1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes wrap the information about a call or function 11 // definition used to handle ABI compliancy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "TargetInfo.h" 16 #include "ABIInfo.h" 17 #include "CGBlocks.h" 18 #include "CGCXXABI.h" 19 #include "CGValue.h" 20 #include "CodeGenFunction.h" 21 #include "clang/AST/RecordLayout.h" 22 #include "clang/CodeGen/CGFunctionInfo.h" 23 #include "clang/CodeGen/SwiftCallingConv.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "llvm/ADT/StringExtras.h" 26 #include "llvm/ADT/StringSwitch.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/Type.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include <algorithm> // std::sort 33 34 using namespace clang; 35 using namespace CodeGen; 36 37 // Helper for coercing an aggregate argument or return value into an integer 38 // array of the same size (including padding) and alignment. This alternate 39 // coercion happens only for the RenderScript ABI and can be removed after 40 // runtimes that rely on it are no longer supported. 41 // 42 // RenderScript assumes that the size of the argument / return value in the IR 43 // is the same as the size of the corresponding qualified type. This helper 44 // coerces the aggregate type into an array of the same size (including 45 // padding). This coercion is used in lieu of expansion of struct members or 46 // other canonical coercions that return a coerced-type of larger size. 47 // 48 // Ty - The argument / return value type 49 // Context - The associated ASTContext 50 // LLVMContext - The associated LLVMContext 51 static ABIArgInfo coerceToIntArray(QualType Ty, 52 ASTContext &Context, 53 llvm::LLVMContext &LLVMContext) { 54 // Alignment and Size are measured in bits. 55 const uint64_t Size = Context.getTypeSize(Ty); 56 const uint64_t Alignment = Context.getTypeAlign(Ty); 57 llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment); 58 const uint64_t NumElements = (Size + Alignment - 1) / Alignment; 59 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 60 } 61 62 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 63 llvm::Value *Array, 64 llvm::Value *Value, 65 unsigned FirstIndex, 66 unsigned LastIndex) { 67 // Alternatively, we could emit this as a loop in the source. 68 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 69 llvm::Value *Cell = 70 Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); 71 Builder.CreateAlignedStore(Value, Cell, CharUnits::One()); 72 } 73 } 74 75 static bool isAggregateTypeForABI(QualType T) { 76 return !CodeGenFunction::hasScalarEvaluationKind(T) || 77 T->isMemberFunctionPointerType(); 78 } 79 80 ABIArgInfo 81 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign, 82 llvm::Type *Padding) const { 83 return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), 84 ByRef, Realign, Padding); 85 } 86 87 ABIArgInfo 88 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const { 89 return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty), 90 /*ByRef*/ false, Realign); 91 } 92 93 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 94 QualType Ty) const { 95 return Address::invalid(); 96 } 97 98 ABIInfo::~ABIInfo() {} 99 100 /// Does the given lowering require more than the given number of 101 /// registers when expanded? 102 /// 103 /// This is intended to be the basis of a reasonable basic implementation 104 /// of should{Pass,Return}IndirectlyForSwift. 105 /// 106 /// For most targets, a limit of four total registers is reasonable; this 107 /// limits the amount of code required in order to move around the value 108 /// in case it wasn't produced immediately prior to the call by the caller 109 /// (or wasn't produced in exactly the right registers) or isn't used 110 /// immediately within the callee. But some targets may need to further 111 /// limit the register count due to an inability to support that many 112 /// return registers. 113 static bool occupiesMoreThan(CodeGenTypes &cgt, 114 ArrayRef<llvm::Type*> scalarTypes, 115 unsigned maxAllRegisters) { 116 unsigned intCount = 0, fpCount = 0; 117 for (llvm::Type *type : scalarTypes) { 118 if (type->isPointerTy()) { 119 intCount++; 120 } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) { 121 auto ptrWidth = cgt.getTarget().getPointerWidth(0); 122 intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth; 123 } else { 124 assert(type->isVectorTy() || type->isFloatingPointTy()); 125 fpCount++; 126 } 127 } 128 129 return (intCount + fpCount > maxAllRegisters); 130 } 131 132 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 133 llvm::Type *eltTy, 134 unsigned numElts) const { 135 // The default implementation of this assumes that the target guarantees 136 // 128-bit SIMD support but nothing more. 137 return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16); 138 } 139 140 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 141 CGCXXABI &CXXABI) { 142 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 143 if (!RD) 144 return CGCXXABI::RAA_Default; 145 return CXXABI.getRecordArgABI(RD); 146 } 147 148 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 149 CGCXXABI &CXXABI) { 150 const RecordType *RT = T->getAs<RecordType>(); 151 if (!RT) 152 return CGCXXABI::RAA_Default; 153 return getRecordArgABI(RT, CXXABI); 154 } 155 156 /// Pass transparent unions as if they were the type of the first element. Sema 157 /// should ensure that all elements of the union have the same "machine type". 158 static QualType useFirstFieldIfTransparentUnion(QualType Ty) { 159 if (const RecordType *UT = Ty->getAsUnionType()) { 160 const RecordDecl *UD = UT->getDecl(); 161 if (UD->hasAttr<TransparentUnionAttr>()) { 162 assert(!UD->field_empty() && "sema created an empty transparent union"); 163 return UD->field_begin()->getType(); 164 } 165 } 166 return Ty; 167 } 168 169 CGCXXABI &ABIInfo::getCXXABI() const { 170 return CGT.getCXXABI(); 171 } 172 173 ASTContext &ABIInfo::getContext() const { 174 return CGT.getContext(); 175 } 176 177 llvm::LLVMContext &ABIInfo::getVMContext() const { 178 return CGT.getLLVMContext(); 179 } 180 181 const llvm::DataLayout &ABIInfo::getDataLayout() const { 182 return CGT.getDataLayout(); 183 } 184 185 const TargetInfo &ABIInfo::getTarget() const { 186 return CGT.getTarget(); 187 } 188 189 const CodeGenOptions &ABIInfo::getCodeGenOpts() const { 190 return CGT.getCodeGenOpts(); 191 } 192 193 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); } 194 195 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 196 return false; 197 } 198 199 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 200 uint64_t Members) const { 201 return false; 202 } 203 204 LLVM_DUMP_METHOD void ABIArgInfo::dump() const { 205 raw_ostream &OS = llvm::errs(); 206 OS << "(ABIArgInfo Kind="; 207 switch (TheKind) { 208 case Direct: 209 OS << "Direct Type="; 210 if (llvm::Type *Ty = getCoerceToType()) 211 Ty->print(OS); 212 else 213 OS << "null"; 214 break; 215 case Extend: 216 OS << "Extend"; 217 break; 218 case Ignore: 219 OS << "Ignore"; 220 break; 221 case InAlloca: 222 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 223 break; 224 case Indirect: 225 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 226 << " ByVal=" << getIndirectByVal() 227 << " Realign=" << getIndirectRealign(); 228 break; 229 case Expand: 230 OS << "Expand"; 231 break; 232 case CoerceAndExpand: 233 OS << "CoerceAndExpand Type="; 234 getCoerceAndExpandType()->print(OS); 235 break; 236 } 237 OS << ")\n"; 238 } 239 240 // Dynamically round a pointer up to a multiple of the given alignment. 241 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF, 242 llvm::Value *Ptr, 243 CharUnits Align) { 244 llvm::Value *PtrAsInt = Ptr; 245 // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align; 246 PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy); 247 PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt, 248 llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1)); 249 PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt, 250 llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity())); 251 PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt, 252 Ptr->getType(), 253 Ptr->getName() + ".aligned"); 254 return PtrAsInt; 255 } 256 257 /// Emit va_arg for a platform using the common void* representation, 258 /// where arguments are simply emitted in an array of slots on the stack. 259 /// 260 /// This version implements the core direct-value passing rules. 261 /// 262 /// \param SlotSize - The size and alignment of a stack slot. 263 /// Each argument will be allocated to a multiple of this number of 264 /// slots, and all the slots will be aligned to this value. 265 /// \param AllowHigherAlign - The slot alignment is not a cap; 266 /// an argument type with an alignment greater than the slot size 267 /// will be emitted on a higher-alignment address, potentially 268 /// leaving one or more empty slots behind as padding. If this 269 /// is false, the returned address might be less-aligned than 270 /// DirectAlign. 271 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF, 272 Address VAListAddr, 273 llvm::Type *DirectTy, 274 CharUnits DirectSize, 275 CharUnits DirectAlign, 276 CharUnits SlotSize, 277 bool AllowHigherAlign) { 278 // Cast the element type to i8* if necessary. Some platforms define 279 // va_list as a struct containing an i8* instead of just an i8*. 280 if (VAListAddr.getElementType() != CGF.Int8PtrTy) 281 VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy); 282 283 llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur"); 284 285 // If the CC aligns values higher than the slot size, do so if needed. 286 Address Addr = Address::invalid(); 287 if (AllowHigherAlign && DirectAlign > SlotSize) { 288 Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign), 289 DirectAlign); 290 } else { 291 Addr = Address(Ptr, SlotSize); 292 } 293 294 // Advance the pointer past the argument, then store that back. 295 CharUnits FullDirectSize = DirectSize.alignTo(SlotSize); 296 llvm::Value *NextPtr = 297 CGF.Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), FullDirectSize, 298 "argp.next"); 299 CGF.Builder.CreateStore(NextPtr, VAListAddr); 300 301 // If the argument is smaller than a slot, and this is a big-endian 302 // target, the argument will be right-adjusted in its slot. 303 if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() && 304 !DirectTy->isStructTy()) { 305 Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize); 306 } 307 308 Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy); 309 return Addr; 310 } 311 312 /// Emit va_arg for a platform using the common void* representation, 313 /// where arguments are simply emitted in an array of slots on the stack. 314 /// 315 /// \param IsIndirect - Values of this type are passed indirectly. 316 /// \param ValueInfo - The size and alignment of this type, generally 317 /// computed with getContext().getTypeInfoInChars(ValueTy). 318 /// \param SlotSizeAndAlign - The size and alignment of a stack slot. 319 /// Each argument will be allocated to a multiple of this number of 320 /// slots, and all the slots will be aligned to this value. 321 /// \param AllowHigherAlign - The slot alignment is not a cap; 322 /// an argument type with an alignment greater than the slot size 323 /// will be emitted on a higher-alignment address, potentially 324 /// leaving one or more empty slots behind as padding. 325 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr, 326 QualType ValueTy, bool IsIndirect, 327 std::pair<CharUnits, CharUnits> ValueInfo, 328 CharUnits SlotSizeAndAlign, 329 bool AllowHigherAlign) { 330 // The size and alignment of the value that was passed directly. 331 CharUnits DirectSize, DirectAlign; 332 if (IsIndirect) { 333 DirectSize = CGF.getPointerSize(); 334 DirectAlign = CGF.getPointerAlign(); 335 } else { 336 DirectSize = ValueInfo.first; 337 DirectAlign = ValueInfo.second; 338 } 339 340 // Cast the address we've calculated to the right type. 341 llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy); 342 if (IsIndirect) 343 DirectTy = DirectTy->getPointerTo(0); 344 345 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy, 346 DirectSize, DirectAlign, 347 SlotSizeAndAlign, 348 AllowHigherAlign); 349 350 if (IsIndirect) { 351 Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second); 352 } 353 354 return Addr; 355 356 } 357 358 static Address emitMergePHI(CodeGenFunction &CGF, 359 Address Addr1, llvm::BasicBlock *Block1, 360 Address Addr2, llvm::BasicBlock *Block2, 361 const llvm::Twine &Name = "") { 362 assert(Addr1.getType() == Addr2.getType()); 363 llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name); 364 PHI->addIncoming(Addr1.getPointer(), Block1); 365 PHI->addIncoming(Addr2.getPointer(), Block2); 366 CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment()); 367 return Address(PHI, Align); 368 } 369 370 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; } 371 372 // If someone can figure out a general rule for this, that would be great. 373 // It's probably just doomed to be platform-dependent, though. 374 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 375 // Verified for: 376 // x86-64 FreeBSD, Linux, Darwin 377 // x86-32 FreeBSD, Linux, Darwin 378 // PowerPC Linux, Darwin 379 // ARM Darwin (*not* EABI) 380 // AArch64 Linux 381 return 32; 382 } 383 384 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 385 const FunctionNoProtoType *fnType) const { 386 // The following conventions are known to require this to be false: 387 // x86_stdcall 388 // MIPS 389 // For everything else, we just prefer false unless we opt out. 390 return false; 391 } 392 393 void 394 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 395 llvm::SmallString<24> &Opt) const { 396 // This assumes the user is passing a library name like "rt" instead of a 397 // filename like "librt.a/so", and that they don't care whether it's static or 398 // dynamic. 399 Opt = "-l"; 400 Opt += Lib; 401 } 402 403 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const { 404 // OpenCL kernels are called via an explicit runtime API with arguments 405 // set with clSetKernelArg(), not as normal sub-functions. 406 // Return SPIR_KERNEL by default as the kernel calling convention to 407 // ensure the fingerprint is fixed such way that each OpenCL argument 408 // gets one matching argument in the produced kernel function argument 409 // list to enable feasible implementation of clSetKernelArg() with 410 // aggregates etc. In case we would use the default C calling conv here, 411 // clSetKernelArg() might break depending on the target-specific 412 // conventions; different targets might split structs passed as values 413 // to multiple function arguments etc. 414 return llvm::CallingConv::SPIR_KERNEL; 415 } 416 417 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM, 418 llvm::PointerType *T, QualType QT) const { 419 return llvm::ConstantPointerNull::get(T); 420 } 421 422 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 423 const VarDecl *D) const { 424 assert(!CGM.getLangOpts().OpenCL && 425 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 426 "Address space agnostic languages only"); 427 return D ? D->getType().getAddressSpace() : LangAS::Default; 428 } 429 430 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast( 431 CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr, 432 LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const { 433 // Since target may map different address spaces in AST to the same address 434 // space, an address space conversion may end up as a bitcast. 435 if (auto *C = dyn_cast<llvm::Constant>(Src)) 436 return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy); 437 return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DestTy); 438 } 439 440 llvm::Constant * 441 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src, 442 LangAS SrcAddr, LangAS DestAddr, 443 llvm::Type *DestTy) const { 444 // Since target may map different address spaces in AST to the same address 445 // space, an address space conversion may end up as a bitcast. 446 return llvm::ConstantExpr::getPointerCast(Src, DestTy); 447 } 448 449 llvm::SyncScope::ID 450 TargetCodeGenInfo::getLLVMSyncScopeID(SyncScope S, llvm::LLVMContext &C) const { 451 return C.getOrInsertSyncScopeID(""); /* default sync scope */ 452 } 453 454 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 455 456 /// isEmptyField - Return true iff a the field is "empty", that is it 457 /// is an unnamed bit-field or an (array of) empty record(s). 458 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 459 bool AllowArrays) { 460 if (FD->isUnnamedBitfield()) 461 return true; 462 463 QualType FT = FD->getType(); 464 465 // Constant arrays of empty records count as empty, strip them off. 466 // Constant arrays of zero length always count as empty. 467 if (AllowArrays) 468 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 469 if (AT->getSize() == 0) 470 return true; 471 FT = AT->getElementType(); 472 } 473 474 const RecordType *RT = FT->getAs<RecordType>(); 475 if (!RT) 476 return false; 477 478 // C++ record fields are never empty, at least in the Itanium ABI. 479 // 480 // FIXME: We should use a predicate for whether this behavior is true in the 481 // current ABI. 482 if (isa<CXXRecordDecl>(RT->getDecl())) 483 return false; 484 485 return isEmptyRecord(Context, FT, AllowArrays); 486 } 487 488 /// isEmptyRecord - Return true iff a structure contains only empty 489 /// fields. Note that a structure with a flexible array member is not 490 /// considered empty. 491 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 492 const RecordType *RT = T->getAs<RecordType>(); 493 if (!RT) 494 return false; 495 const RecordDecl *RD = RT->getDecl(); 496 if (RD->hasFlexibleArrayMember()) 497 return false; 498 499 // If this is a C++ record, check the bases first. 500 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 501 for (const auto &I : CXXRD->bases()) 502 if (!isEmptyRecord(Context, I.getType(), true)) 503 return false; 504 505 for (const auto *I : RD->fields()) 506 if (!isEmptyField(Context, I, AllowArrays)) 507 return false; 508 return true; 509 } 510 511 /// isSingleElementStruct - Determine if a structure is a "single 512 /// element struct", i.e. it has exactly one non-empty field or 513 /// exactly one field which is itself a single element 514 /// struct. Structures with flexible array members are never 515 /// considered single element structs. 516 /// 517 /// \return The field declaration for the single non-empty field, if 518 /// it exists. 519 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 520 const RecordType *RT = T->getAs<RecordType>(); 521 if (!RT) 522 return nullptr; 523 524 const RecordDecl *RD = RT->getDecl(); 525 if (RD->hasFlexibleArrayMember()) 526 return nullptr; 527 528 const Type *Found = nullptr; 529 530 // If this is a C++ record, check the bases first. 531 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 532 for (const auto &I : CXXRD->bases()) { 533 // Ignore empty records. 534 if (isEmptyRecord(Context, I.getType(), true)) 535 continue; 536 537 // If we already found an element then this isn't a single-element struct. 538 if (Found) 539 return nullptr; 540 541 // If this is non-empty and not a single element struct, the composite 542 // cannot be a single element struct. 543 Found = isSingleElementStruct(I.getType(), Context); 544 if (!Found) 545 return nullptr; 546 } 547 } 548 549 // Check for single element. 550 for (const auto *FD : RD->fields()) { 551 QualType FT = FD->getType(); 552 553 // Ignore empty fields. 554 if (isEmptyField(Context, FD, true)) 555 continue; 556 557 // If we already found an element then this isn't a single-element 558 // struct. 559 if (Found) 560 return nullptr; 561 562 // Treat single element arrays as the element. 563 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 564 if (AT->getSize().getZExtValue() != 1) 565 break; 566 FT = AT->getElementType(); 567 } 568 569 if (!isAggregateTypeForABI(FT)) { 570 Found = FT.getTypePtr(); 571 } else { 572 Found = isSingleElementStruct(FT, Context); 573 if (!Found) 574 return nullptr; 575 } 576 } 577 578 // We don't consider a struct a single-element struct if it has 579 // padding beyond the element type. 580 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 581 return nullptr; 582 583 return Found; 584 } 585 586 namespace { 587 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, 588 const ABIArgInfo &AI) { 589 // This default implementation defers to the llvm backend's va_arg 590 // instruction. It can handle only passing arguments directly 591 // (typically only handled in the backend for primitive types), or 592 // aggregates passed indirectly by pointer (NOTE: if the "byval" 593 // flag has ABI impact in the callee, this implementation cannot 594 // work.) 595 596 // Only a few cases are covered here at the moment -- those needed 597 // by the default abi. 598 llvm::Value *Val; 599 600 if (AI.isIndirect()) { 601 assert(!AI.getPaddingType() && 602 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 603 assert( 604 !AI.getIndirectRealign() && 605 "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!"); 606 607 auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty); 608 CharUnits TyAlignForABI = TyInfo.second; 609 610 llvm::Type *BaseTy = 611 llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 612 llvm::Value *Addr = 613 CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy); 614 return Address(Addr, TyAlignForABI); 615 } else { 616 assert((AI.isDirect() || AI.isExtend()) && 617 "Unexpected ArgInfo Kind in generic VAArg emitter!"); 618 619 assert(!AI.getInReg() && 620 "Unexpected InReg seen in arginfo in generic VAArg emitter!"); 621 assert(!AI.getPaddingType() && 622 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 623 assert(!AI.getDirectOffset() && 624 "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!"); 625 assert(!AI.getCoerceToType() && 626 "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!"); 627 628 Address Temp = CGF.CreateMemTemp(Ty, "varet"); 629 Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty)); 630 CGF.Builder.CreateStore(Val, Temp); 631 return Temp; 632 } 633 } 634 635 /// DefaultABIInfo - The default implementation for ABI specific 636 /// details. This implementation provides information which results in 637 /// self-consistent and sensible LLVM IR generation, but does not 638 /// conform to any particular ABI. 639 class DefaultABIInfo : public ABIInfo { 640 public: 641 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 642 643 ABIArgInfo classifyReturnType(QualType RetTy) const; 644 ABIArgInfo classifyArgumentType(QualType RetTy) const; 645 646 void computeInfo(CGFunctionInfo &FI) const override { 647 if (!getCXXABI().classifyReturnType(FI)) 648 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 649 for (auto &I : FI.arguments()) 650 I.info = classifyArgumentType(I.type); 651 } 652 653 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 654 QualType Ty) const override { 655 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 656 } 657 }; 658 659 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 660 public: 661 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 662 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 663 }; 664 665 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 666 Ty = useFirstFieldIfTransparentUnion(Ty); 667 668 if (isAggregateTypeForABI(Ty)) { 669 // Records with non-trivial destructors/copy-constructors should not be 670 // passed by value. 671 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 672 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 673 674 return getNaturalAlignIndirect(Ty); 675 } 676 677 // Treat an enum type as its underlying type. 678 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 679 Ty = EnumTy->getDecl()->getIntegerType(); 680 681 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 682 : ABIArgInfo::getDirect()); 683 } 684 685 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 686 if (RetTy->isVoidType()) 687 return ABIArgInfo::getIgnore(); 688 689 if (isAggregateTypeForABI(RetTy)) 690 return getNaturalAlignIndirect(RetTy); 691 692 // Treat an enum type as its underlying type. 693 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 694 RetTy = EnumTy->getDecl()->getIntegerType(); 695 696 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 697 : ABIArgInfo::getDirect()); 698 } 699 700 //===----------------------------------------------------------------------===// 701 // WebAssembly ABI Implementation 702 // 703 // This is a very simple ABI that relies a lot on DefaultABIInfo. 704 //===----------------------------------------------------------------------===// 705 706 class WebAssemblyABIInfo final : public DefaultABIInfo { 707 public: 708 explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT) 709 : DefaultABIInfo(CGT) {} 710 711 private: 712 ABIArgInfo classifyReturnType(QualType RetTy) const; 713 ABIArgInfo classifyArgumentType(QualType Ty) const; 714 715 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 716 // non-virtual, but computeInfo and EmitVAArg are virtual, so we 717 // overload them. 718 void computeInfo(CGFunctionInfo &FI) const override { 719 if (!getCXXABI().classifyReturnType(FI)) 720 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 721 for (auto &Arg : FI.arguments()) 722 Arg.info = classifyArgumentType(Arg.type); 723 } 724 725 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 726 QualType Ty) const override; 727 }; 728 729 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo { 730 public: 731 explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 732 : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT)) {} 733 }; 734 735 /// \brief Classify argument of given type \p Ty. 736 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const { 737 Ty = useFirstFieldIfTransparentUnion(Ty); 738 739 if (isAggregateTypeForABI(Ty)) { 740 // Records with non-trivial destructors/copy-constructors should not be 741 // passed by value. 742 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 743 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 744 // Ignore empty structs/unions. 745 if (isEmptyRecord(getContext(), Ty, true)) 746 return ABIArgInfo::getIgnore(); 747 // Lower single-element structs to just pass a regular value. TODO: We 748 // could do reasonable-size multiple-element structs too, using getExpand(), 749 // though watch out for things like bitfields. 750 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 751 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 752 } 753 754 // Otherwise just do the default thing. 755 return DefaultABIInfo::classifyArgumentType(Ty); 756 } 757 758 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const { 759 if (isAggregateTypeForABI(RetTy)) { 760 // Records with non-trivial destructors/copy-constructors should not be 761 // returned by value. 762 if (!getRecordArgABI(RetTy, getCXXABI())) { 763 // Ignore empty structs/unions. 764 if (isEmptyRecord(getContext(), RetTy, true)) 765 return ABIArgInfo::getIgnore(); 766 // Lower single-element structs to just return a regular value. TODO: We 767 // could do reasonable-size multiple-element structs too, using 768 // ABIArgInfo::getDirect(). 769 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 770 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 771 } 772 } 773 774 // Otherwise just do the default thing. 775 return DefaultABIInfo::classifyReturnType(RetTy); 776 } 777 778 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 779 QualType Ty) const { 780 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect=*/ false, 781 getContext().getTypeInfoInChars(Ty), 782 CharUnits::fromQuantity(4), 783 /*AllowHigherAlign=*/ true); 784 } 785 786 //===----------------------------------------------------------------------===// 787 // le32/PNaCl bitcode ABI Implementation 788 // 789 // This is a simplified version of the x86_32 ABI. Arguments and return values 790 // are always passed on the stack. 791 //===----------------------------------------------------------------------===// 792 793 class PNaClABIInfo : public ABIInfo { 794 public: 795 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 796 797 ABIArgInfo classifyReturnType(QualType RetTy) const; 798 ABIArgInfo classifyArgumentType(QualType RetTy) const; 799 800 void computeInfo(CGFunctionInfo &FI) const override; 801 Address EmitVAArg(CodeGenFunction &CGF, 802 Address VAListAddr, QualType Ty) const override; 803 }; 804 805 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 806 public: 807 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 808 : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {} 809 }; 810 811 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 812 if (!getCXXABI().classifyReturnType(FI)) 813 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 814 815 for (auto &I : FI.arguments()) 816 I.info = classifyArgumentType(I.type); 817 } 818 819 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 820 QualType Ty) const { 821 // The PNaCL ABI is a bit odd, in that varargs don't use normal 822 // function classification. Structs get passed directly for varargs 823 // functions, through a rewriting transform in 824 // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows 825 // this target to actually support a va_arg instructions with an 826 // aggregate type, unlike other targets. 827 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 828 } 829 830 /// \brief Classify argument of given type \p Ty. 831 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 832 if (isAggregateTypeForABI(Ty)) { 833 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 834 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 835 return getNaturalAlignIndirect(Ty); 836 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 837 // Treat an enum type as its underlying type. 838 Ty = EnumTy->getDecl()->getIntegerType(); 839 } else if (Ty->isFloatingType()) { 840 // Floating-point types don't go inreg. 841 return ABIArgInfo::getDirect(); 842 } 843 844 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 845 : ABIArgInfo::getDirect()); 846 } 847 848 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 849 if (RetTy->isVoidType()) 850 return ABIArgInfo::getIgnore(); 851 852 // In the PNaCl ABI we always return records/structures on the stack. 853 if (isAggregateTypeForABI(RetTy)) 854 return getNaturalAlignIndirect(RetTy); 855 856 // Treat an enum type as its underlying type. 857 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 858 RetTy = EnumTy->getDecl()->getIntegerType(); 859 860 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 861 : ABIArgInfo::getDirect()); 862 } 863 864 /// IsX86_MMXType - Return true if this is an MMX type. 865 bool IsX86_MMXType(llvm::Type *IRType) { 866 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 867 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 868 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 869 IRType->getScalarSizeInBits() != 64; 870 } 871 872 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 873 StringRef Constraint, 874 llvm::Type* Ty) { 875 bool IsMMXCons = llvm::StringSwitch<bool>(Constraint) 876 .Cases("y", "&y", "^Ym", true) 877 .Default(false); 878 if (IsMMXCons && Ty->isVectorTy()) { 879 if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) { 880 // Invalid MMX constraint 881 return nullptr; 882 } 883 884 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 885 } 886 887 // No operation needed 888 return Ty; 889 } 890 891 /// Returns true if this type can be passed in SSE registers with the 892 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 893 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 894 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 895 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) { 896 if (BT->getKind() == BuiltinType::LongDouble) { 897 if (&Context.getTargetInfo().getLongDoubleFormat() == 898 &llvm::APFloat::x87DoubleExtended()) 899 return false; 900 } 901 return true; 902 } 903 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 904 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 905 // registers specially. 906 unsigned VecSize = Context.getTypeSize(VT); 907 if (VecSize == 128 || VecSize == 256 || VecSize == 512) 908 return true; 909 } 910 return false; 911 } 912 913 /// Returns true if this aggregate is small enough to be passed in SSE registers 914 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 915 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 916 return NumMembers <= 4; 917 } 918 919 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86. 920 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) { 921 auto AI = ABIArgInfo::getDirect(T); 922 AI.setInReg(true); 923 AI.setCanBeFlattened(false); 924 return AI; 925 } 926 927 //===----------------------------------------------------------------------===// 928 // X86-32 ABI Implementation 929 //===----------------------------------------------------------------------===// 930 931 /// \brief Similar to llvm::CCState, but for Clang. 932 struct CCState { 933 CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {} 934 935 unsigned CC; 936 unsigned FreeRegs; 937 unsigned FreeSSERegs; 938 }; 939 940 enum { 941 // Vectorcall only allows the first 6 parameters to be passed in registers. 942 VectorcallMaxParamNumAsReg = 6 943 }; 944 945 /// X86_32ABIInfo - The X86-32 ABI information. 946 class X86_32ABIInfo : public SwiftABIInfo { 947 enum Class { 948 Integer, 949 Float 950 }; 951 952 static const unsigned MinABIStackAlignInBytes = 4; 953 954 bool IsDarwinVectorABI; 955 bool IsRetSmallStructInRegABI; 956 bool IsWin32StructABI; 957 bool IsSoftFloatABI; 958 bool IsMCUABI; 959 unsigned DefaultNumRegisterParameters; 960 961 static bool isRegisterSize(unsigned Size) { 962 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 963 } 964 965 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 966 // FIXME: Assumes vectorcall is in use. 967 return isX86VectorTypeForVectorCall(getContext(), Ty); 968 } 969 970 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 971 uint64_t NumMembers) const override { 972 // FIXME: Assumes vectorcall is in use. 973 return isX86VectorCallAggregateSmallEnough(NumMembers); 974 } 975 976 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 977 978 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 979 /// such that the argument will be passed in memory. 980 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 981 982 ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; 983 984 /// \brief Return the alignment to use for the given type on the stack. 985 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 986 987 Class classify(QualType Ty) const; 988 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 989 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 990 991 /// \brief Updates the number of available free registers, returns 992 /// true if any registers were allocated. 993 bool updateFreeRegs(QualType Ty, CCState &State) const; 994 995 bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, 996 bool &NeedsPadding) const; 997 bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; 998 999 bool canExpandIndirectArgument(QualType Ty) const; 1000 1001 /// \brief Rewrite the function info so that all memory arguments use 1002 /// inalloca. 1003 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 1004 1005 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1006 CharUnits &StackOffset, ABIArgInfo &Info, 1007 QualType Type) const; 1008 void computeVectorCallArgs(CGFunctionInfo &FI, CCState &State, 1009 bool &UsedInAlloca) const; 1010 1011 public: 1012 1013 void computeInfo(CGFunctionInfo &FI) const override; 1014 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 1015 QualType Ty) const override; 1016 1017 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1018 bool RetSmallStructInRegABI, bool Win32StructABI, 1019 unsigned NumRegisterParameters, bool SoftFloatABI) 1020 : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), 1021 IsRetSmallStructInRegABI(RetSmallStructInRegABI), 1022 IsWin32StructABI(Win32StructABI), 1023 IsSoftFloatABI(SoftFloatABI), 1024 IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), 1025 DefaultNumRegisterParameters(NumRegisterParameters) {} 1026 1027 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 1028 bool asReturnValue) const override { 1029 // LLVM's x86-32 lowering currently only assigns up to three 1030 // integer registers and three fp registers. Oddly, it'll use up to 1031 // four vector registers for vectors, but those can overlap with the 1032 // scalar registers. 1033 return occupiesMoreThan(CGT, scalars, /*total*/ 3); 1034 } 1035 1036 bool isSwiftErrorInRegister() const override { 1037 // x86-32 lowering does not support passing swifterror in a register. 1038 return false; 1039 } 1040 }; 1041 1042 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 1043 public: 1044 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1045 bool RetSmallStructInRegABI, bool Win32StructABI, 1046 unsigned NumRegisterParameters, bool SoftFloatABI) 1047 : TargetCodeGenInfo(new X86_32ABIInfo( 1048 CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, 1049 NumRegisterParameters, SoftFloatABI)) {} 1050 1051 static bool isStructReturnInRegABI( 1052 const llvm::Triple &Triple, const CodeGenOptions &Opts); 1053 1054 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1055 CodeGen::CodeGenModule &CGM) const override; 1056 1057 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1058 // Darwin uses different dwarf register numbers for EH. 1059 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 1060 return 4; 1061 } 1062 1063 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1064 llvm::Value *Address) const override; 1065 1066 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1067 StringRef Constraint, 1068 llvm::Type* Ty) const override { 1069 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1070 } 1071 1072 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 1073 std::string &Constraints, 1074 std::vector<llvm::Type *> &ResultRegTypes, 1075 std::vector<llvm::Type *> &ResultTruncRegTypes, 1076 std::vector<LValue> &ResultRegDests, 1077 std::string &AsmString, 1078 unsigned NumOutputs) const override; 1079 1080 llvm::Constant * 1081 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1082 unsigned Sig = (0xeb << 0) | // jmp rel8 1083 (0x06 << 8) | // .+0x08 1084 ('v' << 16) | 1085 ('2' << 24); 1086 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1087 } 1088 1089 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 1090 return "movl\t%ebp, %ebp" 1091 "\t\t// marker for objc_retainAutoreleaseReturnValue"; 1092 } 1093 }; 1094 1095 } 1096 1097 /// Rewrite input constraint references after adding some output constraints. 1098 /// In the case where there is one output and one input and we add one output, 1099 /// we need to replace all operand references greater than or equal to 1: 1100 /// mov $0, $1 1101 /// mov eax, $1 1102 /// The result will be: 1103 /// mov $0, $2 1104 /// mov eax, $2 1105 static void rewriteInputConstraintReferences(unsigned FirstIn, 1106 unsigned NumNewOuts, 1107 std::string &AsmString) { 1108 std::string Buf; 1109 llvm::raw_string_ostream OS(Buf); 1110 size_t Pos = 0; 1111 while (Pos < AsmString.size()) { 1112 size_t DollarStart = AsmString.find('$', Pos); 1113 if (DollarStart == std::string::npos) 1114 DollarStart = AsmString.size(); 1115 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 1116 if (DollarEnd == std::string::npos) 1117 DollarEnd = AsmString.size(); 1118 OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 1119 Pos = DollarEnd; 1120 size_t NumDollars = DollarEnd - DollarStart; 1121 if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 1122 // We have an operand reference. 1123 size_t DigitStart = Pos; 1124 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 1125 if (DigitEnd == std::string::npos) 1126 DigitEnd = AsmString.size(); 1127 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 1128 unsigned OperandIndex; 1129 if (!OperandStr.getAsInteger(10, OperandIndex)) { 1130 if (OperandIndex >= FirstIn) 1131 OperandIndex += NumNewOuts; 1132 OS << OperandIndex; 1133 } else { 1134 OS << OperandStr; 1135 } 1136 Pos = DigitEnd; 1137 } 1138 } 1139 AsmString = std::move(OS.str()); 1140 } 1141 1142 /// Add output constraints for EAX:EDX because they are return registers. 1143 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 1144 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 1145 std::vector<llvm::Type *> &ResultRegTypes, 1146 std::vector<llvm::Type *> &ResultTruncRegTypes, 1147 std::vector<LValue> &ResultRegDests, std::string &AsmString, 1148 unsigned NumOutputs) const { 1149 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 1150 1151 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 1152 // larger. 1153 if (!Constraints.empty()) 1154 Constraints += ','; 1155 if (RetWidth <= 32) { 1156 Constraints += "={eax}"; 1157 ResultRegTypes.push_back(CGF.Int32Ty); 1158 } else { 1159 // Use the 'A' constraint for EAX:EDX. 1160 Constraints += "=A"; 1161 ResultRegTypes.push_back(CGF.Int64Ty); 1162 } 1163 1164 // Truncate EAX or EAX:EDX to an integer of the appropriate size. 1165 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 1166 ResultTruncRegTypes.push_back(CoerceTy); 1167 1168 // Coerce the integer by bitcasting the return slot pointer. 