1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes wrap the information about a call or function 11 // definition used to handle ABI compliancy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "TargetInfo.h" 16 #include "ABIInfo.h" 17 #include "CGCXXABI.h" 18 #include "CGValue.h" 19 #include "CodeGenFunction.h" 20 #include "clang/AST/RecordLayout.h" 21 #include "clang/CodeGen/CGFunctionInfo.h" 22 #include "clang/CodeGen/SwiftCallingConv.h" 23 #include "clang/Frontend/CodeGenOptions.h" 24 #include "llvm/ADT/StringExtras.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/Type.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include <algorithm> // std::sort 30 31 using namespace clang; 32 using namespace CodeGen; 33 34 // Helper for coercing an aggregate argument or return value into an integer 35 // array of the same size (including padding) and alignment. This alternate 36 // coercion happens only for the RenderScript ABI and can be removed after 37 // runtimes that rely on it are no longer supported. 38 // 39 // RenderScript assumes that the size of the argument / return value in the IR 40 // is the same as the size of the corresponding qualified type. This helper 41 // coerces the aggregate type into an array of the same size (including 42 // padding). This coercion is used in lieu of expansion of struct members or 43 // other canonical coercions that return a coerced-type of larger size. 44 // 45 // Ty - The argument / return value type 46 // Context - The associated ASTContext 47 // LLVMContext - The associated LLVMContext 48 static ABIArgInfo coerceToIntArray(QualType Ty, 49 ASTContext &Context, 50 llvm::LLVMContext &LLVMContext) { 51 // Alignment and Size are measured in bits. 52 const uint64_t Size = Context.getTypeSize(Ty); 53 const uint64_t Alignment = Context.getTypeAlign(Ty); 54 llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment); 55 const uint64_t NumElements = (Size + Alignment - 1) / Alignment; 56 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 57 } 58 59 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 60 llvm::Value *Array, 61 llvm::Value *Value, 62 unsigned FirstIndex, 63 unsigned LastIndex) { 64 // Alternatively, we could emit this as a loop in the source. 65 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 66 llvm::Value *Cell = 67 Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); 68 Builder.CreateAlignedStore(Value, Cell, CharUnits::One()); 69 } 70 } 71 72 static bool isAggregateTypeForABI(QualType T) { 73 return !CodeGenFunction::hasScalarEvaluationKind(T) || 74 T->isMemberFunctionPointerType(); 75 } 76 77 ABIArgInfo 78 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign, 79 llvm::Type *Padding) const { 80 return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), 81 ByRef, Realign, Padding); 82 } 83 84 ABIArgInfo 85 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const { 86 return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty), 87 /*ByRef*/ false, Realign); 88 } 89 90 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 91 QualType Ty) const { 92 return Address::invalid(); 93 } 94 95 ABIInfo::~ABIInfo() {} 96 97 /// Does the given lowering require more than the given number of 98 /// registers when expanded? 99 /// 100 /// This is intended to be the basis of a reasonable basic implementation 101 /// of should{Pass,Return}IndirectlyForSwift. 102 /// 103 /// For most targets, a limit of four total registers is reasonable; this 104 /// limits the amount of code required in order to move around the value 105 /// in case it wasn't produced immediately prior to the call by the caller 106 /// (or wasn't produced in exactly the right registers) or isn't used 107 /// immediately within the callee. But some targets may need to further 108 /// limit the register count due to an inability to support that many 109 /// return registers. 110 static bool occupiesMoreThan(CodeGenTypes &cgt, 111 ArrayRef<llvm::Type*> scalarTypes, 112 unsigned maxAllRegisters) { 113 unsigned intCount = 0, fpCount = 0; 114 for (llvm::Type *type : scalarTypes) { 115 if (type->isPointerTy()) { 116 intCount++; 117 } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) { 118 auto ptrWidth = cgt.getTarget().getPointerWidth(0); 119 intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth; 120 } else { 121 assert(type->isVectorTy() || type->isFloatingPointTy()); 122 fpCount++; 123 } 124 } 125 126 return (intCount + fpCount > maxAllRegisters); 127 } 128 129 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 130 llvm::Type *eltTy, 131 unsigned numElts) const { 132 // The default implementation of this assumes that the target guarantees 133 // 128-bit SIMD support but nothing more. 134 return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16); 135 } 136 137 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 138 CGCXXABI &CXXABI) { 139 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 140 if (!RD) 141 return CGCXXABI::RAA_Default; 142 return CXXABI.getRecordArgABI(RD); 143 } 144 145 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 146 CGCXXABI &CXXABI) { 147 const RecordType *RT = T->getAs<RecordType>(); 148 if (!RT) 149 return CGCXXABI::RAA_Default; 150 return getRecordArgABI(RT, CXXABI); 151 } 152 153 /// Pass transparent unions as if they were the type of the first element. Sema 154 /// should ensure that all elements of the union have the same "machine type". 155 static QualType useFirstFieldIfTransparentUnion(QualType Ty) { 156 if (const RecordType *UT = Ty->getAsUnionType()) { 157 const RecordDecl *UD = UT->getDecl(); 158 if (UD->hasAttr<TransparentUnionAttr>()) { 159 assert(!UD->field_empty() && "sema created an empty transparent union"); 160 return UD->field_begin()->getType(); 161 } 162 } 163 return Ty; 164 } 165 166 CGCXXABI &ABIInfo::getCXXABI() const { 167 return CGT.getCXXABI(); 168 } 169 170 ASTContext &ABIInfo::getContext() const { 171 return CGT.getContext(); 172 } 173 174 llvm::LLVMContext &ABIInfo::getVMContext() const { 175 return CGT.getLLVMContext(); 176 } 177 178 const llvm::DataLayout &ABIInfo::getDataLayout() const { 179 return CGT.getDataLayout(); 180 } 181 182 const TargetInfo &ABIInfo::getTarget() const { 183 return CGT.getTarget(); 184 } 185 186 bool ABIInfo:: isAndroid() const { return getTarget().getTriple().isAndroid(); } 187 188 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 189 return false; 190 } 191 192 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 193 uint64_t Members) const { 194 return false; 195 } 196 197 bool ABIInfo::shouldSignExtUnsignedType(QualType Ty) const { 198 return false; 199 } 200 201 LLVM_DUMP_METHOD void ABIArgInfo::dump() const { 202 raw_ostream &OS = llvm::errs(); 203 OS << "(ABIArgInfo Kind="; 204 switch (TheKind) { 205 case Direct: 206 OS << "Direct Type="; 207 if (llvm::Type *Ty = getCoerceToType()) 208 Ty->print(OS); 209 else 210 OS << "null"; 211 break; 212 case Extend: 213 OS << "Extend"; 214 break; 215 case Ignore: 216 OS << "Ignore"; 217 break; 218 case InAlloca: 219 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 220 break; 221 case Indirect: 222 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 223 << " ByVal=" << getIndirectByVal() 224 << " Realign=" << getIndirectRealign(); 225 break; 226 case Expand: 227 OS << "Expand"; 228 break; 229 case CoerceAndExpand: 230 OS << "CoerceAndExpand Type="; 231 getCoerceAndExpandType()->print(OS); 232 break; 233 } 234 OS << ")\n"; 235 } 236 237 // Dynamically round a pointer up to a multiple of the given alignment. 238 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF, 239 llvm::Value *Ptr, 240 CharUnits Align) { 241 llvm::Value *PtrAsInt = Ptr; 242 // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align; 243 PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy); 244 PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt, 245 llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1)); 246 PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt, 247 llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity())); 248 PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt, 249 Ptr->getType(), 250 Ptr->getName() + ".aligned"); 251 return PtrAsInt; 252 } 253 254 /// Emit va_arg for a platform using the common void* representation, 255 /// where arguments are simply emitted in an array of slots on the stack. 256 /// 257 /// This version implements the core direct-value passing rules. 258 /// 259 /// \param SlotSize - The size and alignment of a stack slot. 260 /// Each argument will be allocated to a multiple of this number of 261 /// slots, and all the slots will be aligned to this value. 262 /// \param AllowHigherAlign - The slot alignment is not a cap; 263 /// an argument type with an alignment greater than the slot size 264 /// will be emitted on a higher-alignment address, potentially 265 /// leaving one or more empty slots behind as padding. If this 266 /// is false, the returned address might be less-aligned than 267 /// DirectAlign. 268 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF, 269 Address VAListAddr, 270 llvm::Type *DirectTy, 271 CharUnits DirectSize, 272 CharUnits DirectAlign, 273 CharUnits SlotSize, 274 bool AllowHigherAlign) { 275 // Cast the element type to i8* if necessary. Some platforms define 276 // va_list as a struct containing an i8* instead of just an i8*. 277 if (VAListAddr.getElementType() != CGF.Int8PtrTy) 278 VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy); 279 280 llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur"); 281 282 // If the CC aligns values higher than the slot size, do so if needed. 283 Address Addr = Address::invalid(); 284 if (AllowHigherAlign && DirectAlign > SlotSize) { 285 Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign), 286 DirectAlign); 287 } else { 288 Addr = Address(Ptr, SlotSize); 289 } 290 291 // Advance the pointer past the argument, then store that back. 292 CharUnits FullDirectSize = DirectSize.alignTo(SlotSize); 293 llvm::Value *NextPtr = 294 CGF.Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), FullDirectSize, 295 "argp.next"); 296 CGF.Builder.CreateStore(NextPtr, VAListAddr); 297 298 // If the argument is smaller than a slot, and this is a big-endian 299 // target, the argument will be right-adjusted in its slot. 300 if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() && 301 !DirectTy->isStructTy()) { 302 Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize); 303 } 304 305 Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy); 306 return Addr; 307 } 308 309 /// Emit va_arg for a platform using the common void* representation, 310 /// where arguments are simply emitted in an array of slots on the stack. 311 /// 312 /// \param IsIndirect - Values of this type are passed indirectly. 313 /// \param ValueInfo - The size and alignment of this type, generally 314 /// computed with getContext().getTypeInfoInChars(ValueTy). 315 /// \param SlotSizeAndAlign - The size and alignment of a stack slot. 316 /// Each argument will be allocated to a multiple of this number of 317 /// slots, and all the slots will be aligned to this value. 318 /// \param AllowHigherAlign - The slot alignment is not a cap; 319 /// an argument type with an alignment greater than the slot size 320 /// will be emitted on a higher-alignment address, potentially 321 /// leaving one or more empty slots behind as padding. 322 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr, 323 QualType ValueTy, bool IsIndirect, 324 std::pair<CharUnits, CharUnits> ValueInfo, 325 CharUnits SlotSizeAndAlign, 326 bool AllowHigherAlign) { 327 // The size and alignment of the value that was passed directly. 328 CharUnits DirectSize, DirectAlign; 329 if (IsIndirect) { 330 DirectSize = CGF.getPointerSize(); 331 DirectAlign = CGF.getPointerAlign(); 332 } else { 333 DirectSize = ValueInfo.first; 334 DirectAlign = ValueInfo.second; 335 } 336 337 // Cast the address we've calculated to the right type. 338 llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy); 339 if (IsIndirect) 340 DirectTy = DirectTy->getPointerTo(0); 341 342 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy, 343 DirectSize, DirectAlign, 344 SlotSizeAndAlign, 345 AllowHigherAlign); 346 347 if (IsIndirect) { 348 Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second); 349 } 350 351 return Addr; 352 353 } 354 355 static Address emitMergePHI(CodeGenFunction &CGF, 356 Address Addr1, llvm::BasicBlock *Block1, 357 Address Addr2, llvm::BasicBlock *Block2, 358 const llvm::Twine &Name = "") { 359 assert(Addr1.getType() == Addr2.getType()); 360 llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name); 361 PHI->addIncoming(Addr1.getPointer(), Block1); 362 PHI->addIncoming(Addr2.getPointer(), Block2); 363 CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment()); 364 return Address(PHI, Align); 365 } 366 367 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; } 368 369 // If someone can figure out a general rule for this, that would be great. 370 // It's probably just doomed to be platform-dependent, though. 371 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 372 // Verified for: 373 // x86-64 FreeBSD, Linux, Darwin 374 // x86-32 FreeBSD, Linux, Darwin 375 // PowerPC Linux, Darwin 376 // ARM Darwin (*not* EABI) 377 // AArch64 Linux 378 return 32; 379 } 380 381 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 382 const FunctionNoProtoType *fnType) const { 383 // The following conventions are known to require this to be false: 384 // x86_stdcall 385 // MIPS 386 // For everything else, we just prefer false unless we opt out. 387 return false; 388 } 389 390 void 391 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 392 llvm::SmallString<24> &Opt) const { 393 // This assumes the user is passing a library name like "rt" instead of a 394 // filename like "librt.a/so", and that they don't care whether it's static or 395 // dynamic. 396 Opt = "-l"; 397 Opt += Lib; 398 } 399 400 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const { 401 return llvm::CallingConv::C; 402 } 403 404 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 405 406 /// isEmptyField - Return true iff a the field is "empty", that is it 407 /// is an unnamed bit-field or an (array of) empty record(s). 408 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 409 bool AllowArrays) { 410 if (FD->isUnnamedBitfield()) 411 return true; 412 413 QualType FT = FD->getType(); 414 415 // Constant arrays of empty records count as empty, strip them off. 416 // Constant arrays of zero length always count as empty. 417 if (AllowArrays) 418 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 419 if (AT->getSize() == 0) 420 return true; 421 FT = AT->getElementType(); 422 } 423 424 const RecordType *RT = FT->getAs<RecordType>(); 425 if (!RT) 426 return false; 427 428 // C++ record fields are never empty, at least in the Itanium ABI. 429 // 430 // FIXME: We should use a predicate for whether this behavior is true in the 431 // current ABI. 432 if (isa<CXXRecordDecl>(RT->getDecl())) 433 return false; 434 435 return isEmptyRecord(Context, FT, AllowArrays); 436 } 437 438 /// isEmptyRecord - Return true iff a structure contains only empty 439 /// fields. Note that a structure with a flexible array member is not 440 /// considered empty. 441 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 442 const RecordType *RT = T->getAs<RecordType>(); 443 if (!RT) 444 return false; 445 const RecordDecl *RD = RT->getDecl(); 446 if (RD->hasFlexibleArrayMember()) 447 return false; 448 449 // If this is a C++ record, check the bases first. 450 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 451 for (const auto &I : CXXRD->bases()) 452 if (!isEmptyRecord(Context, I.getType(), true)) 453 return false; 454 455 for (const auto *I : RD->fields()) 456 if (!isEmptyField(Context, I, AllowArrays)) 457 return false; 458 return true; 459 } 460 461 /// isSingleElementStruct - Determine if a structure is a "single 462 /// element struct", i.e. it has exactly one non-empty field or 463 /// exactly one field which is itself a single element 464 /// struct. Structures with flexible array members are never 465 /// considered single element structs. 466 /// 467 /// \return The field declaration for the single non-empty field, if 468 /// it exists. 