1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "TargetInfo.h"
16 #include "ABIInfo.h"
17 #include "CGBlocks.h"
18 #include "CGCXXABI.h"
19 #include "CGValue.h"
20 #include "CodeGenFunction.h"
21 #include "clang/AST/RecordLayout.h"
22 #include "clang/CodeGen/CGFunctionInfo.h"
23 #include "clang/CodeGen/SwiftCallingConv.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "llvm/ADT/StringExtras.h"
26 #include "llvm/ADT/StringSwitch.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/Type.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include <algorithm>    // std::sort
33 
34 using namespace clang;
35 using namespace CodeGen;
36 
37 // Helper for coercing an aggregate argument or return value into an integer
38 // array of the same size (including padding) and alignment.  This alternate
39 // coercion happens only for the RenderScript ABI and can be removed after
40 // runtimes that rely on it are no longer supported.
41 //
42 // RenderScript assumes that the size of the argument / return value in the IR
43 // is the same as the size of the corresponding qualified type. This helper
44 // coerces the aggregate type into an array of the same size (including
45 // padding).  This coercion is used in lieu of expansion of struct members or
46 // other canonical coercions that return a coerced-type of larger size.
47 //
48 // Ty          - The argument / return value type
49 // Context     - The associated ASTContext
50 // LLVMContext - The associated LLVMContext
51 static ABIArgInfo coerceToIntArray(QualType Ty,
52                                    ASTContext &Context,
53                                    llvm::LLVMContext &LLVMContext) {
54   // Alignment and Size are measured in bits.
55   const uint64_t Size = Context.getTypeSize(Ty);
56   const uint64_t Alignment = Context.getTypeAlign(Ty);
57   llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment);
58   const uint64_t NumElements = (Size + Alignment - 1) / Alignment;
59   return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
60 }
61 
62 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
63                                llvm::Value *Array,
64                                llvm::Value *Value,
65                                unsigned FirstIndex,
66                                unsigned LastIndex) {
67   // Alternatively, we could emit this as a loop in the source.
68   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
69     llvm::Value *Cell =
70         Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I);
71     Builder.CreateAlignedStore(Value, Cell, CharUnits::One());
72   }
73 }
74 
75 static bool isAggregateTypeForABI(QualType T) {
76   return !CodeGenFunction::hasScalarEvaluationKind(T) ||
77          T->isMemberFunctionPointerType();
78 }
79 
80 ABIArgInfo
81 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign,
82                                  llvm::Type *Padding) const {
83   return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty),
84                                  ByRef, Realign, Padding);
85 }
86 
87 ABIArgInfo
88 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const {
89   return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty),
90                                       /*ByRef*/ false, Realign);
91 }
92 
93 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
94                              QualType Ty) const {
95   return Address::invalid();
96 }
97 
98 ABIInfo::~ABIInfo() {}
99 
100 /// Does the given lowering require more than the given number of
101 /// registers when expanded?
102 ///
103 /// This is intended to be the basis of a reasonable basic implementation
104 /// of should{Pass,Return}IndirectlyForSwift.
105 ///
106 /// For most targets, a limit of four total registers is reasonable; this
107 /// limits the amount of code required in order to move around the value
108 /// in case it wasn't produced immediately prior to the call by the caller
109 /// (or wasn't produced in exactly the right registers) or isn't used
110 /// immediately within the callee.  But some targets may need to further
111 /// limit the register count due to an inability to support that many
112 /// return registers.
113 static bool occupiesMoreThan(CodeGenTypes &cgt,
114                              ArrayRef<llvm::Type*> scalarTypes,
115                              unsigned maxAllRegisters) {
116   unsigned intCount = 0, fpCount = 0;
117   for (llvm::Type *type : scalarTypes) {
118     if (type->isPointerTy()) {
119       intCount++;
120     } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) {
121       auto ptrWidth = cgt.getTarget().getPointerWidth(0);
122       intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth;
123     } else {
124       assert(type->isVectorTy() || type->isFloatingPointTy());
125       fpCount++;
126     }
127   }
128 
129   return (intCount + fpCount > maxAllRegisters);
130 }
131 
132 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
133                                              llvm::Type *eltTy,
134                                              unsigned numElts) const {
135   // The default implementation of this assumes that the target guarantees
136   // 128-bit SIMD support but nothing more.
137   return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16);
138 }
139 
140 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
141                                               CGCXXABI &CXXABI) {
142   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
143   if (!RD)
144     return CGCXXABI::RAA_Default;
145   return CXXABI.getRecordArgABI(RD);
146 }
147 
148 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
149                                               CGCXXABI &CXXABI) {
150   const RecordType *RT = T->getAs<RecordType>();
151   if (!RT)
152     return CGCXXABI::RAA_Default;
153   return getRecordArgABI(RT, CXXABI);
154 }
155 
156 /// Pass transparent unions as if they were the type of the first element. Sema
157 /// should ensure that all elements of the union have the same "machine type".
158 static QualType useFirstFieldIfTransparentUnion(QualType Ty) {
159   if (const RecordType *UT = Ty->getAsUnionType()) {
160     const RecordDecl *UD = UT->getDecl();
161     if (UD->hasAttr<TransparentUnionAttr>()) {
162       assert(!UD->field_empty() && "sema created an empty transparent union");
163       return UD->field_begin()->getType();
164     }
165   }
166   return Ty;
167 }
168 
169 CGCXXABI &ABIInfo::getCXXABI() const {
170   return CGT.getCXXABI();
171 }
172 
173 ASTContext &ABIInfo::getContext() const {
174   return CGT.getContext();
175 }
176 
177 llvm::LLVMContext &ABIInfo::getVMContext() const {
178   return CGT.getLLVMContext();
179 }
180 
181 const llvm::DataLayout &ABIInfo::getDataLayout() const {
182   return CGT.getDataLayout();
183 }
184 
185 const TargetInfo &ABIInfo::getTarget() const {
186   return CGT.getTarget();
187 }
188 
189 const CodeGenOptions &ABIInfo::getCodeGenOpts() const {
190   return CGT.getCodeGenOpts();
191 }
192 
193 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); }
194 
195 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
196   return false;
197 }
198 
199 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
200                                                 uint64_t Members) const {
201   return false;
202 }
203 
204 LLVM_DUMP_METHOD void ABIArgInfo::dump() const {
205   raw_ostream &OS = llvm::errs();
206   OS << "(ABIArgInfo Kind=";
207   switch (TheKind) {
208   case Direct:
209     OS << "Direct Type=";
210     if (llvm::Type *Ty = getCoerceToType())
211       Ty->print(OS);
212     else
213       OS << "null";
214     break;
215   case Extend:
216     OS << "Extend";
217     break;
218   case Ignore:
219     OS << "Ignore";
220     break;
221   case InAlloca:
222     OS << "InAlloca Offset=" << getInAllocaFieldIndex();
223     break;
224   case Indirect:
225     OS << "Indirect Align=" << getIndirectAlign().getQuantity()
226        << " ByVal=" << getIndirectByVal()
227        << " Realign=" << getIndirectRealign();
228     break;
229   case Expand:
230     OS << "Expand";
231     break;
232   case CoerceAndExpand:
233     OS << "CoerceAndExpand Type=";
234     getCoerceAndExpandType()->print(OS);
235     break;
236   }
237   OS << ")\n";
238 }
239 
240 // Dynamically round a pointer up to a multiple of the given alignment.
241 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF,
242                                                   llvm::Value *Ptr,
243                                                   CharUnits Align) {
244   llvm::Value *PtrAsInt = Ptr;
245   // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align;
246   PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy);
247   PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt,
248         llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1));
249   PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt,
250            llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity()));
251   PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt,
252                                         Ptr->getType(),
253                                         Ptr->getName() + ".aligned");
254   return PtrAsInt;
255 }
256 
257 /// Emit va_arg for a platform using the common void* representation,
258 /// where arguments are simply emitted in an array of slots on the stack.
259 ///
260 /// This version implements the core direct-value passing rules.
261 ///
262 /// \param SlotSize - The size and alignment of a stack slot.
263 ///   Each argument will be allocated to a multiple of this number of
264 ///   slots, and all the slots will be aligned to this value.
265 /// \param AllowHigherAlign - The slot alignment is not a cap;
266 ///   an argument type with an alignment greater than the slot size
267 ///   will be emitted on a higher-alignment address, potentially
268 ///   leaving one or more empty slots behind as padding.  If this
269 ///   is false, the returned address might be less-aligned than
270 ///   DirectAlign.
271 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF,
272                                       Address VAListAddr,
273                                       llvm::Type *DirectTy,
274                                       CharUnits DirectSize,
275                                       CharUnits DirectAlign,
276                                       CharUnits SlotSize,
277                                       bool AllowHigherAlign) {
278   // Cast the element type to i8* if necessary.  Some platforms define
279   // va_list as a struct containing an i8* instead of just an i8*.
280   if (VAListAddr.getElementType() != CGF.Int8PtrTy)
281     VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy);
282 
283   llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur");
284 
285   // If the CC aligns values higher than the slot size, do so if needed.
286   Address Addr = Address::invalid();
287   if (AllowHigherAlign && DirectAlign > SlotSize) {
288     Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign),
289                                                  DirectAlign);
290   } else {
291     Addr = Address(Ptr, SlotSize);
292   }
293 
294   // Advance the pointer past the argument, then store that back.
295   CharUnits FullDirectSize = DirectSize.alignTo(SlotSize);
296   llvm::Value *NextPtr =
297     CGF.Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), FullDirectSize,
298                                            "argp.next");
299   CGF.Builder.CreateStore(NextPtr, VAListAddr);
300 
301   // If the argument is smaller than a slot, and this is a big-endian
302   // target, the argument will be right-adjusted in its slot.
303   if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() &&
304       !DirectTy->isStructTy()) {
305     Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize);
306   }
307 
308   Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy);
309   return Addr;
310 }
311 
312 /// Emit va_arg for a platform using the common void* representation,
313 /// where arguments are simply emitted in an array of slots on the stack.
314 ///
315 /// \param IsIndirect - Values of this type are passed indirectly.
316 /// \param ValueInfo - The size and alignment of this type, generally
317 ///   computed with getContext().getTypeInfoInChars(ValueTy).
318 /// \param SlotSizeAndAlign - The size and alignment of a stack slot.
319 ///   Each argument will be allocated to a multiple of this number of
320 ///   slots, and all the slots will be aligned to this value.
321 /// \param AllowHigherAlign - The slot alignment is not a cap;
322 ///   an argument type with an alignment greater than the slot size
323 ///   will be emitted on a higher-alignment address, potentially
324 ///   leaving one or more empty slots behind as padding.
325 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr,
326                                 QualType ValueTy, bool IsIndirect,
327                                 std::pair<CharUnits, CharUnits> ValueInfo,
328                                 CharUnits SlotSizeAndAlign,
329                                 bool AllowHigherAlign) {
330   // The size and alignment of the value that was passed directly.
331   CharUnits DirectSize, DirectAlign;
332   if (IsIndirect) {
333     DirectSize = CGF.getPointerSize();
334     DirectAlign = CGF.getPointerAlign();
335   } else {
336     DirectSize = ValueInfo.first;
337     DirectAlign = ValueInfo.second;
338   }
339 
340   // Cast the address we've calculated to the right type.
341   llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy);
342   if (IsIndirect)
343     DirectTy = DirectTy->getPointerTo(0);
344 
345   Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy,
346                                         DirectSize, DirectAlign,
347                                         SlotSizeAndAlign,
348                                         AllowHigherAlign);
349 
350   if (IsIndirect) {
351     Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second);
352   }
353 
354   return Addr;
355 
356 }
357 
358 static Address emitMergePHI(CodeGenFunction &CGF,
359                             Address Addr1, llvm::BasicBlock *Block1,
360                             Address Addr2, llvm::BasicBlock *Block2,
361                             const llvm::Twine &Name = "") {
362   assert(Addr1.getType() == Addr2.getType());
363   llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name);
364   PHI->addIncoming(Addr1.getPointer(), Block1);
365   PHI->addIncoming(Addr2.getPointer(), Block2);
366   CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment());
367   return Address(PHI, Align);
368 }
369 
370 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
371 
372 // If someone can figure out a general rule for this, that would be great.
373 // It's probably just doomed to be platform-dependent, though.
374 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
375   // Verified for:
376   //   x86-64     FreeBSD, Linux, Darwin
377   //   x86-32     FreeBSD, Linux, Darwin
378   //   PowerPC    Linux, Darwin
379   //   ARM        Darwin (*not* EABI)
380   //   AArch64    Linux
381   return 32;
382 }
383 
384 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
385                                      const FunctionNoProtoType *fnType) const {
386   // The following conventions are known to require this to be false:
387   //   x86_stdcall
388   //   MIPS
389   // For everything else, we just prefer false unless we opt out.
390   return false;
391 }
392 
393 void
394 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
395                                              llvm::SmallString<24> &Opt) const {
396   // This assumes the user is passing a library name like "rt" instead of a
397   // filename like "librt.a/so", and that they don't care whether it's static or
398   // dynamic.
399   Opt = "-l";
400   Opt += Lib;
401 }
402 
403 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const {
404   // OpenCL kernels are called via an explicit runtime API with arguments
405   // set with clSetKernelArg(), not as normal sub-functions.
406   // Return SPIR_KERNEL by default as the kernel calling convention to
407   // ensure the fingerprint is fixed such way that each OpenCL argument
408   // gets one matching argument in the produced kernel function argument
409   // list to enable feasible implementation of clSetKernelArg() with
410   // aggregates etc. In case we would use the default C calling conv here,
411   // clSetKernelArg() might break depending on the target-specific
412   // conventions; different targets might split structs passed as values
413   // to multiple function arguments etc.
414   return llvm::CallingConv::SPIR_KERNEL;
415 }
416 
417 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM,
418     llvm::PointerType *T, QualType QT) const {
419   return llvm::ConstantPointerNull::get(T);
420 }
421 
422 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
423                                                    const VarDecl *D) const {
424   assert(!CGM.getLangOpts().OpenCL &&
425          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
426          "Address space agnostic languages only");
427   return D ? D->getType().getAddressSpace() : LangAS::Default;
428 }
429 
430 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast(
431     CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr,
432     LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const {
433   // Since target may map different address spaces in AST to the same address
434   // space, an address space conversion may end up as a bitcast.
435   if (auto *C = dyn_cast<llvm::Constant>(Src))
436     return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy);
437   return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DestTy);
438 }
439 
440 llvm::Constant *
441 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src,
442                                         LangAS SrcAddr, LangAS DestAddr,
443                                         llvm::Type *DestTy) const {
444   // Since target may map different address spaces in AST to the same address
445   // space, an address space conversion may end up as a bitcast.
446   return llvm::ConstantExpr::getPointerCast(Src, DestTy);
447 }
448 
449 llvm::SyncScope::ID
450 TargetCodeGenInfo::getLLVMSyncScopeID(SyncScope S, llvm::LLVMContext &C) const {
451   return C.getOrInsertSyncScopeID(""); /* default sync scope */
452 }
453 
454 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
455 
456 /// isEmptyField - Return true iff a the field is "empty", that is it
457 /// is an unnamed bit-field or an (array of) empty record(s).
458 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
459                          bool AllowArrays) {
460   if (FD->isUnnamedBitfield())
461     return true;
462 
463   QualType FT = FD->getType();
464 
465   // Constant arrays of empty records count as empty, strip them off.
466   // Constant arrays of zero length always count as empty.
467   if (AllowArrays)
468     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
469       if (AT->getSize() == 0)
470         return true;
471       FT = AT->getElementType();
472     }
473 
474   const RecordType *RT = FT->getAs<RecordType>();
475   if (!RT)
476     return false;
477 
478   // C++ record fields are never empty, at least in the Itanium ABI.
479   //
480   // FIXME: We should use a predicate for whether this behavior is true in the
481   // current ABI.
482   if (isa<CXXRecordDecl>(RT->getDecl()))
483     return false;
484 
485   return isEmptyRecord(Context, FT, AllowArrays);
486 }
487 
488 /// isEmptyRecord - Return true iff a structure contains only empty
489 /// fields. Note that a structure with a flexible array member is not
490 /// considered empty.
491 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
492   const RecordType *RT = T->getAs<RecordType>();
493   if (!RT)
494     return false;
495   const RecordDecl *RD = RT->getDecl();
496   if (RD->hasFlexibleArrayMember())
497     return false;
498 
499   // If this is a C++ record, check the bases first.
500   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
501     for (const auto &I : CXXRD->bases())
502       if (!isEmptyRecord(Context, I.getType(), true))
503         return false;
504 
505   for (const auto *I : RD->fields())
506     if (!isEmptyField(Context, I, AllowArrays))
507       return false;
508   return true;
509 }
510 
511 /// isSingleElementStruct - Determine if a structure is a "single
512 /// element struct", i.e. it has exactly one non-empty field or
513 /// exactly one field which is itself a single element
514 /// struct. Structures with flexible array members are never
515 /// considered single element structs.
516 ///
517 /// \return The field declaration for the single non-empty field, if
518 /// it exists.
519 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
520   const RecordType *RT = T->getAs<RecordType>();
521   if (!RT)
522     return nullptr;
523 
524   const RecordDecl *RD = RT->getDecl();
525   if (RD->hasFlexibleArrayMember())
526     return nullptr;
527 
528   const Type *Found = nullptr;
529 
530   // If this is a C++ record, check the bases first.
531   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
532     for (const auto &I : CXXRD->bases()) {
533       // Ignore empty records.
534       if (isEmptyRecord(Context, I.getType(), true))
535         continue;
536 
537       // If we already found an element then this isn't a single-element struct.
538       if (Found)
539         return nullptr;
540 
541       // If this is non-empty and not a single element struct, the composite
542       // cannot be a single element struct.
543       Found = isSingleElementStruct(I.getType(), Context);
544       if (!Found)
545         return nullptr;
546     }
547   }
548 
549   // Check for single element.
550   for (const auto *FD : RD->fields()) {
551     QualType FT = FD->getType();
552 
553     // Ignore empty fields.
554     if (isEmptyField(Context, FD, true))
555       continue;
556 
557     // If we already found an element then this isn't a single-element
558     // struct.
559     if (Found)
560       return nullptr;
561 
562     // Treat single element arrays as the element.
563     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
564       if (AT->getSize().getZExtValue() != 1)
565         break;
566       FT = AT->getElementType();
567     }
568 
569     if (!isAggregateTypeForABI(FT)) {
570       Found = FT.getTypePtr();
571     } else {
572       Found = isSingleElementStruct(FT, Context);
573       if (!Found)
574         return nullptr;
575     }
576   }
577 
578   // We don't consider a struct a single-element struct if it has
579   // padding beyond the element type.
580   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
581     return nullptr;
582 
583   return Found;
584 }
585 
586 namespace {
587 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
588                        const ABIArgInfo &AI) {
589   // This default implementation defers to the llvm backend's va_arg
590   // instruction. It can handle only passing arguments directly
591   // (typically only handled in the backend for primitive types), or
592   // aggregates passed indirectly by pointer (NOTE: if the "byval"
593   // flag has ABI impact in the callee, this implementation cannot
594   // work.)
595 
596   // Only a few cases are covered here at the moment -- those needed
597   // by the default abi.
598   llvm::Value *Val;
599 
600   if (AI.isIndirect()) {
601     assert(!AI.getPaddingType() &&
602            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
603     assert(
604         !AI.getIndirectRealign() &&
605         "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!");
606 
607     auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty);
608     CharUnits TyAlignForABI = TyInfo.second;
609 
610     llvm::Type *BaseTy =
611         llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
612     llvm::Value *Addr =
613         CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy);
614     return Address(Addr, TyAlignForABI);
615   } else {
616     assert((AI.isDirect() || AI.isExtend()) &&
617            "Unexpected ArgInfo Kind in generic VAArg emitter!");
618 
619     assert(!AI.getInReg() &&
620            "Unexpected InReg seen in arginfo in generic VAArg emitter!");
621     assert(!AI.getPaddingType() &&
622            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
623     assert(!AI.getDirectOffset() &&
624            "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!");
625     assert(!AI.getCoerceToType() &&
626            "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!");
627 
628     Address Temp = CGF.CreateMemTemp(Ty, "varet");
629     Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty));
630     CGF.Builder.CreateStore(Val, Temp);
631     return Temp;
632   }
633 }
634 
635 /// DefaultABIInfo - The default implementation for ABI specific
636 /// details. This implementation provides information which results in
637 /// self-consistent and sensible LLVM IR generation, but does not
638 /// conform to any particular ABI.
639 class DefaultABIInfo : public ABIInfo {
640 public:
641   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
642 
643   ABIArgInfo classifyReturnType(QualType RetTy) const;
644   ABIArgInfo classifyArgumentType(QualType RetTy) const;
645 
646   void computeInfo(CGFunctionInfo &FI) const override {
647     if (!getCXXABI().classifyReturnType(FI))
648       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
649     for (auto &I : FI.arguments())
650       I.info = classifyArgumentType(I.type);
651   }
652 
653   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
654                     QualType Ty) const override {
655     return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty));
656   }
657 };
658 
659 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
660 public:
661   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
662     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
663 };
664 
665 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
666   Ty = useFirstFieldIfTransparentUnion(Ty);
667 
668   if (isAggregateTypeForABI(Ty)) {
669     // Records with non-trivial destructors/copy-constructors should not be
670     // passed by value.
671     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
672       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
673 
674     return getNaturalAlignIndirect(Ty);
675   }
676 
677   // Treat an enum type as its underlying type.
678   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
679     Ty = EnumTy->getDecl()->getIntegerType();
680 
681   return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
682                                         : ABIArgInfo::getDirect());
683 }
684 
685 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
686   if (RetTy->isVoidType())
687     return ABIArgInfo::getIgnore();
688 
689   if (isAggregateTypeForABI(RetTy))
690     return getNaturalAlignIndirect(RetTy);
691 
692   // Treat an enum type as its underlying type.
693   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
694     RetTy = EnumTy->getDecl()->getIntegerType();
695 
696   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
697                                            : ABIArgInfo::getDirect());
698 }
699 
700 //===----------------------------------------------------------------------===//
701 // WebAssembly ABI Implementation
702 //
703 // This is a very simple ABI that relies a lot on DefaultABIInfo.
704 //===----------------------------------------------------------------------===//
705 
706 class WebAssemblyABIInfo final : public DefaultABIInfo {
707 public:
708   explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT)
709       : DefaultABIInfo(CGT) {}
710 
711 private:
712   ABIArgInfo classifyReturnType(QualType RetTy) const;
713   ABIArgInfo classifyArgumentType(QualType Ty) const;
714 
715   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
716   // non-virtual, but computeInfo and EmitVAArg are virtual, so we
717   // overload them.
718   void computeInfo(CGFunctionInfo &FI) const override {
719     if (!getCXXABI().classifyReturnType(FI))
720       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
721     for (auto &Arg : FI.arguments())
722       Arg.info = classifyArgumentType(Arg.type);
723   }
724 
725   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
726                     QualType Ty) const override;
727 };
728 
729 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo {
730 public:
731   explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
732       : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT)) {}
733 };
734 
735 /// \brief Classify argument of given type \p Ty.
736 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const {
737   Ty = useFirstFieldIfTransparentUnion(Ty);
738 
739   if (isAggregateTypeForABI(Ty)) {
740     // Records with non-trivial destructors/copy-constructors should not be
741     // passed by value.
742     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
743       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
744     // Ignore empty structs/unions.
745     if (isEmptyRecord(getContext(), Ty, true))
746       return ABIArgInfo::getIgnore();
747     // Lower single-element structs to just pass a regular value. TODO: We
748     // could do reasonable-size multiple-element structs too, using getExpand(),
749     // though watch out for things like bitfields.
750     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
751       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
752   }
753 
754   // Otherwise just do the default thing.
755   return DefaultABIInfo::classifyArgumentType(Ty);
756 }
757 
758 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const {
759   if (isAggregateTypeForABI(RetTy)) {
760     // Records with non-trivial destructors/copy-constructors should not be
761     // returned by value.
762     if (!getRecordArgABI(RetTy, getCXXABI())) {
763       // Ignore empty structs/unions.
764       if (isEmptyRecord(getContext(), RetTy, true))
765         return ABIArgInfo::getIgnore();
766       // Lower single-element structs to just return a regular value. TODO: We
767       // could do reasonable-size multiple-element structs too, using
768       // ABIArgInfo::getDirect().
769       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
770         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
771     }
772   }
773 
774   // Otherwise just do the default thing.
775   return DefaultABIInfo::classifyReturnType(RetTy);
776 }
777 
778 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
779                                       QualType Ty) const {
780   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect=*/ false,
781                           getContext().getTypeInfoInChars(Ty),
782                           CharUnits::fromQuantity(4),
783                           /*AllowHigherAlign=*/ true);
784 }
785 
786 //===----------------------------------------------------------------------===//
787 // le32/PNaCl bitcode ABI Implementation
788 //
789 // This is a simplified version of the x86_32 ABI.  Arguments and return values
790 // are always passed on the stack.
791 //===----------------------------------------------------------------------===//
792 
793 class PNaClABIInfo : public ABIInfo {
794  public:
795   PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
796 
797   ABIArgInfo classifyReturnType(QualType RetTy) const;
798   ABIArgInfo classifyArgumentType(QualType RetTy) const;
799 
800   void computeInfo(CGFunctionInfo &FI) const override;
801   Address EmitVAArg(CodeGenFunction &CGF,
802                     Address VAListAddr, QualType Ty) const override;
803 };
804 
805 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
806  public:
807   PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
808     : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
809 };
810 
811 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
812   if (!getCXXABI().classifyReturnType(FI))
813     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
814 
815   for (auto &I : FI.arguments())
816     I.info = classifyArgumentType(I.type);
817 }
818 
819 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
820                                 QualType Ty) const {
821   // The PNaCL ABI is a bit odd, in that varargs don't use normal
822   // function classification. Structs get passed directly for varargs
823   // functions, through a rewriting transform in
824   // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows
825   // this target to actually support a va_arg instructions with an
826   // aggregate type, unlike other targets.
827   return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
828 }
829 
830 /// \brief Classify argument of given type \p Ty.
831 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
832   if (isAggregateTypeForABI(Ty)) {
833     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
834       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
835     return getNaturalAlignIndirect(Ty);
836   } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
837     // Treat an enum type as its underlying type.
838     Ty = EnumTy->getDecl()->getIntegerType();
839   } else if (Ty->isFloatingType()) {
840     // Floating-point types don't go inreg.
841     return ABIArgInfo::getDirect();
842   }
843 
844   return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
845                                         : ABIArgInfo::getDirect());
846 }
847 
848 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
849   if (RetTy->isVoidType())
850     return ABIArgInfo::getIgnore();
851 
852   // In the PNaCl ABI we always return records/structures on the stack.
853   if (isAggregateTypeForABI(RetTy))
854     return getNaturalAlignIndirect(RetTy);
855 
856   // Treat an enum type as its underlying type.
857   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
858     RetTy = EnumTy->getDecl()->getIntegerType();
859 
860   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
861                                            : ABIArgInfo::getDirect());
862 }
863 
864 /// IsX86_MMXType - Return true if this is an MMX type.
865 bool IsX86_MMXType(llvm::Type *IRType) {
866   // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
867   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
868     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
869     IRType->getScalarSizeInBits() != 64;
870 }
871 
872 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
873                                           StringRef Constraint,
874                                           llvm::Type* Ty) {
875   bool IsMMXCons = llvm::StringSwitch<bool>(Constraint)
876                      .Cases("y", "&y", "^Ym", true)
877                      .Default(false);
878   if (IsMMXCons && Ty->isVectorTy()) {
879     if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) {
880       // Invalid MMX constraint
881       return nullptr;
882     }
883 
884     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
885   }
886 
887   // No operation needed
888   return Ty;
889 }
890 
891 /// Returns true if this type can be passed in SSE registers with the
892 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
893 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
894   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
895     if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) {
896       if (BT->getKind() == BuiltinType::LongDouble) {
897         if (&Context.getTargetInfo().getLongDoubleFormat() ==
898             &llvm::APFloat::x87DoubleExtended())
899           return false;
900       }
901       return true;
902     }
903   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
904     // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
905     // registers specially.
906     unsigned VecSize = Context.getTypeSize(VT);
907     if (VecSize == 128 || VecSize == 256 || VecSize == 512)
908       return true;
909   }
910   return false;
911 }
912 
913 /// Returns true if this aggregate is small enough to be passed in SSE registers
914 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
915 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
916   return NumMembers <= 4;
917 }
918 
919 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86.
920 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) {
921   auto AI = ABIArgInfo::getDirect(T);
922   AI.setInReg(true);
923   AI.setCanBeFlattened(false);
924   return AI;
925 }
926 
927 //===----------------------------------------------------------------------===//
928 // X86-32 ABI Implementation
929 //===----------------------------------------------------------------------===//
930 
931 /// \brief Similar to llvm::CCState, but for Clang.
932 struct CCState {
933   CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {}
934 
935   unsigned CC;
936   unsigned FreeRegs;
937   unsigned FreeSSERegs;
938 };
939 
940 enum {
941   // Vectorcall only allows the first 6 parameters to be passed in registers.
942   VectorcallMaxParamNumAsReg = 6
943 };
944 
945 /// X86_32ABIInfo - The X86-32 ABI information.
946 class X86_32ABIInfo : public SwiftABIInfo {
947   enum Class {
948     Integer,
949     Float
950   };
951 
952   static const unsigned MinABIStackAlignInBytes = 4;
953 
954   bool IsDarwinVectorABI;
955   bool IsRetSmallStructInRegABI;
956   bool IsWin32StructABI;
957   bool IsSoftFloatABI;
958   bool IsMCUABI;
959   unsigned DefaultNumRegisterParameters;
960 
961   static bool isRegisterSize(unsigned Size) {
962     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
963   }
964 
965   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
966     // FIXME: Assumes vectorcall is in use.
967     return isX86VectorTypeForVectorCall(getContext(), Ty);
968   }
969 
970   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
971                                          uint64_t NumMembers) const override {
972     // FIXME: Assumes vectorcall is in use.
973     return isX86VectorCallAggregateSmallEnough(NumMembers);
974   }
975 
976   bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
977 
978   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
979   /// such that the argument will be passed in memory.
980   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
981 
982   ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const;
983 
984   /// \brief Return the alignment to use for the given type on the stack.
985   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
986 
987   Class classify(QualType Ty) const;
988   ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
989   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
990 
991   /// \brief Updates the number of available free registers, returns
992   /// true if any registers were allocated.
993   bool updateFreeRegs(QualType Ty, CCState &State) const;
994 
995   bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg,
996                                 bool &NeedsPadding) const;
997   bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const;
998 
999   bool canExpandIndirectArgument(QualType Ty) const;
1000 
1001   /// \brief Rewrite the function info so that all memory arguments use
1002   /// inalloca.
1003   void rewriteWithInAlloca(CGFunctionInfo &FI) const;
1004 
1005   void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1006                            CharUnits &StackOffset, ABIArgInfo &Info,
1007                            QualType Type) const;
1008   void computeVectorCallArgs(CGFunctionInfo &FI, CCState &State,
1009                              bool &UsedInAlloca) const;
1010 
1011 public:
1012 
1013   void computeInfo(CGFunctionInfo &FI) const override;
1014   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1015                     QualType Ty) const override;
1016 
1017   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1018                 bool RetSmallStructInRegABI, bool Win32StructABI,
1019                 unsigned NumRegisterParameters, bool SoftFloatABI)
1020     : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI),
1021       IsRetSmallStructInRegABI(RetSmallStructInRegABI),
1022       IsWin32StructABI(Win32StructABI),
1023       IsSoftFloatABI(SoftFloatABI),
1024       IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()),
1025       DefaultNumRegisterParameters(NumRegisterParameters) {}
1026 
1027   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
1028                                     bool asReturnValue) const override {
1029     // LLVM's x86-32 lowering currently only assigns up to three
1030     // integer registers and three fp registers.  Oddly, it'll use up to
1031     // four vector registers for vectors, but those can overlap with the
1032     // scalar registers.
1033     return occupiesMoreThan(CGT, scalars, /*total*/ 3);
1034   }
1035 
1036   bool isSwiftErrorInRegister() const override {
1037     // x86-32 lowering does not support passing swifterror in a register.
1038     return false;
1039   }
1040 };
1041 
1042 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
1043 public:
1044   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1045                           bool RetSmallStructInRegABI, bool Win32StructABI,
1046                           unsigned NumRegisterParameters, bool SoftFloatABI)
1047       : TargetCodeGenInfo(new X86_32ABIInfo(
1048             CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
1049             NumRegisterParameters, SoftFloatABI)) {}
1050 
1051   static bool isStructReturnInRegABI(
1052       const llvm::Triple &Triple, const CodeGenOptions &Opts);
1053 
1054   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1055                            CodeGen::CodeGenModule &CGM) const override;
1056 
1057   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1058     // Darwin uses different dwarf register numbers for EH.
1059     if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
1060     return 4;
1061   }
1062 
1063   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1064                                llvm::Value *Address) const override;
1065 
1066   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1067                                   StringRef Constraint,
1068                                   llvm::Type* Ty) const override {
1069     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1070   }
1071 
1072   void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
1073                                 std::string &Constraints,
1074                                 std::vector<llvm::Type *> &ResultRegTypes,
1075                                 std::vector<llvm::Type *> &ResultTruncRegTypes,
1076                                 std::vector<LValue> &ResultRegDests,
1077                                 std::string &AsmString,
1078                                 unsigned NumOutputs) const override;
1079 
1080   llvm::Constant *
1081   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
1082     unsigned Sig = (0xeb << 0) |  // jmp rel8
1083                    (0x06 << 8) |  //           .+0x08
1084                    ('v' << 16) |
1085                    ('2' << 24);
1086     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
1087   }
1088 
1089   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
1090     return "movl\t%ebp, %ebp"
1091            "\t\t// marker for objc_retainAutoreleaseReturnValue";
1092   }
1093 };
1094 
1095 }
1096 
1097 /// Rewrite input constraint references after adding some output constraints.
1098 /// In the case where there is one output and one input and we add one output,
1099 /// we need to replace all operand references greater than or equal to 1:
1100 ///     mov $0, $1
1101 ///     mov eax, $1
1102 /// The result will be:
1103 ///     mov $0, $2
1104 ///     mov eax, $2
1105 static void rewriteInputConstraintReferences(unsigned FirstIn,
1106                                              unsigned NumNewOuts,
1107                                              std::string &AsmString) {
1108   std::string Buf;
1109   llvm::raw_string_ostream OS(Buf);
1110   size_t Pos = 0;
1111   while (Pos < AsmString.size()) {
1112     size_t DollarStart = AsmString.find('$', Pos);
1113     if (DollarStart == std::string::npos)
1114       DollarStart = AsmString.size();
1115     size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
1116     if (DollarEnd == std::string::npos)
1117       DollarEnd = AsmString.size();
1118     OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
1119     Pos = DollarEnd;
1120     size_t NumDollars = DollarEnd - DollarStart;
1121     if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
1122       // We have an operand reference.
1123       size_t DigitStart = Pos;
1124       size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
1125       if (DigitEnd == std::string::npos)
1126         DigitEnd = AsmString.size();
1127       StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
1128       unsigned OperandIndex;
1129       if (!OperandStr.getAsInteger(10, OperandIndex)) {
1130         if (OperandIndex >= FirstIn)
1131           OperandIndex += NumNewOuts;
1132         OS << OperandIndex;
1133       } else {
1134         OS << OperandStr;
1135       }
1136       Pos = DigitEnd;
1137     }
1138   }
1139   AsmString = std::move(OS.str());
1140 }
1141 
1142 /// Add output constraints for EAX:EDX because they are return registers.
1143 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
1144     CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
1145     std::vector<llvm::Type *> &ResultRegTypes,
1146     std::vector<llvm::Type *> &ResultTruncRegTypes,
1147     std::vector<LValue> &ResultRegDests, std::string &AsmString,
1148     unsigned NumOutputs) const {
1149   uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
1150 
1151   // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
1152   // larger.
1153   if (!Constraints.empty())
1154     Constraints += ',';
1155   if (RetWidth <= 32) {
1156     Constraints += "={eax}";
1157     ResultRegTypes.push_back(CGF.Int32Ty);
1158   } else {
1159     // Use the 'A' constraint for EAX:EDX.
1160     Constraints += "=A";
1161     ResultRegTypes.push_back(CGF.Int64Ty);
1162   }
1163 
1164   // Truncate EAX or EAX:EDX to an integer of the appropriate size.
1165   llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
1166   ResultTruncRegTypes.push_back(CoerceTy);
1167 
1168   // Coerce the integer by bitcasting the return slot pointer.
1169   ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(),
1170                                                   CoerceTy->getPointerTo()));
1171   ResultRegDests.push_back(ReturnSlot);
1172 
1173   rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
1174 }
1175 
1176 /// shouldReturnTypeInRegister - Determine if the given type should be
1177 /// returned in a register (for the Darwin and MCU ABI).
1178 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
1179                                                ASTContext &Context) const {
1180   uint64_t Size = Context.getTypeSize(Ty);
1181 
1182   // For i386, type must be register sized.
1183   // For the MCU ABI, it only needs to be <= 8-byte
1184   if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size)))
1185    return false;
1186 
1187   if (Ty->isVectorType()) {
1188     // 64- and 128- bit vectors inside structures are not returned in
1189     // registers.
1190     if (Size == 64 || Size == 128)
1191       return false;
1192 
1193     return true;
1194   }
1195 
1196   // If this is a builtin, pointer, enum, complex type, member pointer, or
1197   // member function pointer it is ok.
1198   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
1199       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
1200       Ty->isBlockPointerType() || Ty->isMemberPointerType())
1201     return true;
1202 
1203   // Arrays are treated like records.
1204   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
1205     return shouldReturnTypeInRegister(AT->getElementType(), Context);
1206 
1207   // Otherwise, it must be a record type.
1208   const RecordType *RT = Ty->getAs<RecordType>();
1209   if (!RT) return false;
1210 
1211   // FIXME: Traverse bases here too.
