1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes wrap the information about a call or function 11 // definition used to handle ABI compliancy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "TargetInfo.h" 16 #include "ABIInfo.h" 17 #include "CGCXXABI.h" 18 #include "CGValue.h" 19 #include "CodeGenFunction.h" 20 #include "clang/AST/RecordLayout.h" 21 #include "clang/CodeGen/CGFunctionInfo.h" 22 #include "clang/Frontend/CodeGenOptions.h" 23 #include "llvm/ADT/StringExtras.h" 24 #include "llvm/ADT/Triple.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/Type.h" 27 #include "llvm/Support/raw_ostream.h" 28 #include <algorithm> // std::sort 29 30 using namespace clang; 31 using namespace CodeGen; 32 33 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 34 llvm::Value *Array, 35 llvm::Value *Value, 36 unsigned FirstIndex, 37 unsigned LastIndex) { 38 // Alternatively, we could emit this as a loop in the source. 39 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 40 llvm::Value *Cell = 41 Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); 42 Builder.CreateStore(Value, Cell); 43 } 44 } 45 46 static bool isAggregateTypeForABI(QualType T) { 47 return !CodeGenFunction::hasScalarEvaluationKind(T) || 48 T->isMemberFunctionPointerType(); 49 } 50 51 ABIInfo::~ABIInfo() {} 52 53 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 54 CGCXXABI &CXXABI) { 55 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 56 if (!RD) 57 return CGCXXABI::RAA_Default; 58 return CXXABI.getRecordArgABI(RD); 59 } 60 61 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 62 CGCXXABI &CXXABI) { 63 const RecordType *RT = T->getAs<RecordType>(); 64 if (!RT) 65 return CGCXXABI::RAA_Default; 66 return getRecordArgABI(RT, CXXABI); 67 } 68 69 /// Pass transparent unions as if they were the type of the first element. Sema 70 /// should ensure that all elements of the union have the same "machine type". 71 static QualType useFirstFieldIfTransparentUnion(QualType Ty) { 72 if (const RecordType *UT = Ty->getAsUnionType()) { 73 const RecordDecl *UD = UT->getDecl(); 74 if (UD->hasAttr<TransparentUnionAttr>()) { 75 assert(!UD->field_empty() && "sema created an empty transparent union"); 76 return UD->field_begin()->getType(); 77 } 78 } 79 return Ty; 80 } 81 82 CGCXXABI &ABIInfo::getCXXABI() const { 83 return CGT.getCXXABI(); 84 } 85 86 ASTContext &ABIInfo::getContext() const { 87 return CGT.getContext(); 88 } 89 90 llvm::LLVMContext &ABIInfo::getVMContext() const { 91 return CGT.getLLVMContext(); 92 } 93 94 const llvm::DataLayout &ABIInfo::getDataLayout() const { 95 return CGT.getDataLayout(); 96 } 97 98 const TargetInfo &ABIInfo::getTarget() const { 99 return CGT.getTarget(); 100 } 101 102 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 103 return false; 104 } 105 106 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 107 uint64_t Members) const { 108 return false; 109 } 110 111 bool ABIInfo::shouldSignExtUnsignedType(QualType Ty) const { 112 return false; 113 } 114 115 void ABIArgInfo::dump() const { 116 raw_ostream &OS = llvm::errs(); 117 OS << "(ABIArgInfo Kind="; 118 switch (TheKind) { 119 case Direct: 120 OS << "Direct Type="; 121 if (llvm::Type *Ty = getCoerceToType()) 122 Ty->print(OS); 123 else 124 OS << "null"; 125 break; 126 case Extend: 127 OS << "Extend"; 128 break; 129 case Ignore: 130 OS << "Ignore"; 131 break; 132 case InAlloca: 133 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 134 break; 135 case Indirect: 136 OS << "Indirect Align=" << getIndirectAlign() 137 << " ByVal=" << getIndirectByVal() 138 << " Realign=" << getIndirectRealign(); 139 break; 140 case Expand: 141 OS << "Expand"; 142 break; 143 } 144 OS << ")\n"; 145 } 146 147 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; } 148 149 // If someone can figure out a general rule for this, that would be great. 150 // It's probably just doomed to be platform-dependent, though. 151 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 152 // Verified for: 153 // x86-64 FreeBSD, Linux, Darwin 154 // x86-32 FreeBSD, Linux, Darwin 155 // PowerPC Linux, Darwin 156 // ARM Darwin (*not* EABI) 157 // AArch64 Linux 158 return 32; 159 } 160 161 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 162 const FunctionNoProtoType *fnType) const { 163 // The following conventions are known to require this to be false: 164 // x86_stdcall 165 // MIPS 166 // For everything else, we just prefer false unless we opt out. 167 return false; 168 } 169 170 void 171 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 172 llvm::SmallString<24> &Opt) const { 173 // This assumes the user is passing a library name like "rt" instead of a 174 // filename like "librt.a/so", and that they don't care whether it's static or 175 // dynamic. 176 Opt = "-l"; 177 Opt += Lib; 178 } 179 180 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 181 182 /// isEmptyField - Return true iff a the field is "empty", that is it 183 /// is an unnamed bit-field or an (array of) empty record(s). 184 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 185 bool AllowArrays) { 186 if (FD->isUnnamedBitfield()) 187 return true; 188 189 QualType FT = FD->getType(); 190 191 // Constant arrays of empty records count as empty, strip them off. 192 // Constant arrays of zero length always count as empty. 193 if (AllowArrays) 194 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 195 if (AT->getSize() == 0) 196 return true; 197 FT = AT->getElementType(); 198 } 199 200 const RecordType *RT = FT->getAs<RecordType>(); 201 if (!RT) 202 return false; 203 204 // C++ record fields are never empty, at least in the Itanium ABI. 205 // 206 // FIXME: We should use a predicate for whether this behavior is true in the 207 // current ABI. 208 if (isa<CXXRecordDecl>(RT->getDecl())) 209 return false; 210 211 return isEmptyRecord(Context, FT, AllowArrays); 212 } 213 214 /// isEmptyRecord - Return true iff a structure contains only empty 215 /// fields. Note that a structure with a flexible array member is not 216 /// considered empty. 217 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 218 const RecordType *RT = T->getAs<RecordType>(); 219 if (!RT) 220 return 0; 221 const RecordDecl *RD = RT->getDecl(); 222 if (RD->hasFlexibleArrayMember()) 223 return false; 224 225 // If this is a C++ record, check the bases first. 226 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 227 for (const auto &I : CXXRD->bases()) 228 if (!isEmptyRecord(Context, I.getType(), true)) 229 return false; 230 231 for (const auto *I : RD->fields()) 232 if (!isEmptyField(Context, I, AllowArrays)) 233 return false; 234 return true; 235 } 236 237 /// isSingleElementStruct - Determine if a structure is a "single 238 /// element struct", i.e. it has exactly one non-empty field or 239 /// exactly one field which is itself a single element 240 /// struct. Structures with flexible array members are never 241 /// considered single element structs. 242 /// 243 /// \return The field declaration for the single non-empty field, if 244 /// it exists. 245 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 246 const RecordType *RT = T->getAs<RecordType>(); 247 if (!RT) 248 return nullptr; 249 250 const RecordDecl *RD = RT->getDecl(); 251 if (RD->hasFlexibleArrayMember()) 252 return nullptr; 253 254 const Type *Found = nullptr; 255 256 // If this is a C++ record, check the bases first. 257 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 258 for (const auto &I : CXXRD->bases()) { 259 // Ignore empty records. 260 if (isEmptyRecord(Context, I.getType(), true)) 261 continue; 262 263 // If we already found an element then this isn't a single-element struct. 264 if (Found) 265 return nullptr; 266 267 // If this is non-empty and not a single element struct, the composite 268 // cannot be a single element struct. 269 Found = isSingleElementStruct(I.getType(), Context); 270 if (!Found) 271 return nullptr; 272 } 273 } 274 275 // Check for single element. 276 for (const auto *FD : RD->fields()) { 277 QualType FT = FD->getType(); 278 279 // Ignore empty fields. 280 if (isEmptyField(Context, FD, true)) 281 continue; 282 283 // If we already found an element then this isn't a single-element 284 // struct. 285 if (Found) 286 return nullptr; 287 288 // Treat single element arrays as the element. 289 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 290 if (AT->getSize().getZExtValue() != 1) 291 break; 292 FT = AT->getElementType(); 293 } 294 295 if (!isAggregateTypeForABI(FT)) { 296 Found = FT.getTypePtr(); 297 } else { 298 Found = isSingleElementStruct(FT, Context); 299 if (!Found) 300 return nullptr; 301 } 302 } 303 304 // We don't consider a struct a single-element struct if it has 305 // padding beyond the element type. 306 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 307 return nullptr; 308 309 return Found; 310 } 311 312 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 313 // Treat complex types as the element type. 314 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 315 Ty = CTy->getElementType(); 316 317 // Check for a type which we know has a simple scalar argument-passing 318 // convention without any padding. (We're specifically looking for 32 319 // and 64-bit integer and integer-equivalents, float, and double.) 320 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 321 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 322 return false; 323 324 uint64_t Size = Context.getTypeSize(Ty); 325 return Size == 32 || Size == 64; 326 } 327 328 /// canExpandIndirectArgument - Test whether an argument type which is to be 329 /// passed indirectly (on the stack) would have the equivalent layout if it was 330 /// expanded into separate arguments. If so, we prefer to do the latter to avoid 331 /// inhibiting optimizations. 332 /// 333 // FIXME: This predicate is missing many cases, currently it just follows 334 // llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We 335 // should probably make this smarter, or better yet make the LLVM backend 336 // capable of handling it. 337 static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) { 338 // We can only expand structure types. 339 const RecordType *RT = Ty->getAs<RecordType>(); 340 if (!RT) 341 return false; 342 343 // We can only expand (C) structures. 344 // 345 // FIXME: This needs to be generalized to handle classes as well. 346 const RecordDecl *RD = RT->getDecl(); 347 if (!RD->isStruct()) 348 return false; 349 350 // We try to expand CLike CXXRecordDecl. 351 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 352 if (!CXXRD->isCLike()) 353 return false; 354 } 355 356 uint64_t Size = 0; 357 358 for (const auto *FD : RD->fields()) { 359 if (!is32Or64BitBasicType(FD->getType(), Context)) 360 return false; 361 362 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 363 // how to expand them yet, and the predicate for telling if a bitfield still 364 // counts as "basic" is more complicated than what we were doing previously. 365 if (FD->isBitField()) 366 return false; 367 368 Size += Context.getTypeSize(FD->getType()); 369 } 370 371 // Make sure there are not any holes in the struct. 372 if (Size != Context.getTypeSize(Ty)) 373 return false; 374 375 return true; 376 } 377 378 namespace { 379 /// DefaultABIInfo - The default implementation for ABI specific 380 /// details. This implementation provides information which results in 381 /// self-consistent and sensible LLVM IR generation, but does not 382 /// conform to any particular ABI. 383 class DefaultABIInfo : public ABIInfo { 384 public: 385 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 386 387 ABIArgInfo classifyReturnType(QualType RetTy) const; 388 ABIArgInfo classifyArgumentType(QualType RetTy) const; 389 390 void computeInfo(CGFunctionInfo &FI) const override { 391 if (!getCXXABI().classifyReturnType(FI)) 392 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 393 for (auto &I : FI.arguments()) 394 I.info = classifyArgumentType(I.type); 395 } 396 397 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 398 CodeGenFunction &CGF) const override; 399 }; 400 401 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 402 public: 403 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 404 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 405 }; 406 407 llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 408 CodeGenFunction &CGF) const { 409 return nullptr; 410 } 411 412 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 413 Ty = useFirstFieldIfTransparentUnion(Ty); 414 415 if (isAggregateTypeForABI(Ty)) { 416 // Records with non-trivial destructors/copy-constructors should not be 417 // passed by value. 418 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 419 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 420 421 return ABIArgInfo::getIndirect(0); 422 } 423 424 // Treat an enum type as its underlying type. 425 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 426 Ty = EnumTy->getDecl()->getIntegerType(); 427 428 return (Ty->isPromotableIntegerType() ? 429 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 430 } 431 432 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 433 if (RetTy->isVoidType()) 434 return ABIArgInfo::getIgnore(); 435 436 if (isAggregateTypeForABI(RetTy)) 437 return ABIArgInfo::getIndirect(0); 438 439 // Treat an enum type as its underlying type. 440 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 441 RetTy = EnumTy->getDecl()->getIntegerType(); 442 443 return (RetTy->isPromotableIntegerType() ? 444 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 445 } 446 447 //===----------------------------------------------------------------------===// 448 // le32/PNaCl bitcode ABI Implementation 449 // 450 // This is a simplified version of the x86_32 ABI. Arguments and return values 451 // are always passed on the stack. 452 //===----------------------------------------------------------------------===// 453 454 class PNaClABIInfo : public ABIInfo { 455 public: 456 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 457 458 ABIArgInfo classifyReturnType(QualType RetTy) const; 459 ABIArgInfo classifyArgumentType(QualType RetTy) const; 460 461 void computeInfo(CGFunctionInfo &FI) const override; 462 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 463 CodeGenFunction &CGF) const override; 464 }; 465 466 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 467 public: 468 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 469 : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {} 470 }; 471 472 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 473 if (!getCXXABI().classifyReturnType(FI)) 474 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 475 476 for (auto &I : FI.arguments()) 477 I.info = classifyArgumentType(I.type); 478 } 479 480 llvm::Value *PNaClABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 481 CodeGenFunction &CGF) const { 482 return nullptr; 483 } 484 485 /// \brief Classify argument of given type \p Ty. 486 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 487 if (isAggregateTypeForABI(Ty)) { 488 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 489 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 490 return ABIArgInfo::getIndirect(0); 491 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 492 // Treat an enum type as its underlying type. 493 Ty = EnumTy->getDecl()->getIntegerType(); 494 } else if (Ty->isFloatingType()) { 495 // Floating-point types don't go inreg. 496 return ABIArgInfo::getDirect(); 497 } 498 499 return (Ty->isPromotableIntegerType() ? 500 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 501 } 502 503 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 504 if (RetTy->isVoidType()) 505 return ABIArgInfo::getIgnore(); 506 507 // In the PNaCl ABI we always return records/structures on the stack. 508 if (isAggregateTypeForABI(RetTy)) 509 return ABIArgInfo::getIndirect(0); 510 511 // Treat an enum type as its underlying type. 512 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 513 RetTy = EnumTy->getDecl()->getIntegerType(); 514 515 return (RetTy->isPromotableIntegerType() ? 516 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 517 } 518 519 /// IsX86_MMXType - Return true if this is an MMX type. 520 bool IsX86_MMXType(llvm::Type *IRType) { 521 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 522 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 523 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 524 IRType->getScalarSizeInBits() != 64; 525 } 526 527 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 528 StringRef Constraint, 529 llvm::Type* Ty) { 530 if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) { 531 if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) { 532 // Invalid MMX constraint 533 return nullptr; 534 } 535 536 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 537 } 538 539 // No operation needed 540 return Ty; 541 } 542 543 /// Returns true if this type can be passed in SSE registers with the 544 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 545 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 546 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 547 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) 548 return true; 549 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 550 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 551 // registers specially. 552 unsigned VecSize = Context.getTypeSize(VT); 553 if (VecSize == 128 || VecSize == 256 || VecSize == 512) 554 return true; 555 } 556 return false; 557 } 558 559 /// Returns true if this aggregate is small enough to be passed in SSE registers 560 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 561 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 562 return NumMembers <= 4; 563 } 564 565 //===----------------------------------------------------------------------===// 566 // X86-32 ABI Implementation 567 //===----------------------------------------------------------------------===// 568 569 /// \brief Similar to llvm::CCState, but for Clang. 570 struct CCState { 571 CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {} 572 573 unsigned CC; 574 unsigned FreeRegs; 575 unsigned FreeSSERegs; 576 }; 577 578 /// X86_32ABIInfo - The X86-32 ABI information. 579 class X86_32ABIInfo : public ABIInfo { 580 enum Class { 581 Integer, 582 Float 583 }; 584 585 static const unsigned MinABIStackAlignInBytes = 4; 586 587 bool IsDarwinVectorABI; 588 bool IsSmallStructInRegABI; 589 bool IsWin32StructABI; 590 unsigned DefaultNumRegisterParameters; 591 592 static bool isRegisterSize(unsigned Size) { 593 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 594 } 595 596 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 597 // FIXME: Assumes vectorcall is in use. 598 return isX86VectorTypeForVectorCall(getContext(), Ty); 599 } 600 601 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 602 uint64_t NumMembers) const override { 603 // FIXME: Assumes vectorcall is in use. 604 return isX86VectorCallAggregateSmallEnough(NumMembers); 605 } 606 607 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 608 609 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 610 /// such that the argument will be passed in memory. 611 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 612 613 ABIArgInfo getIndirectReturnResult(CCState &State) const; 614 615 /// \brief Return the alignment to use for the given type on the stack. 616 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 617 618 Class classify(QualType Ty) const; 619 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 620 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 621 bool shouldUseInReg(QualType Ty, CCState &State, bool &NeedsPadding) const; 622 623 /// \brief Rewrite the function info so that all memory arguments use 624 /// inalloca. 625 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 626 627 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 628 unsigned &StackOffset, ABIArgInfo &Info, 629 QualType Type) const; 630 631 public: 632 633 void computeInfo(CGFunctionInfo &FI) const override; 634 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 635 CodeGenFunction &CGF) const override; 636 637 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool w, 638 unsigned r) 639 : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p), 640 IsWin32StructABI(w), DefaultNumRegisterParameters(r) {} 641 }; 642 643 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 644 public: 645 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 646 bool d, bool p, bool w, unsigned r) 647 :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, w, r)) {} 648 649 static bool isStructReturnInRegABI( 650 const llvm::Triple &Triple, const CodeGenOptions &Opts); 651 652 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 653 CodeGen::CodeGenModule &CGM) const override; 654 655 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 656 // Darwin uses different dwarf register numbers for EH. 657 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 658 return 4; 659 } 660 661 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 662 llvm::Value *Address) const override; 663 664 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 665 StringRef Constraint, 666 llvm::Type* Ty) const override { 667 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 668 } 669 670 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 671 std::string &Constraints, 672 std::vector<llvm::Type *> &ResultRegTypes, 673 std::vector<llvm::Type *> &ResultTruncRegTypes, 674 std::vector<LValue> &ResultRegDests, 675 std::string &AsmString, 676 unsigned NumOutputs) const override; 677 678 llvm::Constant * 679 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 680 unsigned Sig = (0xeb << 0) | // jmp rel8 681 (0x06 << 8) | // .+0x08 682 ('F' << 16) | 683 ('T' << 24); 684 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 685 } 686 }; 687 688 } 689 690 /// Rewrite input constraint references after adding some output constraints. 691 /// In the case where there is one output and one input and we add one output, 692 /// we need to replace all operand references greater than or equal to 1: 693 /// mov $0, $1 694 /// mov eax, $1 695 /// The result will be: 696 /// mov $0, $2 697 /// mov eax, $2 698 static void rewriteInputConstraintReferences(unsigned FirstIn, 699 unsigned NumNewOuts, 700 std::string &AsmString) { 701 std::string Buf; 702 llvm::raw_string_ostream OS(Buf); 703 size_t Pos = 0; 704 while (Pos < AsmString.size()) { 705 size_t DollarStart = AsmString.find('$', Pos); 706 if (DollarStart == std::string::npos) 707 DollarStart = AsmString.size(); 708 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 709 if (DollarEnd == std::string::npos) 710 DollarEnd = AsmString.size(); 711 OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 712 Pos = DollarEnd; 713 size_t NumDollars = DollarEnd - DollarStart; 714 if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 715 // We have an operand reference. 716 size_t DigitStart = Pos; 717 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 718 if (DigitEnd == std::string::npos) 719 DigitEnd = AsmString.size(); 720 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 721 unsigned OperandIndex; 722 if (!OperandStr.getAsInteger(10, OperandIndex)) { 723 if (OperandIndex >= FirstIn) 724 OperandIndex += NumNewOuts; 725 OS << OperandIndex; 726 } else { 727 OS << OperandStr; 728 } 729 Pos = DigitEnd; 730 } 731 } 732 AsmString = std::move(OS.str()); 733 } 734 735 /// Add output constraints for EAX:EDX because they are return registers. 736 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 737 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 738 std::vector<llvm::Type *> &ResultRegTypes, 739 std::vector<llvm::Type *> &ResultTruncRegTypes, 740 std::vector<LValue> &ResultRegDests, std::string &AsmString, 741 unsigned NumOutputs) const { 742 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 743 744 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 745 // larger. 746 if (!Constraints.empty()) 747 Constraints += ','; 748 if (RetWidth <= 32) { 749 Constraints += "={eax}"; 750 ResultRegTypes.push_back(CGF.Int32Ty); 751 } else { 752 // Use the 'A' constraint for EAX:EDX. 753 Constraints += "=A"; 754 ResultRegTypes.push_back(CGF.Int64Ty); 755 } 756 757 // Truncate EAX or EAX:EDX to an integer of the appropriate size. 758 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 759 ResultTruncRegTypes.push_back(CoerceTy); 760 761 // Coerce the integer by bitcasting the return slot pointer. 762 ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(), 763 CoerceTy->getPointerTo())); 764 ResultRegDests.push_back(ReturnSlot); 765 766 rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 767 } 768 769 /// shouldReturnTypeInRegister - Determine if the given type should be 770 /// passed in a register (for the Darwin ABI). 771 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 772 ASTContext &Context) const { 773 uint64_t Size = Context.getTypeSize(Ty); 774 775 // Type must be register sized. 776 if (!isRegisterSize(Size)) 777 return false; 778 779 if (Ty->isVectorType()) { 780 // 64- and 128- bit vectors inside structures are not returned in 781 // registers. 782 if (Size == 64 || Size == 128) 783 return false; 784 785 return true; 786 } 787 788 // If this is a builtin, pointer, enum, complex type, member pointer, or 789 // member function pointer it is ok. 790 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 791 Ty->isAnyComplexType() || Ty->isEnumeralType() || 792 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 793 return true; 794 795 // Arrays are treated like records. 796 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 797 return shouldReturnTypeInRegister(AT->getElementType(), Context); 798 799 // Otherwise, it must be a record type. 800 const RecordType *RT = Ty->getAs<RecordType>(); 801 if (!RT) return false; 802 803 // FIXME: Traverse bases here too. 804 805 // Structure types are passed in register if all fields would be 806 // passed in a register. 807 for (const auto *FD : RT->getDecl()->fields()) { 808 // Empty fields are ignored. 809 if (isEmptyField(Context, FD, true)) 810 continue; 811 812 // Check fields recursively. 813 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 814 return false; 815 } 816 return true; 817 } 818 819 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(CCState &State) const { 820 // If the return value is indirect, then the hidden argument is consuming one 821 // integer register. 822 if (State.FreeRegs) { 823 --State.FreeRegs; 824 return ABIArgInfo::getIndirectInReg(/*Align=*/0, /*ByVal=*/false); 825 } 826 return ABIArgInfo::getIndirect(/*Align=*/0, /*ByVal=*/false); 827 } 828 829 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 830 CCState &State) const { 831 if (RetTy->isVoidType()) 832 return ABIArgInfo::getIgnore(); 833 834 const Type *Base = nullptr; 835 uint64_t NumElts = 0; 836 if (State.CC == llvm::CallingConv::X86_VectorCall && 837 isHomogeneousAggregate(RetTy, Base, NumElts)) { 838 // The LLVM struct type for such an aggregate should lower properly. 839 return ABIArgInfo::getDirect(); 840 } 841 842 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 843 // On Darwin, some vectors are returned in registers. 844 if (IsDarwinVectorABI) { 845 uint64_t Size = getContext().getTypeSize(RetTy); 846 847 // 128-bit vectors are a special case; they are returned in 848 // registers and we need to make sure to pick a type the LLVM 849 // backend will like. 850 if (Size == 128) 851 return ABIArgInfo::getDirect(llvm::VectorType::get( 852 llvm::Type::getInt64Ty(getVMContext()), 2)); 853 854 // Always return in register if it fits in a general purpose 855 // register, or if it is 64 bits and has a single element. 856 if ((Size == 8 || Size == 16 || Size == 32) || 857 (Size == 64 && VT->getNumElements() == 1)) 858 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 859 Size)); 860 861 return getIndirectReturnResult(State); 862 } 863 864 return ABIArgInfo::getDirect(); 865 } 866 867 if (isAggregateTypeForABI(RetTy)) { 868 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 869 // Structures with flexible arrays are always indirect. 870 if (RT->getDecl()->hasFlexibleArrayMember()) 871 return getIndirectReturnResult(State); 872 } 873 874 // If specified, structs and unions are always indirect. 875 if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType()) 876 return getIndirectReturnResult(State); 877 878 // Small structures which are register sized are generally returned 879 // in a register. 880 if (shouldReturnTypeInRegister(RetTy, getContext())) { 881 uint64_t Size = getContext().getTypeSize(RetTy); 882 883 // As a special-case, if the struct is a "single-element" struct, and 884 // the field is of type "float" or "double", return it in a 885 // floating-point register. (MSVC does not apply this special case.) 886 // We apply a similar transformation for pointer types to improve the 887 // quality of the generated IR. 888 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 889 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 890 || SeltTy->hasPointerRepresentation()) 891 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 892 893 // FIXME: We should be able to narrow this integer in cases with dead 894 // padding. 895 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 896 } 897 898 return getIndirectReturnResult(State); 899 } 900 901 // Treat an enum type as its underlying type. 902 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 903 RetTy = EnumTy->getDecl()->getIntegerType(); 904 905 return (RetTy->isPromotableIntegerType() ? 906 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 907 } 908 909 static bool isSSEVectorType(ASTContext &Context, QualType Ty) { 910 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 911 } 912 913 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) { 914 const RecordType *RT = Ty->getAs<RecordType>(); 915 if (!RT) 916 return 0; 917 const RecordDecl *RD = RT->getDecl(); 918 919 // If this is a C++ record, check the bases first. 920 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 921 for (const auto &I : CXXRD->bases()) 922 if (!isRecordWithSSEVectorType(Context, I.getType())) 923 return false; 924 925 for (const auto *i : RD->fields()) { 926 QualType FT = i->getType(); 927 928 if (isSSEVectorType(Context, FT)) 929 return true; 930 931 if (isRecordWithSSEVectorType(Context, FT)) 932 return true; 933 } 934 935 return false; 936 } 937 938 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 939 unsigned Align) const { 940 // Otherwise, if the alignment is less than or equal to the minimum ABI 941 // alignment, just use the default; the backend will handle this. 942 if (Align <= MinABIStackAlignInBytes) 943 return 0; // Use default alignment. 944 945 // On non-Darwin, the stack type alignment is always 4. 946 if (!IsDarwinVectorABI) { 947 // Set explicit alignment, since we may need to realign the top. 948 return MinABIStackAlignInBytes; 949 } 950 951 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 952 if (Align >= 16 && (isSSEVectorType(getContext(), Ty) || 953 isRecordWithSSEVectorType(getContext(), Ty))) 954 return 16; 955 956 return MinABIStackAlignInBytes; 957 } 958 959 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 960 CCState &State) const { 961 if (!ByVal) { 962 if (State.FreeRegs) { 963 --State.FreeRegs; // Non-byval indirects just use one pointer. 964 return ABIArgInfo::getIndirectInReg(0, false); 965 } 966 return ABIArgInfo::getIndirect(0, false); 967 } 968 969 // Compute the byval alignment. 970 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 971 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 972 if (StackAlign == 0) 973 return ABIArgInfo::getIndirect(4, /*ByVal=*/true); 974 975 // If the stack alignment is less than the type alignment, realign the 976 // argument. 