1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes wrap the information about a call or function 10 // definition used to handle ABI compliancy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "TargetInfo.h" 15 #include "ABIInfo.h" 16 #include "CGBlocks.h" 17 #include "CGCXXABI.h" 18 #include "CGValue.h" 19 #include "CodeGenFunction.h" 20 #include "clang/AST/RecordLayout.h" 21 #include "clang/Basic/CodeGenOptions.h" 22 #include "clang/CodeGen/CGFunctionInfo.h" 23 #include "clang/CodeGen/SwiftCallingConv.h" 24 #include "llvm/ADT/StringExtras.h" 25 #include "llvm/ADT/StringSwitch.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/ADT/Twine.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Type.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include <algorithm> // std::sort 32 33 using namespace clang; 34 using namespace CodeGen; 35 36 // Helper for coercing an aggregate argument or return value into an integer 37 // array of the same size (including padding) and alignment. This alternate 38 // coercion happens only for the RenderScript ABI and can be removed after 39 // runtimes that rely on it are no longer supported. 40 // 41 // RenderScript assumes that the size of the argument / return value in the IR 42 // is the same as the size of the corresponding qualified type. This helper 43 // coerces the aggregate type into an array of the same size (including 44 // padding). This coercion is used in lieu of expansion of struct members or 45 // other canonical coercions that return a coerced-type of larger size. 46 // 47 // Ty - The argument / return value type 48 // Context - The associated ASTContext 49 // LLVMContext - The associated LLVMContext 50 static ABIArgInfo coerceToIntArray(QualType Ty, 51 ASTContext &Context, 52 llvm::LLVMContext &LLVMContext) { 53 // Alignment and Size are measured in bits. 54 const uint64_t Size = Context.getTypeSize(Ty); 55 const uint64_t Alignment = Context.getTypeAlign(Ty); 56 llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment); 57 const uint64_t NumElements = (Size + Alignment - 1) / Alignment; 58 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 59 } 60 61 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 62 llvm::Value *Array, 63 llvm::Value *Value, 64 unsigned FirstIndex, 65 unsigned LastIndex) { 66 // Alternatively, we could emit this as a loop in the source. 67 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 68 llvm::Value *Cell = 69 Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); 70 Builder.CreateAlignedStore(Value, Cell, CharUnits::One()); 71 } 72 } 73 74 static bool isAggregateTypeForABI(QualType T) { 75 return !CodeGenFunction::hasScalarEvaluationKind(T) || 76 T->isMemberFunctionPointerType(); 77 } 78 79 ABIArgInfo 80 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign, 81 llvm::Type *Padding) const { 82 return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), 83 ByRef, Realign, Padding); 84 } 85 86 ABIArgInfo 87 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const { 88 return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty), 89 /*ByRef*/ false, Realign); 90 } 91 92 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 93 QualType Ty) const { 94 return Address::invalid(); 95 } 96 97 ABIInfo::~ABIInfo() {} 98 99 /// Does the given lowering require more than the given number of 100 /// registers when expanded? 101 /// 102 /// This is intended to be the basis of a reasonable basic implementation 103 /// of should{Pass,Return}IndirectlyForSwift. 104 /// 105 /// For most targets, a limit of four total registers is reasonable; this 106 /// limits the amount of code required in order to move around the value 107 /// in case it wasn't produced immediately prior to the call by the caller 108 /// (or wasn't produced in exactly the right registers) or isn't used 109 /// immediately within the callee. But some targets may need to further 110 /// limit the register count due to an inability to support that many 111 /// return registers. 112 static bool occupiesMoreThan(CodeGenTypes &cgt, 113 ArrayRef<llvm::Type*> scalarTypes, 114 unsigned maxAllRegisters) { 115 unsigned intCount = 0, fpCount = 0; 116 for (llvm::Type *type : scalarTypes) { 117 if (type->isPointerTy()) { 118 intCount++; 119 } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) { 120 auto ptrWidth = cgt.getTarget().getPointerWidth(0); 121 intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth; 122 } else { 123 assert(type->isVectorTy() || type->isFloatingPointTy()); 124 fpCount++; 125 } 126 } 127 128 return (intCount + fpCount > maxAllRegisters); 129 } 130 131 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 132 llvm::Type *eltTy, 133 unsigned numElts) const { 134 // The default implementation of this assumes that the target guarantees 135 // 128-bit SIMD support but nothing more. 136 return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16); 137 } 138 139 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 140 CGCXXABI &CXXABI) { 141 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 142 if (!RD) { 143 if (!RT->getDecl()->canPassInRegisters()) 144 return CGCXXABI::RAA_Indirect; 145 return CGCXXABI::RAA_Default; 146 } 147 return CXXABI.getRecordArgABI(RD); 148 } 149 150 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 151 CGCXXABI &CXXABI) { 152 const RecordType *RT = T->getAs<RecordType>(); 153 if (!RT) 154 return CGCXXABI::RAA_Default; 155 return getRecordArgABI(RT, CXXABI); 156 } 157 158 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI, 159 const ABIInfo &Info) { 160 QualType Ty = FI.getReturnType(); 161 162 if (const auto *RT = Ty->getAs<RecordType>()) 163 if (!isa<CXXRecordDecl>(RT->getDecl()) && 164 !RT->getDecl()->canPassInRegisters()) { 165 FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty); 166 return true; 167 } 168 169 return CXXABI.classifyReturnType(FI); 170 } 171 172 /// Pass transparent unions as if they were the type of the first element. Sema 173 /// should ensure that all elements of the union have the same "machine type". 174 static QualType useFirstFieldIfTransparentUnion(QualType Ty) { 175 if (const RecordType *UT = Ty->getAsUnionType()) { 176 const RecordDecl *UD = UT->getDecl(); 177 if (UD->hasAttr<TransparentUnionAttr>()) { 178 assert(!UD->field_empty() && "sema created an empty transparent union"); 179 return UD->field_begin()->getType(); 180 } 181 } 182 return Ty; 183 } 184 185 CGCXXABI &ABIInfo::getCXXABI() const { 186 return CGT.getCXXABI(); 187 } 188 189 ASTContext &ABIInfo::getContext() const { 190 return CGT.getContext(); 191 } 192 193 llvm::LLVMContext &ABIInfo::getVMContext() const { 194 return CGT.getLLVMContext(); 195 } 196 197 const llvm::DataLayout &ABIInfo::getDataLayout() const { 198 return CGT.getDataLayout(); 199 } 200 201 const TargetInfo &ABIInfo::getTarget() const { 202 return CGT.getTarget(); 203 } 204 205 const CodeGenOptions &ABIInfo::getCodeGenOpts() const { 206 return CGT.getCodeGenOpts(); 207 } 208 209 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); } 210 211 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 212 return false; 213 } 214 215 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 216 uint64_t Members) const { 217 return false; 218 } 219 220 LLVM_DUMP_METHOD void ABIArgInfo::dump() const { 221 raw_ostream &OS = llvm::errs(); 222 OS << "(ABIArgInfo Kind="; 223 switch (TheKind) { 224 case Direct: 225 OS << "Direct Type="; 226 if (llvm::Type *Ty = getCoerceToType()) 227 Ty->print(OS); 228 else 229 OS << "null"; 230 break; 231 case Extend: 232 OS << "Extend"; 233 break; 234 case Ignore: 235 OS << "Ignore"; 236 break; 237 case InAlloca: 238 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 239 break; 240 case Indirect: 241 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 242 << " ByVal=" << getIndirectByVal() 243 << " Realign=" << getIndirectRealign(); 244 break; 245 case Expand: 246 OS << "Expand"; 247 break; 248 case CoerceAndExpand: 249 OS << "CoerceAndExpand Type="; 250 getCoerceAndExpandType()->print(OS); 251 break; 252 } 253 OS << ")\n"; 254 } 255 256 // Dynamically round a pointer up to a multiple of the given alignment. 257 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF, 258 llvm::Value *Ptr, 259 CharUnits Align) { 260 llvm::Value *PtrAsInt = Ptr; 261 // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align; 262 PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy); 263 PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt, 264 llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1)); 265 PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt, 266 llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity())); 267 PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt, 268 Ptr->getType(), 269 Ptr->getName() + ".aligned"); 270 return PtrAsInt; 271 } 272 273 /// Emit va_arg for a platform using the common void* representation, 274 /// where arguments are simply emitted in an array of slots on the stack. 275 /// 276 /// This version implements the core direct-value passing rules. 277 /// 278 /// \param SlotSize - The size and alignment of a stack slot. 279 /// Each argument will be allocated to a multiple of this number of 280 /// slots, and all the slots will be aligned to this value. 281 /// \param AllowHigherAlign - The slot alignment is not a cap; 282 /// an argument type with an alignment greater than the slot size 283 /// will be emitted on a higher-alignment address, potentially 284 /// leaving one or more empty slots behind as padding. If this 285 /// is false, the returned address might be less-aligned than 286 /// DirectAlign. 287 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF, 288 Address VAListAddr, 289 llvm::Type *DirectTy, 290 CharUnits DirectSize, 291 CharUnits DirectAlign, 292 CharUnits SlotSize, 293 bool AllowHigherAlign) { 294 // Cast the element type to i8* if necessary. Some platforms define 295 // va_list as a struct containing an i8* instead of just an i8*. 296 if (VAListAddr.getElementType() != CGF.Int8PtrTy) 297 VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy); 298 299 llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur"); 300 301 // If the CC aligns values higher than the slot size, do so if needed. 302 Address Addr = Address::invalid(); 303 if (AllowHigherAlign && DirectAlign > SlotSize) { 304 Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign), 305 DirectAlign); 306 } else { 307 Addr = Address(Ptr, SlotSize); 308 } 309 310 // Advance the pointer past the argument, then store that back. 311 CharUnits FullDirectSize = DirectSize.alignTo(SlotSize); 312 llvm::Value *NextPtr = 313 CGF.Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), FullDirectSize, 314 "argp.next"); 315 CGF.Builder.CreateStore(NextPtr, VAListAddr); 316 317 // If the argument is smaller than a slot, and this is a big-endian 318 // target, the argument will be right-adjusted in its slot. 319 if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() && 320 !DirectTy->isStructTy()) { 321 Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize); 322 } 323 324 Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy); 325 return Addr; 326 } 327 328 /// Emit va_arg for a platform using the common void* representation, 329 /// where arguments are simply emitted in an array of slots on the stack. 330 /// 331 /// \param IsIndirect - Values of this type are passed indirectly. 332 /// \param ValueInfo - The size and alignment of this type, generally 333 /// computed with getContext().getTypeInfoInChars(ValueTy). 334 /// \param SlotSizeAndAlign - The size and alignment of a stack slot. 335 /// Each argument will be allocated to a multiple of this number of 336 /// slots, and all the slots will be aligned to this value. 337 /// \param AllowHigherAlign - The slot alignment is not a cap; 338 /// an argument type with an alignment greater than the slot size 339 /// will be emitted on a higher-alignment address, potentially 340 /// leaving one or more empty slots behind as padding. 341 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr, 342 QualType ValueTy, bool IsIndirect, 343 std::pair<CharUnits, CharUnits> ValueInfo, 344 CharUnits SlotSizeAndAlign, 345 bool AllowHigherAlign) { 346 // The size and alignment of the value that was passed directly. 347 CharUnits DirectSize, DirectAlign; 348 if (IsIndirect) { 349 DirectSize = CGF.getPointerSize(); 350 DirectAlign = CGF.getPointerAlign(); 351 } else { 352 DirectSize = ValueInfo.first; 353 DirectAlign = ValueInfo.second; 354 } 355 356 // Cast the address we've calculated to the right type. 357 llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy); 358 if (IsIndirect) 359 DirectTy = DirectTy->getPointerTo(0); 360 361 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy, 362 DirectSize, DirectAlign, 363 SlotSizeAndAlign, 364 AllowHigherAlign); 365 366 if (IsIndirect) { 367 Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second); 368 } 369 370 return Addr; 371 372 } 373 374 static Address emitMergePHI(CodeGenFunction &CGF, 375 Address Addr1, llvm::BasicBlock *Block1, 376 Address Addr2, llvm::BasicBlock *Block2, 377 const llvm::Twine &Name = "") { 378 assert(Addr1.getType() == Addr2.getType()); 379 llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name); 380 PHI->addIncoming(Addr1.getPointer(), Block1); 381 PHI->addIncoming(Addr2.getPointer(), Block2); 382 CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment()); 383 return Address(PHI, Align); 384 } 385 386 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; } 387 388 // If someone can figure out a general rule for this, that would be great. 389 // It's probably just doomed to be platform-dependent, though. 390 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 391 // Verified for: 392 // x86-64 FreeBSD, Linux, Darwin 393 // x86-32 FreeBSD, Linux, Darwin 394 // PowerPC Linux, Darwin 395 // ARM Darwin (*not* EABI) 396 // AArch64 Linux 397 return 32; 398 } 399 400 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 401 const FunctionNoProtoType *fnType) const { 402 // The following conventions are known to require this to be false: 403 // x86_stdcall 404 // MIPS 405 // For everything else, we just prefer false unless we opt out. 406 return false; 407 } 408 409 void 410 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 411 llvm::SmallString<24> &Opt) const { 412 // This assumes the user is passing a library name like "rt" instead of a 413 // filename like "librt.a/so", and that they don't care whether it's static or 414 // dynamic. 415 Opt = "-l"; 416 Opt += Lib; 417 } 418 419 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const { 420 // OpenCL kernels are called via an explicit runtime API with arguments 421 // set with clSetKernelArg(), not as normal sub-functions. 422 // Return SPIR_KERNEL by default as the kernel calling convention to 423 // ensure the fingerprint is fixed such way that each OpenCL argument 424 // gets one matching argument in the produced kernel function argument 425 // list to enable feasible implementation of clSetKernelArg() with 426 // aggregates etc. In case we would use the default C calling conv here, 427 // clSetKernelArg() might break depending on the target-specific 428 // conventions; different targets might split structs passed as values 429 // to multiple function arguments etc. 430 return llvm::CallingConv::SPIR_KERNEL; 431 } 432 433 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM, 434 llvm::PointerType *T, QualType QT) const { 435 return llvm::ConstantPointerNull::get(T); 436 } 437 438 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 439 const VarDecl *D) const { 440 assert(!CGM.getLangOpts().OpenCL && 441 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 442 "Address space agnostic languages only"); 443 return D ? D->getType().getAddressSpace() : LangAS::Default; 444 } 445 446 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast( 447 CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr, 448 LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const { 449 // Since target may map different address spaces in AST to the same address 450 // space, an address space conversion may end up as a bitcast. 451 if (auto *C = dyn_cast<llvm::Constant>(Src)) 452 return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy); 453 return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DestTy); 454 } 455 456 llvm::Constant * 457 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src, 458 LangAS SrcAddr, LangAS DestAddr, 459 llvm::Type *DestTy) const { 460 // Since target may map different address spaces in AST to the same address 461 // space, an address space conversion may end up as a bitcast. 462 return llvm::ConstantExpr::getPointerCast(Src, DestTy); 463 } 464 465 llvm::SyncScope::ID 466 TargetCodeGenInfo::getLLVMSyncScopeID(SyncScope S, llvm::LLVMContext &C) const { 467 return C.getOrInsertSyncScopeID(""); /* default sync scope */ 468 } 469 470 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 471 472 /// isEmptyField - Return true iff a the field is "empty", that is it 473 /// is an unnamed bit-field or an (array of) empty record(s). 474 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 475 bool AllowArrays) { 476 if (FD->isUnnamedBitfield()) 477 return true; 478 479 QualType FT = FD->getType(); 480 481 // Constant arrays of empty records count as empty, strip them off. 482 // Constant arrays of zero length always count as empty. 483 if (AllowArrays) 484 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 485 if (AT->getSize() == 0) 486 return true; 487 FT = AT->getElementType(); 488 } 489 490 const RecordType *RT = FT->getAs<RecordType>(); 491 if (!RT) 492 return false; 493 494 // C++ record fields are never empty, at least in the Itanium ABI. 495 // 496 // FIXME: We should use a predicate for whether this behavior is true in the 497 // current ABI. 498 if (isa<CXXRecordDecl>(RT->getDecl())) 499 return false; 500 501 return isEmptyRecord(Context, FT, AllowArrays); 502 } 503 504 /// isEmptyRecord - Return true iff a structure contains only empty 505 /// fields. Note that a structure with a flexible array member is not 506 /// considered empty. 507 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 508 const RecordType *RT = T->getAs<RecordType>(); 509 if (!RT) 510 return false; 511 const RecordDecl *RD = RT->getDecl(); 512 if (RD->hasFlexibleArrayMember()) 513 return false; 514 515 // If this is a C++ record, check the bases first. 516 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 517 for (const auto &I : CXXRD->bases()) 518 if (!isEmptyRecord(Context, I.getType(), true)) 519 return false; 520 521 for (const auto *I : RD->fields()) 522 if (!isEmptyField(Context, I, AllowArrays)) 523 return false; 524 return true; 525 } 526 527 /// isSingleElementStruct - Determine if a structure is a "single 528 /// element struct", i.e. it has exactly one non-empty field or 529 /// exactly one field which is itself a single element 530 /// struct. Structures with flexible array members are never 531 /// considered single element structs. 532 /// 533 /// \return The field declaration for the single non-empty field, if 534 /// it exists. 535 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 536 const RecordType *RT = T->getAs<RecordType>(); 537 if (!RT) 538 return nullptr; 539 540 const RecordDecl *RD = RT->getDecl(); 541 if (RD->hasFlexibleArrayMember()) 542 return nullptr; 543 544 const Type *Found = nullptr; 545 546 // If this is a C++ record, check the bases first. 547 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 548 for (const auto &I : CXXRD->bases()) { 549 // Ignore empty records. 550 if (isEmptyRecord(Context, I.getType(), true)) 551 continue; 552 553 // If we already found an element then this isn't a single-element struct. 554 if (Found) 555 return nullptr; 556 557 // If this is non-empty and not a single element struct, the composite 558 // cannot be a single element struct. 559 Found = isSingleElementStruct(I.getType(), Context); 560 if (!Found) 561 return nullptr; 562 } 563 } 564 565 // Check for single element. 566 for (const auto *FD : RD->fields()) { 567 QualType FT = FD->getType(); 568 569 // Ignore empty fields. 570 if (isEmptyField(Context, FD, true)) 571 continue; 572 573 // If we already found an element then this isn't a single-element 574 // struct. 575 if (Found) 576 return nullptr; 577 578 // Treat single element arrays as the element. 579 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 580 if (AT->getSize().getZExtValue() != 1) 581 break; 582 FT = AT->getElementType(); 583 } 584 585 if (!isAggregateTypeForABI(FT)) { 586 Found = FT.getTypePtr(); 587 } else { 588 Found = isSingleElementStruct(FT, Context); 589 if (!Found) 590 return nullptr; 591 } 592 } 593 594 // We don't consider a struct a single-element struct if it has 595 // padding beyond the element type. 596 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 597 return nullptr; 598 599 return Found; 600 } 601 602 namespace { 603 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, 604 const ABIArgInfo &AI) { 605 // This default implementation defers to the llvm backend's va_arg 606 // instruction. It can handle only passing arguments directly 607 // (typically only handled in the backend for primitive types), or 608 // aggregates passed indirectly by pointer (NOTE: if the "byval" 609 // flag has ABI impact in the callee, this implementation cannot 610 // work.) 611 612 // Only a few cases are covered here at the moment -- those needed 613 // by the default abi. 614 llvm::Value *Val; 615 616 if (AI.isIndirect()) { 617 assert(!AI.getPaddingType() && 618 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 619 assert( 620 !AI.getIndirectRealign() && 621 "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!"); 622 623 auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty); 624 CharUnits TyAlignForABI = TyInfo.second; 625 626 llvm::Type *BaseTy = 627 llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 628 llvm::Value *Addr = 629 CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy); 630 return Address(Addr, TyAlignForABI); 631 } else { 632 assert((AI.isDirect() || AI.isExtend()) && 633 "Unexpected ArgInfo Kind in generic VAArg emitter!"); 634 635 assert(!AI.getInReg() && 636 "Unexpected InReg seen in arginfo in generic VAArg emitter!"); 637 assert(!AI.getPaddingType() && 638 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 639 assert(!AI.getDirectOffset() && 640 "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!"); 641 assert(!AI.getCoerceToType() && 642 "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!"); 643 644 Address Temp = CGF.CreateMemTemp(Ty, "varet"); 645 Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty)); 646 CGF.Builder.CreateStore(Val, Temp); 647 return Temp; 648 } 649 } 650 651 /// DefaultABIInfo - The default implementation for ABI specific 652 /// details. This implementation provides information which results in 653 /// self-consistent and sensible LLVM IR generation, but does not 654 /// conform to any particular ABI. 655 class DefaultABIInfo : public ABIInfo { 656 public: 657 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 658 659 ABIArgInfo classifyReturnType(QualType RetTy) const; 660 ABIArgInfo classifyArgumentType(QualType RetTy) const; 661 662 void computeInfo(CGFunctionInfo &FI) const override { 663 if (!getCXXABI().classifyReturnType(FI)) 664 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 665 for (auto &I : FI.arguments()) 666 I.info = classifyArgumentType(I.type); 667 } 668 669 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 670 QualType Ty) const override { 671 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 672 } 673 }; 674 675 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 676 public: 677 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 678 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 679 }; 680 681 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 682 Ty = useFirstFieldIfTransparentUnion(Ty); 683 684 if (isAggregateTypeForABI(Ty)) { 685 // Records with non-trivial destructors/copy-constructors should not be 686 // passed by value. 687 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 688 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 689 690 return getNaturalAlignIndirect(Ty); 691 } 692 693 // Treat an enum type as its underlying type. 694 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 695 Ty = EnumTy->getDecl()->getIntegerType(); 696 697 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 698 : ABIArgInfo::getDirect()); 699 } 700 701 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 702 if (RetTy->isVoidType()) 703 return ABIArgInfo::getIgnore(); 704 705 if (isAggregateTypeForABI(RetTy)) 706 return getNaturalAlignIndirect(RetTy); 707 708 // Treat an enum type as its underlying type. 709 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 710 RetTy = EnumTy->getDecl()->getIntegerType(); 711 712 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 713 : ABIArgInfo::getDirect()); 714 } 715 716 //===----------------------------------------------------------------------===// 717 // WebAssembly ABI Implementation 718 // 719 // This is a very simple ABI that relies a lot on DefaultABIInfo. 720 //===----------------------------------------------------------------------===// 721 722 class WebAssemblyABIInfo final : public SwiftABIInfo { 723 DefaultABIInfo defaultInfo; 724 725 public: 726 explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT) 727 : SwiftABIInfo(CGT), defaultInfo(CGT) {} 728 729 private: 730 ABIArgInfo classifyReturnType(QualType RetTy) const; 731 ABIArgInfo classifyArgumentType(QualType Ty) const; 732 733 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 734 // non-virtual, but computeInfo and EmitVAArg are virtual, so we 735 // overload them. 736 void computeInfo(CGFunctionInfo &FI) const override { 737 if (!getCXXABI().classifyReturnType(FI)) 738 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 739 for (auto &Arg : FI.arguments()) 740 Arg.info = classifyArgumentType(Arg.type); 741 } 742 743 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 744 QualType Ty) const override; 745 746 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 747 bool asReturnValue) const override { 748 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 749 } 750 751 bool isSwiftErrorInRegister() const override { 752 return false; 753 } 754 }; 755 756 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo { 757 public: 758 explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 759 : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT)) {} 760 761 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 762 CodeGen::CodeGenModule &CGM) const override { 763 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 764 llvm::Function *Fn = cast<llvm::Function>(GV); 765 if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype()) 766 Fn->addFnAttr("no-prototype"); 767 } 768 } 769 }; 770 771 /// Classify argument of given type \p Ty. 772 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const { 773 Ty = useFirstFieldIfTransparentUnion(Ty); 774 775 if (isAggregateTypeForABI(Ty)) { 776 // Records with non-trivial destructors/copy-constructors should not be 777 // passed by value. 778 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 779 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 780 // Ignore empty structs/unions. 781 if (isEmptyRecord(getContext(), Ty, true)) 782 return ABIArgInfo::getIgnore(); 783 // Lower single-element structs to just pass a regular value. TODO: We 784 // could do reasonable-size multiple-element structs too, using getExpand(), 785 // though watch out for things like bitfields. 786 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 787 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 788 } 789 790 // Otherwise just do the default thing. 791 return defaultInfo.classifyArgumentType(Ty); 792 } 793 794 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const { 795 if (isAggregateTypeForABI(RetTy)) { 796 // Records with non-trivial destructors/copy-constructors should not be 797 // returned by value. 798 if (!getRecordArgABI(RetTy, getCXXABI())) { 799 // Ignore empty structs/unions. 800 if (isEmptyRecord(getContext(), RetTy, true)) 801 return ABIArgInfo::getIgnore(); 802 // Lower single-element structs to just return a regular value. TODO: We 803 // could do reasonable-size multiple-element structs too, using 804 // ABIArgInfo::getDirect(). 805 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 806 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 807 } 808 } 809 810 // Otherwise just do the default thing. 811 return defaultInfo.classifyReturnType(RetTy); 812 } 813 814 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 815 QualType Ty) const { 816 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect=*/ false, 817 getContext().getTypeInfoInChars(Ty), 818 CharUnits::fromQuantity(4), 819 /*AllowHigherAlign=*/ true); 820 } 821 822 //===----------------------------------------------------------------------===// 823 // le32/PNaCl bitcode ABI Implementation 824 // 825 // This is a simplified version of the x86_32 ABI. Arguments and return values 826 // are always passed on the stack. 827 //===----------------------------------------------------------------------===// 828 829 class PNaClABIInfo : public ABIInfo { 830 public: 831 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 832 833 ABIArgInfo classifyReturnType(QualType RetTy) const; 834 ABIArgInfo classifyArgumentType(QualType RetTy) const; 835 836 void computeInfo(CGFunctionInfo &FI) const override; 837 Address EmitVAArg(CodeGenFunction &CGF, 838 Address VAListAddr, QualType Ty) const override; 839 }; 840 841 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 842 public: 843 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 844 : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {} 845 }; 846 847 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 848 if (!getCXXABI().classifyReturnType(FI)) 849 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 850 851 for (auto &I : FI.arguments()) 852 I.info = classifyArgumentType(I.type); 853 } 854 855 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 856 QualType Ty) const { 857 // The PNaCL ABI is a bit odd, in that varargs don't use normal 858 // function classification. Structs get passed directly for varargs 859 // functions, through a rewriting transform in 860 // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows 861 // this target to actually support a va_arg instructions with an 862 // aggregate type, unlike other targets. 863 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 864 } 865 866 /// Classify argument of given type \p Ty. 867 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 868 if (isAggregateTypeForABI(Ty)) { 869 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 870 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 871 return getNaturalAlignIndirect(Ty); 872 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 873 // Treat an enum type as its underlying type. 874 Ty = EnumTy->getDecl()->getIntegerType(); 875 } else if (Ty->isFloatingType()) { 876 // Floating-point types don't go inreg. 877 return ABIArgInfo::getDirect(); 878 } 879 880 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 881 : ABIArgInfo::getDirect()); 882 } 883 884 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 885 if (RetTy->isVoidType()) 886 return ABIArgInfo::getIgnore(); 887 888 // In the PNaCl ABI we always return records/structures on the stack. 889 if (isAggregateTypeForABI(RetTy)) 890 return getNaturalAlignIndirect(RetTy); 891 892 // Treat an enum type as its underlying type. 893 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 894 RetTy = EnumTy->getDecl()->getIntegerType(); 895 896 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 897 : ABIArgInfo::getDirect()); 898 } 899 900 /// IsX86_MMXType - Return true if this is an MMX type. 901 bool IsX86_MMXType(llvm::Type *IRType) { 902 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 903 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 904 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 905 IRType->getScalarSizeInBits() != 64; 906 } 907 908 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 909 StringRef Constraint, 910 llvm::Type* Ty) { 911 bool IsMMXCons = llvm::StringSwitch<bool>(Constraint) 912 .Cases("y", "&y", "^Ym", true) 913 .Default(false); 914 if (IsMMXCons && Ty->isVectorTy()) { 915 if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) { 916 // Invalid MMX constraint 917 return nullptr; 918 } 919 920 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 921 } 922 923 // No operation needed 924 return Ty; 925 } 926 927 /// Returns true if this type can be passed in SSE registers with the 928 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 929 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 930 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 931 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) { 932 if (BT->getKind() == BuiltinType::LongDouble) { 933 if (&Context.getTargetInfo().getLongDoubleFormat() == 934 &llvm::APFloat::x87DoubleExtended()) 935 return false; 936 } 937 return true; 938 } 939 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 940 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 941 // registers specially. 942 unsigned VecSize = Context.getTypeSize(VT); 943 if (VecSize == 128 || VecSize == 256 || VecSize == 512) 944 return true; 945 } 946 return false; 947 } 948 949 /// Returns true if this aggregate is small enough to be passed in SSE registers 950 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 951 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 952 return NumMembers <= 4; 953 } 954 955 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86. 956 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) { 957 auto AI = ABIArgInfo::getDirect(T); 958 AI.setInReg(true); 959 AI.setCanBeFlattened(false); 960 return AI; 961 } 962 963 //===----------------------------------------------------------------------===// 964 // X86-32 ABI Implementation 965 //===----------------------------------------------------------------------===// 966 967 /// Similar to llvm::CCState, but for Clang. 968 struct CCState { 969 CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {} 970 971 unsigned CC; 972 unsigned FreeRegs; 973 unsigned FreeSSERegs; 974 }; 975 976 enum { 977 // Vectorcall only allows the first 6 parameters to be passed in registers. 978 VectorcallMaxParamNumAsReg = 6 979 }; 980 981 /// X86_32ABIInfo - The X86-32 ABI information. 982 class X86_32ABIInfo : public SwiftABIInfo { 983 enum Class { 984 Integer, 985 Float 986 }; 987 988 static const unsigned MinABIStackAlignInBytes = 4; 989 990 bool IsDarwinVectorABI; 991 bool IsRetSmallStructInRegABI; 992 bool IsWin32StructABI; 993 bool IsSoftFloatABI; 994 bool IsMCUABI; 995 unsigned DefaultNumRegisterParameters; 996 997 static bool isRegisterSize(unsigned Size) { 998 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 999 } 1000 1001 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 1002 // FIXME: Assumes vectorcall is in use. 1003 return isX86VectorTypeForVectorCall(getContext(), Ty); 1004 } 1005 1006 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 1007 uint64_t NumMembers) const override { 1008 // FIXME: Assumes vectorcall is in use. 1009 return isX86VectorCallAggregateSmallEnough(NumMembers); 1010 } 1011 1012 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 1013 1014 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1015 /// such that the argument will be passed in memory. 1016 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 1017 1018 ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; 1019 1020 /// Return the alignment to use for the given type on the stack. 1021 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 1022 1023 Class classify(QualType Ty) const; 1024 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 1025 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 1026 1027 /// Updates the number of available free registers, returns 1028 /// true if any registers were allocated. 1029 bool updateFreeRegs(QualType Ty, CCState &State) const; 1030 1031 bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, 1032 bool &NeedsPadding) const; 1033 bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; 1034 1035 bool canExpandIndirectArgument(QualType Ty) const; 1036 1037 /// Rewrite the function info so that all memory arguments use 1038 /// inalloca. 1039 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 1040 1041 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1042 CharUnits &StackOffset, ABIArgInfo &Info, 1043 QualType Type) const; 1044 void computeVectorCallArgs(CGFunctionInfo &FI, CCState &State, 1045 bool &UsedInAlloca) const; 1046 1047 public: 1048 1049 void computeInfo(CGFunctionInfo &FI) const override; 1050 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 1051 QualType Ty) const override; 1052 1053 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1054 bool RetSmallStructInRegABI, bool Win32StructABI, 1055 unsigned NumRegisterParameters, bool SoftFloatABI) 1056 : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), 1057 IsRetSmallStructInRegABI(RetSmallStructInRegABI), 1058 IsWin32StructABI(Win32StructABI), 1059 IsSoftFloatABI(SoftFloatABI), 1060 IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), 1061 DefaultNumRegisterParameters(NumRegisterParameters) {} 1062 1063 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 1064 bool asReturnValue) const override { 1065 // LLVM's x86-32 lowering currently only assigns up to three 1066 // integer registers and three fp registers. Oddly, it'll use up to 1067 // four vector registers for vectors, but those can overlap with the 1068 // scalar registers. 1069 return occupiesMoreThan(CGT, scalars, /*total*/ 3); 1070 } 1071 1072 bool isSwiftErrorInRegister() const override { 1073 // x86-32 lowering does not support passing swifterror in a register. 1074 return false; 1075 } 1076 }; 1077 1078 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 1079 public: 1080 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1081 bool RetSmallStructInRegABI, bool Win32StructABI, 1082 unsigned NumRegisterParameters, bool SoftFloatABI) 1083 : TargetCodeGenInfo(new X86_32ABIInfo( 1084 CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, 1085 NumRegisterParameters, SoftFloatABI)) {} 1086 1087 static bool isStructReturnInRegABI( 1088 const llvm::Triple &Triple, const CodeGenOptions &Opts); 1089 1090 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1091 CodeGen::CodeGenModule &CGM) const override; 1092 1093 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1094 // Darwin uses different dwarf register numbers for EH. 1095 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 1096 return 4; 1097 } 1098 1099 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1100 llvm::Value *Address) const override; 1101 1102 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1103 StringRef Constraint, 1104 llvm::Type* Ty) const override { 1105 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1106 } 1107 1108 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 1109 std::string &Constraints, 1110 std::vector<llvm::Type *> &ResultRegTypes, 1111 std::vector<llvm::Type *> &ResultTruncRegTypes, 1112 std::vector<LValue> &ResultRegDests, 1113 std::string &AsmString, 1114 unsigned NumOutputs) const override; 1115 1116 llvm::Constant * 1117 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1118 unsigned Sig = (0xeb << 0) | // jmp rel8 1119 (0x06 << 8) | // .+0x08 1120 ('v' << 16) | 1121 ('2' << 24); 1122 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1123 } 1124 1125 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 1126 return "movl\t%ebp, %ebp" 1127 "\t\t// marker for objc_retainAutoreleaseReturnValue"; 1128 } 1129 }; 1130 1131 } 1132 1133 /// Rewrite input constraint references after adding some output constraints. 1134 /// In the case where there is one output and one input and we add one output, 1135 /// we need to replace all operand references greater than or equal to 1: 1136 /// mov $0, $1 1137 /// mov eax, $1 1138 /// The result will be: 1139 /// mov $0, $2 1140 /// mov eax, $2 1141 static void rewriteInputConstraintReferences(unsigned FirstIn, 1142 unsigned NumNewOuts, 1143 std::string &AsmString) { 1144 std::string Buf; 1145 llvm::raw_string_ostream OS(Buf); 1146 size_t Pos = 0; 1147 while (Pos < AsmString.size()) { 1148 size_t DollarStart = AsmString.find('$', Pos); 1149 if (DollarStart == std::string::npos) 1150 DollarStart = AsmString.size(); 1151 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 1152 if (DollarEnd == std::string::npos) 1153 DollarEnd = AsmString.size(); 1154 OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 1155 Pos = DollarEnd; 1156 size_t NumDollars = DollarEnd - DollarStart; 1157 if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 1158 // We have an operand reference. 1159 size_t DigitStart = Pos; 1160 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 1161 if (DigitEnd == std::string::npos) 1162 DigitEnd = AsmString.size(); 1163 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 1164 unsigned OperandIndex; 1165 if (!OperandStr.getAsInteger(10, OperandIndex)) { 1166 if (OperandIndex >= FirstIn) 1167 OperandIndex += NumNewOuts; 1168 OS << OperandIndex; 1169 } else { 1170 OS << OperandStr; 1171 } 1172 Pos = DigitEnd; 1173 } 1174 } 1175 AsmString = std::move(OS.str()); 1176 } 1177 1178 /// Add output constraints for EAX:EDX because they are return registers. 1179 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 1180 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 1181 std::vector<llvm::Type *> &ResultRegTypes, 1182 std::vector<llvm::Type *> &ResultTruncRegTypes, 1183 std::vector<LValue> &ResultRegDests, std::string &AsmString, 1184 unsigned NumOutputs) const { 1185 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 1186 1187 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 1188 // larger. 1189 if (!Constraints.empty()) 1190 Constraints += ','; 1191 if (RetWidth <= 32) { 1192 Constraints += "={eax}"; 1193 ResultRegTypes.push_back(CGF.Int32Ty); 1194 } else { 1195 // Use the 'A' constraint for EAX:EDX. 1196 Constraints += "=A"; 1197 ResultRegTypes.push_back(CGF.Int64Ty); 1198 } 1199 1200 // Truncate EAX or EAX:EDX to an integer of the appropriate size. 1201 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 1202 ResultTruncRegTypes.push_back(CoerceTy); 1203 1204 // Coerce the integer by bitcasting the return slot pointer. 