469 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 470 const RecordType *RT = T->getAs<RecordType>(); 471 if (!RT) 472 return nullptr; 473 474 const RecordDecl *RD = RT->getDecl(); 475 if (RD->hasFlexibleArrayMember()) 476 return nullptr; 477 478 const Type *Found = nullptr; 479 480 // If this is a C++ record, check the bases first. 481 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 482 for (const auto &I : CXXRD->bases()) { 483 // Ignore empty records. 484 if (isEmptyRecord(Context, I.getType(), true)) 485 continue; 486 487 // If we already found an element then this isn't a single-element struct. 488 if (Found) 489 return nullptr; 490 491 // If this is non-empty and not a single element struct, the composite 492 // cannot be a single element struct. 493 Found = isSingleElementStruct(I.getType(), Context); 494 if (!Found) 495 return nullptr; 496 } 497 } 498 499 // Check for single element. 500 for (const auto *FD : RD->fields()) { 501 QualType FT = FD->getType(); 502 503 // Ignore empty fields. 504 if (isEmptyField(Context, FD, true)) 505 continue; 506 507 // If we already found an element then this isn't a single-element 508 // struct. 509 if (Found) 510 return nullptr; 511 512 // Treat single element arrays as the element. 513 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 514 if (AT->getSize().getZExtValue() != 1) 515 break; 516 FT = AT->getElementType(); 517 } 518 519 if (!isAggregateTypeForABI(FT)) { 520 Found = FT.getTypePtr(); 521 } else { 522 Found = isSingleElementStruct(FT, Context); 523 if (!Found) 524 return nullptr; 525 } 526 } 527 528 // We don't consider a struct a single-element struct if it has 529 // padding beyond the element type. 530 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 531 return nullptr; 532 533 return Found; 534 } 535 536 namespace { 537 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, 538 const ABIArgInfo &AI) { 539 // This default implementation defers to the llvm backend's va_arg 540 // instruction. It can handle only passing arguments directly 541 // (typically only handled in the backend for primitive types), or 542 // aggregates passed indirectly by pointer (NOTE: if the "byval" 543 // flag has ABI impact in the callee, this implementation cannot 544 // work.) 545 546 // Only a few cases are covered here at the moment -- those needed 547 // by the default abi. 548 llvm::Value *Val; 549 550 if (AI.isIndirect()) { 551 assert(!AI.getPaddingType() && 552 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 553 assert( 554 !AI.getIndirectRealign() && 555 "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!"); 556 557 auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty); 558 CharUnits TyAlignForABI = TyInfo.second; 559 560 llvm::Type *BaseTy = 561 llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 562 llvm::Value *Addr = 563 CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy); 564 return Address(Addr, TyAlignForABI); 565 } else { 566 assert((AI.isDirect() || AI.isExtend()) && 567 "Unexpected ArgInfo Kind in generic VAArg emitter!"); 568 569 assert(!AI.getInReg() && 570 "Unexpected InReg seen in arginfo in generic VAArg emitter!"); 571 assert(!AI.getPaddingType() && 572 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 573 assert(!AI.getDirectOffset() && 574 "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!"); 575 assert(!AI.getCoerceToType() && 576 "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!"); 577 578 Address Temp = CGF.CreateMemTemp(Ty, "varet"); 579 Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty)); 580 CGF.Builder.CreateStore(Val, Temp); 581 return Temp; 582 } 583 } 584 585 /// DefaultABIInfo - The default implementation for ABI specific 586 /// details. This implementation provides information which results in 587 /// self-consistent and sensible LLVM IR generation, but does not 588 /// conform to any particular ABI. 589 class DefaultABIInfo : public ABIInfo { 590 public: 591 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 592 593 ABIArgInfo classifyReturnType(QualType RetTy) const; 594 ABIArgInfo classifyArgumentType(QualType RetTy) const; 595 596 void computeInfo(CGFunctionInfo &FI) const override { 597 if (!getCXXABI().classifyReturnType(FI)) 598 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 599 for (auto &I : FI.arguments()) 600 I.info = classifyArgumentType(I.type); 601 } 602 603 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 604 QualType Ty) const override { 605 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 606 } 607 }; 608 609 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 610 public: 611 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 612 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 613 }; 614 615 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 616 Ty = useFirstFieldIfTransparentUnion(Ty); 617 618 if (isAggregateTypeForABI(Ty)) { 619 // Records with non-trivial destructors/copy-constructors should not be 620 // passed by value. 621 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 622 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 623 624 return getNaturalAlignIndirect(Ty); 625 } 626 627 // Treat an enum type as its underlying type. 628 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 629 Ty = EnumTy->getDecl()->getIntegerType(); 630 631 return (Ty->isPromotableIntegerType() ? 632 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 633 } 634 635 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 636 if (RetTy->isVoidType()) 637 return ABIArgInfo::getIgnore(); 638 639 if (isAggregateTypeForABI(RetTy)) 640 return getNaturalAlignIndirect(RetTy); 641 642 // Treat an enum type as its underlying type. 643 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 644 RetTy = EnumTy->getDecl()->getIntegerType(); 645 646 return (RetTy->isPromotableIntegerType() ? 647 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 648 } 649 650 //===----------------------------------------------------------------------===// 651 // WebAssembly ABI Implementation 652 // 653 // This is a very simple ABI that relies a lot on DefaultABIInfo. 654 //===----------------------------------------------------------------------===// 655 656 class WebAssemblyABIInfo final : public DefaultABIInfo { 657 public: 658 explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT) 659 : DefaultABIInfo(CGT) {} 660 661 private: 662 ABIArgInfo classifyReturnType(QualType RetTy) const; 663 ABIArgInfo classifyArgumentType(QualType Ty) const; 664 665 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 666 // non-virtual, but computeInfo and EmitVAArg are virtual, so we 667 // overload them. 668 void computeInfo(CGFunctionInfo &FI) const override { 669 if (!getCXXABI().classifyReturnType(FI)) 670 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 671 for (auto &Arg : FI.arguments()) 672 Arg.info = classifyArgumentType(Arg.type); 673 } 674 675 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 676 QualType Ty) const override; 677 }; 678 679 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo { 680 public: 681 explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 682 : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT)) {} 683 }; 684 685 /// \brief Classify argument of given type \p Ty. 686 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const { 687 Ty = useFirstFieldIfTransparentUnion(Ty); 688 689 if (isAggregateTypeForABI(Ty)) { 690 // Records with non-trivial destructors/copy-constructors should not be 691 // passed by value. 692 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 693 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 694 // Ignore empty structs/unions. 695 if (isEmptyRecord(getContext(), Ty, true)) 696 return ABIArgInfo::getIgnore(); 697 // Lower single-element structs to just pass a regular value. TODO: We 698 // could do reasonable-size multiple-element structs too, using getExpand(), 699 // though watch out for things like bitfields. 700 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 701 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 702 } 703 704 // Otherwise just do the default thing. 705 return DefaultABIInfo::classifyArgumentType(Ty); 706 } 707 708 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const { 709 if (isAggregateTypeForABI(RetTy)) { 710 // Records with non-trivial destructors/copy-constructors should not be 711 // returned by value. 712 if (!getRecordArgABI(RetTy, getCXXABI())) { 713 // Ignore empty structs/unions. 714 if (isEmptyRecord(getContext(), RetTy, true)) 715 return ABIArgInfo::getIgnore(); 716 // Lower single-element structs to just return a regular value. TODO: We 717 // could do reasonable-size multiple-element structs too, using 718 // ABIArgInfo::getDirect(). 719 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 720 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 721 } 722 } 723 724 // Otherwise just do the default thing. 725 return DefaultABIInfo::classifyReturnType(RetTy); 726 } 727 728 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 729 QualType Ty) const { 730 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect=*/ false, 731 getContext().getTypeInfoInChars(Ty), 732 CharUnits::fromQuantity(4), 733 /*AllowHigherAlign=*/ true); 734 } 735 736 //===----------------------------------------------------------------------===// 737 // le32/PNaCl bitcode ABI Implementation 738 // 739 // This is a simplified version of the x86_32 ABI. Arguments and return values 740 // are always passed on the stack. 741 //===----------------------------------------------------------------------===// 742 743 class PNaClABIInfo : public ABIInfo { 744 public: 745 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 746 747 ABIArgInfo classifyReturnType(QualType RetTy) const; 748 ABIArgInfo classifyArgumentType(QualType RetTy) const; 749 750 void computeInfo(CGFunctionInfo &FI) const override; 751 Address EmitVAArg(CodeGenFunction &CGF, 752 Address VAListAddr, QualType Ty) const override; 753 }; 754 755 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 756 public: 757 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 758 : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {} 759 }; 760 761 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 762 if (!getCXXABI().classifyReturnType(FI)) 763 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 764 765 for (auto &I : FI.arguments()) 766 I.info = classifyArgumentType(I.type); 767 } 768 769 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 770 QualType Ty) const { 771 // The PNaCL ABI is a bit odd, in that varargs don't use normal 772 // function classification. Structs get passed directly for varargs 773 // functions, through a rewriting transform in 774 // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows 775 // this target to actually support a va_arg instructions with an 776 // aggregate type, unlike other targets. 777 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 778 } 779 780 /// \brief Classify argument of given type \p Ty. 781 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 782 if (isAggregateTypeForABI(Ty)) { 783 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 784 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 785 return getNaturalAlignIndirect(Ty); 786 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 787 // Treat an enum type as its underlying type. 788 Ty = EnumTy->getDecl()->getIntegerType(); 789 } else if (Ty->isFloatingType()) { 790 // Floating-point types don't go inreg. 791 return ABIArgInfo::getDirect(); 792 } 793 794 return (Ty->isPromotableIntegerType() ? 795 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 796 } 797 798 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 799 if (RetTy->isVoidType()) 800 return ABIArgInfo::getIgnore(); 801 802 // In the PNaCl ABI we always return records/structures on the stack. 803 if (isAggregateTypeForABI(RetTy)) 804 return getNaturalAlignIndirect(RetTy); 805 806 // Treat an enum type as its underlying type. 807 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 808 RetTy = EnumTy->getDecl()->getIntegerType(); 809 810 return (RetTy->isPromotableIntegerType() ? 811 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 812 } 813 814 /// IsX86_MMXType - Return true if this is an MMX type. 815 bool IsX86_MMXType(llvm::Type *IRType) { 816 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 817 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 818 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 819 IRType->getScalarSizeInBits() != 64; 820 } 821 822 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 823 StringRef Constraint, 824 llvm::Type* Ty) { 825 if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) { 826 if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) { 827 // Invalid MMX constraint 828 return nullptr; 829 } 830 831 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 832 } 833 834 // No operation needed 835 return Ty; 836 } 837 838 /// Returns true if this type can be passed in SSE registers with the 839 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 840 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 841 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 842 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) 843 return true; 844 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 845 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 846 // registers specially. 847 unsigned VecSize = Context.getTypeSize(VT); 848 if (VecSize == 128 || VecSize == 256 || VecSize == 512) 849 return true; 850 } 851 return false; 852 } 853 854 /// Returns true if this aggregate is small enough to be passed in SSE registers 855 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 856 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 857 return NumMembers <= 4; 858 } 859 860 //===----------------------------------------------------------------------===// 861 // X86-32 ABI Implementation 862 //===----------------------------------------------------------------------===// 863 864 /// \brief Similar to llvm::CCState, but for Clang. 865 struct CCState { 866 CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {} 867 868 unsigned CC; 869 unsigned FreeRegs; 870 unsigned FreeSSERegs; 871 }; 872 873 /// X86_32ABIInfo - The X86-32 ABI information. 874 class X86_32ABIInfo : public SwiftABIInfo { 875 enum Class { 876 Integer, 877 Float 878 }; 879 880 static const unsigned MinABIStackAlignInBytes = 4; 881 882 bool IsDarwinVectorABI; 883 bool IsRetSmallStructInRegABI; 884 bool IsWin32StructABI; 885 bool IsSoftFloatABI; 886 bool IsMCUABI; 887 unsigned DefaultNumRegisterParameters; 888 889 static bool isRegisterSize(unsigned Size) { 890 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 891 } 892 893 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 894 // FIXME: Assumes vectorcall is in use. 895 return isX86VectorTypeForVectorCall(getContext(), Ty); 896 } 897 898 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 899 uint64_t NumMembers) const override { 900 // FIXME: Assumes vectorcall is in use. 901 return isX86VectorCallAggregateSmallEnough(NumMembers); 902 } 903 904 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 905 906 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 907 /// such that the argument will be passed in memory. 908 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 909 910 ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; 911 912 /// \brief Return the alignment to use for the given type on the stack. 913 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 914 915 Class classify(QualType Ty) const; 916 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 917 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 918 /// \brief Updates the number of available free registers, returns 919 /// true if any registers were allocated. 920 bool updateFreeRegs(QualType Ty, CCState &State) const; 921 922 bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, 923 bool &NeedsPadding) const; 924 bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; 925 926 bool canExpandIndirectArgument(QualType Ty) const; 927 928 /// \brief Rewrite the function info so that all memory arguments use 929 /// inalloca. 