977 bool Realign = TypeAlign > StackAlign; 978 return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true, Realign); 979 } 980 981 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 982 const Type *T = isSingleElementStruct(Ty, getContext()); 983 if (!T) 984 T = Ty.getTypePtr(); 985 986 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 987 BuiltinType::Kind K = BT->getKind(); 988 if (K == BuiltinType::Float || K == BuiltinType::Double) 989 return Float; 990 } 991 return Integer; 992 } 993 994 bool X86_32ABIInfo::shouldUseInReg(QualType Ty, CCState &State, 995 bool &NeedsPadding) const { 996 NeedsPadding = false; 997 Class C = classify(Ty); 998 if (C == Float) 999 return false; 1000 1001 unsigned Size = getContext().getTypeSize(Ty); 1002 unsigned SizeInRegs = (Size + 31) / 32; 1003 1004 if (SizeInRegs == 0) 1005 return false; 1006 1007 if (SizeInRegs > State.FreeRegs) { 1008 State.FreeRegs = 0; 1009 return false; 1010 } 1011 1012 State.FreeRegs -= SizeInRegs; 1013 1014 if (State.CC == llvm::CallingConv::X86_FastCall || 1015 State.CC == llvm::CallingConv::X86_VectorCall) { 1016 if (Size > 32) 1017 return false; 1018 1019 if (Ty->isIntegralOrEnumerationType()) 1020 return true; 1021 1022 if (Ty->isPointerType()) 1023 return true; 1024 1025 if (Ty->isReferenceType()) 1026 return true; 1027 1028 if (State.FreeRegs) 1029 NeedsPadding = true; 1030 1031 return false; 1032 } 1033 1034 return true; 1035 } 1036 1037 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 1038 CCState &State) const { 1039 // FIXME: Set alignment on indirect arguments. 1040 1041 Ty = useFirstFieldIfTransparentUnion(Ty); 1042 1043 // Check with the C++ ABI first. 1044 const RecordType *RT = Ty->getAs<RecordType>(); 1045 if (RT) { 1046 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 1047 if (RAA == CGCXXABI::RAA_Indirect) { 1048 return getIndirectResult(Ty, false, State); 1049 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 1050 // The field index doesn't matter, we'll fix it up later. 1051 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 1052 } 1053 } 1054 1055 // vectorcall adds the concept of a homogenous vector aggregate, similar 1056 // to other targets. 1057 const Type *Base = nullptr; 1058 uint64_t NumElts = 0; 1059 if (State.CC == llvm::CallingConv::X86_VectorCall && 1060 isHomogeneousAggregate(Ty, Base, NumElts)) { 1061 if (State.FreeSSERegs >= NumElts) { 1062 State.FreeSSERegs -= NumElts; 1063 if (Ty->isBuiltinType() || Ty->isVectorType()) 1064 return ABIArgInfo::getDirect(); 1065 return ABIArgInfo::getExpand(); 1066 } 1067 return getIndirectResult(Ty, /*ByVal=*/false, State); 1068 } 1069 1070 if (isAggregateTypeForABI(Ty)) { 1071 if (RT) { 1072 // Structs are always byval on win32, regardless of what they contain. 1073 if (IsWin32StructABI) 1074 return getIndirectResult(Ty, true, State); 1075 1076 // Structures with flexible arrays are always indirect. 1077 if (RT->getDecl()->hasFlexibleArrayMember()) 1078 return getIndirectResult(Ty, true, State); 1079 } 1080 1081 // Ignore empty structs/unions. 1082 if (isEmptyRecord(getContext(), Ty, true)) 1083 return ABIArgInfo::getIgnore(); 1084 1085 llvm::LLVMContext &LLVMContext = getVMContext(); 1086 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 1087 bool NeedsPadding; 1088 if (shouldUseInReg(Ty, State, NeedsPadding)) { 1089 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 1090 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 1091 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 1092 return ABIArgInfo::getDirectInReg(Result); 1093 } 1094 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 1095 1096 // Expand small (<= 128-bit) record types when we know that the stack layout 1097 // of those arguments will match the struct. This is important because the 1098 // LLVM backend isn't smart enough to remove byval, which inhibits many 1099 // optimizations. 1100 if (getContext().getTypeSize(Ty) <= 4*32 && 1101 canExpandIndirectArgument(Ty, getContext())) 1102 return ABIArgInfo::getExpandWithPadding( 1103 State.CC == llvm::CallingConv::X86_FastCall || 1104 State.CC == llvm::CallingConv::X86_VectorCall, 1105 PaddingType); 1106 1107 return getIndirectResult(Ty, true, State); 1108 } 1109 1110 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1111 // On Darwin, some vectors are passed in memory, we handle this by passing 1112 // it as an i8/i16/i32/i64. 1113 if (IsDarwinVectorABI) { 1114 uint64_t Size = getContext().getTypeSize(Ty); 1115 if ((Size == 8 || Size == 16 || Size == 32) || 1116 (Size == 64 && VT->getNumElements() == 1)) 1117 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1118 Size)); 1119 } 1120 1121 if (IsX86_MMXType(CGT.ConvertType(Ty))) 1122 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 1123 1124 return ABIArgInfo::getDirect(); 1125 } 1126 1127 1128 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1129 Ty = EnumTy->getDecl()->getIntegerType(); 1130 1131 bool NeedsPadding; 1132 bool InReg = shouldUseInReg(Ty, State, NeedsPadding); 1133 1134 if (Ty->isPromotableIntegerType()) { 1135 if (InReg) 1136 return ABIArgInfo::getExtendInReg(); 1137 return ABIArgInfo::getExtend(); 1138 } 1139 if (InReg) 1140 return ABIArgInfo::getDirectInReg(); 1141 return ABIArgInfo::getDirect(); 1142 } 1143 1144 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 1145 CCState State(FI.getCallingConvention()); 1146 if (State.CC == llvm::CallingConv::X86_FastCall) 1147 State.FreeRegs = 2; 1148 else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1149 State.FreeRegs = 2; 1150 State.FreeSSERegs = 6; 1151 } else if (FI.getHasRegParm()) 1152 State.FreeRegs = FI.getRegParm(); 1153 else 1154 State.FreeRegs = DefaultNumRegisterParameters; 1155 1156 if (!getCXXABI().classifyReturnType(FI)) { 1157 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 1158 } else if (FI.getReturnInfo().isIndirect()) { 1159 // The C++ ABI is not aware of register usage, so we have to check if the 1160 // return value was sret and put it in a register ourselves if appropriate. 1161 if (State.FreeRegs) { 1162 --State.FreeRegs; // The sret parameter consumes a register. 1163 FI.getReturnInfo().setInReg(true); 1164 } 1165 } 1166 1167 // The chain argument effectively gives us another free register. 1168 if (FI.isChainCall()) 1169 ++State.FreeRegs; 1170 1171 bool UsedInAlloca = false; 1172 for (auto &I : FI.arguments()) { 1173 I.info = classifyArgumentType(I.type, State); 1174 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1175 } 1176 1177 // If we needed to use inalloca for any argument, do a second pass and rewrite 1178 // all the memory arguments to use inalloca. 1179 if (UsedInAlloca) 1180 rewriteWithInAlloca(FI); 1181 } 1182 1183 void 1184 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1185 unsigned &StackOffset, 1186 ABIArgInfo &Info, QualType Type) const { 1187 assert(StackOffset % 4U == 0 && "unaligned inalloca struct"); 1188 Info = ABIArgInfo::getInAlloca(FrameFields.size()); 1189 FrameFields.push_back(CGT.ConvertTypeForMem(Type)); 1190 StackOffset += getContext().getTypeSizeInChars(Type).getQuantity(); 1191 1192 // Insert padding bytes to respect alignment. For x86_32, each argument is 4 1193 // byte aligned. 1194 if (StackOffset % 4U) { 1195 unsigned OldOffset = StackOffset; 1196 StackOffset = llvm::RoundUpToAlignment(StackOffset, 4U); 1197 unsigned NumBytes = StackOffset - OldOffset; 1198 assert(NumBytes); 1199 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 1200 Ty = llvm::ArrayType::get(Ty, NumBytes); 1201 FrameFields.push_back(Ty); 1202 } 1203 } 1204 1205 static bool isArgInAlloca(const ABIArgInfo &Info) { 1206 // Leave ignored and inreg arguments alone. 1207 switch (Info.getKind()) { 1208 case ABIArgInfo::InAlloca: 1209 return true; 1210 case ABIArgInfo::Indirect: 1211 assert(Info.getIndirectByVal()); 1212 return true; 1213 case ABIArgInfo::Ignore: 1214 return false; 1215 case ABIArgInfo::Direct: 1216 case ABIArgInfo::Extend: 1217 case ABIArgInfo::Expand: 1218 if (Info.getInReg()) 1219 return false; 1220 return true; 1221 } 1222 llvm_unreachable("invalid enum"); 1223 } 1224 1225 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 1226 assert(IsWin32StructABI && "inalloca only supported on win32"); 1227 1228 // Build a packed struct type for all of the arguments in memory. 1229 SmallVector<llvm::Type *, 6> FrameFields; 1230 1231 unsigned StackOffset = 0; 1232 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 1233 1234 // Put 'this' into the struct before 'sret', if necessary. 1235 bool IsThisCall = 1236 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 1237 ABIArgInfo &Ret = FI.getReturnInfo(); 1238 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 1239 isArgInAlloca(I->info)) { 1240 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1241 ++I; 1242 } 1243 1244 // Put the sret parameter into the inalloca struct if it's in memory. 1245 if (Ret.isIndirect() && !Ret.getInReg()) { 1246 CanQualType PtrTy = getContext().getPointerType(FI.getReturnType()); 1247 addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy); 1248 // On Windows, the hidden sret parameter is always returned in eax. 1249 Ret.setInAllocaSRet(IsWin32StructABI); 1250 } 1251 1252 // Skip the 'this' parameter in ecx. 1253 if (IsThisCall) 1254 ++I; 1255 1256 // Put arguments passed in memory into the struct. 1257 for (; I != E; ++I) { 1258 if (isArgInAlloca(I->info)) 1259 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1260 } 1261 1262 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 1263 /*isPacked=*/true)); 1264 } 1265 1266 llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 1267 CodeGenFunction &CGF) const { 1268 llvm::Type *BPP = CGF.Int8PtrPtrTy; 1269 1270 CGBuilderTy &Builder = CGF.Builder; 1271 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, 1272 "ap"); 1273 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 1274 1275 // Compute if the address needs to be aligned 1276 unsigned Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity(); 1277 Align = getTypeStackAlignInBytes(Ty, Align); 1278 Align = std::max(Align, 4U); 1279 if (Align > 4) { 1280 // addr = (addr + align - 1) & -align; 1281 llvm::Value *Offset = 1282 llvm::ConstantInt::get(CGF.Int32Ty, Align - 1); 1283 Addr = CGF.Builder.CreateGEP(Addr, Offset); 1284 llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(Addr, 1285 CGF.Int32Ty); 1286 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -Align); 1287 Addr = CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask), 1288 Addr->getType(), 1289 "ap.cur.aligned"); 1290 } 1291 1292 llvm::Type *PTy = 1293 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 1294 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 1295 1296 uint64_t Offset = 1297 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, Align); 1298 llvm::Value *NextAddr = 1299 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 1300 "ap.next"); 1301 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 1302 1303 return AddrTyped; 1304 } 1305 1306 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 1307 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 1308 assert(Triple.getArch() == llvm::Triple::x86); 1309 1310 switch (Opts.getStructReturnConvention()) { 1311 case CodeGenOptions::SRCK_Default: 1312 break; 1313 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 1314 return false; 1315 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 1316 return true; 1317 } 1318 1319 if (Triple.isOSDarwin()) 1320 return true; 1321 1322 switch (Triple.getOS()) { 1323 case llvm::Triple::DragonFly: 1324 case llvm::Triple::FreeBSD: 1325 case llvm::Triple::OpenBSD: 1326 case llvm::Triple::Bitrig: 1327 case llvm::Triple::Win32: 1328 return true; 1329 default: 1330 return false; 1331 } 1332 } 1333 1334 void X86_32TargetCodeGenInfo::setTargetAttributes(const Decl *D, 1335 llvm::GlobalValue *GV, 1336 CodeGen::CodeGenModule &CGM) const { 1337 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1338 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 1339 // Get the LLVM function. 1340 llvm::Function *Fn = cast<llvm::Function>(GV); 1341 1342 // Now add the 'alignstack' attribute with a value of 16. 1343 llvm::AttrBuilder B; 1344 B.addStackAlignmentAttr(16); 1345 Fn->addAttributes(llvm::AttributeSet::FunctionIndex, 1346 llvm::AttributeSet::get(CGM.getLLVMContext(), 1347 llvm::AttributeSet::FunctionIndex, 1348 B)); 1349 } 1350 } 1351 } 1352 1353 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 1354 CodeGen::CodeGenFunction &CGF, 1355 llvm::Value *Address) const { 1356 CodeGen::CGBuilderTy &Builder = CGF.Builder; 1357 1358 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 1359 1360 // 0-7 are the eight integer registers; the order is different 1361 // on Darwin (for EH), but the range is the same. 1362 // 8 is %eip. 1363 AssignToArrayRange(Builder, Address, Four8, 0, 8); 1364 1365 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 1366 // 12-16 are st(0..4). Not sure why we stop at 4. 1367 // These have size 16, which is sizeof(long double) on 1368 // platforms with 8-byte alignment for that type. 1369 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 1370 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 1371 1372 } else { 1373 // 9 is %eflags, which doesn't get a size on Darwin for some 1374 // reason. 1375 Builder.CreateStore( 1376 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9)); 1377 1378 // 11-16 are st(0..5). Not sure why we stop at 5. 1379 // These have size 12, which is sizeof(long double) on 1380 // platforms with 4-byte alignment for that type. 1381 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 1382 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 1383 } 1384 1385 return false; 1386 } 1387 1388 //===----------------------------------------------------------------------===// 1389 // X86-64 ABI Implementation 1390 //===----------------------------------------------------------------------===// 1391 1392 1393 namespace { 1394 /// The AVX ABI level for X86 targets. 1395 enum class X86AVXABILevel { 1396 None, 1397 AVX, 1398 AVX512 1399 }; 1400 1401 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. 1402 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { 1403 switch (AVXLevel) { 1404 case X86AVXABILevel::AVX512: 1405 return 512; 1406 case X86AVXABILevel::AVX: 1407 return 256; 1408 case X86AVXABILevel::None: 1409 return 128; 1410 } 1411 llvm_unreachable("Unknown AVXLevel"); 1412 } 1413 1414 /// X86_64ABIInfo - The X86_64 ABI information. 1415 class X86_64ABIInfo : public ABIInfo { 1416 enum Class { 1417 Integer = 0, 1418 SSE, 1419 SSEUp, 1420 X87, 1421 X87Up, 1422 ComplexX87, 1423 NoClass, 1424 Memory 1425 }; 1426 1427 /// merge - Implement the X86_64 ABI merging algorithm. 1428 /// 1429 /// Merge an accumulating classification \arg Accum with a field 1430 /// classification \arg Field. 1431 /// 1432 /// \param Accum - The accumulating classification. This should 1433 /// always be either NoClass or the result of a previous merge 1434 /// call. In addition, this should never be Memory (the caller 1435 /// should just return Memory for the aggregate). 1436 static Class merge(Class Accum, Class Field); 1437 1438 /// postMerge - Implement the X86_64 ABI post merging algorithm. 1439 /// 1440 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 1441 /// final MEMORY or SSE classes when necessary. 1442 /// 1443 /// \param AggregateSize - The size of the current aggregate in 1444 /// the classification process. 1445 /// 1446 /// \param Lo - The classification for the parts of the type 1447 /// residing in the low word of the containing object. 1448 /// 1449 /// \param Hi - The classification for the parts of the type 1450 /// residing in the higher words of the containing object. 1451 /// 1452 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 1453 1454 /// classify - Determine the x86_64 register classes in which the 1455 /// given type T should be passed. 1456 /// 1457 /// \param Lo - The classification for the parts of the type 1458 /// residing in the low word of the containing object. 1459 /// 1460 /// \param Hi - The classification for the parts of the type 1461 /// residing in the high word of the containing object. 1462 /// 1463 /// \param OffsetBase - The bit offset of this type in the 1464 /// containing object. Some parameters are classified different 1465 /// depending on whether they straddle an eightbyte boundary. 1466 /// 1467 /// \param isNamedArg - Whether the argument in question is a "named" 1468 /// argument, as used in AMD64-ABI 3.5.7. 1469 /// 1470 /// If a word is unused its result will be NoClass; if a type should 1471 /// be passed in Memory then at least the classification of \arg Lo 1472 /// will be Memory. 1473 /// 1474 /// The \arg Lo class will be NoClass iff the argument is ignored. 1475 /// 1476 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 1477 /// also be ComplexX87. 1478 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 1479 bool isNamedArg) const; 1480 1481 llvm::Type *GetByteVectorType(QualType Ty) const; 1482 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 1483 unsigned IROffset, QualType SourceTy, 1484 unsigned SourceOffset) const; 1485 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 1486 unsigned IROffset, QualType SourceTy, 1487 unsigned SourceOffset) const; 1488 1489 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1490 /// such that the argument will be returned in memory. 1491 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 1492 1493 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1494 /// such that the argument will be passed in memory. 1495 /// 1496 /// \param freeIntRegs - The number of free integer registers remaining 1497 /// available. 1498 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 1499 1500 ABIArgInfo classifyReturnType(QualType RetTy) const; 1501 1502 ABIArgInfo classifyArgumentType(QualType Ty, 1503 unsigned freeIntRegs, 1504 unsigned &neededInt, 1505 unsigned &neededSSE, 1506 bool isNamedArg) const; 1507 1508 bool IsIllegalVectorType(QualType Ty) const; 1509 1510 /// The 0.98 ABI revision clarified a lot of ambiguities, 1511 /// unfortunately in ways that were not always consistent with 1512 /// certain previous compilers. In particular, platforms which 1513 /// required strict binary compatibility with older versions of GCC 1514 /// may need to exempt themselves. 1515 bool honorsRevision0_98() const { 1516 return !getTarget().getTriple().isOSDarwin(); 1517 } 1518 1519 X86AVXABILevel AVXLevel; 1520 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 1521 // 64-bit hardware. 1522 bool Has64BitPointers; 1523 1524 public: 1525 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : 1526 ABIInfo(CGT), AVXLevel(AVXLevel), 1527 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 1528 } 1529 1530 bool isPassedUsingAVXType(QualType type) const { 1531 unsigned neededInt, neededSSE; 1532 // The freeIntRegs argument doesn't matter here. 1533 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 1534 /*isNamedArg*/true); 1535 if (info.isDirect()) { 1536 llvm::Type *ty = info.getCoerceToType(); 1537 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 1538 return (vectorTy->getBitWidth() > 128); 1539 } 1540 return false; 1541 } 1542 1543 void computeInfo(CGFunctionInfo &FI) const override; 1544 1545 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 1546 CodeGenFunction &CGF) const override; 1547 1548 bool has64BitPointers() const { 1549 return Has64BitPointers; 1550 } 1551 }; 1552 1553 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 1554 class WinX86_64ABIInfo : public ABIInfo { 1555 1556 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, 1557 bool IsReturnType) const; 1558 1559 public: 1560 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 1561 1562 void computeInfo(CGFunctionInfo &FI) const override; 1563 1564 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 1565 CodeGenFunction &CGF) const override; 1566 1567 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 1568 // FIXME: Assumes vectorcall is in use. 1569 return isX86VectorTypeForVectorCall(getContext(), Ty); 1570 } 1571 1572 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 1573 uint64_t NumMembers) const override { 1574 // FIXME: Assumes vectorcall is in use. 1575 return isX86VectorCallAggregateSmallEnough(NumMembers); 1576 } 1577 }; 1578 1579 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 1580 public: 1581 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 1582 : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {} 1583 1584 const X86_64ABIInfo &getABIInfo() const { 1585 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 1586 } 1587 1588 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1589 return 7; 1590 } 1591 1592 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1593 llvm::Value *Address) const override { 1594 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 1595 1596 // 0-15 are the 16 integer registers. 1597 // 16 is %rip. 1598 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 1599 return false; 1600 } 1601 1602 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1603 StringRef Constraint, 1604 llvm::Type* Ty) const override { 1605 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1606 } 1607 1608 bool isNoProtoCallVariadic(const CallArgList &args, 1609 const FunctionNoProtoType *fnType) const override { 1610 // The default CC on x86-64 sets %al to the number of SSA 1611 // registers used, and GCC sets this when calling an unprototyped 1612 // function, so we override the default behavior. However, don't do 1613 // that when AVX types are involved: the ABI explicitly states it is 1614 // undefined, and it doesn't work in practice because of how the ABI 1615 // defines varargs anyway. 1616 if (fnType->getCallConv() == CC_C) { 1617 bool HasAVXType = false; 1618 for (CallArgList::const_iterator 1619 it = args.begin(), ie = args.end(); it != ie; ++it) { 1620 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 1621 HasAVXType = true; 1622 break; 1623 } 1624 } 1625 1626 if (!HasAVXType) 1627 return true; 1628 } 1629 1630 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 1631 } 1632 1633 llvm::Constant * 1634 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1635 unsigned Sig; 1636 if (getABIInfo().has64BitPointers()) 1637 Sig = (0xeb << 0) | // jmp rel8 1638 (0x0a << 8) | // .+0x0c 1639 ('F' << 16) | 1640 ('T' << 24); 1641 else 1642 Sig = (0xeb << 0) | // jmp rel8 1643 (0x06 << 8) | // .+0x08 1644 ('F' << 16) | 1645 ('T' << 24); 1646 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1647 } 1648 }; 1649 1650 class PS4TargetCodeGenInfo : public X86_64TargetCodeGenInfo { 1651 public: 1652 PS4TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 1653 : X86_64TargetCodeGenInfo(CGT, AVXLevel) {} 1654 1655 void getDependentLibraryOption(llvm::StringRef Lib, 1656 llvm::SmallString<24> &Opt) const override { 1657 Opt = "\01"; 1658 Opt += Lib; 1659 } 1660 }; 1661 1662 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 1663 // If the argument does not end in .lib, automatically add the suffix. 1664 // If the argument contains a space, enclose it in quotes. 1665 // This matches the behavior of MSVC. 1666 bool Quote = (Lib.find(" ") != StringRef::npos); 1667 std::string ArgStr = Quote ? "\"" : ""; 1668 ArgStr += Lib; 1669 if (!Lib.endswith_lower(".lib")) 1670 ArgStr += ".lib"; 1671 ArgStr += Quote ? "\"" : ""; 1672 return ArgStr; 1673 } 1674 1675 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 1676 public: 1677 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 1678 bool d, bool p, bool w, unsigned RegParms) 1679 : X86_32TargetCodeGenInfo(CGT, d, p, w, RegParms) {} 1680 1681 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1682 CodeGen::CodeGenModule &CGM) const override; 1683 1684 void getDependentLibraryOption(llvm::StringRef Lib, 1685 llvm::SmallString<24> &Opt) const override { 1686 Opt = "/DEFAULTLIB:"; 1687 Opt += qualifyWindowsLibrary(Lib); 1688 } 1689 1690 void getDetectMismatchOption(llvm::StringRef Name, 1691 llvm::StringRef Value, 1692 llvm::SmallString<32> &Opt) const override { 1693 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 1694 } 1695 }; 1696 1697 static void addStackProbeSizeTargetAttribute(const Decl *D, 1698 llvm::GlobalValue *GV, 1699 CodeGen::CodeGenModule &CGM) { 1700 if (isa<FunctionDecl>(D)) { 1701 if (CGM.getCodeGenOpts().StackProbeSize != 4096) { 1702 llvm::Function *Fn = cast<llvm::Function>(GV); 1703 1704 Fn->addFnAttr("stack-probe-size", 1705 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 1706 } 1707 } 1708 } 1709 1710 void WinX86_32TargetCodeGenInfo::setTargetAttributes(const Decl *D, 1711 llvm::GlobalValue *GV, 1712 CodeGen::CodeGenModule &CGM) const { 1713 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 1714 1715 addStackProbeSizeTargetAttribute(D, GV, CGM); 1716 } 1717 1718 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 1719 public: 1720 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 1721 X86AVXABILevel AVXLevel) 1722 : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {} 1723 1724 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1725 CodeGen::CodeGenModule &CGM) const override; 1726 1727 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1728 return 7; 1729 } 1730 1731 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1732 llvm::Value *Address) const override { 1733 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 1734 1735 // 0-15 are the 16 integer registers. 1736 // 16 is %rip. 1737 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 1738 return false; 1739 } 1740 1741 void getDependentLibraryOption(llvm::StringRef Lib, 1742 llvm::SmallString<24> &Opt) const override { 1743 Opt = "/DEFAULTLIB:"; 1744 Opt += qualifyWindowsLibrary(Lib); 1745 } 1746 1747 void getDetectMismatchOption(llvm::StringRef Name, 1748 llvm::StringRef Value, 1749 llvm::SmallString<32> &Opt) const override { 1750 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 1751 } 1752 }; 1753 1754 void WinX86_64TargetCodeGenInfo::setTargetAttributes(const Decl *D, 1755 llvm::GlobalValue *GV, 1756 CodeGen::CodeGenModule &CGM) const { 1757 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 1758 1759 addStackProbeSizeTargetAttribute(D, GV, CGM); 1760 } 1761 } 1762 1763 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 1764 Class &Hi) const { 1765 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 1766 // 1767 // (a) If one of the classes is Memory, the whole argument is passed in 1768 // memory. 1769 // 1770 // (b) If X87UP is not preceded by X87, the whole argument is passed in 1771 // memory. 1772 // 1773 // (c) If the size of the aggregate exceeds two eightbytes and the first 1774 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 1775 // argument is passed in memory. NOTE: This is necessary to keep the 1776 // ABI working for processors that don't support the __m256 type. 1777 // 1778 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 1779 // 1780 // Some of these are enforced by the merging logic. Others can arise 1781 // only with unions; for example: 1782 // union { _Complex double; unsigned; } 1783 // 1784 // Note that clauses (b) and (c) were added in 0.98. 1785 // 1786 if (Hi == Memory) 1787 Lo = Memory; 1788 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 1789 Lo = Memory; 1790 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 1791 Lo = Memory; 1792 if (Hi == SSEUp && Lo != SSE) 1793 Hi = SSE; 1794 } 1795 1796 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 1797 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 1798 // classified recursively so that always two fields are 1799 // considered. The resulting class is calculated according to 1800 // the classes of the fields in the eightbyte: 1801 // 1802 // (a) If both classes are equal, this is the resulting class. 1803 // 1804 // (b) If one of the classes is NO_CLASS, the resulting class is 1805 // the other class. 1806 // 1807 // (c) If one of the classes is MEMORY, the result is the MEMORY 1808 // class. 1809 // 1810 // (d) If one of the classes is INTEGER, the result is the 1811 // INTEGER. 1812 // 1813 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 1814 // MEMORY is used as class. 1815 // 1816 // (f) Otherwise class SSE is used. 1817 1818 // Accum should never be memory (we should have returned) or 1819 // ComplexX87 (because this cannot be passed in a structure). 1820 assert((Accum != Memory && Accum != ComplexX87) && 1821 "Invalid accumulated classification during merge."); 1822 if (Accum == Field || Field == NoClass) 1823 return Accum; 1824 if (Field == Memory) 1825 return Memory; 1826 if (Accum == NoClass) 1827 return Field; 1828 if (Accum == Integer || Field == Integer) 1829 return Integer; 1830 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 1831 Accum == X87 || Accum == X87Up) 1832 return Memory; 1833 return SSE; 1834 } 1835 1836 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 1837 Class &Lo, Class &Hi, bool isNamedArg) const { 1838 // FIXME: This code can be simplified by introducing a simple value class for 1839 // Class pairs with appropriate constructor methods for the various 1840 // situations. 1841 1842 // FIXME: Some of the split computations are wrong; unaligned vectors 1843 // shouldn't be passed in registers for example, so there is no chance they 1844 // can straddle an eightbyte. Verify & simplify. 1845 1846 Lo = Hi = NoClass; 1847 1848 Class &Current = OffsetBase < 64 ? Lo : Hi; 1849 Current = Memory; 1850 1851 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 1852 BuiltinType::Kind k = BT->getKind(); 1853 1854 if (k == BuiltinType::Void) { 1855 Current = NoClass; 1856 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 1857 Lo = Integer; 1858 Hi = Integer; 1859 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 1860 Current = Integer; 1861 } else if ((k == BuiltinType::Float || k == BuiltinType::Double) || 1862 (k == BuiltinType::LongDouble && 1863 getTarget().getTriple().isOSNaCl())) { 1864 Current = SSE; 1865 } else if (k == BuiltinType::LongDouble) { 1866 Lo = X87; 1867 Hi = X87Up; 1868 } 1869 // FIXME: _Decimal32 and _Decimal64 are SSE. 1870 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 1871 return; 1872 } 1873 1874 if (const EnumType *ET = Ty->getAs<EnumType>()) { 1875 // Classify the underlying integer type. 1876 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 1877 return; 1878 } 1879 1880 if (Ty->hasPointerRepresentation()) { 1881 Current = Integer; 1882 return; 1883 } 1884 1885 if (Ty->isMemberPointerType()) { 1886 if (Ty->isMemberFunctionPointerType()) { 1887 if (Has64BitPointers) { 1888 // If Has64BitPointers, this is an {i64, i64}, so classify both 1889 // Lo and Hi now. 1890 Lo = Hi = Integer; 1891 } else { 1892 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 1893 // straddles an eightbyte boundary, Hi should be classified as well. 1894 uint64_t EB_FuncPtr = (OffsetBase) / 64; 1895 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 1896 if (EB_FuncPtr != EB_ThisAdj) { 1897 Lo = Hi = Integer; 1898 } else { 1899 Current = Integer; 1900 } 1901 } 1902 } else { 1903 Current = Integer; 1904 } 1905 return; 1906 } 1907 1908 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1909 uint64_t Size = getContext().getTypeSize(VT); 1910 if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { 1911 // gcc passes the following as integer: 1912 // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> 1913 // 2 bytes - <2 x char>, <1 x short> 1914 // 1 byte - <1 x char> 1915 Current = Integer; 1916 1917 // If this type crosses an eightbyte boundary, it should be 1918 // split. 1919 uint64_t EB_Lo = (OffsetBase) / 64; 1920 uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; 1921 if (EB_Lo != EB_Hi) 1922 Hi = Lo; 1923 } else if (Size == 64) { 1924 // gcc passes <1 x double> in memory. :( 1925 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) 1926 return; 1927 1928 // gcc passes <1 x long long> as INTEGER. 1929 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) || 1930 VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) || 1931 VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) || 1932 VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong)) 1933 Current = Integer; 1934 else 1935 Current = SSE; 1936 1937 // If this type crosses an eightbyte boundary, it should be 1938 // split. 