1212 
1213   // Structure types are passed in register if all fields would be
1214   // passed in a register.
1215   for (const auto *FD : RT->getDecl()->fields()) {
1216     // Empty fields are ignored.
1217     if (isEmptyField(Context, FD, true))
1218       continue;
1219 
1220     // Check fields recursively.
1221     if (!shouldReturnTypeInRegister(FD->getType(), Context))
1222       return false;
1223   }
1224   return true;
1225 }
1226 
1227 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
1228   // Treat complex types as the element type.
1229   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
1230     Ty = CTy->getElementType();
1231 
1232   // Check for a type which we know has a simple scalar argument-passing
1233   // convention without any padding.  (We're specifically looking for 32
1234   // and 64-bit integer and integer-equivalents, float, and double.)
1235   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
1236       !Ty->isEnumeralType() && !Ty->isBlockPointerType())
1237     return false;
1238 
1239   uint64_t Size = Context.getTypeSize(Ty);
1240   return Size == 32 || Size == 64;
1241 }
1242 
1243 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD,
1244                           uint64_t &Size) {
1245   for (const auto *FD : RD->fields()) {
1246     // Scalar arguments on the stack get 4 byte alignment on x86. If the
1247     // argument is smaller than 32-bits, expanding the struct will create
1248     // alignment padding.
1249     if (!is32Or64BitBasicType(FD->getType(), Context))
1250       return false;
1251 
1252     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
1253     // how to expand them yet, and the predicate for telling if a bitfield still
1254     // counts as "basic" is more complicated than what we were doing previously.
1255     if (FD->isBitField())
1256       return false;
1257 
1258     Size += Context.getTypeSize(FD->getType());
1259   }
1260   return true;
1261 }
1262 
1263 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD,
1264                                  uint64_t &Size) {
1265   // Don't do this if there are any non-empty bases.
1266   for (const CXXBaseSpecifier &Base : RD->bases()) {
1267     if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(),
1268                               Size))
1269       return false;
1270   }
1271   if (!addFieldSizes(Context, RD, Size))
1272     return false;
1273   return true;
1274 }
1275 
1276 /// Test whether an argument type which is to be passed indirectly (on the
1277 /// stack) would have the equivalent layout if it was expanded into separate
1278 /// arguments. If so, we prefer to do the latter to avoid inhibiting
1279 /// optimizations.
1280 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const {
1281   // We can only expand structure types.
1282   const RecordType *RT = Ty->getAs<RecordType>();
1283   if (!RT)
1284     return false;
1285   const RecordDecl *RD = RT->getDecl();
1286   uint64_t Size = 0;
1287   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1288     if (!IsWin32StructABI) {
1289       // On non-Windows, we have to conservatively match our old bitcode
1290       // prototypes in order to be ABI-compatible at the bitcode level.
1291       if (!CXXRD->isCLike())
1292         return false;
1293     } else {
1294       // Don't do this for dynamic classes.
1295       if (CXXRD->isDynamicClass())
1296         return false;
1297     }
1298     if (!addBaseAndFieldSizes(getContext(), CXXRD, Size))
1299       return false;
1300   } else {
1301     if (!addFieldSizes(getContext(), RD, Size))
1302       return false;
1303   }
1304 
1305   // We can do this if there was no alignment padding.
1306   return Size == getContext().getTypeSize(Ty);
1307 }
1308 
1309 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const {
1310   // If the return value is indirect, then the hidden argument is consuming one
1311   // integer register.
1312   if (State.FreeRegs) {
1313     --State.FreeRegs;
1314     if (!IsMCUABI)
1315       return getNaturalAlignIndirectInReg(RetTy);
1316   }
1317   return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
1318 }
1319 
1320 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
1321                                              CCState &State) const {
1322   if (RetTy->isVoidType())
1323     return ABIArgInfo::getIgnore();
1324 
1325   const Type *Base = nullptr;
1326   uint64_t NumElts = 0;
1327   if ((State.CC == llvm::CallingConv::X86_VectorCall ||
1328        State.CC == llvm::CallingConv::X86_RegCall) &&
1329       isHomogeneousAggregate(RetTy, Base, NumElts)) {
1330     // The LLVM struct type for such an aggregate should lower properly.
1331     return ABIArgInfo::getDirect();
1332   }
1333 
1334   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
1335     // On Darwin, some vectors are returned in registers.
1336     if (IsDarwinVectorABI) {
1337       uint64_t Size = getContext().getTypeSize(RetTy);
1338 
1339       // 128-bit vectors are a special case; they are returned in
1340       // registers and we need to make sure to pick a type the LLVM
1341       // backend will like.
1342       if (Size == 128)
1343         return ABIArgInfo::getDirect(llvm::VectorType::get(
1344                   llvm::Type::getInt64Ty(getVMContext()), 2));
1345 
1346       // Always return in register if it fits in a general purpose
1347       // register, or if it is 64 bits and has a single element.
1348       if ((Size == 8 || Size == 16 || Size == 32) ||
1349           (Size == 64 && VT->getNumElements() == 1))
1350         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1351                                                             Size));
1352 
1353       return getIndirectReturnResult(RetTy, State);
1354     }
1355 
1356     return ABIArgInfo::getDirect();
1357   }
1358 
1359   if (isAggregateTypeForABI(RetTy)) {
1360     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
1361       // Structures with flexible arrays are always indirect.
1362       if (RT->getDecl()->hasFlexibleArrayMember())
1363         return getIndirectReturnResult(RetTy, State);
1364     }
1365 
1366     // If specified, structs and unions are always indirect.
1367     if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType())
1368       return getIndirectReturnResult(RetTy, State);
1369 
1370     // Ignore empty structs/unions.
1371     if (isEmptyRecord(getContext(), RetTy, true))
1372       return ABIArgInfo::getIgnore();
1373 
1374     // Small structures which are register sized are generally returned
1375     // in a register.
1376     if (shouldReturnTypeInRegister(RetTy, getContext())) {
1377       uint64_t Size = getContext().getTypeSize(RetTy);
1378 
1379       // As a special-case, if the struct is a "single-element" struct, and
1380       // the field is of type "float" or "double", return it in a
1381       // floating-point register. (MSVC does not apply this special case.)
1382       // We apply a similar transformation for pointer types to improve the
1383       // quality of the generated IR.
1384       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
1385         if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
1386             || SeltTy->hasPointerRepresentation())
1387           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
1388 
1389       // FIXME: We should be able to narrow this integer in cases with dead
1390       // padding.
1391       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
1392     }
1393 
1394     return getIndirectReturnResult(RetTy, State);
1395   }
1396 
1397   // Treat an enum type as its underlying type.
1398   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1399     RetTy = EnumTy->getDecl()->getIntegerType();
1400 
1401   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
1402                                            : ABIArgInfo::getDirect());
1403 }
1404 
1405 static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
1406   return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
1407 }
1408 
1409 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
1410   const RecordType *RT = Ty->getAs<RecordType>();
1411   if (!RT)
1412     return 0;
1413   const RecordDecl *RD = RT->getDecl();
1414 
1415   // If this is a C++ record, check the bases first.
1416   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1417     for (const auto &I : CXXRD->bases())
1418       if (!isRecordWithSSEVectorType(Context, I.getType()))
1419         return false;
1420 
1421   for (const auto *i : RD->fields()) {
1422     QualType FT = i->getType();
1423 
1424     if (isSSEVectorType(Context, FT))
1425       return true;
1426 
1427     if (isRecordWithSSEVectorType(Context, FT))
1428       return true;
1429   }
1430 
1431   return false;
1432 }
1433 
1434 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
1435                                                  unsigned Align) const {
1436   // Otherwise, if the alignment is less than or equal to the minimum ABI
1437   // alignment, just use the default; the backend will handle this.
1438   if (Align <= MinABIStackAlignInBytes)
1439     return 0; // Use default alignment.
1440 
1441   // On non-Darwin, the stack type alignment is always 4.
1442   if (!IsDarwinVectorABI) {
1443     // Set explicit alignment, since we may need to realign the top.
1444     return MinABIStackAlignInBytes;
1445   }
1446 
1447   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
1448   if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
1449                       isRecordWithSSEVectorType(getContext(), Ty)))
1450     return 16;
1451 
1452   return MinABIStackAlignInBytes;
1453 }
1454 
1455 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
1456                                             CCState &State) const {
1457   if (!ByVal) {
1458     if (State.FreeRegs) {
1459       --State.FreeRegs; // Non-byval indirects just use one pointer.
1460       if (!IsMCUABI)
1461         return getNaturalAlignIndirectInReg(Ty);
1462     }
1463     return getNaturalAlignIndirect(Ty, false);
1464   }
1465 
1466   // Compute the byval alignment.
1467   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
1468   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
1469   if (StackAlign == 0)
1470     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true);
1471 
1472   // If the stack alignment is less than the type alignment, realign the
1473   // argument.
1474   bool Realign = TypeAlign > StackAlign;
1475   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign),
1476                                  /*ByVal=*/true, Realign);
1477 }
1478 
1479 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
1480   const Type *T = isSingleElementStruct(Ty, getContext());
1481   if (!T)
1482     T = Ty.getTypePtr();
1483 
1484   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
1485     BuiltinType::Kind K = BT->getKind();
1486     if (K == BuiltinType::Float || K == BuiltinType::Double)
1487       return Float;
1488   }
1489   return Integer;
1490 }
1491 
1492 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const {
1493   if (!IsSoftFloatABI) {
1494     Class C = classify(Ty);
1495     if (C == Float)
1496       return false;
1497   }
1498 
1499   unsigned Size = getContext().getTypeSize(Ty);
1500   unsigned SizeInRegs = (Size + 31) / 32;
1501 
1502   if (SizeInRegs == 0)
1503     return false;
1504 
1505   if (!IsMCUABI) {
1506     if (SizeInRegs > State.FreeRegs) {
1507       State.FreeRegs = 0;
1508       return false;
1509     }
1510   } else {
1511     // The MCU psABI allows passing parameters in-reg even if there are
1512     // earlier parameters that are passed on the stack. Also,
1513     // it does not allow passing >8-byte structs in-register,
1514     // even if there are 3 free registers available.
1515     if (SizeInRegs > State.FreeRegs || SizeInRegs > 2)
1516       return false;
1517   }
1518 
1519   State.FreeRegs -= SizeInRegs;
1520   return true;
1521 }
1522 
1523 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State,
1524                                              bool &InReg,
1525                                              bool &NeedsPadding) const {
1526   // On Windows, aggregates other than HFAs are never passed in registers, and
1527   // they do not consume register slots. Homogenous floating-point aggregates
1528   // (HFAs) have already been dealt with at this point.
1529   if (IsWin32StructABI && isAggregateTypeForABI(Ty))
1530     return false;
1531 
1532   NeedsPadding = false;
1533   InReg = !IsMCUABI;
1534 
1535   if (!updateFreeRegs(Ty, State))
1536     return false;
1537 
1538   if (IsMCUABI)
1539     return true;
1540 
1541   if (State.CC == llvm::CallingConv::X86_FastCall ||
1542       State.CC == llvm::CallingConv::X86_VectorCall ||
1543       State.CC == llvm::CallingConv::X86_RegCall) {
1544     if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs)
1545       NeedsPadding = true;
1546 
1547     return false;
1548   }
1549 
1550   return true;
1551 }
1552 
1553 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const {
1554   if (!updateFreeRegs(Ty, State))
1555     return false;
1556 
1557   if (IsMCUABI)
1558     return false;
1559 
1560   if (State.CC == llvm::CallingConv::X86_FastCall ||
1561       State.CC == llvm::CallingConv::X86_VectorCall ||
1562       State.CC == llvm::CallingConv::X86_RegCall) {
1563     if (getContext().getTypeSize(Ty) > 32)
1564       return false;
1565 
1566     return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() ||
1567         Ty->isReferenceType());
1568   }
1569 
1570   return true;
1571 }
1572 
1573 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
1574                                                CCState &State) const {
1575   // FIXME: Set alignment on indirect arguments.
1576 
1577   Ty = useFirstFieldIfTransparentUnion(Ty);
1578 
1579   // Check with the C++ ABI first.
1580   const RecordType *RT = Ty->getAs<RecordType>();
1581   if (RT) {
1582     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
1583     if (RAA == CGCXXABI::RAA_Indirect) {
1584       return getIndirectResult(Ty, false, State);
1585     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
1586       // The field index doesn't matter, we'll fix it up later.
1587       return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
1588     }
1589   }
1590 
1591   // Regcall uses the concept of a homogenous vector aggregate, similar
1592   // to other targets.
1593   const Type *Base = nullptr;
1594   uint64_t NumElts = 0;
1595   if (State.CC == llvm::CallingConv::X86_RegCall &&
1596       isHomogeneousAggregate(Ty, Base, NumElts)) {
1597 
1598     if (State.FreeSSERegs >= NumElts) {
1599       State.FreeSSERegs -= NumElts;
1600       if (Ty->isBuiltinType() || Ty->isVectorType())
1601         return ABIArgInfo::getDirect();
1602       return ABIArgInfo::getExpand();
1603     }
1604     return getIndirectResult(Ty, /*ByVal=*/false, State);
1605   }
1606 
1607   if (isAggregateTypeForABI(Ty)) {
1608     // Structures with flexible arrays are always indirect.
1609     // FIXME: This should not be byval!
1610     if (RT && RT->getDecl()->hasFlexibleArrayMember())
1611       return getIndirectResult(Ty, true, State);
1612 
1613     // Ignore empty structs/unions on non-Windows.
1614     if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true))
1615       return ABIArgInfo::getIgnore();
1616 
1617     llvm::LLVMContext &LLVMContext = getVMContext();
1618     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
1619     bool NeedsPadding = false;
1620     bool InReg;
1621     if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) {
1622       unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
1623       SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
1624       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
1625       if (InReg)
1626         return ABIArgInfo::getDirectInReg(Result);
1627       else
1628         return ABIArgInfo::getDirect(Result);
1629     }
1630     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
1631 
1632     // Expand small (<= 128-bit) record types when we know that the stack layout
1633     // of those arguments will match the struct. This is important because the
1634     // LLVM backend isn't smart enough to remove byval, which inhibits many
1635     // optimizations.
1636     // Don't do this for the MCU if there are still free integer registers
1637     // (see X86_64 ABI for full explanation).
1638     if (getContext().getTypeSize(Ty) <= 4 * 32 &&
1639         (!IsMCUABI || State.FreeRegs == 0) && canExpandIndirectArgument(Ty))
1640       return ABIArgInfo::getExpandWithPadding(
1641           State.CC == llvm::CallingConv::X86_FastCall ||
1642               State.CC == llvm::CallingConv::X86_VectorCall ||
1643               State.CC == llvm::CallingConv::X86_RegCall,
1644           PaddingType);
1645 
1646     return getIndirectResult(Ty, true, State);
1647   }
1648 
1649   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1650     // On Darwin, some vectors are passed in memory, we handle this by passing
1651     // it as an i8/i16/i32/i64.
1652     if (IsDarwinVectorABI) {
1653       uint64_t Size = getContext().getTypeSize(Ty);
1654       if ((Size == 8 || Size == 16 || Size == 32) ||
1655           (Size == 64 && VT->getNumElements() == 1))
1656         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1657                                                             Size));
1658     }
1659 
1660     if (IsX86_MMXType(CGT.ConvertType(Ty)))
1661       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
1662 
1663     return ABIArgInfo::getDirect();
1664   }
1665 
1666 
1667   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1668     Ty = EnumTy->getDecl()->getIntegerType();
1669 
1670   bool InReg = shouldPrimitiveUseInReg(Ty, State);
1671 
1672   if (Ty->isPromotableIntegerType()) {
1673     if (InReg)
1674       return ABIArgInfo::getExtendInReg(Ty);
1675     return ABIArgInfo::getExtend(Ty);
1676   }
1677 
1678   if (InReg)
1679     return ABIArgInfo::getDirectInReg();
1680   return ABIArgInfo::getDirect();
1681 }
1682 
1683 void X86_32ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, CCState &State,
1684                                           bool &UsedInAlloca) const {
1685   // Vectorcall x86 works subtly different than in x64, so the format is
1686   // a bit different than the x64 version.  First, all vector types (not HVAs)
1687   // are assigned, with the first 6 ending up in the YMM0-5 or XMM0-5 registers.
1688   // This differs from the x64 implementation, where the first 6 by INDEX get
1689   // registers.
1690   // After that, integers AND HVAs are assigned Left to Right in the same pass.
1691   // Integers are passed as ECX/EDX if one is available (in order).  HVAs will
1692   // first take up the remaining YMM/XMM registers. If insufficient registers
1693   // remain but an integer register (ECX/EDX) is available, it will be passed
1694   // in that, else, on the stack.
1695   for (auto &I : FI.arguments()) {
1696     // First pass do all the vector types.
1697     const Type *Base = nullptr;
1698     uint64_t NumElts = 0;
1699     const QualType& Ty = I.type;
1700     if ((Ty->isVectorType() || Ty->isBuiltinType()) &&
1701         isHomogeneousAggregate(Ty, Base, NumElts)) {
1702       if (State.FreeSSERegs >= NumElts) {
1703         State.FreeSSERegs -= NumElts;
1704         I.info = ABIArgInfo::getDirect();
1705       } else {
1706         I.info = classifyArgumentType(Ty, State);
1707       }
1708       UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1709     }
1710   }
1711 
1712   for (auto &I : FI.arguments()) {
1713     // Second pass, do the rest!
1714     const Type *Base = nullptr;
1715     uint64_t NumElts = 0;
1716     const QualType& Ty = I.type;
1717     bool IsHva = isHomogeneousAggregate(Ty, Base, NumElts);
1718 
1719     if (IsHva && !Ty->isVectorType() && !Ty->isBuiltinType()) {
1720       // Assign true HVAs (non vector/native FP types).
1721       if (State.FreeSSERegs >= NumElts) {
1722         State.FreeSSERegs -= NumElts;
1723         I.info = getDirectX86Hva();
1724       } else {
1725         I.info = getIndirectResult(Ty, /*ByVal=*/false, State);
1726       }
1727     } else if (!IsHva) {
1728       // Assign all Non-HVAs, so this will exclude Vector/FP args.
1729       I.info = classifyArgumentType(Ty, State);
1730       UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1731     }
1732   }
1733 }
1734 
1735 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1736   CCState State(FI.getCallingConvention());
1737   if (IsMCUABI)
1738     State.FreeRegs = 3;
1739   else if (State.CC == llvm::CallingConv::X86_FastCall)
1740     State.FreeRegs = 2;
1741   else if (State.CC == llvm::CallingConv::X86_VectorCall) {
1742     State.FreeRegs = 2;
1743     State.FreeSSERegs = 6;
1744   } else if (FI.getHasRegParm())
1745     State.FreeRegs = FI.getRegParm();
1746   else if (State.CC == llvm::CallingConv::X86_RegCall) {
1747     State.FreeRegs = 5;
1748     State.FreeSSERegs = 8;
1749   } else
1750     State.FreeRegs = DefaultNumRegisterParameters;
1751 
1752   if (!getCXXABI().classifyReturnType(FI)) {
1753     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
1754   } else if (FI.getReturnInfo().isIndirect()) {
1755     // The C++ ABI is not aware of register usage, so we have to check if the
1756     // return value was sret and put it in a register ourselves if appropriate.
1757     if (State.FreeRegs) {
1758       --State.FreeRegs;  // The sret parameter consumes a register.
1759       if (!IsMCUABI)
1760         FI.getReturnInfo().setInReg(true);
1761     }
1762   }
1763 
1764   // The chain argument effectively gives us another free register.
1765   if (FI.isChainCall())
1766     ++State.FreeRegs;
1767 
1768   bool UsedInAlloca = false;
1769   if (State.CC == llvm::CallingConv::X86_VectorCall) {
1770     computeVectorCallArgs(FI, State, UsedInAlloca);
1771   } else {
1772     // If not vectorcall, revert to normal behavior.
1773     for (auto &I : FI.arguments()) {
1774       I.info = classifyArgumentType(I.type, State);
1775       UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1776     }
1777   }
1778 
1779   // If we needed to use inalloca for any argument, do a second pass and rewrite
1780   // all the memory arguments to use inalloca.
1781   if (UsedInAlloca)
1782     rewriteWithInAlloca(FI);
1783 }
1784 
1785 void
1786 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1787                                    CharUnits &StackOffset, ABIArgInfo &Info,
1788                                    QualType Type) const {
1789   // Arguments are always 4-byte-aligned.
1790   CharUnits FieldAlign = CharUnits::fromQuantity(4);
1791 
1792   assert(StackOffset.isMultipleOf(FieldAlign) && "unaligned inalloca struct");
1793   Info = ABIArgInfo::getInAlloca(FrameFields.size());
1794   FrameFields.push_back(CGT.ConvertTypeForMem(Type));
1795   StackOffset += getContext().getTypeSizeInChars(Type);
1796 
1797   // Insert padding bytes to respect alignment.
1798   CharUnits FieldEnd = StackOffset;
1799   StackOffset = FieldEnd.alignTo(FieldAlign);
1800   if (StackOffset != FieldEnd) {
1801     CharUnits NumBytes = StackOffset - FieldEnd;
1802     llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
1803     Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity());
1804     FrameFields.push_back(Ty);
1805   }
1806 }
1807 
1808 static bool isArgInAlloca(const ABIArgInfo &Info) {
1809   // Leave ignored and inreg arguments alone.
1810   switch (Info.getKind()) {
1811   case ABIArgInfo::InAlloca:
1812     return true;
1813   case ABIArgInfo::Indirect:
1814     assert(Info.getIndirectByVal());
1815     return true;
1816   case ABIArgInfo::Ignore:
1817     return false;
1818   case ABIArgInfo::Direct:
1819   case ABIArgInfo::Extend:
1820     if (Info.getInReg())
1821       return false;
1822     return true;
1823   case ABIArgInfo::Expand:
1824   case ABIArgInfo::CoerceAndExpand:
1825     // These are aggregate types which are never passed in registers when
1826     // inalloca is involved.
1827     return true;
1828   }
1829   llvm_unreachable("invalid enum");
1830 }
1831 
1832 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
1833   assert(IsWin32StructABI && "inalloca only supported on win32");
1834 
1835   // Build a packed struct type for all of the arguments in memory.
1836   SmallVector<llvm::Type *, 6> FrameFields;
1837 
1838   // The stack alignment is always 4.
1839   CharUnits StackAlign = CharUnits::fromQuantity(4);
1840 
1841   CharUnits StackOffset;
1842   CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
1843 
1844   // Put 'this' into the struct before 'sret', if necessary.
1845   bool IsThisCall =
1846       FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
1847   ABIArgInfo &Ret = FI.getReturnInfo();
1848   if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
1849       isArgInAlloca(I->info)) {
1850     addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1851     ++I;
1852   }
1853 
1854   // Put the sret parameter into the inalloca struct if it's in memory.
1855   if (Ret.isIndirect() && !Ret.getInReg()) {
1856     CanQualType PtrTy = getContext().getPointerType(FI.getReturnType());
1857     addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy);
1858     // On Windows, the hidden sret parameter is always returned in eax.
1859     Ret.setInAllocaSRet(IsWin32StructABI);
1860   }
1861 
1862   // Skip the 'this' parameter in ecx.
1863   if (IsThisCall)
1864     ++I;
1865 
1866   // Put arguments passed in memory into the struct.
1867   for (; I != E; ++I) {
1868     if (isArgInAlloca(I->info))
1869       addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1870   }
1871 
1872   FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
1873                                         /*isPacked=*/true),
1874                   StackAlign);
1875 }
1876 
1877 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF,
1878                                  Address VAListAddr, QualType Ty) const {
1879 
1880   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
1881 
1882   // x86-32 changes the alignment of certain arguments on the stack.
1883   //
1884   // Just messing with TypeInfo like this works because we never pass
1885   // anything indirectly.
1886   TypeInfo.second = CharUnits::fromQuantity(
1887                 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity()));
1888 
1889   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
1890                           TypeInfo, CharUnits::fromQuantity(4),
1891                           /*AllowHigherAlign*/ true);
1892 }
1893 
1894 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
1895     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
1896   assert(Triple.getArch() == llvm::Triple::x86);
1897 
1898   switch (Opts.getStructReturnConvention()) {
1899   case CodeGenOptions::SRCK_Default:
1900     break;
1901   case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
1902     return false;
1903   case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
1904     return true;
1905   }
1906 
1907   if (Triple.isOSDarwin() || Triple.isOSIAMCU())
1908     return true;
1909 
1910   switch (Triple.getOS()) {
1911   case llvm::Triple::DragonFly:
1912   case llvm::Triple::FreeBSD:
1913   case llvm::Triple::OpenBSD:
1914   case llvm::Triple::Win32:
1915     return true;
1916   default:
1917     return false;
1918   }
1919 }
1920 
1921 void X86_32TargetCodeGenInfo::setTargetAttributes(
1922     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
1923   if (GV->isDeclaration())
1924     return;
1925   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
1926     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1927       // Get the LLVM function.
1928       llvm::Function *Fn = cast<llvm::Function>(GV);
1929 
1930       // Now add the 'alignstack' attribute with a value of 16.
1931       llvm::AttrBuilder B;
1932       B.addStackAlignmentAttr(16);
1933       Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
1934     }
1935     if (FD->hasAttr<AnyX86InterruptAttr>()) {
1936       llvm::Function *Fn = cast<llvm::Function>(GV);
1937       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
1938     }
1939   }
1940 }
1941 
1942 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
1943                                                CodeGen::CodeGenFunction &CGF,
1944                                                llvm::Value *Address) const {
1945   CodeGen::CGBuilderTy &Builder = CGF.Builder;
1946 
1947   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
1948 
1949   // 0-7 are the eight integer registers;  the order is different
1950   //   on Darwin (for EH), but the range is the same.
1951   // 8 is %eip.
1952   AssignToArrayRange(Builder, Address, Four8, 0, 8);
1953 
1954   if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
1955     // 12-16 are st(0..4).  Not sure why we stop at 4.
1956     // These have size 16, which is sizeof(long double) on
1957     // platforms with 8-byte alignment for that type.
1958     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
1959     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
1960 
1961   } else {
1962     // 9 is %eflags, which doesn't get a size on Darwin for some
1963     // reason.
1964     Builder.CreateAlignedStore(
1965         Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9),
1966                                CharUnits::One());
1967 
1968     // 11-16 are st(0..5).  Not sure why we stop at 5.
1969     // These have size 12, which is sizeof(long double) on
1970     // platforms with 4-byte alignment for that type.
1971     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
1972     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
1973   }
1974 
1975   return false;
1976 }
1977 
1978 //===----------------------------------------------------------------------===//
1979 // X86-64 ABI Implementation
1980 //===----------------------------------------------------------------------===//
1981 
1982 
1983 namespace {
1984 /// The AVX ABI level for X86 targets.
1985 enum class X86AVXABILevel {
1986   None,
1987   AVX,
1988   AVX512
1989 };
1990 
1991 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
1992 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
1993   switch (AVXLevel) {
1994   case X86AVXABILevel::AVX512:
1995     return 512;
1996   case X86AVXABILevel::AVX:
1997     return 256;
1998   case X86AVXABILevel::None:
1999     return 128;
2000   }
2001   llvm_unreachable("Unknown AVXLevel");
2002 }
2003 
2004 /// X86_64ABIInfo - The X86_64 ABI information.
2005 class X86_64ABIInfo : public SwiftABIInfo {
2006   enum Class {
2007     Integer = 0,
2008     SSE,
2009     SSEUp,
2010     X87,
2011     X87Up,
2012     ComplexX87,
2013     NoClass,
2014     Memory
2015   };
2016 
2017   /// merge - Implement the X86_64 ABI merging algorithm.
2018   ///
2019   /// Merge an accumulating classification \arg Accum with a field
2020   /// classification \arg Field.
2021   ///
2022   /// \param Accum - The accumulating classification. This should
2023   /// always be either NoClass or the result of a previous merge
2024   /// call. In addition, this should never be Memory (the caller
2025   /// should just return Memory for the aggregate).
2026   static Class merge(Class Accum, Class Field);
2027 
2028   /// postMerge - Implement the X86_64 ABI post merging algorithm.
2029   ///
2030   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
2031   /// final MEMORY or SSE classes when necessary.
2032   ///
2033   /// \param AggregateSize - The size of the current aggregate in
2034   /// the classification process.
2035   ///
2036   /// \param Lo - The classification for the parts of the type
2037   /// residing in the low word of the containing object.
2038   ///
2039   /// \param Hi - The classification for the parts of the type
2040   /// residing in the higher words of the containing object.
2041   ///
2042   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
2043 
2044   /// classify - Determine the x86_64 register classes in which the
2045   /// given type T should be passed.
2046   ///
2047   /// \param Lo - The classification for the parts of the type
2048   /// residing in the low word of the containing object.
2049   ///
2050   /// \param Hi - The classification for the parts of the type
2051   /// residing in the high word of the containing object.
2052   ///
2053   /// \param OffsetBase - The bit offset of this type in the
2054   /// containing object.  Some parameters are classified different
2055   /// depending on whether they straddle an eightbyte boundary.
2056   ///
2057   /// \param isNamedArg - Whether the argument in question is a "named"
2058   /// argument, as used in AMD64-ABI 3.5.7.
2059   ///
2060   /// If a word is unused its result will be NoClass; if a type should
2061   /// be passed in Memory then at least the classification of \arg Lo
2062   /// will be Memory.
2063   ///
2064   /// The \arg Lo class will be NoClass iff the argument is ignored.
2065   ///
2066   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
2067   /// also be ComplexX87.
2068   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
2069                 bool isNamedArg) const;
2070 
2071   llvm::Type *GetByteVectorType(QualType Ty) const;
2072   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
2073                                  unsigned IROffset, QualType SourceTy,
2074                                  unsigned SourceOffset) const;
2075   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
2076                                      unsigned IROffset, QualType SourceTy,
2077                                      unsigned SourceOffset) const;
2078 
2079   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2080   /// such that the argument will be returned in memory.
2081   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
2082 
2083   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2084   /// such that the argument will be passed in memory.
2085   ///
2086   /// \param freeIntRegs - The number of free integer registers remaining
2087   /// available.
2088   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
2089 
2090   ABIArgInfo classifyReturnType(QualType RetTy) const;
2091 
2092   ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs,
2093                                   unsigned &neededInt, unsigned &neededSSE,
2094                                   bool isNamedArg) const;
2095 
2096   ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt,
2097                                        unsigned &NeededSSE) const;
2098 
2099   ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
2100                                            unsigned &NeededSSE) const;
2101 
2102   bool IsIllegalVectorType(QualType Ty) const;
2103 
2104   /// The 0.98 ABI revision clarified a lot of ambiguities,
2105   /// unfortunately in ways that were not always consistent with
2106   /// certain previous compilers.  In particular, platforms which
2107   /// required strict binary compatibility with older versions of GCC
2108   /// may need to exempt themselves.
2109   bool honorsRevision0_98() const {
2110     return !getTarget().getTriple().isOSDarwin();
2111   }
2112 
2113   /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to
2114   /// classify it as INTEGER (for compatibility with older clang compilers).
2115   bool classifyIntegerMMXAsSSE() const {
2116     // Clang <= 3.8 did not do this.
2117     if (getCodeGenOpts().getClangABICompat() <=
2118         CodeGenOptions::ClangABI::Ver3_8)
2119       return false;
2120 
2121     const llvm::Triple &Triple = getTarget().getTriple();
2122     if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4)
2123       return false;
2124     if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10)
2125       return false;
2126     return true;
2127   }
2128 
2129   X86AVXABILevel AVXLevel;
2130   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
2131   // 64-bit hardware.
2132   bool Has64BitPointers;
2133 
2134 public:
2135   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) :
2136       SwiftABIInfo(CGT), AVXLevel(AVXLevel),
2137       Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
2138   }
2139 
2140   bool isPassedUsingAVXType(QualType type) const {
2141     unsigned neededInt, neededSSE;
2142     // The freeIntRegs argument doesn't matter here.
2143     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
2144                                            /*isNamedArg*/true);
2145     if (info.isDirect()) {
2146       llvm::Type *ty = info.getCoerceToType();
2147       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
2148         return (vectorTy->getBitWidth() > 128);
2149     }
2150     return false;
2151   }
2152 
2153   void computeInfo(CGFunctionInfo &FI) const override;
2154 
2155   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2156                     QualType Ty) const override;
2157   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
2158                       QualType Ty) const override;
2159 
2160   bool has64BitPointers() const {
2161     return Has64BitPointers;
2162   }
2163 
2164   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
2165                                     bool asReturnValue) const override {
2166     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2167   }
2168   bool isSwiftErrorInRegister() const override {
2169     return true;
2170   }
2171 };
2172 
2173 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
2174 class WinX86_64ABIInfo : public SwiftABIInfo {
2175 public:
2176   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT)
2177       : SwiftABIInfo(CGT),
2178         IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {}
2179 
2180   void computeInfo(CGFunctionInfo &FI) const override;
2181 
2182   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2183                     QualType Ty) const override;
2184 
2185   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
2186     // FIXME: Assumes vectorcall is in use.
2187     return isX86VectorTypeForVectorCall(getContext(), Ty);
2188   }
2189 
2190   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
2191                                          uint64_t NumMembers) const override {
2192     // FIXME: Assumes vectorcall is in use.
2193     return isX86VectorCallAggregateSmallEnough(NumMembers);
2194   }
2195 
2196   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars,
2197                                     bool asReturnValue) const override {
2198     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2199   }
2200 
2201   bool isSwiftErrorInRegister() const override {
2202     return true;
2203   }
2204 
2205 private:
2206   ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType,
2207                       bool IsVectorCall, bool IsRegCall) const;
2208   ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs,
2209                                       const ABIArgInfo &current) const;
2210   void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs,
2211                              bool IsVectorCall, bool IsRegCall) const;
2212 
2213     bool IsMingw64;
2214 };
2215 
2216 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2217 public:
2218   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2219       : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {}
2220 
2221   const X86_64ABIInfo &getABIInfo() const {
2222     return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
2223   }
2224 
2225   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2226     return 7;
2227   }
2228 
2229   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2230                                llvm::Value *Address) const override {
2231     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2232 
2233     // 0-15 are the 16 integer registers.
2234     // 16 is %rip.
2235     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2236     return false;
2237   }
2238 
2239   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
2240                                   StringRef Constraint,
2241                                   llvm::Type* Ty) const override {
2242     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
2243   }
2244 
2245   bool isNoProtoCallVariadic(const CallArgList &args,
2246                              const FunctionNoProtoType *fnType) const override {
2247     // The default CC on x86-64 sets %al to the number of SSA
2248     // registers used, and GCC sets this when calling an unprototyped
2249     // function, so we override the default behavior.  However, don't do
2250     // that when AVX types are involved: the ABI explicitly states it is
2251     // undefined, and it doesn't work in practice because of how the ABI
2252     // defines varargs anyway.
2253     if (fnType->getCallConv() == CC_C) {
2254       bool HasAVXType = false;
2255       for (CallArgList::const_iterator
2256              it = args.begin(), ie = args.end(); it != ie; ++it) {
2257         if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
2258           HasAVXType = true;
2259           break;
2260         }
2261       }
2262 
2263       if (!HasAVXType)
2264         return true;
2265     }
2266 
2267     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
2268   }
2269 
2270   llvm::Constant *
2271   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
2272     unsigned Sig = (0xeb << 0) | // jmp rel8
2273                    (0x06 << 8) | //           .+0x08
2274                    ('v' << 16) |
2275                    ('2' << 24);
2276     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
2277   }
2278 
2279   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2280                            CodeGen::CodeGenModule &CGM) const override {
2281     if (GV->isDeclaration())
2282       return;
2283     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2284       if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2285         // Get the LLVM function.
2286         auto *Fn = cast<llvm::Function>(GV);
2287 
2288         // Now add the 'alignstack' attribute with a value of 16.
2289         llvm::AttrBuilder B;
2290         B.addStackAlignmentAttr(16);
2291         Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
2292       }
2293       if (FD->hasAttr<AnyX86InterruptAttr>()) {
2294         llvm::Function *Fn = cast<llvm::Function>(GV);
2295         Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2296       }
2297     }
2298   }
2299 };
2300 
2301 class PS4TargetCodeGenInfo : public X86_64TargetCodeGenInfo {
2302 public:
2303   PS4TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2304     : X86_64TargetCodeGenInfo(CGT, AVXLevel) {}
2305 
2306   void getDependentLibraryOption(llvm::StringRef Lib,
2307                                  llvm::SmallString<24> &Opt) const override {
2308     Opt = "\01";
2309     // If the argument contains a space, enclose it in quotes.
2310     if (Lib.find(" ") != StringRef::npos)
2311       Opt += "\"" + Lib.str() + "\"";
2312     else
2313       Opt += Lib;
2314   }
2315 };
2316 
2317 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
2318   // If the argument does not end in .lib, automatically add the suffix.
2319   // If the argument contains a space, enclose it in quotes.
2320   // This matches the behavior of MSVC.
2321   bool Quote = (Lib.find(" ") != StringRef::npos);
2322   std::string ArgStr = Quote ? "\"" : "";
2323   ArgStr += Lib;
2324   if (!Lib.endswith_lower(".lib"))
2325     ArgStr += ".lib";
2326   ArgStr += Quote ? "\"" : "";
2327   return ArgStr;
2328 }
2329 
2330 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
2331 public:
2332   WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2333         bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI,
2334         unsigned NumRegisterParameters)
2335     : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI,
2336         Win32StructABI, NumRegisterParameters, false) {}
2337 
2338   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2339                            CodeGen::CodeGenModule &CGM) const override;
2340 
2341   void getDependentLibraryOption(llvm::StringRef Lib,
2342                                  llvm::SmallString<24> &Opt) const override {
2343     Opt = "/DEFAULTLIB:";
2344     Opt += qualifyWindowsLibrary(Lib);
2345   }
2346 
2347   void getDetectMismatchOption(llvm::StringRef Name,
2348                                llvm::StringRef Value,
2349                                llvm::SmallString<32> &Opt) const override {
2350     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2351   }
2352 };
2353 
2354 static void addStackProbeSizeTargetAttribute(const Decl *D,
2355                                              llvm::GlobalValue *GV,
2356                                              CodeGen::CodeGenModule &CGM) {
2357   if (D && isa<FunctionDecl>(D)) {
2358     if (CGM.getCodeGenOpts().StackProbeSize != 4096) {
2359       llvm::Function *Fn = cast<llvm::Function>(GV);
2360 
2361       Fn->addFnAttr("stack-probe-size",
2362                     llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
2363     }
2364   }
2365 }
2366 
2367 void WinX86_32TargetCodeGenInfo::setTargetAttributes(
2368     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2369   X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2370   if (GV->isDeclaration())
2371     return;
2372   addStackProbeSizeTargetAttribute(D, GV, CGM);
2373 }
2374 
2375 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2376 public:
2377   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2378                              X86AVXABILevel AVXLevel)
2379       : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
2380 
2381   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2382                            CodeGen::CodeGenModule &CGM) const override;
2383 
2384   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2385     return 7;
2386   }
2387 
2388   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2389                                llvm::Value *Address) const override {
2390     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2391 
2392     // 0-15 are the 16 integer registers.
