                     llvm::Type::getX86_FP80Ty(getVMContext()));
3319     break;
3320   }
3321 
3322   llvm::Type *HighPart = nullptr;
3323   switch (Hi) {
3324     // Memory was handled previously and X87 should
3325     // never occur as a hi class.
3326   case Memory:
3327   case X87:
3328     llvm_unreachable("Invalid classification for hi word.");
3329 
3330   case ComplexX87: // Previously handled.
3331   case NoClass:
3332     break;
3333 
3334   case Integer:
3335     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3336     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3337       return ABIArgInfo::getDirect(HighPart, 8);
3338     break;
3339   case SSE:
3340     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3341     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3342       return ABIArgInfo::getDirect(HighPart, 8);
3343     break;
3344 
3345     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
3346     // is passed in the next available eightbyte chunk if the last used
3347     // vector register.
3348     //
3349     // SSEUP should always be preceded by SSE, just widen.
3350   case SSEUp:
3351     assert(Lo == SSE && "Unexpected SSEUp classification.");
3352     ResType = GetByteVectorType(RetTy);
3353     break;
3354 
3355     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
3356     // returned together with the previous X87 value in %st0.
3357   case X87Up:
3358     // If X87Up is preceded by X87, we don't need to do
3359     // anything. However, in some cases with unions it may not be
3360     // preceded by X87. In such situations we follow gcc and pass the
3361     // extra bits in an SSE reg.
3362     if (Lo != X87) {
3363       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3364       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3365         return ABIArgInfo::getDirect(HighPart, 8);
3366     }
3367     break;
3368   }
3369 
3370   // If a high part was specified, merge it together with the low part.  It is
3371   // known to pass in the high eightbyte of the result.  We do this by forming a
3372   // first class struct aggregate with the high and low part: {low, high}
3373   if (HighPart)
3374     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3375 
3376   return ABIArgInfo::getDirect(ResType);
3377 }
3378 
3379 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
3380   QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
3381   bool isNamedArg)
3382   const
3383 {
3384   Ty = useFirstFieldIfTransparentUnion(Ty);
3385 
3386   X86_64ABIInfo::Class Lo, Hi;
3387   classify(Ty, 0, Lo, Hi, isNamedArg);
3388 
3389   // Check some invariants.
3390   // FIXME: Enforce these by construction.
3391   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3392   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3393 
3394   neededInt = 0;
3395   neededSSE = 0;
3396   llvm::Type *ResType = nullptr;
3397   switch (Lo) {
3398   case NoClass:
3399     if (Hi == NoClass)
3400       return ABIArgInfo::getIgnore();
3401     // If the low part is just padding, it takes no register, leave ResType
3402     // null.
3403     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3404            "Unknown missing lo part");
3405     break;
3406 
3407     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
3408     // on the stack.
3409   case Memory:
3410 
3411     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
3412     // COMPLEX_X87, it is passed in memory.
3413   case X87:
3414   case ComplexX87:
3415     if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
3416       ++neededInt;
3417     return getIndirectResult(Ty, freeIntRegs);
3418 
3419   case SSEUp:
3420   case X87Up:
3421     llvm_unreachable("Invalid classification for lo word.");
3422 
3423     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
3424     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
3425     // and %r9 is used.
3426   case Integer:
3427     ++neededInt;
3428 
3429     // Pick an 8-byte type based on the preferred type.
3430     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
3431 
3432     // If we have a sign or zero extended integer, make sure to return Extend
3433     // so that the parameter gets the right LLVM IR attributes.
3434     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3435       // Treat an enum type as its underlying type.
3436       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3437         Ty = EnumTy->getDecl()->getIntegerType();
3438 
3439       if (Ty->isIntegralOrEnumerationType() &&
3440           Ty->isPromotableIntegerType())
3441         return ABIArgInfo::getExtend(Ty);
3442     }
3443 
3444     break;
3445 
3446     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
3447     // available SSE register is used, the registers are taken in the
3448     // order from %xmm0 to %xmm7.
3449   case SSE: {
3450     llvm::Type *IRType = CGT.ConvertType(Ty);
3451     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
3452     ++neededSSE;
3453     break;
3454   }
3455   }
3456 
3457   llvm::Type *HighPart = nullptr;
3458   switch (Hi) {
3459     // Memory was handled previously, ComplexX87 and X87 should
3460     // never occur as hi classes, and X87Up must be preceded by X87,
3461     // which is passed in memory.
3462   case Memory:
3463   case X87:
3464   case ComplexX87:
3465     llvm_unreachable("Invalid classification for hi word.");
3466 
3467   case NoClass: break;
3468 
3469   case Integer:
3470     ++neededInt;
3471     // Pick an 8-byte type based on the preferred type.
3472     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3473 
3474     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3475       return ABIArgInfo::getDirect(HighPart, 8);
3476     break;
3477 
3478     // X87Up generally doesn't occur here (long double is passed in
3479     // memory), except in situations involving unions.
3480   case X87Up:
3481   case SSE:
3482     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3483 
3484     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3485       return ABIArgInfo::getDirect(HighPart, 8);
3486 
3487     ++neededSSE;
3488     break;
3489 
3490     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
3491     // eightbyte is passed in the upper half of the last used SSE
3492     // register.  This only happens when 128-bit vectors are passed.
3493   case SSEUp:
3494     assert(Lo == SSE && "Unexpected SSEUp classification");
3495     ResType = GetByteVectorType(Ty);
3496     break;
3497   }
3498 
3499   // If a high part was specified, merge it together with the low part.  It is
3500   // known to pass in the high eightbyte of the result.  We do this by forming a
3501   // first class struct aggregate with the high and low part: {low, high}
3502   if (HighPart)
3503     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3504 
3505   return ABIArgInfo::getDirect(ResType);
3506 }
3507 
3508 ABIArgInfo
3509 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
3510                                              unsigned &NeededSSE) const {
3511   auto RT = Ty->getAs<RecordType>();
3512   assert(RT && "classifyRegCallStructType only valid with struct types");
3513 
3514   if (RT->getDecl()->hasFlexibleArrayMember())
3515     return getIndirectReturnResult(Ty);
3516 
3517   // Sum up bases
3518   if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
3519     if (CXXRD->isDynamicClass()) {
3520       NeededInt = NeededSSE = 0;
3521       return getIndirectReturnResult(Ty);
3522     }
3523 
3524     for (const auto &I : CXXRD->bases())
3525       if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE)
3526               .isIndirect()) {
3527         NeededInt = NeededSSE = 0;
3528         return getIndirectReturnResult(Ty);
3529       }
3530   }
3531 
3532   // Sum up members
3533   for (const auto *FD : RT->getDecl()->fields()) {
3534     if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) {
3535       if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE)
3536               .isIndirect()) {
3537         NeededInt = NeededSSE = 0;
3538         return getIndirectReturnResult(Ty);
3539       }
3540     } else {
3541       unsigned LocalNeededInt, LocalNeededSSE;
3542       if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt,
3543                                LocalNeededSSE, true)
3544               .isIndirect()) {
3545         NeededInt = NeededSSE = 0;
3546         return getIndirectReturnResult(Ty);
3547       }
3548       NeededInt += LocalNeededInt;
3549       NeededSSE += LocalNeededSSE;
3550     }
3551   }
3552 
3553   return ABIArgInfo::getDirect();
3554 }
3555 
3556 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty,
3557                                                     unsigned &NeededInt,
3558                                                     unsigned &NeededSSE) const {
3559 
3560   NeededInt = 0;
3561   NeededSSE = 0;
3562 
3563   return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE);
3564 }
3565 
3566 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3567 
3568   const unsigned CallingConv = FI.getCallingConvention();
3569   // It is possible to force Win64 calling convention on any x86_64 target by
3570   // using __attribute__((ms_abi)). In such case to correctly emit Win64
3571   // compatible code delegate this call to WinX86_64ABIInfo::computeInfo.
3572   if (CallingConv == llvm::CallingConv::Win64) {
3573     WinX86_64ABIInfo Win64ABIInfo(CGT);
3574     Win64ABIInfo.computeInfo(FI);
3575     return;
3576   }
3577 
3578   bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall;
3579 
3580   // Keep track of the number of assigned registers.
3581   unsigned FreeIntRegs = IsRegCall ? 11 : 6;
3582   unsigned FreeSSERegs = IsRegCall ? 16 : 8;
3583   unsigned NeededInt, NeededSSE;
3584 
3585   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
3586     if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() &&
3587         !FI.getReturnType()->getTypePtr()->isUnionType()) {
3588       FI.getReturnInfo() =
3589           classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE);
3590       if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3591         FreeIntRegs -= NeededInt;
3592         FreeSSERegs -= NeededSSE;
3593       } else {
3594         FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3595       }
3596     } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>()) {
3597       // Complex Long Double Type is passed in Memory when Regcall
3598       // calling convention is used.
3599       const ComplexType *CT = FI.getReturnType()->getAs<ComplexType>();
3600       if (getContext().getCanonicalType(CT->getElementType()) ==
3601           getContext().LongDoubleTy)
3602         FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3603     } else
3604       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3605   }
3606 
3607   // If the return value is indirect, then the hidden argument is consuming one
3608   // integer register.
3609   if (FI.getReturnInfo().isIndirect())
3610     --FreeIntRegs;
3611 
3612   // The chain argument effectively gives us another free register.
3613   if (FI.isChainCall())
3614     ++FreeIntRegs;
3615 
3616   unsigned NumRequiredArgs = FI.getNumRequiredArgs();
3617   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
3618   // get assigned (in left-to-right order) for passing as follows...
3619   unsigned ArgNo = 0;
3620   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3621        it != ie; ++it, ++ArgNo) {
3622     bool IsNamedArg = ArgNo < NumRequiredArgs;
3623 
3624     if (IsRegCall && it->type->isStructureOrClassType())
3625       it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE);
3626     else
3627       it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt,
3628                                       NeededSSE, IsNamedArg);
3629 
3630     // AMD64-ABI 3.2.3p3: If there are no registers available for any
3631     // eightbyte of an argument, the whole argument is passed on the
3632     // stack. If registers have already been assigned for some
3633     // eightbytes of such an argument, the assignments get reverted.
3634     if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3635       FreeIntRegs -= NeededInt;
3636       FreeSSERegs -= NeededSSE;
3637     } else {
3638       it->info = getIndirectResult(it->type, FreeIntRegs);
3639     }
3640   }
3641 }
3642 
3643 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF,
3644                                          Address VAListAddr, QualType Ty) {
3645   Address overflow_arg_area_p = CGF.Builder.CreateStructGEP(
3646       VAListAddr, 2, CharUnits::fromQuantity(8), "overflow_arg_area_p");
3647   llvm::Value *overflow_arg_area =
3648     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
3649 
3650   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
3651   // byte boundary if alignment needed by type exceeds 8 byte boundary.
3652   // It isn't stated explicitly in the standard, but in practice we use
3653   // alignment greater than 16 where necessary.
3654   CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
3655   if (Align > CharUnits::fromQuantity(8)) {
3656     overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area,
3657                                                       Align);
3658   }
3659 
3660   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
3661   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3662   llvm::Value *Res =
3663     CGF.Builder.CreateBitCast(overflow_arg_area,
3664                               llvm::PointerType::getUnqual(LTy));
3665 
3666   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
3667   // l->overflow_arg_area + sizeof(type).
3668   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
3669   // an 8 byte boundary.
3670 
3671   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
3672   llvm::Value *Offset =
3673       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
3674   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
3675                                             "overflow_arg_area.next");
3676   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
3677 
3678   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
3679   return Address(Res, Align);
3680 }
3681 
3682 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3683                                  QualType Ty) const {
3684   // Assume that va_list type is correct; should be pointer to LLVM type:
3685   // struct {
3686   //   i32 gp_offset;
3687   //   i32 fp_offset;
3688   //   i8* overflow_arg_area;
3689   //   i8* reg_save_area;
3690   // };
3691   unsigned neededInt, neededSSE;
3692 
3693   Ty = getContext().getCanonicalType(Ty);
3694   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
3695                                        /*isNamedArg*/false);
3696 
3697   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
3698   // in the registers. If not go to step 7.
3699   if (!neededInt && !neededSSE)
3700     return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3701 
3702   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
3703   // general purpose registers needed to pass type and num_fp to hold
3704   // the number of floating point registers needed.
3705 
3706   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
3707   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
3708   // l->fp_offset > 304 - num_fp * 16 go to step 7.
3709   //
3710   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
3711   // register save space).
3712 
3713   llvm::Value *InRegs = nullptr;
3714   Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid();
3715   llvm::Value *gp_offset = nullptr, *fp_offset = nullptr;
3716   if (neededInt) {
3717     gp_offset_p =
3718         CGF.Builder.CreateStructGEP(VAListAddr, 0, CharUnits::Zero(),
3719                                     "gp_offset_p");
3720     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
3721     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
3722     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
3723   }
3724 
3725   if (neededSSE) {
3726     fp_offset_p =
3727         CGF.Builder.CreateStructGEP(VAListAddr, 1, CharUnits::fromQuantity(4),
3728                                     "fp_offset_p");
3729     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
3730     llvm::Value *FitsInFP =
3731       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
3732     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
3733     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
3734   }
3735 
3736   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
3737   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
3738   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
3739   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
3740 
3741   // Emit code to load the value if it was passed in registers.
3742 
3743   CGF.EmitBlock(InRegBlock);
3744 
3745   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
3746   // an offset of l->gp_offset and/or l->fp_offset. This may require
3747   // copying to a temporary location in case the parameter is passed
3748   // in different register classes or requires an alignment greater
3749   // than 8 for general purpose registers and 16 for XMM registers.
3750   //
3751   // FIXME: This really results in shameful code when we end up needing to
3752   // collect arguments from different places; often what should result in a
3753   // simple assembling of a structure from scattered addresses has many more
3754   // loads than necessary. Can we clean this up?
3755   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3756   llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(
3757       CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(16)),
3758                                   "reg_save_area");
3759 
3760   Address RegAddr = Address::invalid();
3761   if (neededInt && neededSSE) {
3762     // FIXME: Cleanup.
3763     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
3764     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
3765     Address Tmp = CGF.CreateMemTemp(Ty);
3766     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
3767     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
3768     llvm::Type *TyLo = ST->getElementType(0);
3769     llvm::Type *TyHi = ST->getElementType(1);
3770     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
3771            "Unexpected ABI info for mixed regs");
3772     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
3773     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
3774     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset);
3775     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset);
3776     llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
3777     llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
3778 
3779     // Copy the first element.
3780     // FIXME: Our choice of alignment here and below is probably pessimistic.
3781     llvm::Value *V = CGF.Builder.CreateAlignedLoad(
3782         TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo),
3783         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo)));
3784     CGF.Builder.CreateStore(V,
3785                     CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero()));
3786 
3787     // Copy the second element.
3788     V = CGF.Builder.CreateAlignedLoad(
3789         TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi),
3790         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi)));
3791     CharUnits Offset = CharUnits::fromQuantity(
3792                    getDataLayout().getStructLayout(ST)->getElementOffset(1));
3793     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1, Offset));
3794 
3795     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
3796   } else if (neededInt) {
3797     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset),
3798                       CharUnits::fromQuantity(8));
3799     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
3800 
3801     // Copy to a temporary if necessary to ensure the appropriate alignment.
3802     std::pair<CharUnits, CharUnits> SizeAlign =
3803         getContext().getTypeInfoInChars(Ty);
3804     uint64_t TySize = SizeAlign.first.getQuantity();
3805     CharUnits TyAlign = SizeAlign.second;
3806 
3807     // Copy into a temporary if the type is more aligned than the
3808     // register save area.
3809     if (TyAlign.getQuantity() > 8) {
3810       Address Tmp = CGF.CreateMemTemp(Ty);
3811       CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false);
3812       RegAddr = Tmp;
3813     }
3814 
3815   } else if (neededSSE == 1) {
3816     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
3817                       CharUnits::fromQuantity(16));
3818     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
3819   } else {
3820     assert(neededSSE == 2 && "Invalid number of needed registers!");
3821     // SSE registers are spaced 16 bytes apart in the register save
3822     // area, we need to collect the two eightbytes together.
3823     // The ABI isn't explicit about this, but it seems reasonable
3824     // to assume that the slots are 16-byte aligned, since the stack is
3825     // naturally 16-byte aligned and the prologue is expected to store
3826     // all the SSE registers to the RSA.
3827     Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
3828                                 CharUnits::fromQuantity(16));
3829     Address RegAddrHi =
3830       CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo,
3831                                              CharUnits::fromQuantity(16));
3832     llvm::Type *ST = AI.canHaveCoerceToType()
3833                          ? AI.getCoerceToType()
3834                          : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy);
3835     llvm::Value *V;
3836     Address Tmp = CGF.CreateMemTemp(Ty);
3837     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
3838     V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
3839         RegAddrLo, ST->getStructElementType(0)));
3840     CGF.Builder.CreateStore(V,
3841                    CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero()));
3842     V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
3843         RegAddrHi, ST->getStructElementType(1)));
3844     CGF.Builder.CreateStore(V,
3845           CGF.Builder.CreateStructGEP(Tmp, 1, CharUnits::fromQuantity(8)));
3846 
3847     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
3848   }
3849 
3850   // AMD64-ABI 3.5.7p5: Step 5. Set:
3851   // l->gp_offset = l->gp_offset + num_gp * 8
3852   // l->fp_offset = l->fp_offset + num_fp * 16.
3853   if (neededInt) {
3854     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
3855     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
3856                             gp_offset_p);
3857   }
3858   if (neededSSE) {
3859     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
3860     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
3861                             fp_offset_p);
3862   }
3863   CGF.EmitBranch(ContBlock);
3864 
3865   // Emit code to load the value if it was passed in memory.
3866 
3867   CGF.EmitBlock(InMemBlock);
3868   Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3869 
3870   // Return the appropriate result.
3871 
3872   CGF.EmitBlock(ContBlock);
3873   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
3874                                  "vaarg.addr");
3875   return ResAddr;
3876 }
3877 
3878 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
3879                                    QualType Ty) const {
3880   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
3881                           CGF.getContext().getTypeInfoInChars(Ty),
3882                           CharUnits::fromQuantity(8),
3883                           /*allowHigherAlign*/ false);
3884 }
3885 
3886 ABIArgInfo
3887 WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs,
3888                                     const ABIArgInfo &current) const {
3889   // Assumes vectorCall calling convention.
3890   const Type *Base = nullptr;
3891   uint64_t NumElts = 0;
3892 
3893   if (!Ty->isBuiltinType() && !Ty->isVectorType() &&
3894       isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) {
3895     FreeSSERegs -= NumElts;
3896     return getDirectX86Hva();
3897   }
3898   return current;
3899 }
3900 
3901 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
3902                                       bool IsReturnType, bool IsVectorCall,
3903                                       bool IsRegCall) const {
3904 
3905   if (Ty->isVoidType())
3906     return ABIArgInfo::getIgnore();
3907 
3908   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3909     Ty = EnumTy->getDecl()->getIntegerType();
3910 
3911   TypeInfo Info = getContext().getTypeInfo(Ty);
3912   uint64_t Width = Info.Width;
3913   CharUnits Align = getContext().toCharUnitsFromBits(Info.Align);
3914 
3915   const RecordType *RT = Ty->getAs<RecordType>();
3916   if (RT) {
3917     if (!IsReturnType) {
3918       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
3919         return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
3920     }
3921 
3922     if (RT->getDecl()->hasFlexibleArrayMember())
3923       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3924 
3925   }
3926 
3927   const Type *Base = nullptr;
3928   uint64_t NumElts = 0;
3929   // vectorcall adds the concept of a homogenous vector aggregate, similar to
3930   // other targets.
3931   if ((IsVectorCall || IsRegCall) &&
3932       isHomogeneousAggregate(Ty, Base, NumElts)) {
3933     if (IsRegCall) {
3934       if (FreeSSERegs >= NumElts) {
3935         FreeSSERegs -= NumElts;
3936         if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
3937           return ABIArgInfo::getDirect();
3938         return ABIArgInfo::getExpand();
3939       }
3940       return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3941     } else if (IsVectorCall) {
3942       if (FreeSSERegs >= NumElts &&
3943           (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) {
3944         FreeSSERegs -= NumElts;
3945         return ABIArgInfo::getDirect();
3946       } else if (IsReturnType) {
3947         return ABIArgInfo::getExpand();
3948       } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) {
3949         // HVAs are delayed and reclassified in the 2nd step.
3950         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3951       }
3952     }
3953   }
3954 
3955   if (Ty->isMemberPointerType()) {
3956     // If the member pointer is represented by an LLVM int or ptr, pass it
3957     // directly.
3958     llvm::Type *LLTy = CGT.ConvertType(Ty);
3959     if (LLTy->isPointerTy() || LLTy->isIntegerTy())
3960       return ABIArgInfo::getDirect();
3961   }
3962 
3963   if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
3964     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
3965     // not 1, 2, 4, or 8 bytes, must be passed by reference."
3966     if (Width > 64 || !llvm::isPowerOf2_64(Width))
3967       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3968 
3969     // Otherwise, coerce it to a small integer.
3970     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
3971   }
3972 
3973   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
3974     switch (BT->getKind()) {
3975     case BuiltinType::Bool:
3976       // Bool type is always extended to the ABI, other builtin types are not
3977       // extended.
3978       return ABIArgInfo::getExtend(Ty);
3979 
3980     case BuiltinType::LongDouble:
3981       // Mingw64 GCC uses the old 80 bit extended precision floating point
3982       // unit. It passes them indirectly through memory.
3983       if (IsMingw64) {
3984         const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
3985         if (LDF == &llvm::APFloat::x87DoubleExtended())
3986           return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3987       }
3988       break;
3989 
3990     case BuiltinType::Int128:
3991     case BuiltinType::UInt128:
3992       // If it's a parameter type, the normal ABI rule is that arguments larger
3993       // than 8 bytes are passed indirectly. GCC follows it. We follow it too,
3994       // even though it isn't particularly efficient.
3995       if (!IsReturnType)
3996         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3997 
3998       // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that.
3999       // Clang matches them for compatibility.
4000       return ABIArgInfo::getDirect(
4001           llvm::VectorType::get(llvm::Type::getInt64Ty(getVMContext()), 2));
4002 
4003     default:
4004       break;
4005     }
4006   }
4007 
4008   return ABIArgInfo::getDirect();
4009 }
4010 
4011 void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI,
4012                                              unsigned FreeSSERegs,
4013                                              bool IsVectorCall,
4014                                              bool IsRegCall) const {
4015   unsigned Count = 0;
4016   for (auto &I : FI.arguments()) {
4017     // Vectorcall in x64 only permits the first 6 arguments to be passed
4018     // as XMM/YMM registers.
4019     if (Count < VectorcallMaxParamNumAsReg)
4020       I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall);
4021     else {
4022       // Since these cannot be passed in registers, pretend no registers
4023       // are left.
4024       unsigned ZeroSSERegsAvail = 0;
4025       I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false,
4026                         IsVectorCall, IsRegCall);
4027     }
4028     ++Count;
4029   }
4030 
4031   for (auto &I : FI.arguments()) {
4032     I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info);
4033   }
4034 }
4035 
4036 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
4037   bool IsVectorCall =
4038       FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall;
4039   bool IsRegCall = FI.getCallingConvention() == llvm::CallingConv::X86_RegCall;
4040 
4041   unsigned FreeSSERegs = 0;
4042   if (IsVectorCall) {
4043     // We can use up to 4 SSE return registers with vectorcall.
4044     FreeSSERegs = 4;
4045   } else if (IsRegCall) {
4046     // RegCall gives us 16 SSE registers.
4047     FreeSSERegs = 16;
4048   }
4049 
4050   if (!getCXXABI().classifyReturnType(FI))
4051     FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true,
4052                                   IsVectorCall, IsRegCall);
4053 
4054   if (IsVectorCall) {
4055     // We can use up to 6 SSE register parameters with vectorcall.
4056     FreeSSERegs = 6;
4057   } else if (IsRegCall) {
4058     // RegCall gives us 16 SSE registers, we can reuse the return registers.
4059     FreeSSERegs = 16;
4060   }
4061 
4062   if (IsVectorCall) {
4063     computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall);
4064   } else {
4065     for (auto &I : FI.arguments())
4066       I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall);
4067   }
4068 
4069 }
4070 
4071 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4072                                     QualType Ty) const {
4073 
4074   bool IsIndirect = false;
4075 
4076   // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4077   // not 1, 2, 4, or 8 bytes, must be passed by reference."
4078   if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) {
4079     uint64_t Width = getContext().getTypeSize(Ty);
4080     IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
4081   }
4082 
4083   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
4084                           CGF.getContext().getTypeInfoInChars(Ty),
4085                           CharUnits::fromQuantity(8),
4086                           /*allowHigherAlign*/ false);
4087 }
4088 
4089 // PowerPC-32
4090 namespace {
4091 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
4092 class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
4093   bool IsSoftFloatABI;
4094 
4095   CharUnits getParamTypeAlignment(QualType Ty) const;
4096 
4097 public:
4098   PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI)
4099       : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI) {}
4100 
4101   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4102                     QualType Ty) const override;
4103 };
4104 
4105 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
4106 public:
4107   PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI)
4108       : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT, SoftFloatABI)) {}
4109 
4110   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4111     // This is recovered from gcc output.
4112     return 1; // r1 is the dedicated stack pointer
4113   }
4114 
4115   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4116                                llvm::Value *Address) const override;
4117 };
4118 }
4119 
4120 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
4121   // Complex types are passed just like their elements
4122   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4123     Ty = CTy->getElementType();
4124 
4125   if (Ty->isVectorType())
4126     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16
4127                                                                        : 4);
4128 
4129   // For single-element float/vector structs, we consider the whole type
4130   // to have the same alignment requirements as its single element.
4131   const Type *AlignTy = nullptr;
4132   if (const Type *EltType = isSingleElementStruct(Ty, getContext())) {
4133     const BuiltinType *BT = EltType->getAs<BuiltinType>();
4134     if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) ||
4135         (BT && BT->isFloatingPoint()))
4136       AlignTy = EltType;
4137   }
4138 
4139   if (AlignTy)
4140     return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4);
4141   return CharUnits::fromQuantity(4);
4142 }
4143 
4144 // TODO: this implementation is now likely redundant with
4145 // DefaultABIInfo::EmitVAArg.