930 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 931 932 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 933 CharUnits &StackOffset, ABIArgInfo &Info, 934 QualType Type) const; 935 936 public: 937 938 void computeInfo(CGFunctionInfo &FI) const override; 939 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 940 QualType Ty) const override; 941 942 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 943 bool RetSmallStructInRegABI, bool Win32StructABI, 944 unsigned NumRegisterParameters, bool SoftFloatABI) 945 : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), 946 IsRetSmallStructInRegABI(RetSmallStructInRegABI), 947 IsWin32StructABI(Win32StructABI), 948 IsSoftFloatABI(SoftFloatABI), 949 IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), 950 DefaultNumRegisterParameters(NumRegisterParameters) {} 951 952 bool shouldPassIndirectlyForSwift(CharUnits totalSize, 953 ArrayRef<llvm::Type*> scalars, 954 bool asReturnValue) const override { 955 // LLVM's x86-32 lowering currently only assigns up to three 956 // integer registers and three fp registers. Oddly, it'll use up to 957 // four vector registers for vectors, but those can overlap with the 958 // scalar registers. 959 return occupiesMoreThan(CGT, scalars, /*total*/ 3); 960 } 961 962 bool isSwiftErrorInRegister() const override { 963 // x86-32 lowering does not support passing swifterror in a register. 964 return false; 965 } 966 }; 967 968 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 969 public: 970 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 971 bool RetSmallStructInRegABI, bool Win32StructABI, 972 unsigned NumRegisterParameters, bool SoftFloatABI) 973 : TargetCodeGenInfo(new X86_32ABIInfo( 974 CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, 975 NumRegisterParameters, SoftFloatABI)) {} 976 977 static bool isStructReturnInRegABI( 978 const llvm::Triple &Triple, const CodeGenOptions &Opts); 979 980 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 981 CodeGen::CodeGenModule &CGM) const override; 982 983 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 984 // Darwin uses different dwarf register numbers for EH. 985 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 986 return 4; 987 } 988 989 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 990 llvm::Value *Address) const override; 991 992 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 993 StringRef Constraint, 994 llvm::Type* Ty) const override { 995 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 996 } 997 998 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 999 std::string &Constraints, 1000 std::vector<llvm::Type *> &ResultRegTypes, 1001 std::vector<llvm::Type *> &ResultTruncRegTypes, 1002 std::vector<LValue> &ResultRegDests, 1003 std::string &AsmString, 1004 unsigned NumOutputs) const override; 1005 1006 llvm::Constant * 1007 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1008 unsigned Sig = (0xeb << 0) | // jmp rel8 1009 (0x06 << 8) | // .+0x08 1010 ('F' << 16) | 1011 ('T' << 24); 1012 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1013 } 1014 1015 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 1016 return "movl\t%ebp, %ebp" 1017 "\t\t## marker for objc_retainAutoreleaseReturnValue"; 1018 } 1019 }; 1020 1021 } 1022 1023 /// Rewrite input constraint references after adding some output constraints. 1024 /// In the case where there is one output and one input and we add one output, 1025 /// we need to replace all operand references greater than or equal to 1: 1026 /// mov $0, $1 1027 /// mov eax, $1 1028 /// The result will be: 1029 /// mov $0, $2 1030 /// mov eax, $2 1031 static void rewriteInputConstraintReferences(unsigned FirstIn, 1032 unsigned NumNewOuts, 1033 std::string &AsmString) { 1034 std::string Buf; 1035 llvm::raw_string_ostream OS(Buf); 1036 size_t Pos = 0; 1037 while (Pos < AsmString.size()) { 1038 size_t DollarStart = AsmString.find('$', Pos); 1039 if (DollarStart == std::string::npos) 1040 DollarStart = AsmString.size(); 1041 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 1042 if (DollarEnd == std::string::npos) 1043 DollarEnd = AsmString.size(); 1044 OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 1045 Pos = DollarEnd; 1046 size_t NumDollars = DollarEnd - DollarStart; 1047 if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 1048 // We have an operand reference. 1049 size_t DigitStart = Pos; 1050 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 1051 if (DigitEnd == std::string::npos) 1052 DigitEnd = AsmString.size(); 1053 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 1054 unsigned OperandIndex; 1055 if (!OperandStr.getAsInteger(10, OperandIndex)) { 1056 if (OperandIndex >= FirstIn) 1057 OperandIndex += NumNewOuts; 1058 OS << OperandIndex; 1059 } else { 1060 OS << OperandStr; 1061 } 1062 Pos = DigitEnd; 1063 } 1064 } 1065 AsmString = std::move(OS.str()); 1066 } 1067 1068 /// Add output constraints for EAX:EDX because they are return registers. 1069 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 1070 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 1071 std::vector<llvm::Type *> &ResultRegTypes, 1072 std::vector<llvm::Type *> &ResultTruncRegTypes, 1073 std::vector<LValue> &ResultRegDests, std::string &AsmString, 1074 unsigned NumOutputs) const { 1075 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 1076 1077 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 1078 // larger. 1079 if (!Constraints.empty()) 1080 Constraints += ','; 1081 if (RetWidth <= 32) { 1082 Constraints += "={eax}"; 1083 ResultRegTypes.push_back(CGF.Int32Ty); 1084 } else { 1085 // Use the 'A' constraint for EAX:EDX. 1086 Constraints += "=A"; 1087 ResultRegTypes.push_back(CGF.Int64Ty); 1088 } 1089 1090 // Truncate EAX or EAX:EDX to an integer of the appropriate size. 1091 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 1092 ResultTruncRegTypes.push_back(CoerceTy); 1093 1094 // Coerce the integer by bitcasting the return slot pointer. 1095 ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(), 1096 CoerceTy->getPointerTo())); 1097 ResultRegDests.push_back(ReturnSlot); 1098 1099 rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 1100 } 1101 1102 /// shouldReturnTypeInRegister - Determine if the given type should be 1103 /// returned in a register (for the Darwin and MCU ABI). 1104 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 1105 ASTContext &Context) const { 1106 uint64_t Size = Context.getTypeSize(Ty); 1107 1108 // For i386, type must be register sized. 1109 // For the MCU ABI, it only needs to be <= 8-byte 1110 if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) 1111 return false; 1112 1113 if (Ty->isVectorType()) { 1114 // 64- and 128- bit vectors inside structures are not returned in 1115 // registers. 1116 if (Size == 64 || Size == 128) 1117 return false; 1118 1119 return true; 1120 } 1121 1122 // If this is a builtin, pointer, enum, complex type, member pointer, or 1123 // member function pointer it is ok. 1124 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 1125 Ty->isAnyComplexType() || Ty->isEnumeralType() || 1126 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 1127 return true; 1128 1129 // Arrays are treated like records. 1130 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 1131 return shouldReturnTypeInRegister(AT->getElementType(), Context); 1132 1133 // Otherwise, it must be a record type. 1134 const RecordType *RT = Ty->getAs<RecordType>(); 1135 if (!RT) return false; 1136 1137 // FIXME: Traverse bases here too. 1138 1139 // Structure types are passed in register if all fields would be 1140 // passed in a register. 1141 for (const auto *FD : RT->getDecl()->fields()) { 1142 // Empty fields are ignored. 1143 if (isEmptyField(Context, FD, true)) 1144 continue; 1145 1146 // Check fields recursively. 1147 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 1148 return false; 1149 } 1150 return true; 1151 } 1152 1153 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 1154 // Treat complex types as the element type. 1155 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 1156 Ty = CTy->getElementType(); 1157 1158 // Check for a type which we know has a simple scalar argument-passing 1159 // convention without any padding. (We're specifically looking for 32 1160 // and 64-bit integer and integer-equivalents, float, and double.) 1161 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 1162 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 1163 return false; 1164 1165 uint64_t Size = Context.getTypeSize(Ty); 1166 return Size == 32 || Size == 64; 1167 } 1168 1169 /// Test whether an argument type which is to be passed indirectly (on the 1170 /// stack) would have the equivalent layout if it was expanded into separate 1171 /// arguments. If so, we prefer to do the latter to avoid inhibiting 1172 /// optimizations. 1173 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const { 1174 // We can only expand structure types. 1175 const RecordType *RT = Ty->getAs<RecordType>(); 1176 if (!RT) 1177 return false; 1178 const RecordDecl *RD = RT->getDecl(); 1179 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1180 if (!IsWin32StructABI ) { 1181 // On non-Windows, we have to conservatively match our old bitcode 1182 // prototypes in order to be ABI-compatible at the bitcode level. 1183 if (!CXXRD->isCLike()) 1184 return false; 1185 } else { 1186 // Don't do this for dynamic classes. 1187 if (CXXRD->isDynamicClass()) 1188 return false; 1189 // Don't do this if there are any non-empty bases. 1190 for (const CXXBaseSpecifier &Base : CXXRD->bases()) { 1191 if (!isEmptyRecord(getContext(), Base.getType(), /*AllowArrays=*/true)) 1192 return false; 1193 } 1194 } 1195 } 1196 1197 uint64_t Size = 0; 1198 1199 for (const auto *FD : RD->fields()) { 1200 // Scalar arguments on the stack get 4 byte alignment on x86. If the 1201 // argument is smaller than 32-bits, expanding the struct will create 1202 // alignment padding. 1203 if (!is32Or64BitBasicType(FD->getType(), getContext())) 1204 return false; 1205 1206 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 1207 // how to expand them yet, and the predicate for telling if a bitfield still 1208 // counts as "basic" is more complicated than what we were doing previously. 1209 if (FD->isBitField()) 1210 return false; 1211 1212 Size += getContext().getTypeSize(FD->getType()); 1213 } 1214 1215 // We can do this if there was no alignment padding. 1216 return Size == getContext().getTypeSize(Ty); 1217 } 1218 1219 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { 1220 // If the return value is indirect, then the hidden argument is consuming one 1221 // integer register. 1222 if (State.FreeRegs) { 1223 --State.FreeRegs; 1224 if (!IsMCUABI) 1225 return getNaturalAlignIndirectInReg(RetTy); 1226 } 1227 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 1228 } 1229 1230 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 1231 CCState &State) const { 1232 if (RetTy->isVoidType()) 1233 return ABIArgInfo::getIgnore(); 1234 1235 const Type *Base = nullptr; 1236 uint64_t NumElts = 0; 1237 if ((State.CC == llvm::CallingConv::X86_VectorCall || 1238 State.CC == llvm::CallingConv::X86_RegCall) && 1239 isHomogeneousAggregate(RetTy, Base, NumElts)) { 1240 // The LLVM struct type for such an aggregate should lower properly. 1241 return ABIArgInfo::getDirect(); 1242 } 1243 1244 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 1245 // On Darwin, some vectors are returned in registers. 1246 if (IsDarwinVectorABI) { 1247 uint64_t Size = getContext().getTypeSize(RetTy); 1248 1249 // 128-bit vectors are a special case; they are returned in 1250 // registers and we need to make sure to pick a type the LLVM 1251 // backend will like. 1252 if (Size == 128) 1253 return ABIArgInfo::getDirect(llvm::VectorType::get( 1254 llvm::Type::getInt64Ty(getVMContext()), 2)); 1255 1256 // Always return in register if it fits in a general purpose 1257 // register, or if it is 64 bits and has a single element. 1258 if ((Size == 8 || Size == 16 || Size == 32) || 1259 (Size == 64 && VT->getNumElements() == 1)) 1260 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1261 Size)); 1262 1263 return getIndirectReturnResult(RetTy, State); 1264 } 1265 1266 return ABIArgInfo::getDirect(); 1267 } 1268 1269 if (isAggregateTypeForABI(RetTy)) { 1270 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 1271 // Structures with flexible arrays are always indirect. 1272 if (RT->getDecl()->hasFlexibleArrayMember()) 1273 return getIndirectReturnResult(RetTy, State); 1274 } 1275 1276 // If specified, structs and unions are always indirect. 1277 if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) 1278 return getIndirectReturnResult(RetTy, State); 1279 1280 // Ignore empty structs/unions. 1281 if (isEmptyRecord(getContext(), RetTy, true)) 1282 return ABIArgInfo::getIgnore(); 1283 1284 // Small structures which are register sized are generally returned 1285 // in a register. 1286 if (shouldReturnTypeInRegister(RetTy, getContext())) { 1287 uint64_t Size = getContext().getTypeSize(RetTy); 1288 1289 // As a special-case, if the struct is a "single-element" struct, and 1290 // the field is of type "float" or "double", return it in a 1291 // floating-point register. (MSVC does not apply this special case.) 1292 // We apply a similar transformation for pointer types to improve the 1293 // quality of the generated IR. 1294 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 1295 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 1296 || SeltTy->hasPointerRepresentation()) 1297 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 1298 1299 // FIXME: We should be able to narrow this integer in cases with dead 1300 // padding. 1301 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 1302 } 1303 1304 return getIndirectReturnResult(RetTy, State); 1305 } 1306 1307 // Treat an enum type as its underlying type. 1308 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1309 RetTy = EnumTy->getDecl()->getIntegerType(); 1310 1311 return (RetTy->isPromotableIntegerType() ? 1312 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 1313 } 1314 1315 static bool isSSEVectorType(ASTContext &Context, QualType Ty) { 1316 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 1317 } 1318 1319 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) { 1320 const RecordType *RT = Ty->getAs<RecordType>(); 1321 if (!RT) 1322 return 0; 1323 const RecordDecl *RD = RT->getDecl(); 1324 1325 // If this is a C++ record, check the bases first. 1326 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1327 for (const auto &I : CXXRD->bases()) 1328 if (!isRecordWithSSEVectorType(Context, I.getType())) 1329 return false; 1330 1331 for (const auto *i : RD->fields()) { 1332 QualType FT = i->getType(); 1333 1334 if (isSSEVectorType(Context, FT)) 1335 return true; 1336 1337 if (isRecordWithSSEVectorType(Context, FT)) 1338 return true; 1339 } 1340 1341 return false; 1342 } 1343 1344 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 1345 unsigned Align) const { 1346 // Otherwise, if the alignment is less than or equal to the minimum ABI 1347 // alignment, just use the default; the backend will handle this. 1348 if (Align <= MinABIStackAlignInBytes) 1349 return 0; // Use default alignment. 1350 1351 // On non-Darwin, the stack type alignment is always 4. 1352 if (!IsDarwinVectorABI) { 1353 // Set explicit alignment, since we may need to realign the top. 1354 return MinABIStackAlignInBytes; 1355 } 1356 1357 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 1358 if (Align >= 16 && (isSSEVectorType(getContext(), Ty) || 1359 isRecordWithSSEVectorType(getContext(), Ty))) 1360 return 16; 1361 1362 return MinABIStackAlignInBytes; 1363 } 1364 1365 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 1366 CCState &State) const { 1367 if (!ByVal) { 1368 if (State.FreeRegs) { 1369 --State.FreeRegs; // Non-byval indirects just use one pointer. 1370 if (!IsMCUABI) 1371 return getNaturalAlignIndirectInReg(Ty); 1372 } 1373 return getNaturalAlignIndirect(Ty, false); 1374 } 1375 1376 // Compute the byval alignment. 1377 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 1378 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 1379 if (StackAlign == 0) 1380 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); 1381 1382 // If the stack alignment is less than the type alignment, realign the 1383 // argument. 