1939 if (OffsetBase && OffsetBase != 64) 1940 Hi = Lo; 1941 } else if (Size == 128 || 1942 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { 1943 // Arguments of 256-bits are split into four eightbyte chunks. The 1944 // least significant one belongs to class SSE and all the others to class 1945 // SSEUP. The original Lo and Hi design considers that types can't be 1946 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 1947 // This design isn't correct for 256-bits, but since there're no cases 1948 // where the upper parts would need to be inspected, avoid adding 1949 // complexity and just consider Hi to match the 64-256 part. 1950 // 1951 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 1952 // registers if they are "named", i.e. not part of the "..." of a 1953 // variadic function. 1954 // 1955 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are 1956 // split into eight eightbyte chunks, one SSE and seven SSEUP. 1957 Lo = SSE; 1958 Hi = SSEUp; 1959 } 1960 return; 1961 } 1962 1963 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 1964 QualType ET = getContext().getCanonicalType(CT->getElementType()); 1965 1966 uint64_t Size = getContext().getTypeSize(Ty); 1967 if (ET->isIntegralOrEnumerationType()) { 1968 if (Size <= 64) 1969 Current = Integer; 1970 else if (Size <= 128) 1971 Lo = Hi = Integer; 1972 } else if (ET == getContext().FloatTy) 1973 Current = SSE; 1974 else if (ET == getContext().DoubleTy || 1975 (ET == getContext().LongDoubleTy && 1976 getTarget().getTriple().isOSNaCl())) 1977 Lo = Hi = SSE; 1978 else if (ET == getContext().LongDoubleTy) 1979 Current = ComplexX87; 1980 1981 // If this complex type crosses an eightbyte boundary then it 1982 // should be split. 1983 uint64_t EB_Real = (OffsetBase) / 64; 1984 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 1985 if (Hi == NoClass && EB_Real != EB_Imag) 1986 Hi = Lo; 1987 1988 return; 1989 } 1990 1991 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 1992 // Arrays are treated like structures. 1993 1994 uint64_t Size = getContext().getTypeSize(Ty); 1995 1996 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 1997 // than four eightbytes, ..., it has class MEMORY. 1998 if (Size > 256) 1999 return; 2000 2001 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 2002 // fields, it has class MEMORY. 2003 // 2004 // Only need to check alignment of array base. 2005 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 2006 return; 2007 2008 // Otherwise implement simplified merge. We could be smarter about 2009 // this, but it isn't worth it and would be harder to verify. 2010 Current = NoClass; 2011 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 2012 uint64_t ArraySize = AT->getSize().getZExtValue(); 2013 2014 // The only case a 256-bit wide vector could be used is when the array 2015 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2016 // to work for sizes wider than 128, early check and fallback to memory. 2017 if (Size > 128 && EltSize != 256) 2018 return; 2019 2020 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 2021 Class FieldLo, FieldHi; 2022 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 2023 Lo = merge(Lo, FieldLo); 2024 Hi = merge(Hi, FieldHi); 2025 if (Lo == Memory || Hi == Memory) 2026 break; 2027 } 2028 2029 postMerge(Size, Lo, Hi); 2030 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 2031 return; 2032 } 2033 2034 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2035 uint64_t Size = getContext().getTypeSize(Ty); 2036 2037 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2038 // than four eightbytes, ..., it has class MEMORY. 2039 if (Size > 256) 2040 return; 2041 2042 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 2043 // copy constructor or a non-trivial destructor, it is passed by invisible 2044 // reference. 2045 if (getRecordArgABI(RT, getCXXABI())) 2046 return; 2047 2048 const RecordDecl *RD = RT->getDecl(); 2049 2050 // Assume variable sized types are passed in memory. 2051 if (RD->hasFlexibleArrayMember()) 2052 return; 2053 2054 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2055 2056 // Reset Lo class, this will be recomputed. 2057 Current = NoClass; 2058 2059 // If this is a C++ record, classify the bases first. 2060 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2061 for (const auto &I : CXXRD->bases()) { 2062 assert(!I.isVirtual() && !I.getType()->isDependentType() && 2063 "Unexpected base class!"); 2064 const CXXRecordDecl *Base = 2065 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2066 2067 // Classify this field. 2068 // 2069 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 2070 // single eightbyte, each is classified separately. Each eightbyte gets 2071 // initialized to class NO_CLASS. 2072 Class FieldLo, FieldHi; 2073 uint64_t Offset = 2074 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 2075 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 2076 Lo = merge(Lo, FieldLo); 2077 Hi = merge(Hi, FieldHi); 2078 if (Lo == Memory || Hi == Memory) { 2079 postMerge(Size, Lo, Hi); 2080 return; 2081 } 2082 } 2083 } 2084 2085 // Classify the fields one at a time, merging the results. 2086 unsigned idx = 0; 2087 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2088 i != e; ++i, ++idx) { 2089 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2090 bool BitField = i->isBitField(); 2091 2092 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 2093 // four eightbytes, or it contains unaligned fields, it has class MEMORY. 2094 // 2095 // The only case a 256-bit wide vector could be used is when the struct 2096 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2097 // to work for sizes wider than 128, early check and fallback to memory. 2098 // 2099 if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) { 2100 Lo = Memory; 2101 postMerge(Size, Lo, Hi); 2102 return; 2103 } 2104 // Note, skip this test for bit-fields, see below. 2105 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 2106 Lo = Memory; 2107 postMerge(Size, Lo, Hi); 2108 return; 2109 } 2110 2111 // Classify this field. 2112 // 2113 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 2114 // exceeds a single eightbyte, each is classified 2115 // separately. Each eightbyte gets initialized to class 2116 // NO_CLASS. 2117 Class FieldLo, FieldHi; 2118 2119 // Bit-fields require special handling, they do not force the 2120 // structure to be passed in memory even if unaligned, and 2121 // therefore they can straddle an eightbyte. 2122 if (BitField) { 2123 // Ignore padding bit-fields. 2124 if (i->isUnnamedBitfield()) 2125 continue; 2126 2127 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2128 uint64_t Size = i->getBitWidthValue(getContext()); 2129 2130 uint64_t EB_Lo = Offset / 64; 2131 uint64_t EB_Hi = (Offset + Size - 1) / 64; 2132 2133 if (EB_Lo) { 2134 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 2135 FieldLo = NoClass; 2136 FieldHi = Integer; 2137 } else { 2138 FieldLo = Integer; 2139 FieldHi = EB_Hi ? Integer : NoClass; 2140 } 2141 } else 2142 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 2143 Lo = merge(Lo, FieldLo); 2144 Hi = merge(Hi, FieldHi); 2145 if (Lo == Memory || Hi == Memory) 2146 break; 2147 } 2148 2149 postMerge(Size, Lo, Hi); 2150 } 2151 } 2152 2153 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 2154 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2155 // place naturally. 2156 if (!isAggregateTypeForABI(Ty)) { 2157 // Treat an enum type as its underlying type. 2158 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2159 Ty = EnumTy->getDecl()->getIntegerType(); 2160 2161 return (Ty->isPromotableIntegerType() ? 2162 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 2163 } 2164 2165 return ABIArgInfo::getIndirect(0); 2166 } 2167 2168 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 2169 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 2170 uint64_t Size = getContext().getTypeSize(VecTy); 2171 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); 2172 if (Size <= 64 || Size > LargestVector) 2173 return true; 2174 } 2175 2176 return false; 2177 } 2178 2179 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 2180 unsigned freeIntRegs) const { 2181 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2182 // place naturally. 2183 // 2184 // This assumption is optimistic, as there could be free registers available 2185 // when we need to pass this argument in memory, and LLVM could try to pass 2186 // the argument in the free register. This does not seem to happen currently, 2187 // but this code would be much safer if we could mark the argument with 2188 // 'onstack'. See PR12193. 2189 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) { 2190 // Treat an enum type as its underlying type. 2191 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2192 Ty = EnumTy->getDecl()->getIntegerType(); 2193 2194 return (Ty->isPromotableIntegerType() ? 2195 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 2196 } 2197 2198 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 2199 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 2200 2201 // Compute the byval alignment. We specify the alignment of the byval in all 2202 // cases so that the mid-level optimizer knows the alignment of the byval. 2203 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 2204 2205 // Attempt to avoid passing indirect results using byval when possible. This 2206 // is important for good codegen. 2207 // 2208 // We do this by coercing the value into a scalar type which the backend can 2209 // handle naturally (i.e., without using byval). 2210 // 2211 // For simplicity, we currently only do this when we have exhausted all of the 2212 // free integer registers. Doing this when there are free integer registers 2213 // would require more care, as we would have to ensure that the coerced value 2214 // did not claim the unused register. That would require either reording the 2215 // arguments to the function (so that any subsequent inreg values came first), 2216 // or only doing this optimization when there were no following arguments that 2217 // might be inreg. 2218 // 2219 // We currently expect it to be rare (particularly in well written code) for 2220 // arguments to be passed on the stack when there are still free integer 2221 // registers available (this would typically imply large structs being passed 2222 // by value), so this seems like a fair tradeoff for now. 2223 // 2224 // We can revisit this if the backend grows support for 'onstack' parameter 2225 // attributes. See PR12193. 2226 if (freeIntRegs == 0) { 2227 uint64_t Size = getContext().getTypeSize(Ty); 2228 2229 // If this type fits in an eightbyte, coerce it into the matching integral 2230 // type, which will end up on the stack (with alignment 8). 2231 if (Align == 8 && Size <= 64) 2232 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 2233 Size)); 2234 } 2235 2236 return ABIArgInfo::getIndirect(Align); 2237 } 2238 2239 /// The ABI specifies that a value should be passed in a full vector XMM/YMM 2240 /// register. Pick an LLVM IR type that will be passed as a vector register. 2241 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 2242 // Wrapper structs/arrays that only contain vectors are passed just like 2243 // vectors; strip them off if present. 2244 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) 2245 Ty = QualType(InnerTy, 0); 2246 2247 llvm::Type *IRType = CGT.ConvertType(Ty); 2248 if(isa<llvm::VectorType>(IRType)) 2249 return IRType; 2250 2251 // We couldn't find the preferred IR vector type for 'Ty'. 2252 uint64_t Size = getContext().getTypeSize(Ty); 2253 assert((Size == 128 || Size == 256) && "Invalid type found!"); 2254 2255 // Return a LLVM IR vector type based on the size of 'Ty'. 2256 return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2257 Size / 64); 2258 } 2259 2260 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 2261 /// is known to either be off the end of the specified type or being in 2262 /// alignment padding. The user type specified is known to be at most 128 bits 2263 /// in size, and have passed through X86_64ABIInfo::classify with a successful 2264 /// classification that put one of the two halves in the INTEGER class. 2265 /// 2266 /// It is conservatively correct to return false. 2267 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 2268 unsigned EndBit, ASTContext &Context) { 2269 // If the bytes being queried are off the end of the type, there is no user 2270 // data hiding here. This handles analysis of builtins, vectors and other 2271 // types that don't contain interesting padding. 2272 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 2273 if (TySize <= StartBit) 2274 return true; 2275 2276 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 2277 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 2278 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 2279 2280 // Check each element to see if the element overlaps with the queried range. 2281 for (unsigned i = 0; i != NumElts; ++i) { 2282 // If the element is after the span we care about, then we're done.. 2283 unsigned EltOffset = i*EltSize; 2284 if (EltOffset >= EndBit) break; 2285 2286 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 2287 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 2288 EndBit-EltOffset, Context)) 2289 return false; 2290 } 2291 // If it overlaps no elements, then it is safe to process as padding. 2292 return true; 2293 } 2294 2295 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2296 const RecordDecl *RD = RT->getDecl(); 2297 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 2298 2299 // If this is a C++ record, check the bases first. 2300 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2301 for (const auto &I : CXXRD->bases()) { 2302 assert(!I.isVirtual() && !I.getType()->isDependentType() && 2303 "Unexpected base class!"); 2304 const CXXRecordDecl *Base = 2305 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2306 2307 // If the base is after the span we care about, ignore it. 2308 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 2309 if (BaseOffset >= EndBit) continue; 2310 2311 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 2312 if (!BitsContainNoUserData(I.getType(), BaseStart, 2313 EndBit-BaseOffset, Context)) 2314 return false; 2315 } 2316 } 2317 2318 // Verify that no field has data that overlaps the region of interest. Yes 2319 // this could be sped up a lot by being smarter about queried fields, 2320 // however we're only looking at structs up to 16 bytes, so we don't care 2321 // much. 2322 unsigned idx = 0; 2323 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2324 i != e; ++i, ++idx) { 2325 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 2326 2327 // If we found a field after the region we care about, then we're done. 2328 if (FieldOffset >= EndBit) break; 2329 2330 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 2331 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 2332 Context)) 2333 return false; 2334 } 2335 2336 // If nothing in this record overlapped the area of interest, then we're 2337 // clean. 2338 return true; 2339 } 2340 2341 return false; 2342 } 2343 2344 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a 2345 /// float member at the specified offset. For example, {int,{float}} has a 2346 /// float at offset 4. It is conservatively correct for this routine to return 2347 /// false. 2348 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, 2349 const llvm::DataLayout &TD) { 2350 // Base case if we find a float. 2351 if (IROffset == 0 && IRType->isFloatTy()) 2352 return true; 2353 2354 // If this is a struct, recurse into the field at the specified offset. 2355 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 2356 const llvm::StructLayout *SL = TD.getStructLayout(STy); 2357 unsigned Elt = SL->getElementContainingOffset(IROffset); 2358 IROffset -= SL->getElementOffset(Elt); 2359 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); 2360 } 2361 2362 // If this is an array, recurse into the field at the specified offset. 2363 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 2364 llvm::Type *EltTy = ATy->getElementType(); 2365 unsigned EltSize = TD.getTypeAllocSize(EltTy); 2366 IROffset -= IROffset/EltSize*EltSize; 2367 return ContainsFloatAtOffset(EltTy, IROffset, TD); 2368 } 2369 2370 return false; 2371 } 2372 2373 2374 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 2375 /// low 8 bytes of an XMM register, corresponding to the SSE class. 2376 llvm::Type *X86_64ABIInfo:: 2377 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 2378 QualType SourceTy, unsigned SourceOffset) const { 2379 // The only three choices we have are either double, <2 x float>, or float. We 2380 // pass as float if the last 4 bytes is just padding. This happens for 2381 // structs that contain 3 floats. 2382 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, 2383 SourceOffset*8+64, getContext())) 2384 return llvm::Type::getFloatTy(getVMContext()); 2385 2386 // We want to pass as <2 x float> if the LLVM IR type contains a float at 2387 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the 2388 // case. 2389 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && 2390 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) 2391 return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2); 2392 2393 return llvm::Type::getDoubleTy(getVMContext()); 2394 } 2395 2396 2397 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 2398 /// an 8-byte GPR. This means that we either have a scalar or we are talking 2399 /// about the high or low part of an up-to-16-byte struct. This routine picks 2400 /// the best LLVM IR type to represent this, which may be i64 or may be anything 2401 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 2402 /// etc). 2403 /// 2404 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 2405 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 2406 /// the 8-byte value references. PrefType may be null. 2407 /// 2408 /// SourceTy is the source-level type for the entire argument. SourceOffset is 2409 /// an offset into this that we're processing (which is always either 0 or 8). 2410 /// 2411 llvm::Type *X86_64ABIInfo:: 2412 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 2413 QualType SourceTy, unsigned SourceOffset) const { 2414 // If we're dealing with an un-offset LLVM IR type, then it means that we're 2415 // returning an 8-byte unit starting with it. See if we can safely use it. 2416 if (IROffset == 0) { 2417 // Pointers and int64's always fill the 8-byte unit. 2418 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 2419 IRType->isIntegerTy(64)) 2420 return IRType; 2421 2422 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 2423 // goodness in the source type is just tail padding. This is allowed to 2424 // kick in for struct {double,int} on the int, but not on 2425 // struct{double,int,int} because we wouldn't return the second int. We 2426 // have to do this analysis on the source type because we can't depend on 2427 // unions being lowered a specific way etc. 2428 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 2429 IRType->isIntegerTy(32) || 2430 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 2431 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 2432 cast<llvm::IntegerType>(IRType)->getBitWidth(); 2433 2434 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 2435 SourceOffset*8+64, getContext())) 2436 return IRType; 2437 } 2438 } 2439 2440 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 2441 // If this is a struct, recurse into the field at the specified offset. 2442 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 2443 if (IROffset < SL->getSizeInBytes()) { 2444 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 2445 IROffset -= SL->getElementOffset(FieldIdx); 2446 2447 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 2448 SourceTy, SourceOffset); 2449 } 2450 } 2451 2452 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 2453 llvm::Type *EltTy = ATy->getElementType(); 2454 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 2455 unsigned EltOffset = IROffset/EltSize*EltSize; 2456 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 2457 SourceOffset); 2458 } 2459 2460 // Okay, we don't have any better idea of what to pass, so we pass this in an 2461 // integer register that isn't too big to fit the rest of the struct. 2462 unsigned TySizeInBytes = 2463 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 2464 2465 assert(TySizeInBytes != SourceOffset && "Empty field?"); 2466 2467 // It is always safe to classify this as an integer type up to i64 that 2468 // isn't larger than the structure. 2469 return llvm::IntegerType::get(getVMContext(), 2470 std::min(TySizeInBytes-SourceOffset, 8U)*8); 2471 } 2472 2473 2474 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 2475 /// be used as elements of a two register pair to pass or return, return a 2476 /// first class aggregate to represent them. For example, if the low part of 2477 /// a by-value argument should be passed as i32* and the high part as float, 2478 /// return {i32*, float}. 2479 static llvm::Type * 2480 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 2481 const llvm::DataLayout &TD) { 2482 // In order to correctly satisfy the ABI, we need to the high part to start 2483 // at offset 8. If the high and low parts we inferred are both 4-byte types 2484 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 2485 // the second element at offset 8. Check for this: 2486 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 2487 unsigned HiAlign = TD.getABITypeAlignment(Hi); 2488 unsigned HiStart = llvm::RoundUpToAlignment(LoSize, HiAlign); 2489 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 2490 2491 // To handle this, we have to increase the size of the low part so that the 2492 // second element will start at an 8 byte offset. We can't increase the size 2493 // of the second element because it might make us access off the end of the 2494 // struct. 2495 if (HiStart != 8) { 2496 // There are usually two sorts of types the ABI generation code can produce 2497 // for the low part of a pair that aren't 8 bytes in size: float or 2498 // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and 2499 // NaCl). 2500 // Promote these to a larger type. 2501 if (Lo->isFloatTy()) 2502 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 2503 else { 2504 assert((Lo->isIntegerTy() || Lo->isPointerTy()) 2505 && "Invalid/unknown lo type"); 2506 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 2507 } 2508 } 2509 2510 llvm::StructType *Result = llvm::StructType::get(Lo, Hi, nullptr); 2511 2512 2513 // Verify that the second element is at an 8-byte offset. 2514 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 2515 "Invalid x86-64 argument pair!"); 2516 return Result; 2517 } 2518 2519 ABIArgInfo X86_64ABIInfo:: 2520 classifyReturnType(QualType RetTy) const { 2521 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 2522 // classification algorithm. 2523 X86_64ABIInfo::Class Lo, Hi; 2524 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 2525 2526 // Check some invariants. 2527 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 2528 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 2529 2530 llvm::Type *ResType = nullptr; 2531 switch (Lo) { 2532 case NoClass: 2533 if (Hi == NoClass) 2534 return ABIArgInfo::getIgnore(); 2535 // If the low part is just padding, it takes no register, leave ResType 2536 // null. 2537 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 2538 "Unknown missing lo part"); 2539 break; 2540 2541 case SSEUp: 2542 case X87Up: 2543 llvm_unreachable("Invalid classification for lo word."); 2544 2545 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 2546 // hidden argument. 2547 case Memory: 2548 return getIndirectReturnResult(RetTy); 2549 2550 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 2551 // available register of the sequence %rax, %rdx is used. 2552 case Integer: 2553 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 2554 2555 // If we have a sign or zero extended integer, make sure to return Extend 2556 // so that the parameter gets the right LLVM IR attributes. 2557 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 2558 // Treat an enum type as its underlying type. 2559 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 2560 RetTy = EnumTy->getDecl()->getIntegerType(); 2561 2562 if (RetTy->isIntegralOrEnumerationType() && 2563 RetTy->isPromotableIntegerType()) 2564 return ABIArgInfo::getExtend(); 2565 } 2566 break; 2567 2568 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 2569 // available SSE register of the sequence %xmm0, %xmm1 is used. 2570 case SSE: 2571 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 2572 break; 2573 2574 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 2575 // returned on the X87 stack in %st0 as 80-bit x87 number. 2576 case X87: 2577 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 2578 break; 2579 2580 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 2581 // part of the value is returned in %st0 and the imaginary part in 2582 // %st1. 2583 case ComplexX87: 2584 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 2585 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 2586 llvm::Type::getX86_FP80Ty(getVMContext()), 2587 nullptr); 2588 break; 2589 } 2590 2591 llvm::Type *HighPart = nullptr; 2592 switch (Hi) { 2593 // Memory was handled previously and X87 should 2594 // never occur as a hi class. 2595 case Memory: 2596 case X87: 2597 llvm_unreachable("Invalid classification for hi word."); 2598 2599 case ComplexX87: // Previously handled. 2600 case NoClass: 2601 break; 2602 2603 case Integer: 2604 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 2605 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 2606 return ABIArgInfo::getDirect(HighPart, 8); 2607 break; 2608 case SSE: 2609 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 2610 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 2611 return ABIArgInfo::getDirect(HighPart, 8); 2612 break; 2613 2614 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 2615 // is passed in the next available eightbyte chunk if the last used 2616 // vector register. 2617 // 2618 // SSEUP should always be preceded by SSE, just widen. 2619 case SSEUp: 2620 assert(Lo == SSE && "Unexpected SSEUp classification."); 2621 ResType = GetByteVectorType(RetTy); 2622 break; 2623 2624 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 2625 // returned together with the previous X87 value in %st0. 2626 case X87Up: 2627 // If X87Up is preceded by X87, we don't need to do 2628 // anything. However, in some cases with unions it may not be 2629 // preceded by X87. In such situations we follow gcc and pass the 2630 // extra bits in an SSE reg. 2631 if (Lo != X87) { 2632 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 2633 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 2634 return ABIArgInfo::getDirect(HighPart, 8); 2635 } 2636 break; 2637 } 2638 2639 // If a high part was specified, merge it together with the low part. It is 2640 // known to pass in the high eightbyte of the result. We do this by forming a 2641 // first class struct aggregate with the high and low part: {low, high} 2642 if (HighPart) 2643 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 2644 2645 return ABIArgInfo::getDirect(ResType); 2646 } 2647 2648 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 2649 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 2650 bool isNamedArg) 2651 const 2652 { 2653 Ty = useFirstFieldIfTransparentUnion(Ty); 2654 2655 X86_64ABIInfo::Class Lo, Hi; 2656 classify(Ty, 0, Lo, Hi, isNamedArg); 2657 2658 // Check some invariants. 2659 // FIXME: Enforce these by construction. 2660 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 2661 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 2662 2663 neededInt = 0; 2664 neededSSE = 0; 2665 llvm::Type *ResType = nullptr; 2666 switch (Lo) { 2667 case NoClass: 2668 if (Hi == NoClass) 2669 return ABIArgInfo::getIgnore(); 2670 // If the low part is just padding, it takes no register, leave ResType 2671 // null. 2672 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 2673 "Unknown missing lo part"); 2674 break; 2675 2676 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 2677 // on the stack. 2678 case Memory: 2679 2680 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 2681 // COMPLEX_X87, it is passed in memory. 2682 case X87: 2683 case ComplexX87: 2684 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 2685 ++neededInt; 2686 return getIndirectResult(Ty, freeIntRegs); 2687 2688 case SSEUp: 2689 case X87Up: 2690 llvm_unreachable("Invalid classification for lo word."); 2691 2692 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 2693 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 2694 // and %r9 is used. 2695 case Integer: 2696 ++neededInt; 2697 2698 // Pick an 8-byte type based on the preferred type. 2699 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 2700 2701 // If we have a sign or zero extended integer, make sure to return Extend 2702 // so that the parameter gets the right LLVM IR attributes. 2703 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 2704 // Treat an enum type as its underlying type. 2705 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2706 Ty = EnumTy->getDecl()->getIntegerType(); 2707 2708 if (Ty->isIntegralOrEnumerationType() && 2709 Ty->isPromotableIntegerType()) 2710 return ABIArgInfo::getExtend(); 2711 } 2712 2713 break; 2714 2715 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 2716 // available SSE register is used, the registers are taken in the 2717 // order from %xmm0 to %xmm7. 2718 case SSE: { 2719 llvm::Type *IRType = CGT.ConvertType(Ty); 2720 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 2721 ++neededSSE; 2722 break; 2723 } 2724 } 2725 2726 llvm::Type *HighPart = nullptr; 2727 switch (Hi) { 2728 // Memory was handled previously, ComplexX87 and X87 should 2729 // never occur as hi classes, and X87Up must be preceded by X87, 2730 // which is passed in memory. 2731 case Memory: 2732 case X87: 2733 case ComplexX87: 2734 llvm_unreachable("Invalid classification for hi word."); 2735 2736 case NoClass: break; 2737 2738 case Integer: 2739 ++neededInt; 2740 // Pick an 8-byte type based on the preferred type. 2741 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 2742 2743 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 2744 return ABIArgInfo::getDirect(HighPart, 8); 2745 break; 2746 2747 // X87Up generally doesn't occur here (long double is passed in 2748 // memory), except in situations involving unions. 2749 case X87Up: 2750 case SSE: 2751 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 2752 2753 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 2754 return ABIArgInfo::getDirect(HighPart, 8); 2755 2756 ++neededSSE; 2757 break; 2758 2759 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 2760 // eightbyte is passed in the upper half of the last used SSE 2761 // register. This only happens when 128-bit vectors are passed. 2762 case SSEUp: 2763 assert(Lo == SSE && "Unexpected SSEUp classification"); 2764 ResType = GetByteVectorType(Ty); 2765 break; 2766 } 2767 2768 // If a high part was specified, merge it together with the low part. It is 2769 // known to pass in the high eightbyte of the result. We do this by forming a 2770 // first class struct aggregate with the high and low part: {low, high} 2771 if (HighPart) 2772 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 2773 2774 return ABIArgInfo::getDirect(ResType); 2775 } 2776 2777 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 2778 2779 if (!getCXXABI().classifyReturnType(FI)) 2780 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 2781 2782 // Keep track of the number of assigned registers. 