1205 ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(), 1206 CoerceTy->getPointerTo())); 1207 ResultRegDests.push_back(ReturnSlot); 1208 1209 rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 1210 } 1211 1212 /// shouldReturnTypeInRegister - Determine if the given type should be 1213 /// returned in a register (for the Darwin and MCU ABI). 1214 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 1215 ASTContext &Context) const { 1216 uint64_t Size = Context.getTypeSize(Ty); 1217 1218 // For i386, type must be register sized. 1219 // For the MCU ABI, it only needs to be <= 8-byte 1220 if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) 1221 return false; 1222 1223 if (Ty->isVectorType()) { 1224 // 64- and 128- bit vectors inside structures are not returned in 1225 // registers. 1226 if (Size == 64 || Size == 128) 1227 return false; 1228 1229 return true; 1230 } 1231 1232 // If this is a builtin, pointer, enum, complex type, member pointer, or 1233 // member function pointer it is ok. 1234 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 1235 Ty->isAnyComplexType() || Ty->isEnumeralType() || 1236 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 1237 return true; 1238 1239 // Arrays are treated like records. 1240 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 1241 return shouldReturnTypeInRegister(AT->getElementType(), Context); 1242 1243 // Otherwise, it must be a record type. 1244 const RecordType *RT = Ty->getAs<RecordType>(); 1245 if (!RT) return false; 1246 1247 // FIXME: Traverse bases here too. 1248 1249 // Structure types are passed in register if all fields would be 1250 // passed in a register. 1251 for (const auto *FD : RT->getDecl()->fields()) { 1252 // Empty fields are ignored. 1253 if (isEmptyField(Context, FD, true)) 1254 continue; 1255 1256 // Check fields recursively. 1257 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 1258 return false; 1259 } 1260 return true; 1261 } 1262 1263 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 1264 // Treat complex types as the element type. 1265 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 1266 Ty = CTy->getElementType(); 1267 1268 // Check for a type which we know has a simple scalar argument-passing 1269 // convention without any padding. (We're specifically looking for 32 1270 // and 64-bit integer and integer-equivalents, float, and double.) 1271 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 1272 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 1273 return false; 1274 1275 uint64_t Size = Context.getTypeSize(Ty); 1276 return Size == 32 || Size == 64; 1277 } 1278 1279 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD, 1280 uint64_t &Size) { 1281 for (const auto *FD : RD->fields()) { 1282 // Scalar arguments on the stack get 4 byte alignment on x86. If the 1283 // argument is smaller than 32-bits, expanding the struct will create 1284 // alignment padding. 1285 if (!is32Or64BitBasicType(FD->getType(), Context)) 1286 return false; 1287 1288 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 1289 // how to expand them yet, and the predicate for telling if a bitfield still 1290 // counts as "basic" is more complicated than what we were doing previously. 1291 if (FD->isBitField()) 1292 return false; 1293 1294 Size += Context.getTypeSize(FD->getType()); 1295 } 1296 return true; 1297 } 1298 1299 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD, 1300 uint64_t &Size) { 1301 // Don't do this if there are any non-empty bases. 1302 for (const CXXBaseSpecifier &Base : RD->bases()) { 1303 if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(), 1304 Size)) 1305 return false; 1306 } 1307 if (!addFieldSizes(Context, RD, Size)) 1308 return false; 1309 return true; 1310 } 1311 1312 /// Test whether an argument type which is to be passed indirectly (on the 1313 /// stack) would have the equivalent layout if it was expanded into separate 1314 /// arguments. If so, we prefer to do the latter to avoid inhibiting 1315 /// optimizations. 1316 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const { 1317 // We can only expand structure types. 1318 const RecordType *RT = Ty->getAs<RecordType>(); 1319 if (!RT) 1320 return false; 1321 const RecordDecl *RD = RT->getDecl(); 1322 uint64_t Size = 0; 1323 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1324 if (!IsWin32StructABI) { 1325 // On non-Windows, we have to conservatively match our old bitcode 1326 // prototypes in order to be ABI-compatible at the bitcode level. 1327 if (!CXXRD->isCLike()) 1328 return false; 1329 } else { 1330 // Don't do this for dynamic classes. 1331 if (CXXRD->isDynamicClass()) 1332 return false; 1333 } 1334 if (!addBaseAndFieldSizes(getContext(), CXXRD, Size)) 1335 return false; 1336 } else { 1337 if (!addFieldSizes(getContext(), RD, Size)) 1338 return false; 1339 } 1340 1341 // We can do this if there was no alignment padding. 1342 return Size == getContext().getTypeSize(Ty); 1343 } 1344 1345 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { 1346 // If the return value is indirect, then the hidden argument is consuming one 1347 // integer register. 1348 if (State.FreeRegs) { 1349 --State.FreeRegs; 1350 if (!IsMCUABI) 1351 return getNaturalAlignIndirectInReg(RetTy); 1352 } 1353 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 1354 } 1355 1356 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 1357 CCState &State) const { 1358 if (RetTy->isVoidType()) 1359 return ABIArgInfo::getIgnore(); 1360 1361 const Type *Base = nullptr; 1362 uint64_t NumElts = 0; 1363 if ((State.CC == llvm::CallingConv::X86_VectorCall || 1364 State.CC == llvm::CallingConv::X86_RegCall) && 1365 isHomogeneousAggregate(RetTy, Base, NumElts)) { 1366 // The LLVM struct type for such an aggregate should lower properly. 1367 return ABIArgInfo::getDirect(); 1368 } 1369 1370 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 1371 // On Darwin, some vectors are returned in registers. 1372 if (IsDarwinVectorABI) { 1373 uint64_t Size = getContext().getTypeSize(RetTy); 1374 1375 // 128-bit vectors are a special case; they are returned in 1376 // registers and we need to make sure to pick a type the LLVM 1377 // backend will like. 1378 if (Size == 128) 1379 return ABIArgInfo::getDirect(llvm::VectorType::get( 1380 llvm::Type::getInt64Ty(getVMContext()), 2)); 1381 1382 // Always return in register if it fits in a general purpose 1383 // register, or if it is 64 bits and has a single element. 1384 if ((Size == 8 || Size == 16 || Size == 32) || 1385 (Size == 64 && VT->getNumElements() == 1)) 1386 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1387 Size)); 1388 1389 return getIndirectReturnResult(RetTy, State); 1390 } 1391 1392 return ABIArgInfo::getDirect(); 1393 } 1394 1395 if (isAggregateTypeForABI(RetTy)) { 1396 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 1397 // Structures with flexible arrays are always indirect. 1398 if (RT->getDecl()->hasFlexibleArrayMember()) 1399 return getIndirectReturnResult(RetTy, State); 1400 } 1401 1402 // If specified, structs and unions are always indirect. 1403 if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) 1404 return getIndirectReturnResult(RetTy, State); 1405 1406 // Ignore empty structs/unions. 1407 if (isEmptyRecord(getContext(), RetTy, true)) 1408 return ABIArgInfo::getIgnore(); 1409 1410 // Small structures which are register sized are generally returned 1411 // in a register. 1412 if (shouldReturnTypeInRegister(RetTy, getContext())) { 1413 uint64_t Size = getContext().getTypeSize(RetTy); 1414 1415 // As a special-case, if the struct is a "single-element" struct, and 1416 // the field is of type "float" or "double", return it in a 1417 // floating-point register. (MSVC does not apply this special case.) 1418 // We apply a similar transformation for pointer types to improve the 1419 // quality of the generated IR. 1420 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 1421 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 1422 || SeltTy->hasPointerRepresentation()) 1423 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 1424 1425 // FIXME: We should be able to narrow this integer in cases with dead 1426 // padding. 1427 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 1428 } 1429 1430 return getIndirectReturnResult(RetTy, State); 1431 } 1432 1433 // Treat an enum type as its underlying type. 1434 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1435 RetTy = EnumTy->getDecl()->getIntegerType(); 1436 1437 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 1438 : ABIArgInfo::getDirect()); 1439 } 1440 1441 static bool isSSEVectorType(ASTContext &Context, QualType Ty) { 1442 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 1443 } 1444 1445 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) { 1446 const RecordType *RT = Ty->getAs<RecordType>(); 1447 if (!RT) 1448 return 0; 1449 const RecordDecl *RD = RT->getDecl(); 1450 1451 // If this is a C++ record, check the bases first. 1452 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1453 for (const auto &I : CXXRD->bases()) 1454 if (!isRecordWithSSEVectorType(Context, I.getType())) 1455 return false; 1456 1457 for (const auto *i : RD->fields()) { 1458 QualType FT = i->getType(); 1459 1460 if (isSSEVectorType(Context, FT)) 1461 return true; 1462 1463 if (isRecordWithSSEVectorType(Context, FT)) 1464 return true; 1465 } 1466 1467 return false; 1468 } 1469 1470 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 1471 unsigned Align) const { 1472 // Otherwise, if the alignment is less than or equal to the minimum ABI 1473 // alignment, just use the default; the backend will handle this. 1474 if (Align <= MinABIStackAlignInBytes) 1475 return 0; // Use default alignment. 1476 1477 // On non-Darwin, the stack type alignment is always 4. 1478 if (!IsDarwinVectorABI) { 1479 // Set explicit alignment, since we may need to realign the top. 1480 return MinABIStackAlignInBytes; 1481 } 1482 1483 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 1484 if (Align >= 16 && (isSSEVectorType(getContext(), Ty) || 1485 isRecordWithSSEVectorType(getContext(), Ty))) 1486 return 16; 1487 1488 return MinABIStackAlignInBytes; 1489 } 1490 1491 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 1492 CCState &State) const { 1493 if (!ByVal) { 1494 if (State.FreeRegs) { 1495 --State.FreeRegs; // Non-byval indirects just use one pointer. 1496 if (!IsMCUABI) 1497 return getNaturalAlignIndirectInReg(Ty); 1498 } 1499 return getNaturalAlignIndirect(Ty, false); 1500 } 1501 1502 // Compute the byval alignment. 1503 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 1504 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 1505 if (StackAlign == 0) 1506 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); 1507 1508 // If the stack alignment is less than the type alignment, realign the 1509 // argument. 1510 bool Realign = TypeAlign > StackAlign; 1511 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), 1512 /*ByVal=*/true, Realign); 1513 } 1514 1515 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 1516 const Type *T = isSingleElementStruct(Ty, getContext()); 1517 if (!T) 1518 T = Ty.getTypePtr(); 1519 1520 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 1521 BuiltinType::Kind K = BT->getKind(); 1522 if (K == BuiltinType::Float || K == BuiltinType::Double) 1523 return Float; 1524 } 1525 return Integer; 1526 } 1527 1528 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { 1529 if (!IsSoftFloatABI) { 1530 Class C = classify(Ty); 1531 if (C == Float) 1532 return false; 1533 } 1534 1535 unsigned Size = getContext().getTypeSize(Ty); 1536 unsigned SizeInRegs = (Size + 31) / 32; 1537 1538 if (SizeInRegs == 0) 1539 return false; 1540 1541 if (!IsMCUABI) { 1542 if (SizeInRegs > State.FreeRegs) { 1543 State.FreeRegs = 0; 1544 return false; 1545 } 1546 } else { 1547 // The MCU psABI allows passing parameters in-reg even if there are 1548 // earlier parameters that are passed on the stack. Also, 1549 // it does not allow passing >8-byte structs in-register, 1550 // even if there are 3 free registers available. 1551 if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) 1552 return false; 1553 } 1554 1555 State.FreeRegs -= SizeInRegs; 1556 return true; 1557 } 1558 1559 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, 1560 bool &InReg, 1561 bool &NeedsPadding) const { 1562 // On Windows, aggregates other than HFAs are never passed in registers, and 1563 // they do not consume register slots. Homogenous floating-point aggregates 1564 // (HFAs) have already been dealt with at this point. 1565 if (IsWin32StructABI && isAggregateTypeForABI(Ty)) 1566 return false; 1567 1568 NeedsPadding = false; 1569 InReg = !IsMCUABI; 1570 1571 if (!updateFreeRegs(Ty, State)) 1572 return false; 1573 1574 if (IsMCUABI) 1575 return true; 1576 1577 if (State.CC == llvm::CallingConv::X86_FastCall || 1578 State.CC == llvm::CallingConv::X86_VectorCall || 1579 State.CC == llvm::CallingConv::X86_RegCall) { 1580 if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) 1581 NeedsPadding = true; 1582 1583 return false; 1584 } 1585 1586 return true; 1587 } 1588 1589 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { 1590 if (!updateFreeRegs(Ty, State)) 1591 return false; 1592 1593 if (IsMCUABI) 1594 return false; 1595 1596 if (State.CC == llvm::CallingConv::X86_FastCall || 1597 State.CC == llvm::CallingConv::X86_VectorCall || 1598 State.CC == llvm::CallingConv::X86_RegCall) { 1599 if (getContext().getTypeSize(Ty) > 32) 1600 return false; 1601 1602 return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || 1603 Ty->isReferenceType()); 1604 } 1605 1606 return true; 1607 } 1608 1609 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 1610 CCState &State) const { 1611 // FIXME: Set alignment on indirect arguments. 1612 1613 Ty = useFirstFieldIfTransparentUnion(Ty); 1614 1615 // Check with the C++ ABI first. 1616 const RecordType *RT = Ty->getAs<RecordType>(); 1617 if (RT) { 1618 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 1619 if (RAA == CGCXXABI::RAA_Indirect) { 1620 return getIndirectResult(Ty, false, State); 1621 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 1622 // The field index doesn't matter, we'll fix it up later. 1623 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 1624 } 1625 } 1626 1627 // Regcall uses the concept of a homogenous vector aggregate, similar 1628 // to other targets. 1629 const Type *Base = nullptr; 1630 uint64_t NumElts = 0; 1631 if (State.CC == llvm::CallingConv::X86_RegCall && 1632 isHomogeneousAggregate(Ty, Base, NumElts)) { 1633 1634 if (State.FreeSSERegs >= NumElts) { 1635 State.FreeSSERegs -= NumElts; 1636 if (Ty->isBuiltinType() || Ty->isVectorType()) 1637 return ABIArgInfo::getDirect(); 1638 return ABIArgInfo::getExpand(); 1639 } 1640 return getIndirectResult(Ty, /*ByVal=*/false, State); 1641 } 1642 1643 if (isAggregateTypeForABI(Ty)) { 1644 // Structures with flexible arrays are always indirect. 1645 // FIXME: This should not be byval! 1646 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 1647 return getIndirectResult(Ty, true, State); 1648 1649 // Ignore empty structs/unions on non-Windows. 1650 if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true)) 1651 return ABIArgInfo::getIgnore(); 1652 1653 llvm::LLVMContext &LLVMContext = getVMContext(); 1654 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 1655 bool NeedsPadding = false; 1656 bool InReg; 1657 if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { 1658 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 1659 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 1660 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 1661 if (InReg) 1662 return ABIArgInfo::getDirectInReg(Result); 1663 else 1664 return ABIArgInfo::getDirect(Result); 1665 } 1666 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 1667 1668 // Expand small (<= 128-bit) record types when we know that the stack layout 1669 // of those arguments will match the struct. This is important because the 1670 // LLVM backend isn't smart enough to remove byval, which inhibits many 1671 // optimizations. 1672 // Don't do this for the MCU if there are still free integer registers 1673 // (see X86_64 ABI for full explanation). 1674 if (getContext().getTypeSize(Ty) <= 4 * 32 && 1675 (!IsMCUABI || State.FreeRegs == 0) && canExpandIndirectArgument(Ty)) 1676 return ABIArgInfo::getExpandWithPadding( 1677 State.CC == llvm::CallingConv::X86_FastCall || 1678 State.CC == llvm::CallingConv::X86_VectorCall || 1679 State.CC == llvm::CallingConv::X86_RegCall, 1680 PaddingType); 1681 1682 return getIndirectResult(Ty, true, State); 1683 } 1684 1685 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1686 // On Darwin, some vectors are passed in memory, we handle this by passing 1687 // it as an i8/i16/i32/i64. 1688 if (IsDarwinVectorABI) { 1689 uint64_t Size = getContext().getTypeSize(Ty); 1690 if ((Size == 8 || Size == 16 || Size == 32) || 1691 (Size == 64 && VT->getNumElements() == 1)) 1692 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1693 Size)); 1694 } 1695 1696 if (IsX86_MMXType(CGT.ConvertType(Ty))) 1697 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 1698 1699 return ABIArgInfo::getDirect(); 1700 } 1701 1702 1703 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1704 Ty = EnumTy->getDecl()->getIntegerType(); 1705 1706 bool InReg = shouldPrimitiveUseInReg(Ty, State); 1707 1708 if (Ty->isPromotableIntegerType()) { 1709 if (InReg) 1710 return ABIArgInfo::getExtendInReg(Ty); 1711 return ABIArgInfo::getExtend(Ty); 1712 } 1713 1714 if (InReg) 1715 return ABIArgInfo::getDirectInReg(); 1716 return ABIArgInfo::getDirect(); 1717 } 1718 1719 void X86_32ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, CCState &State, 1720 bool &UsedInAlloca) const { 1721 // Vectorcall x86 works subtly different than in x64, so the format is 1722 // a bit different than the x64 version. First, all vector types (not HVAs) 1723 // are assigned, with the first 6 ending up in the YMM0-5 or XMM0-5 registers. 1724 // This differs from the x64 implementation, where the first 6 by INDEX get 1725 // registers. 1726 // After that, integers AND HVAs are assigned Left to Right in the same pass. 1727 // Integers are passed as ECX/EDX if one is available (in order). HVAs will 1728 // first take up the remaining YMM/XMM registers. If insufficient registers 1729 // remain but an integer register (ECX/EDX) is available, it will be passed 1730 // in that, else, on the stack. 1731 for (auto &I : FI.arguments()) { 1732 // First pass do all the vector types. 1733 const Type *Base = nullptr; 1734 uint64_t NumElts = 0; 1735 const QualType& Ty = I.type; 1736 if ((Ty->isVectorType() || Ty->isBuiltinType()) && 1737 isHomogeneousAggregate(Ty, Base, NumElts)) { 1738 if (State.FreeSSERegs >= NumElts) { 1739 State.FreeSSERegs -= NumElts; 1740 I.info = ABIArgInfo::getDirect(); 1741 } else { 1742 I.info = classifyArgumentType(Ty, State); 1743 } 1744 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1745 } 1746 } 1747 1748 for (auto &I : FI.arguments()) { 1749 // Second pass, do the rest! 1750 const Type *Base = nullptr; 1751 uint64_t NumElts = 0; 1752 const QualType& Ty = I.type; 1753 bool IsHva = isHomogeneousAggregate(Ty, Base, NumElts); 1754 1755 if (IsHva && !Ty->isVectorType() && !Ty->isBuiltinType()) { 1756 // Assign true HVAs (non vector/native FP types). 1757 if (State.FreeSSERegs >= NumElts) { 1758 State.FreeSSERegs -= NumElts; 1759 I.info = getDirectX86Hva(); 1760 } else { 1761 I.info = getIndirectResult(Ty, /*ByVal=*/false, State); 1762 } 1763 } else if (!IsHva) { 1764 // Assign all Non-HVAs, so this will exclude Vector/FP args. 1765 I.info = classifyArgumentType(Ty, State); 1766 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1767 } 1768 } 1769 } 1770 1771 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 1772 CCState State(FI.getCallingConvention()); 1773 if (IsMCUABI) 1774 State.FreeRegs = 3; 1775 else if (State.CC == llvm::CallingConv::X86_FastCall) 1776 State.FreeRegs = 2; 1777 else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1778 State.FreeRegs = 2; 1779 State.FreeSSERegs = 6; 1780 } else if (FI.getHasRegParm()) 1781 State.FreeRegs = FI.getRegParm(); 1782 else if (State.CC == llvm::CallingConv::X86_RegCall) { 1783 State.FreeRegs = 5; 1784 State.FreeSSERegs = 8; 1785 } else 1786 State.FreeRegs = DefaultNumRegisterParameters; 1787 1788 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 1789 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 1790 } else if (FI.getReturnInfo().isIndirect()) { 1791 // The C++ ABI is not aware of register usage, so we have to check if the 1792 // return value was sret and put it in a register ourselves if appropriate. 1793 if (State.FreeRegs) { 1794 --State.FreeRegs; // The sret parameter consumes a register. 1795 if (!IsMCUABI) 1796 FI.getReturnInfo().setInReg(true); 1797 } 1798 } 1799 1800 // The chain argument effectively gives us another free register. 1801 if (FI.isChainCall()) 1802 ++State.FreeRegs; 1803 1804 bool UsedInAlloca = false; 1805 if (State.CC == llvm::CallingConv::X86_VectorCall) { 1806 computeVectorCallArgs(FI, State, UsedInAlloca); 1807 } else { 1808 // If not vectorcall, revert to normal behavior. 1809 for (auto &I : FI.arguments()) { 1810 I.info = classifyArgumentType(I.type, State); 1811 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1812 } 1813 } 1814 1815 // If we needed to use inalloca for any argument, do a second pass and rewrite 1816 // all the memory arguments to use inalloca. 1817 if (UsedInAlloca) 1818 rewriteWithInAlloca(FI); 1819 } 1820 1821 void 1822 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1823 CharUnits &StackOffset, ABIArgInfo &Info, 1824 QualType Type) const { 1825 // Arguments are always 4-byte-aligned. 1826 CharUnits FieldAlign = CharUnits::fromQuantity(4); 1827 1828 assert(StackOffset.isMultipleOf(FieldAlign) && "unaligned inalloca struct"); 1829 Info = ABIArgInfo::getInAlloca(FrameFields.size()); 1830 FrameFields.push_back(CGT.ConvertTypeForMem(Type)); 1831 StackOffset += getContext().getTypeSizeInChars(Type); 1832 1833 // Insert padding bytes to respect alignment. 1834 CharUnits FieldEnd = StackOffset; 1835 StackOffset = FieldEnd.alignTo(FieldAlign); 1836 if (StackOffset != FieldEnd) { 1837 CharUnits NumBytes = StackOffset - FieldEnd; 1838 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 1839 Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); 1840 FrameFields.push_back(Ty); 1841 } 1842 } 1843 1844 static bool isArgInAlloca(const ABIArgInfo &Info) { 1845 // Leave ignored and inreg arguments alone. 1846 switch (Info.getKind()) { 1847 case ABIArgInfo::InAlloca: 1848 return true; 1849 case ABIArgInfo::Indirect: 1850 assert(Info.getIndirectByVal()); 1851 return true; 1852 case ABIArgInfo::Ignore: 1853 return false; 1854 case ABIArgInfo::Direct: 1855 case ABIArgInfo::Extend: 1856 if (Info.getInReg()) 1857 return false; 1858 return true; 1859 case ABIArgInfo::Expand: 1860 case ABIArgInfo::CoerceAndExpand: 1861 // These are aggregate types which are never passed in registers when 1862 // inalloca is involved. 1863 return true; 1864 } 1865 llvm_unreachable("invalid enum"); 1866 } 1867 1868 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 1869 assert(IsWin32StructABI && "inalloca only supported on win32"); 1870 1871 // Build a packed struct type for all of the arguments in memory. 1872 SmallVector<llvm::Type *, 6> FrameFields; 1873 1874 // The stack alignment is always 4. 1875 CharUnits StackAlign = CharUnits::fromQuantity(4); 1876 1877 CharUnits StackOffset; 1878 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 1879 1880 // Put 'this' into the struct before 'sret', if necessary. 1881 bool IsThisCall = 1882 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 1883 ABIArgInfo &Ret = FI.getReturnInfo(); 1884 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 1885 isArgInAlloca(I->info)) { 1886 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1887 ++I; 1888 } 1889 1890 // Put the sret parameter into the inalloca struct if it's in memory. 1891 if (Ret.isIndirect() && !Ret.getInReg()) { 1892 CanQualType PtrTy = getContext().getPointerType(FI.getReturnType()); 1893 addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy); 1894 // On Windows, the hidden sret parameter is always returned in eax. 1895 Ret.setInAllocaSRet(IsWin32StructABI); 1896 } 1897 1898 // Skip the 'this' parameter in ecx. 1899 if (IsThisCall) 1900 ++I; 1901 1902 // Put arguments passed in memory into the struct. 1903 for (; I != E; ++I) { 1904 if (isArgInAlloca(I->info)) 1905 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1906 } 1907 1908 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 1909 /*isPacked=*/true), 1910 StackAlign); 1911 } 1912 1913 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, 1914 Address VAListAddr, QualType Ty) const { 1915 1916 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 1917 1918 // x86-32 changes the alignment of certain arguments on the stack. 1919 // 1920 // Just messing with TypeInfo like this works because we never pass 1921 // anything indirectly. 1922 TypeInfo.second = CharUnits::fromQuantity( 1923 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity())); 1924 1925 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 1926 TypeInfo, CharUnits::fromQuantity(4), 1927 /*AllowHigherAlign*/ true); 1928 } 1929 1930 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 1931 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 1932 assert(Triple.getArch() == llvm::Triple::x86); 1933 1934 switch (Opts.getStructReturnConvention()) { 1935 case CodeGenOptions::SRCK_Default: 1936 break; 1937 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 1938 return false; 1939 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 1940 return true; 1941 } 1942 1943 if (Triple.isOSDarwin() || Triple.isOSIAMCU()) 1944 return true; 1945 1946 switch (Triple.getOS()) { 1947 case llvm::Triple::DragonFly: 1948 case llvm::Triple::FreeBSD: 1949 case llvm::Triple::OpenBSD: 1950 case llvm::Triple::Win32: 1951 return true; 1952 default: 1953 return false; 1954 } 1955 } 1956 1957 void X86_32TargetCodeGenInfo::setTargetAttributes( 1958 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 1959 if (GV->isDeclaration()) 1960 return; 1961 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 1962 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 1963 llvm::Function *Fn = cast<llvm::Function>(GV); 1964 Fn->addFnAttr("stackrealign"); 1965 } 1966 if (FD->hasAttr<AnyX86InterruptAttr>()) { 1967 llvm::Function *Fn = cast<llvm::Function>(GV); 1968 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 1969 } 1970 } 1971 } 1972 1973 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 1974 CodeGen::CodeGenFunction &CGF, 1975 llvm::Value *Address) const { 1976 CodeGen::CGBuilderTy &Builder = CGF.Builder; 1977 1978 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 1979 1980 // 0-7 are the eight integer registers; the order is different 1981 // on Darwin (for EH), but the range is the same. 1982 // 8 is %eip. 1983 AssignToArrayRange(Builder, Address, Four8, 0, 8); 1984 1985 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 1986 // 12-16 are st(0..4). Not sure why we stop at 4. 1987 // These have size 16, which is sizeof(long double) on 1988 // platforms with 8-byte alignment for that type. 1989 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 1990 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 1991 1992 } else { 1993 // 9 is %eflags, which doesn't get a size on Darwin for some 1994 // reason. 1995 Builder.CreateAlignedStore( 1996 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), 1997 CharUnits::One()); 1998 1999 // 11-16 are st(0..5). Not sure why we stop at 5. 2000 // These have size 12, which is sizeof(long double) on 2001 // platforms with 4-byte alignment for that type. 2002 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 2003 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 2004 } 2005 2006 return false; 2007 } 2008 2009 //===----------------------------------------------------------------------===// 2010 // X86-64 ABI Implementation 2011 //===----------------------------------------------------------------------===// 2012 2013 2014 namespace { 2015 /// The AVX ABI level for X86 targets. 2016 enum class X86AVXABILevel { 2017 None, 2018 AVX, 2019 AVX512 2020 }; 2021 2022 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. 2023 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { 2024 switch (AVXLevel) { 2025 case X86AVXABILevel::AVX512: 2026 return 512; 2027 case X86AVXABILevel::AVX: 2028 return 256; 2029 case X86AVXABILevel::None: 2030 return 128; 2031 } 2032 llvm_unreachable("Unknown AVXLevel"); 2033 } 2034 2035 /// X86_64ABIInfo - The X86_64 ABI information. 2036 class X86_64ABIInfo : public SwiftABIInfo { 2037 enum Class { 2038 Integer = 0, 2039 SSE, 2040 SSEUp, 2041 X87, 2042 X87Up, 2043 ComplexX87, 2044 NoClass, 2045 Memory 2046 }; 2047 2048 /// merge - Implement the X86_64 ABI merging algorithm. 2049 /// 2050 /// Merge an accumulating classification \arg Accum with a field 2051 /// classification \arg Field. 2052 /// 2053 /// \param Accum - The accumulating classification. This should 2054 /// always be either NoClass or the result of a previous merge 2055 /// call. In addition, this should never be Memory (the caller 2056 /// should just return Memory for the aggregate). 2057 static Class merge(Class Accum, Class Field); 2058 2059 /// postMerge - Implement the X86_64 ABI post merging algorithm. 2060 /// 2061 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 2062 /// final MEMORY or SSE classes when necessary. 2063 /// 2064 /// \param AggregateSize - The size of the current aggregate in 2065 /// the classification process. 2066 /// 2067 /// \param Lo - The classification for the parts of the type 2068 /// residing in the low word of the containing object. 2069 /// 2070 /// \param Hi - The classification for the parts of the type 2071 /// residing in the higher words of the containing object. 2072 /// 2073 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 2074 2075 /// classify - Determine the x86_64 register classes in which the 2076 /// given type T should be passed. 2077 /// 2078 /// \param Lo - The classification for the parts of the type 2079 /// residing in the low word of the containing object. 2080 /// 2081 /// \param Hi - The classification for the parts of the type 2082 /// residing in the high word of the containing object. 2083 /// 2084 /// \param OffsetBase - The bit offset of this type in the 2085 /// containing object. Some parameters are classified different 2086 /// depending on whether they straddle an eightbyte boundary. 2087 /// 2088 /// \param isNamedArg - Whether the argument in question is a "named" 2089 /// argument, as used in AMD64-ABI 3.5.7. 2090 /// 2091 /// If a word is unused its result will be NoClass; if a type should 2092 /// be passed in Memory then at least the classification of \arg Lo 2093 /// will be Memory. 2094 /// 2095 /// The \arg Lo class will be NoClass iff the argument is ignored. 2096 /// 2097 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 2098 /// also be ComplexX87. 2099 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 2100 bool isNamedArg) const; 2101 2102 llvm::Type *GetByteVectorType(QualType Ty) const; 2103 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 2104 unsigned IROffset, QualType SourceTy, 2105 unsigned SourceOffset) const; 2106 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 2107 unsigned IROffset, QualType SourceTy, 2108 unsigned SourceOffset) const; 2109 2110 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2111 /// such that the argument will be returned in memory. 2112 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 2113 2114 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2115 /// such that the argument will be passed in memory. 2116 /// 2117 /// \param freeIntRegs - The number of free integer registers remaining 2118 /// available. 2119 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 2120 2121 ABIArgInfo classifyReturnType(QualType RetTy) const; 2122 2123 ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs, 2124 unsigned &neededInt, unsigned &neededSSE, 2125 bool isNamedArg) const; 2126 2127 ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt, 2128 unsigned &NeededSSE) const; 2129 2130 ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 2131 unsigned &NeededSSE) const; 2132 2133 bool IsIllegalVectorType(QualType Ty) const; 2134 2135 /// The 0.98 ABI revision clarified a lot of ambiguities, 2136 /// unfortunately in ways that were not always consistent with 2137 /// certain previous compilers. In particular, platforms which 2138 /// required strict binary compatibility with older versions of GCC 2139 /// may need to exempt themselves. 2140 bool honorsRevision0_98() const { 2141 return !getTarget().getTriple().isOSDarwin(); 2142 } 2143 2144 /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to 2145 /// classify it as INTEGER (for compatibility with older clang compilers). 2146 bool classifyIntegerMMXAsSSE() const { 2147 // Clang <= 3.8 did not do this. 2148 if (getContext().getLangOpts().getClangABICompat() <= 2149 LangOptions::ClangABI::Ver3_8) 2150 return false; 2151 2152 const llvm::Triple &Triple = getTarget().getTriple(); 2153 if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4) 2154 return false; 2155 if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10) 2156 return false; 2157 return true; 2158 } 2159 2160 X86AVXABILevel AVXLevel; 2161 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 2162 // 64-bit hardware. 2163 bool Has64BitPointers; 2164 2165 public: 2166 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : 2167 SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2168 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 2169 } 2170 2171 bool isPassedUsingAVXType(QualType type) const { 2172 unsigned neededInt, neededSSE; 2173 // The freeIntRegs argument doesn't matter here. 2174 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 2175 /*isNamedArg*/true); 2176 if (info.isDirect()) { 2177 llvm::Type *ty = info.getCoerceToType(); 2178 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 2179 return (vectorTy->getBitWidth() > 128); 2180 } 2181 return false; 2182 } 2183 2184 void computeInfo(CGFunctionInfo &FI) const override; 2185 2186 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2187 QualType Ty) const override; 2188 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 2189 QualType Ty) const override; 2190 2191 bool has64BitPointers() const { 2192 return Has64BitPointers; 2193 } 2194 2195 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 2196 bool asReturnValue) const override { 2197 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2198 } 2199 bool isSwiftErrorInRegister() const override { 2200 return true; 2201 } 2202 }; 2203 2204 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 2205 class WinX86_64ABIInfo : public SwiftABIInfo { 2206 public: 2207 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) 2208 : SwiftABIInfo(CGT), 2209 IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} 2210 2211 void computeInfo(CGFunctionInfo &FI) const override; 2212 2213 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2214 QualType Ty) const override; 2215 2216 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 2217 // FIXME: Assumes vectorcall is in use. 2218 return isX86VectorTypeForVectorCall(getContext(), Ty); 2219 } 2220 2221 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 2222 uint64_t NumMembers) const override { 2223 // FIXME: Assumes vectorcall is in use. 2224 return isX86VectorCallAggregateSmallEnough(NumMembers); 2225 } 2226 2227 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars, 2228 bool asReturnValue) const override { 2229 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2230 } 2231 2232 bool isSwiftErrorInRegister() const override { 2233 return true; 2234 } 2235 2236 private: 2237 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType, 2238 bool IsVectorCall, bool IsRegCall) const; 2239 ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 2240 const ABIArgInfo ¤t) const; 2241 void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs, 2242 bool IsVectorCall, bool IsRegCall) const; 2243 2244 bool IsMingw64; 2245 }; 2246 2247 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2248 public: 2249 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2250 : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {} 2251 2252 const X86_64ABIInfo &getABIInfo() const { 2253 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 2254 } 2255 2256 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2257 return 7; 2258 } 2259 2260 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2261 llvm::Value *Address) const override { 2262 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2263 2264 // 0-15 are the 16 integer registers. 2265 // 16 is %rip. 2266 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2267 return false; 2268 } 2269 2270 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 2271 StringRef Constraint, 2272 llvm::Type* Ty) const override { 2273 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 2274 } 2275 2276 bool isNoProtoCallVariadic(const CallArgList &args, 2277 const FunctionNoProtoType *fnType) const override { 2278 // The default CC on x86-64 sets %al to the number of SSA 2279 // registers used, and GCC sets this when calling an unprototyped 2280 // function, so we override the default behavior. However, don't do 2281 // that when AVX types are involved: the ABI explicitly states it is 2282 // undefined, and it doesn't work in practice because of how the ABI 2283 // defines varargs anyway. 2284 if (fnType->getCallConv() == CC_C) { 2285 bool HasAVXType = false; 2286 for (CallArgList::const_iterator 2287 it = args.begin(), ie = args.end(); it != ie; ++it) { 2288 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 2289 HasAVXType = true; 2290 break; 2291 } 2292 } 2293 2294 if (!HasAVXType) 2295 return true; 2296 } 2297 2298 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 2299 } 2300 2301 llvm::Constant * 2302 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 2303 unsigned Sig = (0xeb << 0) | // jmp rel8 2304 (0x06 << 8) | // .+0x08 2305 ('v' << 16) | 2306 ('2' << 24); 2307 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 2308 } 2309 2310 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2311 CodeGen::CodeGenModule &CGM) const override { 2312 if (GV->isDeclaration()) 2313 return; 2314 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2315 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2316 llvm::Function *Fn = cast<llvm::Function>(GV); 2317 Fn->addFnAttr("stackrealign"); 2318 } 2319 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2320 llvm::Function *Fn = cast<llvm::Function>(GV); 2321 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2322 } 2323 } 2324 } 2325 }; 2326 2327 class PS4TargetCodeGenInfo : public X86_64TargetCodeGenInfo { 2328 public: 2329 PS4TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2330 : X86_64TargetCodeGenInfo(CGT, AVXLevel) {} 2331 2332 void getDependentLibraryOption(llvm::StringRef Lib, 2333 llvm::SmallString<24> &Opt) const override { 2334 Opt = "\01"; 2335 // If the argument contains a space, enclose it in quotes. 2336 if (Lib.find(" ") != StringRef::npos) 2337 Opt += "\"" + Lib.str() + "\""; 2338 else 2339 Opt += Lib; 2340 } 2341 }; 2342 2343 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 2344 // If the argument does not end in .lib, automatically add the suffix. 2345 // If the argument contains a space, enclose it in quotes. 2346 // This matches the behavior of MSVC. 2347 bool Quote = (Lib.find(" ") != StringRef::npos); 2348 std::string ArgStr = Quote ? "\"" : ""; 2349 ArgStr += Lib; 2350 if (!Lib.endswith_lower(".lib") && !Lib.endswith_lower(".a")) 2351 ArgStr += ".lib"; 2352 ArgStr += Quote ? "\"" : ""; 2353 return ArgStr; 2354 } 2355 2356 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 2357 public: 2358 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2359 bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, 2360 unsigned NumRegisterParameters) 2361 : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, 2362 Win32StructABI, NumRegisterParameters, false) {} 2363 2364 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2365 CodeGen::CodeGenModule &CGM) const override; 2366 2367 void getDependentLibraryOption(llvm::StringRef Lib, 2368 llvm::SmallString<24> &Opt) const override { 2369 Opt = "/DEFAULTLIB:"; 2370 Opt += qualifyWindowsLibrary(Lib); 2371 } 2372 2373 void getDetectMismatchOption(llvm::StringRef Name, 2374 llvm::StringRef Value, 2375 llvm::SmallString<32> &Opt) const override { 2376 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2377 } 2378 }; 2379 2380 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2381 CodeGen::CodeGenModule &CGM) { 2382 if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) { 2383 2384 if (CGM.getCodeGenOpts().StackProbeSize != 4096) 2385 Fn->addFnAttr("stack-probe-size", 2386 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 2387 if (CGM.getCodeGenOpts().NoStackArgProbe) 2388 Fn->addFnAttr("no-stack-arg-probe"); 2389 } 2390 } 2391 2392 void WinX86_32TargetCodeGenInfo::setTargetAttributes( 2393 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2394 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2395 if (GV->isDeclaration()) 2396 return; 2397 addStackProbeTargetAttributes(D, GV, CGM); 2398 } 2399 2400 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2401 public: 2402 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2403 X86AVXABILevel AVXLevel) 2404 : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {} 2405 2406 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2407 CodeGen::CodeGenModule &CGM) const override; 2408 2409 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2410 return 7; 2411 } 2412 2413 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2414 llvm::Value *Address) const override { 2415 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2416 2417 // 0-15 are the 16 integer registers. 