2393     // 16 is %rip.
2394     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2395     return false;
2396   }
2397 
2398   void getDependentLibraryOption(llvm::StringRef Lib,
2399                                  llvm::SmallString<24> &Opt) const override {
2400     Opt = "/DEFAULTLIB:";
2401     Opt += qualifyWindowsLibrary(Lib);
2402   }
2403 
2404   void getDetectMismatchOption(llvm::StringRef Name,
2405                                llvm::StringRef Value,
2406                                llvm::SmallString<32> &Opt) const override {
2407     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2408   }
2409 };
2410 
2411 void WinX86_64TargetCodeGenInfo::setTargetAttributes(
2412     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2413   TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2414   if (GV->isDeclaration())
2415     return;
2416   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2417     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2418       // Get the LLVM function.
2419       auto *Fn = cast<llvm::Function>(GV);
2420 
2421       // Now add the 'alignstack' attribute with a value of 16.
2422       llvm::AttrBuilder B;
2423       B.addStackAlignmentAttr(16);
2424       Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
2425     }
2426     if (FD->hasAttr<AnyX86InterruptAttr>()) {
2427       llvm::Function *Fn = cast<llvm::Function>(GV);
2428       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2429     }
2430   }
2431 
2432   addStackProbeSizeTargetAttribute(D, GV, CGM);
2433 }
2434 }
2435 
2436 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
2437                               Class &Hi) const {
2438   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
2439   //
2440   // (a) If one of the classes is Memory, the whole argument is passed in
2441   //     memory.
2442   //
2443   // (b) If X87UP is not preceded by X87, the whole argument is passed in
2444   //     memory.
2445   //
2446   // (c) If the size of the aggregate exceeds two eightbytes and the first
2447   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
2448   //     argument is passed in memory. NOTE: This is necessary to keep the
2449   //     ABI working for processors that don't support the __m256 type.
2450   //
2451   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
2452   //
2453   // Some of these are enforced by the merging logic.  Others can arise
2454   // only with unions; for example:
2455   //   union { _Complex double; unsigned; }
2456   //
2457   // Note that clauses (b) and (c) were added in 0.98.
2458   //
2459   if (Hi == Memory)
2460     Lo = Memory;
2461   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
2462     Lo = Memory;
2463   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
2464     Lo = Memory;
2465   if (Hi == SSEUp && Lo != SSE)
2466     Hi = SSE;
2467 }
2468 
2469 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
2470   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
2471   // classified recursively so that always two fields are
2472   // considered. The resulting class is calculated according to
2473   // the classes of the fields in the eightbyte:
2474   //
2475   // (a) If both classes are equal, this is the resulting class.
2476   //
2477   // (b) If one of the classes is NO_CLASS, the resulting class is
2478   // the other class.
2479   //
2480   // (c) If one of the classes is MEMORY, the result is the MEMORY
2481   // class.
2482   //
2483   // (d) If one of the classes is INTEGER, the result is the
2484   // INTEGER.
2485   //
2486   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
2487   // MEMORY is used as class.
2488   //
2489   // (f) Otherwise class SSE is used.
2490 
2491   // Accum should never be memory (we should have returned) or
2492   // ComplexX87 (because this cannot be passed in a structure).
2493   assert((Accum != Memory && Accum != ComplexX87) &&
2494          "Invalid accumulated classification during merge.");
2495   if (Accum == Field || Field == NoClass)
2496     return Accum;
2497   if (Field == Memory)
2498     return Memory;
2499   if (Accum == NoClass)
2500     return Field;
2501   if (Accum == Integer || Field == Integer)
2502     return Integer;
2503   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
2504       Accum == X87 || Accum == X87Up)
2505     return Memory;
2506   return SSE;
2507 }
2508 
2509 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
2510                              Class &Lo, Class &Hi, bool isNamedArg) const {
2511   // FIXME: This code can be simplified by introducing a simple value class for
2512   // Class pairs with appropriate constructor methods for the various
2513   // situations.
2514 
2515   // FIXME: Some of the split computations are wrong; unaligned vectors
2516   // shouldn't be passed in registers for example, so there is no chance they
2517   // can straddle an eightbyte. Verify & simplify.
2518 
2519   Lo = Hi = NoClass;
2520 
2521   Class &Current = OffsetBase < 64 ? Lo : Hi;
2522   Current = Memory;
2523 
2524   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
2525     BuiltinType::Kind k = BT->getKind();
2526 
2527     if (k == BuiltinType::Void) {
2528       Current = NoClass;
2529     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
2530       Lo = Integer;
2531       Hi = Integer;
2532     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
2533       Current = Integer;
2534     } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
2535       Current = SSE;
2536     } else if (k == BuiltinType::LongDouble) {
2537       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2538       if (LDF == &llvm::APFloat::IEEEquad()) {
2539         Lo = SSE;
2540         Hi = SSEUp;
2541       } else if (LDF == &llvm::APFloat::x87DoubleExtended()) {
2542         Lo = X87;
2543         Hi = X87Up;
2544       } else if (LDF == &llvm::APFloat::IEEEdouble()) {
2545         Current = SSE;
2546       } else
2547         llvm_unreachable("unexpected long double representation!");
2548     }
2549     // FIXME: _Decimal32 and _Decimal64 are SSE.
2550     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
2551     return;
2552   }
2553 
2554   if (const EnumType *ET = Ty->getAs<EnumType>()) {
2555     // Classify the underlying integer type.
2556     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
2557     return;
2558   }
2559 
2560   if (Ty->hasPointerRepresentation()) {
2561     Current = Integer;
2562     return;
2563   }
2564 
2565   if (Ty->isMemberPointerType()) {
2566     if (Ty->isMemberFunctionPointerType()) {
2567       if (Has64BitPointers) {
2568         // If Has64BitPointers, this is an {i64, i64}, so classify both
2569         // Lo and Hi now.
2570         Lo = Hi = Integer;
2571       } else {
2572         // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
2573         // straddles an eightbyte boundary, Hi should be classified as well.
2574         uint64_t EB_FuncPtr = (OffsetBase) / 64;
2575         uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
2576         if (EB_FuncPtr != EB_ThisAdj) {
2577           Lo = Hi = Integer;
2578         } else {
2579           Current = Integer;
2580         }
2581       }
2582     } else {
2583       Current = Integer;
2584     }
2585     return;
2586   }
2587 
2588   if (const VectorType *VT = Ty->getAs<VectorType>()) {
2589     uint64_t Size = getContext().getTypeSize(VT);
2590     if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
2591       // gcc passes the following as integer:
2592       // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
2593       // 2 bytes - <2 x char>, <1 x short>
2594       // 1 byte  - <1 x char>
2595       Current = Integer;
2596 
2597       // If this type crosses an eightbyte boundary, it should be
2598       // split.
2599       uint64_t EB_Lo = (OffsetBase) / 64;
2600       uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
2601       if (EB_Lo != EB_Hi)
2602         Hi = Lo;
2603     } else if (Size == 64) {
2604       QualType ElementType = VT->getElementType();
2605 
2606       // gcc passes <1 x double> in memory. :(
2607       if (ElementType->isSpecificBuiltinType(BuiltinType::Double))
2608         return;
2609 
2610       // gcc passes <1 x long long> as SSE but clang used to unconditionally
2611       // pass them as integer.  For platforms where clang is the de facto
2612       // platform compiler, we must continue to use integer.
2613       if (!classifyIntegerMMXAsSSE() &&
2614           (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) ||
2615            ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
2616            ElementType->isSpecificBuiltinType(BuiltinType::Long) ||
2617            ElementType->isSpecificBuiltinType(BuiltinType::ULong)))
2618         Current = Integer;
2619       else
2620         Current = SSE;
2621 
2622       // If this type crosses an eightbyte boundary, it should be
2623       // split.
2624       if (OffsetBase && OffsetBase != 64)
2625         Hi = Lo;
2626     } else if (Size == 128 ||
2627                (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
2628       // Arguments of 256-bits are split into four eightbyte chunks. The
2629       // least significant one belongs to class SSE and all the others to class
2630       // SSEUP. The original Lo and Hi design considers that types can't be
2631       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
2632       // This design isn't correct for 256-bits, but since there're no cases
2633       // where the upper parts would need to be inspected, avoid adding
2634       // complexity and just consider Hi to match the 64-256 part.
2635       //
2636       // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
2637       // registers if they are "named", i.e. not part of the "..." of a
2638       // variadic function.
2639       //
2640       // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
2641       // split into eight eightbyte chunks, one SSE and seven SSEUP.
2642       Lo = SSE;
2643       Hi = SSEUp;
2644     }
2645     return;
2646   }
2647 
2648   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
2649     QualType ET = getContext().getCanonicalType(CT->getElementType());
2650 
2651     uint64_t Size = getContext().getTypeSize(Ty);
2652     if (ET->isIntegralOrEnumerationType()) {
2653       if (Size <= 64)
2654         Current = Integer;
2655       else if (Size <= 128)
2656         Lo = Hi = Integer;
2657     } else if (ET == getContext().FloatTy) {
2658       Current = SSE;
2659     } else if (ET == getContext().DoubleTy) {
2660       Lo = Hi = SSE;
2661     } else if (ET == getContext().LongDoubleTy) {
2662       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2663       if (LDF == &llvm::APFloat::IEEEquad())
2664         Current = Memory;
2665       else if (LDF == &llvm::APFloat::x87DoubleExtended())
2666         Current = ComplexX87;
2667       else if (LDF == &llvm::APFloat::IEEEdouble())
2668         Lo = Hi = SSE;
2669       else
2670         llvm_unreachable("unexpected long double representation!");
2671     }
2672 
2673     // If this complex type crosses an eightbyte boundary then it
2674     // should be split.
2675     uint64_t EB_Real = (OffsetBase) / 64;
2676     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
2677     if (Hi == NoClass && EB_Real != EB_Imag)
2678       Hi = Lo;
2679 
2680     return;
2681   }
2682 
2683   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
2684     // Arrays are treated like structures.
2685 
2686     uint64_t Size = getContext().getTypeSize(Ty);
2687 
2688     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2689     // than eight eightbytes, ..., it has class MEMORY.
2690     if (Size > 512)
2691       return;
2692 
2693     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
2694     // fields, it has class MEMORY.
2695     //
2696     // Only need to check alignment of array base.
2697     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
2698       return;
2699 
2700     // Otherwise implement simplified merge. We could be smarter about
2701     // this, but it isn't worth it and would be harder to verify.
2702     Current = NoClass;
2703     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
2704     uint64_t ArraySize = AT->getSize().getZExtValue();
2705 
2706     // The only case a 256-bit wide vector could be used is when the array
2707     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2708     // to work for sizes wider than 128, early check and fallback to memory.
2709     //
2710     if (Size > 128 &&
2711         (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel)))
2712       return;
2713 
2714     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
2715       Class FieldLo, FieldHi;
2716       classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
2717       Lo = merge(Lo, FieldLo);
2718       Hi = merge(Hi, FieldHi);
2719       if (Lo == Memory || Hi == Memory)
2720         break;
2721     }
2722 
2723     postMerge(Size, Lo, Hi);
2724     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
2725     return;
2726   }
2727 
2728   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2729     uint64_t Size = getContext().getTypeSize(Ty);
2730 
2731     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2732     // than eight eightbytes, ..., it has class MEMORY.
2733     if (Size > 512)
2734       return;
2735 
2736     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
2737     // copy constructor or a non-trivial destructor, it is passed by invisible
2738     // reference.
2739     if (getRecordArgABI(RT, getCXXABI()))
2740       return;
2741 
2742     const RecordDecl *RD = RT->getDecl();
2743 
2744     // Assume variable sized types are passed in memory.
2745     if (RD->hasFlexibleArrayMember())
2746       return;
2747 
2748     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2749 
2750     // Reset Lo class, this will be recomputed.
2751     Current = NoClass;
2752 
2753     // If this is a C++ record, classify the bases first.
2754     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2755       for (const auto &I : CXXRD->bases()) {
2756         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2757                "Unexpected base class!");
2758         const CXXRecordDecl *Base =
2759           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2760 
2761         // Classify this field.
2762         //
2763         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
2764         // single eightbyte, each is classified separately. Each eightbyte gets
2765         // initialized to class NO_CLASS.
2766         Class FieldLo, FieldHi;
2767         uint64_t Offset =
2768           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
2769         classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
2770         Lo = merge(Lo, FieldLo);
2771         Hi = merge(Hi, FieldHi);
2772         if (Lo == Memory || Hi == Memory) {
2773           postMerge(Size, Lo, Hi);
2774           return;
2775         }
2776       }
2777     }
2778 
2779     // Classify the fields one at a time, merging the results.
2780     unsigned idx = 0;
2781     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2782            i != e; ++i, ++idx) {
2783       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2784       bool BitField = i->isBitField();
2785 
2786       // Ignore padding bit-fields.
2787       if (BitField && i->isUnnamedBitfield())
2788         continue;
2789 
2790       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
2791       // four eightbytes, or it contains unaligned fields, it has class MEMORY.
2792       //
2793       // The only case a 256-bit wide vector could be used is when the struct
2794       // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2795       // to work for sizes wider than 128, early check and fallback to memory.
2796       //
2797       if (Size > 128 && (Size != getContext().getTypeSize(i->getType()) ||
2798                          Size > getNativeVectorSizeForAVXABI(AVXLevel))) {
2799         Lo = Memory;
2800         postMerge(Size, Lo, Hi);
2801         return;
2802       }
2803       // Note, skip this test for bit-fields, see below.
2804       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
2805         Lo = Memory;
2806         postMerge(Size, Lo, Hi);
2807         return;
2808       }
2809 
2810       // Classify this field.
2811       //
2812       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
2813       // exceeds a single eightbyte, each is classified
2814       // separately. Each eightbyte gets initialized to class
2815       // NO_CLASS.
2816       Class FieldLo, FieldHi;
2817 
2818       // Bit-fields require special handling, they do not force the
2819       // structure to be passed in memory even if unaligned, and
2820       // therefore they can straddle an eightbyte.
2821       if (BitField) {
2822         assert(!i->isUnnamedBitfield());
2823         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2824         uint64_t Size = i->getBitWidthValue(getContext());
2825 
2826         uint64_t EB_Lo = Offset / 64;
2827         uint64_t EB_Hi = (Offset + Size - 1) / 64;
2828 
2829         if (EB_Lo) {
2830           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
2831           FieldLo = NoClass;
2832           FieldHi = Integer;
2833         } else {
2834           FieldLo = Integer;
2835           FieldHi = EB_Hi ? Integer : NoClass;
2836         }
2837       } else
2838         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
2839       Lo = merge(Lo, FieldLo);
2840       Hi = merge(Hi, FieldHi);
2841       if (Lo == Memory || Hi == Memory)
2842         break;
2843     }
2844 
2845     postMerge(Size, Lo, Hi);
2846   }
2847 }
2848 
2849 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
2850   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2851   // place naturally.
2852   if (!isAggregateTypeForABI(Ty)) {
2853     // Treat an enum type as its underlying type.
2854     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2855       Ty = EnumTy->getDecl()->getIntegerType();
2856 
2857     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
2858                                           : ABIArgInfo::getDirect());
2859   }
2860 
2861   return getNaturalAlignIndirect(Ty);
2862 }
2863 
2864 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
2865   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
2866     uint64_t Size = getContext().getTypeSize(VecTy);
2867     unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
2868     if (Size <= 64 || Size > LargestVector)
2869       return true;
2870   }
2871 
2872   return false;
2873 }
2874 
2875 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
2876                                             unsigned freeIntRegs) const {
2877   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2878   // place naturally.
2879   //
2880   // This assumption is optimistic, as there could be free registers available
2881   // when we need to pass this argument in memory, and LLVM could try to pass
2882   // the argument in the free register. This does not seem to happen currently,
2883   // but this code would be much safer if we could mark the argument with
2884   // 'onstack'. See PR12193.
2885   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
2886     // Treat an enum type as its underlying type.
2887     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2888       Ty = EnumTy->getDecl()->getIntegerType();
2889 
2890     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
2891                                           : ABIArgInfo::getDirect());
2892   }
2893 
2894   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
2895     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
2896 
2897   // Compute the byval alignment. We specify the alignment of the byval in all
2898   // cases so that the mid-level optimizer knows the alignment of the byval.
2899   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
2900 
2901   // Attempt to avoid passing indirect results using byval when possible. This
2902   // is important for good codegen.
2903   //
2904   // We do this by coercing the value into a scalar type which the backend can
2905   // handle naturally (i.e., without using byval).
2906   //
2907   // For simplicity, we currently only do this when we have exhausted all of the
2908   // free integer registers. Doing this when there are free integer registers
2909   // would require more care, as we would have to ensure that the coerced value
2910   // did not claim the unused register. That would require either reording the
2911   // arguments to the function (so that any subsequent inreg values came first),
2912   // or only doing this optimization when there were no following arguments that
2913   // might be inreg.
2914   //
2915   // We currently expect it to be rare (particularly in well written code) for
2916   // arguments to be passed on the stack when there are still free integer
2917   // registers available (this would typically imply large structs being passed
2918   // by value), so this seems like a fair tradeoff for now.
2919   //
2920   // We can revisit this if the backend grows support for 'onstack' parameter
2921   // attributes. See PR12193.
2922   if (freeIntRegs == 0) {
2923     uint64_t Size = getContext().getTypeSize(Ty);
2924 
2925     // If this type fits in an eightbyte, coerce it into the matching integral
2926     // type, which will end up on the stack (with alignment 8).
2927     if (Align == 8 && Size <= 64)
2928       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2929                                                           Size));
2930   }
2931 
2932   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align));
2933 }
2934 
2935 /// The ABI specifies that a value should be passed in a full vector XMM/YMM
2936 /// register. Pick an LLVM IR type that will be passed as a vector register.
2937 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
2938   // Wrapper structs/arrays that only contain vectors are passed just like
2939   // vectors; strip them off if present.
2940   if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
2941     Ty = QualType(InnerTy, 0);
2942 
2943   llvm::Type *IRType = CGT.ConvertType(Ty);
2944   if (isa<llvm::VectorType>(IRType) ||
2945       IRType->getTypeID() == llvm::Type::FP128TyID)
2946     return IRType;
2947 
2948   // We couldn't find the preferred IR vector type for 'Ty'.
2949   uint64_t Size = getContext().getTypeSize(Ty);
2950   assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!");
2951 
2952   // Return a LLVM IR vector type based on the size of 'Ty'.
2953   return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()),
2954                                Size / 64);
2955 }
2956 
2957 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
2958 /// is known to either be off the end of the specified type or being in
2959 /// alignment padding.  The user type specified is known to be at most 128 bits
2960 /// in size, and have passed through X86_64ABIInfo::classify with a successful
2961 /// classification that put one of the two halves in the INTEGER class.
2962 ///
2963 /// It is conservatively correct to return false.
2964 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
2965                                   unsigned EndBit, ASTContext &Context) {
2966   // If the bytes being queried are off the end of the type, there is no user
2967   // data hiding here.  This handles analysis of builtins, vectors and other
2968   // types that don't contain interesting padding.
2969   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
2970   if (TySize <= StartBit)
2971     return true;
2972 
2973   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
2974     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
2975     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
2976 
2977     // Check each element to see if the element overlaps with the queried range.
2978     for (unsigned i = 0; i != NumElts; ++i) {
2979       // If the element is after the span we care about, then we're done..
2980       unsigned EltOffset = i*EltSize;
2981       if (EltOffset >= EndBit) break;
2982 
2983       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
2984       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
2985                                  EndBit-EltOffset, Context))
2986         return false;
2987     }
2988     // If it overlaps no elements, then it is safe to process as padding.
2989     return true;
2990   }
2991 
2992   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2993     const RecordDecl *RD = RT->getDecl();
2994     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
2995 
2996     // If this is a C++ record, check the bases first.
2997     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2998       for (const auto &I : CXXRD->bases()) {
2999         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
3000                "Unexpected base class!");
3001         const CXXRecordDecl *Base =
3002           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
3003 
3004         // If the base is after the span we care about, ignore it.
3005         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
3006         if (BaseOffset >= EndBit) continue;
3007 
3008         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
3009         if (!BitsContainNoUserData(I.getType(), BaseStart,
3010                                    EndBit-BaseOffset, Context))
3011           return false;
3012       }
3013     }
3014 
3015     // Verify that no field has data that overlaps the region of interest.  Yes
3016     // this could be sped up a lot by being smarter about queried fields,
3017     // however we're only looking at structs up to 16 bytes, so we don't care
3018     // much.
3019     unsigned idx = 0;
3020     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3021          i != e; ++i, ++idx) {
3022       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
3023 
3024       // If we found a field after the region we care about, then we're done.
3025       if (FieldOffset >= EndBit) break;
3026 
3027       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
3028       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
3029                                  Context))
3030         return false;
3031     }
3032 
3033     // If nothing in this record overlapped the area of interest, then we're
3034     // clean.
3035     return true;
3036   }
3037 
3038   return false;
3039 }
3040 
3041 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
3042 /// float member at the specified offset.  For example, {int,{float}} has a
3043 /// float at offset 4.  It is conservatively correct for this routine to return
3044 /// false.
3045 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
3046                                   const llvm::DataLayout &TD) {
3047   // Base case if we find a float.
3048   if (IROffset == 0 && IRType->isFloatTy())
3049     return true;
3050 
3051   // If this is a struct, recurse into the field at the specified offset.
3052   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3053     const llvm::StructLayout *SL = TD.getStructLayout(STy);
3054     unsigned Elt = SL->getElementContainingOffset(IROffset);
3055     IROffset -= SL->getElementOffset(Elt);
3056     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
3057   }
3058 
3059   // If this is an array, recurse into the field at the specified offset.
3060   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3061     llvm::Type *EltTy = ATy->getElementType();
3062     unsigned EltSize = TD.getTypeAllocSize(EltTy);
3063     IROffset -= IROffset/EltSize*EltSize;
3064     return ContainsFloatAtOffset(EltTy, IROffset, TD);
3065   }
3066 
3067   return false;
3068 }
3069 
3070 
3071 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
3072 /// low 8 bytes of an XMM register, corresponding to the SSE class.
3073 llvm::Type *X86_64ABIInfo::
3074 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3075                    QualType SourceTy, unsigned SourceOffset) const {
3076   // The only three choices we have are either double, <2 x float>, or float. We
3077   // pass as float if the last 4 bytes is just padding.  This happens for
3078   // structs that contain 3 floats.
3079   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
3080                             SourceOffset*8+64, getContext()))
3081     return llvm::Type::getFloatTy(getVMContext());
3082 
3083   // We want to pass as <2 x float> if the LLVM IR type contains a float at
3084   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
3085   // case.
3086   if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
3087       ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
3088     return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
3089 
3090   return llvm::Type::getDoubleTy(getVMContext());
3091 }
3092 
3093 
3094 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
3095 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
3096 /// about the high or low part of an up-to-16-byte struct.  This routine picks
3097 /// the best LLVM IR type to represent this, which may be i64 or may be anything
3098 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
3099 /// etc).
3100 ///
3101 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
3102 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
3103 /// the 8-byte value references.  PrefType may be null.
3104 ///
3105 /// SourceTy is the source-level type for the entire argument.  SourceOffset is
3106 /// an offset into this that we're processing (which is always either 0 or 8).
3107 ///
3108 llvm::Type *X86_64ABIInfo::
3109 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3110                        QualType SourceTy, unsigned SourceOffset) const {
3111   // If we're dealing with an un-offset LLVM IR type, then it means that we're
3112   // returning an 8-byte unit starting with it.  See if we can safely use it.
3113   if (IROffset == 0) {
3114     // Pointers and int64's always fill the 8-byte unit.
3115     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
3116         IRType->isIntegerTy(64))
3117       return IRType;
3118 
3119     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
3120     // goodness in the source type is just tail padding.  This is allowed to
3121     // kick in for struct {double,int} on the int, but not on
3122     // struct{double,int,int} because we wouldn't return the second int.  We
3123     // have to do this analysis on the source type because we can't depend on
3124     // unions being lowered a specific way etc.
3125     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
3126         IRType->isIntegerTy(32) ||
3127         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
3128       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
3129           cast<llvm::IntegerType>(IRType)->getBitWidth();
3130 
3131       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
3132                                 SourceOffset*8+64, getContext()))
3133         return IRType;
3134     }
3135   }
3136 
3137   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3138     // If this is a struct, recurse into the field at the specified offset.
3139     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
3140     if (IROffset < SL->getSizeInBytes()) {
3141       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
3142       IROffset -= SL->getElementOffset(FieldIdx);
3143 
3144       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
3145                                     SourceTy, SourceOffset);
3146     }
3147   }
3148 
3149   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3150     llvm::Type *EltTy = ATy->getElementType();
3151     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
3152     unsigned EltOffset = IROffset/EltSize*EltSize;
3153     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
3154                                   SourceOffset);
3155   }
3156 
3157   // Okay, we don't have any better idea of what to pass, so we pass this in an
3158   // integer register that isn't too big to fit the rest of the struct.
3159   unsigned TySizeInBytes =
3160     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
3161 
3162   assert(TySizeInBytes != SourceOffset && "Empty field?");
3163 
3164   // It is always safe to classify this as an integer type up to i64 that
3165   // isn't larger than the structure.
3166   return llvm::IntegerType::get(getVMContext(),
3167                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
3168 }
3169 
3170 
3171 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
3172 /// be used as elements of a two register pair to pass or return, return a
3173 /// first class aggregate to represent them.  For example, if the low part of
3174 /// a by-value argument should be passed as i32* and the high part as float,
3175 /// return {i32*, float}.
3176 static llvm::Type *
3177 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
3178                            const llvm::DataLayout &TD) {
3179   // In order to correctly satisfy the ABI, we need to the high part to start
3180   // at offset 8.  If the high and low parts we inferred are both 4-byte types
3181   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
3182   // the second element at offset 8.  Check for this:
3183   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
3184   unsigned HiAlign = TD.getABITypeAlignment(Hi);
3185   unsigned HiStart = llvm::alignTo(LoSize, HiAlign);
3186   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
3187 
3188   // To handle this, we have to increase the size of the low part so that the
3189   // second element will start at an 8 byte offset.  We can't increase the size
3190   // of the second element because it might make us access off the end of the
3191   // struct.
3192   if (HiStart != 8) {
3193     // There are usually two sorts of types the ABI generation code can produce
3194     // for the low part of a pair that aren't 8 bytes in size: float or
3195     // i8/i16/i32.  This can also include pointers when they are 32-bit (X32 and
3196     // NaCl).
3197     // Promote these to a larger type.
3198     if (Lo->isFloatTy())
3199       Lo = llvm::Type::getDoubleTy(Lo->getContext());
3200     else {
3201       assert((Lo->isIntegerTy() || Lo->isPointerTy())
3202              && "Invalid/unknown lo type");
3203       Lo = llvm::Type::getInt64Ty(Lo->getContext());
3204     }
3205   }
3206 
3207   llvm::StructType *Result = llvm::StructType::get(Lo, Hi);
3208 
3209   // Verify that the second element is at an 8-byte offset.
3210   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
3211          "Invalid x86-64 argument pair!");
3212   return Result;
3213 }
3214 
3215 ABIArgInfo X86_64ABIInfo::
3216 classifyReturnType(QualType RetTy) const {
3217   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
3218   // classification algorithm.
3219   X86_64ABIInfo::Class Lo, Hi;
3220   classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
3221 
3222   // Check some invariants.
3223   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3224   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3225 
3226   llvm::Type *ResType = nullptr;
3227   switch (Lo) {
3228   case NoClass:
3229     if (Hi == NoClass)
3230       return ABIArgInfo::getIgnore();
3231     // If the low part is just padding, it takes no register, leave ResType
3232     // null.
3233     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3234            "Unknown missing lo part");
3235     break;
3236 
3237   case SSEUp:
3238   case X87Up:
3239     llvm_unreachable("Invalid classification for lo word.");
3240 
3241     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
3242     // hidden argument.
3243   case Memory:
3244     return getIndirectReturnResult(RetTy);
3245 
3246     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
3247     // available register of the sequence %rax, %rdx is used.
3248   case Integer:
3249     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3250 
3251     // If we have a sign or zero extended integer, make sure to return Extend
3252     // so that the parameter gets the right LLVM IR attributes.
3253     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3254       // Treat an enum type as its underlying type.
3255       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3256         RetTy = EnumTy->getDecl()->getIntegerType();
3257 
3258       if (RetTy->isIntegralOrEnumerationType() &&
3259           RetTy->isPromotableIntegerType())
3260         return ABIArgInfo::getExtend(RetTy);
3261     }
3262     break;
3263 
3264     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
3265     // available SSE register of the sequence %xmm0, %xmm1 is used.
3266   case SSE:
3267     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3268     break;
3269 
3270     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
3271     // returned on the X87 stack in %st0 as 80-bit x87 number.
3272   case X87:
3273     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
3274     break;
3275 
3276     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
3277     // part of the value is returned in %st0 and the imaginary part in
3278     // %st1.
3279   case ComplexX87:
3280     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
3281     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
3282                                     llvm::Type::getX86_FP80Ty(getVMContext()));
3283     break;
3284   }
3285 
3286   llvm::Type *HighPart = nullptr;
3287   switch (Hi) {
3288     // Memory was handled previously and X87 should
3289     // never occur as a hi class.
3290   case Memory:
3291   case X87:
3292     llvm_unreachable("Invalid classification for hi word.");
3293 
3294   case ComplexX87: // Previously handled.
3295   case NoClass:
3296     break;
3297 
3298   case Integer:
3299     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3300     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3301       return ABIArgInfo::getDirect(HighPart, 8);
3302     break;
3303   case SSE:
3304     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3305     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3306       return ABIArgInfo::getDirect(HighPart, 8);
3307     break;
3308 
3309     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
3310     // is passed in the next available eightbyte chunk if the last used
3311     // vector register.
3312     //
3313     // SSEUP should always be preceded by SSE, just widen.
3314   case SSEUp:
3315     assert(Lo == SSE && "Unexpected SSEUp classification.");
3316     ResType = GetByteVectorType(RetTy);
3317     break;
3318 
3319     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
3320     // returned together with the previous X87 value in %st0.
3321   case X87Up:
3322     // If X87Up is preceded by X87, we don't need to do
3323     // anything. However, in some cases with unions it may not be
3324     // preceded by X87. In such situations we follow gcc and pass the
3325     // extra bits in an SSE reg.
3326     if (Lo != X87) {
3327       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3328       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3329         return ABIArgInfo::getDirect(HighPart, 8);
3330     }
3331     break;
3332   }
3333 
3334   // If a high part was specified, merge it together with the low part.  It is
3335   // known to pass in the high eightbyte of the result.  We do this by forming a
3336   // first class struct aggregate with the high and low part: {low, high}
3337   if (HighPart)
3338     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3339 
3340   return ABIArgInfo::getDirect(ResType);
3341 }
3342 
3343 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
3344   QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
3345   bool isNamedArg)
3346   const
3347 {
3348   Ty = useFirstFieldIfTransparentUnion(Ty);
3349 
3350   X86_64ABIInfo::Class Lo, Hi;
3351   classify(Ty, 0, Lo, Hi, isNamedArg);
3352 
3353   // Check some invariants.
3354   // FIXME: Enforce these by construction.
3355   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3356   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3357 
3358   neededInt = 0;
3359   neededSSE = 0;
3360   llvm::Type *ResType = nullptr;
3361   switch (Lo) {
3362   case NoClass:
3363     if (Hi == NoClass)
3364       return ABIArgInfo::getIgnore();
3365     // If the low part is just padding, it takes no register, leave ResType
3366     // null.
3367     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3368            "Unknown missing lo part");
3369     break;
3370 
3371     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
3372     // on the stack.
3373   case Memory:
3374 
3375     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
3376     // COMPLEX_X87, it is passed in memory.
3377   case X87:
3378   case ComplexX87:
3379     if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
3380       ++neededInt;
3381     return getIndirectResult(Ty, freeIntRegs);
3382 
3383   case SSEUp:
3384   case X87Up:
3385     llvm_unreachable("Invalid classification for lo word.");
3386 
3387     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
3388     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
3389     // and %r9 is used.
3390   case Integer:
3391     ++neededInt;
3392 
3393     // Pick an 8-byte type based on the preferred type.
3394     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
3395 
3396     // If we have a sign or zero extended integer, make sure to return Extend
3397     // so that the parameter gets the right LLVM IR attributes.
3398     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3399       // Treat an enum type as its underlying type.
3400       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3401         Ty = EnumTy->getDecl()->getIntegerType();
3402 
3403       if (Ty->isIntegralOrEnumerationType() &&
3404           Ty->isPromotableIntegerType())
3405         return ABIArgInfo::getExtend(Ty);
3406     }
3407 
3408     break;
3409 
3410     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
3411     // available SSE register is used, the registers are taken in the
3412     // order from %xmm0 to %xmm7.
3413   case SSE: {
3414     llvm::Type *IRType = CGT.ConvertType(Ty);
3415     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
3416     ++neededSSE;
3417     break;
3418   }
3419   }
3420 
3421   llvm::Type *HighPart = nullptr;
3422   switch (Hi) {
3423     // Memory was handled previously, ComplexX87 and X87 should
3424     // never occur as hi classes, and X87Up must be preceded by X87,
3425     // which is passed in memory.
3426   case Memory:
3427   case X87:
3428   case ComplexX87:
3429     llvm_unreachable("Invalid classification for hi word.");
3430 
3431   case NoClass: break;
3432 
3433   case Integer:
3434     ++neededInt;
3435     // Pick an 8-byte type based on the preferred type.
3436     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3437 
3438     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3439       return ABIArgInfo::getDirect(HighPart, 8);
3440     break;
3441 
3442     // X87Up generally doesn't occur here (long double is passed in
3443     // memory), except in situations involving unions.
3444   case X87Up:
3445   case SSE:
3446     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3447 
3448     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3449       return ABIArgInfo::getDirect(HighPart, 8);
3450 
3451     ++neededSSE;
3452     break;
3453 
3454     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
3455     // eightbyte is passed in the upper half of the last used SSE
3456     // register.  This only happens when 128-bit vectors are passed.
3457   case SSEUp:
3458     assert(Lo == SSE && "Unexpected SSEUp classification");
3459     ResType = GetByteVectorType(Ty);
3460     break;
3461   }
3462 
3463   // If a high part was specified, merge it together with the low part.  It is
3464   // known to pass in the high eightbyte of the result.  We do this by forming a
3465   // first class struct aggregate with the high and low part: {low, high}
3466   if (HighPart)
3467     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3468 
3469   return ABIArgInfo::getDirect(ResType);
3470 }
3471 
3472 ABIArgInfo
3473 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
3474                                              unsigned &NeededSSE) const {
3475   auto RT = Ty->getAs<RecordType>();
3476   assert(RT && "classifyRegCallStructType only valid with struct types");
3477 
3478   if (RT->getDecl()->hasFlexibleArrayMember())
3479     return getIndirectReturnResult(Ty);
3480 
3481   // Sum up bases
3482   if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
3483     if (CXXRD->isDynamicClass()) {
3484       NeededInt = NeededSSE = 0;
3485       return getIndirectReturnResult(Ty);
3486     }
3487 
3488     for (const auto &I : CXXRD->bases())
3489       if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE)
3490               .isIndirect()) {
3491         NeededInt = NeededSSE = 0;
3492         return getIndirectReturnResult(Ty);
3493       }
3494   }
3495 
3496   // Sum up members
3497   for (const auto *FD : RT->getDecl()->fields()) {
3498     if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) {
3499       if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE)
3500               .isIndirect()) {
3501         NeededInt = NeededSSE = 0;
3502         return getIndirectReturnResult(Ty);
3503       }
3504     } else {
3505       unsigned LocalNeededInt, LocalNeededSSE;
3506       if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt,
3507                                LocalNeededSSE, true)
3508               .isIndirect()) {
3509         NeededInt = NeededSSE = 0;
3510         return getIndirectReturnResult(Ty);
3511       }
3512       NeededInt += LocalNeededInt;
3513       NeededSSE += LocalNeededSSE;
3514     }
3515   }
3516 
3517   return ABIArgInfo::getDirect();
3518 }
3519 
3520 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty,
3521                                                     unsigned &NeededInt,
3522                                                     unsigned &NeededSSE) const {
3523 
3524   NeededInt = 0;
3525   NeededSSE = 0;
3526 
3527   return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE);
3528 }
3529 
3530 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3531 
3532   const unsigned CallingConv = FI.getCallingConvention();
3533   // It is possible to force Win64 calling convention on any x86_64 target by
3534   // using __attribute__((ms_abi)). In such case to correctly emit Win64
3535   // compatible code delegate this call to WinX86_64ABIInfo::computeInfo.
3536   if (CallingConv == llvm::CallingConv::Win64) {
3537     WinX86_64ABIInfo Win64ABIInfo(CGT);
3538     Win64ABIInfo.computeInfo(FI);
3539     return;
3540   }
3541 
3542   bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall;
3543 
3544   // Keep track of the number of assigned registers.