2783 unsigned freeIntRegs = 6, freeSSERegs = 8; 2784 2785 // If the return value is indirect, then the hidden argument is consuming one 2786 // integer register. 2787 if (FI.getReturnInfo().isIndirect()) 2788 --freeIntRegs; 2789 2790 // The chain argument effectively gives us another free register. 2791 if (FI.isChainCall()) 2792 ++freeIntRegs; 2793 2794 unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 2795 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 2796 // get assigned (in left-to-right order) for passing as follows... 2797 unsigned ArgNo = 0; 2798 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 2799 it != ie; ++it, ++ArgNo) { 2800 bool IsNamedArg = ArgNo < NumRequiredArgs; 2801 2802 unsigned neededInt, neededSSE; 2803 it->info = classifyArgumentType(it->type, freeIntRegs, neededInt, 2804 neededSSE, IsNamedArg); 2805 2806 // AMD64-ABI 3.2.3p3: If there are no registers available for any 2807 // eightbyte of an argument, the whole argument is passed on the 2808 // stack. If registers have already been assigned for some 2809 // eightbytes of such an argument, the assignments get reverted. 2810 if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) { 2811 freeIntRegs -= neededInt; 2812 freeSSERegs -= neededSSE; 2813 } else { 2814 it->info = getIndirectResult(it->type, freeIntRegs); 2815 } 2816 } 2817 } 2818 2819 static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr, 2820 QualType Ty, 2821 CodeGenFunction &CGF) { 2822 llvm::Value *overflow_arg_area_p = CGF.Builder.CreateStructGEP( 2823 nullptr, VAListAddr, 2, "overflow_arg_area_p"); 2824 llvm::Value *overflow_arg_area = 2825 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 2826 2827 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 2828 // byte boundary if alignment needed by type exceeds 8 byte boundary. 2829 // It isn't stated explicitly in the standard, but in practice we use 2830 // alignment greater than 16 where necessary. 2831 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; 2832 if (Align > 8) { 2833 // overflow_arg_area = (overflow_arg_area + align - 1) & -align; 2834 llvm::Value *Offset = 2835 llvm::ConstantInt::get(CGF.Int64Ty, Align - 1); 2836 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset); 2837 llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area, 2838 CGF.Int64Ty); 2839 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align); 2840 overflow_arg_area = 2841 CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask), 2842 overflow_arg_area->getType(), 2843 "overflow_arg_area.align"); 2844 } 2845 2846 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 2847 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 2848 llvm::Value *Res = 2849 CGF.Builder.CreateBitCast(overflow_arg_area, 2850 llvm::PointerType::getUnqual(LTy)); 2851 2852 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 2853 // l->overflow_arg_area + sizeof(type). 2854 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 2855 // an 8 byte boundary. 2856 2857 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 2858 llvm::Value *Offset = 2859 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 2860 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 2861 "overflow_arg_area.next"); 2862 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 2863 2864 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 2865 return Res; 2866 } 2867 2868 llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 2869 CodeGenFunction &CGF) const { 2870 // Assume that va_list type is correct; should be pointer to LLVM type: 2871 // struct { 2872 // i32 gp_offset; 2873 // i32 fp_offset; 2874 // i8* overflow_arg_area; 2875 // i8* reg_save_area; 2876 // }; 2877 unsigned neededInt, neededSSE; 2878 2879 Ty = CGF.getContext().getCanonicalType(Ty); 2880 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 2881 /*isNamedArg*/false); 2882 2883 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 2884 // in the registers. If not go to step 7. 2885 if (!neededInt && !neededSSE) 2886 return EmitVAArgFromMemory(VAListAddr, Ty, CGF); 2887 2888 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 2889 // general purpose registers needed to pass type and num_fp to hold 2890 // the number of floating point registers needed. 2891 2892 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 2893 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 2894 // l->fp_offset > 304 - num_fp * 16 go to step 7. 2895 // 2896 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 2897 // register save space). 2898 2899 llvm::Value *InRegs = nullptr; 2900 llvm::Value *gp_offset_p = nullptr, *gp_offset = nullptr; 2901 llvm::Value *fp_offset_p = nullptr, *fp_offset = nullptr; 2902 if (neededInt) { 2903 gp_offset_p = 2904 CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 0, "gp_offset_p"); 2905 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 2906 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 2907 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 2908 } 2909 2910 if (neededSSE) { 2911 fp_offset_p = 2912 CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 1, "fp_offset_p"); 2913 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 2914 llvm::Value *FitsInFP = 2915 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 2916 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 2917 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 2918 } 2919 2920 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 2921 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 2922 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 2923 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 2924 2925 // Emit code to load the value if it was passed in registers. 2926 2927 CGF.EmitBlock(InRegBlock); 2928 2929 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 2930 // an offset of l->gp_offset and/or l->fp_offset. This may require 2931 // copying to a temporary location in case the parameter is passed 2932 // in different register classes or requires an alignment greater 2933 // than 8 for general purpose registers and 16 for XMM registers. 2934 // 2935 // FIXME: This really results in shameful code when we end up needing to 2936 // collect arguments from different places; often what should result in a 2937 // simple assembling of a structure from scattered addresses has many more 2938 // loads than necessary. Can we clean this up? 2939 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 2940 llvm::Value *RegAddr = CGF.Builder.CreateLoad( 2941 CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 3), "reg_save_area"); 2942 if (neededInt && neededSSE) { 2943 // FIXME: Cleanup. 2944 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 2945 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 2946 llvm::Value *Tmp = CGF.CreateMemTemp(Ty); 2947 Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo()); 2948 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 2949 llvm::Type *TyLo = ST->getElementType(0); 2950 llvm::Type *TyHi = ST->getElementType(1); 2951 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 2952 "Unexpected ABI info for mixed regs"); 2953 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 2954 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 2955 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset); 2956 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset); 2957 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 2958 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 2959 llvm::Value *V = 2960 CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo)); 2961 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(ST, Tmp, 0)); 2962 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi)); 2963 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(ST, Tmp, 1)); 2964 2965 RegAddr = CGF.Builder.CreateBitCast(Tmp, 2966 llvm::PointerType::getUnqual(LTy)); 2967 } else if (neededInt) { 2968 RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset); 2969 RegAddr = CGF.Builder.CreateBitCast(RegAddr, 2970 llvm::PointerType::getUnqual(LTy)); 2971 2972 // Copy to a temporary if necessary to ensure the appropriate alignment. 2973 std::pair<CharUnits, CharUnits> SizeAlign = 2974 CGF.getContext().getTypeInfoInChars(Ty); 2975 uint64_t TySize = SizeAlign.first.getQuantity(); 2976 unsigned TyAlign = SizeAlign.second.getQuantity(); 2977 if (TyAlign > 8) { 2978 llvm::Value *Tmp = CGF.CreateMemTemp(Ty); 2979 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, 8, false); 2980 RegAddr = Tmp; 2981 } 2982 } else if (neededSSE == 1) { 2983 RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset); 2984 RegAddr = CGF.Builder.CreateBitCast(RegAddr, 2985 llvm::PointerType::getUnqual(LTy)); 2986 } else { 2987 assert(neededSSE == 2 && "Invalid number of needed registers!"); 2988 // SSE registers are spaced 16 bytes apart in the register save 2989 // area, we need to collect the two eightbytes together. 2990 llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset); 2991 llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16); 2992 llvm::Type *DoubleTy = CGF.DoubleTy; 2993 llvm::Type *DblPtrTy = 2994 llvm::PointerType::getUnqual(DoubleTy); 2995 llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, nullptr); 2996 llvm::Value *V, *Tmp = CGF.CreateMemTemp(Ty); 2997 Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo()); 2998 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo, 2999 DblPtrTy)); 3000 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(ST, Tmp, 0)); 3001 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi, 3002 DblPtrTy)); 3003 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(ST, Tmp, 1)); 3004 RegAddr = CGF.Builder.CreateBitCast(Tmp, 3005 llvm::PointerType::getUnqual(LTy)); 3006 } 3007 3008 // AMD64-ABI 3.5.7p5: Step 5. Set: 3009 // l->gp_offset = l->gp_offset + num_gp * 8 3010 // l->fp_offset = l->fp_offset + num_fp * 16. 3011 if (neededInt) { 3012 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 3013 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 3014 gp_offset_p); 3015 } 3016 if (neededSSE) { 3017 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 3018 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 3019 fp_offset_p); 3020 } 3021 CGF.EmitBranch(ContBlock); 3022 3023 // Emit code to load the value if it was passed in memory. 3024 3025 CGF.EmitBlock(InMemBlock); 3026 llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF); 3027 3028 // Return the appropriate result. 3029 3030 CGF.EmitBlock(ContBlock); 3031 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2, 3032 "vaarg.addr"); 3033 ResAddr->addIncoming(RegAddr, InRegBlock); 3034 ResAddr->addIncoming(MemAddr, InMemBlock); 3035 return ResAddr; 3036 } 3037 3038 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 3039 bool IsReturnType) const { 3040 3041 if (Ty->isVoidType()) 3042 return ABIArgInfo::getIgnore(); 3043 3044 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3045 Ty = EnumTy->getDecl()->getIntegerType(); 3046 3047 TypeInfo Info = getContext().getTypeInfo(Ty); 3048 uint64_t Width = Info.Width; 3049 unsigned Align = getContext().toCharUnitsFromBits(Info.Align).getQuantity(); 3050 3051 const RecordType *RT = Ty->getAs<RecordType>(); 3052 if (RT) { 3053 if (!IsReturnType) { 3054 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 3055 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 3056 } 3057 3058 if (RT->getDecl()->hasFlexibleArrayMember()) 3059 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 3060 3061 // FIXME: mingw-w64-gcc emits 128-bit struct as i128 3062 if (Width == 128 && getTarget().getTriple().isWindowsGNUEnvironment()) 3063 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 3064 Width)); 3065 } 3066 3067 // vectorcall adds the concept of a homogenous vector aggregate, similar to 3068 // other targets. 3069 const Type *Base = nullptr; 3070 uint64_t NumElts = 0; 3071 if (FreeSSERegs && isHomogeneousAggregate(Ty, Base, NumElts)) { 3072 if (FreeSSERegs >= NumElts) { 3073 FreeSSERegs -= NumElts; 3074 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 3075 return ABIArgInfo::getDirect(); 3076 return ABIArgInfo::getExpand(); 3077 } 3078 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3079 } 3080 3081 3082 if (Ty->isMemberPointerType()) { 3083 // If the member pointer is represented by an LLVM int or ptr, pass it 3084 // directly. 3085 llvm::Type *LLTy = CGT.ConvertType(Ty); 3086 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 3087 return ABIArgInfo::getDirect(); 3088 } 3089 3090 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { 3091 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 3092 // not 1, 2, 4, or 8 bytes, must be passed by reference." 3093 if (Width > 64 || !llvm::isPowerOf2_64(Width)) 3094 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 3095 3096 // Otherwise, coerce it to a small integer. 3097 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 3098 } 3099 3100 // Bool type is always extended to the ABI, other builtin types are not 3101 // extended. 3102 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 3103 if (BT && BT->getKind() == BuiltinType::Bool) 3104 return ABIArgInfo::getExtend(); 3105 3106 return ABIArgInfo::getDirect(); 3107 } 3108 3109 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3110 bool IsVectorCall = 3111 FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall; 3112 3113 // We can use up to 4 SSE return registers with vectorcall. 3114 unsigned FreeSSERegs = IsVectorCall ? 4 : 0; 3115 if (!getCXXABI().classifyReturnType(FI)) 3116 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true); 3117 3118 // We can use up to 6 SSE register parameters with vectorcall. 3119 FreeSSERegs = IsVectorCall ? 6 : 0; 3120 for (auto &I : FI.arguments()) 3121 I.info = classify(I.type, FreeSSERegs, false); 3122 } 3123 3124 llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 3125 CodeGenFunction &CGF) const { 3126 llvm::Type *BPP = CGF.Int8PtrPtrTy; 3127 3128 CGBuilderTy &Builder = CGF.Builder; 3129 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, 3130 "ap"); 3131 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 3132 llvm::Type *PTy = 3133 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 3134 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 3135 3136 uint64_t Offset = 3137 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8); 3138 llvm::Value *NextAddr = 3139 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 3140 "ap.next"); 3141 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 3142 3143 return AddrTyped; 3144 } 3145 3146 // PowerPC-32 3147 namespace { 3148 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. 3149 class PPC32_SVR4_ABIInfo : public DefaultABIInfo { 3150 public: 3151 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 3152 3153 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 3154 CodeGenFunction &CGF) const override; 3155 }; 3156 3157 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { 3158 public: 3159 PPC32TargetCodeGenInfo(CodeGenTypes &CGT) 3160 : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT)) {} 3161 3162 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 3163 // This is recovered from gcc output. 3164 return 1; // r1 is the dedicated stack pointer 3165 } 3166 3167 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3168 llvm::Value *Address) const override; 3169 }; 3170 3171 } 3172 3173 llvm::Value *PPC32_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr, 3174 QualType Ty, 3175 CodeGenFunction &CGF) const { 3176 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 3177 // TODO: Implement this. For now ignore. 3178 (void)CTy; 3179 return nullptr; 3180 } 3181 3182 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; 3183 bool isInt = 3184 Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType(); 3185 llvm::Type *CharPtr = CGF.Int8PtrTy; 3186 llvm::Type *CharPtrPtr = CGF.Int8PtrPtrTy; 3187 3188 CGBuilderTy &Builder = CGF.Builder; 3189 llvm::Value *GPRPtr = Builder.CreateBitCast(VAListAddr, CharPtr, "gprptr"); 3190 llvm::Value *GPRPtrAsInt = Builder.CreatePtrToInt(GPRPtr, CGF.Int32Ty); 3191 llvm::Value *FPRPtrAsInt = 3192 Builder.CreateAdd(GPRPtrAsInt, Builder.getInt32(1)); 3193 llvm::Value *FPRPtr = Builder.CreateIntToPtr(FPRPtrAsInt, CharPtr); 3194 llvm::Value *OverflowAreaPtrAsInt = 3195 Builder.CreateAdd(FPRPtrAsInt, Builder.getInt32(3)); 3196 llvm::Value *OverflowAreaPtr = 3197 Builder.CreateIntToPtr(OverflowAreaPtrAsInt, CharPtrPtr); 3198 llvm::Value *RegsaveAreaPtrAsInt = 3199 Builder.CreateAdd(OverflowAreaPtrAsInt, Builder.getInt32(4)); 3200 llvm::Value *RegsaveAreaPtr = 3201 Builder.CreateIntToPtr(RegsaveAreaPtrAsInt, CharPtrPtr); 3202 llvm::Value *GPR = Builder.CreateLoad(GPRPtr, false, "gpr"); 3203 // Align GPR when TY is i64. 3204 if (isI64) { 3205 llvm::Value *GPRAnd = Builder.CreateAnd(GPR, Builder.getInt8(1)); 3206 llvm::Value *CC64 = Builder.CreateICmpEQ(GPRAnd, Builder.getInt8(1)); 3207 llvm::Value *GPRPlusOne = Builder.CreateAdd(GPR, Builder.getInt8(1)); 3208 GPR = Builder.CreateSelect(CC64, GPRPlusOne, GPR); 3209 } 3210 llvm::Value *FPR = Builder.CreateLoad(FPRPtr, false, "fpr"); 3211 llvm::Value *OverflowArea = 3212 Builder.CreateLoad(OverflowAreaPtr, false, "overflow_area"); 3213 llvm::Value *OverflowAreaAsInt = 3214 Builder.CreatePtrToInt(OverflowArea, CGF.Int32Ty); 3215 llvm::Value *RegsaveArea = 3216 Builder.CreateLoad(RegsaveAreaPtr, false, "regsave_area"); 3217 llvm::Value *RegsaveAreaAsInt = 3218 Builder.CreatePtrToInt(RegsaveArea, CGF.Int32Ty); 3219 3220 llvm::Value *CC = 3221 Builder.CreateICmpULT(isInt ? GPR : FPR, Builder.getInt8(8), "cond"); 3222 3223 llvm::Value *RegConstant = 3224 Builder.CreateMul(isInt ? GPR : FPR, Builder.getInt8(isInt ? 4 : 8)); 3225 3226 llvm::Value *OurReg = Builder.CreateAdd( 3227 RegsaveAreaAsInt, Builder.CreateSExt(RegConstant, CGF.Int32Ty)); 3228 3229 if (Ty->isFloatingType()) 3230 OurReg = Builder.CreateAdd(OurReg, Builder.getInt32(32)); 3231 3232 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); 3233 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); 3234 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 3235 3236 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); 3237 3238 CGF.EmitBlock(UsingRegs); 3239 3240 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 3241 llvm::Value *Result1 = Builder.CreateIntToPtr(OurReg, PTy); 3242 // Increase the GPR/FPR indexes. 3243 if (isInt) { 3244 GPR = Builder.CreateAdd(GPR, Builder.getInt8(isI64 ? 2 : 1)); 3245 Builder.CreateStore(GPR, GPRPtr); 3246 } else { 3247 FPR = Builder.CreateAdd(FPR, Builder.getInt8(1)); 3248 Builder.CreateStore(FPR, FPRPtr); 3249 } 3250 CGF.EmitBranch(Cont); 3251 3252 CGF.EmitBlock(UsingOverflow); 3253 3254 // Increase the overflow area. 3255 llvm::Value *Result2 = Builder.CreateIntToPtr(OverflowAreaAsInt, PTy); 3256 OverflowAreaAsInt = 3257 Builder.CreateAdd(OverflowAreaAsInt, Builder.getInt32(isInt ? 4 : 8)); 3258 Builder.CreateStore(Builder.CreateIntToPtr(OverflowAreaAsInt, CharPtr), 3259 OverflowAreaPtr); 3260 CGF.EmitBranch(Cont); 3261 3262 CGF.EmitBlock(Cont); 3263 3264 llvm::PHINode *Result = CGF.Builder.CreatePHI(PTy, 2, "vaarg.addr"); 3265 Result->addIncoming(Result1, UsingRegs); 3266 Result->addIncoming(Result2, UsingOverflow); 3267 3268 if (Ty->isAggregateType()) { 3269 llvm::Value *AGGPtr = Builder.CreateBitCast(Result, CharPtrPtr, "aggrptr"); 3270 return Builder.CreateLoad(AGGPtr, false, "aggr"); 3271 } 3272 3273 return Result; 3274 } 3275 3276 bool 3277 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3278 llvm::Value *Address) const { 3279 // This is calculated from the LLVM and GCC tables and verified 3280 // against gcc output. AFAIK all ABIs use the same encoding. 3281 3282 CodeGen::CGBuilderTy &Builder = CGF.Builder; 3283 3284 llvm::IntegerType *i8 = CGF.Int8Ty; 3285 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 3286 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 3287 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 3288 3289 // 0-31: r0-31, the 4-byte general-purpose registers 3290 AssignToArrayRange(Builder, Address, Four8, 0, 31); 3291 3292 // 32-63: fp0-31, the 8-byte floating-point registers 3293 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 3294 3295 // 64-76 are various 4-byte special-purpose registers: 3296 // 64: mq 3297 // 65: lr 3298 // 66: ctr 3299 // 67: ap 3300 // 68-75 cr0-7 3301 // 76: xer 3302 AssignToArrayRange(Builder, Address, Four8, 64, 76); 3303 3304 // 77-108: v0-31, the 16-byte vector registers 3305 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 3306 3307 // 109: vrsave 3308 // 110: vscr 3309 // 111: spe_acc 3310 // 112: spefscr 3311 // 113: sfp 3312 AssignToArrayRange(Builder, Address, Four8, 109, 113); 3313 3314 return false; 3315 } 3316 3317 // PowerPC-64 3318 3319 namespace { 3320 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 3321 class PPC64_SVR4_ABIInfo : public DefaultABIInfo { 3322 public: 3323 enum ABIKind { 3324 ELFv1 = 0, 3325 ELFv2 3326 }; 3327 3328 private: 3329 static const unsigned GPRBits = 64; 3330 ABIKind Kind; 3331 bool HasQPX; 3332 3333 // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and 3334 // will be passed in a QPX register. 3335 bool IsQPXVectorTy(const Type *Ty) const { 3336 if (!HasQPX) 3337 return false; 3338 3339 if (const VectorType *VT = Ty->getAs<VectorType>()) { 3340 unsigned NumElements = VT->getNumElements(); 3341 if (NumElements == 1) 3342 return false; 3343 3344 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) { 3345 if (getContext().getTypeSize(Ty) <= 256) 3346 return true; 3347 } else if (VT->getElementType()-> 3348 isSpecificBuiltinType(BuiltinType::Float)) { 3349 if (getContext().getTypeSize(Ty) <= 128) 3350 return true; 3351 } 3352 } 3353 3354 return false; 3355 } 3356 3357 bool IsQPXVectorTy(QualType Ty) const { 3358 return IsQPXVectorTy(Ty.getTypePtr()); 3359 } 3360 3361 public: 3362 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX) 3363 : DefaultABIInfo(CGT), Kind(Kind), HasQPX(HasQPX) {} 3364 3365 bool isPromotableTypeForABI(QualType Ty) const; 3366 bool isAlignedParamType(QualType Ty, bool &Align32) const; 3367 3368 ABIArgInfo classifyReturnType(QualType RetTy) const; 3369 ABIArgInfo classifyArgumentType(QualType Ty) const; 3370 3371 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 3372 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 3373 uint64_t Members) const override; 3374 3375 // TODO: We can add more logic to computeInfo to improve performance. 3376 // Example: For aggregate arguments that fit in a register, we could 3377 // use getDirectInReg (as is done below for structs containing a single 3378 // floating-point value) to avoid pushing them to memory on function 3379 // entry. This would require changing the logic in PPCISelLowering 3380 // when lowering the parameters in the caller and args in the callee. 3381 void computeInfo(CGFunctionInfo &FI) const override { 3382 if (!getCXXABI().classifyReturnType(FI)) 3383 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3384 for (auto &I : FI.arguments()) { 3385 // We rely on the default argument classification for the most part. 3386 // One exception: An aggregate containing a single floating-point 3387 // or vector item must be passed in a register if one is available. 3388 const Type *T = isSingleElementStruct(I.type, getContext()); 3389 if (T) { 3390 const BuiltinType *BT = T->getAs<BuiltinType>(); 3391 if (IsQPXVectorTy(T) || 3392 (T->isVectorType() && getContext().getTypeSize(T) == 128) || 3393 (BT && BT->isFloatingPoint())) { 3394 QualType QT(T, 0); 3395 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 3396 continue; 3397 } 3398 } 3399 I.info = classifyArgumentType(I.type); 3400 } 3401 } 3402 3403 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 3404 CodeGenFunction &CGF) const override; 3405 }; 3406 3407 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 3408 3409 public: 3410 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 3411 PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX) 3412 : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX)) {} 3413 3414 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 3415 // This is recovered from gcc output. 3416 return 1; // r1 is the dedicated stack pointer 3417 } 3418 3419 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3420 llvm::Value *Address) const override; 3421 }; 3422 3423 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 3424 public: 3425 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 3426 3427 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 3428 // This is recovered from gcc output. 3429 return 1; // r1 is the dedicated stack pointer 3430 } 3431 3432 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3433 llvm::Value *Address) const override; 3434 }; 3435 3436 } 3437 3438 // Return true if the ABI requires Ty to be passed sign- or zero- 3439 // extended to 64 bits. 3440 bool 3441 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 3442 // Treat an enum type as its underlying type. 3443 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3444 Ty = EnumTy->getDecl()->getIntegerType(); 3445 3446 // Promotable integer types are required to be promoted by the ABI. 3447 if (Ty->isPromotableIntegerType()) 3448 return true; 3449 3450 // In addition to the usual promotable integer types, we also need to 3451 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 3452 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 3453 switch (BT->getKind()) { 3454 case BuiltinType::Int: 3455 case BuiltinType::UInt: 3456 return true; 3457 default: 3458 break; 3459 } 3460 3461 return false; 3462 } 3463 3464 /// isAlignedParamType - Determine whether a type requires 16-byte 3465 /// alignment in the parameter area. 3466 bool 3467 PPC64_SVR4_ABIInfo::isAlignedParamType(QualType Ty, bool &Align32) const { 3468 Align32 = false; 3469 3470 // Complex types are passed just like their elements. 3471 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 3472 Ty = CTy->getElementType(); 3473 3474 // Only vector types of size 16 bytes need alignment (larger types are 3475 // passed via reference, smaller types are not aligned). 3476 if (IsQPXVectorTy(Ty)) { 3477 if (getContext().getTypeSize(Ty) > 128) 3478 Align32 = true; 3479 3480 return true; 3481 } else if (Ty->isVectorType()) { 3482 return getContext().getTypeSize(Ty) == 128; 3483 } 3484 3485 // For single-element float/vector structs, we consider the whole type 3486 // to have the same alignment requirements as its single element. 3487 const Type *AlignAsType = nullptr; 3488 const Type *EltType = isSingleElementStruct(Ty, getContext()); 3489 if (EltType) { 3490 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 3491 if (IsQPXVectorTy(EltType) || (EltType->isVectorType() && 3492 getContext().getTypeSize(EltType) == 128) || 3493 (BT && BT->isFloatingPoint())) 3494 AlignAsType = EltType; 3495 } 3496 3497 // Likewise for ELFv2 homogeneous aggregates. 3498 const Type *Base = nullptr; 3499 uint64_t Members = 0; 3500 if (!AlignAsType && Kind == ELFv2 && 3501 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 3502 AlignAsType = Base; 3503 3504 // With special case aggregates, only vector base types need alignment. 3505 if (AlignAsType && IsQPXVectorTy(AlignAsType)) { 3506 if (getContext().getTypeSize(AlignAsType) > 128) 3507 Align32 = true; 3508 3509 return true; 3510 } else if (AlignAsType) { 3511 return AlignAsType->isVectorType(); 3512 } 3513 3514 // Otherwise, we only need alignment for any aggregate type that 3515 // has an alignment requirement of >= 16 bytes. 3516 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { 3517 if (HasQPX && getContext().getTypeAlign(Ty) >= 256) 3518 Align32 = true; 3519 return true; 3520 } 3521 3522 return false; 3523 } 3524 3525 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 3526 /// aggregate. Base is set to the base element type, and Members is set 3527 /// to the number of base elements. 3528 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 3529 uint64_t &Members) const { 3530 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 3531 uint64_t NElements = AT->getSize().getZExtValue(); 3532 if (NElements == 0) 3533 return false; 3534 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 3535 return false; 3536 Members *= NElements; 3537 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 3538 const RecordDecl *RD = RT->getDecl(); 3539 if (RD->hasFlexibleArrayMember()) 3540 return false; 3541 3542 Members = 0; 3543 3544 // If this is a C++ record, check the bases first. 3545 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3546 for (const auto &I : CXXRD->bases()) { 3547 // Ignore empty records. 3548 if (isEmptyRecord(getContext(), I.getType(), true)) 3549 continue; 3550 3551 uint64_t FldMembers; 3552 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) 3553 return false; 3554 3555 Members += FldMembers; 3556 } 3557 } 3558 3559 for (const auto *FD : RD->fields()) { 3560 // Ignore (non-zero arrays of) empty records. 3561 QualType FT = FD->getType(); 3562 while (const ConstantArrayType *AT = 3563 getContext().getAsConstantArrayType(FT)) { 3564 if (AT->getSize().getZExtValue() == 0) 3565 return false; 3566 FT = AT->getElementType(); 3567 } 3568 if (isEmptyRecord(getContext(), FT, true)) 3569 continue; 3570 3571 // For compatibility with GCC, ignore empty bitfields in C++ mode. 3572 if (getContext().getLangOpts().CPlusPlus && 3573 FD->isBitField() && FD->getBitWidthValue(getContext()) == 0) 3574 continue; 3575 3576 uint64_t FldMembers; 3577 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 3578 return false; 3579 3580 Members = (RD->isUnion() ? 3581 std::max(Members, FldMembers) : Members + FldMembers); 3582 } 3583 3584 if (!Base) 3585 return false; 3586 3587 // Ensure there is no padding. 3588 if (getContext().getTypeSize(Base) * Members != 3589 getContext().getTypeSize(Ty)) 3590 return false; 3591 } else { 3592 Members = 1; 3593 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 3594 Members = 2; 3595 Ty = CT->getElementType(); 3596 } 3597 3598 // Most ABIs only support float, double, and some vector type widths. 3599 if (!isHomogeneousAggregateBaseType(Ty)) 3600 return false; 3601 3602 // The base type must be the same for all members. Types that 3603 // agree in both total size and mode (float vs. vector) are 3604 // treated as being equivalent here. 3605 const Type *TyPtr = Ty.getTypePtr(); 3606 if (!Base) 3607 Base = TyPtr; 3608 3609 if (Base->isVectorType() != TyPtr->isVectorType() || 3610 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 3611 return false; 3612 } 3613 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); 3614 } 3615 3616 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 3617 // Homogeneous aggregates for ELFv2 must have base types of float, 3618 // double, long double, or 128-bit vectors. 3619 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 3620 if (BT->getKind() == BuiltinType::Float || 3621 BT->getKind() == BuiltinType::Double || 3622 BT->getKind() == BuiltinType::LongDouble) 3623 return true; 3624 } 3625 if (const VectorType *VT = Ty->getAs<VectorType>()) { 3626 if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty)) 3627 return true; 3628 } 3629 return false; 3630 } 3631 3632 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( 3633 const Type *Base, uint64_t Members) const { 3634 // Vector types require one register, floating point types require one 3635 // or two registers depending on their size. 3636 uint32_t NumRegs = 3637 Base->isVectorType() ? 1 : (getContext().getTypeSize(Base) + 63) / 64; 3638 3639 // Homogeneous Aggregates may occupy at most 8 registers. 3640 return Members * NumRegs <= 8; 3641 } 3642 3643 ABIArgInfo 3644 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 3645 Ty = useFirstFieldIfTransparentUnion(Ty); 3646 3647 if (Ty->isAnyComplexType()) 3648 return ABIArgInfo::getDirect(); 3649 3650 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 3651 // or via reference (larger than 16 bytes). 