1384 bool Realign = TypeAlign > StackAlign; 1385 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), 1386 /*ByVal=*/true, Realign); 1387 } 1388 1389 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 1390 const Type *T = isSingleElementStruct(Ty, getContext()); 1391 if (!T) 1392 T = Ty.getTypePtr(); 1393 1394 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 1395 BuiltinType::Kind K = BT->getKind(); 1396 if (K == BuiltinType::Float || K == BuiltinType::Double) 1397 return Float; 1398 } 1399 return Integer; 1400 } 1401 1402 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { 1403 if (!IsSoftFloatABI) { 1404 Class C = classify(Ty); 1405 if (C == Float) 1406 return false; 1407 } 1408 1409 unsigned Size = getContext().getTypeSize(Ty); 1410 unsigned SizeInRegs = (Size + 31) / 32; 1411 1412 if (SizeInRegs == 0) 1413 return false; 1414 1415 if (!IsMCUABI) { 1416 if (SizeInRegs > State.FreeRegs) { 1417 State.FreeRegs = 0; 1418 return false; 1419 } 1420 } else { 1421 // The MCU psABI allows passing parameters in-reg even if there are 1422 // earlier parameters that are passed on the stack. Also, 1423 // it does not allow passing >8-byte structs in-register, 1424 // even if there are 3 free registers available. 1425 if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) 1426 return false; 1427 } 1428 1429 State.FreeRegs -= SizeInRegs; 1430 return true; 1431 } 1432 1433 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, 1434 bool &InReg, 1435 bool &NeedsPadding) const { 1436 // On Windows, aggregates other than HFAs are never passed in registers, and 1437 // they do not consume register slots. Homogenous floating-point aggregates 1438 // (HFAs) have already been dealt with at this point. 1439 if (IsWin32StructABI && isAggregateTypeForABI(Ty)) 1440 return false; 1441 1442 NeedsPadding = false; 1443 InReg = !IsMCUABI; 1444 1445 if (!updateFreeRegs(Ty, State)) 1446 return false; 1447 1448 if (IsMCUABI) 1449 return true; 1450 1451 if (State.CC == llvm::CallingConv::X86_FastCall || 1452 State.CC == llvm::CallingConv::X86_VectorCall || 1453 State.CC == llvm::CallingConv::X86_RegCall) { 1454 if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) 1455 NeedsPadding = true; 1456 1457 return false; 1458 } 1459 1460 return true; 1461 } 1462 1463 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { 1464 if (!updateFreeRegs(Ty, State)) 1465 return false; 1466 1467 if (IsMCUABI) 1468 return false; 1469 1470 if (State.CC == llvm::CallingConv::X86_FastCall || 1471 State.CC == llvm::CallingConv::X86_VectorCall || 1472 State.CC == llvm::CallingConv::X86_RegCall) { 1473 if (getContext().getTypeSize(Ty) > 32) 1474 return false; 1475 1476 return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || 1477 Ty->isReferenceType()); 1478 } 1479 1480 return true; 1481 } 1482 1483 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 1484 CCState &State) const { 1485 // FIXME: Set alignment on indirect arguments. 1486 1487 Ty = useFirstFieldIfTransparentUnion(Ty); 1488 1489 // Check with the C++ ABI first. 1490 const RecordType *RT = Ty->getAs<RecordType>(); 1491 if (RT) { 1492 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 1493 if (RAA == CGCXXABI::RAA_Indirect) { 1494 return getIndirectResult(Ty, false, State); 1495 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 1496 // The field index doesn't matter, we'll fix it up later. 1497 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 1498 } 1499 } 1500 1501 // vectorcall adds the concept of a homogenous vector aggregate, similar 1502 // to other targets. 1503 const Type *Base = nullptr; 1504 uint64_t NumElts = 0; 1505 if ((State.CC == llvm::CallingConv::X86_VectorCall || 1506 State.CC == llvm::CallingConv::X86_RegCall) && 1507 isHomogeneousAggregate(Ty, Base, NumElts)) { 1508 if (State.FreeSSERegs >= NumElts) { 1509 State.FreeSSERegs -= NumElts; 1510 if (Ty->isBuiltinType() || Ty->isVectorType()) 1511 return ABIArgInfo::getDirect(); 1512 return ABIArgInfo::getExpand(); 1513 } 1514 return getIndirectResult(Ty, /*ByVal=*/false, State); 1515 } 1516 1517 if (isAggregateTypeForABI(Ty)) { 1518 // Structures with flexible arrays are always indirect. 1519 // FIXME: This should not be byval! 1520 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 1521 return getIndirectResult(Ty, true, State); 1522 1523 // Ignore empty structs/unions on non-Windows. 1524 if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true)) 1525 return ABIArgInfo::getIgnore(); 1526 1527 llvm::LLVMContext &LLVMContext = getVMContext(); 1528 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 1529 bool NeedsPadding = false; 1530 bool InReg; 1531 if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { 1532 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 1533 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 1534 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 1535 if (InReg) 1536 return ABIArgInfo::getDirectInReg(Result); 1537 else 1538 return ABIArgInfo::getDirect(Result); 1539 } 1540 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 1541 1542 // Expand small (<= 128-bit) record types when we know that the stack layout 1543 // of those arguments will match the struct. This is important because the 1544 // LLVM backend isn't smart enough to remove byval, which inhibits many 1545 // optimizations. 1546 // Don't do this for the MCU if there are still free integer registers 1547 // (see X86_64 ABI for full explanation). 1548 if (getContext().getTypeSize(Ty) <= 4 * 32 && 1549 (!IsMCUABI || State.FreeRegs == 0) && canExpandIndirectArgument(Ty)) 1550 return ABIArgInfo::getExpandWithPadding( 1551 State.CC == llvm::CallingConv::X86_FastCall || 1552 State.CC == llvm::CallingConv::X86_VectorCall || 1553 State.CC == llvm::CallingConv::X86_RegCall, 1554 PaddingType); 1555 1556 return getIndirectResult(Ty, true, State); 1557 } 1558 1559 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1560 // On Darwin, some vectors are passed in memory, we handle this by passing 1561 // it as an i8/i16/i32/i64. 1562 if (IsDarwinVectorABI) { 1563 uint64_t Size = getContext().getTypeSize(Ty); 1564 if ((Size == 8 || Size == 16 || Size == 32) || 1565 (Size == 64 && VT->getNumElements() == 1)) 1566 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1567 Size)); 1568 } 1569 1570 if (IsX86_MMXType(CGT.ConvertType(Ty))) 1571 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 1572 1573 return ABIArgInfo::getDirect(); 1574 } 1575 1576 1577 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1578 Ty = EnumTy->getDecl()->getIntegerType(); 1579 1580 bool InReg = shouldPrimitiveUseInReg(Ty, State); 1581 1582 if (Ty->isPromotableIntegerType()) { 1583 if (InReg) 1584 return ABIArgInfo::getExtendInReg(); 1585 return ABIArgInfo::getExtend(); 1586 } 1587 1588 if (InReg) 1589 return ABIArgInfo::getDirectInReg(); 1590 return ABIArgInfo::getDirect(); 1591 } 1592 1593 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 1594 CCState State(FI.getCallingConvention()); 1595 if (IsMCUABI) 1596 State.FreeRegs = 3; 1597 else if (State.CC == llvm::CallingConv::X86_FastCall) 1598 State.FreeRegs = 2; 1599 else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1600 State.FreeRegs = 2; 1601 State.FreeSSERegs = 6; 1602 } else if (FI.getHasRegParm()) 1603 State.FreeRegs = FI.getRegParm(); 1604 else if (State.CC == llvm::CallingConv::X86_RegCall) { 1605 State.FreeRegs = 5; 1606 State.FreeSSERegs = 8; 1607 } else 1608 State.FreeRegs = DefaultNumRegisterParameters; 1609 1610 if (!getCXXABI().classifyReturnType(FI)) { 1611 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 1612 } else if (FI.getReturnInfo().isIndirect()) { 1613 // The C++ ABI is not aware of register usage, so we have to check if the 1614 // return value was sret and put it in a register ourselves if appropriate. 1615 if (State.FreeRegs) { 1616 --State.FreeRegs; // The sret parameter consumes a register. 1617 if (!IsMCUABI) 1618 FI.getReturnInfo().setInReg(true); 1619 } 1620 } 1621 1622 // The chain argument effectively gives us another free register. 1623 if (FI.isChainCall()) 1624 ++State.FreeRegs; 1625 1626 bool UsedInAlloca = false; 1627 for (auto &I : FI.arguments()) { 1628 I.info = classifyArgumentType(I.type, State); 1629 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1630 } 1631 1632 // If we needed to use inalloca for any argument, do a second pass and rewrite 1633 // all the memory arguments to use inalloca. 1634 if (UsedInAlloca) 1635 rewriteWithInAlloca(FI); 1636 } 1637 1638 void 1639 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1640 CharUnits &StackOffset, ABIArgInfo &Info, 1641 QualType Type) const { 1642 // Arguments are always 4-byte-aligned. 1643 CharUnits FieldAlign = CharUnits::fromQuantity(4); 1644 1645 assert(StackOffset.isMultipleOf(FieldAlign) && "unaligned inalloca struct"); 1646 Info = ABIArgInfo::getInAlloca(FrameFields.size()); 1647 FrameFields.push_back(CGT.ConvertTypeForMem(Type)); 1648 StackOffset += getContext().getTypeSizeInChars(Type); 1649 1650 // Insert padding bytes to respect alignment. 1651 CharUnits FieldEnd = StackOffset; 1652 StackOffset = FieldEnd.alignTo(FieldAlign); 1653 if (StackOffset != FieldEnd) { 1654 CharUnits NumBytes = StackOffset - FieldEnd; 1655 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 1656 Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); 1657 FrameFields.push_back(Ty); 1658 } 1659 } 1660 1661 static bool isArgInAlloca(const ABIArgInfo &Info) { 1662 // Leave ignored and inreg arguments alone. 1663 switch (Info.getKind()) { 1664 case ABIArgInfo::InAlloca: 1665 return true; 1666 case ABIArgInfo::Indirect: 1667 assert(Info.getIndirectByVal()); 1668 return true; 1669 case ABIArgInfo::Ignore: 1670 return false; 1671 case ABIArgInfo::Direct: 1672 case ABIArgInfo::Extend: 1673 if (Info.getInReg()) 1674 return false; 1675 return true; 1676 case ABIArgInfo::Expand: 1677 case ABIArgInfo::CoerceAndExpand: 1678 // These are aggregate types which are never passed in registers when 1679 // inalloca is involved. 1680 return true; 1681 } 1682 llvm_unreachable("invalid enum"); 1683 } 1684 1685 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 1686 assert(IsWin32StructABI && "inalloca only supported on win32"); 1687 1688 // Build a packed struct type for all of the arguments in memory. 1689 SmallVector<llvm::Type *, 6> FrameFields; 1690 1691 // The stack alignment is always 4. 1692 CharUnits StackAlign = CharUnits::fromQuantity(4); 1693 1694 CharUnits StackOffset; 1695 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 1696 1697 // Put 'this' into the struct before 'sret', if necessary. 1698 bool IsThisCall = 1699 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 1700 ABIArgInfo &Ret = FI.getReturnInfo(); 1701 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 1702 isArgInAlloca(I->info)) { 1703 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1704 ++I; 1705 } 1706 1707 // Put the sret parameter into the inalloca struct if it's in memory. 1708 if (Ret.isIndirect() && !Ret.getInReg()) { 1709 CanQualType PtrTy = getContext().getPointerType(FI.getReturnType()); 1710 addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy); 1711 // On Windows, the hidden sret parameter is always returned in eax. 1712 Ret.setInAllocaSRet(IsWin32StructABI); 1713 } 1714 1715 // Skip the 'this' parameter in ecx. 1716 if (IsThisCall) 1717 ++I; 1718 1719 // Put arguments passed in memory into the struct. 1720 for (; I != E; ++I) { 1721 if (isArgInAlloca(I->info)) 1722 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1723 } 1724 1725 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 1726 /*isPacked=*/true), 1727 StackAlign); 1728 } 1729 1730 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, 1731 Address VAListAddr, QualType Ty) const { 1732 1733 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 1734 1735 // x86-32 changes the alignment of certain arguments on the stack. 1736 // 1737 // Just messing with TypeInfo like this works because we never pass 1738 // anything indirectly. 1739 TypeInfo.second = CharUnits::fromQuantity( 1740 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity())); 1741 1742 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 1743 TypeInfo, CharUnits::fromQuantity(4), 1744 /*AllowHigherAlign*/ true); 1745 } 1746 1747 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 1748 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 1749 assert(Triple.getArch() == llvm::Triple::x86); 1750 1751 switch (Opts.getStructReturnConvention()) { 1752 case CodeGenOptions::SRCK_Default: 1753 break; 1754 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 1755 return false; 1756 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 1757 return true; 1758 } 1759 1760 if (Triple.isOSDarwin() || Triple.isOSIAMCU()) 1761 return true; 1762 1763 switch (Triple.getOS()) { 1764 case llvm::Triple::DragonFly: 1765 case llvm::Triple::FreeBSD: 1766 case llvm::Triple::OpenBSD: 1767 case llvm::Triple::Bitrig: 1768 case llvm::Triple::Win32: 1769 return true; 1770 default: 1771 return false; 1772 } 1773 } 1774 1775 void X86_32TargetCodeGenInfo::setTargetAttributes(const Decl *D, 1776 llvm::GlobalValue *GV, 1777 CodeGen::CodeGenModule &CGM) const { 1778 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 1779 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 1780 // Get the LLVM function. 1781 llvm::Function *Fn = cast<llvm::Function>(GV); 1782 1783 // Now add the 'alignstack' attribute with a value of 16. 1784 llvm::AttrBuilder B; 1785 B.addStackAlignmentAttr(16); 1786 Fn->addAttributes(llvm::AttributeSet::FunctionIndex, 1787 llvm::AttributeSet::get(CGM.getLLVMContext(), 1788 llvm::AttributeSet::FunctionIndex, 1789 B)); 1790 } 1791 if (FD->hasAttr<AnyX86InterruptAttr>()) { 1792 llvm::Function *Fn = cast<llvm::Function>(GV); 1793 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 1794 } 1795 } 1796 } 1797 1798 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 1799 CodeGen::CodeGenFunction &CGF, 1800 llvm::Value *Address) const { 1801 CodeGen::CGBuilderTy &Builder = CGF.Builder; 1802 1803 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 1804 1805 // 0-7 are the eight integer registers; the order is different 1806 // on Darwin (for EH), but the range is the same. 1807 // 8 is %eip. 1808 AssignToArrayRange(Builder, Address, Four8, 0, 8); 1809 1810 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 1811 // 12-16 are st(0..4). Not sure why we stop at 4. 1812 // These have size 16, which is sizeof(long double) on 1813 // platforms with 8-byte alignment for that type. 1814 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 1815 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 1816 1817 } else { 1818 // 9 is %eflags, which doesn't get a size on Darwin for some 1819 // reason. 1820 Builder.CreateAlignedStore( 1821 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), 1822 CharUnits::One()); 1823 1824 // 11-16 are st(0..5). Not sure why we stop at 5. 1825 // These have size 12, which is sizeof(long double) on 1826 // platforms with 4-byte alignment for that type. 1827 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 1828 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 1829 } 1830 1831 return false; 1832 } 1833 1834 //===----------------------------------------------------------------------===// 1835 // X86-64 ABI Implementation 1836 //===----------------------------------------------------------------------===// 1837 1838 1839 namespace { 1840 /// The AVX ABI level for X86 targets. 1841 enum class X86AVXABILevel { 1842 None, 1843 AVX, 1844 AVX512 1845 }; 1846 1847 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. 1848 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { 1849 switch (AVXLevel) { 1850 case X86AVXABILevel::AVX512: 1851 return 512; 1852 case X86AVXABILevel::AVX: 1853 return 256; 1854 case X86AVXABILevel::None: 1855 return 128; 1856 } 1857 llvm_unreachable("Unknown AVXLevel"); 1858 } 1859 1860 /// X86_64ABIInfo - The X86_64 ABI information. 1861 class X86_64ABIInfo : public SwiftABIInfo { 1862 enum Class { 1863 Integer = 0, 1864 SSE, 1865 SSEUp, 1866 X87, 1867 X87Up, 1868 ComplexX87, 1869 NoClass, 1870 Memory 1871 }; 1872 1873 /// merge - Implement the X86_64 ABI merging algorithm. 