2418 // 16 is %rip. 2419 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2420 return false; 2421 } 2422 2423 void getDependentLibraryOption(llvm::StringRef Lib, 2424 llvm::SmallString<24> &Opt) const override { 2425 Opt = "/DEFAULTLIB:"; 2426 Opt += qualifyWindowsLibrary(Lib); 2427 } 2428 2429 void getDetectMismatchOption(llvm::StringRef Name, 2430 llvm::StringRef Value, 2431 llvm::SmallString<32> &Opt) const override { 2432 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2433 } 2434 }; 2435 2436 void WinX86_64TargetCodeGenInfo::setTargetAttributes( 2437 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2438 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2439 if (GV->isDeclaration()) 2440 return; 2441 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2442 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2443 llvm::Function *Fn = cast<llvm::Function>(GV); 2444 Fn->addFnAttr("stackrealign"); 2445 } 2446 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2447 llvm::Function *Fn = cast<llvm::Function>(GV); 2448 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2449 } 2450 } 2451 2452 addStackProbeTargetAttributes(D, GV, CGM); 2453 } 2454 } 2455 2456 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 2457 Class &Hi) const { 2458 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 2459 // 2460 // (a) If one of the classes is Memory, the whole argument is passed in 2461 // memory. 2462 // 2463 // (b) If X87UP is not preceded by X87, the whole argument is passed in 2464 // memory. 2465 // 2466 // (c) If the size of the aggregate exceeds two eightbytes and the first 2467 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 2468 // argument is passed in memory. NOTE: This is necessary to keep the 2469 // ABI working for processors that don't support the __m256 type. 2470 // 2471 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 2472 // 2473 // Some of these are enforced by the merging logic. Others can arise 2474 // only with unions; for example: 2475 // union { _Complex double; unsigned; } 2476 // 2477 // Note that clauses (b) and (c) were added in 0.98. 2478 // 2479 if (Hi == Memory) 2480 Lo = Memory; 2481 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 2482 Lo = Memory; 2483 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 2484 Lo = Memory; 2485 if (Hi == SSEUp && Lo != SSE) 2486 Hi = SSE; 2487 } 2488 2489 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 2490 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 2491 // classified recursively so that always two fields are 2492 // considered. The resulting class is calculated according to 2493 // the classes of the fields in the eightbyte: 2494 // 2495 // (a) If both classes are equal, this is the resulting class. 2496 // 2497 // (b) If one of the classes is NO_CLASS, the resulting class is 2498 // the other class. 2499 // 2500 // (c) If one of the classes is MEMORY, the result is the MEMORY 2501 // class. 2502 // 2503 // (d) If one of the classes is INTEGER, the result is the 2504 // INTEGER. 2505 // 2506 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 2507 // MEMORY is used as class. 2508 // 2509 // (f) Otherwise class SSE is used. 2510 2511 // Accum should never be memory (we should have returned) or 2512 // ComplexX87 (because this cannot be passed in a structure). 2513 assert((Accum != Memory && Accum != ComplexX87) && 2514 "Invalid accumulated classification during merge."); 2515 if (Accum == Field || Field == NoClass) 2516 return Accum; 2517 if (Field == Memory) 2518 return Memory; 2519 if (Accum == NoClass) 2520 return Field; 2521 if (Accum == Integer || Field == Integer) 2522 return Integer; 2523 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 2524 Accum == X87 || Accum == X87Up) 2525 return Memory; 2526 return SSE; 2527 } 2528 2529 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 2530 Class &Lo, Class &Hi, bool isNamedArg) const { 2531 // FIXME: This code can be simplified by introducing a simple value class for 2532 // Class pairs with appropriate constructor methods for the various 2533 // situations. 2534 2535 // FIXME: Some of the split computations are wrong; unaligned vectors 2536 // shouldn't be passed in registers for example, so there is no chance they 2537 // can straddle an eightbyte. Verify & simplify. 2538 2539 Lo = Hi = NoClass; 2540 2541 Class &Current = OffsetBase < 64 ? Lo : Hi; 2542 Current = Memory; 2543 2544 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 2545 BuiltinType::Kind k = BT->getKind(); 2546 2547 if (k == BuiltinType::Void) { 2548 Current = NoClass; 2549 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 2550 Lo = Integer; 2551 Hi = Integer; 2552 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 2553 Current = Integer; 2554 } else if (k == BuiltinType::Float || k == BuiltinType::Double) { 2555 Current = SSE; 2556 } else if (k == BuiltinType::LongDouble) { 2557 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2558 if (LDF == &llvm::APFloat::IEEEquad()) { 2559 Lo = SSE; 2560 Hi = SSEUp; 2561 } else if (LDF == &llvm::APFloat::x87DoubleExtended()) { 2562 Lo = X87; 2563 Hi = X87Up; 2564 } else if (LDF == &llvm::APFloat::IEEEdouble()) { 2565 Current = SSE; 2566 } else 2567 llvm_unreachable("unexpected long double representation!"); 2568 } 2569 // FIXME: _Decimal32 and _Decimal64 are SSE. 2570 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 2571 return; 2572 } 2573 2574 if (const EnumType *ET = Ty->getAs<EnumType>()) { 2575 // Classify the underlying integer type. 2576 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 2577 return; 2578 } 2579 2580 if (Ty->hasPointerRepresentation()) { 2581 Current = Integer; 2582 return; 2583 } 2584 2585 if (Ty->isMemberPointerType()) { 2586 if (Ty->isMemberFunctionPointerType()) { 2587 if (Has64BitPointers) { 2588 // If Has64BitPointers, this is an {i64, i64}, so classify both 2589 // Lo and Hi now. 2590 Lo = Hi = Integer; 2591 } else { 2592 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 2593 // straddles an eightbyte boundary, Hi should be classified as well. 2594 uint64_t EB_FuncPtr = (OffsetBase) / 64; 2595 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 2596 if (EB_FuncPtr != EB_ThisAdj) { 2597 Lo = Hi = Integer; 2598 } else { 2599 Current = Integer; 2600 } 2601 } 2602 } else { 2603 Current = Integer; 2604 } 2605 return; 2606 } 2607 2608 if (const VectorType *VT = Ty->getAs<VectorType>()) { 2609 uint64_t Size = getContext().getTypeSize(VT); 2610 if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { 2611 // gcc passes the following as integer: 2612 // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> 2613 // 2 bytes - <2 x char>, <1 x short> 2614 // 1 byte - <1 x char> 2615 Current = Integer; 2616 2617 // If this type crosses an eightbyte boundary, it should be 2618 // split. 2619 uint64_t EB_Lo = (OffsetBase) / 64; 2620 uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; 2621 if (EB_Lo != EB_Hi) 2622 Hi = Lo; 2623 } else if (Size == 64) { 2624 QualType ElementType = VT->getElementType(); 2625 2626 // gcc passes <1 x double> in memory. :( 2627 if (ElementType->isSpecificBuiltinType(BuiltinType::Double)) 2628 return; 2629 2630 // gcc passes <1 x long long> as SSE but clang used to unconditionally 2631 // pass them as integer. For platforms where clang is the de facto 2632 // platform compiler, we must continue to use integer. 2633 if (!classifyIntegerMMXAsSSE() && 2634 (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) || 2635 ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) || 2636 ElementType->isSpecificBuiltinType(BuiltinType::Long) || 2637 ElementType->isSpecificBuiltinType(BuiltinType::ULong))) 2638 Current = Integer; 2639 else 2640 Current = SSE; 2641 2642 // If this type crosses an eightbyte boundary, it should be 2643 // split. 2644 if (OffsetBase && OffsetBase != 64) 2645 Hi = Lo; 2646 } else if (Size == 128 || 2647 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { 2648 // Arguments of 256-bits are split into four eightbyte chunks. The 2649 // least significant one belongs to class SSE and all the others to class 2650 // SSEUP. The original Lo and Hi design considers that types can't be 2651 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 2652 // This design isn't correct for 256-bits, but since there're no cases 2653 // where the upper parts would need to be inspected, avoid adding 2654 // complexity and just consider Hi to match the 64-256 part. 2655 // 2656 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 2657 // registers if they are "named", i.e. not part of the "..." of a 2658 // variadic function. 2659 // 2660 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are 2661 // split into eight eightbyte chunks, one SSE and seven SSEUP. 2662 Lo = SSE; 2663 Hi = SSEUp; 2664 } 2665 return; 2666 } 2667 2668 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 2669 QualType ET = getContext().getCanonicalType(CT->getElementType()); 2670 2671 uint64_t Size = getContext().getTypeSize(Ty); 2672 if (ET->isIntegralOrEnumerationType()) { 2673 if (Size <= 64) 2674 Current = Integer; 2675 else if (Size <= 128) 2676 Lo = Hi = Integer; 2677 } else if (ET == getContext().FloatTy) { 2678 Current = SSE; 2679 } else if (ET == getContext().DoubleTy) { 2680 Lo = Hi = SSE; 2681 } else if (ET == getContext().LongDoubleTy) { 2682 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2683 if (LDF == &llvm::APFloat::IEEEquad()) 2684 Current = Memory; 2685 else if (LDF == &llvm::APFloat::x87DoubleExtended()) 2686 Current = ComplexX87; 2687 else if (LDF == &llvm::APFloat::IEEEdouble()) 2688 Lo = Hi = SSE; 2689 else 2690 llvm_unreachable("unexpected long double representation!"); 2691 } 2692 2693 // If this complex type crosses an eightbyte boundary then it 2694 // should be split. 2695 uint64_t EB_Real = (OffsetBase) / 64; 2696 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 2697 if (Hi == NoClass && EB_Real != EB_Imag) 2698 Hi = Lo; 2699 2700 return; 2701 } 2702 2703 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 2704 // Arrays are treated like structures. 2705 2706 uint64_t Size = getContext().getTypeSize(Ty); 2707 2708 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2709 // than eight eightbytes, ..., it has class MEMORY. 2710 if (Size > 512) 2711 return; 2712 2713 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 2714 // fields, it has class MEMORY. 2715 // 2716 // Only need to check alignment of array base. 2717 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 2718 return; 2719 2720 // Otherwise implement simplified merge. We could be smarter about 2721 // this, but it isn't worth it and would be harder to verify. 2722 Current = NoClass; 2723 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 2724 uint64_t ArraySize = AT->getSize().getZExtValue(); 2725 2726 // The only case a 256-bit wide vector could be used is when the array 2727 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2728 // to work for sizes wider than 128, early check and fallback to memory. 2729 // 2730 if (Size > 128 && 2731 (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel))) 2732 return; 2733 2734 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 2735 Class FieldLo, FieldHi; 2736 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 2737 Lo = merge(Lo, FieldLo); 2738 Hi = merge(Hi, FieldHi); 2739 if (Lo == Memory || Hi == Memory) 2740 break; 2741 } 2742 2743 postMerge(Size, Lo, Hi); 2744 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 2745 return; 2746 } 2747 2748 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2749 uint64_t Size = getContext().getTypeSize(Ty); 2750 2751 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2752 // than eight eightbytes, ..., it has class MEMORY. 2753 if (Size > 512) 2754 return; 2755 2756 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 2757 // copy constructor or a non-trivial destructor, it is passed by invisible 2758 // reference. 2759 if (getRecordArgABI(RT, getCXXABI())) 2760 return; 2761 2762 const RecordDecl *RD = RT->getDecl(); 2763 2764 // Assume variable sized types are passed in memory. 2765 if (RD->hasFlexibleArrayMember()) 2766 return; 2767 2768 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2769 2770 // Reset Lo class, this will be recomputed. 2771 Current = NoClass; 2772 2773 // If this is a C++ record, classify the bases first. 2774 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2775 for (const auto &I : CXXRD->bases()) { 2776 assert(!I.isVirtual() && !I.getType()->isDependentType() && 2777 "Unexpected base class!"); 2778 const CXXRecordDecl *Base = 2779 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2780 2781 // Classify this field. 2782 // 2783 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 2784 // single eightbyte, each is classified separately. Each eightbyte gets 2785 // initialized to class NO_CLASS. 2786 Class FieldLo, FieldHi; 2787 uint64_t Offset = 2788 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 2789 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 2790 Lo = merge(Lo, FieldLo); 2791 Hi = merge(Hi, FieldHi); 2792 if (Lo == Memory || Hi == Memory) { 2793 postMerge(Size, Lo, Hi); 2794 return; 2795 } 2796 } 2797 } 2798 2799 // Classify the fields one at a time, merging the results. 2800 unsigned idx = 0; 2801 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2802 i != e; ++i, ++idx) { 2803 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2804 bool BitField = i->isBitField(); 2805 2806 // Ignore padding bit-fields. 2807 if (BitField && i->isUnnamedBitfield()) 2808 continue; 2809 2810 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 2811 // four eightbytes, or it contains unaligned fields, it has class MEMORY. 2812 // 2813 // The only case a 256-bit wide vector could be used is when the struct 2814 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2815 // to work for sizes wider than 128, early check and fallback to memory. 2816 // 2817 if (Size > 128 && (Size != getContext().getTypeSize(i->getType()) || 2818 Size > getNativeVectorSizeForAVXABI(AVXLevel))) { 2819 Lo = Memory; 2820 postMerge(Size, Lo, Hi); 2821 return; 2822 } 2823 // Note, skip this test for bit-fields, see below. 2824 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 2825 Lo = Memory; 2826 postMerge(Size, Lo, Hi); 2827 return; 2828 } 2829 2830 // Classify this field. 2831 // 2832 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 2833 // exceeds a single eightbyte, each is classified 2834 // separately. Each eightbyte gets initialized to class 2835 // NO_CLASS. 2836 Class FieldLo, FieldHi; 2837 2838 // Bit-fields require special handling, they do not force the 2839 // structure to be passed in memory even if unaligned, and 2840 // therefore they can straddle an eightbyte. 2841 if (BitField) { 2842 assert(!i->isUnnamedBitfield()); 2843 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2844 uint64_t Size = i->getBitWidthValue(getContext()); 2845 2846 uint64_t EB_Lo = Offset / 64; 2847 uint64_t EB_Hi = (Offset + Size - 1) / 64; 2848 2849 if (EB_Lo) { 2850 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 2851 FieldLo = NoClass; 2852 FieldHi = Integer; 2853 } else { 2854 FieldLo = Integer; 2855 FieldHi = EB_Hi ? Integer : NoClass; 2856 } 2857 } else 2858 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 2859 Lo = merge(Lo, FieldLo); 2860 Hi = merge(Hi, FieldHi); 2861 if (Lo == Memory || Hi == Memory) 2862 break; 2863 } 2864 2865 postMerge(Size, Lo, Hi); 2866 } 2867 } 2868 2869 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 2870 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2871 // place naturally. 2872 if (!isAggregateTypeForABI(Ty)) { 2873 // Treat an enum type as its underlying type. 2874 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2875 Ty = EnumTy->getDecl()->getIntegerType(); 2876 2877 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 2878 : ABIArgInfo::getDirect()); 2879 } 2880 2881 return getNaturalAlignIndirect(Ty); 2882 } 2883 2884 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 2885 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 2886 uint64_t Size = getContext().getTypeSize(VecTy); 2887 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); 2888 if (Size <= 64 || Size > LargestVector) 2889 return true; 2890 } 2891 2892 return false; 2893 } 2894 2895 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 2896 unsigned freeIntRegs) const { 2897 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2898 // place naturally. 2899 // 2900 // This assumption is optimistic, as there could be free registers available 2901 // when we need to pass this argument in memory, and LLVM could try to pass 2902 // the argument in the free register. This does not seem to happen currently, 2903 // but this code would be much safer if we could mark the argument with 2904 // 'onstack'. See PR12193. 2905 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) { 2906 // Treat an enum type as its underlying type. 2907 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2908 Ty = EnumTy->getDecl()->getIntegerType(); 2909 2910 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 2911 : ABIArgInfo::getDirect()); 2912 } 2913 2914 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 2915 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 2916 2917 // Compute the byval alignment. We specify the alignment of the byval in all 2918 // cases so that the mid-level optimizer knows the alignment of the byval. 2919 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 2920 2921 // Attempt to avoid passing indirect results using byval when possible. This 2922 // is important for good codegen. 2923 // 2924 // We do this by coercing the value into a scalar type which the backend can 2925 // handle naturally (i.e., without using byval). 2926 // 2927 // For simplicity, we currently only do this when we have exhausted all of the 2928 // free integer registers. Doing this when there are free integer registers 2929 // would require more care, as we would have to ensure that the coerced value 2930 // did not claim the unused register. That would require either reording the 2931 // arguments to the function (so that any subsequent inreg values came first), 2932 // or only doing this optimization when there were no following arguments that 2933 // might be inreg. 2934 // 2935 // We currently expect it to be rare (particularly in well written code) for 2936 // arguments to be passed on the stack when there are still free integer 2937 // registers available (this would typically imply large structs being passed 2938 // by value), so this seems like a fair tradeoff for now. 2939 // 2940 // We can revisit this if the backend grows support for 'onstack' parameter 2941 // attributes. See PR12193. 2942 if (freeIntRegs == 0) { 2943 uint64_t Size = getContext().getTypeSize(Ty); 2944 2945 // If this type fits in an eightbyte, coerce it into the matching integral 2946 // type, which will end up on the stack (with alignment 8). 2947 if (Align == 8 && Size <= 64) 2948 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 2949 Size)); 2950 } 2951 2952 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); 2953 } 2954 2955 /// The ABI specifies that a value should be passed in a full vector XMM/YMM 2956 /// register. Pick an LLVM IR type that will be passed as a vector register. 2957 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 2958 // Wrapper structs/arrays that only contain vectors are passed just like 2959 // vectors; strip them off if present. 2960 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) 2961 Ty = QualType(InnerTy, 0); 2962 2963 llvm::Type *IRType = CGT.ConvertType(Ty); 2964 if (isa<llvm::VectorType>(IRType) || 2965 IRType->getTypeID() == llvm::Type::FP128TyID) 2966 return IRType; 2967 2968 // We couldn't find the preferred IR vector type for 'Ty'. 2969 uint64_t Size = getContext().getTypeSize(Ty); 2970 assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!"); 2971 2972 // Return a LLVM IR vector type based on the size of 'Ty'. 2973 return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2974 Size / 64); 2975 } 2976 2977 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 2978 /// is known to either be off the end of the specified type or being in 2979 /// alignment padding. The user type specified is known to be at most 128 bits 2980 /// in size, and have passed through X86_64ABIInfo::classify with a successful 2981 /// classification that put one of the two halves in the INTEGER class. 2982 /// 2983 /// It is conservatively correct to return false. 2984 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 2985 unsigned EndBit, ASTContext &Context) { 2986 // If the bytes being queried are off the end of the type, there is no user 2987 // data hiding here. This handles analysis of builtins, vectors and other 2988 // types that don't contain interesting padding. 2989 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 2990 if (TySize <= StartBit) 2991 return true; 2992 2993 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 2994 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 2995 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 2996 2997 // Check each element to see if the element overlaps with the queried range. 2998 for (unsigned i = 0; i != NumElts; ++i) { 2999 // If the element is after the span we care about, then we're done.. 3000 unsigned EltOffset = i*EltSize; 3001 if (EltOffset >= EndBit) break; 3002 3003 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 3004 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 3005 EndBit-EltOffset, Context)) 3006 return false; 3007 } 3008 // If it overlaps no elements, then it is safe to process as padding. 3009 return true; 3010 } 3011 3012 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3013 const RecordDecl *RD = RT->getDecl(); 3014 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3015 3016 // If this is a C++ record, check the bases first. 3017 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3018 for (const auto &I : CXXRD->bases()) { 3019 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3020 "Unexpected base class!"); 3021 const CXXRecordDecl *Base = 3022 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 3023 3024 // If the base is after the span we care about, ignore it. 3025 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 3026 if (BaseOffset >= EndBit) continue; 3027 3028 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 3029 if (!BitsContainNoUserData(I.getType(), BaseStart, 3030 EndBit-BaseOffset, Context)) 3031 return false; 3032 } 3033 } 3034 3035 // Verify that no field has data that overlaps the region of interest. Yes 3036 // this could be sped up a lot by being smarter about queried fields, 3037 // however we're only looking at structs up to 16 bytes, so we don't care 3038 // much. 3039 unsigned idx = 0; 3040 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3041 i != e; ++i, ++idx) { 3042 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 3043 3044 // If we found a field after the region we care about, then we're done. 3045 if (FieldOffset >= EndBit) break; 3046 3047 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 3048 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 3049 Context)) 3050 return false; 3051 } 3052 3053 // If nothing in this record overlapped the area of interest, then we're 3054 // clean. 3055 return true; 3056 } 3057 3058 return false; 3059 } 3060 3061 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a 3062 /// float member at the specified offset. For example, {int,{float}} has a 3063 /// float at offset 4. It is conservatively correct for this routine to return 3064 /// false. 3065 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, 3066 const llvm::DataLayout &TD) { 3067 // Base case if we find a float. 3068 if (IROffset == 0 && IRType->isFloatTy()) 3069 return true; 3070 3071 // If this is a struct, recurse into the field at the specified offset. 3072 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3073 const llvm::StructLayout *SL = TD.getStructLayout(STy); 3074 unsigned Elt = SL->getElementContainingOffset(IROffset); 3075 IROffset -= SL->getElementOffset(Elt); 3076 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); 3077 } 3078 3079 // If this is an array, recurse into the field at the specified offset. 3080 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3081 llvm::Type *EltTy = ATy->getElementType(); 3082 unsigned EltSize = TD.getTypeAllocSize(EltTy); 3083 IROffset -= IROffset/EltSize*EltSize; 3084 return ContainsFloatAtOffset(EltTy, IROffset, TD); 3085 } 3086 3087 return false; 3088 } 3089 3090 3091 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 3092 /// low 8 bytes of an XMM register, corresponding to the SSE class. 3093 llvm::Type *X86_64ABIInfo:: 3094 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3095 QualType SourceTy, unsigned SourceOffset) const { 3096 // The only three choices we have are either double, <2 x float>, or float. We 3097 // pass as float if the last 4 bytes is just padding. This happens for 3098 // structs that contain 3 floats. 3099 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, 3100 SourceOffset*8+64, getContext())) 3101 return llvm::Type::getFloatTy(getVMContext()); 3102 3103 // We want to pass as <2 x float> if the LLVM IR type contains a float at 3104 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the 3105 // case. 3106 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && 3107 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) 3108 return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2); 3109 3110 return llvm::Type::getDoubleTy(getVMContext()); 3111 } 3112 3113 3114 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 3115 /// an 8-byte GPR. This means that we either have a scalar or we are talking 3116 /// about the high or low part of an up-to-16-byte struct. This routine picks 3117 /// the best LLVM IR type to represent this, which may be i64 or may be anything 3118 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 3119 /// etc). 3120 /// 3121 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 3122 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 3123 /// the 8-byte value references. PrefType may be null. 3124 /// 3125 /// SourceTy is the source-level type for the entire argument. SourceOffset is 3126 /// an offset into this that we're processing (which is always either 0 or 8). 3127 /// 3128 llvm::Type *X86_64ABIInfo:: 3129 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3130 QualType SourceTy, unsigned SourceOffset) const { 3131 // If we're dealing with an un-offset LLVM IR type, then it means that we're 3132 // returning an 8-byte unit starting with it. See if we can safely use it. 3133 if (IROffset == 0) { 3134 // Pointers and int64's always fill the 8-byte unit. 3135 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 3136 IRType->isIntegerTy(64)) 3137 return IRType; 3138 3139 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 3140 // goodness in the source type is just tail padding. This is allowed to 3141 // kick in for struct {double,int} on the int, but not on 3142 // struct{double,int,int} because we wouldn't return the second int. We 3143 // have to do this analysis on the source type because we can't depend on 3144 // unions being lowered a specific way etc. 3145 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 3146 IRType->isIntegerTy(32) || 3147 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 3148 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 3149 cast<llvm::IntegerType>(IRType)->getBitWidth(); 3150 3151 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 3152 SourceOffset*8+64, getContext())) 3153 return IRType; 3154 } 3155 } 3156 3157 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3158 // If this is a struct, recurse into the field at the specified offset. 3159 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 3160 if (IROffset < SL->getSizeInBytes()) { 3161 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 3162 IROffset -= SL->getElementOffset(FieldIdx); 3163 3164 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 3165 SourceTy, SourceOffset); 3166 } 3167 } 3168 3169 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3170 llvm::Type *EltTy = ATy->getElementType(); 3171 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 3172 unsigned EltOffset = IROffset/EltSize*EltSize; 3173 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 3174 SourceOffset); 3175 } 3176 3177 // Okay, we don't have any better idea of what to pass, so we pass this in an 3178 // integer register that isn't too big to fit the rest of the struct. 3179 unsigned TySizeInBytes = 3180 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 3181 3182 assert(TySizeInBytes != SourceOffset && "Empty field?"); 3183 3184 // It is always safe to classify this as an integer type up to i64 that 3185 // isn't larger than the structure. 3186 return llvm::IntegerType::get(getVMContext(), 3187 std::min(TySizeInBytes-SourceOffset, 8U)*8); 3188 } 3189 3190 3191 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 3192 /// be used as elements of a two register pair to pass or return, return a 3193 /// first class aggregate to represent them. For example, if the low part of 3194 /// a by-value argument should be passed as i32* and the high part as float, 3195 /// return {i32*, float}. 3196 static llvm::Type * 3197 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 3198 const llvm::DataLayout &TD) { 3199 // In order to correctly satisfy the ABI, we need to the high part to start 3200 // at offset 8. If the high and low parts we inferred are both 4-byte types 3201 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 3202 // the second element at offset 8. Check for this: 3203 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 3204 unsigned HiAlign = TD.getABITypeAlignment(Hi); 3205 unsigned HiStart = llvm::alignTo(LoSize, HiAlign); 3206 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 3207 3208 // To handle this, we have to increase the size of the low part so that the 3209 // second element will start at an 8 byte offset. We can't increase the size 3210 // of the second element because it might make us access off the end of the 3211 // struct. 3212 if (HiStart != 8) { 3213 // There are usually two sorts of types the ABI generation code can produce 3214 // for the low part of a pair that aren't 8 bytes in size: float or 3215 // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and 3216 // NaCl). 3217 // Promote these to a larger type. 3218 if (Lo->isFloatTy()) 3219 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 3220 else { 3221 assert((Lo->isIntegerTy() || Lo->isPointerTy()) 3222 && "Invalid/unknown lo type"); 3223 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 3224 } 3225 } 3226 3227 llvm::StructType *Result = llvm::StructType::get(Lo, Hi); 3228 3229 // Verify that the second element is at an 8-byte offset. 3230 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 3231 "Invalid x86-64 argument pair!"); 3232 return Result; 3233 } 3234 3235 ABIArgInfo X86_64ABIInfo:: 3236 classifyReturnType(QualType RetTy) const { 3237 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 3238 // classification algorithm. 3239 X86_64ABIInfo::Class Lo, Hi; 3240 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 3241 3242 // Check some invariants. 3243 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3244 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3245 3246 llvm::Type *ResType = nullptr; 3247 switch (Lo) { 3248 case NoClass: 3249 if (Hi == NoClass) 3250 return ABIArgInfo::getIgnore(); 3251 // If the low part is just padding, it takes no register, leave ResType 3252 // null. 3253 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3254 "Unknown missing lo part"); 3255 break; 3256 3257 case SSEUp: 3258 case X87Up: 3259 llvm_unreachable("Invalid classification for lo word."); 3260 3261 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 3262 // hidden argument. 3263 case Memory: 3264 return getIndirectReturnResult(RetTy); 3265 3266 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 3267 // available register of the sequence %rax, %rdx is used. 3268 case Integer: 3269 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3270 3271 // If we have a sign or zero extended integer, make sure to return Extend 3272 // so that the parameter gets the right LLVM IR attributes. 3273 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3274 // Treat an enum type as its underlying type. 3275 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3276 RetTy = EnumTy->getDecl()->getIntegerType(); 3277 3278 if (RetTy->isIntegralOrEnumerationType() && 3279 RetTy->isPromotableIntegerType()) 3280 return ABIArgInfo::getExtend(RetTy); 3281 } 3282 break; 3283 3284 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 3285 // available SSE register of the sequence %xmm0, %xmm1 is used. 3286 case SSE: 3287 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3288 break; 3289 3290 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 3291 // returned on the X87 stack in %st0 as 80-bit x87 number. 3292 case X87: 3293 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 3294 break; 3295 3296 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 3297 // part of the value is returned in %st0 and the imaginary part in 3298 // %st1. 3299 case ComplexX87: 3300 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 3301 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 3302 llvm::Type::getX86_FP80Ty(getVMContext())); 3303 break; 3304 } 3305 3306 llvm::Type *HighPart = nullptr; 3307 switch (Hi) { 3308 // Memory was handled previously and X87 should 3309 // never occur as a hi class. 3310 case Memory: 3311 case X87: 3312 llvm_unreachable("Invalid classification for hi word."); 3313 3314 case ComplexX87: // Previously handled. 3315 case NoClass: 3316 break; 3317 3318 case Integer: 3319 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3320 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3321 return ABIArgInfo::getDirect(HighPart, 8); 3322 break; 3323 case SSE: 3324 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3325 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3326 return ABIArgInfo::getDirect(HighPart, 8); 3327 break; 3328 3329 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 3330 // is passed in the next available eightbyte chunk if the last used 3331 // vector register. 3332 // 3333 // SSEUP should always be preceded by SSE, just widen. 3334 case SSEUp: 3335 assert(Lo == SSE && "Unexpected SSEUp classification."); 3336 ResType = GetByteVectorType(RetTy); 3337 break; 3338 3339 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 3340 // returned together with the previous X87 value in %st0. 3341 case X87Up: 3342 // If X87Up is preceded by X87, we don't need to do 3343 // anything. However, in some cases with unions it may not be 3344 // preceded by X87. In such situations we follow gcc and pass the 3345 // extra bits in an SSE reg. 3346 if (Lo != X87) { 3347 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3348 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3349 return ABIArgInfo::getDirect(HighPart, 8); 3350 } 3351 break; 3352 } 3353 3354 // If a high part was specified, merge it together with the low part. It is 3355 // known to pass in the high eightbyte of the result. We do this by forming a 3356 // first class struct aggregate with the high and low part: {low, high} 3357 if (HighPart) 3358 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3359 3360 return ABIArgInfo::getDirect(ResType); 3361 } 3362 3363 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 3364 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 3365 bool isNamedArg) 3366 const 3367 { 3368 Ty = useFirstFieldIfTransparentUnion(Ty); 3369 3370 X86_64ABIInfo::Class Lo, Hi; 3371 classify(Ty, 0, Lo, Hi, isNamedArg); 3372 3373 // Check some invariants. 3374 // FIXME: Enforce these by construction. 3375 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3376 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3377 3378 neededInt = 0; 3379 neededSSE = 0; 3380 llvm::Type *ResType = nullptr; 3381 switch (Lo) { 3382 case NoClass: 3383 if (Hi == NoClass) 3384 return ABIArgInfo::getIgnore(); 3385 // If the low part is just padding, it takes no register, leave ResType 3386 // null. 3387 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3388 "Unknown missing lo part"); 3389 break; 3390 3391 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 3392 // on the stack. 3393 case Memory: 3394 3395 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 3396 // COMPLEX_X87, it is passed in memory. 3397 case X87: 3398 case ComplexX87: 3399 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 3400 ++neededInt; 3401 return getIndirectResult(Ty, freeIntRegs); 3402 3403 case SSEUp: 3404 case X87Up: 3405 llvm_unreachable("Invalid classification for lo word."); 3406 3407 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 3408 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 3409 // and %r9 is used. 3410 case Integer: 3411 ++neededInt; 3412 3413 // Pick an 8-byte type based on the preferred type. 3414 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 3415 3416 // If we have a sign or zero extended integer, make sure to return Extend 3417 // so that the parameter gets the right LLVM IR attributes. 3418 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3419 // Treat an enum type as its underlying type. 3420 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3421 Ty = EnumTy->getDecl()->getIntegerType(); 3422 3423 if (Ty->isIntegralOrEnumerationType() && 3424 Ty->isPromotableIntegerType()) 3425 return ABIArgInfo::getExtend(Ty); 3426 } 3427 3428 break; 3429 3430 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 3431 // available SSE register is used, the registers are taken in the 3432 // order from %xmm0 to %xmm7. 3433 case SSE: { 3434 llvm::Type *IRType = CGT.ConvertType(Ty); 3435 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 3436 ++neededSSE; 3437 break; 3438 } 3439 } 3440 3441 llvm::Type *HighPart = nullptr; 3442 switch (Hi) { 3443 // Memory was handled previously, ComplexX87 and X87 should 3444 // never occur as hi classes, and X87Up must be preceded by X87, 3445 // which is passed in memory. 3446 case Memory: 3447 case X87: 3448 case ComplexX87: 3449 llvm_unreachable("Invalid classification for hi word."); 3450 3451 case NoClass: break; 3452 3453 case Integer: 3454 ++neededInt; 3455 // Pick an 8-byte type based on the preferred type. 3456 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3457 3458 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3459 return ABIArgInfo::getDirect(HighPart, 8); 3460 break; 3461 3462 // X87Up generally doesn't occur here (long double is passed in 3463 // memory), except in situations involving unions. 3464 case X87Up: 3465 case SSE: 3466 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3467 3468 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3469 return ABIArgInfo::getDirect(HighPart, 8); 3470 3471 ++neededSSE; 3472 break; 3473 3474 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 3475 // eightbyte is passed in the upper half of the last used SSE 3476 // register. This only happens when 128-bit vectors are passed. 3477 case SSEUp: 3478 assert(Lo == SSE && "Unexpected SSEUp classification"); 3479 ResType = GetByteVectorType(Ty); 3480 break; 3481 } 3482 3483 // If a high part was specified, merge it together with the low part. It is 3484 // known to pass in the high eightbyte of the result. We do this by forming a 3485 // first class struct aggregate with the high and low part: {low, high} 3486 if (HighPart) 3487 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3488 3489 return ABIArgInfo::getDirect(ResType); 3490 } 3491 3492 ABIArgInfo 3493 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 3494 unsigned &NeededSSE) const { 3495 auto RT = Ty->getAs<RecordType>(); 3496 assert(RT && "classifyRegCallStructType only valid with struct types"); 3497 3498 if (RT->getDecl()->hasFlexibleArrayMember()) 3499 return getIndirectReturnResult(Ty); 3500 3501 // Sum up bases 3502 if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 3503 if (CXXRD->isDynamicClass()) { 3504 NeededInt = NeededSSE = 0; 3505 return getIndirectReturnResult(Ty); 3506 } 3507 3508 for (const auto &I : CXXRD->bases()) 3509 if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE) 3510 .isIndirect()) { 3511 NeededInt = NeededSSE = 0; 3512 return getIndirectReturnResult(Ty); 3513 } 3514 } 3515 3516 // Sum up members 3517 for (const auto *FD : RT->getDecl()->fields()) { 3518 if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) { 3519 if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE) 3520 .isIndirect()) { 3521 NeededInt = NeededSSE = 0; 3522 return getIndirectReturnResult(Ty); 3523 } 3524 } else { 3525 unsigned LocalNeededInt, LocalNeededSSE; 3526 if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt, 3527 LocalNeededSSE, true) 3528 .isIndirect()) { 3529 NeededInt = NeededSSE = 0; 3530 return getIndirectReturnResult(Ty); 3531 } 3532 NeededInt += LocalNeededInt; 3533 NeededSSE += LocalNeededSSE; 3534 } 3535 } 3536 3537 return ABIArgInfo::getDirect(); 3538 } 3539 3540 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty, 3541 unsigned &NeededInt, 3542 unsigned &NeededSSE) const { 3543 3544 NeededInt = 0; 3545 NeededSSE = 0; 3546 3547 return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE); 3548 } 3549 3550 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3551 3552 const unsigned CallingConv = FI.getCallingConvention(); 3553 // It is possible to force Win64 calling convention on any x86_64 target by 3554 // using __attribute__((ms_abi)). In such case to correctly emit Win64 3555 // compatible code delegate this call to WinX86_64ABIInfo::computeInfo. 3556 if (CallingConv == llvm::CallingConv::Win64) { 3557 WinX86_64ABIInfo Win64ABIInfo(CGT); 3558 Win64ABIInfo.computeInfo(FI); 3559 return; 3560 } 3561 3562 bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall; 3563 3564 // Keep track of the number of assigned registers. 3565 unsigned FreeIntRegs = IsRegCall ? 11 : 6; 3566 unsigned FreeSSERegs = IsRegCall ? 