3652 if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) { 3653 uint64_t Size = getContext().getTypeSize(Ty); 3654 if (Size > 128) 3655 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 3656 else if (Size < 128) { 3657 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 3658 return ABIArgInfo::getDirect(CoerceTy); 3659 } 3660 } 3661 3662 if (isAggregateTypeForABI(Ty)) { 3663 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 3664 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 3665 3666 bool Align32; 3667 uint64_t ABIAlign = isAlignedParamType(Ty, Align32) ? 3668 (Align32 ? 32 : 16) : 8; 3669 uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8; 3670 3671 // ELFv2 homogeneous aggregates are passed as array types. 3672 const Type *Base = nullptr; 3673 uint64_t Members = 0; 3674 if (Kind == ELFv2 && 3675 isHomogeneousAggregate(Ty, Base, Members)) { 3676 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 3677 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 3678 return ABIArgInfo::getDirect(CoerceTy); 3679 } 3680 3681 // If an aggregate may end up fully in registers, we do not 3682 // use the ByVal method, but pass the aggregate as array. 3683 // This is usually beneficial since we avoid forcing the 3684 // back-end to store the argument to memory. 3685 uint64_t Bits = getContext().getTypeSize(Ty); 3686 if (Bits > 0 && Bits <= 8 * GPRBits) { 3687 llvm::Type *CoerceTy; 3688 3689 // Types up to 8 bytes are passed as integer type (which will be 3690 // properly aligned in the argument save area doubleword). 3691 if (Bits <= GPRBits) 3692 CoerceTy = llvm::IntegerType::get(getVMContext(), 3693 llvm::RoundUpToAlignment(Bits, 8)); 3694 // Larger types are passed as arrays, with the base type selected 3695 // according to the required alignment in the save area. 3696 else { 3697 uint64_t RegBits = ABIAlign * 8; 3698 uint64_t NumRegs = llvm::RoundUpToAlignment(Bits, RegBits) / RegBits; 3699 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 3700 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 3701 } 3702 3703 return ABIArgInfo::getDirect(CoerceTy); 3704 } 3705 3706 // All other aggregates are passed ByVal. 3707 return ABIArgInfo::getIndirect(ABIAlign, /*ByVal=*/true, 3708 /*Realign=*/TyAlign > ABIAlign); 3709 } 3710 3711 return (isPromotableTypeForABI(Ty) ? 3712 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 3713 } 3714 3715 ABIArgInfo 3716 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 3717 if (RetTy->isVoidType()) 3718 return ABIArgInfo::getIgnore(); 3719 3720 if (RetTy->isAnyComplexType()) 3721 return ABIArgInfo::getDirect(); 3722 3723 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 3724 // or via reference (larger than 16 bytes). 3725 if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) { 3726 uint64_t Size = getContext().getTypeSize(RetTy); 3727 if (Size > 128) 3728 return ABIArgInfo::getIndirect(0); 3729 else if (Size < 128) { 3730 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 3731 return ABIArgInfo::getDirect(CoerceTy); 3732 } 3733 } 3734 3735 if (isAggregateTypeForABI(RetTy)) { 3736 // ELFv2 homogeneous aggregates are returned as array types. 3737 const Type *Base = nullptr; 3738 uint64_t Members = 0; 3739 if (Kind == ELFv2 && 3740 isHomogeneousAggregate(RetTy, Base, Members)) { 3741 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 3742 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 3743 return ABIArgInfo::getDirect(CoerceTy); 3744 } 3745 3746 // ELFv2 small aggregates are returned in up to two registers. 3747 uint64_t Bits = getContext().getTypeSize(RetTy); 3748 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 3749 if (Bits == 0) 3750 return ABIArgInfo::getIgnore(); 3751 3752 llvm::Type *CoerceTy; 3753 if (Bits > GPRBits) { 3754 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 3755 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy, nullptr); 3756 } else 3757 CoerceTy = llvm::IntegerType::get(getVMContext(), 3758 llvm::RoundUpToAlignment(Bits, 8)); 3759 return ABIArgInfo::getDirect(CoerceTy); 3760 } 3761 3762 // All other aggregates are returned indirectly. 3763 return ABIArgInfo::getIndirect(0); 3764 } 3765 3766 return (isPromotableTypeForABI(RetTy) ? 3767 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 3768 } 3769 3770 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 3771 llvm::Value *PPC64_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr, 3772 QualType Ty, 3773 CodeGenFunction &CGF) const { 3774 llvm::Type *BP = CGF.Int8PtrTy; 3775 llvm::Type *BPP = CGF.Int8PtrPtrTy; 3776 3777 CGBuilderTy &Builder = CGF.Builder; 3778 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 3779 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 3780 3781 // Handle types that require 16-byte alignment in the parameter save area. 3782 bool Align32; 3783 if (isAlignedParamType(Ty, Align32)) { 3784 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty); 3785 AddrAsInt = Builder.CreateAdd(AddrAsInt, 3786 Builder.getInt64(Align32 ? 31 : 15)); 3787 AddrAsInt = Builder.CreateAnd(AddrAsInt, 3788 Builder.getInt64(Align32 ? -32 : -16)); 3789 Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align"); 3790 } 3791 3792 // Update the va_list pointer. The pointer should be bumped by the 3793 // size of the object. We can trust getTypeSize() except for a complex 3794 // type whose base type is smaller than a doubleword. For these, the 3795 // size of the object is 16 bytes; see below for further explanation. 3796 unsigned SizeInBytes = CGF.getContext().getTypeSize(Ty) / 8; 3797 QualType BaseTy; 3798 unsigned CplxBaseSize = 0; 3799 3800 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 3801 BaseTy = CTy->getElementType(); 3802 CplxBaseSize = CGF.getContext().getTypeSize(BaseTy) / 8; 3803 if (CplxBaseSize < 8) 3804 SizeInBytes = 16; 3805 } 3806 3807 unsigned Offset = llvm::RoundUpToAlignment(SizeInBytes, 8); 3808 llvm::Value *NextAddr = 3809 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), 3810 "ap.next"); 3811 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 3812 3813 // If we have a complex type and the base type is smaller than 8 bytes, 3814 // the ABI calls for the real and imaginary parts to be right-adjusted 3815 // in separate doublewords. However, Clang expects us to produce a 3816 // pointer to a structure with the two parts packed tightly. So generate 3817 // loads of the real and imaginary parts relative to the va_list pointer, 3818 // and store them to a temporary structure. 3819 if (CplxBaseSize && CplxBaseSize < 8) { 3820 llvm::Value *RealAddr = Builder.CreatePtrToInt(Addr, CGF.Int64Ty); 3821 llvm::Value *ImagAddr = RealAddr; 3822 if (CGF.CGM.getDataLayout().isBigEndian()) { 3823 RealAddr = 3824 Builder.CreateAdd(RealAddr, Builder.getInt64(8 - CplxBaseSize)); 3825 ImagAddr = 3826 Builder.CreateAdd(ImagAddr, Builder.getInt64(16 - CplxBaseSize)); 3827 } else { 3828 ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(8)); 3829 } 3830 llvm::Type *PBaseTy = llvm::PointerType::getUnqual(CGF.ConvertType(BaseTy)); 3831 RealAddr = Builder.CreateIntToPtr(RealAddr, PBaseTy); 3832 ImagAddr = Builder.CreateIntToPtr(ImagAddr, PBaseTy); 3833 llvm::Value *Real = Builder.CreateLoad(RealAddr, false, ".vareal"); 3834 llvm::Value *Imag = Builder.CreateLoad(ImagAddr, false, ".vaimag"); 3835 llvm::AllocaInst *Ptr = 3836 CGF.CreateTempAlloca(CGT.ConvertTypeForMem(Ty), "vacplx"); 3837 llvm::Value *RealPtr = 3838 Builder.CreateStructGEP(Ptr->getAllocatedType(), Ptr, 0, ".real"); 3839 llvm::Value *ImagPtr = 3840 Builder.CreateStructGEP(Ptr->getAllocatedType(), Ptr, 1, ".imag"); 3841 Builder.CreateStore(Real, RealPtr, false); 3842 Builder.CreateStore(Imag, ImagPtr, false); 3843 return Ptr; 3844 } 3845 3846 // If the argument is smaller than 8 bytes, it is right-adjusted in 3847 // its doubleword slot. Adjust the pointer to pick it up from the 3848 // correct offset. 3849 if (SizeInBytes < 8 && CGF.CGM.getDataLayout().isBigEndian()) { 3850 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty); 3851 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(8 - SizeInBytes)); 3852 Addr = Builder.CreateIntToPtr(AddrAsInt, BP); 3853 } 3854 3855 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 3856 return Builder.CreateBitCast(Addr, PTy); 3857 } 3858 3859 static bool 3860 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3861 llvm::Value *Address) { 3862 // This is calculated from the LLVM and GCC tables and verified 3863 // against gcc output. AFAIK all ABIs use the same encoding. 3864 3865 CodeGen::CGBuilderTy &Builder = CGF.Builder; 3866 3867 llvm::IntegerType *i8 = CGF.Int8Ty; 3868 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 3869 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 3870 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 3871 3872 // 0-31: r0-31, the 8-byte general-purpose registers 3873 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 3874 3875 // 32-63: fp0-31, the 8-byte floating-point registers 3876 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 3877 3878 // 64-76 are various 4-byte special-purpose registers: 3879 // 64: mq 3880 // 65: lr 3881 // 66: ctr 3882 // 67: ap 3883 // 68-75 cr0-7 3884 // 76: xer 3885 AssignToArrayRange(Builder, Address, Four8, 64, 76); 3886 3887 // 77-108: v0-31, the 16-byte vector registers 3888 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 3889 3890 // 109: vrsave 3891 // 110: vscr 3892 // 111: spe_acc 3893 // 112: spefscr 3894 // 113: sfp 3895 AssignToArrayRange(Builder, Address, Four8, 109, 113); 3896 3897 return false; 3898 } 3899 3900 bool 3901 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 3902 CodeGen::CodeGenFunction &CGF, 3903 llvm::Value *Address) const { 3904 3905 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 3906 } 3907 3908 bool 3909 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3910 llvm::Value *Address) const { 3911 3912 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 3913 } 3914 3915 //===----------------------------------------------------------------------===// 3916 // AArch64 ABI Implementation 3917 //===----------------------------------------------------------------------===// 3918 3919 namespace { 3920 3921 class AArch64ABIInfo : public ABIInfo { 3922 public: 3923 enum ABIKind { 3924 AAPCS = 0, 3925 DarwinPCS 3926 }; 3927 3928 private: 3929 ABIKind Kind; 3930 3931 public: 3932 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) : ABIInfo(CGT), Kind(Kind) {} 3933 3934 private: 3935 ABIKind getABIKind() const { return Kind; } 3936 bool isDarwinPCS() const { return Kind == DarwinPCS; } 3937 3938 ABIArgInfo classifyReturnType(QualType RetTy) const; 3939 ABIArgInfo classifyArgumentType(QualType RetTy) const; 3940 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 3941 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 3942 uint64_t Members) const override; 3943 3944 bool isIllegalVectorType(QualType Ty) const; 3945 3946 void computeInfo(CGFunctionInfo &FI) const override { 3947 if (!getCXXABI().classifyReturnType(FI)) 3948 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3949 3950 for (auto &it : FI.arguments()) 3951 it.info = classifyArgumentType(it.type); 3952 } 3953 3954 llvm::Value *EmitDarwinVAArg(llvm::Value *VAListAddr, QualType Ty, 3955 CodeGenFunction &CGF) const; 3956 3957 llvm::Value *EmitAAPCSVAArg(llvm::Value *VAListAddr, QualType Ty, 3958 CodeGenFunction &CGF) const; 3959 3960 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 3961 CodeGenFunction &CGF) const override { 3962 return isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 3963 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 3964 } 3965 }; 3966 3967 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 3968 public: 3969 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 3970 : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {} 3971 3972 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 3973 return "mov\tfp, fp\t\t; marker for objc_retainAutoreleaseReturnValue"; 3974 } 3975 3976 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 3977 return 31; 3978 } 3979 3980 bool doesReturnSlotInterfereWithArgs() const override { return false; } 3981 }; 3982 } 3983 3984 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const { 3985 Ty = useFirstFieldIfTransparentUnion(Ty); 3986 3987 // Handle illegal vector types here. 3988 if (isIllegalVectorType(Ty)) { 3989 uint64_t Size = getContext().getTypeSize(Ty); 3990 if (Size <= 32) { 3991 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 3992 return ABIArgInfo::getDirect(ResType); 3993 } 3994 if (Size == 64) { 3995 llvm::Type *ResType = 3996 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 3997 return ABIArgInfo::getDirect(ResType); 3998 } 3999 if (Size == 128) { 4000 llvm::Type *ResType = 4001 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 4002 return ABIArgInfo::getDirect(ResType); 4003 } 4004 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 4005 } 4006 4007 if (!isAggregateTypeForABI(Ty)) { 4008 // Treat an enum type as its underlying type. 4009 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4010 Ty = EnumTy->getDecl()->getIntegerType(); 4011 4012 return (Ty->isPromotableIntegerType() && isDarwinPCS() 4013 ? ABIArgInfo::getExtend() 4014 : ABIArgInfo::getDirect()); 4015 } 4016 4017 // Structures with either a non-trivial destructor or a non-trivial 4018 // copy constructor are always indirect. 4019 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 4020 return ABIArgInfo::getIndirect(0, /*ByVal=*/RAA == 4021 CGCXXABI::RAA_DirectInMemory); 4022 } 4023 4024 // Empty records are always ignored on Darwin, but actually passed in C++ mode 4025 // elsewhere for GNU compatibility. 4026 if (isEmptyRecord(getContext(), Ty, true)) { 4027 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 4028 return ABIArgInfo::getIgnore(); 4029 4030 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 4031 } 4032 4033 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 4034 const Type *Base = nullptr; 4035 uint64_t Members = 0; 4036 if (isHomogeneousAggregate(Ty, Base, Members)) { 4037 return ABIArgInfo::getDirect( 4038 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); 4039 } 4040 4041 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 4042 uint64_t Size = getContext().getTypeSize(Ty); 4043 if (Size <= 128) { 4044 unsigned Alignment = getContext().getTypeAlign(Ty); 4045 Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes 4046 4047 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 4048 // For aggregates with 16-byte alignment, we use i128. 4049 if (Alignment < 128 && Size == 128) { 4050 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 4051 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 4052 } 4053 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 4054 } 4055 4056 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 4057 } 4058 4059 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const { 4060 if (RetTy->isVoidType()) 4061 return ABIArgInfo::getIgnore(); 4062 4063 // Large vector types should be returned via memory. 4064 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 4065 return ABIArgInfo::getIndirect(0); 4066 4067 if (!isAggregateTypeForABI(RetTy)) { 4068 // Treat an enum type as its underlying type. 4069 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 4070 RetTy = EnumTy->getDecl()->getIntegerType(); 4071 4072 return (RetTy->isPromotableIntegerType() && isDarwinPCS() 4073 ? ABIArgInfo::getExtend() 4074 : ABIArgInfo::getDirect()); 4075 } 4076 4077 if (isEmptyRecord(getContext(), RetTy, true)) 4078 return ABIArgInfo::getIgnore(); 4079 4080 const Type *Base = nullptr; 4081 uint64_t Members = 0; 4082 if (isHomogeneousAggregate(RetTy, Base, Members)) 4083 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 4084 return ABIArgInfo::getDirect(); 4085 4086 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 4087 uint64_t Size = getContext().getTypeSize(RetTy); 4088 if (Size <= 128) { 4089 unsigned Alignment = getContext().getTypeAlign(RetTy); 4090 Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes 4091 4092 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 4093 // For aggregates with 16-byte alignment, we use i128. 4094 if (Alignment < 128 && Size == 128) { 4095 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 4096 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 4097 } 4098 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 4099 } 4100 4101 return ABIArgInfo::getIndirect(0); 4102 } 4103 4104 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 4105 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 4106 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4107 // Check whether VT is legal. 4108 unsigned NumElements = VT->getNumElements(); 4109 uint64_t Size = getContext().getTypeSize(VT); 4110 // NumElements should be power of 2 between 1 and 16. 4111 if ((NumElements & (NumElements - 1)) != 0 || NumElements > 16) 4112 return true; 4113 return Size != 64 && (Size != 128 || NumElements == 1); 4114 } 4115 return false; 4116 } 4117 4118 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 4119 // Homogeneous aggregates for AAPCS64 must have base types of a floating 4120 // point type or a short-vector type. This is the same as the 32-bit ABI, 4121 // but with the difference that any floating-point type is allowed, 4122 // including __fp16. 4123 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4124 if (BT->isFloatingPoint()) 4125 return true; 4126 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 4127 unsigned VecSize = getContext().getTypeSize(VT); 4128 if (VecSize == 64 || VecSize == 128) 4129 return true; 4130 } 4131 return false; 4132 } 4133 4134 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 4135 uint64_t Members) const { 4136 return Members <= 4; 4137 } 4138 4139 llvm::Value *AArch64ABIInfo::EmitAAPCSVAArg(llvm::Value *VAListAddr, 4140 QualType Ty, 4141 CodeGenFunction &CGF) const { 4142 ABIArgInfo AI = classifyArgumentType(Ty); 4143 bool IsIndirect = AI.isIndirect(); 4144 4145 llvm::Type *BaseTy = CGF.ConvertType(Ty); 4146 if (IsIndirect) 4147 BaseTy = llvm::PointerType::getUnqual(BaseTy); 4148 else if (AI.getCoerceToType()) 4149 BaseTy = AI.getCoerceToType(); 4150 4151 unsigned NumRegs = 1; 4152 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { 4153 BaseTy = ArrTy->getElementType(); 4154 NumRegs = ArrTy->getNumElements(); 4155 } 4156 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); 4157 4158 // The AArch64 va_list type and handling is specified in the Procedure Call 4159 // Standard, section B.4: 4160 // 4161 // struct { 4162 // void *__stack; 4163 // void *__gr_top; 4164 // void *__vr_top; 4165 // int __gr_offs; 4166 // int __vr_offs; 4167 // }; 4168 4169 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 4170 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 4171 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 4172 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 4173 auto &Ctx = CGF.getContext(); 4174 4175 llvm::Value *reg_offs_p = nullptr, *reg_offs = nullptr; 4176 int reg_top_index; 4177 int RegSize = IsIndirect ? 8 : getContext().getTypeSize(Ty) / 8; 4178 if (!IsFPR) { 4179 // 3 is the field number of __gr_offs 4180 reg_offs_p = 4181 CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 3, "gr_offs_p"); 4182 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 4183 reg_top_index = 1; // field number for __gr_top 4184 RegSize = llvm::RoundUpToAlignment(RegSize, 8); 4185 } else { 4186 // 4 is the field number of __vr_offs. 4187 reg_offs_p = 4188 CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 4, "vr_offs_p"); 4189 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 4190 reg_top_index = 2; // field number for __vr_top 4191 RegSize = 16 * NumRegs; 4192 } 4193 4194 //======================================= 4195 // Find out where argument was passed 4196 //======================================= 4197 4198 // If reg_offs >= 0 we're already using the stack for this type of 4199 // argument. We don't want to keep updating reg_offs (in case it overflows, 4200 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 4201 // whatever they get). 4202 llvm::Value *UsingStack = nullptr; 4203 UsingStack = CGF.Builder.CreateICmpSGE( 4204 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 4205 4206 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 4207 4208 // Otherwise, at least some kind of argument could go in these registers, the 4209 // question is whether this particular type is too big. 4210 CGF.EmitBlock(MaybeRegBlock); 4211 4212 // Integer arguments may need to correct register alignment (for example a 4213 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 4214 // align __gr_offs to calculate the potential address. 4215 if (!IsFPR && !IsIndirect && Ctx.getTypeAlign(Ty) > 64) { 4216 int Align = Ctx.getTypeAlign(Ty) / 8; 4217 4218 reg_offs = CGF.Builder.CreateAdd( 4219 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 4220 "align_regoffs"); 4221 reg_offs = CGF.Builder.CreateAnd( 4222 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 4223 "aligned_regoffs"); 4224 } 4225 4226 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 4227 llvm::Value *NewOffset = nullptr; 4228 NewOffset = CGF.Builder.CreateAdd( 4229 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 4230 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 4231 4232 // Now we're in a position to decide whether this argument really was in 4233 // registers or not. 4234 llvm::Value *InRegs = nullptr; 4235 InRegs = CGF.Builder.CreateICmpSLE( 4236 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 4237 4238 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 4239 4240 //======================================= 4241 // Argument was in registers 4242 //======================================= 4243 4244 // Now we emit the code for if the argument was originally passed in 4245 // registers. First start the appropriate block: 4246 CGF.EmitBlock(InRegBlock); 4247 4248 llvm::Value *reg_top_p = nullptr, *reg_top = nullptr; 4249 reg_top_p = CGF.Builder.CreateStructGEP(nullptr, VAListAddr, reg_top_index, 4250 "reg_top_p"); 4251 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 4252 llvm::Value *BaseAddr = CGF.Builder.CreateGEP(reg_top, reg_offs); 4253 llvm::Value *RegAddr = nullptr; 4254 llvm::Type *MemTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 4255 4256 if (IsIndirect) { 4257 // If it's been passed indirectly (actually a struct), whatever we find from 4258 // stored registers or on the stack will actually be a struct **. 4259 MemTy = llvm::PointerType::getUnqual(MemTy); 4260 } 4261 4262 const Type *Base = nullptr; 4263 uint64_t NumMembers = 0; 4264 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); 4265 if (IsHFA && NumMembers > 1) { 4266 // Homogeneous aggregates passed in registers will have their elements split 4267 // and stored 16-bytes apart regardless of size (they're notionally in qN, 4268 // qN+1, ...). We reload and store into a temporary local variable 4269 // contiguously. 4270 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 4271 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 4272 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 4273 llvm::AllocaInst *Tmp = CGF.CreateTempAlloca(HFATy); 4274 int Offset = 0; 4275 4276 if (CGF.CGM.getDataLayout().isBigEndian() && Ctx.getTypeSize(Base) < 128) 4277 Offset = 16 - Ctx.getTypeSize(Base) / 8; 4278 for (unsigned i = 0; i < NumMembers; ++i) { 4279 llvm::Value *BaseOffset = 4280 llvm::ConstantInt::get(CGF.Int32Ty, 16 * i + Offset); 4281 llvm::Value *LoadAddr = CGF.Builder.CreateGEP(BaseAddr, BaseOffset); 4282 LoadAddr = CGF.Builder.CreateBitCast( 4283 LoadAddr, llvm::PointerType::getUnqual(BaseTy)); 4284 llvm::Value *StoreAddr = 4285 CGF.Builder.CreateStructGEP(Tmp->getAllocatedType(), Tmp, i); 4286 4287 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 4288 CGF.Builder.CreateStore(Elem, StoreAddr); 4289 } 4290 4291 RegAddr = CGF.Builder.CreateBitCast(Tmp, MemTy); 4292 } else { 4293 // Otherwise the object is contiguous in memory 4294 unsigned BeAlign = reg_top_index == 2 ? 16 : 8; 4295 if (CGF.CGM.getDataLayout().isBigEndian() && 4296 (IsHFA || !isAggregateTypeForABI(Ty)) && 4297 Ctx.getTypeSize(Ty) < (BeAlign * 8)) { 4298 int Offset = BeAlign - Ctx.getTypeSize(Ty) / 8; 4299 BaseAddr = CGF.Builder.CreatePtrToInt(BaseAddr, CGF.Int64Ty); 4300 4301 BaseAddr = CGF.Builder.CreateAdd( 4302 BaseAddr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), "align_be"); 4303 4304 BaseAddr = CGF.Builder.CreateIntToPtr(BaseAddr, CGF.Int8PtrTy); 4305 } 4306 4307 RegAddr = CGF.Builder.CreateBitCast(BaseAddr, MemTy); 4308 } 4309 4310 CGF.EmitBranch(ContBlock); 4311 4312 //======================================= 4313 // Argument was on the stack 4314 //======================================= 4315 CGF.EmitBlock(OnStackBlock); 4316 4317 llvm::Value *stack_p = nullptr, *OnStackAddr = nullptr; 4318 stack_p = CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 0, "stack_p"); 4319 OnStackAddr = CGF.Builder.CreateLoad(stack_p, "stack"); 4320 4321 // Again, stack arguments may need realigmnent. In this case both integer and 4322 // floating-point ones might be affected. 4323 if (!IsIndirect && Ctx.getTypeAlign(Ty) > 64) { 4324 int Align = Ctx.getTypeAlign(Ty) / 8; 4325 4326 OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty); 4327 4328 OnStackAddr = CGF.Builder.CreateAdd( 4329 OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 4330 "align_stack"); 4331 OnStackAddr = CGF.Builder.CreateAnd( 4332 OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 4333 "align_stack"); 4334 4335 OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy); 4336 } 4337 4338 uint64_t StackSize; 4339 if (IsIndirect) 4340 StackSize = 8; 4341 else 4342 StackSize = Ctx.getTypeSize(Ty) / 8; 4343 4344 // All stack slots are 8 bytes 4345 StackSize = llvm::RoundUpToAlignment(StackSize, 8); 4346 4347 llvm::Value *StackSizeC = llvm::ConstantInt::get(CGF.Int32Ty, StackSize); 4348 llvm::Value *NewStack = 4349 CGF.Builder.CreateGEP(OnStackAddr, StackSizeC, "new_stack"); 4350 4351 // Write the new value of __stack for the next call to va_arg 4352 CGF.Builder.CreateStore(NewStack, stack_p); 4353 4354 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 4355 Ctx.getTypeSize(Ty) < 64) { 4356 int Offset = 8 - Ctx.getTypeSize(Ty) / 8; 4357 OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty); 4358 4359 OnStackAddr = CGF.Builder.CreateAdd( 4360 OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), "align_be"); 4361 4362 OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy); 4363 } 4364 4365 OnStackAddr = CGF.Builder.CreateBitCast(OnStackAddr, MemTy); 4366 4367 CGF.EmitBranch(ContBlock); 4368 4369 //======================================= 4370 // Tidy up 4371 //======================================= 4372 CGF.EmitBlock(ContBlock); 4373 4374 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(MemTy, 2, "vaarg.addr"); 4375 ResAddr->addIncoming(RegAddr, InRegBlock); 4376 ResAddr->addIncoming(OnStackAddr, OnStackBlock); 4377 4378 if (IsIndirect) 4379 return CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"); 4380 4381 return ResAddr; 4382 } 4383 4384 llvm::Value *AArch64ABIInfo::EmitDarwinVAArg(llvm::Value *VAListAddr, 4385 QualType Ty, 4386 CodeGenFunction &CGF) const { 4387 // We do not support va_arg for aggregates or illegal vector types. 4388 // Lower VAArg here for these cases and use the LLVM va_arg instruction for 4389 // other cases. 4390 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 4391 return nullptr; 4392 4393 uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8; 4394 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; 4395 4396 const Type *Base = nullptr; 4397 uint64_t Members = 0; 4398 bool isHA = isHomogeneousAggregate(Ty, Base, Members); 4399 4400 bool isIndirect = false; 4401 // Arguments bigger than 16 bytes which aren't homogeneous aggregates should 4402 // be passed indirectly. 4403 if (Size > 16 && !isHA) { 4404 isIndirect = true; 4405 Size = 8; 4406 Align = 8; 4407 } 4408 4409 llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); 4410 llvm::Type *BPP = llvm::PointerType::getUnqual(BP); 4411 4412 CGBuilderTy &Builder = CGF.Builder; 4413 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 4414 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 4415 4416 if (isEmptyRecord(getContext(), Ty, true)) { 4417 // These are ignored for parameter passing purposes. 4418 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 4419 return Builder.CreateBitCast(Addr, PTy); 4420 } 4421 4422 const uint64_t MinABIAlign = 8; 4423 if (Align > MinABIAlign) { 4424 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, Align - 1); 4425 Addr = Builder.CreateGEP(Addr, Offset); 4426 llvm::Value *AsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty); 4427 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, ~(Align - 1)); 4428 llvm::Value *Aligned = Builder.CreateAnd(AsInt, Mask); 4429 Addr = Builder.CreateIntToPtr(Aligned, BP, "ap.align"); 4430 } 4431 4432 uint64_t Offset = llvm::RoundUpToAlignment(Size, MinABIAlign); 4433 llvm::Value *NextAddr = Builder.CreateGEP( 4434 Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next"); 4435 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 4436 4437 if (isIndirect) 4438 Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP)); 4439 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 4440 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 4441 4442 return AddrTyped; 4443 } 4444 4445 //===----------------------------------------------------------------------===// 4446 // ARM ABI Implementation 4447 //===----------------------------------------------------------------------===// 4448 4449 namespace { 4450 4451 class ARMABIInfo : public ABIInfo { 4452 public: 4453 enum ABIKind { 4454 APCS = 0, 4455 AAPCS = 1, 4456 AAPCS_VFP 4457 }; 4458 4459 private: 4460 ABIKind Kind; 4461 4462 public: 4463 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) { 4464 setCCs(); 4465 } 4466 4467 bool isEABI() const { 4468 switch (getTarget().getTriple().getEnvironment()) { 4469 case llvm::Triple::Android: 4470 case llvm::Triple::EABI: 4471 case llvm::Triple::EABIHF: 4472 case llvm::Triple::GNUEABI: 4473 case llvm::Triple::GNUEABIHF: 4474 return true; 4475 default: 4476 return false; 4477 } 4478 } 4479 4480 bool isEABIHF() const { 4481 switch (getTarget().getTriple().getEnvironment()) { 4482 case llvm::Triple::EABIHF: 4483 case llvm::Triple::GNUEABIHF: 4484 return true; 4485 default: 4486 return false; 4487 } 4488 } 4489 4490 ABIKind getABIKind() const { return Kind; } 4491 4492 private: 4493 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const; 4494 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic) const; 4495 bool isIllegalVectorType(QualType Ty) const; 4496 4497 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4498 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4499 uint64_t Members) const override; 4500 4501 void computeInfo(CGFunctionInfo &FI) const override; 4502 4503 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4504 CodeGenFunction &CGF) const override; 4505 4506 llvm::CallingConv::ID getLLVMDefaultCC() const; 4507 llvm::CallingConv::ID getABIDefaultCC() const; 4508 void setCCs(); 4509 }; 4510 4511 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 4512 public: 4513 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 4514 :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {} 4515 4516 const ARMABIInfo &getABIInfo() const { 4517 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 4518 } 4519 4520 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4521 return 13; 4522 } 4523 4524 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 4525 return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue"; 4526 } 4527 4528 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4529 llvm::Value *Address) const override { 4530 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 4531 4532 // 0-15 are the 16 integer registers. 