1169 ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(), 1170 CoerceTy->getPointerTo())); 1171 ResultRegDests.push_back(ReturnSlot); 1172 1173 rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 1174 } 1175 1176 /// shouldReturnTypeInRegister - Determine if the given type should be 1177 /// returned in a register (for the Darwin and MCU ABI). 1178 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 1179 ASTContext &Context) const { 1180 uint64_t Size = Context.getTypeSize(Ty); 1181 1182 // For i386, type must be register sized. 1183 // For the MCU ABI, it only needs to be <= 8-byte 1184 if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) 1185 return false; 1186 1187 if (Ty->isVectorType()) { 1188 // 64- and 128- bit vectors inside structures are not returned in 1189 // registers. 1190 if (Size == 64 || Size == 128) 1191 return false; 1192 1193 return true; 1194 } 1195 1196 // If this is a builtin, pointer, enum, complex type, member pointer, or 1197 // member function pointer it is ok. 1198 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 1199 Ty->isAnyComplexType() || Ty->isEnumeralType() || 1200 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 1201 return true; 1202 1203 // Arrays are treated like records. 1204 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 1205 return shouldReturnTypeInRegister(AT->getElementType(), Context); 1206 1207 // Otherwise, it must be a record type. 1208 const RecordType *RT = Ty->getAs<RecordType>(); 1209 if (!RT) return false; 1210 1211 // FIXME: Traverse bases here too. 1212 1213 // Structure types are passed in register if all fields would be 1214 // passed in a register. 1215 for (const auto *FD : RT->getDecl()->fields()) { 1216 // Empty fields are ignored. 1217 if (isEmptyField(Context, FD, true)) 1218 continue; 1219 1220 // Check fields recursively. 1221 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 1222 return false; 1223 } 1224 return true; 1225 } 1226 1227 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 1228 // Treat complex types as the element type. 1229 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 1230 Ty = CTy->getElementType(); 1231 1232 // Check for a type which we know has a simple scalar argument-passing 1233 // convention without any padding. (We're specifically looking for 32 1234 // and 64-bit integer and integer-equivalents, float, and double.) 1235 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 1236 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 1237 return false; 1238 1239 uint64_t Size = Context.getTypeSize(Ty); 1240 return Size == 32 || Size == 64; 1241 } 1242 1243 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD, 1244 uint64_t &Size) { 1245 for (const auto *FD : RD->fields()) { 1246 // Scalar arguments on the stack get 4 byte alignment on x86. If the 1247 // argument is smaller than 32-bits, expanding the struct will create 1248 // alignment padding. 1249 if (!is32Or64BitBasicType(FD->getType(), Context)) 1250 return false; 1251 1252 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 1253 // how to expand them yet, and the predicate for telling if a bitfield still 1254 // counts as "basic" is more complicated than what we were doing previously. 1255 if (FD->isBitField()) 1256 return false; 1257 1258 Size += Context.getTypeSize(FD->getType()); 1259 } 1260 return true; 1261 } 1262 1263 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD, 1264 uint64_t &Size) { 1265 // Don't do this if there are any non-empty bases. 1266 for (const CXXBaseSpecifier &Base : RD->bases()) { 1267 if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(), 1268 Size)) 1269 return false; 1270 } 1271 if (!addFieldSizes(Context, RD, Size)) 1272 return false; 1273 return true; 1274 } 1275 1276 /// Test whether an argument type which is to be passed indirectly (on the 1277 /// stack) would have the equivalent layout if it was expanded into separate 1278 /// arguments. If so, we prefer to do the latter to avoid inhibiting 1279 /// optimizations. 1280 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const { 1281 // We can only expand structure types. 1282 const RecordType *RT = Ty->getAs<RecordType>(); 1283 if (!RT) 1284 return false; 1285 const RecordDecl *RD = RT->getDecl(); 1286 uint64_t Size = 0; 1287 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1288 if (!IsWin32StructABI) { 1289 // On non-Windows, we have to conservatively match our old bitcode 1290 // prototypes in order to be ABI-compatible at the bitcode level. 1291 if (!CXXRD->isCLike()) 1292 return false; 1293 } else { 1294 // Don't do this for dynamic classes. 1295 if (CXXRD->isDynamicClass()) 1296 return false; 1297 } 1298 if (!addBaseAndFieldSizes(getContext(), CXXRD, Size)) 1299 return false; 1300 } else { 1301 if (!addFieldSizes(getContext(), RD, Size)) 1302 return false; 1303 } 1304 1305 // We can do this if there was no alignment padding. 1306 return Size == getContext().getTypeSize(Ty); 1307 } 1308 1309 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { 1310 // If the return value is indirect, then the hidden argument is consuming one 1311 // integer register. 1312 if (State.FreeRegs) { 1313 --State.FreeRegs; 1314 if (!IsMCUABI) 1315 return getNaturalAlignIndirectInReg(RetTy); 1316 } 1317 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 1318 } 1319 1320 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 1321 CCState &State) const { 1322 if (RetTy->isVoidType()) 1323 return ABIArgInfo::getIgnore(); 1324 1325 const Type *Base = nullptr; 1326 uint64_t NumElts = 0; 1327 if ((State.CC == llvm::CallingConv::X86_VectorCall || 1328 State.CC == llvm::CallingConv::X86_RegCall) && 1329 isHomogeneousAggregate(RetTy, Base, NumElts)) { 1330 // The LLVM struct type for such an aggregate should lower properly. 1331 return ABIArgInfo::getDirect(); 1332 } 1333 1334 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 1335 // On Darwin, some vectors are returned in registers. 1336 if (IsDarwinVectorABI) { 1337 uint64_t Size = getContext().getTypeSize(RetTy); 1338 1339 // 128-bit vectors are a special case; they are returned in 1340 // registers and we need to make sure to pick a type the LLVM 1341 // backend will like. 1342 if (Size == 128) 1343 return ABIArgInfo::getDirect(llvm::VectorType::get( 1344 llvm::Type::getInt64Ty(getVMContext()), 2)); 1345 1346 // Always return in register if it fits in a general purpose 1347 // register, or if it is 64 bits and has a single element. 1348 if ((Size == 8 || Size == 16 || Size == 32) || 1349 (Size == 64 && VT->getNumElements() == 1)) 1350 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1351 Size)); 1352 1353 return getIndirectReturnResult(RetTy, State); 1354 } 1355 1356 return ABIArgInfo::getDirect(); 1357 } 1358 1359 if (isAggregateTypeForABI(RetTy)) { 1360 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 1361 // Structures with flexible arrays are always indirect. 1362 if (RT->getDecl()->hasFlexibleArrayMember()) 1363 return getIndirectReturnResult(RetTy, State); 1364 } 1365 1366 // If specified, structs and unions are always indirect. 1367 if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) 1368 return getIndirectReturnResult(RetTy, State); 1369 1370 // Ignore empty structs/unions. 1371 if (isEmptyRecord(getContext(), RetTy, true)) 1372 return ABIArgInfo::getIgnore(); 1373 1374 // Small structures which are register sized are generally returned 1375 // in a register. 1376 if (shouldReturnTypeInRegister(RetTy, getContext())) { 1377 uint64_t Size = getContext().getTypeSize(RetTy); 1378 1379 // As a special-case, if the struct is a "single-element" struct, and 1380 // the field is of type "float" or "double", return it in a 1381 // floating-point register. (MSVC does not apply this special case.) 1382 // We apply a similar transformation for pointer types to improve the 1383 // quality of the generated IR. 1384 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 1385 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 1386 || SeltTy->hasPointerRepresentation()) 1387 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 1388 1389 // FIXME: We should be able to narrow this integer in cases with dead 1390 // padding. 1391 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 1392 } 1393 1394 return getIndirectReturnResult(RetTy, State); 1395 } 1396 1397 // Treat an enum type as its underlying type. 1398 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1399 RetTy = EnumTy->getDecl()->getIntegerType(); 1400 1401 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 1402 : ABIArgInfo::getDirect()); 1403 } 1404 1405 static bool isSSEVectorType(ASTContext &Context, QualType Ty) { 1406 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 1407 } 1408 1409 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) { 1410 const RecordType *RT = Ty->getAs<RecordType>(); 1411 if (!RT) 1412 return 0; 1413 const RecordDecl *RD = RT->getDecl(); 1414 1415 // If this is a C++ record, check the bases first. 1416 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1417 for (const auto &I : CXXRD->bases()) 1418 if (!isRecordWithSSEVectorType(Context, I.getType())) 1419 return false; 1420 1421 for (const auto *i : RD->fields()) { 1422 QualType FT = i->getType(); 1423 1424 if (isSSEVectorType(Context, FT)) 1425 return true; 1426 1427 if (isRecordWithSSEVectorType(Context, FT)) 1428 return true; 1429 } 1430 1431 return false; 1432 } 1433 1434 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 1435 unsigned Align) const { 1436 // Otherwise, if the alignment is less than or equal to the minimum ABI 1437 // alignment, just use the default; the backend will handle this. 1438 if (Align <= MinABIStackAlignInBytes) 1439 return 0; // Use default alignment. 1440 1441 // On non-Darwin, the stack type alignment is always 4. 1442 if (!IsDarwinVectorABI) { 1443 // Set explicit alignment, since we may need to realign the top. 1444 return MinABIStackAlignInBytes; 1445 } 1446 1447 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 1448 if (Align >= 16 && (isSSEVectorType(getContext(), Ty) || 1449 isRecordWithSSEVectorType(getContext(), Ty))) 1450 return 16; 1451 1452 return MinABIStackAlignInBytes; 1453 } 1454 1455 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 1456 CCState &State) const { 1457 if (!ByVal) { 1458 if (State.FreeRegs) { 1459 --State.FreeRegs; // Non-byval indirects just use one pointer. 1460 if (!IsMCUABI) 1461 return getNaturalAlignIndirectInReg(Ty); 1462 } 1463 return getNaturalAlignIndirect(Ty, false); 1464 } 1465 1466 // Compute the byval alignment. 1467 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 1468 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 1469 if (StackAlign == 0) 1470 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); 1471 1472 // If the stack alignment is less than the type alignment, realign the 1473 // argument. 1474 bool Realign = TypeAlign > StackAlign; 1475 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), 1476 /*ByVal=*/true, Realign); 1477 } 1478 1479 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 1480 const Type *T = isSingleElementStruct(Ty, getContext()); 1481 if (!T) 1482 T = Ty.getTypePtr(); 1483 1484 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 1485 BuiltinType::Kind K = BT->getKind(); 1486 if (K == BuiltinType::Float || K == BuiltinType::Double) 1487 return Float; 1488 } 1489 return Integer; 1490 } 1491 1492 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { 1493 if (!IsSoftFloatABI) { 1494 Class C = classify(Ty); 1495 if (C == Float) 1496 return false; 1497 } 1498 1499 unsigned Size = getContext().getTypeSize(Ty); 1500 unsigned SizeInRegs = (Size + 31) / 32; 1501 1502 if (SizeInRegs == 0) 1503 return false; 1504 1505 if (!IsMCUABI) { 1506 if (SizeInRegs > State.FreeRegs) { 1507 State.FreeRegs = 0; 1508 return false; 1509 } 1510 } else { 1511 // The MCU psABI allows passing parameters in-reg even if there are 1512 // earlier parameters that are passed on the stack. Also, 1513 // it does not allow passing >8-byte structs in-register, 1514 // even if there are 3 free registers available. 1515 if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) 1516 return false; 1517 } 1518 1519 State.FreeRegs -= SizeInRegs; 1520 return true; 1521 } 1522 1523 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, 1524 bool &InReg, 1525 bool &NeedsPadding) const { 1526 // On Windows, aggregates other than HFAs are never passed in registers, and 1527 // they do not consume register slots. Homogenous floating-point aggregates 1528 // (HFAs) have already been dealt with at this point. 1529 if (IsWin32StructABI && isAggregateTypeForABI(Ty)) 1530 return false; 1531 1532 NeedsPadding = false; 1533 InReg = !IsMCUABI; 1534 1535 if (!updateFreeRegs(Ty, State)) 1536 return false; 1537 1538 if (IsMCUABI) 1539 return true; 1540 1541 if (State.CC == llvm::CallingConv::X86_FastCall || 1542 State.CC == llvm::CallingConv::X86_VectorCall || 1543 State.CC == llvm::CallingConv::X86_RegCall) { 1544 if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) 1545 NeedsPadding = true; 1546 1547 return false; 1548 } 1549 1550 return true; 1551 } 1552 1553 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { 1554 if (!updateFreeRegs(Ty, State)) 1555 return false; 1556 1557 if (IsMCUABI) 1558 return false; 1559 1560 if (State.CC == llvm::CallingConv::X86_FastCall || 1561 State.CC == llvm::CallingConv::X86_VectorCall || 1562 State.CC == llvm::CallingConv::X86_RegCall) { 1563 if (getContext().getTypeSize(Ty) > 32) 1564 return false; 1565 1566 return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || 1567 Ty->isReferenceType()); 1568 } 1569 1570 return true; 1571 } 1572 1573 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 1574 CCState &State) const { 1575 // FIXME: Set alignment on indirect arguments. 1576 1577 Ty = useFirstFieldIfTransparentUnion(Ty); 1578 1579 // Check with the C++ ABI first. 1580 const RecordType *RT = Ty->getAs<RecordType>(); 1581 if (RT) { 1582 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 1583 if (RAA == CGCXXABI::RAA_Indirect) { 1584 return getIndirectResult(Ty, false, State); 1585 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 1586 // The field index doesn't matter, we'll fix it up later. 1587 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 1588 } 1589 } 1590 1591 // Regcall uses the concept of a homogenous vector aggregate, similar 1592 // to other targets. 1593 const Type *Base = nullptr; 1594 uint64_t NumElts = 0; 1595 if (State.CC == llvm::CallingConv::X86_RegCall && 1596 isHomogeneousAggregate(Ty, Base, NumElts)) { 1597 1598 if (State.FreeSSERegs >= NumElts) { 1599 State.FreeSSERegs -= NumElts; 1600 if (Ty->isBuiltinType() || Ty->isVectorType()) 1601 return ABIArgInfo::getDirect(); 1602 return ABIArgInfo::getExpand(); 1603 } 1604 return getIndirectResult(Ty, /*ByVal=*/false, State); 1605 } 1606 1607 if (isAggregateTypeForABI(Ty)) { 1608 // Structures with flexible arrays are always indirect. 1609 // FIXME: This should not be byval! 1610 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 1611 return getIndirectResult(Ty, true, State); 1612 1613 // Ignore empty structs/unions on non-Windows. 1614 if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true)) 1615 return ABIArgInfo::getIgnore(); 1616 1617 llvm::LLVMContext &LLVMContext = getVMContext(); 1618 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 1619 bool NeedsPadding = false; 1620 bool InReg; 1621 if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { 1622 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 1623 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 1624 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 1625 if (InReg) 1626 return ABIArgInfo::getDirectInReg(Result); 1627 else 1628 return ABIArgInfo::getDirect(Result); 1629 } 1630 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 1631 1632 // Expand small (<= 128-bit) record types when we know that the stack layout 1633 // of those arguments will match the struct. This is important because the 1634 // LLVM backend isn't smart enough to remove byval, which inhibits many 1635 // optimizations. 1636 // Don't do this for the MCU if there are still free integer registers 1637 // (see X86_64 ABI for full explanation). 1638 if (getContext().getTypeSize(Ty) <= 4 * 32 && 1639 (!IsMCUABI || State.FreeRegs == 0) && canExpandIndirectArgument(Ty)) 1640 return ABIArgInfo::getExpandWithPadding( 1641 State.CC == llvm::CallingConv::X86_FastCall || 1642 State.CC == llvm::CallingConv::X86_VectorCall || 1643 State.CC == llvm::CallingConv::X86_RegCall, 1644 PaddingType); 1645 1646 return getIndirectResult(Ty, true, State); 1647 } 1648 1649 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1650 // On Darwin, some vectors are passed in memory, we handle this by passing 1651 // it as an i8/i16/i32/i64. 1652 if (IsDarwinVectorABI) { 1653 uint64_t Size = getContext().getTypeSize(Ty); 1654 if ((Size == 8 || Size == 16 || Size == 32) || 1655 (Size == 64 && VT->getNumElements() == 1)) 1656 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1657 Size)); 1658 } 1659 1660 if (IsX86_MMXType(CGT.ConvertType(Ty))) 1661 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 1662 1663 return ABIArgInfo::getDirect(); 1664 } 1665 1666 1667 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1668 Ty = EnumTy->getDecl()->getIntegerType(); 1669 1670 bool InReg = shouldPrimitiveUseInReg(Ty, State); 1671 1672 if (Ty->isPromotableIntegerType()) { 1673 if (InReg) 1674 return ABIArgInfo::getExtendInReg(Ty); 1675 return ABIArgInfo::getExtend(Ty); 1676 } 1677 1678 if (InReg) 1679 return ABIArgInfo::getDirectInReg(); 1680 return ABIArgInfo::getDirect(); 1681 } 1682 1683 void X86_32ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, CCState &State, 1684 bool &UsedInAlloca) const { 1685 // Vectorcall x86 works subtly different than in x64, so the format is 1686 // a bit different than the x64 version. First, all vector types (not HVAs) 1687 // are assigned, with the first 6 ending up in the YMM0-5 or XMM0-5 registers. 1688 // This differs from the x64 implementation, where the first 6 by INDEX get 1689 // registers. 1690 // After that, integers AND HVAs are assigned Left to Right in the same pass. 1691 // Integers are passed as ECX/EDX if one is available (in order). HVAs will 1692 // first take up the remaining YMM/XMM registers. If insufficient registers 1693 // remain but an integer register (ECX/EDX) is available, it will be passed 1694 // in that, else, on the stack. 1695 for (auto &I : FI.arguments()) { 1696 // First pass do all the vector types. 1697 const Type *Base = nullptr; 1698 uint64_t NumElts = 0; 1699 const QualType& Ty = I.type; 1700 if ((Ty->isVectorType() || Ty->isBuiltinType()) && 1701 isHomogeneousAggregate(Ty, Base, NumElts)) { 1702 if (State.FreeSSERegs >= NumElts) { 1703 State.FreeSSERegs -= NumElts; 1704 I.info = ABIArgInfo::getDirect(); 1705 } else { 1706 I.info = classifyArgumentType(Ty, State); 1707 } 1708 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1709 } 1710 } 1711 1712 for (auto &I : FI.arguments()) { 1713 // Second pass, do the rest! 1714 const Type *Base = nullptr; 1715 uint64_t NumElts = 0; 1716 const QualType& Ty = I.type; 1717 bool IsHva = isHomogeneousAggregate(Ty, Base, NumElts); 1718 1719 if (IsHva && !Ty->isVectorType() && !Ty->isBuiltinType()) { 1720 // Assign true HVAs (non vector/native FP types). 1721 if (State.FreeSSERegs >= NumElts) { 1722 State.FreeSSERegs -= NumElts; 1723 I.info = getDirectX86Hva(); 1724 } else { 1725 I.info = getIndirectResult(Ty, /*ByVal=*/false, State); 1726 } 1727 } else if (!IsHva) { 1728 // Assign all Non-HVAs, so this will exclude Vector/FP args. 1729 I.info = classifyArgumentType(Ty, State); 1730 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1731 } 1732 } 1733 } 1734 1735 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 1736 CCState State(FI.getCallingConvention()); 1737 if (IsMCUABI) 1738 State.FreeRegs = 3; 1739 else if (State.CC == llvm::CallingConv::X86_FastCall) 1740 State.FreeRegs = 2; 1741 else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1742 State.FreeRegs = 2; 1743 State.FreeSSERegs = 6; 1744 } else if (FI.getHasRegParm()) 1745 State.FreeRegs = FI.getRegParm(); 1746 else if (State.CC == llvm::CallingConv::X86_RegCall) { 1747 State.FreeRegs = 5; 1748 State.FreeSSERegs = 8; 1749 } else 1750 State.FreeRegs = DefaultNumRegisterParameters; 1751 1752 if (!getCXXABI().classifyReturnType(FI)) { 1753 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 1754 } else if (FI.getReturnInfo().isIndirect()) { 1755 // The C++ ABI is not aware of register usage, so we have to check if the 1756 // return value was sret and put it in a register ourselves if appropriate. 1757 if (State.FreeRegs) { 1758 --State.FreeRegs; // The sret parameter consumes a register. 1759 if (!IsMCUABI) 1760 FI.getReturnInfo().setInReg(true); 1761 } 1762 } 1763 1764 // The chain argument effectively gives us another free register. 1765 if (FI.isChainCall()) 1766 ++State.FreeRegs; 1767 1768 bool UsedInAlloca = false; 1769 if (State.CC == llvm::CallingConv::X86_VectorCall) { 1770 computeVectorCallArgs(FI, State, UsedInAlloca); 1771 } else { 1772 // If not vectorcall, revert to normal behavior. 1773 for (auto &I : FI.arguments()) { 1774 I.info = classifyArgumentType(I.type, State); 1775 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1776 } 1777 } 1778 1779 // If we needed to use inalloca for any argument, do a second pass and rewrite 1780 // all the memory arguments to use inalloca. 1781 if (UsedInAlloca) 1782 rewriteWithInAlloca(FI); 1783 } 1784 1785 void 1786 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1787 CharUnits &StackOffset, ABIArgInfo &Info, 1788 QualType Type) const { 1789 // Arguments are always 4-byte-aligned. 1790 CharUnits FieldAlign = CharUnits::fromQuantity(4); 1791 1792 assert(StackOffset.isMultipleOf(FieldAlign) && "unaligned inalloca struct"); 1793 Info = ABIArgInfo::getInAlloca(FrameFields.size()); 1794 FrameFields.push_back(CGT.ConvertTypeForMem(Type)); 1795 StackOffset += getContext().getTypeSizeInChars(Type); 1796 1797 // Insert padding bytes to respect alignment. 1798 CharUnits FieldEnd = StackOffset; 1799 StackOffset = FieldEnd.alignTo(FieldAlign); 1800 if (StackOffset != FieldEnd) { 1801 CharUnits NumBytes = StackOffset - FieldEnd; 1802 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 1803 Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); 1804 FrameFields.push_back(Ty); 1805 } 1806 } 1807 1808 static bool isArgInAlloca(const ABIArgInfo &Info) { 1809 // Leave ignored and inreg arguments alone. 1810 switch (Info.getKind()) { 1811 case ABIArgInfo::InAlloca: 1812 return true; 1813 case ABIArgInfo::Indirect: 1814 assert(Info.getIndirectByVal()); 1815 return true; 1816 case ABIArgInfo::Ignore: 1817 return false; 1818 case ABIArgInfo::Direct: 1819 case ABIArgInfo::Extend: 1820 if (Info.getInReg()) 1821 return false; 1822 return true; 1823 case ABIArgInfo::Expand: 1824 case ABIArgInfo::CoerceAndExpand: 1825 // These are aggregate types which are never passed in registers when 1826 // inalloca is involved. 1827 return true; 1828 } 1829 llvm_unreachable("invalid enum"); 1830 } 1831 1832 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 1833 assert(IsWin32StructABI && "inalloca only supported on win32"); 1834 1835 // Build a packed struct type for all of the arguments in memory. 1836 SmallVector<llvm::Type *, 6> FrameFields; 1837 1838 // The stack alignment is always 4. 1839 CharUnits StackAlign = CharUnits::fromQuantity(4); 1840 1841 CharUnits StackOffset; 1842 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 1843 1844 // Put 'this' into the struct before 'sret', if necessary. 1845 bool IsThisCall = 1846 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 1847 ABIArgInfo &Ret = FI.getReturnInfo(); 1848 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 1849 isArgInAlloca(I->info)) { 1850 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1851 ++I; 1852 } 1853 1854 // Put the sret parameter into the inalloca struct if it's in memory. 1855 if (Ret.isIndirect() && !Ret.getInReg()) { 1856 CanQualType PtrTy = getContext().getPointerType(FI.getReturnType()); 1857 addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy); 1858 // On Windows, the hidden sret parameter is always returned in eax. 1859 Ret.setInAllocaSRet(IsWin32StructABI); 1860 } 1861 1862 // Skip the 'this' parameter in ecx. 1863 if (IsThisCall) 1864 ++I; 1865 1866 // Put arguments passed in memory into the struct. 1867 for (; I != E; ++I) { 1868 if (isArgInAlloca(I->info)) 1869 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1870 } 1871 1872 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 1873 /*isPacked=*/true), 1874 StackAlign); 1875 } 1876 1877 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, 1878 Address VAListAddr, QualType Ty) const { 1879 1880 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 1881 1882 // x86-32 changes the alignment of certain arguments on the stack. 1883 // 1884 // Just messing with TypeInfo like this works because we never pass 1885 // anything indirectly. 1886 TypeInfo.second = CharUnits::fromQuantity( 1887 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity())); 1888 1889 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 1890 TypeInfo, CharUnits::fromQuantity(4), 1891 /*AllowHigherAlign*/ true); 1892 } 1893 1894 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 1895 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 1896 assert(Triple.getArch() == llvm::Triple::x86); 1897 1898 switch (Opts.getStructReturnConvention()) { 1899 case CodeGenOptions::SRCK_Default: 1900 break; 1901 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 1902 return false; 1903 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 1904 return true; 1905 } 1906 1907 if (Triple.isOSDarwin() || Triple.isOSIAMCU()) 1908 return true; 1909 1910 switch (Triple.getOS()) { 1911 case llvm::Triple::DragonFly: 1912 case llvm::Triple::FreeBSD: 1913 case llvm::Triple::OpenBSD: 1914 case llvm::Triple::Win32: 1915 return true; 1916 default: 1917 return false; 1918 } 1919 } 1920 1921 void X86_32TargetCodeGenInfo::setTargetAttributes( 1922 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 1923 if (GV->isDeclaration()) 1924 return; 1925 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 1926 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 1927 // Get the LLVM function. 1928 llvm::Function *Fn = cast<llvm::Function>(GV); 1929 1930 // Now add the 'alignstack' attribute with a value of 16. 1931 llvm::AttrBuilder B; 1932 B.addStackAlignmentAttr(16); 1933 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 1934 } 1935 if (FD->hasAttr<AnyX86InterruptAttr>()) { 1936 llvm::Function *Fn = cast<llvm::Function>(GV); 1937 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 1938 } 1939 } 1940 } 1941 1942 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 1943 CodeGen::CodeGenFunction &CGF, 1944 llvm::Value *Address) const { 1945 CodeGen::CGBuilderTy &Builder = CGF.Builder; 1946 1947 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 1948 1949 // 0-7 are the eight integer registers; the order is different 1950 // on Darwin (for EH), but the range is the same. 1951 // 8 is %eip. 1952 AssignToArrayRange(Builder, Address, Four8, 0, 8); 1953 1954 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 1955 // 12-16 are st(0..4). Not sure why we stop at 4. 1956 // These have size 16, which is sizeof(long double) on 1957 // platforms with 8-byte alignment for that type. 1958 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 1959 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 1960 1961 } else { 1962 // 9 is %eflags, which doesn't get a size on Darwin for some 1963 // reason. 1964 Builder.CreateAlignedStore( 1965 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), 1966 CharUnits::One()); 1967 1968 // 11-16 are st(0..5). Not sure why we stop at 5. 1969 // These have size 12, which is sizeof(long double) on 1970 // platforms with 4-byte alignment for that type. 1971 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 1972 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 1973 } 1974 1975 return false; 1976 } 1977 1978 //===----------------------------------------------------------------------===// 1979 // X86-64 ABI Implementation 1980 //===----------------------------------------------------------------------===// 1981 1982 1983 namespace { 1984 /// The AVX ABI level for X86 targets. 1985 enum class X86AVXABILevel { 1986 None, 1987 AVX, 1988 AVX512 1989 }; 1990 1991 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. 1992 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { 1993 switch (AVXLevel) { 1994 case X86AVXABILevel::AVX512: 1995 return 512; 1996 case X86AVXABILevel::AVX: 1997 return 256; 1998 case X86AVXABILevel::None: 1999 return 128; 2000 } 2001 llvm_unreachable("Unknown AVXLevel"); 2002 } 2003 2004 /// X86_64ABIInfo - The X86_64 ABI information. 2005 class X86_64ABIInfo : public SwiftABIInfo { 2006 enum Class { 2007 Integer = 0, 2008 SSE, 2009 SSEUp, 2010 X87, 2011 X87Up, 2012 ComplexX87, 2013 NoClass, 2014 Memory 2015 }; 2016 2017 /// merge - Implement the X86_64 ABI merging algorithm. 2018 /// 2019 /// Merge an accumulating classification \arg Accum with a field 2020 /// classification \arg Field. 2021 /// 2022 /// \param Accum - The accumulating classification. This should 2023 /// always be either NoClass or the result of a previous merge 2024 /// call. In addition, this should never be Memory (the caller 2025 /// should just return Memory for the aggregate). 2026 static Class merge(Class Accum, Class Field); 2027 2028 /// postMerge - Implement the X86_64 ABI post merging algorithm. 2029 /// 2030 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 2031 /// final MEMORY or SSE classes when necessary. 2032 /// 2033 /// \param AggregateSize - The size of the current aggregate in 2034 /// the classification process. 2035 /// 2036 /// \param Lo - The classification for the parts of the type 2037 /// residing in the low word of the containing object. 2038 /// 2039 /// \param Hi - The classification for the parts of the type 2040 /// residing in the higher words of the containing object. 2041 /// 2042 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 2043 2044 /// classify - Determine the x86_64 register classes in which the 2045 /// given type T should be passed. 2046 /// 2047 /// \param Lo - The classification for the parts of the type 2048 /// residing in the low word of the containing object. 2049 /// 2050 /// \param Hi - The classification for the parts of the type 2051 /// residing in the high word of the containing object. 2052 /// 2053 /// \param OffsetBase - The bit offset of this type in the 2054 /// containing object. Some parameters are classified different 2055 /// depending on whether they straddle an eightbyte boundary. 2056 /// 2057 /// \param isNamedArg - Whether the argument in question is a "named" 2058 /// argument, as used in AMD64-ABI 3.5.7. 2059 /// 2060 /// If a word is unused its result will be NoClass; if a type should 2061 /// be passed in Memory then at least the classification of \arg Lo 2062 /// will be Memory. 2063 /// 2064 /// The \arg Lo class will be NoClass iff the argument is ignored. 2065 /// 2066 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 2067 /// also be ComplexX87. 2068 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 2069 bool isNamedArg) const; 2070 2071 llvm::Type *GetByteVectorType(QualType Ty) const; 2072 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 2073 unsigned IROffset, QualType SourceTy, 2074 unsigned SourceOffset) const; 2075 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 2076 unsigned IROffset, QualType SourceTy, 2077 unsigned SourceOffset) const; 2078 2079 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2080 /// such that the argument will be returned in memory. 2081 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 2082 2083 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2084 /// such that the argument will be passed in memory. 2085 /// 2086 /// \param freeIntRegs - The number of free integer registers remaining 2087 /// available. 2088 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 2089 2090 ABIArgInfo classifyReturnType(QualType RetTy) const; 2091 2092 ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs, 2093 unsigned &neededInt, unsigned &neededSSE, 2094 bool isNamedArg) const; 2095 2096 ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt, 2097 unsigned &NeededSSE) const; 2098 2099 ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 2100 unsigned &NeededSSE) const; 2101 2102 bool IsIllegalVectorType(QualType Ty) const; 2103 2104 /// The 0.98 ABI revision clarified a lot of ambiguities, 2105 /// unfortunately in ways that were not always consistent with 2106 /// certain previous compilers. In particular, platforms which 2107 /// required strict binary compatibility with older versions of GCC 2108 /// may need to exempt themselves. 2109 bool honorsRevision0_98() const { 2110 return !getTarget().getTriple().isOSDarwin(); 2111 } 2112 2113 /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to 2114 /// classify it as INTEGER (for compatibility with older clang compilers). 2115 bool classifyIntegerMMXAsSSE() const { 2116 // Clang <= 3.8 did not do this. 2117 if (getCodeGenOpts().getClangABICompat() <= 2118 CodeGenOptions::ClangABI::Ver3_8) 2119 return false; 2120 2121 const llvm::Triple &Triple = getTarget().getTriple(); 2122 if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4) 2123 return false; 2124 if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10) 2125 return false; 2126 return true; 2127 } 2128 2129 X86AVXABILevel AVXLevel; 2130 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 2131 // 64-bit hardware. 2132 bool Has64BitPointers; 2133 2134 public: 2135 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : 2136 SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2137 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 2138 } 2139 2140 bool isPassedUsingAVXType(QualType type) const { 2141 unsigned neededInt, neededSSE; 2142 // The freeIntRegs argument doesn't matter here. 2143 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 2144 /*isNamedArg*/true); 2145 if (info.isDirect()) { 2146 llvm::Type *ty = info.getCoerceToType(); 2147 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 2148 return (vectorTy->getBitWidth() > 128); 2149 } 2150 return false; 2151 } 2152 2153 void computeInfo(CGFunctionInfo &FI) const override; 2154 2155 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2156 QualType Ty) const override; 2157 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 2158 QualType Ty) const override; 2159 2160 bool has64BitPointers() const { 2161 return Has64BitPointers; 2162 } 2163 2164 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 2165 bool asReturnValue) const override { 2166 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2167 } 2168 bool isSwiftErrorInRegister() const override { 2169 return true; 2170 } 2171 }; 2172 2173 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 2174 class WinX86_64ABIInfo : public SwiftABIInfo { 2175 public: 2176 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) 2177 : SwiftABIInfo(CGT), 2178 IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} 2179 2180 void computeInfo(CGFunctionInfo &FI) const override; 2181 2182 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2183 QualType Ty) const override; 2184 2185 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 2186 // FIXME: Assumes vectorcall is in use. 2187 return isX86VectorTypeForVectorCall(getContext(), Ty); 2188 } 2189 2190 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 2191 uint64_t NumMembers) const override { 2192 // FIXME: Assumes vectorcall is in use. 2193 return isX86VectorCallAggregateSmallEnough(NumMembers); 2194 } 2195 2196 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars, 2197 bool asReturnValue) const override { 2198 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2199 } 2200 2201 bool isSwiftErrorInRegister() const override { 2202 return true; 2203 } 2204 2205 private: 2206 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType, 2207 bool IsVectorCall, bool IsRegCall) const; 2208 ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 2209 const ABIArgInfo ¤t) const; 2210 void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs, 2211 bool IsVectorCall, bool IsRegCall) const; 2212 2213 bool IsMingw64; 2214 }; 2215 2216 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2217 public: 2218 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2219 : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {} 2220 2221 const X86_64ABIInfo &getABIInfo() const { 2222 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 2223 } 2224 2225 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2226 return 7; 2227 } 2228 2229 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2230 llvm::Value *Address) const override { 2231 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2232 2233 // 0-15 are the 16 integer registers. 2234 // 16 is %rip. 2235 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2236 return false; 2237 } 2238 2239 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 2240 StringRef Constraint, 2241 llvm::Type* Ty) const override { 2242 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 2243 } 2244 2245 bool isNoProtoCallVariadic(const CallArgList &args, 2246 const FunctionNoProtoType *fnType) const override { 2247 // The default CC on x86-64 sets %al to the number of SSA 2248 // registers used, and GCC sets this when calling an unprototyped 2249 // function, so we override the default behavior. However, don't do 2250 // that when AVX types are involved: the ABI explicitly states it is 2251 // undefined, and it doesn't work in practice because of how the ABI 2252 // defines varargs anyway. 2253 if (fnType->getCallConv() == CC_C) { 2254 bool HasAVXType = false; 2255 for (CallArgList::const_iterator 2256 it = args.begin(), ie = args.end(); it != ie; ++it) { 2257 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 2258 HasAVXType = true; 2259 break; 2260 } 2261 } 2262 2263 if (!HasAVXType) 2264 return true; 2265 } 2266 2267 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 2268 } 2269 2270 llvm::Constant * 2271 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 2272 unsigned Sig = (0xeb << 0) | // jmp rel8 2273 (0x06 << 8) | // .+0x08 2274 ('v' << 16) | 2275 ('2' << 24); 2276 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 2277 } 2278 2279 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2280 CodeGen::CodeGenModule &CGM) const override { 2281 if (GV->isDeclaration()) 2282 return; 2283 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2284 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2285 // Get the LLVM function. 2286 auto *Fn = cast<llvm::Function>(GV); 2287 2288 // Now add the 'alignstack' attribute with a value of 16. 2289 llvm::AttrBuilder B; 2290 B.addStackAlignmentAttr(16); 2291 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 2292 } 2293 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2294 llvm::Function *Fn = cast<llvm::Function>(GV); 2295 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2296 } 2297 } 2298 } 2299 }; 2300 2301 class PS4TargetCodeGenInfo : public X86_64TargetCodeGenInfo { 2302 public: 2303 PS4TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2304 : X86_64TargetCodeGenInfo(CGT, AVXLevel) {} 2305 2306 void getDependentLibraryOption(llvm::StringRef Lib, 2307 llvm::SmallString<24> &Opt) const override { 2308 Opt = "\01"; 2309 // If the argument contains a space, enclose it in quotes. 2310 if (Lib.find(" ") != StringRef::npos) 2311 Opt += "\"" + Lib.str() + "\""; 2312 else 2313 Opt += Lib; 2314 } 2315 }; 2316 2317 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 2318 // If the argument does not end in .lib, automatically add the suffix. 2319 // If the argument contains a space, enclose it in quotes. 