4146 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList,
4147                                       QualType Ty) const {
4148   if (getTarget().getTriple().isOSDarwin()) {
4149     auto TI = getContext().getTypeInfoInChars(Ty);
4150     TI.second = getParamTypeAlignment(Ty);
4151 
4152     CharUnits SlotSize = CharUnits::fromQuantity(4);
4153     return emitVoidPtrVAArg(CGF, VAList, Ty,
4154                             classifyArgumentType(Ty).isIndirect(), TI, SlotSize,
4155                             /*AllowHigherAlign=*/true);
4156   }
4157 
4158   const unsigned OverflowLimit = 8;
4159   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4160     // TODO: Implement this. For now ignore.
4161     (void)CTy;
4162     return Address::invalid(); // FIXME?
4163   }
4164 
4165   // struct __va_list_tag {
4166   //   unsigned char gpr;
4167   //   unsigned char fpr;
4168   //   unsigned short reserved;
4169   //   void *overflow_arg_area;
4170   //   void *reg_save_area;
4171   // };
4172 
4173   bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
4174   bool isInt =
4175       Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType();
4176   bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64;
4177 
4178   // All aggregates are passed indirectly?  That doesn't seem consistent
4179   // with the argument-lowering code.
4180   bool isIndirect = Ty->isAggregateType();
4181 
4182   CGBuilderTy &Builder = CGF.Builder;
4183 
4184   // The calling convention either uses 1-2 GPRs or 1 FPR.
4185   Address NumRegsAddr = Address::invalid();
4186   if (isInt || IsSoftFloatABI) {
4187     NumRegsAddr = Builder.CreateStructGEP(VAList, 0, CharUnits::Zero(), "gpr");
4188   } else {
4189     NumRegsAddr = Builder.CreateStructGEP(VAList, 1, CharUnits::One(), "fpr");
4190   }
4191 
4192   llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs");
4193 
4194   // "Align" the register count when TY is i64.
4195   if (isI64 || (isF64 && IsSoftFloatABI)) {
4196     NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1));
4197     NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U));
4198   }
4199 
4200   llvm::Value *CC =
4201       Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond");
4202 
4203   llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
4204   llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
4205   llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
4206 
4207   Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
4208 
4209   llvm::Type *DirectTy = CGF.ConvertType(Ty);
4210   if (isIndirect) DirectTy = DirectTy->getPointerTo(0);
4211 
4212   // Case 1: consume registers.
4213   Address RegAddr = Address::invalid();
4214   {
4215     CGF.EmitBlock(UsingRegs);
4216 
4217     Address RegSaveAreaPtr =
4218       Builder.CreateStructGEP(VAList, 4, CharUnits::fromQuantity(8));
4219     RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr),
4220                       CharUnits::fromQuantity(8));
4221     assert(RegAddr.getElementType() == CGF.Int8Ty);
4222 
4223     // Floating-point registers start after the general-purpose registers.
4224     if (!(isInt || IsSoftFloatABI)) {
4225       RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr,
4226                                                    CharUnits::fromQuantity(32));
4227     }
4228 
4229     // Get the address of the saved value by scaling the number of
4230     // registers we've used by the number of
4231     CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8);
4232     llvm::Value *RegOffset =
4233       Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity()));
4234     RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty,
4235                                             RegAddr.getPointer(), RegOffset),
4236                       RegAddr.getAlignment().alignmentOfArrayElement(RegSize));
4237     RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy);
4238 
4239     // Increase the used-register count.
4240     NumRegs =
4241       Builder.CreateAdd(NumRegs,
4242                         Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1));
4243     Builder.CreateStore(NumRegs, NumRegsAddr);
4244 
4245     CGF.EmitBranch(Cont);
4246   }
4247 
4248   // Case 2: consume space in the overflow area.
4249   Address MemAddr = Address::invalid();
4250   {
4251     CGF.EmitBlock(UsingOverflow);
4252 
4253     Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr);
4254 
4255     // Everything in the overflow area is rounded up to a size of at least 4.
4256     CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4);
4257 
4258     CharUnits Size;
4259     if (!isIndirect) {
4260       auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty);
4261       Size = TypeInfo.first.alignTo(OverflowAreaAlign);
4262     } else {
4263       Size = CGF.getPointerSize();
4264     }
4265 
4266     Address OverflowAreaAddr =
4267       Builder.CreateStructGEP(VAList, 3, CharUnits::fromQuantity(4));
4268     Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"),
4269                          OverflowAreaAlign);
4270     // Round up address of argument to alignment
4271     CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
4272     if (Align > OverflowAreaAlign) {
4273       llvm::Value *Ptr = OverflowArea.getPointer();
4274       OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align),
4275                                                            Align);
4276     }
4277 
4278     MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy);
4279 
4280     // Increase the overflow area.
4281     OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size);
4282     Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr);
4283     CGF.EmitBranch(Cont);
4284   }
4285 
4286   CGF.EmitBlock(Cont);
4287 
4288   // Merge the cases with a phi.
4289   Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow,
4290                                 "vaarg.addr");
4291 
4292   // Load the pointer if the argument was passed indirectly.
4293   if (isIndirect) {
4294     Result = Address(Builder.CreateLoad(Result, "aggr"),
4295                      getContext().getTypeAlignInChars(Ty));
4296   }
4297 
4298   return Result;
4299 }
4300 
4301 bool
4302 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4303                                                 llvm::Value *Address) const {
4304   // This is calculated from the LLVM and GCC tables and verified
4305   // against gcc output.  AFAIK all ABIs use the same encoding.
4306 
4307   CodeGen::CGBuilderTy &Builder = CGF.Builder;
4308 
4309   llvm::IntegerType *i8 = CGF.Int8Ty;
4310   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
4311   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
4312   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
4313 
4314   // 0-31: r0-31, the 4-byte general-purpose registers
4315   AssignToArrayRange(Builder, Address, Four8, 0, 31);
4316 
4317   // 32-63: fp0-31, the 8-byte floating-point registers
4318   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
4319 
4320   // 64-76 are various 4-byte special-purpose registers:
4321   // 64: mq
4322   // 65: lr
4323   // 66: ctr
4324   // 67: ap
4325   // 68-75 cr0-7
4326   // 76: xer
4327   AssignToArrayRange(Builder, Address, Four8, 64, 76);
4328 
4329   // 77-108: v0-31, the 16-byte vector registers
4330   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
4331 
4332   // 109: vrsave
4333   // 110: vscr
4334   // 111: spe_acc
4335   // 112: spefscr
4336   // 113: sfp
4337   AssignToArrayRange(Builder, Address, Four8, 109, 113);
4338 
4339   return false;
4340 }
4341 
4342 // PowerPC-64
4343 
4344 namespace {
4345 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
4346 class PPC64_SVR4_ABIInfo : public SwiftABIInfo {
4347 public:
4348   enum ABIKind {
4349     ELFv1 = 0,
4350     ELFv2
4351   };
4352 
4353 private:
4354   static const unsigned GPRBits = 64;
4355   ABIKind Kind;
4356   bool HasQPX;
4357   bool IsSoftFloatABI;
4358 
4359   // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and
4360   // will be passed in a QPX register.
4361   bool IsQPXVectorTy(const Type *Ty) const {
4362     if (!HasQPX)
4363       return false;
4364 
4365     if (const VectorType *VT = Ty->getAs<VectorType>()) {
4366       unsigned NumElements = VT->getNumElements();
4367       if (NumElements == 1)
4368         return false;
4369 
4370       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) {
4371         if (getContext().getTypeSize(Ty) <= 256)
4372           return true;
4373       } else if (VT->getElementType()->
4374                    isSpecificBuiltinType(BuiltinType::Float)) {
4375         if (getContext().getTypeSize(Ty) <= 128)
4376           return true;
4377       }
4378     }
4379 
4380     return false;
4381   }
4382 
4383   bool IsQPXVectorTy(QualType Ty) const {
4384     return IsQPXVectorTy(Ty.getTypePtr());
4385   }
4386 
4387 public:
4388   PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX,
4389                      bool SoftFloatABI)
4390       : SwiftABIInfo(CGT), Kind(Kind), HasQPX(HasQPX),
4391         IsSoftFloatABI(SoftFloatABI) {}
4392 
4393   bool isPromotableTypeForABI(QualType Ty) const;
4394   CharUnits getParamTypeAlignment(QualType Ty) const;
4395 
4396   ABIArgInfo classifyReturnType(QualType RetTy) const;
4397   ABIArgInfo classifyArgumentType(QualType Ty) const;
4398 
4399   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4400   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4401                                          uint64_t Members) const override;
4402 
4403   // TODO: We can add more logic to computeInfo to improve performance.
4404   // Example: For aggregate arguments that fit in a register, we could
4405   // use getDirectInReg (as is done below for structs containing a single
4406   // floating-point value) to avoid pushing them to memory on function
4407   // entry.  This would require changing the logic in PPCISelLowering
4408   // when lowering the parameters in the caller and args in the callee.
4409   void computeInfo(CGFunctionInfo &FI) const override {
4410     if (!getCXXABI().classifyReturnType(FI))
4411       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4412     for (auto &I : FI.arguments()) {
4413       // We rely on the default argument classification for the most part.
4414       // One exception:  An aggregate containing a single floating-point
4415       // or vector item must be passed in a register if one is available.
4416       const Type *T = isSingleElementStruct(I.type, getContext());
4417       if (T) {
4418         const BuiltinType *BT = T->getAs<BuiltinType>();
4419         if (IsQPXVectorTy(T) ||
4420             (T->isVectorType() && getContext().getTypeSize(T) == 128) ||
4421             (BT && BT->isFloatingPoint())) {
4422           QualType QT(T, 0);
4423           I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
4424           continue;
4425         }
4426       }
4427       I.info = classifyArgumentType(I.type);
4428     }
4429   }
4430 
4431   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4432                     QualType Ty) const override;
4433 
4434   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
4435                                     bool asReturnValue) const override {
4436     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
4437   }
4438 
4439   bool isSwiftErrorInRegister() const override {
4440     return false;
4441   }
4442 };
4443 
4444 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
4445 
4446 public:
4447   PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT,
4448                                PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX,
4449                                bool SoftFloatABI)
4450       : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX,
4451                                                  SoftFloatABI)) {}
4452 
4453   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4454     // This is recovered from gcc output.
4455     return 1; // r1 is the dedicated stack pointer
4456   }
4457 
4458   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4459                                llvm::Value *Address) const override;
4460 };
4461 
4462 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
4463 public:
4464   PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
4465 
4466   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4467     // This is recovered from gcc output.
4468     return 1; // r1 is the dedicated stack pointer
4469   }
4470 
4471   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4472                                llvm::Value *Address) const override;
4473 };
4474 
4475 }
4476 
4477 // Return true if the ABI requires Ty to be passed sign- or zero-
4478 // extended to 64 bits.
4479 bool
4480 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
4481   // Treat an enum type as its underlying type.
4482   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4483     Ty = EnumTy->getDecl()->getIntegerType();
4484 
4485   // Promotable integer types are required to be promoted by the ABI.
4486   if (Ty->isPromotableIntegerType())
4487     return true;
4488 
4489   // In addition to the usual promotable integer types, we also need to
4490   // extend all 32-bit types, since the ABI requires promotion to 64 bits.
4491   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4492     switch (BT->getKind()) {
4493     case BuiltinType::Int:
4494     case BuiltinType::UInt:
4495       return true;
4496     default:
4497       break;
4498     }
4499 
4500   return false;
4501 }
4502 
4503 /// isAlignedParamType - Determine whether a type requires 16-byte or
4504 /// higher alignment in the parameter area.  Always returns at least 8.
4505 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
4506   // Complex types are passed just like their elements.
4507   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4508     Ty = CTy->getElementType();
4509 
4510   // Only vector types of size 16 bytes need alignment (larger types are
4511   // passed via reference, smaller types are not aligned).
4512   if (IsQPXVectorTy(Ty)) {
4513     if (getContext().getTypeSize(Ty) > 128)
4514       return CharUnits::fromQuantity(32);
4515 
4516     return CharUnits::fromQuantity(16);
4517   } else if (Ty->isVectorType()) {
4518     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8);
4519   }
4520 
4521   // For single-element float/vector structs, we consider the whole type
4522   // to have the same alignment requirements as its single element.
4523   const Type *AlignAsType = nullptr;
4524   const Type *EltType = isSingleElementStruct(Ty, getContext());
4525   if (EltType) {
4526     const BuiltinType *BT = EltType->getAs<BuiltinType>();
4527     if (IsQPXVectorTy(EltType) || (EltType->isVectorType() &&
4528          getContext().getTypeSize(EltType) == 128) ||
4529         (BT && BT->isFloatingPoint()))
4530       AlignAsType = EltType;
4531   }
4532 
4533   // Likewise for ELFv2 homogeneous aggregates.
4534   const Type *Base = nullptr;
4535   uint64_t Members = 0;
4536   if (!AlignAsType && Kind == ELFv2 &&
4537       isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
4538     AlignAsType = Base;
4539 
4540   // With special case aggregates, only vector base types need alignment.
4541   if (AlignAsType && IsQPXVectorTy(AlignAsType)) {
4542     if (getContext().getTypeSize(AlignAsType) > 128)
4543       return CharUnits::fromQuantity(32);
4544 
4545     return CharUnits::fromQuantity(16);
4546   } else if (AlignAsType) {
4547     return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8);
4548   }
4549 
4550   // Otherwise, we only need alignment for any aggregate type that
4551   // has an alignment requirement of >= 16 bytes.
4552   if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) {
4553     if (HasQPX && getContext().getTypeAlign(Ty) >= 256)
4554       return CharUnits::fromQuantity(32);
4555     return CharUnits::fromQuantity(16);
4556   }
4557 
4558   return CharUnits::fromQuantity(8);
4559 }
4560 
4561 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
4562 /// aggregate.  Base is set to the base element type, and Members is set
4563 /// to the number of base elements.
4564 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
4565                                      uint64_t &Members) const {
4566   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
4567     uint64_t NElements = AT->getSize().getZExtValue();
4568     if (NElements == 0)
4569       return false;
4570     if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
4571       return false;
4572     Members *= NElements;
4573   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
4574     const RecordDecl *RD = RT->getDecl();
4575     if (RD->hasFlexibleArrayMember())
4576       return false;
4577 
4578     Members = 0;
4579 
4580     // If this is a C++ record, check the bases first.
4581     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
4582       for (const auto &I : CXXRD->bases()) {
4583         // Ignore empty records.
4584         if (isEmptyRecord(getContext(), I.getType(), true))
4585           continue;
4586 
4587         uint64_t FldMembers;
4588         if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
4589           return false;
4590 
4591         Members += FldMembers;
4592       }
4593     }
4594 
4595     for (const auto *FD : RD->fields()) {
4596       // Ignore (non-zero arrays of) empty records.
4597       QualType FT = FD->getType();
4598       while (const ConstantArrayType *AT =
4599              getContext().getAsConstantArrayType(FT)) {
4600         if (AT->getSize().getZExtValue() == 0)
4601           return false;
4602         FT = AT->getElementType();
4603       }
4604       if (isEmptyRecord(getContext(), FT, true))
4605         continue;
4606 
4607       // For compatibility with GCC, ignore empty bitfields in C++ mode.
4608       if (getContext().getLangOpts().CPlusPlus &&
4609           FD->isZeroLengthBitField(getContext()))
4610         continue;
4611 
4612       uint64_t FldMembers;
4613       if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
4614         return false;
4615 
4616       Members = (RD->isUnion() ?
4617                  std::max(Members, FldMembers) : Members + FldMembers);
4618     }
4619 
4620     if (!Base)
4621       return false;
4622 
4623     // Ensure there is no padding.
4624     if (getContext().getTypeSize(Base) * Members !=
4625         getContext().getTypeSize(Ty))
4626       return false;
4627   } else {
4628     Members = 1;
4629     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
4630       Members = 2;
4631       Ty = CT->getElementType();
4632     }
4633 
4634     // Most ABIs only support float, double, and some vector type widths.
4635     if (!isHomogeneousAggregateBaseType(Ty))
4636       return false;
4637 
4638     // The base type must be the same for all members.  Types that
4639     // agree in both total size and mode (float vs. vector) are
4640     // treated as being equivalent here.
4641     const Type *TyPtr = Ty.getTypePtr();
4642     if (!Base) {
4643       Base = TyPtr;
4644       // If it's a non-power-of-2 vector, its size is already a power-of-2,
4645       // so make sure to widen it explicitly.
4646       if (const VectorType *VT = Base->getAs<VectorType>()) {
4647         QualType EltTy = VT->getElementType();
4648         unsigned NumElements =
4649             getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy);
4650         Base = getContext()
4651                    .getVectorType(EltTy, NumElements, VT->getVectorKind())
4652                    .getTypePtr();
4653       }
4654     }
4655 
4656     if (Base->isVectorType() != TyPtr->isVectorType() ||
4657         getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
4658       return false;
4659   }
4660   return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
4661 }
4662 
4663 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
4664   // Homogeneous aggregates for ELFv2 must have base types of float,
4665   // double, long double, or 128-bit vectors.
4666   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4667     if (BT->getKind() == BuiltinType::Float ||
4668         BT->getKind() == BuiltinType::Double ||
4669         BT->getKind() == BuiltinType::LongDouble ||
4670         (getContext().getTargetInfo().hasFloat128Type() &&
4671           (BT->getKind() == BuiltinType::Float128))) {
4672       if (IsSoftFloatABI)
4673         return false;
4674       return true;
4675     }
4676   }
4677   if (const VectorType *VT = Ty->getAs<VectorType>()) {
4678     if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty))
4679       return true;
4680   }
4681   return false;
4682 }
4683 
4684 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough(
4685     const Type *Base, uint64_t Members) const {
4686   // Vector and fp128 types require one register, other floating point types
4687   // require one or two registers depending on their size.
4688   uint32_t NumRegs =
4689       ((getContext().getTargetInfo().hasFloat128Type() &&
4690           Base->isFloat128Type()) ||
4691         Base->isVectorType()) ? 1
4692                               : (getContext().getTypeSize(Base) + 63) / 64;
4693 
4694   // Homogeneous Aggregates may occupy at most 8 registers.
4695   return Members * NumRegs <= 8;
4696 }
4697 
4698 ABIArgInfo
4699 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
4700   Ty = useFirstFieldIfTransparentUnion(Ty);
4701 
4702   if (Ty->isAnyComplexType())
4703     return ABIArgInfo::getDirect();
4704 
4705   // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
4706   // or via reference (larger than 16 bytes).
4707   if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) {
4708     uint64_t Size = getContext().getTypeSize(Ty);
4709     if (Size > 128)
4710       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4711     else if (Size < 128) {
4712       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
4713       return ABIArgInfo::getDirect(CoerceTy);
4714     }
4715   }
4716 
4717   if (isAggregateTypeForABI(Ty)) {
4718     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
4719       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
4720 
4721     uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity();
4722     uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
4723 
4724     // ELFv2 homogeneous aggregates are passed as array types.
4725     const Type *Base = nullptr;
4726     uint64_t Members = 0;
4727     if (Kind == ELFv2 &&
4728         isHomogeneousAggregate(Ty, Base, Members)) {
4729       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
4730       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
4731       return ABIArgInfo::getDirect(CoerceTy);
4732     }
4733 
4734     // If an aggregate may end up fully in registers, we do not
4735     // use the ByVal method, but pass the aggregate as array.
4736     // This is usually beneficial since we avoid forcing the
4737     // back-end to store the argument to memory.
4738     uint64_t Bits = getContext().getTypeSize(Ty);
4739     if (Bits > 0 && Bits <= 8 * GPRBits) {
4740       llvm::Type *CoerceTy;
4741 
4742       // Types up to 8 bytes are passed as integer type (which will be
4743       // properly aligned in the argument save area doubleword).
4744       if (Bits <= GPRBits)
4745         CoerceTy =
4746             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
4747       // Larger types are passed as arrays, with the base type selected
4748       // according to the required alignment in the save area.
4749       else {
4750         uint64_t RegBits = ABIAlign * 8;
4751         uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits;
4752         llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
4753         CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
4754       }
4755 
4756       return ABIArgInfo::getDirect(CoerceTy);
4757     }
4758 
4759     // All other aggregates are passed ByVal.
4760     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
4761                                    /*ByVal=*/true,
4762                                    /*Realign=*/TyAlign > ABIAlign);
4763   }
4764 
4765   return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
4766                                      : ABIArgInfo::getDirect());
4767 }
4768 
4769 ABIArgInfo
4770 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
4771   if (RetTy->isVoidType())
4772     return ABIArgInfo::getIgnore();
4773 
4774   if (RetTy->isAnyComplexType())
4775     return ABIArgInfo::getDirect();
4776 
4777   // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
4778   // or via reference (larger than 16 bytes).
4779   if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) {
4780     uint64_t Size = getContext().getTypeSize(RetTy);
4781     if (Size > 128)
4782       return getNaturalAlignIndirect(RetTy);
4783     else if (Size < 128) {
4784       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
4785       return ABIArgInfo::getDirect(CoerceTy);
4786     }
4787   }
4788 
4789   if (isAggregateTypeForABI(RetTy)) {
4790     // ELFv2 homogeneous aggregates are returned as array types.
4791     const Type *Base = nullptr;
4792     uint64_t Members = 0;
4793     if (Kind == ELFv2 &&
4794         isHomogeneousAggregate(RetTy, Base, Members)) {
4795       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
4796       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
4797       return ABIArgInfo::getDirect(CoerceTy);
4798     }
4799 
4800     // ELFv2 small aggregates are returned in up to two registers.
4801     uint64_t Bits = getContext().getTypeSize(RetTy);
4802     if (Kind == ELFv2 && Bits <= 2 * GPRBits) {
4803       if (Bits == 0)
4804         return ABIArgInfo::getIgnore();
4805 
4806       llvm::Type *CoerceTy;
4807       if (Bits > GPRBits) {
4808         CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
4809         CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy);
4810       } else
4811         CoerceTy =
4812             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
4813       return ABIArgInfo::getDirect(CoerceTy);
4814     }
4815 
4816     // All other aggregates are returned indirectly.
4817     return getNaturalAlignIndirect(RetTy);
4818   }
4819 
4820   return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
4821                                         : ABIArgInfo::getDirect());
4822 }
4823 
4824 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
4825 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4826                                       QualType Ty) const {
4827   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
4828   TypeInfo.second = getParamTypeAlignment(Ty);
4829 
4830   CharUnits SlotSize = CharUnits::fromQuantity(8);
4831 
4832   // If we have a complex type and the base type is smaller than 8 bytes,
4833   // the ABI calls for the real and imaginary parts to be right-adjusted
4834   // in separate doublewords.  However, Clang expects us to produce a
4835   // pointer to a structure with the two parts packed tightly.  So generate
4836   // loads of the real and imaginary parts relative to the va_list pointer,
4837   // and store them to a temporary structure.
4838   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4839     CharUnits EltSize = TypeInfo.first / 2;
4840     if (EltSize < SlotSize) {
4841       Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty,
4842                                             SlotSize * 2, SlotSize,
4843                                             SlotSize, /*AllowHigher*/ true);
4844 
4845       Address RealAddr = Addr;
4846       Address ImagAddr = RealAddr;
4847       if (CGF.CGM.getDataLayout().isBigEndian()) {
4848         RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr,
4849                                                           SlotSize - EltSize);
4850         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr,
4851                                                       2 * SlotSize - EltSize);
4852       } else {
4853         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize);
4854       }
4855 
4856       llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType());
4857       RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy);
4858       ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy);
4859       llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal");
4860       llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag");
4861 
4862       Address Temp = CGF.CreateMemTemp(Ty, "vacplx");
4863       CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty),
4864                              /*init*/ true);
4865       return Temp;
4866     }
4867   }
4868 
4869   // Otherwise, just use the general rule.
4870   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
4871                           TypeInfo, SlotSize, /*AllowHigher*/ true);
4872 }
4873 
4874 static bool
4875 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4876                               llvm::Value *Address) {
4877   // This is calculated from the LLVM and GCC tables and verified
4878   // against gcc output.  AFAIK all ABIs use the same encoding.