1874 /// 1875 /// Merge an accumulating classification \arg Accum with a field 1876 /// classification \arg Field. 1877 /// 1878 /// \param Accum - The accumulating classification. This should 1879 /// always be either NoClass or the result of a previous merge 1880 /// call. In addition, this should never be Memory (the caller 1881 /// should just return Memory for the aggregate). 1882 static Class merge(Class Accum, Class Field); 1883 1884 /// postMerge - Implement the X86_64 ABI post merging algorithm. 1885 /// 1886 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 1887 /// final MEMORY or SSE classes when necessary. 1888 /// 1889 /// \param AggregateSize - The size of the current aggregate in 1890 /// the classification process. 1891 /// 1892 /// \param Lo - The classification for the parts of the type 1893 /// residing in the low word of the containing object. 1894 /// 1895 /// \param Hi - The classification for the parts of the type 1896 /// residing in the higher words of the containing object. 1897 /// 1898 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 1899 1900 /// classify - Determine the x86_64 register classes in which the 1901 /// given type T should be passed. 1902 /// 1903 /// \param Lo - The classification for the parts of the type 1904 /// residing in the low word of the containing object. 1905 /// 1906 /// \param Hi - The classification for the parts of the type 1907 /// residing in the high word of the containing object. 1908 /// 1909 /// \param OffsetBase - The bit offset of this type in the 1910 /// containing object. Some parameters are classified different 1911 /// depending on whether they straddle an eightbyte boundary. 1912 /// 1913 /// \param isNamedArg - Whether the argument in question is a "named" 1914 /// argument, as used in AMD64-ABI 3.5.7. 1915 /// 1916 /// If a word is unused its result will be NoClass; if a type should 1917 /// be passed in Memory then at least the classification of \arg Lo 1918 /// will be Memory. 1919 /// 1920 /// The \arg Lo class will be NoClass iff the argument is ignored. 1921 /// 1922 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 1923 /// also be ComplexX87. 1924 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 1925 bool isNamedArg) const; 1926 1927 llvm::Type *GetByteVectorType(QualType Ty) const; 1928 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 1929 unsigned IROffset, QualType SourceTy, 1930 unsigned SourceOffset) const; 1931 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 1932 unsigned IROffset, QualType SourceTy, 1933 unsigned SourceOffset) const; 1934 1935 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1936 /// such that the argument will be returned in memory. 1937 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 1938 1939 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1940 /// such that the argument will be passed in memory. 1941 /// 1942 /// \param freeIntRegs - The number of free integer registers remaining 1943 /// available. 1944 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 1945 1946 ABIArgInfo classifyReturnType(QualType RetTy) const; 1947 1948 ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs, 1949 unsigned &neededInt, unsigned &neededSSE, 1950 bool isNamedArg) const; 1951 1952 ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt, 1953 unsigned &NeededSSE) const; 1954 1955 ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 1956 unsigned &NeededSSE) const; 1957 1958 bool IsIllegalVectorType(QualType Ty) const; 1959 1960 /// The 0.98 ABI revision clarified a lot of ambiguities, 1961 /// unfortunately in ways that were not always consistent with 1962 /// certain previous compilers. In particular, platforms which 1963 /// required strict binary compatibility with older versions of GCC 1964 /// may need to exempt themselves. 1965 bool honorsRevision0_98() const { 1966 return !getTarget().getTriple().isOSDarwin(); 1967 } 1968 1969 /// GCC classifies <1 x long long> as SSE but compatibility with older clang 1970 // compilers require us to classify it as INTEGER. 1971 bool classifyIntegerMMXAsSSE() const { 1972 const llvm::Triple &Triple = getTarget().getTriple(); 1973 if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4) 1974 return false; 1975 if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10) 1976 return false; 1977 return true; 1978 } 1979 1980 X86AVXABILevel AVXLevel; 1981 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 1982 // 64-bit hardware. 1983 bool Has64BitPointers; 1984 1985 public: 1986 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : 1987 SwiftABIInfo(CGT), AVXLevel(AVXLevel), 1988 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 1989 } 1990 1991 bool isPassedUsingAVXType(QualType type) const { 1992 unsigned neededInt, neededSSE; 1993 // The freeIntRegs argument doesn't matter here. 1994 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 1995 /*isNamedArg*/true); 1996 if (info.isDirect()) { 1997 llvm::Type *ty = info.getCoerceToType(); 1998 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 1999 return (vectorTy->getBitWidth() > 128); 2000 } 2001 return false; 2002 } 2003 2004 void computeInfo(CGFunctionInfo &FI) const override; 2005 2006 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2007 QualType Ty) const override; 2008 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 2009 QualType Ty) const override; 2010 2011 bool has64BitPointers() const { 2012 return Has64BitPointers; 2013 } 2014 2015 bool shouldPassIndirectlyForSwift(CharUnits totalSize, 2016 ArrayRef<llvm::Type*> scalars, 2017 bool asReturnValue) const override { 2018 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2019 } 2020 bool isSwiftErrorInRegister() const override { 2021 return true; 2022 } 2023 }; 2024 2025 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 2026 class WinX86_64ABIInfo : public SwiftABIInfo { 2027 public: 2028 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) 2029 : SwiftABIInfo(CGT), 2030 IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} 2031 2032 void computeInfo(CGFunctionInfo &FI) const override; 2033 2034 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2035 QualType Ty) const override; 2036 2037 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 2038 // FIXME: Assumes vectorcall is in use. 2039 return isX86VectorTypeForVectorCall(getContext(), Ty); 2040 } 2041 2042 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 2043 uint64_t NumMembers) const override { 2044 // FIXME: Assumes vectorcall is in use. 2045 return isX86VectorCallAggregateSmallEnough(NumMembers); 2046 } 2047 2048 bool shouldPassIndirectlyForSwift(CharUnits totalSize, 2049 ArrayRef<llvm::Type *> scalars, 2050 bool asReturnValue) const override { 2051 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2052 } 2053 2054 bool isSwiftErrorInRegister() const override { 2055 return true; 2056 } 2057 2058 private: 2059 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, 2060 bool IsReturnType) const; 2061 2062 bool IsMingw64; 2063 }; 2064 2065 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2066 public: 2067 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2068 : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {} 2069 2070 const X86_64ABIInfo &getABIInfo() const { 2071 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 2072 } 2073 2074 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2075 return 7; 2076 } 2077 2078 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2079 llvm::Value *Address) const override { 2080 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2081 2082 // 0-15 are the 16 integer registers. 2083 // 16 is %rip. 2084 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2085 return false; 2086 } 2087 2088 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 2089 StringRef Constraint, 2090 llvm::Type* Ty) const override { 2091 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 2092 } 2093 2094 bool isNoProtoCallVariadic(const CallArgList &args, 2095 const FunctionNoProtoType *fnType) const override { 2096 // The default CC on x86-64 sets %al to the number of SSA 2097 // registers used, and GCC sets this when calling an unprototyped 2098 // function, so we override the default behavior. However, don't do 2099 // that when AVX types are involved: the ABI explicitly states it is 2100 // undefined, and it doesn't work in practice because of how the ABI 2101 // defines varargs anyway. 2102 if (fnType->getCallConv() == CC_C) { 2103 bool HasAVXType = false; 2104 for (CallArgList::const_iterator 2105 it = args.begin(), ie = args.end(); it != ie; ++it) { 2106 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 2107 HasAVXType = true; 2108 break; 2109 } 2110 } 2111 2112 if (!HasAVXType) 2113 return true; 2114 } 2115 2116 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 2117 } 2118 2119 llvm::Constant * 2120 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 2121 unsigned Sig; 2122 if (getABIInfo().has64BitPointers()) 2123 Sig = (0xeb << 0) | // jmp rel8 2124 (0x0a << 8) | // .+0x0c 2125 ('F' << 16) | 2126 ('T' << 24); 2127 else 2128 Sig = (0xeb << 0) | // jmp rel8 2129 (0x06 << 8) | // .+0x08 2130 ('F' << 16) | 2131 ('T' << 24); 2132 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 2133 } 2134 2135 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2136 CodeGen::CodeGenModule &CGM) const override { 2137 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2138 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2139 llvm::Function *Fn = cast<llvm::Function>(GV); 2140 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2141 } 2142 } 2143 } 2144 }; 2145 2146 class PS4TargetCodeGenInfo : public X86_64TargetCodeGenInfo { 2147 public: 2148 PS4TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2149 : X86_64TargetCodeGenInfo(CGT, AVXLevel) {} 2150 2151 void getDependentLibraryOption(llvm::StringRef Lib, 2152 llvm::SmallString<24> &Opt) const override { 2153 Opt = "\01"; 2154 // If the argument contains a space, enclose it in quotes. 2155 if (Lib.find(" ") != StringRef::npos) 2156 Opt += "\"" + Lib.str() + "\""; 2157 else 2158 Opt += Lib; 2159 } 2160 }; 2161 2162 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 2163 // If the argument does not end in .lib, automatically add the suffix. 2164 // If the argument contains a space, enclose it in quotes. 2165 // This matches the behavior of MSVC. 2166 bool Quote = (Lib.find(" ") != StringRef::npos); 2167 std::string ArgStr = Quote ? "\"" : ""; 2168 ArgStr += Lib; 2169 if (!Lib.endswith_lower(".lib")) 2170 ArgStr += ".lib"; 2171 ArgStr += Quote ? "\"" : ""; 2172 return ArgStr; 2173 } 2174 2175 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 2176 public: 2177 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2178 bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, 2179 unsigned NumRegisterParameters) 2180 : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, 2181 Win32StructABI, NumRegisterParameters, false) {} 2182 2183 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2184 CodeGen::CodeGenModule &CGM) const override; 2185 2186 void getDependentLibraryOption(llvm::StringRef Lib, 2187 llvm::SmallString<24> &Opt) const override { 2188 Opt = "/DEFAULTLIB:"; 2189 Opt += qualifyWindowsLibrary(Lib); 2190 } 2191 2192 void getDetectMismatchOption(llvm::StringRef Name, 2193 llvm::StringRef Value, 2194 llvm::SmallString<32> &Opt) const override { 2195 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2196 } 2197 }; 2198 2199 static void addStackProbeSizeTargetAttribute(const Decl *D, 2200 llvm::GlobalValue *GV, 2201 CodeGen::CodeGenModule &CGM) { 2202 if (D && isa<FunctionDecl>(D)) { 2203 if (CGM.getCodeGenOpts().StackProbeSize != 4096) { 2204 llvm::Function *Fn = cast<llvm::Function>(GV); 2205 2206 Fn->addFnAttr("stack-probe-size", 2207 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 2208 } 2209 } 2210 } 2211 2212 void WinX86_32TargetCodeGenInfo::setTargetAttributes(const Decl *D, 2213 llvm::GlobalValue *GV, 2214 CodeGen::CodeGenModule &CGM) const { 2215 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2216 2217 addStackProbeSizeTargetAttribute(D, GV, CGM); 2218 } 2219 2220 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2221 public: 2222 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2223 X86AVXABILevel AVXLevel) 2224 : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {} 2225 2226 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2227 CodeGen::CodeGenModule &CGM) const override; 2228 2229 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2230 return 7; 2231 } 2232 2233 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2234 llvm::Value *Address) const override { 2235 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2236 2237 // 0-15 are the 16 integer registers. 2238 // 16 is %rip. 2239 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2240 return false; 2241 } 2242 2243 void getDependentLibraryOption(llvm::StringRef Lib, 2244 llvm::SmallString<24> &Opt) const override { 2245 Opt = "/DEFAULTLIB:"; 2246 Opt += qualifyWindowsLibrary(Lib); 2247 } 2248 2249 void getDetectMismatchOption(llvm::StringRef Name, 2250 llvm::StringRef Value, 2251 llvm::SmallString<32> &Opt) const override { 2252 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2253 } 2254 }; 2255 2256 void WinX86_64TargetCodeGenInfo::setTargetAttributes(const Decl *D, 2257 llvm::GlobalValue *GV, 2258 CodeGen::CodeGenModule &CGM) const { 2259 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2260 2261 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2262 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2263 llvm::Function *Fn = cast<llvm::Function>(GV); 2264 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2265 } 2266 } 2267 2268 addStackProbeSizeTargetAttribute(D, GV, CGM); 2269 } 2270 } 2271 2272 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 2273 Class &Hi) const { 2274 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 2275 // 2276 // (a) If one of the classes is Memory, the whole argument is passed in 2277 // memory. 2278 // 2279 // (b) If X87UP is not preceded by X87, the whole argument is passed in 2280 // memory. 2281 // 2282 // (c) If the size of the aggregate exceeds two eightbytes and the first 2283 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 2284 // argument is passed in memory. NOTE: This is necessary to keep the 2285 // ABI working for processors that don't support the __m256 type. 2286 // 2287 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 2288 // 2289 // Some of these are enforced by the merging logic. Others can arise 2290 // only with unions; for example: 2291 // union { _Complex double; unsigned; } 2292 // 2293 // Note that clauses (b) and (c) were added in 0.98. 2294 // 2295 if (Hi == Memory) 2296 Lo = Memory; 2297 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 2298 Lo = Memory; 2299 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 2300 Lo = Memory; 2301 if (Hi == SSEUp && Lo != SSE) 2302 Hi = SSE; 2303 } 2304 2305 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 2306 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 2307 // classified recursively so that always two fields are 2308 // considered. The resulting class is calculated according to 2309 // the classes of the fields in the eightbyte: 2310 // 2311 // (a) If both classes are equal, this is the resulting class. 2312 // 2313 // (b) If one of the classes is NO_CLASS, the resulting class is 2314 // the other class. 2315 // 2316 // (c) If one of the classes is MEMORY, the result is the MEMORY 2317 // class. 2318 // 2319 // (d) If one of the classes is INTEGER, the result is the 2320 // INTEGER. 2321 // 2322 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 2323 // MEMORY is used as class. 2324 // 2325 // (f) Otherwise class SSE is used. 2326 2327 // Accum should never be memory (we should have returned) or 2328 // ComplexX87 (because this cannot be passed in a structure). 