2320 // This matches the behavior of MSVC. 2321 bool Quote = (Lib.find(" ") != StringRef::npos); 2322 std::string ArgStr = Quote ? "\"" : ""; 2323 ArgStr += Lib; 2324 if (!Lib.endswith_lower(".lib")) 2325 ArgStr += ".lib"; 2326 ArgStr += Quote ? "\"" : ""; 2327 return ArgStr; 2328 } 2329 2330 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 2331 public: 2332 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2333 bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, 2334 unsigned NumRegisterParameters) 2335 : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, 2336 Win32StructABI, NumRegisterParameters, false) {} 2337 2338 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2339 CodeGen::CodeGenModule &CGM) const override; 2340 2341 void getDependentLibraryOption(llvm::StringRef Lib, 2342 llvm::SmallString<24> &Opt) const override { 2343 Opt = "/DEFAULTLIB:"; 2344 Opt += qualifyWindowsLibrary(Lib); 2345 } 2346 2347 void getDetectMismatchOption(llvm::StringRef Name, 2348 llvm::StringRef Value, 2349 llvm::SmallString<32> &Opt) const override { 2350 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2351 } 2352 }; 2353 2354 static void addStackProbeSizeTargetAttribute(const Decl *D, 2355 llvm::GlobalValue *GV, 2356 CodeGen::CodeGenModule &CGM) { 2357 if (D && isa<FunctionDecl>(D)) { 2358 if (CGM.getCodeGenOpts().StackProbeSize != 4096) { 2359 llvm::Function *Fn = cast<llvm::Function>(GV); 2360 2361 Fn->addFnAttr("stack-probe-size", 2362 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 2363 } 2364 } 2365 } 2366 2367 void WinX86_32TargetCodeGenInfo::setTargetAttributes( 2368 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2369 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2370 if (GV->isDeclaration()) 2371 return; 2372 addStackProbeSizeTargetAttribute(D, GV, CGM); 2373 } 2374 2375 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2376 public: 2377 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2378 X86AVXABILevel AVXLevel) 2379 : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {} 2380 2381 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2382 CodeGen::CodeGenModule &CGM) const override; 2383 2384 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2385 return 7; 2386 } 2387 2388 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2389 llvm::Value *Address) const override { 2390 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2391 2392 // 0-15 are the 16 integer registers. 2393 // 16 is %rip. 2394 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2395 return false; 2396 } 2397 2398 void getDependentLibraryOption(llvm::StringRef Lib, 2399 llvm::SmallString<24> &Opt) const override { 2400 Opt = "/DEFAULTLIB:"; 2401 Opt += qualifyWindowsLibrary(Lib); 2402 } 2403 2404 void getDetectMismatchOption(llvm::StringRef Name, 2405 llvm::StringRef Value, 2406 llvm::SmallString<32> &Opt) const override { 2407 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2408 } 2409 }; 2410 2411 void WinX86_64TargetCodeGenInfo::setTargetAttributes( 2412 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2413 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2414 if (GV->isDeclaration()) 2415 return; 2416 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2417 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2418 // Get the LLVM function. 2419 auto *Fn = cast<llvm::Function>(GV); 2420 2421 // Now add the 'alignstack' attribute with a value of 16. 2422 llvm::AttrBuilder B; 2423 B.addStackAlignmentAttr(16); 2424 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 2425 } 2426 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2427 llvm::Function *Fn = cast<llvm::Function>(GV); 2428 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2429 } 2430 } 2431 2432 addStackProbeSizeTargetAttribute(D, GV, CGM); 2433 } 2434 } 2435 2436 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 2437 Class &Hi) const { 2438 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 2439 // 2440 // (a) If one of the classes is Memory, the whole argument is passed in 2441 // memory. 2442 // 2443 // (b) If X87UP is not preceded by X87, the whole argument is passed in 2444 // memory. 2445 // 2446 // (c) If the size of the aggregate exceeds two eightbytes and the first 2447 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 2448 // argument is passed in memory. NOTE: This is necessary to keep the 2449 // ABI working for processors that don't support the __m256 type. 2450 // 2451 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 2452 // 2453 // Some of these are enforced by the merging logic. Others can arise 2454 // only with unions; for example: 2455 // union { _Complex double; unsigned; } 2456 // 2457 // Note that clauses (b) and (c) were added in 0.98. 2458 // 2459 if (Hi == Memory) 2460 Lo = Memory; 2461 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 2462 Lo = Memory; 2463 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 2464 Lo = Memory; 2465 if (Hi == SSEUp && Lo != SSE) 2466 Hi = SSE; 2467 } 2468 2469 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 2470 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 2471 // classified recursively so that always two fields are 2472 // considered. The resulting class is calculated according to 2473 // the classes of the fields in the eightbyte: 2474 // 2475 // (a) If both classes are equal, this is the resulting class. 2476 // 2477 // (b) If one of the classes is NO_CLASS, the resulting class is 2478 // the other class. 2479 // 2480 // (c) If one of the classes is MEMORY, the result is the MEMORY 2481 // class. 2482 // 2483 // (d) If one of the classes is INTEGER, the result is the 2484 // INTEGER. 2485 // 2486 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 2487 // MEMORY is used as class. 2488 // 2489 // (f) Otherwise class SSE is used. 2490 2491 // Accum should never be memory (we should have returned) or 2492 // ComplexX87 (because this cannot be passed in a structure). 2493 assert((Accum != Memory && Accum != ComplexX87) && 2494 "Invalid accumulated classification during merge."); 2495 if (Accum == Field || Field == NoClass) 2496 return Accum; 2497 if (Field == Memory) 2498 return Memory; 2499 if (Accum == NoClass) 2500 return Field; 2501 if (Accum == Integer || Field == Integer) 2502 return Integer; 2503 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 2504 Accum == X87 || Accum == X87Up) 2505 return Memory; 2506 return SSE; 2507 } 2508 2509 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 2510 Class &Lo, Class &Hi, bool isNamedArg) const { 2511 // FIXME: This code can be simplified by introducing a simple value class for 2512 // Class pairs with appropriate constructor methods for the various 2513 // situations. 2514 2515 // FIXME: Some of the split computations are wrong; unaligned vectors 2516 // shouldn't be passed in registers for example, so there is no chance they 2517 // can straddle an eightbyte. Verify & simplify. 2518 2519 Lo = Hi = NoClass; 2520 2521 Class &Current = OffsetBase < 64 ? Lo : Hi; 2522 Current = Memory; 2523 2524 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 2525 BuiltinType::Kind k = BT->getKind(); 2526 2527 if (k == BuiltinType::Void) { 2528 Current = NoClass; 2529 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 2530 Lo = Integer; 2531 Hi = Integer; 2532 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 2533 Current = Integer; 2534 } else if (k == BuiltinType::Float || k == BuiltinType::Double) { 2535 Current = SSE; 2536 } else if (k == BuiltinType::LongDouble) { 2537 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2538 if (LDF == &llvm::APFloat::IEEEquad()) { 2539 Lo = SSE; 2540 Hi = SSEUp; 2541 } else if (LDF == &llvm::APFloat::x87DoubleExtended()) { 2542 Lo = X87; 2543 Hi = X87Up; 2544 } else if (LDF == &llvm::APFloat::IEEEdouble()) { 2545 Current = SSE; 2546 } else 2547 llvm_unreachable("unexpected long double representation!"); 2548 } 2549 // FIXME: _Decimal32 and _Decimal64 are SSE. 2550 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 2551 return; 2552 } 2553 2554 if (const EnumType *ET = Ty->getAs<EnumType>()) { 2555 // Classify the underlying integer type. 2556 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 2557 return; 2558 } 2559 2560 if (Ty->hasPointerRepresentation()) { 2561 Current = Integer; 2562 return; 2563 } 2564 2565 if (Ty->isMemberPointerType()) { 2566 if (Ty->isMemberFunctionPointerType()) { 2567 if (Has64BitPointers) { 2568 // If Has64BitPointers, this is an {i64, i64}, so classify both 2569 // Lo and Hi now. 2570 Lo = Hi = Integer; 2571 } else { 2572 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 2573 // straddles an eightbyte boundary, Hi should be classified as well. 2574 uint64_t EB_FuncPtr = (OffsetBase) / 64; 2575 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 2576 if (EB_FuncPtr != EB_ThisAdj) { 2577 Lo = Hi = Integer; 2578 } else { 2579 Current = Integer; 2580 } 2581 } 2582 } else { 2583 Current = Integer; 2584 } 2585 return; 2586 } 2587 2588 if (const VectorType *VT = Ty->getAs<VectorType>()) { 2589 uint64_t Size = getContext().getTypeSize(VT); 2590 if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { 2591 // gcc passes the following as integer: 2592 // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> 2593 // 2 bytes - <2 x char>, <1 x short> 2594 // 1 byte - <1 x char> 2595 Current = Integer; 2596 2597 // If this type crosses an eightbyte boundary, it should be 2598 // split. 2599 uint64_t EB_Lo = (OffsetBase) / 64; 2600 uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; 2601 if (EB_Lo != EB_Hi) 2602 Hi = Lo; 2603 } else if (Size == 64) { 2604 QualType ElementType = VT->getElementType(); 2605 2606 // gcc passes <1 x double> in memory. :( 2607 if (ElementType->isSpecificBuiltinType(BuiltinType::Double)) 2608 return; 2609 2610 // gcc passes <1 x long long> as SSE but clang used to unconditionally 2611 // pass them as integer. For platforms where clang is the de facto 2612 // platform compiler, we must continue to use integer. 2613 if (!classifyIntegerMMXAsSSE() && 2614 (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) || 2615 ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) || 2616 ElementType->isSpecificBuiltinType(BuiltinType::Long) || 2617 ElementType->isSpecificBuiltinType(BuiltinType::ULong))) 2618 Current = Integer; 2619 else 2620 Current = SSE; 2621 2622 // If this type crosses an eightbyte boundary, it should be 2623 // split. 2624 if (OffsetBase && OffsetBase != 64) 2625 Hi = Lo; 2626 } else if (Size == 128 || 2627 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { 2628 // Arguments of 256-bits are split into four eightbyte chunks. The 2629 // least significant one belongs to class SSE and all the others to class 2630 // SSEUP. The original Lo and Hi design considers that types can't be 2631 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 2632 // This design isn't correct for 256-bits, but since there're no cases 2633 // where the upper parts would need to be inspected, avoid adding 2634 // complexity and just consider Hi to match the 64-256 part. 2635 // 2636 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 2637 // registers if they are "named", i.e. not part of the "..." of a 2638 // variadic function. 2639 // 2640 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are 2641 // split into eight eightbyte chunks, one SSE and seven SSEUP. 2642 Lo = SSE; 2643 Hi = SSEUp; 2644 } 2645 return; 2646 } 2647 2648 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 2649 QualType ET = getContext().getCanonicalType(CT->getElementType()); 2650 2651 uint64_t Size = getContext().getTypeSize(Ty); 2652 if (ET->isIntegralOrEnumerationType()) { 2653 if (Size <= 64) 2654 Current = Integer; 2655 else if (Size <= 128) 2656 Lo = Hi = Integer; 2657 } else if (ET == getContext().FloatTy) { 2658 Current = SSE; 2659 } else if (ET == getContext().DoubleTy) { 2660 Lo = Hi = SSE; 2661 } else if (ET == getContext().LongDoubleTy) { 2662 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2663 if (LDF == &llvm::APFloat::IEEEquad()) 2664 Current = Memory; 2665 else if (LDF == &llvm::APFloat::x87DoubleExtended()) 2666 Current = ComplexX87; 2667 else if (LDF == &llvm::APFloat::IEEEdouble()) 2668 Lo = Hi = SSE; 2669 else 2670 llvm_unreachable("unexpected long double representation!"); 2671 } 2672 2673 // If this complex type crosses an eightbyte boundary then it 2674 // should be split. 2675 uint64_t EB_Real = (OffsetBase) / 64; 2676 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 2677 if (Hi == NoClass && EB_Real != EB_Imag) 2678 Hi = Lo; 2679 2680 return; 2681 } 2682 2683 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 2684 // Arrays are treated like structures. 2685 2686 uint64_t Size = getContext().getTypeSize(Ty); 2687 2688 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2689 // than eight eightbytes, ..., it has class MEMORY. 2690 if (Size > 512) 2691 return; 2692 2693 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 2694 // fields, it has class MEMORY. 2695 // 2696 // Only need to check alignment of array base. 2697 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 2698 return; 2699 2700 // Otherwise implement simplified merge. We could be smarter about 2701 // this, but it isn't worth it and would be harder to verify. 2702 Current = NoClass; 2703 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 2704 uint64_t ArraySize = AT->getSize().getZExtValue(); 2705 2706 // The only case a 256-bit wide vector could be used is when the array 2707 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2708 // to work for sizes wider than 128, early check and fallback to memory. 2709 // 2710 if (Size > 128 && 2711 (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel))) 2712 return; 2713 2714 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 2715 Class FieldLo, FieldHi; 2716 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 2717 Lo = merge(Lo, FieldLo); 2718 Hi = merge(Hi, FieldHi); 2719 if (Lo == Memory || Hi == Memory) 2720 break; 2721 } 2722 2723 postMerge(Size, Lo, Hi); 2724 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 2725 return; 2726 } 2727 2728 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2729 uint64_t Size = getContext().getTypeSize(Ty); 2730 2731 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2732 // than eight eightbytes, ..., it has class MEMORY. 2733 if (Size > 512) 2734 return; 2735 2736 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 2737 // copy constructor or a non-trivial destructor, it is passed by invisible 2738 // reference. 2739 if (getRecordArgABI(RT, getCXXABI())) 2740 return; 2741 2742 const RecordDecl *RD = RT->getDecl(); 2743 2744 // Assume variable sized types are passed in memory. 2745 if (RD->hasFlexibleArrayMember()) 2746 return; 2747 2748 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2749 2750 // Reset Lo class, this will be recomputed. 2751 Current = NoClass; 2752 2753 // If this is a C++ record, classify the bases first. 2754 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2755 for (const auto &I : CXXRD->bases()) { 2756 assert(!I.isVirtual() && !I.getType()->isDependentType() && 2757 "Unexpected base class!"); 2758 const CXXRecordDecl *Base = 2759 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2760 2761 // Classify this field. 2762 // 2763 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 2764 // single eightbyte, each is classified separately. Each eightbyte gets 2765 // initialized to class NO_CLASS. 2766 Class FieldLo, FieldHi; 2767 uint64_t Offset = 2768 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 2769 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 2770 Lo = merge(Lo, FieldLo); 2771 Hi = merge(Hi, FieldHi); 2772 if (Lo == Memory || Hi == Memory) { 2773 postMerge(Size, Lo, Hi); 2774 return; 2775 } 2776 } 2777 } 2778 2779 // Classify the fields one at a time, merging the results. 2780 unsigned idx = 0; 2781 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2782 i != e; ++i, ++idx) { 2783 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2784 bool BitField = i->isBitField(); 2785 2786 // Ignore padding bit-fields. 2787 if (BitField && i->isUnnamedBitfield()) 2788 continue; 2789 2790 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 2791 // four eightbytes, or it contains unaligned fields, it has class MEMORY. 2792 // 2793 // The only case a 256-bit wide vector could be used is when the struct 2794 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2795 // to work for sizes wider than 128, early check and fallback to memory. 2796 // 2797 if (Size > 128 && (Size != getContext().getTypeSize(i->getType()) || 2798 Size > getNativeVectorSizeForAVXABI(AVXLevel))) { 2799 Lo = Memory; 2800 postMerge(Size, Lo, Hi); 2801 return; 2802 } 2803 // Note, skip this test for bit-fields, see below. 2804 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 2805 Lo = Memory; 2806 postMerge(Size, Lo, Hi); 2807 return; 2808 } 2809 2810 // Classify this field. 2811 // 2812 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 2813 // exceeds a single eightbyte, each is classified 2814 // separately. Each eightbyte gets initialized to class 2815 // NO_CLASS. 2816 Class FieldLo, FieldHi; 2817 2818 // Bit-fields require special handling, they do not force the 2819 // structure to be passed in memory even if unaligned, and 2820 // therefore they can straddle an eightbyte. 2821 if (BitField) { 2822 assert(!i->isUnnamedBitfield()); 2823 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2824 uint64_t Size = i->getBitWidthValue(getContext()); 2825 2826 uint64_t EB_Lo = Offset / 64; 2827 uint64_t EB_Hi = (Offset + Size - 1) / 64; 2828 2829 if (EB_Lo) { 2830 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 2831 FieldLo = NoClass; 2832 FieldHi = Integer; 2833 } else { 2834 FieldLo = Integer; 2835 FieldHi = EB_Hi ? Integer : NoClass; 2836 } 2837 } else 2838 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 2839 Lo = merge(Lo, FieldLo); 2840 Hi = merge(Hi, FieldHi); 2841 if (Lo == Memory || Hi == Memory) 2842 break; 2843 } 2844 2845 postMerge(Size, Lo, Hi); 2846 } 2847 } 2848 2849 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 2850 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2851 // place naturally. 2852 if (!isAggregateTypeForABI(Ty)) { 2853 // Treat an enum type as its underlying type. 2854 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2855 Ty = EnumTy->getDecl()->getIntegerType(); 2856 2857 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 2858 : ABIArgInfo::getDirect()); 2859 } 2860 2861 return getNaturalAlignIndirect(Ty); 2862 } 2863 2864 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 2865 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 2866 uint64_t Size = getContext().getTypeSize(VecTy); 2867 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); 2868 if (Size <= 64 || Size > LargestVector) 2869 return true; 2870 } 2871 2872 return false; 2873 } 2874 2875 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 2876 unsigned freeIntRegs) const { 2877 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2878 // place naturally. 2879 // 2880 // This assumption is optimistic, as there could be free registers available 2881 // when we need to pass this argument in memory, and LLVM could try to pass 2882 // the argument in the free register. This does not seem to happen currently, 2883 // but this code would be much safer if we could mark the argument with 2884 // 'onstack'. See PR12193. 2885 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) { 2886 // Treat an enum type as its underlying type. 2887 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2888 Ty = EnumTy->getDecl()->getIntegerType(); 2889 2890 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 2891 : ABIArgInfo::getDirect()); 2892 } 2893 2894 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 2895 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 2896 2897 // Compute the byval alignment. We specify the alignment of the byval in all 2898 // cases so that the mid-level optimizer knows the alignment of the byval. 2899 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 2900 2901 // Attempt to avoid passing indirect results using byval when possible. This 2902 // is important for good codegen. 2903 // 2904 // We do this by coercing the value into a scalar type which the backend can 2905 // handle naturally (i.e., without using byval). 2906 // 2907 // For simplicity, we currently only do this when we have exhausted all of the 2908 // free integer registers. Doing this when there are free integer registers 2909 // would require more care, as we would have to ensure that the coerced value 2910 // did not claim the unused register. That would require either reording the 2911 // arguments to the function (so that any subsequent inreg values came first), 2912 // or only doing this optimization when there were no following arguments that 2913 // might be inreg. 2914 // 2915 // We currently expect it to be rare (particularly in well written code) for 2916 // arguments to be passed on the stack when there are still free integer 2917 // registers available (this would typically imply large structs being passed 2918 // by value), so this seems like a fair tradeoff for now. 2919 // 2920 // We can revisit this if the backend grows support for 'onstack' parameter 2921 // attributes. See PR12193. 2922 if (freeIntRegs == 0) { 2923 uint64_t Size = getContext().getTypeSize(Ty); 2924 2925 // If this type fits in an eightbyte, coerce it into the matching integral 2926 // type, which will end up on the stack (with alignment 8). 2927 if (Align == 8 && Size <= 64) 2928 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 2929 Size)); 2930 } 2931 2932 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); 2933 } 2934 2935 /// The ABI specifies that a value should be passed in a full vector XMM/YMM 2936 /// register. Pick an LLVM IR type that will be passed as a vector register. 2937 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 2938 // Wrapper structs/arrays that only contain vectors are passed just like 2939 // vectors; strip them off if present. 2940 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) 2941 Ty = QualType(InnerTy, 0); 2942 2943 llvm::Type *IRType = CGT.ConvertType(Ty); 2944 if (isa<llvm::VectorType>(IRType) || 2945 IRType->getTypeID() == llvm::Type::FP128TyID) 2946 return IRType; 2947 2948 // We couldn't find the preferred IR vector type for 'Ty'. 2949 uint64_t Size = getContext().getTypeSize(Ty); 2950 assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!"); 2951 2952 // Return a LLVM IR vector type based on the size of 'Ty'. 2953 return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2954 Size / 64); 2955 } 2956 2957 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 2958 /// is known to either be off the end of the specified type or being in 2959 /// alignment padding. The user type specified is known to be at most 128 bits 2960 /// in size, and have passed through X86_64ABIInfo::classify with a successful 2961 /// classification that put one of the two halves in the INTEGER class. 2962 /// 2963 /// It is conservatively correct to return false. 2964 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 2965 unsigned EndBit, ASTContext &Context) { 2966 // If the bytes being queried are off the end of the type, there is no user 2967 // data hiding here. This handles analysis of builtins, vectors and other 2968 // types that don't contain interesting padding. 2969 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 2970 if (TySize <= StartBit) 2971 return true; 2972 2973 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 2974 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 2975 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 2976 2977 // Check each element to see if the element overlaps with the queried range. 2978 for (unsigned i = 0; i != NumElts; ++i) { 2979 // If the element is after the span we care about, then we're done.. 2980 unsigned EltOffset = i*EltSize; 2981 if (EltOffset >= EndBit) break; 2982 2983 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 2984 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 2985 EndBit-EltOffset, Context)) 2986 return false; 2987 } 2988 // If it overlaps no elements, then it is safe to process as padding. 2989 return true; 2990 } 2991 2992 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2993 const RecordDecl *RD = RT->getDecl(); 2994 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 2995 2996 // If this is a C++ record, check the bases first. 2997 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2998 for (const auto &I : CXXRD->bases()) { 2999 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3000 "Unexpected base class!"); 3001 const CXXRecordDecl *Base = 3002 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 3003 3004 // If the base is after the span we care about, ignore it. 3005 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 3006 if (BaseOffset >= EndBit) continue; 3007 3008 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 3009 if (!BitsContainNoUserData(I.getType(), BaseStart, 3010 EndBit-BaseOffset, Context)) 3011 return false; 3012 } 3013 } 3014 3015 // Verify that no field has data that overlaps the region of interest. Yes 3016 // this could be sped up a lot by being smarter about queried fields, 3017 // however we're only looking at structs up to 16 bytes, so we don't care 3018 // much. 3019 unsigned idx = 0; 3020 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3021 i != e; ++i, ++idx) { 3022 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 3023 3024 // If we found a field after the region we care about, then we're done. 3025 if (FieldOffset >= EndBit) break; 3026 3027 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 3028 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 3029 Context)) 3030 return false; 3031 } 3032 3033 // If nothing in this record overlapped the area of interest, then we're 3034 // clean. 3035 return true; 3036 } 3037 3038 return false; 3039 } 3040 3041 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a 3042 /// float member at the specified offset. For example, {int,{float}} has a 3043 /// float at offset 4. It is conservatively correct for this routine to return 3044 /// false. 3045 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, 3046 const llvm::DataLayout &TD) { 3047 // Base case if we find a float. 3048 if (IROffset == 0 && IRType->isFloatTy()) 3049 return true; 3050 3051 // If this is a struct, recurse into the field at the specified offset. 3052 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3053 const llvm::StructLayout *SL = TD.getStructLayout(STy); 3054 unsigned Elt = SL->getElementContainingOffset(IROffset); 3055 IROffset -= SL->getElementOffset(Elt); 3056 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); 3057 } 3058 3059 // If this is an array, recurse into the field at the specified offset. 3060 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3061 llvm::Type *EltTy = ATy->getElementType(); 3062 unsigned EltSize = TD.getTypeAllocSize(EltTy); 3063 IROffset -= IROffset/EltSize*EltSize; 3064 return ContainsFloatAtOffset(EltTy, IROffset, TD); 3065 } 3066 3067 return false; 3068 } 3069 3070 3071 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 3072 /// low 8 bytes of an XMM register, corresponding to the SSE class. 3073 llvm::Type *X86_64ABIInfo:: 3074 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3075 QualType SourceTy, unsigned SourceOffset) const { 3076 // The only three choices we have are either double, <2 x float>, or float. We 3077 // pass as float if the last 4 bytes is just padding. This happens for 3078 // structs that contain 3 floats. 3079 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, 3080 SourceOffset*8+64, getContext())) 3081 return llvm::Type::getFloatTy(getVMContext()); 3082 3083 // We want to pass as <2 x float> if the LLVM IR type contains a float at 3084 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the 3085 // case. 3086 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && 3087 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) 3088 return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2); 3089 3090 return llvm::Type::getDoubleTy(getVMContext()); 3091 } 3092 3093 3094 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 3095 /// an 8-byte GPR. This means that we either have a scalar or we are talking 3096 /// about the high or low part of an up-to-16-byte struct. This routine picks 3097 /// the best LLVM IR type to represent this, which may be i64 or may be anything 3098 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 3099 /// etc). 3100 /// 3101 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 3102 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 3103 /// the 8-byte value references. PrefType may be null. 3104 /// 3105 /// SourceTy is the source-level type for the entire argument. SourceOffset is 3106 /// an offset into this that we're processing (which is always either 0 or 8). 3107 /// 3108 llvm::Type *X86_64ABIInfo:: 3109 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3110 QualType SourceTy, unsigned SourceOffset) const { 3111 // If we're dealing with an un-offset LLVM IR type, then it means that we're 3112 // returning an 8-byte unit starting with it. See if we can safely use it. 3113 if (IROffset == 0) { 3114 // Pointers and int64's always fill the 8-byte unit. 3115 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 3116 IRType->isIntegerTy(64)) 3117 return IRType; 3118 3119 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 3120 // goodness in the source type is just tail padding. This is allowed to 3121 // kick in for struct {double,int} on the int, but not on 3122 // struct{double,int,int} because we wouldn't return the second int. We 3123 // have to do this analysis on the source type because we can't depend on 3124 // unions being lowered a specific way etc. 3125 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 3126 IRType->isIntegerTy(32) || 3127 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 3128 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 3129 cast<llvm::IntegerType>(IRType)->getBitWidth(); 3130 3131 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 3132 SourceOffset*8+64, getContext())) 3133 return IRType; 3134 } 3135 } 3136 3137 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3138 // If this is a struct, recurse into the field at the specified offset. 3139 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 3140 if (IROffset < SL->getSizeInBytes()) { 3141 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 3142 IROffset -= SL->getElementOffset(FieldIdx); 3143 3144 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 3145 SourceTy, SourceOffset); 3146 } 3147 } 3148 3149 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3150 llvm::Type *EltTy = ATy->getElementType(); 3151 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 3152 unsigned EltOffset = IROffset/EltSize*EltSize; 3153 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 3154 SourceOffset); 3155 } 3156 3157 // Okay, we don't have any better idea of what to pass, so we pass this in an 3158 // integer register that isn't too big to fit the rest of the struct. 3159 unsigned TySizeInBytes = 3160 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 3161 3162 assert(TySizeInBytes != SourceOffset && "Empty field?"); 3163 3164 // It is always safe to classify this as an integer type up to i64 that 3165 // isn't larger than the structure. 3166 return llvm::IntegerType::get(getVMContext(), 3167 std::min(TySizeInBytes-SourceOffset, 8U)*8); 3168 } 3169 3170 3171 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 3172 /// be used as elements of a two register pair to pass or return, return a 3173 /// first class aggregate to represent them. For example, if the low part of 3174 /// a by-value argument should be passed as i32* and the high part as float, 3175 /// return {i32*, float}. 3176 static llvm::Type * 3177 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 3178 const llvm::DataLayout &TD) { 3179 // In order to correctly satisfy the ABI, we need to the high part to start 3180 // at offset 8. If the high and low parts we inferred are both 4-byte types 3181 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 3182 // the second element at offset 8. Check for this: 3183 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 3184 unsigned HiAlign = TD.getABITypeAlignment(Hi); 3185 unsigned HiStart = llvm::alignTo(LoSize, HiAlign); 3186 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 3187 3188 // To handle this, we have to increase the size of the low part so that the 3189 // second element will start at an 8 byte offset. We can't increase the size 3190 // of the second element because it might make us access off the end of the 3191 // struct. 3192 if (HiStart != 8) { 3193 // There are usually two sorts of types the ABI generation code can produce 3194 // for the low part of a pair that aren't 8 bytes in size: float or 3195 // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and 3196 // NaCl). 3197 // Promote these to a larger type. 3198 if (Lo->isFloatTy()) 3199 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 3200 else { 3201 assert((Lo->isIntegerTy() || Lo->isPointerTy()) 3202 && "Invalid/unknown lo type"); 3203 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 3204 } 3205 } 3206 3207 llvm::StructType *Result = llvm::StructType::get(Lo, Hi); 3208 3209 // Verify that the second element is at an 8-byte offset. 3210 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 3211 "Invalid x86-64 argument pair!"); 3212 return Result; 3213 } 3214 3215 ABIArgInfo X86_64ABIInfo:: 3216 classifyReturnType(QualType RetTy) const { 3217 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 3218 // classification algorithm. 3219 X86_64ABIInfo::Class Lo, Hi; 3220 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 3221 3222 // Check some invariants. 3223 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3224 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3225 3226 llvm::Type *ResType = nullptr; 3227 switch (Lo) { 3228 case NoClass: 3229 if (Hi == NoClass) 3230 return ABIArgInfo::getIgnore(); 3231 // If the low part is just padding, it takes no register, leave ResType 3232 // null. 3233 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3234 "Unknown missing lo part"); 3235 break; 3236 3237 case SSEUp: 3238 case X87Up: 3239 llvm_unreachable("Invalid classification for lo word."); 3240 3241 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 3242 // hidden argument. 3243 case Memory: 3244 return getIndirectReturnResult(RetTy); 3245 3246 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 3247 // available register of the sequence %rax, %rdx is used. 3248 case Integer: 3249 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3250 3251 // If we have a sign or zero extended integer, make sure to return Extend 3252 // so that the parameter gets the right LLVM IR attributes. 3253 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3254 // Treat an enum type as its underlying type. 3255 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3256 RetTy = EnumTy->getDecl()->getIntegerType(); 3257 3258 if (RetTy->isIntegralOrEnumerationType() && 3259 RetTy->isPromotableIntegerType()) 3260 return ABIArgInfo::getExtend(RetTy); 3261 } 3262 break; 3263 3264 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 3265 // available SSE register of the sequence %xmm0, %xmm1 is used. 3266 case SSE: 3267 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3268 break; 3269 3270 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 3271 // returned on the X87 stack in %st0 as 80-bit x87 number. 3272 case X87: 3273 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 3274 break; 3275 3276 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 3277 // part of the value is returned in %st0 and the imaginary part in 3278 // %st1. 3279 case ComplexX87: 3280 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 3281 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 3282 llvm::Type::getX86_FP80Ty(getVMContext())); 3283 break; 3284 } 3285 3286 llvm::Type *HighPart = nullptr; 3287 switch (Hi) { 3288 // Memory was handled previously and X87 should 3289 // never occur as a hi class. 3290 case Memory: 3291 case X87: 3292 llvm_unreachable("Invalid classification for hi word."); 3293 3294 case ComplexX87: // Previously handled. 3295 case NoClass: 3296 break; 3297 3298 case Integer: 3299 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3300 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3301 return ABIArgInfo::getDirect(HighPart, 8); 3302 break; 3303 case SSE: 3304 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3305 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3306 return ABIArgInfo::getDirect(HighPart, 8); 3307 break; 3308 3309 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 3310 // is passed in the next available eightbyte chunk if the last used 3311 // vector register. 3312 // 3313 // SSEUP should always be preceded by SSE, just widen. 3314 case SSEUp: 3315 assert(Lo == SSE && "Unexpected SSEUp classification."); 3316 ResType = GetByteVectorType(RetTy); 3317 break; 3318 3319 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 3320 // returned together with the previous X87 value in %st0. 3321 case X87Up: 3322 // If X87Up is preceded by X87, we don't need to do 3323 // anything. However, in some cases with unions it may not be 3324 // preceded by X87. In such situations we follow gcc and pass the 3325 // extra bits in an SSE reg. 3326 if (Lo != X87) { 3327 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3328 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3329 return ABIArgInfo::getDirect(HighPart, 8); 3330 } 3331 break; 3332 } 3333 3334 // If a high part was specified, merge it together with the low part. It is 3335 // known to pass in the high eightbyte of the result. We do this by forming a 3336 // first class struct aggregate with the high and low part: {low, high} 3337 if (HighPart) 3338 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3339 3340 return ABIArgInfo::getDirect(ResType); 3341 } 3342 3343 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 3344 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 3345 bool isNamedArg) 3346 const 3347 { 3348 Ty = useFirstFieldIfTransparentUnion(Ty); 3349 3350 X86_64ABIInfo::Class Lo, Hi; 3351 classify(Ty, 0, Lo, Hi, isNamedArg); 3352 3353 // Check some invariants. 3354 // FIXME: Enforce these by construction. 3355 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3356 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3357 3358 neededInt = 0; 3359 neededSSE = 0; 3360 llvm::Type *ResType = nullptr; 3361 switch (Lo) { 3362 case NoClass: 3363 if (Hi == NoClass) 3364 return ABIArgInfo::getIgnore(); 3365 // If the low part is just padding, it takes no register, leave ResType 3366 // null. 3367 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3368 "Unknown missing lo part"); 3369 break; 3370 3371 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 3372 // on the stack. 3373 case Memory: 3374 3375 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 3376 // COMPLEX_X87, it is passed in memory. 3377 case X87: 3378 case ComplexX87: 3379 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 3380 ++neededInt; 3381 return getIndirectResult(Ty, freeIntRegs); 3382 3383 case SSEUp: 3384 case X87Up: 3385 llvm_unreachable("Invalid classification for lo word."); 3386 3387 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 3388 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 3389 // and %r9 is used. 3390 case Integer: 3391 ++neededInt; 3392 3393 // Pick an 8-byte type based on the preferred type. 3394 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 3395 3396 // If we have a sign or zero extended integer, make sure to return Extend 3397 // so that the parameter gets the right LLVM IR attributes. 3398 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3399 // Treat an enum type as its underlying type. 3400 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3401 Ty = EnumTy->getDecl()->getIntegerType(); 3402 3403 if (Ty->isIntegralOrEnumerationType() && 3404 Ty->isPromotableIntegerType()) 3405 return ABIArgInfo::getExtend(Ty); 3406 } 3407 3408 break; 3409 3410 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 3411 // available SSE register is used, the registers are taken in the 3412 // order from %xmm0 to %xmm7. 3413 case SSE: { 3414 llvm::Type *IRType = CGT.ConvertType(Ty); 3415 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 3416 ++neededSSE; 3417 break; 3418 } 3419 } 3420 3421 llvm::Type *HighPart = nullptr; 3422 switch (Hi) { 3423 // Memory was handled previously, ComplexX87 and X87 should 3424 // never occur as hi classes, and X87Up must be preceded by X87, 3425 // which is passed in memory. 3426 case Memory: 3427 case X87: 3428 case ComplexX87: 3429 llvm_unreachable("Invalid classification for hi word."); 3430 3431 case NoClass: break; 3432 3433 case Integer: 3434 ++neededInt; 3435 // Pick an 8-byte type based on the preferred type. 3436 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3437 3438 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3439 return ABIArgInfo::getDirect(HighPart, 8); 3440 break; 3441 3442 // X87Up generally doesn't occur here (long double is passed in 3443 // memory), except in situations involving unions. 3444 case X87Up: 3445 case SSE: 3446 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3447 3448 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3449 return ABIArgInfo::getDirect(HighPart, 8); 3450 3451 ++neededSSE; 3452 break; 3453 3454 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 3455 // eightbyte is passed in the upper half of the last used SSE 3456 // register. This only happens when 128-bit vectors are passed. 