16 : 8; 3567 unsigned NeededInt, NeededSSE; 3568 3569 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 3570 if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() && 3571 !FI.getReturnType()->getTypePtr()->isUnionType()) { 3572 FI.getReturnInfo() = 3573 classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE); 3574 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3575 FreeIntRegs -= NeededInt; 3576 FreeSSERegs -= NeededSSE; 3577 } else { 3578 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3579 } 3580 } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>()) { 3581 // Complex Long Double Type is passed in Memory when Regcall 3582 // calling convention is used. 3583 const ComplexType *CT = FI.getReturnType()->getAs<ComplexType>(); 3584 if (getContext().getCanonicalType(CT->getElementType()) == 3585 getContext().LongDoubleTy) 3586 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3587 } else 3588 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3589 } 3590 3591 // If the return value is indirect, then the hidden argument is consuming one 3592 // integer register. 3593 if (FI.getReturnInfo().isIndirect()) 3594 --FreeIntRegs; 3595 3596 // The chain argument effectively gives us another free register. 3597 if (FI.isChainCall()) 3598 ++FreeIntRegs; 3599 3600 unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 3601 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 3602 // get assigned (in left-to-right order) for passing as follows... 3603 unsigned ArgNo = 0; 3604 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3605 it != ie; ++it, ++ArgNo) { 3606 bool IsNamedArg = ArgNo < NumRequiredArgs; 3607 3608 if (IsRegCall && it->type->isStructureOrClassType()) 3609 it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE); 3610 else 3611 it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt, 3612 NeededSSE, IsNamedArg); 3613 3614 // AMD64-ABI 3.2.3p3: If there are no registers available for any 3615 // eightbyte of an argument, the whole argument is passed on the 3616 // stack. If registers have already been assigned for some 3617 // eightbytes of such an argument, the assignments get reverted. 3618 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3619 FreeIntRegs -= NeededInt; 3620 FreeSSERegs -= NeededSSE; 3621 } else { 3622 it->info = getIndirectResult(it->type, FreeIntRegs); 3623 } 3624 } 3625 } 3626 3627 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, 3628 Address VAListAddr, QualType Ty) { 3629 Address overflow_arg_area_p = CGF.Builder.CreateStructGEP( 3630 VAListAddr, 2, CharUnits::fromQuantity(8), "overflow_arg_area_p"); 3631 llvm::Value *overflow_arg_area = 3632 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 3633 3634 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 3635 // byte boundary if alignment needed by type exceeds 8 byte boundary. 3636 // It isn't stated explicitly in the standard, but in practice we use 3637 // alignment greater than 16 where necessary. 3638 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 3639 if (Align > CharUnits::fromQuantity(8)) { 3640 overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, 3641 Align); 3642 } 3643 3644 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 3645 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3646 llvm::Value *Res = 3647 CGF.Builder.CreateBitCast(overflow_arg_area, 3648 llvm::PointerType::getUnqual(LTy)); 3649 3650 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 3651 // l->overflow_arg_area + sizeof(type). 3652 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 3653 // an 8 byte boundary. 3654 3655 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 3656 llvm::Value *Offset = 3657 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 3658 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 3659 "overflow_arg_area.next"); 3660 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 3661 3662 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 3663 return Address(Res, Align); 3664 } 3665 3666 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3667 QualType Ty) const { 3668 // Assume that va_list type is correct; should be pointer to LLVM type: 3669 // struct { 3670 // i32 gp_offset; 3671 // i32 fp_offset; 3672 // i8* overflow_arg_area; 3673 // i8* reg_save_area; 3674 // }; 3675 unsigned neededInt, neededSSE; 3676 3677 Ty = getContext().getCanonicalType(Ty); 3678 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 3679 /*isNamedArg*/false); 3680 3681 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 3682 // in the registers. If not go to step 7. 3683 if (!neededInt && !neededSSE) 3684 return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3685 3686 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 3687 // general purpose registers needed to pass type and num_fp to hold 3688 // the number of floating point registers needed. 3689 3690 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 3691 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 3692 // l->fp_offset > 304 - num_fp * 16 go to step 7. 3693 // 3694 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 3695 // register save space). 3696 3697 llvm::Value *InRegs = nullptr; 3698 Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); 3699 llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; 3700 if (neededInt) { 3701 gp_offset_p = 3702 CGF.Builder.CreateStructGEP(VAListAddr, 0, CharUnits::Zero(), 3703 "gp_offset_p"); 3704 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 3705 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 3706 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 3707 } 3708 3709 if (neededSSE) { 3710 fp_offset_p = 3711 CGF.Builder.CreateStructGEP(VAListAddr, 1, CharUnits::fromQuantity(4), 3712 "fp_offset_p"); 3713 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 3714 llvm::Value *FitsInFP = 3715 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 3716 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 3717 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 3718 } 3719 3720 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 3721 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 3722 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 3723 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 3724 3725 // Emit code to load the value if it was passed in registers. 3726 3727 CGF.EmitBlock(InRegBlock); 3728 3729 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 3730 // an offset of l->gp_offset and/or l->fp_offset. This may require 3731 // copying to a temporary location in case the parameter is passed 3732 // in different register classes or requires an alignment greater 3733 // than 8 for general purpose registers and 16 for XMM registers. 3734 // 3735 // FIXME: This really results in shameful code when we end up needing to 3736 // collect arguments from different places; often what should result in a 3737 // simple assembling of a structure from scattered addresses has many more 3738 // loads than necessary. Can we clean this up? 3739 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3740 llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( 3741 CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(16)), 3742 "reg_save_area"); 3743 3744 Address RegAddr = Address::invalid(); 3745 if (neededInt && neededSSE) { 3746 // FIXME: Cleanup. 3747 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 3748 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 3749 Address Tmp = CGF.CreateMemTemp(Ty); 3750 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3751 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 3752 llvm::Type *TyLo = ST->getElementType(0); 3753 llvm::Type *TyHi = ST->getElementType(1); 3754 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 3755 "Unexpected ABI info for mixed regs"); 3756 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 3757 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 3758 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset); 3759 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset); 3760 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 3761 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 3762 3763 // Copy the first element. 3764 // FIXME: Our choice of alignment here and below is probably pessimistic. 3765 llvm::Value *V = CGF.Builder.CreateAlignedLoad( 3766 TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo), 3767 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo))); 3768 CGF.Builder.CreateStore(V, 3769 CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero())); 3770 3771 // Copy the second element. 3772 V = CGF.Builder.CreateAlignedLoad( 3773 TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi), 3774 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi))); 3775 CharUnits Offset = CharUnits::fromQuantity( 3776 getDataLayout().getStructLayout(ST)->getElementOffset(1)); 3777 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1, Offset)); 3778 3779 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3780 } else if (neededInt) { 3781 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset), 3782 CharUnits::fromQuantity(8)); 3783 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3784 3785 // Copy to a temporary if necessary to ensure the appropriate alignment. 3786 std::pair<CharUnits, CharUnits> SizeAlign = 3787 getContext().getTypeInfoInChars(Ty); 3788 uint64_t TySize = SizeAlign.first.getQuantity(); 3789 CharUnits TyAlign = SizeAlign.second; 3790 3791 // Copy into a temporary if the type is more aligned than the 3792 // register save area. 3793 if (TyAlign.getQuantity() > 8) { 3794 Address Tmp = CGF.CreateMemTemp(Ty); 3795 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); 3796 RegAddr = Tmp; 3797 } 3798 3799 } else if (neededSSE == 1) { 3800 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3801 CharUnits::fromQuantity(16)); 3802 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3803 } else { 3804 assert(neededSSE == 2 && "Invalid number of needed registers!"); 3805 // SSE registers are spaced 16 bytes apart in the register save 3806 // area, we need to collect the two eightbytes together. 3807 // The ABI isn't explicit about this, but it seems reasonable 3808 // to assume that the slots are 16-byte aligned, since the stack is 3809 // naturally 16-byte aligned and the prologue is expected to store 3810 // all the SSE registers to the RSA. 3811 Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3812 CharUnits::fromQuantity(16)); 3813 Address RegAddrHi = 3814 CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, 3815 CharUnits::fromQuantity(16)); 3816 llvm::Type *ST = AI.canHaveCoerceToType() 3817 ? AI.getCoerceToType() 3818 : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy); 3819 llvm::Value *V; 3820 Address Tmp = CGF.CreateMemTemp(Ty); 3821 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3822 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 3823 RegAddrLo, ST->getStructElementType(0))); 3824 CGF.Builder.CreateStore(V, 3825 CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero())); 3826 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 3827 RegAddrHi, ST->getStructElementType(1))); 3828 CGF.Builder.CreateStore(V, 3829 CGF.Builder.CreateStructGEP(Tmp, 1, CharUnits::fromQuantity(8))); 3830 3831 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3832 } 3833 3834 // AMD64-ABI 3.5.7p5: Step 5. Set: 3835 // l->gp_offset = l->gp_offset + num_gp * 8 3836 // l->fp_offset = l->fp_offset + num_fp * 16. 3837 if (neededInt) { 3838 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 3839 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 3840 gp_offset_p); 3841 } 3842 if (neededSSE) { 3843 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 3844 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 3845 fp_offset_p); 3846 } 3847 CGF.EmitBranch(ContBlock); 3848 3849 // Emit code to load the value if it was passed in memory. 3850 3851 CGF.EmitBlock(InMemBlock); 3852 Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3853 3854 // Return the appropriate result. 3855 3856 CGF.EmitBlock(ContBlock); 3857 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, 3858 "vaarg.addr"); 3859 return ResAddr; 3860 } 3861 3862 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 3863 QualType Ty) const { 3864 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 3865 CGF.getContext().getTypeInfoInChars(Ty), 3866 CharUnits::fromQuantity(8), 3867 /*allowHigherAlign*/ false); 3868 } 3869 3870 ABIArgInfo 3871 WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 3872 const ABIArgInfo ¤t) const { 3873 // Assumes vectorCall calling convention. 3874 const Type *Base = nullptr; 3875 uint64_t NumElts = 0; 3876 3877 if (!Ty->isBuiltinType() && !Ty->isVectorType() && 3878 isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) { 3879 FreeSSERegs -= NumElts; 3880 return getDirectX86Hva(); 3881 } 3882 return current; 3883 } 3884 3885 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 3886 bool IsReturnType, bool IsVectorCall, 3887 bool IsRegCall) const { 3888 3889 if (Ty->isVoidType()) 3890 return ABIArgInfo::getIgnore(); 3891 3892 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3893 Ty = EnumTy->getDecl()->getIntegerType(); 3894 3895 TypeInfo Info = getContext().getTypeInfo(Ty); 3896 uint64_t Width = Info.Width; 3897 CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); 3898 3899 const RecordType *RT = Ty->getAs<RecordType>(); 3900 if (RT) { 3901 if (!IsReturnType) { 3902 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 3903 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 3904 } 3905 3906 if (RT->getDecl()->hasFlexibleArrayMember()) 3907 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 3908 3909 } 3910 3911 const Type *Base = nullptr; 3912 uint64_t NumElts = 0; 3913 // vectorcall adds the concept of a homogenous vector aggregate, similar to 3914 // other targets. 3915 if ((IsVectorCall || IsRegCall) && 3916 isHomogeneousAggregate(Ty, Base, NumElts)) { 3917 if (IsRegCall) { 3918 if (FreeSSERegs >= NumElts) { 3919 FreeSSERegs -= NumElts; 3920 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 3921 return ABIArgInfo::getDirect(); 3922 return ABIArgInfo::getExpand(); 3923 } 3924 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3925 } else if (IsVectorCall) { 3926 if (FreeSSERegs >= NumElts && 3927 (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) { 3928 FreeSSERegs -= NumElts; 3929 return ABIArgInfo::getDirect(); 3930 } else if (IsReturnType) { 3931 return ABIArgInfo::getExpand(); 3932 } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) { 3933 // HVAs are delayed and reclassified in the 2nd step. 3934 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3935 } 3936 } 3937 } 3938 3939 if (Ty->isMemberPointerType()) { 3940 // If the member pointer is represented by an LLVM int or ptr, pass it 3941 // directly. 3942 llvm::Type *LLTy = CGT.ConvertType(Ty); 3943 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 3944 return ABIArgInfo::getDirect(); 3945 } 3946 3947 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { 3948 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 3949 // not 1, 2, 4, or 8 bytes, must be passed by reference." 3950 if (Width > 64 || !llvm::isPowerOf2_64(Width)) 3951 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 3952 3953 // Otherwise, coerce it to a small integer. 3954 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 3955 } 3956 3957 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 3958 switch (BT->getKind()) { 3959 case BuiltinType::Bool: 3960 // Bool type is always extended to the ABI, other builtin types are not 3961 // extended. 3962 return ABIArgInfo::getExtend(Ty); 3963 3964 case BuiltinType::LongDouble: 3965 // Mingw64 GCC uses the old 80 bit extended precision floating point 3966 // unit. It passes them indirectly through memory. 3967 if (IsMingw64) { 3968 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 3969 if (LDF == &llvm::APFloat::x87DoubleExtended()) 3970 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3971 } 3972 break; 3973 3974 case BuiltinType::Int128: 3975 case BuiltinType::UInt128: 3976 // If it's a parameter type, the normal ABI rule is that arguments larger 3977 // than 8 bytes are passed indirectly. GCC follows it. We follow it too, 3978 // even though it isn't particularly efficient. 3979 if (!IsReturnType) 3980 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3981 3982 // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that. 3983 // Clang matches them for compatibility. 3984 return ABIArgInfo::getDirect( 3985 llvm::VectorType::get(llvm::Type::getInt64Ty(getVMContext()), 2)); 3986 3987 default: 3988 break; 3989 } 3990 } 3991 3992 return ABIArgInfo::getDirect(); 3993 } 3994 3995 void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, 3996 unsigned FreeSSERegs, 3997 bool IsVectorCall, 3998 bool IsRegCall) const { 3999 unsigned Count = 0; 4000 for (auto &I : FI.arguments()) { 4001 // Vectorcall in x64 only permits the first 6 arguments to be passed 4002 // as XMM/YMM registers. 4003 if (Count < VectorcallMaxParamNumAsReg) 4004 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 4005 else { 4006 // Since these cannot be passed in registers, pretend no registers 4007 // are left. 4008 unsigned ZeroSSERegsAvail = 0; 4009 I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false, 4010 IsVectorCall, IsRegCall); 4011 } 4012 ++Count; 4013 } 4014 4015 for (auto &I : FI.arguments()) { 4016 I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info); 4017 } 4018 } 4019 4020 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 4021 bool IsVectorCall = 4022 FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall; 4023 bool IsRegCall = FI.getCallingConvention() == llvm::CallingConv::X86_RegCall; 4024 4025 unsigned FreeSSERegs = 0; 4026 if (IsVectorCall) { 4027 // We can use up to 4 SSE return registers with vectorcall. 4028 FreeSSERegs = 4; 4029 } else if (IsRegCall) { 4030 // RegCall gives us 16 SSE registers. 4031 FreeSSERegs = 16; 4032 } 4033 4034 if (!getCXXABI().classifyReturnType(FI)) 4035 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true, 4036 IsVectorCall, IsRegCall); 4037 4038 if (IsVectorCall) { 4039 // We can use up to 6 SSE register parameters with vectorcall. 4040 FreeSSERegs = 6; 4041 } else if (IsRegCall) { 4042 // RegCall gives us 16 SSE registers, we can reuse the return registers. 4043 FreeSSERegs = 16; 4044 } 4045 4046 if (IsVectorCall) { 4047 computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall); 4048 } else { 4049 for (auto &I : FI.arguments()) 4050 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 4051 } 4052 4053 } 4054 4055 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4056 QualType Ty) const { 4057 4058 bool IsIndirect = false; 4059 4060 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4061 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4062 if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) { 4063 uint64_t Width = getContext().getTypeSize(Ty); 4064 IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 4065 } 4066 4067 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 4068 CGF.getContext().getTypeInfoInChars(Ty), 4069 CharUnits::fromQuantity(8), 4070 /*allowHigherAlign*/ false); 4071 } 4072 4073 // PowerPC-32 4074 namespace { 4075 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. 4076 class PPC32_SVR4_ABIInfo : public DefaultABIInfo { 4077 bool IsSoftFloatABI; 4078 4079 CharUnits getParamTypeAlignment(QualType Ty) const; 4080 4081 public: 4082 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI) 4083 : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI) {} 4084 4085 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4086 QualType Ty) const override; 4087 }; 4088 4089 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { 4090 public: 4091 PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI) 4092 : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT, SoftFloatABI)) {} 4093 4094 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4095 // This is recovered from gcc output. 4096 return 1; // r1 is the dedicated stack pointer 4097 } 4098 4099 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4100 llvm::Value *Address) const override; 4101 }; 4102 } 4103 4104 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4105 // Complex types are passed just like their elements 4106 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4107 Ty = CTy->getElementType(); 4108 4109 if (Ty->isVectorType()) 4110 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 4111 : 4); 4112 4113 // For single-element float/vector structs, we consider the whole type 4114 // to have the same alignment requirements as its single element. 4115 const Type *AlignTy = nullptr; 4116 if (const Type *EltType = isSingleElementStruct(Ty, getContext())) { 4117 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4118 if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || 4119 (BT && BT->isFloatingPoint())) 4120 AlignTy = EltType; 4121 } 4122 4123 if (AlignTy) 4124 return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4); 4125 return CharUnits::fromQuantity(4); 4126 } 4127 4128 // TODO: this implementation is now likely redundant with 4129 // DefaultABIInfo::EmitVAArg. 4130 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList, 4131 QualType Ty) const { 4132 if (getTarget().getTriple().isOSDarwin()) { 4133 auto TI = getContext().getTypeInfoInChars(Ty); 4134 TI.second = getParamTypeAlignment(Ty); 4135 4136 CharUnits SlotSize = CharUnits::fromQuantity(4); 4137 return emitVoidPtrVAArg(CGF, VAList, Ty, 4138 classifyArgumentType(Ty).isIndirect(), TI, SlotSize, 4139 /*AllowHigherAlign=*/true); 4140 } 4141 4142 const unsigned OverflowLimit = 8; 4143 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4144 // TODO: Implement this. For now ignore. 4145 (void)CTy; 4146 return Address::invalid(); // FIXME? 4147 } 4148 4149 // struct __va_list_tag { 4150 // unsigned char gpr; 4151 // unsigned char fpr; 4152 // unsigned short reserved; 4153 // void *overflow_arg_area; 4154 // void *reg_save_area; 4155 // }; 4156 4157 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; 4158 bool isInt = 4159 Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType(); 4160 bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64; 4161 4162 // All aggregates are passed indirectly? That doesn't seem consistent 4163 // with the argument-lowering code. 4164 bool isIndirect = Ty->isAggregateType(); 4165 4166 CGBuilderTy &Builder = CGF.Builder; 4167 4168 // The calling convention either uses 1-2 GPRs or 1 FPR. 4169 Address NumRegsAddr = Address::invalid(); 4170 if (isInt || IsSoftFloatABI) { 4171 NumRegsAddr = Builder.CreateStructGEP(VAList, 0, CharUnits::Zero(), "gpr"); 4172 } else { 4173 NumRegsAddr = Builder.CreateStructGEP(VAList, 1, CharUnits::One(), "fpr"); 4174 } 4175 4176 llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs"); 4177 4178 // "Align" the register count when TY is i64. 4179 if (isI64 || (isF64 && IsSoftFloatABI)) { 4180 NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1)); 4181 NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U)); 4182 } 4183 4184 llvm::Value *CC = 4185 Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond"); 4186 4187 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); 4188 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); 4189 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 4190 4191 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); 4192 4193 llvm::Type *DirectTy = CGF.ConvertType(Ty); 4194 if (isIndirect) DirectTy = DirectTy->getPointerTo(0); 4195 4196 // Case 1: consume registers. 4197 Address RegAddr = Address::invalid(); 4198 { 4199 CGF.EmitBlock(UsingRegs); 4200 4201 Address RegSaveAreaPtr = 4202 Builder.CreateStructGEP(VAList, 4, CharUnits::fromQuantity(8)); 4203 RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr), 4204 CharUnits::fromQuantity(8)); 4205 assert(RegAddr.getElementType() == CGF.Int8Ty); 4206 4207 // Floating-point registers start after the general-purpose registers. 4208 if (!(isInt || IsSoftFloatABI)) { 4209 RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr, 4210 CharUnits::fromQuantity(32)); 4211 } 4212 4213 // Get the address of the saved value by scaling the number of 4214 // registers we've used by the number of 4215 CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8); 4216 llvm::Value *RegOffset = 4217 Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity())); 4218 RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty, 4219 RegAddr.getPointer(), RegOffset), 4220 RegAddr.getAlignment().alignmentOfArrayElement(RegSize)); 4221 RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy); 4222 4223 // Increase the used-register count. 4224 NumRegs = 4225 Builder.CreateAdd(NumRegs, 4226 Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1)); 4227 Builder.CreateStore(NumRegs, NumRegsAddr); 4228 4229 CGF.EmitBranch(Cont); 4230 } 4231 4232 // Case 2: consume space in the overflow area. 4233 Address MemAddr = Address::invalid(); 4234 { 4235 CGF.EmitBlock(UsingOverflow); 4236 4237 Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr); 4238 4239 // Everything in the overflow area is rounded up to a size of at least 4. 4240 CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4); 4241 4242 CharUnits Size; 4243 if (!isIndirect) { 4244 auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty); 4245 Size = TypeInfo.first.alignTo(OverflowAreaAlign); 4246 } else { 4247 Size = CGF.getPointerSize(); 4248 } 4249 4250 Address OverflowAreaAddr = 4251 Builder.CreateStructGEP(VAList, 3, CharUnits::fromQuantity(4)); 4252 Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), 4253 OverflowAreaAlign); 4254 // Round up address of argument to alignment 4255 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 4256 if (Align > OverflowAreaAlign) { 4257 llvm::Value *Ptr = OverflowArea.getPointer(); 4258 OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align), 4259 Align); 4260 } 4261 4262 MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy); 4263 4264 // Increase the overflow area. 4265 OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size); 4266 Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr); 4267 CGF.EmitBranch(Cont); 4268 } 4269 4270 CGF.EmitBlock(Cont); 4271 4272 // Merge the cases with a phi. 4273 Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow, 4274 "vaarg.addr"); 4275 4276 // Load the pointer if the argument was passed indirectly. 4277 if (isIndirect) { 4278 Result = Address(Builder.CreateLoad(Result, "aggr"), 4279 getContext().getTypeAlignInChars(Ty)); 4280 } 4281 4282 return Result; 4283 } 4284 4285 bool 4286 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4287 llvm::Value *Address) const { 4288 // This is calculated from the LLVM and GCC tables and verified 4289 // against gcc output. AFAIK all ABIs use the same encoding. 4290 4291 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4292 4293 llvm::IntegerType *i8 = CGF.Int8Ty; 4294 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4295 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4296 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4297 4298 // 0-31: r0-31, the 4-byte general-purpose registers 4299 AssignToArrayRange(Builder, Address, Four8, 0, 31); 4300 4301 // 32-63: fp0-31, the 8-byte floating-point registers 4302 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4303 4304 // 64-76 are various 4-byte special-purpose registers: 4305 // 64: mq 4306 // 65: lr 4307 // 66: ctr 4308 // 67: ap 4309 // 68-75 cr0-7 4310 // 76: xer 4311 AssignToArrayRange(Builder, Address, Four8, 64, 76); 4312 4313 // 77-108: v0-31, the 16-byte vector registers 4314 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4315 4316 // 109: vrsave 4317 // 110: vscr 4318 // 111: spe_acc 4319 // 112: spefscr 4320 // 113: sfp 4321 AssignToArrayRange(Builder, Address, Four8, 109, 113); 4322 4323 return false; 4324 } 4325 4326 // PowerPC-64 4327 4328 namespace { 4329 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 4330 class PPC64_SVR4_ABIInfo : public SwiftABIInfo { 4331 public: 4332 enum ABIKind { 4333 ELFv1 = 0, 4334 ELFv2 4335 }; 4336 4337 private: 4338 static const unsigned GPRBits = 64; 4339 ABIKind Kind; 4340 bool HasQPX; 4341 bool IsSoftFloatABI; 4342 4343 // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and 4344 // will be passed in a QPX register. 4345 bool IsQPXVectorTy(const Type *Ty) const { 4346 if (!HasQPX) 4347 return false; 4348 4349 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4350 unsigned NumElements = VT->getNumElements(); 4351 if (NumElements == 1) 4352 return false; 4353 4354 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) { 4355 if (getContext().getTypeSize(Ty) <= 256) 4356 return true; 4357 } else if (VT->getElementType()-> 4358 isSpecificBuiltinType(BuiltinType::Float)) { 4359 if (getContext().getTypeSize(Ty) <= 128) 4360 return true; 4361 } 4362 } 4363 4364 return false; 4365 } 4366 4367 bool IsQPXVectorTy(QualType Ty) const { 4368 return IsQPXVectorTy(Ty.getTypePtr()); 4369 } 4370 4371 public: 4372 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX, 4373 bool SoftFloatABI) 4374 : SwiftABIInfo(CGT), Kind(Kind), HasQPX(HasQPX), 4375 IsSoftFloatABI(SoftFloatABI) {} 4376 4377 bool isPromotableTypeForABI(QualType Ty) const; 4378 CharUnits getParamTypeAlignment(QualType Ty) const; 4379 4380 ABIArgInfo classifyReturnType(QualType RetTy) const; 4381 ABIArgInfo classifyArgumentType(QualType Ty) const; 4382 4383 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4384 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4385 uint64_t Members) const override; 4386 4387 // TODO: We can add more logic to computeInfo to improve performance. 4388 // Example: For aggregate arguments that fit in a register, we could 4389 // use getDirectInReg (as is done below for structs containing a single 4390 // floating-point value) to avoid pushing them to memory on function 4391 // entry. This would require changing the logic in PPCISelLowering 4392 // when lowering the parameters in the caller and args in the callee. 4393 void computeInfo(CGFunctionInfo &FI) const override { 4394 if (!getCXXABI().classifyReturnType(FI)) 4395 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4396 for (auto &I : FI.arguments()) { 4397 // We rely on the default argument classification for the most part. 4398 // One exception: An aggregate containing a single floating-point 4399 // or vector item must be passed in a register if one is available. 4400 const Type *T = isSingleElementStruct(I.type, getContext()); 4401 if (T) { 4402 const BuiltinType *BT = T->getAs<BuiltinType>(); 4403 if (IsQPXVectorTy(T) || 4404 (T->isVectorType() && getContext().getTypeSize(T) == 128) || 4405 (BT && BT->isFloatingPoint())) { 4406 QualType QT(T, 0); 4407 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 4408 continue; 4409 } 4410 } 4411 I.info = classifyArgumentType(I.type); 4412 } 4413 } 4414 4415 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4416 QualType Ty) const override; 4417 4418 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 4419 bool asReturnValue) const override { 4420 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 4421 } 4422 4423 bool isSwiftErrorInRegister() const override { 4424 return false; 4425 } 4426 }; 4427 4428 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 4429 4430 public: 4431 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 4432 PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX, 4433 bool SoftFloatABI) 4434 : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX, 4435 SoftFloatABI)) {} 4436 4437 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4438 // This is recovered from gcc output. 4439 return 1; // r1 is the dedicated stack pointer 4440 } 4441 4442 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4443 llvm::Value *Address) const override; 4444 }; 4445 4446 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 4447 public: 4448 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 4449 4450 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4451 // This is recovered from gcc output. 4452 return 1; // r1 is the dedicated stack pointer 4453 } 4454 4455 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4456 llvm::Value *Address) const override; 4457 }; 4458 4459 } 4460 4461 // Return true if the ABI requires Ty to be passed sign- or zero- 4462 // extended to 64 bits. 4463 bool 4464 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 4465 // Treat an enum type as its underlying type. 4466 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4467 Ty = EnumTy->getDecl()->getIntegerType(); 4468 4469 // Promotable integer types are required to be promoted by the ABI. 4470 if (Ty->isPromotableIntegerType()) 4471 return true; 4472 4473 // In addition to the usual promotable integer types, we also need to 4474 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 4475 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4476 switch (BT->getKind()) { 4477 case BuiltinType::Int: 4478 case BuiltinType::UInt: 4479 return true; 4480 default: 4481 break; 4482 } 4483 4484 return false; 4485 } 4486 4487 /// isAlignedParamType - Determine whether a type requires 16-byte or 4488 /// higher alignment in the parameter area. Always returns at least 8. 4489 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4490 // Complex types are passed just like their elements. 4491 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4492 Ty = CTy->getElementType(); 4493 4494 // Only vector types of size 16 bytes need alignment (larger types are 4495 // passed via reference, smaller types are not aligned). 4496 if (IsQPXVectorTy(Ty)) { 4497 if (getContext().getTypeSize(Ty) > 128) 4498 return CharUnits::fromQuantity(32); 4499 4500 return CharUnits::fromQuantity(16); 4501 } else if (Ty->isVectorType()) { 4502 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8); 4503 } 4504 4505 // For single-element float/vector structs, we consider the whole type 4506 // to have the same alignment requirements as its single element. 4507 const Type *AlignAsType = nullptr; 4508 const Type *EltType = isSingleElementStruct(Ty, getContext()); 4509 if (EltType) { 4510 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4511 if (IsQPXVectorTy(EltType) || (EltType->isVectorType() && 4512 getContext().getTypeSize(EltType) == 128) || 4513 (BT && BT->isFloatingPoint())) 4514 AlignAsType = EltType; 4515 } 4516 4517 // Likewise for ELFv2 homogeneous aggregates. 4518 const Type *Base = nullptr; 4519 uint64_t Members = 0; 4520 if (!AlignAsType && Kind == ELFv2 && 4521 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 4522 AlignAsType = Base; 4523 4524 // With special case aggregates, only vector base types need alignment. 4525 if (AlignAsType && IsQPXVectorTy(AlignAsType)) { 4526 if (getContext().getTypeSize(AlignAsType) > 128) 4527 return CharUnits::fromQuantity(32); 4528 4529 return CharUnits::fromQuantity(16); 4530 } else if (AlignAsType) { 4531 return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8); 4532 } 4533 4534 // Otherwise, we only need alignment for any aggregate type that 4535 // has an alignment requirement of >= 16 bytes. 4536 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { 4537 if (HasQPX && getContext().getTypeAlign(Ty) >= 256) 4538 return CharUnits::fromQuantity(32); 4539 return CharUnits::fromQuantity(16); 4540 } 4541 4542 return CharUnits::fromQuantity(8); 4543 } 4544 4545 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 4546 /// aggregate. Base is set to the base element type, and Members is set 4547 /// to the number of base elements. 4548 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 4549 uint64_t &Members) const { 4550 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 4551 uint64_t NElements = AT->getSize().getZExtValue(); 4552 if (NElements == 0) 4553 return false; 4554 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 4555 return false; 4556 Members *= NElements; 4557 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 4558 const RecordDecl *RD = RT->getDecl(); 4559 if (RD->hasFlexibleArrayMember()) 4560 return false; 4561 4562 Members = 0; 4563 4564 // If this is a C++ record, check the bases first. 4565 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 4566 for (const auto &I : CXXRD->bases()) { 4567 // Ignore empty records. 4568 if (isEmptyRecord(getContext(), I.getType(), true)) 4569 continue; 4570 4571 uint64_t FldMembers; 4572 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) 4573 return false; 4574 4575 Members += FldMembers; 4576 } 4577 } 4578 4579 for (const auto *FD : RD->fields()) { 4580 // Ignore (non-zero arrays of) empty records. 4581 QualType FT = FD->getType(); 4582 while (const ConstantArrayType *AT = 4583 getContext().getAsConstantArrayType(FT)) { 4584 if (AT->getSize().getZExtValue() == 0) 4585 return false; 4586 FT = AT->getElementType(); 4587 } 4588 if (isEmptyRecord(getContext(), FT, true)) 4589 continue; 4590 4591 // For compatibility with GCC, ignore empty bitfields in C++ mode. 4592 if (getContext().getLangOpts().CPlusPlus && 4593 FD->isZeroLengthBitField(getContext())) 4594 continue; 4595 4596 uint64_t FldMembers; 4597 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 4598 return false; 4599 4600 Members = (RD->isUnion() ? 4601 std::max(Members, FldMembers) : Members + FldMembers); 4602 } 4603 4604 if (!Base) 4605 return false; 4606 4607 // Ensure there is no padding. 4608 if (getContext().getTypeSize(Base) * Members != 4609 getContext().getTypeSize(Ty)) 4610 return false; 4611 } else { 4612 Members = 1; 4613 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 4614 Members = 2; 4615 Ty = CT->getElementType(); 4616 } 4617 4618 // Most ABIs only support float, double, and some vector type widths. 4619 if (!isHomogeneousAggregateBaseType(Ty)) 4620 return false; 4621 4622 // The base type must be the same for all members. Types that 4623 // agree in both total size and mode (float vs. vector) are 4624 // treated as being equivalent here. 4625 const Type *TyPtr = Ty.getTypePtr(); 4626 if (!Base) { 4627 Base = TyPtr; 4628 // If it's a non-power-of-2 vector, its size is already a power-of-2, 4629 // so make sure to widen it explicitly. 4630 if (const VectorType *VT = Base->getAs<VectorType>()) { 4631 QualType EltTy = VT->getElementType(); 4632 unsigned NumElements = 4633 getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy); 4634 Base = getContext() 4635 .getVectorType(EltTy, NumElements, VT->getVectorKind()) 4636 .getTypePtr(); 4637 } 4638 } 4639 4640 if (Base->isVectorType() != TyPtr->isVectorType() || 4641 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 4642 return false; 4643 } 4644 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); 4645 } 4646 4647 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 4648 // Homogeneous aggregates for ELFv2 must have base types of float, 4649 // double, long double, or 128-bit vectors. 4650 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4651 if (BT->getKind() == BuiltinType::Float || 4652 BT->getKind() == BuiltinType::Double || 4653 BT->getKind() == BuiltinType::LongDouble || 4654 (getContext().getTargetInfo().hasFloat128Type() && 4655 (BT->getKind() == BuiltinType::Float128))) { 4656 if (IsSoftFloatABI) 4657 return false; 4658 return true; 4659 } 4660 } 4661 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4662 if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty)) 4663 return true; 4664 } 4665 return false; 4666 } 4667 4668 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( 4669 const Type *Base, uint64_t Members) const { 4670 // Vector and fp128 types require one register, other floating point types 4671 // require one or two registers depending on their size. 4672 uint32_t NumRegs = 4673 ((getContext().getTargetInfo().hasFloat128Type() && 4674 Base->isFloat128Type()) || 4675 Base->isVectorType()) ? 1 4676 : (getContext().getTypeSize(Base) + 63) / 64; 4677 4678 // Homogeneous Aggregates may occupy at most 8 registers. 4679 return Members * NumRegs <= 8; 4680 } 4681 4682 ABIArgInfo 4683 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 4684 Ty = useFirstFieldIfTransparentUnion(Ty); 4685 4686 if (Ty->isAnyComplexType()) 4687 return ABIArgInfo::getDirect(); 4688 4689 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 4690 // or via reference (larger than 16 bytes). 4691 if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) { 4692 uint64_t Size = getContext().getTypeSize(Ty); 4693 if (Size > 128) 4694 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4695 else if (Size < 128) { 4696 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 4697 return ABIArgInfo::getDirect(CoerceTy); 4698 } 4699 } 4700 4701 if (isAggregateTypeForABI(Ty)) { 4702 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 4703 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4704 4705 uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity(); 4706 uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 4707 4708 // ELFv2 homogeneous aggregates are passed as array types. 4709 const Type *Base = nullptr; 4710 uint64_t Members = 0; 4711 if (Kind == ELFv2 && 4712 isHomogeneousAggregate(Ty, Base, Members)) { 4713 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 4714 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 4715 return ABIArgInfo::getDirect(CoerceTy); 4716 } 4717 4718 // If an aggregate may end up fully in registers, we do not 4719 // use the ByVal method, but pass the aggregate as array. 4720 // This is usually beneficial since we avoid forcing the 4721 // back-end to store the argument to memory. 4722 uint64_t Bits = getContext().getTypeSize(Ty); 4723 if (Bits > 0 && Bits <= 8 * GPRBits) { 4724 llvm::Type *CoerceTy; 4725 4726 // Types up to 8 bytes are passed as integer type (which will be 4727 // properly aligned in the argument save area doubleword). 4728 if (Bits <= GPRBits) 4729 CoerceTy = 4730 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 4731 // Larger types are passed as arrays, with the base type selected 4732 // according to the required alignment in the save area. 4733 else { 4734 uint64_t RegBits = ABIAlign * 8; 4735 uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits; 4736 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 4737 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 4738 } 4739 4740 return ABIArgInfo::getDirect(CoerceTy); 4741 } 4742 4743 // All other aggregates are passed ByVal. 4744 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 4745 /*ByVal=*/true, 4746 /*Realign=*/TyAlign > ABIAlign); 4747 } 4748 4749 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 4750 : ABIArgInfo::getDirect()); 4751 } 4752 4753 ABIArgInfo 4754 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 4755 if (RetTy->isVoidType()) 4756 return ABIArgInfo::getIgnore(); 4757 4758 if (RetTy->isAnyComplexType()) 4759 return ABIArgInfo::getDirect(); 4760 4761 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 4762 // or via reference (larger than 16 bytes). 