2329 assert((Accum != Memory && Accum != ComplexX87) && 2330 "Invalid accumulated classification during merge."); 2331 if (Accum == Field || Field == NoClass) 2332 return Accum; 2333 if (Field == Memory) 2334 return Memory; 2335 if (Accum == NoClass) 2336 return Field; 2337 if (Accum == Integer || Field == Integer) 2338 return Integer; 2339 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 2340 Accum == X87 || Accum == X87Up) 2341 return Memory; 2342 return SSE; 2343 } 2344 2345 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 2346 Class &Lo, Class &Hi, bool isNamedArg) const { 2347 // FIXME: This code can be simplified by introducing a simple value class for 2348 // Class pairs with appropriate constructor methods for the various 2349 // situations. 2350 2351 // FIXME: Some of the split computations are wrong; unaligned vectors 2352 // shouldn't be passed in registers for example, so there is no chance they 2353 // can straddle an eightbyte. Verify & simplify. 2354 2355 Lo = Hi = NoClass; 2356 2357 Class &Current = OffsetBase < 64 ? Lo : Hi; 2358 Current = Memory; 2359 2360 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 2361 BuiltinType::Kind k = BT->getKind(); 2362 2363 if (k == BuiltinType::Void) { 2364 Current = NoClass; 2365 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 2366 Lo = Integer; 2367 Hi = Integer; 2368 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 2369 Current = Integer; 2370 } else if (k == BuiltinType::Float || k == BuiltinType::Double) { 2371 Current = SSE; 2372 } else if (k == BuiltinType::LongDouble) { 2373 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2374 if (LDF == &llvm::APFloat::IEEEquad()) { 2375 Lo = SSE; 2376 Hi = SSEUp; 2377 } else if (LDF == &llvm::APFloat::x87DoubleExtended()) { 2378 Lo = X87; 2379 Hi = X87Up; 2380 } else if (LDF == &llvm::APFloat::IEEEdouble()) { 2381 Current = SSE; 2382 } else 2383 llvm_unreachable("unexpected long double representation!"); 2384 } 2385 // FIXME: _Decimal32 and _Decimal64 are SSE. 2386 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 2387 return; 2388 } 2389 2390 if (const EnumType *ET = Ty->getAs<EnumType>()) { 2391 // Classify the underlying integer type. 2392 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 2393 return; 2394 } 2395 2396 if (Ty->hasPointerRepresentation()) { 2397 Current = Integer; 2398 return; 2399 } 2400 2401 if (Ty->isMemberPointerType()) { 2402 if (Ty->isMemberFunctionPointerType()) { 2403 if (Has64BitPointers) { 2404 // If Has64BitPointers, this is an {i64, i64}, so classify both 2405 // Lo and Hi now. 2406 Lo = Hi = Integer; 2407 } else { 2408 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 2409 // straddles an eightbyte boundary, Hi should be classified as well. 2410 uint64_t EB_FuncPtr = (OffsetBase) / 64; 2411 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 2412 if (EB_FuncPtr != EB_ThisAdj) { 2413 Lo = Hi = Integer; 2414 } else { 2415 Current = Integer; 2416 } 2417 } 2418 } else { 2419 Current = Integer; 2420 } 2421 return; 2422 } 2423 2424 if (const VectorType *VT = Ty->getAs<VectorType>()) { 2425 uint64_t Size = getContext().getTypeSize(VT); 2426 if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { 2427 // gcc passes the following as integer: 2428 // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> 2429 // 2 bytes - <2 x char>, <1 x short> 2430 // 1 byte - <1 x char> 2431 Current = Integer; 2432 2433 // If this type crosses an eightbyte boundary, it should be 2434 // split. 2435 uint64_t EB_Lo = (OffsetBase) / 64; 2436 uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; 2437 if (EB_Lo != EB_Hi) 2438 Hi = Lo; 2439 } else if (Size == 64) { 2440 QualType ElementType = VT->getElementType(); 2441 2442 // gcc passes <1 x double> in memory. :( 2443 if (ElementType->isSpecificBuiltinType(BuiltinType::Double)) 2444 return; 2445 2446 // gcc passes <1 x long long> as SSE but clang used to unconditionally 2447 // pass them as integer. For platforms where clang is the de facto 2448 // platform compiler, we must continue to use integer. 2449 if (!classifyIntegerMMXAsSSE() && 2450 (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) || 2451 ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) || 2452 ElementType->isSpecificBuiltinType(BuiltinType::Long) || 2453 ElementType->isSpecificBuiltinType(BuiltinType::ULong))) 2454 Current = Integer; 2455 else 2456 Current = SSE; 2457 2458 // If this type crosses an eightbyte boundary, it should be 2459 // split. 2460 if (OffsetBase && OffsetBase != 64) 2461 Hi = Lo; 2462 } else if (Size == 128 || 2463 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { 2464 // Arguments of 256-bits are split into four eightbyte chunks. The 2465 // least significant one belongs to class SSE and all the others to class 2466 // SSEUP. The original Lo and Hi design considers that types can't be 2467 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 2468 // This design isn't correct for 256-bits, but since there're no cases 2469 // where the upper parts would need to be inspected, avoid adding 2470 // complexity and just consider Hi to match the 64-256 part. 2471 // 2472 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 2473 // registers if they are "named", i.e. not part of the "..." of a 2474 // variadic function. 2475 // 2476 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are 2477 // split into eight eightbyte chunks, one SSE and seven SSEUP. 2478 Lo = SSE; 2479 Hi = SSEUp; 2480 } 2481 return; 2482 } 2483 2484 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 2485 QualType ET = getContext().getCanonicalType(CT->getElementType()); 2486 2487 uint64_t Size = getContext().getTypeSize(Ty); 2488 if (ET->isIntegralOrEnumerationType()) { 2489 if (Size <= 64) 2490 Current = Integer; 2491 else if (Size <= 128) 2492 Lo = Hi = Integer; 2493 } else if (ET == getContext().FloatTy) { 2494 Current = SSE; 2495 } else if (ET == getContext().DoubleTy) { 2496 Lo = Hi = SSE; 2497 } else if (ET == getContext().LongDoubleTy) { 2498 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2499 if (LDF == &llvm::APFloat::IEEEquad()) 2500 Current = Memory; 2501 else if (LDF == &llvm::APFloat::x87DoubleExtended()) 2502 Current = ComplexX87; 2503 else if (LDF == &llvm::APFloat::IEEEdouble()) 2504 Lo = Hi = SSE; 2505 else 2506 llvm_unreachable("unexpected long double representation!"); 2507 } 2508 2509 // If this complex type crosses an eightbyte boundary then it 2510 // should be split. 2511 uint64_t EB_Real = (OffsetBase) / 64; 2512 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 2513 if (Hi == NoClass && EB_Real != EB_Imag) 2514 Hi = Lo; 2515 2516 return; 2517 } 2518 2519 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 2520 // Arrays are treated like structures. 2521 2522 uint64_t Size = getContext().getTypeSize(Ty); 2523 2524 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2525 // than eight eightbytes, ..., it has class MEMORY. 2526 if (Size > 512) 2527 return; 2528 2529 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 2530 // fields, it has class MEMORY. 2531 // 2532 // Only need to check alignment of array base. 2533 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 2534 return; 2535 2536 // Otherwise implement simplified merge. We could be smarter about 2537 // this, but it isn't worth it and would be harder to verify. 2538 Current = NoClass; 2539 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 2540 uint64_t ArraySize = AT->getSize().getZExtValue(); 2541 2542 // The only case a 256-bit wide vector could be used is when the array 2543 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2544 // to work for sizes wider than 128, early check and fallback to memory. 2545 // 2546 if (Size > 128 && 2547 (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel))) 2548 return; 2549 2550 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 2551 Class FieldLo, FieldHi; 2552 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 2553 Lo = merge(Lo, FieldLo); 2554 Hi = merge(Hi, FieldHi); 2555 if (Lo == Memory || Hi == Memory) 2556 break; 2557 } 2558 2559 postMerge(Size, Lo, Hi); 2560 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 2561 return; 2562 } 2563 2564 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2565 uint64_t Size = getContext().getTypeSize(Ty); 2566 2567 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2568 // than eight eightbytes, ..., it has class MEMORY. 2569 if (Size > 512) 2570 return; 2571 2572 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 2573 // copy constructor or a non-trivial destructor, it is passed by invisible 2574 // reference. 2575 if (getRecordArgABI(RT, getCXXABI())) 2576 return; 2577 2578 const RecordDecl *RD = RT->getDecl(); 2579 2580 // Assume variable sized types are passed in memory. 2581 if (RD->hasFlexibleArrayMember()) 2582 return; 2583 2584 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2585 2586 // Reset Lo class, this will be recomputed. 2587 Current = NoClass; 2588 2589 // If this is a C++ record, classify the bases first. 2590 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2591 for (const auto &I : CXXRD->bases()) { 2592 assert(!I.isVirtual() && !I.getType()->isDependentType() && 2593 "Unexpected base class!"); 2594 const CXXRecordDecl *Base = 2595 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2596 2597 // Classify this field. 2598 // 2599 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 2600 // single eightbyte, each is classified separately. Each eightbyte gets 2601 // initialized to class NO_CLASS. 2602 Class FieldLo, FieldHi; 2603 uint64_t Offset = 2604 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 2605 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 2606 Lo = merge(Lo, FieldLo); 2607 Hi = merge(Hi, FieldHi); 2608 if (Lo == Memory || Hi == Memory) { 2609 postMerge(Size, Lo, Hi); 2610 return; 2611 } 2612 } 2613 } 2614 2615 // Classify the fields one at a time, merging the results. 2616 unsigned idx = 0; 2617 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2618 i != e; ++i, ++idx) { 2619 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2620 bool BitField = i->isBitField(); 2621 2622 // Ignore padding bit-fields. 2623 if (BitField && i->isUnnamedBitfield()) 2624 continue; 2625 2626 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 2627 // four eightbytes, or it contains unaligned fields, it has class MEMORY. 2628 // 2629 // The only case a 256-bit wide vector could be used is when the struct 2630 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2631 // to work for sizes wider than 128, early check and fallback to memory. 2632 // 2633 if (Size > 128 && (Size != getContext().getTypeSize(i->getType()) || 2634 Size > getNativeVectorSizeForAVXABI(AVXLevel))) { 2635 Lo = Memory; 2636 postMerge(Size, Lo, Hi); 2637 return; 2638 } 2639 // Note, skip this test for bit-fields, see below. 2640 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 2641 Lo = Memory; 2642 postMerge(Size, Lo, Hi); 2643 return; 2644 } 2645 2646 // Classify this field. 2647 // 2648 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 2649 // exceeds a single eightbyte, each is classified 2650 // separately. Each eightbyte gets initialized to class 2651 // NO_CLASS. 2652 Class FieldLo, FieldHi; 2653 2654 // Bit-fields require special handling, they do not force the 2655 // structure to be passed in memory even if unaligned, and 2656 // therefore they can straddle an eightbyte. 2657 if (BitField) { 2658 assert(!i->isUnnamedBitfield()); 2659 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2660 uint64_t Size = i->getBitWidthValue(getContext()); 2661 2662 uint64_t EB_Lo = Offset / 64; 2663 uint64_t EB_Hi = (Offset + Size - 1) / 64; 2664 2665 if (EB_Lo) { 2666 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 2667 FieldLo = NoClass; 2668 FieldHi = Integer; 2669 } else { 2670 FieldLo = Integer; 2671 FieldHi = EB_Hi ? Integer : NoClass; 2672 } 2673 } else 2674 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 2675 Lo = merge(Lo, FieldLo); 2676 Hi = merge(Hi, FieldHi); 2677 if (Lo == Memory || Hi == Memory) 2678 break; 2679 } 2680 2681 postMerge(Size, Lo, Hi); 2682 } 2683 } 2684 2685 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 2686 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2687 // place naturally. 2688 if (!isAggregateTypeForABI(Ty)) { 2689 // Treat an enum type as its underlying type. 2690 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2691 Ty = EnumTy->getDecl()->getIntegerType(); 2692 2693 return (Ty->isPromotableIntegerType() ? 2694 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 2695 } 2696 2697 return getNaturalAlignIndirect(Ty); 2698 } 2699 2700 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 2701 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 2702 uint64_t Size = getContext().getTypeSize(VecTy); 2703 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); 2704 if (Size <= 64 || Size > LargestVector) 2705 return true; 2706 } 2707 2708 return false; 2709 } 2710 2711 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 2712 unsigned freeIntRegs) const { 2713 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2714 // place naturally. 2715 // 2716 // This assumption is optimistic, as there could be free registers available 2717 // when we need to pass this argument in memory, and LLVM could try to pass 2718 // the argument in the free register. This does not seem to happen currently, 2719 // but this code would be much safer if we could mark the argument with 2720 // 'onstack'. See PR12193. 2721 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) { 2722 // Treat an enum type as its underlying type. 2723 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2724 Ty = EnumTy->getDecl()->getIntegerType(); 2725 2726 return (Ty->isPromotableIntegerType() ? 2727 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 2728 } 2729 2730 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 2731 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 2732 2733 // Compute the byval alignment. We specify the alignment of the byval in all 2734 // cases so that the mid-level optimizer knows the alignment of the byval. 2735 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 2736 2737 // Attempt to avoid passing indirect results using byval when possible. This 2738 // is important for good codegen. 2739 // 2740 // We do this by coercing the value into a scalar type which the backend can 2741 // handle naturally (i.e., without using byval). 2742 // 2743 // For simplicity, we currently only do this when we have exhausted all of the 2744 // free integer registers. Doing this when there are free integer registers 2745 // would require more care, as we would have to ensure that the coerced value 2746 // did not claim the unused register. That would require either reording the 2747 // arguments to the function (so that any subsequent inreg values came first), 2748 // or only doing this optimization when there were no following arguments that 2749 // might be inreg. 2750 // 2751 // We currently expect it to be rare (particularly in well written code) for 2752 // arguments to be passed on the stack when there are still free integer 2753 // registers available (this would typically imply large structs being passed 2754 // by value), so this seems like a fair tradeoff for now. 2755 // 2756 // We can revisit this if the backend grows support for 'onstack' parameter 2757 // attributes. See PR12193. 2758 if (freeIntRegs == 0) { 2759 uint64_t Size = getContext().getTypeSize(Ty); 2760 2761 // If this type fits in an eightbyte, coerce it into the matching integral 2762 // type, which will end up on the stack (with alignment 8). 2763 if (Align == 8 && Size <= 64) 2764 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 2765 Size)); 2766 } 2767 2768 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); 2769 } 2770 2771 /// The ABI specifies that a value should be passed in a full vector XMM/YMM 2772 /// register. Pick an LLVM IR type that will be passed as a vector register. 2773 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 2774 // Wrapper structs/arrays that only contain vectors are passed just like 2775 // vectors; strip them off if present. 2776 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) 2777 Ty = QualType(InnerTy, 0); 2778 2779 llvm::Type *IRType = CGT.ConvertType(Ty); 2780 if (isa<llvm::VectorType>(IRType) || 2781 IRType->getTypeID() == llvm::Type::FP128TyID) 2782 return IRType; 2783 2784 // We couldn't find the preferred IR vector type for 'Ty'. 