3457 case SSEUp: 3458 assert(Lo == SSE && "Unexpected SSEUp classification"); 3459 ResType = GetByteVectorType(Ty); 3460 break; 3461 } 3462 3463 // If a high part was specified, merge it together with the low part. It is 3464 // known to pass in the high eightbyte of the result. We do this by forming a 3465 // first class struct aggregate with the high and low part: {low, high} 3466 if (HighPart) 3467 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3468 3469 return ABIArgInfo::getDirect(ResType); 3470 } 3471 3472 ABIArgInfo 3473 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 3474 unsigned &NeededSSE) const { 3475 auto RT = Ty->getAs<RecordType>(); 3476 assert(RT && "classifyRegCallStructType only valid with struct types"); 3477 3478 if (RT->getDecl()->hasFlexibleArrayMember()) 3479 return getIndirectReturnResult(Ty); 3480 3481 // Sum up bases 3482 if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 3483 if (CXXRD->isDynamicClass()) { 3484 NeededInt = NeededSSE = 0; 3485 return getIndirectReturnResult(Ty); 3486 } 3487 3488 for (const auto &I : CXXRD->bases()) 3489 if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE) 3490 .isIndirect()) { 3491 NeededInt = NeededSSE = 0; 3492 return getIndirectReturnResult(Ty); 3493 } 3494 } 3495 3496 // Sum up members 3497 for (const auto *FD : RT->getDecl()->fields()) { 3498 if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) { 3499 if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE) 3500 .isIndirect()) { 3501 NeededInt = NeededSSE = 0; 3502 return getIndirectReturnResult(Ty); 3503 } 3504 } else { 3505 unsigned LocalNeededInt, LocalNeededSSE; 3506 if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt, 3507 LocalNeededSSE, true) 3508 .isIndirect()) { 3509 NeededInt = NeededSSE = 0; 3510 return getIndirectReturnResult(Ty); 3511 } 3512 NeededInt += LocalNeededInt; 3513 NeededSSE += LocalNeededSSE; 3514 } 3515 } 3516 3517 return ABIArgInfo::getDirect(); 3518 } 3519 3520 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty, 3521 unsigned &NeededInt, 3522 unsigned &NeededSSE) const { 3523 3524 NeededInt = 0; 3525 NeededSSE = 0; 3526 3527 return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE); 3528 } 3529 3530 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3531 3532 const unsigned CallingConv = FI.getCallingConvention(); 3533 // It is possible to force Win64 calling convention on any x86_64 target by 3534 // using __attribute__((ms_abi)). In such case to correctly emit Win64 3535 // compatible code delegate this call to WinX86_64ABIInfo::computeInfo. 3536 if (CallingConv == llvm::CallingConv::Win64) { 3537 WinX86_64ABIInfo Win64ABIInfo(CGT); 3538 Win64ABIInfo.computeInfo(FI); 3539 return; 3540 } 3541 3542 bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall; 3543 3544 // Keep track of the number of assigned registers. 3545 unsigned FreeIntRegs = IsRegCall ? 11 : 6; 3546 unsigned FreeSSERegs = IsRegCall ? 16 : 8; 3547 unsigned NeededInt, NeededSSE; 3548 3549 if (!getCXXABI().classifyReturnType(FI)) { 3550 if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() && 3551 !FI.getReturnType()->getTypePtr()->isUnionType()) { 3552 FI.getReturnInfo() = 3553 classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE); 3554 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3555 FreeIntRegs -= NeededInt; 3556 FreeSSERegs -= NeededSSE; 3557 } else { 3558 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3559 } 3560 } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>()) { 3561 // Complex Long Double Type is passed in Memory when Regcall 3562 // calling convention is used. 3563 const ComplexType *CT = FI.getReturnType()->getAs<ComplexType>(); 3564 if (getContext().getCanonicalType(CT->getElementType()) == 3565 getContext().LongDoubleTy) 3566 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3567 } else 3568 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3569 } 3570 3571 // If the return value is indirect, then the hidden argument is consuming one 3572 // integer register. 3573 if (FI.getReturnInfo().isIndirect()) 3574 --FreeIntRegs; 3575 3576 // The chain argument effectively gives us another free register. 3577 if (FI.isChainCall()) 3578 ++FreeIntRegs; 3579 3580 unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 3581 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 3582 // get assigned (in left-to-right order) for passing as follows... 3583 unsigned ArgNo = 0; 3584 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3585 it != ie; ++it, ++ArgNo) { 3586 bool IsNamedArg = ArgNo < NumRequiredArgs; 3587 3588 if (IsRegCall && it->type->isStructureOrClassType()) 3589 it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE); 3590 else 3591 it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt, 3592 NeededSSE, IsNamedArg); 3593 3594 // AMD64-ABI 3.2.3p3: If there are no registers available for any 3595 // eightbyte of an argument, the whole argument is passed on the 3596 // stack. If registers have already been assigned for some 3597 // eightbytes of such an argument, the assignments get reverted. 3598 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3599 FreeIntRegs -= NeededInt; 3600 FreeSSERegs -= NeededSSE; 3601 } else { 3602 it->info = getIndirectResult(it->type, FreeIntRegs); 3603 } 3604 } 3605 } 3606 3607 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, 3608 Address VAListAddr, QualType Ty) { 3609 Address overflow_arg_area_p = CGF.Builder.CreateStructGEP( 3610 VAListAddr, 2, CharUnits::fromQuantity(8), "overflow_arg_area_p"); 3611 llvm::Value *overflow_arg_area = 3612 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 3613 3614 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 3615 // byte boundary if alignment needed by type exceeds 8 byte boundary. 3616 // It isn't stated explicitly in the standard, but in practice we use 3617 // alignment greater than 16 where necessary. 3618 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 3619 if (Align > CharUnits::fromQuantity(8)) { 3620 overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, 3621 Align); 3622 } 3623 3624 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 3625 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3626 llvm::Value *Res = 3627 CGF.Builder.CreateBitCast(overflow_arg_area, 3628 llvm::PointerType::getUnqual(LTy)); 3629 3630 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 3631 // l->overflow_arg_area + sizeof(type). 3632 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 3633 // an 8 byte boundary. 3634 3635 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 3636 llvm::Value *Offset = 3637 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 3638 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 3639 "overflow_arg_area.next"); 3640 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 3641 3642 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 3643 return Address(Res, Align); 3644 } 3645 3646 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3647 QualType Ty) const { 3648 // Assume that va_list type is correct; should be pointer to LLVM type: 3649 // struct { 3650 // i32 gp_offset; 3651 // i32 fp_offset; 3652 // i8* overflow_arg_area; 3653 // i8* reg_save_area; 3654 // }; 3655 unsigned neededInt, neededSSE; 3656 3657 Ty = getContext().getCanonicalType(Ty); 3658 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 3659 /*isNamedArg*/false); 3660 3661 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 3662 // in the registers. If not go to step 7. 3663 if (!neededInt && !neededSSE) 3664 return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3665 3666 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 3667 // general purpose registers needed to pass type and num_fp to hold 3668 // the number of floating point registers needed. 3669 3670 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 3671 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 3672 // l->fp_offset > 304 - num_fp * 16 go to step 7. 3673 // 3674 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 3675 // register save space). 3676 3677 llvm::Value *InRegs = nullptr; 3678 Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); 3679 llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; 3680 if (neededInt) { 3681 gp_offset_p = 3682 CGF.Builder.CreateStructGEP(VAListAddr, 0, CharUnits::Zero(), 3683 "gp_offset_p"); 3684 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 3685 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 3686 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 3687 } 3688 3689 if (neededSSE) { 3690 fp_offset_p = 3691 CGF.Builder.CreateStructGEP(VAListAddr, 1, CharUnits::fromQuantity(4), 3692 "fp_offset_p"); 3693 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 3694 llvm::Value *FitsInFP = 3695 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 3696 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 3697 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 3698 } 3699 3700 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 3701 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 3702 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 3703 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 3704 3705 // Emit code to load the value if it was passed in registers. 3706 3707 CGF.EmitBlock(InRegBlock); 3708 3709 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 3710 // an offset of l->gp_offset and/or l->fp_offset. This may require 3711 // copying to a temporary location in case the parameter is passed 3712 // in different register classes or requires an alignment greater 3713 // than 8 for general purpose registers and 16 for XMM registers. 3714 // 3715 // FIXME: This really results in shameful code when we end up needing to 3716 // collect arguments from different places; often what should result in a 3717 // simple assembling of a structure from scattered addresses has many more 3718 // loads than necessary. Can we clean this up? 3719 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3720 llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( 3721 CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(16)), 3722 "reg_save_area"); 3723 3724 Address RegAddr = Address::invalid(); 3725 if (neededInt && neededSSE) { 3726 // FIXME: Cleanup. 3727 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 3728 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 3729 Address Tmp = CGF.CreateMemTemp(Ty); 3730 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3731 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 3732 llvm::Type *TyLo = ST->getElementType(0); 3733 llvm::Type *TyHi = ST->getElementType(1); 3734 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 3735 "Unexpected ABI info for mixed regs"); 3736 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 3737 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 3738 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset); 3739 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset); 3740 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 3741 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 3742 3743 // Copy the first element. 3744 // FIXME: Our choice of alignment here and below is probably pessimistic. 3745 llvm::Value *V = CGF.Builder.CreateAlignedLoad( 3746 TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo), 3747 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo))); 3748 CGF.Builder.CreateStore(V, 3749 CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero())); 3750 3751 // Copy the second element. 3752 V = CGF.Builder.CreateAlignedLoad( 3753 TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi), 3754 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi))); 3755 CharUnits Offset = CharUnits::fromQuantity( 3756 getDataLayout().getStructLayout(ST)->getElementOffset(1)); 3757 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1, Offset)); 3758 3759 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3760 } else if (neededInt) { 3761 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset), 3762 CharUnits::fromQuantity(8)); 3763 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3764 3765 // Copy to a temporary if necessary to ensure the appropriate alignment. 3766 std::pair<CharUnits, CharUnits> SizeAlign = 3767 getContext().getTypeInfoInChars(Ty); 3768 uint64_t TySize = SizeAlign.first.getQuantity(); 3769 CharUnits TyAlign = SizeAlign.second; 3770 3771 // Copy into a temporary if the type is more aligned than the 3772 // register save area. 3773 if (TyAlign.getQuantity() > 8) { 3774 Address Tmp = CGF.CreateMemTemp(Ty); 3775 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); 3776 RegAddr = Tmp; 3777 } 3778 3779 } else if (neededSSE == 1) { 3780 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3781 CharUnits::fromQuantity(16)); 3782 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3783 } else { 3784 assert(neededSSE == 2 && "Invalid number of needed registers!"); 3785 // SSE registers are spaced 16 bytes apart in the register save 3786 // area, we need to collect the two eightbytes together. 3787 // The ABI isn't explicit about this, but it seems reasonable 3788 // to assume that the slots are 16-byte aligned, since the stack is 3789 // naturally 16-byte aligned and the prologue is expected to store 3790 // all the SSE registers to the RSA. 3791 Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3792 CharUnits::fromQuantity(16)); 3793 Address RegAddrHi = 3794 CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, 3795 CharUnits::fromQuantity(16)); 3796 llvm::Type *ST = AI.canHaveCoerceToType() 3797 ? AI.getCoerceToType() 3798 : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy); 3799 llvm::Value *V; 3800 Address Tmp = CGF.CreateMemTemp(Ty); 3801 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3802 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 3803 RegAddrLo, ST->getStructElementType(0))); 3804 CGF.Builder.CreateStore(V, 3805 CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero())); 3806 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 3807 RegAddrHi, ST->getStructElementType(1))); 3808 CGF.Builder.CreateStore(V, 3809 CGF.Builder.CreateStructGEP(Tmp, 1, CharUnits::fromQuantity(8))); 3810 3811 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3812 } 3813 3814 // AMD64-ABI 3.5.7p5: Step 5. Set: 3815 // l->gp_offset = l->gp_offset + num_gp * 8 3816 // l->fp_offset = l->fp_offset + num_fp * 16. 3817 if (neededInt) { 3818 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 3819 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 3820 gp_offset_p); 3821 } 3822 if (neededSSE) { 3823 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 3824 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 3825 fp_offset_p); 3826 } 3827 CGF.EmitBranch(ContBlock); 3828 3829 // Emit code to load the value if it was passed in memory. 3830 3831 CGF.EmitBlock(InMemBlock); 3832 Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3833 3834 // Return the appropriate result. 3835 3836 CGF.EmitBlock(ContBlock); 3837 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, 3838 "vaarg.addr"); 3839 return ResAddr; 3840 } 3841 3842 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 3843 QualType Ty) const { 3844 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 3845 CGF.getContext().getTypeInfoInChars(Ty), 3846 CharUnits::fromQuantity(8), 3847 /*allowHigherAlign*/ false); 3848 } 3849 3850 ABIArgInfo 3851 WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 3852 const ABIArgInfo ¤t) const { 3853 // Assumes vectorCall calling convention. 3854 const Type *Base = nullptr; 3855 uint64_t NumElts = 0; 3856 3857 if (!Ty->isBuiltinType() && !Ty->isVectorType() && 3858 isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) { 3859 FreeSSERegs -= NumElts; 3860 return getDirectX86Hva(); 3861 } 3862 return current; 3863 } 3864 3865 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 3866 bool IsReturnType, bool IsVectorCall, 3867 bool IsRegCall) const { 3868 3869 if (Ty->isVoidType()) 3870 return ABIArgInfo::getIgnore(); 3871 3872 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3873 Ty = EnumTy->getDecl()->getIntegerType(); 3874 3875 TypeInfo Info = getContext().getTypeInfo(Ty); 3876 uint64_t Width = Info.Width; 3877 CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); 3878 3879 const RecordType *RT = Ty->getAs<RecordType>(); 3880 if (RT) { 3881 if (!IsReturnType) { 3882 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 3883 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 3884 } 3885 3886 if (RT->getDecl()->hasFlexibleArrayMember()) 3887 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 3888 3889 } 3890 3891 const Type *Base = nullptr; 3892 uint64_t NumElts = 0; 3893 // vectorcall adds the concept of a homogenous vector aggregate, similar to 3894 // other targets. 3895 if ((IsVectorCall || IsRegCall) && 3896 isHomogeneousAggregate(Ty, Base, NumElts)) { 3897 if (IsRegCall) { 3898 if (FreeSSERegs >= NumElts) { 3899 FreeSSERegs -= NumElts; 3900 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 3901 return ABIArgInfo::getDirect(); 3902 return ABIArgInfo::getExpand(); 3903 } 3904 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3905 } else if (IsVectorCall) { 3906 if (FreeSSERegs >= NumElts && 3907 (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) { 3908 FreeSSERegs -= NumElts; 3909 return ABIArgInfo::getDirect(); 3910 } else if (IsReturnType) { 3911 return ABIArgInfo::getExpand(); 3912 } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) { 3913 // HVAs are delayed and reclassified in the 2nd step. 3914 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3915 } 3916 } 3917 } 3918 3919 if (Ty->isMemberPointerType()) { 3920 // If the member pointer is represented by an LLVM int or ptr, pass it 3921 // directly. 3922 llvm::Type *LLTy = CGT.ConvertType(Ty); 3923 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 3924 return ABIArgInfo::getDirect(); 3925 } 3926 3927 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { 3928 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 3929 // not 1, 2, 4, or 8 bytes, must be passed by reference." 3930 if (Width > 64 || !llvm::isPowerOf2_64(Width)) 3931 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 3932 3933 // Otherwise, coerce it to a small integer. 3934 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 3935 } 3936 3937 // Bool type is always extended to the ABI, other builtin types are not 3938 // extended. 3939 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 3940 if (BT && BT->getKind() == BuiltinType::Bool) 3941 return ABIArgInfo::getExtend(Ty); 3942 3943 // Mingw64 GCC uses the old 80 bit extended precision floating point unit. It 3944 // passes them indirectly through memory. 3945 if (IsMingw64 && BT && BT->getKind() == BuiltinType::LongDouble) { 3946 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 3947 if (LDF == &llvm::APFloat::x87DoubleExtended()) 3948 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3949 } 3950 3951 return ABIArgInfo::getDirect(); 3952 } 3953 3954 void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, 3955 unsigned FreeSSERegs, 3956 bool IsVectorCall, 3957 bool IsRegCall) const { 3958 unsigned Count = 0; 3959 for (auto &I : FI.arguments()) { 3960 // Vectorcall in x64 only permits the first 6 arguments to be passed 3961 // as XMM/YMM registers. 3962 if (Count < VectorcallMaxParamNumAsReg) 3963 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 3964 else { 3965 // Since these cannot be passed in registers, pretend no registers 3966 // are left. 3967 unsigned ZeroSSERegsAvail = 0; 3968 I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false, 3969 IsVectorCall, IsRegCall); 3970 } 3971 ++Count; 3972 } 3973 3974 for (auto &I : FI.arguments()) { 3975 I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info); 3976 } 3977 } 3978 3979 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3980 bool IsVectorCall = 3981 FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall; 3982 bool IsRegCall = FI.getCallingConvention() == llvm::CallingConv::X86_RegCall; 3983 3984 unsigned FreeSSERegs = 0; 3985 if (IsVectorCall) { 3986 // We can use up to 4 SSE return registers with vectorcall. 3987 FreeSSERegs = 4; 3988 } else if (IsRegCall) { 3989 // RegCall gives us 16 SSE registers. 3990 FreeSSERegs = 16; 3991 } 3992 3993 if (!getCXXABI().classifyReturnType(FI)) 3994 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true, 3995 IsVectorCall, IsRegCall); 3996 3997 if (IsVectorCall) { 3998 // We can use up to 6 SSE register parameters with vectorcall. 3999 FreeSSERegs = 6; 4000 } else if (IsRegCall) { 4001 // RegCall gives us 16 SSE registers, we can reuse the return registers. 4002 FreeSSERegs = 16; 4003 } 4004 4005 if (IsVectorCall) { 4006 computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall); 4007 } else { 4008 for (auto &I : FI.arguments()) 4009 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 4010 } 4011 4012 } 4013 4014 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4015 QualType Ty) const { 4016 4017 bool IsIndirect = false; 4018 4019 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4020 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4021 if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) { 4022 uint64_t Width = getContext().getTypeSize(Ty); 4023 IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 4024 } 4025 4026 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 4027 CGF.getContext().getTypeInfoInChars(Ty), 4028 CharUnits::fromQuantity(8), 4029 /*allowHigherAlign*/ false); 4030 } 4031 4032 // PowerPC-32 4033 namespace { 4034 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. 4035 class PPC32_SVR4_ABIInfo : public DefaultABIInfo { 4036 bool IsSoftFloatABI; 4037 4038 CharUnits getParamTypeAlignment(QualType Ty) const; 4039 4040 public: 4041 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI) 4042 : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI) {} 4043 4044 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4045 QualType Ty) const override; 4046 }; 4047 4048 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { 4049 public: 4050 PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI) 4051 : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT, SoftFloatABI)) {} 4052 4053 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4054 // This is recovered from gcc output. 4055 return 1; // r1 is the dedicated stack pointer 4056 } 4057 4058 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4059 llvm::Value *Address) const override; 4060 }; 4061 } 4062 4063 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4064 // Complex types are passed just like their elements 4065 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4066 Ty = CTy->getElementType(); 4067 4068 if (Ty->isVectorType()) 4069 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 4070 : 4); 4071 4072 // For single-element float/vector structs, we consider the whole type 4073 // to have the same alignment requirements as its single element. 4074 const Type *AlignTy = nullptr; 4075 if (const Type *EltType = isSingleElementStruct(Ty, getContext())) { 4076 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4077 if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || 4078 (BT && BT->isFloatingPoint())) 4079 AlignTy = EltType; 4080 } 4081 4082 if (AlignTy) 4083 return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4); 4084 return CharUnits::fromQuantity(4); 4085 } 4086 4087 // TODO: this implementation is now likely redundant with 4088 // DefaultABIInfo::EmitVAArg. 4089 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList, 4090 QualType Ty) const { 4091 if (getTarget().getTriple().isOSDarwin()) { 4092 auto TI = getContext().getTypeInfoInChars(Ty); 4093 TI.second = getParamTypeAlignment(Ty); 4094 4095 CharUnits SlotSize = CharUnits::fromQuantity(4); 4096 return emitVoidPtrVAArg(CGF, VAList, Ty, 4097 classifyArgumentType(Ty).isIndirect(), TI, SlotSize, 4098 /*AllowHigherAlign=*/true); 4099 } 4100 4101 const unsigned OverflowLimit = 8; 4102 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4103 // TODO: Implement this. For now ignore. 4104 (void)CTy; 4105 return Address::invalid(); // FIXME? 4106 } 4107 4108 // struct __va_list_tag { 4109 // unsigned char gpr; 4110 // unsigned char fpr; 4111 // unsigned short reserved; 4112 // void *overflow_arg_area; 4113 // void *reg_save_area; 4114 // }; 4115 4116 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; 4117 bool isInt = 4118 Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType(); 4119 bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64; 4120 4121 // All aggregates are passed indirectly? That doesn't seem consistent 4122 // with the argument-lowering code. 4123 bool isIndirect = Ty->isAggregateType(); 4124 4125 CGBuilderTy &Builder = CGF.Builder; 4126 4127 // The calling convention either uses 1-2 GPRs or 1 FPR. 4128 Address NumRegsAddr = Address::invalid(); 4129 if (isInt || IsSoftFloatABI) { 4130 NumRegsAddr = Builder.CreateStructGEP(VAList, 0, CharUnits::Zero(), "gpr"); 4131 } else { 4132 NumRegsAddr = Builder.CreateStructGEP(VAList, 1, CharUnits::One(), "fpr"); 4133 } 4134 4135 llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs"); 4136 4137 // "Align" the register count when TY is i64. 4138 if (isI64 || (isF64 && IsSoftFloatABI)) { 4139 NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1)); 4140 NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U)); 4141 } 4142 4143 llvm::Value *CC = 4144 Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond"); 4145 4146 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); 4147 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); 4148 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 4149 4150 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); 4151 4152 llvm::Type *DirectTy = CGF.ConvertType(Ty); 4153 if (isIndirect) DirectTy = DirectTy->getPointerTo(0); 4154 4155 // Case 1: consume registers. 4156 Address RegAddr = Address::invalid(); 4157 { 4158 CGF.EmitBlock(UsingRegs); 4159 4160 Address RegSaveAreaPtr = 4161 Builder.CreateStructGEP(VAList, 4, CharUnits::fromQuantity(8)); 4162 RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr), 4163 CharUnits::fromQuantity(8)); 4164 assert(RegAddr.getElementType() == CGF.Int8Ty); 4165 4166 // Floating-point registers start after the general-purpose registers. 4167 if (!(isInt || IsSoftFloatABI)) { 4168 RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr, 4169 CharUnits::fromQuantity(32)); 4170 } 4171 4172 // Get the address of the saved value by scaling the number of 4173 // registers we've used by the number of 4174 CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8); 4175 llvm::Value *RegOffset = 4176 Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity())); 4177 RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty, 4178 RegAddr.getPointer(), RegOffset), 4179 RegAddr.getAlignment().alignmentOfArrayElement(RegSize)); 4180 RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy); 4181 4182 // Increase the used-register count. 4183 NumRegs = 4184 Builder.CreateAdd(NumRegs, 4185 Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1)); 4186 Builder.CreateStore(NumRegs, NumRegsAddr); 4187 4188 CGF.EmitBranch(Cont); 4189 } 4190 4191 // Case 2: consume space in the overflow area. 4192 Address MemAddr = Address::invalid(); 4193 { 4194 CGF.EmitBlock(UsingOverflow); 4195 4196 Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr); 4197 4198 // Everything in the overflow area is rounded up to a size of at least 4. 4199 CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4); 4200 4201 CharUnits Size; 4202 if (!isIndirect) { 4203 auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty); 4204 Size = TypeInfo.first.alignTo(OverflowAreaAlign); 4205 } else { 4206 Size = CGF.getPointerSize(); 4207 } 4208 4209 Address OverflowAreaAddr = 4210 Builder.CreateStructGEP(VAList, 3, CharUnits::fromQuantity(4)); 4211 Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), 4212 OverflowAreaAlign); 4213 // Round up address of argument to alignment 4214 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 4215 if (Align > OverflowAreaAlign) { 4216 llvm::Value *Ptr = OverflowArea.getPointer(); 4217 OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align), 4218 Align); 4219 } 4220 4221 MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy); 4222 4223 // Increase the overflow area. 4224 OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size); 4225 Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr); 4226 CGF.EmitBranch(Cont); 4227 } 4228 4229 CGF.EmitBlock(Cont); 4230 4231 // Merge the cases with a phi. 4232 Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow, 4233 "vaarg.addr"); 4234 4235 // Load the pointer if the argument was passed indirectly. 4236 if (isIndirect) { 4237 Result = Address(Builder.CreateLoad(Result, "aggr"), 4238 getContext().getTypeAlignInChars(Ty)); 4239 } 4240 4241 return Result; 4242 } 4243 4244 bool 4245 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4246 llvm::Value *Address) const { 4247 // This is calculated from the LLVM and GCC tables and verified 4248 // against gcc output. AFAIK all ABIs use the same encoding. 4249 4250 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4251 4252 llvm::IntegerType *i8 = CGF.Int8Ty; 4253 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4254 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4255 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4256 4257 // 0-31: r0-31, the 4-byte general-purpose registers 4258 AssignToArrayRange(Builder, Address, Four8, 0, 31); 4259 4260 // 32-63: fp0-31, the 8-byte floating-point registers 4261 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4262 4263 // 64-76 are various 4-byte special-purpose registers: 4264 // 64: mq 4265 // 65: lr 4266 // 66: ctr 4267 // 67: ap 4268 // 68-75 cr0-7 4269 // 76: xer 4270 AssignToArrayRange(Builder, Address, Four8, 64, 76); 4271 4272 // 77-108: v0-31, the 16-byte vector registers 4273 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4274 4275 // 109: vrsave 4276 // 110: vscr 4277 // 111: spe_acc 4278 // 112: spefscr 4279 // 113: sfp 4280 AssignToArrayRange(Builder, Address, Four8, 109, 113); 4281 4282 return false; 4283 } 4284 4285 // PowerPC-64 4286 4287 namespace { 4288 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 4289 class PPC64_SVR4_ABIInfo : public ABIInfo { 4290 public: 4291 enum ABIKind { 4292 ELFv1 = 0, 4293 ELFv2 4294 }; 4295 4296 private: 4297 static const unsigned GPRBits = 64; 4298 ABIKind Kind; 4299 bool HasQPX; 4300 bool IsSoftFloatABI; 4301 4302 // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and 4303 // will be passed in a QPX register. 4304 bool IsQPXVectorTy(const Type *Ty) const { 4305 if (!HasQPX) 4306 return false; 4307 4308 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4309 unsigned NumElements = VT->getNumElements(); 4310 if (NumElements == 1) 4311 return false; 4312 4313 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) { 4314 if (getContext().getTypeSize(Ty) <= 256) 4315 return true; 4316 } else if (VT->getElementType()-> 4317 isSpecificBuiltinType(BuiltinType::Float)) { 4318 if (getContext().getTypeSize(Ty) <= 128) 4319 return true; 4320 } 4321 } 4322 4323 return false; 4324 } 4325 4326 bool IsQPXVectorTy(QualType Ty) const { 4327 return IsQPXVectorTy(Ty.getTypePtr()); 4328 } 4329 4330 public: 4331 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX, 4332 bool SoftFloatABI) 4333 : ABIInfo(CGT), Kind(Kind), HasQPX(HasQPX), 4334 IsSoftFloatABI(SoftFloatABI) {} 4335 4336 bool isPromotableTypeForABI(QualType Ty) const; 4337 CharUnits getParamTypeAlignment(QualType Ty) const; 4338 4339 ABIArgInfo classifyReturnType(QualType RetTy) const; 4340 ABIArgInfo classifyArgumentType(QualType Ty) const; 4341 4342 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4343 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4344 uint64_t Members) const override; 4345 4346 // TODO: We can add more logic to computeInfo to improve performance. 4347 // Example: For aggregate arguments that fit in a register, we could 4348 // use getDirectInReg (as is done below for structs containing a single 4349 // floating-point value) to avoid pushing them to memory on function 4350 // entry. This would require changing the logic in PPCISelLowering 4351 // when lowering the parameters in the caller and args in the callee. 4352 void computeInfo(CGFunctionInfo &FI) const override { 4353 if (!getCXXABI().classifyReturnType(FI)) 4354 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4355 for (auto &I : FI.arguments()) { 4356 // We rely on the default argument classification for the most part. 4357 // One exception: An aggregate containing a single floating-point 4358 // or vector item must be passed in a register if one is available. 4359 const Type *T = isSingleElementStruct(I.type, getContext()); 4360 if (T) { 4361 const BuiltinType *BT = T->getAs<BuiltinType>(); 4362 if (IsQPXVectorTy(T) || 4363 (T->isVectorType() && getContext().getTypeSize(T) == 128) || 4364 (BT && BT->isFloatingPoint())) { 4365 QualType QT(T, 0); 4366 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 4367 continue; 4368 } 4369 } 4370 I.info = classifyArgumentType(I.type); 4371 } 4372 } 4373 4374 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4375 QualType Ty) const override; 4376 }; 4377 4378 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 4379 4380 public: 4381 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 4382 PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX, 4383 bool SoftFloatABI) 4384 : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX, 4385 SoftFloatABI)) {} 4386 4387 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4388 // This is recovered from gcc output. 4389 return 1; // r1 is the dedicated stack pointer 4390 } 4391 4392 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4393 llvm::Value *Address) const override; 4394 }; 4395 4396 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 4397 public: 4398 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 4399 4400 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4401 // This is recovered from gcc output. 4402 return 1; // r1 is the dedicated stack pointer 4403 } 4404 4405 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4406 llvm::Value *Address) const override; 4407 }; 4408 4409 } 4410 4411 // Return true if the ABI requires Ty to be passed sign- or zero- 4412 // extended to 64 bits. 4413 bool 4414 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 4415 // Treat an enum type as its underlying type. 4416 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4417 Ty = EnumTy->getDecl()->getIntegerType(); 4418 4419 // Promotable integer types are required to be promoted by the ABI. 4420 if (Ty->isPromotableIntegerType()) 4421 return true; 4422 4423 // In addition to the usual promotable integer types, we also need to 4424 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 4425 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4426 switch (BT->getKind()) { 4427 case BuiltinType::Int: 4428 case BuiltinType::UInt: 4429 return true; 4430 default: 4431 break; 4432 } 4433 4434 return false; 4435 } 4436 4437 /// isAlignedParamType - Determine whether a type requires 16-byte or 4438 /// higher alignment in the parameter area. Always returns at least 8. 4439 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4440 // Complex types are passed just like their elements. 4441 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4442 Ty = CTy->getElementType(); 4443 4444 // Only vector types of size 16 bytes need alignment (larger types are 4445 // passed via reference, smaller types are not aligned). 4446 if (IsQPXVectorTy(Ty)) { 4447 if (getContext().getTypeSize(Ty) > 128) 4448 return CharUnits::fromQuantity(32); 4449 4450 return CharUnits::fromQuantity(16); 4451 } else if (Ty->isVectorType()) { 4452 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8); 4453 } 4454 4455 // For single-element float/vector structs, we consider the whole type 4456 // to have the same alignment requirements as its single element. 4457 const Type *AlignAsType = nullptr; 4458 const Type *EltType = isSingleElementStruct(Ty, getContext()); 4459 if (EltType) { 4460 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4461 if (IsQPXVectorTy(EltType) || (EltType->isVectorType() && 4462 getContext().getTypeSize(EltType) == 128) || 4463 (BT && BT->isFloatingPoint())) 4464 AlignAsType = EltType; 4465 } 4466 4467 // Likewise for ELFv2 homogeneous aggregates. 4468 const Type *Base = nullptr; 4469 uint64_t Members = 0; 4470 if (!AlignAsType && Kind == ELFv2 && 4471 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 4472 AlignAsType = Base; 4473 4474 // With special case aggregates, only vector base types need alignment. 4475 if (AlignAsType && IsQPXVectorTy(AlignAsType)) { 4476 if (getContext().getTypeSize(AlignAsType) > 128) 4477 return CharUnits::fromQuantity(32); 4478 4479 return CharUnits::fromQuantity(16); 4480 } else if (AlignAsType) { 4481 return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8); 4482 } 4483 4484 // Otherwise, we only need alignment for any aggregate type that 4485 // has an alignment requirement of >= 16 bytes. 4486 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { 4487 if (HasQPX && getContext().getTypeAlign(Ty) >= 256) 4488 return CharUnits::fromQuantity(32); 4489 return CharUnits::fromQuantity(16); 4490 } 4491 4492 return CharUnits::fromQuantity(8); 4493 } 4494 4495 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 4496 /// aggregate. Base is set to the base element type, and Members is set 4497 /// to the number of base elements. 4498 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 4499 uint64_t &Members) const { 4500 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 4501 uint64_t NElements = AT->getSize().getZExtValue(); 4502 if (NElements == 0) 4503 return false; 4504 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 4505 return false; 4506 Members *= NElements; 4507 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 4508 const RecordDecl *RD = RT->getDecl(); 4509 if (RD->hasFlexibleArrayMember()) 4510 return false; 4511 4512 Members = 0; 4513 4514 // If this is a C++ record, check the bases first. 4515 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 4516 for (const auto &I : CXXRD->bases()) { 4517 // Ignore empty records. 4518 if (isEmptyRecord(getContext(), I.getType(), true)) 4519 continue; 4520 4521 uint64_t FldMembers; 4522 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) 4523 return false; 4524 4525 Members += FldMembers; 4526 } 4527 } 4528 4529 for (const auto *FD : RD->fields()) { 4530 // Ignore (non-zero arrays of) empty records. 4531 QualType FT = FD->getType(); 4532 while (const ConstantArrayType *AT = 4533 getContext().getAsConstantArrayType(FT)) { 4534 if (AT->getSize().getZExtValue() == 0) 4535 return false; 4536 FT = AT->getElementType(); 4537 } 4538 if (isEmptyRecord(getContext(), FT, true)) 4539 continue; 4540 4541 // For compatibility with GCC, ignore empty bitfields in C++ mode. 4542 if (getContext().getLangOpts().CPlusPlus && 4543 FD->isBitField() && FD->getBitWidthValue(getContext()) == 0) 4544 continue; 4545 4546 uint64_t FldMembers; 4547 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 4548 return false; 4549 4550 Members = (RD->isUnion() ? 4551 std::max(Members, FldMembers) : Members + FldMembers); 4552 } 4553 4554 if (!Base) 4555 return false; 4556 4557 // Ensure there is no padding. 4558 if (getContext().getTypeSize(Base) * Members != 4559 getContext().getTypeSize(Ty)) 4560 return false; 4561 } else { 4562 Members = 1; 4563 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 4564 Members = 2; 4565 Ty = CT->getElementType(); 4566 } 4567 4568 // Most ABIs only support float, double, and some vector type widths. 4569 if (!isHomogeneousAggregateBaseType(Ty)) 4570 return false; 4571 4572 // The base type must be the same for all members. Types that 4573 // agree in both total size and mode (float vs. vector) are 4574 // treated as being equivalent here. 4575 const Type *TyPtr = Ty.getTypePtr(); 4576 if (!Base) { 4577 Base = TyPtr; 4578 // If it's a non-power-of-2 vector, its size is already a power-of-2, 4579 // so make sure to widen it explicitly. 4580 if (const VectorType *VT = Base->getAs<VectorType>()) { 4581 QualType EltTy = VT->getElementType(); 4582 unsigned NumElements = 4583 getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy); 4584 Base = getContext() 4585 .getVectorType(EltTy, NumElements, VT->getVectorKind()) 4586 .getTypePtr(); 4587 } 4588 } 4589 4590 if (Base->isVectorType() != TyPtr->isVectorType() || 4591 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 4592 return false; 4593 } 4594 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); 4595 } 4596 4597 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 4598 // Homogeneous aggregates for ELFv2 must have base types of float, 4599 // double, long double, or 128-bit vectors. 4600 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4601 if (BT->getKind() == BuiltinType::Float || 4602 BT->getKind() == BuiltinType::Double || 4603 BT->getKind() == BuiltinType::LongDouble) { 4604 if (IsSoftFloatABI) 4605 return false; 4606 return true; 4607 } 4608 } 4609 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4610 if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty)) 4611 return true; 4612 } 4613 return false; 4614 } 4615 4616 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( 4617 const Type *Base, uint64_t Members) const { 4618 // Vector types require one register, floating point types require one 4619 // or two registers depending on their size. 4620 uint32_t NumRegs = 4621 Base->isVectorType() ? 