4763 if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) { 4764 uint64_t Size = getContext().getTypeSize(RetTy); 4765 if (Size > 128) 4766 return getNaturalAlignIndirect(RetTy); 4767 else if (Size < 128) { 4768 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 4769 return ABIArgInfo::getDirect(CoerceTy); 4770 } 4771 } 4772 4773 if (isAggregateTypeForABI(RetTy)) { 4774 // ELFv2 homogeneous aggregates are returned as array types. 4775 const Type *Base = nullptr; 4776 uint64_t Members = 0; 4777 if (Kind == ELFv2 && 4778 isHomogeneousAggregate(RetTy, Base, Members)) { 4779 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 4780 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 4781 return ABIArgInfo::getDirect(CoerceTy); 4782 } 4783 4784 // ELFv2 small aggregates are returned in up to two registers. 4785 uint64_t Bits = getContext().getTypeSize(RetTy); 4786 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 4787 if (Bits == 0) 4788 return ABIArgInfo::getIgnore(); 4789 4790 llvm::Type *CoerceTy; 4791 if (Bits > GPRBits) { 4792 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 4793 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy); 4794 } else 4795 CoerceTy = 4796 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 4797 return ABIArgInfo::getDirect(CoerceTy); 4798 } 4799 4800 // All other aggregates are returned indirectly. 4801 return getNaturalAlignIndirect(RetTy); 4802 } 4803 4804 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 4805 : ABIArgInfo::getDirect()); 4806 } 4807 4808 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 4809 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4810 QualType Ty) const { 4811 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 4812 TypeInfo.second = getParamTypeAlignment(Ty); 4813 4814 CharUnits SlotSize = CharUnits::fromQuantity(8); 4815 4816 // If we have a complex type and the base type is smaller than 8 bytes, 4817 // the ABI calls for the real and imaginary parts to be right-adjusted 4818 // in separate doublewords. However, Clang expects us to produce a 4819 // pointer to a structure with the two parts packed tightly. So generate 4820 // loads of the real and imaginary parts relative to the va_list pointer, 4821 // and store them to a temporary structure. 4822 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4823 CharUnits EltSize = TypeInfo.first / 2; 4824 if (EltSize < SlotSize) { 4825 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, 4826 SlotSize * 2, SlotSize, 4827 SlotSize, /*AllowHigher*/ true); 4828 4829 Address RealAddr = Addr; 4830 Address ImagAddr = RealAddr; 4831 if (CGF.CGM.getDataLayout().isBigEndian()) { 4832 RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, 4833 SlotSize - EltSize); 4834 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr, 4835 2 * SlotSize - EltSize); 4836 } else { 4837 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize); 4838 } 4839 4840 llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType()); 4841 RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy); 4842 ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy); 4843 llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal"); 4844 llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag"); 4845 4846 Address Temp = CGF.CreateMemTemp(Ty, "vacplx"); 4847 CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty), 4848 /*init*/ true); 4849 return Temp; 4850 } 4851 } 4852 4853 // Otherwise, just use the general rule. 4854 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 4855 TypeInfo, SlotSize, /*AllowHigher*/ true); 4856 } 4857 4858 static bool 4859 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4860 llvm::Value *Address) { 4861 // This is calculated from the LLVM and GCC tables and verified 4862 // against gcc output. AFAIK all ABIs use the same encoding. 4863 4864 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4865 4866 llvm::IntegerType *i8 = CGF.Int8Ty; 4867 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4868 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4869 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4870 4871 // 0-31: r0-31, the 8-byte general-purpose registers 4872 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 4873 4874 // 32-63: fp0-31, the 8-byte floating-point registers 4875 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4876 4877 // 64-67 are various 8-byte special-purpose registers: 4878 // 64: mq 4879 // 65: lr 4880 // 66: ctr 4881 // 67: ap 4882 AssignToArrayRange(Builder, Address, Eight8, 64, 67); 4883 4884 // 68-76 are various 4-byte special-purpose registers: 4885 // 68-75 cr0-7 4886 // 76: xer 4887 AssignToArrayRange(Builder, Address, Four8, 68, 76); 4888 4889 // 77-108: v0-31, the 16-byte vector registers 4890 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4891 4892 // 109: vrsave 4893 // 110: vscr 4894 // 111: spe_acc 4895 // 112: spefscr 4896 // 113: sfp 4897 // 114: tfhar 4898 // 115: tfiar 4899 // 116: texasr 4900 AssignToArrayRange(Builder, Address, Eight8, 109, 116); 4901 4902 return false; 4903 } 4904 4905 bool 4906 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 4907 CodeGen::CodeGenFunction &CGF, 4908 llvm::Value *Address) const { 4909 4910 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 4911 } 4912 4913 bool 4914 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4915 llvm::Value *Address) const { 4916 4917 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 4918 } 4919 4920 //===----------------------------------------------------------------------===// 4921 // AArch64 ABI Implementation 4922 //===----------------------------------------------------------------------===// 4923 4924 namespace { 4925 4926 class AArch64ABIInfo : public SwiftABIInfo { 4927 public: 4928 enum ABIKind { 4929 AAPCS = 0, 4930 DarwinPCS, 4931 Win64 4932 }; 4933 4934 private: 4935 ABIKind Kind; 4936 4937 public: 4938 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) 4939 : SwiftABIInfo(CGT), Kind(Kind) {} 4940 4941 private: 4942 ABIKind getABIKind() const { return Kind; } 4943 bool isDarwinPCS() const { return Kind == DarwinPCS; } 4944 4945 ABIArgInfo classifyReturnType(QualType RetTy) const; 4946 ABIArgInfo classifyArgumentType(QualType RetTy) const; 4947 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4948 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4949 uint64_t Members) const override; 4950 4951 bool isIllegalVectorType(QualType Ty) const; 4952 4953 void computeInfo(CGFunctionInfo &FI) const override { 4954 if (!::classifyReturnType(getCXXABI(), FI, *this)) 4955 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4956 4957 for (auto &it : FI.arguments()) 4958 it.info = classifyArgumentType(it.type); 4959 } 4960 4961 Address EmitDarwinVAArg(Address VAListAddr, QualType Ty, 4962 CodeGenFunction &CGF) const; 4963 4964 Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 4965 CodeGenFunction &CGF) const; 4966 4967 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4968 QualType Ty) const override { 4969 return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty) 4970 : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 4971 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 4972 } 4973 4974 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 4975 QualType Ty) const override; 4976 4977 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 4978 bool asReturnValue) const override { 4979 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 4980 } 4981 bool isSwiftErrorInRegister() const override { 4982 return true; 4983 } 4984 4985 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 4986 unsigned elts) const override; 4987 }; 4988 4989 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 4990 public: 4991 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 4992 : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {} 4993 4994 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 4995 return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue"; 4996 } 4997 4998 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4999 return 31; 5000 } 5001 5002 bool doesReturnSlotInterfereWithArgs() const override { return false; } 5003 5004 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5005 CodeGen::CodeGenModule &CGM) const override { 5006 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5007 if (!FD) 5008 return; 5009 llvm::Function *Fn = cast<llvm::Function>(GV); 5010 5011 auto Kind = CGM.getCodeGenOpts().getSignReturnAddress(); 5012 if (Kind != CodeGenOptions::SignReturnAddressScope::None) { 5013 Fn->addFnAttr("sign-return-address", 5014 Kind == CodeGenOptions::SignReturnAddressScope::All 5015 ? "all" 5016 : "non-leaf"); 5017 5018 auto Key = CGM.getCodeGenOpts().getSignReturnAddressKey(); 5019 Fn->addFnAttr("sign-return-address-key", 5020 Key == CodeGenOptions::SignReturnAddressKeyValue::AKey 5021 ? "a_key" 5022 : "b_key"); 5023 } 5024 5025 if (CGM.getCodeGenOpts().BranchTargetEnforcement) 5026 Fn->addFnAttr("branch-target-enforcement"); 5027 } 5028 }; 5029 5030 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo { 5031 public: 5032 WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K) 5033 : AArch64TargetCodeGenInfo(CGT, K) {} 5034 5035 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5036 CodeGen::CodeGenModule &CGM) const override; 5037 5038 void getDependentLibraryOption(llvm::StringRef Lib, 5039 llvm::SmallString<24> &Opt) const override { 5040 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5041 } 5042 5043 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5044 llvm::SmallString<32> &Opt) const override { 5045 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5046 } 5047 }; 5048 5049 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes( 5050 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 5051 AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 5052 if (GV->isDeclaration()) 5053 return; 5054 addStackProbeTargetAttributes(D, GV, CGM); 5055 } 5056 } 5057 5058 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const { 5059 Ty = useFirstFieldIfTransparentUnion(Ty); 5060 5061 // Handle illegal vector types here. 5062 if (isIllegalVectorType(Ty)) { 5063 uint64_t Size = getContext().getTypeSize(Ty); 5064 // Android promotes <2 x i8> to i16, not i32 5065 if (isAndroid() && (Size <= 16)) { 5066 llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext()); 5067 return ABIArgInfo::getDirect(ResType); 5068 } 5069 if (Size <= 32) { 5070 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 5071 return ABIArgInfo::getDirect(ResType); 5072 } 5073 if (Size == 64) { 5074 llvm::Type *ResType = 5075 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 5076 return ABIArgInfo::getDirect(ResType); 5077 } 5078 if (Size == 128) { 5079 llvm::Type *ResType = 5080 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 5081 return ABIArgInfo::getDirect(ResType); 5082 } 5083 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5084 } 5085 5086 if (!isAggregateTypeForABI(Ty)) { 5087 // Treat an enum type as its underlying type. 5088 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5089 Ty = EnumTy->getDecl()->getIntegerType(); 5090 5091 return (Ty->isPromotableIntegerType() && isDarwinPCS() 5092 ? ABIArgInfo::getExtend(Ty) 5093 : ABIArgInfo::getDirect()); 5094 } 5095 5096 // Structures with either a non-trivial destructor or a non-trivial 5097 // copy constructor are always indirect. 5098 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5099 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 5100 CGCXXABI::RAA_DirectInMemory); 5101 } 5102 5103 // Empty records are always ignored on Darwin, but actually passed in C++ mode 5104 // elsewhere for GNU compatibility. 5105 uint64_t Size = getContext().getTypeSize(Ty); 5106 bool IsEmpty = isEmptyRecord(getContext(), Ty, true); 5107 if (IsEmpty || Size == 0) { 5108 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 5109 return ABIArgInfo::getIgnore(); 5110 5111 // GNU C mode. The only argument that gets ignored is an empty one with size 5112 // 0. 5113 if (IsEmpty && Size == 0) 5114 return ABIArgInfo::getIgnore(); 5115 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5116 } 5117 5118 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 5119 const Type *Base = nullptr; 5120 uint64_t Members = 0; 5121 if (isHomogeneousAggregate(Ty, Base, Members)) { 5122 return ABIArgInfo::getDirect( 5123 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); 5124 } 5125 5126 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 5127 if (Size <= 128) { 5128 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5129 // same size and alignment. 5130 if (getTarget().isRenderScriptTarget()) { 5131 return coerceToIntArray(Ty, getContext(), getVMContext()); 5132 } 5133 unsigned Alignment; 5134 if (Kind == AArch64ABIInfo::AAPCS) { 5135 Alignment = getContext().getTypeUnadjustedAlign(Ty); 5136 Alignment = Alignment < 128 ? 64 : 128; 5137 } else { 5138 Alignment = getContext().getTypeAlign(Ty); 5139 } 5140 Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes 5141 5142 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5143 // For aggregates with 16-byte alignment, we use i128. 5144 if (Alignment < 128 && Size == 128) { 5145 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 5146 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 5147 } 5148 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 5149 } 5150 5151 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5152 } 5153 5154 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const { 5155 if (RetTy->isVoidType()) 5156 return ABIArgInfo::getIgnore(); 5157 5158 // Large vector types should be returned via memory. 5159 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 5160 return getNaturalAlignIndirect(RetTy); 5161 5162 if (!isAggregateTypeForABI(RetTy)) { 5163 // Treat an enum type as its underlying type. 5164 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5165 RetTy = EnumTy->getDecl()->getIntegerType(); 5166 5167 return (RetTy->isPromotableIntegerType() && isDarwinPCS() 5168 ? ABIArgInfo::getExtend(RetTy) 5169 : ABIArgInfo::getDirect()); 5170 } 5171 5172 uint64_t Size = getContext().getTypeSize(RetTy); 5173 if (isEmptyRecord(getContext(), RetTy, true) || Size == 0) 5174 return ABIArgInfo::getIgnore(); 5175 5176 const Type *Base = nullptr; 5177 uint64_t Members = 0; 5178 if (isHomogeneousAggregate(RetTy, Base, Members)) 5179 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 5180 return ABIArgInfo::getDirect(); 5181 5182 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 5183 if (Size <= 128) { 5184 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5185 // same size and alignment. 5186 if (getTarget().isRenderScriptTarget()) { 5187 return coerceToIntArray(RetTy, getContext(), getVMContext()); 5188 } 5189 unsigned Alignment = getContext().getTypeAlign(RetTy); 5190 Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes 5191 5192 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5193 // For aggregates with 16-byte alignment, we use i128. 5194 if (Alignment < 128 && Size == 128) { 5195 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 5196 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 5197 } 5198 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 5199 } 5200 5201 return getNaturalAlignIndirect(RetTy); 5202 } 5203 5204 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 5205 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 5206 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5207 // Check whether VT is legal. 5208 unsigned NumElements = VT->getNumElements(); 5209 uint64_t Size = getContext().getTypeSize(VT); 5210 // NumElements should be power of 2. 5211 if (!llvm::isPowerOf2_32(NumElements)) 5212 return true; 5213 return Size != 64 && (Size != 128 || NumElements == 1); 5214 } 5215 return false; 5216 } 5217 5218 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize, 5219 llvm::Type *eltTy, 5220 unsigned elts) const { 5221 if (!llvm::isPowerOf2_32(elts)) 5222 return false; 5223 if (totalSize.getQuantity() != 8 && 5224 (totalSize.getQuantity() != 16 || elts == 1)) 5225 return false; 5226 return true; 5227 } 5228 5229 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5230 // Homogeneous aggregates for AAPCS64 must have base types of a floating 5231 // point type or a short-vector type. This is the same as the 32-bit ABI, 5232 // but with the difference that any floating-point type is allowed, 5233 // including __fp16. 5234 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5235 if (BT->isFloatingPoint()) 5236 return true; 5237 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 5238 unsigned VecSize = getContext().getTypeSize(VT); 5239 if (VecSize == 64 || VecSize == 128) 5240 return true; 5241 } 5242 return false; 5243 } 5244 5245 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 5246 uint64_t Members) const { 5247 return Members <= 4; 5248 } 5249 5250 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, 5251 QualType Ty, 5252 CodeGenFunction &CGF) const { 5253 ABIArgInfo AI = classifyArgumentType(Ty); 5254 bool IsIndirect = AI.isIndirect(); 5255 5256 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5257 if (IsIndirect) 5258 BaseTy = llvm::PointerType::getUnqual(BaseTy); 5259 else if (AI.getCoerceToType()) 5260 BaseTy = AI.getCoerceToType(); 5261 5262 unsigned NumRegs = 1; 5263 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { 5264 BaseTy = ArrTy->getElementType(); 5265 NumRegs = ArrTy->getNumElements(); 5266 } 5267 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); 5268 5269 // The AArch64 va_list type and handling is specified in the Procedure Call 5270 // Standard, section B.4: 5271 // 5272 // struct { 5273 // void *__stack; 5274 // void *__gr_top; 5275 // void *__vr_top; 5276 // int __gr_offs; 5277 // int __vr_offs; 5278 // }; 5279 5280 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 5281 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 5282 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 5283 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 5284 5285 auto TyInfo = getContext().getTypeInfoInChars(Ty); 5286 CharUnits TyAlign = TyInfo.second; 5287 5288 Address reg_offs_p = Address::invalid(); 5289 llvm::Value *reg_offs = nullptr; 5290 int reg_top_index; 5291 CharUnits reg_top_offset; 5292 int RegSize = IsIndirect ? 8 : TyInfo.first.getQuantity(); 5293 if (!IsFPR) { 5294 // 3 is the field number of __gr_offs 5295 reg_offs_p = 5296 CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24), 5297 "gr_offs_p"); 5298 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 5299 reg_top_index = 1; // field number for __gr_top 5300 reg_top_offset = CharUnits::fromQuantity(8); 5301 RegSize = llvm::alignTo(RegSize, 8); 5302 } else { 5303 // 4 is the field number of __vr_offs. 5304 reg_offs_p = 5305 CGF.Builder.CreateStructGEP(VAListAddr, 4, CharUnits::fromQuantity(28), 5306 "vr_offs_p"); 5307 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 5308 reg_top_index = 2; // field number for __vr_top 5309 reg_top_offset = CharUnits::fromQuantity(16); 5310 RegSize = 16 * NumRegs; 5311 } 5312 5313 //======================================= 5314 // Find out where argument was passed 5315 //======================================= 5316 5317 // If reg_offs >= 0 we're already using the stack for this type of 5318 // argument. We don't want to keep updating reg_offs (in case it overflows, 5319 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 5320 // whatever they get). 5321 llvm::Value *UsingStack = nullptr; 5322 UsingStack = CGF.Builder.CreateICmpSGE( 5323 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 5324 5325 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 5326 5327 // Otherwise, at least some kind of argument could go in these registers, the 5328 // question is whether this particular type is too big. 5329 CGF.EmitBlock(MaybeRegBlock); 5330 5331 // Integer arguments may need to correct register alignment (for example a 5332 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 5333 // align __gr_offs to calculate the potential address. 5334 if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) { 5335 int Align = TyAlign.getQuantity(); 5336 5337 reg_offs = CGF.Builder.CreateAdd( 5338 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 5339 "align_regoffs"); 5340 reg_offs = CGF.Builder.CreateAnd( 5341 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 5342 "aligned_regoffs"); 5343 } 5344 5345 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 5346 // The fact that this is done unconditionally reflects the fact that 5347 // allocating an argument to the stack also uses up all the remaining 5348 // registers of the appropriate kind. 5349 llvm::Value *NewOffset = nullptr; 5350 NewOffset = CGF.Builder.CreateAdd( 5351 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 5352 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 5353 5354 // Now we're in a position to decide whether this argument really was in 5355 // registers or not. 5356 llvm::Value *InRegs = nullptr; 5357 InRegs = CGF.Builder.CreateICmpSLE( 5358 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 5359 5360 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 5361 5362 //======================================= 5363 // Argument was in registers 5364 //======================================= 5365 5366 // Now we emit the code for if the argument was originally passed in 5367 // registers. First start the appropriate block: 5368 CGF.EmitBlock(InRegBlock); 5369 5370 llvm::Value *reg_top = nullptr; 5371 Address reg_top_p = CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, 5372 reg_top_offset, "reg_top_p"); 5373 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 5374 Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs), 5375 CharUnits::fromQuantity(IsFPR ? 16 : 8)); 5376 Address RegAddr = Address::invalid(); 5377 llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty); 5378 5379 if (IsIndirect) { 5380 // If it's been passed indirectly (actually a struct), whatever we find from 5381 // stored registers or on the stack will actually be a struct **. 5382 MemTy = llvm::PointerType::getUnqual(MemTy); 5383 } 5384 5385 const Type *Base = nullptr; 5386 uint64_t NumMembers = 0; 5387 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); 5388 if (IsHFA && NumMembers > 1) { 5389 // Homogeneous aggregates passed in registers will have their elements split 5390 // and stored 16-bytes apart regardless of size (they're notionally in qN, 5391 // qN+1, ...). We reload and store into a temporary local variable 5392 // contiguously. 5393 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 5394 auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0)); 5395 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 5396 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 5397 Address Tmp = CGF.CreateTempAlloca(HFATy, 5398 std::max(TyAlign, BaseTyInfo.second)); 5399 5400 // On big-endian platforms, the value will be right-aligned in its slot. 5401 int Offset = 0; 5402 if (CGF.CGM.getDataLayout().isBigEndian() && 5403 BaseTyInfo.first.getQuantity() < 16) 5404 Offset = 16 - BaseTyInfo.first.getQuantity(); 5405 5406 for (unsigned i = 0; i < NumMembers; ++i) { 5407 CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset); 5408 Address LoadAddr = 5409 CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset); 5410 LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy); 5411 5412 Address StoreAddr = 5413 CGF.Builder.CreateConstArrayGEP(Tmp, i, BaseTyInfo.first); 5414 5415 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 5416 CGF.Builder.CreateStore(Elem, StoreAddr); 5417 } 5418 5419 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy); 5420 } else { 5421 // Otherwise the object is contiguous in memory. 5422 5423 // It might be right-aligned in its slot. 5424 CharUnits SlotSize = BaseAddr.getAlignment(); 5425 if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect && 5426 (IsHFA || !isAggregateTypeForABI(Ty)) && 5427 TyInfo.first < SlotSize) { 5428 CharUnits Offset = SlotSize - TyInfo.first; 5429 BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset); 5430 } 5431 5432 RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy); 5433 } 5434 5435 CGF.EmitBranch(ContBlock); 5436 5437 //======================================= 5438 // Argument was on the stack 5439 //======================================= 5440 CGF.EmitBlock(OnStackBlock); 5441 5442 Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, 5443 CharUnits::Zero(), "stack_p"); 5444 llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack"); 5445 5446 // Again, stack arguments may need realignment. In this case both integer and 5447 // floating-point ones might be affected. 5448 if (!IsIndirect && TyAlign.getQuantity() > 8) { 5449 int Align = TyAlign.getQuantity(); 5450 5451 OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty); 5452 5453 OnStackPtr = CGF.Builder.CreateAdd( 5454 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 5455 "align_stack"); 5456 OnStackPtr = CGF.Builder.CreateAnd( 5457 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 5458 "align_stack"); 5459 5460 OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy); 5461 } 5462 Address OnStackAddr(OnStackPtr, 5463 std::max(CharUnits::fromQuantity(8), TyAlign)); 5464 5465 // All stack slots are multiples of 8 bytes. 5466 CharUnits StackSlotSize = CharUnits::fromQuantity(8); 5467 CharUnits StackSize; 5468 if (IsIndirect) 5469 StackSize = StackSlotSize; 5470 else 5471 StackSize = TyInfo.first.alignTo(StackSlotSize); 5472 5473 llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize); 5474 llvm::Value *NewStack = 5475 CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack"); 5476 5477 // Write the new value of __stack for the next call to va_arg 5478 CGF.Builder.CreateStore(NewStack, stack_p); 5479 5480 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 5481 TyInfo.first < StackSlotSize) { 5482 CharUnits Offset = StackSlotSize - TyInfo.first; 5483 OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset); 5484 } 5485 5486 OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy); 5487 5488 CGF.EmitBranch(ContBlock); 5489 5490 //======================================= 5491 // Tidy up 5492 //======================================= 5493 CGF.EmitBlock(ContBlock); 5494 5495 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 5496 OnStackAddr, OnStackBlock, "vaargs.addr"); 5497 5498 if (IsIndirect) 5499 return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), 5500 TyInfo.second); 5501 5502 return ResAddr; 5503 } 5504 5505 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty, 5506 CodeGenFunction &CGF) const { 5507 // The backend's lowering doesn't support va_arg for aggregates or 5508 // illegal vector types. Lower VAArg here for these cases and use 5509 // the LLVM va_arg instruction for everything else. 5510 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 5511 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 5512 5513 CharUnits SlotSize = CharUnits::fromQuantity(8); 5514 5515 // Empty records are ignored for parameter passing purposes. 5516 if (isEmptyRecord(getContext(), Ty, true)) { 5517 Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 5518 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 5519 return Addr; 5520 } 5521 5522 // The size of the actual thing passed, which might end up just 5523 // being a pointer for indirect types. 5524 auto TyInfo = getContext().getTypeInfoInChars(Ty); 5525 5526 // Arguments bigger than 16 bytes which aren't homogeneous 5527 // aggregates should be passed indirectly. 5528 bool IsIndirect = false; 5529 if (TyInfo.first.getQuantity() > 16) { 5530 const Type *Base = nullptr; 5531 uint64_t Members = 0; 5532 IsIndirect = !isHomogeneousAggregate(Ty, Base, Members); 5533 } 5534 5535 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 5536 TyInfo, SlotSize, /*AllowHigherAlign*/ true); 5537 } 5538 5539 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 5540 QualType Ty) const { 5541 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 5542 CGF.getContext().getTypeInfoInChars(Ty), 5543 CharUnits::fromQuantity(8), 5544 /*allowHigherAlign*/ false); 5545 } 5546 5547 //===----------------------------------------------------------------------===// 5548 // ARM ABI Implementation 5549 //===----------------------------------------------------------------------===// 5550 5551 namespace { 5552 5553 class ARMABIInfo : public SwiftABIInfo { 5554 public: 5555 enum ABIKind { 5556 APCS = 0, 5557 AAPCS = 1, 5558 AAPCS_VFP = 2, 5559 AAPCS16_VFP = 3, 5560 }; 5561 5562 private: 5563 ABIKind Kind; 5564 5565 public: 5566 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) 5567 : SwiftABIInfo(CGT), Kind(_Kind) { 5568 setCCs(); 5569 } 5570 5571 bool isEABI() const { 5572 switch (getTarget().getTriple().getEnvironment()) { 5573 case llvm::Triple::Android: 5574 case llvm::Triple::EABI: 5575 case llvm::Triple::EABIHF: 5576 case llvm::Triple::GNUEABI: 5577 case llvm::Triple::GNUEABIHF: 5578 case llvm::Triple::MuslEABI: 5579 case llvm::Triple::MuslEABIHF: 5580 return true; 5581 default: 5582 return false; 5583 } 5584 } 5585 5586 bool isEABIHF() const { 5587 switch (getTarget().getTriple().getEnvironment()) { 5588 case llvm::Triple::EABIHF: 5589 case llvm::Triple::GNUEABIHF: 5590 case llvm::Triple::MuslEABIHF: 5591 return true; 5592 default: 5593 return false; 5594 } 5595 } 5596 5597 ABIKind getABIKind() const { return Kind; } 5598 5599 private: 5600 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const; 5601 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic) const; 5602 ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base, 5603 uint64_t Members) const; 5604 ABIArgInfo coerceIllegalVector(QualType Ty) const; 5605 bool isIllegalVectorType(QualType Ty) const; 5606 5607 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 5608 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 5609 uint64_t Members) const override; 5610 5611 void computeInfo(CGFunctionInfo &FI) const override; 5612 5613 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5614 QualType Ty) const override; 5615 5616 llvm::CallingConv::ID getLLVMDefaultCC() const; 5617 llvm::CallingConv::ID getABIDefaultCC() const; 5618 void setCCs(); 5619 5620 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 5621 bool asReturnValue) const override { 5622 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5623 } 5624 bool isSwiftErrorInRegister() const override { 5625 return true; 5626 } 5627 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 5628 unsigned elts) const override; 5629 }; 5630 5631 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 5632 public: 5633 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 5634 :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {} 5635 5636 const ARMABIInfo &getABIInfo() const { 5637 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 5638 } 5639 5640 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5641 return 13; 5642 } 5643 5644 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 5645 return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue"; 5646 } 5647 5648 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5649 llvm::Value *Address) const override { 5650 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 5651 5652 // 0-15 are the 16 integer registers. 5653 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 5654 return false; 5655 } 5656 5657 unsigned getSizeOfUnwindException() const override { 5658 if (getABIInfo().isEABI()) return 88; 5659 return TargetCodeGenInfo::getSizeOfUnwindException(); 5660 } 5661 5662 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5663 CodeGen::CodeGenModule &CGM) const override { 5664 if (GV->isDeclaration()) 5665 return; 5666 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5667 if (!FD) 5668 return; 5669 5670 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 5671 if (!Attr) 5672 return; 5673 5674 const char *Kind; 5675 switch (Attr->getInterrupt()) { 5676 case ARMInterruptAttr::Generic: Kind = ""; break; 5677 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 5678 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 5679 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 5680 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 5681 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 5682 } 5683 5684 llvm::Function *Fn = cast<llvm::Function>(GV); 5685 5686 Fn->addFnAttr("interrupt", Kind); 5687 5688 ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind(); 5689 if (ABI == ARMABIInfo::APCS) 5690 return; 5691 5692 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 5693 // however this is not necessarily true on taking any interrupt. Instruct 5694 // the backend to perform a realignment as part of the function prologue. 5695 llvm::AttrBuilder B; 5696 B.addStackAlignmentAttr(8); 5697 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 5698 } 5699 }; 5700 5701 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { 5702 public: 5703 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 5704 : ARMTargetCodeGenInfo(CGT, K) {} 5705 5706 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5707 CodeGen::CodeGenModule &CGM) const override; 5708 5709 void getDependentLibraryOption(llvm::StringRef Lib, 5710 llvm::SmallString<24> &Opt) const override { 5711 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5712 } 5713 5714 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5715 llvm::SmallString<32> &Opt) const override { 5716 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5717 } 5718 }; 5719 5720 void WindowsARMTargetCodeGenInfo::setTargetAttributes( 5721 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 5722 ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 5723 if (GV->isDeclaration()) 5724 return; 5725 addStackProbeTargetAttributes(D, GV, CGM); 5726 } 5727 } 5728 5729 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 5730 if (!::classifyReturnType(getCXXABI(), FI, *this)) 5731 FI.getReturnInfo() = 5732 classifyReturnType(FI.getReturnType(), FI.isVariadic()); 5733 5734 for (auto &I : FI.arguments()) 5735 I.info = classifyArgumentType(I.type, FI.isVariadic()); 5736 5737 // Always honor user-specified calling convention. 5738 if (FI.getCallingConvention() != llvm::CallingConv::C) 5739 return; 5740 5741 llvm::CallingConv::ID cc = getRuntimeCC(); 5742 if (cc != llvm::CallingConv::C) 5743 FI.setEffectiveCallingConvention(cc); 5744 } 5745 5746 /// Return the default calling convention that LLVM will use. 5747 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 5748 // The default calling convention that LLVM will infer. 5749 if (isEABIHF() || getTarget().getTriple().isWatchABI()) 5750 return llvm::CallingConv::ARM_AAPCS_VFP; 5751 else if (isEABI()) 5752 return llvm::CallingConv::ARM_AAPCS; 5753 else 5754 return llvm::CallingConv::ARM_APCS; 5755 } 5756 5757 /// Return the calling convention that our ABI would like us to use 5758 /// as the C calling convention. 5759 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 5760 switch (getABIKind()) { 5761 case APCS: return llvm::CallingConv::ARM_APCS; 5762 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 5763 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 5764 case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 5765 } 5766 llvm_unreachable("bad ABI kind"); 5767 } 5768 5769 void ARMABIInfo::setCCs() { 5770 assert(getRuntimeCC() == llvm::CallingConv::C); 5771 5772 // Don't muddy up the IR with a ton of explicit annotations if 5773 // they'd just match what LLVM will infer from the triple. 5774 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 5775 if (abiCC != getLLVMDefaultCC()) 5776 RuntimeCC = abiCC; 5777 } 5778 5779 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const { 5780 uint64_t Size = getContext().getTypeSize(Ty); 5781 if (Size <= 32) { 5782 llvm::Type *ResType = 5783 llvm::Type::getInt32Ty(getVMContext()); 5784 return ABIArgInfo::getDirect(ResType); 5785 } 5786 if (Size == 64 || Size == 128) { 5787 llvm::Type *ResType = llvm::VectorType::get( 5788 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 5789 return ABIArgInfo::getDirect(ResType); 5790 } 5791 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5792 } 5793 5794 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty, 5795 const Type *Base, 5796 uint64_t Members) const { 5797 assert(Base && "Base class should be set for homogeneous aggregate"); 5798 // Base can be a floating-point or a vector. 5799 if (const VectorType *VT = Base->getAs<VectorType>()) { 5800 // FP16 vectors should be converted to integer vectors 5801 if (!getTarget().hasLegalHalfType() && 5802 (VT->getElementType()->isFloat16Type() || 5803 VT->getElementType()->isHalfType())) { 5804 uint64_t Size = getContext().getTypeSize(VT); 5805 llvm::Type *NewVecTy = llvm::VectorType::get( 5806 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 5807 llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members); 5808 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 5809 } 5810 } 5811 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 5812 } 5813 5814 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, 5815 bool isVariadic) const { 5816 // 6.1.2.1 The following argument types are VFP CPRCs: 5817 // A single-precision floating-point type (including promoted 5818 // half-precision types); A double-precision floating-point type; 5819 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 5820 // with a Base Type of a single- or double-precision floating-point type, 5821 // 64-bit containerized vectors or 128-bit containerized vectors with one 5822 // to four Elements. 5823 bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic; 5824 5825 Ty = useFirstFieldIfTransparentUnion(Ty); 5826 5827 // Handle illegal vector types here. 5828 if (isIllegalVectorType(Ty)) 5829 return coerceIllegalVector(Ty); 5830 5831 // _Float16 and __fp16 get passed as if it were an int or float, but with 5832 // the top 16 bits unspecified. This is not done for OpenCL as it handles the 5833 // half type natively, and does not need to interwork with AAPCS code. 5834 if ((Ty->isFloat16Type() || Ty->isHalfType()) && 5835 !getContext().getLangOpts().NativeHalfArgsAndReturns) { 5836 llvm::Type *ResType = IsEffectivelyAAPCS_VFP ? 5837 llvm::Type::getFloatTy(getVMContext()) : 5838 llvm::Type::getInt32Ty(getVMContext()); 5839 return ABIArgInfo::getDirect(ResType); 5840 } 5841 5842 if (!isAggregateTypeForABI(Ty)) { 5843 // Treat an enum type as its underlying type. 5844 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 5845 Ty = EnumTy->getDecl()->getIntegerType(); 5846 } 5847 5848 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 5849 : ABIArgInfo::getDirect()); 5850 } 5851 5852 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5853 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 5854 } 5855 5856 // Ignore empty records. 5857 if (isEmptyRecord(getContext(), Ty, true)) 5858 return ABIArgInfo::getIgnore(); 5859 5860 if (IsEffectivelyAAPCS_VFP) { 5861 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 5862 // into VFP registers. 5863 const Type *Base = nullptr; 5864 uint64_t Members = 0; 5865 if (isHomogeneousAggregate(Ty, Base, Members)) 5866 return classifyHomogeneousAggregate(Ty, Base, Members); 5867 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 5868 // WatchOS does have homogeneous aggregates. Note that we intentionally use 5869 // this convention even for a variadic function: the backend will use GPRs 5870 // if needed. 5871 const Type *Base = nullptr; 5872 uint64_t Members = 0; 5873 if (isHomogeneousAggregate(Ty, Base, Members)) { 5874 assert(Base && Members <= 4 && "unexpected homogeneous aggregate"); 5875 llvm::Type *Ty = 5876 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members); 5877 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 5878 } 5879 } 5880 5881 if (getABIKind() == ARMABIInfo::AAPCS16_VFP && 5882 getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) { 5883 // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're 5884 // bigger than 128-bits, they get placed in space allocated by the caller, 5885 // and a pointer is passed. 5886 return ABIArgInfo::getIndirect( 5887 CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false); 5888 } 5889 5890 // Support byval for ARM. 5891 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 5892 // most 8-byte. We realign the indirect argument if type alignment is bigger 5893 // than ABI alignment. 5894 uint64_t ABIAlign = 4; 5895 uint64_t TyAlign; 5896 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 5897 getABIKind() == ARMABIInfo::AAPCS) { 5898 TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); 5899 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 5900 } else { 5901 TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 5902 } 5903 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 5904 assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval"); 5905 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 5906 /*ByVal=*/true, 5907 /*Realign=*/TyAlign > ABIAlign); 5908 } 5909 5910 // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of 5911 // same size and alignment. 5912 if (getTarget().isRenderScriptTarget()) { 5913 return coerceToIntArray(Ty, getContext(), getVMContext()); 5914 } 5915 5916 // Otherwise, pass by coercing to a structure of the appropriate size. 5917 llvm::Type* ElemTy; 5918 unsigned SizeRegs; 5919 // FIXME: Try to match the types of the arguments more accurately where 5920 // we can. 5921 if (TyAlign <= 4) { 5922 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 5923 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 5924 } else { 5925 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 5926 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 5927 } 5928 5929 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); 5930 } 5931 5932 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 5933 llvm::LLVMContext &VMContext) { 5934 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 5935 // is called integer-like if its size is less than or equal to one word, and 5936 // the offset of each of its addressable sub-fields is zero. 5937 5938 uint64_t Size = Context.getTypeSize(Ty); 5939 5940 // Check that the type fits in a word. 5941 if (Size > 32) 5942 return false; 5943 5944 // FIXME: Handle vector types! 