4533 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 4534 return false; 4535 } 4536 4537 unsigned getSizeOfUnwindException() const override { 4538 if (getABIInfo().isEABI()) return 88; 4539 return TargetCodeGenInfo::getSizeOfUnwindException(); 4540 } 4541 4542 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 4543 CodeGen::CodeGenModule &CGM) const override { 4544 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 4545 if (!FD) 4546 return; 4547 4548 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 4549 if (!Attr) 4550 return; 4551 4552 const char *Kind; 4553 switch (Attr->getInterrupt()) { 4554 case ARMInterruptAttr::Generic: Kind = ""; break; 4555 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 4556 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 4557 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 4558 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 4559 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 4560 } 4561 4562 llvm::Function *Fn = cast<llvm::Function>(GV); 4563 4564 Fn->addFnAttr("interrupt", Kind); 4565 4566 if (cast<ARMABIInfo>(getABIInfo()).getABIKind() == ARMABIInfo::APCS) 4567 return; 4568 4569 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 4570 // however this is not necessarily true on taking any interrupt. Instruct 4571 // the backend to perform a realignment as part of the function prologue. 4572 llvm::AttrBuilder B; 4573 B.addStackAlignmentAttr(8); 4574 Fn->addAttributes(llvm::AttributeSet::FunctionIndex, 4575 llvm::AttributeSet::get(CGM.getLLVMContext(), 4576 llvm::AttributeSet::FunctionIndex, 4577 B)); 4578 } 4579 }; 4580 4581 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { 4582 void addStackProbeSizeTargetAttribute(const Decl *D, llvm::GlobalValue *GV, 4583 CodeGen::CodeGenModule &CGM) const; 4584 4585 public: 4586 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 4587 : ARMTargetCodeGenInfo(CGT, K) {} 4588 4589 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 4590 CodeGen::CodeGenModule &CGM) const override; 4591 }; 4592 4593 void WindowsARMTargetCodeGenInfo::addStackProbeSizeTargetAttribute( 4594 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 4595 if (!isa<FunctionDecl>(D)) 4596 return; 4597 if (CGM.getCodeGenOpts().StackProbeSize == 4096) 4598 return; 4599 4600 llvm::Function *F = cast<llvm::Function>(GV); 4601 F->addFnAttr("stack-probe-size", 4602 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 4603 } 4604 4605 void WindowsARMTargetCodeGenInfo::setTargetAttributes( 4606 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 4607 ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 4608 addStackProbeSizeTargetAttribute(D, GV, CGM); 4609 } 4610 } 4611 4612 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 4613 if (!getCXXABI().classifyReturnType(FI)) 4614 FI.getReturnInfo() = 4615 classifyReturnType(FI.getReturnType(), FI.isVariadic()); 4616 4617 for (auto &I : FI.arguments()) 4618 I.info = classifyArgumentType(I.type, FI.isVariadic()); 4619 4620 // Always honor user-specified calling convention. 4621 if (FI.getCallingConvention() != llvm::CallingConv::C) 4622 return; 4623 4624 llvm::CallingConv::ID cc = getRuntimeCC(); 4625 if (cc != llvm::CallingConv::C) 4626 FI.setEffectiveCallingConvention(cc); 4627 } 4628 4629 /// Return the default calling convention that LLVM will use. 4630 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 4631 // The default calling convention that LLVM will infer. 4632 if (isEABIHF()) 4633 return llvm::CallingConv::ARM_AAPCS_VFP; 4634 else if (isEABI()) 4635 return llvm::CallingConv::ARM_AAPCS; 4636 else 4637 return llvm::CallingConv::ARM_APCS; 4638 } 4639 4640 /// Return the calling convention that our ABI would like us to use 4641 /// as the C calling convention. 4642 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 4643 switch (getABIKind()) { 4644 case APCS: return llvm::CallingConv::ARM_APCS; 4645 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 4646 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 4647 } 4648 llvm_unreachable("bad ABI kind"); 4649 } 4650 4651 void ARMABIInfo::setCCs() { 4652 assert(getRuntimeCC() == llvm::CallingConv::C); 4653 4654 // Don't muddy up the IR with a ton of explicit annotations if 4655 // they'd just match what LLVM will infer from the triple. 4656 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 4657 if (abiCC != getLLVMDefaultCC()) 4658 RuntimeCC = abiCC; 4659 4660 BuiltinCC = (getABIKind() == APCS ? 4661 llvm::CallingConv::ARM_APCS : llvm::CallingConv::ARM_AAPCS); 4662 } 4663 4664 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, 4665 bool isVariadic) const { 4666 // 6.1.2.1 The following argument types are VFP CPRCs: 4667 // A single-precision floating-point type (including promoted 4668 // half-precision types); A double-precision floating-point type; 4669 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 4670 // with a Base Type of a single- or double-precision floating-point type, 4671 // 64-bit containerized vectors or 128-bit containerized vectors with one 4672 // to four Elements. 4673 bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic; 4674 4675 Ty = useFirstFieldIfTransparentUnion(Ty); 4676 4677 // Handle illegal vector types here. 4678 if (isIllegalVectorType(Ty)) { 4679 uint64_t Size = getContext().getTypeSize(Ty); 4680 if (Size <= 32) { 4681 llvm::Type *ResType = 4682 llvm::Type::getInt32Ty(getVMContext()); 4683 return ABIArgInfo::getDirect(ResType); 4684 } 4685 if (Size == 64) { 4686 llvm::Type *ResType = llvm::VectorType::get( 4687 llvm::Type::getInt32Ty(getVMContext()), 2); 4688 return ABIArgInfo::getDirect(ResType); 4689 } 4690 if (Size == 128) { 4691 llvm::Type *ResType = llvm::VectorType::get( 4692 llvm::Type::getInt32Ty(getVMContext()), 4); 4693 return ABIArgInfo::getDirect(ResType); 4694 } 4695 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 4696 } 4697 4698 if (!isAggregateTypeForABI(Ty)) { 4699 // Treat an enum type as its underlying type. 4700 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 4701 Ty = EnumTy->getDecl()->getIntegerType(); 4702 } 4703 4704 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend() 4705 : ABIArgInfo::getDirect()); 4706 } 4707 4708 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 4709 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 4710 } 4711 4712 // Ignore empty records. 4713 if (isEmptyRecord(getContext(), Ty, true)) 4714 return ABIArgInfo::getIgnore(); 4715 4716 if (IsEffectivelyAAPCS_VFP) { 4717 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 4718 // into VFP registers. 4719 const Type *Base = nullptr; 4720 uint64_t Members = 0; 4721 if (isHomogeneousAggregate(Ty, Base, Members)) { 4722 assert(Base && "Base class should be set for homogeneous aggregate"); 4723 // Base can be a floating-point or a vector. 4724 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 4725 } 4726 } 4727 4728 // Support byval for ARM. 4729 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 4730 // most 8-byte. We realign the indirect argument if type alignment is bigger 4731 // than ABI alignment. 4732 uint64_t ABIAlign = 4; 4733 uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8; 4734 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 4735 getABIKind() == ARMABIInfo::AAPCS) 4736 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 4737 4738 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 4739 return ABIArgInfo::getIndirect(ABIAlign, /*ByVal=*/true, 4740 /*Realign=*/TyAlign > ABIAlign); 4741 } 4742 4743 // Otherwise, pass by coercing to a structure of the appropriate size. 4744 llvm::Type* ElemTy; 4745 unsigned SizeRegs; 4746 // FIXME: Try to match the types of the arguments more accurately where 4747 // we can. 4748 if (getContext().getTypeAlign(Ty) <= 32) { 4749 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 4750 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 4751 } else { 4752 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 4753 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 4754 } 4755 4756 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); 4757 } 4758 4759 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 4760 llvm::LLVMContext &VMContext) { 4761 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 4762 // is called integer-like if its size is less than or equal to one word, and 4763 // the offset of each of its addressable sub-fields is zero. 4764 4765 uint64_t Size = Context.getTypeSize(Ty); 4766 4767 // Check that the type fits in a word. 4768 if (Size > 32) 4769 return false; 4770 4771 // FIXME: Handle vector types! 4772 if (Ty->isVectorType()) 4773 return false; 4774 4775 // Float types are never treated as "integer like". 4776 if (Ty->isRealFloatingType()) 4777 return false; 4778 4779 // If this is a builtin or pointer type then it is ok. 4780 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 4781 return true; 4782 4783 // Small complex integer types are "integer like". 4784 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 4785 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 4786 4787 // Single element and zero sized arrays should be allowed, by the definition 4788 // above, but they are not. 4789 4790 // Otherwise, it must be a record type. 4791 const RecordType *RT = Ty->getAs<RecordType>(); 4792 if (!RT) return false; 4793 4794 // Ignore records with flexible arrays. 4795 const RecordDecl *RD = RT->getDecl(); 4796 if (RD->hasFlexibleArrayMember()) 4797 return false; 4798 4799 // Check that all sub-fields are at offset 0, and are themselves "integer 4800 // like". 4801 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 4802 4803 bool HadField = false; 4804 unsigned idx = 0; 4805 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 4806 i != e; ++i, ++idx) { 4807 const FieldDecl *FD = *i; 4808 4809 // Bit-fields are not addressable, we only need to verify they are "integer 4810 // like". We still have to disallow a subsequent non-bitfield, for example: 4811 // struct { int : 0; int x } 4812 // is non-integer like according to gcc. 4813 if (FD->isBitField()) { 4814 if (!RD->isUnion()) 4815 HadField = true; 4816 4817 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 4818 return false; 4819 4820 continue; 4821 } 4822 4823 // Check if this field is at offset 0. 4824 if (Layout.getFieldOffset(idx) != 0) 4825 return false; 4826 4827 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 4828 return false; 4829 4830 // Only allow at most one field in a structure. This doesn't match the 4831 // wording above, but follows gcc in situations with a field following an 4832 // empty structure. 4833 if (!RD->isUnion()) { 4834 if (HadField) 4835 return false; 4836 4837 HadField = true; 4838 } 4839 } 4840 4841 return true; 4842 } 4843 4844 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, 4845 bool isVariadic) const { 4846 bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic; 4847 4848 if (RetTy->isVoidType()) 4849 return ABIArgInfo::getIgnore(); 4850 4851 // Large vector types should be returned via memory. 4852 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) { 4853 return ABIArgInfo::getIndirect(0); 4854 } 4855 4856 if (!isAggregateTypeForABI(RetTy)) { 4857 // Treat an enum type as its underlying type. 4858 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 4859 RetTy = EnumTy->getDecl()->getIntegerType(); 4860 4861 return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend() 4862 : ABIArgInfo::getDirect(); 4863 } 4864 4865 // Are we following APCS? 4866 if (getABIKind() == APCS) { 4867 if (isEmptyRecord(getContext(), RetTy, false)) 4868 return ABIArgInfo::getIgnore(); 4869 4870 // Complex types are all returned as packed integers. 4871 // 4872 // FIXME: Consider using 2 x vector types if the back end handles them 4873 // correctly. 4874 if (RetTy->isAnyComplexType()) 4875 return ABIArgInfo::getDirect(llvm::IntegerType::get( 4876 getVMContext(), getContext().getTypeSize(RetTy))); 4877 4878 // Integer like structures are returned in r0. 4879 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 4880 // Return in the smallest viable integer type. 4881 uint64_t Size = getContext().getTypeSize(RetTy); 4882 if (Size <= 8) 4883 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 4884 if (Size <= 16) 4885 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 4886 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 4887 } 4888 4889 // Otherwise return in memory. 4890 return ABIArgInfo::getIndirect(0); 4891 } 4892 4893 // Otherwise this is an AAPCS variant. 4894 4895 if (isEmptyRecord(getContext(), RetTy, true)) 4896 return ABIArgInfo::getIgnore(); 4897 4898 // Check for homogeneous aggregates with AAPCS-VFP. 4899 if (IsEffectivelyAAPCS_VFP) { 4900 const Type *Base = nullptr; 4901 uint64_t Members; 4902 if (isHomogeneousAggregate(RetTy, Base, Members)) { 4903 assert(Base && "Base class should be set for homogeneous aggregate"); 4904 // Homogeneous Aggregates are returned directly. 4905 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 4906 } 4907 } 4908 4909 // Aggregates <= 4 bytes are returned in r0; other aggregates 4910 // are returned indirectly. 4911 uint64_t Size = getContext().getTypeSize(RetTy); 4912 if (Size <= 32) { 4913 if (getDataLayout().isBigEndian()) 4914 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 4915 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 4916 4917 // Return in the smallest viable integer type. 4918 if (Size <= 8) 4919 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 4920 if (Size <= 16) 4921 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 4922 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 4923 } 4924 4925 return ABIArgInfo::getIndirect(0); 4926 } 4927 4928 /// isIllegalVector - check whether Ty is an illegal vector type. 4929 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 4930 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4931 // Check whether VT is legal. 4932 unsigned NumElements = VT->getNumElements(); 4933 uint64_t Size = getContext().getTypeSize(VT); 4934 // NumElements should be power of 2. 4935 if ((NumElements & (NumElements - 1)) != 0) 4936 return true; 4937 // Size should be greater than 32 bits. 4938 return Size <= 32; 4939 } 4940 return false; 4941 } 4942 4943 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 4944 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 4945 // double, or 64-bit or 128-bit vectors. 4946 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4947 if (BT->getKind() == BuiltinType::Float || 4948 BT->getKind() == BuiltinType::Double || 4949 BT->getKind() == BuiltinType::LongDouble) 4950 return true; 4951 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 4952 unsigned VecSize = getContext().getTypeSize(VT); 4953 if (VecSize == 64 || VecSize == 128) 4954 return true; 4955 } 4956 return false; 4957 } 4958 4959 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 4960 uint64_t Members) const { 4961 return Members <= 4; 4962 } 4963 4964 llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4965 CodeGenFunction &CGF) const { 4966 llvm::Type *BP = CGF.Int8PtrTy; 4967 llvm::Type *BPP = CGF.Int8PtrPtrTy; 4968 4969 CGBuilderTy &Builder = CGF.Builder; 4970 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 4971 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 4972 4973 if (isEmptyRecord(getContext(), Ty, true)) { 4974 // These are ignored for parameter passing purposes. 4975 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 4976 return Builder.CreateBitCast(Addr, PTy); 4977 } 4978 4979 uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8; 4980 uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8; 4981 bool IsIndirect = false; 4982 4983 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 4984 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 4985 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 4986 getABIKind() == ARMABIInfo::AAPCS) 4987 TyAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 4988 else 4989 TyAlign = 4; 4990 // Use indirect if size of the illegal vector is bigger than 16 bytes. 4991 if (isIllegalVectorType(Ty) && Size > 16) { 4992 IsIndirect = true; 4993 Size = 4; 4994 TyAlign = 4; 4995 } 4996 4997 // Handle address alignment for ABI alignment > 4 bytes. 4998 if (TyAlign > 4) { 4999 assert((TyAlign & (TyAlign - 1)) == 0 && 5000 "Alignment is not power of 2!"); 5001 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty); 5002 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1)); 5003 AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1))); 5004 Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align"); 5005 } 5006 5007 uint64_t Offset = 5008 llvm::RoundUpToAlignment(Size, 4); 5009 llvm::Value *NextAddr = 5010 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 5011 "ap.next"); 5012 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 5013 5014 if (IsIndirect) 5015 Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP)); 5016 else if (TyAlign < CGF.getContext().getTypeAlign(Ty) / 8) { 5017 // We can't directly cast ap.cur to pointer to a vector type, since ap.cur 5018 // may not be correctly aligned for the vector type. We create an aligned 5019 // temporary space and copy the content over from ap.cur to the temporary 5020 // space. This is necessary if the natural alignment of the type is greater 5021 // than the ABI alignment. 5022 llvm::Type *I8PtrTy = Builder.getInt8PtrTy(); 5023 CharUnits CharSize = getContext().getTypeSizeInChars(Ty); 5024 llvm::Value *AlignedTemp = CGF.CreateTempAlloca(CGF.ConvertType(Ty), 5025 "var.align"); 5026 llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy); 5027 llvm::Value *Src = Builder.CreateBitCast(Addr, I8PtrTy); 5028 Builder.CreateMemCpy(Dst, Src, 5029 llvm::ConstantInt::get(CGF.IntPtrTy, CharSize.getQuantity()), 5030 TyAlign, false); 5031 Addr = AlignedTemp; //The content is in aligned location. 5032 } 5033 llvm::Type *PTy = 5034 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 5035 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 5036 5037 return AddrTyped; 5038 } 5039 5040 //===----------------------------------------------------------------------===// 5041 // NVPTX ABI Implementation 5042 //===----------------------------------------------------------------------===// 5043 5044 namespace { 5045 5046 class NVPTXABIInfo : public ABIInfo { 5047 public: 5048 NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 5049 5050 ABIArgInfo classifyReturnType(QualType RetTy) const; 5051 ABIArgInfo classifyArgumentType(QualType Ty) const; 5052 5053 void computeInfo(CGFunctionInfo &FI) const override; 5054 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5055 CodeGenFunction &CFG) const override; 5056 }; 5057 5058 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 5059 public: 5060 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 5061 : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {} 5062 5063 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5064 CodeGen::CodeGenModule &M) const override; 5065 private: 5066 // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the 5067 // resulting MDNode to the nvvm.annotations MDNode. 5068 static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand); 5069 }; 5070 5071 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 5072 if (RetTy->isVoidType()) 5073 return ABIArgInfo::getIgnore(); 5074 5075 // note: this is different from default ABI 5076 if (!RetTy->isScalarType()) 5077 return ABIArgInfo::getDirect(); 5078 5079 // Treat an enum type as its underlying type. 5080 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5081 RetTy = EnumTy->getDecl()->getIntegerType(); 5082 5083 return (RetTy->isPromotableIntegerType() ? 5084 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5085 } 5086 5087 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 5088 // Treat an enum type as its underlying type. 5089 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5090 Ty = EnumTy->getDecl()->getIntegerType(); 5091 5092 // Return aggregates type as indirect by value 5093 if (isAggregateTypeForABI(Ty)) 5094 return ABIArgInfo::getIndirect(0, /* byval */ true); 5095 5096 return (Ty->isPromotableIntegerType() ? 5097 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5098 } 5099 5100 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 5101 if (!getCXXABI().classifyReturnType(FI)) 5102 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 5103 for (auto &I : FI.arguments()) 5104 I.info = classifyArgumentType(I.type); 5105 5106 // Always honor user-specified calling convention. 5107 if (FI.getCallingConvention() != llvm::CallingConv::C) 5108 return; 5109 5110 FI.setEffectiveCallingConvention(getRuntimeCC()); 5111 } 5112 5113 llvm::Value *NVPTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5114 CodeGenFunction &CFG) const { 5115 llvm_unreachable("NVPTX does not support varargs"); 5116 } 5117 5118 void NVPTXTargetCodeGenInfo:: 5119 setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5120 CodeGen::CodeGenModule &M) const{ 5121 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 5122 if (!FD) return; 5123 5124 llvm::Function *F = cast<llvm::Function>(GV); 5125 5126 // Perform special handling in OpenCL mode 5127 if (M.getLangOpts().OpenCL) { 5128 // Use OpenCL function attributes to check for kernel functions 5129 // By default, all functions are device functions 5130 if (FD->hasAttr<OpenCLKernelAttr>()) { 5131 // OpenCL __kernel functions get kernel metadata 5132 // Create !{<func-ref>, metadata !"kernel", i32 1} node 5133 addNVVMMetadata(F, "kernel", 1); 5134 // And kernel functions are not subject to inlining 5135 F->addFnAttr(llvm::Attribute::NoInline); 5136 } 5137 } 5138 5139 // Perform special handling in CUDA mode. 5140 if (M.getLangOpts().CUDA) { 5141 // CUDA __global__ functions get a kernel metadata entry. Since 5142 // __global__ functions cannot be called from the device, we do not 5143 // need to set the noinline attribute. 5144 if (FD->hasAttr<CUDAGlobalAttr>()) { 5145 // Create !{<func-ref>, metadata !"kernel", i32 1} node 5146 addNVVMMetadata(F, "kernel", 1); 5147 } 5148 if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) { 5149 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 5150 llvm::APSInt MaxThreads(32); 5151 MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); 5152 if (MaxThreads > 0) 5153 addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); 5154 5155 // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was 5156 // not specified in __launch_bounds__ or if the user specified a 0 value, 5157 // we don't have to add a PTX directive. 5158 if (Attr->getMinBlocks()) { 5159 llvm::APSInt MinBlocks(32); 5160 MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); 5161 if (MinBlocks > 0) 5162 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 5163 addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); 5164 } 5165 } 5166 } 5167 } 5168 5169 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name, 5170 int Operand) { 5171 llvm::Module *M = F->getParent(); 5172 llvm::LLVMContext &Ctx = M->getContext(); 5173 5174 // Get "nvvm.annotations" metadata node 5175 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 5176 5177 llvm::Metadata *MDVals[] = { 5178 llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name), 5179 llvm::ConstantAsMetadata::get( 5180 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; 5181 // Append metadata to nvvm.annotations 5182 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 5183 } 5184 } 5185 5186 //===----------------------------------------------------------------------===// 5187 // SystemZ ABI Implementation 5188 //===----------------------------------------------------------------------===// 5189 5190 namespace { 5191 5192 class SystemZABIInfo : public ABIInfo { 5193 bool HasVector; 5194 5195 public: 5196 SystemZABIInfo(CodeGenTypes &CGT, bool HV) 5197 : ABIInfo(CGT), HasVector(HV) {} 5198 5199 bool isPromotableIntegerType(QualType Ty) const; 5200 bool isCompoundType(QualType Ty) const; 5201 bool isVectorArgumentType(QualType Ty) const; 5202 bool isFPArgumentType(QualType Ty) const; 5203 QualType GetSingleElementType(QualType Ty) const; 5204 5205 ABIArgInfo classifyReturnType(QualType RetTy) const; 5206 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 5207 5208 void computeInfo(CGFunctionInfo &FI) const override { 5209 if (!getCXXABI().classifyReturnType(FI)) 5210 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 5211 for (auto &I : FI.arguments()) 5212 I.info = classifyArgumentType(I.type); 5213 } 5214 5215 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5216 CodeGenFunction &CGF) const override; 5217 }; 5218 5219 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 5220 public: 5221 SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector) 5222 : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {} 5223 }; 5224 5225 } 5226 5227 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const { 5228 // Treat an enum type as its underlying type. 5229 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5230 Ty = EnumTy->getDecl()->getIntegerType(); 5231 5232 // Promotable integer types are required to be promoted by the ABI. 5233 if (Ty->isPromotableIntegerType()) 5234 return true; 5235 5236 // 32-bit values must also be promoted. 5237 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 5238 switch (BT->getKind()) { 5239 case BuiltinType::Int: 5240 case BuiltinType::UInt: 5241 return true; 5242 default: 5243 return false; 5244 } 5245 return false; 5246 } 5247 5248 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 5249 return (Ty->isAnyComplexType() || 5250 Ty->isVectorType() || 5251 isAggregateTypeForABI(Ty)); 5252 } 5253 5254 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { 5255 return (HasVector && 5256 Ty->isVectorType() && 5257 getContext().getTypeSize(Ty) <= 128); 5258 } 5259 5260 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 5261 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 5262 switch (BT->getKind()) { 5263 case BuiltinType::Float: 5264 case BuiltinType::Double: 5265 return true; 5266 default: 5267 return false; 5268 } 5269 5270 return false; 5271 } 5272 5273 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { 5274 if (const RecordType *RT = Ty->getAsStructureType()) { 5275 const RecordDecl *RD = RT->getDecl(); 5276 QualType Found; 5277 5278 // If this is a C++ record, check the bases first. 5279 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 5280 for (const auto &I : CXXRD->bases()) { 5281 QualType Base = I.getType(); 5282 5283 // Empty bases don't affect things either way. 5284 if (isEmptyRecord(getContext(), Base, true)) 5285 continue; 5286 5287 if (!Found.isNull()) 5288 return Ty; 5289 Found = GetSingleElementType(Base); 5290 } 5291 5292 // Check the fields. 5293 for (const auto *FD : RD->fields()) { 5294 // For compatibility with GCC, ignore empty bitfields in C++ mode. 5295 // Unlike isSingleElementStruct(), empty structure and array fields 5296 // do count. So do anonymous bitfields that aren't zero-sized. 5297 if (getContext().getLangOpts().CPlusPlus && 5298 FD->isBitField() && FD->getBitWidthValue(getContext()) == 0) 5299 continue; 5300 5301 // Unlike isSingleElementStruct(), arrays do not count. 5302 // Nested structures still do though. 5303 if (!Found.isNull()) 5304 return Ty; 5305 Found = GetSingleElementType(FD->getType()); 5306 } 5307 5308 // Unlike isSingleElementStruct(), trailing padding is allowed. 5309 // An 8-byte aligned struct s { float f; } is passed as a double. 5310 if (!Found.isNull()) 5311 return Found; 5312 } 5313 5314 return Ty; 5315 } 5316 5317 llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5318 CodeGenFunction &CGF) const { 5319 // Assume that va_list type is correct; should be pointer to LLVM type: 5320 // struct { 5321 // i64 __gpr; 5322 // i64 __fpr; 5323 // i8 *__overflow_arg_area; 5324 // i8 *__reg_save_area; 5325 // }; 5326 5327 // Every non-vector argument occupies 8 bytes and is passed by preference 5328 // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are 5329 // always passed on the stack. 5330 Ty = CGF.getContext().getCanonicalType(Ty); 5331 llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); 5332 llvm::Type *APTy = llvm::PointerType::getUnqual(ArgTy); 5333 ABIArgInfo AI = classifyArgumentType(Ty); 5334 bool IsIndirect = AI.isIndirect(); 5335 bool InFPRs = false; 5336 bool IsVector = false; 5337 unsigned UnpaddedBitSize; 5338 if (IsIndirect) { 5339 APTy = llvm::PointerType::getUnqual(APTy); 5340 UnpaddedBitSize = 64; 5341 } else { 5342 if (AI.getCoerceToType()) 5343 ArgTy = AI.getCoerceToType(); 5344 InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy(); 5345 IsVector = ArgTy->isVectorTy(); 5346 UnpaddedBitSize = getContext().getTypeSize(Ty); 5347 } 5348 unsigned PaddedBitSize = (IsVector && UnpaddedBitSize > 64) ? 128 : 64; 5349 assert((UnpaddedBitSize <= PaddedBitSize) && "Invalid argument size."); 5350 5351 unsigned PaddedSize = PaddedBitSize / 8; 5352 unsigned Padding = (PaddedBitSize - UnpaddedBitSize) / 8; 5353 5354 llvm::Type *IndexTy = CGF.Int64Ty; 5355 llvm::Value *PaddedSizeV = llvm::ConstantInt::get(IndexTy, PaddedSize); 5356 5357 if (IsVector) { 5358 // Work out the address of a vector argument on the stack. 5359 // Vector arguments are always passed in the high bits of a 5360 // single (8 byte) or double (16 byte) stack slot. 5361 llvm::Value *OverflowArgAreaPtr = 5362 CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 2, 5363 "overflow_arg_area_ptr"); 5364 llvm::Value *OverflowArgArea = 5365 CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"); 5366 llvm::Value *MemAddr = 5367 CGF.Builder.CreateBitCast(OverflowArgArea, APTy, "mem_addr"); 5368 5369 // Update overflow_arg_area_ptr pointer 5370 llvm::Value *NewOverflowArgArea = 5371 CGF.Builder.CreateGEP(OverflowArgArea, PaddedSizeV, "overflow_arg_area"); 5372 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 5373 5374 return MemAddr; 5375 } 5376 5377 unsigned MaxRegs, RegCountField, RegSaveIndex, RegPadding; 5378 if (InFPRs) { 5379 MaxRegs = 4; // Maximum of 4 FPR arguments 5380 RegCountField = 1; // __fpr 5381 RegSaveIndex = 16; // save offset for f0 5382 RegPadding = 0; // floats are passed in the high bits of an FPR 5383 } else { 5384 MaxRegs = 5; // Maximum of 5 GPR arguments 5385 RegCountField = 0; // __gpr 5386 RegSaveIndex = 2; // save offset for r2 5387 RegPadding = Padding; // values are passed in the low bits of a GPR 5388 } 5389 5390 llvm::Value *RegCountPtr = CGF.Builder.CreateStructGEP( 5391 nullptr, VAListAddr, RegCountField, "reg_count_ptr"); 5392 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 5393 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 5394 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 5395 "fits_in_regs"); 5396 5397 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 5398 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 5399 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 5400 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 5401 5402 // Emit code to load the value if it was passed in registers. 5403 CGF.EmitBlock(InRegBlock); 5404 5405 // Work out the address of an argument register. 5406 llvm::Value *ScaledRegCount = 5407 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 5408 llvm::Value *RegBase = 5409 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize + RegPadding); 5410 llvm::Value *RegOffset = 5411 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 5412 llvm::Value *RegSaveAreaPtr = 5413 CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 3, "reg_save_area_ptr"); 5414 llvm::Value *RegSaveArea = 5415 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 5416 llvm::Value *RawRegAddr = 5417 CGF.Builder.CreateGEP(RegSaveArea, RegOffset, "raw_reg_addr"); 5418 llvm::Value *RegAddr = 5419 CGF.Builder.CreateBitCast(RawRegAddr, APTy, "reg_addr"); 5420 5421 // Update the register count 5422 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 5423 llvm::Value *NewRegCount = 5424 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 5425 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 5426 CGF.EmitBranch(ContBlock); 5427 5428 // Emit code to load the value if it was passed in memory. 