1 : (getContext().getTypeSize(Base) + 63) / 64; 4622 4623 // Homogeneous Aggregates may occupy at most 8 registers. 4624 return Members * NumRegs <= 8; 4625 } 4626 4627 ABIArgInfo 4628 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 4629 Ty = useFirstFieldIfTransparentUnion(Ty); 4630 4631 if (Ty->isAnyComplexType()) 4632 return ABIArgInfo::getDirect(); 4633 4634 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 4635 // or via reference (larger than 16 bytes). 4636 if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) { 4637 uint64_t Size = getContext().getTypeSize(Ty); 4638 if (Size > 128) 4639 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4640 else if (Size < 128) { 4641 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 4642 return ABIArgInfo::getDirect(CoerceTy); 4643 } 4644 } 4645 4646 if (isAggregateTypeForABI(Ty)) { 4647 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 4648 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4649 4650 uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity(); 4651 uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 4652 4653 // ELFv2 homogeneous aggregates are passed as array types. 4654 const Type *Base = nullptr; 4655 uint64_t Members = 0; 4656 if (Kind == ELFv2 && 4657 isHomogeneousAggregate(Ty, Base, Members)) { 4658 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 4659 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 4660 return ABIArgInfo::getDirect(CoerceTy); 4661 } 4662 4663 // If an aggregate may end up fully in registers, we do not 4664 // use the ByVal method, but pass the aggregate as array. 4665 // This is usually beneficial since we avoid forcing the 4666 // back-end to store the argument to memory. 4667 uint64_t Bits = getContext().getTypeSize(Ty); 4668 if (Bits > 0 && Bits <= 8 * GPRBits) { 4669 llvm::Type *CoerceTy; 4670 4671 // Types up to 8 bytes are passed as integer type (which will be 4672 // properly aligned in the argument save area doubleword). 4673 if (Bits <= GPRBits) 4674 CoerceTy = 4675 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 4676 // Larger types are passed as arrays, with the base type selected 4677 // according to the required alignment in the save area. 4678 else { 4679 uint64_t RegBits = ABIAlign * 8; 4680 uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits; 4681 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 4682 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 4683 } 4684 4685 return ABIArgInfo::getDirect(CoerceTy); 4686 } 4687 4688 // All other aggregates are passed ByVal. 4689 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 4690 /*ByVal=*/true, 4691 /*Realign=*/TyAlign > ABIAlign); 4692 } 4693 4694 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 4695 : ABIArgInfo::getDirect()); 4696 } 4697 4698 ABIArgInfo 4699 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 4700 if (RetTy->isVoidType()) 4701 return ABIArgInfo::getIgnore(); 4702 4703 if (RetTy->isAnyComplexType()) 4704 return ABIArgInfo::getDirect(); 4705 4706 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 4707 // or via reference (larger than 16 bytes). 4708 if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) { 4709 uint64_t Size = getContext().getTypeSize(RetTy); 4710 if (Size > 128) 4711 return getNaturalAlignIndirect(RetTy); 4712 else if (Size < 128) { 4713 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 4714 return ABIArgInfo::getDirect(CoerceTy); 4715 } 4716 } 4717 4718 if (isAggregateTypeForABI(RetTy)) { 4719 // ELFv2 homogeneous aggregates are returned as array types. 4720 const Type *Base = nullptr; 4721 uint64_t Members = 0; 4722 if (Kind == ELFv2 && 4723 isHomogeneousAggregate(RetTy, Base, Members)) { 4724 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 4725 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 4726 return ABIArgInfo::getDirect(CoerceTy); 4727 } 4728 4729 // ELFv2 small aggregates are returned in up to two registers. 4730 uint64_t Bits = getContext().getTypeSize(RetTy); 4731 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 4732 if (Bits == 0) 4733 return ABIArgInfo::getIgnore(); 4734 4735 llvm::Type *CoerceTy; 4736 if (Bits > GPRBits) { 4737 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 4738 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy); 4739 } else 4740 CoerceTy = 4741 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 4742 return ABIArgInfo::getDirect(CoerceTy); 4743 } 4744 4745 // All other aggregates are returned indirectly. 4746 return getNaturalAlignIndirect(RetTy); 4747 } 4748 4749 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 4750 : ABIArgInfo::getDirect()); 4751 } 4752 4753 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 4754 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4755 QualType Ty) const { 4756 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 4757 TypeInfo.second = getParamTypeAlignment(Ty); 4758 4759 CharUnits SlotSize = CharUnits::fromQuantity(8); 4760 4761 // If we have a complex type and the base type is smaller than 8 bytes, 4762 // the ABI calls for the real and imaginary parts to be right-adjusted 4763 // in separate doublewords. However, Clang expects us to produce a 4764 // pointer to a structure with the two parts packed tightly. So generate 4765 // loads of the real and imaginary parts relative to the va_list pointer, 4766 // and store them to a temporary structure. 4767 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4768 CharUnits EltSize = TypeInfo.first / 2; 4769 if (EltSize < SlotSize) { 4770 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, 4771 SlotSize * 2, SlotSize, 4772 SlotSize, /*AllowHigher*/ true); 4773 4774 Address RealAddr = Addr; 4775 Address ImagAddr = RealAddr; 4776 if (CGF.CGM.getDataLayout().isBigEndian()) { 4777 RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, 4778 SlotSize - EltSize); 4779 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr, 4780 2 * SlotSize - EltSize); 4781 } else { 4782 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize); 4783 } 4784 4785 llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType()); 4786 RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy); 4787 ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy); 4788 llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal"); 4789 llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag"); 4790 4791 Address Temp = CGF.CreateMemTemp(Ty, "vacplx"); 4792 CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty), 4793 /*init*/ true); 4794 return Temp; 4795 } 4796 } 4797 4798 // Otherwise, just use the general rule. 4799 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 4800 TypeInfo, SlotSize, /*AllowHigher*/ true); 4801 } 4802 4803 static bool 4804 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4805 llvm::Value *Address) { 4806 // This is calculated from the LLVM and GCC tables and verified 4807 // against gcc output. AFAIK all ABIs use the same encoding. 4808 4809 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4810 4811 llvm::IntegerType *i8 = CGF.Int8Ty; 4812 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4813 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4814 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4815 4816 // 0-31: r0-31, the 8-byte general-purpose registers 4817 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 4818 4819 // 32-63: fp0-31, the 8-byte floating-point registers 4820 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4821 4822 // 64-67 are various 8-byte special-purpose registers: 4823 // 64: mq 4824 // 65: lr 4825 // 66: ctr 4826 // 67: ap 4827 AssignToArrayRange(Builder, Address, Eight8, 64, 67); 4828 4829 // 68-76 are various 4-byte special-purpose registers: 4830 // 68-75 cr0-7 4831 // 76: xer 4832 AssignToArrayRange(Builder, Address, Four8, 68, 76); 4833 4834 // 77-108: v0-31, the 16-byte vector registers 4835 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4836 4837 // 109: vrsave 4838 // 110: vscr 4839 // 111: spe_acc 4840 // 112: spefscr 4841 // 113: sfp 4842 // 114: tfhar 4843 // 115: tfiar 4844 // 116: texasr 4845 AssignToArrayRange(Builder, Address, Eight8, 109, 116); 4846 4847 return false; 4848 } 4849 4850 bool 4851 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 4852 CodeGen::CodeGenFunction &CGF, 4853 llvm::Value *Address) const { 4854 4855 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 4856 } 4857 4858 bool 4859 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4860 llvm::Value *Address) const { 4861 4862 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 4863 } 4864 4865 //===----------------------------------------------------------------------===// 4866 // AArch64 ABI Implementation 4867 //===----------------------------------------------------------------------===// 4868 4869 namespace { 4870 4871 class AArch64ABIInfo : public SwiftABIInfo { 4872 public: 4873 enum ABIKind { 4874 AAPCS = 0, 4875 DarwinPCS, 4876 Win64 4877 }; 4878 4879 private: 4880 ABIKind Kind; 4881 4882 public: 4883 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) 4884 : SwiftABIInfo(CGT), Kind(Kind) {} 4885 4886 private: 4887 ABIKind getABIKind() const { return Kind; } 4888 bool isDarwinPCS() const { return Kind == DarwinPCS; } 4889 4890 ABIArgInfo classifyReturnType(QualType RetTy) const; 4891 ABIArgInfo classifyArgumentType(QualType RetTy) const; 4892 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4893 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4894 uint64_t Members) const override; 4895 4896 bool isIllegalVectorType(QualType Ty) const; 4897 4898 void computeInfo(CGFunctionInfo &FI) const override { 4899 if (!getCXXABI().classifyReturnType(FI)) 4900 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4901 4902 for (auto &it : FI.arguments()) 4903 it.info = classifyArgumentType(it.type); 4904 } 4905 4906 Address EmitDarwinVAArg(Address VAListAddr, QualType Ty, 4907 CodeGenFunction &CGF) const; 4908 4909 Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 4910 CodeGenFunction &CGF) const; 4911 4912 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4913 QualType Ty) const override { 4914 return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty) 4915 : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 4916 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 4917 } 4918 4919 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 4920 QualType Ty) const override; 4921 4922 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 4923 bool asReturnValue) const override { 4924 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 4925 } 4926 bool isSwiftErrorInRegister() const override { 4927 return true; 4928 } 4929 4930 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 4931 unsigned elts) const override; 4932 }; 4933 4934 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 4935 public: 4936 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 4937 : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {} 4938 4939 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 4940 return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue"; 4941 } 4942 4943 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4944 return 31; 4945 } 4946 4947 bool doesReturnSlotInterfereWithArgs() const override { return false; } 4948 }; 4949 4950 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo { 4951 public: 4952 WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K) 4953 : AArch64TargetCodeGenInfo(CGT, K) {} 4954 4955 void getDependentLibraryOption(llvm::StringRef Lib, 4956 llvm::SmallString<24> &Opt) const override { 4957 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 4958 } 4959 4960 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 4961 llvm::SmallString<32> &Opt) const override { 4962 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 4963 } 4964 }; 4965 } 4966 4967 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const { 4968 Ty = useFirstFieldIfTransparentUnion(Ty); 4969 4970 // Handle illegal vector types here. 4971 if (isIllegalVectorType(Ty)) { 4972 uint64_t Size = getContext().getTypeSize(Ty); 4973 // Android promotes <2 x i8> to i16, not i32 4974 if (isAndroid() && (Size <= 16)) { 4975 llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext()); 4976 return ABIArgInfo::getDirect(ResType); 4977 } 4978 if (Size <= 32) { 4979 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 4980 return ABIArgInfo::getDirect(ResType); 4981 } 4982 if (Size == 64) { 4983 llvm::Type *ResType = 4984 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 4985 return ABIArgInfo::getDirect(ResType); 4986 } 4987 if (Size == 128) { 4988 llvm::Type *ResType = 4989 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 4990 return ABIArgInfo::getDirect(ResType); 4991 } 4992 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4993 } 4994 4995 if (!isAggregateTypeForABI(Ty)) { 4996 // Treat an enum type as its underlying type. 4997 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4998 Ty = EnumTy->getDecl()->getIntegerType(); 4999 5000 return (Ty->isPromotableIntegerType() && isDarwinPCS() 5001 ? ABIArgInfo::getExtend(Ty) 5002 : ABIArgInfo::getDirect()); 5003 } 5004 5005 // Structures with either a non-trivial destructor or a non-trivial 5006 // copy constructor are always indirect. 5007 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5008 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 5009 CGCXXABI::RAA_DirectInMemory); 5010 } 5011 5012 // Empty records are always ignored on Darwin, but actually passed in C++ mode 5013 // elsewhere for GNU compatibility. 5014 uint64_t Size = getContext().getTypeSize(Ty); 5015 bool IsEmpty = isEmptyRecord(getContext(), Ty, true); 5016 if (IsEmpty || Size == 0) { 5017 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 5018 return ABIArgInfo::getIgnore(); 5019 5020 // GNU C mode. The only argument that gets ignored is an empty one with size 5021 // 0. 5022 if (IsEmpty && Size == 0) 5023 return ABIArgInfo::getIgnore(); 5024 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5025 } 5026 5027 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 5028 const Type *Base = nullptr; 5029 uint64_t Members = 0; 5030 if (isHomogeneousAggregate(Ty, Base, Members)) { 5031 return ABIArgInfo::getDirect( 5032 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); 5033 } 5034 5035 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 5036 if (Size <= 128) { 5037 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5038 // same size and alignment. 5039 if (getTarget().isRenderScriptTarget()) { 5040 return coerceToIntArray(Ty, getContext(), getVMContext()); 5041 } 5042 unsigned Alignment = getContext().getTypeAlign(Ty); 5043 Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes 5044 5045 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5046 // For aggregates with 16-byte alignment, we use i128. 5047 if (Alignment < 128 && Size == 128) { 5048 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 5049 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 5050 } 5051 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 5052 } 5053 5054 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5055 } 5056 5057 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const { 5058 if (RetTy->isVoidType()) 5059 return ABIArgInfo::getIgnore(); 5060 5061 // Large vector types should be returned via memory. 5062 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 5063 return getNaturalAlignIndirect(RetTy); 5064 5065 if (!isAggregateTypeForABI(RetTy)) { 5066 // Treat an enum type as its underlying type. 5067 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5068 RetTy = EnumTy->getDecl()->getIntegerType(); 5069 5070 return (RetTy->isPromotableIntegerType() && isDarwinPCS() 5071 ? ABIArgInfo::getExtend(RetTy) 5072 : ABIArgInfo::getDirect()); 5073 } 5074 5075 uint64_t Size = getContext().getTypeSize(RetTy); 5076 if (isEmptyRecord(getContext(), RetTy, true) || Size == 0) 5077 return ABIArgInfo::getIgnore(); 5078 5079 const Type *Base = nullptr; 5080 uint64_t Members = 0; 5081 if (isHomogeneousAggregate(RetTy, Base, Members)) 5082 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 5083 return ABIArgInfo::getDirect(); 5084 5085 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 5086 if (Size <= 128) { 5087 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5088 // same size and alignment. 5089 if (getTarget().isRenderScriptTarget()) { 5090 return coerceToIntArray(RetTy, getContext(), getVMContext()); 5091 } 5092 unsigned Alignment = getContext().getTypeAlign(RetTy); 5093 Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes 5094 5095 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5096 // For aggregates with 16-byte alignment, we use i128. 5097 if (Alignment < 128 && Size == 128) { 5098 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 5099 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 5100 } 5101 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 5102 } 5103 5104 return getNaturalAlignIndirect(RetTy); 5105 } 5106 5107 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 5108 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 5109 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5110 // Check whether VT is legal. 5111 unsigned NumElements = VT->getNumElements(); 5112 uint64_t Size = getContext().getTypeSize(VT); 5113 // NumElements should be power of 2. 5114 if (!llvm::isPowerOf2_32(NumElements)) 5115 return true; 5116 return Size != 64 && (Size != 128 || NumElements == 1); 5117 } 5118 return false; 5119 } 5120 5121 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize, 5122 llvm::Type *eltTy, 5123 unsigned elts) const { 5124 if (!llvm::isPowerOf2_32(elts)) 5125 return false; 5126 if (totalSize.getQuantity() != 8 && 5127 (totalSize.getQuantity() != 16 || elts == 1)) 5128 return false; 5129 return true; 5130 } 5131 5132 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5133 // Homogeneous aggregates for AAPCS64 must have base types of a floating 5134 // point type or a short-vector type. This is the same as the 32-bit ABI, 5135 // but with the difference that any floating-point type is allowed, 5136 // including __fp16. 5137 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5138 if (BT->isFloatingPoint()) 5139 return true; 5140 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 5141 unsigned VecSize = getContext().getTypeSize(VT); 5142 if (VecSize == 64 || VecSize == 128) 5143 return true; 5144 } 5145 return false; 5146 } 5147 5148 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 5149 uint64_t Members) const { 5150 return Members <= 4; 5151 } 5152 5153 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, 5154 QualType Ty, 5155 CodeGenFunction &CGF) const { 5156 ABIArgInfo AI = classifyArgumentType(Ty); 5157 bool IsIndirect = AI.isIndirect(); 5158 5159 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5160 if (IsIndirect) 5161 BaseTy = llvm::PointerType::getUnqual(BaseTy); 5162 else if (AI.getCoerceToType()) 5163 BaseTy = AI.getCoerceToType(); 5164 5165 unsigned NumRegs = 1; 5166 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { 5167 BaseTy = ArrTy->getElementType(); 5168 NumRegs = ArrTy->getNumElements(); 5169 } 5170 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); 5171 5172 // The AArch64 va_list type and handling is specified in the Procedure Call 5173 // Standard, section B.4: 5174 // 5175 // struct { 5176 // void *__stack; 5177 // void *__gr_top; 5178 // void *__vr_top; 5179 // int __gr_offs; 5180 // int __vr_offs; 5181 // }; 5182 5183 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 5184 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 5185 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 5186 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 5187 5188 auto TyInfo = getContext().getTypeInfoInChars(Ty); 5189 CharUnits TyAlign = TyInfo.second; 5190 5191 Address reg_offs_p = Address::invalid(); 5192 llvm::Value *reg_offs = nullptr; 5193 int reg_top_index; 5194 CharUnits reg_top_offset; 5195 int RegSize = IsIndirect ? 8 : TyInfo.first.getQuantity(); 5196 if (!IsFPR) { 5197 // 3 is the field number of __gr_offs 5198 reg_offs_p = 5199 CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24), 5200 "gr_offs_p"); 5201 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 5202 reg_top_index = 1; // field number for __gr_top 5203 reg_top_offset = CharUnits::fromQuantity(8); 5204 RegSize = llvm::alignTo(RegSize, 8); 5205 } else { 5206 // 4 is the field number of __vr_offs. 5207 reg_offs_p = 5208 CGF.Builder.CreateStructGEP(VAListAddr, 4, CharUnits::fromQuantity(28), 5209 "vr_offs_p"); 5210 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 5211 reg_top_index = 2; // field number for __vr_top 5212 reg_top_offset = CharUnits::fromQuantity(16); 5213 RegSize = 16 * NumRegs; 5214 } 5215 5216 //======================================= 5217 // Find out where argument was passed 5218 //======================================= 5219 5220 // If reg_offs >= 0 we're already using the stack for this type of 5221 // argument. We don't want to keep updating reg_offs (in case it overflows, 5222 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 5223 // whatever they get). 5224 llvm::Value *UsingStack = nullptr; 5225 UsingStack = CGF.Builder.CreateICmpSGE( 5226 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 5227 5228 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 5229 5230 // Otherwise, at least some kind of argument could go in these registers, the 5231 // question is whether this particular type is too big. 5232 CGF.EmitBlock(MaybeRegBlock); 5233 5234 // Integer arguments may need to correct register alignment (for example a 5235 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 5236 // align __gr_offs to calculate the potential address. 5237 if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) { 5238 int Align = TyAlign.getQuantity(); 5239 5240 reg_offs = CGF.Builder.CreateAdd( 5241 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 5242 "align_regoffs"); 5243 reg_offs = CGF.Builder.CreateAnd( 5244 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 5245 "aligned_regoffs"); 5246 } 5247 5248 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 5249 // The fact that this is done unconditionally reflects the fact that 5250 // allocating an argument to the stack also uses up all the remaining 5251 // registers of the appropriate kind. 5252 llvm::Value *NewOffset = nullptr; 5253 NewOffset = CGF.Builder.CreateAdd( 5254 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 5255 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 5256 5257 // Now we're in a position to decide whether this argument really was in 5258 // registers or not. 5259 llvm::Value *InRegs = nullptr; 5260 InRegs = CGF.Builder.CreateICmpSLE( 5261 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 5262 5263 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 5264 5265 //======================================= 5266 // Argument was in registers 5267 //======================================= 5268 5269 // Now we emit the code for if the argument was originally passed in 5270 // registers. First start the appropriate block: 5271 CGF.EmitBlock(InRegBlock); 5272 5273 llvm::Value *reg_top = nullptr; 5274 Address reg_top_p = CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, 5275 reg_top_offset, "reg_top_p"); 5276 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 5277 Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs), 5278 CharUnits::fromQuantity(IsFPR ? 16 : 8)); 5279 Address RegAddr = Address::invalid(); 5280 llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty); 5281 5282 if (IsIndirect) { 5283 // If it's been passed indirectly (actually a struct), whatever we find from 5284 // stored registers or on the stack will actually be a struct **. 5285 MemTy = llvm::PointerType::getUnqual(MemTy); 5286 } 5287 5288 const Type *Base = nullptr; 5289 uint64_t NumMembers = 0; 5290 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); 5291 if (IsHFA && NumMembers > 1) { 5292 // Homogeneous aggregates passed in registers will have their elements split 5293 // and stored 16-bytes apart regardless of size (they're notionally in qN, 5294 // qN+1, ...). We reload and store into a temporary local variable 5295 // contiguously. 5296 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 5297 auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0)); 5298 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 5299 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 5300 Address Tmp = CGF.CreateTempAlloca(HFATy, 5301 std::max(TyAlign, BaseTyInfo.second)); 5302 5303 // On big-endian platforms, the value will be right-aligned in its slot. 5304 int Offset = 0; 5305 if (CGF.CGM.getDataLayout().isBigEndian() && 5306 BaseTyInfo.first.getQuantity() < 16) 5307 Offset = 16 - BaseTyInfo.first.getQuantity(); 5308 5309 for (unsigned i = 0; i < NumMembers; ++i) { 5310 CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset); 5311 Address LoadAddr = 5312 CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset); 5313 LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy); 5314 5315 Address StoreAddr = 5316 CGF.Builder.CreateConstArrayGEP(Tmp, i, BaseTyInfo.first); 5317 5318 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 5319 CGF.Builder.CreateStore(Elem, StoreAddr); 5320 } 5321 5322 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy); 5323 } else { 5324 // Otherwise the object is contiguous in memory. 5325 5326 // It might be right-aligned in its slot. 5327 CharUnits SlotSize = BaseAddr.getAlignment(); 5328 if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect && 5329 (IsHFA || !isAggregateTypeForABI(Ty)) && 5330 TyInfo.first < SlotSize) { 5331 CharUnits Offset = SlotSize - TyInfo.first; 5332 BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset); 5333 } 5334 5335 RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy); 5336 } 5337 5338 CGF.EmitBranch(ContBlock); 5339 5340 //======================================= 5341 // Argument was on the stack 5342 //======================================= 5343 CGF.EmitBlock(OnStackBlock); 5344 5345 Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, 5346 CharUnits::Zero(), "stack_p"); 5347 llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack"); 5348 5349 // Again, stack arguments may need realignment. In this case both integer and 5350 // floating-point ones might be affected. 5351 if (!IsIndirect && TyAlign.getQuantity() > 8) { 5352 int Align = TyAlign.getQuantity(); 5353 5354 OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty); 5355 5356 OnStackPtr = CGF.Builder.CreateAdd( 5357 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 5358 "align_stack"); 5359 OnStackPtr = CGF.Builder.CreateAnd( 5360 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 5361 "align_stack"); 5362 5363 OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy); 5364 } 5365 Address OnStackAddr(OnStackPtr, 5366 std::max(CharUnits::fromQuantity(8), TyAlign)); 5367 5368 // All stack slots are multiples of 8 bytes. 5369 CharUnits StackSlotSize = CharUnits::fromQuantity(8); 5370 CharUnits StackSize; 5371 if (IsIndirect) 5372 StackSize = StackSlotSize; 5373 else 5374 StackSize = TyInfo.first.alignTo(StackSlotSize); 5375 5376 llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize); 5377 llvm::Value *NewStack = 5378 CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack"); 5379 5380 // Write the new value of __stack for the next call to va_arg 5381 CGF.Builder.CreateStore(NewStack, stack_p); 5382 5383 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 5384 TyInfo.first < StackSlotSize) { 5385 CharUnits Offset = StackSlotSize - TyInfo.first; 5386 OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset); 5387 } 5388 5389 OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy); 5390 5391 CGF.EmitBranch(ContBlock); 5392 5393 //======================================= 5394 // Tidy up 5395 //======================================= 5396 CGF.EmitBlock(ContBlock); 5397 5398 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 5399 OnStackAddr, OnStackBlock, "vaargs.addr"); 5400 5401 if (IsIndirect) 5402 return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), 5403 TyInfo.second); 5404 5405 return ResAddr; 5406 } 5407 5408 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty, 5409 CodeGenFunction &CGF) const { 5410 // The backend's lowering doesn't support va_arg for aggregates or 5411 // illegal vector types. Lower VAArg here for these cases and use 5412 // the LLVM va_arg instruction for everything else. 5413 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 5414 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 5415 5416 CharUnits SlotSize = CharUnits::fromQuantity(8); 5417 5418 // Empty records are ignored for parameter passing purposes. 5419 if (isEmptyRecord(getContext(), Ty, true)) { 5420 Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 5421 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 5422 return Addr; 5423 } 5424 5425 // The size of the actual thing passed, which might end up just 5426 // being a pointer for indirect types. 5427 auto TyInfo = getContext().getTypeInfoInChars(Ty); 5428 5429 // Arguments bigger than 16 bytes which aren't homogeneous 5430 // aggregates should be passed indirectly. 5431 bool IsIndirect = false; 5432 if (TyInfo.first.getQuantity() > 16) { 5433 const Type *Base = nullptr; 5434 uint64_t Members = 0; 5435 IsIndirect = !isHomogeneousAggregate(Ty, Base, Members); 5436 } 5437 5438 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 5439 TyInfo, SlotSize, /*AllowHigherAlign*/ true); 5440 } 5441 5442 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 5443 QualType Ty) const { 5444 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 5445 CGF.getContext().getTypeInfoInChars(Ty), 5446 CharUnits::fromQuantity(8), 5447 /*allowHigherAlign*/ false); 5448 } 5449 5450 //===----------------------------------------------------------------------===// 5451 // ARM ABI Implementation 5452 //===----------------------------------------------------------------------===// 5453 5454 namespace { 5455 5456 class ARMABIInfo : public SwiftABIInfo { 5457 public: 5458 enum ABIKind { 5459 APCS = 0, 5460 AAPCS = 1, 5461 AAPCS_VFP = 2, 5462 AAPCS16_VFP = 3, 5463 }; 5464 5465 private: 5466 ABIKind Kind; 5467 5468 public: 5469 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) 5470 : SwiftABIInfo(CGT), Kind(_Kind) { 5471 setCCs(); 5472 } 5473 5474 bool isEABI() const { 5475 switch (getTarget().getTriple().getEnvironment()) { 5476 case llvm::Triple::Android: 5477 case llvm::Triple::EABI: 5478 case llvm::Triple::EABIHF: 5479 case llvm::Triple::GNUEABI: 5480 case llvm::Triple::GNUEABIHF: 5481 case llvm::Triple::MuslEABI: 5482 case llvm::Triple::MuslEABIHF: 5483 return true; 5484 default: 5485 return false; 5486 } 5487 } 5488 5489 bool isEABIHF() const { 5490 switch (getTarget().getTriple().getEnvironment()) { 5491 case llvm::Triple::EABIHF: 5492 case llvm::Triple::GNUEABIHF: 5493 case llvm::Triple::MuslEABIHF: 5494 return true; 5495 default: 5496 return false; 5497 } 5498 } 5499 5500 ABIKind getABIKind() const { return Kind; } 5501 5502 private: 5503 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const; 5504 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic) const; 5505 bool isIllegalVectorType(QualType Ty) const; 5506 5507 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 5508 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 5509 uint64_t Members) const override; 5510 5511 void computeInfo(CGFunctionInfo &FI) const override; 5512 5513 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5514 QualType Ty) const override; 5515 5516 llvm::CallingConv::ID getLLVMDefaultCC() const; 5517 llvm::CallingConv::ID getABIDefaultCC() const; 5518 void setCCs(); 5519 5520 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 5521 bool asReturnValue) const override { 5522 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5523 } 5524 bool isSwiftErrorInRegister() const override { 5525 return true; 5526 } 5527 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 5528 unsigned elts) const override; 5529 }; 5530 5531 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 5532 public: 5533 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 5534 :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {} 5535 5536 const ARMABIInfo &getABIInfo() const { 5537 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 5538 } 5539 5540 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5541 return 13; 5542 } 5543 5544 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 5545 return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue"; 5546 } 5547 5548 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5549 llvm::Value *Address) const override { 5550 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 5551 5552 // 0-15 are the 16 integer registers. 5553 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 5554 return false; 5555 } 5556 5557 unsigned getSizeOfUnwindException() const override { 5558 if (getABIInfo().isEABI()) return 88; 5559 return TargetCodeGenInfo::getSizeOfUnwindException(); 5560 } 5561 5562 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5563 CodeGen::CodeGenModule &CGM) const override { 5564 if (GV->isDeclaration()) 5565 return; 5566 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5567 if (!FD) 5568 return; 5569 5570 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 5571 if (!Attr) 5572 return; 5573 5574 const char *Kind; 5575 switch (Attr->getInterrupt()) { 5576 case ARMInterruptAttr::Generic: Kind = ""; break; 5577 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 5578 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 5579 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 5580 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 5581 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 5582 } 5583 5584 llvm::Function *Fn = cast<llvm::Function>(GV); 5585 5586 Fn->addFnAttr("interrupt", Kind); 5587 5588 ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind(); 5589 if (ABI == ARMABIInfo::APCS) 5590 return; 5591 5592 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 5593 // however this is not necessarily true on taking any interrupt. Instruct 5594 // the backend to perform a realignment as part of the function prologue. 5595 llvm::AttrBuilder B; 5596 B.addStackAlignmentAttr(8); 5597 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 5598 } 5599 }; 5600 5601 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { 5602 public: 5603 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 5604 : ARMTargetCodeGenInfo(CGT, K) {} 5605 5606 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5607 CodeGen::CodeGenModule &CGM) const override; 5608 5609 void getDependentLibraryOption(llvm::StringRef Lib, 5610 llvm::SmallString<24> &Opt) const override { 5611 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5612 } 5613 5614 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5615 llvm::SmallString<32> &Opt) const override { 5616 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5617 } 5618 }; 5619 5620 void WindowsARMTargetCodeGenInfo::setTargetAttributes( 5621 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 5622 ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 5623 if (GV->isDeclaration()) 5624 return; 5625 addStackProbeSizeTargetAttribute(D, GV, CGM); 5626 } 5627 } 5628 5629 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 5630 if (!getCXXABI().classifyReturnType(FI)) 5631 FI.getReturnInfo() = 5632 classifyReturnType(FI.getReturnType(), FI.isVariadic()); 5633 5634 for (auto &I : FI.arguments()) 5635 I.info = classifyArgumentType(I.type, FI.isVariadic()); 5636 5637 // Always honor user-specified calling convention. 5638 if (FI.getCallingConvention() != llvm::CallingConv::C) 5639 return; 5640 5641 llvm::CallingConv::ID cc = getRuntimeCC(); 5642 if (cc != llvm::CallingConv::C) 5643 FI.setEffectiveCallingConvention(cc); 5644 } 5645 5646 /// Return the default calling convention that LLVM will use. 5647 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 5648 // The default calling convention that LLVM will infer. 5649 if (isEABIHF() || getTarget().getTriple().isWatchABI()) 5650 return llvm::CallingConv::ARM_AAPCS_VFP; 5651 else if (isEABI()) 5652 return llvm::CallingConv::ARM_AAPCS; 5653 else 5654 return llvm::CallingConv::ARM_APCS; 5655 } 5656 5657 /// Return the calling convention that our ABI would like us to use 5658 /// as the C calling convention. 5659 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 5660 switch (getABIKind()) { 5661 case APCS: return llvm::CallingConv::ARM_APCS; 5662 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 5663 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 5664 case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 5665 } 5666 llvm_unreachable("bad ABI kind"); 5667 } 5668 5669 void ARMABIInfo::setCCs() { 5670 assert(getRuntimeCC() == llvm::CallingConv::C); 5671 5672 // Don't muddy up the IR with a ton of explicit annotations if 5673 // they'd just match what LLVM will infer from the triple. 5674 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 5675 if (abiCC != getLLVMDefaultCC()) 5676 RuntimeCC = abiCC; 5677 5678 // AAPCS apparently requires runtime support functions to be soft-float, but 5679 // that's almost certainly for historic reasons (Thumb1 not supporting VFP 5680 // most likely). It's more convenient for AAPCS16_VFP to be hard-float. 5681 5682 // The Run-time ABI for the ARM Architecture section 4.1.2 requires 5683 // AEABI-complying FP helper functions to use the base AAPCS. 5684 // These AEABI functions are expanded in the ARM llvm backend, all the builtin 5685 // support functions emitted by clang such as the _Complex helpers follow the 5686 // abiCC. 5687 if (abiCC != getLLVMDefaultCC()) 5688 BuiltinCC = abiCC; 5689 } 5690 5691 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, 5692 bool isVariadic) const { 5693 // 6.1.2.1 The following argument types are VFP CPRCs: 5694 // A single-precision floating-point type (including promoted 5695 // half-precision types); A double-precision floating-point type; 5696 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 5697 // with a Base Type of a single- or double-precision floating-point type, 5698 // 64-bit containerized vectors or 128-bit containerized vectors with one 5699 // to four Elements. 5700 bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic; 5701 5702 Ty = useFirstFieldIfTransparentUnion(Ty); 5703 5704 // Handle illegal vector types here. 5705 if (isIllegalVectorType(Ty)) { 5706 uint64_t Size = getContext().getTypeSize(Ty); 5707 if (Size <= 32) { 5708 llvm::Type *ResType = 5709 llvm::Type::getInt32Ty(getVMContext()); 5710 return ABIArgInfo::getDirect(ResType); 5711 } 5712 if (Size == 64) { 5713 llvm::Type *ResType = llvm::VectorType::get( 5714 llvm::Type::getInt32Ty(getVMContext()), 2); 5715 return ABIArgInfo::getDirect(ResType); 5716 } 5717 if (Size == 128) { 5718 llvm::Type *ResType = llvm::VectorType::get( 5719 llvm::Type::getInt32Ty(getVMContext()), 4); 5720 return ABIArgInfo::getDirect(ResType); 5721 } 5722 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5723 } 5724 5725 // _Float16 and __fp16 get passed as if it were an int or float, but with 5726 // the top 16 bits unspecified. This is not done for OpenCL as it handles the 5727 // half type natively, and does not need to interwork with AAPCS code. 5728 if ((Ty->isFloat16Type() || Ty->isHalfType()) && 5729 !getContext().getLangOpts().NativeHalfArgsAndReturns) { 5730 llvm::Type *ResType = IsEffectivelyAAPCS_VFP ? 5731 llvm::Type::getFloatTy(getVMContext()) : 5732 llvm::Type::getInt32Ty(getVMContext()); 5733 return ABIArgInfo::getDirect(ResType); 5734 } 5735 5736 if (!isAggregateTypeForABI(Ty)) { 5737 // Treat an enum type as its underlying type. 5738 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 5739 Ty = EnumTy->getDecl()->getIntegerType(); 5740 } 5741 5742 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 5743 : ABIArgInfo::getDirect()); 5744 } 5745 5746 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5747 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 5748 } 5749 5750 // Ignore empty records. 5751 if (isEmptyRecord(getContext(), Ty, true)) 5752 return ABIArgInfo::getIgnore(); 5753 5754 if (IsEffectivelyAAPCS_VFP) { 5755 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 5756 // into VFP registers. 5757 const Type *Base = nullptr; 5758 uint64_t Members = 0; 5759 if (isHomogeneousAggregate(Ty, Base, Members)) { 5760 assert(Base && "Base class should be set for homogeneous aggregate"); 5761 // Base can be a floating-point or a vector. 5762 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 5763 } 5764 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 5765 // WatchOS does have homogeneous aggregates. Note that we intentionally use 5766 // this convention even for a variadic function: the backend will use GPRs 5767 // if needed. 