3545   unsigned FreeIntRegs = IsRegCall ? 11 : 6;
3546   unsigned FreeSSERegs = IsRegCall ? 16 : 8;
3547   unsigned NeededInt, NeededSSE;
3548 
3549   if (!getCXXABI().classifyReturnType(FI)) {
3550     if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() &&
3551         !FI.getReturnType()->getTypePtr()->isUnionType()) {
3552       FI.getReturnInfo() =
3553           classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE);
3554       if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3555         FreeIntRegs -= NeededInt;
3556         FreeSSERegs -= NeededSSE;
3557       } else {
3558         FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3559       }
3560     } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>()) {
3561       // Complex Long Double Type is passed in Memory when Regcall
3562       // calling convention is used.
3563       const ComplexType *CT = FI.getReturnType()->getAs<ComplexType>();
3564       if (getContext().getCanonicalType(CT->getElementType()) ==
3565           getContext().LongDoubleTy)
3566         FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3567     } else
3568       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3569   }
3570 
3571   // If the return value is indirect, then the hidden argument is consuming one
3572   // integer register.
3573   if (FI.getReturnInfo().isIndirect())
3574     --FreeIntRegs;
3575 
3576   // The chain argument effectively gives us another free register.
3577   if (FI.isChainCall())
3578     ++FreeIntRegs;
3579 
3580   unsigned NumRequiredArgs = FI.getNumRequiredArgs();
3581   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
3582   // get assigned (in left-to-right order) for passing as follows...
3583   unsigned ArgNo = 0;
3584   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3585        it != ie; ++it, ++ArgNo) {
3586     bool IsNamedArg = ArgNo < NumRequiredArgs;
3587 
3588     if (IsRegCall && it->type->isStructureOrClassType())
3589       it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE);
3590     else
3591       it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt,
3592                                       NeededSSE, IsNamedArg);
3593 
3594     // AMD64-ABI 3.2.3p3: If there are no registers available for any
3595     // eightbyte of an argument, the whole argument is passed on the
3596     // stack. If registers have already been assigned for some
3597     // eightbytes of such an argument, the assignments get reverted.
3598     if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3599       FreeIntRegs -= NeededInt;
3600       FreeSSERegs -= NeededSSE;
3601     } else {
3602       it->info = getIndirectResult(it->type, FreeIntRegs);
3603     }
3604   }
3605 }
3606 
3607 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF,
3608                                          Address VAListAddr, QualType Ty) {
3609   Address overflow_arg_area_p = CGF.Builder.CreateStructGEP(
3610       VAListAddr, 2, CharUnits::fromQuantity(8), "overflow_arg_area_p");
3611   llvm::Value *overflow_arg_area =
3612     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
3613 
3614   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
3615   // byte boundary if alignment needed by type exceeds 8 byte boundary.
3616   // It isn't stated explicitly in the standard, but in practice we use
3617   // alignment greater than 16 where necessary.
3618   CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
3619   if (Align > CharUnits::fromQuantity(8)) {
3620     overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area,
3621                                                       Align);
3622   }
3623 
3624   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
3625   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3626   llvm::Value *Res =
3627     CGF.Builder.CreateBitCast(overflow_arg_area,
3628                               llvm::PointerType::getUnqual(LTy));
3629 
3630   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
3631   // l->overflow_arg_area + sizeof(type).
3632   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
3633   // an 8 byte boundary.
3634 
3635   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
3636   llvm::Value *Offset =
3637       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
3638   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
3639                                             "overflow_arg_area.next");
3640   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
3641 
3642   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
3643   return Address(Res, Align);
3644 }
3645 
3646 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3647                                  QualType Ty) const {
3648   // Assume that va_list type is correct; should be pointer to LLVM type:
3649   // struct {
3650   //   i32 gp_offset;
3651   //   i32 fp_offset;
3652   //   i8* overflow_arg_area;
3653   //   i8* reg_save_area;
3654   // };
3655   unsigned neededInt, neededSSE;
3656 
3657   Ty = getContext().getCanonicalType(Ty);
3658   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
3659                                        /*isNamedArg*/false);
3660 
3661   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
3662   // in the registers. If not go to step 7.
3663   if (!neededInt && !neededSSE)
3664     return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3665 
3666   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
3667   // general purpose registers needed to pass type and num_fp to hold
3668   // the number of floating point registers needed.
3669 
3670   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
3671   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
3672   // l->fp_offset > 304 - num_fp * 16 go to step 7.
3673   //
3674   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
3675   // register save space).
3676 
3677   llvm::Value *InRegs = nullptr;
3678   Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid();
3679   llvm::Value *gp_offset = nullptr, *fp_offset = nullptr;
3680   if (neededInt) {
3681     gp_offset_p =
3682         CGF.Builder.CreateStructGEP(VAListAddr, 0, CharUnits::Zero(),
3683                                     "gp_offset_p");
3684     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
3685     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
3686     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
3687   }
3688 
3689   if (neededSSE) {
3690     fp_offset_p =
3691         CGF.Builder.CreateStructGEP(VAListAddr, 1, CharUnits::fromQuantity(4),
3692                                     "fp_offset_p");
3693     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
3694     llvm::Value *FitsInFP =
3695       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
3696     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
3697     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
3698   }
3699 
3700   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
3701   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
3702   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
3703   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
3704 
3705   // Emit code to load the value if it was passed in registers.
3706 
3707   CGF.EmitBlock(InRegBlock);
3708 
3709   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
3710   // an offset of l->gp_offset and/or l->fp_offset. This may require
3711   // copying to a temporary location in case the parameter is passed
3712   // in different register classes or requires an alignment greater
3713   // than 8 for general purpose registers and 16 for XMM registers.
3714   //
3715   // FIXME: This really results in shameful code when we end up needing to
3716   // collect arguments from different places; often what should result in a
3717   // simple assembling of a structure from scattered addresses has many more
3718   // loads than necessary. Can we clean this up?
3719   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3720   llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(
3721       CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(16)),
3722                                   "reg_save_area");
3723 
3724   Address RegAddr = Address::invalid();
3725   if (neededInt && neededSSE) {
3726     // FIXME: Cleanup.
3727     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
3728     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
3729     Address Tmp = CGF.CreateMemTemp(Ty);
3730     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
3731     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
3732     llvm::Type *TyLo = ST->getElementType(0);
3733     llvm::Type *TyHi = ST->getElementType(1);
3734     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
3735            "Unexpected ABI info for mixed regs");
3736     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
3737     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
3738     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset);
3739     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset);
3740     llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
3741     llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
3742 
3743     // Copy the first element.
3744     // FIXME: Our choice of alignment here and below is probably pessimistic.
3745     llvm::Value *V = CGF.Builder.CreateAlignedLoad(
3746         TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo),
3747         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo)));
3748     CGF.Builder.CreateStore(V,
3749                     CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero()));
3750 
3751     // Copy the second element.
3752     V = CGF.Builder.CreateAlignedLoad(
3753         TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi),
3754         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi)));
3755     CharUnits Offset = CharUnits::fromQuantity(
3756                    getDataLayout().getStructLayout(ST)->getElementOffset(1));
3757     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1, Offset));
3758 
3759     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
3760   } else if (neededInt) {
3761     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset),
3762                       CharUnits::fromQuantity(8));
3763     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
3764 
3765     // Copy to a temporary if necessary to ensure the appropriate alignment.
3766     std::pair<CharUnits, CharUnits> SizeAlign =
3767         getContext().getTypeInfoInChars(Ty);
3768     uint64_t TySize = SizeAlign.first.getQuantity();
3769     CharUnits TyAlign = SizeAlign.second;
3770 
3771     // Copy into a temporary if the type is more aligned than the
3772     // register save area.
3773     if (TyAlign.getQuantity() > 8) {
3774       Address Tmp = CGF.CreateMemTemp(Ty);
3775       CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false);
3776       RegAddr = Tmp;
3777     }
3778 
3779   } else if (neededSSE == 1) {
3780     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
3781                       CharUnits::fromQuantity(16));
3782     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
3783   } else {
3784     assert(neededSSE == 2 && "Invalid number of needed registers!");
3785     // SSE registers are spaced 16 bytes apart in the register save
3786     // area, we need to collect the two eightbytes together.
3787     // The ABI isn't explicit about this, but it seems reasonable
3788     // to assume that the slots are 16-byte aligned, since the stack is
3789     // naturally 16-byte aligned and the prologue is expected to store
3790     // all the SSE registers to the RSA.
3791     Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
3792                                 CharUnits::fromQuantity(16));
3793     Address RegAddrHi =
3794       CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo,
3795                                              CharUnits::fromQuantity(16));
3796     llvm::Type *ST = AI.canHaveCoerceToType()
3797                          ? AI.getCoerceToType()
3798                          : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy);
3799     llvm::Value *V;
3800     Address Tmp = CGF.CreateMemTemp(Ty);
3801     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
3802     V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
3803         RegAddrLo, ST->getStructElementType(0)));
3804     CGF.Builder.CreateStore(V,
3805                    CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero()));
3806     V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
3807         RegAddrHi, ST->getStructElementType(1)));
3808     CGF.Builder.CreateStore(V,
3809           CGF.Builder.CreateStructGEP(Tmp, 1, CharUnits::fromQuantity(8)));
3810 
3811     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
3812   }
3813 
3814   // AMD64-ABI 3.5.7p5: Step 5. Set:
3815   // l->gp_offset = l->gp_offset + num_gp * 8
3816   // l->fp_offset = l->fp_offset + num_fp * 16.
3817   if (neededInt) {
3818     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
3819     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
3820                             gp_offset_p);
3821   }
3822   if (neededSSE) {
3823     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
3824     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
3825                             fp_offset_p);
3826   }
3827   CGF.EmitBranch(ContBlock);
3828 
3829   // Emit code to load the value if it was passed in memory.
3830 
3831   CGF.EmitBlock(InMemBlock);
3832   Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3833 
3834   // Return the appropriate result.
3835 
3836   CGF.EmitBlock(ContBlock);
3837   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
3838                                  "vaarg.addr");
3839   return ResAddr;
3840 }
3841 
3842 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
3843                                    QualType Ty) const {
3844   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
3845                           CGF.getContext().getTypeInfoInChars(Ty),
3846                           CharUnits::fromQuantity(8),
3847                           /*allowHigherAlign*/ false);
3848 }
3849 
3850 ABIArgInfo
3851 WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs,
3852                                     const ABIArgInfo &current) const {
3853   // Assumes vectorCall calling convention.
3854   const Type *Base = nullptr;
3855   uint64_t NumElts = 0;
3856 
3857   if (!Ty->isBuiltinType() && !Ty->isVectorType() &&
3858       isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) {
3859     FreeSSERegs -= NumElts;
3860     return getDirectX86Hva();
3861   }
3862   return current;
3863 }
3864 
3865 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
3866                                       bool IsReturnType, bool IsVectorCall,
3867                                       bool IsRegCall) const {
3868 
3869   if (Ty->isVoidType())
3870     return ABIArgInfo::getIgnore();
3871 
3872   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3873     Ty = EnumTy->getDecl()->getIntegerType();
3874 
3875   TypeInfo Info = getContext().getTypeInfo(Ty);
3876   uint64_t Width = Info.Width;
3877   CharUnits Align = getContext().toCharUnitsFromBits(Info.Align);
3878 
3879   const RecordType *RT = Ty->getAs<RecordType>();
3880   if (RT) {
3881     if (!IsReturnType) {
3882       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
3883         return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
3884     }
3885 
3886     if (RT->getDecl()->hasFlexibleArrayMember())
3887       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3888 
3889   }
3890 
3891   const Type *Base = nullptr;
3892   uint64_t NumElts = 0;
3893   // vectorcall adds the concept of a homogenous vector aggregate, similar to
3894   // other targets.
3895   if ((IsVectorCall || IsRegCall) &&
3896       isHomogeneousAggregate(Ty, Base, NumElts)) {
3897     if (IsRegCall) {
3898       if (FreeSSERegs >= NumElts) {
3899         FreeSSERegs -= NumElts;
3900         if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
3901           return ABIArgInfo::getDirect();
3902         return ABIArgInfo::getExpand();
3903       }
3904       return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3905     } else if (IsVectorCall) {
3906       if (FreeSSERegs >= NumElts &&
3907           (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) {
3908         FreeSSERegs -= NumElts;
3909         return ABIArgInfo::getDirect();
3910       } else if (IsReturnType) {
3911         return ABIArgInfo::getExpand();
3912       } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) {
3913         // HVAs are delayed and reclassified in the 2nd step.
3914         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3915       }
3916     }
3917   }
3918 
3919   if (Ty->isMemberPointerType()) {
3920     // If the member pointer is represented by an LLVM int or ptr, pass it
3921     // directly.
3922     llvm::Type *LLTy = CGT.ConvertType(Ty);
3923     if (LLTy->isPointerTy() || LLTy->isIntegerTy())
3924       return ABIArgInfo::getDirect();
3925   }
3926 
3927   if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
3928     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
3929     // not 1, 2, 4, or 8 bytes, must be passed by reference."
3930     if (Width > 64 || !llvm::isPowerOf2_64(Width))
3931       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3932 
3933     // Otherwise, coerce it to a small integer.
3934     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
3935   }
3936 
3937   // Bool type is always extended to the ABI, other builtin types are not
3938   // extended.
3939   const BuiltinType *BT = Ty->getAs<BuiltinType>();
3940   if (BT && BT->getKind() == BuiltinType::Bool)
3941     return ABIArgInfo::getExtend(Ty);
3942 
3943   // Mingw64 GCC uses the old 80 bit extended precision floating point unit. It
3944   // passes them indirectly through memory.
3945   if (IsMingw64 && BT && BT->getKind() == BuiltinType::LongDouble) {
3946     const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
3947     if (LDF == &llvm::APFloat::x87DoubleExtended())
3948       return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3949   }
3950 
3951   return ABIArgInfo::getDirect();
3952 }
3953 
3954 void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI,
3955                                              unsigned FreeSSERegs,
3956                                              bool IsVectorCall,
3957                                              bool IsRegCall) const {
3958   unsigned Count = 0;
3959   for (auto &I : FI.arguments()) {
3960     // Vectorcall in x64 only permits the first 6 arguments to be passed
3961     // as XMM/YMM registers.
3962     if (Count < VectorcallMaxParamNumAsReg)
3963       I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall);
3964     else {
3965       // Since these cannot be passed in registers, pretend no registers
3966       // are left.
3967       unsigned ZeroSSERegsAvail = 0;
3968       I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false,
3969                         IsVectorCall, IsRegCall);
3970     }
3971     ++Count;
3972   }
3973 
3974   for (auto &I : FI.arguments()) {
3975     I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info);
3976   }
3977 }
3978 
3979 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3980   bool IsVectorCall =
3981       FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall;
3982   bool IsRegCall = FI.getCallingConvention() == llvm::CallingConv::X86_RegCall;
3983 
3984   unsigned FreeSSERegs = 0;
3985   if (IsVectorCall) {
3986     // We can use up to 4 SSE return registers with vectorcall.
3987     FreeSSERegs = 4;
3988   } else if (IsRegCall) {
3989     // RegCall gives us 16 SSE registers.
3990     FreeSSERegs = 16;
3991   }
3992 
3993   if (!getCXXABI().classifyReturnType(FI))
3994     FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true,
3995                                   IsVectorCall, IsRegCall);
3996 
3997   if (IsVectorCall) {
3998     // We can use up to 6 SSE register parameters with vectorcall.
3999     FreeSSERegs = 6;
4000   } else if (IsRegCall) {
4001     // RegCall gives us 16 SSE registers, we can reuse the return registers.
4002     FreeSSERegs = 16;
4003   }
4004 
4005   if (IsVectorCall) {
4006     computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall);
4007   } else {
4008     for (auto &I : FI.arguments())
4009       I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall);
4010   }
4011 
4012 }
4013 
4014 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4015                                     QualType Ty) const {
4016 
4017   bool IsIndirect = false;
4018 
4019   // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4020   // not 1, 2, 4, or 8 bytes, must be passed by reference."
4021   if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) {
4022     uint64_t Width = getContext().getTypeSize(Ty);
4023     IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
4024   }
4025 
4026   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
4027                           CGF.getContext().getTypeInfoInChars(Ty),
4028                           CharUnits::fromQuantity(8),
4029                           /*allowHigherAlign*/ false);
4030 }
4031 
4032 // PowerPC-32
4033 namespace {
4034 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
4035 class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
4036   bool IsSoftFloatABI;
4037 
4038   CharUnits getParamTypeAlignment(QualType Ty) const;
4039 
4040 public:
4041   PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI)
4042       : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI) {}
4043 
4044   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4045                     QualType Ty) const override;
4046 };
4047 
4048 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
4049 public:
4050   PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI)
4051       : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT, SoftFloatABI)) {}
4052 
4053   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4054     // This is recovered from gcc output.
4055     return 1; // r1 is the dedicated stack pointer
4056   }
4057 
4058   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4059                                llvm::Value *Address) const override;
4060 };
4061 }
4062 
4063 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
4064   // Complex types are passed just like their elements
4065   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4066     Ty = CTy->getElementType();
4067 
4068   if (Ty->isVectorType())
4069     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16
4070                                                                        : 4);
4071 
4072   // For single-element float/vector structs, we consider the whole type
4073   // to have the same alignment requirements as its single element.
4074   const Type *AlignTy = nullptr;
4075   if (const Type *EltType = isSingleElementStruct(Ty, getContext())) {
4076     const BuiltinType *BT = EltType->getAs<BuiltinType>();
4077     if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) ||
4078         (BT && BT->isFloatingPoint()))
4079       AlignTy = EltType;
4080   }
4081 
4082   if (AlignTy)
4083     return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4);
4084   return CharUnits::fromQuantity(4);
4085 }
4086 
4087 // TODO: this implementation is now likely redundant with
4088 // DefaultABIInfo::EmitVAArg.
4089 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList,
4090                                       QualType Ty) const {
4091   if (getTarget().getTriple().isOSDarwin()) {
4092     auto TI = getContext().getTypeInfoInChars(Ty);
4093     TI.second = getParamTypeAlignment(Ty);
4094 
4095     CharUnits SlotSize = CharUnits::fromQuantity(4);
4096     return emitVoidPtrVAArg(CGF, VAList, Ty,
4097                             classifyArgumentType(Ty).isIndirect(), TI, SlotSize,
4098                             /*AllowHigherAlign=*/true);
4099   }
4100 
4101   const unsigned OverflowLimit = 8;
4102   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4103     // TODO: Implement this. For now ignore.
4104     (void)CTy;
4105     return Address::invalid(); // FIXME?
4106   }
4107 
4108   // struct __va_list_tag {
4109   //   unsigned char gpr;
4110   //   unsigned char fpr;
4111   //   unsigned short reserved;
4112   //   void *overflow_arg_area;
4113   //   void *reg_save_area;
4114   // };
4115 
4116   bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
4117   bool isInt =
4118       Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType();
4119   bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64;
4120 
4121   // All aggregates are passed indirectly?  That doesn't seem consistent
4122   // with the argument-lowering code.
4123   bool isIndirect = Ty->isAggregateType();
4124 
4125   CGBuilderTy &Builder = CGF.Builder;
4126 
4127   // The calling convention either uses 1-2 GPRs or 1 FPR.
4128   Address NumRegsAddr = Address::invalid();
4129   if (isInt || IsSoftFloatABI) {
4130     NumRegsAddr = Builder.CreateStructGEP(VAList, 0, CharUnits::Zero(), "gpr");
4131   } else {
4132     NumRegsAddr = Builder.CreateStructGEP(VAList, 1, CharUnits::One(), "fpr");
4133   }
4134 
4135   llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs");
4136 
4137   // "Align" the register count when TY is i64.
4138   if (isI64 || (isF64 && IsSoftFloatABI)) {
4139     NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1));
4140     NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U));
4141   }
4142 
4143   llvm::Value *CC =
4144       Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond");
4145 
4146   llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
4147   llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
4148   llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
4149 
4150   Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
4151 
4152   llvm::Type *DirectTy = CGF.ConvertType(Ty);
4153   if (isIndirect) DirectTy = DirectTy->getPointerTo(0);
4154 
4155   // Case 1: consume registers.
4156   Address RegAddr = Address::invalid();
4157   {
4158     CGF.EmitBlock(UsingRegs);
4159 
4160     Address RegSaveAreaPtr =
4161       Builder.CreateStructGEP(VAList, 4, CharUnits::fromQuantity(8));
4162     RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr),
4163                       CharUnits::fromQuantity(8));
4164     assert(RegAddr.getElementType() == CGF.Int8Ty);
4165 
4166     // Floating-point registers start after the general-purpose registers.
4167     if (!(isInt || IsSoftFloatABI)) {
4168       RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr,
4169                                                    CharUnits::fromQuantity(32));
4170     }
4171 
4172     // Get the address of the saved value by scaling the number of
4173     // registers we've used by the number of
4174     CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8);
4175     llvm::Value *RegOffset =
4176       Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity()));
4177     RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty,
4178                                             RegAddr.getPointer(), RegOffset),
4179                       RegAddr.getAlignment().alignmentOfArrayElement(RegSize));
4180     RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy);
4181 
4182     // Increase the used-register count.
4183     NumRegs =
4184       Builder.CreateAdd(NumRegs,
4185                         Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1));
4186     Builder.CreateStore(NumRegs, NumRegsAddr);
4187 
4188     CGF.EmitBranch(Cont);
4189   }
4190 
4191   // Case 2: consume space in the overflow area.
4192   Address MemAddr = Address::invalid();
4193   {
4194     CGF.EmitBlock(UsingOverflow);
4195 
4196     Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr);
4197 
4198     // Everything in the overflow area is rounded up to a size of at least 4.
4199     CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4);
4200 
4201     CharUnits Size;
4202     if (!isIndirect) {
4203       auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty);
4204       Size = TypeInfo.first.alignTo(OverflowAreaAlign);
4205     } else {
4206       Size = CGF.getPointerSize();
4207     }
4208 
4209     Address OverflowAreaAddr =
4210       Builder.CreateStructGEP(VAList, 3, CharUnits::fromQuantity(4));
4211     Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"),
4212                          OverflowAreaAlign);
4213     // Round up address of argument to alignment
4214     CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
4215     if (Align > OverflowAreaAlign) {
4216       llvm::Value *Ptr = OverflowArea.getPointer();
4217       OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align),
4218                                                            Align);
4219     }
4220 
4221     MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy);
4222 
4223     // Increase the overflow area.
4224     OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size);
4225     Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr);
4226     CGF.EmitBranch(Cont);
4227   }
4228 
4229   CGF.EmitBlock(Cont);
4230 
4231   // Merge the cases with a phi.
4232   Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow,
4233                                 "vaarg.addr");
4234 
4235   // Load the pointer if the argument was passed indirectly.
4236   if (isIndirect) {
4237     Result = Address(Builder.CreateLoad(Result, "aggr"),
4238                      getContext().getTypeAlignInChars(Ty));
4239   }
4240 
4241   return Result;
4242 }
4243 
4244 bool
4245 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4246                                                 llvm::Value *Address) const {
4247   // This is calculated from the LLVM and GCC tables and verified
4248   // against gcc output.  AFAIK all ABIs use the same encoding.
4249 
4250   CodeGen::CGBuilderTy &Builder = CGF.Builder;
4251 
4252   llvm::IntegerType *i8 = CGF.Int8Ty;
4253   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
4254   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
4255   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
4256 
4257   // 0-31: r0-31, the 4-byte general-purpose registers
4258   AssignToArrayRange(Builder, Address, Four8, 0, 31);
4259 
4260   // 32-63: fp0-31, the 8-byte floating-point registers
4261   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
4262 
4263   // 64-76 are various 4-byte special-purpose registers:
4264   // 64: mq
4265   // 65: lr
4266   // 66: ctr
4267   // 67: ap
4268   // 68-75 cr0-7
4269   // 76: xer
4270   AssignToArrayRange(Builder, Address, Four8, 64, 76);
4271 
4272   // 77-108: v0-31, the 16-byte vector registers
4273   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
4274 
4275   // 109: vrsave
4276   // 110: vscr
4277   // 111: spe_acc
4278   // 112: spefscr
4279   // 113: sfp
4280   AssignToArrayRange(Builder, Address, Four8, 109, 113);
4281 
4282   return false;
4283 }
4284 
4285 // PowerPC-64
4286 
4287 namespace {
4288 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
4289 class PPC64_SVR4_ABIInfo : public ABIInfo {
4290 public:
4291   enum ABIKind {
4292     ELFv1 = 0,
4293     ELFv2
4294   };
4295 
4296 private:
4297   static const unsigned GPRBits = 64;
4298   ABIKind Kind;
4299   bool HasQPX;
4300   bool IsSoftFloatABI;
4301 
4302   // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and
4303   // will be passed in a QPX register.
4304   bool IsQPXVectorTy(const Type *Ty) const {
4305     if (!HasQPX)
4306       return false;
4307 
4308     if (const VectorType *VT = Ty->getAs<VectorType>()) {
4309       unsigned NumElements = VT->getNumElements();
4310       if (NumElements == 1)
4311         return false;
4312 
4313       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) {
4314         if (getContext().getTypeSize(Ty) <= 256)
4315           return true;
4316       } else if (VT->getElementType()->
4317                    isSpecificBuiltinType(BuiltinType::Float)) {
4318         if (getContext().getTypeSize(Ty) <= 128)
4319           return true;
4320       }
4321     }
4322 
4323     return false;
4324   }
4325 
4326   bool IsQPXVectorTy(QualType Ty) const {
4327     return IsQPXVectorTy(Ty.getTypePtr());
4328   }
4329 
4330 public:
4331   PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX,
4332                      bool SoftFloatABI)
4333       : ABIInfo(CGT), Kind(Kind), HasQPX(HasQPX),
4334         IsSoftFloatABI(SoftFloatABI) {}
4335 
4336   bool isPromotableTypeForABI(QualType Ty) const;
4337   CharUnits getParamTypeAlignment(QualType Ty) const;
4338 
4339   ABIArgInfo classifyReturnType(QualType RetTy) const;
4340   ABIArgInfo classifyArgumentType(QualType Ty) const;
4341 
4342   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4343   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4344                                          uint64_t Members) const override;
4345 
4346   // TODO: We can add more logic to computeInfo to improve performance.
4347   // Example: For aggregate arguments that fit in a register, we could
4348   // use getDirectInReg (as is done below for structs containing a single
4349   // floating-point value) to avoid pushing them to memory on function
4350   // entry.  This would require changing the logic in PPCISelLowering
4351   // when lowering the parameters in the caller and args in the callee.
4352   void computeInfo(CGFunctionInfo &FI) const override {
4353     if (!getCXXABI().classifyReturnType(FI))
4354       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4355     for (auto &I : FI.arguments()) {
4356       // We rely on the default argument classification for the most part.
4357       // One exception:  An aggregate containing a single floating-point
4358       // or vector item must be passed in a register if one is available.
4359       const Type *T = isSingleElementStruct(I.type, getContext());
4360       if (T) {
4361         const BuiltinType *BT = T->getAs<BuiltinType>();
4362         if (IsQPXVectorTy(T) ||
4363             (T->isVectorType() && getContext().getTypeSize(T) == 128) ||
4364             (BT && BT->isFloatingPoint())) {
4365           QualType QT(T, 0);
4366           I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
4367           continue;
4368         }
4369       }
4370       I.info = classifyArgumentType(I.type);
4371     }
4372   }
4373 
4374   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4375                     QualType Ty) const override;
4376 };
4377 
4378 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
4379 
4380 public:
4381   PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT,
4382                                PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX,
4383                                bool SoftFloatABI)
4384       : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX,
4385                                                  SoftFloatABI)) {}
4386 
4387   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4388     // This is recovered from gcc output.
4389     return 1; // r1 is the dedicated stack pointer
4390   }
4391 
4392   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4393                                llvm::Value *Address) const override;
4394 };
4395 
4396 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
4397 public:
4398   PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
4399 
4400   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4401     // This is recovered from gcc output.
4402     return 1; // r1 is the dedicated stack pointer
4403   }
4404 
4405   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4406                                llvm::Value *Address) const override;
4407 };
4408 
4409 }
4410 
4411 // Return true if the ABI requires Ty to be passed sign- or zero-
4412 // extended to 64 bits.
4413 bool
4414 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
4415   // Treat an enum type as its underlying type.
4416   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4417     Ty = EnumTy->getDecl()->getIntegerType();
4418 
4419   // Promotable integer types are required to be promoted by the ABI.
4420   if (Ty->isPromotableIntegerType())
4421     return true;
4422 
4423   // In addition to the usual promotable integer types, we also need to
4424   // extend all 32-bit types, since the ABI requires promotion to 64 bits.
4425   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4426     switch (BT->getKind()) {
4427     case BuiltinType::Int:
4428     case BuiltinType::UInt:
4429       return true;
4430     default:
4431       break;
4432     }
4433 
4434   return false;
4435 }
4436 
4437 /// isAlignedParamType - Determine whether a type requires 16-byte or
4438 /// higher alignment in the parameter area.  Always returns at least 8.
4439 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
4440   // Complex types are passed just like their elements.
4441   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4442     Ty = CTy->getElementType();
4443 
4444   // Only vector types of size 16 bytes need alignment (larger types are
4445   // passed via reference, smaller types are not aligned).
4446   if (IsQPXVectorTy(Ty)) {
4447     if (getContext().getTypeSize(Ty) > 128)
4448       return CharUnits::fromQuantity(32);
4449 
4450     return CharUnits::fromQuantity(16);
4451   } else if (Ty->isVectorType()) {
4452     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8);
4453   }
4454 
4455   // For single-element float/vector structs, we consider the whole type
4456   // to have the same alignment requirements as its single element.
4457   const Type *AlignAsType = nullptr;
4458   const Type *EltType = isSingleElementStruct(Ty, getContext());
4459   if (EltType) {
4460     const BuiltinType *BT = EltType->getAs<BuiltinType>();
4461     if (IsQPXVectorTy(EltType) || (EltType->isVectorType() &&
4462          getContext().getTypeSize(EltType) == 128) ||
4463         (BT && BT->isFloatingPoint()))
4464       AlignAsType = EltType;
4465   }
4466 
4467   // Likewise for ELFv2 homogeneous aggregates.
4468   const Type *Base = nullptr;
4469   uint64_t Members = 0;
4470   if (!AlignAsType && Kind == ELFv2 &&
4471       isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
4472     AlignAsType = Base;
4473 
4474   // With special case aggregates, only vector base types need alignment.
4475   if (AlignAsType && IsQPXVectorTy(AlignAsType)) {
4476     if (getContext().getTypeSize(AlignAsType) > 128)
4477       return CharUnits::fromQuantity(32);
4478 
4479     return CharUnits::fromQuantity(16);
4480   } else if (AlignAsType) {
4481     return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8);
4482   }
4483 
4484   // Otherwise, we only need alignment for any aggregate type that
4485   // has an alignment requirement of >= 16 bytes.
4486   if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) {
4487     if (HasQPX && getContext().getTypeAlign(Ty) >= 256)
4488       return CharUnits::fromQuantity(32);
4489     return CharUnits::fromQuantity(16);
4490   }
4491 
4492   return CharUnits::fromQuantity(8);
4493 }
4494 
4495 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
4496 /// aggregate.  Base is set to the base element type, and Members is set
4497 /// to the number of base elements.
4498 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
4499                                      uint64_t &Members) const {
4500   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
4501     uint64_t NElements = AT->getSize().getZExtValue();
4502     if (NElements == 0)
4503       return false;
4504     if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
4505       return false;
4506     Members *= NElements;
4507   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
4508     const RecordDecl *RD = RT->getDecl();
4509     if (RD->hasFlexibleArrayMember())
4510       return false;
4511 
4512     Members = 0;
4513 
4514     // If this is a C++ record, check the bases first.
4515     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
4516       for (const auto &I : CXXRD->bases()) {
4517         // Ignore empty records.
4518         if (isEmptyRecord(getContext(), I.getType(), true))
4519           continue;
4520 
4521         uint64_t FldMembers;
4522         if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
4523           return false;
4524 
4525         Members += FldMembers;
4526       }
4527     }
4528 
4529     for (const auto *FD : RD->fields()) {
4530       // Ignore (non-zero arrays of) empty records.
4531       QualType FT = FD->getType();
4532       while (const ConstantArrayType *AT =
4533              getContext().getAsConstantArrayType(FT)) {
4534         if (AT->getSize().getZExtValue() == 0)
4535           return false;
4536         FT = AT->getElementType();
4537       }
4538       if (isEmptyRecord(getContext(), FT, true))
4539         continue;
4540 
4541       // For compatibility with GCC, ignore empty bitfields in C++ mode.
4542       if (getContext().getLangOpts().CPlusPlus &&
4543           FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
4544         continue;
4545 
4546       uint64_t FldMembers;
4547       if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
4548         return false;
4549 
4550       Members = (RD->isUnion() ?
4551                  std::max(Members, FldMembers) : Members + FldMembers);
4552     }
4553 
4554     if (!Base)
4555       return false;
4556 
4557     // Ensure there is no padding.
4558     if (getContext().getTypeSize(Base) * Members !=
4559         getContext().getTypeSize(Ty))
4560       return false;
4561   } else {
4562     Members = 1;
4563     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
4564       Members = 2;
4565       Ty = CT->getElementType();
4566     }
4567 
4568     // Most ABIs only support float, double, and some vector type widths.
4569     if (!isHomogeneousAggregateBaseType(Ty))
4570       return false;
4571 
4572     // The base type must be the same for all members.  Types that
4573     // agree in both total size and mode (float vs. vector) are
4574     // treated as being equivalent here.
4575     const Type *TyPtr = Ty.getTypePtr();
4576     if (!Base) {
4577       Base = TyPtr;
4578       // If it's a non-power-of-2 vector, its size is already a power-of-2,
4579       // so make sure to widen it explicitly.
4580       if (const VectorType *VT = Base->getAs<VectorType>()) {
4581         QualType EltTy = VT->getElementType();
4582         unsigned NumElements =
4583             getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy);
4584         Base = getContext()
4585                    .getVectorType(EltTy, NumElements, VT->getVectorKind())
4586                    .getTypePtr();
4587       }
4588     }
4589 
4590     if (Base->isVectorType() != TyPtr->isVectorType() ||
4591         getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
4592       return false;
4593   }
4594   return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
4595 }
4596 
4597 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
4598   // Homogeneous aggregates for ELFv2 must have base types of float,
4599   // double, long double, or 128-bit vectors.
4600   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4601     if (BT->getKind() == BuiltinType::Float ||
4602         BT->getKind() == BuiltinType::Double ||
4603         BT->getKind() == BuiltinType::LongDouble) {
4604       if (IsSoftFloatABI)
4605         return false;
4606       return true;
4607     }
4608   }
4609   if (const VectorType *VT = Ty->getAs<VectorType>()) {
4610     if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty))
4611       return true;
4612   }
4613   return false;
4614 }
4615 
4616 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough(
4617     const Type *Base, uint64_t Members) const {
4618   // Vector types require one register, floating point types require one
4619   // or two registers depending on their size.
4620   uint32_t NumRegs =
4621       Base->isVectorType() ? 1 : (getContext().getTypeSize(Base) + 63) / 64;
4622 
4623   // Homogeneous Aggregates may occupy at most 8 registers.
4624   return Members * NumRegs <= 8;
4625 }
4626 
4627 ABIArgInfo
4628 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
4629   Ty = useFirstFieldIfTransparentUnion(Ty);
4630 
4631   if (Ty->isAnyComplexType())
4632     return ABIArgInfo::getDirect();
4633 
4634   // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
4635   // or via reference (larger than 16 bytes).
4636   if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) {
4637     uint64_t Size = getContext().getTypeSize(Ty);
4638     if (Size > 128)
4639       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4640     else if (Size < 128) {
4641       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
4642       return ABIArgInfo::getDirect(CoerceTy);
4643     }
4644   }
4645 
4646   if (isAggregateTypeForABI(Ty)) {
4647     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
4648       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
4649 
4650     uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity();
4651     uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
4652 
4653     // ELFv2 homogeneous aggregates are passed as array types.
4654     const Type *Base = nullptr;
4655     uint64_t Members = 0;
4656     if (Kind == ELFv2 &&
4657         isHomogeneousAggregate(Ty, Base, Members)) {
4658       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
4659       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
4660       return ABIArgInfo::getDirect(CoerceTy);
4661     }
4662 
4663     // If an aggregate may end up fully in registers, we do not
4664     // use the ByVal method, but pass the aggregate as array.
4665     // This is usually beneficial since we avoid forcing the
4666     // back-end to store the argument to memory.
4667     uint64_t Bits = getContext().getTypeSize(Ty);
4668     if (Bits > 0 && Bits <= 8 * GPRBits) {
4669       llvm::Type *CoerceTy;
4670 
4671       // Types up to 8 bytes are passed as integer type (which will be
4672       // properly aligned in the argument save area doubleword).
4673       if (Bits <= GPRBits)
4674         CoerceTy =
4675             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
4676       // Larger types are passed as arrays, with the base type selected
4677       // according to the required alignment in the save area.
4678       else {
4679         uint64_t RegBits = ABIAlign * 8;
4680         uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits;
4681         llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
4682         CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
4683       }
4684 
4685       return ABIArgInfo::getDirect(CoerceTy);
4686     }
4687 
4688     // All other aggregates are passed ByVal.
4689     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
4690                                    /*ByVal=*/true,
4691                                    /*Realign=*/TyAlign > ABIAlign);
4692   }
4693 
4694   return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
4695                                      : ABIArgInfo::getDirect());
4696 }
4697 
4698 ABIArgInfo
4699 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
4700   if (RetTy->isVoidType())
4701     return ABIArgInfo::getIgnore();
4702 
4703   if (RetTy->isAnyComplexType())
4704     return ABIArgInfo::getDirect();
4705 
4706   // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
4707   // or via reference (larger than 16 bytes).