5429 CGF.EmitBlock(InMemBlock); 5430 5431 // Work out the address of a stack argument. 5432 llvm::Value *OverflowArgAreaPtr = CGF.Builder.CreateStructGEP( 5433 nullptr, VAListAddr, 2, "overflow_arg_area_ptr"); 5434 llvm::Value *OverflowArgArea = 5435 CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"); 5436 llvm::Value *PaddingV = llvm::ConstantInt::get(IndexTy, Padding); 5437 llvm::Value *RawMemAddr = 5438 CGF.Builder.CreateGEP(OverflowArgArea, PaddingV, "raw_mem_addr"); 5439 llvm::Value *MemAddr = 5440 CGF.Builder.CreateBitCast(RawMemAddr, APTy, "mem_addr"); 5441 5442 // Update overflow_arg_area_ptr pointer 5443 llvm::Value *NewOverflowArgArea = 5444 CGF.Builder.CreateGEP(OverflowArgArea, PaddedSizeV, "overflow_arg_area"); 5445 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 5446 CGF.EmitBranch(ContBlock); 5447 5448 // Return the appropriate result. 5449 CGF.EmitBlock(ContBlock); 5450 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(APTy, 2, "va_arg.addr"); 5451 ResAddr->addIncoming(RegAddr, InRegBlock); 5452 ResAddr->addIncoming(MemAddr, InMemBlock); 5453 5454 if (IsIndirect) 5455 return CGF.Builder.CreateLoad(ResAddr, "indirect_arg"); 5456 5457 return ResAddr; 5458 } 5459 5460 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 5461 if (RetTy->isVoidType()) 5462 return ABIArgInfo::getIgnore(); 5463 if (isVectorArgumentType(RetTy)) 5464 return ABIArgInfo::getDirect(); 5465 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 5466 return ABIArgInfo::getIndirect(0); 5467 return (isPromotableIntegerType(RetTy) ? 5468 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5469 } 5470 5471 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 5472 // Handle the generic C++ ABI. 5473 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 5474 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 5475 5476 // Integers and enums are extended to full register width. 5477 if (isPromotableIntegerType(Ty)) 5478 return ABIArgInfo::getExtend(); 5479 5480 // Handle vector types and vector-like structure types. Note that 5481 // as opposed to float-like structure types, we do not allow any 5482 // padding for vector-like structures, so verify the sizes match. 5483 uint64_t Size = getContext().getTypeSize(Ty); 5484 QualType SingleElementTy = GetSingleElementType(Ty); 5485 if (isVectorArgumentType(SingleElementTy) && 5486 getContext().getTypeSize(SingleElementTy) == Size) 5487 return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); 5488 5489 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 5490 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 5491 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 5492 5493 // Handle small structures. 5494 if (const RecordType *RT = Ty->getAs<RecordType>()) { 5495 // Structures with flexible arrays have variable length, so really 5496 // fail the size test above. 5497 const RecordDecl *RD = RT->getDecl(); 5498 if (RD->hasFlexibleArrayMember()) 5499 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 5500 5501 // The structure is passed as an unextended integer, a float, or a double. 5502 llvm::Type *PassTy; 5503 if (isFPArgumentType(SingleElementTy)) { 5504 assert(Size == 32 || Size == 64); 5505 if (Size == 32) 5506 PassTy = llvm::Type::getFloatTy(getVMContext()); 5507 else 5508 PassTy = llvm::Type::getDoubleTy(getVMContext()); 5509 } else 5510 PassTy = llvm::IntegerType::get(getVMContext(), Size); 5511 return ABIArgInfo::getDirect(PassTy); 5512 } 5513 5514 // Non-structure compounds are passed indirectly. 5515 if (isCompoundType(Ty)) 5516 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 5517 5518 return ABIArgInfo::getDirect(nullptr); 5519 } 5520 5521 //===----------------------------------------------------------------------===// 5522 // MSP430 ABI Implementation 5523 //===----------------------------------------------------------------------===// 5524 5525 namespace { 5526 5527 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 5528 public: 5529 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 5530 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 5531 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5532 CodeGen::CodeGenModule &M) const override; 5533 }; 5534 5535 } 5536 5537 void MSP430TargetCodeGenInfo::setTargetAttributes(const Decl *D, 5538 llvm::GlobalValue *GV, 5539 CodeGen::CodeGenModule &M) const { 5540 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 5541 if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) { 5542 // Handle 'interrupt' attribute: 5543 llvm::Function *F = cast<llvm::Function>(GV); 5544 5545 // Step 1: Set ISR calling convention. 5546 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 5547 5548 // Step 2: Add attributes goodness. 5549 F->addFnAttr(llvm::Attribute::NoInline); 5550 5551 // Step 3: Emit ISR vector alias. 5552 unsigned Num = attr->getNumber() / 2; 5553 llvm::GlobalAlias::create(llvm::Function::ExternalLinkage, 5554 "__isr_" + Twine(Num), F); 5555 } 5556 } 5557 } 5558 5559 //===----------------------------------------------------------------------===// 5560 // MIPS ABI Implementation. This works for both little-endian and 5561 // big-endian variants. 5562 //===----------------------------------------------------------------------===// 5563 5564 namespace { 5565 class MipsABIInfo : public ABIInfo { 5566 bool IsO32; 5567 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 5568 void CoerceToIntArgs(uint64_t TySize, 5569 SmallVectorImpl<llvm::Type *> &ArgList) const; 5570 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 5571 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 5572 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 5573 public: 5574 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 5575 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 5576 StackAlignInBytes(IsO32 ? 8 : 16) {} 5577 5578 ABIArgInfo classifyReturnType(QualType RetTy) const; 5579 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 5580 void computeInfo(CGFunctionInfo &FI) const override; 5581 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5582 CodeGenFunction &CGF) const override; 5583 bool shouldSignExtUnsignedType(QualType Ty) const override; 5584 }; 5585 5586 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 5587 unsigned SizeOfUnwindException; 5588 public: 5589 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 5590 : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)), 5591 SizeOfUnwindException(IsO32 ? 24 : 32) {} 5592 5593 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 5594 return 29; 5595 } 5596 5597 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5598 CodeGen::CodeGenModule &CGM) const override { 5599 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 5600 if (!FD) return; 5601 llvm::Function *Fn = cast<llvm::Function>(GV); 5602 if (FD->hasAttr<Mips16Attr>()) { 5603 Fn->addFnAttr("mips16"); 5604 } 5605 else if (FD->hasAttr<NoMips16Attr>()) { 5606 Fn->addFnAttr("nomips16"); 5607 } 5608 } 5609 5610 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5611 llvm::Value *Address) const override; 5612 5613 unsigned getSizeOfUnwindException() const override { 5614 return SizeOfUnwindException; 5615 } 5616 }; 5617 } 5618 5619 void MipsABIInfo::CoerceToIntArgs( 5620 uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const { 5621 llvm::IntegerType *IntTy = 5622 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 5623 5624 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 5625 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 5626 ArgList.push_back(IntTy); 5627 5628 // If necessary, add one more integer type to ArgList. 5629 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 5630 5631 if (R) 5632 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 5633 } 5634 5635 // In N32/64, an aligned double precision floating point field is passed in 5636 // a register. 5637 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 5638 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 5639 5640 if (IsO32) { 5641 CoerceToIntArgs(TySize, ArgList); 5642 return llvm::StructType::get(getVMContext(), ArgList); 5643 } 5644 5645 if (Ty->isComplexType()) 5646 return CGT.ConvertType(Ty); 5647 5648 const RecordType *RT = Ty->getAs<RecordType>(); 5649 5650 // Unions/vectors are passed in integer registers. 5651 if (!RT || !RT->isStructureOrClassType()) { 5652 CoerceToIntArgs(TySize, ArgList); 5653 return llvm::StructType::get(getVMContext(), ArgList); 5654 } 5655 5656 const RecordDecl *RD = RT->getDecl(); 5657 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 5658 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 5659 5660 uint64_t LastOffset = 0; 5661 unsigned idx = 0; 5662 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 5663 5664 // Iterate over fields in the struct/class and check if there are any aligned 5665 // double fields. 5666 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 5667 i != e; ++i, ++idx) { 5668 const QualType Ty = i->getType(); 5669 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 5670 5671 if (!BT || BT->getKind() != BuiltinType::Double) 5672 continue; 5673 5674 uint64_t Offset = Layout.getFieldOffset(idx); 5675 if (Offset % 64) // Ignore doubles that are not aligned. 5676 continue; 5677 5678 // Add ((Offset - LastOffset) / 64) args of type i64. 5679 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 5680 ArgList.push_back(I64); 5681 5682 // Add double type. 5683 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 5684 LastOffset = Offset + 64; 5685 } 5686 5687 CoerceToIntArgs(TySize - LastOffset, IntArgList); 5688 ArgList.append(IntArgList.begin(), IntArgList.end()); 5689 5690 return llvm::StructType::get(getVMContext(), ArgList); 5691 } 5692 5693 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 5694 uint64_t Offset) const { 5695 if (OrigOffset + MinABIStackAlignInBytes > Offset) 5696 return nullptr; 5697 5698 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 5699 } 5700 5701 ABIArgInfo 5702 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 5703 Ty = useFirstFieldIfTransparentUnion(Ty); 5704 5705 uint64_t OrigOffset = Offset; 5706 uint64_t TySize = getContext().getTypeSize(Ty); 5707 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 5708 5709 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 5710 (uint64_t)StackAlignInBytes); 5711 unsigned CurrOffset = llvm::RoundUpToAlignment(Offset, Align); 5712 Offset = CurrOffset + llvm::RoundUpToAlignment(TySize, Align * 8) / 8; 5713 5714 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 5715 // Ignore empty aggregates. 5716 if (TySize == 0) 5717 return ABIArgInfo::getIgnore(); 5718 5719 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5720 Offset = OrigOffset + MinABIStackAlignInBytes; 5721 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 5722 } 5723 5724 // If we have reached here, aggregates are passed directly by coercing to 5725 // another structure type. Padding is inserted if the offset of the 5726 // aggregate is unaligned. 5727 ABIArgInfo ArgInfo = 5728 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 5729 getPaddingType(OrigOffset, CurrOffset)); 5730 ArgInfo.setInReg(true); 5731 return ArgInfo; 5732 } 5733 5734 // Treat an enum type as its underlying type. 5735 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5736 Ty = EnumTy->getDecl()->getIntegerType(); 5737 5738 // All integral types are promoted to the GPR width. 5739 if (Ty->isIntegralOrEnumerationType()) 5740 return ABIArgInfo::getExtend(); 5741 5742 return ABIArgInfo::getDirect( 5743 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 5744 } 5745 5746 llvm::Type* 5747 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 5748 const RecordType *RT = RetTy->getAs<RecordType>(); 5749 SmallVector<llvm::Type*, 8> RTList; 5750 5751 if (RT && RT->isStructureOrClassType()) { 5752 const RecordDecl *RD = RT->getDecl(); 5753 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 5754 unsigned FieldCnt = Layout.getFieldCount(); 5755 5756 // N32/64 returns struct/classes in floating point registers if the 5757 // following conditions are met: 5758 // 1. The size of the struct/class is no larger than 128-bit. 5759 // 2. The struct/class has one or two fields all of which are floating 5760 // point types. 5761 // 3. The offset of the first field is zero (this follows what gcc does). 5762 // 5763 // Any other composite results are returned in integer registers. 5764 // 5765 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 5766 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 5767 for (; b != e; ++b) { 5768 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 5769 5770 if (!BT || !BT->isFloatingPoint()) 5771 break; 5772 5773 RTList.push_back(CGT.ConvertType(b->getType())); 5774 } 5775 5776 if (b == e) 5777 return llvm::StructType::get(getVMContext(), RTList, 5778 RD->hasAttr<PackedAttr>()); 5779 5780 RTList.clear(); 5781 } 5782 } 5783 5784 CoerceToIntArgs(Size, RTList); 5785 return llvm::StructType::get(getVMContext(), RTList); 5786 } 5787 5788 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 5789 uint64_t Size = getContext().getTypeSize(RetTy); 5790 5791 if (RetTy->isVoidType()) 5792 return ABIArgInfo::getIgnore(); 5793 5794 // O32 doesn't treat zero-sized structs differently from other structs. 5795 // However, N32/N64 ignores zero sized return values. 5796 if (!IsO32 && Size == 0) 5797 return ABIArgInfo::getIgnore(); 5798 5799 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 5800 if (Size <= 128) { 5801 if (RetTy->isAnyComplexType()) 5802 return ABIArgInfo::getDirect(); 5803 5804 // O32 returns integer vectors in registers and N32/N64 returns all small 5805 // aggregates in registers. 5806 if (!IsO32 || 5807 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { 5808 ABIArgInfo ArgInfo = 5809 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 5810 ArgInfo.setInReg(true); 5811 return ArgInfo; 5812 } 5813 } 5814 5815 return ABIArgInfo::getIndirect(0); 5816 } 5817 5818 // Treat an enum type as its underlying type. 5819 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5820 RetTy = EnumTy->getDecl()->getIntegerType(); 5821 5822 return (RetTy->isPromotableIntegerType() ? 5823 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5824 } 5825 5826 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 5827 ABIArgInfo &RetInfo = FI.getReturnInfo(); 5828 if (!getCXXABI().classifyReturnType(FI)) 5829 RetInfo = classifyReturnType(FI.getReturnType()); 5830 5831 // Check if a pointer to an aggregate is passed as a hidden argument. 5832 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 5833 5834 for (auto &I : FI.arguments()) 5835 I.info = classifyArgumentType(I.type, Offset); 5836 } 5837 5838 llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5839 CodeGenFunction &CGF) const { 5840 llvm::Type *BP = CGF.Int8PtrTy; 5841 llvm::Type *BPP = CGF.Int8PtrPtrTy; 5842 5843 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. 5844 // Pointers are also promoted in the same way but this only matters for N32. 5845 unsigned SlotSizeInBits = IsO32 ? 32 : 64; 5846 unsigned PtrWidth = getTarget().getPointerWidth(0); 5847 if ((Ty->isIntegerType() && 5848 CGF.getContext().getIntWidth(Ty) < SlotSizeInBits) || 5849 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { 5850 Ty = CGF.getContext().getIntTypeForBitwidth(SlotSizeInBits, 5851 Ty->isSignedIntegerType()); 5852 } 5853 5854 CGBuilderTy &Builder = CGF.Builder; 5855 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 5856 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 5857 int64_t TypeAlign = 5858 std::min(getContext().getTypeAlign(Ty) / 8, StackAlignInBytes); 5859 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 5860 llvm::Value *AddrTyped; 5861 llvm::IntegerType *IntTy = (PtrWidth == 32) ? CGF.Int32Ty : CGF.Int64Ty; 5862 5863 if (TypeAlign > MinABIStackAlignInBytes) { 5864 llvm::Value *AddrAsInt = CGF.Builder.CreatePtrToInt(Addr, IntTy); 5865 llvm::Value *Inc = llvm::ConstantInt::get(IntTy, TypeAlign - 1); 5866 llvm::Value *Mask = llvm::ConstantInt::get(IntTy, -TypeAlign); 5867 llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt, Inc); 5868 llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask); 5869 AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy); 5870 } 5871 else 5872 AddrTyped = Builder.CreateBitCast(Addr, PTy); 5873 5874 llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP); 5875 TypeAlign = std::max((unsigned)TypeAlign, MinABIStackAlignInBytes); 5876 unsigned ArgSizeInBits = CGF.getContext().getTypeSize(Ty); 5877 uint64_t Offset = llvm::RoundUpToAlignment(ArgSizeInBits / 8, TypeAlign); 5878 llvm::Value *NextAddr = 5879 Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(IntTy, Offset), 5880 "ap.next"); 5881 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 5882 5883 return AddrTyped; 5884 } 5885 5886 bool MipsABIInfo::shouldSignExtUnsignedType(QualType Ty) const { 5887 int TySize = getContext().getTypeSize(Ty); 5888 5889 // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. 5890 if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 5891 return true; 5892 5893 return false; 5894 } 5895 5896 bool 5897 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5898 llvm::Value *Address) const { 5899 // This information comes from gcc's implementation, which seems to 5900 // as canonical as it gets. 5901 5902 // Everything on MIPS is 4 bytes. Double-precision FP registers 5903 // are aliased to pairs of single-precision FP registers. 5904 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 5905 5906 // 0-31 are the general purpose registers, $0 - $31. 5907 // 32-63 are the floating-point registers, $f0 - $f31. 5908 // 64 and 65 are the multiply/divide registers, $hi and $lo. 5909 // 66 is the (notional, I think) register for signal-handler return. 5910 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 5911 5912 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 5913 // They are one bit wide and ignored here. 5914 5915 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 5916 // (coprocessor 1 is the FP unit) 5917 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 5918 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 5919 // 176-181 are the DSP accumulator registers. 5920 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 5921 return false; 5922 } 5923 5924 //===----------------------------------------------------------------------===// 5925 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 5926 // Currently subclassed only to implement custom OpenCL C function attribute 5927 // handling. 5928 //===----------------------------------------------------------------------===// 5929 5930 namespace { 5931 5932 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 5933 public: 5934 TCETargetCodeGenInfo(CodeGenTypes &CGT) 5935 : DefaultTargetCodeGenInfo(CGT) {} 5936 5937 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5938 CodeGen::CodeGenModule &M) const override; 5939 }; 5940 5941 void TCETargetCodeGenInfo::setTargetAttributes( 5942 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 5943 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 5944 if (!FD) return; 5945 5946 llvm::Function *F = cast<llvm::Function>(GV); 5947 5948 if (M.getLangOpts().OpenCL) { 5949 if (FD->hasAttr<OpenCLKernelAttr>()) { 5950 // OpenCL C Kernel functions are not subject to inlining 5951 F->addFnAttr(llvm::Attribute::NoInline); 5952 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 5953 if (Attr) { 5954 // Convert the reqd_work_group_size() attributes to metadata. 5955 llvm::LLVMContext &Context = F->getContext(); 5956 llvm::NamedMDNode *OpenCLMetadata = 5957 M.getModule().getOrInsertNamedMetadata( 5958 "opencl.kernel_wg_size_info"); 5959 5960 SmallVector<llvm::Metadata *, 5> Operands; 5961 Operands.push_back(llvm::ConstantAsMetadata::get(F)); 5962 5963 Operands.push_back( 5964 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 5965 M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); 5966 Operands.push_back( 5967 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 5968 M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); 5969 Operands.push_back( 5970 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 5971 M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); 5972 5973 // Add a boolean constant operand for "required" (true) or "hint" 5974 // (false) for implementing the work_group_size_hint attr later. 5975 // Currently always true as the hint is not yet implemented. 5976 Operands.push_back( 5977 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); 5978 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 5979 } 5980 } 5981 } 5982 } 5983 5984 } 5985 5986 //===----------------------------------------------------------------------===// 5987 // Hexagon ABI Implementation 5988 //===----------------------------------------------------------------------===// 5989 5990 namespace { 5991 5992 class HexagonABIInfo : public ABIInfo { 5993 5994 5995 public: 5996 HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 5997 5998 private: 5999 6000 ABIArgInfo classifyReturnType(QualType RetTy) const; 6001 ABIArgInfo classifyArgumentType(QualType RetTy) const; 6002 6003 void computeInfo(CGFunctionInfo &FI) const override; 6004 6005 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 6006 CodeGenFunction &CGF) const override; 6007 }; 6008 6009 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 6010 public: 6011 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 6012 :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {} 6013 6014 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 6015 return 29; 6016 } 6017 }; 6018 6019 } 6020 6021 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 6022 if (!getCXXABI().classifyReturnType(FI)) 6023 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6024 for (auto &I : FI.arguments()) 6025 I.info = classifyArgumentType(I.type); 6026 } 6027 6028 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const { 6029 if (!isAggregateTypeForABI(Ty)) { 6030 // Treat an enum type as its underlying type. 6031 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6032 Ty = EnumTy->getDecl()->getIntegerType(); 6033 6034 return (Ty->isPromotableIntegerType() ? 6035 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 6036 } 6037 6038 // Ignore empty records. 6039 if (isEmptyRecord(getContext(), Ty, true)) 6040 return ABIArgInfo::getIgnore(); 6041 6042 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 6043 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 6044 6045 uint64_t Size = getContext().getTypeSize(Ty); 6046 if (Size > 64) 6047 return ABIArgInfo::getIndirect(0, /*ByVal=*/true); 6048 // Pass in the smallest viable integer type. 6049 else if (Size > 32) 6050 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 6051 else if (Size > 16) 6052 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6053 else if (Size > 8) 6054 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6055 else 6056 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6057 } 6058 6059 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 6060 if (RetTy->isVoidType()) 6061 return ABIArgInfo::getIgnore(); 6062 6063 // Large vector types should be returned via memory. 6064 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64) 6065 return ABIArgInfo::getIndirect(0); 6066 6067 if (!isAggregateTypeForABI(RetTy)) { 6068 // Treat an enum type as its underlying type. 6069 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6070 RetTy = EnumTy->getDecl()->getIntegerType(); 6071 6072 return (RetTy->isPromotableIntegerType() ? 6073 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 6074 } 6075 6076 if (isEmptyRecord(getContext(), RetTy, true)) 6077 return ABIArgInfo::getIgnore(); 6078 6079 // Aggregates <= 8 bytes are returned in r0; other aggregates 6080 // are returned indirectly. 6081 uint64_t Size = getContext().getTypeSize(RetTy); 6082 if (Size <= 64) { 6083 // Return in the smallest viable integer type. 6084 if (Size <= 8) 6085 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6086 if (Size <= 16) 6087 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6088 if (Size <= 32) 6089 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6090 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 6091 } 6092 6093 return ABIArgInfo::getIndirect(0, /*ByVal=*/true); 6094 } 6095 6096 llvm::Value *HexagonABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 6097 CodeGenFunction &CGF) const { 6098 // FIXME: Need to handle alignment 6099 llvm::Type *BPP = CGF.Int8PtrPtrTy; 6100 6101 CGBuilderTy &Builder = CGF.Builder; 6102 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, 6103 "ap"); 6104 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 6105 llvm::Type *PTy = 6106 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 6107 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 6108 6109 uint64_t Offset = 6110 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4); 6111 llvm::Value *NextAddr = 6112 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 6113 "ap.next"); 6114 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 6115 6116 return AddrTyped; 6117 } 6118 6119 //===----------------------------------------------------------------------===// 6120 // AMDGPU ABI Implementation 6121 //===----------------------------------------------------------------------===// 6122 6123 namespace { 6124 6125 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { 6126 public: 6127 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) 6128 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 6129 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6130 CodeGen::CodeGenModule &M) const override; 6131 }; 6132 6133 } 6134 6135 void AMDGPUTargetCodeGenInfo::setTargetAttributes( 6136 const Decl *D, 6137 llvm::GlobalValue *GV, 6138 CodeGen::CodeGenModule &M) const { 6139 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 6140 if (!FD) 6141 return; 6142 6143 if (const auto Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { 6144 llvm::Function *F = cast<llvm::Function>(GV); 6145 uint32_t NumVGPR = Attr->getNumVGPR(); 6146 if (NumVGPR != 0) 6147 F->addFnAttr("amdgpu_num_vgpr", llvm::utostr(NumVGPR)); 6148 } 6149 6150 if (const auto Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { 6151 llvm::Function *F = cast<llvm::Function>(GV); 6152 unsigned NumSGPR = Attr->getNumSGPR(); 6153 if (NumSGPR != 0) 6154 F->addFnAttr("amdgpu_num_sgpr", llvm::utostr(NumSGPR)); 6155 } 6156 } 6157 6158 6159 //===----------------------------------------------------------------------===// 6160 // SPARC v9 ABI Implementation. 6161 // Based on the SPARC Compliance Definition version 2.4.1. 6162 // 6163 // Function arguments a mapped to a nominal "parameter array" and promoted to 6164 // registers depending on their type. Each argument occupies 8 or 16 bytes in 6165 // the array, structs larger than 16 bytes are passed indirectly. 6166 // 6167 // One case requires special care: 6168 // 6169 // struct mixed { 6170 // int i; 6171 // float f; 6172 // }; 6173 // 6174 // When a struct mixed is passed by value, it only occupies 8 bytes in the 6175 // parameter array, but the int is passed in an integer register, and the float 6176 // is passed in a floating point register. This is represented as two arguments 6177 // with the LLVM IR inreg attribute: 6178 // 6179 // declare void f(i32 inreg %i, float inreg %f) 6180 // 6181 // The code generator will only allocate 4 bytes from the parameter array for 6182 // the inreg arguments. All other arguments are allocated a multiple of 8 6183 // bytes. 6184 // 6185 namespace { 6186 class SparcV9ABIInfo : public ABIInfo { 6187 public: 6188 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 6189 6190 private: 6191 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 6192 void computeInfo(CGFunctionInfo &FI) const override; 6193 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 6194 CodeGenFunction &CGF) const override; 6195 6196 // Coercion type builder for structs passed in registers. The coercion type 6197 // serves two purposes: 6198 // 6199 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 6200 // in registers. 6201 // 2. Expose aligned floating point elements as first-level elements, so the 6202 // code generator knows to pass them in floating point registers. 6203 // 6204 // We also compute the InReg flag which indicates that the struct contains 6205 // aligned 32-bit floats. 6206 // 6207 struct CoerceBuilder { 6208 llvm::LLVMContext &Context; 6209 const llvm::DataLayout &DL; 6210 SmallVector<llvm::Type*, 8> Elems; 6211 uint64_t Size; 6212 bool InReg; 6213 6214 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 6215 : Context(c), DL(dl), Size(0), InReg(false) {} 6216 6217 // Pad Elems with integers until Size is ToSize. 6218 void pad(uint64_t ToSize) { 6219 assert(ToSize >= Size && "Cannot remove elements"); 6220 if (ToSize == Size) 6221 return; 6222 6223 // Finish the current 64-bit word. 6224 uint64_t Aligned = llvm::RoundUpToAlignment(Size, 64); 6225 if (Aligned > Size && Aligned <= ToSize) { 6226 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 6227 Size = Aligned; 6228 } 6229 6230 // Add whole 64-bit words. 6231 while (Size + 64 <= ToSize) { 6232 Elems.push_back(llvm::Type::getInt64Ty(Context)); 6233 Size += 64; 6234 } 6235 6236 // Final in-word padding. 6237 if (Size < ToSize) { 6238 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 6239 Size = ToSize; 6240 } 6241 } 6242 6243 // Add a floating point element at Offset. 6244 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 6245 // Unaligned floats are treated as integers. 6246 if (Offset % Bits) 6247 return; 6248 // The InReg flag is only required if there are any floats < 64 bits. 6249 if (Bits < 64) 6250 InReg = true; 6251 pad(Offset); 6252 Elems.push_back(Ty); 6253 Size = Offset + Bits; 6254 } 6255 6256 // Add a struct type to the coercion type, starting at Offset (in bits). 6257 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 6258 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 6259 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 6260 llvm::Type *ElemTy = StrTy->getElementType(i); 6261 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 6262 switch (ElemTy->getTypeID()) { 6263 case llvm::Type::StructTyID: 6264 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 6265 break; 6266 case llvm::Type::FloatTyID: 6267 addFloat(ElemOffset, ElemTy, 32); 6268 break; 6269 case llvm::Type::DoubleTyID: 6270 addFloat(ElemOffset, ElemTy, 64); 6271 break; 6272 case llvm::Type::FP128TyID: 6273 addFloat(ElemOffset, ElemTy, 128); 6274 break; 6275 case llvm::Type::PointerTyID: 6276 if (ElemOffset % 64 == 0) { 6277 pad(ElemOffset); 6278 Elems.push_back(ElemTy); 6279 Size += 64; 6280 } 6281 break; 6282 default: 6283 break; 6284 } 6285 } 6286 } 6287 6288 // Check if Ty is a usable substitute for the coercion type. 6289 bool isUsableType(llvm::StructType *Ty) const { 6290 return llvm::makeArrayRef(Elems) == Ty->elements(); 6291 } 6292 6293 // Get the coercion type as a literal struct type. 6294 llvm::Type *getType() const { 6295 if (Elems.size() == 1) 6296 return Elems.front(); 6297 else 6298 return llvm::StructType::get(Context, Elems); 6299 } 6300 }; 6301 }; 6302 } // end anonymous namespace 6303 6304 ABIArgInfo 6305 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 6306 if (Ty->isVoidType()) 6307 return ABIArgInfo::getIgnore(); 6308 6309 uint64_t Size = getContext().getTypeSize(Ty); 6310 6311 // Anything too big to fit in registers is passed with an explicit indirect 6312 // pointer / sret pointer. 6313 if (Size > SizeLimit) 6314 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 6315 6316 // Treat an enum type as its underlying type. 6317 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6318 Ty = EnumTy->getDecl()->getIntegerType(); 6319 6320 // Integer types smaller than a register are extended. 6321 if (Size < 64 && Ty->isIntegerType()) 6322 return ABIArgInfo::getExtend(); 6323 6324 // Other non-aggregates go in registers. 