4879 
4880   CodeGen::CGBuilderTy &Builder = CGF.Builder;
4881 
4882   llvm::IntegerType *i8 = CGF.Int8Ty;
4883   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
4884   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
4885   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
4886 
4887   // 0-31: r0-31, the 8-byte general-purpose registers
4888   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
4889 
4890   // 32-63: fp0-31, the 8-byte floating-point registers
4891   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
4892 
4893   // 64-67 are various 8-byte special-purpose registers:
4894   // 64: mq
4895   // 65: lr
4896   // 66: ctr
4897   // 67: ap
4898   AssignToArrayRange(Builder, Address, Eight8, 64, 67);
4899 
4900   // 68-76 are various 4-byte special-purpose registers:
4901   // 68-75 cr0-7
4902   // 76: xer
4903   AssignToArrayRange(Builder, Address, Four8, 68, 76);
4904 
4905   // 77-108: v0-31, the 16-byte vector registers
4906   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
4907 
4908   // 109: vrsave
4909   // 110: vscr
4910   // 111: spe_acc
4911   // 112: spefscr
4912   // 113: sfp
4913   // 114: tfhar
4914   // 115: tfiar
4915   // 116: texasr
4916   AssignToArrayRange(Builder, Address, Eight8, 109, 116);
4917 
4918   return false;
4919 }
4920 
4921 bool
4922 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
4923   CodeGen::CodeGenFunction &CGF,
4924   llvm::Value *Address) const {
4925 
4926   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
4927 }
4928 
4929 bool
4930 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4931                                                 llvm::Value *Address) const {
4932 
4933   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
4934 }
4935 
4936 //===----------------------------------------------------------------------===//
4937 // AArch64 ABI Implementation
4938 //===----------------------------------------------------------------------===//
4939 
4940 namespace {
4941 
4942 class AArch64ABIInfo : public SwiftABIInfo {
4943 public:
4944   enum ABIKind {
4945     AAPCS = 0,
4946     DarwinPCS,
4947     Win64
4948   };
4949 
4950 private:
4951   ABIKind Kind;
4952 
4953 public:
4954   AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind)
4955     : SwiftABIInfo(CGT), Kind(Kind) {}
4956 
4957 private:
4958   ABIKind getABIKind() const { return Kind; }
4959   bool isDarwinPCS() const { return Kind == DarwinPCS; }
4960 
4961   ABIArgInfo classifyReturnType(QualType RetTy) const;
4962   ABIArgInfo classifyArgumentType(QualType RetTy) const;
4963   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4964   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4965                                          uint64_t Members) const override;
4966 
4967   bool isIllegalVectorType(QualType Ty) const;
4968 
4969   void computeInfo(CGFunctionInfo &FI) const override {
4970     if (!::classifyReturnType(getCXXABI(), FI, *this))
4971       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4972 
4973     for (auto &it : FI.arguments())
4974       it.info = classifyArgumentType(it.type);
4975   }
4976 
4977   Address EmitDarwinVAArg(Address VAListAddr, QualType Ty,
4978                           CodeGenFunction &CGF) const;
4979 
4980   Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
4981                          CodeGenFunction &CGF) const;
4982 
4983   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4984                     QualType Ty) const override {
4985     return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty)
4986                          : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
4987                                          : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
4988   }
4989 
4990   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
4991                       QualType Ty) const override;
4992 
4993   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
4994                                     bool asReturnValue) const override {
4995     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
4996   }
4997   bool isSwiftErrorInRegister() const override {
4998     return true;
4999   }
5000 
5001   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
5002                                  unsigned elts) const override;
5003 };
5004 
5005 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
5006 public:
5007   AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
5008       : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {}
5009 
5010   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
5011     return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue";
5012   }
5013 
5014   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5015     return 31;
5016   }
5017 
5018   bool doesReturnSlotInterfereWithArgs() const override { return false; }
5019 
5020   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5021                            CodeGen::CodeGenModule &CGM) const override {
5022     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5023     if (!FD)
5024       return;
5025     llvm::Function *Fn = cast<llvm::Function>(GV);
5026 
5027     auto Kind = CGM.getCodeGenOpts().getSignReturnAddress();
5028     if (Kind != CodeGenOptions::SignReturnAddressScope::None) {
5029       Fn->addFnAttr("sign-return-address",
5030                     Kind == CodeGenOptions::SignReturnAddressScope::All
5031                         ? "all"
5032                         : "non-leaf");
5033 
5034       auto Key = CGM.getCodeGenOpts().getSignReturnAddressKey();
5035       Fn->addFnAttr("sign-return-address-key",
5036                     Key == CodeGenOptions::SignReturnAddressKeyValue::AKey
5037                         ? "a_key"
5038                         : "b_key");
5039     }
5040 
5041     if (CGM.getCodeGenOpts().BranchTargetEnforcement)
5042       Fn->addFnAttr("branch-target-enforcement");
5043   }
5044 };
5045 
5046 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo {
5047 public:
5048   WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K)
5049       : AArch64TargetCodeGenInfo(CGT, K) {}
5050 
5051   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5052                            CodeGen::CodeGenModule &CGM) const override;
5053 
5054   void getDependentLibraryOption(llvm::StringRef Lib,
5055                                  llvm::SmallString<24> &Opt) const override {
5056     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
5057   }
5058 
5059   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
5060                                llvm::SmallString<32> &Opt) const override {
5061     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
5062   }
5063 };
5064 
5065 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes(
5066     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
5067   AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
5068   if (GV->isDeclaration())
5069     return;
5070   addStackProbeTargetAttributes(D, GV, CGM);
5071 }
5072 }
5073 
5074 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const {
5075   Ty = useFirstFieldIfTransparentUnion(Ty);
5076 
5077   // Handle illegal vector types here.
5078   if (isIllegalVectorType(Ty)) {
5079     uint64_t Size = getContext().getTypeSize(Ty);
5080     // Android promotes <2 x i8> to i16, not i32
5081     if (isAndroid() && (Size <= 16)) {
5082       llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext());
5083       return ABIArgInfo::getDirect(ResType);
5084     }
5085     if (Size <= 32) {
5086       llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
5087       return ABIArgInfo::getDirect(ResType);
5088     }
5089     if (Size == 64) {
5090       llvm::Type *ResType =
5091           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
5092       return ABIArgInfo::getDirect(ResType);
5093     }
5094     if (Size == 128) {
5095       llvm::Type *ResType =
5096           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
5097       return ABIArgInfo::getDirect(ResType);
5098     }
5099     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5100   }
5101 
5102   if (!isAggregateTypeForABI(Ty)) {
5103     // Treat an enum type as its underlying type.
5104     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5105       Ty = EnumTy->getDecl()->getIntegerType();
5106 
5107     return (Ty->isPromotableIntegerType() && isDarwinPCS()
5108                 ? ABIArgInfo::getExtend(Ty)
5109                 : ABIArgInfo::getDirect());
5110   }
5111 
5112   // Structures with either a non-trivial destructor or a non-trivial
5113   // copy constructor are always indirect.
5114   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5115     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
5116                                      CGCXXABI::RAA_DirectInMemory);
5117   }
5118 
5119   // Empty records are always ignored on Darwin, but actually passed in C++ mode
5120   // elsewhere for GNU compatibility.
5121   uint64_t Size = getContext().getTypeSize(Ty);
5122   bool IsEmpty = isEmptyRecord(getContext(), Ty, true);
5123   if (IsEmpty || Size == 0) {
5124     if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
5125       return ABIArgInfo::getIgnore();
5126 
5127     // GNU C mode. The only argument that gets ignored is an empty one with size
5128     // 0.
5129     if (IsEmpty && Size == 0)
5130       return ABIArgInfo::getIgnore();
5131     return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5132   }
5133 
5134   // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
5135   const Type *Base = nullptr;
5136   uint64_t Members = 0;
5137   if (isHomogeneousAggregate(Ty, Base, Members)) {
5138     return ABIArgInfo::getDirect(
5139         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
5140   }
5141 
5142   // Aggregates <= 16 bytes are passed directly in registers or on the stack.
5143   if (Size <= 128) {
5144     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5145     // same size and alignment.
5146     if (getTarget().isRenderScriptTarget()) {
5147       return coerceToIntArray(Ty, getContext(), getVMContext());
5148     }
5149     unsigned Alignment;
5150     if (Kind == AArch64ABIInfo::AAPCS) {
5151       Alignment = getContext().getTypeUnadjustedAlign(Ty);
5152       Alignment = Alignment < 128 ? 64 : 128;
5153     } else {
5154       Alignment = getContext().getTypeAlign(Ty);
5155     }
5156     Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes
5157 
5158     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5159     // For aggregates with 16-byte alignment, we use i128.
5160     if (Alignment < 128 && Size == 128) {
5161       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
5162       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
5163     }
5164     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
5165   }
5166 
5167   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5168 }
5169 
5170 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const {
5171   if (RetTy->isVoidType())
5172     return ABIArgInfo::getIgnore();
5173 
5174   // Large vector types should be returned via memory.
5175   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
5176     return getNaturalAlignIndirect(RetTy);
5177 
5178   if (!isAggregateTypeForABI(RetTy)) {
5179     // Treat an enum type as its underlying type.
5180     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5181       RetTy = EnumTy->getDecl()->getIntegerType();
5182 
5183     return (RetTy->isPromotableIntegerType() && isDarwinPCS()
5184                 ? ABIArgInfo::getExtend(RetTy)
5185                 : ABIArgInfo::getDirect());
5186   }
5187 
5188   uint64_t Size = getContext().getTypeSize(RetTy);
5189   if (isEmptyRecord(getContext(), RetTy, true) || Size == 0)
5190     return ABIArgInfo::getIgnore();
5191 
5192   const Type *Base = nullptr;
5193   uint64_t Members = 0;
5194   if (isHomogeneousAggregate(RetTy, Base, Members))
5195     // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
5196     return ABIArgInfo::getDirect();
5197 
5198   // Aggregates <= 16 bytes are returned directly in registers or on the stack.
5199   if (Size <= 128) {
5200     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5201     // same size and alignment.
5202     if (getTarget().isRenderScriptTarget()) {
5203       return coerceToIntArray(RetTy, getContext(), getVMContext());
5204     }
5205     unsigned Alignment = getContext().getTypeAlign(RetTy);
5206     Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes
5207 
5208     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5209     // For aggregates with 16-byte alignment, we use i128.
5210     if (Alignment < 128 && Size == 128) {
5211       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
5212       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
5213     }
5214     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
5215   }
5216 
5217   return getNaturalAlignIndirect(RetTy);
5218 }
5219 
5220 /// isIllegalVectorType - check whether the vector type is legal for AArch64.
5221 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
5222   if (const VectorType *VT = Ty->getAs<VectorType>()) {
5223     // Check whether VT is legal.
5224     unsigned NumElements = VT->getNumElements();
5225     uint64_t Size = getContext().getTypeSize(VT);
5226     // NumElements should be power of 2.
5227     if (!llvm::isPowerOf2_32(NumElements))
5228       return true;
5229     return Size != 64 && (Size != 128 || NumElements == 1);
5230   }
5231   return false;
5232 }
5233 
5234 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize,
5235                                                llvm::Type *eltTy,
5236                                                unsigned elts) const {
5237   if (!llvm::isPowerOf2_32(elts))
5238     return false;
5239   if (totalSize.getQuantity() != 8 &&
5240       (totalSize.getQuantity() != 16 || elts == 1))
5241     return false;
5242   return true;
5243 }
5244 
5245 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
5246   // Homogeneous aggregates for AAPCS64 must have base types of a floating
5247   // point type or a short-vector type. This is the same as the 32-bit ABI,
5248   // but with the difference that any floating-point type is allowed,
5249   // including __fp16.
5250   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
5251     if (BT->isFloatingPoint())
5252       return true;
5253   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
5254     unsigned VecSize = getContext().getTypeSize(VT);
5255     if (VecSize == 64 || VecSize == 128)
5256       return true;
5257   }
5258   return false;
5259 }
5260 
5261 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
5262                                                        uint64_t Members) const {
5263   return Members <= 4;
5264 }
5265 
5266 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr,
5267                                             QualType Ty,
5268                                             CodeGenFunction &CGF) const {
5269   ABIArgInfo AI = classifyArgumentType(Ty);
5270   bool IsIndirect = AI.isIndirect();
5271 
5272   llvm::Type *BaseTy = CGF.ConvertType(Ty);
5273   if (IsIndirect)
5274     BaseTy = llvm::PointerType::getUnqual(BaseTy);
5275   else if (AI.getCoerceToType())
5276     BaseTy = AI.getCoerceToType();
5277 
5278   unsigned NumRegs = 1;
5279   if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
5280     BaseTy = ArrTy->getElementType();
5281     NumRegs = ArrTy->getNumElements();
5282   }
5283   bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy();
5284 
5285   // The AArch64 va_list type and handling is specified in the Procedure Call
5286   // Standard, section B.4:
5287   //
5288   // struct {
5289   //   void *__stack;
5290   //   void *__gr_top;
5291   //   void *__vr_top;
5292   //   int __gr_offs;
5293   //   int __vr_offs;
5294   // };
5295 
5296   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
5297   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
5298   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
5299   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
5300 
5301   auto TyInfo = getContext().getTypeInfoInChars(Ty);
5302   CharUnits TyAlign = TyInfo.second;
5303 
5304   Address reg_offs_p = Address::invalid();
5305   llvm::Value *reg_offs = nullptr;
5306   int reg_top_index;
5307   CharUnits reg_top_offset;
5308   int RegSize = IsIndirect ? 8 : TyInfo.first.getQuantity();
5309   if (!IsFPR) {
5310     // 3 is the field number of __gr_offs
5311     reg_offs_p =
5312         CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24),
5313                                     "gr_offs_p");
5314     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
5315     reg_top_index = 1; // field number for __gr_top
5316     reg_top_offset = CharUnits::fromQuantity(8);
5317     RegSize = llvm::alignTo(RegSize, 8);
5318   } else {
5319     // 4 is the field number of __vr_offs.
5320     reg_offs_p =
5321         CGF.Builder.CreateStructGEP(VAListAddr, 4, CharUnits::fromQuantity(28),
5322                                     "vr_offs_p");
5323     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
5324     reg_top_index = 2; // field number for __vr_top
5325     reg_top_offset = CharUnits::fromQuantity(16);
5326     RegSize = 16 * NumRegs;
5327   }
5328 
5329   //=======================================
5330   // Find out where argument was passed
5331   //=======================================
5332 
5333   // If reg_offs >= 0 we're already using the stack for this type of
5334   // argument. We don't want to keep updating reg_offs (in case it overflows,
5335   // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
5336   // whatever they get).
5337   llvm::Value *UsingStack = nullptr;
5338   UsingStack = CGF.Builder.CreateICmpSGE(
5339       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
5340 
5341   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
5342 
5343   // Otherwise, at least some kind of argument could go in these registers, the
5344   // question is whether this particular type is too big.
5345   CGF.EmitBlock(MaybeRegBlock);
5346 
5347   // Integer arguments may need to correct register alignment (for example a
5348   // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
5349   // align __gr_offs to calculate the potential address.
5350   if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) {
5351     int Align = TyAlign.getQuantity();
5352 
5353     reg_offs = CGF.Builder.CreateAdd(
5354         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
5355         "align_regoffs");
5356     reg_offs = CGF.Builder.CreateAnd(
5357         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
5358         "aligned_regoffs");
5359   }
5360 
5361   // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
5362   // The fact that this is done unconditionally reflects the fact that
5363   // allocating an argument to the stack also uses up all the remaining
5364   // registers of the appropriate kind.
5365   llvm::Value *NewOffset = nullptr;
5366   NewOffset = CGF.Builder.CreateAdd(
5367       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
5368   CGF.Builder.CreateStore(NewOffset, reg_offs_p);
5369 
5370   // Now we're in a position to decide whether this argument really was in
5371   // registers or not.
5372   llvm::Value *InRegs = nullptr;
5373   InRegs = CGF.Builder.CreateICmpSLE(
5374       NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
5375 
5376   CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
5377 
5378   //=======================================
5379   // Argument was in registers
5380   //=======================================
5381 
5382   // Now we emit the code for if the argument was originally passed in
5383   // registers. First start the appropriate block:
5384   CGF.EmitBlock(InRegBlock);
5385 
5386   llvm::Value *reg_top = nullptr;
5387   Address reg_top_p = CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index,
5388                                                   reg_top_offset, "reg_top_p");
5389   reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
5390   Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs),
5391                    CharUnits::fromQuantity(IsFPR ? 16 : 8));
5392   Address RegAddr = Address::invalid();
5393   llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty);
5394 
5395   if (IsIndirect) {
5396     // If it's been passed indirectly (actually a struct), whatever we find from
5397     // stored registers or on the stack will actually be a struct **.
5398     MemTy = llvm::PointerType::getUnqual(MemTy);
5399   }
5400 
5401   const Type *Base = nullptr;
5402   uint64_t NumMembers = 0;
5403   bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
5404   if (IsHFA && NumMembers > 1) {
5405     // Homogeneous aggregates passed in registers will have their elements split
5406     // and stored 16-bytes apart regardless of size (they're notionally in qN,
5407     // qN+1, ...). We reload and store into a temporary local variable
5408     // contiguously.
5409     assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
5410     auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0));
5411     llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
5412     llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
5413     Address Tmp = CGF.CreateTempAlloca(HFATy,
5414                                        std::max(TyAlign, BaseTyInfo.second));
5415 
5416     // On big-endian platforms, the value will be right-aligned in its slot.
5417     int Offset = 0;
5418     if (CGF.CGM.getDataLayout().isBigEndian() &&
5419         BaseTyInfo.first.getQuantity() < 16)
5420       Offset = 16 - BaseTyInfo.first.getQuantity();
5421 
5422     for (unsigned i = 0; i < NumMembers; ++i) {
5423       CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset);
5424       Address LoadAddr =
5425         CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset);
5426       LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy);
5427 
5428       Address StoreAddr =
5429         CGF.Builder.CreateConstArrayGEP(Tmp, i, BaseTyInfo.first);
5430 
5431       llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
5432       CGF.Builder.CreateStore(Elem, StoreAddr);
5433     }
5434 
5435     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy);
5436   } else {
5437     // Otherwise the object is contiguous in memory.
5438 
5439     // It might be right-aligned in its slot.
5440     CharUnits SlotSize = BaseAddr.getAlignment();
5441     if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect &&
5442         (IsHFA || !isAggregateTypeForABI(Ty)) &&
5443         TyInfo.first < SlotSize) {
5444       CharUnits Offset = SlotSize - TyInfo.first;
5445       BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset);
5446     }
5447 
5448     RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy);
5449   }
5450 
5451   CGF.EmitBranch(ContBlock);
5452 
5453   //=======================================
5454   // Argument was on the stack
5455   //=======================================
5456   CGF.EmitBlock(OnStackBlock);
5457 
5458   Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0,
5459                                                 CharUnits::Zero(), "stack_p");
5460   llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack");
5461 
5462   // Again, stack arguments may need realignment. In this case both integer and
5463   // floating-point ones might be affected.
5464   if (!IsIndirect && TyAlign.getQuantity() > 8) {
5465     int Align = TyAlign.getQuantity();
5466 
5467     OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty);
5468 
5469     OnStackPtr = CGF.Builder.CreateAdd(
5470         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
5471         "align_stack");
5472     OnStackPtr = CGF.Builder.CreateAnd(
5473         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
5474         "align_stack");
5475 
5476     OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy);
5477   }
5478   Address OnStackAddr(OnStackPtr,
5479                       std::max(CharUnits::fromQuantity(8), TyAlign));
5480 
5481   // All stack slots are multiples of 8 bytes.
5482   CharUnits StackSlotSize = CharUnits::fromQuantity(8);
5483   CharUnits StackSize;
5484   if (IsIndirect)
5485     StackSize = StackSlotSize;
5486   else
5487     StackSize = TyInfo.first.alignTo(StackSlotSize);
5488 
5489   llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize);
5490   llvm::Value *NewStack =
5491       CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack");
5492 
5493   // Write the new value of __stack for the next call to va_arg
5494   CGF.Builder.CreateStore(NewStack, stack_p);
5495 
5496   if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
5497       TyInfo.first < StackSlotSize) {
5498     CharUnits Offset = StackSlotSize - TyInfo.first;
5499     OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset);
5500   }
5501 
5502   OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy);
5503 
5504   CGF.EmitBranch(ContBlock);
5505 
5506   //=======================================
5507   // Tidy up
5508   //=======================================
5509   CGF.EmitBlock(ContBlock);
5510 
5511   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
5512                                  OnStackAddr, OnStackBlock, "vaargs.addr");
5513 
5514   if (IsIndirect)
5515     return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"),
5516                    TyInfo.second);
5517 
5518   return ResAddr;
5519 }
5520 
5521 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty,
5522                                         CodeGenFunction &CGF) const {
5523   // The backend's lowering doesn't support va_arg for aggregates or
5524   // illegal vector types.  Lower VAArg here for these cases and use
5525   // the LLVM va_arg instruction for everything else.
5526   if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
5527     return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
5528 
5529   CharUnits SlotSize = CharUnits::fromQuantity(8);
5530 
5531   // Empty records are ignored for parameter passing purposes.
5532   if (isEmptyRecord(getContext(), Ty, true)) {
5533     Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
5534     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
5535     return Addr;
5536   }
5537 
5538   // The size of the actual thing passed, which might end up just
5539   // being a pointer for indirect types.
5540   auto TyInfo = getContext().getTypeInfoInChars(Ty);
5541 
5542   // Arguments bigger than 16 bytes which aren't homogeneous
5543   // aggregates should be passed indirectly.
5544   bool IsIndirect = false;
5545   if (TyInfo.first.getQuantity() > 16) {
5546     const Type *Base = nullptr;
5547     uint64_t Members = 0;
5548     IsIndirect = !isHomogeneousAggregate(Ty, Base, Members);
5549   }
5550 
5551   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
5552                           TyInfo, SlotSize, /*AllowHigherAlign*/ true);
5553 }
5554 
5555 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
5556                                     QualType Ty) const {
5557   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
5558                           CGF.getContext().getTypeInfoInChars(Ty),
5559                           CharUnits::fromQuantity(8),
5560                           /*allowHigherAlign*/ false);
5561 }
5562 
5563 //===----------------------------------------------------------------------===//
5564 // ARM ABI Implementation
5565 //===----------------------------------------------------------------------===//
5566 
5567 namespace {
5568 
5569 class ARMABIInfo : public SwiftABIInfo {
5570 public:
5571   enum ABIKind {
5572     APCS = 0,
5573     AAPCS = 1,
5574     AAPCS_VFP = 2,
5575     AAPCS16_VFP = 3,
5576   };
5577 
5578 private:
5579   ABIKind Kind;
5580 
5581 public:
5582   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind)
5583       : SwiftABIInfo(CGT), Kind(_Kind) {
5584     setCCs();
5585   }
5586 
5587   bool isEABI() const {
5588     switch (getTarget().getTriple().getEnvironment()) {
5589     case llvm::Triple::Android:
5590     case llvm::Triple::EABI:
5591     case llvm::Triple::EABIHF:
5592     case llvm::Triple::GNUEABI:
5593     case llvm::Triple::GNUEABIHF:
5594     case llvm::Triple::MuslEABI:
5595     case llvm::Triple::MuslEABIHF:
5596       return true;
5597     default:
5598       return false;
5599     }
5600   }
5601 
5602   bool isEABIHF() const {
5603     switch (getTarget().getTriple().getEnvironment()) {
5604     case llvm::Triple::EABIHF:
5605     case llvm::Triple::GNUEABIHF:
5606     case llvm::Triple::MuslEABIHF:
5607       return true;
5608     default:
5609       return false;
5610     }
5611   }
5612 
5613   ABIKind getABIKind() const { return Kind; }
5614 
5615 private:
5616   ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const;
5617   ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic) const;
5618   ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base,
5619                                           uint64_t Members) const;
5620   ABIArgInfo coerceIllegalVector(QualType Ty) const;
5621   bool isIllegalVectorType(QualType Ty) const;
5622 
5623   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
5624   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
5625                                          uint64_t Members) const override;
5626 
5627   void computeInfo(CGFunctionInfo &FI) const override;
5628 
5629   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5630                     QualType Ty) const override;
5631 
5632   llvm::CallingConv::ID getLLVMDefaultCC() const;
5633   llvm::CallingConv::ID getABIDefaultCC() const;
5634   void setCCs();
5635 
5636   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
5637                                     bool asReturnValue) const override {
5638     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
5639   }
5640   bool isSwiftErrorInRegister() const override {
5641     return true;
5642   }
5643   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
5644                                  unsigned elts) const override;
5645 };
5646 
5647 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
5648 public:
5649   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
5650     :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
5651 
5652   const ARMABIInfo &getABIInfo() const {
5653     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
5654   }
5655 
5656   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5657     return 13;
5658   }
5659 
5660   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
5661     return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue";
5662   }
5663 
5664   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5665                                llvm::Value *Address) const override {
5666     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
5667 
5668     // 0-15 are the 16 integer registers.
5669     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
5670     return false;
5671   }
5672 
5673   unsigned getSizeOfUnwindException() const override {
5674     if (getABIInfo().isEABI()) return 88;
5675     return TargetCodeGenInfo::getSizeOfUnwindException();
5676   }
5677 
5678   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5679                            CodeGen::CodeGenModule &CGM) const override {
5680     if (GV->isDeclaration())
5681       return;
5682     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5683     if (!FD)
5684       return;
5685 
5686     const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
5687     if (!Attr)
5688       return;
5689 
5690     const char *Kind;
5691     switch (Attr->getInterrupt()) {
5692     case ARMInterruptAttr::Generic: Kind = ""; break;
5693     case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break;
5694     case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break;
5695     case ARMInterruptAttr::SWI:     Kind = "SWI"; break;
5696     case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break;
5697     case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break;
5698     }
5699 
5700     llvm::Function *Fn = cast<llvm::Function>(GV);
5701 
5702     Fn->addFnAttr("interrupt", Kind);
5703 
5704     ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind();
5705     if (ABI == ARMABIInfo::APCS)
5706       return;
5707 
5708     // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
5709     // however this is not necessarily true on taking any interrupt. Instruct
5710     // the backend to perform a realignment as part of the function prologue.
5711     llvm::AttrBuilder B;
5712     B.addStackAlignmentAttr(8);
5713     Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
5714   }
5715 };
5716 
5717 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo {
5718 public:
5719   WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
5720       : ARMTargetCodeGenInfo(CGT, K) {}
5721 
5722   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5723                            CodeGen::CodeGenModule &CGM) const override;
5724 
5725   void getDependentLibraryOption(llvm::StringRef Lib,
5726                                  llvm::SmallString<24> &Opt) const override {
5727     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
5728   }
5729 
5730   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
5731                                llvm::SmallString<32> &Opt) const override {
5732     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
5733   }
5734 };
5735 
5736 void WindowsARMTargetCodeGenInfo::setTargetAttributes(
5737     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
5738   ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
5739   if (GV->isDeclaration())
5740     return;
5741   addStackProbeTargetAttributes(D, GV, CGM);
5742 }
5743 }
5744 
5745 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
5746   if (!::classifyReturnType(getCXXABI(), FI, *this))
5747     FI.getReturnInfo() =
5748         classifyReturnType(FI.getReturnType(), FI.isVariadic());
5749 
5750   for (auto &I : FI.arguments())
5751     I.info = classifyArgumentType(I.type, FI.isVariadic());
5752 
5753   // Always honor user-specified calling convention.