4708   if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) {
4709     uint64_t Size = getContext().getTypeSize(RetTy);
4710     if (Size > 128)
4711       return getNaturalAlignIndirect(RetTy);
4712     else if (Size < 128) {
4713       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
4714       return ABIArgInfo::getDirect(CoerceTy);
4715     }
4716   }
4717 
4718   if (isAggregateTypeForABI(RetTy)) {
4719     // ELFv2 homogeneous aggregates are returned as array types.
4720     const Type *Base = nullptr;
4721     uint64_t Members = 0;
4722     if (Kind == ELFv2 &&
4723         isHomogeneousAggregate(RetTy, Base, Members)) {
4724       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
4725       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
4726       return ABIArgInfo::getDirect(CoerceTy);
4727     }
4728 
4729     // ELFv2 small aggregates are returned in up to two registers.
4730     uint64_t Bits = getContext().getTypeSize(RetTy);
4731     if (Kind == ELFv2 && Bits <= 2 * GPRBits) {
4732       if (Bits == 0)
4733         return ABIArgInfo::getIgnore();
4734 
4735       llvm::Type *CoerceTy;
4736       if (Bits > GPRBits) {
4737         CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
4738         CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy);
4739       } else
4740         CoerceTy =
4741             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
4742       return ABIArgInfo::getDirect(CoerceTy);
4743     }
4744 
4745     // All other aggregates are returned indirectly.
4746     return getNaturalAlignIndirect(RetTy);
4747   }
4748 
4749   return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
4750                                         : ABIArgInfo::getDirect());
4751 }
4752 
4753 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
4754 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4755                                       QualType Ty) const {
4756   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
4757   TypeInfo.second = getParamTypeAlignment(Ty);
4758 
4759   CharUnits SlotSize = CharUnits::fromQuantity(8);
4760 
4761   // If we have a complex type and the base type is smaller than 8 bytes,
4762   // the ABI calls for the real and imaginary parts to be right-adjusted
4763   // in separate doublewords.  However, Clang expects us to produce a
4764   // pointer to a structure with the two parts packed tightly.  So generate
4765   // loads of the real and imaginary parts relative to the va_list pointer,
4766   // and store them to a temporary structure.
4767   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4768     CharUnits EltSize = TypeInfo.first / 2;
4769     if (EltSize < SlotSize) {
4770       Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty,
4771                                             SlotSize * 2, SlotSize,
4772                                             SlotSize, /*AllowHigher*/ true);
4773 
4774       Address RealAddr = Addr;
4775       Address ImagAddr = RealAddr;
4776       if (CGF.CGM.getDataLayout().isBigEndian()) {
4777         RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr,
4778                                                           SlotSize - EltSize);
4779         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr,
4780                                                       2 * SlotSize - EltSize);
4781       } else {
4782         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize);
4783       }
4784 
4785       llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType());
4786       RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy);
4787       ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy);
4788       llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal");
4789       llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag");
4790 
4791       Address Temp = CGF.CreateMemTemp(Ty, "vacplx");
4792       CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty),
4793                              /*init*/ true);
4794       return Temp;
4795     }
4796   }
4797 
4798   // Otherwise, just use the general rule.
4799   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
4800                           TypeInfo, SlotSize, /*AllowHigher*/ true);
4801 }
4802 
4803 static bool
4804 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4805                               llvm::Value *Address) {
4806   // This is calculated from the LLVM and GCC tables and verified
4807   // against gcc output.  AFAIK all ABIs use the same encoding.
4808 
4809   CodeGen::CGBuilderTy &Builder = CGF.Builder;
4810 
4811   llvm::IntegerType *i8 = CGF.Int8Ty;
4812   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
4813   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
4814   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
4815 
4816   // 0-31: r0-31, the 8-byte general-purpose registers
4817   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
4818 
4819   // 32-63: fp0-31, the 8-byte floating-point registers
4820   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
4821 
4822   // 64-67 are various 8-byte special-purpose registers:
4823   // 64: mq
4824   // 65: lr
4825   // 66: ctr
4826   // 67: ap
4827   AssignToArrayRange(Builder, Address, Eight8, 64, 67);
4828 
4829   // 68-76 are various 4-byte special-purpose registers:
4830   // 68-75 cr0-7
4831   // 76: xer
4832   AssignToArrayRange(Builder, Address, Four8, 68, 76);
4833 
4834   // 77-108: v0-31, the 16-byte vector registers
4835   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
4836 
4837   // 109: vrsave
4838   // 110: vscr
4839   // 111: spe_acc
4840   // 112: spefscr
4841   // 113: sfp
4842   // 114: tfhar
4843   // 115: tfiar
4844   // 116: texasr
4845   AssignToArrayRange(Builder, Address, Eight8, 109, 116);
4846 
4847   return false;
4848 }
4849 
4850 bool
4851 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
4852   CodeGen::CodeGenFunction &CGF,
4853   llvm::Value *Address) const {
4854 
4855   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
4856 }
4857 
4858 bool
4859 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4860                                                 llvm::Value *Address) const {
4861 
4862   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
4863 }
4864 
4865 //===----------------------------------------------------------------------===//
4866 // AArch64 ABI Implementation
4867 //===----------------------------------------------------------------------===//
4868 
4869 namespace {
4870 
4871 class AArch64ABIInfo : public SwiftABIInfo {
4872 public:
4873   enum ABIKind {
4874     AAPCS = 0,
4875     DarwinPCS,
4876     Win64
4877   };
4878 
4879 private:
4880   ABIKind Kind;
4881 
4882 public:
4883   AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind)
4884     : SwiftABIInfo(CGT), Kind(Kind) {}
4885 
4886 private:
4887   ABIKind getABIKind() const { return Kind; }
4888   bool isDarwinPCS() const { return Kind == DarwinPCS; }
4889 
4890   ABIArgInfo classifyReturnType(QualType RetTy) const;
4891   ABIArgInfo classifyArgumentType(QualType RetTy) const;
4892   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4893   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4894                                          uint64_t Members) const override;
4895 
4896   bool isIllegalVectorType(QualType Ty) const;
4897 
4898   void computeInfo(CGFunctionInfo &FI) const override {
4899     if (!getCXXABI().classifyReturnType(FI))
4900       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4901 
4902     for (auto &it : FI.arguments())
4903       it.info = classifyArgumentType(it.type);
4904   }
4905 
4906   Address EmitDarwinVAArg(Address VAListAddr, QualType Ty,
4907                           CodeGenFunction &CGF) const;
4908 
4909   Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
4910                          CodeGenFunction &CGF) const;
4911 
4912   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4913                     QualType Ty) const override {
4914     return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty)
4915                          : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
4916                                          : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
4917   }
4918 
4919   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
4920                       QualType Ty) const override;
4921 
4922   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
4923                                     bool asReturnValue) const override {
4924     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
4925   }
4926   bool isSwiftErrorInRegister() const override {
4927     return true;
4928   }
4929 
4930   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
4931                                  unsigned elts) const override;
4932 };
4933 
4934 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
4935 public:
4936   AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
4937       : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {}
4938 
4939   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
4940     return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue";
4941   }
4942 
4943   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4944     return 31;
4945   }
4946 
4947   bool doesReturnSlotInterfereWithArgs() const override { return false; }
4948 };
4949 
4950 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo {
4951 public:
4952   WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K)
4953       : AArch64TargetCodeGenInfo(CGT, K) {}
4954 
4955   void getDependentLibraryOption(llvm::StringRef Lib,
4956                                  llvm::SmallString<24> &Opt) const override {
4957     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
4958   }
4959 
4960   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
4961                                llvm::SmallString<32> &Opt) const override {
4962     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
4963   }
4964 };
4965 }
4966 
4967 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const {
4968   Ty = useFirstFieldIfTransparentUnion(Ty);
4969 
4970   // Handle illegal vector types here.
4971   if (isIllegalVectorType(Ty)) {
4972     uint64_t Size = getContext().getTypeSize(Ty);
4973     // Android promotes <2 x i8> to i16, not i32
4974     if (isAndroid() && (Size <= 16)) {
4975       llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext());
4976       return ABIArgInfo::getDirect(ResType);
4977     }
4978     if (Size <= 32) {
4979       llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
4980       return ABIArgInfo::getDirect(ResType);
4981     }
4982     if (Size == 64) {
4983       llvm::Type *ResType =
4984           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
4985       return ABIArgInfo::getDirect(ResType);
4986     }
4987     if (Size == 128) {
4988       llvm::Type *ResType =
4989           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
4990       return ABIArgInfo::getDirect(ResType);
4991     }
4992     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4993   }
4994 
4995   if (!isAggregateTypeForABI(Ty)) {
4996     // Treat an enum type as its underlying type.
4997     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4998       Ty = EnumTy->getDecl()->getIntegerType();
4999 
5000     return (Ty->isPromotableIntegerType() && isDarwinPCS()
5001                 ? ABIArgInfo::getExtend(Ty)
5002                 : ABIArgInfo::getDirect());
5003   }
5004 
5005   // Structures with either a non-trivial destructor or a non-trivial
5006   // copy constructor are always indirect.
5007   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5008     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
5009                                      CGCXXABI::RAA_DirectInMemory);
5010   }
5011 
5012   // Empty records are always ignored on Darwin, but actually passed in C++ mode
5013   // elsewhere for GNU compatibility.
5014   uint64_t Size = getContext().getTypeSize(Ty);
5015   bool IsEmpty = isEmptyRecord(getContext(), Ty, true);
5016   if (IsEmpty || Size == 0) {
5017     if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
5018       return ABIArgInfo::getIgnore();
5019 
5020     // GNU C mode. The only argument that gets ignored is an empty one with size
5021     // 0.
5022     if (IsEmpty && Size == 0)
5023       return ABIArgInfo::getIgnore();
5024     return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5025   }
5026 
5027   // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
5028   const Type *Base = nullptr;
5029   uint64_t Members = 0;
5030   if (isHomogeneousAggregate(Ty, Base, Members)) {
5031     return ABIArgInfo::getDirect(
5032         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
5033   }
5034 
5035   // Aggregates <= 16 bytes are passed directly in registers or on the stack.
5036   if (Size <= 128) {
5037     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5038     // same size and alignment.
5039     if (getTarget().isRenderScriptTarget()) {
5040       return coerceToIntArray(Ty, getContext(), getVMContext());
5041     }
5042     unsigned Alignment = getContext().getTypeAlign(Ty);
5043     Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes
5044 
5045     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5046     // For aggregates with 16-byte alignment, we use i128.
5047     if (Alignment < 128 && Size == 128) {
5048       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
5049       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
5050     }
5051     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
5052   }
5053 
5054   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5055 }
5056 
5057 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const {
5058   if (RetTy->isVoidType())
5059     return ABIArgInfo::getIgnore();
5060 
5061   // Large vector types should be returned via memory.
5062   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
5063     return getNaturalAlignIndirect(RetTy);
5064 
5065   if (!isAggregateTypeForABI(RetTy)) {
5066     // Treat an enum type as its underlying type.
5067     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5068       RetTy = EnumTy->getDecl()->getIntegerType();
5069 
5070     return (RetTy->isPromotableIntegerType() && isDarwinPCS()
5071                 ? ABIArgInfo::getExtend(RetTy)
5072                 : ABIArgInfo::getDirect());
5073   }
5074 
5075   uint64_t Size = getContext().getTypeSize(RetTy);
5076   if (isEmptyRecord(getContext(), RetTy, true) || Size == 0)
5077     return ABIArgInfo::getIgnore();
5078 
5079   const Type *Base = nullptr;
5080   uint64_t Members = 0;
5081   if (isHomogeneousAggregate(RetTy, Base, Members))
5082     // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
5083     return ABIArgInfo::getDirect();
5084 
5085   // Aggregates <= 16 bytes are returned directly in registers or on the stack.
5086   if (Size <= 128) {
5087     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5088     // same size and alignment.
5089     if (getTarget().isRenderScriptTarget()) {
5090       return coerceToIntArray(RetTy, getContext(), getVMContext());
5091     }
5092     unsigned Alignment = getContext().getTypeAlign(RetTy);
5093     Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes
5094 
5095     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5096     // For aggregates with 16-byte alignment, we use i128.
5097     if (Alignment < 128 && Size == 128) {
5098       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
5099       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
5100     }
5101     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
5102   }
5103 
5104   return getNaturalAlignIndirect(RetTy);
5105 }
5106 
5107 /// isIllegalVectorType - check whether the vector type is legal for AArch64.
5108 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
5109   if (const VectorType *VT = Ty->getAs<VectorType>()) {
5110     // Check whether VT is legal.
5111     unsigned NumElements = VT->getNumElements();
5112     uint64_t Size = getContext().getTypeSize(VT);
5113     // NumElements should be power of 2.
5114     if (!llvm::isPowerOf2_32(NumElements))
5115       return true;
5116     return Size != 64 && (Size != 128 || NumElements == 1);
5117   }
5118   return false;
5119 }
5120 
5121 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize,
5122                                                llvm::Type *eltTy,
5123                                                unsigned elts) const {
5124   if (!llvm::isPowerOf2_32(elts))
5125     return false;
5126   if (totalSize.getQuantity() != 8 &&
5127       (totalSize.getQuantity() != 16 || elts == 1))
5128     return false;
5129   return true;
5130 }
5131 
5132 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
5133   // Homogeneous aggregates for AAPCS64 must have base types of a floating
5134   // point type or a short-vector type. This is the same as the 32-bit ABI,
5135   // but with the difference that any floating-point type is allowed,
5136   // including __fp16.
5137   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
5138     if (BT->isFloatingPoint())
5139       return true;
5140   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
5141     unsigned VecSize = getContext().getTypeSize(VT);
5142     if (VecSize == 64 || VecSize == 128)
5143       return true;
5144   }
5145   return false;
5146 }
5147 
5148 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
5149                                                        uint64_t Members) const {
5150   return Members <= 4;
5151 }
5152 
5153 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr,
5154                                             QualType Ty,
5155                                             CodeGenFunction &CGF) const {
5156   ABIArgInfo AI = classifyArgumentType(Ty);
5157   bool IsIndirect = AI.isIndirect();
5158 
5159   llvm::Type *BaseTy = CGF.ConvertType(Ty);
5160   if (IsIndirect)
5161     BaseTy = llvm::PointerType::getUnqual(BaseTy);
5162   else if (AI.getCoerceToType())
5163     BaseTy = AI.getCoerceToType();
5164 
5165   unsigned NumRegs = 1;
5166   if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
5167     BaseTy = ArrTy->getElementType();
5168     NumRegs = ArrTy->getNumElements();
5169   }
5170   bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy();
5171 
5172   // The AArch64 va_list type and handling is specified in the Procedure Call
5173   // Standard, section B.4:
5174   //
5175   // struct {
5176   //   void *__stack;
5177   //   void *__gr_top;
5178   //   void *__vr_top;
5179   //   int __gr_offs;
5180   //   int __vr_offs;
5181   // };
5182 
5183   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
5184   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
5185   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
5186   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
5187 
5188   auto TyInfo = getContext().getTypeInfoInChars(Ty);
5189   CharUnits TyAlign = TyInfo.second;
5190 
5191   Address reg_offs_p = Address::invalid();
5192   llvm::Value *reg_offs = nullptr;
5193   int reg_top_index;
5194   CharUnits reg_top_offset;
5195   int RegSize = IsIndirect ? 8 : TyInfo.first.getQuantity();
5196   if (!IsFPR) {
5197     // 3 is the field number of __gr_offs
5198     reg_offs_p =
5199         CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24),
5200                                     "gr_offs_p");
5201     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
5202     reg_top_index = 1; // field number for __gr_top
5203     reg_top_offset = CharUnits::fromQuantity(8);
5204     RegSize = llvm::alignTo(RegSize, 8);
5205   } else {
5206     // 4 is the field number of __vr_offs.
5207     reg_offs_p =
5208         CGF.Builder.CreateStructGEP(VAListAddr, 4, CharUnits::fromQuantity(28),
5209                                     "vr_offs_p");
5210     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
5211     reg_top_index = 2; // field number for __vr_top
5212     reg_top_offset = CharUnits::fromQuantity(16);
5213     RegSize = 16 * NumRegs;
5214   }
5215 
5216   //=======================================
5217   // Find out where argument was passed
5218   //=======================================
5219 
5220   // If reg_offs >= 0 we're already using the stack for this type of
5221   // argument. We don't want to keep updating reg_offs (in case it overflows,
5222   // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
5223   // whatever they get).
5224   llvm::Value *UsingStack = nullptr;
5225   UsingStack = CGF.Builder.CreateICmpSGE(
5226       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
5227 
5228   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
5229 
5230   // Otherwise, at least some kind of argument could go in these registers, the
5231   // question is whether this particular type is too big.
5232   CGF.EmitBlock(MaybeRegBlock);
5233 
5234   // Integer arguments may need to correct register alignment (for example a
5235   // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
5236   // align __gr_offs to calculate the potential address.
5237   if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) {
5238     int Align = TyAlign.getQuantity();
5239 
5240     reg_offs = CGF.Builder.CreateAdd(
5241         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
5242         "align_regoffs");
5243     reg_offs = CGF.Builder.CreateAnd(
5244         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
5245         "aligned_regoffs");
5246   }
5247 
5248   // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
5249   // The fact that this is done unconditionally reflects the fact that
5250   // allocating an argument to the stack also uses up all the remaining
5251   // registers of the appropriate kind.
5252   llvm::Value *NewOffset = nullptr;
5253   NewOffset = CGF.Builder.CreateAdd(
5254       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
5255   CGF.Builder.CreateStore(NewOffset, reg_offs_p);
5256 
5257   // Now we're in a position to decide whether this argument really was in
5258   // registers or not.
5259   llvm::Value *InRegs = nullptr;
5260   InRegs = CGF.Builder.CreateICmpSLE(
5261       NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
5262 
5263   CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
5264 
5265   //=======================================
5266   // Argument was in registers
5267   //=======================================
5268 
5269   // Now we emit the code for if the argument was originally passed in
5270   // registers. First start the appropriate block:
5271   CGF.EmitBlock(InRegBlock);
5272 
5273   llvm::Value *reg_top = nullptr;
5274   Address reg_top_p = CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index,
5275                                                   reg_top_offset, "reg_top_p");
5276   reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
5277   Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs),
5278                    CharUnits::fromQuantity(IsFPR ? 16 : 8));
5279   Address RegAddr = Address::invalid();
5280   llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty);
5281 
5282   if (IsIndirect) {
5283     // If it's been passed indirectly (actually a struct), whatever we find from
5284     // stored registers or on the stack will actually be a struct **.
5285     MemTy = llvm::PointerType::getUnqual(MemTy);
5286   }
5287 
5288   const Type *Base = nullptr;
5289   uint64_t NumMembers = 0;
5290   bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
5291   if (IsHFA && NumMembers > 1) {
5292     // Homogeneous aggregates passed in registers will have their elements split
5293     // and stored 16-bytes apart regardless of size (they're notionally in qN,
5294     // qN+1, ...). We reload and store into a temporary local variable
5295     // contiguously.
5296     assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
5297     auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0));
5298     llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
5299     llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
5300     Address Tmp = CGF.CreateTempAlloca(HFATy,
5301                                        std::max(TyAlign, BaseTyInfo.second));
5302 
5303     // On big-endian platforms, the value will be right-aligned in its slot.
5304     int Offset = 0;
5305     if (CGF.CGM.getDataLayout().isBigEndian() &&
5306         BaseTyInfo.first.getQuantity() < 16)
5307       Offset = 16 - BaseTyInfo.first.getQuantity();
5308 
5309     for (unsigned i = 0; i < NumMembers; ++i) {
5310       CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset);
5311       Address LoadAddr =
5312         CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset);
5313       LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy);
5314 
5315       Address StoreAddr =
5316         CGF.Builder.CreateConstArrayGEP(Tmp, i, BaseTyInfo.first);
5317 
5318       llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
5319       CGF.Builder.CreateStore(Elem, StoreAddr);
5320     }
5321 
5322     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy);
5323   } else {
5324     // Otherwise the object is contiguous in memory.
5325 
5326     // It might be right-aligned in its slot.
5327     CharUnits SlotSize = BaseAddr.getAlignment();
5328     if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect &&
5329         (IsHFA || !isAggregateTypeForABI(Ty)) &&
5330         TyInfo.first < SlotSize) {
5331       CharUnits Offset = SlotSize - TyInfo.first;
5332       BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset);
5333     }
5334 
5335     RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy);
5336   }
5337 
5338   CGF.EmitBranch(ContBlock);
5339 
5340   //=======================================
5341   // Argument was on the stack
5342   //=======================================
5343   CGF.EmitBlock(OnStackBlock);
5344 
5345   Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0,
5346                                                 CharUnits::Zero(), "stack_p");
5347   llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack");
5348 
5349   // Again, stack arguments may need realignment. In this case both integer and
5350   // floating-point ones might be affected.
5351   if (!IsIndirect && TyAlign.getQuantity() > 8) {
5352     int Align = TyAlign.getQuantity();
5353 
5354     OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty);
5355 
5356     OnStackPtr = CGF.Builder.CreateAdd(
5357         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
5358         "align_stack");
5359     OnStackPtr = CGF.Builder.CreateAnd(
5360         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
5361         "align_stack");
5362 
5363     OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy);
5364   }
5365   Address OnStackAddr(OnStackPtr,
5366                       std::max(CharUnits::fromQuantity(8), TyAlign));
5367 
5368   // All stack slots are multiples of 8 bytes.
5369   CharUnits StackSlotSize = CharUnits::fromQuantity(8);
5370   CharUnits StackSize;
5371   if (IsIndirect)
5372     StackSize = StackSlotSize;
5373   else
5374     StackSize = TyInfo.first.alignTo(StackSlotSize);
5375 
5376   llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize);
5377   llvm::Value *NewStack =
5378       CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack");
5379 
5380   // Write the new value of __stack for the next call to va_arg
5381   CGF.Builder.CreateStore(NewStack, stack_p);
5382 
5383   if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
5384       TyInfo.first < StackSlotSize) {
5385     CharUnits Offset = StackSlotSize - TyInfo.first;
5386     OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset);
5387   }
5388 
5389   OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy);
5390 
5391   CGF.EmitBranch(ContBlock);
5392 
5393   //=======================================
5394   // Tidy up
5395   //=======================================
5396   CGF.EmitBlock(ContBlock);
5397 
5398   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
5399                                  OnStackAddr, OnStackBlock, "vaargs.addr");
5400 
5401   if (IsIndirect)
5402     return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"),
5403                    TyInfo.second);
5404 
5405   return ResAddr;
5406 }
5407 
5408 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty,
5409                                         CodeGenFunction &CGF) const {
5410   // The backend's lowering doesn't support va_arg for aggregates or
5411   // illegal vector types.  Lower VAArg here for these cases and use
5412   // the LLVM va_arg instruction for everything else.
5413   if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
5414     return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
5415 
5416   CharUnits SlotSize = CharUnits::fromQuantity(8);
5417 
5418   // Empty records are ignored for parameter passing purposes.
5419   if (isEmptyRecord(getContext(), Ty, true)) {
5420     Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
5421     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
5422     return Addr;
5423   }
5424 
5425   // The size of the actual thing passed, which might end up just
5426   // being a pointer for indirect types.
5427   auto TyInfo = getContext().getTypeInfoInChars(Ty);
5428 
5429   // Arguments bigger than 16 bytes which aren't homogeneous
5430   // aggregates should be passed indirectly.
5431   bool IsIndirect = false;
5432   if (TyInfo.first.getQuantity() > 16) {
5433     const Type *Base = nullptr;
5434     uint64_t Members = 0;
5435     IsIndirect = !isHomogeneousAggregate(Ty, Base, Members);
5436   }
5437 
5438   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
5439                           TyInfo, SlotSize, /*AllowHigherAlign*/ true);
5440 }
5441 
5442 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
5443                                     QualType Ty) const {
5444   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
5445                           CGF.getContext().getTypeInfoInChars(Ty),
5446                           CharUnits::fromQuantity(8),
5447                           /*allowHigherAlign*/ false);
5448 }
5449 
5450 //===----------------------------------------------------------------------===//
5451 // ARM ABI Implementation
5452 //===----------------------------------------------------------------------===//
5453 
5454 namespace {
5455 
5456 class ARMABIInfo : public SwiftABIInfo {
5457 public:
5458   enum ABIKind {
5459     APCS = 0,
5460     AAPCS = 1,
5461     AAPCS_VFP = 2,
5462     AAPCS16_VFP = 3,
5463   };
5464 
5465 private:
5466   ABIKind Kind;
5467 
5468 public:
5469   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind)
5470       : SwiftABIInfo(CGT), Kind(_Kind) {
5471     setCCs();
5472   }
5473 
5474   bool isEABI() const {
5475     switch (getTarget().getTriple().getEnvironment()) {
5476     case llvm::Triple::Android:
5477     case llvm::Triple::EABI:
5478     case llvm::Triple::EABIHF:
5479     case llvm::Triple::GNUEABI:
5480     case llvm::Triple::GNUEABIHF:
5481     case llvm::Triple::MuslEABI:
5482     case llvm::Triple::MuslEABIHF:
5483       return true;
5484     default:
5485       return false;
5486     }
5487   }
5488 
5489   bool isEABIHF() const {
5490     switch (getTarget().getTriple().getEnvironment()) {
5491     case llvm::Triple::EABIHF:
5492     case llvm::Triple::GNUEABIHF:
5493     case llvm::Triple::MuslEABIHF:
5494       return true;
5495     default:
5496       return false;
5497     }
5498   }
5499 
5500   ABIKind getABIKind() const { return Kind; }
5501 
5502 private:
5503   ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const;
5504   ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic) const;
5505   bool isIllegalVectorType(QualType Ty) const;
5506 
5507   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
5508   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
5509                                          uint64_t Members) const override;
5510 
5511   void computeInfo(CGFunctionInfo &FI) const override;
5512 
5513   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5514                     QualType Ty) const override;
5515 
5516   llvm::CallingConv::ID getLLVMDefaultCC() const;
5517   llvm::CallingConv::ID getABIDefaultCC() const;
5518   void setCCs();
5519 
5520   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
5521                                     bool asReturnValue) const override {
5522     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
5523   }
5524   bool isSwiftErrorInRegister() const override {
5525     return true;
5526   }
5527   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
5528                                  unsigned elts) const override;
5529 };
5530 
5531 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
5532 public:
5533   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
5534     :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
5535 
5536   const ARMABIInfo &getABIInfo() const {
5537     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
5538   }
5539 
5540   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5541     return 13;
5542   }
5543 
5544   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
5545     return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue";
5546   }
5547 
5548   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5549                                llvm::Value *Address) const override {
5550     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
5551 
5552     // 0-15 are the 16 integer registers.
5553     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
5554     return false;
5555   }
5556 
5557   unsigned getSizeOfUnwindException() const override {
5558     if (getABIInfo().isEABI()) return 88;
5559     return TargetCodeGenInfo::getSizeOfUnwindException();
5560   }
5561 
5562   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5563                            CodeGen::CodeGenModule &CGM) const override {
5564     if (GV->isDeclaration())
5565       return;
5566     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5567     if (!FD)
5568       return;
5569 
5570     const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
5571     if (!Attr)
5572       return;
5573 
5574     const char *Kind;
5575     switch (Attr->getInterrupt()) {
5576     case ARMInterruptAttr::Generic: Kind = ""; break;
5577     case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break;
5578     case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break;
5579     case ARMInterruptAttr::SWI:     Kind = "SWI"; break;
5580     case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break;
5581     case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break;
5582     }
5583 
5584     llvm::Function *Fn = cast<llvm::Function>(GV);
5585 
5586     Fn->addFnAttr("interrupt", Kind);
5587 
5588     ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind();
5589     if (ABI == ARMABIInfo::APCS)
5590       return;
5591 
5592     // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
5593     // however this is not necessarily true on taking any interrupt. Instruct
5594     // the backend to perform a realignment as part of the function prologue.
5595     llvm::AttrBuilder B;
5596     B.addStackAlignmentAttr(8);
5597     Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
5598   }
5599 };
5600 
5601 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo {
5602 public:
5603   WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
5604       : ARMTargetCodeGenInfo(CGT, K) {}
5605 
5606   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5607                            CodeGen::CodeGenModule &CGM) const override;
5608 
5609   void getDependentLibraryOption(llvm::StringRef Lib,
5610                                  llvm::SmallString<24> &Opt) const override {
5611     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
5612   }
5613 
5614   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
5615                                llvm::SmallString<32> &Opt) const override {
5616     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
5617   }
5618 };
5619 
5620 void WindowsARMTargetCodeGenInfo::setTargetAttributes(
5621     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
5622   ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
5623   if (GV->isDeclaration())
5624     return;
5625   addStackProbeSizeTargetAttribute(D, GV, CGM);
5626 }
5627 }
5628 
5629 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
5630   if (!getCXXABI().classifyReturnType(FI))
5631     FI.getReturnInfo() =
5632         classifyReturnType(FI.getReturnType(), FI.isVariadic());
5633 
5634   for (auto &I : FI.arguments())
5635     I.info = classifyArgumentType(I.type, FI.isVariadic());
5636 
5637   // Always honor user-specified calling convention.
5638   if (FI.getCallingConvention() != llvm::CallingConv::C)
5639     return;
5640 
5641   llvm::CallingConv::ID cc = getRuntimeCC();
5642   if (cc != llvm::CallingConv::C)
5643     FI.setEffectiveCallingConvention(cc);
5644 }
5645 
5646 /// Return the default calling convention that LLVM will use.
5647 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
5648   // The default calling convention that LLVM will infer.
5649   if (isEABIHF() || getTarget().getTriple().isWatchABI())
5650     return llvm::CallingConv::ARM_AAPCS_VFP;
5651   else if (isEABI())
5652     return llvm::CallingConv::ARM_AAPCS;
5653   else
5654     return llvm::CallingConv::ARM_APCS;
5655 }
5656 
5657 /// Return the calling convention that our ABI would like us to use
5658 /// as the C calling convention.
5659 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
5660   switch (getABIKind()) {
5661   case APCS: return llvm::CallingConv::ARM_APCS;
5662   case AAPCS: return llvm::CallingConv::ARM_AAPCS;
5663   case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
5664   case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
5665   }
5666   llvm_unreachable("bad ABI kind");
5667 }
5668 
5669 void ARMABIInfo::setCCs() {
5670   assert(getRuntimeCC() == llvm::CallingConv::C);
5671 
5672   // Don't muddy up the IR with a ton of explicit annotations if
5673   // they'd just match what LLVM will infer from the triple.
5674   llvm::CallingConv::ID abiCC = getABIDefaultCC();
5675   if (abiCC != getLLVMDefaultCC())
5676     RuntimeCC = abiCC;
5677 
5678   // AAPCS apparently requires runtime support functions to be soft-float, but
5679   // that's almost certainly for historic reasons (Thumb1 not supporting VFP
5680   // most likely). It's more convenient for AAPCS16_VFP to be hard-float.
5681 
5682   // The Run-time ABI for the ARM Architecture section 4.1.2 requires
5683   // AEABI-complying FP helper functions to use the base AAPCS.
5684   // These AEABI functions are expanded in the ARM llvm backend, all the builtin
5685   // support functions emitted by clang such as the _Complex helpers follow the
5686   // abiCC.
5687   if (abiCC != getLLVMDefaultCC())
5688       BuiltinCC = abiCC;
5689 }
5690 
5691 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty,
5692                                             bool isVariadic) const {
5693   // 6.1.2.1 The following argument types are VFP CPRCs:
5694   //   A single-precision floating-point type (including promoted
5695   //   half-precision types); A double-precision floating-point type;
5696   //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
5697   //   with a Base Type of a single- or double-precision floating-point type,
5698   //   64-bit containerized vectors or 128-bit containerized vectors with one
5699   //   to four Elements.
5700   bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic;
5701 
5702   Ty = useFirstFieldIfTransparentUnion(Ty);
5703 
5704   // Handle illegal vector types here.
5705   if (isIllegalVectorType(Ty)) {
5706     uint64_t Size = getContext().getTypeSize(Ty);
5707     if (Size <= 32) {
5708       llvm::Type *ResType =
5709           llvm::Type::getInt32Ty(getVMContext());
5710       return ABIArgInfo::getDirect(ResType);
5711     }
5712     if (Size == 64) {
5713       llvm::Type *ResType = llvm::VectorType::get(
5714           llvm::Type::getInt32Ty(getVMContext()), 2);
5715       return ABIArgInfo::getDirect(ResType);
5716     }
5717     if (Size == 128) {
5718       llvm::Type *ResType = llvm::VectorType::get(
5719           llvm::Type::getInt32Ty(getVMContext()), 4);
5720       return ABIArgInfo::getDirect(ResType);
5721     }
5722     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5723   }
5724 
5725   // _Float16 and __fp16 get passed as if it were an int or float, but with
5726   // the top 16 bits unspecified. This is not done for OpenCL as it handles the
5727   // half type natively, and does not need to interwork with AAPCS code.
5728   if ((Ty->isFloat16Type() || Ty->isHalfType()) &&
5729       !getContext().getLangOpts().NativeHalfArgsAndReturns) {
5730     llvm::Type *ResType = IsEffectivelyAAPCS_VFP ?
5731       llvm::Type::getFloatTy(getVMContext()) :
5732       llvm::Type::getInt32Ty(getVMContext());
5733     return ABIArgInfo::getDirect(ResType);
5734   }
5735 
5736   if (!isAggregateTypeForABI(Ty)) {
5737     // Treat an enum type as its underlying type.
5738     if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
5739       Ty = EnumTy->getDecl()->getIntegerType();
5740     }
5741 
5742     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
5743                                           : ABIArgInfo::getDirect());
5744   }
5745 
5746   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5747     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
5748   }
5749 
5750   // Ignore empty records.
5751   if (isEmptyRecord(getContext(), Ty, true))
5752     return ABIArgInfo::getIgnore();
5753 
5754   if (IsEffectivelyAAPCS_VFP) {
5755     // Homogeneous Aggregates need to be expanded when we can fit the aggregate
5756     // into VFP registers.
5757     const Type *Base = nullptr;
5758     uint64_t Members = 0;
5759     if (isHomogeneousAggregate(Ty, Base, Members)) {
5760       assert(Base && "Base class should be set for homogeneous aggregate");
5761       // Base can be a floating-point or a vector.
5762       return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
5763     }
5764   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
5765     // WatchOS does have homogeneous aggregates. Note that we intentionally use
5766     // this convention even for a variadic function: the backend will use GPRs
5767     // if needed.
5768     const Type *Base = nullptr;
5769     uint64_t Members = 0;
5770     if (isHomogeneousAggregate(Ty, Base, Members)) {
5771       assert(Base && Members <= 4 && "unexpected homogeneous aggregate");
5772       llvm::Type *Ty =
5773         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members);
5774       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
5775     }
5776   }
5777 
5778   if (getABIKind() == ARMABIInfo::AAPCS16_VFP &&
5779       getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) {
5780     // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're
5781     // bigger than 128-bits, they get placed in space allocated by the caller,
5782     // and a pointer is passed.
5783     return ABIArgInfo::getIndirect(
5784         CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false);
5785   }
5786 
5787   // Support byval for ARM.
5788   // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
5789   // most 8-byte. We realign the indirect argument if type alignment is bigger
5790   // than ABI alignment.
5791   uint64_t ABIAlign = 4;
5792   uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8;
5793   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
5794        getABIKind() == ARMABIInfo::AAPCS)
5795     ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
5796 
5797   if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
5798     assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval");
5799     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
5800                                    /*ByVal=*/true,
5801                                    /*Realign=*/TyAlign > ABIAlign);
5802   }
5803 
5804   // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of
5805   // same size and alignment.
5806   if (getTarget().isRenderScriptTarget()) {
5807     return coerceToIntArray(Ty, getContext(), getVMContext());
5808   }
5809 
5810   // Otherwise, pass by coercing to a structure of the appropriate size.
5811   llvm::Type* ElemTy;
5812   unsigned SizeRegs;
5813   // FIXME: Try to match the types of the arguments more accurately where
5814   // we can.
5815   if (getContext().getTypeAlign(Ty) <= 32) {
5816     ElemTy = llvm::Type::getInt32Ty(getVMContext());
5817     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
5818   } else {
5819     ElemTy = llvm::Type::getInt64Ty(getVMContext());
5820     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
5821   }
5822 
5823   return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
5824 }
5825 
5826 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
5827                               llvm::LLVMContext &VMContext) {
5828   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
5829   // is called integer-like if its size is less than or equal to one word, and
5830   // the offset of each of its addressable sub-fields is zero.
5831 
5832   uint64_t Size = Context.getTypeSize(Ty);
5833 
5834   // Check that the type fits in a word.
5835   if (Size > 32)
5836     return false;
5837 
5838   // FIXME: Handle vector types!
5839   if (Ty->isVectorType())
5840     return false;
5841 
5842   // Float types are never treated as "integer like".
5843   if (Ty->isRealFloatingType())
5844     return false;
5845 
5846   // If this is a builtin or pointer type then it is ok.
5847   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
5848     return true;
5849 
5850   // Small complex integer types are "integer like".
5851   if (const ComplexType *CT = Ty->getAs<ComplexType>())
5852     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
5853 
5854   // Single element and zero sized arrays should be allowed, by the definition
5855   // above, but they are not.
5856 
5857   // Otherwise, it must be a record type.
5858   const RecordType *RT = Ty->getAs<RecordType>();
5859   if (!RT) return false;
5860 
5861   // Ignore records with flexible arrays.
5862   const RecordDecl *RD = RT->getDecl();
5863   if (RD->hasFlexibleArrayMember())
5864     return false;
5865 
5866   // Check that all sub-fields are at offset 0, and are themselves "integer
5867   // like".
5868   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
5869 
5870   bool HadField = false;
5871   unsigned idx = 0;
5872   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
5873        i != e; ++i, ++idx) {
5874     const FieldDecl *FD = *i;
5875 
5876     // Bit-fields are not addressable, we only need to verify they are "integer
5877     // like". We still have to disallow a subsequent non-bitfield, for example:
5878     //   struct { int : 0; int x }
5879     // is non-integer like according to gcc.
5880     if (FD->isBitField()) {
5881       if (!RD->isUnion())
5882         HadField = true;
5883 
5884       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
5885         return false;
5886 
5887       continue;
5888     }
5889 
5890     // Check if this field is at offset 0.