5768 const Type *Base = nullptr; 5769 uint64_t Members = 0; 5770 if (isHomogeneousAggregate(Ty, Base, Members)) { 5771 assert(Base && Members <= 4 && "unexpected homogeneous aggregate"); 5772 llvm::Type *Ty = 5773 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members); 5774 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 5775 } 5776 } 5777 5778 if (getABIKind() == ARMABIInfo::AAPCS16_VFP && 5779 getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) { 5780 // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're 5781 // bigger than 128-bits, they get placed in space allocated by the caller, 5782 // and a pointer is passed. 5783 return ABIArgInfo::getIndirect( 5784 CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false); 5785 } 5786 5787 // Support byval for ARM. 5788 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 5789 // most 8-byte. We realign the indirect argument if type alignment is bigger 5790 // than ABI alignment. 5791 uint64_t ABIAlign = 4; 5792 uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8; 5793 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 5794 getABIKind() == ARMABIInfo::AAPCS) 5795 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 5796 5797 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 5798 assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval"); 5799 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 5800 /*ByVal=*/true, 5801 /*Realign=*/TyAlign > ABIAlign); 5802 } 5803 5804 // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of 5805 // same size and alignment. 5806 if (getTarget().isRenderScriptTarget()) { 5807 return coerceToIntArray(Ty, getContext(), getVMContext()); 5808 } 5809 5810 // Otherwise, pass by coercing to a structure of the appropriate size. 5811 llvm::Type* ElemTy; 5812 unsigned SizeRegs; 5813 // FIXME: Try to match the types of the arguments more accurately where 5814 // we can. 5815 if (getContext().getTypeAlign(Ty) <= 32) { 5816 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 5817 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 5818 } else { 5819 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 5820 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 5821 } 5822 5823 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); 5824 } 5825 5826 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 5827 llvm::LLVMContext &VMContext) { 5828 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 5829 // is called integer-like if its size is less than or equal to one word, and 5830 // the offset of each of its addressable sub-fields is zero. 5831 5832 uint64_t Size = Context.getTypeSize(Ty); 5833 5834 // Check that the type fits in a word. 5835 if (Size > 32) 5836 return false; 5837 5838 // FIXME: Handle vector types! 5839 if (Ty->isVectorType()) 5840 return false; 5841 5842 // Float types are never treated as "integer like". 5843 if (Ty->isRealFloatingType()) 5844 return false; 5845 5846 // If this is a builtin or pointer type then it is ok. 5847 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 5848 return true; 5849 5850 // Small complex integer types are "integer like". 5851 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 5852 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 5853 5854 // Single element and zero sized arrays should be allowed, by the definition 5855 // above, but they are not. 5856 5857 // Otherwise, it must be a record type. 5858 const RecordType *RT = Ty->getAs<RecordType>(); 5859 if (!RT) return false; 5860 5861 // Ignore records with flexible arrays. 5862 const RecordDecl *RD = RT->getDecl(); 5863 if (RD->hasFlexibleArrayMember()) 5864 return false; 5865 5866 // Check that all sub-fields are at offset 0, and are themselves "integer 5867 // like". 5868 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 5869 5870 bool HadField = false; 5871 unsigned idx = 0; 5872 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 5873 i != e; ++i, ++idx) { 5874 const FieldDecl *FD = *i; 5875 5876 // Bit-fields are not addressable, we only need to verify they are "integer 5877 // like". We still have to disallow a subsequent non-bitfield, for example: 5878 // struct { int : 0; int x } 5879 // is non-integer like according to gcc. 5880 if (FD->isBitField()) { 5881 if (!RD->isUnion()) 5882 HadField = true; 5883 5884 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 5885 return false; 5886 5887 continue; 5888 } 5889 5890 // Check if this field is at offset 0. 5891 if (Layout.getFieldOffset(idx) != 0) 5892 return false; 5893 5894 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 5895 return false; 5896 5897 // Only allow at most one field in a structure. This doesn't match the 5898 // wording above, but follows gcc in situations with a field following an 5899 // empty structure. 5900 if (!RD->isUnion()) { 5901 if (HadField) 5902 return false; 5903 5904 HadField = true; 5905 } 5906 } 5907 5908 return true; 5909 } 5910 5911 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, 5912 bool isVariadic) const { 5913 bool IsEffectivelyAAPCS_VFP = 5914 (getABIKind() == AAPCS_VFP || getABIKind() == AAPCS16_VFP) && !isVariadic; 5915 5916 if (RetTy->isVoidType()) 5917 return ABIArgInfo::getIgnore(); 5918 5919 // Large vector types should be returned via memory. 5920 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) { 5921 return getNaturalAlignIndirect(RetTy); 5922 } 5923 5924 // _Float16 and __fp16 get returned as if it were an int or float, but with 5925 // the top 16 bits unspecified. This is not done for OpenCL as it handles the 5926 // half type natively, and does not need to interwork with AAPCS code. 5927 if ((RetTy->isFloat16Type() || RetTy->isHalfType()) && 5928 !getContext().getLangOpts().NativeHalfArgsAndReturns) { 5929 llvm::Type *ResType = IsEffectivelyAAPCS_VFP ? 5930 llvm::Type::getFloatTy(getVMContext()) : 5931 llvm::Type::getInt32Ty(getVMContext()); 5932 return ABIArgInfo::getDirect(ResType); 5933 } 5934 5935 if (!isAggregateTypeForABI(RetTy)) { 5936 // Treat an enum type as its underlying type. 5937 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5938 RetTy = EnumTy->getDecl()->getIntegerType(); 5939 5940 return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 5941 : ABIArgInfo::getDirect(); 5942 } 5943 5944 // Are we following APCS? 5945 if (getABIKind() == APCS) { 5946 if (isEmptyRecord(getContext(), RetTy, false)) 5947 return ABIArgInfo::getIgnore(); 5948 5949 // Complex types are all returned as packed integers. 5950 // 5951 // FIXME: Consider using 2 x vector types if the back end handles them 5952 // correctly. 5953 if (RetTy->isAnyComplexType()) 5954 return ABIArgInfo::getDirect(llvm::IntegerType::get( 5955 getVMContext(), getContext().getTypeSize(RetTy))); 5956 5957 // Integer like structures are returned in r0. 5958 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 5959 // Return in the smallest viable integer type. 5960 uint64_t Size = getContext().getTypeSize(RetTy); 5961 if (Size <= 8) 5962 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5963 if (Size <= 16) 5964 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 5965 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 5966 } 5967 5968 // Otherwise return in memory. 5969 return getNaturalAlignIndirect(RetTy); 5970 } 5971 5972 // Otherwise this is an AAPCS variant. 5973 5974 if (isEmptyRecord(getContext(), RetTy, true)) 5975 return ABIArgInfo::getIgnore(); 5976 5977 // Check for homogeneous aggregates with AAPCS-VFP. 5978 if (IsEffectivelyAAPCS_VFP) { 5979 const Type *Base = nullptr; 5980 uint64_t Members = 0; 5981 if (isHomogeneousAggregate(RetTy, Base, Members)) { 5982 assert(Base && "Base class should be set for homogeneous aggregate"); 5983 // Homogeneous Aggregates are returned directly. 5984 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 5985 } 5986 } 5987 5988 // Aggregates <= 4 bytes are returned in r0; other aggregates 5989 // are returned indirectly. 5990 uint64_t Size = getContext().getTypeSize(RetTy); 5991 if (Size <= 32) { 5992 // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of 5993 // same size and alignment. 5994 if (getTarget().isRenderScriptTarget()) { 5995 return coerceToIntArray(RetTy, getContext(), getVMContext()); 5996 } 5997 if (getDataLayout().isBigEndian()) 5998 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 5999 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6000 6001 // Return in the smallest viable integer type. 6002 if (Size <= 8) 6003 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6004 if (Size <= 16) 6005 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6006 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6007 } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) { 6008 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext()); 6009 llvm::Type *CoerceTy = 6010 llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32); 6011 return ABIArgInfo::getDirect(CoerceTy); 6012 } 6013 6014 return getNaturalAlignIndirect(RetTy); 6015 } 6016 6017 /// isIllegalVector - check whether Ty is an illegal vector type. 6018 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 6019 if (const VectorType *VT = Ty->getAs<VectorType> ()) { 6020 if (isAndroid()) { 6021 // Android shipped using Clang 3.1, which supported a slightly different 6022 // vector ABI. The primary differences were that 3-element vector types 6023 // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path 6024 // accepts that legacy behavior for Android only. 6025 // Check whether VT is legal. 6026 unsigned NumElements = VT->getNumElements(); 6027 // NumElements should be power of 2 or equal to 3. 6028 if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3) 6029 return true; 6030 } else { 6031 // Check whether VT is legal. 6032 unsigned NumElements = VT->getNumElements(); 6033 uint64_t Size = getContext().getTypeSize(VT); 6034 // NumElements should be power of 2. 6035 if (!llvm::isPowerOf2_32(NumElements)) 6036 return true; 6037 // Size should be greater than 32 bits. 6038 return Size <= 32; 6039 } 6040 } 6041 return false; 6042 } 6043 6044 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 6045 llvm::Type *eltTy, 6046 unsigned numElts) const { 6047 if (!llvm::isPowerOf2_32(numElts)) 6048 return false; 6049 unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy); 6050 if (size > 64) 6051 return false; 6052 if (vectorSize.getQuantity() != 8 && 6053 (vectorSize.getQuantity() != 16 || numElts == 1)) 6054 return false; 6055 return true; 6056 } 6057 6058 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 6059 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 6060 // double, or 64-bit or 128-bit vectors. 6061 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 6062 if (BT->getKind() == BuiltinType::Float || 6063 BT->getKind() == BuiltinType::Double || 6064 BT->getKind() == BuiltinType::LongDouble) 6065 return true; 6066 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 6067 unsigned VecSize = getContext().getTypeSize(VT); 6068 if (VecSize == 64 || VecSize == 128) 6069 return true; 6070 } 6071 return false; 6072 } 6073 6074 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 6075 uint64_t Members) const { 6076 return Members <= 4; 6077 } 6078 6079 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6080 QualType Ty) const { 6081 CharUnits SlotSize = CharUnits::fromQuantity(4); 6082 6083 // Empty records are ignored for parameter passing purposes. 6084 if (isEmptyRecord(getContext(), Ty, true)) { 6085 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 6086 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 6087 return Addr; 6088 } 6089 6090 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6091 CharUnits TyAlignForABI = TyInfo.second; 6092 6093 // Use indirect if size of the illegal vector is bigger than 16 bytes. 6094 bool IsIndirect = false; 6095 const Type *Base = nullptr; 6096 uint64_t Members = 0; 6097 if (TyInfo.first > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) { 6098 IsIndirect = true; 6099 6100 // ARMv7k passes structs bigger than 16 bytes indirectly, in space 6101 // allocated by the caller. 6102 } else if (TyInfo.first > CharUnits::fromQuantity(16) && 6103 getABIKind() == ARMABIInfo::AAPCS16_VFP && 6104 !isHomogeneousAggregate(Ty, Base, Members)) { 6105 IsIndirect = true; 6106 6107 // Otherwise, bound the type's ABI alignment. 6108 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 6109 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 6110 // Our callers should be prepared to handle an under-aligned address. 6111 } else if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6112 getABIKind() == ARMABIInfo::AAPCS) { 6113 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6114 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8)); 6115 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6116 // ARMv7k allows type alignment up to 16 bytes. 6117 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6118 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16)); 6119 } else { 6120 TyAlignForABI = CharUnits::fromQuantity(4); 6121 } 6122 TyInfo.second = TyAlignForABI; 6123 6124 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo, 6125 SlotSize, /*AllowHigherAlign*/ true); 6126 } 6127 6128 //===----------------------------------------------------------------------===// 6129 // NVPTX ABI Implementation 6130 //===----------------------------------------------------------------------===// 6131 6132 namespace { 6133 6134 class NVPTXABIInfo : public ABIInfo { 6135 public: 6136 NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 6137 6138 ABIArgInfo classifyReturnType(QualType RetTy) const; 6139 ABIArgInfo classifyArgumentType(QualType Ty) const; 6140 6141 void computeInfo(CGFunctionInfo &FI) const override; 6142 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6143 QualType Ty) const override; 6144 }; 6145 6146 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 6147 public: 6148 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 6149 : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {} 6150 6151 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6152 CodeGen::CodeGenModule &M) const override; 6153 6154 private: 6155 // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the 6156 // resulting MDNode to the nvvm.annotations MDNode. 6157 static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand); 6158 }; 6159 6160 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 6161 if (RetTy->isVoidType()) 6162 return ABIArgInfo::getIgnore(); 6163 6164 // note: this is different from default ABI 6165 if (!RetTy->isScalarType()) 6166 return ABIArgInfo::getDirect(); 6167 6168 // Treat an enum type as its underlying type. 6169 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6170 RetTy = EnumTy->getDecl()->getIntegerType(); 6171 6172 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 6173 : ABIArgInfo::getDirect()); 6174 } 6175 6176 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 6177 // Treat an enum type as its underlying type. 6178 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6179 Ty = EnumTy->getDecl()->getIntegerType(); 6180 6181 // Return aggregates type as indirect by value 6182 if (isAggregateTypeForABI(Ty)) 6183 return getNaturalAlignIndirect(Ty, /* byval */ true); 6184 6185 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 6186 : ABIArgInfo::getDirect()); 6187 } 6188 6189 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 6190 if (!getCXXABI().classifyReturnType(FI)) 6191 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6192 for (auto &I : FI.arguments()) 6193 I.info = classifyArgumentType(I.type); 6194 6195 // Always honor user-specified calling convention. 6196 if (FI.getCallingConvention() != llvm::CallingConv::C) 6197 return; 6198 6199 FI.setEffectiveCallingConvention(getRuntimeCC()); 6200 } 6201 6202 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6203 QualType Ty) const { 6204 llvm_unreachable("NVPTX does not support varargs"); 6205 } 6206 6207 void NVPTXTargetCodeGenInfo::setTargetAttributes( 6208 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 6209 if (GV->isDeclaration()) 6210 return; 6211 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6212 if (!FD) return; 6213 6214 llvm::Function *F = cast<llvm::Function>(GV); 6215 6216 // Perform special handling in OpenCL mode 6217 if (M.getLangOpts().OpenCL) { 6218 // Use OpenCL function attributes to check for kernel functions 6219 // By default, all functions are device functions 6220 if (FD->hasAttr<OpenCLKernelAttr>()) { 6221 // OpenCL __kernel functions get kernel metadata 6222 // Create !{<func-ref>, metadata !"kernel", i32 1} node 6223 addNVVMMetadata(F, "kernel", 1); 6224 // And kernel functions are not subject to inlining 6225 F->addFnAttr(llvm::Attribute::NoInline); 6226 } 6227 } 6228 6229 // Perform special handling in CUDA mode. 6230 if (M.getLangOpts().CUDA) { 6231 // CUDA __global__ functions get a kernel metadata entry. Since 6232 // __global__ functions cannot be called from the device, we do not 6233 // need to set the noinline attribute. 6234 if (FD->hasAttr<CUDAGlobalAttr>()) { 6235 // Create !{<func-ref>, metadata !"kernel", i32 1} node 6236 addNVVMMetadata(F, "kernel", 1); 6237 } 6238 if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) { 6239 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 6240 llvm::APSInt MaxThreads(32); 6241 MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); 6242 if (MaxThreads > 0) 6243 addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); 6244 6245 // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was 6246 // not specified in __launch_bounds__ or if the user specified a 0 value, 6247 // we don't have to add a PTX directive. 6248 if (Attr->getMinBlocks()) { 6249 llvm::APSInt MinBlocks(32); 6250 MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); 6251 if (MinBlocks > 0) 6252 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 6253 addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); 6254 } 6255 } 6256 } 6257 } 6258 6259 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name, 6260 int Operand) { 6261 llvm::Module *M = F->getParent(); 6262 llvm::LLVMContext &Ctx = M->getContext(); 6263 6264 // Get "nvvm.annotations" metadata node 6265 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 6266 6267 llvm::Metadata *MDVals[] = { 6268 llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name), 6269 llvm::ConstantAsMetadata::get( 6270 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; 6271 // Append metadata to nvvm.annotations 6272 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 6273 } 6274 } 6275 6276 //===----------------------------------------------------------------------===// 6277 // SystemZ ABI Implementation 6278 //===----------------------------------------------------------------------===// 6279 6280 namespace { 6281 6282 class SystemZABIInfo : public SwiftABIInfo { 6283 bool HasVector; 6284 6285 public: 6286 SystemZABIInfo(CodeGenTypes &CGT, bool HV) 6287 : SwiftABIInfo(CGT), HasVector(HV) {} 6288 6289 bool isPromotableIntegerType(QualType Ty) const; 6290 bool isCompoundType(QualType Ty) const; 6291 bool isVectorArgumentType(QualType Ty) const; 6292 bool isFPArgumentType(QualType Ty) const; 6293 QualType GetSingleElementType(QualType Ty) const; 6294 6295 ABIArgInfo classifyReturnType(QualType RetTy) const; 6296 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 6297 6298 void computeInfo(CGFunctionInfo &FI) const override { 6299 if (!getCXXABI().classifyReturnType(FI)) 6300 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6301 for (auto &I : FI.arguments()) 6302 I.info = classifyArgumentType(I.type); 6303 } 6304 6305 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6306 QualType Ty) const override; 6307 6308 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 6309 bool asReturnValue) const override { 6310 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 6311 } 6312 bool isSwiftErrorInRegister() const override { 6313 return false; 6314 } 6315 }; 6316 6317 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 6318 public: 6319 SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector) 6320 : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {} 6321 }; 6322 6323 } 6324 6325 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const { 6326 // Treat an enum type as its underlying type. 6327 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6328 Ty = EnumTy->getDecl()->getIntegerType(); 6329 6330 // Promotable integer types are required to be promoted by the ABI. 6331 if (Ty->isPromotableIntegerType()) 6332 return true; 6333 6334 // 32-bit values must also be promoted. 6335 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 6336 switch (BT->getKind()) { 6337 case BuiltinType::Int: 6338 case BuiltinType::UInt: 6339 return true; 6340 default: 6341 return false; 6342 } 6343 return false; 6344 } 6345 6346 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 6347 return (Ty->isAnyComplexType() || 6348 Ty->isVectorType() || 6349 isAggregateTypeForABI(Ty)); 6350 } 6351 6352 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { 6353 return (HasVector && 6354 Ty->isVectorType() && 6355 getContext().getTypeSize(Ty) <= 128); 6356 } 6357 6358 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 6359 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 6360 switch (BT->getKind()) { 6361 case BuiltinType::Float: 6362 case BuiltinType::Double: 6363 return true; 6364 default: 6365 return false; 6366 } 6367 6368 return false; 6369 } 6370 6371 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { 6372 if (const RecordType *RT = Ty->getAsStructureType()) { 6373 const RecordDecl *RD = RT->getDecl(); 6374 QualType Found; 6375 6376 // If this is a C++ record, check the bases first. 6377 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6378 for (const auto &I : CXXRD->bases()) { 6379 QualType Base = I.getType(); 6380 6381 // Empty bases don't affect things either way. 6382 if (isEmptyRecord(getContext(), Base, true)) 6383 continue; 6384 6385 if (!Found.isNull()) 6386 return Ty; 6387 Found = GetSingleElementType(Base); 6388 } 6389 6390 // Check the fields. 6391 for (const auto *FD : RD->fields()) { 6392 // For compatibility with GCC, ignore empty bitfields in C++ mode. 6393 // Unlike isSingleElementStruct(), empty structure and array fields 6394 // do count. So do anonymous bitfields that aren't zero-sized. 6395 if (getContext().getLangOpts().CPlusPlus && 6396 FD->isBitField() && FD->getBitWidthValue(getContext()) == 0) 6397 continue; 6398 6399 // Unlike isSingleElementStruct(), arrays do not count. 6400 // Nested structures still do though. 6401 if (!Found.isNull()) 6402 return Ty; 6403 Found = GetSingleElementType(FD->getType()); 6404 } 6405 6406 // Unlike isSingleElementStruct(), trailing padding is allowed. 6407 // An 8-byte aligned struct s { float f; } is passed as a double. 6408 if (!Found.isNull()) 6409 return Found; 6410 } 6411 6412 return Ty; 6413 } 6414 6415 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6416 QualType Ty) const { 6417 // Assume that va_list type is correct; should be pointer to LLVM type: 6418 // struct { 6419 // i64 __gpr; 6420 // i64 __fpr; 6421 // i8 *__overflow_arg_area; 6422 // i8 *__reg_save_area; 6423 // }; 6424 6425 // Every non-vector argument occupies 8 bytes and is passed by preference 6426 // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are 6427 // always passed on the stack. 6428 Ty = getContext().getCanonicalType(Ty); 6429 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6430 llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); 6431 llvm::Type *DirectTy = ArgTy; 6432 ABIArgInfo AI = classifyArgumentType(Ty); 6433 bool IsIndirect = AI.isIndirect(); 6434 bool InFPRs = false; 6435 bool IsVector = false; 6436 CharUnits UnpaddedSize; 6437 CharUnits DirectAlign; 6438 if (IsIndirect) { 6439 DirectTy = llvm::PointerType::getUnqual(DirectTy); 6440 UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8); 6441 } else { 6442 if (AI.getCoerceToType()) 6443 ArgTy = AI.getCoerceToType(); 6444 InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy(); 6445 IsVector = ArgTy->isVectorTy(); 6446 UnpaddedSize = TyInfo.first; 6447 DirectAlign = TyInfo.second; 6448 } 6449 CharUnits PaddedSize = CharUnits::fromQuantity(8); 6450 if (IsVector && UnpaddedSize > PaddedSize) 6451 PaddedSize = CharUnits::fromQuantity(16); 6452 assert((UnpaddedSize <= PaddedSize) && "Invalid argument size."); 6453 6454 CharUnits Padding = (PaddedSize - UnpaddedSize); 6455 6456 llvm::Type *IndexTy = CGF.Int64Ty; 6457 llvm::Value *PaddedSizeV = 6458 llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity()); 6459 6460 if (IsVector) { 6461 // Work out the address of a vector argument on the stack. 6462 // Vector arguments are always passed in the high bits of a 6463 // single (8 byte) or double (16 byte) stack slot. 6464 Address OverflowArgAreaPtr = 6465 CGF.Builder.CreateStructGEP(VAListAddr, 2, CharUnits::fromQuantity(16), 6466 "overflow_arg_area_ptr"); 6467 Address OverflowArgArea = 6468 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 6469 TyInfo.second); 6470 Address MemAddr = 6471 CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr"); 6472 6473 // Update overflow_arg_area_ptr pointer 6474 llvm::Value *NewOverflowArgArea = 6475 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 6476 "overflow_arg_area"); 6477 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 6478 6479 return MemAddr; 6480 } 6481 6482 assert(PaddedSize.getQuantity() == 8); 6483 6484 unsigned MaxRegs, RegCountField, RegSaveIndex; 6485 CharUnits RegPadding; 6486 if (InFPRs) { 6487 MaxRegs = 4; // Maximum of 4 FPR arguments 6488 RegCountField = 1; // __fpr 6489 RegSaveIndex = 16; // save offset for f0 6490 RegPadding = CharUnits(); // floats are passed in the high bits of an FPR 6491 } else { 6492 MaxRegs = 5; // Maximum of 5 GPR arguments 6493 RegCountField = 0; // __gpr 6494 RegSaveIndex = 2; // save offset for r2 6495 RegPadding = Padding; // values are passed in the low bits of a GPR 6496 } 6497 6498 Address RegCountPtr = CGF.Builder.CreateStructGEP( 6499 VAListAddr, RegCountField, RegCountField * CharUnits::fromQuantity(8), 6500 "reg_count_ptr"); 6501 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 6502 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 6503 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 6504 "fits_in_regs"); 6505 6506 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 6507 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 6508 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 6509 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 6510 6511 // Emit code to load the value if it was passed in registers. 6512 CGF.EmitBlock(InRegBlock); 6513 6514 // Work out the address of an argument register. 6515 llvm::Value *ScaledRegCount = 6516 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 6517 llvm::Value *RegBase = 6518 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity() 6519 + RegPadding.getQuantity()); 6520 llvm::Value *RegOffset = 6521 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 6522 Address RegSaveAreaPtr = 6523 CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24), 6524 "reg_save_area_ptr"); 6525 llvm::Value *RegSaveArea = 6526 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 6527 Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset, 6528 "raw_reg_addr"), 6529 PaddedSize); 6530 Address RegAddr = 6531 CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr"); 6532 6533 // Update the register count 6534 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 6535 llvm::Value *NewRegCount = 6536 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 6537 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 6538 CGF.EmitBranch(ContBlock); 6539 6540 // Emit code to load the value if it was passed in memory. 6541 CGF.EmitBlock(InMemBlock); 6542 6543 // Work out the address of a stack argument. 6544 Address OverflowArgAreaPtr = CGF.Builder.CreateStructGEP( 6545 VAListAddr, 2, CharUnits::fromQuantity(16), "overflow_arg_area_ptr"); 6546 Address OverflowArgArea = 6547 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 6548 PaddedSize); 6549 Address RawMemAddr = 6550 CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr"); 6551 Address MemAddr = 6552 CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr"); 6553 6554 // Update overflow_arg_area_ptr pointer 6555 llvm::Value *NewOverflowArgArea = 6556 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 6557 "overflow_arg_area"); 6558 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 6559 CGF.EmitBranch(ContBlock); 6560 6561 // Return the appropriate result. 6562 CGF.EmitBlock(ContBlock); 6563 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 6564 MemAddr, InMemBlock, "va_arg.addr"); 6565 6566 if (IsIndirect) 6567 ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), 6568 TyInfo.second); 6569 6570 return ResAddr; 6571 } 6572 6573 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 6574 if (RetTy->isVoidType()) 6575 return ABIArgInfo::getIgnore(); 6576 if (isVectorArgumentType(RetTy)) 6577 return ABIArgInfo::getDirect(); 6578 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 6579 return getNaturalAlignIndirect(RetTy); 6580 return (isPromotableIntegerType(RetTy) ? ABIArgInfo::getExtend(RetTy) 6581 : ABIArgInfo::getDirect()); 6582 } 6583 6584 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 6585 // Handle the generic C++ ABI. 6586 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 6587 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6588 6589 // Integers and enums are extended to full register width. 6590 if (isPromotableIntegerType(Ty)) 6591 return ABIArgInfo::getExtend(Ty); 6592 6593 // Handle vector types and vector-like structure types. Note that 6594 // as opposed to float-like structure types, we do not allow any 6595 // padding for vector-like structures, so verify the sizes match. 6596 uint64_t Size = getContext().getTypeSize(Ty); 6597 QualType SingleElementTy = GetSingleElementType(Ty); 6598 if (isVectorArgumentType(SingleElementTy) && 6599 getContext().getTypeSize(SingleElementTy) == Size) 6600 return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); 6601 6602 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 6603 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 6604 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6605 6606 // Handle small structures. 6607 if (const RecordType *RT = Ty->getAs<RecordType>()) { 6608 // Structures with flexible arrays have variable length, so really 6609 // fail the size test above. 6610 const RecordDecl *RD = RT->getDecl(); 6611 if (RD->hasFlexibleArrayMember()) 6612 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6613 6614 // The structure is passed as an unextended integer, a float, or a double. 6615 llvm::Type *PassTy; 6616 if (isFPArgumentType(SingleElementTy)) { 6617 assert(Size == 32 || Size == 64); 6618 if (Size == 32) 6619 PassTy = llvm::Type::getFloatTy(getVMContext()); 6620 else 6621 PassTy = llvm::Type::getDoubleTy(getVMContext()); 6622 } else 6623 PassTy = llvm::IntegerType::get(getVMContext(), Size); 6624 return ABIArgInfo::getDirect(PassTy); 6625 } 6626 6627 // Non-structure compounds are passed indirectly. 6628 if (isCompoundType(Ty)) 6629 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6630 6631 return ABIArgInfo::getDirect(nullptr); 6632 } 6633 6634 //===----------------------------------------------------------------------===// 6635 // MSP430 ABI Implementation 6636 //===----------------------------------------------------------------------===// 6637 6638 namespace { 6639 6640 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 6641 public: 6642 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 6643 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 6644 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6645 CodeGen::CodeGenModule &M) const override; 6646 }; 6647 6648 } 6649 6650 void MSP430TargetCodeGenInfo::setTargetAttributes( 6651 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 6652 if (GV->isDeclaration()) 6653 return; 6654 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 6655 if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) { 6656 // Handle 'interrupt' attribute: 6657 llvm::Function *F = cast<llvm::Function>(GV); 6658 6659 // Step 1: Set ISR calling convention. 6660 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 6661 6662 // Step 2: Add attributes goodness. 6663 F->addFnAttr(llvm::Attribute::NoInline); 6664 6665 // Step 3: Emit ISR vector alias. 6666 unsigned Num = attr->getNumber() / 2; 6667 llvm::GlobalAlias::create(llvm::Function::ExternalLinkage, 6668 "__isr_" + Twine(Num), F); 6669 } 6670 } 6671 } 6672 6673 //===----------------------------------------------------------------------===// 6674 // MIPS ABI Implementation. This works for both little-endian and 6675 // big-endian variants. 6676 //===----------------------------------------------------------------------===// 6677 6678 namespace { 6679 class MipsABIInfo : public ABIInfo { 6680 bool IsO32; 6681 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 6682 void CoerceToIntArgs(uint64_t TySize, 6683 SmallVectorImpl<llvm::Type *> &ArgList) const; 6684 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 6685 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 6686 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 6687 public: 6688 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 6689 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 6690 StackAlignInBytes(IsO32 ? 8 : 16) {} 6691 6692 ABIArgInfo classifyReturnType(QualType RetTy) const; 6693 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 6694 void computeInfo(CGFunctionInfo &FI) const override; 6695 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6696 QualType Ty) const override; 6697 ABIArgInfo extendType(QualType Ty) const; 6698 }; 6699 6700 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 6701 unsigned SizeOfUnwindException; 6702 public: 6703 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 6704 : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)), 6705 SizeOfUnwindException(IsO32 ? 24 : 32) {} 6706 6707 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 6708 return 29; 6709 } 6710 6711 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6712 CodeGen::CodeGenModule &CGM) const override { 6713 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6714 if (!FD) return; 6715 llvm::Function *Fn = cast<llvm::Function>(GV); 6716 6717 if (FD->hasAttr<MipsLongCallAttr>()) 6718 Fn->addFnAttr("long-call"); 6719 else if (FD->hasAttr<MipsShortCallAttr>()) 6720 Fn->addFnAttr("short-call"); 6721 6722 // Other attributes do not have a meaning for declarations. 6723 if (GV->isDeclaration()) 6724 return; 6725 6726 if (FD->hasAttr<Mips16Attr>()) { 6727 Fn->addFnAttr("mips16"); 6728 } 6729 else if (FD->hasAttr<NoMips16Attr>()) { 6730 Fn->addFnAttr("nomips16"); 6731 } 6732 6733 if (FD->hasAttr<MicroMipsAttr>()) 6734 Fn->addFnAttr("micromips"); 6735 else if (FD->hasAttr<NoMicroMipsAttr>()) 6736 Fn->addFnAttr("nomicromips"); 6737 6738 const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>(); 6739 if (!Attr) 6740 return; 6741 6742 const char *Kind; 6743 switch (Attr->getInterrupt()) { 6744 case MipsInterruptAttr::eic: Kind = "eic"; break; 6745 case MipsInterruptAttr::sw0: Kind = "sw0"; break; 6746 case MipsInterruptAttr::sw1: Kind = "sw1"; break; 6747 case MipsInterruptAttr::hw0: Kind = "hw0"; break; 6748 case MipsInterruptAttr::hw1: Kind = "hw1"; break; 6749 case MipsInterruptAttr::hw2: Kind = "hw2"; break; 6750 case MipsInterruptAttr::hw3: Kind = "hw3"; break; 6751 case MipsInterruptAttr::hw4: Kind = "hw4"; break; 6752 case MipsInterruptAttr::hw5: Kind = "hw5"; break; 6753 } 6754 6755 Fn->addFnAttr("interrupt", Kind); 6756 6757 } 6758 6759 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6760 llvm::Value *Address) const override; 6761 6762 unsigned getSizeOfUnwindException() const override { 6763 return SizeOfUnwindException; 6764 } 6765 }; 6766 } 6767 6768 void MipsABIInfo::CoerceToIntArgs( 6769 uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const { 6770 llvm::IntegerType *IntTy = 6771 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 6772 6773 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 6774 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 6775 ArgList.push_back(IntTy); 6776 6777 // If necessary, add one more integer type to ArgList. 6778 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 6779 6780 if (R) 6781 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 6782 } 6783 6784 // In N32/64, an aligned double precision floating point field is passed in 6785 // a register. 6786 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 6787 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 6788 6789 if (IsO32) { 6790 CoerceToIntArgs(TySize, ArgList); 6791 return llvm::StructType::get(getVMContext(), ArgList); 6792 } 6793 6794 if (Ty->isComplexType()) 6795 return CGT.ConvertType(Ty); 6796 6797 const RecordType *RT = Ty->getAs<RecordType>(); 6798 6799 // Unions/vectors are passed in integer registers. 6800 if (!RT || !RT->isStructureOrClassType()) { 6801 CoerceToIntArgs(TySize, ArgList); 6802 return llvm::StructType::get(getVMContext(), ArgList); 6803 } 6804 6805 const RecordDecl *RD = RT->getDecl(); 6806 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 6807 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 6808 6809 uint64_t LastOffset = 0; 6810 unsigned idx = 0; 6811 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 6812 6813 // Iterate over fields in the struct/class and check if there are any aligned 6814 // double fields. 6815 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 6816 i != e; ++i, ++idx) { 6817 const QualType Ty = i->getType(); 6818 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 6819 6820 if (!BT || BT->getKind() != BuiltinType::Double) 6821 continue; 6822 6823 uint64_t Offset = Layout.getFieldOffset(idx); 6824 if (Offset % 64) // Ignore doubles that are not aligned. 6825 continue; 6826 6827 // Add ((Offset - LastOffset) / 64) args of type i64. 6828 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 6829 ArgList.push_back(I64); 6830 6831 // Add double type. 6832 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 6833 LastOffset = Offset + 64; 6834 } 6835 6836 CoerceToIntArgs(TySize - LastOffset, IntArgList); 6837 ArgList.append(IntArgList.begin(), IntArgList.end()); 6838 6839 return llvm::StructType::get(getVMContext(), ArgList); 6840 } 6841 6842 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 6843 uint64_t Offset) const { 6844 if (OrigOffset + MinABIStackAlignInBytes > Offset) 6845 return nullptr; 6846 6847 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 6848 } 6849 6850 ABIArgInfo 6851 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 6852 Ty = useFirstFieldIfTransparentUnion(Ty); 6853 6854 uint64_t OrigOffset = Offset; 6855 uint64_t TySize = getContext().getTypeSize(Ty); 6856 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 6857 6858 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 6859 (uint64_t)StackAlignInBytes); 6860 unsigned CurrOffset = llvm::alignTo(Offset, Align); 6861 Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8; 6862 6863 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 6864 // Ignore empty aggregates. 6865 if (TySize == 0) 6866 return ABIArgInfo::getIgnore(); 6867 6868 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 6869 Offset = OrigOffset + MinABIStackAlignInBytes; 6870 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6871 } 6872 6873 // If we have reached here, aggregates are passed directly by coercing to 6874 // another structure type. Padding is inserted if the offset of the 6875 // aggregate is unaligned. 6876 ABIArgInfo ArgInfo = 6877 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 6878 getPaddingType(OrigOffset, CurrOffset)); 6879 ArgInfo.setInReg(true); 6880 return ArgInfo; 6881 } 6882 6883 // Treat an enum type as its underlying type. 6884 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6885 Ty = EnumTy->getDecl()->getIntegerType(); 6886 6887 // All integral types are promoted to the GPR width. 6888 if (Ty->isIntegralOrEnumerationType()) 6889 return extendType(Ty); 6890 6891 return ABIArgInfo::getDirect( 6892 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 6893 } 6894 6895 llvm::Type* 6896 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 6897 const RecordType *RT = RetTy->getAs<RecordType>(); 6898 SmallVector<llvm::Type*, 8> RTList; 6899 6900 if (RT && RT->isStructureOrClassType()) { 6901 const RecordDecl *RD = RT->getDecl(); 6902 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 6903 unsigned FieldCnt = Layout.getFieldCount(); 6904 6905 // N32/64 returns struct/classes in floating point registers if the 6906 // following conditions are met: 6907 // 1. The size of the struct/class is no larger than 128-bit. 6908 // 2. The struct/class has one or two fields all of which are floating 6909 // point types. 6910 // 3. The offset of the first field is zero (this follows what gcc does). 