5754   if (FI.getCallingConvention() != llvm::CallingConv::C)
5755     return;
5756 
5757   llvm::CallingConv::ID cc = getRuntimeCC();
5758   if (cc != llvm::CallingConv::C)
5759     FI.setEffectiveCallingConvention(cc);
5760 }
5761 
5762 /// Return the default calling convention that LLVM will use.
5763 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
5764   // The default calling convention that LLVM will infer.
5765   if (isEABIHF() || getTarget().getTriple().isWatchABI())
5766     return llvm::CallingConv::ARM_AAPCS_VFP;
5767   else if (isEABI())
5768     return llvm::CallingConv::ARM_AAPCS;
5769   else
5770     return llvm::CallingConv::ARM_APCS;
5771 }
5772 
5773 /// Return the calling convention that our ABI would like us to use
5774 /// as the C calling convention.
5775 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
5776   switch (getABIKind()) {
5777   case APCS: return llvm::CallingConv::ARM_APCS;
5778   case AAPCS: return llvm::CallingConv::ARM_AAPCS;
5779   case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
5780   case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
5781   }
5782   llvm_unreachable("bad ABI kind");
5783 }
5784 
5785 void ARMABIInfo::setCCs() {
5786   assert(getRuntimeCC() == llvm::CallingConv::C);
5787 
5788   // Don't muddy up the IR with a ton of explicit annotations if
5789   // they'd just match what LLVM will infer from the triple.
5790   llvm::CallingConv::ID abiCC = getABIDefaultCC();
5791   if (abiCC != getLLVMDefaultCC())
5792     RuntimeCC = abiCC;
5793 }
5794 
5795 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const {
5796   uint64_t Size = getContext().getTypeSize(Ty);
5797   if (Size <= 32) {
5798     llvm::Type *ResType =
5799         llvm::Type::getInt32Ty(getVMContext());
5800     return ABIArgInfo::getDirect(ResType);
5801   }
5802   if (Size == 64 || Size == 128) {
5803     llvm::Type *ResType = llvm::VectorType::get(
5804         llvm::Type::getInt32Ty(getVMContext()), Size / 32);
5805     return ABIArgInfo::getDirect(ResType);
5806   }
5807   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5808 }
5809 
5810 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty,
5811                                                     const Type *Base,
5812                                                     uint64_t Members) const {
5813   assert(Base && "Base class should be set for homogeneous aggregate");
5814   // Base can be a floating-point or a vector.
5815   if (const VectorType *VT = Base->getAs<VectorType>()) {
5816     // FP16 vectors should be converted to integer vectors
5817     if (!getTarget().hasLegalHalfType() &&
5818         (VT->getElementType()->isFloat16Type() ||
5819           VT->getElementType()->isHalfType())) {
5820       uint64_t Size = getContext().getTypeSize(VT);
5821       llvm::Type *NewVecTy = llvm::VectorType::get(
5822           llvm::Type::getInt32Ty(getVMContext()), Size / 32);
5823       llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members);
5824       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
5825     }
5826   }
5827   return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
5828 }
5829 
5830 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty,
5831                                             bool isVariadic) const {
5832   // 6.1.2.1 The following argument types are VFP CPRCs:
5833   //   A single-precision floating-point type (including promoted
5834   //   half-precision types); A double-precision floating-point type;
5835   //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
5836   //   with a Base Type of a single- or double-precision floating-point type,
5837   //   64-bit containerized vectors or 128-bit containerized vectors with one
5838   //   to four Elements.
5839   bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic;
5840 
5841   Ty = useFirstFieldIfTransparentUnion(Ty);
5842 
5843   // Handle illegal vector types here.
5844   if (isIllegalVectorType(Ty))
5845     return coerceIllegalVector(Ty);
5846 
5847   // _Float16 and __fp16 get passed as if it were an int or float, but with
5848   // the top 16 bits unspecified. This is not done for OpenCL as it handles the
5849   // half type natively, and does not need to interwork with AAPCS code.
5850   if ((Ty->isFloat16Type() || Ty->isHalfType()) &&
5851       !getContext().getLangOpts().NativeHalfArgsAndReturns) {
5852     llvm::Type *ResType = IsEffectivelyAAPCS_VFP ?
5853       llvm::Type::getFloatTy(getVMContext()) :
5854       llvm::Type::getInt32Ty(getVMContext());
5855     return ABIArgInfo::getDirect(ResType);
5856   }
5857 
5858   if (!isAggregateTypeForABI(Ty)) {
5859     // Treat an enum type as its underlying type.
5860     if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
5861       Ty = EnumTy->getDecl()->getIntegerType();
5862     }
5863 
5864     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
5865                                           : ABIArgInfo::getDirect());
5866   }
5867 
5868   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5869     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
5870   }
5871 
5872   // Ignore empty records.
5873   if (isEmptyRecord(getContext(), Ty, true))
5874     return ABIArgInfo::getIgnore();
5875 
5876   if (IsEffectivelyAAPCS_VFP) {
5877     // Homogeneous Aggregates need to be expanded when we can fit the aggregate
5878     // into VFP registers.
5879     const Type *Base = nullptr;
5880     uint64_t Members = 0;
5881     if (isHomogeneousAggregate(Ty, Base, Members))
5882       return classifyHomogeneousAggregate(Ty, Base, Members);
5883   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
5884     // WatchOS does have homogeneous aggregates. Note that we intentionally use
5885     // this convention even for a variadic function: the backend will use GPRs
5886     // if needed.
5887     const Type *Base = nullptr;
5888     uint64_t Members = 0;
5889     if (isHomogeneousAggregate(Ty, Base, Members)) {
5890       assert(Base && Members <= 4 && "unexpected homogeneous aggregate");
5891       llvm::Type *Ty =
5892         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members);
5893       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
5894     }
5895   }
5896 
5897   if (getABIKind() == ARMABIInfo::AAPCS16_VFP &&
5898       getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) {
5899     // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're
5900     // bigger than 128-bits, they get placed in space allocated by the caller,
5901     // and a pointer is passed.
5902     return ABIArgInfo::getIndirect(
5903         CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false);
5904   }
5905 
5906   // Support byval for ARM.
5907   // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
5908   // most 8-byte. We realign the indirect argument if type alignment is bigger
5909   // than ABI alignment.
5910   uint64_t ABIAlign = 4;
5911   uint64_t TyAlign;
5912   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
5913       getABIKind() == ARMABIInfo::AAPCS) {
5914     TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity();
5915     ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
5916   } else {
5917     TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
5918   }
5919   if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
5920     assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval");
5921     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
5922                                    /*ByVal=*/true,
5923                                    /*Realign=*/TyAlign > ABIAlign);
5924   }
5925 
5926   // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of
5927   // same size and alignment.
5928   if (getTarget().isRenderScriptTarget()) {
5929     return coerceToIntArray(Ty, getContext(), getVMContext());
5930   }
5931 
5932   // Otherwise, pass by coercing to a structure of the appropriate size.
5933   llvm::Type* ElemTy;
5934   unsigned SizeRegs;
5935   // FIXME: Try to match the types of the arguments more accurately where
5936   // we can.
5937   if (TyAlign <= 4) {
5938     ElemTy = llvm::Type::getInt32Ty(getVMContext());
5939     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
5940   } else {
5941     ElemTy = llvm::Type::getInt64Ty(getVMContext());
5942     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
5943   }
5944 
5945   return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
5946 }
5947 
5948 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
5949                               llvm::LLVMContext &VMContext) {
5950   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
5951   // is called integer-like if its size is less than or equal to one word, and
5952   // the offset of each of its addressable sub-fields is zero.
5953 
5954   uint64_t Size = Context.getTypeSize(Ty);
5955 
5956   // Check that the type fits in a word.
5957   if (Size > 32)
5958     return false;
5959 
5960   // FIXME: Handle vector types!
5961   if (Ty->isVectorType())
5962     return false;
5963 
5964   // Float types are never treated as "integer like".
5965   if (Ty->isRealFloatingType())
5966     return false;
5967 
5968   // If this is a builtin or pointer type then it is ok.
5969   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
5970     return true;
5971 
5972   // Small complex integer types are "integer like".
5973   if (const ComplexType *CT = Ty->getAs<ComplexType>())
5974     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
5975 
5976   // Single element and zero sized arrays should be allowed, by the definition
5977   // above, but they are not.
5978 
5979   // Otherwise, it must be a record type.
5980   const RecordType *RT = Ty->getAs<RecordType>();
5981   if (!RT) return false;
5982 
5983   // Ignore records with flexible arrays.
5984   const RecordDecl *RD = RT->getDecl();
5985   if (RD->hasFlexibleArrayMember())
5986     return false;
5987 
5988   // Check that all sub-fields are at offset 0, and are themselves "integer
5989   // like".
5990   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
5991 
5992   bool HadField = false;
5993   unsigned idx = 0;
5994   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
5995        i != e; ++i, ++idx) {
5996     const FieldDecl *FD = *i;
5997 
5998     // Bit-fields are not addressable, we only need to verify they are "integer
5999     // like". We still have to disallow a subsequent non-bitfield, for example:
6000     //   struct { int : 0; int x }
6001     // is non-integer like according to gcc.
6002     if (FD->isBitField()) {
6003       if (!RD->isUnion())
6004         HadField = true;
6005 
6006       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
6007         return false;
6008 
6009       continue;
6010     }
6011 
6012     // Check if this field is at offset 0.
6013     if (Layout.getFieldOffset(idx) != 0)
6014       return false;
6015 
6016     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
6017       return false;
6018 
6019     // Only allow at most one field in a structure. This doesn't match the
6020     // wording above, but follows gcc in situations with a field following an
6021     // empty structure.
6022     if (!RD->isUnion()) {
6023       if (HadField)
6024         return false;
6025 
6026       HadField = true;
6027     }
6028   }
6029 
6030   return true;
6031 }
6032 
6033 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy,
6034                                           bool isVariadic) const {
6035   bool IsEffectivelyAAPCS_VFP =
6036       (getABIKind() == AAPCS_VFP || getABIKind() == AAPCS16_VFP) && !isVariadic;
6037 
6038   if (RetTy->isVoidType())
6039     return ABIArgInfo::getIgnore();
6040 
6041   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
6042     // Large vector types should be returned via memory.
6043     if (getContext().getTypeSize(RetTy) > 128)
6044       return getNaturalAlignIndirect(RetTy);
6045     // FP16 vectors should be converted to integer vectors
6046     if (!getTarget().hasLegalHalfType() &&
6047         (VT->getElementType()->isFloat16Type() ||
6048          VT->getElementType()->isHalfType()))
6049       return coerceIllegalVector(RetTy);
6050   }
6051 
6052   // _Float16 and __fp16 get returned as if it were an int or float, but with
6053   // the top 16 bits unspecified. This is not done for OpenCL as it handles the
6054   // half type natively, and does not need to interwork with AAPCS code.
6055   if ((RetTy->isFloat16Type() || RetTy->isHalfType()) &&
6056       !getContext().getLangOpts().NativeHalfArgsAndReturns) {
6057     llvm::Type *ResType = IsEffectivelyAAPCS_VFP ?
6058       llvm::Type::getFloatTy(getVMContext()) :
6059       llvm::Type::getInt32Ty(getVMContext());
6060     return ABIArgInfo::getDirect(ResType);
6061   }
6062 
6063   if (!isAggregateTypeForABI(RetTy)) {
6064     // Treat an enum type as its underlying type.
6065     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6066       RetTy = EnumTy->getDecl()->getIntegerType();
6067 
6068     return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
6069                                             : ABIArgInfo::getDirect();
6070   }
6071 
6072   // Are we following APCS?
6073   if (getABIKind() == APCS) {
6074     if (isEmptyRecord(getContext(), RetTy, false))
6075       return ABIArgInfo::getIgnore();
6076 
6077     // Complex types are all returned as packed integers.
6078     //
6079     // FIXME: Consider using 2 x vector types if the back end handles them
6080     // correctly.
6081     if (RetTy->isAnyComplexType())
6082       return ABIArgInfo::getDirect(llvm::IntegerType::get(
6083           getVMContext(), getContext().getTypeSize(RetTy)));
6084 
6085     // Integer like structures are returned in r0.
6086     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
6087       // Return in the smallest viable integer type.
6088       uint64_t Size = getContext().getTypeSize(RetTy);
6089       if (Size <= 8)
6090         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6091       if (Size <= 16)
6092         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6093       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6094     }
6095 
6096     // Otherwise return in memory.
6097     return getNaturalAlignIndirect(RetTy);
6098   }
6099 
6100   // Otherwise this is an AAPCS variant.
6101 
6102   if (isEmptyRecord(getContext(), RetTy, true))
6103     return ABIArgInfo::getIgnore();
6104 
6105   // Check for homogeneous aggregates with AAPCS-VFP.
6106   if (IsEffectivelyAAPCS_VFP) {
6107     const Type *Base = nullptr;
6108     uint64_t Members = 0;
6109     if (isHomogeneousAggregate(RetTy, Base, Members))
6110       return classifyHomogeneousAggregate(RetTy, Base, Members);
6111   }
6112 
6113   // Aggregates <= 4 bytes are returned in r0; other aggregates
6114   // are returned indirectly.
6115   uint64_t Size = getContext().getTypeSize(RetTy);
6116   if (Size <= 32) {
6117     // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of
6118     // same size and alignment.
6119     if (getTarget().isRenderScriptTarget()) {
6120       return coerceToIntArray(RetTy, getContext(), getVMContext());
6121     }
6122     if (getDataLayout().isBigEndian())
6123       // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
6124       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6125 
6126     // Return in the smallest viable integer type.
6127     if (Size <= 8)
6128       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6129     if (Size <= 16)
6130       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6131     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6132   } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) {
6133     llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext());
6134     llvm::Type *CoerceTy =
6135         llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32);
6136     return ABIArgInfo::getDirect(CoerceTy);
6137   }
6138 
6139   return getNaturalAlignIndirect(RetTy);
6140 }
6141 
6142 /// isIllegalVector - check whether Ty is an illegal vector type.
6143 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
6144   if (const VectorType *VT = Ty->getAs<VectorType> ()) {
6145     // On targets that don't support FP16, FP16 is expanded into float, and we
6146     // don't want the ABI to depend on whether or not FP16 is supported in
6147     // hardware. Thus return false to coerce FP16 vectors into integer vectors.
6148     if (!getTarget().hasLegalHalfType() &&
6149         (VT->getElementType()->isFloat16Type() ||
6150          VT->getElementType()->isHalfType()))
6151       return true;
6152     if (isAndroid()) {
6153       // Android shipped using Clang 3.1, which supported a slightly different
6154       // vector ABI. The primary differences were that 3-element vector types
6155       // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path
6156       // accepts that legacy behavior for Android only.
6157       // Check whether VT is legal.
6158       unsigned NumElements = VT->getNumElements();
6159       // NumElements should be power of 2 or equal to 3.
6160       if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3)
6161         return true;
6162     } else {
6163       // Check whether VT is legal.
6164       unsigned NumElements = VT->getNumElements();
6165       uint64_t Size = getContext().getTypeSize(VT);
6166       // NumElements should be power of 2.
6167       if (!llvm::isPowerOf2_32(NumElements))
6168         return true;
6169       // Size should be greater than 32 bits.
6170       return Size <= 32;
6171     }
6172   }
6173   return false;
6174 }
6175 
6176 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
6177                                            llvm::Type *eltTy,
6178                                            unsigned numElts) const {
6179   if (!llvm::isPowerOf2_32(numElts))
6180     return false;
6181   unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy);
6182   if (size > 64)
6183     return false;
6184   if (vectorSize.getQuantity() != 8 &&
6185       (vectorSize.getQuantity() != 16 || numElts == 1))
6186     return false;
6187   return true;
6188 }
6189 
6190 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
6191   // Homogeneous aggregates for AAPCS-VFP must have base types of float,
6192   // double, or 64-bit or 128-bit vectors.
6193   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
6194     if (BT->getKind() == BuiltinType::Float ||
6195         BT->getKind() == BuiltinType::Double ||
6196         BT->getKind() == BuiltinType::LongDouble)
6197       return true;
6198   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
6199     unsigned VecSize = getContext().getTypeSize(VT);
6200     if (VecSize == 64 || VecSize == 128)
6201       return true;
6202   }
6203   return false;
6204 }
6205 
6206 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
6207                                                    uint64_t Members) const {
6208   return Members <= 4;
6209 }
6210 
6211 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6212                               QualType Ty) const {
6213   CharUnits SlotSize = CharUnits::fromQuantity(4);
6214 
6215   // Empty records are ignored for parameter passing purposes.
6216   if (isEmptyRecord(getContext(), Ty, true)) {
6217     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
6218     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
6219     return Addr;
6220   }
6221 
6222   auto TyInfo = getContext().getTypeInfoInChars(Ty);
6223   CharUnits TyAlignForABI = TyInfo.second;
6224 
6225   // Use indirect if size of the illegal vector is bigger than 16 bytes.
6226   bool IsIndirect = false;
6227   const Type *Base = nullptr;
6228   uint64_t Members = 0;
6229   if (TyInfo.first > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) {
6230     IsIndirect = true;
6231 
6232   // ARMv7k passes structs bigger than 16 bytes indirectly, in space
6233   // allocated by the caller.
6234   } else if (TyInfo.first > CharUnits::fromQuantity(16) &&
6235              getABIKind() == ARMABIInfo::AAPCS16_VFP &&
6236              !isHomogeneousAggregate(Ty, Base, Members)) {
6237     IsIndirect = true;
6238 
6239   // Otherwise, bound the type's ABI alignment.
6240   // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
6241   // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
6242   // Our callers should be prepared to handle an under-aligned address.
6243   } else if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
6244              getABIKind() == ARMABIInfo::AAPCS) {
6245     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6246     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8));
6247   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
6248     // ARMv7k allows type alignment up to 16 bytes.
6249     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6250     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16));
6251   } else {
6252     TyAlignForABI = CharUnits::fromQuantity(4);
6253   }
6254   TyInfo.second = TyAlignForABI;
6255 
6256   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo,
6257                           SlotSize, /*AllowHigherAlign*/ true);
6258 }
6259 
6260 //===----------------------------------------------------------------------===//
6261 // NVPTX ABI Implementation
6262 //===----------------------------------------------------------------------===//
6263 
6264 namespace {
6265 
6266 class NVPTXABIInfo : public ABIInfo {
6267 public:
6268   NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
6269 
6270   ABIArgInfo classifyReturnType(QualType RetTy) const;
6271   ABIArgInfo classifyArgumentType(QualType Ty) const;
6272 
6273   void computeInfo(CGFunctionInfo &FI) const override;
6274   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6275                     QualType Ty) const override;
6276 };
6277 
6278 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
6279 public:
6280   NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
6281     : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
6282 
6283   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6284                            CodeGen::CodeGenModule &M) const override;
6285   bool shouldEmitStaticExternCAliases() const override;
6286 
6287 private:
6288   // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the
6289   // resulting MDNode to the nvvm.annotations MDNode.
6290   static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand);
6291 };
6292 
6293 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
6294   if (RetTy->isVoidType())
6295     return ABIArgInfo::getIgnore();
6296 
6297   // note: this is different from default ABI
6298   if (!RetTy->isScalarType())
6299     return ABIArgInfo::getDirect();
6300 
6301   // Treat an enum type as its underlying type.
6302   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6303     RetTy = EnumTy->getDecl()->getIntegerType();
6304 
6305   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
6306                                            : ABIArgInfo::getDirect());
6307 }
6308 
6309 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
6310   // Treat an enum type as its underlying type.
6311   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6312     Ty = EnumTy->getDecl()->getIntegerType();
6313 
6314   // Return aggregates type as indirect by value
6315   if (isAggregateTypeForABI(Ty))
6316     return getNaturalAlignIndirect(Ty, /* byval */ true);
6317 
6318   return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
6319                                         : ABIArgInfo::getDirect());
6320 }
6321 
6322 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
6323   if (!getCXXABI().classifyReturnType(FI))
6324     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
6325   for (auto &I : FI.arguments())
6326     I.info = classifyArgumentType(I.type);
6327 
6328   // Always honor user-specified calling convention.
6329   if (FI.getCallingConvention() != llvm::CallingConv::C)
6330     return;
6331 
6332   FI.setEffectiveCallingConvention(getRuntimeCC());
6333 }
6334 
6335 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6336                                 QualType Ty) const {
6337   llvm_unreachable("NVPTX does not support varargs");
6338 }
6339 
6340 void NVPTXTargetCodeGenInfo::setTargetAttributes(
6341     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
6342   if (GV->isDeclaration())
6343     return;
6344   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6345   if (!FD) return;
6346 
6347   llvm::Function *F = cast<llvm::Function>(GV);
6348 
6349   // Perform special handling in OpenCL mode
6350   if (M.getLangOpts().OpenCL) {
6351     // Use OpenCL function attributes to check for kernel functions
6352     // By default, all functions are device functions
6353     if (FD->hasAttr<OpenCLKernelAttr>()) {
6354       // OpenCL __kernel functions get kernel metadata
6355       // Create !{<func-ref>, metadata !"kernel", i32 1} node
6356       addNVVMMetadata(F, "kernel", 1);
6357       // And kernel functions are not subject to inlining
6358       F->addFnAttr(llvm::Attribute::NoInline);
6359     }
6360   }
6361 
6362   // Perform special handling in CUDA mode.
6363   if (M.getLangOpts().CUDA) {
6364     // CUDA __global__ functions get a kernel metadata entry.  Since
6365     // __global__ functions cannot be called from the device, we do not
6366     // need to set the noinline attribute.
6367     if (FD->hasAttr<CUDAGlobalAttr>()) {
6368       // Create !{<func-ref>, metadata !"kernel", i32 1} node
6369       addNVVMMetadata(F, "kernel", 1);
6370     }
6371     if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) {
6372       // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
6373       llvm::APSInt MaxThreads(32);
6374       MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext());
6375       if (MaxThreads > 0)
6376         addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue());
6377 
6378       // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was
6379       // not specified in __launch_bounds__ or if the user specified a 0 value,
6380       // we don't have to add a PTX directive.
6381       if (Attr->getMinBlocks()) {
6382         llvm::APSInt MinBlocks(32);
6383         MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext());
6384         if (MinBlocks > 0)
6385           // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
6386           addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue());
6387       }
6388     }
6389   }
6390 }
6391 
6392 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name,
6393                                              int Operand) {
6394   llvm::Module *M = F->getParent();
6395   llvm::LLVMContext &Ctx = M->getContext();
6396 
6397   // Get "nvvm.annotations" metadata node
6398   llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
6399 
6400   llvm::Metadata *MDVals[] = {
6401       llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name),
6402       llvm::ConstantAsMetadata::get(
6403           llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
6404   // Append metadata to nvvm.annotations
6405   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
6406 }
6407 
6408 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
6409   return false;
6410 }
6411 }
6412 
6413 //===----------------------------------------------------------------------===//
6414 // SystemZ ABI Implementation
6415 //===----------------------------------------------------------------------===//
6416 
6417 namespace {
6418 
6419 class SystemZABIInfo : public SwiftABIInfo {
6420   bool HasVector;
6421 
6422 public:
6423   SystemZABIInfo(CodeGenTypes &CGT, bool HV)
6424     : SwiftABIInfo(CGT), HasVector(HV) {}
6425 
6426   bool isPromotableIntegerType(QualType Ty) const;
6427   bool isCompoundType(QualType Ty) const;
6428   bool isVectorArgumentType(QualType Ty) const;
6429   bool isFPArgumentType(QualType Ty) const;
6430   QualType GetSingleElementType(QualType Ty) const;
6431 
6432   ABIArgInfo classifyReturnType(QualType RetTy) const;
6433   ABIArgInfo classifyArgumentType(QualType ArgTy) const;
6434 
6435   void computeInfo(CGFunctionInfo &FI) const override {
6436     if (!getCXXABI().classifyReturnType(FI))
6437       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
6438     for (auto &I : FI.arguments())
6439       I.info = classifyArgumentType(I.type);
6440   }
6441 
6442   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6443                     QualType Ty) const override;
6444 
6445   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
6446                                     bool asReturnValue) const override {
6447     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
6448   }
6449   bool isSwiftErrorInRegister() const override {
6450     return false;
6451   }
6452 };
6453 
6454 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
6455 public:
6456   SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector)
6457     : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {}
6458 };
6459 
6460 }
6461 
6462 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
6463   // Treat an enum type as its underlying type.
6464   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6465     Ty = EnumTy->getDecl()->getIntegerType();
6466 
6467   // Promotable integer types are required to be promoted by the ABI.
6468   if (Ty->isPromotableIntegerType())
6469     return true;
6470 
6471   // 32-bit values must also be promoted.
6472   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
6473     switch (BT->getKind()) {
6474     case BuiltinType::Int:
6475     case BuiltinType::UInt:
6476       return true;
6477     default:
6478       return false;
6479     }
6480   return false;
6481 }
6482 
6483 bool SystemZABIInfo::isCompoundType(QualType Ty) const {
6484   return (Ty->isAnyComplexType() ||
6485           Ty->isVectorType() ||
6486           isAggregateTypeForABI(Ty));
6487 }
6488 
6489 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const {
6490   return (HasVector &&
6491           Ty->isVectorType() &&
6492           getContext().getTypeSize(Ty) <= 128);
6493 }
6494 
6495 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
6496   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
6497     switch (BT->getKind()) {
6498     case BuiltinType::Float:
6499     case BuiltinType::Double:
6500       return true;
6501     default:
6502       return false;
6503     }
6504 
6505   return false;
6506 }
6507 
6508 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const {
6509   if (const RecordType *RT = Ty->getAsStructureType()) {
6510     const RecordDecl *RD = RT->getDecl();
6511     QualType Found;
6512 
6513     // If this is a C++ record, check the bases first.
6514     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
6515       for (const auto &I : CXXRD->bases()) {
6516         QualType Base = I.getType();
6517 
6518         // Empty bases don't affect things either way.
6519         if (isEmptyRecord(getContext(), Base, true))
6520           continue;
6521 
6522         if (!Found.isNull())
6523           return Ty;
6524         Found = GetSingleElementType(Base);
6525       }
6526 
6527     // Check the fields.