5891     if (Layout.getFieldOffset(idx) != 0)
5892       return false;
5893 
5894     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
5895       return false;
5896 
5897     // Only allow at most one field in a structure. This doesn't match the
5898     // wording above, but follows gcc in situations with a field following an
5899     // empty structure.
5900     if (!RD->isUnion()) {
5901       if (HadField)
5902         return false;
5903 
5904       HadField = true;
5905     }
5906   }
5907 
5908   return true;
5909 }
5910 
5911 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy,
5912                                           bool isVariadic) const {
5913   bool IsEffectivelyAAPCS_VFP =
5914       (getABIKind() == AAPCS_VFP || getABIKind() == AAPCS16_VFP) && !isVariadic;
5915 
5916   if (RetTy->isVoidType())
5917     return ABIArgInfo::getIgnore();
5918 
5919   // Large vector types should be returned via memory.
5920   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) {
5921     return getNaturalAlignIndirect(RetTy);
5922   }
5923 
5924   // _Float16 and __fp16 get returned as if it were an int or float, but with
5925   // the top 16 bits unspecified. This is not done for OpenCL as it handles the
5926   // half type natively, and does not need to interwork with AAPCS code.
5927   if ((RetTy->isFloat16Type() || RetTy->isHalfType()) &&
5928       !getContext().getLangOpts().NativeHalfArgsAndReturns) {
5929     llvm::Type *ResType = IsEffectivelyAAPCS_VFP ?
5930       llvm::Type::getFloatTy(getVMContext()) :
5931       llvm::Type::getInt32Ty(getVMContext());
5932     return ABIArgInfo::getDirect(ResType);
5933   }
5934 
5935   if (!isAggregateTypeForABI(RetTy)) {
5936     // Treat an enum type as its underlying type.
5937     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5938       RetTy = EnumTy->getDecl()->getIntegerType();
5939 
5940     return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
5941                                             : ABIArgInfo::getDirect();
5942   }
5943 
5944   // Are we following APCS?
5945   if (getABIKind() == APCS) {
5946     if (isEmptyRecord(getContext(), RetTy, false))
5947       return ABIArgInfo::getIgnore();
5948 
5949     // Complex types are all returned as packed integers.
5950     //
5951     // FIXME: Consider using 2 x vector types if the back end handles them
5952     // correctly.
5953     if (RetTy->isAnyComplexType())
5954       return ABIArgInfo::getDirect(llvm::IntegerType::get(
5955           getVMContext(), getContext().getTypeSize(RetTy)));
5956 
5957     // Integer like structures are returned in r0.
5958     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
5959       // Return in the smallest viable integer type.
5960       uint64_t Size = getContext().getTypeSize(RetTy);
5961       if (Size <= 8)
5962         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5963       if (Size <= 16)
5964         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
5965       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5966     }
5967 
5968     // Otherwise return in memory.
5969     return getNaturalAlignIndirect(RetTy);
5970   }
5971 
5972   // Otherwise this is an AAPCS variant.
5973 
5974   if (isEmptyRecord(getContext(), RetTy, true))
5975     return ABIArgInfo::getIgnore();
5976 
5977   // Check for homogeneous aggregates with AAPCS-VFP.
5978   if (IsEffectivelyAAPCS_VFP) {
5979     const Type *Base = nullptr;
5980     uint64_t Members = 0;
5981     if (isHomogeneousAggregate(RetTy, Base, Members)) {
5982       assert(Base && "Base class should be set for homogeneous aggregate");
5983       // Homogeneous Aggregates are returned directly.
5984       return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
5985     }
5986   }
5987 
5988   // Aggregates <= 4 bytes are returned in r0; other aggregates
5989   // are returned indirectly.
5990   uint64_t Size = getContext().getTypeSize(RetTy);
5991   if (Size <= 32) {
5992     // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of
5993     // same size and alignment.
5994     if (getTarget().isRenderScriptTarget()) {
5995       return coerceToIntArray(RetTy, getContext(), getVMContext());
5996     }
5997     if (getDataLayout().isBigEndian())
5998       // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
5999       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6000 
6001     // Return in the smallest viable integer type.
6002     if (Size <= 8)
6003       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6004     if (Size <= 16)
6005       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6006     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6007   } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) {
6008     llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext());
6009     llvm::Type *CoerceTy =
6010         llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32);
6011     return ABIArgInfo::getDirect(CoerceTy);
6012   }
6013 
6014   return getNaturalAlignIndirect(RetTy);
6015 }
6016 
6017 /// isIllegalVector - check whether Ty is an illegal vector type.
6018 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
6019   if (const VectorType *VT = Ty->getAs<VectorType> ()) {
6020     if (isAndroid()) {
6021       // Android shipped using Clang 3.1, which supported a slightly different
6022       // vector ABI. The primary differences were that 3-element vector types
6023       // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path
6024       // accepts that legacy behavior for Android only.
6025       // Check whether VT is legal.
6026       unsigned NumElements = VT->getNumElements();
6027       // NumElements should be power of 2 or equal to 3.
6028       if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3)
6029         return true;
6030     } else {
6031       // Check whether VT is legal.
6032       unsigned NumElements = VT->getNumElements();
6033       uint64_t Size = getContext().getTypeSize(VT);
6034       // NumElements should be power of 2.
6035       if (!llvm::isPowerOf2_32(NumElements))
6036         return true;
6037       // Size should be greater than 32 bits.
6038       return Size <= 32;
6039     }
6040   }
6041   return false;
6042 }
6043 
6044 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
6045                                            llvm::Type *eltTy,
6046                                            unsigned numElts) const {
6047   if (!llvm::isPowerOf2_32(numElts))
6048     return false;
6049   unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy);
6050   if (size > 64)
6051     return false;
6052   if (vectorSize.getQuantity() != 8 &&
6053       (vectorSize.getQuantity() != 16 || numElts == 1))
6054     return false;
6055   return true;
6056 }
6057 
6058 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
6059   // Homogeneous aggregates for AAPCS-VFP must have base types of float,
6060   // double, or 64-bit or 128-bit vectors.
6061   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
6062     if (BT->getKind() == BuiltinType::Float ||
6063         BT->getKind() == BuiltinType::Double ||
6064         BT->getKind() == BuiltinType::LongDouble)
6065       return true;
6066   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
6067     unsigned VecSize = getContext().getTypeSize(VT);
6068     if (VecSize == 64 || VecSize == 128)
6069       return true;
6070   }
6071   return false;
6072 }
6073 
6074 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
6075                                                    uint64_t Members) const {
6076   return Members <= 4;
6077 }
6078 
6079 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6080                               QualType Ty) const {
6081   CharUnits SlotSize = CharUnits::fromQuantity(4);
6082 
6083   // Empty records are ignored for parameter passing purposes.
6084   if (isEmptyRecord(getContext(), Ty, true)) {
6085     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
6086     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
6087     return Addr;
6088   }
6089 
6090   auto TyInfo = getContext().getTypeInfoInChars(Ty);
6091   CharUnits TyAlignForABI = TyInfo.second;
6092 
6093   // Use indirect if size of the illegal vector is bigger than 16 bytes.
6094   bool IsIndirect = false;
6095   const Type *Base = nullptr;
6096   uint64_t Members = 0;
6097   if (TyInfo.first > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) {
6098     IsIndirect = true;
6099 
6100   // ARMv7k passes structs bigger than 16 bytes indirectly, in space
6101   // allocated by the caller.
6102   } else if (TyInfo.first > CharUnits::fromQuantity(16) &&
6103              getABIKind() == ARMABIInfo::AAPCS16_VFP &&
6104              !isHomogeneousAggregate(Ty, Base, Members)) {
6105     IsIndirect = true;
6106 
6107   // Otherwise, bound the type's ABI alignment.
6108   // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
6109   // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
6110   // Our callers should be prepared to handle an under-aligned address.
6111   } else if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
6112              getABIKind() == ARMABIInfo::AAPCS) {
6113     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6114     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8));
6115   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
6116     // ARMv7k allows type alignment up to 16 bytes.
6117     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6118     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16));
6119   } else {
6120     TyAlignForABI = CharUnits::fromQuantity(4);
6121   }
6122   TyInfo.second = TyAlignForABI;
6123 
6124   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo,
6125                           SlotSize, /*AllowHigherAlign*/ true);
6126 }
6127 
6128 //===----------------------------------------------------------------------===//
6129 // NVPTX ABI Implementation
6130 //===----------------------------------------------------------------------===//
6131 
6132 namespace {
6133 
6134 class NVPTXABIInfo : public ABIInfo {
6135 public:
6136   NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
6137 
6138   ABIArgInfo classifyReturnType(QualType RetTy) const;
6139   ABIArgInfo classifyArgumentType(QualType Ty) const;
6140 
6141   void computeInfo(CGFunctionInfo &FI) const override;
6142   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6143                     QualType Ty) const override;
6144 };
6145 
6146 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
6147 public:
6148   NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
6149     : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
6150 
6151   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6152                            CodeGen::CodeGenModule &M) const override;
6153 
6154 private:
6155   // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the
6156   // resulting MDNode to the nvvm.annotations MDNode.
6157   static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand);
6158 };
6159 
6160 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
6161   if (RetTy->isVoidType())
6162     return ABIArgInfo::getIgnore();
6163 
6164   // note: this is different from default ABI
6165   if (!RetTy->isScalarType())
6166     return ABIArgInfo::getDirect();
6167 
6168   // Treat an enum type as its underlying type.
6169   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6170     RetTy = EnumTy->getDecl()->getIntegerType();
6171 
6172   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
6173                                            : ABIArgInfo::getDirect());
6174 }
6175 
6176 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
6177   // Treat an enum type as its underlying type.
6178   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6179     Ty = EnumTy->getDecl()->getIntegerType();
6180 
6181   // Return aggregates type as indirect by value
6182   if (isAggregateTypeForABI(Ty))
6183     return getNaturalAlignIndirect(Ty, /* byval */ true);
6184 
6185   return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
6186                                         : ABIArgInfo::getDirect());
6187 }
6188 
6189 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
6190   if (!getCXXABI().classifyReturnType(FI))
6191     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
6192   for (auto &I : FI.arguments())
6193     I.info = classifyArgumentType(I.type);
6194 
6195   // Always honor user-specified calling convention.
6196   if (FI.getCallingConvention() != llvm::CallingConv::C)
6197     return;
6198 
6199   FI.setEffectiveCallingConvention(getRuntimeCC());
6200 }
6201 
6202 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6203                                 QualType Ty) const {
6204   llvm_unreachable("NVPTX does not support varargs");
6205 }
6206 
6207 void NVPTXTargetCodeGenInfo::setTargetAttributes(
6208     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
6209   if (GV->isDeclaration())
6210     return;
6211   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6212   if (!FD) return;
6213 
6214   llvm::Function *F = cast<llvm::Function>(GV);
6215 
6216   // Perform special handling in OpenCL mode
6217   if (M.getLangOpts().OpenCL) {
6218     // Use OpenCL function attributes to check for kernel functions
6219     // By default, all functions are device functions
6220     if (FD->hasAttr<OpenCLKernelAttr>()) {
6221       // OpenCL __kernel functions get kernel metadata
6222       // Create !{<func-ref>, metadata !"kernel", i32 1} node
6223       addNVVMMetadata(F, "kernel", 1);
6224       // And kernel functions are not subject to inlining
6225       F->addFnAttr(llvm::Attribute::NoInline);
6226     }
6227   }
6228 
6229   // Perform special handling in CUDA mode.
6230   if (M.getLangOpts().CUDA) {
6231     // CUDA __global__ functions get a kernel metadata entry.  Since
6232     // __global__ functions cannot be called from the device, we do not
6233     // need to set the noinline attribute.
6234     if (FD->hasAttr<CUDAGlobalAttr>()) {
6235       // Create !{<func-ref>, metadata !"kernel", i32 1} node
6236       addNVVMMetadata(F, "kernel", 1);
6237     }
6238     if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) {
6239       // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
6240       llvm::APSInt MaxThreads(32);
6241       MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext());
6242       if (MaxThreads > 0)
6243         addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue());
6244 
6245       // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was
6246       // not specified in __launch_bounds__ or if the user specified a 0 value,
6247       // we don't have to add a PTX directive.
6248       if (Attr->getMinBlocks()) {
6249         llvm::APSInt MinBlocks(32);
6250         MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext());
6251         if (MinBlocks > 0)
6252           // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
6253           addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue());
6254       }
6255     }
6256   }
6257 }
6258 
6259 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name,
6260                                              int Operand) {
6261   llvm::Module *M = F->getParent();
6262   llvm::LLVMContext &Ctx = M->getContext();
6263 
6264   // Get "nvvm.annotations" metadata node
6265   llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
6266 
6267   llvm::Metadata *MDVals[] = {
6268       llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name),
6269       llvm::ConstantAsMetadata::get(
6270           llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
6271   // Append metadata to nvvm.annotations
6272   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
6273 }
6274 }
6275 
6276 //===----------------------------------------------------------------------===//
6277 // SystemZ ABI Implementation
6278 //===----------------------------------------------------------------------===//
6279 
6280 namespace {
6281 
6282 class SystemZABIInfo : public SwiftABIInfo {
6283   bool HasVector;
6284 
6285 public:
6286   SystemZABIInfo(CodeGenTypes &CGT, bool HV)
6287     : SwiftABIInfo(CGT), HasVector(HV) {}
6288 
6289   bool isPromotableIntegerType(QualType Ty) const;
6290   bool isCompoundType(QualType Ty) const;
6291   bool isVectorArgumentType(QualType Ty) const;
6292   bool isFPArgumentType(QualType Ty) const;
6293   QualType GetSingleElementType(QualType Ty) const;
6294 
6295   ABIArgInfo classifyReturnType(QualType RetTy) const;
6296   ABIArgInfo classifyArgumentType(QualType ArgTy) const;
6297 
6298   void computeInfo(CGFunctionInfo &FI) const override {
6299     if (!getCXXABI().classifyReturnType(FI))
6300       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
6301     for (auto &I : FI.arguments())
6302       I.info = classifyArgumentType(I.type);
6303   }
6304 
6305   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6306                     QualType Ty) const override;
6307 
6308   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
6309                                     bool asReturnValue) const override {
6310     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
6311   }
6312   bool isSwiftErrorInRegister() const override {
6313     return false;
6314   }
6315 };
6316 
6317 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
6318 public:
6319   SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector)
6320     : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {}
6321 };
6322 
6323 }
6324 
6325 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
6326   // Treat an enum type as its underlying type.
6327   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6328     Ty = EnumTy->getDecl()->getIntegerType();
6329 
6330   // Promotable integer types are required to be promoted by the ABI.
6331   if (Ty->isPromotableIntegerType())
6332     return true;
6333 
6334   // 32-bit values must also be promoted.
6335   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
6336     switch (BT->getKind()) {
6337     case BuiltinType::Int:
6338     case BuiltinType::UInt:
6339       return true;
6340     default:
6341       return false;
6342     }
6343   return false;
6344 }
6345 
6346 bool SystemZABIInfo::isCompoundType(QualType Ty) const {
6347   return (Ty->isAnyComplexType() ||
6348           Ty->isVectorType() ||
6349           isAggregateTypeForABI(Ty));
6350 }
6351 
6352 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const {
6353   return (HasVector &&
6354           Ty->isVectorType() &&
6355           getContext().getTypeSize(Ty) <= 128);
6356 }
6357 
6358 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
6359   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
6360     switch (BT->getKind()) {
6361     case BuiltinType::Float:
6362     case BuiltinType::Double:
6363       return true;
6364     default:
6365       return false;
6366     }
6367 
6368   return false;
6369 }
6370 
6371 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const {
6372   if (const RecordType *RT = Ty->getAsStructureType()) {
6373     const RecordDecl *RD = RT->getDecl();
6374     QualType Found;
6375 
6376     // If this is a C++ record, check the bases first.
6377     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
6378       for (const auto &I : CXXRD->bases()) {
6379         QualType Base = I.getType();
6380 
6381         // Empty bases don't affect things either way.
6382         if (isEmptyRecord(getContext(), Base, true))
6383           continue;
6384 
6385         if (!Found.isNull())
6386           return Ty;
6387         Found = GetSingleElementType(Base);
6388       }
6389 
6390     // Check the fields.
6391     for (const auto *FD : RD->fields()) {
6392       // For compatibility with GCC, ignore empty bitfields in C++ mode.
6393       // Unlike isSingleElementStruct(), empty structure and array fields
6394       // do count.  So do anonymous bitfields that aren't zero-sized.
6395       if (getContext().getLangOpts().CPlusPlus &&
6396           FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
6397         continue;
6398 
6399       // Unlike isSingleElementStruct(), arrays do not count.
6400       // Nested structures still do though.
6401       if (!Found.isNull())
6402         return Ty;
6403       Found = GetSingleElementType(FD->getType());
6404     }
6405 
6406     // Unlike isSingleElementStruct(), trailing padding is allowed.
6407     // An 8-byte aligned struct s { float f; } is passed as a double.
6408     if (!Found.isNull())
6409       return Found;
6410   }
6411 
6412   return Ty;
6413 }
6414 
6415 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6416                                   QualType Ty) const {
6417   // Assume that va_list type is correct; should be pointer to LLVM type:
6418   // struct {
6419   //   i64 __gpr;
6420   //   i64 __fpr;
6421   //   i8 *__overflow_arg_area;
6422   //   i8 *__reg_save_area;
6423   // };
6424 
6425   // Every non-vector argument occupies 8 bytes and is passed by preference
6426   // in either GPRs or FPRs.  Vector arguments occupy 8 or 16 bytes and are
6427   // always passed on the stack.
6428   Ty = getContext().getCanonicalType(Ty);
6429   auto TyInfo = getContext().getTypeInfoInChars(Ty);
6430   llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty);
6431   llvm::Type *DirectTy = ArgTy;
6432   ABIArgInfo AI = classifyArgumentType(Ty);
6433   bool IsIndirect = AI.isIndirect();
6434   bool InFPRs = false;
6435   bool IsVector = false;
6436   CharUnits UnpaddedSize;
6437   CharUnits DirectAlign;
6438   if (IsIndirect) {
6439     DirectTy = llvm::PointerType::getUnqual(DirectTy);
6440     UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8);
6441   } else {
6442     if (AI.getCoerceToType())
6443       ArgTy = AI.getCoerceToType();
6444     InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy();
6445     IsVector = ArgTy->isVectorTy();
6446     UnpaddedSize = TyInfo.first;
6447     DirectAlign = TyInfo.second;
6448   }
6449   CharUnits PaddedSize = CharUnits::fromQuantity(8);
6450   if (IsVector && UnpaddedSize > PaddedSize)
6451     PaddedSize = CharUnits::fromQuantity(16);
6452   assert((UnpaddedSize <= PaddedSize) && "Invalid argument size.");
6453 
6454   CharUnits Padding = (PaddedSize - UnpaddedSize);
6455 
6456   llvm::Type *IndexTy = CGF.Int64Ty;
6457   llvm::Value *PaddedSizeV =
6458     llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity());
6459 
6460   if (IsVector) {
6461     // Work out the address of a vector argument on the stack.
6462     // Vector arguments are always passed in the high bits of a
6463     // single (8 byte) or double (16 byte) stack slot.
6464     Address OverflowArgAreaPtr =
6465       CGF.Builder.CreateStructGEP(VAListAddr, 2, CharUnits::fromQuantity(16),
6466                                   "overflow_arg_area_ptr");
6467     Address OverflowArgArea =
6468       Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
6469               TyInfo.second);
6470     Address MemAddr =
6471       CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr");
6472 
6473     // Update overflow_arg_area_ptr pointer
6474     llvm::Value *NewOverflowArgArea =
6475       CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
6476                             "overflow_arg_area");
6477     CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
6478 
6479     return MemAddr;
6480   }
6481 
6482   assert(PaddedSize.getQuantity() == 8);
6483 
6484   unsigned MaxRegs, RegCountField, RegSaveIndex;
6485   CharUnits RegPadding;
6486   if (InFPRs) {
6487     MaxRegs = 4; // Maximum of 4 FPR arguments
6488     RegCountField = 1; // __fpr
6489     RegSaveIndex = 16; // save offset for f0
6490     RegPadding = CharUnits(); // floats are passed in the high bits of an FPR
6491   } else {
6492     MaxRegs = 5; // Maximum of 5 GPR arguments
6493     RegCountField = 0; // __gpr
6494     RegSaveIndex = 2; // save offset for r2
6495     RegPadding = Padding; // values are passed in the low bits of a GPR
6496   }
6497 
6498   Address RegCountPtr = CGF.Builder.CreateStructGEP(
6499       VAListAddr, RegCountField, RegCountField * CharUnits::fromQuantity(8),
6500       "reg_count_ptr");
6501   llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
6502   llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
6503   llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
6504                                                  "fits_in_regs");
6505 
6506   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
6507   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
6508   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
6509   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
6510 
6511   // Emit code to load the value if it was passed in registers.
6512   CGF.EmitBlock(InRegBlock);
6513 
6514   // Work out the address of an argument register.
6515   llvm::Value *ScaledRegCount =
6516     CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
6517   llvm::Value *RegBase =
6518     llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity()
6519                                       + RegPadding.getQuantity());
6520   llvm::Value *RegOffset =
6521     CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
6522   Address RegSaveAreaPtr =
6523       CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24),
6524                                   "reg_save_area_ptr");
6525   llvm::Value *RegSaveArea =
6526     CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
6527   Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset,
6528                                            "raw_reg_addr"),
6529                      PaddedSize);
6530   Address RegAddr =
6531     CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr");
6532 
6533   // Update the register count
6534   llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
6535   llvm::Value *NewRegCount =
6536     CGF.Builder.CreateAdd(RegCount, One, "reg_count");
6537   CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
6538   CGF.EmitBranch(ContBlock);
6539 
6540   // Emit code to load the value if it was passed in memory.
6541   CGF.EmitBlock(InMemBlock);
6542 
6543   // Work out the address of a stack argument.
6544   Address OverflowArgAreaPtr = CGF.Builder.CreateStructGEP(
6545       VAListAddr, 2, CharUnits::fromQuantity(16), "overflow_arg_area_ptr");
6546   Address OverflowArgArea =
6547     Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
6548             PaddedSize);
6549   Address RawMemAddr =
6550     CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr");
6551   Address MemAddr =
6552     CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr");
6553 
6554   // Update overflow_arg_area_ptr pointer
6555   llvm::Value *NewOverflowArgArea =
6556     CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
6557                           "overflow_arg_area");
6558   CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
6559   CGF.EmitBranch(ContBlock);
6560 
6561   // Return the appropriate result.
6562   CGF.EmitBlock(ContBlock);
6563   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
6564                                  MemAddr, InMemBlock, "va_arg.addr");
6565 
6566   if (IsIndirect)
6567     ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"),
6568                       TyInfo.second);
6569 
6570   return ResAddr;
6571 }
6572 
6573 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
6574   if (RetTy->isVoidType())
6575     return ABIArgInfo::getIgnore();
6576   if (isVectorArgumentType(RetTy))
6577     return ABIArgInfo::getDirect();
6578   if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
6579     return getNaturalAlignIndirect(RetTy);
6580   return (isPromotableIntegerType(RetTy) ? ABIArgInfo::getExtend(RetTy)
6581                                          : ABIArgInfo::getDirect());
6582 }
6583 
6584 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
6585   // Handle the generic C++ ABI.
6586   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
6587     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6588 
6589   // Integers and enums are extended to full register width.
6590   if (isPromotableIntegerType(Ty))
6591     return ABIArgInfo::getExtend(Ty);
6592 
6593   // Handle vector types and vector-like structure types.  Note that
6594   // as opposed to float-like structure types, we do not allow any
6595   // padding for vector-like structures, so verify the sizes match.
6596   uint64_t Size = getContext().getTypeSize(Ty);
6597   QualType SingleElementTy = GetSingleElementType(Ty);
6598   if (isVectorArgumentType(SingleElementTy) &&
6599       getContext().getTypeSize(SingleElementTy) == Size)
6600     return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy));
6601 
6602   // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
6603   if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
6604     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6605 
6606   // Handle small structures.
6607   if (const RecordType *RT = Ty->getAs<RecordType>()) {
6608     // Structures with flexible arrays have variable length, so really
6609     // fail the size test above.
6610     const RecordDecl *RD = RT->getDecl();
6611     if (RD->hasFlexibleArrayMember())
6612       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6613 
6614     // The structure is passed as an unextended integer, a float, or a double.
6615     llvm::Type *PassTy;
6616     if (isFPArgumentType(SingleElementTy)) {
6617       assert(Size == 32 || Size == 64);
6618       if (Size == 32)
6619         PassTy = llvm::Type::getFloatTy(getVMContext());
6620       else
6621         PassTy = llvm::Type::getDoubleTy(getVMContext());
6622     } else
6623       PassTy = llvm::IntegerType::get(getVMContext(), Size);
6624     return ABIArgInfo::getDirect(PassTy);
6625   }
6626 
6627   // Non-structure compounds are passed indirectly.
6628   if (isCompoundType(Ty))
6629     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6630 
6631   return ABIArgInfo::getDirect(nullptr);
6632 }
6633 
6634 //===----------------------------------------------------------------------===//
6635 // MSP430 ABI Implementation
6636 //===----------------------------------------------------------------------===//
6637 
6638 namespace {
6639 
6640 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
6641 public:
6642   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
6643     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
6644   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6645                            CodeGen::CodeGenModule &M) const override;
6646 };
6647 
6648 }
6649 
6650 void MSP430TargetCodeGenInfo::setTargetAttributes(
6651     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
6652   if (GV->isDeclaration())
6653     return;
6654   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
6655     if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
6656       // Handle 'interrupt' attribute:
6657       llvm::Function *F = cast<llvm::Function>(GV);
6658 
6659       // Step 1: Set ISR calling convention.
6660       F->setCallingConv(llvm::CallingConv::MSP430_INTR);
6661 
6662       // Step 2: Add attributes goodness.
6663       F->addFnAttr(llvm::Attribute::NoInline);
6664 
6665       // Step 3: Emit ISR vector alias.
6666       unsigned Num = attr->getNumber() / 2;
6667       llvm::GlobalAlias::create(llvm::Function::ExternalLinkage,
6668                                 "__isr_" + Twine(Num), F);
6669     }
6670   }
6671 }
6672 
6673 //===----------------------------------------------------------------------===//
6674 // MIPS ABI Implementation.  This works for both little-endian and
6675 // big-endian variants.
6676 //===----------------------------------------------------------------------===//
6677 
6678 namespace {
6679 class MipsABIInfo : public ABIInfo {
6680   bool IsO32;
6681   unsigned MinABIStackAlignInBytes, StackAlignInBytes;
6682   void CoerceToIntArgs(uint64_t TySize,
6683                        SmallVectorImpl<llvm::Type *> &ArgList) const;
6684   llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
6685   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
6686   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
6687 public:
6688   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
6689     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
6690     StackAlignInBytes(IsO32 ? 8 : 16) {}
6691 
6692   ABIArgInfo classifyReturnType(QualType RetTy) const;
6693   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
6694   void computeInfo(CGFunctionInfo &FI) const override;
6695   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6696                     QualType Ty) const override;
6697   ABIArgInfo extendType(QualType Ty) const;
6698 };
6699 
6700 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
6701   unsigned SizeOfUnwindException;
6702 public:
6703   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
6704     : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
6705       SizeOfUnwindException(IsO32 ? 24 : 32) {}
6706 
6707   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
6708     return 29;
6709   }
6710 
6711   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6712                            CodeGen::CodeGenModule &CGM) const override {
6713     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6714     if (!FD) return;
6715     llvm::Function *Fn = cast<llvm::Function>(GV);
6716 
6717     if (FD->hasAttr<MipsLongCallAttr>())
6718       Fn->addFnAttr("long-call");
6719     else if (FD->hasAttr<MipsShortCallAttr>())
6720       Fn->addFnAttr("short-call");
6721 
6722     // Other attributes do not have a meaning for declarations.
6723     if (GV->isDeclaration())
6724       return;
6725 
6726     if (FD->hasAttr<Mips16Attr>()) {
6727       Fn->addFnAttr("mips16");
6728     }
6729     else if (FD->hasAttr<NoMips16Attr>()) {
6730       Fn->addFnAttr("nomips16");
6731     }
6732 
6733     if (FD->hasAttr<MicroMipsAttr>())
6734       Fn->addFnAttr("micromips");
6735     else if (FD->hasAttr<NoMicroMipsAttr>())
6736       Fn->addFnAttr("nomicromips");
6737 
6738     const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>();
6739     if (!Attr)
6740       return;
6741 
6742     const char *Kind;
6743     switch (Attr->getInterrupt()) {
6744     case MipsInterruptAttr::eic:     Kind = "eic"; break;
6745     case MipsInterruptAttr::sw0:     Kind = "sw0"; break;
6746     case MipsInterruptAttr::sw1:     Kind = "sw1"; break;
6747     case MipsInterruptAttr::hw0:     Kind = "hw0"; break;
6748     case MipsInterruptAttr::hw1:     Kind = "hw1"; break;
6749     case MipsInterruptAttr::hw2:     Kind = "hw2"; break;
6750     case MipsInterruptAttr::hw3:     Kind = "hw3"; break;
6751     case MipsInterruptAttr::hw4:     Kind = "hw4"; break;
6752     case MipsInterruptAttr::hw5:     Kind = "hw5"; break;
6753     }
6754 
6755     Fn->addFnAttr("interrupt", Kind);
6756 
6757   }
6758 
6759   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6760                                llvm::Value *Address) const override;
6761 
6762   unsigned getSizeOfUnwindException() const override {
6763     return SizeOfUnwindException;
6764   }
6765 };
6766 }
6767 
6768 void MipsABIInfo::CoerceToIntArgs(
6769     uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const {
6770   llvm::IntegerType *IntTy =
6771     llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
6772 
6773   // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
6774   for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
6775     ArgList.push_back(IntTy);
6776 
6777   // If necessary, add one more integer type to ArgList.
6778   unsigned R = TySize % (MinABIStackAlignInBytes * 8);
6779 
6780   if (R)
6781     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
6782 }
6783 
6784 // In N32/64, an aligned double precision floating point field is passed in
6785 // a register.
6786 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
6787   SmallVector<llvm::Type*, 8> ArgList, IntArgList;
6788 
6789   if (IsO32) {
6790     CoerceToIntArgs(TySize, ArgList);
6791     return llvm::StructType::get(getVMContext(), ArgList);
6792   }
6793 
6794   if (Ty->isComplexType())
6795     return CGT.ConvertType(Ty);
6796 
6797   const RecordType *RT = Ty->getAs<RecordType>();
6798 
6799   // Unions/vectors are passed in integer registers.
6800   if (!RT || !RT->isStructureOrClassType()) {
6801     CoerceToIntArgs(TySize, ArgList);
6802     return llvm::StructType::get(getVMContext(), ArgList);
6803   }
6804 
6805   const RecordDecl *RD = RT->getDecl();
6806   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
6807   assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
6808 
6809   uint64_t LastOffset = 0;
6810   unsigned idx = 0;
6811   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
6812 
6813   // Iterate over fields in the struct/class and check if there are any aligned
6814   // double fields.
6815   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
6816        i != e; ++i, ++idx) {
6817     const QualType Ty = i->getType();
6818     const BuiltinType *BT = Ty->getAs<BuiltinType>();
6819 
6820     if (!BT || BT->getKind() != BuiltinType::Double)
6821       continue;
6822 
6823     uint64_t Offset = Layout.getFieldOffset(idx);
6824     if (Offset % 64) // Ignore doubles that are not aligned.
6825       continue;
6826 
6827     // Add ((Offset - LastOffset) / 64) args of type i64.
6828     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
6829       ArgList.push_back(I64);
6830 
6831     // Add double type.
6832     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
6833     LastOffset = Offset + 64;
6834   }
6835 
6836   CoerceToIntArgs(TySize - LastOffset, IntArgList);
6837   ArgList.append(IntArgList.begin(), IntArgList.end());
6838 
6839   return llvm::StructType::get(getVMContext(), ArgList);
6840 }
6841 
6842 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
6843                                         uint64_t Offset) const {
6844   if (OrigOffset + MinABIStackAlignInBytes > Offset)
6845     return nullptr;
6846 
6847   return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
6848 }
6849 
6850 ABIArgInfo
6851 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
6852   Ty = useFirstFieldIfTransparentUnion(Ty);
6853 
6854   uint64_t OrigOffset = Offset;
6855   uint64_t TySize = getContext().getTypeSize(Ty);
6856   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
6857 
6858   Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
6859                    (uint64_t)StackAlignInBytes);
6860   unsigned CurrOffset = llvm::alignTo(Offset, Align);
6861   Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8;
6862 
6863   if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
6864     // Ignore empty aggregates.
6865     if (TySize == 0)
6866       return ABIArgInfo::getIgnore();
6867 
6868     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
6869       Offset = OrigOffset + MinABIStackAlignInBytes;
6870       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6871     }
6872 
6873     // If we have reached here, aggregates are passed directly by coercing to
6874     // another structure type. Padding is inserted if the offset of the
6875     // aggregate is unaligned.
6876     ABIArgInfo ArgInfo =
6877         ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
6878                               getPaddingType(OrigOffset, CurrOffset));
6879     ArgInfo.setInReg(true);
6880     return ArgInfo;
6881   }
6882 
6883   // Treat an enum type as its underlying type.
6884   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6885     Ty = EnumTy->getDecl()->getIntegerType();
6886 
6887   // All integral types are promoted to the GPR width.
6888   if (Ty->isIntegralOrEnumerationType())
6889     return extendType(Ty);
6890 
6891   return ABIArgInfo::getDirect(
6892       nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
6893 }
6894 
6895 llvm::Type*
6896 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
6897   const RecordType *RT = RetTy->getAs<RecordType>();
6898   SmallVector<llvm::Type*, 8> RTList;
6899 
6900   if (RT && RT->isStructureOrClassType()) {
6901     const RecordDecl *RD = RT->getDecl();
6902     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
6903     unsigned FieldCnt = Layout.getFieldCount();
6904 
6905     // N32/64 returns struct/classes in floating point registers if the
6906     // following conditions are met:
6907     // 1. The size of the struct/class is no larger than 128-bit.
6908     // 2. The struct/class has one or two fields all of which are floating
6909     //    point types.
6910     // 3. The offset of the first field is zero (this follows what gcc does).
6911     //
6912     // Any other composite results are returned in integer registers.
6913     //
6914     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
6915       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
6916       for (; b != e; ++b) {
6917         const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
6918 
6919         if (!BT || !BT->isFloatingPoint())
6920           break;
6921 
6922         RTList.push_back(CGT.ConvertType(b->getType()));
6923       }
6924 
6925       if (b == e)
6926         return llvm::StructType::get(getVMContext(), RTList,
6927                                      RD->hasAttr<PackedAttr>());
6928 
6929       RTList.clear();
6930     }
6931   }
6932 
6933   CoerceToIntArgs(Size, RTList);
6934   return llvm::StructType::get(getVMContext(), RTList);
6935 }
6936 
6937 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
6938   uint64_t Size = getContext().getTypeSize(RetTy);
6939 
6940   if (RetTy->isVoidType())
6941     return ABIArgInfo::getIgnore();
6942 
6943   // O32 doesn't treat zero-sized structs differently from other structs.
6944   // However, N32/N64 ignores zero sized return values.
6945   if (!IsO32 && Size == 0)
6946     return ABIArgInfo::getIgnore();
6947 
6948   if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
6949     if (Size <= 128) {
6950       if (RetTy->isAnyComplexType())
6951         return ABIArgInfo::getDirect();
6952 
6953       // O32 returns integer vectors in registers and N32/N64 returns all small
6954       // aggregates in registers.
6955       if (!IsO32 ||
6956           (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
6957         ABIArgInfo ArgInfo =
6958             ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
6959         ArgInfo.setInReg(true);
6960         return ArgInfo;
6961       }
6962     }
6963 
6964     return getNaturalAlignIndirect(RetTy);
6965   }
6966 
6967   // Treat an enum type as its underlying type.
6968   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6969     RetTy = EnumTy->getDecl()->getIntegerType();
6970 
6971   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
6972                                            : ABIArgInfo::getDirect());
6973 }
6974 
6975 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
6976   ABIArgInfo &RetInfo = FI.getReturnInfo();
6977   if (!getCXXABI().classifyReturnType(FI))
6978     RetInfo = classifyReturnType(FI.getReturnType());
6979 
6980   // Check if a pointer to an aggregate is passed as a hidden argument.
6981   uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
6982 
6983   for (auto &I : FI.arguments())
6984     I.info = classifyArgumentType(I.type, Offset);
6985 }
6986 
6987 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6988                                QualType OrigTy) const {
6989   QualType Ty = OrigTy;
6990 
6991   // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64.
6992   // Pointers are also promoted in the same way but this only matters for N32.
6993   unsigned SlotSizeInBits = IsO32 ? 32 : 64;
6994   unsigned PtrWidth = getTarget().getPointerWidth(0);
6995   bool DidPromote = false;
6996   if ((Ty->isIntegerType() &&
6997           getContext().getIntWidth(Ty) < SlotSizeInBits) ||
6998       (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) {
6999     DidPromote = true;
7000     Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits,
7001                                             Ty->isSignedIntegerType());
7002   }
7003 
7004   auto TyInfo = getContext().getTypeInfoInChars(Ty);
7005 
7006   // The alignment of things in the argument area is never larger than
7007   // StackAlignInBytes.
7008   TyInfo.second =
7009     std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes));
7010 
7011   // MinABIStackAlignInBytes is the size of argument slots on the stack.
7012   CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes);
7013 
7014   Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
7015                           TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true);
7016 
7017 
7018   // If there was a promotion, "unpromote" into a temporary.
7019   // TODO: can we just use a pointer into a subset of the original slot?
7020   if (DidPromote) {
7021     Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp");
7022     llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr);
7023 
7024     // Truncate down to the right width.