5945 if (Ty->isVectorType()) 5946 return false; 5947 5948 // Float types are never treated as "integer like". 5949 if (Ty->isRealFloatingType()) 5950 return false; 5951 5952 // If this is a builtin or pointer type then it is ok. 5953 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 5954 return true; 5955 5956 // Small complex integer types are "integer like". 5957 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 5958 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 5959 5960 // Single element and zero sized arrays should be allowed, by the definition 5961 // above, but they are not. 5962 5963 // Otherwise, it must be a record type. 5964 const RecordType *RT = Ty->getAs<RecordType>(); 5965 if (!RT) return false; 5966 5967 // Ignore records with flexible arrays. 5968 const RecordDecl *RD = RT->getDecl(); 5969 if (RD->hasFlexibleArrayMember()) 5970 return false; 5971 5972 // Check that all sub-fields are at offset 0, and are themselves "integer 5973 // like". 5974 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 5975 5976 bool HadField = false; 5977 unsigned idx = 0; 5978 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 5979 i != e; ++i, ++idx) { 5980 const FieldDecl *FD = *i; 5981 5982 // Bit-fields are not addressable, we only need to verify they are "integer 5983 // like". We still have to disallow a subsequent non-bitfield, for example: 5984 // struct { int : 0; int x } 5985 // is non-integer like according to gcc. 5986 if (FD->isBitField()) { 5987 if (!RD->isUnion()) 5988 HadField = true; 5989 5990 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 5991 return false; 5992 5993 continue; 5994 } 5995 5996 // Check if this field is at offset 0. 5997 if (Layout.getFieldOffset(idx) != 0) 5998 return false; 5999 6000 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6001 return false; 6002 6003 // Only allow at most one field in a structure. This doesn't match the 6004 // wording above, but follows gcc in situations with a field following an 6005 // empty structure. 6006 if (!RD->isUnion()) { 6007 if (HadField) 6008 return false; 6009 6010 HadField = true; 6011 } 6012 } 6013 6014 return true; 6015 } 6016 6017 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, 6018 bool isVariadic) const { 6019 bool IsEffectivelyAAPCS_VFP = 6020 (getABIKind() == AAPCS_VFP || getABIKind() == AAPCS16_VFP) && !isVariadic; 6021 6022 if (RetTy->isVoidType()) 6023 return ABIArgInfo::getIgnore(); 6024 6025 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 6026 // Large vector types should be returned via memory. 6027 if (getContext().getTypeSize(RetTy) > 128) 6028 return getNaturalAlignIndirect(RetTy); 6029 // FP16 vectors should be converted to integer vectors 6030 if (!getTarget().hasLegalHalfType() && 6031 (VT->getElementType()->isFloat16Type() || 6032 VT->getElementType()->isHalfType())) 6033 return coerceIllegalVector(RetTy); 6034 } 6035 6036 // _Float16 and __fp16 get returned as if it were an int or float, but with 6037 // the top 16 bits unspecified. This is not done for OpenCL as it handles the 6038 // half type natively, and does not need to interwork with AAPCS code. 6039 if ((RetTy->isFloat16Type() || RetTy->isHalfType()) && 6040 !getContext().getLangOpts().NativeHalfArgsAndReturns) { 6041 llvm::Type *ResType = IsEffectivelyAAPCS_VFP ? 6042 llvm::Type::getFloatTy(getVMContext()) : 6043 llvm::Type::getInt32Ty(getVMContext()); 6044 return ABIArgInfo::getDirect(ResType); 6045 } 6046 6047 if (!isAggregateTypeForABI(RetTy)) { 6048 // Treat an enum type as its underlying type. 6049 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6050 RetTy = EnumTy->getDecl()->getIntegerType(); 6051 6052 return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 6053 : ABIArgInfo::getDirect(); 6054 } 6055 6056 // Are we following APCS? 6057 if (getABIKind() == APCS) { 6058 if (isEmptyRecord(getContext(), RetTy, false)) 6059 return ABIArgInfo::getIgnore(); 6060 6061 // Complex types are all returned as packed integers. 6062 // 6063 // FIXME: Consider using 2 x vector types if the back end handles them 6064 // correctly. 6065 if (RetTy->isAnyComplexType()) 6066 return ABIArgInfo::getDirect(llvm::IntegerType::get( 6067 getVMContext(), getContext().getTypeSize(RetTy))); 6068 6069 // Integer like structures are returned in r0. 6070 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 6071 // Return in the smallest viable integer type. 6072 uint64_t Size = getContext().getTypeSize(RetTy); 6073 if (Size <= 8) 6074 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6075 if (Size <= 16) 6076 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6077 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6078 } 6079 6080 // Otherwise return in memory. 6081 return getNaturalAlignIndirect(RetTy); 6082 } 6083 6084 // Otherwise this is an AAPCS variant. 6085 6086 if (isEmptyRecord(getContext(), RetTy, true)) 6087 return ABIArgInfo::getIgnore(); 6088 6089 // Check for homogeneous aggregates with AAPCS-VFP. 6090 if (IsEffectivelyAAPCS_VFP) { 6091 const Type *Base = nullptr; 6092 uint64_t Members = 0; 6093 if (isHomogeneousAggregate(RetTy, Base, Members)) 6094 return classifyHomogeneousAggregate(RetTy, Base, Members); 6095 } 6096 6097 // Aggregates <= 4 bytes are returned in r0; other aggregates 6098 // are returned indirectly. 6099 uint64_t Size = getContext().getTypeSize(RetTy); 6100 if (Size <= 32) { 6101 // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of 6102 // same size and alignment. 6103 if (getTarget().isRenderScriptTarget()) { 6104 return coerceToIntArray(RetTy, getContext(), getVMContext()); 6105 } 6106 if (getDataLayout().isBigEndian()) 6107 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 6108 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6109 6110 // Return in the smallest viable integer type. 6111 if (Size <= 8) 6112 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6113 if (Size <= 16) 6114 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6115 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6116 } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) { 6117 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext()); 6118 llvm::Type *CoerceTy = 6119 llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32); 6120 return ABIArgInfo::getDirect(CoerceTy); 6121 } 6122 6123 return getNaturalAlignIndirect(RetTy); 6124 } 6125 6126 /// isIllegalVector - check whether Ty is an illegal vector type. 6127 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 6128 if (const VectorType *VT = Ty->getAs<VectorType> ()) { 6129 // On targets that don't support FP16, FP16 is expanded into float, and we 6130 // don't want the ABI to depend on whether or not FP16 is supported in 6131 // hardware. Thus return false to coerce FP16 vectors into integer vectors. 6132 if (!getTarget().hasLegalHalfType() && 6133 (VT->getElementType()->isFloat16Type() || 6134 VT->getElementType()->isHalfType())) 6135 return true; 6136 if (isAndroid()) { 6137 // Android shipped using Clang 3.1, which supported a slightly different 6138 // vector ABI. The primary differences were that 3-element vector types 6139 // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path 6140 // accepts that legacy behavior for Android only. 6141 // Check whether VT is legal. 6142 unsigned NumElements = VT->getNumElements(); 6143 // NumElements should be power of 2 or equal to 3. 6144 if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3) 6145 return true; 6146 } else { 6147 // Check whether VT is legal. 6148 unsigned NumElements = VT->getNumElements(); 6149 uint64_t Size = getContext().getTypeSize(VT); 6150 // NumElements should be power of 2. 6151 if (!llvm::isPowerOf2_32(NumElements)) 6152 return true; 6153 // Size should be greater than 32 bits. 6154 return Size <= 32; 6155 } 6156 } 6157 return false; 6158 } 6159 6160 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 6161 llvm::Type *eltTy, 6162 unsigned numElts) const { 6163 if (!llvm::isPowerOf2_32(numElts)) 6164 return false; 6165 unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy); 6166 if (size > 64) 6167 return false; 6168 if (vectorSize.getQuantity() != 8 && 6169 (vectorSize.getQuantity() != 16 || numElts == 1)) 6170 return false; 6171 return true; 6172 } 6173 6174 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 6175 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 6176 // double, or 64-bit or 128-bit vectors. 6177 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 6178 if (BT->getKind() == BuiltinType::Float || 6179 BT->getKind() == BuiltinType::Double || 6180 BT->getKind() == BuiltinType::LongDouble) 6181 return true; 6182 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 6183 unsigned VecSize = getContext().getTypeSize(VT); 6184 if (VecSize == 64 || VecSize == 128) 6185 return true; 6186 } 6187 return false; 6188 } 6189 6190 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 6191 uint64_t Members) const { 6192 return Members <= 4; 6193 } 6194 6195 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6196 QualType Ty) const { 6197 CharUnits SlotSize = CharUnits::fromQuantity(4); 6198 6199 // Empty records are ignored for parameter passing purposes. 6200 if (isEmptyRecord(getContext(), Ty, true)) { 6201 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 6202 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 6203 return Addr; 6204 } 6205 6206 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6207 CharUnits TyAlignForABI = TyInfo.second; 6208 6209 // Use indirect if size of the illegal vector is bigger than 16 bytes. 6210 bool IsIndirect = false; 6211 const Type *Base = nullptr; 6212 uint64_t Members = 0; 6213 if (TyInfo.first > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) { 6214 IsIndirect = true; 6215 6216 // ARMv7k passes structs bigger than 16 bytes indirectly, in space 6217 // allocated by the caller. 6218 } else if (TyInfo.first > CharUnits::fromQuantity(16) && 6219 getABIKind() == ARMABIInfo::AAPCS16_VFP && 6220 !isHomogeneousAggregate(Ty, Base, Members)) { 6221 IsIndirect = true; 6222 6223 // Otherwise, bound the type's ABI alignment. 6224 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 6225 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 6226 // Our callers should be prepared to handle an under-aligned address. 6227 } else if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6228 getABIKind() == ARMABIInfo::AAPCS) { 6229 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6230 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8)); 6231 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6232 // ARMv7k allows type alignment up to 16 bytes. 6233 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6234 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16)); 6235 } else { 6236 TyAlignForABI = CharUnits::fromQuantity(4); 6237 } 6238 TyInfo.second = TyAlignForABI; 6239 6240 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo, 6241 SlotSize, /*AllowHigherAlign*/ true); 6242 } 6243 6244 //===----------------------------------------------------------------------===// 6245 // NVPTX ABI Implementation 6246 //===----------------------------------------------------------------------===// 6247 6248 namespace { 6249 6250 class NVPTXABIInfo : public ABIInfo { 6251 public: 6252 NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 6253 6254 ABIArgInfo classifyReturnType(QualType RetTy) const; 6255 ABIArgInfo classifyArgumentType(QualType Ty) const; 6256 6257 void computeInfo(CGFunctionInfo &FI) const override; 6258 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6259 QualType Ty) const override; 6260 }; 6261 6262 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 6263 public: 6264 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 6265 : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {} 6266 6267 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6268 CodeGen::CodeGenModule &M) const override; 6269 bool shouldEmitStaticExternCAliases() const override; 6270 6271 private: 6272 // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the 6273 // resulting MDNode to the nvvm.annotations MDNode. 6274 static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand); 6275 }; 6276 6277 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 6278 if (RetTy->isVoidType()) 6279 return ABIArgInfo::getIgnore(); 6280 6281 // note: this is different from default ABI 6282 if (!RetTy->isScalarType()) 6283 return ABIArgInfo::getDirect(); 6284 6285 // Treat an enum type as its underlying type. 6286 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6287 RetTy = EnumTy->getDecl()->getIntegerType(); 6288 6289 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 6290 : ABIArgInfo::getDirect()); 6291 } 6292 6293 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 6294 // Treat an enum type as its underlying type. 6295 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6296 Ty = EnumTy->getDecl()->getIntegerType(); 6297 6298 // Return aggregates type as indirect by value 6299 if (isAggregateTypeForABI(Ty)) 6300 return getNaturalAlignIndirect(Ty, /* byval */ true); 6301 6302 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 6303 : ABIArgInfo::getDirect()); 6304 } 6305 6306 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 6307 if (!getCXXABI().classifyReturnType(FI)) 6308 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6309 for (auto &I : FI.arguments()) 6310 I.info = classifyArgumentType(I.type); 6311 6312 // Always honor user-specified calling convention. 6313 if (FI.getCallingConvention() != llvm::CallingConv::C) 6314 return; 6315 6316 FI.setEffectiveCallingConvention(getRuntimeCC()); 6317 } 6318 6319 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6320 QualType Ty) const { 6321 llvm_unreachable("NVPTX does not support varargs"); 6322 } 6323 6324 void NVPTXTargetCodeGenInfo::setTargetAttributes( 6325 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 6326 if (GV->isDeclaration()) 6327 return; 6328 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6329 if (!FD) return; 6330 6331 llvm::Function *F = cast<llvm::Function>(GV); 6332 6333 // Perform special handling in OpenCL mode 6334 if (M.getLangOpts().OpenCL) { 6335 // Use OpenCL function attributes to check for kernel functions 6336 // By default, all functions are device functions 6337 if (FD->hasAttr<OpenCLKernelAttr>()) { 6338 // OpenCL __kernel functions get kernel metadata 6339 // Create !{<func-ref>, metadata !"kernel", i32 1} node 6340 addNVVMMetadata(F, "kernel", 1); 6341 // And kernel functions are not subject to inlining 6342 F->addFnAttr(llvm::Attribute::NoInline); 6343 } 6344 } 6345 6346 // Perform special handling in CUDA mode. 6347 if (M.getLangOpts().CUDA) { 6348 // CUDA __global__ functions get a kernel metadata entry. Since 6349 // __global__ functions cannot be called from the device, we do not 6350 // need to set the noinline attribute. 6351 if (FD->hasAttr<CUDAGlobalAttr>()) { 6352 // Create !{<func-ref>, metadata !"kernel", i32 1} node 6353 addNVVMMetadata(F, "kernel", 1); 6354 } 6355 if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) { 6356 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 6357 llvm::APSInt MaxThreads(32); 6358 MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); 6359 if (MaxThreads > 0) 6360 addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); 6361 6362 // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was 6363 // not specified in __launch_bounds__ or if the user specified a 0 value, 6364 // we don't have to add a PTX directive. 6365 if (Attr->getMinBlocks()) { 6366 llvm::APSInt MinBlocks(32); 6367 MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); 6368 if (MinBlocks > 0) 6369 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 6370 addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); 6371 } 6372 } 6373 } 6374 } 6375 6376 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name, 6377 int Operand) { 6378 llvm::Module *M = F->getParent(); 6379 llvm::LLVMContext &Ctx = M->getContext(); 6380 6381 // Get "nvvm.annotations" metadata node 6382 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 6383 6384 llvm::Metadata *MDVals[] = { 6385 llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name), 6386 llvm::ConstantAsMetadata::get( 6387 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; 6388 // Append metadata to nvvm.annotations 6389 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 6390 } 6391 6392 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 6393 return false; 6394 } 6395 } 6396 6397 //===----------------------------------------------------------------------===// 6398 // SystemZ ABI Implementation 6399 //===----------------------------------------------------------------------===// 6400 6401 namespace { 6402 6403 class SystemZABIInfo : public SwiftABIInfo { 6404 bool HasVector; 6405 6406 public: 6407 SystemZABIInfo(CodeGenTypes &CGT, bool HV) 6408 : SwiftABIInfo(CGT), HasVector(HV) {} 6409 6410 bool isPromotableIntegerType(QualType Ty) const; 6411 bool isCompoundType(QualType Ty) const; 6412 bool isVectorArgumentType(QualType Ty) const; 6413 bool isFPArgumentType(QualType Ty) const; 6414 QualType GetSingleElementType(QualType Ty) const; 6415 6416 ABIArgInfo classifyReturnType(QualType RetTy) const; 6417 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 6418 6419 void computeInfo(CGFunctionInfo &FI) const override { 6420 if (!getCXXABI().classifyReturnType(FI)) 6421 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6422 for (auto &I : FI.arguments()) 6423 I.info = classifyArgumentType(I.type); 6424 } 6425 6426 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6427 QualType Ty) const override; 6428 6429 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 6430 bool asReturnValue) const override { 6431 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 6432 } 6433 bool isSwiftErrorInRegister() const override { 6434 return false; 6435 } 6436 }; 6437 6438 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 6439 public: 6440 SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector) 6441 : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {} 6442 }; 6443 6444 } 6445 6446 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const { 6447 // Treat an enum type as its underlying type. 6448 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6449 Ty = EnumTy->getDecl()->getIntegerType(); 6450 6451 // Promotable integer types are required to be promoted by the ABI. 6452 if (Ty->isPromotableIntegerType()) 6453 return true; 6454 6455 // 32-bit values must also be promoted. 6456 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 6457 switch (BT->getKind()) { 6458 case BuiltinType::Int: 6459 case BuiltinType::UInt: 6460 return true; 6461 default: 6462 return false; 6463 } 6464 return false; 6465 } 6466 6467 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 6468 return (Ty->isAnyComplexType() || 6469 Ty->isVectorType() || 6470 isAggregateTypeForABI(Ty)); 6471 } 6472 6473 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { 6474 return (HasVector && 6475 Ty->isVectorType() && 6476 getContext().getTypeSize(Ty) <= 128); 6477 } 6478 6479 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 6480 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 6481 switch (BT->getKind()) { 6482 case BuiltinType::Float: 6483 case BuiltinType::Double: 6484 return true; 6485 default: 6486 return false; 6487 } 6488 6489 return false; 6490 } 6491 6492 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { 6493 if (const RecordType *RT = Ty->getAsStructureType()) { 6494 const RecordDecl *RD = RT->getDecl(); 6495 QualType Found; 6496 6497 // If this is a C++ record, check the bases first. 6498 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6499 for (const auto &I : CXXRD->bases()) { 6500 QualType Base = I.getType(); 6501 6502 // Empty bases don't affect things either way. 6503 if (isEmptyRecord(getContext(), Base, true)) 6504 continue; 6505 6506 if (!Found.isNull()) 6507 return Ty; 6508 Found = GetSingleElementType(Base); 6509 } 6510 6511 // Check the fields. 6512 for (const auto *FD : RD->fields()) { 6513 // For compatibility with GCC, ignore empty bitfields in C++ mode. 6514 // Unlike isSingleElementStruct(), empty structure and array fields 6515 // do count. So do anonymous bitfields that aren't zero-sized. 6516 if (getContext().getLangOpts().CPlusPlus && 6517 FD->isZeroLengthBitField(getContext())) 6518 continue; 6519 6520 // Unlike isSingleElementStruct(), arrays do not count. 6521 // Nested structures still do though. 6522 if (!Found.isNull()) 6523 return Ty; 6524 Found = GetSingleElementType(FD->getType()); 6525 } 6526 6527 // Unlike isSingleElementStruct(), trailing padding is allowed. 6528 // An 8-byte aligned struct s { float f; } is passed as a double. 6529 if (!Found.isNull()) 6530 return Found; 6531 } 6532 6533 return Ty; 6534 } 6535 6536 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6537 QualType Ty) const { 6538 // Assume that va_list type is correct; should be pointer to LLVM type: 6539 // struct { 6540 // i64 __gpr; 6541 // i64 __fpr; 6542 // i8 *__overflow_arg_area; 6543 // i8 *__reg_save_area; 6544 // }; 6545 6546 // Every non-vector argument occupies 8 bytes and is passed by preference 6547 // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are 6548 // always passed on the stack. 6549 Ty = getContext().getCanonicalType(Ty); 6550 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6551 llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); 6552 llvm::Type *DirectTy = ArgTy; 6553 ABIArgInfo AI = classifyArgumentType(Ty); 6554 bool IsIndirect = AI.isIndirect(); 6555 bool InFPRs = false; 6556 bool IsVector = false; 6557 CharUnits UnpaddedSize; 6558 CharUnits DirectAlign; 6559 if (IsIndirect) { 6560 DirectTy = llvm::PointerType::getUnqual(DirectTy); 6561 UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8); 6562 } else { 6563 if (AI.getCoerceToType()) 6564 ArgTy = AI.getCoerceToType(); 6565 InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy(); 6566 IsVector = ArgTy->isVectorTy(); 6567 UnpaddedSize = TyInfo.first; 6568 DirectAlign = TyInfo.second; 6569 } 6570 CharUnits PaddedSize = CharUnits::fromQuantity(8); 6571 if (IsVector && UnpaddedSize > PaddedSize) 6572 PaddedSize = CharUnits::fromQuantity(16); 6573 assert((UnpaddedSize <= PaddedSize) && "Invalid argument size."); 6574 6575 CharUnits Padding = (PaddedSize - UnpaddedSize); 6576 6577 llvm::Type *IndexTy = CGF.Int64Ty; 6578 llvm::Value *PaddedSizeV = 6579 llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity()); 6580 6581 if (IsVector) { 6582 // Work out the address of a vector argument on the stack. 6583 // Vector arguments are always passed in the high bits of a 6584 // single (8 byte) or double (16 byte) stack slot. 6585 Address OverflowArgAreaPtr = 6586 CGF.Builder.CreateStructGEP(VAListAddr, 2, CharUnits::fromQuantity(16), 6587 "overflow_arg_area_ptr"); 6588 Address OverflowArgArea = 6589 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 6590 TyInfo.second); 6591 Address MemAddr = 6592 CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr"); 6593 6594 // Update overflow_arg_area_ptr pointer 6595 llvm::Value *NewOverflowArgArea = 6596 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 6597 "overflow_arg_area"); 6598 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 6599 6600 return MemAddr; 6601 } 6602 6603 assert(PaddedSize.getQuantity() == 8); 6604 6605 unsigned MaxRegs, RegCountField, RegSaveIndex; 6606 CharUnits RegPadding; 6607 if (InFPRs) { 6608 MaxRegs = 4; // Maximum of 4 FPR arguments 6609 RegCountField = 1; // __fpr 6610 RegSaveIndex = 16; // save offset for f0 6611 RegPadding = CharUnits(); // floats are passed in the high bits of an FPR 6612 } else { 6613 MaxRegs = 5; // Maximum of 5 GPR arguments 6614 RegCountField = 0; // __gpr 6615 RegSaveIndex = 2; // save offset for r2 6616 RegPadding = Padding; // values are passed in the low bits of a GPR 6617 } 6618 6619 Address RegCountPtr = CGF.Builder.CreateStructGEP( 6620 VAListAddr, RegCountField, RegCountField * CharUnits::fromQuantity(8), 6621 "reg_count_ptr"); 6622 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 6623 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 6624 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 6625 "fits_in_regs"); 6626 6627 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 6628 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 6629 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 6630 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 6631 6632 // Emit code to load the value if it was passed in registers. 6633 CGF.EmitBlock(InRegBlock); 6634 6635 // Work out the address of an argument register. 6636 llvm::Value *ScaledRegCount = 6637 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 6638 llvm::Value *RegBase = 6639 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity() 6640 + RegPadding.getQuantity()); 6641 llvm::Value *RegOffset = 6642 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 6643 Address RegSaveAreaPtr = 6644 CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24), 6645 "reg_save_area_ptr"); 6646 llvm::Value *RegSaveArea = 6647 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 6648 Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset, 6649 "raw_reg_addr"), 6650 PaddedSize); 6651 Address RegAddr = 6652 CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr"); 6653 6654 // Update the register count 6655 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 6656 llvm::Value *NewRegCount = 6657 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 6658 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 6659 CGF.EmitBranch(ContBlock); 6660 6661 // Emit code to load the value if it was passed in memory. 6662 CGF.EmitBlock(InMemBlock); 6663 6664 // Work out the address of a stack argument. 6665 Address OverflowArgAreaPtr = CGF.Builder.CreateStructGEP( 6666 VAListAddr, 2, CharUnits::fromQuantity(16), "overflow_arg_area_ptr"); 6667 Address OverflowArgArea = 6668 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 6669 PaddedSize); 6670 Address RawMemAddr = 6671 CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr"); 6672 Address MemAddr = 6673 CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr"); 6674 6675 // Update overflow_arg_area_ptr pointer 6676 llvm::Value *NewOverflowArgArea = 6677 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 6678 "overflow_arg_area"); 6679 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 6680 CGF.EmitBranch(ContBlock); 6681 6682 // Return the appropriate result. 6683 CGF.EmitBlock(ContBlock); 6684 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 6685 MemAddr, InMemBlock, "va_arg.addr"); 6686 6687 if (IsIndirect) 6688 ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), 6689 TyInfo.second); 6690 6691 return ResAddr; 6692 } 6693 6694 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 6695 if (RetTy->isVoidType()) 6696 return ABIArgInfo::getIgnore(); 6697 if (isVectorArgumentType(RetTy)) 6698 return ABIArgInfo::getDirect(); 6699 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 6700 return getNaturalAlignIndirect(RetTy); 6701 return (isPromotableIntegerType(RetTy) ? ABIArgInfo::getExtend(RetTy) 6702 : ABIArgInfo::getDirect()); 6703 } 6704 6705 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 6706 // Handle the generic C++ ABI. 6707 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 6708 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6709 6710 // Integers and enums are extended to full register width. 6711 if (isPromotableIntegerType(Ty)) 6712 return ABIArgInfo::getExtend(Ty); 6713 6714 // Handle vector types and vector-like structure types. Note that 6715 // as opposed to float-like structure types, we do not allow any 6716 // padding for vector-like structures, so verify the sizes match. 6717 uint64_t Size = getContext().getTypeSize(Ty); 6718 QualType SingleElementTy = GetSingleElementType(Ty); 6719 if (isVectorArgumentType(SingleElementTy) && 6720 getContext().getTypeSize(SingleElementTy) == Size) 6721 return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); 6722 6723 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 6724 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 6725 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6726 6727 // Handle small structures. 6728 if (const RecordType *RT = Ty->getAs<RecordType>()) { 6729 // Structures with flexible arrays have variable length, so really 6730 // fail the size test above. 6731 const RecordDecl *RD = RT->getDecl(); 6732 if (RD->hasFlexibleArrayMember()) 6733 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6734 6735 // The structure is passed as an unextended integer, a float, or a double. 6736 llvm::Type *PassTy; 6737 if (isFPArgumentType(SingleElementTy)) { 6738 assert(Size == 32 || Size == 64); 6739 if (Size == 32) 6740 PassTy = llvm::Type::getFloatTy(getVMContext()); 6741 else 6742 PassTy = llvm::Type::getDoubleTy(getVMContext()); 6743 } else 6744 PassTy = llvm::IntegerType::get(getVMContext(), Size); 6745 return ABIArgInfo::getDirect(PassTy); 6746 } 6747 6748 // Non-structure compounds are passed indirectly. 6749 if (isCompoundType(Ty)) 6750 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6751 6752 return ABIArgInfo::getDirect(nullptr); 6753 } 6754 6755 //===----------------------------------------------------------------------===// 6756 // MSP430 ABI Implementation 6757 //===----------------------------------------------------------------------===// 6758 6759 namespace { 6760 6761 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 6762 public: 6763 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 6764 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 6765 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6766 CodeGen::CodeGenModule &M) const override; 6767 }; 6768 6769 } 6770 6771 void MSP430TargetCodeGenInfo::setTargetAttributes( 6772 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 6773 if (GV->isDeclaration()) 6774 return; 6775 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 6776 const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>(); 6777 if (!InterruptAttr) 6778 return; 6779 6780 // Handle 'interrupt' attribute: 6781 llvm::Function *F = cast<llvm::Function>(GV); 6782 6783 // Step 1: Set ISR calling convention. 6784 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 6785 6786 // Step 2: Add attributes goodness. 6787 F->addFnAttr(llvm::Attribute::NoInline); 6788 F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber())); 6789 } 6790 } 6791 6792 //===----------------------------------------------------------------------===// 6793 // MIPS ABI Implementation. This works for both little-endian and 6794 // big-endian variants. 6795 //===----------------------------------------------------------------------===// 6796 6797 namespace { 6798 class MipsABIInfo : public ABIInfo { 6799 bool IsO32; 6800 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 6801 void CoerceToIntArgs(uint64_t TySize, 6802 SmallVectorImpl<llvm::Type *> &ArgList) const; 6803 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 6804 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 6805 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 6806 public: 6807 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 6808 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 6809 StackAlignInBytes(IsO32 ? 8 : 16) {} 6810 6811 ABIArgInfo classifyReturnType(QualType RetTy) const; 6812 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 6813 void computeInfo(CGFunctionInfo &FI) const override; 6814 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6815 QualType Ty) const override; 6816 ABIArgInfo extendType(QualType Ty) const; 6817 }; 6818 6819 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 6820 unsigned SizeOfUnwindException; 6821 public: 6822 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 6823 : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)), 6824 SizeOfUnwindException(IsO32 ? 24 : 32) {} 6825 6826 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 6827 return 29; 6828 } 6829 6830 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6831 CodeGen::CodeGenModule &CGM) const override { 6832 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6833 if (!FD) return; 6834 llvm::Function *Fn = cast<llvm::Function>(GV); 6835 6836 if (FD->hasAttr<MipsLongCallAttr>()) 6837 Fn->addFnAttr("long-call"); 6838 else if (FD->hasAttr<MipsShortCallAttr>()) 6839 Fn->addFnAttr("short-call"); 6840 6841 // Other attributes do not have a meaning for declarations. 6842 if (GV->isDeclaration()) 6843 return; 6844 6845 if (FD->hasAttr<Mips16Attr>()) { 6846 Fn->addFnAttr("mips16"); 6847 } 6848 else if (FD->hasAttr<NoMips16Attr>()) { 6849 Fn->addFnAttr("nomips16"); 6850 } 6851 6852 if (FD->hasAttr<MicroMipsAttr>()) 6853 Fn->addFnAttr("micromips"); 6854 else if (FD->hasAttr<NoMicroMipsAttr>()) 6855 Fn->addFnAttr("nomicromips"); 6856 6857 const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>(); 6858 if (!Attr) 6859 return; 6860 6861 const char *Kind; 6862 switch (Attr->getInterrupt()) { 6863 case MipsInterruptAttr::eic: Kind = "eic"; break; 6864 case MipsInterruptAttr::sw0: Kind = "sw0"; break; 6865 case MipsInterruptAttr::sw1: Kind = "sw1"; break; 6866 case MipsInterruptAttr::hw0: Kind = "hw0"; break; 6867 case MipsInterruptAttr::hw1: Kind = "hw1"; break; 6868 case MipsInterruptAttr::hw2: Kind = "hw2"; break; 6869 case MipsInterruptAttr::hw3: Kind = "hw3"; break; 6870 case MipsInterruptAttr::hw4: Kind = "hw4"; break; 6871 case MipsInterruptAttr::hw5: Kind = "hw5"; break; 6872 } 6873 6874 Fn->addFnAttr("interrupt", Kind); 6875 6876 } 6877 6878 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6879 llvm::Value *Address) const override; 6880 6881 unsigned getSizeOfUnwindException() const override { 6882 return SizeOfUnwindException; 6883 } 6884 }; 6885 } 6886 6887 void MipsABIInfo::CoerceToIntArgs( 6888 uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const { 6889 llvm::IntegerType *IntTy = 6890 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 6891 6892 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 6893 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 6894 ArgList.push_back(IntTy); 6895 6896 // If necessary, add one more integer type to ArgList. 6897 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 6898 6899 if (R) 6900 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 6901 } 6902 6903 // In N32/64, an aligned double precision floating point field is passed in 6904 // a register. 6905 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 6906 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 6907 6908 if (IsO32) { 6909 CoerceToIntArgs(TySize, ArgList); 6910 return llvm::StructType::get(getVMContext(), ArgList); 6911 } 6912 6913 if (Ty->isComplexType()) 6914 return CGT.ConvertType(Ty); 6915 6916 const RecordType *RT = Ty->getAs<RecordType>(); 6917 6918 // Unions/vectors are passed in integer registers. 6919 if (!RT || !RT->isStructureOrClassType()) { 6920 CoerceToIntArgs(TySize, ArgList); 6921 return llvm::StructType::get(getVMContext(), ArgList); 6922 } 6923 6924 const RecordDecl *RD = RT->getDecl(); 6925 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 6926 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 6927 6928 uint64_t LastOffset = 0; 6929 unsigned idx = 0; 6930 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 6931 6932 // Iterate over fields in the struct/class and check if there are any aligned 6933 // double fields. 6934 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 6935 i != e; ++i, ++idx) { 6936 const QualType Ty = i->getType(); 6937 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 6938 6939 if (!BT || BT->getKind() != BuiltinType::Double) 6940 continue; 6941 6942 uint64_t Offset = Layout.getFieldOffset(idx); 6943 if (Offset % 64) // Ignore doubles that are not aligned. 6944 continue; 6945 6946 // Add ((Offset - LastOffset) / 64) args of type i64. 6947 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 6948 ArgList.push_back(I64); 6949 6950 // Add double type. 6951 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 6952 LastOffset = Offset + 64; 6953 } 6954 6955 CoerceToIntArgs(TySize - LastOffset, IntArgList); 6956 ArgList.append(IntArgList.begin(), IntArgList.end()); 6957 6958 return llvm::StructType::get(getVMContext(), ArgList); 6959 } 6960 6961 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 6962 uint64_t Offset) const { 6963 if (OrigOffset + MinABIStackAlignInBytes > Offset) 6964 return nullptr; 6965 6966 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 6967 } 6968 6969 ABIArgInfo 6970 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 6971 Ty = useFirstFieldIfTransparentUnion(Ty); 6972 6973 uint64_t OrigOffset = Offset; 6974 uint64_t TySize = getContext().getTypeSize(Ty); 6975 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 6976 6977 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 6978 (uint64_t)StackAlignInBytes); 6979 unsigned CurrOffset = llvm::alignTo(Offset, Align); 6980 Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8; 6981 6982 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 6983 // Ignore empty aggregates. 6984 if (TySize == 0) 6985 return ABIArgInfo::getIgnore(); 6986 6987 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 6988 Offset = OrigOffset + MinABIStackAlignInBytes; 6989 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6990 } 6991 6992 // If we have reached here, aggregates are passed directly by coercing to 6993 // another structure type. Padding is inserted if the offset of the 6994 // aggregate is unaligned. 6995 ABIArgInfo ArgInfo = 6996 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 6997 getPaddingType(OrigOffset, CurrOffset)); 6998 ArgInfo.setInReg(true); 6999 return ArgInfo; 7000 } 7001 7002 // Treat an enum type as its underlying type. 7003 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7004 Ty = EnumTy->getDecl()->getIntegerType(); 7005 7006 // All integral types are promoted to the GPR width. 7007 if (Ty->isIntegralOrEnumerationType()) 7008 return extendType(Ty); 7009 7010 return ABIArgInfo::getDirect( 7011 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 7012 } 7013 7014 llvm::Type* 7015 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 7016 const RecordType *RT = RetTy->getAs<RecordType>(); 7017 SmallVector<llvm::Type*, 8> RTList; 7018 7019 if (RT && RT->isStructureOrClassType()) { 7020 const RecordDecl *RD = RT->getDecl(); 7021 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 7022 unsigned FieldCnt = Layout.getFieldCount(); 7023 7024 // N32/64 returns struct/classes in floating point registers if the 7025 // following conditions are met: 7026 // 1. The size of the struct/class is no larger than 128-bit. 7027 // 2. The struct/class has one or two fields all of which are floating 7028 // point types. 7029 // 3. The offset of the first field is zero (this follows what gcc does). 7030 // 7031 // Any other composite results are returned in integer registers. 7032 // 7033 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 7034 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 7035 for (; b != e; ++b) { 7036 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 7037 7038 if (!BT || !BT->isFloatingPoint()) 7039 break; 7040 7041 RTList.push_back(CGT.ConvertType(b->getType())); 7042 } 7043 7044 if (b == e) 7045 return llvm::StructType::get(getVMContext(), RTList, 7046 RD->hasAttr<PackedAttr>()); 7047 7048 RTList.clear(); 7049 } 7050 } 7051 7052 CoerceToIntArgs(Size, RTList); 7053 return llvm::StructType::get(getVMContext(), RTList); 7054 } 7055 7056 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 7057 uint64_t Size = getContext().getTypeSize(RetTy); 7058 7059 if (RetTy->isVoidType()) 7060 return ABIArgInfo::getIgnore(); 7061 7062 // O32 doesn't treat zero-sized structs differently from other structs. 7063 // However, N32/N64 ignores zero sized return values. 7064 if (!IsO32 && Size == 0) 7065 return ABIArgInfo::getIgnore(); 7066 7067 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 7068 if (Size <= 128) { 7069 if (RetTy->isAnyComplexType()) 7070 return ABIArgInfo::getDirect(); 7071 7072 // O32 returns integer vectors in registers and N32/N64 returns all small 7073 // aggregates in registers. 7074 if (!IsO32 || 7075 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { 7076 ABIArgInfo ArgInfo = 7077 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 7078 ArgInfo.setInReg(true); 7079 return ArgInfo; 7080 } 7081 } 7082 7083 return getNaturalAlignIndirect(RetTy); 7084 } 7085 7086 // Treat an enum type as its underlying type. 7087 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7088 RetTy = EnumTy->getDecl()->getIntegerType(); 7089 7090 if (RetTy->isPromotableIntegerType()) 7091 return ABIArgInfo::getExtend(RetTy); 7092 7093 if ((RetTy->isUnsignedIntegerOrEnumerationType() || 7094 RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32) 7095 return ABIArgInfo::getSignExtend(RetTy); 7096 7097 return ABIArgInfo::getDirect(); 7098 } 7099 7100 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 7101 ABIArgInfo &RetInfo = FI.getReturnInfo(); 7102 if (!getCXXABI().classifyReturnType(FI)) 7103 RetInfo = classifyReturnType(FI.getReturnType()); 7104 7105 // Check if a pointer to an aggregate is passed as a hidden argument. 7106 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 7107 7108 for (auto &I : FI.arguments()) 7109 I.info = classifyArgumentType(I.type, Offset); 7110 } 7111 7112 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7113 QualType OrigTy) const { 7114 QualType Ty = OrigTy; 7115 7116 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. 7117 // Pointers are also promoted in the same way but this only matters for N32. 7118 unsigned SlotSizeInBits = IsO32 ? 32 : 64; 7119 unsigned PtrWidth = getTarget().getPointerWidth(0); 7120 bool DidPromote = false; 7121 if ((Ty->isIntegerType() && 7122 getContext().getIntWidth(Ty) < SlotSizeInBits) || 7123 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { 7124 DidPromote = true; 7125 Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits, 7126 Ty->isSignedIntegerType()); 7127 } 7128 7129 auto TyInfo = getContext().getTypeInfoInChars(Ty); 7130 7131 // The alignment of things in the argument area is never larger than 7132 // StackAlignInBytes. 7133 TyInfo.second = 7134 std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes)); 7135 7136 // MinABIStackAlignInBytes is the size of argument slots on the stack. 