6528     for (const auto *FD : RD->fields()) {
6529       // For compatibility with GCC, ignore empty bitfields in C++ mode.
6530       // Unlike isSingleElementStruct(), empty structure and array fields
6531       // do count.  So do anonymous bitfields that aren't zero-sized.
6532       if (getContext().getLangOpts().CPlusPlus &&
6533           FD->isZeroLengthBitField(getContext()))
6534         continue;
6535 
6536       // Unlike isSingleElementStruct(), arrays do not count.
6537       // Nested structures still do though.
6538       if (!Found.isNull())
6539         return Ty;
6540       Found = GetSingleElementType(FD->getType());
6541     }
6542 
6543     // Unlike isSingleElementStruct(), trailing padding is allowed.
6544     // An 8-byte aligned struct s { float f; } is passed as a double.
6545     if (!Found.isNull())
6546       return Found;
6547   }
6548 
6549   return Ty;
6550 }
6551 
6552 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6553                                   QualType Ty) const {
6554   // Assume that va_list type is correct; should be pointer to LLVM type:
6555   // struct {
6556   //   i64 __gpr;
6557   //   i64 __fpr;
6558   //   i8 *__overflow_arg_area;
6559   //   i8 *__reg_save_area;
6560   // };
6561 
6562   // Every non-vector argument occupies 8 bytes and is passed by preference
6563   // in either GPRs or FPRs.  Vector arguments occupy 8 or 16 bytes and are
6564   // always passed on the stack.
6565   Ty = getContext().getCanonicalType(Ty);
6566   auto TyInfo = getContext().getTypeInfoInChars(Ty);
6567   llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty);
6568   llvm::Type *DirectTy = ArgTy;
6569   ABIArgInfo AI = classifyArgumentType(Ty);
6570   bool IsIndirect = AI.isIndirect();
6571   bool InFPRs = false;
6572   bool IsVector = false;
6573   CharUnits UnpaddedSize;
6574   CharUnits DirectAlign;
6575   if (IsIndirect) {
6576     DirectTy = llvm::PointerType::getUnqual(DirectTy);
6577     UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8);
6578   } else {
6579     if (AI.getCoerceToType())
6580       ArgTy = AI.getCoerceToType();
6581     InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy();
6582     IsVector = ArgTy->isVectorTy();
6583     UnpaddedSize = TyInfo.first;
6584     DirectAlign = TyInfo.second;
6585   }
6586   CharUnits PaddedSize = CharUnits::fromQuantity(8);
6587   if (IsVector && UnpaddedSize > PaddedSize)
6588     PaddedSize = CharUnits::fromQuantity(16);
6589   assert((UnpaddedSize <= PaddedSize) && "Invalid argument size.");
6590 
6591   CharUnits Padding = (PaddedSize - UnpaddedSize);
6592 
6593   llvm::Type *IndexTy = CGF.Int64Ty;
6594   llvm::Value *PaddedSizeV =
6595     llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity());
6596 
6597   if (IsVector) {
6598     // Work out the address of a vector argument on the stack.
6599     // Vector arguments are always passed in the high bits of a
6600     // single (8 byte) or double (16 byte) stack slot.
6601     Address OverflowArgAreaPtr =
6602       CGF.Builder.CreateStructGEP(VAListAddr, 2, CharUnits::fromQuantity(16),
6603                                   "overflow_arg_area_ptr");
6604     Address OverflowArgArea =
6605       Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
6606               TyInfo.second);
6607     Address MemAddr =
6608       CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr");
6609 
6610     // Update overflow_arg_area_ptr pointer
6611     llvm::Value *NewOverflowArgArea =
6612       CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
6613                             "overflow_arg_area");
6614     CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
6615 
6616     return MemAddr;
6617   }
6618 
6619   assert(PaddedSize.getQuantity() == 8);
6620 
6621   unsigned MaxRegs, RegCountField, RegSaveIndex;
6622   CharUnits RegPadding;
6623   if (InFPRs) {
6624     MaxRegs = 4; // Maximum of 4 FPR arguments
6625     RegCountField = 1; // __fpr
6626     RegSaveIndex = 16; // save offset for f0
6627     RegPadding = CharUnits(); // floats are passed in the high bits of an FPR
6628   } else {
6629     MaxRegs = 5; // Maximum of 5 GPR arguments
6630     RegCountField = 0; // __gpr
6631     RegSaveIndex = 2; // save offset for r2
6632     RegPadding = Padding; // values are passed in the low bits of a GPR
6633   }
6634 
6635   Address RegCountPtr = CGF.Builder.CreateStructGEP(
6636       VAListAddr, RegCountField, RegCountField * CharUnits::fromQuantity(8),
6637       "reg_count_ptr");
6638   llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
6639   llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
6640   llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
6641                                                  "fits_in_regs");
6642 
6643   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
6644   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
6645   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
6646   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
6647 
6648   // Emit code to load the value if it was passed in registers.
6649   CGF.EmitBlock(InRegBlock);
6650 
6651   // Work out the address of an argument register.
6652   llvm::Value *ScaledRegCount =
6653     CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
6654   llvm::Value *RegBase =
6655     llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity()
6656                                       + RegPadding.getQuantity());
6657   llvm::Value *RegOffset =
6658     CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
6659   Address RegSaveAreaPtr =
6660       CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24),
6661                                   "reg_save_area_ptr");
6662   llvm::Value *RegSaveArea =
6663     CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
6664   Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset,
6665                                            "raw_reg_addr"),
6666                      PaddedSize);
6667   Address RegAddr =
6668     CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr");
6669 
6670   // Update the register count
6671   llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
6672   llvm::Value *NewRegCount =
6673     CGF.Builder.CreateAdd(RegCount, One, "reg_count");
6674   CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
6675   CGF.EmitBranch(ContBlock);
6676 
6677   // Emit code to load the value if it was passed in memory.
6678   CGF.EmitBlock(InMemBlock);
6679 
6680   // Work out the address of a stack argument.
6681   Address OverflowArgAreaPtr = CGF.Builder.CreateStructGEP(
6682       VAListAddr, 2, CharUnits::fromQuantity(16), "overflow_arg_area_ptr");
6683   Address OverflowArgArea =
6684     Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
6685             PaddedSize);
6686   Address RawMemAddr =
6687     CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr");
6688   Address MemAddr =
6689     CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr");
6690 
6691   // Update overflow_arg_area_ptr pointer
6692   llvm::Value *NewOverflowArgArea =
6693     CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
6694                           "overflow_arg_area");
6695   CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
6696   CGF.EmitBranch(ContBlock);
6697 
6698   // Return the appropriate result.
6699   CGF.EmitBlock(ContBlock);
6700   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
6701                                  MemAddr, InMemBlock, "va_arg.addr");
6702 
6703   if (IsIndirect)
6704     ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"),
6705                       TyInfo.second);
6706 
6707   return ResAddr;
6708 }
6709 
6710 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
6711   if (RetTy->isVoidType())
6712     return ABIArgInfo::getIgnore();
6713   if (isVectorArgumentType(RetTy))
6714     return ABIArgInfo::getDirect();
6715   if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
6716     return getNaturalAlignIndirect(RetTy);
6717   return (isPromotableIntegerType(RetTy) ? ABIArgInfo::getExtend(RetTy)
6718                                          : ABIArgInfo::getDirect());
6719 }
6720 
6721 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
6722   // Handle the generic C++ ABI.
6723   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
6724     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6725 
6726   // Integers and enums are extended to full register width.
6727   if (isPromotableIntegerType(Ty))
6728     return ABIArgInfo::getExtend(Ty);
6729 
6730   // Handle vector types and vector-like structure types.  Note that
6731   // as opposed to float-like structure types, we do not allow any
6732   // padding for vector-like structures, so verify the sizes match.
6733   uint64_t Size = getContext().getTypeSize(Ty);
6734   QualType SingleElementTy = GetSingleElementType(Ty);
6735   if (isVectorArgumentType(SingleElementTy) &&
6736       getContext().getTypeSize(SingleElementTy) == Size)
6737     return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy));
6738 
6739   // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
6740   if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
6741     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6742 
6743   // Handle small structures.
6744   if (const RecordType *RT = Ty->getAs<RecordType>()) {
6745     // Structures with flexible arrays have variable length, so really
6746     // fail the size test above.
6747     const RecordDecl *RD = RT->getDecl();
6748     if (RD->hasFlexibleArrayMember())
6749       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6750 
6751     // The structure is passed as an unextended integer, a float, or a double.
6752     llvm::Type *PassTy;
6753     if (isFPArgumentType(SingleElementTy)) {
6754       assert(Size == 32 || Size == 64);
6755       if (Size == 32)
6756         PassTy = llvm::Type::getFloatTy(getVMContext());
6757       else
6758         PassTy = llvm::Type::getDoubleTy(getVMContext());
6759     } else
6760       PassTy = llvm::IntegerType::get(getVMContext(), Size);
6761     return ABIArgInfo::getDirect(PassTy);
6762   }
6763 
6764   // Non-structure compounds are passed indirectly.
6765   if (isCompoundType(Ty))
6766     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6767 
6768   return ABIArgInfo::getDirect(nullptr);
6769 }
6770 
6771 //===----------------------------------------------------------------------===//
6772 // MSP430 ABI Implementation
6773 //===----------------------------------------------------------------------===//
6774 
6775 namespace {
6776 
6777 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
6778 public:
6779   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
6780     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
6781   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6782                            CodeGen::CodeGenModule &M) const override;
6783 };
6784 
6785 }
6786 
6787 void MSP430TargetCodeGenInfo::setTargetAttributes(
6788     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
6789   if (GV->isDeclaration())
6790     return;
6791   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
6792     const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>();
6793     if (!InterruptAttr)
6794       return;
6795 
6796     // Handle 'interrupt' attribute:
6797     llvm::Function *F = cast<llvm::Function>(GV);
6798 
6799     // Step 1: Set ISR calling convention.
6800     F->setCallingConv(llvm::CallingConv::MSP430_INTR);
6801 
6802     // Step 2: Add attributes goodness.
6803     F->addFnAttr(llvm::Attribute::NoInline);
6804     F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber()));
6805   }
6806 }
6807 
6808 //===----------------------------------------------------------------------===//
6809 // MIPS ABI Implementation.  This works for both little-endian and
6810 // big-endian variants.
6811 //===----------------------------------------------------------------------===//
6812 
6813 namespace {
6814 class MipsABIInfo : public ABIInfo {
6815   bool IsO32;
6816   unsigned MinABIStackAlignInBytes, StackAlignInBytes;
6817   void CoerceToIntArgs(uint64_t TySize,
6818                        SmallVectorImpl<llvm::Type *> &ArgList) const;
6819   llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
6820   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
6821   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
6822 public:
6823   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
6824     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
6825     StackAlignInBytes(IsO32 ? 8 : 16) {}
6826 
6827   ABIArgInfo classifyReturnType(QualType RetTy) const;
6828   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
6829   void computeInfo(CGFunctionInfo &FI) const override;
6830   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6831                     QualType Ty) const override;
6832   ABIArgInfo extendType(QualType Ty) const;
6833 };
6834 
6835 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
6836   unsigned SizeOfUnwindException;
6837 public:
6838   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
6839     : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
6840       SizeOfUnwindException(IsO32 ? 24 : 32) {}
6841 
6842   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
6843     return 29;
6844   }
6845 
6846   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6847                            CodeGen::CodeGenModule &CGM) const override {
6848     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6849     if (!FD) return;
6850     llvm::Function *Fn = cast<llvm::Function>(GV);
6851 
6852     if (FD->hasAttr<MipsLongCallAttr>())
6853       Fn->addFnAttr("long-call");
6854     else if (FD->hasAttr<MipsShortCallAttr>())
6855       Fn->addFnAttr("short-call");
6856 
6857     // Other attributes do not have a meaning for declarations.
6858     if (GV->isDeclaration())
6859       return;
6860 
6861     if (FD->hasAttr<Mips16Attr>()) {
6862       Fn->addFnAttr("mips16");
6863     }
6864     else if (FD->hasAttr<NoMips16Attr>()) {
6865       Fn->addFnAttr("nomips16");
6866     }
6867 
6868     if (FD->hasAttr<MicroMipsAttr>())
6869       Fn->addFnAttr("micromips");
6870     else if (FD->hasAttr<NoMicroMipsAttr>())
6871       Fn->addFnAttr("nomicromips");
6872 
6873     const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>();
6874     if (!Attr)
6875       return;
6876 
6877     const char *Kind;
6878     switch (Attr->getInterrupt()) {
6879     case MipsInterruptAttr::eic:     Kind = "eic"; break;
6880     case MipsInterruptAttr::sw0:     Kind = "sw0"; break;
6881     case MipsInterruptAttr::sw1:     Kind = "sw1"; break;
6882     case MipsInterruptAttr::hw0:     Kind = "hw0"; break;
6883     case MipsInterruptAttr::hw1:     Kind = "hw1"; break;
6884     case MipsInterruptAttr::hw2:     Kind = "hw2"; break;
6885     case MipsInterruptAttr::hw3:     Kind = "hw3"; break;
6886     case MipsInterruptAttr::hw4:     Kind = "hw4"; break;
6887     case MipsInterruptAttr::hw5:     Kind = "hw5"; break;
6888     }
6889 
6890     Fn->addFnAttr("interrupt", Kind);
6891 
6892   }
6893 
6894   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6895                                llvm::Value *Address) const override;
6896 
6897   unsigned getSizeOfUnwindException() const override {
6898     return SizeOfUnwindException;
6899   }
6900 };
6901 }
6902 
6903 void MipsABIInfo::CoerceToIntArgs(
6904     uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const {
6905   llvm::IntegerType *IntTy =
6906     llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
6907 
6908   // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
6909   for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
6910     ArgList.push_back(IntTy);
6911 
6912   // If necessary, add one more integer type to ArgList.
6913   unsigned R = TySize % (MinABIStackAlignInBytes * 8);
6914 
6915   if (R)
6916     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
6917 }
6918 
6919 // In N32/64, an aligned double precision floating point field is passed in
6920 // a register.
6921 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
6922   SmallVector<llvm::Type*, 8> ArgList, IntArgList;
6923 
6924   if (IsO32) {
6925     CoerceToIntArgs(TySize, ArgList);
6926     return llvm::StructType::get(getVMContext(), ArgList);
6927   }
6928 
6929   if (Ty->isComplexType())
6930     return CGT.ConvertType(Ty);
6931 
6932   const RecordType *RT = Ty->getAs<RecordType>();
6933 
6934   // Unions/vectors are passed in integer registers.
6935   if (!RT || !RT->isStructureOrClassType()) {
6936     CoerceToIntArgs(TySize, ArgList);
6937     return llvm::StructType::get(getVMContext(), ArgList);
6938   }
6939 
6940   const RecordDecl *RD = RT->getDecl();
6941   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
6942   assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
6943 
6944   uint64_t LastOffset = 0;
6945   unsigned idx = 0;
6946   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
6947 
6948   // Iterate over fields in the struct/class and check if there are any aligned
6949   // double fields.
6950   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
6951        i != e; ++i, ++idx) {
6952     const QualType Ty = i->getType();
6953     const BuiltinType *BT = Ty->getAs<BuiltinType>();
6954 
6955     if (!BT || BT->getKind() != BuiltinType::Double)
6956       continue;
6957 
6958     uint64_t Offset = Layout.getFieldOffset(idx);
6959     if (Offset % 64) // Ignore doubles that are not aligned.
6960       continue;
6961 
6962     // Add ((Offset - LastOffset) / 64) args of type i64.
6963     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
6964       ArgList.push_back(I64);
6965 
6966     // Add double type.
6967     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
6968     LastOffset = Offset + 64;
6969   }
6970 
6971   CoerceToIntArgs(TySize - LastOffset, IntArgList);
6972   ArgList.append(IntArgList.begin(), IntArgList.end());
6973 
6974   return llvm::StructType::get(getVMContext(), ArgList);
6975 }
6976 
6977 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
6978                                         uint64_t Offset) const {
6979   if (OrigOffset + MinABIStackAlignInBytes > Offset)
6980     return nullptr;
6981 
6982   return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
6983 }
6984 
6985 ABIArgInfo
6986 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
6987   Ty = useFirstFieldIfTransparentUnion(Ty);
6988 
6989   uint64_t OrigOffset = Offset;
6990   uint64_t TySize = getContext().getTypeSize(Ty);
6991   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
6992 
6993   Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
6994                    (uint64_t)StackAlignInBytes);
6995   unsigned CurrOffset = llvm::alignTo(Offset, Align);
6996   Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8;
6997 
6998   if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
6999     // Ignore empty aggregates.
7000     if (TySize == 0)
7001       return ABIArgInfo::getIgnore();
7002 
7003     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
7004       Offset = OrigOffset + MinABIStackAlignInBytes;
7005       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7006     }
7007 
7008     // If we have reached here, aggregates are passed directly by coercing to
7009     // another structure type. Padding is inserted if the offset of the
7010     // aggregate is unaligned.
7011     ABIArgInfo ArgInfo =
7012         ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
7013                               getPaddingType(OrigOffset, CurrOffset));
7014     ArgInfo.setInReg(true);
7015     return ArgInfo;
7016   }
7017 
7018   // Treat an enum type as its underlying type.
7019   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7020     Ty = EnumTy->getDecl()->getIntegerType();
7021 
7022   // All integral types are promoted to the GPR width.
7023   if (Ty->isIntegralOrEnumerationType())
7024     return extendType(Ty);
7025 
7026   return ABIArgInfo::getDirect(
7027       nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
7028 }
7029 
7030 llvm::Type*
7031 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
7032   const RecordType *RT = RetTy->getAs<RecordType>();
7033   SmallVector<llvm::Type*, 8> RTList;
7034 
7035   if (RT && RT->isStructureOrClassType()) {
7036     const RecordDecl *RD = RT->getDecl();
7037     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
7038     unsigned FieldCnt = Layout.getFieldCount();
7039 
7040     // N32/64 returns struct/classes in floating point registers if the
7041     // following conditions are met:
7042     // 1. The size of the struct/class is no larger than 128-bit.
7043     // 2. The struct/class has one or two fields all of which are floating
7044     //    point types.
7045     // 3. The offset of the first field is zero (this follows what gcc does).
7046     //
7047     // Any other composite results are returned in integer registers.
7048     //
7049     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
7050       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
7051       for (; b != e; ++b) {
7052         const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
7053 
7054         if (!BT || !BT->isFloatingPoint())
7055           break;
7056 
7057         RTList.push_back(CGT.ConvertType(b->getType()));
7058       }
7059 
7060       if (b == e)
7061         return llvm::StructType::get(getVMContext(), RTList,
7062                                      RD->hasAttr<PackedAttr>());
7063 
7064       RTList.clear();
7065     }
7066   }
7067 
7068   CoerceToIntArgs(Size, RTList);
7069   return llvm::StructType::get(getVMContext(), RTList);
7070 }
7071 
7072 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
7073   uint64_t Size = getContext().getTypeSize(RetTy);
7074 
7075   if (RetTy->isVoidType())
7076     return ABIArgInfo::getIgnore();
7077 
7078   // O32 doesn't treat zero-sized structs differently from other structs.
7079   // However, N32/N64 ignores zero sized return values.
7080   if (!IsO32 && Size == 0)
7081     return ABIArgInfo::getIgnore();
7082 
7083   if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
7084     if (Size <= 128) {
7085       if (RetTy->isAnyComplexType())
7086         return ABIArgInfo::getDirect();
7087 
7088       // O32 returns integer vectors in registers and N32/N64 returns all small
7089       // aggregates in registers.
7090       if (!IsO32 ||
7091           (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
7092         ABIArgInfo ArgInfo =
7093             ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
7094         ArgInfo.setInReg(true);
7095         return ArgInfo;
7096       }
7097     }
7098 
7099     return getNaturalAlignIndirect(RetTy);
7100   }
7101 
7102   // Treat an enum type as its underlying type.
7103   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
7104     RetTy = EnumTy->getDecl()->getIntegerType();
7105 
7106   if (RetTy->isPromotableIntegerType())
7107     return ABIArgInfo::getExtend(RetTy);
7108 
7109   if ((RetTy->isUnsignedIntegerOrEnumerationType() ||
7110       RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32)
7111     return ABIArgInfo::getSignExtend(RetTy);
7112 
7113   return ABIArgInfo::getDirect();
7114 }
7115 
7116 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
7117   ABIArgInfo &RetInfo = FI.getReturnInfo();
7118   if (!getCXXABI().classifyReturnType(FI))
7119     RetInfo = classifyReturnType(FI.getReturnType());
7120 
7121   // Check if a pointer to an aggregate is passed as a hidden argument.
7122   uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
7123 
7124   for (auto &I : FI.arguments())
7125     I.info = classifyArgumentType(I.type, Offset);
7126 }
7127 
7128 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7129                                QualType OrigTy) const {
7130   QualType Ty = OrigTy;
7131 
7132   // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64.
7133   // Pointers are also promoted in the same way but this only matters for N32.
7134   unsigned SlotSizeInBits = IsO32 ? 32 : 64;
7135   unsigned PtrWidth = getTarget().getPointerWidth(0);
7136   bool DidPromote = false;
7137   if ((Ty->isIntegerType() &&
7138           getContext().getIntWidth(Ty) < SlotSizeInBits) ||
7139       (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) {
7140     DidPromote = true;
7141     Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits,
7142                                             Ty->isSignedIntegerType());
7143   }
7144 
7145   auto TyInfo = getContext().getTypeInfoInChars(Ty);
7146 
7147   // The alignment of things in the argument area is never larger than
7148   // StackAlignInBytes.
7149   TyInfo.second =
7150     std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes));
7151 
7152   // MinABIStackAlignInBytes is the size of argument slots on the stack.
7153   CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes);
7154 
7155   Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
7156                           TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true);
7157 
7158 
7159   // If there was a promotion, "unpromote" into a temporary.
7160   // TODO: can we just use a pointer into a subset of the original slot?
7161   if (DidPromote) {
7162     Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp");
7163     llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr);
7164 
7165     // Truncate down to the right width.
7166     llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType()
7167                                                  : CGF.IntPtrTy);
7168     llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy);
7169     if (OrigTy->isPointerType())
7170       V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType());
7171 
7172     CGF.Builder.CreateStore(V, Temp);
7173     Addr = Temp;
7174   }
7175 
7176   return Addr;
7177 }
7178 
7179 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const {
7180   int TySize = getContext().getTypeSize(Ty);
7181 
7182   // MIPS64 ABI requires unsigned 32 bit integers to be sign extended.
7183   if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
7184     return ABIArgInfo::getSignExtend(Ty);
7185 
7186   return ABIArgInfo::getExtend(Ty);
7187 }
7188 
7189 bool
7190 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
7191                                                llvm::Value *Address) const {
7192   // This information comes from gcc's implementation, which seems to
7193   // as canonical as it gets.
7194 
7195   // Everything on MIPS is 4 bytes.  Double-precision FP registers
7196   // are aliased to pairs of single-precision FP registers.
7197   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
7198 
7199   // 0-31 are the general purpose registers, $0 - $31.
7200   // 32-63 are the floating-point registers, $f0 - $f31.
7201   // 64 and 65 are the multiply/divide registers, $hi and $lo.
7202   // 66 is the (notional, I think) register for signal-handler return.
7203   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
7204 
7205   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
7206   // They are one bit wide and ignored here.
7207 
7208   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
7209   // (coprocessor 1 is the FP unit)
7210   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
7211   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
7212   // 176-181 are the DSP accumulator registers.
7213   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
7214   return false;
7215 }
7216 
7217 //===----------------------------------------------------------------------===//
7218 // AVR ABI Implementation.
7219 //===----------------------------------------------------------------------===//
7220 
7221 namespace {
7222 class AVRTargetCodeGenInfo : public TargetCodeGenInfo {
7223 public:
7224   AVRTargetCodeGenInfo(CodeGenTypes &CGT)
7225     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) { }
7226 
7227   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7228                            CodeGen::CodeGenModule &CGM) const override {
7229     if (GV->isDeclaration())
7230       return;
7231     const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
7232     if (!FD) return;
7233     auto *Fn = cast<llvm::Function>(GV);
7234 
7235     if (FD->getAttr<AVRInterruptAttr>())
7236       Fn->addFnAttr("interrupt");
7237 
7238     if (FD->getAttr<AVRSignalAttr>())
7239       Fn->addFnAttr("signal");
7240   }
7241 };
7242 }
7243 
7244 //===----------------------------------------------------------------------===//
7245 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
7246 // Currently subclassed only to implement custom OpenCL C function attribute
7247 // handling.
7248 //===----------------------------------------------------------------------===//
7249 
7250 namespace {
7251 
7252 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
7253 public:
7254   TCETargetCodeGenInfo(CodeGenTypes &CGT)
7255     : DefaultTargetCodeGenInfo(CGT) {}
7256 
7257   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7258                            CodeGen::CodeGenModule &M) const override;
7259 };
7260 
7261 void TCETargetCodeGenInfo::setTargetAttributes(
7262     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
7263   if (GV->isDeclaration())
7264     return;
7265   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7266   if (!FD) return;
7267 
7268   llvm::Function *F = cast<llvm::Function>(GV);
7269 
7270   if (M.getLangOpts().OpenCL) {
7271     if (FD->hasAttr<OpenCLKernelAttr>()) {
7272       // OpenCL C Kernel functions are not subject to inlining
7273       F->addFnAttr(llvm::Attribute::NoInline);
7274       const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
7275       if (Attr) {
7276         // Convert the reqd_work_group_size() attributes to metadata.
7277         llvm::LLVMContext &Context = F->getContext();
7278         llvm::NamedMDNode *OpenCLMetadata =
7279             M.getModule().getOrInsertNamedMetadata(
7280                 "opencl.kernel_wg_size_info");
7281 
7282         SmallVector<llvm::Metadata *, 5> Operands;
7283         Operands.push_back(llvm::ConstantAsMetadata::get(F));
7284 
7285         Operands.push_back(
7286             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
7287                 M.Int32Ty, llvm::APInt(32, Attr->getXDim()))));
7288         Operands.push_back(
7289             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
7290                 M.Int32Ty, llvm::APInt(32, Attr->getYDim()))));
7291         Operands.push_back(
7292             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
7293                 M.Int32Ty, llvm::APInt(32, Attr->getZDim()))));
7294 
7295         // Add a boolean constant operand for "required" (true) or "hint"
7296         // (false) for implementing the work_group_size_hint attr later.