7025     llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType()
7026                                                  : CGF.IntPtrTy);
7027     llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy);
7028     if (OrigTy->isPointerType())
7029       V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType());
7030 
7031     CGF.Builder.CreateStore(V, Temp);
7032     Addr = Temp;
7033   }
7034 
7035   return Addr;
7036 }
7037 
7038 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const {
7039   int TySize = getContext().getTypeSize(Ty);
7040 
7041   // MIPS64 ABI requires unsigned 32 bit integers to be sign extended.
7042   if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
7043     return ABIArgInfo::getSignExtend(Ty);
7044 
7045   return ABIArgInfo::getExtend(Ty);
7046 }
7047 
7048 bool
7049 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
7050                                                llvm::Value *Address) const {
7051   // This information comes from gcc's implementation, which seems to
7052   // as canonical as it gets.
7053 
7054   // Everything on MIPS is 4 bytes.  Double-precision FP registers
7055   // are aliased to pairs of single-precision FP registers.
7056   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
7057 
7058   // 0-31 are the general purpose registers, $0 - $31.
7059   // 32-63 are the floating-point registers, $f0 - $f31.
7060   // 64 and 65 are the multiply/divide registers, $hi and $lo.
7061   // 66 is the (notional, I think) register for signal-handler return.
7062   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
7063 
7064   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
7065   // They are one bit wide and ignored here.
7066 
7067   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
7068   // (coprocessor 1 is the FP unit)
7069   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
7070   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
7071   // 176-181 are the DSP accumulator registers.
7072   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
7073   return false;
7074 }
7075 
7076 //===----------------------------------------------------------------------===//
7077 // AVR ABI Implementation.
7078 //===----------------------------------------------------------------------===//
7079 
7080 namespace {
7081 class AVRTargetCodeGenInfo : public TargetCodeGenInfo {
7082 public:
7083   AVRTargetCodeGenInfo(CodeGenTypes &CGT)
7084     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) { }
7085 
7086   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7087                            CodeGen::CodeGenModule &CGM) const override {
7088     if (GV->isDeclaration())
7089       return;
7090     const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
7091     if (!FD) return;
7092     auto *Fn = cast<llvm::Function>(GV);
7093 
7094     if (FD->getAttr<AVRInterruptAttr>())
7095       Fn->addFnAttr("interrupt");
7096 
7097     if (FD->getAttr<AVRSignalAttr>())
7098       Fn->addFnAttr("signal");
7099   }
7100 };
7101 }
7102 
7103 //===----------------------------------------------------------------------===//
7104 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
7105 // Currently subclassed only to implement custom OpenCL C function attribute
7106 // handling.
7107 //===----------------------------------------------------------------------===//
7108 
7109 namespace {
7110 
7111 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
7112 public:
7113   TCETargetCodeGenInfo(CodeGenTypes &CGT)
7114     : DefaultTargetCodeGenInfo(CGT) {}
7115 
7116   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7117                            CodeGen::CodeGenModule &M) const override;
7118 };
7119 
7120 void TCETargetCodeGenInfo::setTargetAttributes(
7121     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
7122   if (GV->isDeclaration())
7123     return;
7124   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7125   if (!FD) return;
7126 
7127   llvm::Function *F = cast<llvm::Function>(GV);
7128 
7129   if (M.getLangOpts().OpenCL) {
7130     if (FD->hasAttr<OpenCLKernelAttr>()) {
7131       // OpenCL C Kernel functions are not subject to inlining
7132       F->addFnAttr(llvm::Attribute::NoInline);
7133       const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
7134       if (Attr) {
7135         // Convert the reqd_work_group_size() attributes to metadata.
7136         llvm::LLVMContext &Context = F->getContext();
7137         llvm::NamedMDNode *OpenCLMetadata =
7138             M.getModule().getOrInsertNamedMetadata(
7139                 "opencl.kernel_wg_size_info");
7140 
7141         SmallVector<llvm::Metadata *, 5> Operands;
7142         Operands.push_back(llvm::ConstantAsMetadata::get(F));
7143 
7144         Operands.push_back(
7145             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
7146                 M.Int32Ty, llvm::APInt(32, Attr->getXDim()))));
7147         Operands.push_back(
7148             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
7149                 M.Int32Ty, llvm::APInt(32, Attr->getYDim()))));
7150         Operands.push_back(
7151             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
7152                 M.Int32Ty, llvm::APInt(32, Attr->getZDim()))));
7153 
7154         // Add a boolean constant operand for "required" (true) or "hint"
7155         // (false) for implementing the work_group_size_hint attr later.
7156         // Currently always true as the hint is not yet implemented.
7157         Operands.push_back(
7158             llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context)));
7159         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
7160       }
7161     }
7162   }
7163 }
7164 
7165 }
7166 
7167 //===----------------------------------------------------------------------===//
7168 // Hexagon ABI Implementation
7169 //===----------------------------------------------------------------------===//
7170 
7171 namespace {
7172 
7173 class HexagonABIInfo : public ABIInfo {
7174 
7175 
7176 public:
7177   HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
7178 
7179 private:
7180 
7181   ABIArgInfo classifyReturnType(QualType RetTy) const;
7182   ABIArgInfo classifyArgumentType(QualType RetTy) const;
7183 
7184   void computeInfo(CGFunctionInfo &FI) const override;
7185 
7186   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7187                     QualType Ty) const override;
7188 };
7189 
7190 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
7191 public:
7192   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
7193     :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
7194 
7195   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
7196     return 29;
7197   }
7198 };
7199 
7200 }
7201 
7202 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
7203   if (!getCXXABI().classifyReturnType(FI))
7204     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7205   for (auto &I : FI.arguments())
7206     I.info = classifyArgumentType(I.type);
7207 }
7208 
7209 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
7210   if (!isAggregateTypeForABI(Ty)) {
7211     // Treat an enum type as its underlying type.
7212     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7213       Ty = EnumTy->getDecl()->getIntegerType();
7214 
7215     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
7216                                           : ABIArgInfo::getDirect());
7217   }
7218 
7219   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
7220     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7221 
7222   // Ignore empty records.
7223   if (isEmptyRecord(getContext(), Ty, true))
7224     return ABIArgInfo::getIgnore();
7225 
7226   uint64_t Size = getContext().getTypeSize(Ty);
7227   if (Size > 64)
7228     return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
7229     // Pass in the smallest viable integer type.
7230   else if (Size > 32)
7231       return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
7232   else if (Size > 16)
7233       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
7234   else if (Size > 8)
7235       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
7236   else
7237       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
7238 }
7239 
7240 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
7241   if (RetTy->isVoidType())
7242     return ABIArgInfo::getIgnore();
7243 
7244   // Large vector types should be returned via memory.
7245   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
7246     return getNaturalAlignIndirect(RetTy);
7247 
7248   if (!isAggregateTypeForABI(RetTy)) {
7249     // Treat an enum type as its underlying type.
7250     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
7251       RetTy = EnumTy->getDecl()->getIntegerType();
7252 
7253     return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
7254                                              : ABIArgInfo::getDirect());
7255   }
7256 
7257   if (isEmptyRecord(getContext(), RetTy, true))
7258     return ABIArgInfo::getIgnore();
7259 
7260   // Aggregates <= 8 bytes are returned in r0; other aggregates
7261   // are returned indirectly.
7262   uint64_t Size = getContext().getTypeSize(RetTy);
7263   if (Size <= 64) {
7264     // Return in the smallest viable integer type.
7265     if (Size <= 8)
7266       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
7267     if (Size <= 16)
7268       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
7269     if (Size <= 32)
7270       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
7271     return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
7272   }
7273 
7274   return getNaturalAlignIndirect(RetTy, /*ByVal=*/true);
7275 }
7276 
7277 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7278                                   QualType Ty) const {
7279   // FIXME: Someone needs to audit that this handle alignment correctly.
7280   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
7281                           getContext().getTypeInfoInChars(Ty),
7282                           CharUnits::fromQuantity(4),
7283                           /*AllowHigherAlign*/ true);
7284 }
7285 
7286 //===----------------------------------------------------------------------===//
7287 // Lanai ABI Implementation
7288 //===----------------------------------------------------------------------===//
7289 
7290 namespace {
7291 class LanaiABIInfo : public DefaultABIInfo {
7292 public:
7293   LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
7294 
7295   bool shouldUseInReg(QualType Ty, CCState &State) const;
7296 
7297   void computeInfo(CGFunctionInfo &FI) const override {
7298     CCState State(FI.getCallingConvention());
7299     // Lanai uses 4 registers to pass arguments unless the function has the
7300     // regparm attribute set.
7301     if (FI.getHasRegParm()) {
7302       State.FreeRegs = FI.getRegParm();
7303     } else {
7304       State.FreeRegs = 4;
7305     }
7306 
7307     if (!getCXXABI().classifyReturnType(FI))
7308       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7309     for (auto &I : FI.arguments())
7310       I.info = classifyArgumentType(I.type, State);
7311   }
7312 
7313   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
7314   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
7315 };
7316 } // end anonymous namespace
7317 
7318 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const {
7319   unsigned Size = getContext().getTypeSize(Ty);
7320   unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U;
7321 
7322   if (SizeInRegs == 0)
7323     return false;
7324 
7325   if (SizeInRegs > State.FreeRegs) {
7326     State.FreeRegs = 0;
7327     return false;
7328   }
7329 
7330   State.FreeRegs -= SizeInRegs;
7331 
7332   return true;
7333 }
7334 
7335 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal,
7336                                            CCState &State) const {
7337   if (!ByVal) {
7338     if (State.FreeRegs) {
7339       --State.FreeRegs; // Non-byval indirects just use one pointer.
7340       return getNaturalAlignIndirectInReg(Ty);
7341     }
7342     return getNaturalAlignIndirect(Ty, false);
7343   }
7344 
7345   // Compute the byval alignment.
7346   const unsigned MinABIStackAlignInBytes = 4;
7347   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
7348   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
7349                                  /*Realign=*/TypeAlign >
7350                                      MinABIStackAlignInBytes);
7351 }
7352 
7353 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty,
7354                                               CCState &State) const {
7355   // Check with the C++ ABI first.
7356   const RecordType *RT = Ty->getAs<RecordType>();
7357   if (RT) {
7358     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
7359     if (RAA == CGCXXABI::RAA_Indirect) {
7360       return getIndirectResult(Ty, /*ByVal=*/false, State);
7361     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
7362       return getNaturalAlignIndirect(Ty, /*ByRef=*/true);
7363     }
7364   }
7365 
7366   if (isAggregateTypeForABI(Ty)) {
7367     // Structures with flexible arrays are always indirect.
7368     if (RT && RT->getDecl()->hasFlexibleArrayMember())
7369       return getIndirectResult(Ty, /*ByVal=*/true, State);
7370 
7371     // Ignore empty structs/unions.
7372     if (isEmptyRecord(getContext(), Ty, true))
7373       return ABIArgInfo::getIgnore();
7374 
7375     llvm::LLVMContext &LLVMContext = getVMContext();
7376     unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
7377     if (SizeInRegs <= State.FreeRegs) {
7378       llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
7379       SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
7380       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
7381       State.FreeRegs -= SizeInRegs;
7382       return ABIArgInfo::getDirectInReg(Result);
7383     } else {
7384       State.FreeRegs = 0;
7385     }
7386     return getIndirectResult(Ty, true, State);
7387   }
7388 
7389   // Treat an enum type as its underlying type.
7390   if (const auto *EnumTy = Ty->getAs<EnumType>())
7391     Ty = EnumTy->getDecl()->getIntegerType();
7392 
7393   bool InReg = shouldUseInReg(Ty, State);
7394   if (Ty->isPromotableIntegerType()) {
7395     if (InReg)
7396       return ABIArgInfo::getDirectInReg();
7397     return ABIArgInfo::getExtend(Ty);
7398   }
7399   if (InReg)
7400     return ABIArgInfo::getDirectInReg();
7401   return ABIArgInfo::getDirect();
7402 }
7403 
7404 namespace {
7405 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo {
7406 public:
7407   LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
7408       : TargetCodeGenInfo(new LanaiABIInfo(CGT)) {}
7409 };
7410 }
7411 
7412 //===----------------------------------------------------------------------===//
7413 // AMDGPU ABI Implementation
7414 //===----------------------------------------------------------------------===//
7415 
7416 namespace {
7417 
7418 class AMDGPUABIInfo final : public DefaultABIInfo {
7419 private:
7420   static const unsigned MaxNumRegsForArgsRet = 16;
7421 
7422   unsigned numRegsForType(QualType Ty) const;
7423 
7424   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
7425   bool isHomogeneousAggregateSmallEnough(const Type *Base,
7426                                          uint64_t Members) const override;
7427 
7428 public:
7429   explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) :
7430     DefaultABIInfo(CGT) {}
7431 
7432   ABIArgInfo classifyReturnType(QualType RetTy) const;
7433   ABIArgInfo classifyKernelArgumentType(QualType Ty) const;
7434   ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const;
7435 
7436   void computeInfo(CGFunctionInfo &FI) const override;
7437 };
7438 
7439 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
7440   return true;
7441 }
7442 
7443 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough(
7444   const Type *Base, uint64_t Members) const {
7445   uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32;
7446 
7447   // Homogeneous Aggregates may occupy at most 16 registers.
7448   return Members * NumRegs <= MaxNumRegsForArgsRet;
7449 }
7450 
7451 /// Estimate number of registers the type will use when passed in registers.
7452 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const {
7453   unsigned NumRegs = 0;
7454 
7455   if (const VectorType *VT = Ty->getAs<VectorType>()) {
7456     // Compute from the number of elements. The reported size is based on the
7457     // in-memory size, which includes the padding 4th element for 3-vectors.
7458     QualType EltTy = VT->getElementType();
7459     unsigned EltSize = getContext().getTypeSize(EltTy);
7460 
7461     // 16-bit element vectors should be passed as packed.
7462     if (EltSize == 16)
7463       return (VT->getNumElements() + 1) / 2;
7464 
7465     unsigned EltNumRegs = (EltSize + 31) / 32;
7466     return EltNumRegs * VT->getNumElements();
7467   }
7468 
7469   if (const RecordType *RT = Ty->getAs<RecordType>()) {
7470     const RecordDecl *RD = RT->getDecl();
7471     assert(!RD->hasFlexibleArrayMember());
7472 
7473     for (const FieldDecl *Field : RD->fields()) {
7474       QualType FieldTy = Field->getType();
7475       NumRegs += numRegsForType(FieldTy);
7476     }
7477 
7478     return NumRegs;
7479   }
7480 
7481   return (getContext().getTypeSize(Ty) + 31) / 32;
7482 }
7483 
7484 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const {
7485   llvm::CallingConv::ID CC = FI.getCallingConvention();
7486 
7487   if (!getCXXABI().classifyReturnType(FI))
7488     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7489 
7490   unsigned NumRegsLeft = MaxNumRegsForArgsRet;
7491   for (auto &Arg : FI.arguments()) {
7492     if (CC == llvm::CallingConv::AMDGPU_KERNEL) {
7493       Arg.info = classifyKernelArgumentType(Arg.type);
7494     } else {
7495       Arg.info = classifyArgumentType(Arg.type, NumRegsLeft);
7496     }
7497   }
7498 }
7499 
7500 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const {
7501   if (isAggregateTypeForABI(RetTy)) {
7502     // Records with non-trivial destructors/copy-constructors should not be
7503     // returned by value.
7504     if (!getRecordArgABI(RetTy, getCXXABI())) {
7505       // Ignore empty structs/unions.
7506       if (isEmptyRecord(getContext(), RetTy, true))
7507         return ABIArgInfo::getIgnore();
7508 
7509       // Lower single-element structs to just return a regular value.
7510       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
7511         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
7512 
7513       if (const RecordType *RT = RetTy->getAs<RecordType>()) {
7514         const RecordDecl *RD = RT->getDecl();
7515         if (RD->hasFlexibleArrayMember())
7516           return DefaultABIInfo::classifyReturnType(RetTy);
7517       }
7518 
7519       // Pack aggregates <= 4 bytes into single VGPR or pair.
7520       uint64_t Size = getContext().getTypeSize(RetTy);
7521       if (Size <= 16)
7522         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
7523 
7524       if (Size <= 32)
7525         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
7526 
7527       if (Size <= 64) {
7528         llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
7529         return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
7530       }
7531 
7532       if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet)
7533         return ABIArgInfo::getDirect();
7534     }
7535   }
7536 
7537   // Otherwise just do the default thing.
7538   return DefaultABIInfo::classifyReturnType(RetTy);
7539 }
7540 
7541 /// For kernels all parameters are really passed in a special buffer. It doesn't
7542 /// make sense to pass anything byval, so everything must be direct.
7543 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const {
7544   Ty = useFirstFieldIfTransparentUnion(Ty);
7545 
7546   // TODO: Can we omit empty structs?
7547 
7548   // Coerce single element structs to its element.
7549   if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
7550     return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
7551 
7552   // If we set CanBeFlattened to true, CodeGen will expand the struct to its
7553   // individual elements, which confuses the Clover OpenCL backend; therefore we
7554   // have to set it to false here. Other args of getDirect() are just defaults.
7555   return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
7556 }
7557 
7558 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty,
7559                                                unsigned &NumRegsLeft) const {
7560   assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow");
7561 
7562   Ty = useFirstFieldIfTransparentUnion(Ty);
7563 
7564   if (isAggregateTypeForABI(Ty)) {
7565     // Records with non-trivial destructors/copy-constructors should not be
7566     // passed by value.
7567     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
7568       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7569 
7570     // Ignore empty structs/unions.
7571     if (isEmptyRecord(getContext(), Ty, true))
7572       return ABIArgInfo::getIgnore();
7573 
7574     // Lower single-element structs to just pass a regular value. TODO: We
7575     // could do reasonable-size multiple-element structs too, using getExpand(),
7576     // though watch out for things like bitfields.
7577     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
7578       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
7579 
7580     if (const RecordType *RT = Ty->getAs<RecordType>()) {
7581       const RecordDecl *RD = RT->getDecl();
7582       if (RD->hasFlexibleArrayMember())
7583         return DefaultABIInfo::classifyArgumentType(Ty);
7584     }
7585 
7586     // Pack aggregates <= 8 bytes into single VGPR or pair.
7587     uint64_t Size = getContext().getTypeSize(Ty);
7588     if (Size <= 64) {
7589       unsigned NumRegs = (Size + 31) / 32;
7590       NumRegsLeft -= std::min(NumRegsLeft, NumRegs);
7591 
7592       if (Size <= 16)
7593         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
7594 
7595       if (Size <= 32)
7596         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
7597 
7598       // XXX: Should this be i64 instead, and should the limit increase?
7599       llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
7600       return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
7601     }
7602 
7603     if (NumRegsLeft > 0) {
7604       unsigned NumRegs = numRegsForType(Ty);
7605       if (NumRegsLeft >= NumRegs) {
7606         NumRegsLeft -= NumRegs;
7607         return ABIArgInfo::getDirect();
7608       }
7609     }
7610   }
7611 
7612   // Otherwise just do the default thing.
7613   ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty);
7614   if (!ArgInfo.isIndirect()) {
7615     unsigned NumRegs = numRegsForType(Ty);
7616     NumRegsLeft -= std::min(NumRegs, NumRegsLeft);
7617   }
7618 
7619   return ArgInfo;
7620 }
7621 
7622 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
7623 public:
7624   AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
7625     : TargetCodeGenInfo(new AMDGPUABIInfo(CGT)) {}
7626   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7627                            CodeGen::CodeGenModule &M) const override;
7628   unsigned getOpenCLKernelCallingConv() const override;
7629 
7630   llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM,
7631       llvm::PointerType *T, QualType QT) const override;
7632 
7633   LangAS getASTAllocaAddressSpace() const override {
7634     return getLangASFromTargetAS(
7635         getABIInfo().getDataLayout().getAllocaAddrSpace());
7636   }
7637   LangAS getGlobalVarAddressSpace(CodeGenModule &CGM,
7638                                   const VarDecl *D) const override;
7639   llvm::SyncScope::ID getLLVMSyncScopeID(SyncScope S,
7640                                          llvm::LLVMContext &C) const override;
7641   llvm::Function *
7642   createEnqueuedBlockKernel(CodeGenFunction &CGF,
7643                             llvm::Function *BlockInvokeFunc,
7644                             llvm::Value *BlockLiteral) const override;
7645 };
7646 }
7647 
7648 void AMDGPUTargetCodeGenInfo::setTargetAttributes(
7649     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
7650   if (GV->isDeclaration())
7651     return;
7652   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7653   if (!FD)
7654     return;
7655 
7656   llvm::Function *F = cast<llvm::Function>(GV);
7657 
7658   const auto *ReqdWGS = M.getLangOpts().OpenCL ?
7659     FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr;
7660   const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>();
7661   if (ReqdWGS || FlatWGS) {
7662     unsigned Min = FlatWGS ? FlatWGS->getMin() : 0;
7663     unsigned Max = FlatWGS ? FlatWGS->getMax() : 0;
7664     if (ReqdWGS && Min == 0 && Max == 0)
7665       Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim();
7666 
7667     if (Min != 0) {
7668       assert(Min <= Max && "Min must be less than or equal Max");
7669 
7670       std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max);
7671       F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
7672     } else
7673       assert(Max == 0 && "Max must be zero");
7674   }
7675 
7676   if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) {
7677     unsigned Min = Attr->getMin();
7678     unsigned Max = Attr->getMax();
7679 
7680     if (Min != 0) {
7681       assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max");
7682 
7683       std::string AttrVal = llvm::utostr(Min);
7684       if (Max != 0)
7685         AttrVal = AttrVal + "," + llvm::utostr(Max);
7686       F->addFnAttr("amdgpu-waves-per-eu", AttrVal);
7687     } else
7688       assert(Max == 0 && "Max must be zero");
7689   }
7690 
7691   if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
7692     unsigned NumSGPR = Attr->getNumSGPR();
7693 
7694     if (NumSGPR != 0)
7695       F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR));
7696   }
7697 
7698   if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
7699     uint32_t NumVGPR = Attr->getNumVGPR();
7700 
7701     if (NumVGPR != 0)
7702       F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR));
7703   }
7704 }
7705 
7706 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
7707   return llvm::CallingConv::AMDGPU_KERNEL;
7708 }
7709 
7710 // Currently LLVM assumes null pointers always have value 0,
7711 // which results in incorrectly transformed IR. Therefore, instead of
7712 // emitting null pointers in private and local address spaces, a null
7713 // pointer in generic address space is emitted which is casted to a
7714 // pointer in local or private address space.
7715 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer(
7716     const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT,
7717     QualType QT) const {
7718   if (CGM.getContext().getTargetNullPointerValue(QT) == 0)
7719     return llvm::ConstantPointerNull::get(PT);
7720 
7721   auto &Ctx = CGM.getContext();
7722   auto NPT = llvm::PointerType::get(PT->getElementType(),
7723       Ctx.getTargetAddressSpace(LangAS::opencl_generic));
7724   return llvm::ConstantExpr::getAddrSpaceCast(
7725       llvm::ConstantPointerNull::get(NPT), PT);
7726 }
7727 
7728 LangAS
7729 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
7730                                                   const VarDecl *D) const {
7731   assert(!CGM.getLangOpts().OpenCL &&
7732          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
7733          "Address space agnostic languages only");
7734   LangAS DefaultGlobalAS = getLangASFromTargetAS(
7735       CGM.getContext().getTargetAddressSpace(LangAS::opencl_global));
7736   if (!D)
7737     return DefaultGlobalAS;
7738 
7739   LangAS AddrSpace = D->getType().getAddressSpace();
7740   assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace));
7741   if (AddrSpace != LangAS::Default)
7742     return AddrSpace;
7743 
7744   if (CGM.isTypeConstant(D->getType(), false)) {
7745     if (auto ConstAS = CGM.getTarget().getConstantAddressSpace())
7746       return ConstAS.getValue();
7747   }
7748   return DefaultGlobalAS;
7749 }
7750 
7751 llvm::SyncScope::ID
7752 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(SyncScope S,
7753                                             llvm::LLVMContext &C) const {
7754   StringRef Name;
7755   switch (S) {
7756   case SyncScope::OpenCLWorkGroup:
7757     Name = "workgroup";
7758     break;
7759   case SyncScope::OpenCLDevice:
7760     Name = "agent";
7761     break;
7762   case SyncScope::OpenCLAllSVMDevices:
7763     Name = "";
7764     break;
7765   case SyncScope::OpenCLSubGroup:
7766     Name = "subgroup";
7767   }
7768   return C.getOrInsertSyncScopeID(Name);
7769 }
7770 
7771 //===----------------------------------------------------------------------===//
7772 // SPARC v8 ABI Implementation.
7773 // Based on the SPARC Compliance Definition version 2.4.1.
7774 //
7775 // Ensures that complex values are passed in registers.
7776 //
7777 namespace {
7778 class SparcV8ABIInfo : public DefaultABIInfo {
7779 public:
7780   SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
7781 
7782 private:
7783   ABIArgInfo classifyReturnType(QualType RetTy) const;
7784   void computeInfo(CGFunctionInfo &FI) const override;
7785 };
7786 } // end anonymous namespace
7787 
7788 
7789 ABIArgInfo
7790 SparcV8ABIInfo::classifyReturnType(QualType Ty) const {
7791   if (Ty->isAnyComplexType()) {
7792     return ABIArgInfo::getDirect();
7793   }
7794   else {
7795     return DefaultABIInfo::classifyReturnType(Ty);
7796   }
7797 }
7798 
7799 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const {
7800 
7801   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7802   for (auto &Arg : FI.arguments())
7803     Arg.info = classifyArgumentType(Arg.type);
7804 }
7805 
7806 namespace {
7807 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo {
7808 public:
7809   SparcV8TargetCodeGenInfo(CodeGenTypes &CGT)
7810     : TargetCodeGenInfo(new SparcV8ABIInfo(CGT)) {}
7811 };
7812 } // end anonymous namespace
7813 
7814 //===----------------------------------------------------------------------===//
7815 // SPARC v9 ABI Implementation.
7816 // Based on the SPARC Compliance Definition version 2.4.1.
7817 //
7818 // Function arguments a mapped to a nominal "parameter array" and promoted to
7819 // registers depending on their type. Each argument occupies 8 or 16 bytes in
7820 // the array, structs larger than 16 bytes are passed indirectly.
7821 //
7822 // One case requires special care:
7823 //
7824 //   struct mixed {
7825 //     int i;
7826 //     float f;
7827 //   };
7828 //
7829 // When a struct mixed is passed by value, it only occupies 8 bytes in the
7830 // parameter array, but the int is passed in an integer register, and the float
7831 // is passed in a floating point register. This is represented as two arguments
7832 // with the LLVM IR inreg attribute:
7833 //
7834 //   declare void f(i32 inreg %i, float inreg %f)
7835 //
7836 // The code generator will only allocate 4 bytes from the parameter array for
7837 // the inreg arguments. All other arguments are allocated a multiple of 8
7838 // bytes.
7839 //
7840 namespace {
7841 class SparcV9ABIInfo : public ABIInfo {
7842 public:
7843   SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
7844 
7845 private:
7846   ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
7847   void computeInfo(CGFunctionInfo &FI) const override;
7848   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7849                     QualType Ty) const override;
7850 
7851   // Coercion type builder for structs passed in registers. The coercion type
7852   // serves two purposes:
7853   //
7854   // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
7855   //    in registers.
7856   // 2. Expose aligned floating point elements as first-level elements, so the
7857   //    code generator knows to pass them in floating point registers.
7858   //
7859   // We also compute the InReg flag which indicates that the struct contains
7860   // aligned 32-bit floats.
7861   //
7862   struct CoerceBuilder {
7863     llvm::LLVMContext &Context;
7864     const llvm::DataLayout &DL;
7865     SmallVector<llvm::Type*, 8> Elems;
7866     uint64_t Size;
7867     bool InReg;
7868 
7869     CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
7870       : Context(c), DL(dl), Size(0), InReg(false) {}
7871 
7872     // Pad Elems with integers until Size is ToSize.
7873     void pad(uint64_t ToSize) {
7874       assert(ToSize >= Size && "Cannot remove elements");
7875       if (ToSize == Size)
7876         return;
7877 
7878       // Finish the current 64-bit word.
7879       uint64_t Aligned = llvm::alignTo(Size, 64);
7880       if (Aligned > Size && Aligned <= ToSize) {
7881         Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
7882         Size = Aligned;
7883       }
7884 
7885       // Add whole 64-bit words.
7886       while (Size + 64 <= ToSize) {
7887         Elems.push_back(llvm::Type::getInt64Ty(Context));
7888         Size += 64;
7889       }
7890 
7891       // Final in-word padding.
7892       if (Size < ToSize) {
7893         Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
7894         Size = ToSize;
7895       }
7896     }
7897 
7898     // Add a floating point element at Offset.
7899     void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
7900       // Unaligned floats are treated as integers.
7901       if (Offset % Bits)
7902         return;
7903       // The InReg flag is only required if there are any floats < 64 bits.
7904       if (Bits < 64)
7905         InReg = true;
7906       pad(Offset);
7907       Elems.push_back(Ty);
7908       Size = Offset + Bits;
7909     }
7910 
7911     // Add a struct type to the coercion type, starting at Offset (in bits).
7912     void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
7913       const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
7914       for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
7915         llvm::Type *ElemTy = StrTy->getElementType(i);
7916         uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
7917         switch (ElemTy->getTypeID()) {
7918         case llvm::Type::StructTyID:
7919           addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
7920           break;
7921         case llvm::Type::FloatTyID:
7922           addFloat(ElemOffset, ElemTy, 32);
7923           break;
7924         case llvm::Type::DoubleTyID:
7925           addFloat(ElemOffset, ElemTy, 64);
7926           break;
7927         case llvm::Type::FP128TyID:
7928           addFloat(ElemOffset, ElemTy, 128);
7929           break;
7930         case llvm::Type::PointerTyID:
7931           if (ElemOffset % 64 == 0) {
7932             pad(ElemOffset);
7933             Elems.push_back(ElemTy);
7934             Size += 64;
7935           }
7936           break;
7937         default:
7938           break;
7939         }
7940       }
7941     }
7942 
7943     // Check if Ty is a usable substitute for the coercion type.
7944     bool isUsableType(llvm::StructType *Ty) const {
7945       return llvm::makeArrayRef(Elems) == Ty->elements();
7946     }
7947 
7948     // Get the coercion type as a literal struct type.
7949     llvm::Type *getType() const {
7950       if (Elems.size() == 1)
7951         return Elems.front();
7952       else
7953         return llvm::StructType::get(Context, Elems);
7954     }
7955   };
7956 };
7957 } // end anonymous namespace
7958 
7959 ABIArgInfo
7960 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
7961   if (Ty->isVoidType())
7962     return ABIArgInfo::getIgnore();
7963 
7964   uint64_t Size = getContext().getTypeSize(Ty);
7965 
7966   // Anything too big to fit in registers is passed with an explicit indirect
7967   // pointer / sret pointer.
7968   if (Size > SizeLimit)
7969     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
7970 
7971   // Treat an enum type as its underlying type.
7972   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7973     Ty = EnumTy->getDecl()->getIntegerType();
7974 
7975   // Integer types smaller than a register are extended.
7976   if (Size < 64 && Ty->isIntegerType())
7977     return ABIArgInfo::getExtend(Ty);
7978 
7979   // Other non-aggregates go in registers.
7980   if (!isAggregateTypeForABI(Ty))
7981     return ABIArgInfo::getDirect();
7982 
7983   // If a C++ object has either a non-trivial copy constructor or a non-trivial
7984   // destructor, it is passed with an explicit indirect pointer / sret pointer.
7985   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
7986     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7987 
7988   // This is a small aggregate type that should be passed in registers.
7989   // Build a coercion type from the LLVM struct type.
7990   llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
7991   if (!StrTy)
7992     return ABIArgInfo::getDirect();
7993 
7994   CoerceBuilder CB(getVMContext(), getDataLayout());
7995   CB.addStruct(0, StrTy);
7996   CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64));
7997 
7998   // Try to use the original type for coercion.
7999   llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
8000 
8001   if (CB.InReg)
8002     return ABIArgInfo::getDirectInReg(CoerceTy);
8003   else
8004     return ABIArgInfo::getDirect(CoerceTy);
8005 }
8006 
8007 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8008                                   QualType Ty) const {
8009   ABIArgInfo AI = classifyType(Ty, 16 * 8);
8010   llvm::Type *ArgTy = CGT.ConvertType(Ty);
8011   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
8012     AI.setCoerceToType(ArgTy);
8013 
8014   CharUnits SlotSize = CharUnits::fromQuantity(8);
8015 
8016   CGBuilderTy &Builder = CGF.Builder;
8017   Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
8018   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
8019 
8020   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
8021 
8022   Address ArgAddr = Address::invalid();
8023   CharUnits Stride;
8024   switch (AI.getKind()) {
8025   case ABIArgInfo::Expand:
8026   case ABIArgInfo::CoerceAndExpand:
8027   case ABIArgInfo::InAlloca:
8028     llvm_unreachable("Unsupported ABI kind for va_arg");
8029 
8030   case ABIArgInfo::Extend: {
8031     Stride = SlotSize;
8032     CharUnits Offset = SlotSize - TypeInfo.first;
8033     ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend");
8034     break;
8035   }
8036 
8037   case ABIArgInfo::Direct: {
8038     auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
8039     Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize);
8040     ArgAddr = Addr;
8041     break;
8042   }
8043 
8044   case ABIArgInfo::Indirect:
8045     Stride = SlotSize;
8046     ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect");
8047     ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"),
8048                       TypeInfo.second);
8049     break;
8050 
8051   case ABIArgInfo::Ignore:
8052     return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second);
8053   }
8054 
8055   // Update VAList.
8056   llvm::Value *NextPtr =
8057     Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), Stride, "ap.next");
8058   Builder.CreateStore(NextPtr, VAListAddr);
8059 
8060   return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr");
8061 }
8062 
8063 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
8064   FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
8065   for (auto &I : FI.arguments())
8066     I.info = classifyType(I.type, 16 * 8);
8067 }
8068 
8069 namespace {
8070 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
8071 public:
8072   SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
8073     : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {}
8074 
8075   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
8076     return 14;
8077   }
8078 
8079   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
8080                                llvm::Value *Address) const override;
8081 };
8082 } // end anonymous namespace
8083 
8084 bool
8085 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
8086                                                 llvm::Value *Address) const {
8087   // This is calculated from the LLVM and GCC tables and verified
8088   // against gcc output.  AFAIK all ABIs use the same encoding.
8089 
8090   CodeGen::CGBuilderTy &Builder = CGF.Builder;
8091 
8092   llvm::IntegerType *i8 = CGF.Int8Ty;
8093   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
8094   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
8095 
8096   // 0-31: the 8-byte general-purpose registers
8097   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
8098 
8099   // 32-63: f0-31, the 4-byte floating-point registers
8100   AssignToArrayRange(Builder, Address, Four8, 32, 63);
8101 
8102   //   Y   = 64
8103   //   PSR = 65
8104   //   WIM = 66
8105   //   TBR = 67
8106   //   PC  = 68
8107   //   NPC = 69
8108   //   FSR = 70
8109   //   CSR = 71
8110   AssignToArrayRange(Builder, Address, Eight8, 64, 71);
8111 
8112   // 72-87: d0-15, the 8-byte floating-point registers
8113   AssignToArrayRange(Builder, Address, Eight8, 72, 87);
8114 
8115   return false;
8116 }
8117 
8118 
8119 //===----------------------------------------------------------------------===//
8120 // XCore ABI Implementation
8121 //===----------------------------------------------------------------------===//
8122 
8123 namespace {
8124 
8125 /// A SmallStringEnc instance is used to build up the TypeString by passing
8126 /// it by reference between functions that append to it.
8127 typedef llvm::SmallString<128> SmallStringEnc;
8128 
8129 /// TypeStringCache caches the meta encodings of Types.
8130 ///
8131 /// The reason for caching TypeStrings is two fold:
8132 ///   1. To cache a type's encoding for later uses;
8133 ///   2. As a means to break recursive member type inclusion.
8134 ///
8135 /// A cache Entry can have a Status of:
8136 ///   NonRecursive:   The type encoding is not recursive;
8137 ///   Recursive:      The type encoding is recursive;
8138 ///   Incomplete:     An incomplete TypeString;
8139 ///   IncompleteUsed: An incomplete TypeString that has been used in a
8140 ///                   Recursive type encoding.
8141 ///
8142 /// A NonRecursive entry will have all of its sub-members expanded as fully
8143 /// as possible. Whilst it may contain types which are recursive, the type
8144 /// itself is not recursive and thus its encoding may be safely used whenever
8145 /// the type is encountered.
8146 ///
8147 /// A Recursive entry will have all of its sub-members expanded as fully as
8148 /// possible. The type itself is recursive and it may contain other types which
8149 /// are recursive. The Recursive encoding must not be used during the expansion
8150 /// of a recursive type's recursive branch. For simplicity the code uses
8151 /// IncompleteCount to reject all usage of Recursive encodings for member types.
8152 ///
8153 /// An Incomplete entry is always a RecordType and only encodes its
8154 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
8155 /// are placed into the cache during type expansion as a means to identify and
8156 /// handle recursive inclusion of types as sub-members. If there is recursion
8157 /// the entry becomes IncompleteUsed.
8158 ///
8159 /// During the expansion of a RecordType's members:
8160 ///
8161 ///   If the cache contains a NonRecursive encoding for the member type, the
8162 ///   cached encoding is used;
8163 ///
8164 ///   If the cache contains a Recursive encoding for the member type, the
8165 ///   cached encoding is 'Swapped' out, as it may be incorrect, and...
8166 ///
8167 ///   If the member is a RecordType, an Incomplete encoding is placed into the
8168 ///   cache to break potential recursive inclusion of itself as a sub-member;
8169 ///
8170 ///   Once a member RecordType has been expanded, its temporary incomplete
8171 ///   entry is removed from the cache. If a Recursive encoding was swapped out
8172 ///   it is swapped back in;
8173 ///
8174 ///   If an incomplete entry is used to expand a sub-member, the incomplete
8175 ///   entry is marked as IncompleteUsed. The cache keeps count of how many
8176 ///   IncompleteUsed entries it currently contains in IncompleteUsedCount;
8177 ///
8178 ///   If a member's encoding is found to be a NonRecursive or Recursive viz:
8179 ///   IncompleteUsedCount==0, the member's encoding is added to the cache.