6911 // 6912 // Any other composite results are returned in integer registers. 6913 // 6914 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 6915 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 6916 for (; b != e; ++b) { 6917 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 6918 6919 if (!BT || !BT->isFloatingPoint()) 6920 break; 6921 6922 RTList.push_back(CGT.ConvertType(b->getType())); 6923 } 6924 6925 if (b == e) 6926 return llvm::StructType::get(getVMContext(), RTList, 6927 RD->hasAttr<PackedAttr>()); 6928 6929 RTList.clear(); 6930 } 6931 } 6932 6933 CoerceToIntArgs(Size, RTList); 6934 return llvm::StructType::get(getVMContext(), RTList); 6935 } 6936 6937 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 6938 uint64_t Size = getContext().getTypeSize(RetTy); 6939 6940 if (RetTy->isVoidType()) 6941 return ABIArgInfo::getIgnore(); 6942 6943 // O32 doesn't treat zero-sized structs differently from other structs. 6944 // However, N32/N64 ignores zero sized return values. 6945 if (!IsO32 && Size == 0) 6946 return ABIArgInfo::getIgnore(); 6947 6948 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 6949 if (Size <= 128) { 6950 if (RetTy->isAnyComplexType()) 6951 return ABIArgInfo::getDirect(); 6952 6953 // O32 returns integer vectors in registers and N32/N64 returns all small 6954 // aggregates in registers. 6955 if (!IsO32 || 6956 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { 6957 ABIArgInfo ArgInfo = 6958 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 6959 ArgInfo.setInReg(true); 6960 return ArgInfo; 6961 } 6962 } 6963 6964 return getNaturalAlignIndirect(RetTy); 6965 } 6966 6967 // Treat an enum type as its underlying type. 6968 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6969 RetTy = EnumTy->getDecl()->getIntegerType(); 6970 6971 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 6972 : ABIArgInfo::getDirect()); 6973 } 6974 6975 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 6976 ABIArgInfo &RetInfo = FI.getReturnInfo(); 6977 if (!getCXXABI().classifyReturnType(FI)) 6978 RetInfo = classifyReturnType(FI.getReturnType()); 6979 6980 // Check if a pointer to an aggregate is passed as a hidden argument. 6981 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 6982 6983 for (auto &I : FI.arguments()) 6984 I.info = classifyArgumentType(I.type, Offset); 6985 } 6986 6987 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6988 QualType OrigTy) const { 6989 QualType Ty = OrigTy; 6990 6991 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. 6992 // Pointers are also promoted in the same way but this only matters for N32. 6993 unsigned SlotSizeInBits = IsO32 ? 32 : 64; 6994 unsigned PtrWidth = getTarget().getPointerWidth(0); 6995 bool DidPromote = false; 6996 if ((Ty->isIntegerType() && 6997 getContext().getIntWidth(Ty) < SlotSizeInBits) || 6998 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { 6999 DidPromote = true; 7000 Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits, 7001 Ty->isSignedIntegerType()); 7002 } 7003 7004 auto TyInfo = getContext().getTypeInfoInChars(Ty); 7005 7006 // The alignment of things in the argument area is never larger than 7007 // StackAlignInBytes. 7008 TyInfo.second = 7009 std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes)); 7010 7011 // MinABIStackAlignInBytes is the size of argument slots on the stack. 7012 CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes); 7013 7014 Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 7015 TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true); 7016 7017 7018 // If there was a promotion, "unpromote" into a temporary. 7019 // TODO: can we just use a pointer into a subset of the original slot? 7020 if (DidPromote) { 7021 Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp"); 7022 llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr); 7023 7024 // Truncate down to the right width. 7025 llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType() 7026 : CGF.IntPtrTy); 7027 llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy); 7028 if (OrigTy->isPointerType()) 7029 V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType()); 7030 7031 CGF.Builder.CreateStore(V, Temp); 7032 Addr = Temp; 7033 } 7034 7035 return Addr; 7036 } 7037 7038 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const { 7039 int TySize = getContext().getTypeSize(Ty); 7040 7041 // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. 7042 if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 7043 return ABIArgInfo::getSignExtend(Ty); 7044 7045 return ABIArgInfo::getExtend(Ty); 7046 } 7047 7048 bool 7049 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7050 llvm::Value *Address) const { 7051 // This information comes from gcc's implementation, which seems to 7052 // as canonical as it gets. 7053 7054 // Everything on MIPS is 4 bytes. Double-precision FP registers 7055 // are aliased to pairs of single-precision FP registers. 7056 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 7057 7058 // 0-31 are the general purpose registers, $0 - $31. 7059 // 32-63 are the floating-point registers, $f0 - $f31. 7060 // 64 and 65 are the multiply/divide registers, $hi and $lo. 7061 // 66 is the (notional, I think) register for signal-handler return. 7062 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 7063 7064 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 7065 // They are one bit wide and ignored here. 7066 7067 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 7068 // (coprocessor 1 is the FP unit) 7069 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 7070 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 7071 // 176-181 are the DSP accumulator registers. 7072 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 7073 return false; 7074 } 7075 7076 //===----------------------------------------------------------------------===// 7077 // AVR ABI Implementation. 7078 //===----------------------------------------------------------------------===// 7079 7080 namespace { 7081 class AVRTargetCodeGenInfo : public TargetCodeGenInfo { 7082 public: 7083 AVRTargetCodeGenInfo(CodeGenTypes &CGT) 7084 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) { } 7085 7086 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7087 CodeGen::CodeGenModule &CGM) const override { 7088 if (GV->isDeclaration()) 7089 return; 7090 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 7091 if (!FD) return; 7092 auto *Fn = cast<llvm::Function>(GV); 7093 7094 if (FD->getAttr<AVRInterruptAttr>()) 7095 Fn->addFnAttr("interrupt"); 7096 7097 if (FD->getAttr<AVRSignalAttr>()) 7098 Fn->addFnAttr("signal"); 7099 } 7100 }; 7101 } 7102 7103 //===----------------------------------------------------------------------===// 7104 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 7105 // Currently subclassed only to implement custom OpenCL C function attribute 7106 // handling. 7107 //===----------------------------------------------------------------------===// 7108 7109 namespace { 7110 7111 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 7112 public: 7113 TCETargetCodeGenInfo(CodeGenTypes &CGT) 7114 : DefaultTargetCodeGenInfo(CGT) {} 7115 7116 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7117 CodeGen::CodeGenModule &M) const override; 7118 }; 7119 7120 void TCETargetCodeGenInfo::setTargetAttributes( 7121 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7122 if (GV->isDeclaration()) 7123 return; 7124 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7125 if (!FD) return; 7126 7127 llvm::Function *F = cast<llvm::Function>(GV); 7128 7129 if (M.getLangOpts().OpenCL) { 7130 if (FD->hasAttr<OpenCLKernelAttr>()) { 7131 // OpenCL C Kernel functions are not subject to inlining 7132 F->addFnAttr(llvm::Attribute::NoInline); 7133 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 7134 if (Attr) { 7135 // Convert the reqd_work_group_size() attributes to metadata. 7136 llvm::LLVMContext &Context = F->getContext(); 7137 llvm::NamedMDNode *OpenCLMetadata = 7138 M.getModule().getOrInsertNamedMetadata( 7139 "opencl.kernel_wg_size_info"); 7140 7141 SmallVector<llvm::Metadata *, 5> Operands; 7142 Operands.push_back(llvm::ConstantAsMetadata::get(F)); 7143 7144 Operands.push_back( 7145 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7146 M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); 7147 Operands.push_back( 7148 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7149 M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); 7150 Operands.push_back( 7151 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7152 M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); 7153 7154 // Add a boolean constant operand for "required" (true) or "hint" 7155 // (false) for implementing the work_group_size_hint attr later. 7156 // Currently always true as the hint is not yet implemented. 7157 Operands.push_back( 7158 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); 7159 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 7160 } 7161 } 7162 } 7163 } 7164 7165 } 7166 7167 //===----------------------------------------------------------------------===// 7168 // Hexagon ABI Implementation 7169 //===----------------------------------------------------------------------===// 7170 7171 namespace { 7172 7173 class HexagonABIInfo : public ABIInfo { 7174 7175 7176 public: 7177 HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 7178 7179 private: 7180 7181 ABIArgInfo classifyReturnType(QualType RetTy) const; 7182 ABIArgInfo classifyArgumentType(QualType RetTy) const; 7183 7184 void computeInfo(CGFunctionInfo &FI) const override; 7185 7186 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7187 QualType Ty) const override; 7188 }; 7189 7190 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 7191 public: 7192 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 7193 :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {} 7194 7195 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 7196 return 29; 7197 } 7198 }; 7199 7200 } 7201 7202 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 7203 if (!getCXXABI().classifyReturnType(FI)) 7204 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7205 for (auto &I : FI.arguments()) 7206 I.info = classifyArgumentType(I.type); 7207 } 7208 7209 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const { 7210 if (!isAggregateTypeForABI(Ty)) { 7211 // Treat an enum type as its underlying type. 7212 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7213 Ty = EnumTy->getDecl()->getIntegerType(); 7214 7215 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 7216 : ABIArgInfo::getDirect()); 7217 } 7218 7219 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 7220 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7221 7222 // Ignore empty records. 7223 if (isEmptyRecord(getContext(), Ty, true)) 7224 return ABIArgInfo::getIgnore(); 7225 7226 uint64_t Size = getContext().getTypeSize(Ty); 7227 if (Size > 64) 7228 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 7229 // Pass in the smallest viable integer type. 7230 else if (Size > 32) 7231 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 7232 else if (Size > 16) 7233 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7234 else if (Size > 8) 7235 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7236 else 7237 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 7238 } 7239 7240 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 7241 if (RetTy->isVoidType()) 7242 return ABIArgInfo::getIgnore(); 7243 7244 // Large vector types should be returned via memory. 7245 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64) 7246 return getNaturalAlignIndirect(RetTy); 7247 7248 if (!isAggregateTypeForABI(RetTy)) { 7249 // Treat an enum type as its underlying type. 7250 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7251 RetTy = EnumTy->getDecl()->getIntegerType(); 7252 7253 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 7254 : ABIArgInfo::getDirect()); 7255 } 7256 7257 if (isEmptyRecord(getContext(), RetTy, true)) 7258 return ABIArgInfo::getIgnore(); 7259 7260 // Aggregates <= 8 bytes are returned in r0; other aggregates 7261 // are returned indirectly. 7262 uint64_t Size = getContext().getTypeSize(RetTy); 7263 if (Size <= 64) { 7264 // Return in the smallest viable integer type. 7265 if (Size <= 8) 7266 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 7267 if (Size <= 16) 7268 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7269 if (Size <= 32) 7270 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7271 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 7272 } 7273 7274 return getNaturalAlignIndirect(RetTy, /*ByVal=*/true); 7275 } 7276 7277 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7278 QualType Ty) const { 7279 // FIXME: Someone needs to audit that this handle alignment correctly. 7280 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 7281 getContext().getTypeInfoInChars(Ty), 7282 CharUnits::fromQuantity(4), 7283 /*AllowHigherAlign*/ true); 7284 } 7285 7286 //===----------------------------------------------------------------------===// 7287 // Lanai ABI Implementation 7288 //===----------------------------------------------------------------------===// 7289 7290 namespace { 7291 class LanaiABIInfo : public DefaultABIInfo { 7292 public: 7293 LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7294 7295 bool shouldUseInReg(QualType Ty, CCState &State) const; 7296 7297 void computeInfo(CGFunctionInfo &FI) const override { 7298 CCState State(FI.getCallingConvention()); 7299 // Lanai uses 4 registers to pass arguments unless the function has the 7300 // regparm attribute set. 7301 if (FI.getHasRegParm()) { 7302 State.FreeRegs = FI.getRegParm(); 7303 } else { 7304 State.FreeRegs = 4; 7305 } 7306 7307 if (!getCXXABI().classifyReturnType(FI)) 7308 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7309 for (auto &I : FI.arguments()) 7310 I.info = classifyArgumentType(I.type, State); 7311 } 7312 7313 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 7314 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 7315 }; 7316 } // end anonymous namespace 7317 7318 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const { 7319 unsigned Size = getContext().getTypeSize(Ty); 7320 unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U; 7321 7322 if (SizeInRegs == 0) 7323 return false; 7324 7325 if (SizeInRegs > State.FreeRegs) { 7326 State.FreeRegs = 0; 7327 return false; 7328 } 7329 7330 State.FreeRegs -= SizeInRegs; 7331 7332 return true; 7333 } 7334 7335 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal, 7336 CCState &State) const { 7337 if (!ByVal) { 7338 if (State.FreeRegs) { 7339 --State.FreeRegs; // Non-byval indirects just use one pointer. 7340 return getNaturalAlignIndirectInReg(Ty); 7341 } 7342 return getNaturalAlignIndirect(Ty, false); 7343 } 7344 7345 // Compute the byval alignment. 7346 const unsigned MinABIStackAlignInBytes = 4; 7347 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 7348 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 7349 /*Realign=*/TypeAlign > 7350 MinABIStackAlignInBytes); 7351 } 7352 7353 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty, 7354 CCState &State) const { 7355 // Check with the C++ ABI first. 7356 const RecordType *RT = Ty->getAs<RecordType>(); 7357 if (RT) { 7358 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 7359 if (RAA == CGCXXABI::RAA_Indirect) { 7360 return getIndirectResult(Ty, /*ByVal=*/false, State); 7361 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 7362 return getNaturalAlignIndirect(Ty, /*ByRef=*/true); 7363 } 7364 } 7365 7366 if (isAggregateTypeForABI(Ty)) { 7367 // Structures with flexible arrays are always indirect. 7368 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 7369 return getIndirectResult(Ty, /*ByVal=*/true, State); 7370 7371 // Ignore empty structs/unions. 7372 if (isEmptyRecord(getContext(), Ty, true)) 7373 return ABIArgInfo::getIgnore(); 7374 7375 llvm::LLVMContext &LLVMContext = getVMContext(); 7376 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 7377 if (SizeInRegs <= State.FreeRegs) { 7378 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 7379 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 7380 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 7381 State.FreeRegs -= SizeInRegs; 7382 return ABIArgInfo::getDirectInReg(Result); 7383 } else { 7384 State.FreeRegs = 0; 7385 } 7386 return getIndirectResult(Ty, true, State); 7387 } 7388 7389 // Treat an enum type as its underlying type. 7390 if (const auto *EnumTy = Ty->getAs<EnumType>()) 7391 Ty = EnumTy->getDecl()->getIntegerType(); 7392 7393 bool InReg = shouldUseInReg(Ty, State); 7394 if (Ty->isPromotableIntegerType()) { 7395 if (InReg) 7396 return ABIArgInfo::getDirectInReg(); 7397 return ABIArgInfo::getExtend(Ty); 7398 } 7399 if (InReg) 7400 return ABIArgInfo::getDirectInReg(); 7401 return ABIArgInfo::getDirect(); 7402 } 7403 7404 namespace { 7405 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo { 7406 public: 7407 LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 7408 : TargetCodeGenInfo(new LanaiABIInfo(CGT)) {} 7409 }; 7410 } 7411 7412 //===----------------------------------------------------------------------===// 7413 // AMDGPU ABI Implementation 7414 //===----------------------------------------------------------------------===// 7415 7416 namespace { 7417 7418 class AMDGPUABIInfo final : public DefaultABIInfo { 7419 private: 7420 static const unsigned MaxNumRegsForArgsRet = 16; 7421 7422 unsigned numRegsForType(QualType Ty) const; 7423 7424 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 7425 bool isHomogeneousAggregateSmallEnough(const Type *Base, 7426 uint64_t Members) const override; 7427 7428 public: 7429 explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) : 7430 DefaultABIInfo(CGT) {} 7431 7432 ABIArgInfo classifyReturnType(QualType RetTy) const; 7433 ABIArgInfo classifyKernelArgumentType(QualType Ty) const; 7434 ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const; 7435 7436 void computeInfo(CGFunctionInfo &FI) const override; 7437 }; 7438 7439 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 7440 return true; 7441 } 7442 7443 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough( 7444 const Type *Base, uint64_t Members) const { 7445 uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32; 7446 7447 // Homogeneous Aggregates may occupy at most 16 registers. 7448 return Members * NumRegs <= MaxNumRegsForArgsRet; 7449 } 7450 7451 /// Estimate number of registers the type will use when passed in registers. 7452 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const { 7453 unsigned NumRegs = 0; 7454 7455 if (const VectorType *VT = Ty->getAs<VectorType>()) { 7456 // Compute from the number of elements. The reported size is based on the 7457 // in-memory size, which includes the padding 4th element for 3-vectors. 7458 QualType EltTy = VT->getElementType(); 7459 unsigned EltSize = getContext().getTypeSize(EltTy); 7460 7461 // 16-bit element vectors should be passed as packed. 7462 if (EltSize == 16) 7463 return (VT->getNumElements() + 1) / 2; 7464 7465 unsigned EltNumRegs = (EltSize + 31) / 32; 7466 return EltNumRegs * VT->getNumElements(); 7467 } 7468 7469 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7470 const RecordDecl *RD = RT->getDecl(); 7471 assert(!RD->hasFlexibleArrayMember()); 7472 7473 for (const FieldDecl *Field : RD->fields()) { 7474 QualType FieldTy = Field->getType(); 7475 NumRegs += numRegsForType(FieldTy); 7476 } 7477 7478 return NumRegs; 7479 } 7480 7481 return (getContext().getTypeSize(Ty) + 31) / 32; 7482 } 7483 7484 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const { 7485 llvm::CallingConv::ID CC = FI.getCallingConvention(); 7486 7487 if (!getCXXABI().classifyReturnType(FI)) 7488 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7489 7490 unsigned NumRegsLeft = MaxNumRegsForArgsRet; 7491 for (auto &Arg : FI.arguments()) { 7492 if (CC == llvm::CallingConv::AMDGPU_KERNEL) { 7493 Arg.info = classifyKernelArgumentType(Arg.type); 7494 } else { 7495 Arg.info = classifyArgumentType(Arg.type, NumRegsLeft); 7496 } 7497 } 7498 } 7499 7500 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const { 7501 if (isAggregateTypeForABI(RetTy)) { 7502 // Records with non-trivial destructors/copy-constructors should not be 7503 // returned by value. 7504 if (!getRecordArgABI(RetTy, getCXXABI())) { 7505 // Ignore empty structs/unions. 7506 if (isEmptyRecord(getContext(), RetTy, true)) 7507 return ABIArgInfo::getIgnore(); 7508 7509 // Lower single-element structs to just return a regular value. 7510 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 7511 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 7512 7513 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 7514 const RecordDecl *RD = RT->getDecl(); 7515 if (RD->hasFlexibleArrayMember()) 7516 return DefaultABIInfo::classifyReturnType(RetTy); 7517 } 7518 7519 // Pack aggregates <= 4 bytes into single VGPR or pair. 7520 uint64_t Size = getContext().getTypeSize(RetTy); 7521 if (Size <= 16) 7522 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7523 7524 if (Size <= 32) 7525 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7526 7527 if (Size <= 64) { 7528 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 7529 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 7530 } 7531 7532 if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet) 7533 return ABIArgInfo::getDirect(); 7534 } 7535 } 7536 7537 // Otherwise just do the default thing. 7538 return DefaultABIInfo::classifyReturnType(RetTy); 7539 } 7540 7541 /// For kernels all parameters are really passed in a special buffer. It doesn't 7542 /// make sense to pass anything byval, so everything must be direct. 7543 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const { 7544 Ty = useFirstFieldIfTransparentUnion(Ty); 7545 7546 // TODO: Can we omit empty structs? 7547 7548 // Coerce single element structs to its element. 7549 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 7550 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 7551 7552 // If we set CanBeFlattened to true, CodeGen will expand the struct to its 7553 // individual elements, which confuses the Clover OpenCL backend; therefore we 7554 // have to set it to false here. Other args of getDirect() are just defaults. 7555 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 7556 } 7557 7558 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty, 7559 unsigned &NumRegsLeft) const { 7560 assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow"); 7561 7562 Ty = useFirstFieldIfTransparentUnion(Ty); 7563 7564 if (isAggregateTypeForABI(Ty)) { 7565 // Records with non-trivial destructors/copy-constructors should not be 7566 // passed by value. 7567 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 7568 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7569 7570 // Ignore empty structs/unions. 7571 if (isEmptyRecord(getContext(), Ty, true)) 7572 return ABIArgInfo::getIgnore(); 7573 7574 // Lower single-element structs to just pass a regular value. TODO: We 7575 // could do reasonable-size multiple-element structs too, using getExpand(), 7576 // though watch out for things like bitfields. 7577 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 7578 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 7579 7580 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7581 const RecordDecl *RD = RT->getDecl(); 7582 if (RD->hasFlexibleArrayMember()) 7583 return DefaultABIInfo::classifyArgumentType(Ty); 7584 } 7585 7586 // Pack aggregates <= 8 bytes into single VGPR or pair. 7587 uint64_t Size = getContext().getTypeSize(Ty); 7588 if (Size <= 64) { 7589 unsigned NumRegs = (Size + 31) / 32; 7590 NumRegsLeft -= std::min(NumRegsLeft, NumRegs); 7591 7592 if (Size <= 16) 7593 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7594 7595 if (Size <= 32) 7596 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7597 7598 // XXX: Should this be i64 instead, and should the limit increase? 7599 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 7600 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 7601 } 7602 7603 if (NumRegsLeft > 0) { 7604 unsigned NumRegs = numRegsForType(Ty); 7605 if (NumRegsLeft >= NumRegs) { 7606 NumRegsLeft -= NumRegs; 7607 return ABIArgInfo::getDirect(); 7608 } 7609 } 7610 } 7611 7612 // Otherwise just do the default thing. 7613 ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty); 7614 if (!ArgInfo.isIndirect()) { 7615 unsigned NumRegs = numRegsForType(Ty); 7616 NumRegsLeft -= std::min(NumRegs, NumRegsLeft); 7617 } 7618 7619 return ArgInfo; 7620 } 7621 7622 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { 7623 public: 7624 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) 7625 : TargetCodeGenInfo(new AMDGPUABIInfo(CGT)) {} 7626 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7627 CodeGen::CodeGenModule &M) const override; 7628 unsigned getOpenCLKernelCallingConv() const override; 7629 7630 llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM, 7631 llvm::PointerType *T, QualType QT) const override; 7632 7633 LangAS getASTAllocaAddressSpace() const override { 7634 return getLangASFromTargetAS( 7635 getABIInfo().getDataLayout().getAllocaAddrSpace()); 7636 } 7637 LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, 7638 const VarDecl *D) const override; 7639 llvm::SyncScope::ID getLLVMSyncScopeID(SyncScope S, 7640 llvm::LLVMContext &C) const override; 7641 llvm::Function * 7642 createEnqueuedBlockKernel(CodeGenFunction &CGF, 7643 llvm::Function *BlockInvokeFunc, 7644 llvm::Value *BlockLiteral) const override; 7645 }; 7646 } 7647 7648 void AMDGPUTargetCodeGenInfo::setTargetAttributes( 7649 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7650 if (GV->isDeclaration()) 7651 return; 7652 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7653 if (!FD) 7654 return; 7655 7656 llvm::Function *F = cast<llvm::Function>(GV); 7657 7658 const auto *ReqdWGS = M.getLangOpts().OpenCL ? 7659 FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr; 7660 const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>(); 7661 if (ReqdWGS || FlatWGS) { 7662 unsigned Min = FlatWGS ? FlatWGS->getMin() : 0; 7663 unsigned Max = FlatWGS ? FlatWGS->getMax() : 0; 7664 if (ReqdWGS && Min == 0 && Max == 0) 7665 Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim(); 7666 7667 if (Min != 0) { 7668 assert(Min <= Max && "Min must be less than or equal Max"); 7669 7670 std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max); 7671 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 7672 } else 7673 assert(Max == 0 && "Max must be zero"); 7674 } 7675 7676 if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) { 7677 unsigned Min = Attr->getMin(); 7678 unsigned Max = Attr->getMax(); 7679 7680 if (Min != 0) { 7681 assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max"); 7682 7683 std::string AttrVal = llvm::utostr(Min); 7684 if (Max != 0) 7685 AttrVal = AttrVal + "," + llvm::utostr(Max); 7686 F->addFnAttr("amdgpu-waves-per-eu", AttrVal); 7687 } else 7688 assert(Max == 0 && "Max must be zero"); 7689 } 7690 7691 if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { 7692 unsigned NumSGPR = Attr->getNumSGPR(); 7693 7694 if (NumSGPR != 0) 7695 F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR)); 7696 } 7697 7698 if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { 7699 uint32_t NumVGPR = Attr->getNumVGPR(); 7700 7701 if (NumVGPR != 0) 7702 F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR)); 7703 } 7704 } 7705 7706 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 7707 return llvm::CallingConv::AMDGPU_KERNEL; 7708 } 7709 7710 // Currently LLVM assumes null pointers always have value 0, 7711 // which results in incorrectly transformed IR. Therefore, instead of 7712 // emitting null pointers in private and local address spaces, a null 7713 // pointer in generic address space is emitted which is casted to a 7714 // pointer in local or private address space. 7715 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer( 7716 const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT, 7717 QualType QT) const { 7718 if (CGM.getContext().getTargetNullPointerValue(QT) == 0) 7719 return llvm::ConstantPointerNull::get(PT); 7720 7721 auto &Ctx = CGM.getContext(); 7722 auto NPT = llvm::PointerType::get(PT->getElementType(), 7723 Ctx.getTargetAddressSpace(LangAS::opencl_generic)); 7724 return llvm::ConstantExpr::getAddrSpaceCast( 7725 llvm::ConstantPointerNull::get(NPT), PT); 7726 } 7727 7728 LangAS 7729 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 7730 const VarDecl *D) const { 7731 assert(!CGM.getLangOpts().OpenCL && 7732 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 7733 "Address space agnostic languages only"); 7734 LangAS DefaultGlobalAS = getLangASFromTargetAS( 7735 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global)); 7736 if (!D) 7737 return DefaultGlobalAS; 7738 7739 LangAS AddrSpace = D->getType().getAddressSpace(); 7740 assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace)); 7741 if (AddrSpace != LangAS::Default) 7742 return AddrSpace; 7743 7744 if (CGM.isTypeConstant(D->getType(), false)) { 7745 if (auto ConstAS = CGM.getTarget().getConstantAddressSpace()) 7746 return ConstAS.getValue(); 7747 } 7748 return DefaultGlobalAS; 7749 } 7750 7751 llvm::SyncScope::ID 7752 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(SyncScope S, 7753 llvm::LLVMContext &C) const { 7754 StringRef Name; 7755 switch (S) { 7756 case SyncScope::OpenCLWorkGroup: 7757 Name = "workgroup"; 7758 break; 7759 case SyncScope::OpenCLDevice: 7760 Name = "agent"; 7761 break; 7762 case SyncScope::OpenCLAllSVMDevices: 7763 Name = ""; 7764 break; 7765 case SyncScope::OpenCLSubGroup: 7766 Name = "subgroup"; 7767 } 7768 return C.getOrInsertSyncScopeID(Name); 7769 } 7770 7771 //===----------------------------------------------------------------------===// 7772 // SPARC v8 ABI Implementation. 7773 // Based on the SPARC Compliance Definition version 2.4.1. 7774 // 7775 // Ensures that complex values are passed in registers. 7776 // 7777 namespace { 7778 class SparcV8ABIInfo : public DefaultABIInfo { 7779 public: 7780 SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7781 7782 private: 7783 ABIArgInfo classifyReturnType(QualType RetTy) const; 7784 void computeInfo(CGFunctionInfo &FI) const override; 7785 }; 7786 } // end anonymous namespace 7787 7788 7789 ABIArgInfo 7790 SparcV8ABIInfo::classifyReturnType(QualType Ty) const { 7791 if (Ty->isAnyComplexType()) { 7792 return ABIArgInfo::getDirect(); 7793 } 7794 else { 7795 return DefaultABIInfo::classifyReturnType(Ty); 7796 } 7797 } 7798 7799 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const { 7800 7801 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7802 for (auto &Arg : FI.arguments()) 7803 Arg.info = classifyArgumentType(Arg.type); 7804 } 7805 7806 namespace { 7807 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo { 7808 public: 7809 SparcV8TargetCodeGenInfo(CodeGenTypes &CGT) 7810 : TargetCodeGenInfo(new SparcV8ABIInfo(CGT)) {} 7811 }; 7812 } // end anonymous namespace 7813 7814 //===----------------------------------------------------------------------===// 7815 // SPARC v9 ABI Implementation. 7816 // Based on the SPARC Compliance Definition version 2.4.1. 7817 // 7818 // Function arguments a mapped to a nominal "parameter array" and promoted to 7819 // registers depending on their type. Each argument occupies 8 or 16 bytes in 7820 // the array, structs larger than 16 bytes are passed indirectly. 7821 // 7822 // One case requires special care: 7823 // 7824 // struct mixed { 7825 // int i; 7826 // float f; 7827 // }; 7828 // 7829 // When a struct mixed is passed by value, it only occupies 8 bytes in the 7830 // parameter array, but the int is passed in an integer register, and the float 7831 // is passed in a floating point register. This is represented as two arguments 7832 // with the LLVM IR inreg attribute: 7833 // 7834 // declare void f(i32 inreg %i, float inreg %f) 7835 // 7836 // The code generator will only allocate 4 bytes from the parameter array for 7837 // the inreg arguments. All other arguments are allocated a multiple of 8 7838 // bytes. 7839 // 7840 namespace { 7841 class SparcV9ABIInfo : public ABIInfo { 7842 public: 7843 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 7844 7845 private: 7846 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 7847 void computeInfo(CGFunctionInfo &FI) const override; 7848 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7849 QualType Ty) const override; 7850 7851 // Coercion type builder for structs passed in registers. The coercion type 7852 // serves two purposes: 7853 // 7854 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 7855 // in registers. 7856 // 2. Expose aligned floating point elements as first-level elements, so the 7857 // code generator knows to pass them in floating point registers. 7858 // 7859 // We also compute the InReg flag which indicates that the struct contains 7860 // aligned 32-bit floats. 7861 // 7862 struct CoerceBuilder { 7863 llvm::LLVMContext &Context; 7864 const llvm::DataLayout &DL; 7865 SmallVector<llvm::Type*, 8> Elems; 7866 uint64_t Size; 7867 bool InReg; 7868 7869 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 7870 : Context(c), DL(dl), Size(0), InReg(false) {} 7871 7872 // Pad Elems with integers until Size is ToSize. 7873 void pad(uint64_t ToSize) { 7874 assert(ToSize >= Size && "Cannot remove elements"); 7875 if (ToSize == Size) 7876 return; 7877 7878 // Finish the current 64-bit word. 7879 uint64_t Aligned = llvm::alignTo(Size, 64); 7880 if (Aligned > Size && Aligned <= ToSize) { 7881 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 7882 Size = Aligned; 7883 } 7884 7885 // Add whole 64-bit words. 7886 while (Size + 64 <= ToSize) { 7887 Elems.push_back(llvm::Type::getInt64Ty(Context)); 7888 Size += 64; 7889 } 7890 7891 // Final in-word padding. 7892 if (Size < ToSize) { 7893 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 7894 Size = ToSize; 7895 } 7896 } 7897 7898 // Add a floating point element at Offset. 7899 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 7900 // Unaligned floats are treated as integers. 7901 if (Offset % Bits) 7902 return; 7903 // The InReg flag is only required if there are any floats < 64 bits. 7904 if (Bits < 64) 7905 InReg = true; 7906 pad(Offset); 7907 Elems.push_back(Ty); 7908 Size = Offset + Bits; 7909 } 7910 7911 // Add a struct type to the coercion type, starting at Offset (in bits). 7912 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 7913 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 7914 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 7915 llvm::Type *ElemTy = StrTy->getElementType(i); 7916 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 7917 switch (ElemTy->getTypeID()) { 7918 case llvm::Type::StructTyID: 7919 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 7920 break; 7921 case llvm::Type::FloatTyID: 7922 addFloat(ElemOffset, ElemTy, 32); 7923 break; 7924 case llvm::Type::DoubleTyID: 7925 addFloat(ElemOffset, ElemTy, 64); 7926 break; 7927 case llvm::Type::FP128TyID: 7928 addFloat(ElemOffset, ElemTy, 128); 7929 break; 7930 case llvm::Type::PointerTyID: 7931 if (ElemOffset % 64 == 0) { 7932 pad(ElemOffset); 7933 Elems.push_back(ElemTy); 7934 Size += 64; 7935 } 7936 break; 7937 default: 7938 break; 7939 } 7940 } 7941 } 7942 7943 // Check if Ty is a usable substitute for the coercion type. 7944 bool isUsableType(llvm::StructType *Ty) const { 7945 return llvm::makeArrayRef(Elems) == Ty->elements(); 7946 } 7947 7948 // Get the coercion type as a literal struct type. 7949 llvm::Type *getType() const { 7950 if (Elems.size() == 1) 7951 return Elems.front(); 7952 else 7953 return llvm::StructType::get(Context, Elems); 7954 } 7955 }; 7956 }; 7957 } // end anonymous namespace 7958 7959 ABIArgInfo 7960 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 7961 if (Ty->isVoidType()) 7962 return ABIArgInfo::getIgnore(); 7963 7964 uint64_t Size = getContext().getTypeSize(Ty); 7965 7966 // Anything too big to fit in registers is passed with an explicit indirect 7967 // pointer / sret pointer. 7968 if (Size > SizeLimit) 7969 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7970 7971 // Treat an enum type as its underlying type. 7972 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7973 Ty = EnumTy->getDecl()->getIntegerType(); 7974 7975 // Integer types smaller than a register are extended. 7976 if (Size < 64 && Ty->isIntegerType()) 7977 return ABIArgInfo::getExtend(Ty); 7978 7979 // Other non-aggregates go in registers. 7980 if (!isAggregateTypeForABI(Ty)) 7981 return ABIArgInfo::getDirect(); 7982 7983 // If a C++ object has either a non-trivial copy constructor or a non-trivial 7984 // destructor, it is passed with an explicit indirect pointer / sret pointer. 7985 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 7986 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7987 7988 // This is a small aggregate type that should be passed in registers. 7989 // Build a coercion type from the LLVM struct type. 7990 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 7991 if (!StrTy) 7992 return ABIArgInfo::getDirect(); 7993 7994 CoerceBuilder CB(getVMContext(), getDataLayout()); 7995 CB.addStruct(0, StrTy); 7996 CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64)); 7997 7998 // Try to use the original type for coercion. 7999 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 8000 8001 if (CB.InReg) 8002 return ABIArgInfo::getDirectInReg(CoerceTy); 8003 else 8004 return ABIArgInfo::getDirect(CoerceTy); 8005 } 8006 8007 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8008 QualType Ty) const { 8009 ABIArgInfo AI = classifyType(Ty, 16 * 8); 8010 llvm::Type *ArgTy = CGT.ConvertType(Ty); 8011 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 8012 AI.setCoerceToType(ArgTy); 8013 8014 CharUnits SlotSize = CharUnits::fromQuantity(8); 8015 8016 CGBuilderTy &Builder = CGF.Builder; 8017 Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 8018 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 8019 8020 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 8021 8022 Address ArgAddr = Address::invalid(); 8023 CharUnits Stride; 8024 switch (AI.getKind()) { 8025 case ABIArgInfo::Expand: 8026 case ABIArgInfo::CoerceAndExpand: 8027 case ABIArgInfo::InAlloca: 8028 llvm_unreachable("Unsupported ABI kind for va_arg"); 8029 8030 case ABIArgInfo::Extend: { 8031 Stride = SlotSize; 8032 CharUnits Offset = SlotSize - TypeInfo.first; 8033 ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend"); 8034 break; 8035 } 8036 8037 case ABIArgInfo::Direct: { 8038 auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 8039 Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize); 8040 ArgAddr = Addr; 8041 break; 8042 } 8043 8044 case ABIArgInfo::Indirect: 8045 Stride = SlotSize; 8046 ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect"); 8047 ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), 8048 TypeInfo.second); 8049 break; 8050 8051 case ABIArgInfo::Ignore: 8052 return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second); 8053 } 8054 8055 // Update VAList. 8056 llvm::Value *NextPtr = 8057 Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), Stride, "ap.next"); 8058 Builder.CreateStore(NextPtr, VAListAddr); 8059 8060 return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr"); 8061 } 8062 8063 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 8064 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 8065 for (auto &I : FI.arguments()) 8066 I.info = classifyType(I.type, 16 * 8); 8067 } 8068 8069 namespace { 8070 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 8071 public: 8072 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 8073 : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {} 8074 8075 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 8076 return 14; 8077 } 8078 8079 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 8080 llvm::Value *Address) const override; 8081 }; 8082 } // end anonymous namespace 8083 8084 bool 8085 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 8086 llvm::Value *Address) const { 8087 // This is calculated from the LLVM and GCC tables and verified 8088 // against gcc output. AFAIK all ABIs use the same encoding. 8089 8090 CodeGen::CGBuilderTy &Builder = CGF.Builder; 8091 8092 llvm::IntegerType *i8 = CGF.Int8Ty; 8093 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 8094 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 8095 8096 // 0-31: the 8-byte general-purpose registers 8097 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 8098 8099 // 32-63: f0-31, the 4-byte floating-point registers 8100 AssignToArrayRange(Builder, Address, Four8, 32, 63); 8101 8102 // Y = 64 8103 // PSR = 65 8104 // WIM = 66 8105 // TBR = 67 8106 // PC = 68 8107 // NPC = 69 8108 // FSR = 70 8109 // CSR = 71 8110 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 8111 8112 // 72-87: d0-15, the 8-byte floating-point registers 8113 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 8114 8115 return false; 8116 } 8117 8118 8119 //===----------------------------------------------------------------------===// 8120 // XCore ABI Implementation 8121 //===----------------------------------------------------------------------===// 8122 8123 namespace { 8124 8125 /// A SmallStringEnc instance is used to build up the TypeString by passing 8126 /// it by reference between functions that append to it. 8127 typedef llvm::SmallString<128> SmallStringEnc; 8128 8129 /// TypeStringCache caches the meta encodings of Types. 