7297         // Currently always true as the hint is not yet implemented.
7298         Operands.push_back(
7299             llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context)));
7300         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
7301       }
7302     }
7303   }
7304 }
7305 
7306 }
7307 
7308 //===----------------------------------------------------------------------===//
7309 // Hexagon ABI Implementation
7310 //===----------------------------------------------------------------------===//
7311 
7312 namespace {
7313 
7314 class HexagonABIInfo : public ABIInfo {
7315 
7316 
7317 public:
7318   HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
7319 
7320 private:
7321 
7322   ABIArgInfo classifyReturnType(QualType RetTy) const;
7323   ABIArgInfo classifyArgumentType(QualType RetTy) const;
7324 
7325   void computeInfo(CGFunctionInfo &FI) const override;
7326 
7327   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7328                     QualType Ty) const override;
7329 };
7330 
7331 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
7332 public:
7333   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
7334     :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
7335 
7336   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
7337     return 29;
7338   }
7339 };
7340 
7341 }
7342 
7343 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
7344   if (!getCXXABI().classifyReturnType(FI))
7345     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7346   for (auto &I : FI.arguments())
7347     I.info = classifyArgumentType(I.type);
7348 }
7349 
7350 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
7351   if (!isAggregateTypeForABI(Ty)) {
7352     // Treat an enum type as its underlying type.
7353     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7354       Ty = EnumTy->getDecl()->getIntegerType();
7355 
7356     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
7357                                           : ABIArgInfo::getDirect());
7358   }
7359 
7360   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
7361     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7362 
7363   // Ignore empty records.
7364   if (isEmptyRecord(getContext(), Ty, true))
7365     return ABIArgInfo::getIgnore();
7366 
7367   uint64_t Size = getContext().getTypeSize(Ty);
7368   if (Size > 64)
7369     return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
7370     // Pass in the smallest viable integer type.
7371   else if (Size > 32)
7372       return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
7373   else if (Size > 16)
7374       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
7375   else if (Size > 8)
7376       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
7377   else
7378       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
7379 }
7380 
7381 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
7382   if (RetTy->isVoidType())
7383     return ABIArgInfo::getIgnore();
7384 
7385   // Large vector types should be returned via memory.
7386   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
7387     return getNaturalAlignIndirect(RetTy);
7388 
7389   if (!isAggregateTypeForABI(RetTy)) {
7390     // Treat an enum type as its underlying type.
7391     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
7392       RetTy = EnumTy->getDecl()->getIntegerType();
7393 
7394     return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
7395                                              : ABIArgInfo::getDirect());
7396   }
7397 
7398   if (isEmptyRecord(getContext(), RetTy, true))
7399     return ABIArgInfo::getIgnore();
7400 
7401   // Aggregates <= 8 bytes are returned in r0; other aggregates
7402   // are returned indirectly.
7403   uint64_t Size = getContext().getTypeSize(RetTy);
7404   if (Size <= 64) {
7405     // Return in the smallest viable integer type.
7406     if (Size <= 8)
7407       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
7408     if (Size <= 16)
7409       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
7410     if (Size <= 32)
7411       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
7412     return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
7413   }
7414 
7415   return getNaturalAlignIndirect(RetTy, /*ByVal=*/true);
7416 }
7417 
7418 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7419                                   QualType Ty) const {
7420   // FIXME: Someone needs to audit that this handle alignment correctly.
7421   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
7422                           getContext().getTypeInfoInChars(Ty),
7423                           CharUnits::fromQuantity(4),
7424                           /*AllowHigherAlign*/ true);
7425 }
7426 
7427 //===----------------------------------------------------------------------===//
7428 // Lanai ABI Implementation
7429 //===----------------------------------------------------------------------===//
7430 
7431 namespace {
7432 class LanaiABIInfo : public DefaultABIInfo {
7433 public:
7434   LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
7435 
7436   bool shouldUseInReg(QualType Ty, CCState &State) const;
7437 
7438   void computeInfo(CGFunctionInfo &FI) const override {
7439     CCState State(FI.getCallingConvention());
7440     // Lanai uses 4 registers to pass arguments unless the function has the
7441     // regparm attribute set.
7442     if (FI.getHasRegParm()) {
7443       State.FreeRegs = FI.getRegParm();
7444     } else {
7445       State.FreeRegs = 4;
7446     }
7447 
7448     if (!getCXXABI().classifyReturnType(FI))
7449       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7450     for (auto &I : FI.arguments())
7451       I.info = classifyArgumentType(I.type, State);
7452   }
7453 
7454   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
7455   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
7456 };
7457 } // end anonymous namespace
7458 
7459 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const {
7460   unsigned Size = getContext().getTypeSize(Ty);
7461   unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U;
7462 
7463   if (SizeInRegs == 0)
7464     return false;
7465 
7466   if (SizeInRegs > State.FreeRegs) {
7467     State.FreeRegs = 0;
7468     return false;
7469   }
7470 
7471   State.FreeRegs -= SizeInRegs;
7472 
7473   return true;
7474 }
7475 
7476 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal,
7477                                            CCState &State) const {
7478   if (!ByVal) {
7479     if (State.FreeRegs) {
7480       --State.FreeRegs; // Non-byval indirects just use one pointer.
7481       return getNaturalAlignIndirectInReg(Ty);
7482     }
7483     return getNaturalAlignIndirect(Ty, false);
7484   }
7485 
7486   // Compute the byval alignment.
7487   const unsigned MinABIStackAlignInBytes = 4;
7488   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
7489   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
7490                                  /*Realign=*/TypeAlign >
7491                                      MinABIStackAlignInBytes);
7492 }
7493 
7494 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty,
7495                                               CCState &State) const {
7496   // Check with the C++ ABI first.
7497   const RecordType *RT = Ty->getAs<RecordType>();
7498   if (RT) {
7499     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
7500     if (RAA == CGCXXABI::RAA_Indirect) {
7501       return getIndirectResult(Ty, /*ByVal=*/false, State);
7502     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
7503       return getNaturalAlignIndirect(Ty, /*ByRef=*/true);
7504     }
7505   }
7506 
7507   if (isAggregateTypeForABI(Ty)) {
7508     // Structures with flexible arrays are always indirect.
7509     if (RT && RT->getDecl()->hasFlexibleArrayMember())
7510       return getIndirectResult(Ty, /*ByVal=*/true, State);
7511 
7512     // Ignore empty structs/unions.
7513     if (isEmptyRecord(getContext(), Ty, true))
7514       return ABIArgInfo::getIgnore();
7515 
7516     llvm::LLVMContext &LLVMContext = getVMContext();
7517     unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
7518     if (SizeInRegs <= State.FreeRegs) {
7519       llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
7520       SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
7521       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
7522       State.FreeRegs -= SizeInRegs;
7523       return ABIArgInfo::getDirectInReg(Result);
7524     } else {
7525       State.FreeRegs = 0;
7526     }
7527     return getIndirectResult(Ty, true, State);
7528   }
7529 
7530   // Treat an enum type as its underlying type.
7531   if (const auto *EnumTy = Ty->getAs<EnumType>())
7532     Ty = EnumTy->getDecl()->getIntegerType();
7533 
7534   bool InReg = shouldUseInReg(Ty, State);
7535   if (Ty->isPromotableIntegerType()) {
7536     if (InReg)
7537       return ABIArgInfo::getDirectInReg();
7538     return ABIArgInfo::getExtend(Ty);
7539   }
7540   if (InReg)
7541     return ABIArgInfo::getDirectInReg();
7542   return ABIArgInfo::getDirect();
7543 }
7544 
7545 namespace {
7546 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo {
7547 public:
7548   LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
7549       : TargetCodeGenInfo(new LanaiABIInfo(CGT)) {}
7550 };
7551 }
7552 
7553 //===----------------------------------------------------------------------===//
7554 // AMDGPU ABI Implementation
7555 //===----------------------------------------------------------------------===//
7556 
7557 namespace {
7558 
7559 class AMDGPUABIInfo final : public DefaultABIInfo {
7560 private:
7561   static const unsigned MaxNumRegsForArgsRet = 16;
7562 
7563   unsigned numRegsForType(QualType Ty) const;
7564 
7565   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
7566   bool isHomogeneousAggregateSmallEnough(const Type *Base,
7567                                          uint64_t Members) const override;
7568 
7569 public:
7570   explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) :
7571     DefaultABIInfo(CGT) {}
7572 
7573   ABIArgInfo classifyReturnType(QualType RetTy) const;
7574   ABIArgInfo classifyKernelArgumentType(QualType Ty) const;
7575   ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const;
7576 
7577   void computeInfo(CGFunctionInfo &FI) const override;
7578 };
7579 
7580 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
7581   return true;
7582 }
7583 
7584 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough(
7585   const Type *Base, uint64_t Members) const {
7586   uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32;
7587 
7588   // Homogeneous Aggregates may occupy at most 16 registers.
7589   return Members * NumRegs <= MaxNumRegsForArgsRet;
7590 }
7591 
7592 /// Estimate number of registers the type will use when passed in registers.
7593 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const {
7594   unsigned NumRegs = 0;
7595 
7596   if (const VectorType *VT = Ty->getAs<VectorType>()) {
7597     // Compute from the number of elements. The reported size is based on the
7598     // in-memory size, which includes the padding 4th element for 3-vectors.
7599     QualType EltTy = VT->getElementType();
7600     unsigned EltSize = getContext().getTypeSize(EltTy);
7601 
7602     // 16-bit element vectors should be passed as packed.
7603     if (EltSize == 16)
7604       return (VT->getNumElements() + 1) / 2;
7605 
7606     unsigned EltNumRegs = (EltSize + 31) / 32;
7607     return EltNumRegs * VT->getNumElements();
7608   }
7609 
7610   if (const RecordType *RT = Ty->getAs<RecordType>()) {
7611     const RecordDecl *RD = RT->getDecl();
7612     assert(!RD->hasFlexibleArrayMember());
7613 
7614     for (const FieldDecl *Field : RD->fields()) {
7615       QualType FieldTy = Field->getType();
7616       NumRegs += numRegsForType(FieldTy);
7617     }
7618 
7619     return NumRegs;
7620   }
7621 
7622   return (getContext().getTypeSize(Ty) + 31) / 32;
7623 }
7624 
7625 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const {
7626   llvm::CallingConv::ID CC = FI.getCallingConvention();
7627 
7628   if (!getCXXABI().classifyReturnType(FI))
7629     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7630 
7631   unsigned NumRegsLeft = MaxNumRegsForArgsRet;
7632   for (auto &Arg : FI.arguments()) {
7633     if (CC == llvm::CallingConv::AMDGPU_KERNEL) {
7634       Arg.info = classifyKernelArgumentType(Arg.type);
7635     } else {
7636       Arg.info = classifyArgumentType(Arg.type, NumRegsLeft);
7637     }
7638   }
7639 }
7640 
7641 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const {
7642   if (isAggregateTypeForABI(RetTy)) {
7643     // Records with non-trivial destructors/copy-constructors should not be
7644     // returned by value.
7645     if (!getRecordArgABI(RetTy, getCXXABI())) {
7646       // Ignore empty structs/unions.
7647       if (isEmptyRecord(getContext(), RetTy, true))
7648         return ABIArgInfo::getIgnore();
7649 
7650       // Lower single-element structs to just return a regular value.
7651       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
7652         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
7653 
7654       if (const RecordType *RT = RetTy->getAs<RecordType>()) {
7655         const RecordDecl *RD = RT->getDecl();
7656         if (RD->hasFlexibleArrayMember())
7657           return DefaultABIInfo::classifyReturnType(RetTy);
7658       }
7659 
7660       // Pack aggregates <= 4 bytes into single VGPR or pair.
7661       uint64_t Size = getContext().getTypeSize(RetTy);
7662       if (Size <= 16)
7663         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
7664 
7665       if (Size <= 32)
7666         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
7667 
7668       if (Size <= 64) {
7669         llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
7670         return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
7671       }
7672 
7673       if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet)
7674         return ABIArgInfo::getDirect();
7675     }
7676   }
7677 
7678   // Otherwise just do the default thing.
7679   return DefaultABIInfo::classifyReturnType(RetTy);
7680 }
7681 
7682 /// For kernels all parameters are really passed in a special buffer. It doesn't
7683 /// make sense to pass anything byval, so everything must be direct.
7684 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const {
7685   Ty = useFirstFieldIfTransparentUnion(Ty);
7686 
7687   // TODO: Can we omit empty structs?
7688 
7689   // Coerce single element structs to its element.
7690   if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
7691     return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
7692 
7693   // If we set CanBeFlattened to true, CodeGen will expand the struct to its
7694   // individual elements, which confuses the Clover OpenCL backend; therefore we
7695   // have to set it to false here. Other args of getDirect() are just defaults.
7696   return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
7697 }
7698 
7699 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty,
7700                                                unsigned &NumRegsLeft) const {
7701   assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow");
7702 
7703   Ty = useFirstFieldIfTransparentUnion(Ty);
7704 
7705   if (isAggregateTypeForABI(Ty)) {
7706     // Records with non-trivial destructors/copy-constructors should not be
7707     // passed by value.
7708     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
7709       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7710 
7711     // Ignore empty structs/unions.
7712     if (isEmptyRecord(getContext(), Ty, true))
7713       return ABIArgInfo::getIgnore();
7714 
7715     // Lower single-element structs to just pass a regular value. TODO: We
7716     // could do reasonable-size multiple-element structs too, using getExpand(),
7717     // though watch out for things like bitfields.
7718     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
7719       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
7720 
7721     if (const RecordType *RT = Ty->getAs<RecordType>()) {
7722       const RecordDecl *RD = RT->getDecl();
7723       if (RD->hasFlexibleArrayMember())
7724         return DefaultABIInfo::classifyArgumentType(Ty);
7725     }
7726 
7727     // Pack aggregates <= 8 bytes into single VGPR or pair.
7728     uint64_t Size = getContext().getTypeSize(Ty);
7729     if (Size <= 64) {
7730       unsigned NumRegs = (Size + 31) / 32;
7731       NumRegsLeft -= std::min(NumRegsLeft, NumRegs);
7732 
7733       if (Size <= 16)
7734         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
7735 
7736       if (Size <= 32)
7737         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
7738 
7739       // XXX: Should this be i64 instead, and should the limit increase?
7740       llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
7741       return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
7742     }
7743 
7744     if (NumRegsLeft > 0) {
7745       unsigned NumRegs = numRegsForType(Ty);
7746       if (NumRegsLeft >= NumRegs) {
7747         NumRegsLeft -= NumRegs;
7748         return ABIArgInfo::getDirect();
7749       }
7750     }
7751   }
7752 
7753   // Otherwise just do the default thing.
7754   ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty);
7755   if (!ArgInfo.isIndirect()) {
7756     unsigned NumRegs = numRegsForType(Ty);
7757     NumRegsLeft -= std::min(NumRegs, NumRegsLeft);
7758   }
7759 
7760   return ArgInfo;
7761 }
7762 
7763 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
7764 public:
7765   AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
7766     : TargetCodeGenInfo(new AMDGPUABIInfo(CGT)) {}
7767   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7768                            CodeGen::CodeGenModule &M) const override;
7769   unsigned getOpenCLKernelCallingConv() const override;
7770 
7771   llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM,
7772       llvm::PointerType *T, QualType QT) const override;
7773 
7774   LangAS getASTAllocaAddressSpace() const override {
7775     return getLangASFromTargetAS(
7776         getABIInfo().getDataLayout().getAllocaAddrSpace());
7777   }
7778   LangAS getGlobalVarAddressSpace(CodeGenModule &CGM,
7779                                   const VarDecl *D) const override;
7780   llvm::SyncScope::ID getLLVMSyncScopeID(SyncScope S,
7781                                          llvm::LLVMContext &C) const override;
7782   llvm::Function *
7783   createEnqueuedBlockKernel(CodeGenFunction &CGF,
7784                             llvm::Function *BlockInvokeFunc,
7785                             llvm::Value *BlockLiteral) const override;
7786   bool shouldEmitStaticExternCAliases() const override;
7787   void setCUDAKernelCallingConvention(const FunctionType *&FT) const override;
7788 };
7789 }
7790 
7791 void AMDGPUTargetCodeGenInfo::setTargetAttributes(
7792     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
7793   if (GV->isDeclaration())
7794     return;
7795   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7796   if (!FD)
7797     return;
7798 
7799   llvm::Function *F = cast<llvm::Function>(GV);
7800 
7801   const auto *ReqdWGS = M.getLangOpts().OpenCL ?
7802     FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr;
7803 
7804   if (M.getLangOpts().OpenCL && FD->hasAttr<OpenCLKernelAttr>() &&
7805       (M.getTriple().getOS() == llvm::Triple::AMDHSA))
7806     F->addFnAttr("amdgpu-implicitarg-num-bytes", "48");
7807 
7808   const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>();
7809   if (ReqdWGS || FlatWGS) {
7810     unsigned Min = FlatWGS ? FlatWGS->getMin() : 0;
7811     unsigned Max = FlatWGS ? FlatWGS->getMax() : 0;
7812     if (ReqdWGS && Min == 0 && Max == 0)
7813       Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim();
7814 
7815     if (Min != 0) {
7816       assert(Min <= Max && "Min must be less than or equal Max");
7817 
7818       std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max);
7819       F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
7820     } else
7821       assert(Max == 0 && "Max must be zero");
7822   }
7823 
7824   if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) {
7825     unsigned Min = Attr->getMin();
7826     unsigned Max = Attr->getMax();
7827 
7828     if (Min != 0) {
7829       assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max");
7830 
7831       std::string AttrVal = llvm::utostr(Min);
7832       if (Max != 0)
7833         AttrVal = AttrVal + "," + llvm::utostr(Max);
7834       F->addFnAttr("amdgpu-waves-per-eu", AttrVal);
7835     } else
7836       assert(Max == 0 && "Max must be zero");
7837   }
7838 
7839   if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
7840     unsigned NumSGPR = Attr->getNumSGPR();
7841 
7842     if (NumSGPR != 0)
7843       F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR));
7844   }
7845 
7846   if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
7847     uint32_t NumVGPR = Attr->getNumVGPR();
7848 
7849     if (NumVGPR != 0)
7850       F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR));
7851   }
7852 }
7853 
7854 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
7855   return llvm::CallingConv::AMDGPU_KERNEL;
7856 }
7857 
7858 // Currently LLVM assumes null pointers always have value 0,
7859 // which results in incorrectly transformed IR. Therefore, instead of
7860 // emitting null pointers in private and local address spaces, a null
7861 // pointer in generic address space is emitted which is casted to a
7862 // pointer in local or private address space.
7863 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer(
7864     const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT,
7865     QualType QT) const {
7866   if (CGM.getContext().getTargetNullPointerValue(QT) == 0)
7867     return llvm::ConstantPointerNull::get(PT);
7868 
7869   auto &Ctx = CGM.getContext();
7870   auto NPT = llvm::PointerType::get(PT->getElementType(),
7871       Ctx.getTargetAddressSpace(LangAS::opencl_generic));
7872   return llvm::ConstantExpr::getAddrSpaceCast(
7873       llvm::ConstantPointerNull::get(NPT), PT);
7874 }
7875 
7876 LangAS
7877 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
7878                                                   const VarDecl *D) const {
7879   assert(!CGM.getLangOpts().OpenCL &&
7880          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
7881          "Address space agnostic languages only");
7882   LangAS DefaultGlobalAS = getLangASFromTargetAS(
7883       CGM.getContext().getTargetAddressSpace(LangAS::opencl_global));
7884   if (!D)
7885     return DefaultGlobalAS;
7886 
7887   LangAS AddrSpace = D->getType().getAddressSpace();
7888   assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace));
7889   if (AddrSpace != LangAS::Default)
7890     return AddrSpace;
7891 
7892   if (CGM.isTypeConstant(D->getType(), false)) {
7893     if (auto ConstAS = CGM.getTarget().getConstantAddressSpace())
7894       return ConstAS.getValue();
7895   }
7896   return DefaultGlobalAS;
7897 }
7898 
7899 llvm::SyncScope::ID
7900 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(SyncScope S,
7901                                             llvm::LLVMContext &C) const {
7902   StringRef Name;
7903   switch (S) {
7904   case SyncScope::OpenCLWorkGroup:
7905     Name = "workgroup";
7906     break;
7907   case SyncScope::OpenCLDevice:
7908     Name = "agent";
7909     break;
7910   case SyncScope::OpenCLAllSVMDevices:
7911     Name = "";
7912     break;
7913   case SyncScope::OpenCLSubGroup:
7914     Name = "subgroup";
7915   }
7916   return C.getOrInsertSyncScopeID(Name);
7917 }
7918 
7919 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
7920   return false;
7921 }
7922 
7923 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention(
7924     const FunctionType *&FT) const {
7925   FT = getABIInfo().getContext().adjustFunctionType(
7926       FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel));
7927 }
7928 
7929 //===----------------------------------------------------------------------===//
7930 // SPARC v8 ABI Implementation.
7931 // Based on the SPARC Compliance Definition version 2.4.1.
7932 //
7933 // Ensures that complex values are passed in registers.
7934 //
7935 namespace {
7936 class SparcV8ABIInfo : public DefaultABIInfo {
7937 public:
7938   SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
7939 
7940 private:
7941   ABIArgInfo classifyReturnType(QualType RetTy) const;
7942   void computeInfo(CGFunctionInfo &FI) const override;
7943 };
7944 } // end anonymous namespace
7945 
7946 
7947 ABIArgInfo
7948 SparcV8ABIInfo::classifyReturnType(QualType Ty) const {
7949   if (Ty->isAnyComplexType()) {
7950     return ABIArgInfo::getDirect();
7951   }
7952   else {
7953     return DefaultABIInfo::classifyReturnType(Ty);
7954   }
7955 }
7956 
7957 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const {
7958 
7959   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7960   for (auto &Arg : FI.arguments())
7961     Arg.info = classifyArgumentType(Arg.type);
7962 }
7963 
7964 namespace {
7965 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo {
7966 public:
7967   SparcV8TargetCodeGenInfo(CodeGenTypes &CGT)
7968     : TargetCodeGenInfo(new SparcV8ABIInfo(CGT)) {}
7969 };
7970 } // end anonymous namespace
7971 
7972 //===----------------------------------------------------------------------===//
7973 // SPARC v9 ABI Implementation.
7974 // Based on the SPARC Compliance Definition version 2.4.1.
7975 //
7976 // Function arguments a mapped to a nominal "parameter array" and promoted to
7977 // registers depending on their type. Each argument occupies 8 or 16 bytes in
7978 // the array, structs larger than 16 bytes are passed indirectly.
7979 //
7980 // One case requires special care:
7981 //
7982 //   struct mixed {
7983 //     int i;
7984 //     float f;
7985 //   };
7986 //
7987 // When a struct mixed is passed by value, it only occupies 8 bytes in the
7988 // parameter array, but the int is passed in an integer register, and the float
7989 // is passed in a floating point register. This is represented as two arguments
7990 // with the LLVM IR inreg attribute:
7991 //
7992 //   declare void f(i32 inreg %i, float inreg %f)
7993 //
7994 // The code generator will only allocate 4 bytes from the parameter array for
7995 // the inreg arguments. All other arguments are allocated a multiple of 8
7996 // bytes.
7997 //
7998 namespace {
7999 class SparcV9ABIInfo : public ABIInfo {
8000 public:
8001   SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
8002 
8003 private:
8004   ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
8005   void computeInfo(CGFunctionInfo &FI) const override;
8006   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8007                     QualType Ty) const override;
8008 
8009   // Coercion type builder for structs passed in registers. The coercion type
8010   // serves two purposes:
8011   //
8012   // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
8013   //    in registers.
8014   // 2. Expose aligned floating point elements as first-level elements, so the
8015   //    code generator knows to pass them in floating point registers.
8016   //
8017   // We also compute the InReg flag which indicates that the struct contains
8018   // aligned 32-bit floats.
8019   //
8020   struct CoerceBuilder {
8021     llvm::LLVMContext &Context;
8022     const llvm::DataLayout &DL;
8023     SmallVector<llvm::Type*, 8> Elems;
8024     uint64_t Size;
8025     bool InReg;
8026 
8027     CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
8028       : Context(c), DL(dl), Size(0), InReg(false) {}
8029 
8030     // Pad Elems with integers until Size is ToSize.
8031     void pad(uint64_t ToSize) {
8032       assert(ToSize >= Size && "Cannot remove elements");
8033       if (ToSize == Size)
8034         return;
8035 
8036       // Finish the current 64-bit word.
8037       uint64_t Aligned = llvm::alignTo(Size, 64);
8038       if (Aligned > Size && Aligned <= ToSize) {
8039         Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
8040         Size = Aligned;
8041       }
8042 
8043       // Add whole 64-bit words.
8044       while (Size + 64 <= ToSize) {
8045         Elems.push_back(llvm::Type::getInt64Ty(Context));
8046         Size += 64;
8047       }
8048 
8049       // Final in-word padding.
8050       if (Size < ToSize) {
8051         Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
8052         Size = ToSize;
8053       }
8054     }
8055 
8056     // Add a floating point element at Offset.
8057     void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
8058       // Unaligned floats are treated as integers.
8059       if (Offset % Bits)
8060         return;
8061       // The InReg flag is only required if there are any floats < 64 bits.
8062       if (Bits < 64)
8063         InReg = true;
8064       pad(Offset);
8065       Elems.push_back(Ty);
8066       Size = Offset + Bits;
8067     }
8068 
8069     // Add a struct type to the coercion type, starting at Offset (in bits).