7137 CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes); 7138 7139 Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 7140 TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true); 7141 7142 7143 // If there was a promotion, "unpromote" into a temporary. 7144 // TODO: can we just use a pointer into a subset of the original slot? 7145 if (DidPromote) { 7146 Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp"); 7147 llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr); 7148 7149 // Truncate down to the right width. 7150 llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType() 7151 : CGF.IntPtrTy); 7152 llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy); 7153 if (OrigTy->isPointerType()) 7154 V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType()); 7155 7156 CGF.Builder.CreateStore(V, Temp); 7157 Addr = Temp; 7158 } 7159 7160 return Addr; 7161 } 7162 7163 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const { 7164 int TySize = getContext().getTypeSize(Ty); 7165 7166 // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. 7167 if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 7168 return ABIArgInfo::getSignExtend(Ty); 7169 7170 return ABIArgInfo::getExtend(Ty); 7171 } 7172 7173 bool 7174 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7175 llvm::Value *Address) const { 7176 // This information comes from gcc's implementation, which seems to 7177 // as canonical as it gets. 7178 7179 // Everything on MIPS is 4 bytes. Double-precision FP registers 7180 // are aliased to pairs of single-precision FP registers. 7181 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 7182 7183 // 0-31 are the general purpose registers, $0 - $31. 7184 // 32-63 are the floating-point registers, $f0 - $f31. 7185 // 64 and 65 are the multiply/divide registers, $hi and $lo. 7186 // 66 is the (notional, I think) register for signal-handler return. 7187 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 7188 7189 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 7190 // They are one bit wide and ignored here. 7191 7192 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 7193 // (coprocessor 1 is the FP unit) 7194 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 7195 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 7196 // 176-181 are the DSP accumulator registers. 7197 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 7198 return false; 7199 } 7200 7201 //===----------------------------------------------------------------------===// 7202 // AVR ABI Implementation. 7203 //===----------------------------------------------------------------------===// 7204 7205 namespace { 7206 class AVRTargetCodeGenInfo : public TargetCodeGenInfo { 7207 public: 7208 AVRTargetCodeGenInfo(CodeGenTypes &CGT) 7209 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) { } 7210 7211 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7212 CodeGen::CodeGenModule &CGM) const override { 7213 if (GV->isDeclaration()) 7214 return; 7215 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 7216 if (!FD) return; 7217 auto *Fn = cast<llvm::Function>(GV); 7218 7219 if (FD->getAttr<AVRInterruptAttr>()) 7220 Fn->addFnAttr("interrupt"); 7221 7222 if (FD->getAttr<AVRSignalAttr>()) 7223 Fn->addFnAttr("signal"); 7224 } 7225 }; 7226 } 7227 7228 //===----------------------------------------------------------------------===// 7229 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 7230 // Currently subclassed only to implement custom OpenCL C function attribute 7231 // handling. 7232 //===----------------------------------------------------------------------===// 7233 7234 namespace { 7235 7236 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 7237 public: 7238 TCETargetCodeGenInfo(CodeGenTypes &CGT) 7239 : DefaultTargetCodeGenInfo(CGT) {} 7240 7241 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7242 CodeGen::CodeGenModule &M) const override; 7243 }; 7244 7245 void TCETargetCodeGenInfo::setTargetAttributes( 7246 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7247 if (GV->isDeclaration()) 7248 return; 7249 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7250 if (!FD) return; 7251 7252 llvm::Function *F = cast<llvm::Function>(GV); 7253 7254 if (M.getLangOpts().OpenCL) { 7255 if (FD->hasAttr<OpenCLKernelAttr>()) { 7256 // OpenCL C Kernel functions are not subject to inlining 7257 F->addFnAttr(llvm::Attribute::NoInline); 7258 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 7259 if (Attr) { 7260 // Convert the reqd_work_group_size() attributes to metadata. 7261 llvm::LLVMContext &Context = F->getContext(); 7262 llvm::NamedMDNode *OpenCLMetadata = 7263 M.getModule().getOrInsertNamedMetadata( 7264 "opencl.kernel_wg_size_info"); 7265 7266 SmallVector<llvm::Metadata *, 5> Operands; 7267 Operands.push_back(llvm::ConstantAsMetadata::get(F)); 7268 7269 Operands.push_back( 7270 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7271 M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); 7272 Operands.push_back( 7273 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7274 M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); 7275 Operands.push_back( 7276 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7277 M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); 7278 7279 // Add a boolean constant operand for "required" (true) or "hint" 7280 // (false) for implementing the work_group_size_hint attr later. 7281 // Currently always true as the hint is not yet implemented. 7282 Operands.push_back( 7283 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); 7284 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 7285 } 7286 } 7287 } 7288 } 7289 7290 } 7291 7292 //===----------------------------------------------------------------------===// 7293 // Hexagon ABI Implementation 7294 //===----------------------------------------------------------------------===// 7295 7296 namespace { 7297 7298 class HexagonABIInfo : public ABIInfo { 7299 7300 7301 public: 7302 HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 7303 7304 private: 7305 7306 ABIArgInfo classifyReturnType(QualType RetTy) const; 7307 ABIArgInfo classifyArgumentType(QualType RetTy) const; 7308 7309 void computeInfo(CGFunctionInfo &FI) const override; 7310 7311 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7312 QualType Ty) const override; 7313 }; 7314 7315 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 7316 public: 7317 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 7318 :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {} 7319 7320 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 7321 return 29; 7322 } 7323 }; 7324 7325 } 7326 7327 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 7328 if (!getCXXABI().classifyReturnType(FI)) 7329 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7330 for (auto &I : FI.arguments()) 7331 I.info = classifyArgumentType(I.type); 7332 } 7333 7334 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const { 7335 if (!isAggregateTypeForABI(Ty)) { 7336 // Treat an enum type as its underlying type. 7337 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7338 Ty = EnumTy->getDecl()->getIntegerType(); 7339 7340 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 7341 : ABIArgInfo::getDirect()); 7342 } 7343 7344 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 7345 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7346 7347 // Ignore empty records. 7348 if (isEmptyRecord(getContext(), Ty, true)) 7349 return ABIArgInfo::getIgnore(); 7350 7351 uint64_t Size = getContext().getTypeSize(Ty); 7352 if (Size > 64) 7353 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 7354 // Pass in the smallest viable integer type. 7355 else if (Size > 32) 7356 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 7357 else if (Size > 16) 7358 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7359 else if (Size > 8) 7360 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7361 else 7362 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 7363 } 7364 7365 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 7366 if (RetTy->isVoidType()) 7367 return ABIArgInfo::getIgnore(); 7368 7369 // Large vector types should be returned via memory. 7370 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64) 7371 return getNaturalAlignIndirect(RetTy); 7372 7373 if (!isAggregateTypeForABI(RetTy)) { 7374 // Treat an enum type as its underlying type. 7375 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7376 RetTy = EnumTy->getDecl()->getIntegerType(); 7377 7378 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 7379 : ABIArgInfo::getDirect()); 7380 } 7381 7382 if (isEmptyRecord(getContext(), RetTy, true)) 7383 return ABIArgInfo::getIgnore(); 7384 7385 // Aggregates <= 8 bytes are returned in r0; other aggregates 7386 // are returned indirectly. 7387 uint64_t Size = getContext().getTypeSize(RetTy); 7388 if (Size <= 64) { 7389 // Return in the smallest viable integer type. 7390 if (Size <= 8) 7391 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 7392 if (Size <= 16) 7393 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7394 if (Size <= 32) 7395 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7396 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 7397 } 7398 7399 return getNaturalAlignIndirect(RetTy, /*ByVal=*/true); 7400 } 7401 7402 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7403 QualType Ty) const { 7404 // FIXME: Someone needs to audit that this handle alignment correctly. 7405 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 7406 getContext().getTypeInfoInChars(Ty), 7407 CharUnits::fromQuantity(4), 7408 /*AllowHigherAlign*/ true); 7409 } 7410 7411 //===----------------------------------------------------------------------===// 7412 // Lanai ABI Implementation 7413 //===----------------------------------------------------------------------===// 7414 7415 namespace { 7416 class LanaiABIInfo : public DefaultABIInfo { 7417 public: 7418 LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7419 7420 bool shouldUseInReg(QualType Ty, CCState &State) const; 7421 7422 void computeInfo(CGFunctionInfo &FI) const override { 7423 CCState State(FI.getCallingConvention()); 7424 // Lanai uses 4 registers to pass arguments unless the function has the 7425 // regparm attribute set. 7426 if (FI.getHasRegParm()) { 7427 State.FreeRegs = FI.getRegParm(); 7428 } else { 7429 State.FreeRegs = 4; 7430 } 7431 7432 if (!getCXXABI().classifyReturnType(FI)) 7433 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7434 for (auto &I : FI.arguments()) 7435 I.info = classifyArgumentType(I.type, State); 7436 } 7437 7438 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 7439 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 7440 }; 7441 } // end anonymous namespace 7442 7443 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const { 7444 unsigned Size = getContext().getTypeSize(Ty); 7445 unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U; 7446 7447 if (SizeInRegs == 0) 7448 return false; 7449 7450 if (SizeInRegs > State.FreeRegs) { 7451 State.FreeRegs = 0; 7452 return false; 7453 } 7454 7455 State.FreeRegs -= SizeInRegs; 7456 7457 return true; 7458 } 7459 7460 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal, 7461 CCState &State) const { 7462 if (!ByVal) { 7463 if (State.FreeRegs) { 7464 --State.FreeRegs; // Non-byval indirects just use one pointer. 7465 return getNaturalAlignIndirectInReg(Ty); 7466 } 7467 return getNaturalAlignIndirect(Ty, false); 7468 } 7469 7470 // Compute the byval alignment. 7471 const unsigned MinABIStackAlignInBytes = 4; 7472 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 7473 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 7474 /*Realign=*/TypeAlign > 7475 MinABIStackAlignInBytes); 7476 } 7477 7478 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty, 7479 CCState &State) const { 7480 // Check with the C++ ABI first. 7481 const RecordType *RT = Ty->getAs<RecordType>(); 7482 if (RT) { 7483 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 7484 if (RAA == CGCXXABI::RAA_Indirect) { 7485 return getIndirectResult(Ty, /*ByVal=*/false, State); 7486 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 7487 return getNaturalAlignIndirect(Ty, /*ByRef=*/true); 7488 } 7489 } 7490 7491 if (isAggregateTypeForABI(Ty)) { 7492 // Structures with flexible arrays are always indirect. 7493 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 7494 return getIndirectResult(Ty, /*ByVal=*/true, State); 7495 7496 // Ignore empty structs/unions. 7497 if (isEmptyRecord(getContext(), Ty, true)) 7498 return ABIArgInfo::getIgnore(); 7499 7500 llvm::LLVMContext &LLVMContext = getVMContext(); 7501 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 7502 if (SizeInRegs <= State.FreeRegs) { 7503 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 7504 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 7505 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 7506 State.FreeRegs -= SizeInRegs; 7507 return ABIArgInfo::getDirectInReg(Result); 7508 } else { 7509 State.FreeRegs = 0; 7510 } 7511 return getIndirectResult(Ty, true, State); 7512 } 7513 7514 // Treat an enum type as its underlying type. 7515 if (const auto *EnumTy = Ty->getAs<EnumType>()) 7516 Ty = EnumTy->getDecl()->getIntegerType(); 7517 7518 bool InReg = shouldUseInReg(Ty, State); 7519 if (Ty->isPromotableIntegerType()) { 7520 if (InReg) 7521 return ABIArgInfo::getDirectInReg(); 7522 return ABIArgInfo::getExtend(Ty); 7523 } 7524 if (InReg) 7525 return ABIArgInfo::getDirectInReg(); 7526 return ABIArgInfo::getDirect(); 7527 } 7528 7529 namespace { 7530 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo { 7531 public: 7532 LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 7533 : TargetCodeGenInfo(new LanaiABIInfo(CGT)) {} 7534 }; 7535 } 7536 7537 //===----------------------------------------------------------------------===// 7538 // AMDGPU ABI Implementation 7539 //===----------------------------------------------------------------------===// 7540 7541 namespace { 7542 7543 class AMDGPUABIInfo final : public DefaultABIInfo { 7544 private: 7545 static const unsigned MaxNumRegsForArgsRet = 16; 7546 7547 unsigned numRegsForType(QualType Ty) const; 7548 7549 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 7550 bool isHomogeneousAggregateSmallEnough(const Type *Base, 7551 uint64_t Members) const override; 7552 7553 public: 7554 explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) : 7555 DefaultABIInfo(CGT) {} 7556 7557 ABIArgInfo classifyReturnType(QualType RetTy) const; 7558 ABIArgInfo classifyKernelArgumentType(QualType Ty) const; 7559 ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const; 7560 7561 void computeInfo(CGFunctionInfo &FI) const override; 7562 }; 7563 7564 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 7565 return true; 7566 } 7567 7568 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough( 7569 const Type *Base, uint64_t Members) const { 7570 uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32; 7571 7572 // Homogeneous Aggregates may occupy at most 16 registers. 7573 return Members * NumRegs <= MaxNumRegsForArgsRet; 7574 } 7575 7576 /// Estimate number of registers the type will use when passed in registers. 7577 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const { 7578 unsigned NumRegs = 0; 7579 7580 if (const VectorType *VT = Ty->getAs<VectorType>()) { 7581 // Compute from the number of elements. The reported size is based on the 7582 // in-memory size, which includes the padding 4th element for 3-vectors. 7583 QualType EltTy = VT->getElementType(); 7584 unsigned EltSize = getContext().getTypeSize(EltTy); 7585 7586 // 16-bit element vectors should be passed as packed. 7587 if (EltSize == 16) 7588 return (VT->getNumElements() + 1) / 2; 7589 7590 unsigned EltNumRegs = (EltSize + 31) / 32; 7591 return EltNumRegs * VT->getNumElements(); 7592 } 7593 7594 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7595 const RecordDecl *RD = RT->getDecl(); 7596 assert(!RD->hasFlexibleArrayMember()); 7597 7598 for (const FieldDecl *Field : RD->fields()) { 7599 QualType FieldTy = Field->getType(); 7600 NumRegs += numRegsForType(FieldTy); 7601 } 7602 7603 return NumRegs; 7604 } 7605 7606 return (getContext().getTypeSize(Ty) + 31) / 32; 7607 } 7608 7609 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const { 7610 llvm::CallingConv::ID CC = FI.getCallingConvention(); 7611 7612 if (!getCXXABI().classifyReturnType(FI)) 7613 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7614 7615 unsigned NumRegsLeft = MaxNumRegsForArgsRet; 7616 for (auto &Arg : FI.arguments()) { 7617 if (CC == llvm::CallingConv::AMDGPU_KERNEL) { 7618 Arg.info = classifyKernelArgumentType(Arg.type); 7619 } else { 7620 Arg.info = classifyArgumentType(Arg.type, NumRegsLeft); 7621 } 7622 } 7623 } 7624 7625 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const { 7626 if (isAggregateTypeForABI(RetTy)) { 7627 // Records with non-trivial destructors/copy-constructors should not be 7628 // returned by value. 7629 if (!getRecordArgABI(RetTy, getCXXABI())) { 7630 // Ignore empty structs/unions. 7631 if (isEmptyRecord(getContext(), RetTy, true)) 7632 return ABIArgInfo::getIgnore(); 7633 7634 // Lower single-element structs to just return a regular value. 7635 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 7636 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 7637 7638 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 7639 const RecordDecl *RD = RT->getDecl(); 7640 if (RD->hasFlexibleArrayMember()) 7641 return DefaultABIInfo::classifyReturnType(RetTy); 7642 } 7643 7644 // Pack aggregates <= 4 bytes into single VGPR or pair. 7645 uint64_t Size = getContext().getTypeSize(RetTy); 7646 if (Size <= 16) 7647 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7648 7649 if (Size <= 32) 7650 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7651 7652 if (Size <= 64) { 7653 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 7654 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 7655 } 7656 7657 if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet) 7658 return ABIArgInfo::getDirect(); 7659 } 7660 } 7661 7662 // Otherwise just do the default thing. 7663 return DefaultABIInfo::classifyReturnType(RetTy); 7664 } 7665 7666 /// For kernels all parameters are really passed in a special buffer. It doesn't 7667 /// make sense to pass anything byval, so everything must be direct. 7668 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const { 7669 Ty = useFirstFieldIfTransparentUnion(Ty); 7670 7671 // TODO: Can we omit empty structs? 7672 7673 // Coerce single element structs to its element. 7674 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 7675 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 7676 7677 // If we set CanBeFlattened to true, CodeGen will expand the struct to its 7678 // individual elements, which confuses the Clover OpenCL backend; therefore we 7679 // have to set it to false here. Other args of getDirect() are just defaults. 7680 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 7681 } 7682 7683 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty, 7684 unsigned &NumRegsLeft) const { 7685 assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow"); 7686 7687 Ty = useFirstFieldIfTransparentUnion(Ty); 7688 7689 if (isAggregateTypeForABI(Ty)) { 7690 // Records with non-trivial destructors/copy-constructors should not be 7691 // passed by value. 7692 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 7693 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7694 7695 // Ignore empty structs/unions. 7696 if (isEmptyRecord(getContext(), Ty, true)) 7697 return ABIArgInfo::getIgnore(); 7698 7699 // Lower single-element structs to just pass a regular value. TODO: We 7700 // could do reasonable-size multiple-element structs too, using getExpand(), 7701 // though watch out for things like bitfields. 7702 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 7703 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 7704 7705 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7706 const RecordDecl *RD = RT->getDecl(); 7707 if (RD->hasFlexibleArrayMember()) 7708 return DefaultABIInfo::classifyArgumentType(Ty); 7709 } 7710 7711 // Pack aggregates <= 8 bytes into single VGPR or pair. 7712 uint64_t Size = getContext().getTypeSize(Ty); 7713 if (Size <= 64) { 7714 unsigned NumRegs = (Size + 31) / 32; 7715 NumRegsLeft -= std::min(NumRegsLeft, NumRegs); 7716 7717 if (Size <= 16) 7718 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7719 7720 if (Size <= 32) 7721 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7722 7723 // XXX: Should this be i64 instead, and should the limit increase? 7724 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 7725 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 7726 } 7727 7728 if (NumRegsLeft > 0) { 7729 unsigned NumRegs = numRegsForType(Ty); 7730 if (NumRegsLeft >= NumRegs) { 7731 NumRegsLeft -= NumRegs; 7732 return ABIArgInfo::getDirect(); 7733 } 7734 } 7735 } 7736 7737 // Otherwise just do the default thing. 7738 ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty); 7739 if (!ArgInfo.isIndirect()) { 7740 unsigned NumRegs = numRegsForType(Ty); 7741 NumRegsLeft -= std::min(NumRegs, NumRegsLeft); 7742 } 7743 7744 return ArgInfo; 7745 } 7746 7747 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { 7748 public: 7749 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) 7750 : TargetCodeGenInfo(new AMDGPUABIInfo(CGT)) {} 7751 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7752 CodeGen::CodeGenModule &M) const override; 7753 unsigned getOpenCLKernelCallingConv() const override; 7754 7755 llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM, 7756 llvm::PointerType *T, QualType QT) const override; 7757 7758 LangAS getASTAllocaAddressSpace() const override { 7759 return getLangASFromTargetAS( 7760 getABIInfo().getDataLayout().getAllocaAddrSpace()); 7761 } 7762 LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, 7763 const VarDecl *D) const override; 7764 llvm::SyncScope::ID getLLVMSyncScopeID(SyncScope S, 7765 llvm::LLVMContext &C) const override; 7766 llvm::Function * 7767 createEnqueuedBlockKernel(CodeGenFunction &CGF, 7768 llvm::Function *BlockInvokeFunc, 7769 llvm::Value *BlockLiteral) const override; 7770 bool shouldEmitStaticExternCAliases() const override; 7771 void setCUDAKernelCallingConvention(const FunctionType *&FT) const override; 7772 }; 7773 } 7774 7775 void AMDGPUTargetCodeGenInfo::setTargetAttributes( 7776 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7777 if (GV->isDeclaration()) 7778 return; 7779 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7780 if (!FD) 7781 return; 7782 7783 llvm::Function *F = cast<llvm::Function>(GV); 7784 7785 const auto *ReqdWGS = M.getLangOpts().OpenCL ? 7786 FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr; 7787 7788 if (M.getLangOpts().OpenCL && FD->hasAttr<OpenCLKernelAttr>() && 7789 (M.getTriple().getOS() == llvm::Triple::AMDHSA)) 7790 F->addFnAttr("amdgpu-implicitarg-num-bytes", "48"); 7791 7792 const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>(); 7793 if (ReqdWGS || FlatWGS) { 7794 unsigned Min = FlatWGS ? FlatWGS->getMin() : 0; 7795 unsigned Max = FlatWGS ? FlatWGS->getMax() : 0; 7796 if (ReqdWGS && Min == 0 && Max == 0) 7797 Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim(); 7798 7799 if (Min != 0) { 7800 assert(Min <= Max && "Min must be less than or equal Max"); 7801 7802 std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max); 7803 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 7804 } else 7805 assert(Max == 0 && "Max must be zero"); 7806 } 7807 7808 if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) { 7809 unsigned Min = Attr->getMin(); 7810 unsigned Max = Attr->getMax(); 7811 7812 if (Min != 0) { 7813 assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max"); 7814 7815 std::string AttrVal = llvm::utostr(Min); 7816 if (Max != 0) 7817 AttrVal = AttrVal + "," + llvm::utostr(Max); 7818 F->addFnAttr("amdgpu-waves-per-eu", AttrVal); 7819 } else 7820 assert(Max == 0 && "Max must be zero"); 7821 } 7822 7823 if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { 7824 unsigned NumSGPR = Attr->getNumSGPR(); 7825 7826 if (NumSGPR != 0) 7827 F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR)); 7828 } 7829 7830 if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { 7831 uint32_t NumVGPR = Attr->getNumVGPR(); 7832 7833 if (NumVGPR != 0) 7834 F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR)); 7835 } 7836 } 7837 7838 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 7839 return llvm::CallingConv::AMDGPU_KERNEL; 7840 } 7841 7842 // Currently LLVM assumes null pointers always have value 0, 7843 // which results in incorrectly transformed IR. Therefore, instead of 7844 // emitting null pointers in private and local address spaces, a null 7845 // pointer in generic address space is emitted which is casted to a 7846 // pointer in local or private address space. 7847 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer( 7848 const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT, 7849 QualType QT) const { 7850 if (CGM.getContext().getTargetNullPointerValue(QT) == 0) 7851 return llvm::ConstantPointerNull::get(PT); 7852 7853 auto &Ctx = CGM.getContext(); 7854 auto NPT = llvm::PointerType::get(PT->getElementType(), 7855 Ctx.getTargetAddressSpace(LangAS::opencl_generic)); 7856 return llvm::ConstantExpr::getAddrSpaceCast( 7857 llvm::ConstantPointerNull::get(NPT), PT); 7858 } 7859 7860 LangAS 7861 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 7862 const VarDecl *D) const { 7863 assert(!CGM.getLangOpts().OpenCL && 7864 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 7865 "Address space agnostic languages only"); 7866 LangAS DefaultGlobalAS = getLangASFromTargetAS( 7867 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global)); 7868 if (!D) 7869 return DefaultGlobalAS; 7870 7871 LangAS AddrSpace = D->getType().getAddressSpace(); 7872 assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace)); 7873 if (AddrSpace != LangAS::Default) 7874 return AddrSpace; 7875 7876 if (CGM.isTypeConstant(D->getType(), false)) { 7877 if (auto ConstAS = CGM.getTarget().getConstantAddressSpace()) 7878 return ConstAS.getValue(); 7879 } 7880 return DefaultGlobalAS; 7881 } 7882 7883 llvm::SyncScope::ID 7884 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(SyncScope S, 7885 llvm::LLVMContext &C) const { 7886 StringRef Name; 7887 switch (S) { 7888 case SyncScope::OpenCLWorkGroup: 7889 Name = "workgroup"; 7890 break; 7891 case SyncScope::OpenCLDevice: 7892 Name = "agent"; 7893 break; 7894 case SyncScope::OpenCLAllSVMDevices: 7895 Name = ""; 7896 break; 7897 case SyncScope::OpenCLSubGroup: 7898 Name = "subgroup"; 7899 } 7900 return C.getOrInsertSyncScopeID(Name); 7901 } 7902 7903 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 7904 return false; 7905 } 7906 7907 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention( 7908 const FunctionType *&FT) const { 7909 FT = getABIInfo().getContext().adjustFunctionType( 7910 FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel)); 7911 } 7912 7913 //===----------------------------------------------------------------------===// 7914 // SPARC v8 ABI Implementation. 7915 // Based on the SPARC Compliance Definition version 2.4.1. 7916 // 7917 // Ensures that complex values are passed in registers. 7918 // 7919 namespace { 7920 class SparcV8ABIInfo : public DefaultABIInfo { 7921 public: 7922 SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7923 7924 private: 7925 ABIArgInfo classifyReturnType(QualType RetTy) const; 7926 void computeInfo(CGFunctionInfo &FI) const override; 7927 }; 7928 } // end anonymous namespace 7929 7930 7931 ABIArgInfo 7932 SparcV8ABIInfo::classifyReturnType(QualType Ty) const { 7933 if (Ty->isAnyComplexType()) { 7934 return ABIArgInfo::getDirect(); 7935 } 7936 else { 7937 return DefaultABIInfo::classifyReturnType(Ty); 7938 } 7939 } 7940 7941 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const { 7942 7943 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7944 for (auto &Arg : FI.arguments()) 7945 Arg.info = classifyArgumentType(Arg.type); 7946 } 7947 7948 namespace { 7949 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo { 7950 public: 7951 SparcV8TargetCodeGenInfo(CodeGenTypes &CGT) 7952 : TargetCodeGenInfo(new SparcV8ABIInfo(CGT)) {} 7953 }; 7954 } // end anonymous namespace 7955 7956 //===----------------------------------------------------------------------===// 7957 // SPARC v9 ABI Implementation. 7958 // Based on the SPARC Compliance Definition version 2.4.1. 7959 // 7960 // Function arguments a mapped to a nominal "parameter array" and promoted to 7961 // registers depending on their type. Each argument occupies 8 or 16 bytes in 7962 // the array, structs larger than 16 bytes are passed indirectly. 7963 // 7964 // One case requires special care: 7965 // 7966 // struct mixed { 7967 // int i; 7968 // float f; 7969 // }; 7970 // 7971 // When a struct mixed is passed by value, it only occupies 8 bytes in the 7972 // parameter array, but the int is passed in an integer register, and the float 7973 // is passed in a floating point register. This is represented as two arguments 7974 // with the LLVM IR inreg attribute: 7975 // 7976 // declare void f(i32 inreg %i, float inreg %f) 7977 // 7978 // The code generator will only allocate 4 bytes from the parameter array for 7979 // the inreg arguments. All other arguments are allocated a multiple of 8 7980 // bytes. 7981 // 7982 namespace { 7983 class SparcV9ABIInfo : public ABIInfo { 7984 public: 7985 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 7986 7987 private: 7988 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 7989 void computeInfo(CGFunctionInfo &FI) const override; 7990 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7991 QualType Ty) const override; 7992 7993 // Coercion type builder for structs passed in registers. The coercion type 7994 // serves two purposes: 7995 // 7996 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 7997 // in registers. 7998 // 2. Expose aligned floating point elements as first-level elements, so the 7999 // code generator knows to pass them in floating point registers. 8000 // 8001 // We also compute the InReg flag which indicates that the struct contains 8002 // aligned 32-bit floats. 8003 // 8004 struct CoerceBuilder { 8005 llvm::LLVMContext &Context; 8006 const llvm::DataLayout &DL; 8007 SmallVector<llvm::Type*, 8> Elems; 8008 uint64_t Size; 8009 bool InReg; 8010 8011 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 8012 : Context(c), DL(dl), Size(0), InReg(false) {} 8013 8014 // Pad Elems with integers until Size is ToSize. 8015 void pad(uint64_t ToSize) { 8016 assert(ToSize >= Size && "Cannot remove elements"); 8017 if (ToSize == Size) 8018 return; 8019 8020 // Finish the current 64-bit word. 8021 uint64_t Aligned = llvm::alignTo(Size, 64); 8022 if (Aligned > Size && Aligned <= ToSize) { 8023 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 8024 Size = Aligned; 8025 } 8026 8027 // Add whole 64-bit words. 8028 while (Size + 64 <= ToSize) { 8029 Elems.push_back(llvm::Type::getInt64Ty(Context)); 8030 Size += 64; 8031 } 8032 8033 // Final in-word padding. 8034 if (Size < ToSize) { 8035 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 8036 Size = ToSize; 8037 } 8038 } 8039 8040 // Add a floating point element at Offset. 8041 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 8042 // Unaligned floats are treated as integers. 8043 if (Offset % Bits) 8044 return; 8045 // The InReg flag is only required if there are any floats < 64 bits. 8046 if (Bits < 64) 8047 InReg = true; 8048 pad(Offset); 8049 Elems.push_back(Ty); 8050 Size = Offset + Bits; 8051 } 8052 8053 // Add a struct type to the coercion type, starting at Offset (in bits). 8054 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 8055 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 8056 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 8057 llvm::Type *ElemTy = StrTy->getElementType(i); 8058 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 8059 switch (ElemTy->getTypeID()) { 8060 case llvm::Type::StructTyID: 8061 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 8062 break; 8063 case llvm::Type::FloatTyID: 8064 addFloat(ElemOffset, ElemTy, 32); 8065 break; 8066 case llvm::Type::DoubleTyID: 8067 addFloat(ElemOffset, ElemTy, 64); 8068 break; 8069 case llvm::Type::FP128TyID: 8070 addFloat(ElemOffset, ElemTy, 128); 8071 break; 8072 case llvm::Type::PointerTyID: 8073 if (ElemOffset % 64 == 0) { 8074 pad(ElemOffset); 8075 Elems.push_back(ElemTy); 8076 Size += 64; 8077 } 8078 break; 8079 default: 8080 break; 8081 } 8082 } 8083 } 8084 8085 // Check if Ty is a usable substitute for the coercion type. 8086 bool isUsableType(llvm::StructType *Ty) const { 8087 return llvm::makeArrayRef(Elems) == Ty->elements(); 8088 } 8089 8090 // Get the coercion type as a literal struct type. 8091 llvm::Type *getType() const { 8092 if (Elems.size() == 1) 8093 return Elems.front(); 8094 else 8095 return llvm::StructType::get(Context, Elems); 8096 } 8097 }; 8098 }; 8099 } // end anonymous namespace 8100 8101 ABIArgInfo 8102 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 8103 if (Ty->isVoidType()) 8104 return ABIArgInfo::getIgnore(); 8105 8106 uint64_t Size = getContext().getTypeSize(Ty); 8107 8108 // Anything too big to fit in registers is passed with an explicit indirect 8109 // pointer / sret pointer. 8110 if (Size > SizeLimit) 8111 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 8112 8113 // Treat an enum type as its underlying type. 8114 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 8115 Ty = EnumTy->getDecl()->getIntegerType(); 8116 8117 // Integer types smaller than a register are extended. 8118 if (Size < 64 && Ty->isIntegerType()) 8119 return ABIArgInfo::getExtend(Ty); 8120 8121 // Other non-aggregates go in registers. 8122 if (!isAggregateTypeForABI(Ty)) 8123 return ABIArgInfo::getDirect(); 8124 8125 // If a C++ object has either a non-trivial copy constructor or a non-trivial 8126 // destructor, it is passed with an explicit indirect pointer / sret pointer. 8127 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 8128 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 8129 8130 // This is a small aggregate type that should be passed in registers. 8131 // Build a coercion type from the LLVM struct type. 8132 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 8133 if (!StrTy) 8134 return ABIArgInfo::getDirect(); 8135 8136 CoerceBuilder CB(getVMContext(), getDataLayout()); 8137 CB.addStruct(0, StrTy); 8138 CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64)); 8139 8140 // Try to use the original type for coercion. 8141 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 8142 8143 if (CB.InReg) 8144 return ABIArgInfo::getDirectInReg(CoerceTy); 8145 else 8146 return ABIArgInfo::getDirect(CoerceTy); 8147 } 8148 8149 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8150 QualType Ty) const { 8151 ABIArgInfo AI = classifyType(Ty, 16 * 8); 8152 llvm::Type *ArgTy = CGT.ConvertType(Ty); 8153 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 8154 AI.setCoerceToType(ArgTy); 8155 8156 CharUnits SlotSize = CharUnits::fromQuantity(8); 8157 8158 CGBuilderTy &Builder = CGF.Builder; 8159 Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 8160 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 8161 8162 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 8163 8164 Address ArgAddr = Address::invalid(); 8165 CharUnits Stride; 8166 switch (AI.getKind()) { 8167 case ABIArgInfo::Expand: 8168 case ABIArgInfo::CoerceAndExpand: 8169 case ABIArgInfo::InAlloca: 8170 llvm_unreachable("Unsupported ABI kind for va_arg"); 8171 8172 case ABIArgInfo::Extend: { 8173 Stride = SlotSize; 8174 CharUnits Offset = SlotSize - TypeInfo.first; 8175 ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend"); 8176 break; 8177 } 8178 8179 case ABIArgInfo::Direct: { 8180 auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 8181 Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize); 8182 ArgAddr = Addr; 8183 break; 8184 } 8185 8186 case ABIArgInfo::Indirect: 8187 Stride = SlotSize; 8188 ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect"); 8189 ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), 8190 TypeInfo.second); 8191 break; 8192 8193 case ABIArgInfo::Ignore: 8194 return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second); 8195 } 8196 8197 // Update VAList. 8198 llvm::Value *NextPtr = 8199 Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), Stride, "ap.next"); 8200 Builder.CreateStore(NextPtr, VAListAddr); 8201 8202 return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr"); 8203 } 8204 8205 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 8206 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 8207 for (auto &I : FI.arguments()) 8208 I.info = classifyType(I.type, 16 * 8); 8209 } 8210 8211 namespace { 8212 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 8213 public: 8214 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 8215 : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {} 8216 8217 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 8218 return 14; 8219 } 8220 8221 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 8222 llvm::Value *Address) const override; 8223 }; 8224 } // end anonymous namespace 8225 8226 bool 8227 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 8228 llvm::Value *Address) const { 8229 // This is calculated from the LLVM and GCC tables and verified 8230 // against gcc output. AFAIK all ABIs use the same encoding. 8231 8232 CodeGen::CGBuilderTy &Builder = CGF.Builder; 8233 8234 llvm::IntegerType *i8 = CGF.Int8Ty; 8235 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 8236 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 8237 8238 // 0-31: the 8-byte general-purpose registers 8239 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 8240 8241 // 32-63: f0-31, the 4-byte floating-point registers 8242 AssignToArrayRange(Builder, Address, Four8, 32, 63); 8243 8244 // Y = 64 8245 // PSR = 65 8246 // WIM = 66 8247 // TBR = 67 8248 // PC = 68 8249 // NPC = 69 8250 // FSR = 70 8251 // CSR = 71 8252 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 8253 8254 // 72-87: d0-15, the 8-byte floating-point registers 8255 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 8256 8257 return false; 8258 } 8259 8260 // ARC ABI implementation. 8261 namespace { 8262 8263 class ARCABIInfo : public DefaultABIInfo { 8264 public: 8265 using DefaultABIInfo::DefaultABIInfo; 8266 8267 private: 8268 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8269 QualType Ty) const override; 8270 8271 void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const { 8272 if (!State.FreeRegs) 8273 return; 8274 if (Info.isIndirect() && Info.getInReg()) 8275 State.FreeRegs--; 8276 else if (Info.isDirect() && Info.getInReg()) { 8277 unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32; 8278 if (sz < State.FreeRegs) 8279 State.FreeRegs -= sz; 8280 else 8281 State.FreeRegs = 0; 8282 } 8283 } 8284 8285 void computeInfo(CGFunctionInfo &FI) const override { 8286 CCState State(FI.getCallingConvention()); 8287 // ARC uses 8 registers to pass arguments. 8288 State.FreeRegs = 8; 8289 8290 if (!getCXXABI().classifyReturnType(FI)) 8291 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8292 updateState(FI.getReturnInfo(), FI.getReturnType(), State); 8293 for (auto &I : FI.arguments()) { 8294 I.info = classifyArgumentType(I.type, State.FreeRegs); 8295 updateState(I.info, I.type, State); 8296 } 8297 } 8298 8299 ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const; 8300 ABIArgInfo getIndirectByValue(QualType Ty) const; 8301 ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const; 8302 ABIArgInfo classifyReturnType(QualType RetTy) const; 8303 }; 8304 8305 class ARCTargetCodeGenInfo : public TargetCodeGenInfo { 8306 public: 8307 ARCTargetCodeGenInfo(CodeGenTypes &CGT) 8308 : TargetCodeGenInfo(new ARCABIInfo(CGT)) {} 8309 }; 8310 8311 8312 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const { 8313 return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) : 8314 getNaturalAlignIndirect(Ty, false); 8315 } 8316 8317 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const { 8318 // Compute the byval alignment. 8319 const unsigned MinABIStackAlignInBytes = 4; 8320 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 8321 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 8322 TypeAlign > MinABIStackAlignInBytes); 8323 } 8324 8325 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8326 QualType Ty) const { 8327 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 8328 getContext().getTypeInfoInChars(Ty), 8329 CharUnits::fromQuantity(4), true); 8330 } 8331 8332 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty, 8333 uint8_t FreeRegs) const { 8334 // Handle the generic C++ ABI. 8335 const RecordType *RT = Ty->getAs<RecordType>(); 8336 if (RT) { 8337 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 8338 if (RAA == CGCXXABI::RAA_Indirect) 8339 return getIndirectByRef(Ty, FreeRegs > 0); 8340 8341 if (RAA == CGCXXABI::RAA_DirectInMemory) 8342 return getIndirectByValue(Ty); 8343 } 8344 8345 // Treat an enum type as its underlying type. 8346 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 8347 Ty = EnumTy->getDecl()->getIntegerType(); 8348 8349 auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32; 8350 8351 if (isAggregateTypeForABI(Ty)) { 8352 // Structures with flexible arrays are always indirect. 8353 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 8354 return getIndirectByValue(Ty); 8355 8356 // Ignore empty structs/unions. 8357 if (isEmptyRecord(getContext(), Ty, true)) 8358 return ABIArgInfo::getIgnore(); 8359 8360 llvm::LLVMContext &LLVMContext = getVMContext(); 8361 8362 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 8363 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 8364 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 8365 8366 return FreeRegs >= SizeInRegs ? 8367 ABIArgInfo::getDirectInReg(Result) : 8368 ABIArgInfo::getDirect(Result, 0, nullptr, false); 8369 } 8370 8371 return Ty->isPromotableIntegerType() ? 