6325 if (!isAggregateTypeForABI(Ty)) 6326 return ABIArgInfo::getDirect(); 6327 6328 // If a C++ object has either a non-trivial copy constructor or a non-trivial 6329 // destructor, it is passed with an explicit indirect pointer / sret pointer. 6330 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 6331 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 6332 6333 // This is a small aggregate type that should be passed in registers. 6334 // Build a coercion type from the LLVM struct type. 6335 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 6336 if (!StrTy) 6337 return ABIArgInfo::getDirect(); 6338 6339 CoerceBuilder CB(getVMContext(), getDataLayout()); 6340 CB.addStruct(0, StrTy); 6341 CB.pad(llvm::RoundUpToAlignment(CB.DL.getTypeSizeInBits(StrTy), 64)); 6342 6343 // Try to use the original type for coercion. 6344 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 6345 6346 if (CB.InReg) 6347 return ABIArgInfo::getDirectInReg(CoerceTy); 6348 else 6349 return ABIArgInfo::getDirect(CoerceTy); 6350 } 6351 6352 llvm::Value *SparcV9ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 6353 CodeGenFunction &CGF) const { 6354 ABIArgInfo AI = classifyType(Ty, 16 * 8); 6355 llvm::Type *ArgTy = CGT.ConvertType(Ty); 6356 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 6357 AI.setCoerceToType(ArgTy); 6358 6359 llvm::Type *BPP = CGF.Int8PtrPtrTy; 6360 CGBuilderTy &Builder = CGF.Builder; 6361 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 6362 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 6363 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 6364 llvm::Value *ArgAddr; 6365 unsigned Stride; 6366 6367 switch (AI.getKind()) { 6368 case ABIArgInfo::Expand: 6369 case ABIArgInfo::InAlloca: 6370 llvm_unreachable("Unsupported ABI kind for va_arg"); 6371 6372 case ABIArgInfo::Extend: 6373 Stride = 8; 6374 ArgAddr = Builder 6375 .CreateConstGEP1_32(Addr, 8 - getDataLayout().getTypeAllocSize(ArgTy), 6376 "extend"); 6377 break; 6378 6379 case ABIArgInfo::Direct: 6380 Stride = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 6381 ArgAddr = Addr; 6382 break; 6383 6384 case ABIArgInfo::Indirect: 6385 Stride = 8; 6386 ArgAddr = Builder.CreateBitCast(Addr, 6387 llvm::PointerType::getUnqual(ArgPtrTy), 6388 "indirect"); 6389 ArgAddr = Builder.CreateLoad(ArgAddr, "indirect.arg"); 6390 break; 6391 6392 case ABIArgInfo::Ignore: 6393 return llvm::UndefValue::get(ArgPtrTy); 6394 } 6395 6396 // Update VAList. 6397 Addr = Builder.CreateConstGEP1_32(Addr, Stride, "ap.next"); 6398 Builder.CreateStore(Addr, VAListAddrAsBPP); 6399 6400 return Builder.CreatePointerCast(ArgAddr, ArgPtrTy, "arg.addr"); 6401 } 6402 6403 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 6404 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 6405 for (auto &I : FI.arguments()) 6406 I.info = classifyType(I.type, 16 * 8); 6407 } 6408 6409 namespace { 6410 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 6411 public: 6412 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 6413 : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {} 6414 6415 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 6416 return 14; 6417 } 6418 6419 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6420 llvm::Value *Address) const override; 6421 }; 6422 } // end anonymous namespace 6423 6424 bool 6425 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6426 llvm::Value *Address) const { 6427 // This is calculated from the LLVM and GCC tables and verified 6428 // against gcc output. AFAIK all ABIs use the same encoding. 6429 6430 CodeGen::CGBuilderTy &Builder = CGF.Builder; 6431 6432 llvm::IntegerType *i8 = CGF.Int8Ty; 6433 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 6434 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 6435 6436 // 0-31: the 8-byte general-purpose registers 6437 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 6438 6439 // 32-63: f0-31, the 4-byte floating-point registers 6440 AssignToArrayRange(Builder, Address, Four8, 32, 63); 6441 6442 // Y = 64 6443 // PSR = 65 6444 // WIM = 66 6445 // TBR = 67 6446 // PC = 68 6447 // NPC = 69 6448 // FSR = 70 6449 // CSR = 71 6450 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 6451 6452 // 72-87: d0-15, the 8-byte floating-point registers 6453 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 6454 6455 return false; 6456 } 6457 6458 6459 //===----------------------------------------------------------------------===// 6460 // XCore ABI Implementation 6461 //===----------------------------------------------------------------------===// 6462 6463 namespace { 6464 6465 /// A SmallStringEnc instance is used to build up the TypeString by passing 6466 /// it by reference between functions that append to it. 6467 typedef llvm::SmallString<128> SmallStringEnc; 6468 6469 /// TypeStringCache caches the meta encodings of Types. 6470 /// 6471 /// The reason for caching TypeStrings is two fold: 6472 /// 1. To cache a type's encoding for later uses; 6473 /// 2. As a means to break recursive member type inclusion. 6474 /// 6475 /// A cache Entry can have a Status of: 6476 /// NonRecursive: The type encoding is not recursive; 6477 /// Recursive: The type encoding is recursive; 6478 /// Incomplete: An incomplete TypeString; 6479 /// IncompleteUsed: An incomplete TypeString that has been used in a 6480 /// Recursive type encoding. 6481 /// 6482 /// A NonRecursive entry will have all of its sub-members expanded as fully 6483 /// as possible. Whilst it may contain types which are recursive, the type 6484 /// itself is not recursive and thus its encoding may be safely used whenever 6485 /// the type is encountered. 6486 /// 6487 /// A Recursive entry will have all of its sub-members expanded as fully as 6488 /// possible. The type itself is recursive and it may contain other types which 6489 /// are recursive. The Recursive encoding must not be used during the expansion 6490 /// of a recursive type's recursive branch. For simplicity the code uses 6491 /// IncompleteCount to reject all usage of Recursive encodings for member types. 6492 /// 6493 /// An Incomplete entry is always a RecordType and only encodes its 6494 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 6495 /// are placed into the cache during type expansion as a means to identify and 6496 /// handle recursive inclusion of types as sub-members. If there is recursion 6497 /// the entry becomes IncompleteUsed. 6498 /// 6499 /// During the expansion of a RecordType's members: 6500 /// 6501 /// If the cache contains a NonRecursive encoding for the member type, the 6502 /// cached encoding is used; 6503 /// 6504 /// If the cache contains a Recursive encoding for the member type, the 6505 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 6506 /// 6507 /// If the member is a RecordType, an Incomplete encoding is placed into the 6508 /// cache to break potential recursive inclusion of itself as a sub-member; 6509 /// 6510 /// Once a member RecordType has been expanded, its temporary incomplete 6511 /// entry is removed from the cache. If a Recursive encoding was swapped out 6512 /// it is swapped back in; 6513 /// 6514 /// If an incomplete entry is used to expand a sub-member, the incomplete 6515 /// entry is marked as IncompleteUsed. The cache keeps count of how many 6516 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 6517 /// 6518 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 6519 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 6520 /// Else the member is part of a recursive type and thus the recursion has 6521 /// been exited too soon for the encoding to be correct for the member. 6522 /// 6523 class TypeStringCache { 6524 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 6525 struct Entry { 6526 std::string Str; // The encoded TypeString for the type. 6527 enum Status State; // Information about the encoding in 'Str'. 6528 std::string Swapped; // A temporary place holder for a Recursive encoding 6529 // during the expansion of RecordType's members. 6530 }; 6531 std::map<const IdentifierInfo *, struct Entry> Map; 6532 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 6533 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 6534 public: 6535 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}; 6536 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 6537 bool removeIncomplete(const IdentifierInfo *ID); 6538 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 6539 bool IsRecursive); 6540 StringRef lookupStr(const IdentifierInfo *ID); 6541 }; 6542 6543 /// TypeString encodings for enum & union fields must be order. 6544 /// FieldEncoding is a helper for this ordering process. 6545 class FieldEncoding { 6546 bool HasName; 6547 std::string Enc; 6548 public: 6549 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}; 6550 StringRef str() {return Enc.c_str();}; 6551 bool operator<(const FieldEncoding &rhs) const { 6552 if (HasName != rhs.HasName) return HasName; 6553 return Enc < rhs.Enc; 6554 } 6555 }; 6556 6557 class XCoreABIInfo : public DefaultABIInfo { 6558 public: 6559 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 6560 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 6561 CodeGenFunction &CGF) const override; 6562 }; 6563 6564 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 6565 mutable TypeStringCache TSC; 6566 public: 6567 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 6568 :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {} 6569 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 6570 CodeGen::CodeGenModule &M) const override; 6571 }; 6572 6573 } // End anonymous namespace. 6574 6575 llvm::Value *XCoreABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 6576 CodeGenFunction &CGF) const { 6577 CGBuilderTy &Builder = CGF.Builder; 6578 6579 // Get the VAList. 6580 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, 6581 CGF.Int8PtrPtrTy); 6582 llvm::Value *AP = Builder.CreateLoad(VAListAddrAsBPP); 6583 6584 // Handle the argument. 6585 ABIArgInfo AI = classifyArgumentType(Ty); 6586 llvm::Type *ArgTy = CGT.ConvertType(Ty); 6587 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 6588 AI.setCoerceToType(ArgTy); 6589 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 6590 llvm::Value *Val; 6591 uint64_t ArgSize = 0; 6592 switch (AI.getKind()) { 6593 case ABIArgInfo::Expand: 6594 case ABIArgInfo::InAlloca: 6595 llvm_unreachable("Unsupported ABI kind for va_arg"); 6596 case ABIArgInfo::Ignore: 6597 Val = llvm::UndefValue::get(ArgPtrTy); 6598 ArgSize = 0; 6599 break; 6600 case ABIArgInfo::Extend: 6601 case ABIArgInfo::Direct: 6602 Val = Builder.CreatePointerCast(AP, ArgPtrTy); 6603 ArgSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 6604 if (ArgSize < 4) 6605 ArgSize = 4; 6606 break; 6607 case ABIArgInfo::Indirect: 6608 llvm::Value *ArgAddr; 6609 ArgAddr = Builder.CreateBitCast(AP, llvm::PointerType::getUnqual(ArgPtrTy)); 6610 ArgAddr = Builder.CreateLoad(ArgAddr); 6611 Val = Builder.CreatePointerCast(ArgAddr, ArgPtrTy); 6612 ArgSize = 4; 6613 break; 6614 } 6615 6616 // Increment the VAList. 6617 if (ArgSize) { 6618 llvm::Value *APN = Builder.CreateConstGEP1_32(AP, ArgSize); 6619 Builder.CreateStore(APN, VAListAddrAsBPP); 6620 } 6621 return Val; 6622 } 6623 6624 /// During the expansion of a RecordType, an incomplete TypeString is placed 6625 /// into the cache as a means to identify and break recursion. 6626 /// If there is a Recursive encoding in the cache, it is swapped out and will 6627 /// be reinserted by removeIncomplete(). 6628 /// All other types of encoding should have been used rather than arriving here. 6629 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 6630 std::string StubEnc) { 6631 if (!ID) 6632 return; 6633 Entry &E = Map[ID]; 6634 assert( (E.Str.empty() || E.State == Recursive) && 6635 "Incorrectly use of addIncomplete"); 6636 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 6637 E.Swapped.swap(E.Str); // swap out the Recursive 6638 E.Str.swap(StubEnc); 6639 E.State = Incomplete; 6640 ++IncompleteCount; 6641 } 6642 6643 /// Once the RecordType has been expanded, the temporary incomplete TypeString 6644 /// must be removed from the cache. 6645 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 6646 /// Returns true if the RecordType was defined recursively. 6647 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 6648 if (!ID) 6649 return false; 6650 auto I = Map.find(ID); 6651 assert(I != Map.end() && "Entry not present"); 6652 Entry &E = I->second; 6653 assert( (E.State == Incomplete || 6654 E.State == IncompleteUsed) && 6655 "Entry must be an incomplete type"); 6656 bool IsRecursive = false; 6657 if (E.State == IncompleteUsed) { 6658 // We made use of our Incomplete encoding, thus we are recursive. 6659 IsRecursive = true; 6660 --IncompleteUsedCount; 6661 } 6662 if (E.Swapped.empty()) 6663 Map.erase(I); 6664 else { 6665 // Swap the Recursive back. 6666 E.Swapped.swap(E.Str); 6667 E.Swapped.clear(); 6668 E.State = Recursive; 6669 } 6670 --IncompleteCount; 6671 return IsRecursive; 6672 } 6673 6674 /// Add the encoded TypeString to the cache only if it is NonRecursive or 6675 /// Recursive (viz: all sub-members were expanded as fully as possible). 6676 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 6677 bool IsRecursive) { 6678 if (!ID || IncompleteUsedCount) 6679 return; // No key or it is is an incomplete sub-type so don't add. 6680 Entry &E = Map[ID]; 6681 if (IsRecursive && !E.Str.empty()) { 6682 assert(E.State==Recursive && E.Str.size() == Str.size() && 6683 "This is not the same Recursive entry"); 6684 // The parent container was not recursive after all, so we could have used 6685 // this Recursive sub-member entry after all, but we assumed the worse when 6686 // we started viz: IncompleteCount!=0. 6687 return; 6688 } 6689 assert(E.Str.empty() && "Entry already present"); 6690 E.Str = Str.str(); 6691 E.State = IsRecursive? Recursive : NonRecursive; 6692 } 6693 6694 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 6695 /// are recursively expanding a type (IncompleteCount != 0) and the cached 6696 /// encoding is Recursive, return an empty StringRef. 6697 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 6698 if (!ID) 6699 return StringRef(); // We have no key. 6700 auto I = Map.find(ID); 6701 if (I == Map.end()) 6702 return StringRef(); // We have no encoding. 6703 Entry &E = I->second; 6704 if (E.State == Recursive && IncompleteCount) 6705 return StringRef(); // We don't use Recursive encodings for member types. 6706 6707 if (E.State == Incomplete) { 6708 // The incomplete type is being used to break out of recursion. 6709 E.State = IncompleteUsed; 6710 ++IncompleteUsedCount; 6711 } 6712 return E.Str.c_str(); 6713 } 6714 6715 /// The XCore ABI includes a type information section that communicates symbol 6716 /// type information to the linker. The linker uses this information to verify 6717 /// safety/correctness of things such as array bound and pointers et al. 6718 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 6719 /// This type information (TypeString) is emitted into meta data for all global 6720 /// symbols: definitions, declarations, functions & variables. 6721 /// 6722 /// The TypeString carries type, qualifier, name, size & value details. 6723 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 6724 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf 6725 /// The output is tested by test/CodeGen/xcore-stringtype.c. 6726 /// 6727 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 6728 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC); 6729 6730 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 6731 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 6732 CodeGen::CodeGenModule &CGM) const { 6733 SmallStringEnc Enc; 6734 if (getTypeString(Enc, D, CGM, TSC)) { 6735 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 6736 llvm::SmallVector<llvm::Metadata *, 2> MDVals; 6737 MDVals.push_back(llvm::ConstantAsMetadata::get(GV)); 6738 MDVals.push_back(llvm::MDString::get(Ctx, Enc.str())); 6739 llvm::NamedMDNode *MD = 6740 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 6741 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 6742 } 6743 } 6744 6745 static bool appendType(SmallStringEnc &Enc, QualType QType, 6746 const CodeGen::CodeGenModule &CGM, 6747 TypeStringCache &TSC); 6748 6749 /// Helper function for appendRecordType(). 6750 /// Builds a SmallVector containing the encoded field types in declaration 6751 /// order. 6752 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 6753 const RecordDecl *RD, 6754 const CodeGen::CodeGenModule &CGM, 6755 TypeStringCache &TSC) { 6756 for (const auto *Field : RD->fields()) { 6757 SmallStringEnc Enc; 6758 Enc += "m("; 6759 Enc += Field->getName(); 6760 Enc += "){"; 6761 if (Field->isBitField()) { 6762 Enc += "b("; 6763 llvm::raw_svector_ostream OS(Enc); 6764 OS.resync(); 6765 OS << Field->getBitWidthValue(CGM.getContext()); 6766 OS.flush(); 6767 Enc += ':'; 6768 } 6769 if (!appendType(Enc, Field->getType(), CGM, TSC)) 6770 return false; 6771 if (Field->isBitField()) 6772 Enc += ')'; 6773 Enc += '}'; 6774 FE.emplace_back(!Field->getName().empty(), Enc); 6775 } 6776 return true; 6777 } 6778 6779 /// Appends structure and union types to Enc and adds encoding to cache. 6780 /// Recursively calls appendType (via extractFieldType) for each field. 6781 /// Union types have their fields ordered according to the ABI. 6782 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 6783 const CodeGen::CodeGenModule &CGM, 6784 TypeStringCache &TSC, const IdentifierInfo *ID) { 6785 // Append the cached TypeString if we have one. 6786 StringRef TypeString = TSC.lookupStr(ID); 6787 if (!TypeString.empty()) { 6788 Enc += TypeString; 6789 return true; 6790 } 6791 6792 // Start to emit an incomplete TypeString. 6793 size_t Start = Enc.size(); 6794 Enc += (RT->isUnionType()? 'u' : 's'); 6795 Enc += '('; 6796 if (ID) 6797 Enc += ID->getName(); 6798 Enc += "){"; 6799 6800 // We collect all encoded fields and order as necessary. 6801 bool IsRecursive = false; 6802 const RecordDecl *RD = RT->getDecl()->getDefinition(); 6803 if (RD && !RD->field_empty()) { 6804 // An incomplete TypeString stub is placed in the cache for this RecordType 6805 // so that recursive calls to this RecordType will use it whilst building a 6806 // complete TypeString for this RecordType. 6807 SmallVector<FieldEncoding, 16> FE; 6808 std::string StubEnc(Enc.substr(Start).str()); 6809 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 6810 TSC.addIncomplete(ID, std::move(StubEnc)); 6811 if (!extractFieldType(FE, RD, CGM, TSC)) { 6812 (void) TSC.removeIncomplete(ID); 6813 return false; 6814 } 6815 IsRecursive = TSC.removeIncomplete(ID); 6816 // The ABI requires unions to be sorted but not structures. 6817 // See FieldEncoding::operator< for sort algorithm. 6818 if (RT->isUnionType()) 6819 std::sort(FE.begin(), FE.end()); 6820 // We can now complete the TypeString. 6821 unsigned E = FE.size(); 6822 for (unsigned I = 0; I != E; ++I) { 6823 if (I) 6824 Enc += ','; 6825 Enc += FE[I].str(); 6826 } 6827 } 6828 Enc += '}'; 6829 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 6830 return true; 6831 } 6832 6833 /// Appends enum types to Enc and adds the encoding to the cache. 6834 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 6835 TypeStringCache &TSC, 6836 const IdentifierInfo *ID) { 6837 // Append the cached TypeString if we have one. 6838 StringRef TypeString = TSC.lookupStr(ID); 6839 if (!TypeString.empty()) { 6840 Enc += TypeString; 6841 return true; 6842 } 6843 6844 size_t Start = Enc.size(); 6845 Enc += "e("; 6846 if (ID) 6847 Enc += ID->getName(); 6848 Enc += "){"; 6849 6850 // We collect all encoded enumerations and order them alphanumerically. 6851 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 6852 SmallVector<FieldEncoding, 16> FE; 6853 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 6854 ++I) { 6855 SmallStringEnc EnumEnc; 6856 EnumEnc += "m("; 6857 EnumEnc += I->getName(); 6858 EnumEnc += "){"; 6859 I->getInitVal().toString(EnumEnc); 6860 EnumEnc += '}'; 6861 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 6862 } 6863 std::sort(FE.begin(), FE.end()); 6864 unsigned E = FE.size(); 6865 for (unsigned I = 0; I != E; ++I) { 6866 if (I) 6867 Enc += ','; 6868 Enc += FE[I].str(); 6869 } 6870 } 6871 Enc += '}'; 6872 TSC.addIfComplete(ID, Enc.substr(Start), false); 6873 return true; 6874 } 6875 6876 /// Appends type's qualifier to Enc. 6877 /// This is done prior to appending the type's encoding. 6878 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 6879 // Qualifiers are emitted in alphabetical order. 6880 static const char *Table[] = {"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 6881 int Lookup = 0; 6882 if (QT.isConstQualified()) 6883 Lookup += 1<<0; 6884 if (QT.isRestrictQualified()) 6885 Lookup += 1<<1; 6886 if (QT.isVolatileQualified()) 6887 Lookup += 1<<2; 6888 Enc += Table[Lookup]; 6889 } 6890 6891 /// Appends built-in types to Enc. 6892 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 6893 const char *EncType; 6894 switch (BT->getKind()) { 6895 case BuiltinType::Void: 6896 EncType = "0"; 6897 break; 6898 case BuiltinType::Bool: 6899 EncType = "b"; 6900 break; 6901 case BuiltinType::Char_U: 6902 EncType = "uc"; 6903 break; 6904 case BuiltinType::UChar: 6905 EncType = "uc"; 6906 break; 6907 case BuiltinType::SChar: 6908 EncType = "sc"; 6909 break; 6910 case BuiltinType::UShort: 6911 EncType = "us"; 6912 break; 6913 case BuiltinType::Short: 6914 EncType = "ss"; 6915 break; 6916 case BuiltinType::UInt: 6917 EncType = "ui"; 6918 break; 6919 case BuiltinType::Int: 6920 EncType = "si"; 6921 break; 6922 case BuiltinType::ULong: 6923 EncType = "ul"; 6924 break; 6925 case BuiltinType::Long: 6926 EncType = "sl"; 6927 break; 6928 case BuiltinType::ULongLong: 6929 EncType = "ull"; 6930 break; 6931 case BuiltinType::LongLong: 6932 EncType = "sll"; 6933 break; 6934 case BuiltinType::Float: 6935 EncType = "ft"; 6936 break; 6937 case BuiltinType::Double: 6938 EncType = "d"; 6939 break; 6940 case BuiltinType::LongDouble: 6941 EncType = "ld"; 6942 break; 6943 default: 6944 return false; 6945 } 6946 Enc += EncType; 6947 return true; 6948 } 6949 6950 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 6951 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 6952 const CodeGen::CodeGenModule &CGM, 6953 TypeStringCache &TSC) { 6954 Enc += "p("; 6955 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 6956 return false; 6957 Enc += ')'; 6958 return true; 6959 } 6960 6961 /// Appends array encoding to Enc before calling appendType for the element. 6962 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 6963 const ArrayType *AT, 6964 const CodeGen::CodeGenModule &CGM, 6965 TypeStringCache &TSC, StringRef NoSizeEnc) { 6966 if (AT->getSizeModifier() != ArrayType::Normal) 6967 return false; 6968 Enc += "a("; 6969 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 6970 CAT->getSize().toStringUnsigned(Enc); 6971 else 6972 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 6973 Enc += ':'; 6974 // The Qualifiers should be attached to the type rather than the array. 6975 appendQualifier(Enc, QT); 6976 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 6977 return false; 6978 Enc += ')'; 6979 return true; 6980 } 6981 6982 /// Appends a function encoding to Enc, calling appendType for the return type 6983 /// and the arguments. 6984 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 6985 const CodeGen::CodeGenModule &CGM, 6986 TypeStringCache &TSC) { 6987 Enc += "f{"; 6988 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 6989 return false; 6990 Enc += "}("; 6991 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 6992 // N.B. we are only interested in the adjusted param types. 6993 auto I = FPT->param_type_begin(); 6994 auto E = FPT->param_type_end(); 6995 if (I != E) { 6996 do { 6997 if (!appendType(Enc, *I, CGM, TSC)) 6998 return false; 6999 ++I; 7000 if (I != E) 7001 Enc += ','; 7002 } while (I != E); 7003 if (FPT->isVariadic()) 7004 Enc += ",va"; 7005 } else { 7006 if (FPT->isVariadic()) 7007 Enc += "va"; 7008 else 7009 Enc += '0'; 7010 } 7011 } 7012 Enc += ')'; 7013 return true; 7014 } 7015 7016 /// Handles the type's qualifier before dispatching a call to handle specific 7017 /// type encodings. 7018 static bool appendType(SmallStringEnc &Enc, QualType QType, 7019 const CodeGen::CodeGenModule &CGM, 7020 TypeStringCache &TSC) { 7021 7022 QualType QT = QType.getCanonicalType(); 7023 7024 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 7025 // The Qualifiers should be attached to the type rather than the array. 7026 // Thus we don't call appendQualifier() here. 7027 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 7028 7029 appendQualifier(Enc, QT); 7030 7031 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 7032 return appendBuiltinType(Enc, BT); 7033 7034 if (const PointerType *PT = QT->getAs<PointerType>()) 7035 return appendPointerType(Enc, PT, CGM, TSC); 7036 7037 if (const EnumType *ET = QT->getAs<EnumType>()) 7038 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 7039 7040 if (const RecordType *RT = QT->getAsStructureType()) 7041 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 7042 7043 if (const RecordType *RT = QT->getAsUnionType()) 7044 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 7045 7046 if (const FunctionType *FT = QT->getAs<FunctionType>()) 7047 return appendFunctionType(Enc, FT, CGM, TSC); 7048 7049 return false; 7050 } 7051 7052 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 7053 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) { 7054 if (!D) 7055 return false; 7056 7057 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 7058 if (FD->getLanguageLinkage() != CLanguageLinkage) 7059 return false; 7060 return appendType(Enc, FD->getType(), CGM, TSC); 7061 } 7062 7063 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 7064 if (VD->getLanguageLinkage() != CLanguageLinkage) 7065 return false; 7066 QualType QT = VD->getType().getCanonicalType(); 7067 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 7068 // Global ArrayTypes are given a size of '*' if the size is unknown. 7069 // The Qualifiers should be attached to the type rather than the array. 7070 // Thus we don't call appendQualifier() here. 7071 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 7072 } 7073 return appendType(Enc, QT, CGM, TSC); 7074 } 7075 return false; 7076 } 7077 7078 7079 //===----------------------------------------------------------------------===// 7080 // Driver code 7081 //===----------------------------------------------------------------------===// 7082 7083 const llvm::Triple &CodeGenModule::getTriple() const { 7084 return getTarget().getTriple(); 7085 } 7086 7087 bool CodeGenModule::supportsCOMDAT() const { 7088 return !getTriple().isOSBinFormatMachO(); 7089 } 7090 7091 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 7092 if (TheTargetCodeGenInfo) 7093 return *TheTargetCodeGenInfo; 7094 7095 const llvm::Triple &Triple = getTarget().getTriple(); 7096 switch (Triple.getArch()) { 7097 default: 7098 return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types)); 7099 7100 case llvm::Triple::le32: 7101 return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types)); 7102 case llvm::Triple::mips: 7103 case llvm::Triple::mipsel: 7104 if (Triple.getOS() == llvm::Triple::NaCl) 7105 return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types)); 7106 return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true)); 7107 7108 case llvm::Triple::mips64: 7109 case llvm::Triple::mips64el: 7110 return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false)); 7111 7112 case llvm::Triple::aarch64: 7113 case llvm::Triple::aarch64_be: { 7114 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 7115 if (getTarget().getABI() == "darwinpcs") 7116 Kind = AArch64ABIInfo::DarwinPCS; 7117 7118 return *(TheTargetCodeGenInfo = new AArch64TargetCodeGenInfo(Types, Kind)); 7119 } 7120 7121 case llvm::Triple::arm: 7122 case llvm::Triple::armeb: 7123 case llvm::Triple::thumb: 7124 case llvm::Triple::thumbeb: 7125 { 7126 if (Triple.getOS() == llvm::Triple::Win32) { 7127 TheTargetCodeGenInfo = 7128 new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP); 7129 return *TheTargetCodeGenInfo; 7130 } 7131 7132 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 7133 if (getTarget().getABI() == "apcs-gnu") 7134 Kind = ARMABIInfo::APCS; 7135 else if (CodeGenOpts.FloatABI == "hard" || 7136 (CodeGenOpts.FloatABI != "soft" && 7137 Triple.getEnvironment() == llvm::Triple::GNUEABIHF)) 7138 Kind = ARMABIInfo::AAPCS_VFP; 7139 7140 return *(TheTargetCodeGenInfo = new ARMTargetCodeGenInfo(Types, Kind)); 7141 } 7142 7143 case llvm::Triple::ppc: 7144 return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types)); 7145 case llvm::Triple::ppc64: 7146 if (Triple.isOSBinFormatELF()) { 7147 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 7148 if (getTarget().getABI() == "elfv2") 7149 Kind = PPC64_SVR4_ABIInfo::ELFv2; 7150 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 7151 7152 return *(TheTargetCodeGenInfo = 7153 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX)); 7154 } else 7155 return *(TheTargetCodeGenInfo = new PPC64TargetCodeGenInfo(Types)); 7156 case llvm::Triple::ppc64le: { 7157 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 7158 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 7159 if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx") 7160 Kind = PPC64_SVR4_ABIInfo::ELFv1; 7161 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 7162 7163 return *(TheTargetCodeGenInfo = 7164 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX)); 7165 } 7166 7167 case llvm::Triple::nvptx: 7168 case llvm::Triple::nvptx64: 7169 return *(TheTargetCodeGenInfo = new NVPTXTargetCodeGenInfo(Types)); 7170 7171 case llvm::Triple::msp430: 7172 return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types)); 7173 7174 case llvm::Triple::systemz: { 7175 bool HasVector = getTarget().getABI() == "vector"; 7176 return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types, 7177 HasVector)); 7178 } 7179 7180 case llvm::Triple::tce: 7181 return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types)); 7182 7183 case llvm::Triple::x86: { 7184 bool IsDarwinVectorABI = Triple.isOSDarwin(); 7185 bool IsSmallStructInRegABI = 7186 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 7187 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 7188 7189 if (Triple.getOS() == llvm::Triple::Win32) { 7190 return *(TheTargetCodeGenInfo = new WinX86_32TargetCodeGenInfo( 7191 Types, IsDarwinVectorABI, IsSmallStructInRegABI, 7192 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); 7193 } else { 7194 return *(TheTargetCodeGenInfo = new X86_32TargetCodeGenInfo( 7195 Types, IsDarwinVectorABI, IsSmallStructInRegABI, 7196 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); 7197 } 7198 } 7199 7200 case llvm::Triple::x86_64: { 7201 StringRef ABI = getTarget().getABI(); 7202 X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512 : 7203 ABI == "avx" ? X86AVXABILevel::AVX : 7204 X86AVXABILevel::None); 7205 7206 switch (Triple.getOS()) { 7207 case llvm::Triple::Win32: 7208 return *(TheTargetCodeGenInfo = 7209 new WinX86_64TargetCodeGenInfo(Types, AVXLevel)); 7210 case llvm::Triple::PS4: 7211 return *(TheTargetCodeGenInfo = 7212 new PS4TargetCodeGenInfo(Types, AVXLevel)); 7213 default: 7214 return *(TheTargetCodeGenInfo = 7215 new X86_64TargetCodeGenInfo(Types, AVXLevel)); 7216 } 7217 } 7218 case llvm::Triple::hexagon: 7219 return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types)); 7220 case llvm::Triple::r600: 7221 return *(TheTargetCodeGenInfo = new AMDGPUTargetCodeGenInfo(Types)); 7222 case llvm::Triple::amdgcn: 7223 return *(TheTargetCodeGenInfo = new AMDGPUTargetCodeGenInfo(Types)); 7224 case llvm::Triple::sparcv9: 7225 return *(TheTargetCodeGenInfo = new SparcV9TargetCodeGenInfo(Types)); 7226 case llvm::Triple::xcore: 7227 return *(TheTargetCodeGenInfo = new XCoreTargetCodeGenInfo(Types)); 7228 } 7229 } 7230