8070     void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
8071       const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
8072       for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
8073         llvm::Type *ElemTy = StrTy->getElementType(i);
8074         uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
8075         switch (ElemTy->getTypeID()) {
8076         case llvm::Type::StructTyID:
8077           addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
8078           break;
8079         case llvm::Type::FloatTyID:
8080           addFloat(ElemOffset, ElemTy, 32);
8081           break;
8082         case llvm::Type::DoubleTyID:
8083           addFloat(ElemOffset, ElemTy, 64);
8084           break;
8085         case llvm::Type::FP128TyID:
8086           addFloat(ElemOffset, ElemTy, 128);
8087           break;
8088         case llvm::Type::PointerTyID:
8089           if (ElemOffset % 64 == 0) {
8090             pad(ElemOffset);
8091             Elems.push_back(ElemTy);
8092             Size += 64;
8093           }
8094           break;
8095         default:
8096           break;
8097         }
8098       }
8099     }
8100 
8101     // Check if Ty is a usable substitute for the coercion type.
8102     bool isUsableType(llvm::StructType *Ty) const {
8103       return llvm::makeArrayRef(Elems) == Ty->elements();
8104     }
8105 
8106     // Get the coercion type as a literal struct type.
8107     llvm::Type *getType() const {
8108       if (Elems.size() == 1)
8109         return Elems.front();
8110       else
8111         return llvm::StructType::get(Context, Elems);
8112     }
8113   };
8114 };
8115 } // end anonymous namespace
8116 
8117 ABIArgInfo
8118 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
8119   if (Ty->isVoidType())
8120     return ABIArgInfo::getIgnore();
8121 
8122   uint64_t Size = getContext().getTypeSize(Ty);
8123 
8124   // Anything too big to fit in registers is passed with an explicit indirect
8125   // pointer / sret pointer.
8126   if (Size > SizeLimit)
8127     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
8128 
8129   // Treat an enum type as its underlying type.
8130   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
8131     Ty = EnumTy->getDecl()->getIntegerType();
8132 
8133   // Integer types smaller than a register are extended.
8134   if (Size < 64 && Ty->isIntegerType())
8135     return ABIArgInfo::getExtend(Ty);
8136 
8137   // Other non-aggregates go in registers.
8138   if (!isAggregateTypeForABI(Ty))
8139     return ABIArgInfo::getDirect();
8140 
8141   // If a C++ object has either a non-trivial copy constructor or a non-trivial
8142   // destructor, it is passed with an explicit indirect pointer / sret pointer.
8143   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
8144     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
8145 
8146   // This is a small aggregate type that should be passed in registers.
8147   // Build a coercion type from the LLVM struct type.
8148   llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
8149   if (!StrTy)
8150     return ABIArgInfo::getDirect();
8151 
8152   CoerceBuilder CB(getVMContext(), getDataLayout());
8153   CB.addStruct(0, StrTy);
8154   CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64));
8155 
8156   // Try to use the original type for coercion.
8157   llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
8158 
8159   if (CB.InReg)
8160     return ABIArgInfo::getDirectInReg(CoerceTy);
8161   else
8162     return ABIArgInfo::getDirect(CoerceTy);
8163 }
8164 
8165 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8166                                   QualType Ty) const {
8167   ABIArgInfo AI = classifyType(Ty, 16 * 8);
8168   llvm::Type *ArgTy = CGT.ConvertType(Ty);
8169   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
8170     AI.setCoerceToType(ArgTy);
8171 
8172   CharUnits SlotSize = CharUnits::fromQuantity(8);
8173 
8174   CGBuilderTy &Builder = CGF.Builder;
8175   Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
8176   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
8177 
8178   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
8179 
8180   Address ArgAddr = Address::invalid();
8181   CharUnits Stride;
8182   switch (AI.getKind()) {
8183   case ABIArgInfo::Expand:
8184   case ABIArgInfo::CoerceAndExpand:
8185   case ABIArgInfo::InAlloca:
8186     llvm_unreachable("Unsupported ABI kind for va_arg");
8187 
8188   case ABIArgInfo::Extend: {
8189     Stride = SlotSize;
8190     CharUnits Offset = SlotSize - TypeInfo.first;
8191     ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend");
8192     break;
8193   }
8194 
8195   case ABIArgInfo::Direct: {
8196     auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
8197     Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize);
8198     ArgAddr = Addr;
8199     break;
8200   }
8201 
8202   case ABIArgInfo::Indirect:
8203     Stride = SlotSize;
8204     ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect");
8205     ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"),
8206                       TypeInfo.second);
8207     break;
8208 
8209   case ABIArgInfo::Ignore:
8210     return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second);
8211   }
8212 
8213   // Update VAList.
8214   llvm::Value *NextPtr =
8215     Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), Stride, "ap.next");
8216   Builder.CreateStore(NextPtr, VAListAddr);
8217 
8218   return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr");
8219 }
8220 
8221 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
8222   FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
8223   for (auto &I : FI.arguments())
8224     I.info = classifyType(I.type, 16 * 8);
8225 }
8226 
8227 namespace {
8228 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
8229 public:
8230   SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
8231     : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {}
8232 
8233   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
8234     return 14;
8235   }
8236 
8237   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
8238                                llvm::Value *Address) const override;
8239 };
8240 } // end anonymous namespace
8241 
8242 bool
8243 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
8244                                                 llvm::Value *Address) const {
8245   // This is calculated from the LLVM and GCC tables and verified
8246   // against gcc output.  AFAIK all ABIs use the same encoding.
8247 
8248   CodeGen::CGBuilderTy &Builder = CGF.Builder;
8249 
8250   llvm::IntegerType *i8 = CGF.Int8Ty;
8251   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
8252   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
8253 
8254   // 0-31: the 8-byte general-purpose registers
8255   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
8256 
8257   // 32-63: f0-31, the 4-byte floating-point registers
8258   AssignToArrayRange(Builder, Address, Four8, 32, 63);
8259 
8260   //   Y   = 64
8261   //   PSR = 65
8262   //   WIM = 66
8263   //   TBR = 67
8264   //   PC  = 68
8265   //   NPC = 69
8266   //   FSR = 70
8267   //   CSR = 71
8268   AssignToArrayRange(Builder, Address, Eight8, 64, 71);
8269 
8270   // 72-87: d0-15, the 8-byte floating-point registers
8271   AssignToArrayRange(Builder, Address, Eight8, 72, 87);
8272 
8273   return false;
8274 }
8275 
8276 // ARC ABI implementation.
8277 namespace {
8278 
8279 class ARCABIInfo : public DefaultABIInfo {
8280 public:
8281   using DefaultABIInfo::DefaultABIInfo;
8282 
8283 private:
8284   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8285                     QualType Ty) const override;
8286 
8287   void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const {
8288     if (!State.FreeRegs)
8289       return;
8290     if (Info.isIndirect() && Info.getInReg())
8291       State.FreeRegs--;
8292     else if (Info.isDirect() && Info.getInReg()) {
8293       unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32;
8294       if (sz < State.FreeRegs)
8295         State.FreeRegs -= sz;
8296       else
8297         State.FreeRegs = 0;
8298     }
8299   }
8300 
8301   void computeInfo(CGFunctionInfo &FI) const override {
8302     CCState State(FI.getCallingConvention());
8303     // ARC uses 8 registers to pass arguments.
8304     State.FreeRegs = 8;
8305 
8306     if (!getCXXABI().classifyReturnType(FI))
8307       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8308     updateState(FI.getReturnInfo(), FI.getReturnType(), State);
8309     for (auto &I : FI.arguments()) {
8310       I.info = classifyArgumentType(I.type, State.FreeRegs);
8311       updateState(I.info, I.type, State);
8312     }
8313   }
8314 
8315   ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const;
8316   ABIArgInfo getIndirectByValue(QualType Ty) const;
8317   ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const;
8318   ABIArgInfo classifyReturnType(QualType RetTy) const;
8319 };
8320 
8321 class ARCTargetCodeGenInfo : public TargetCodeGenInfo {
8322 public:
8323   ARCTargetCodeGenInfo(CodeGenTypes &CGT)
8324       : TargetCodeGenInfo(new ARCABIInfo(CGT)) {}
8325 };
8326 
8327 
8328 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const {
8329   return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) :
8330                        getNaturalAlignIndirect(Ty, false);
8331 }
8332 
8333 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const {
8334   // Compute the byval alignment.
8335   const unsigned MinABIStackAlignInBytes = 4;
8336   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
8337   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
8338                                  TypeAlign > MinABIStackAlignInBytes);
8339 }
8340 
8341 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8342                               QualType Ty) const {
8343   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
8344                           getContext().getTypeInfoInChars(Ty),
8345                           CharUnits::fromQuantity(4), true);
8346 }
8347 
8348 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty,
8349                                             uint8_t FreeRegs) const {
8350   // Handle the generic C++ ABI.
8351   const RecordType *RT = Ty->getAs<RecordType>();
8352   if (RT) {
8353     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
8354     if (RAA == CGCXXABI::RAA_Indirect)
8355       return getIndirectByRef(Ty, FreeRegs > 0);
8356 
8357     if (RAA == CGCXXABI::RAA_DirectInMemory)
8358       return getIndirectByValue(Ty);
8359   }
8360 
8361   // Treat an enum type as its underlying type.
8362   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
8363     Ty = EnumTy->getDecl()->getIntegerType();
8364 
8365   auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32;
8366 
8367   if (isAggregateTypeForABI(Ty)) {
8368     // Structures with flexible arrays are always indirect.
8369     if (RT && RT->getDecl()->hasFlexibleArrayMember())
8370       return getIndirectByValue(Ty);
8371 
8372     // Ignore empty structs/unions.
8373     if (isEmptyRecord(getContext(), Ty, true))
8374       return ABIArgInfo::getIgnore();
8375 
8376     llvm::LLVMContext &LLVMContext = getVMContext();
8377 
8378     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
8379     SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
8380     llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
8381 
8382     return FreeRegs >= SizeInRegs ?
8383         ABIArgInfo::getDirectInReg(Result) :
8384         ABIArgInfo::getDirect(Result, 0, nullptr, false);
8385   }
8386 
8387   return Ty->isPromotableIntegerType() ?
8388       (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty) :
8389                                 ABIArgInfo::getExtend(Ty)) :
8390       (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg() :
8391                                 ABIArgInfo::getDirect());
8392 }
8393 
8394 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const {
8395   if (RetTy->isAnyComplexType())
8396     return ABIArgInfo::getDirectInReg();
8397 
8398   // Arguments of size > 4 registers are indirect.
8399   auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32;
8400   if (RetSize > 4)
8401     return getIndirectByRef(RetTy, /*HasFreeRegs*/ true);
8402 
8403   return DefaultABIInfo::classifyReturnType(RetTy);
8404 }
8405 
8406 } // End anonymous namespace.
8407 
8408 //===----------------------------------------------------------------------===//
8409 // XCore ABI Implementation
8410 //===----------------------------------------------------------------------===//
8411 
8412 namespace {
8413 
8414 /// A SmallStringEnc instance is used to build up the TypeString by passing
8415 /// it by reference between functions that append to it.
8416 typedef llvm::SmallString<128> SmallStringEnc;
8417 
8418 /// TypeStringCache caches the meta encodings of Types.
8419 ///
8420 /// The reason for caching TypeStrings is two fold:
8421 ///   1. To cache a type's encoding for later uses;
8422 ///   2. As a means to break recursive member type inclusion.
8423 ///
8424 /// A cache Entry can have a Status of:
8425 ///   NonRecursive:   The type encoding is not recursive;
8426 ///   Recursive:      The type encoding is recursive;
8427 ///   Incomplete:     An incomplete TypeString;
8428 ///   IncompleteUsed: An incomplete TypeString that has been used in a
8429 ///                   Recursive type encoding.
8430 ///
8431 /// A NonRecursive entry will have all of its sub-members expanded as fully
8432 /// as possible. Whilst it may contain types which are recursive, the type
8433 /// itself is not recursive and thus its encoding may be safely used whenever
8434 /// the type is encountered.
8435 ///
8436 /// A Recursive entry will have all of its sub-members expanded as fully as
8437 /// possible. The type itself is recursive and it may contain other types which
8438 /// are recursive. The Recursive encoding must not be used during the expansion
8439 /// of a recursive type's recursive branch. For simplicity the code uses
8440 /// IncompleteCount to reject all usage of Recursive encodings for member types.
8441 ///
8442 /// An Incomplete entry is always a RecordType and only encodes its
8443 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
8444 /// are placed into the cache during type expansion as a means to identify and
8445 /// handle recursive inclusion of types as sub-members. If there is recursion
8446 /// the entry becomes IncompleteUsed.
8447 ///
8448 /// During the expansion of a RecordType's members:
8449 ///
8450 ///   If the cache contains a NonRecursive encoding for the member type, the
8451 ///   cached encoding is used;
8452 ///
8453 ///   If the cache contains a Recursive encoding for the member type, the
8454 ///   cached encoding is 'Swapped' out, as it may be incorrect, and...
8455 ///
8456 ///   If the member is a RecordType, an Incomplete encoding is placed into the
8457 ///   cache to break potential recursive inclusion of itself as a sub-member;
8458 ///
8459 ///   Once a member RecordType has been expanded, its temporary incomplete
8460 ///   entry is removed from the cache. If a Recursive encoding was swapped out
8461 ///   it is swapped back in;
8462 ///
8463 ///   If an incomplete entry is used to expand a sub-member, the incomplete
8464 ///   entry is marked as IncompleteUsed. The cache keeps count of how many
8465 ///   IncompleteUsed entries it currently contains in IncompleteUsedCount;
8466 ///
8467 ///   If a member's encoding is found to be a NonRecursive or Recursive viz:
8468 ///   IncompleteUsedCount==0, the member's encoding is added to the cache.
8469 ///   Else the member is part of a recursive type and thus the recursion has
8470 ///   been exited too soon for the encoding to be correct for the member.
8471 ///
8472 class TypeStringCache {
8473   enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
8474   struct Entry {
8475     std::string Str;     // The encoded TypeString for the type.
8476     enum Status State;   // Information about the encoding in 'Str'.
8477     std::string Swapped; // A temporary place holder for a Recursive encoding
8478                          // during the expansion of RecordType's members.
8479   };
8480   std::map<const IdentifierInfo *, struct Entry> Map;
8481   unsigned IncompleteCount;     // Number of Incomplete entries in the Map.
8482   unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
8483 public:
8484   TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}
8485   void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
8486   bool removeIncomplete(const IdentifierInfo *ID);
8487   void addIfComplete(const IdentifierInfo *ID, StringRef Str,
8488                      bool IsRecursive);
8489   StringRef lookupStr(const IdentifierInfo *ID);
8490 };
8491 
8492 /// TypeString encodings for enum & union fields must be order.
8493 /// FieldEncoding is a helper for this ordering process.
8494 class FieldEncoding {
8495   bool HasName;
8496   std::string Enc;
8497 public:
8498   FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}
8499   StringRef str() { return Enc; }
8500   bool operator<(const FieldEncoding &rhs) const {
8501     if (HasName != rhs.HasName) return HasName;
8502     return Enc < rhs.Enc;
8503   }
8504 };
8505 
8506 class XCoreABIInfo : public DefaultABIInfo {
8507 public:
8508   XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
8509   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8510                     QualType Ty) const override;
8511 };
8512 
8513 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
8514   mutable TypeStringCache TSC;
8515 public:
8516   XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
8517     :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {}
8518   void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
8519                     CodeGen::CodeGenModule &M) const override;
8520 };
8521 
8522 } // End anonymous namespace.
8523 
8524 // TODO: this implementation is likely now redundant with the default
8525 // EmitVAArg.
8526 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8527                                 QualType Ty) const {
8528   CGBuilderTy &Builder = CGF.Builder;
8529 
8530   // Get the VAList.
8531   CharUnits SlotSize = CharUnits::fromQuantity(4);
8532   Address AP(Builder.CreateLoad(VAListAddr), SlotSize);
8533 
8534   // Handle the argument.
8535   ABIArgInfo AI = classifyArgumentType(Ty);
8536   CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty);
8537   llvm::Type *ArgTy = CGT.ConvertType(Ty);
8538   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
8539     AI.setCoerceToType(ArgTy);
8540   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
8541 
8542   Address Val = Address::invalid();
8543   CharUnits ArgSize = CharUnits::Zero();
8544   switch (AI.getKind()) {
8545   case ABIArgInfo::Expand:
8546   case ABIArgInfo::CoerceAndExpand:
8547   case ABIArgInfo::InAlloca:
8548     llvm_unreachable("Unsupported ABI kind for va_arg");
8549   case ABIArgInfo::Ignore:
8550     Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign);
8551     ArgSize = CharUnits::Zero();
8552     break;
8553   case ABIArgInfo::Extend:
8554   case ABIArgInfo::Direct:
8555     Val = Builder.CreateBitCast(AP, ArgPtrTy);
8556     ArgSize = CharUnits::fromQuantity(
8557                        getDataLayout().getTypeAllocSize(AI.getCoerceToType()));
8558     ArgSize = ArgSize.alignTo(SlotSize);
8559     break;
8560   case ABIArgInfo::Indirect:
8561     Val = Builder.CreateElementBitCast(AP, ArgPtrTy);
8562     Val = Address(Builder.CreateLoad(Val), TypeAlign);
8563     ArgSize = SlotSize;
8564     break;
8565   }
8566 
8567   // Increment the VAList.
8568   if (!ArgSize.isZero()) {
8569     llvm::Value *APN =
8570       Builder.CreateConstInBoundsByteGEP(AP.getPointer(), ArgSize);
8571     Builder.CreateStore(APN, VAListAddr);
8572   }
8573 
8574   return Val;
8575 }
8576 
8577 /// During the expansion of a RecordType, an incomplete TypeString is placed
8578 /// into the cache as a means to identify and break recursion.
8579 /// If there is a Recursive encoding in the cache, it is swapped out and will
8580 /// be reinserted by removeIncomplete().
8581 /// All other types of encoding should have been used rather than arriving here.
8582 void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
8583                                     std::string StubEnc) {
8584   if (!ID)
8585     return;
8586   Entry &E = Map[ID];
8587   assert( (E.Str.empty() || E.State == Recursive) &&
8588          "Incorrectly use of addIncomplete");
8589   assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
8590   E.Swapped.swap(E.Str); // swap out the Recursive
8591   E.Str.swap(StubEnc);
8592   E.State = Incomplete;
8593   ++IncompleteCount;
8594 }
8595 
8596 /// Once the RecordType has been expanded, the temporary incomplete TypeString
8597 /// must be removed from the cache.
8598 /// If a Recursive was swapped out by addIncomplete(), it will be replaced.
8599 /// Returns true if the RecordType was defined recursively.
8600 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
8601   if (!ID)
8602     return false;
8603   auto I = Map.find(ID);
8604   assert(I != Map.end() && "Entry not present");
8605   Entry &E = I->second;
8606   assert( (E.State == Incomplete ||
8607            E.State == IncompleteUsed) &&
8608          "Entry must be an incomplete type");
8609   bool IsRecursive = false;
8610   if (E.State == IncompleteUsed) {
8611     // We made use of our Incomplete encoding, thus we are recursive.
8612     IsRecursive = true;
8613     --IncompleteUsedCount;
8614   }
8615   if (E.Swapped.empty())
8616     Map.erase(I);
8617   else {
8618     // Swap the Recursive back.
8619     E.Swapped.swap(E.Str);
8620     E.Swapped.clear();
8621     E.State = Recursive;
8622   }
8623   --IncompleteCount;
8624   return IsRecursive;
8625 }
8626 
8627 /// Add the encoded TypeString to the cache only if it is NonRecursive or
8628 /// Recursive (viz: all sub-members were expanded as fully as possible).
8629 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
8630                                     bool IsRecursive) {
8631   if (!ID || IncompleteUsedCount)
8632     return; // No key or it is is an incomplete sub-type so don't add.
8633   Entry &E = Map[ID];
8634   if (IsRecursive && !E.Str.empty()) {
8635     assert(E.State==Recursive && E.Str.size() == Str.size() &&
8636            "This is not the same Recursive entry");
8637     // The parent container was not recursive after all, so we could have used
8638     // this Recursive sub-member entry after all, but we assumed the worse when
8639     // we started viz: IncompleteCount!=0.
8640     return;
8641   }
8642   assert(E.Str.empty() && "Entry already present");
8643   E.Str = Str.str();
8644   E.State = IsRecursive? Recursive : NonRecursive;
8645 }
8646 
8647 /// Return a cached TypeString encoding for the ID. If there isn't one, or we
8648 /// are recursively expanding a type (IncompleteCount != 0) and the cached
8649 /// encoding is Recursive, return an empty StringRef.
8650 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
8651   if (!ID)
8652     return StringRef();   // We have no key.
8653   auto I = Map.find(ID);
8654   if (I == Map.end())
8655     return StringRef();   // We have no encoding.
8656   Entry &E = I->second;
8657   if (E.State == Recursive && IncompleteCount)
8658     return StringRef();   // We don't use Recursive encodings for member types.
8659 
8660   if (E.State == Incomplete) {
8661     // The incomplete type is being used to break out of recursion.
8662     E.State = IncompleteUsed;
8663     ++IncompleteUsedCount;
8664   }
8665   return E.Str;
8666 }
8667 
8668 /// The XCore ABI includes a type information section that communicates symbol
8669 /// type information to the linker. The linker uses this information to verify
8670 /// safety/correctness of things such as array bound and pointers et al.
8671 /// The ABI only requires C (and XC) language modules to emit TypeStrings.
8672 /// This type information (TypeString) is emitted into meta data for all global
8673 /// symbols: definitions, declarations, functions & variables.
8674 ///
8675 /// The TypeString carries type, qualifier, name, size & value details.
8676 /// Please see 'Tools Development Guide' section 2.16.2 for format details:
8677 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf
8678 /// The output is tested by test/CodeGen/xcore-stringtype.c.
8679 ///
8680 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
8681                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC);
8682 
8683 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
8684 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
8685                                           CodeGen::CodeGenModule &CGM) const {
8686   SmallStringEnc Enc;
8687   if (getTypeString(Enc, D, CGM, TSC)) {
8688     llvm::LLVMContext &Ctx = CGM.getModule().getContext();
8689     llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV),
8690                                 llvm::MDString::get(Ctx, Enc.str())};
8691     llvm::NamedMDNode *MD =
8692       CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
8693     MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
8694   }
8695 }
8696 
8697 //===----------------------------------------------------------------------===//
8698 // SPIR ABI Implementation
8699 //===----------------------------------------------------------------------===//
8700 
8701 namespace {
8702 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo {
8703 public:
8704   SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
8705     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
8706   unsigned getOpenCLKernelCallingConv() const override;
8707 };
8708 
8709 } // End anonymous namespace.
8710 
8711 namespace clang {
8712 namespace CodeGen {
8713 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) {
8714   DefaultABIInfo SPIRABI(CGM.getTypes());
8715   SPIRABI.computeInfo(FI);
8716 }
8717 }
8718 }
8719 
8720 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
8721   return llvm::CallingConv::SPIR_KERNEL;
8722 }
8723 
8724 static bool appendType(SmallStringEnc &Enc, QualType QType,
8725                        const CodeGen::CodeGenModule &CGM,
8726                        TypeStringCache &TSC);
8727 
8728 /// Helper function for appendRecordType().
8729 /// Builds a SmallVector containing the encoded field types in declaration
8730 /// order.
8731 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
8732                              const RecordDecl *RD,
8733                              const CodeGen::CodeGenModule &CGM,
8734                              TypeStringCache &TSC) {
8735   for (const auto *Field : RD->fields()) {
8736     SmallStringEnc Enc;
8737     Enc += "m(";
8738     Enc += Field->getName();
8739     Enc += "){";
8740     if (Field->isBitField()) {
8741       Enc += "b(";
8742       llvm::raw_svector_ostream OS(Enc);
8743       OS << Field->getBitWidthValue(CGM.getContext());
8744       Enc += ':';
8745     }
8746     if (!appendType(Enc, Field->getType(), CGM, TSC))
8747       return false;
8748     if (Field->isBitField())
8749       Enc += ')';
8750     Enc += '}';
8751     FE.emplace_back(!Field->getName().empty(), Enc);
8752   }
8753   return true;
8754 }
8755 
8756 /// Appends structure and union types to Enc and adds encoding to cache.
8757 /// Recursively calls appendType (via extractFieldType) for each field.
8758 /// Union types have their fields ordered according to the ABI.
8759 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
8760                              const CodeGen::CodeGenModule &CGM,
8761                              TypeStringCache &TSC, const IdentifierInfo *ID) {
8762   // Append the cached TypeString if we have one.
8763   StringRef TypeString = TSC.lookupStr(ID);
8764   if (!TypeString.empty()) {
8765     Enc += TypeString;
8766     return true;
8767   }
8768 
8769   // Start to emit an incomplete TypeString.
8770   size_t Start = Enc.size();
8771   Enc += (RT->isUnionType()? 'u' : 's');
8772   Enc += '(';
8773   if (ID)
8774     Enc += ID->getName();
8775   Enc += "){";
8776 
8777   // We collect all encoded fields and order as necessary.
8778   bool IsRecursive = false;
8779   const RecordDecl *RD = RT->getDecl()->getDefinition();
8780   if (RD && !RD->field_empty()) {
8781     // An incomplete TypeString stub is placed in the cache for this RecordType
8782     // so that recursive calls to this RecordType will use it whilst building a
8783     // complete TypeString for this RecordType.
8784     SmallVector<FieldEncoding, 16> FE;
8785     std::string StubEnc(Enc.substr(Start).str());
8786     StubEnc += '}';  // StubEnc now holds a valid incomplete TypeString.
8787     TSC.addIncomplete(ID, std::move(StubEnc));
8788     if (!extractFieldType(FE, RD, CGM, TSC)) {
8789       (void) TSC.removeIncomplete(ID);
8790       return false;
8791     }
8792     IsRecursive = TSC.removeIncomplete(ID);
8793     // The ABI requires unions to be sorted but not structures.
8794     // See FieldEncoding::operator< for sort algorithm.
8795     if (RT->isUnionType())
8796       llvm::sort(FE);
8797     // We can now complete the TypeString.