2785 uint64_t Size = getContext().getTypeSize(Ty); 2786 assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!"); 2787 2788 // Return a LLVM IR vector type based on the size of 'Ty'. 2789 return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2790 Size / 64); 2791 } 2792 2793 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 2794 /// is known to either be off the end of the specified type or being in 2795 /// alignment padding. The user type specified is known to be at most 128 bits 2796 /// in size, and have passed through X86_64ABIInfo::classify with a successful 2797 /// classification that put one of the two halves in the INTEGER class. 2798 /// 2799 /// It is conservatively correct to return false. 2800 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 2801 unsigned EndBit, ASTContext &Context) { 2802 // If the bytes being queried are off the end of the type, there is no user 2803 // data hiding here. This handles analysis of builtins, vectors and other 2804 // types that don't contain interesting padding. 2805 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 2806 if (TySize <= StartBit) 2807 return true; 2808 2809 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 2810 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 2811 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 2812 2813 // Check each element to see if the element overlaps with the queried range. 2814 for (unsigned i = 0; i != NumElts; ++i) { 2815 // If the element is after the span we care about, then we're done.. 2816 unsigned EltOffset = i*EltSize; 2817 if (EltOffset >= EndBit) break; 2818 2819 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 2820 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 2821 EndBit-EltOffset, Context)) 2822 return false; 2823 } 2824 // If it overlaps no elements, then it is safe to process as padding. 2825 return true; 2826 } 2827 2828 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2829 const RecordDecl *RD = RT->getDecl(); 2830 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 2831 2832 // If this is a C++ record, check the bases first. 2833 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2834 for (const auto &I : CXXRD->bases()) { 2835 assert(!I.isVirtual() && !I.getType()->isDependentType() && 2836 "Unexpected base class!"); 2837 const CXXRecordDecl *Base = 2838 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2839 2840 // If the base is after the span we care about, ignore it. 2841 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 2842 if (BaseOffset >= EndBit) continue; 2843 2844 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 2845 if (!BitsContainNoUserData(I.getType(), BaseStart, 2846 EndBit-BaseOffset, Context)) 2847 return false; 2848 } 2849 } 2850 2851 // Verify that no field has data that overlaps the region of interest. Yes 2852 // this could be sped up a lot by being smarter about queried fields, 2853 // however we're only looking at structs up to 16 bytes, so we don't care 2854 // much. 2855 unsigned idx = 0; 2856 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2857 i != e; ++i, ++idx) { 2858 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 2859 2860 // If we found a field after the region we care about, then we're done. 2861 if (FieldOffset >= EndBit) break; 2862 2863 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 2864 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 2865 Context)) 2866 return false; 2867 } 2868 2869 // If nothing in this record overlapped the area of interest, then we're 2870 // clean. 2871 return true; 2872 } 2873 2874 return false; 2875 } 2876 2877 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a 2878 /// float member at the specified offset. For example, {int,{float}} has a 2879 /// float at offset 4. It is conservatively correct for this routine to return 2880 /// false. 2881 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, 2882 const llvm::DataLayout &TD) { 2883 // Base case if we find a float. 2884 if (IROffset == 0 && IRType->isFloatTy()) 2885 return true; 2886 2887 // If this is a struct, recurse into the field at the specified offset. 2888 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 2889 const llvm::StructLayout *SL = TD.getStructLayout(STy); 2890 unsigned Elt = SL->getElementContainingOffset(IROffset); 2891 IROffset -= SL->getElementOffset(Elt); 2892 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); 2893 } 2894 2895 // If this is an array, recurse into the field at the specified offset. 2896 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 2897 llvm::Type *EltTy = ATy->getElementType(); 2898 unsigned EltSize = TD.getTypeAllocSize(EltTy); 2899 IROffset -= IROffset/EltSize*EltSize; 2900 return ContainsFloatAtOffset(EltTy, IROffset, TD); 2901 } 2902 2903 return false; 2904 } 2905 2906 2907 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 2908 /// low 8 bytes of an XMM register, corresponding to the SSE class. 2909 llvm::Type *X86_64ABIInfo:: 2910 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 2911 QualType SourceTy, unsigned SourceOffset) const { 2912 // The only three choices we have are either double, <2 x float>, or float. We 2913 // pass as float if the last 4 bytes is just padding. This happens for 2914 // structs that contain 3 floats. 2915 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, 2916 SourceOffset*8+64, getContext())) 2917 return llvm::Type::getFloatTy(getVMContext()); 2918 2919 // We want to pass as <2 x float> if the LLVM IR type contains a float at 2920 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the 2921 // case. 2922 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && 2923 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) 2924 return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2); 2925 2926 return llvm::Type::getDoubleTy(getVMContext()); 2927 } 2928 2929 2930 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 2931 /// an 8-byte GPR. This means that we either have a scalar or we are talking 2932 /// about the high or low part of an up-to-16-byte struct. This routine picks 2933 /// the best LLVM IR type to represent this, which may be i64 or may be anything 2934 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 2935 /// etc). 2936 /// 2937 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 2938 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 2939 /// the 8-byte value references. PrefType may be null. 2940 /// 2941 /// SourceTy is the source-level type for the entire argument. SourceOffset is 2942 /// an offset into this that we're processing (which is always either 0 or 8). 2943 /// 2944 llvm::Type *X86_64ABIInfo:: 2945 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 2946 QualType SourceTy, unsigned SourceOffset) const { 2947 // If we're dealing with an un-offset LLVM IR type, then it means that we're 2948 // returning an 8-byte unit starting with it. See if we can safely use it. 2949 if (IROffset == 0) { 2950 // Pointers and int64's always fill the 8-byte unit. 2951 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 2952 IRType->isIntegerTy(64)) 2953 return IRType; 2954 2955 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 2956 // goodness in the source type is just tail padding. This is allowed to 2957 // kick in for struct {double,int} on the int, but not on 2958 // struct{double,int,int} because we wouldn't return the second int. We 2959 // have to do this analysis on the source type because we can't depend on 2960 // unions being lowered a specific way etc. 2961 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 2962 IRType->isIntegerTy(32) || 2963 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 2964 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 2965 cast<llvm::IntegerType>(IRType)->getBitWidth(); 2966 2967 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 2968 SourceOffset*8+64, getContext())) 2969 return IRType; 2970 } 2971 } 2972 2973 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 2974 // If this is a struct, recurse into the field at the specified offset. 2975 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 2976 if (IROffset < SL->getSizeInBytes()) { 2977 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 2978 IROffset -= SL->getElementOffset(FieldIdx); 2979 2980 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 2981 SourceTy, SourceOffset); 2982 } 2983 } 2984 2985 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 2986 llvm::Type *EltTy = ATy->getElementType(); 2987 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 2988 unsigned EltOffset = IROffset/EltSize*EltSize; 2989 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 2990 SourceOffset); 2991 } 2992 2993 // Okay, we don't have any better idea of what to pass, so we pass this in an 2994 // integer register that isn't too big to fit the rest of the struct. 2995 unsigned TySizeInBytes = 2996 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 2997 2998 assert(TySizeInBytes != SourceOffset && "Empty field?"); 2999 3000 // It is always safe to classify this as an integer type up to i64 that 3001 // isn't larger than the structure. 3002 return llvm::IntegerType::get(getVMContext(), 3003 std::min(TySizeInBytes-SourceOffset, 8U)*8); 3004 } 3005 3006 3007 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 3008 /// be used as elements of a two register pair to pass or return, return a 3009 /// first class aggregate to represent them. For example, if the low part of 3010 /// a by-value argument should be passed as i32* and the high part as float, 3011 /// return {i32*, float}. 3012 static llvm::Type * 3013 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 3014 const llvm::DataLayout &TD) { 3015 // In order to correctly satisfy the ABI, we need to the high part to start 3016 // at offset 8. If the high and low parts we inferred are both 4-byte types 3017 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 3018 // the second element at offset 8. Check for this: 3019 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 3020 unsigned HiAlign = TD.getABITypeAlignment(Hi); 3021 unsigned HiStart = llvm::alignTo(LoSize, HiAlign); 3022 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 3023 3024 // To handle this, we have to increase the size of the low part so that the 3025 // second element will start at an 8 byte offset. We can't increase the size 3026 // of the second element because it might make us access off the end of the 3027 // struct. 3028 if (HiStart != 8) { 3029 // There are usually two sorts of types the ABI generation code can produce 3030 // for the low part of a pair that aren't 8 bytes in size: float or 3031 // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and 3032 // NaCl). 3033 // Promote these to a larger type. 3034 if (Lo->isFloatTy()) 3035 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 3036 else { 3037 assert((Lo->isIntegerTy() || Lo->isPointerTy()) 3038 && "Invalid/unknown lo type"); 3039 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 3040 } 3041 } 3042 3043 llvm::StructType *Result = llvm::StructType::get(Lo, Hi, nullptr); 3044 3045 3046 // Verify that the second element is at an 8-byte offset. 3047 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 3048 "Invalid x86-64 argument pair!"); 3049 return Result; 3050 } 3051 3052 ABIArgInfo X86_64ABIInfo:: 3053 classifyReturnType(QualType RetTy) const { 3054 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 3055 // classification algorithm. 3056 X86_64ABIInfo::Class Lo, Hi; 3057 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 3058 3059 // Check some invariants. 3060 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3061 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3062 3063 llvm::Type *ResType = nullptr; 3064 switch (Lo) { 3065 case NoClass: 3066 if (Hi == NoClass) 3067 return ABIArgInfo::getIgnore(); 3068 // If the low part is just padding, it takes no register, leave ResType 3069 // null. 3070 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3071 "Unknown missing lo part"); 3072 break; 3073 3074 case SSEUp: 3075 case X87Up: 3076 llvm_unreachable("Invalid classification for lo word."); 3077 3078 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 3079 // hidden argument. 3080 case Memory: 3081 return getIndirectReturnResult(RetTy); 3082 3083 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 3084 // available register of the sequence %rax, %rdx is used. 3085 case Integer: 3086 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3087 3088 // If we have a sign or zero extended integer, make sure to return Extend 3089 // so that the parameter gets the right LLVM IR attributes. 3090 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3091 // Treat an enum type as its underlying type. 3092 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3093 RetTy = EnumTy->getDecl()->getIntegerType(); 3094 3095 if (RetTy->isIntegralOrEnumerationType() && 3096 RetTy->isPromotableIntegerType()) 3097 return ABIArgInfo::getExtend(); 3098 } 3099 break; 3100 3101 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 3102 // available SSE register of the sequence %xmm0, %xmm1 is used. 3103 case SSE: 3104 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3105 break; 3106 3107 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 3108 // returned on the X87 stack in %st0 as 80-bit x87 number. 3109 case X87: 3110 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 3111 break; 3112 3113 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 3114 // part of the value is returned in %st0 and the imaginary part in 3115 // %st1. 3116 case ComplexX87: 3117 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 3118 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 3119 llvm::Type::getX86_FP80Ty(getVMContext()), 3120 nullptr); 3121 break; 3122 } 3123 3124 llvm::Type *HighPart = nullptr; 3125 switch (Hi) { 3126 // Memory was handled previously and X87 should 3127 // never occur as a hi class. 3128 case Memory: 3129 case X87: 3130 llvm_unreachable("Invalid classification for hi word."); 3131 3132 case ComplexX87: // Previously handled. 3133 case NoClass: 3134 break; 3135 3136 case Integer: 3137 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3138 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3139 return ABIArgInfo::getDirect(HighPart, 8); 3140 break; 3141 case SSE: 3142 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3143 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3144 return ABIArgInfo::getDirect(HighPart, 8); 3145 break; 3146 3147 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 3148 // is passed in the next available eightbyte chunk if the last used 3149 // vector register. 3150 // 3151 // SSEUP should always be preceded by SSE, just widen. 3152 case SSEUp: 3153 assert(Lo == SSE && "Unexpected SSEUp classification."); 3154 ResType = GetByteVectorType(RetTy); 3155 break; 3156 3157 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 3158 // returned together with the previous X87 value in %st0. 3159 case X87Up: 3160 // If X87Up is preceded by X87, we don't need to do 3161 // anything. However, in some cases with unions it may not be 3162 // preceded by X87. In such situations we follow gcc and pass the 3163 // extra bits in an SSE reg. 3164 if (Lo != X87) { 3165 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3166 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3167 return ABIArgInfo::getDirect(HighPart, 8); 3168 } 3169 break; 3170 } 3171 3172 // If a high part was specified, merge it together with the low part. It is 3173 // known to pass in the high eightbyte of the result. We do this by forming a 3174 // first class struct aggregate with the high and low part: {low, high} 3175 if (HighPart) 3176 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3177 3178 return ABIArgInfo::getDirect(ResType); 3179 } 3180 3181 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 3182 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 3183 bool isNamedArg) 3184 const 3185 { 3186 Ty = useFirstFieldIfTransparentUnion(Ty); 3187 3188 X86_64ABIInfo::Class Lo, Hi; 3189 classify(Ty, 0, Lo, Hi, isNamedArg); 3190 3191 // Check some invariants. 3192 // FIXME: Enforce these by construction. 