8130 /// 8131 /// The reason for caching TypeStrings is two fold: 8132 /// 1. To cache a type's encoding for later uses; 8133 /// 2. As a means to break recursive member type inclusion. 8134 /// 8135 /// A cache Entry can have a Status of: 8136 /// NonRecursive: The type encoding is not recursive; 8137 /// Recursive: The type encoding is recursive; 8138 /// Incomplete: An incomplete TypeString; 8139 /// IncompleteUsed: An incomplete TypeString that has been used in a 8140 /// Recursive type encoding. 8141 /// 8142 /// A NonRecursive entry will have all of its sub-members expanded as fully 8143 /// as possible. Whilst it may contain types which are recursive, the type 8144 /// itself is not recursive and thus its encoding may be safely used whenever 8145 /// the type is encountered. 8146 /// 8147 /// A Recursive entry will have all of its sub-members expanded as fully as 8148 /// possible. The type itself is recursive and it may contain other types which 8149 /// are recursive. The Recursive encoding must not be used during the expansion 8150 /// of a recursive type's recursive branch. For simplicity the code uses 8151 /// IncompleteCount to reject all usage of Recursive encodings for member types. 8152 /// 8153 /// An Incomplete entry is always a RecordType and only encodes its 8154 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 8155 /// are placed into the cache during type expansion as a means to identify and 8156 /// handle recursive inclusion of types as sub-members. If there is recursion 8157 /// the entry becomes IncompleteUsed. 8158 /// 8159 /// During the expansion of a RecordType's members: 8160 /// 8161 /// If the cache contains a NonRecursive encoding for the member type, the 8162 /// cached encoding is used; 8163 /// 8164 /// If the cache contains a Recursive encoding for the member type, the 8165 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 8166 /// 8167 /// If the member is a RecordType, an Incomplete encoding is placed into the 8168 /// cache to break potential recursive inclusion of itself as a sub-member; 8169 /// 8170 /// Once a member RecordType has been expanded, its temporary incomplete 8171 /// entry is removed from the cache. If a Recursive encoding was swapped out 8172 /// it is swapped back in; 8173 /// 8174 /// If an incomplete entry is used to expand a sub-member, the incomplete 8175 /// entry is marked as IncompleteUsed. The cache keeps count of how many 8176 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 8177 /// 8178 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 8179 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 8180 /// Else the member is part of a recursive type and thus the recursion has 8181 /// been exited too soon for the encoding to be correct for the member. 8182 /// 8183 class TypeStringCache { 8184 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 8185 struct Entry { 8186 std::string Str; // The encoded TypeString for the type. 8187 enum Status State; // Information about the encoding in 'Str'. 8188 std::string Swapped; // A temporary place holder for a Recursive encoding 8189 // during the expansion of RecordType's members. 8190 }; 8191 std::map<const IdentifierInfo *, struct Entry> Map; 8192 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 8193 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 8194 public: 8195 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {} 8196 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 8197 bool removeIncomplete(const IdentifierInfo *ID); 8198 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 8199 bool IsRecursive); 8200 StringRef lookupStr(const IdentifierInfo *ID); 8201 }; 8202 8203 /// TypeString encodings for enum & union fields must be order. 8204 /// FieldEncoding is a helper for this ordering process. 8205 class FieldEncoding { 8206 bool HasName; 8207 std::string Enc; 8208 public: 8209 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {} 8210 StringRef str() { return Enc; } 8211 bool operator<(const FieldEncoding &rhs) const { 8212 if (HasName != rhs.HasName) return HasName; 8213 return Enc < rhs.Enc; 8214 } 8215 }; 8216 8217 class XCoreABIInfo : public DefaultABIInfo { 8218 public: 8219 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8220 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8221 QualType Ty) const override; 8222 }; 8223 8224 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 8225 mutable TypeStringCache TSC; 8226 public: 8227 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 8228 :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {} 8229 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 8230 CodeGen::CodeGenModule &M) const override; 8231 }; 8232 8233 } // End anonymous namespace. 8234 8235 // TODO: this implementation is likely now redundant with the default 8236 // EmitVAArg. 8237 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8238 QualType Ty) const { 8239 CGBuilderTy &Builder = CGF.Builder; 8240 8241 // Get the VAList. 8242 CharUnits SlotSize = CharUnits::fromQuantity(4); 8243 Address AP(Builder.CreateLoad(VAListAddr), SlotSize); 8244 8245 // Handle the argument. 8246 ABIArgInfo AI = classifyArgumentType(Ty); 8247 CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty); 8248 llvm::Type *ArgTy = CGT.ConvertType(Ty); 8249 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 8250 AI.setCoerceToType(ArgTy); 8251 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 8252 8253 Address Val = Address::invalid(); 8254 CharUnits ArgSize = CharUnits::Zero(); 8255 switch (AI.getKind()) { 8256 case ABIArgInfo::Expand: 8257 case ABIArgInfo::CoerceAndExpand: 8258 case ABIArgInfo::InAlloca: 8259 llvm_unreachable("Unsupported ABI kind for va_arg"); 8260 case ABIArgInfo::Ignore: 8261 Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign); 8262 ArgSize = CharUnits::Zero(); 8263 break; 8264 case ABIArgInfo::Extend: 8265 case ABIArgInfo::Direct: 8266 Val = Builder.CreateBitCast(AP, ArgPtrTy); 8267 ArgSize = CharUnits::fromQuantity( 8268 getDataLayout().getTypeAllocSize(AI.getCoerceToType())); 8269 ArgSize = ArgSize.alignTo(SlotSize); 8270 break; 8271 case ABIArgInfo::Indirect: 8272 Val = Builder.CreateElementBitCast(AP, ArgPtrTy); 8273 Val = Address(Builder.CreateLoad(Val), TypeAlign); 8274 ArgSize = SlotSize; 8275 break; 8276 } 8277 8278 // Increment the VAList. 8279 if (!ArgSize.isZero()) { 8280 llvm::Value *APN = 8281 Builder.CreateConstInBoundsByteGEP(AP.getPointer(), ArgSize); 8282 Builder.CreateStore(APN, VAListAddr); 8283 } 8284 8285 return Val; 8286 } 8287 8288 /// During the expansion of a RecordType, an incomplete TypeString is placed 8289 /// into the cache as a means to identify and break recursion. 8290 /// If there is a Recursive encoding in the cache, it is swapped out and will 8291 /// be reinserted by removeIncomplete(). 8292 /// All other types of encoding should have been used rather than arriving here. 8293 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 8294 std::string StubEnc) { 8295 if (!ID) 8296 return; 8297 Entry &E = Map[ID]; 8298 assert( (E.Str.empty() || E.State == Recursive) && 8299 "Incorrectly use of addIncomplete"); 8300 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 8301 E.Swapped.swap(E.Str); // swap out the Recursive 8302 E.Str.swap(StubEnc); 8303 E.State = Incomplete; 8304 ++IncompleteCount; 8305 } 8306 8307 /// Once the RecordType has been expanded, the temporary incomplete TypeString 8308 /// must be removed from the cache. 8309 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 8310 /// Returns true if the RecordType was defined recursively. 8311 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 8312 if (!ID) 8313 return false; 8314 auto I = Map.find(ID); 8315 assert(I != Map.end() && "Entry not present"); 8316 Entry &E = I->second; 8317 assert( (E.State == Incomplete || 8318 E.State == IncompleteUsed) && 8319 "Entry must be an incomplete type"); 8320 bool IsRecursive = false; 8321 if (E.State == IncompleteUsed) { 8322 // We made use of our Incomplete encoding, thus we are recursive. 8323 IsRecursive = true; 8324 --IncompleteUsedCount; 8325 } 8326 if (E.Swapped.empty()) 8327 Map.erase(I); 8328 else { 8329 // Swap the Recursive back. 8330 E.Swapped.swap(E.Str); 8331 E.Swapped.clear(); 8332 E.State = Recursive; 8333 } 8334 --IncompleteCount; 8335 return IsRecursive; 8336 } 8337 8338 /// Add the encoded TypeString to the cache only if it is NonRecursive or 8339 /// Recursive (viz: all sub-members were expanded as fully as possible). 8340 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 8341 bool IsRecursive) { 8342 if (!ID || IncompleteUsedCount) 8343 return; // No key or it is is an incomplete sub-type so don't add. 8344 Entry &E = Map[ID]; 8345 if (IsRecursive && !E.Str.empty()) { 8346 assert(E.State==Recursive && E.Str.size() == Str.size() && 8347 "This is not the same Recursive entry"); 8348 // The parent container was not recursive after all, so we could have used 8349 // this Recursive sub-member entry after all, but we assumed the worse when 8350 // we started viz: IncompleteCount!=0. 8351 return; 8352 } 8353 assert(E.Str.empty() && "Entry already present"); 8354 E.Str = Str.str(); 8355 E.State = IsRecursive? Recursive : NonRecursive; 8356 } 8357 8358 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 8359 /// are recursively expanding a type (IncompleteCount != 0) and the cached 8360 /// encoding is Recursive, return an empty StringRef. 8361 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 8362 if (!ID) 8363 return StringRef(); // We have no key. 8364 auto I = Map.find(ID); 8365 if (I == Map.end()) 8366 return StringRef(); // We have no encoding. 8367 Entry &E = I->second; 8368 if (E.State == Recursive && IncompleteCount) 8369 return StringRef(); // We don't use Recursive encodings for member types. 8370 8371 if (E.State == Incomplete) { 8372 // The incomplete type is being used to break out of recursion. 8373 E.State = IncompleteUsed; 8374 ++IncompleteUsedCount; 8375 } 8376 return E.Str; 8377 } 8378 8379 /// The XCore ABI includes a type information section that communicates symbol 8380 /// type information to the linker. The linker uses this information to verify 8381 /// safety/correctness of things such as array bound and pointers et al. 8382 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 8383 /// This type information (TypeString) is emitted into meta data for all global 8384 /// symbols: definitions, declarations, functions & variables. 8385 /// 8386 /// The TypeString carries type, qualifier, name, size & value details. 8387 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 8388 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf 8389 /// The output is tested by test/CodeGen/xcore-stringtype.c. 8390 /// 8391 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 8392 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC); 8393 8394 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 8395 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 8396 CodeGen::CodeGenModule &CGM) const { 8397 SmallStringEnc Enc; 8398 if (getTypeString(Enc, D, CGM, TSC)) { 8399 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 8400 llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV), 8401 llvm::MDString::get(Ctx, Enc.str())}; 8402 llvm::NamedMDNode *MD = 8403 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 8404 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 8405 } 8406 } 8407 8408 //===----------------------------------------------------------------------===// 8409 // SPIR ABI Implementation 8410 //===----------------------------------------------------------------------===// 8411 8412 namespace { 8413 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo { 8414 public: 8415 SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 8416 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 8417 unsigned getOpenCLKernelCallingConv() const override; 8418 }; 8419 8420 } // End anonymous namespace. 8421 8422 namespace clang { 8423 namespace CodeGen { 8424 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) { 8425 DefaultABIInfo SPIRABI(CGM.getTypes()); 8426 SPIRABI.computeInfo(FI); 8427 } 8428 } 8429 } 8430 8431 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 8432 return llvm::CallingConv::SPIR_KERNEL; 8433 } 8434 8435 static bool appendType(SmallStringEnc &Enc, QualType QType, 8436 const CodeGen::CodeGenModule &CGM, 8437 TypeStringCache &TSC); 8438 8439 /// Helper function for appendRecordType(). 8440 /// Builds a SmallVector containing the encoded field types in declaration 8441 /// order. 8442 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 8443 const RecordDecl *RD, 8444 const CodeGen::CodeGenModule &CGM, 8445 TypeStringCache &TSC) { 8446 for (const auto *Field : RD->fields()) { 8447 SmallStringEnc Enc; 8448 Enc += "m("; 8449 Enc += Field->getName(); 8450 Enc += "){"; 8451 if (Field->isBitField()) { 8452 Enc += "b("; 8453 llvm::raw_svector_ostream OS(Enc); 8454 OS << Field->getBitWidthValue(CGM.getContext()); 8455 Enc += ':'; 8456 } 8457 if (!appendType(Enc, Field->getType(), CGM, TSC)) 8458 return false; 8459 if (Field->isBitField()) 8460 Enc += ')'; 8461 Enc += '}'; 8462 FE.emplace_back(!Field->getName().empty(), Enc); 8463 } 8464 return true; 8465 } 8466 8467 /// Appends structure and union types to Enc and adds encoding to cache. 8468 /// Recursively calls appendType (via extractFieldType) for each field. 8469 /// Union types have their fields ordered according to the ABI. 8470 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 8471 const CodeGen::CodeGenModule &CGM, 8472 TypeStringCache &TSC, const IdentifierInfo *ID) { 8473 // Append the cached TypeString if we have one. 8474 StringRef TypeString = TSC.lookupStr(ID); 8475 if (!TypeString.empty()) { 8476 Enc += TypeString; 8477 return true; 8478 } 8479 8480 // Start to emit an incomplete TypeString. 8481 size_t Start = Enc.size(); 8482 Enc += (RT->isUnionType()? 'u' : 's'); 8483 Enc += '('; 8484 if (ID) 8485 Enc += ID->getName(); 8486 Enc += "){"; 8487 8488 // We collect all encoded fields and order as necessary. 8489 bool IsRecursive = false; 8490 const RecordDecl *RD = RT->getDecl()->getDefinition(); 8491 if (RD && !RD->field_empty()) { 8492 // An incomplete TypeString stub is placed in the cache for this RecordType 8493 // so that recursive calls to this RecordType will use it whilst building a 8494 // complete TypeString for this RecordType. 8495 SmallVector<FieldEncoding, 16> FE; 8496 std::string StubEnc(Enc.substr(Start).str()); 8497 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 8498 TSC.addIncomplete(ID, std::move(StubEnc)); 8499 if (!extractFieldType(FE, RD, CGM, TSC)) { 8500 (void) TSC.removeIncomplete(ID); 8501 return false; 8502 } 8503 IsRecursive = TSC.removeIncomplete(ID); 8504 // The ABI requires unions to be sorted but not structures. 8505 // See FieldEncoding::operator< for sort algorithm. 8506 if (RT->isUnionType()) 8507 std::sort(FE.begin(), FE.end()); 8508 // We can now complete the TypeString. 8509 unsigned E = FE.size(); 8510 for (unsigned I = 0; I != E; ++I) { 8511 if (I) 8512 Enc += ','; 8513 Enc += FE[I].str(); 8514 } 8515 } 8516 Enc += '}'; 8517 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 8518 return true; 8519 } 8520 8521 /// Appends enum types to Enc and adds the encoding to the cache. 8522 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 8523 TypeStringCache &TSC, 8524 const IdentifierInfo *ID) { 8525 // Append the cached TypeString if we have one. 8526 StringRef TypeString = TSC.lookupStr(ID); 8527 if (!TypeString.empty()) { 8528 Enc += TypeString; 8529 return true; 8530 } 8531 8532 size_t Start = Enc.size(); 8533 Enc += "e("; 8534 if (ID) 8535 Enc += ID->getName(); 8536 Enc += "){"; 8537 8538 // We collect all encoded enumerations and order them alphanumerically. 8539 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 8540 SmallVector<FieldEncoding, 16> FE; 8541 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 8542 ++I) { 8543 SmallStringEnc EnumEnc; 8544 EnumEnc += "m("; 8545 EnumEnc += I->getName(); 8546 EnumEnc += "){"; 8547 I->getInitVal().toString(EnumEnc); 8548 EnumEnc += '}'; 8549 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 8550 } 8551 std::sort(FE.begin(), FE.end()); 8552 unsigned E = FE.size(); 8553 for (unsigned I = 0; I != E; ++I) { 8554 if (I) 8555 Enc += ','; 8556 Enc += FE[I].str(); 8557 } 8558 } 8559 Enc += '}'; 8560 TSC.addIfComplete(ID, Enc.substr(Start), false); 8561 return true; 8562 } 8563 8564 /// Appends type's qualifier to Enc. 8565 /// This is done prior to appending the type's encoding. 8566 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 8567 // Qualifiers are emitted in alphabetical order. 8568 static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 8569 int Lookup = 0; 8570 if (QT.isConstQualified()) 8571 Lookup += 1<<0; 8572 if (QT.isRestrictQualified()) 8573 Lookup += 1<<1; 8574 if (QT.isVolatileQualified()) 8575 Lookup += 1<<2; 8576 Enc += Table[Lookup]; 8577 } 8578 8579 /// Appends built-in types to Enc. 8580 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 8581 const char *EncType; 8582 switch (BT->getKind()) { 8583 case BuiltinType::Void: 8584 EncType = "0"; 8585 break; 8586 case BuiltinType::Bool: 8587 EncType = "b"; 8588 break; 8589 case BuiltinType::Char_U: 8590 EncType = "uc"; 8591 break; 8592 case BuiltinType::UChar: 8593 EncType = "uc"; 8594 break; 8595 case BuiltinType::SChar: 8596 EncType = "sc"; 8597 break; 8598 case BuiltinType::UShort: 8599 EncType = "us"; 8600 break; 8601 case BuiltinType::Short: 8602 EncType = "ss"; 8603 break; 8604 case BuiltinType::UInt: 8605 EncType = "ui"; 8606 break; 8607 case BuiltinType::Int: 8608 EncType = "si"; 8609 break; 8610 case BuiltinType::ULong: 8611 EncType = "ul"; 8612 break; 8613 case BuiltinType::Long: 8614 EncType = "sl"; 8615 break; 8616 case BuiltinType::ULongLong: 8617 EncType = "ull"; 8618 break; 8619 case BuiltinType::LongLong: 8620 EncType = "sll"; 8621 break; 8622 case BuiltinType::Float: 8623 EncType = "ft"; 8624 break; 8625 case BuiltinType::Double: 8626 EncType = "d"; 8627 break; 8628 case BuiltinType::LongDouble: 8629 EncType = "ld"; 8630 break; 8631 default: 8632 return false; 8633 } 8634 Enc += EncType; 8635 return true; 8636 } 8637 8638 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 8639 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 8640 const CodeGen::CodeGenModule &CGM, 8641 TypeStringCache &TSC) { 8642 Enc += "p("; 8643 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 8644 return false; 8645 Enc += ')'; 8646 return true; 8647 } 8648 8649 /// Appends array encoding to Enc before calling appendType for the element. 8650 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 8651 const ArrayType *AT, 8652 const CodeGen::CodeGenModule &CGM, 8653 TypeStringCache &TSC, StringRef NoSizeEnc) { 8654 if (AT->getSizeModifier() != ArrayType::Normal) 8655 return false; 8656 Enc += "a("; 8657 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 8658 CAT->getSize().toStringUnsigned(Enc); 8659 else 8660 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 8661 Enc += ':'; 8662 // The Qualifiers should be attached to the type rather than the array. 8663 appendQualifier(Enc, QT); 8664 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 8665 return false; 8666 Enc += ')'; 8667 return true; 8668 } 8669 8670 /// Appends a function encoding to Enc, calling appendType for the return type 8671 /// and the arguments. 8672 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 8673 const CodeGen::CodeGenModule &CGM, 8674 TypeStringCache &TSC) { 8675 Enc += "f{"; 8676 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 8677 return false; 8678 Enc += "}("; 8679 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 8680 // N.B. we are only interested in the adjusted param types. 8681 auto I = FPT->param_type_begin(); 8682 auto E = FPT->param_type_end(); 8683 if (I != E) { 8684 do { 8685 if (!appendType(Enc, *I, CGM, TSC)) 8686 return false; 8687 ++I; 8688 if (I != E) 8689 Enc += ','; 8690 } while (I != E); 8691 if (FPT->isVariadic()) 8692 Enc += ",va"; 8693 } else { 8694 if (FPT->isVariadic()) 8695 Enc += "va"; 8696 else 8697 Enc += '0'; 8698 } 8699 } 8700 Enc += ')'; 8701 return true; 8702 } 8703 8704 /// Handles the type's qualifier before dispatching a call to handle specific 8705 /// type encodings. 8706 static bool appendType(SmallStringEnc &Enc, QualType QType, 8707 const CodeGen::CodeGenModule &CGM, 8708 TypeStringCache &TSC) { 8709 8710 QualType QT = QType.getCanonicalType(); 8711 8712 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 8713 // The Qualifiers should be attached to the type rather than the array. 8714 // Thus we don't call appendQualifier() here. 8715 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 8716 8717 appendQualifier(Enc, QT); 8718 8719 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 8720 return appendBuiltinType(Enc, BT); 8721 8722 if (const PointerType *PT = QT->getAs<PointerType>()) 8723 return appendPointerType(Enc, PT, CGM, TSC); 8724 8725 if (const EnumType *ET = QT->getAs<EnumType>()) 8726 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 8727 8728 if (const RecordType *RT = QT->getAsStructureType()) 8729 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 8730 8731 if (const RecordType *RT = QT->getAsUnionType()) 8732 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 8733 8734 if (const FunctionType *FT = QT->getAs<FunctionType>()) 8735 return appendFunctionType(Enc, FT, CGM, TSC); 8736 8737 return false; 8738 } 8739 8740 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 8741 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) { 8742 if (!D) 8743 return false; 8744 8745 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 8746 if (FD->getLanguageLinkage() != CLanguageLinkage) 8747 return false; 8748 return appendType(Enc, FD->getType(), CGM, TSC); 8749 } 8750 8751 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 8752 if (VD->getLanguageLinkage() != CLanguageLinkage) 8753 return false; 8754 QualType QT = VD->getType().getCanonicalType(); 8755 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 8756 // Global ArrayTypes are given a size of '*' if the size is unknown. 8757 // The Qualifiers should be attached to the type rather than the array. 8758 // Thus we don't call appendQualifier() here. 8759 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 8760 } 8761 return appendType(Enc, QT, CGM, TSC); 8762 } 8763 return false; 8764 } 8765 8766 //===----------------------------------------------------------------------===// 8767 // RISCV ABI Implementation 8768 //===----------------------------------------------------------------------===// 8769 8770 namespace { 8771 class RISCVABIInfo : public DefaultABIInfo { 8772 private: 8773 unsigned XLen; // Size of the integer ('x') registers in bits. 8774 static const int NumArgGPRs = 8; 8775 8776 public: 8777 RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen) 8778 : DefaultABIInfo(CGT), XLen(XLen) {} 8779 8780 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 8781 // non-virtual, but computeInfo is virtual, so we overload it. 8782 void computeInfo(CGFunctionInfo &FI) const override; 8783 8784 ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, 8785 int &ArgGPRsLeft) const; 8786 ABIArgInfo classifyReturnType(QualType RetTy) const; 8787 8788 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8789 QualType Ty) const override; 8790 8791 ABIArgInfo extendType(QualType Ty) const; 8792 }; 8793 } // end anonymous namespace 8794 8795 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const { 8796 QualType RetTy = FI.getReturnType(); 8797 if (!getCXXABI().classifyReturnType(FI)) 8798 FI.getReturnInfo() = classifyReturnType(RetTy); 8799 8800 // IsRetIndirect is true if classifyArgumentType indicated the value should 8801 // be passed indirect or if the type size is greater than 2*xlen. e.g. fp128 8802 // is passed direct in LLVM IR, relying on the backend lowering code to 8803 // rewrite the argument list and pass indirectly on RV32. 8804 bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect || 8805 getContext().getTypeSize(RetTy) > (2 * XLen); 8806 8807 // We must track the number of GPRs used in order to conform to the RISC-V 8808 // ABI, as integer scalars passed in registers should have signext/zeroext 8809 // when promoted, but are anyext if passed on the stack. As GPR usage is 8810 // different for variadic arguments, we must also track whether we are 8811 // examining a vararg or not. 8812 int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs; 8813 int NumFixedArgs = FI.getNumRequiredArgs(); 8814 8815 int ArgNum = 0; 8816 for (auto &ArgInfo : FI.arguments()) { 8817 bool IsFixed = ArgNum < NumFixedArgs; 8818 ArgInfo.info = classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft); 8819 ArgNum++; 8820 } 8821 } 8822 8823 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed, 8824 int &ArgGPRsLeft) const { 8825 assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow"); 8826 Ty = useFirstFieldIfTransparentUnion(Ty); 8827 8828 // Structures with either a non-trivial destructor or a non-trivial 8829 // copy constructor are always passed indirectly. 8830 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 8831 if (ArgGPRsLeft) 8832 ArgGPRsLeft -= 1; 8833 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 8834 CGCXXABI::RAA_DirectInMemory); 8835 } 8836 8837 // Ignore empty structs/unions. 8838 if (isEmptyRecord(getContext(), Ty, true)) 8839 return ABIArgInfo::getIgnore(); 8840 8841 uint64_t Size = getContext().getTypeSize(Ty); 8842 uint64_t NeededAlign = getContext().getTypeAlign(Ty); 8843 bool MustUseStack = false; 8844 // Determine the number of GPRs needed to pass the current argument 8845 // according to the ABI. 2*XLen-aligned varargs are passed in "aligned" 8846 // register pairs, so may consume 3 registers. 8847 int NeededArgGPRs = 1; 8848 if (!IsFixed && NeededAlign == 2 * XLen) 8849 NeededArgGPRs = 2 + (ArgGPRsLeft % 2); 8850 else if (Size > XLen && Size <= 2 * XLen) 8851 NeededArgGPRs = 2; 8852 8853 if (NeededArgGPRs > ArgGPRsLeft) { 8854 MustUseStack = true; 8855 NeededArgGPRs = ArgGPRsLeft; 8856 } 8857 8858 ArgGPRsLeft -= NeededArgGPRs; 8859 8860 if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) { 8861 // Treat an enum type as its underlying type. 8862 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 8863 Ty = EnumTy->getDecl()->getIntegerType(); 8864 8865 // All integral types are promoted to XLen width, unless passed on the 8866 // stack. 8867 if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) { 8868 return extendType(Ty); 8869 } 8870 8871 return ABIArgInfo::getDirect(); 8872 } 8873 8874 // Aggregates which are <= 2*XLen will be passed in registers if possible, 8875 // so coerce to integers. 8876 if (Size <= 2 * XLen) { 8877 unsigned Alignment = getContext().getTypeAlign(Ty); 8878 8879 // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is 8880 // required, and a 2-element XLen array if only XLen alignment is required. 8881 if (Size <= XLen) { 8882 return ABIArgInfo::getDirect( 8883 llvm::IntegerType::get(getVMContext(), XLen)); 8884 } else if (Alignment == 2 * XLen) { 8885 return ABIArgInfo::getDirect( 8886 llvm::IntegerType::get(getVMContext(), 2 * XLen)); 8887 } else { 8888 return ABIArgInfo::getDirect(llvm::ArrayType::get( 8889 llvm::IntegerType::get(getVMContext(), XLen), 2)); 8890 } 8891 } 8892 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 8893 } 8894 8895 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const { 8896 if (RetTy->isVoidType()) 8897 return ABIArgInfo::getIgnore(); 8898 8899 int ArgGPRsLeft = 2; 8900 8901 // The rules for return and argument types are the same, so defer to 8902 // classifyArgumentType. 8903 return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft); 8904 } 8905 8906 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8907 QualType Ty) const { 8908 CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8); 8909 8910 // Empty records are ignored for parameter passing purposes. 8911 if (isEmptyRecord(getContext(), Ty, true)) { 8912 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 8913 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 8914 return Addr; 8915 } 8916 8917 std::pair<CharUnits, CharUnits> SizeAndAlign = 8918 getContext().getTypeInfoInChars(Ty); 8919 8920 // Arguments bigger than 2*Xlen bytes are passed indirectly. 8921 bool IsIndirect = SizeAndAlign.first > 2 * SlotSize; 8922 8923 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, SizeAndAlign, 8924 SlotSize, /*AllowHigherAlign=*/true); 8925 } 8926 8927 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const { 8928 int TySize = getContext().getTypeSize(Ty); 8929 // RV64 ABI requires unsigned 32 bit integers to be sign extended. 8930 if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 8931 return ABIArgInfo::getSignExtend(Ty); 8932 return ABIArgInfo::getExtend(Ty); 8933 } 8934 8935 namespace { 8936 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo { 8937 public: 8938 RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen) 8939 : TargetCodeGenInfo(new RISCVABIInfo(CGT, XLen)) {} 8940 }; 8941 } // namespace 8942 8943 //===----------------------------------------------------------------------===// 8944 // Driver code 8945 //===----------------------------------------------------------------------===// 8946 8947 bool CodeGenModule::supportsCOMDAT() const { 8948 return getTriple().supportsCOMDAT(); 8949 } 8950 8951 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 8952 if (TheTargetCodeGenInfo) 8953 return *TheTargetCodeGenInfo; 8954 8955 // Helper to set the unique_ptr while still keeping the return value. 8956 auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & { 8957 this->TheTargetCodeGenInfo.reset(P); 8958 return *P; 8959 }; 8960 8961 const llvm::Triple &Triple = getTarget().getTriple(); 8962 switch (Triple.getArch()) { 8963 default: 8964 return SetCGInfo(new DefaultTargetCodeGenInfo(Types)); 8965 8966 case llvm::Triple::le32: 8967 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 8968 case llvm::Triple::mips: 8969 case llvm::Triple::mipsel: 8970 if (Triple.getOS() == llvm::Triple::NaCl) 8971 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 8972 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true)); 8973 8974 case llvm::Triple::mips64: 8975 case llvm::Triple::mips64el: 8976 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false)); 8977 8978 case llvm::Triple::avr: 8979 return SetCGInfo(new AVRTargetCodeGenInfo(Types)); 8980 8981 case llvm::Triple::aarch64: 8982 case llvm::Triple::aarch64_be: { 8983 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 8984 if (getTarget().getABI() == "darwinpcs") 8985 Kind = AArch64ABIInfo::DarwinPCS; 8986 else if (Triple.isOSWindows()) 8987 return SetCGInfo( 8988 new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64)); 8989 8990 return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind)); 8991 } 8992 8993 case llvm::Triple::wasm32: 8994 case llvm::Triple::wasm64: 8995 return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types)); 8996 8997 case llvm::Triple::arm: 8998 case llvm::Triple::armeb: 8999 case llvm::Triple::thumb: 9000 case llvm::Triple::thumbeb: { 9001 if (Triple.getOS() == llvm::Triple::Win32) { 9002 return SetCGInfo( 9003 new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP)); 9004 } 9005 9006 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 9007 StringRef ABIStr = getTarget().getABI(); 9008 if (ABIStr == "apcs-gnu") 9009 Kind = ARMABIInfo::APCS; 9010 else if (ABIStr == "aapcs16") 9011 Kind = ARMABIInfo::AAPCS16_VFP; 9012 else if (CodeGenOpts.FloatABI == "hard" || 9013 (CodeGenOpts.FloatABI != "soft" && 9014 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 9015 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 9016 Triple.getEnvironment() == llvm::Triple::EABIHF))) 9017 Kind = ARMABIInfo::AAPCS_VFP; 9018 9019 return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind)); 9020 } 9021 9022 case llvm::Triple::ppc: 9023 return SetCGInfo( 9024 new PPC32TargetCodeGenInfo(Types, CodeGenOpts.FloatABI == "soft")); 9025 case llvm::Triple::ppc64: 9026 if (Triple.isOSBinFormatELF()) { 9027 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 9028 if (getTarget().getABI() == "elfv2") 9029 Kind = PPC64_SVR4_ABIInfo::ELFv2; 9030 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 9031 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 9032 9033 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 9034 IsSoftFloat)); 9035 } else 9036 return SetCGInfo(new PPC64TargetCodeGenInfo(Types)); 9037 case llvm::Triple::ppc64le: { 9038 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 9039 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 9040 if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx") 9041 Kind = PPC64_SVR4_ABIInfo::ELFv1; 9042 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 9043 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 9044 9045 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 9046 IsSoftFloat)); 9047 } 9048 9049 case llvm::Triple::nvptx: 9050 case llvm::Triple::nvptx64: 9051 return SetCGInfo(new NVPTXTargetCodeGenInfo(Types)); 9052 9053 case llvm::Triple::msp430: 9054 return SetCGInfo(new MSP430TargetCodeGenInfo(Types)); 9055 9056 case llvm::Triple::riscv32: 9057 return SetCGInfo(new RISCVTargetCodeGenInfo(Types, 32)); 9058 case llvm::Triple::riscv64: 9059 return SetCGInfo(new RISCVTargetCodeGenInfo(Types, 64)); 9060 9061 case llvm::Triple::systemz: { 9062 bool HasVector = getTarget().getABI() == "vector"; 9063 return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector)); 9064 } 9065 9066 case llvm::Triple::tce: 9067 case llvm::Triple::tcele: 9068 return SetCGInfo(new TCETargetCodeGenInfo(Types)); 9069 9070 case llvm::Triple::x86: { 9071 bool IsDarwinVectorABI = Triple.isOSDarwin(); 9072 bool RetSmallStructInRegABI = 9073 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 9074 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 9075 9076 if (Triple.getOS() == llvm::Triple::Win32) { 9077 return SetCGInfo(new WinX86_32TargetCodeGenInfo( 9078 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 9079 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); 9080 } else { 9081 return SetCGInfo(new X86_32TargetCodeGenInfo( 9082 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 9083 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters, 9084 CodeGenOpts.FloatABI == "soft")); 9085 } 9086 } 9087 9088 case llvm::Triple::x86_64: { 9089 StringRef ABI = getTarget().getABI(); 9090 X86AVXABILevel AVXLevel = 9091 (ABI == "avx512" 9092 ? X86AVXABILevel::AVX512 9093 : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None); 9094 9095 switch (Triple.getOS()) { 9096 case llvm::Triple::Win32: 9097 return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel)); 9098 case llvm::Triple::PS4: 9099 return SetCGInfo(new PS4TargetCodeGenInfo(Types, AVXLevel)); 9100 default: 9101 return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel)); 9102 } 9103 } 9104 case llvm::Triple::hexagon: 9105 return SetCGInfo(new HexagonTargetCodeGenInfo(Types)); 9106 case llvm::Triple::lanai: 9107 return SetCGInfo(new LanaiTargetCodeGenInfo(Types)); 9108 case llvm::Triple::r600: 9109 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 9110 case llvm::Triple::amdgcn: 9111 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 9112 case llvm::Triple::sparc: 9113 return SetCGInfo(new SparcV8TargetCodeGenInfo(Types)); 9114 case llvm::Triple::sparcv9: 9115 return SetCGInfo(new SparcV9TargetCodeGenInfo(Types)); 9116 case llvm::Triple::xcore: 9117 return SetCGInfo(new XCoreTargetCodeGenInfo(Types)); 9118 case llvm::Triple::spir: 9119 case llvm::Triple::spir64: 9120 return SetCGInfo(new SPIRTargetCodeGenInfo(Types)); 9121 } 9122 } 9123 9124 /// Create an OpenCL kernel for an enqueued block. 9125 /// 9126 /// The kernel has the same function type as the block invoke function. Its 9127 /// name is the name of the block invoke function postfixed with "_kernel". 9128 /// It simply calls the block invoke function then returns. 9129 llvm::Function * 9130 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF, 9131 llvm::Function *Invoke, 9132 llvm::Value *BlockLiteral) const { 9133 auto *InvokeFT = Invoke->getFunctionType(); 9134 llvm::SmallVector<llvm::Type *, 2> ArgTys; 9135 for (auto &P : InvokeFT->params()) 9136 ArgTys.push_back(P); 9137 auto &C = CGF.getLLVMContext(); 9138 std::string Name = Invoke->getName().str() + "_kernel"; 9139 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 9140 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 9141 &CGF.CGM.getModule()); 9142 auto IP = CGF.Builder.saveIP(); 9143 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 9144 auto &Builder = CGF.Builder; 9145 Builder.SetInsertPoint(BB); 9146 llvm::SmallVector<llvm::Value *, 2> Args; 9147 for (auto &A : F->args()) 9148 Args.push_back(&A); 9149 Builder.CreateCall(Invoke, Args); 9150 Builder.CreateRetVoid(); 9151 Builder.restoreIP(IP); 9152 return F; 9153 } 9154 9155 /// Create an OpenCL kernel for an enqueued block. 9156 /// 9157 /// The type of the first argument (the block literal) is the struct type 9158 /// of the block literal instead of a pointer type. The first argument 9159 /// (block literal) is passed directly by value to the kernel. The kernel 9160 /// allocates the same type of struct on stack and stores the block literal 9161 /// to it and passes its pointer to the block invoke function. The kernel 9162 /// has "enqueued-block" function attribute and kernel argument metadata. 9163 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel( 9164 CodeGenFunction &CGF, llvm::Function *Invoke, 9165 llvm::Value *BlockLiteral) const { 9166 auto &Builder = CGF.Builder; 9167 auto &C = CGF.getLLVMContext(); 9168 9169 auto *BlockTy = BlockLiteral->getType()->getPointerElementType(); 9170 auto *InvokeFT = Invoke->getFunctionType(); 9171 llvm::SmallVector<llvm::Type *, 2> ArgTys; 9172 llvm::SmallVector<llvm::Metadata *, 8> AddressQuals; 9173 llvm::SmallVector<llvm::Metadata *, 8> AccessQuals; 9174 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames; 9175 llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames; 9176 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals; 9177 llvm::SmallVector<llvm::Metadata *, 8> ArgNames; 9178 9179 ArgTys.push_back(BlockTy); 9180 ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 9181 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0))); 9182 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 9183 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 9184 AccessQuals.push_back(llvm::MDString::get(C, "none")); 9185 ArgNames.push_back(llvm::MDString::get(C, "block_literal")); 9186 for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) { 9187 ArgTys.push_back(InvokeFT->getParamType(I)); 9188 ArgTypeNames.push_back(llvm::MDString::get(C, "void*")); 9189 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3))); 9190 AccessQuals.push_back(llvm::MDString::get(C, "none")); 9191 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*")); 9192 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 9193 ArgNames.push_back( 9194 llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str())); 9195 } 9196 std::string Name = Invoke->getName().str() + "_kernel"; 9197 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 9198 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 9199 &CGF.CGM.getModule()); 9200 F->addFnAttr("enqueued-block"); 9201 auto IP = CGF.Builder.saveIP(); 9202 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 9203 Builder.SetInsertPoint(BB); 9204 unsigned BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(BlockTy); 9205 auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr); 9206 BlockPtr->setAlignment(BlockAlign); 9207 Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign); 9208 auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0)); 9209 llvm::SmallVector<llvm::Value *, 2> Args; 9210 Args.push_back(Cast); 9211 for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I) 9212 Args.push_back(I); 9213 Builder.CreateCall(Invoke, Args); 9214 Builder.CreateRetVoid(); 9215 Builder.restoreIP(IP); 9216 9217 F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals)); 9218 F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals)); 9219 F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames)); 9220 F->setMetadata("kernel_arg_base_type", 9221 llvm::MDNode::get(C, ArgBaseTypeNames)); 9222 F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals)); 9223 if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 9224 F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames)); 9225 9226 return F; 9227 } 9228