8372 (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty) : 8373 ABIArgInfo::getExtend(Ty)) : 8374 (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg() : 8375 ABIArgInfo::getDirect()); 8376 } 8377 8378 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const { 8379 if (RetTy->isAnyComplexType()) 8380 return ABIArgInfo::getDirectInReg(); 8381 8382 // Arguments of size > 4 registers are indirect. 8383 auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32; 8384 if (RetSize > 4) 8385 return getIndirectByRef(RetTy, /*HasFreeRegs*/ true); 8386 8387 return DefaultABIInfo::classifyReturnType(RetTy); 8388 } 8389 8390 } // End anonymous namespace. 8391 8392 //===----------------------------------------------------------------------===// 8393 // XCore ABI Implementation 8394 //===----------------------------------------------------------------------===// 8395 8396 namespace { 8397 8398 /// A SmallStringEnc instance is used to build up the TypeString by passing 8399 /// it by reference between functions that append to it. 8400 typedef llvm::SmallString<128> SmallStringEnc; 8401 8402 /// TypeStringCache caches the meta encodings of Types. 8403 /// 8404 /// The reason for caching TypeStrings is two fold: 8405 /// 1. To cache a type's encoding for later uses; 8406 /// 2. As a means to break recursive member type inclusion. 8407 /// 8408 /// A cache Entry can have a Status of: 8409 /// NonRecursive: The type encoding is not recursive; 8410 /// Recursive: The type encoding is recursive; 8411 /// Incomplete: An incomplete TypeString; 8412 /// IncompleteUsed: An incomplete TypeString that has been used in a 8413 /// Recursive type encoding. 8414 /// 8415 /// A NonRecursive entry will have all of its sub-members expanded as fully 8416 /// as possible. Whilst it may contain types which are recursive, the type 8417 /// itself is not recursive and thus its encoding may be safely used whenever 8418 /// the type is encountered. 8419 /// 8420 /// A Recursive entry will have all of its sub-members expanded as fully as 8421 /// possible. The type itself is recursive and it may contain other types which 8422 /// are recursive. The Recursive encoding must not be used during the expansion 8423 /// of a recursive type's recursive branch. For simplicity the code uses 8424 /// IncompleteCount to reject all usage of Recursive encodings for member types. 8425 /// 8426 /// An Incomplete entry is always a RecordType and only encodes its 8427 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 8428 /// are placed into the cache during type expansion as a means to identify and 8429 /// handle recursive inclusion of types as sub-members. If there is recursion 8430 /// the entry becomes IncompleteUsed. 8431 /// 8432 /// During the expansion of a RecordType's members: 8433 /// 8434 /// If the cache contains a NonRecursive encoding for the member type, the 8435 /// cached encoding is used; 8436 /// 8437 /// If the cache contains a Recursive encoding for the member type, the 8438 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 8439 /// 8440 /// If the member is a RecordType, an Incomplete encoding is placed into the 8441 /// cache to break potential recursive inclusion of itself as a sub-member; 8442 /// 8443 /// Once a member RecordType has been expanded, its temporary incomplete 8444 /// entry is removed from the cache. If a Recursive encoding was swapped out 8445 /// it is swapped back in; 8446 /// 8447 /// If an incomplete entry is used to expand a sub-member, the incomplete 8448 /// entry is marked as IncompleteUsed. The cache keeps count of how many 8449 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 8450 /// 8451 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 8452 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 8453 /// Else the member is part of a recursive type and thus the recursion has 8454 /// been exited too soon for the encoding to be correct for the member. 8455 /// 8456 class TypeStringCache { 8457 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 8458 struct Entry { 8459 std::string Str; // The encoded TypeString for the type. 8460 enum Status State; // Information about the encoding in 'Str'. 8461 std::string Swapped; // A temporary place holder for a Recursive encoding 8462 // during the expansion of RecordType's members. 8463 }; 8464 std::map<const IdentifierInfo *, struct Entry> Map; 8465 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 8466 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 8467 public: 8468 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {} 8469 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 8470 bool removeIncomplete(const IdentifierInfo *ID); 8471 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 8472 bool IsRecursive); 8473 StringRef lookupStr(const IdentifierInfo *ID); 8474 }; 8475 8476 /// TypeString encodings for enum & union fields must be order. 8477 /// FieldEncoding is a helper for this ordering process. 8478 class FieldEncoding { 8479 bool HasName; 8480 std::string Enc; 8481 public: 8482 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {} 8483 StringRef str() { return Enc; } 8484 bool operator<(const FieldEncoding &rhs) const { 8485 if (HasName != rhs.HasName) return HasName; 8486 return Enc < rhs.Enc; 8487 } 8488 }; 8489 8490 class XCoreABIInfo : public DefaultABIInfo { 8491 public: 8492 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8493 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8494 QualType Ty) const override; 8495 }; 8496 8497 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 8498 mutable TypeStringCache TSC; 8499 public: 8500 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 8501 :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {} 8502 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 8503 CodeGen::CodeGenModule &M) const override; 8504 }; 8505 8506 } // End anonymous namespace. 8507 8508 // TODO: this implementation is likely now redundant with the default 8509 // EmitVAArg. 8510 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8511 QualType Ty) const { 8512 CGBuilderTy &Builder = CGF.Builder; 8513 8514 // Get the VAList. 8515 CharUnits SlotSize = CharUnits::fromQuantity(4); 8516 Address AP(Builder.CreateLoad(VAListAddr), SlotSize); 8517 8518 // Handle the argument. 8519 ABIArgInfo AI = classifyArgumentType(Ty); 8520 CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty); 8521 llvm::Type *ArgTy = CGT.ConvertType(Ty); 8522 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 8523 AI.setCoerceToType(ArgTy); 8524 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 8525 8526 Address Val = Address::invalid(); 8527 CharUnits ArgSize = CharUnits::Zero(); 8528 switch (AI.getKind()) { 8529 case ABIArgInfo::Expand: 8530 case ABIArgInfo::CoerceAndExpand: 8531 case ABIArgInfo::InAlloca: 8532 llvm_unreachable("Unsupported ABI kind for va_arg"); 8533 case ABIArgInfo::Ignore: 8534 Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign); 8535 ArgSize = CharUnits::Zero(); 8536 break; 8537 case ABIArgInfo::Extend: 8538 case ABIArgInfo::Direct: 8539 Val = Builder.CreateBitCast(AP, ArgPtrTy); 8540 ArgSize = CharUnits::fromQuantity( 8541 getDataLayout().getTypeAllocSize(AI.getCoerceToType())); 8542 ArgSize = ArgSize.alignTo(SlotSize); 8543 break; 8544 case ABIArgInfo::Indirect: 8545 Val = Builder.CreateElementBitCast(AP, ArgPtrTy); 8546 Val = Address(Builder.CreateLoad(Val), TypeAlign); 8547 ArgSize = SlotSize; 8548 break; 8549 } 8550 8551 // Increment the VAList. 8552 if (!ArgSize.isZero()) { 8553 llvm::Value *APN = 8554 Builder.CreateConstInBoundsByteGEP(AP.getPointer(), ArgSize); 8555 Builder.CreateStore(APN, VAListAddr); 8556 } 8557 8558 return Val; 8559 } 8560 8561 /// During the expansion of a RecordType, an incomplete TypeString is placed 8562 /// into the cache as a means to identify and break recursion. 8563 /// If there is a Recursive encoding in the cache, it is swapped out and will 8564 /// be reinserted by removeIncomplete(). 8565 /// All other types of encoding should have been used rather than arriving here. 8566 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 8567 std::string StubEnc) { 8568 if (!ID) 8569 return; 8570 Entry &E = Map[ID]; 8571 assert( (E.Str.empty() || E.State == Recursive) && 8572 "Incorrectly use of addIncomplete"); 8573 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 8574 E.Swapped.swap(E.Str); // swap out the Recursive 8575 E.Str.swap(StubEnc); 8576 E.State = Incomplete; 8577 ++IncompleteCount; 8578 } 8579 8580 /// Once the RecordType has been expanded, the temporary incomplete TypeString 8581 /// must be removed from the cache. 8582 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 8583 /// Returns true if the RecordType was defined recursively. 8584 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 8585 if (!ID) 8586 return false; 8587 auto I = Map.find(ID); 8588 assert(I != Map.end() && "Entry not present"); 8589 Entry &E = I->second; 8590 assert( (E.State == Incomplete || 8591 E.State == IncompleteUsed) && 8592 "Entry must be an incomplete type"); 8593 bool IsRecursive = false; 8594 if (E.State == IncompleteUsed) { 8595 // We made use of our Incomplete encoding, thus we are recursive. 8596 IsRecursive = true; 8597 --IncompleteUsedCount; 8598 } 8599 if (E.Swapped.empty()) 8600 Map.erase(I); 8601 else { 8602 // Swap the Recursive back. 8603 E.Swapped.swap(E.Str); 8604 E.Swapped.clear(); 8605 E.State = Recursive; 8606 } 8607 --IncompleteCount; 8608 return IsRecursive; 8609 } 8610 8611 /// Add the encoded TypeString to the cache only if it is NonRecursive or 8612 /// Recursive (viz: all sub-members were expanded as fully as possible). 8613 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 8614 bool IsRecursive) { 8615 if (!ID || IncompleteUsedCount) 8616 return; // No key or it is is an incomplete sub-type so don't add. 8617 Entry &E = Map[ID]; 8618 if (IsRecursive && !E.Str.empty()) { 8619 assert(E.State==Recursive && E.Str.size() == Str.size() && 8620 "This is not the same Recursive entry"); 8621 // The parent container was not recursive after all, so we could have used 8622 // this Recursive sub-member entry after all, but we assumed the worse when 8623 // we started viz: IncompleteCount!=0. 8624 return; 8625 } 8626 assert(E.Str.empty() && "Entry already present"); 8627 E.Str = Str.str(); 8628 E.State = IsRecursive? Recursive : NonRecursive; 8629 } 8630 8631 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 8632 /// are recursively expanding a type (IncompleteCount != 0) and the cached 8633 /// encoding is Recursive, return an empty StringRef. 8634 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 8635 if (!ID) 8636 return StringRef(); // We have no key. 8637 auto I = Map.find(ID); 8638 if (I == Map.end()) 8639 return StringRef(); // We have no encoding. 8640 Entry &E = I->second; 8641 if (E.State == Recursive && IncompleteCount) 8642 return StringRef(); // We don't use Recursive encodings for member types. 8643 8644 if (E.State == Incomplete) { 8645 // The incomplete type is being used to break out of recursion. 8646 E.State = IncompleteUsed; 8647 ++IncompleteUsedCount; 8648 } 8649 return E.Str; 8650 } 8651 8652 /// The XCore ABI includes a type information section that communicates symbol 8653 /// type information to the linker. The linker uses this information to verify 8654 /// safety/correctness of things such as array bound and pointers et al. 8655 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 8656 /// This type information (TypeString) is emitted into meta data for all global 8657 /// symbols: definitions, declarations, functions & variables. 8658 /// 8659 /// The TypeString carries type, qualifier, name, size & value details. 8660 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 8661 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf 8662 /// The output is tested by test/CodeGen/xcore-stringtype.c. 8663 /// 8664 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 8665 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC); 8666 8667 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 8668 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 8669 CodeGen::CodeGenModule &CGM) const { 8670 SmallStringEnc Enc; 8671 if (getTypeString(Enc, D, CGM, TSC)) { 8672 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 8673 llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV), 8674 llvm::MDString::get(Ctx, Enc.str())}; 8675 llvm::NamedMDNode *MD = 8676 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 8677 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 8678 } 8679 } 8680 8681 //===----------------------------------------------------------------------===// 8682 // SPIR ABI Implementation 8683 //===----------------------------------------------------------------------===// 8684 8685 namespace { 8686 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo { 8687 public: 8688 SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 8689 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 8690 unsigned getOpenCLKernelCallingConv() const override; 8691 }; 8692 8693 } // End anonymous namespace. 8694 8695 namespace clang { 8696 namespace CodeGen { 8697 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) { 8698 DefaultABIInfo SPIRABI(CGM.getTypes()); 8699 SPIRABI.computeInfo(FI); 8700 } 8701 } 8702 } 8703 8704 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 8705 return llvm::CallingConv::SPIR_KERNEL; 8706 } 8707 8708 static bool appendType(SmallStringEnc &Enc, QualType QType, 8709 const CodeGen::CodeGenModule &CGM, 8710 TypeStringCache &TSC); 8711 8712 /// Helper function for appendRecordType(). 8713 /// Builds a SmallVector containing the encoded field types in declaration 8714 /// order. 8715 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 8716 const RecordDecl *RD, 8717 const CodeGen::CodeGenModule &CGM, 8718 TypeStringCache &TSC) { 8719 for (const auto *Field : RD->fields()) { 8720 SmallStringEnc Enc; 8721 Enc += "m("; 8722 Enc += Field->getName(); 8723 Enc += "){"; 8724 if (Field->isBitField()) { 8725 Enc += "b("; 8726 llvm::raw_svector_ostream OS(Enc); 8727 OS << Field->getBitWidthValue(CGM.getContext()); 8728 Enc += ':'; 8729 } 8730 if (!appendType(Enc, Field->getType(), CGM, TSC)) 8731 return false; 8732 if (Field->isBitField()) 8733 Enc += ')'; 8734 Enc += '}'; 8735 FE.emplace_back(!Field->getName().empty(), Enc); 8736 } 8737 return true; 8738 } 8739 8740 /// Appends structure and union types to Enc and adds encoding to cache. 8741 /// Recursively calls appendType (via extractFieldType) for each field. 8742 /// Union types have their fields ordered according to the ABI. 8743 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 8744 const CodeGen::CodeGenModule &CGM, 8745 TypeStringCache &TSC, const IdentifierInfo *ID) { 8746 // Append the cached TypeString if we have one. 8747 StringRef TypeString = TSC.lookupStr(ID); 8748 if (!TypeString.empty()) { 8749 Enc += TypeString; 8750 return true; 8751 } 8752 8753 // Start to emit an incomplete TypeString. 8754 size_t Start = Enc.size(); 8755 Enc += (RT->isUnionType()? 'u' : 's'); 8756 Enc += '('; 8757 if (ID) 8758 Enc += ID->getName(); 8759 Enc += "){"; 8760 8761 // We collect all encoded fields and order as necessary. 8762 bool IsRecursive = false; 8763 const RecordDecl *RD = RT->getDecl()->getDefinition(); 8764 if (RD && !RD->field_empty()) { 8765 // An incomplete TypeString stub is placed in the cache for this RecordType 8766 // so that recursive calls to this RecordType will use it whilst building a 8767 // complete TypeString for this RecordType. 8768 SmallVector<FieldEncoding, 16> FE; 8769 std::string StubEnc(Enc.substr(Start).str()); 8770 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 8771 TSC.addIncomplete(ID, std::move(StubEnc)); 8772 if (!extractFieldType(FE, RD, CGM, TSC)) { 8773 (void) TSC.removeIncomplete(ID); 8774 return false; 8775 } 8776 IsRecursive = TSC.removeIncomplete(ID); 8777 // The ABI requires unions to be sorted but not structures. 8778 // See FieldEncoding::operator< for sort algorithm. 8779 if (RT->isUnionType()) 8780 llvm::sort(FE); 8781 // We can now complete the TypeString. 8782 unsigned E = FE.size(); 8783 for (unsigned I = 0; I != E; ++I) { 8784 if (I) 8785 Enc += ','; 8786 Enc += FE[I].str(); 8787 } 8788 } 8789 Enc += '}'; 8790 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 8791 return true; 8792 } 8793 8794 /// Appends enum types to Enc and adds the encoding to the cache. 8795 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 8796 TypeStringCache &TSC, 8797 const IdentifierInfo *ID) { 8798 // Append the cached TypeString if we have one. 8799 StringRef TypeString = TSC.lookupStr(ID); 8800 if (!TypeString.empty()) { 8801 Enc += TypeString; 8802 return true; 8803 } 8804 8805 size_t Start = Enc.size(); 8806 Enc += "e("; 8807 if (ID) 8808 Enc += ID->getName(); 8809 Enc += "){"; 8810 8811 // We collect all encoded enumerations and order them alphanumerically. 8812 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 8813 SmallVector<FieldEncoding, 16> FE; 8814 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 8815 ++I) { 8816 SmallStringEnc EnumEnc; 8817 EnumEnc += "m("; 8818 EnumEnc += I->getName(); 8819 EnumEnc += "){"; 8820 I->getInitVal().toString(EnumEnc); 8821 EnumEnc += '}'; 8822 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 8823 } 8824 llvm::sort(FE); 8825 unsigned E = FE.size(); 8826 for (unsigned I = 0; I != E; ++I) { 8827 if (I) 8828 Enc += ','; 8829 Enc += FE[I].str(); 8830 } 8831 } 8832 Enc += '}'; 8833 TSC.addIfComplete(ID, Enc.substr(Start), false); 8834 return true; 8835 } 8836 8837 /// Appends type's qualifier to Enc. 8838 /// This is done prior to appending the type's encoding. 8839 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 8840 // Qualifiers are emitted in alphabetical order. 8841 static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 8842 int Lookup = 0; 8843 if (QT.isConstQualified()) 8844 Lookup += 1<<0; 8845 if (QT.isRestrictQualified()) 8846 Lookup += 1<<1; 8847 if (QT.isVolatileQualified()) 8848 Lookup += 1<<2; 8849 Enc += Table[Lookup]; 8850 } 8851 8852 /// Appends built-in types to Enc. 8853 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 8854 const char *EncType; 8855 switch (BT->getKind()) { 8856 case BuiltinType::Void: 8857 EncType = "0"; 8858 break; 8859 case BuiltinType::Bool: 8860 EncType = "b"; 8861 break; 8862 case BuiltinType::Char_U: 8863 EncType = "uc"; 8864 break; 8865 case BuiltinType::UChar: 8866 EncType = "uc"; 8867 break; 8868 case BuiltinType::SChar: 8869 EncType = "sc"; 8870 break; 8871 case BuiltinType::UShort: 8872 EncType = "us"; 8873 break; 8874 case BuiltinType::Short: 8875 EncType = "ss"; 8876 break; 8877 case BuiltinType::UInt: 8878 EncType = "ui"; 8879 break; 8880 case BuiltinType::Int: 8881 EncType = "si"; 8882 break; 8883 case BuiltinType::ULong: 8884 EncType = "ul"; 8885 break; 8886 case BuiltinType::Long: 8887 EncType = "sl"; 8888 break; 8889 case BuiltinType::ULongLong: 8890 EncType = "ull"; 8891 break; 8892 case BuiltinType::LongLong: 8893 EncType = "sll"; 8894 break; 8895 case BuiltinType::Float: 8896 EncType = "ft"; 8897 break; 8898 case BuiltinType::Double: 8899 EncType = "d"; 8900 break; 8901 case BuiltinType::LongDouble: 8902 EncType = "ld"; 8903 break; 8904 default: 8905 return false; 8906 } 8907 Enc += EncType; 8908 return true; 8909 } 8910 8911 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 8912 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 8913 const CodeGen::CodeGenModule &CGM, 8914 TypeStringCache &TSC) { 8915 Enc += "p("; 8916 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 8917 return false; 8918 Enc += ')'; 8919 return true; 8920 } 8921 8922 /// Appends array encoding to Enc before calling appendType for the element. 8923 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 8924 const ArrayType *AT, 8925 const CodeGen::CodeGenModule &CGM, 8926 TypeStringCache &TSC, StringRef NoSizeEnc) { 8927 if (AT->getSizeModifier() != ArrayType::Normal) 8928 return false; 8929 Enc += "a("; 8930 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 8931 CAT->getSize().toStringUnsigned(Enc); 8932 else 8933 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 8934 Enc += ':'; 8935 // The Qualifiers should be attached to the type rather than the array. 8936 appendQualifier(Enc, QT); 8937 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 8938 return false; 8939 Enc += ')'; 8940 return true; 8941 } 8942 8943 /// Appends a function encoding to Enc, calling appendType for the return type 8944 /// and the arguments. 8945 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 8946 const CodeGen::CodeGenModule &CGM, 8947 TypeStringCache &TSC) { 8948 Enc += "f{"; 8949 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 8950 return false; 8951 Enc += "}("; 8952 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 8953 // N.B. we are only interested in the adjusted param types. 8954 auto I = FPT->param_type_begin(); 8955 auto E = FPT->param_type_end(); 8956 if (I != E) { 8957 do { 8958 if (!appendType(Enc, *I, CGM, TSC)) 8959 return false; 8960 ++I; 8961 if (I != E) 8962 Enc += ','; 8963 } while (I != E); 8964 if (FPT->isVariadic()) 8965 Enc += ",va"; 8966 } else { 8967 if (FPT->isVariadic()) 8968 Enc += "va"; 8969 else 8970 Enc += '0'; 8971 } 8972 } 8973 Enc += ')'; 8974 return true; 8975 } 8976 8977 /// Handles the type's qualifier before dispatching a call to handle specific 8978 /// type encodings. 8979 static bool appendType(SmallStringEnc &Enc, QualType QType, 8980 const CodeGen::CodeGenModule &CGM, 8981 TypeStringCache &TSC) { 8982 8983 QualType QT = QType.getCanonicalType(); 8984 8985 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 8986 // The Qualifiers should be attached to the type rather than the array. 8987 // Thus we don't call appendQualifier() here. 8988 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 8989 8990 appendQualifier(Enc, QT); 8991 8992 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 8993 return appendBuiltinType(Enc, BT); 8994 8995 if (const PointerType *PT = QT->getAs<PointerType>()) 8996 return appendPointerType(Enc, PT, CGM, TSC); 8997 8998 if (const EnumType *ET = QT->getAs<EnumType>()) 8999 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 9000 9001 if (const RecordType *RT = QT->getAsStructureType()) 9002 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 9003 9004 if (const RecordType *RT = QT->getAsUnionType()) 9005 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 9006 9007 if (const FunctionType *FT = QT->getAs<FunctionType>()) 9008 return appendFunctionType(Enc, FT, CGM, TSC); 9009 9010 return false; 9011 } 9012 9013 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 9014 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) { 9015 if (!D) 9016 return false; 9017 9018 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 9019 if (FD->getLanguageLinkage() != CLanguageLinkage) 9020 return false; 9021 return appendType(Enc, FD->getType(), CGM, TSC); 9022 } 9023 9024 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 9025 if (VD->getLanguageLinkage() != CLanguageLinkage) 9026 return false; 9027 QualType QT = VD->getType().getCanonicalType(); 9028 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 9029 // Global ArrayTypes are given a size of '*' if the size is unknown. 9030 // The Qualifiers should be attached to the type rather than the array. 9031 // Thus we don't call appendQualifier() here. 9032 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 9033 } 9034 return appendType(Enc, QT, CGM, TSC); 9035 } 9036 return false; 9037 } 9038 9039 //===----------------------------------------------------------------------===// 9040 // RISCV ABI Implementation 9041 //===----------------------------------------------------------------------===// 9042 9043 namespace { 9044 class RISCVABIInfo : public DefaultABIInfo { 9045 private: 9046 unsigned XLen; // Size of the integer ('x') registers in bits. 9047 static const int NumArgGPRs = 8; 9048 9049 public: 9050 RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen) 9051 : DefaultABIInfo(CGT), XLen(XLen) {} 9052 9053 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 9054 // non-virtual, but computeInfo is virtual, so we overload it. 9055 void computeInfo(CGFunctionInfo &FI) const override; 9056 9057 ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, 9058 int &ArgGPRsLeft) const; 9059 ABIArgInfo classifyReturnType(QualType RetTy) const; 9060 9061 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9062 QualType Ty) const override; 9063 9064 ABIArgInfo extendType(QualType Ty) const; 9065 }; 9066 } // end anonymous namespace 9067 9068 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const { 9069 QualType RetTy = FI.getReturnType(); 9070 if (!getCXXABI().classifyReturnType(FI)) 9071 FI.getReturnInfo() = classifyReturnType(RetTy); 9072 9073 // IsRetIndirect is true if classifyArgumentType indicated the value should 9074 // be passed indirect or if the type size is greater than 2*xlen. e.g. fp128 9075 // is passed direct in LLVM IR, relying on the backend lowering code to 9076 // rewrite the argument list and pass indirectly on RV32. 9077 bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect || 9078 getContext().getTypeSize(RetTy) > (2 * XLen); 9079 9080 // We must track the number of GPRs used in order to conform to the RISC-V 9081 // ABI, as integer scalars passed in registers should have signext/zeroext 9082 // when promoted, but are anyext if passed on the stack. As GPR usage is 9083 // different for variadic arguments, we must also track whether we are 9084 // examining a vararg or not. 9085 int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs; 9086 int NumFixedArgs = FI.getNumRequiredArgs(); 9087 9088 int ArgNum = 0; 9089 for (auto &ArgInfo : FI.arguments()) { 9090 bool IsFixed = ArgNum < NumFixedArgs; 9091 ArgInfo.info = classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft); 9092 ArgNum++; 9093 } 9094 } 9095 9096 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed, 9097 int &ArgGPRsLeft) const { 9098 assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow"); 9099 Ty = useFirstFieldIfTransparentUnion(Ty); 9100 9101 // Structures with either a non-trivial destructor or a non-trivial 9102 // copy constructor are always passed indirectly. 9103 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 9104 if (ArgGPRsLeft) 9105 ArgGPRsLeft -= 1; 9106 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 9107 CGCXXABI::RAA_DirectInMemory); 9108 } 9109 9110 // Ignore empty structs/unions. 9111 if (isEmptyRecord(getContext(), Ty, true)) 9112 return ABIArgInfo::getIgnore(); 9113 9114 uint64_t Size = getContext().getTypeSize(Ty); 9115 uint64_t NeededAlign = getContext().getTypeAlign(Ty); 9116 bool MustUseStack = false; 9117 // Determine the number of GPRs needed to pass the current argument 9118 // according to the ABI. 2*XLen-aligned varargs are passed in "aligned" 9119 // register pairs, so may consume 3 registers. 9120 int NeededArgGPRs = 1; 9121 if (!IsFixed && NeededAlign == 2 * XLen) 9122 NeededArgGPRs = 2 + (ArgGPRsLeft % 2); 9123 else if (Size > XLen && Size <= 2 * XLen) 9124 NeededArgGPRs = 2; 9125 9126 if (NeededArgGPRs > ArgGPRsLeft) { 9127 MustUseStack = true; 9128 NeededArgGPRs = ArgGPRsLeft; 9129 } 9130 9131 ArgGPRsLeft -= NeededArgGPRs; 9132 9133 if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) { 9134 // Treat an enum type as its underlying type. 9135 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 9136 Ty = EnumTy->getDecl()->getIntegerType(); 9137 9138 // All integral types are promoted to XLen width, unless passed on the 9139 // stack. 9140 if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) { 9141 return extendType(Ty); 9142 } 9143 9144 return ABIArgInfo::getDirect(); 9145 } 9146 9147 // Aggregates which are <= 2*XLen will be passed in registers if possible, 9148 // so coerce to integers. 9149 if (Size <= 2 * XLen) { 9150 unsigned Alignment = getContext().getTypeAlign(Ty); 9151 9152 // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is 9153 // required, and a 2-element XLen array if only XLen alignment is required. 9154 if (Size <= XLen) { 9155 return ABIArgInfo::getDirect( 9156 llvm::IntegerType::get(getVMContext(), XLen)); 9157 } else if (Alignment == 2 * XLen) { 9158 return ABIArgInfo::getDirect( 9159 llvm::IntegerType::get(getVMContext(), 2 * XLen)); 9160 } else { 9161 return ABIArgInfo::getDirect(llvm::ArrayType::get( 9162 llvm::IntegerType::get(getVMContext(), XLen), 2)); 9163 } 9164 } 9165 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 9166 } 9167 9168 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const { 9169 if (RetTy->isVoidType()) 9170 return ABIArgInfo::getIgnore(); 9171 9172 int ArgGPRsLeft = 2; 9173 9174 // The rules for return and argument types are the same, so defer to 9175 // classifyArgumentType. 9176 return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft); 9177 } 9178 9179 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9180 QualType Ty) const { 9181 CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8); 9182 9183 // Empty records are ignored for parameter passing purposes. 9184 if (isEmptyRecord(getContext(), Ty, true)) { 9185 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 9186 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 9187 return Addr; 9188 } 9189 9190 std::pair<CharUnits, CharUnits> SizeAndAlign = 9191 getContext().getTypeInfoInChars(Ty); 9192 9193 // Arguments bigger than 2*Xlen bytes are passed indirectly. 9194 bool IsIndirect = SizeAndAlign.first > 2 * SlotSize; 9195 9196 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, SizeAndAlign, 9197 SlotSize, /*AllowHigherAlign=*/true); 9198 } 9199 9200 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const { 9201 int TySize = getContext().getTypeSize(Ty); 9202 // RV64 ABI requires unsigned 32 bit integers to be sign extended. 9203 if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 9204 return ABIArgInfo::getSignExtend(Ty); 9205 return ABIArgInfo::getExtend(Ty); 9206 } 9207 9208 namespace { 9209 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo { 9210 public: 9211 RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen) 9212 : TargetCodeGenInfo(new RISCVABIInfo(CGT, XLen)) {} 9213 9214 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 9215 CodeGen::CodeGenModule &CGM) const override { 9216 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 9217 if (!FD) return; 9218 9219 const auto *Attr = FD->getAttr<RISCVInterruptAttr>(); 9220 if (!Attr) 9221 return; 9222 9223 const char *Kind; 9224 switch (Attr->getInterrupt()) { 9225 case RISCVInterruptAttr::user: Kind = "user"; break; 9226 case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break; 9227 case RISCVInterruptAttr::machine: Kind = "machine"; break; 9228 } 9229 9230 auto *Fn = cast<llvm::Function>(GV); 9231 9232 Fn->addFnAttr("interrupt", Kind); 9233 } 9234 }; 9235 } // namespace 9236 9237 //===----------------------------------------------------------------------===// 9238 // Driver code 9239 //===----------------------------------------------------------------------===// 9240 9241 bool CodeGenModule::supportsCOMDAT() const { 9242 return getTriple().supportsCOMDAT(); 9243 } 9244 9245 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 9246 if (TheTargetCodeGenInfo) 9247 return *TheTargetCodeGenInfo; 9248 9249 // Helper to set the unique_ptr while still keeping the return value. 9250 auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & { 9251 this->TheTargetCodeGenInfo.reset(P); 9252 return *P; 9253 }; 9254 9255 const llvm::Triple &Triple = getTarget().getTriple(); 9256 switch (Triple.getArch()) { 9257 default: 9258 return SetCGInfo(new DefaultTargetCodeGenInfo(Types)); 9259 9260 case llvm::Triple::le32: 9261 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 9262 case llvm::Triple::mips: 9263 case llvm::Triple::mipsel: 9264 if (Triple.getOS() == llvm::Triple::NaCl) 9265 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 9266 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true)); 9267 9268 case llvm::Triple::mips64: 9269 case llvm::Triple::mips64el: 9270 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false)); 9271 9272 case llvm::Triple::avr: 9273 return SetCGInfo(new AVRTargetCodeGenInfo(Types)); 9274 9275 case llvm::Triple::aarch64: 9276 case llvm::Triple::aarch64_be: { 9277 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 9278 if (getTarget().getABI() == "darwinpcs") 9279 Kind = AArch64ABIInfo::DarwinPCS; 9280 else if (Triple.isOSWindows()) 9281 return SetCGInfo( 9282 new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64)); 9283 9284 return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind)); 9285 } 9286 9287 case llvm::Triple::wasm32: 9288 case llvm::Triple::wasm64: 9289 return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types)); 9290 9291 case llvm::Triple::arm: 9292 case llvm::Triple::armeb: 9293 case llvm::Triple::thumb: 9294 case llvm::Triple::thumbeb: { 9295 if (Triple.getOS() == llvm::Triple::Win32) { 9296 return SetCGInfo( 9297 new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP)); 9298 } 9299 9300 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 9301 StringRef ABIStr = getTarget().getABI(); 9302 if (ABIStr == "apcs-gnu") 9303 Kind = ARMABIInfo::APCS; 9304 else if (ABIStr == "aapcs16") 9305 Kind = ARMABIInfo::AAPCS16_VFP; 9306 else if (CodeGenOpts.FloatABI == "hard" || 9307 (CodeGenOpts.FloatABI != "soft" && 9308 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 9309 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 9310 Triple.getEnvironment() == llvm::Triple::EABIHF))) 9311 Kind = ARMABIInfo::AAPCS_VFP; 9312 9313 return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind)); 9314 } 9315 9316 case llvm::Triple::ppc: 9317 return SetCGInfo( 9318 new PPC32TargetCodeGenInfo(Types, CodeGenOpts.FloatABI == "soft")); 9319 case llvm::Triple::ppc64: 9320 if (Triple.isOSBinFormatELF()) { 9321 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 9322 if (getTarget().getABI() == "elfv2") 9323 Kind = PPC64_SVR4_ABIInfo::ELFv2; 9324 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 9325 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 9326 9327 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 9328 IsSoftFloat)); 9329 } else 9330 return SetCGInfo(new PPC64TargetCodeGenInfo(Types)); 9331 case llvm::Triple::ppc64le: { 9332 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 9333 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 9334 if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx") 9335 Kind = PPC64_SVR4_ABIInfo::ELFv1; 9336 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 9337 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 9338 9339 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 9340 IsSoftFloat)); 9341 } 9342 9343 case llvm::Triple::nvptx: 9344 case llvm::Triple::nvptx64: 9345 return SetCGInfo(new NVPTXTargetCodeGenInfo(Types)); 9346 9347 case llvm::Triple::msp430: 9348 return SetCGInfo(new MSP430TargetCodeGenInfo(Types)); 9349 9350 case llvm::Triple::riscv32: 9351 return SetCGInfo(new RISCVTargetCodeGenInfo(Types, 32)); 9352 case llvm::Triple::riscv64: 9353 return SetCGInfo(new RISCVTargetCodeGenInfo(Types, 64)); 9354 9355 case llvm::Triple::systemz: { 9356 bool HasVector = getTarget().getABI() == "vector"; 9357 return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector)); 9358 } 9359 9360 case llvm::Triple::tce: 9361 case llvm::Triple::tcele: 9362 return SetCGInfo(new TCETargetCodeGenInfo(Types)); 9363 9364 case llvm::Triple::x86: { 9365 bool IsDarwinVectorABI = Triple.isOSDarwin(); 9366 bool RetSmallStructInRegABI = 9367 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 9368 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 9369 9370 if (Triple.getOS() == llvm::Triple::Win32) { 9371 return SetCGInfo(new WinX86_32TargetCodeGenInfo( 9372 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 9373 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); 9374 } else { 9375 return SetCGInfo(new X86_32TargetCodeGenInfo( 9376 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 9377 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters, 9378 CodeGenOpts.FloatABI == "soft")); 9379 } 9380 } 9381 9382 case llvm::Triple::x86_64: { 9383 StringRef ABI = getTarget().getABI(); 9384 X86AVXABILevel AVXLevel = 9385 (ABI == "avx512" 9386 ? X86AVXABILevel::AVX512 9387 : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None); 9388 9389 switch (Triple.getOS()) { 9390 case llvm::Triple::Win32: 9391 return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel)); 9392 case llvm::Triple::PS4: 9393 return SetCGInfo(new PS4TargetCodeGenInfo(Types, AVXLevel)); 9394 default: 9395 return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel)); 9396 } 9397 } 9398 case llvm::Triple::hexagon: 9399 return SetCGInfo(new HexagonTargetCodeGenInfo(Types)); 9400 case llvm::Triple::lanai: 9401 return SetCGInfo(new LanaiTargetCodeGenInfo(Types)); 9402 case llvm::Triple::r600: 9403 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 9404 case llvm::Triple::amdgcn: 9405 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 9406 case llvm::Triple::sparc: 9407 return SetCGInfo(new SparcV8TargetCodeGenInfo(Types)); 9408 case llvm::Triple::sparcv9: 9409 return SetCGInfo(new SparcV9TargetCodeGenInfo(Types)); 9410 case llvm::Triple::xcore: 9411 return SetCGInfo(new XCoreTargetCodeGenInfo(Types)); 9412 case llvm::Triple::arc: 9413 return SetCGInfo(new ARCTargetCodeGenInfo(Types)); 9414 case llvm::Triple::spir: 9415 case llvm::Triple::spir64: 9416 return SetCGInfo(new SPIRTargetCodeGenInfo(Types)); 9417 } 9418 } 9419 9420 /// Create an OpenCL kernel for an enqueued block. 9421 /// 9422 /// The kernel has the same function type as the block invoke function. Its 9423 /// name is the name of the block invoke function postfixed with "_kernel". 9424 /// It simply calls the block invoke function then returns. 9425 llvm::Function * 9426 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF, 9427 llvm::Function *Invoke, 9428 llvm::Value *BlockLiteral) const { 9429 auto *InvokeFT = Invoke->getFunctionType(); 9430 llvm::SmallVector<llvm::Type *, 2> ArgTys; 9431 for (auto &P : InvokeFT->params()) 9432 ArgTys.push_back(P); 9433 auto &C = CGF.getLLVMContext(); 9434 std::string Name = Invoke->getName().str() + "_kernel"; 9435 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 9436 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 9437 &CGF.CGM.getModule()); 9438 auto IP = CGF.Builder.saveIP(); 9439 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 9440 auto &Builder = CGF.Builder; 9441 Builder.SetInsertPoint(BB); 9442 llvm::SmallVector<llvm::Value *, 2> Args; 9443 for (auto &A : F->args()) 9444 Args.push_back(&A); 9445 Builder.CreateCall(Invoke, Args); 9446 Builder.CreateRetVoid(); 9447 Builder.restoreIP(IP); 9448 return F; 9449 } 9450 9451 /// Create an OpenCL kernel for an enqueued block. 9452 /// 9453 /// The type of the first argument (the block literal) is the struct type 9454 /// of the block literal instead of a pointer type. The first argument 9455 /// (block literal) is passed directly by value to the kernel. The kernel 9456 /// allocates the same type of struct on stack and stores the block literal 9457 /// to it and passes its pointer to the block invoke function. The kernel 9458 /// has "enqueued-block" function attribute and kernel argument metadata. 9459 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel( 9460 CodeGenFunction &CGF, llvm::Function *Invoke, 9461 llvm::Value *BlockLiteral) const { 9462 auto &Builder = CGF.Builder; 9463 auto &C = CGF.getLLVMContext(); 9464 9465 auto *BlockTy = BlockLiteral->getType()->getPointerElementType(); 9466 auto *InvokeFT = Invoke->getFunctionType(); 9467 llvm::SmallVector<llvm::Type *, 2> ArgTys; 9468 llvm::SmallVector<llvm::Metadata *, 8> AddressQuals; 9469 llvm::SmallVector<llvm::Metadata *, 8> AccessQuals; 9470 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames; 9471 llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames; 9472 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals; 9473 llvm::SmallVector<llvm::Metadata *, 8> ArgNames; 9474 9475 ArgTys.push_back(BlockTy); 9476 ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 9477 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0))); 9478 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 9479 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 9480 AccessQuals.push_back(llvm::MDString::get(C, "none")); 9481 ArgNames.push_back(llvm::MDString::get(C, "block_literal")); 9482 for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) { 9483 ArgTys.push_back(InvokeFT->getParamType(I)); 9484 ArgTypeNames.push_back(llvm::MDString::get(C, "void*")); 9485 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3))); 9486 AccessQuals.push_back(llvm::MDString::get(C, "none")); 9487 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*")); 9488 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 9489 ArgNames.push_back( 9490 llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str())); 9491 } 9492 std::string Name = Invoke->getName().str() + "_kernel"; 9493 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 9494 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 9495 &CGF.CGM.getModule()); 9496 F->addFnAttr("enqueued-block"); 9497 auto IP = CGF.Builder.saveIP(); 9498 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 9499 Builder.SetInsertPoint(BB); 9500 unsigned BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(BlockTy); 9501 auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr); 9502 BlockPtr->setAlignment(BlockAlign); 9503 Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign); 9504 auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0)); 9505 llvm::SmallVector<llvm::Value *, 2> Args; 9506 Args.push_back(Cast); 9507 for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I) 9508 Args.push_back(I); 9509 Builder.CreateCall(Invoke, Args); 9510 Builder.CreateRetVoid(); 9511 Builder.restoreIP(IP); 9512 9513 F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals)); 9514 F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals)); 9515 F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames)); 9516 F->setMetadata("kernel_arg_base_type", 9517 llvm::MDNode::get(C, ArgBaseTypeNames)); 9518 F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals)); 9519 if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 9520 F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames)); 9521 9522 return F; 9523 } 9524