8798     unsigned E = FE.size();
8799     for (unsigned I = 0; I != E; ++I) {
8800       if (I)
8801         Enc += ',';
8802       Enc += FE[I].str();
8803     }
8804   }
8805   Enc += '}';
8806   TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
8807   return true;
8808 }
8809 
8810 /// Appends enum types to Enc and adds the encoding to the cache.
8811 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
8812                            TypeStringCache &TSC,
8813                            const IdentifierInfo *ID) {
8814   // Append the cached TypeString if we have one.
8815   StringRef TypeString = TSC.lookupStr(ID);
8816   if (!TypeString.empty()) {
8817     Enc += TypeString;
8818     return true;
8819   }
8820 
8821   size_t Start = Enc.size();
8822   Enc += "e(";
8823   if (ID)
8824     Enc += ID->getName();
8825   Enc += "){";
8826 
8827   // We collect all encoded enumerations and order them alphanumerically.
8828   if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
8829     SmallVector<FieldEncoding, 16> FE;
8830     for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
8831          ++I) {
8832       SmallStringEnc EnumEnc;
8833       EnumEnc += "m(";
8834       EnumEnc += I->getName();
8835       EnumEnc += "){";
8836       I->getInitVal().toString(EnumEnc);
8837       EnumEnc += '}';
8838       FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
8839     }
8840     llvm::sort(FE);
8841     unsigned E = FE.size();
8842     for (unsigned I = 0; I != E; ++I) {
8843       if (I)
8844         Enc += ',';
8845       Enc += FE[I].str();
8846     }
8847   }
8848   Enc += '}';
8849   TSC.addIfComplete(ID, Enc.substr(Start), false);
8850   return true;
8851 }
8852 
8853 /// Appends type's qualifier to Enc.
8854 /// This is done prior to appending the type's encoding.
8855 static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
8856   // Qualifiers are emitted in alphabetical order.
8857   static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"};
8858   int Lookup = 0;
8859   if (QT.isConstQualified())
8860     Lookup += 1<<0;
8861   if (QT.isRestrictQualified())
8862     Lookup += 1<<1;
8863   if (QT.isVolatileQualified())
8864     Lookup += 1<<2;
8865   Enc += Table[Lookup];
8866 }
8867 
8868 /// Appends built-in types to Enc.
8869 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
8870   const char *EncType;
8871   switch (BT->getKind()) {
8872     case BuiltinType::Void:
8873       EncType = "0";
8874       break;
8875     case BuiltinType::Bool:
8876       EncType = "b";
8877       break;
8878     case BuiltinType::Char_U:
8879       EncType = "uc";
8880       break;
8881     case BuiltinType::UChar:
8882       EncType = "uc";
8883       break;
8884     case BuiltinType::SChar:
8885       EncType = "sc";
8886       break;
8887     case BuiltinType::UShort:
8888       EncType = "us";
8889       break;
8890     case BuiltinType::Short:
8891       EncType = "ss";
8892       break;
8893     case BuiltinType::UInt:
8894       EncType = "ui";
8895       break;
8896     case BuiltinType::Int:
8897       EncType = "si";
8898       break;
8899     case BuiltinType::ULong:
8900       EncType = "ul";
8901       break;
8902     case BuiltinType::Long:
8903       EncType = "sl";
8904       break;
8905     case BuiltinType::ULongLong:
8906       EncType = "ull";
8907       break;
8908     case BuiltinType::LongLong:
8909       EncType = "sll";
8910       break;
8911     case BuiltinType::Float:
8912       EncType = "ft";
8913       break;
8914     case BuiltinType::Double:
8915       EncType = "d";
8916       break;
8917     case BuiltinType::LongDouble:
8918       EncType = "ld";
8919       break;
8920     default:
8921       return false;
8922   }
8923   Enc += EncType;
8924   return true;
8925 }
8926 
8927 /// Appends a pointer encoding to Enc before calling appendType for the pointee.
8928 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
8929                               const CodeGen::CodeGenModule &CGM,
8930                               TypeStringCache &TSC) {
8931   Enc += "p(";
8932   if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
8933     return false;
8934   Enc += ')';
8935   return true;
8936 }
8937 
8938 /// Appends array encoding to Enc before calling appendType for the element.
8939 static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
8940                             const ArrayType *AT,
8941                             const CodeGen::CodeGenModule &CGM,
8942                             TypeStringCache &TSC, StringRef NoSizeEnc) {
8943   if (AT->getSizeModifier() != ArrayType::Normal)
8944     return false;
8945   Enc += "a(";
8946   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
8947     CAT->getSize().toStringUnsigned(Enc);
8948   else
8949     Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
8950   Enc += ':';
8951   // The Qualifiers should be attached to the type rather than the array.
8952   appendQualifier(Enc, QT);
8953   if (!appendType(Enc, AT->getElementType(), CGM, TSC))
8954     return false;
8955   Enc += ')';
8956   return true;
8957 }
8958 
8959 /// Appends a function encoding to Enc, calling appendType for the return type
8960 /// and the arguments.
8961 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
8962                              const CodeGen::CodeGenModule &CGM,
8963                              TypeStringCache &TSC) {
8964   Enc += "f{";
8965   if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
8966     return false;
8967   Enc += "}(";
8968   if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
8969     // N.B. we are only interested in the adjusted param types.
8970     auto I = FPT->param_type_begin();
8971     auto E = FPT->param_type_end();
8972     if (I != E) {
8973       do {
8974         if (!appendType(Enc, *I, CGM, TSC))
8975           return false;
8976         ++I;
8977         if (I != E)
8978           Enc += ',';
8979       } while (I != E);
8980       if (FPT->isVariadic())
8981         Enc += ",va";
8982     } else {
8983       if (FPT->isVariadic())
8984         Enc += "va";
8985       else
8986         Enc += '0';
8987     }
8988   }
8989   Enc += ')';
8990   return true;
8991 }
8992 
8993 /// Handles the type's qualifier before dispatching a call to handle specific
8994 /// type encodings.
8995 static bool appendType(SmallStringEnc &Enc, QualType QType,
8996                        const CodeGen::CodeGenModule &CGM,
8997                        TypeStringCache &TSC) {
8998 
8999   QualType QT = QType.getCanonicalType();
9000 
9001   if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
9002     // The Qualifiers should be attached to the type rather than the array.
9003     // Thus we don't call appendQualifier() here.
9004     return appendArrayType(Enc, QT, AT, CGM, TSC, "");
9005 
9006   appendQualifier(Enc, QT);
9007 
9008   if (const BuiltinType *BT = QT->getAs<BuiltinType>())
9009     return appendBuiltinType(Enc, BT);
9010 
9011   if (const PointerType *PT = QT->getAs<PointerType>())
9012     return appendPointerType(Enc, PT, CGM, TSC);
9013 
9014   if (const EnumType *ET = QT->getAs<EnumType>())
9015     return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
9016 
9017   if (const RecordType *RT = QT->getAsStructureType())
9018     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
9019 
9020   if (const RecordType *RT = QT->getAsUnionType())
9021     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
9022 
9023   if (const FunctionType *FT = QT->getAs<FunctionType>())
9024     return appendFunctionType(Enc, FT, CGM, TSC);
9025 
9026   return false;
9027 }
9028 
9029 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
9030                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) {
9031   if (!D)
9032     return false;
9033 
9034   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
9035     if (FD->getLanguageLinkage() != CLanguageLinkage)
9036       return false;
9037     return appendType(Enc, FD->getType(), CGM, TSC);
9038   }
9039 
9040   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
9041     if (VD->getLanguageLinkage() != CLanguageLinkage)
9042       return false;
9043     QualType QT = VD->getType().getCanonicalType();
9044     if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
9045       // Global ArrayTypes are given a size of '*' if the size is unknown.
9046       // The Qualifiers should be attached to the type rather than the array.
9047       // Thus we don't call appendQualifier() here.
9048       return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
9049     }
9050     return appendType(Enc, QT, CGM, TSC);
9051   }
9052   return false;
9053 }
9054 
9055 //===----------------------------------------------------------------------===//
9056 // RISCV ABI Implementation
9057 //===----------------------------------------------------------------------===//
9058 
9059 namespace {
9060 class RISCVABIInfo : public DefaultABIInfo {
9061 private:
9062   unsigned XLen; // Size of the integer ('x') registers in bits.
9063   static const int NumArgGPRs = 8;
9064 
9065 public:
9066   RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen)
9067       : DefaultABIInfo(CGT), XLen(XLen) {}
9068 
9069   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
9070   // non-virtual, but computeInfo is virtual, so we overload it.
9071   void computeInfo(CGFunctionInfo &FI) const override;
9072 
9073   ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed,
9074                                   int &ArgGPRsLeft) const;
9075   ABIArgInfo classifyReturnType(QualType RetTy) const;
9076 
9077   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9078                     QualType Ty) const override;
9079 
9080   ABIArgInfo extendType(QualType Ty) const;
9081 };
9082 } // end anonymous namespace
9083 
9084 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const {
9085   QualType RetTy = FI.getReturnType();
9086   if (!getCXXABI().classifyReturnType(FI))
9087     FI.getReturnInfo() = classifyReturnType(RetTy);
9088 
9089   // IsRetIndirect is true if classifyArgumentType indicated the value should
9090   // be passed indirect or if the type size is greater than 2*xlen. e.g. fp128
9091   // is passed direct in LLVM IR, relying on the backend lowering code to
9092   // rewrite the argument list and pass indirectly on RV32.
9093   bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect ||
9094                        getContext().getTypeSize(RetTy) > (2 * XLen);
9095 
9096   // We must track the number of GPRs used in order to conform to the RISC-V
9097   // ABI, as integer scalars passed in registers should have signext/zeroext
9098   // when promoted, but are anyext if passed on the stack. As GPR usage is
9099   // different for variadic arguments, we must also track whether we are
9100   // examining a vararg or not.
9101   int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs;
9102   int NumFixedArgs = FI.getNumRequiredArgs();
9103 
9104   int ArgNum = 0;
9105   for (auto &ArgInfo : FI.arguments()) {
9106     bool IsFixed = ArgNum < NumFixedArgs;
9107     ArgInfo.info = classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft);
9108     ArgNum++;
9109   }
9110 }
9111 
9112 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed,
9113                                               int &ArgGPRsLeft) const {
9114   assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow");
9115   Ty = useFirstFieldIfTransparentUnion(Ty);
9116 
9117   // Structures with either a non-trivial destructor or a non-trivial
9118   // copy constructor are always passed indirectly.
9119   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
9120     if (ArgGPRsLeft)
9121       ArgGPRsLeft -= 1;
9122     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
9123                                            CGCXXABI::RAA_DirectInMemory);
9124   }
9125 
9126   // Ignore empty structs/unions.
9127   if (isEmptyRecord(getContext(), Ty, true))
9128     return ABIArgInfo::getIgnore();
9129 
9130   uint64_t Size = getContext().getTypeSize(Ty);
9131   uint64_t NeededAlign = getContext().getTypeAlign(Ty);
9132   bool MustUseStack = false;
9133   // Determine the number of GPRs needed to pass the current argument
9134   // according to the ABI. 2*XLen-aligned varargs are passed in "aligned"
9135   // register pairs, so may consume 3 registers.
9136   int NeededArgGPRs = 1;
9137   if (!IsFixed && NeededAlign == 2 * XLen)
9138     NeededArgGPRs = 2 + (ArgGPRsLeft % 2);
9139   else if (Size > XLen && Size <= 2 * XLen)
9140     NeededArgGPRs = 2;
9141 
9142   if (NeededArgGPRs > ArgGPRsLeft) {
9143     MustUseStack = true;
9144     NeededArgGPRs = ArgGPRsLeft;
9145   }
9146 
9147   ArgGPRsLeft -= NeededArgGPRs;
9148 
9149   if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) {
9150     // Treat an enum type as its underlying type.
9151     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
9152       Ty = EnumTy->getDecl()->getIntegerType();
9153 
9154     // All integral types are promoted to XLen width, unless passed on the
9155     // stack.
9156     if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) {
9157       return extendType(Ty);
9158     }
9159 
9160     return ABIArgInfo::getDirect();
9161   }
9162 
9163   // Aggregates which are <= 2*XLen will be passed in registers if possible,
9164   // so coerce to integers.
9165   if (Size <= 2 * XLen) {
9166     unsigned Alignment = getContext().getTypeAlign(Ty);
9167 
9168     // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is
9169     // required, and a 2-element XLen array if only XLen alignment is required.
9170     if (Size <= XLen) {
9171       return ABIArgInfo::getDirect(
9172           llvm::IntegerType::get(getVMContext(), XLen));
9173     } else if (Alignment == 2 * XLen) {
9174       return ABIArgInfo::getDirect(
9175           llvm::IntegerType::get(getVMContext(), 2 * XLen));
9176     } else {
9177       return ABIArgInfo::getDirect(llvm::ArrayType::get(
9178           llvm::IntegerType::get(getVMContext(), XLen), 2));
9179     }
9180   }
9181   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
9182 }
9183 
9184 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const {
9185   if (RetTy->isVoidType())
9186     return ABIArgInfo::getIgnore();
9187 
9188   int ArgGPRsLeft = 2;
9189 
9190   // The rules for return and argument types are the same, so defer to
9191   // classifyArgumentType.
9192   return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft);
9193 }
9194 
9195 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9196                                 QualType Ty) const {
9197   CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8);
9198 
9199   // Empty records are ignored for parameter passing purposes.
9200   if (isEmptyRecord(getContext(), Ty, true)) {
9201     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
9202     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
9203     return Addr;
9204   }
9205 
9206   std::pair<CharUnits, CharUnits> SizeAndAlign =
9207       getContext().getTypeInfoInChars(Ty);
9208 
9209   // Arguments bigger than 2*Xlen bytes are passed indirectly.
9210   bool IsIndirect = SizeAndAlign.first > 2 * SlotSize;
9211 
9212   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, SizeAndAlign,
9213                           SlotSize, /*AllowHigherAlign=*/true);
9214 }
9215 
9216 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const {
9217   int TySize = getContext().getTypeSize(Ty);
9218   // RV64 ABI requires unsigned 32 bit integers to be sign extended.
9219   if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
9220     return ABIArgInfo::getSignExtend(Ty);
9221   return ABIArgInfo::getExtend(Ty);
9222 }
9223 
9224 namespace {
9225 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo {
9226 public:
9227   RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen)
9228       : TargetCodeGenInfo(new RISCVABIInfo(CGT, XLen)) {}
9229 
9230   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
9231                            CodeGen::CodeGenModule &CGM) const override {
9232     const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
9233     if (!FD) return;
9234 
9235     const auto *Attr = FD->getAttr<RISCVInterruptAttr>();
9236     if (!Attr)
9237       return;
9238 
9239     const char *Kind;
9240     switch (Attr->getInterrupt()) {
9241     case RISCVInterruptAttr::user: Kind = "user"; break;
9242     case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break;
9243     case RISCVInterruptAttr::machine: Kind = "machine"; break;
9244     }
9245 
9246     auto *Fn = cast<llvm::Function>(GV);
9247 
9248     Fn->addFnAttr("interrupt", Kind);
9249   }
9250 };
9251 } // namespace
9252 
9253 //===----------------------------------------------------------------------===//
9254 // Driver code
9255 //===----------------------------------------------------------------------===//
9256 
9257 bool CodeGenModule::supportsCOMDAT() const {
9258   return getTriple().supportsCOMDAT();
9259 }
9260 
9261 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
9262   if (TheTargetCodeGenInfo)
9263     return *TheTargetCodeGenInfo;
9264 
9265   // Helper to set the unique_ptr while still keeping the return value.
9266   auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & {
9267     this->TheTargetCodeGenInfo.reset(P);
9268     return *P;
9269   };
9270 
9271   const llvm::Triple &Triple = getTarget().getTriple();
9272   switch (Triple.getArch()) {
9273   default:
9274     return SetCGInfo(new DefaultTargetCodeGenInfo(Types));
9275 
9276   case llvm::Triple::le32:
9277     return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
9278   case llvm::Triple::mips:
9279   case llvm::Triple::mipsel:
9280     if (Triple.getOS() == llvm::Triple::NaCl)
9281       return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
9282     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true));
9283 
9284   case llvm::Triple::mips64:
9285   case llvm::Triple::mips64el:
9286     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false));
9287 
9288   case llvm::Triple::avr:
9289     return SetCGInfo(new AVRTargetCodeGenInfo(Types));
9290 
9291   case llvm::Triple::aarch64:
9292   case llvm::Triple::aarch64_be: {
9293     AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
9294     if (getTarget().getABI() == "darwinpcs")
9295       Kind = AArch64ABIInfo::DarwinPCS;
9296     else if (Triple.isOSWindows())
9297       return SetCGInfo(
9298           new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64));
9299 
9300     return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind));
9301   }
9302 
9303   case llvm::Triple::wasm32:
9304   case llvm::Triple::wasm64:
9305     return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types));
9306 
9307   case llvm::Triple::arm:
9308   case llvm::Triple::armeb:
9309   case llvm::Triple::thumb:
9310   case llvm::Triple::thumbeb: {
9311     if (Triple.getOS() == llvm::Triple::Win32) {
9312       return SetCGInfo(
9313           new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP));
9314     }
9315 
9316     ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
9317     StringRef ABIStr = getTarget().getABI();
9318     if (ABIStr == "apcs-gnu")
9319       Kind = ARMABIInfo::APCS;
9320     else if (ABIStr == "aapcs16")
9321       Kind = ARMABIInfo::AAPCS16_VFP;
9322     else if (CodeGenOpts.FloatABI == "hard" ||
9323              (CodeGenOpts.FloatABI != "soft" &&
9324               (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
9325                Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
9326                Triple.getEnvironment() == llvm::Triple::EABIHF)))
9327       Kind = ARMABIInfo::AAPCS_VFP;
9328 
9329     return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind));
9330   }
9331 
9332   case llvm::Triple::ppc:
9333     return SetCGInfo(
9334         new PPC32TargetCodeGenInfo(Types, CodeGenOpts.FloatABI == "soft"));
9335   case llvm::Triple::ppc64:
9336     if (Triple.isOSBinFormatELF()) {
9337       PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1;
9338       if (getTarget().getABI() == "elfv2")
9339         Kind = PPC64_SVR4_ABIInfo::ELFv2;
9340       bool HasQPX = getTarget().getABI() == "elfv1-qpx";
9341       bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
9342 
9343       return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX,
9344                                                         IsSoftFloat));
9345     } else
9346       return SetCGInfo(new PPC64TargetCodeGenInfo(Types));
9347   case llvm::Triple::ppc64le: {
9348     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
9349     PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2;
9350     if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx")
9351       Kind = PPC64_SVR4_ABIInfo::ELFv1;
9352     bool HasQPX = getTarget().getABI() == "elfv1-qpx";
9353     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
9354 
9355     return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX,
9356                                                       IsSoftFloat));
9357   }
9358 
9359   case llvm::Triple::nvptx:
9360   case llvm::Triple::nvptx64:
9361     return SetCGInfo(new NVPTXTargetCodeGenInfo(Types));
9362 
9363   case llvm::Triple::msp430:
9364     return SetCGInfo(new MSP430TargetCodeGenInfo(Types));
9365 
9366   case llvm::Triple::riscv32:
9367     return SetCGInfo(new RISCVTargetCodeGenInfo(Types, 32));
9368   case llvm::Triple::riscv64:
9369     return SetCGInfo(new RISCVTargetCodeGenInfo(Types, 64));
9370 
9371   case llvm::Triple::systemz: {
9372     bool HasVector = getTarget().getABI() == "vector";
9373     return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector));
9374   }
9375 
9376   case llvm::Triple::tce:
9377   case llvm::Triple::tcele:
9378     return SetCGInfo(new TCETargetCodeGenInfo(Types));
9379 
9380   case llvm::Triple::x86: {
9381     bool IsDarwinVectorABI = Triple.isOSDarwin();
9382     bool RetSmallStructInRegABI =
9383         X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
9384     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
9385 
9386     if (Triple.getOS() == llvm::Triple::Win32) {
9387       return SetCGInfo(new WinX86_32TargetCodeGenInfo(
9388           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
9389           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters));
9390     } else {
9391       return SetCGInfo(new X86_32TargetCodeGenInfo(
9392           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
9393           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters,
9394           CodeGenOpts.FloatABI == "soft"));
9395     }
9396   }
9397 
9398   case llvm::Triple::x86_64: {
9399     StringRef ABI = getTarget().getABI();
9400     X86AVXABILevel AVXLevel =
9401         (ABI == "avx512"
9402              ? X86AVXABILevel::AVX512
9403              : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None);
9404 
9405     switch (Triple.getOS()) {
9406     case llvm::Triple::Win32:
9407       return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel));
9408     case llvm::Triple::PS4:
9409       return SetCGInfo(new PS4TargetCodeGenInfo(Types, AVXLevel));
9410     default:
9411       return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel));
9412     }
9413   }
9414   case llvm::Triple::hexagon:
9415     return SetCGInfo(new HexagonTargetCodeGenInfo(Types));
9416   case llvm::Triple::lanai:
9417     return SetCGInfo(new LanaiTargetCodeGenInfo(Types));
9418   case llvm::Triple::r600:
9419     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
9420   case llvm::Triple::amdgcn:
9421     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
9422   case llvm::Triple::sparc:
9423     return SetCGInfo(new SparcV8TargetCodeGenInfo(Types));
9424   case llvm::Triple::sparcv9:
9425     return SetCGInfo(new SparcV9TargetCodeGenInfo(Types));
9426   case llvm::Triple::xcore:
9427     return SetCGInfo(new XCoreTargetCodeGenInfo(Types));
9428   case llvm::Triple::arc:
9429     return SetCGInfo(new ARCTargetCodeGenInfo(Types));
9430   case llvm::Triple::spir:
9431   case llvm::Triple::spir64:
9432     return SetCGInfo(new SPIRTargetCodeGenInfo(Types));
9433   }
9434 }
9435 
9436 /// Create an OpenCL kernel for an enqueued block.
9437 ///
9438 /// The kernel has the same function type as the block invoke function. Its
9439 /// name is the name of the block invoke function postfixed with "_kernel".
9440 /// It simply calls the block invoke function then returns.
9441 llvm::Function *
9442 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF,
9443                                              llvm::Function *Invoke,
9444                                              llvm::Value *BlockLiteral) const {
9445   auto *InvokeFT = Invoke->getFunctionType();
9446   llvm::SmallVector<llvm::Type *, 2> ArgTys;
9447   for (auto &P : InvokeFT->params())
9448     ArgTys.push_back(P);
9449   auto &C = CGF.getLLVMContext();
9450   std::string Name = Invoke->getName().str() + "_kernel";
9451   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
9452   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
9453                                    &CGF.CGM.getModule());
9454   auto IP = CGF.Builder.saveIP();
9455   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
9456   auto &Builder = CGF.Builder;
9457   Builder.SetInsertPoint(BB);
9458   llvm::SmallVector<llvm::Value *, 2> Args;
9459   for (auto &A : F->args())
9460     Args.push_back(&A);
9461   Builder.CreateCall(Invoke, Args);
9462   Builder.CreateRetVoid();
9463   Builder.restoreIP(IP);
9464   return F;
9465 }
9466 
9467 /// Create an OpenCL kernel for an enqueued block.
9468 ///
9469 /// The type of the first argument (the block literal) is the struct type
9470 /// of the block literal instead of a pointer type. The first argument
9471 /// (block literal) is passed directly by value to the kernel. The kernel
9472 /// allocates the same type of struct on stack and stores the block literal
9473 /// to it and passes its pointer to the block invoke function. The kernel
9474 /// has "enqueued-block" function attribute and kernel argument metadata.
9475 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel(
9476     CodeGenFunction &CGF, llvm::Function *Invoke,
9477     llvm::Value *BlockLiteral) const {
9478   auto &Builder = CGF.Builder;
9479   auto &C = CGF.getLLVMContext();
9480 
9481   auto *BlockTy = BlockLiteral->getType()->getPointerElementType();
9482   auto *InvokeFT = Invoke->getFunctionType();
9483   llvm::SmallVector<llvm::Type *, 2> ArgTys;
9484   llvm::SmallVector<llvm::Metadata *, 8> AddressQuals;
9485   llvm::SmallVector<llvm::Metadata *, 8> AccessQuals;
9486   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames;
9487   llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames;
9488   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals;
9489   llvm::SmallVector<llvm::Metadata *, 8> ArgNames;
9490 
9491   ArgTys.push_back(BlockTy);
9492   ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
9493   AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0)));
9494   ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
9495   ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
9496   AccessQuals.push_back(llvm::MDString::get(C, "none"));
9497   ArgNames.push_back(llvm::MDString::get(C, "block_literal"));
9498   for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) {
9499     ArgTys.push_back(InvokeFT->getParamType(I));
9500     ArgTypeNames.push_back(llvm::MDString::get(C, "void*"));
9501     AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3)));
9502     AccessQuals.push_back(llvm::MDString::get(C, "none"));
9503     ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*"));
9504     ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
9505     ArgNames.push_back(
9506         llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str()));
9507   }
9508   std::string Name = Invoke->getName().str() + "_kernel";
9509   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
9510   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
9511                                    &CGF.CGM.getModule());
9512   F->addFnAttr("enqueued-block");
9513   auto IP = CGF.Builder.saveIP();
9514   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
9515   Builder.SetInsertPoint(BB);
9516   unsigned BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(BlockTy);
9517   auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr);
9518   BlockPtr->setAlignment(BlockAlign);
9519   Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign);
9520   auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0));
9521   llvm::SmallVector<llvm::Value *, 2> Args;
9522   Args.push_back(Cast);
9523   for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I)
9524     Args.push_back(I);
9525   Builder.CreateCall(Invoke, Args);
9526   Builder.CreateRetVoid();
9527   Builder.restoreIP(IP);
9528 
9529   F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals));
9530   F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals));
9531   F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames));
9532   F->setMetadata("kernel_arg_base_type",
9533                  llvm::MDNode::get(C, ArgBaseTypeNames));
9534   F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals));
9535   if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
9536     F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames));
9537 
9538   return F;
9539 }
9540