8180 ///   Else the member is part of a recursive type and thus the recursion has
8181 ///   been exited too soon for the encoding to be correct for the member.
8182 ///
8183 class TypeStringCache {
8184   enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
8185   struct Entry {
8186     std::string Str;     // The encoded TypeString for the type.
8187     enum Status State;   // Information about the encoding in 'Str'.
8188     std::string Swapped; // A temporary place holder for a Recursive encoding
8189                          // during the expansion of RecordType's members.
8190   };
8191   std::map<const IdentifierInfo *, struct Entry> Map;
8192   unsigned IncompleteCount;     // Number of Incomplete entries in the Map.
8193   unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
8194 public:
8195   TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}
8196   void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
8197   bool removeIncomplete(const IdentifierInfo *ID);
8198   void addIfComplete(const IdentifierInfo *ID, StringRef Str,
8199                      bool IsRecursive);
8200   StringRef lookupStr(const IdentifierInfo *ID);
8201 };
8202 
8203 /// TypeString encodings for enum & union fields must be order.
8204 /// FieldEncoding is a helper for this ordering process.
8205 class FieldEncoding {
8206   bool HasName;
8207   std::string Enc;
8208 public:
8209   FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}
8210   StringRef str() { return Enc; }
8211   bool operator<(const FieldEncoding &rhs) const {
8212     if (HasName != rhs.HasName) return HasName;
8213     return Enc < rhs.Enc;
8214   }
8215 };
8216 
8217 class XCoreABIInfo : public DefaultABIInfo {
8218 public:
8219   XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
8220   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8221                     QualType Ty) const override;
8222 };
8223 
8224 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
8225   mutable TypeStringCache TSC;
8226 public:
8227   XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
8228     :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {}
8229   void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
8230                     CodeGen::CodeGenModule &M) const override;
8231 };
8232 
8233 } // End anonymous namespace.
8234 
8235 // TODO: this implementation is likely now redundant with the default
8236 // EmitVAArg.
8237 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8238                                 QualType Ty) const {
8239   CGBuilderTy &Builder = CGF.Builder;
8240 
8241   // Get the VAList.
8242   CharUnits SlotSize = CharUnits::fromQuantity(4);
8243   Address AP(Builder.CreateLoad(VAListAddr), SlotSize);
8244 
8245   // Handle the argument.
8246   ABIArgInfo AI = classifyArgumentType(Ty);
8247   CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty);
8248   llvm::Type *ArgTy = CGT.ConvertType(Ty);
8249   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
8250     AI.setCoerceToType(ArgTy);
8251   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
8252 
8253   Address Val = Address::invalid();
8254   CharUnits ArgSize = CharUnits::Zero();
8255   switch (AI.getKind()) {
8256   case ABIArgInfo::Expand:
8257   case ABIArgInfo::CoerceAndExpand:
8258   case ABIArgInfo::InAlloca:
8259     llvm_unreachable("Unsupported ABI kind for va_arg");
8260   case ABIArgInfo::Ignore:
8261     Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign);
8262     ArgSize = CharUnits::Zero();
8263     break;
8264   case ABIArgInfo::Extend:
8265   case ABIArgInfo::Direct:
8266     Val = Builder.CreateBitCast(AP, ArgPtrTy);
8267     ArgSize = CharUnits::fromQuantity(
8268                        getDataLayout().getTypeAllocSize(AI.getCoerceToType()));
8269     ArgSize = ArgSize.alignTo(SlotSize);
8270     break;
8271   case ABIArgInfo::Indirect:
8272     Val = Builder.CreateElementBitCast(AP, ArgPtrTy);
8273     Val = Address(Builder.CreateLoad(Val), TypeAlign);
8274     ArgSize = SlotSize;
8275     break;
8276   }
8277 
8278   // Increment the VAList.
8279   if (!ArgSize.isZero()) {
8280     llvm::Value *APN =
8281       Builder.CreateConstInBoundsByteGEP(AP.getPointer(), ArgSize);
8282     Builder.CreateStore(APN, VAListAddr);
8283   }
8284 
8285   return Val;
8286 }
8287 
8288 /// During the expansion of a RecordType, an incomplete TypeString is placed
8289 /// into the cache as a means to identify and break recursion.
8290 /// If there is a Recursive encoding in the cache, it is swapped out and will
8291 /// be reinserted by removeIncomplete().
8292 /// All other types of encoding should have been used rather than arriving here.
8293 void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
8294                                     std::string StubEnc) {
8295   if (!ID)
8296     return;
8297   Entry &E = Map[ID];
8298   assert( (E.Str.empty() || E.State == Recursive) &&
8299          "Incorrectly use of addIncomplete");
8300   assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
8301   E.Swapped.swap(E.Str); // swap out the Recursive
8302   E.Str.swap(StubEnc);
8303   E.State = Incomplete;
8304   ++IncompleteCount;
8305 }
8306 
8307 /// Once the RecordType has been expanded, the temporary incomplete TypeString
8308 /// must be removed from the cache.
8309 /// If a Recursive was swapped out by addIncomplete(), it will be replaced.
8310 /// Returns true if the RecordType was defined recursively.
8311 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
8312   if (!ID)
8313     return false;
8314   auto I = Map.find(ID);
8315   assert(I != Map.end() && "Entry not present");
8316   Entry &E = I->second;
8317   assert( (E.State == Incomplete ||
8318            E.State == IncompleteUsed) &&
8319          "Entry must be an incomplete type");
8320   bool IsRecursive = false;
8321   if (E.State == IncompleteUsed) {
8322     // We made use of our Incomplete encoding, thus we are recursive.
8323     IsRecursive = true;
8324     --IncompleteUsedCount;
8325   }
8326   if (E.Swapped.empty())
8327     Map.erase(I);
8328   else {
8329     // Swap the Recursive back.
8330     E.Swapped.swap(E.Str);
8331     E.Swapped.clear();
8332     E.State = Recursive;
8333   }
8334   --IncompleteCount;
8335   return IsRecursive;
8336 }
8337 
8338 /// Add the encoded TypeString to the cache only if it is NonRecursive or
8339 /// Recursive (viz: all sub-members were expanded as fully as possible).
8340 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
8341                                     bool IsRecursive) {
8342   if (!ID || IncompleteUsedCount)
8343     return; // No key or it is is an incomplete sub-type so don't add.
8344   Entry &E = Map[ID];
8345   if (IsRecursive && !E.Str.empty()) {
8346     assert(E.State==Recursive && E.Str.size() == Str.size() &&
8347            "This is not the same Recursive entry");
8348     // The parent container was not recursive after all, so we could have used
8349     // this Recursive sub-member entry after all, but we assumed the worse when
8350     // we started viz: IncompleteCount!=0.
8351     return;
8352   }
8353   assert(E.Str.empty() && "Entry already present");
8354   E.Str = Str.str();
8355   E.State = IsRecursive? Recursive : NonRecursive;
8356 }
8357 
8358 /// Return a cached TypeString encoding for the ID. If there isn't one, or we
8359 /// are recursively expanding a type (IncompleteCount != 0) and the cached
8360 /// encoding is Recursive, return an empty StringRef.
8361 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
8362   if (!ID)
8363     return StringRef();   // We have no key.
8364   auto I = Map.find(ID);
8365   if (I == Map.end())
8366     return StringRef();   // We have no encoding.
8367   Entry &E = I->second;
8368   if (E.State == Recursive && IncompleteCount)
8369     return StringRef();   // We don't use Recursive encodings for member types.
8370 
8371   if (E.State == Incomplete) {
8372     // The incomplete type is being used to break out of recursion.
8373     E.State = IncompleteUsed;
8374     ++IncompleteUsedCount;
8375   }
8376   return E.Str;
8377 }
8378 
8379 /// The XCore ABI includes a type information section that communicates symbol
8380 /// type information to the linker. The linker uses this information to verify
8381 /// safety/correctness of things such as array bound and pointers et al.
8382 /// The ABI only requires C (and XC) language modules to emit TypeStrings.
8383 /// This type information (TypeString) is emitted into meta data for all global
8384 /// symbols: definitions, declarations, functions & variables.
8385 ///
8386 /// The TypeString carries type, qualifier, name, size & value details.
8387 /// Please see 'Tools Development Guide' section 2.16.2 for format details:
8388 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf
8389 /// The output is tested by test/CodeGen/xcore-stringtype.c.
8390 ///
8391 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
8392                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC);
8393 
8394 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
8395 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
8396                                           CodeGen::CodeGenModule &CGM) const {
8397   SmallStringEnc Enc;
8398   if (getTypeString(Enc, D, CGM, TSC)) {
8399     llvm::LLVMContext &Ctx = CGM.getModule().getContext();
8400     llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV),
8401                                 llvm::MDString::get(Ctx, Enc.str())};
8402     llvm::NamedMDNode *MD =
8403       CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
8404     MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
8405   }
8406 }
8407 
8408 //===----------------------------------------------------------------------===//
8409 // SPIR ABI Implementation
8410 //===----------------------------------------------------------------------===//
8411 
8412 namespace {
8413 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo {
8414 public:
8415   SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
8416     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
8417   unsigned getOpenCLKernelCallingConv() const override;
8418 };
8419 
8420 } // End anonymous namespace.
8421 
8422 namespace clang {
8423 namespace CodeGen {
8424 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) {
8425   DefaultABIInfo SPIRABI(CGM.getTypes());
8426   SPIRABI.computeInfo(FI);
8427 }
8428 }
8429 }
8430 
8431 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
8432   return llvm::CallingConv::SPIR_KERNEL;
8433 }
8434 
8435 static bool appendType(SmallStringEnc &Enc, QualType QType,
8436                        const CodeGen::CodeGenModule &CGM,
8437                        TypeStringCache &TSC);
8438 
8439 /// Helper function for appendRecordType().
8440 /// Builds a SmallVector containing the encoded field types in declaration
8441 /// order.
8442 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
8443                              const RecordDecl *RD,
8444                              const CodeGen::CodeGenModule &CGM,
8445                              TypeStringCache &TSC) {
8446   for (const auto *Field : RD->fields()) {
8447     SmallStringEnc Enc;
8448     Enc += "m(";
8449     Enc += Field->getName();
8450     Enc += "){";
8451     if (Field->isBitField()) {
8452       Enc += "b(";
8453       llvm::raw_svector_ostream OS(Enc);
8454       OS << Field->getBitWidthValue(CGM.getContext());
8455       Enc += ':';
8456     }
8457     if (!appendType(Enc, Field->getType(), CGM, TSC))
8458       return false;
8459     if (Field->isBitField())
8460       Enc += ')';
8461     Enc += '}';
8462     FE.emplace_back(!Field->getName().empty(), Enc);
8463   }
8464   return true;
8465 }
8466 
8467 /// Appends structure and union types to Enc and adds encoding to cache.
8468 /// Recursively calls appendType (via extractFieldType) for each field.
8469 /// Union types have their fields ordered according to the ABI.
8470 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
8471                              const CodeGen::CodeGenModule &CGM,
8472                              TypeStringCache &TSC, const IdentifierInfo *ID) {
8473   // Append the cached TypeString if we have one.
8474   StringRef TypeString = TSC.lookupStr(ID);
8475   if (!TypeString.empty()) {
8476     Enc += TypeString;
8477     return true;
8478   }
8479 
8480   // Start to emit an incomplete TypeString.
8481   size_t Start = Enc.size();
8482   Enc += (RT->isUnionType()? 'u' : 's');
8483   Enc += '(';
8484   if (ID)
8485     Enc += ID->getName();
8486   Enc += "){";
8487 
8488   // We collect all encoded fields and order as necessary.
8489   bool IsRecursive = false;
8490   const RecordDecl *RD = RT->getDecl()->getDefinition();
8491   if (RD && !RD->field_empty()) {
8492     // An incomplete TypeString stub is placed in the cache for this RecordType
8493     // so that recursive calls to this RecordType will use it whilst building a
8494     // complete TypeString for this RecordType.
8495     SmallVector<FieldEncoding, 16> FE;
8496     std::string StubEnc(Enc.substr(Start).str());
8497     StubEnc += '}';  // StubEnc now holds a valid incomplete TypeString.
8498     TSC.addIncomplete(ID, std::move(StubEnc));
8499     if (!extractFieldType(FE, RD, CGM, TSC)) {
8500       (void) TSC.removeIncomplete(ID);
8501       return false;
8502     }
8503     IsRecursive = TSC.removeIncomplete(ID);
8504     // The ABI requires unions to be sorted but not structures.
8505     // See FieldEncoding::operator< for sort algorithm.
8506     if (RT->isUnionType())
8507       std::sort(FE.begin(), FE.end());
8508     // We can now complete the TypeString.
8509     unsigned E = FE.size();
8510     for (unsigned I = 0; I != E; ++I) {
8511       if (I)
8512         Enc += ',';
8513       Enc += FE[I].str();
8514     }
8515   }
8516   Enc += '}';
8517   TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
8518   return true;
8519 }
8520 
8521 /// Appends enum types to Enc and adds the encoding to the cache.
8522 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
8523                            TypeStringCache &TSC,
8524                            const IdentifierInfo *ID) {
8525   // Append the cached TypeString if we have one.
8526   StringRef TypeString = TSC.lookupStr(ID);
8527   if (!TypeString.empty()) {
8528     Enc += TypeString;
8529     return true;
8530   }
8531 
8532   size_t Start = Enc.size();
8533   Enc += "e(";
8534   if (ID)
8535     Enc += ID->getName();
8536   Enc += "){";
8537 
8538   // We collect all encoded enumerations and order them alphanumerically.
8539   if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
8540     SmallVector<FieldEncoding, 16> FE;
8541     for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
8542          ++I) {
8543       SmallStringEnc EnumEnc;
8544       EnumEnc += "m(";
8545       EnumEnc += I->getName();
8546       EnumEnc += "){";
8547       I->getInitVal().toString(EnumEnc);
8548       EnumEnc += '}';
8549       FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
8550     }
8551     std::sort(FE.begin(), FE.end());
8552     unsigned E = FE.size();
8553     for (unsigned I = 0; I != E; ++I) {
8554       if (I)
8555         Enc += ',';
8556       Enc += FE[I].str();
8557     }
8558   }
8559   Enc += '}';
8560   TSC.addIfComplete(ID, Enc.substr(Start), false);
8561   return true;
8562 }
8563 
8564 /// Appends type's qualifier to Enc.
8565 /// This is done prior to appending the type's encoding.
8566 static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
8567   // Qualifiers are emitted in alphabetical order.
8568   static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"};
8569   int Lookup = 0;
8570   if (QT.isConstQualified())
8571     Lookup += 1<<0;
8572   if (QT.isRestrictQualified())
8573     Lookup += 1<<1;
8574   if (QT.isVolatileQualified())
8575     Lookup += 1<<2;
8576   Enc += Table[Lookup];
8577 }
8578 
8579 /// Appends built-in types to Enc.
8580 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
8581   const char *EncType;
8582   switch (BT->getKind()) {
8583     case BuiltinType::Void:
8584       EncType = "0";
8585       break;
8586     case BuiltinType::Bool:
8587       EncType = "b";
8588       break;
8589     case BuiltinType::Char_U:
8590       EncType = "uc";
8591       break;
8592     case BuiltinType::UChar:
8593       EncType = "uc";
8594       break;
8595     case BuiltinType::SChar:
8596       EncType = "sc";
8597       break;
8598     case BuiltinType::UShort:
8599       EncType = "us";
8600       break;
8601     case BuiltinType::Short:
8602       EncType = "ss";
8603       break;
8604     case BuiltinType::UInt:
8605       EncType = "ui";
8606       break;
8607     case BuiltinType::Int:
8608       EncType = "si";
8609       break;
8610     case BuiltinType::ULong:
8611       EncType = "ul";
8612       break;
8613     case BuiltinType::Long:
8614       EncType = "sl";
8615       break;
8616     case BuiltinType::ULongLong:
8617       EncType = "ull";
8618       break;
8619     case BuiltinType::LongLong:
8620       EncType = "sll";
8621       break;
8622     case BuiltinType::Float:
8623       EncType = "ft";
8624       break;
8625     case BuiltinType::Double:
8626       EncType = "d";
8627       break;
8628     case BuiltinType::LongDouble:
8629       EncType = "ld";
8630       break;
8631     default:
8632       return false;
8633   }
8634   Enc += EncType;
8635   return true;
8636 }
8637 
8638 /// Appends a pointer encoding to Enc before calling appendType for the pointee.
8639 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
8640                               const CodeGen::CodeGenModule &CGM,
8641                               TypeStringCache &TSC) {
8642   Enc += "p(";
8643   if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
8644     return false;
8645   Enc += ')';
8646   return true;
8647 }
8648 
8649 /// Appends array encoding to Enc before calling appendType for the element.
8650 static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
8651                             const ArrayType *AT,
8652                             const CodeGen::CodeGenModule &CGM,
8653                             TypeStringCache &TSC, StringRef NoSizeEnc) {
8654   if (AT->getSizeModifier() != ArrayType::Normal)
8655     return false;
8656   Enc += "a(";
8657   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
8658     CAT->getSize().toStringUnsigned(Enc);
8659   else
8660     Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
8661   Enc += ':';
8662   // The Qualifiers should be attached to the type rather than the array.
8663   appendQualifier(Enc, QT);
8664   if (!appendType(Enc, AT->getElementType(), CGM, TSC))
8665     return false;
8666   Enc += ')';
8667   return true;
8668 }
8669 
8670 /// Appends a function encoding to Enc, calling appendType for the return type
8671 /// and the arguments.
8672 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
8673                              const CodeGen::CodeGenModule &CGM,
8674                              TypeStringCache &TSC) {
8675   Enc += "f{";
8676   if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
8677     return false;
8678   Enc += "}(";
8679   if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
8680     // N.B. we are only interested in the adjusted param types.
8681     auto I = FPT->param_type_begin();
8682     auto E = FPT->param_type_end();
8683     if (I != E) {
8684       do {
8685         if (!appendType(Enc, *I, CGM, TSC))
8686           return false;
8687         ++I;
8688         if (I != E)
8689           Enc += ',';
8690       } while (I != E);
8691       if (FPT->isVariadic())
8692         Enc += ",va";
8693     } else {
8694       if (FPT->isVariadic())
8695         Enc += "va";
8696       else
8697         Enc += '0';
8698     }
8699   }
8700   Enc += ')';
8701   return true;
8702 }
8703 
8704 /// Handles the type's qualifier before dispatching a call to handle specific
8705 /// type encodings.
8706 static bool appendType(SmallStringEnc &Enc, QualType QType,
8707                        const CodeGen::CodeGenModule &CGM,
8708                        TypeStringCache &TSC) {
8709 
8710   QualType QT = QType.getCanonicalType();
8711 
8712   if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
8713     // The Qualifiers should be attached to the type rather than the array.
8714     // Thus we don't call appendQualifier() here.
8715     return appendArrayType(Enc, QT, AT, CGM, TSC, "");
8716 
8717   appendQualifier(Enc, QT);
8718 
8719   if (const BuiltinType *BT = QT->getAs<BuiltinType>())
8720     return appendBuiltinType(Enc, BT);
8721 
8722   if (const PointerType *PT = QT->getAs<PointerType>())
8723     return appendPointerType(Enc, PT, CGM, TSC);
8724 
8725   if (const EnumType *ET = QT->getAs<EnumType>())
8726     return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
8727 
8728   if (const RecordType *RT = QT->getAsStructureType())
8729     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
8730 
8731   if (const RecordType *RT = QT->getAsUnionType())
8732     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
8733 
8734   if (const FunctionType *FT = QT->getAs<FunctionType>())
8735     return appendFunctionType(Enc, FT, CGM, TSC);
8736 
8737   return false;
8738 }
8739 
8740 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
8741                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) {
8742   if (!D)
8743     return false;
8744 
8745   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
8746     if (FD->getLanguageLinkage() != CLanguageLinkage)
8747       return false;
8748     return appendType(Enc, FD->getType(), CGM, TSC);
8749   }
8750 
8751   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
8752     if (VD->getLanguageLinkage() != CLanguageLinkage)
8753       return false;
8754     QualType QT = VD->getType().getCanonicalType();
8755     if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
8756       // Global ArrayTypes are given a size of '*' if the size is unknown.
8757       // The Qualifiers should be attached to the type rather than the array.
8758       // Thus we don't call appendQualifier() here.
8759       return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
8760     }
8761     return appendType(Enc, QT, CGM, TSC);
8762   }
8763   return false;
8764 }
8765 
8766 //===----------------------------------------------------------------------===//
8767 // RISCV ABI Implementation
8768 //===----------------------------------------------------------------------===//
8769 
8770 namespace {
8771 class RISCVABIInfo : public DefaultABIInfo {
8772 private:
8773   unsigned XLen; // Size of the integer ('x') registers in bits.
8774   static const int NumArgGPRs = 8;
8775 
8776 public:
8777   RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen)
8778       : DefaultABIInfo(CGT), XLen(XLen) {}
8779 
8780   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
8781   // non-virtual, but computeInfo is virtual, so we overload it.
8782   void computeInfo(CGFunctionInfo &FI) const override;
8783 
8784   ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed,
8785                                   int &ArgGPRsLeft) const;
8786   ABIArgInfo classifyReturnType(QualType RetTy) const;
8787 
8788   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8789                     QualType Ty) const override;
8790 
8791   ABIArgInfo extendType(QualType Ty) const;
8792 };
8793 } // end anonymous namespace
8794 
8795 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const {
8796   QualType RetTy = FI.getReturnType();
8797   if (!getCXXABI().classifyReturnType(FI))
8798     FI.getReturnInfo() = classifyReturnType(RetTy);
8799 
8800   // IsRetIndirect is true if classifyArgumentType indicated the value should
8801   // be passed indirect or if the type size is greater than 2*xlen. e.g. fp128
8802   // is passed direct in LLVM IR, relying on the backend lowering code to
8803   // rewrite the argument list and pass indirectly on RV32.
8804   bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect ||
8805                        getContext().getTypeSize(RetTy) > (2 * XLen);
8806 
8807   // We must track the number of GPRs used in order to conform to the RISC-V
8808   // ABI, as integer scalars passed in registers should have signext/zeroext
8809   // when promoted, but are anyext if passed on the stack. As GPR usage is
8810   // different for variadic arguments, we must also track whether we are
8811   // examining a vararg or not.
8812   int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs;
8813   int NumFixedArgs = FI.getNumRequiredArgs();
8814 
8815   int ArgNum = 0;
8816   for (auto &ArgInfo : FI.arguments()) {
8817     bool IsFixed = ArgNum < NumFixedArgs;
8818     ArgInfo.info = classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft);
8819     ArgNum++;
8820   }
8821 }
8822 
8823 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed,
8824                                               int &ArgGPRsLeft) const {
8825   assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow");
8826   Ty = useFirstFieldIfTransparentUnion(Ty);
8827 
8828   // Structures with either a non-trivial destructor or a non-trivial
8829   // copy constructor are always passed indirectly.
8830   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
8831     if (ArgGPRsLeft)
8832       ArgGPRsLeft -= 1;
8833     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
8834                                            CGCXXABI::RAA_DirectInMemory);
8835   }
8836 
8837   // Ignore empty structs/unions.
8838   if (isEmptyRecord(getContext(), Ty, true))
8839     return ABIArgInfo::getIgnore();
8840 
8841   uint64_t Size = getContext().getTypeSize(Ty);
8842   uint64_t NeededAlign = getContext().getTypeAlign(Ty);
8843   bool MustUseStack = false;
8844   // Determine the number of GPRs needed to pass the current argument
8845   // according to the ABI. 2*XLen-aligned varargs are passed in "aligned"
8846   // register pairs, so may consume 3 registers.
8847   int NeededArgGPRs = 1;
8848   if (!IsFixed && NeededAlign == 2 * XLen)
8849     NeededArgGPRs = 2 + (ArgGPRsLeft % 2);
8850   else if (Size > XLen && Size <= 2 * XLen)
8851     NeededArgGPRs = 2;
8852 
8853   if (NeededArgGPRs > ArgGPRsLeft) {
8854     MustUseStack = true;
8855     NeededArgGPRs = ArgGPRsLeft;
8856   }
8857 
8858   ArgGPRsLeft -= NeededArgGPRs;
8859 
8860   if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) {
8861     // Treat an enum type as its underlying type.
8862     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
8863       Ty = EnumTy->getDecl()->getIntegerType();
8864 
8865     // All integral types are promoted to XLen width, unless passed on the
8866     // stack.
8867     if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) {
8868       return extendType(Ty);
8869     }
8870 
8871     return ABIArgInfo::getDirect();
8872   }
8873 
8874   // Aggregates which are <= 2*XLen will be passed in registers if possible,
8875   // so coerce to integers.
8876   if (Size <= 2 * XLen) {
8877     unsigned Alignment = getContext().getTypeAlign(Ty);
8878 
8879     // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is
8880     // required, and a 2-element XLen array if only XLen alignment is required.
8881     if (Size <= XLen) {
8882       return ABIArgInfo::getDirect(
8883           llvm::IntegerType::get(getVMContext(), XLen));
8884     } else if (Alignment == 2 * XLen) {
8885       return ABIArgInfo::getDirect(
8886           llvm::IntegerType::get(getVMContext(), 2 * XLen));
8887     } else {
8888       return ABIArgInfo::getDirect(llvm::ArrayType::get(
8889           llvm::IntegerType::get(getVMContext(), XLen), 2));
8890     }
8891   }
8892   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
8893 }
8894 
8895 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const {
8896   if (RetTy->isVoidType())
8897     return ABIArgInfo::getIgnore();
8898 
8899   int ArgGPRsLeft = 2;
8900 
8901   // The rules for return and argument types are the same, so defer to
8902   // classifyArgumentType.
8903   return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft);
8904 }
8905 
8906 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8907                                 QualType Ty) const {
8908   CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8);
8909 
8910   // Empty records are ignored for parameter passing purposes.
8911   if (isEmptyRecord(getContext(), Ty, true)) {
8912     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
8913     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
8914     return Addr;
8915   }
8916 
8917   std::pair<CharUnits, CharUnits> SizeAndAlign =
8918       getContext().getTypeInfoInChars(Ty);
8919 
8920   // Arguments bigger than 2*Xlen bytes are passed indirectly.
8921   bool IsIndirect = SizeAndAlign.first > 2 * SlotSize;
8922 
8923   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, SizeAndAlign,
8924                           SlotSize, /*AllowHigherAlign=*/true);
8925 }
8926 
8927 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const {
8928   int TySize = getContext().getTypeSize(Ty);
8929   // RV64 ABI requires unsigned 32 bit integers to be sign extended.
8930   if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
8931     return ABIArgInfo::getSignExtend(Ty);
8932   return ABIArgInfo::getExtend(Ty);
8933 }
8934 
8935 namespace {
8936 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo {
8937 public:
8938   RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen)
8939       : TargetCodeGenInfo(new RISCVABIInfo(CGT, XLen)) {}
8940 };
8941 } // namespace
8942 
8943 //===----------------------------------------------------------------------===//
8944 // Driver code
8945 //===----------------------------------------------------------------------===//
8946 
8947 bool CodeGenModule::supportsCOMDAT() const {
8948   return getTriple().supportsCOMDAT();
8949 }
8950 
8951 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
8952   if (TheTargetCodeGenInfo)
8953     return *TheTargetCodeGenInfo;
8954 
8955   // Helper to set the unique_ptr while still keeping the return value.
8956   auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & {
8957     this->TheTargetCodeGenInfo.reset(P);
8958     return *P;
8959   };
8960 
8961   const llvm::Triple &Triple = getTarget().getTriple();
8962   switch (Triple.getArch()) {
8963   default:
8964     return SetCGInfo(new DefaultTargetCodeGenInfo(Types));
8965 
8966   case llvm::Triple::le32:
8967     return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
8968   case llvm::Triple::mips:
8969   case llvm::Triple::mipsel:
8970     if (Triple.getOS() == llvm::Triple::NaCl)
8971       return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
8972     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true));
8973 
8974   case llvm::Triple::mips64:
8975   case llvm::Triple::mips64el:
8976     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false));
8977 
8978   case llvm::Triple::avr:
8979     return SetCGInfo(new AVRTargetCodeGenInfo(Types));
8980 
8981   case llvm::Triple::aarch64:
8982   case llvm::Triple::aarch64_be: {
8983     AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
8984     if (getTarget().getABI() == "darwinpcs")
8985       Kind = AArch64ABIInfo::DarwinPCS;
8986     else if (Triple.isOSWindows())
8987       return SetCGInfo(
8988           new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64));
8989 
8990     return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind));
8991   }
8992 
8993   case llvm::Triple::wasm32:
8994   case llvm::Triple::wasm64:
8995     return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types));
8996 
8997   case llvm::Triple::arm:
8998   case llvm::Triple::armeb:
8999   case llvm::Triple::thumb:
9000   case llvm::Triple::thumbeb: {
9001     if (Triple.getOS() == llvm::Triple::Win32) {
9002       return SetCGInfo(
9003           new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP));
9004     }
9005 
9006     ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
9007     StringRef ABIStr = getTarget().getABI();
9008     if (ABIStr == "apcs-gnu")
9009       Kind = ARMABIInfo::APCS;
9010     else if (ABIStr == "aapcs16")
9011       Kind = ARMABIInfo::AAPCS16_VFP;
9012     else if (CodeGenOpts.FloatABI == "hard" ||
9013              (CodeGenOpts.FloatABI != "soft" &&
9014               (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
9015                Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
9016                Triple.getEnvironment() == llvm::Triple::EABIHF)))
9017       Kind = ARMABIInfo::AAPCS_VFP;
9018 
9019     return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind));
9020   }
9021 
9022   case llvm::Triple::ppc:
9023     return SetCGInfo(
9024         new PPC32TargetCodeGenInfo(Types, CodeGenOpts.FloatABI == "soft"));
9025   case llvm::Triple::ppc64:
9026     if (Triple.isOSBinFormatELF()) {
9027       PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1;
9028       if (getTarget().getABI() == "elfv2")
9029         Kind = PPC64_SVR4_ABIInfo::ELFv2;
9030       bool HasQPX = getTarget().getABI() == "elfv1-qpx";
9031       bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
9032 
9033       return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX,
9034                                                         IsSoftFloat));
9035     } else
9036       return SetCGInfo(new PPC64TargetCodeGenInfo(Types));
9037   case llvm::Triple::ppc64le: {
9038     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
9039     PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2;
9040     if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx")
9041       Kind = PPC64_SVR4_ABIInfo::ELFv1;
9042     bool HasQPX = getTarget().getABI() == "elfv1-qpx";
9043     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
9044 
9045     return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX,
9046                                                       IsSoftFloat));
9047   }
9048 
9049   case llvm::Triple::nvptx:
9050   case llvm::Triple::nvptx64:
9051     return SetCGInfo(new NVPTXTargetCodeGenInfo(Types));
9052 
9053   case llvm::Triple::msp430:
9054     return SetCGInfo(new MSP430TargetCodeGenInfo(Types));
9055 
9056   case llvm::Triple::riscv32:
9057     return SetCGInfo(new RISCVTargetCodeGenInfo(Types, 32));
9058   case llvm::Triple::riscv64:
9059     return SetCGInfo(new RISCVTargetCodeGenInfo(Types, 64));
9060 
9061   case llvm::Triple::systemz: {
9062     bool HasVector = getTarget().getABI() == "vector";
9063     return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector));
9064   }
9065 
9066   case llvm::Triple::tce:
9067   case llvm::Triple::tcele:
9068     return SetCGInfo(new TCETargetCodeGenInfo(Types));
9069 
9070   case llvm::Triple::x86: {
9071     bool IsDarwinVectorABI = Triple.isOSDarwin();
9072     bool RetSmallStructInRegABI =
9073         X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
9074     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
9075 
9076     if (Triple.getOS() == llvm::Triple::Win32) {
9077       return SetCGInfo(new WinX86_32TargetCodeGenInfo(
9078           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
9079           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters));
9080     } else {
9081       return SetCGInfo(new X86_32TargetCodeGenInfo(
9082           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
9083           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters,
9084           CodeGenOpts.FloatABI == "soft"));
9085     }
9086   }
9087 
9088   case llvm::Triple::x86_64: {
9089     StringRef ABI = getTarget().getABI();
9090     X86AVXABILevel AVXLevel =
9091         (ABI == "avx512"
9092              ? X86AVXABILevel::AVX512
9093              : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None);
9094 
9095     switch (Triple.getOS()) {
9096     case llvm::Triple::Win32:
9097       return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel));
9098     case llvm::Triple::PS4:
9099       return SetCGInfo(new PS4TargetCodeGenInfo(Types, AVXLevel));
9100     default:
9101       return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel));
9102     }
9103   }
9104   case llvm::Triple::hexagon:
9105     return SetCGInfo(new HexagonTargetCodeGenInfo(Types));
9106   case llvm::Triple::lanai:
9107     return SetCGInfo(new LanaiTargetCodeGenInfo(Types));
9108   case llvm::Triple::r600:
9109     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
9110   case llvm::Triple::amdgcn:
9111     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
9112   case llvm::Triple::sparc:
9113     return SetCGInfo(new SparcV8TargetCodeGenInfo(Types));
9114   case llvm::Triple::sparcv9:
9115     return SetCGInfo(new SparcV9TargetCodeGenInfo(Types));
9116   case llvm::Triple::xcore:
9117     return SetCGInfo(new XCoreTargetCodeGenInfo(Types));
9118   case llvm::Triple::spir:
9119   case llvm::Triple::spir64:
9120     return SetCGInfo(new SPIRTargetCodeGenInfo(Types));
9121   }
9122 }
9123 
9124 /// Create an OpenCL kernel for an enqueued block.
9125 ///
9126 /// The kernel has the same function type as the block invoke function. Its
9127 /// name is the name of the block invoke function postfixed with "_kernel".
9128 /// It simply calls the block invoke function then returns.
9129 llvm::Function *
9130 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF,
9131                                              llvm::Function *Invoke,
9132                                              llvm::Value *BlockLiteral) const {
9133   auto *InvokeFT = Invoke->getFunctionType();
9134   llvm::SmallVector<llvm::Type *, 2> ArgTys;
9135   for (auto &P : InvokeFT->params())
9136     ArgTys.push_back(P);
9137   auto &C = CGF.getLLVMContext();
9138   std::string Name = Invoke->getName().str() + "_kernel";
9139   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
9140   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
9141                                    &CGF.CGM.getModule());
9142   auto IP = CGF.Builder.saveIP();
9143   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
9144   auto &Builder = CGF.Builder;
9145   Builder.SetInsertPoint(BB);
9146   llvm::SmallVector<llvm::Value *, 2> Args;
9147   for (auto &A : F->args())
9148     Args.push_back(&A);
9149   Builder.CreateCall(Invoke, Args);
9150   Builder.CreateRetVoid();
9151   Builder.restoreIP(IP);
9152   return F;
9153 }
9154 
9155 /// Create an OpenCL kernel for an enqueued block.
9156 ///
9157 /// The type of the first argument (the block literal) is the struct type
9158 /// of the block literal instead of a pointer type. The first argument
9159 /// (block literal) is passed directly by value to the kernel. The kernel
9160 /// allocates the same type of struct on stack and stores the block literal
9161 /// to it and passes its pointer to the block invoke function. The kernel
9162 /// has "enqueued-block" function attribute and kernel argument metadata.
9163 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel(
9164     CodeGenFunction &CGF, llvm::Function *Invoke,
9165     llvm::Value *BlockLiteral) const {
9166   auto &Builder = CGF.Builder;
9167   auto &C = CGF.getLLVMContext();
9168 
9169   auto *BlockTy = BlockLiteral->getType()->getPointerElementType();
9170   auto *InvokeFT = Invoke->getFunctionType();
9171   llvm::SmallVector<llvm::Type *, 2> ArgTys;
9172   llvm::SmallVector<llvm::Metadata *, 8> AddressQuals;
9173   llvm::SmallVector<llvm::Metadata *, 8> AccessQuals;
9174   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames;
9175   llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames;
9176   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals;
9177   llvm::SmallVector<llvm::Metadata *, 8> ArgNames;
9178 
9179   ArgTys.push_back(BlockTy);
9180   ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
9181   AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0)));
9182   ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
9183   ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
9184   AccessQuals.push_back(llvm::MDString::get(C, "none"));
9185   ArgNames.push_back(llvm::MDString::get(C, "block_literal"));
9186   for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) {
9187     ArgTys.push_back(InvokeFT->getParamType(I));
9188     ArgTypeNames.push_back(llvm::MDString::get(C, "void*"));
9189     AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3)));
9190     AccessQuals.push_back(llvm::MDString::get(C, "none"));
9191     ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*"));
9192     ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
9193     ArgNames.push_back(
9194         llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str()));
9195   }
9196   std::string Name = Invoke->getName().str() + "_kernel";
9197   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
9198   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
9199                                    &CGF.CGM.getModule());
9200   F->addFnAttr("enqueued-block");
9201   auto IP = CGF.Builder.saveIP();
9202   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
9203   Builder.SetInsertPoint(BB);
9204   unsigned BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(BlockTy);
9205   auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr);
9206   BlockPtr->setAlignment(BlockAlign);
9207   Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign);
9208   auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0));
9209   llvm::SmallVector<llvm::Value *, 2> Args;
9210   Args.push_back(Cast);
9211   for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I)
9212     Args.push_back(I);
9213   Builder.CreateCall(Invoke, Args);
9214   Builder.CreateRetVoid();
9215   Builder.restoreIP(IP);
9216 
9217   F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals));
9218   F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals));
9219   F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames));
9220   F->setMetadata("kernel_arg_base_type",
9221                  llvm::MDNode::get(C, ArgBaseTypeNames));
9222   F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals));
9223   if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
9224     F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames));
9225 
9226   return F;
9227 }
9228