3193 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3194 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3195 3196 neededInt = 0; 3197 neededSSE = 0; 3198 llvm::Type *ResType = nullptr; 3199 switch (Lo) { 3200 case NoClass: 3201 if (Hi == NoClass) 3202 return ABIArgInfo::getIgnore(); 3203 // If the low part is just padding, it takes no register, leave ResType 3204 // null. 3205 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3206 "Unknown missing lo part"); 3207 break; 3208 3209 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 3210 // on the stack. 3211 case Memory: 3212 3213 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 3214 // COMPLEX_X87, it is passed in memory. 3215 case X87: 3216 case ComplexX87: 3217 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 3218 ++neededInt; 3219 return getIndirectResult(Ty, freeIntRegs); 3220 3221 case SSEUp: 3222 case X87Up: 3223 llvm_unreachable("Invalid classification for lo word."); 3224 3225 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 3226 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 3227 // and %r9 is used. 3228 case Integer: 3229 ++neededInt; 3230 3231 // Pick an 8-byte type based on the preferred type. 3232 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 3233 3234 // If we have a sign or zero extended integer, make sure to return Extend 3235 // so that the parameter gets the right LLVM IR attributes. 3236 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3237 // Treat an enum type as its underlying type. 3238 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3239 Ty = EnumTy->getDecl()->getIntegerType(); 3240 3241 if (Ty->isIntegralOrEnumerationType() && 3242 Ty->isPromotableIntegerType()) 3243 return ABIArgInfo::getExtend(); 3244 } 3245 3246 break; 3247 3248 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 3249 // available SSE register is used, the registers are taken in the 3250 // order from %xmm0 to %xmm7. 3251 case SSE: { 3252 llvm::Type *IRType = CGT.ConvertType(Ty); 3253 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 3254 ++neededSSE; 3255 break; 3256 } 3257 } 3258 3259 llvm::Type *HighPart = nullptr; 3260 switch (Hi) { 3261 // Memory was handled previously, ComplexX87 and X87 should 3262 // never occur as hi classes, and X87Up must be preceded by X87, 3263 // which is passed in memory. 3264 case Memory: 3265 case X87: 3266 case ComplexX87: 3267 llvm_unreachable("Invalid classification for hi word."); 3268 3269 case NoClass: break; 3270 3271 case Integer: 3272 ++neededInt; 3273 // Pick an 8-byte type based on the preferred type. 3274 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3275 3276 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3277 return ABIArgInfo::getDirect(HighPart, 8); 3278 break; 3279 3280 // X87Up generally doesn't occur here (long double is passed in 3281 // memory), except in situations involving unions. 3282 case X87Up: 3283 case SSE: 3284 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3285 3286 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3287 return ABIArgInfo::getDirect(HighPart, 8); 3288 3289 ++neededSSE; 3290 break; 3291 3292 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 3293 // eightbyte is passed in the upper half of the last used SSE 3294 // register. This only happens when 128-bit vectors are passed. 3295 case SSEUp: 3296 assert(Lo == SSE && "Unexpected SSEUp classification"); 3297 ResType = GetByteVectorType(Ty); 3298 break; 3299 } 3300 3301 // If a high part was specified, merge it together with the low part. It is 3302 // known to pass in the high eightbyte of the result. We do this by forming a 3303 // first class struct aggregate with the high and low part: {low, high} 3304 if (HighPart) 3305 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3306 3307 return ABIArgInfo::getDirect(ResType); 3308 } 3309 3310 ABIArgInfo 3311 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 3312 unsigned &NeededSSE) const { 3313 auto RT = Ty->getAs<RecordType>(); 3314 assert(RT && "classifyRegCallStructType only valid with struct types"); 3315 3316 if (RT->getDecl()->hasFlexibleArrayMember()) 3317 return getIndirectReturnResult(Ty); 3318 3319 // Sum up bases 3320 if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 3321 if (CXXRD->isDynamicClass()) { 3322 NeededInt = NeededSSE = 0; 3323 return getIndirectReturnResult(Ty); 3324 } 3325 3326 for (const auto &I : CXXRD->bases()) 3327 if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE) 3328 .isIndirect()) { 3329 NeededInt = NeededSSE = 0; 3330 return getIndirectReturnResult(Ty); 3331 } 3332 } 3333 3334 // Sum up members 3335 for (const auto *FD : RT->getDecl()->fields()) { 3336 if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) { 3337 if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE) 3338 .isIndirect()) { 3339 NeededInt = NeededSSE = 0; 3340 return getIndirectReturnResult(Ty); 3341 } 3342 } else { 3343 unsigned LocalNeededInt, LocalNeededSSE; 3344 if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt, 3345 LocalNeededSSE, true) 3346 .isIndirect()) { 3347 NeededInt = NeededSSE = 0; 3348 return getIndirectReturnResult(Ty); 3349 } 3350 NeededInt += LocalNeededInt; 3351 NeededSSE += LocalNeededSSE; 3352 } 3353 } 3354 3355 return ABIArgInfo::getDirect(); 3356 } 3357 3358 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty, 3359 unsigned &NeededInt, 3360 unsigned &NeededSSE) const { 3361 3362 NeededInt = 0; 3363 NeededSSE = 0; 3364 3365 return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE); 3366 } 3367 3368 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3369 3370 bool IsRegCall = FI.getCallingConvention() == llvm::CallingConv::X86_RegCall; 3371 3372 // Keep track of the number of assigned registers. 3373 unsigned FreeIntRegs = IsRegCall ? 11 : 6; 3374 unsigned FreeSSERegs = IsRegCall ? 16 : 8; 3375 unsigned NeededInt, NeededSSE; 3376 3377 if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() && 3378 !FI.getReturnType()->getTypePtr()->isUnionType()) { 3379 FI.getReturnInfo() = 3380 classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE); 3381 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3382 FreeIntRegs -= NeededInt; 3383 FreeSSERegs -= NeededSSE; 3384 } else { 3385 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3386 } 3387 } else if (!getCXXABI().classifyReturnType(FI)) 3388 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3389 3390 // If the return value is indirect, then the hidden argument is consuming one 3391 // integer register. 3392 if (FI.getReturnInfo().isIndirect()) 3393 --FreeIntRegs; 3394 3395 // The chain argument effectively gives us another free register. 3396 if (FI.isChainCall()) 3397 ++FreeIntRegs; 3398 3399 unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 3400 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 3401 // get assigned (in left-to-right order) for passing as follows... 3402 unsigned ArgNo = 0; 3403 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3404 it != ie; ++it, ++ArgNo) { 3405 bool IsNamedArg = ArgNo < NumRequiredArgs; 3406 3407 if (IsRegCall && it->type->isStructureOrClassType()) 3408 it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE); 3409 else 3410 it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt, 3411 NeededSSE, IsNamedArg); 3412 3413 // AMD64-ABI 3.2.3p3: If there are no registers available for any 3414 // eightbyte of an argument, the whole argument is passed on the 3415 // stack. If registers have already been assigned for some 3416 // eightbytes of such an argument, the assignments get reverted. 3417 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3418 FreeIntRegs -= NeededInt; 3419 FreeSSERegs -= NeededSSE; 3420 } else { 3421 it->info = getIndirectResult(it->type, FreeIntRegs); 3422 } 3423 } 3424 } 3425 3426 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, 3427 Address VAListAddr, QualType Ty) { 3428 Address overflow_arg_area_p = CGF.Builder.CreateStructGEP( 3429 VAListAddr, 2, CharUnits::fromQuantity(8), "overflow_arg_area_p"); 3430 llvm::Value *overflow_arg_area = 3431 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 3432 3433 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 3434 // byte boundary if alignment needed by type exceeds 8 byte boundary. 3435 // It isn't stated explicitly in the standard, but in practice we use 3436 // alignment greater than 16 where necessary. 3437 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 3438 if (Align > CharUnits::fromQuantity(8)) { 3439 overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, 3440 Align); 3441 } 3442 3443 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 3444 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3445 llvm::Value *Res = 3446 CGF.Builder.CreateBitCast(overflow_arg_area, 3447 llvm::PointerType::getUnqual(LTy)); 3448 3449 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 3450 // l->overflow_arg_area + sizeof(type). 3451 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 3452 // an 8 byte boundary. 3453 3454 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 3455 llvm::Value *Offset = 3456 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 3457 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 3458 "overflow_arg_area.next"); 3459 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 3460 3461 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 3462 return Address(Res, Align); 3463 } 3464 3465 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3466 QualType Ty) const { 3467 // Assume that va_list type is correct; should be pointer to LLVM type: 3468 // struct { 3469 // i32 gp_offset; 3470 // i32 fp_offset; 3471 // i8* overflow_arg_area; 3472 // i8* reg_save_area; 3473 // }; 3474 unsigned neededInt, neededSSE; 3475 3476 Ty = getContext().getCanonicalType(Ty); 3477 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 3478 /*isNamedArg*/false); 3479 3480 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 3481 // in the registers. If not go to step 7. 3482 if (!neededInt && !neededSSE) 3483 return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3484 3485 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 3486 // general purpose registers needed to pass type and num_fp to hold 3487 // the number of floating point registers needed. 3488 3489 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 3490 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 3491 // l->fp_offset > 304 - num_fp * 16 go to step 7. 3492 // 3493 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 3494 // register save space). 3495 3496 llvm::Value *InRegs = nullptr; 3497 Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); 3498 llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; 3499 if (neededInt) { 3500 gp_offset_p = 3501 CGF.Builder.CreateStructGEP(VAListAddr, 0, CharUnits::Zero(), 3502 "gp_offset_p"); 3503 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 3504 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 3505 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 3506 } 3507 3508 if (neededSSE) { 3509 fp_offset_p = 3510 CGF.Builder.CreateStructGEP(VAListAddr, 1, CharUnits::fromQuantity(4), 3511 "fp_offset_p"); 3512 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 3513 llvm::Value *FitsInFP = 3514 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 3515 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 3516 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 3517 } 3518 3519 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 3520 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 3521 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 3522 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 3523 3524 // Emit code to load the value if it was passed in registers. 3525 3526 CGF.EmitBlock(InRegBlock); 3527 3528 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 3529 // an offset of l->gp_offset and/or l->fp_offset. This may require 3530 // copying to a temporary location in case the parameter is passed 3531 // in different register classes or requires an alignment greater 3532 // than 8 for general purpose registers and 16 for XMM registers. 3533 // 3534 // FIXME: This really results in shameful code when we end up needing to 3535 // collect arguments from different places; often what should result in a 3536 // simple assembling of a structure from scattered addresses has many more 3537 // loads than necessary. Can we clean this up? 3538 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3539 llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( 3540 CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(16)), 3541 "reg_save_area"); 3542 3543 Address RegAddr = Address::invalid(); 3544 if (neededInt && neededSSE) { 3545 // FIXME: Cleanup. 3546 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 3547 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 3548 Address Tmp = CGF.CreateMemTemp(Ty); 3549 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3550 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 3551 llvm::Type *TyLo = ST->getElementType(0); 3552 llvm::Type *TyHi = ST->getElementType(1); 3553 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 3554 "Unexpected ABI info for mixed regs"); 3555 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 3556 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 3557 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset); 3558 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset); 3559 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 3560 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 3561 3562 // Copy the first element. 3563 // FIXME: Our choice of alignment here and below is probably pessimistic. 3564 llvm::Value *V = CGF.Builder.CreateAlignedLoad( 3565 TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo), 3566 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo))); 3567 CGF.Builder.CreateStore(V, 3568 CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero())); 3569 3570 // Copy the second element. 3571 V = CGF.Builder.CreateAlignedLoad( 3572 TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi), 3573 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi))); 3574 CharUnits Offset = CharUnits::fromQuantity( 3575 getDataLayout().getStructLayout(ST)->getElementOffset(1)); 3576 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1, Offset)); 3577 3578 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3579 } else if (neededInt) { 3580 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset), 3581 CharUnits::fromQuantity(8)); 3582 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3583 3584 // Copy to a temporary if necessary to ensure the appropriate alignment. 3585 std::pair<CharUnits, CharUnits> SizeAlign = 3586 getContext().getTypeInfoInChars(Ty); 3587 uint64_t TySize = SizeAlign.first.getQuantity(); 3588 CharUnits TyAlign = SizeAlign.second; 3589 3590 // Copy into a temporary if the type is more aligned than the 3591 // register save area. 3592 if (TyAlign.getQuantity() > 8) { 3593 Address Tmp = CGF.CreateMemTemp(Ty); 3594 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); 3595 RegAddr = Tmp; 3596 } 3597 3598 } else if (neededSSE == 1) { 3599 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3600 CharUnits::fromQuantity(16)); 3601 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3602 } else { 3603 assert(neededSSE == 2 && "Invalid number of needed registers!"); 3604 // SSE registers are spaced 16 bytes apart in the register save 3605 // area, we need to collect the two eightbytes together. 3606 // The ABI isn't explicit about this, but it seems reasonable 3607 // to assume that the slots are 16-byte aligned, since the stack is 3608 // naturally 16-byte aligned and the prologue is expected to store 3609 // all the SSE registers to the RSA. 3610 Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3611 CharUnits::fromQuantity(16)); 3612 Address RegAddrHi = 3613 CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, 3614 CharUnits::fromQuantity(16)); 3615 llvm::Type *DoubleTy = CGF.DoubleTy; 3616 llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, nullptr); 3617 llvm::Value *V; 3618 Address Tmp = CGF.CreateMemTemp(Ty); 3619 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3620 V = CGF.Builder.CreateLoad( 3621 CGF.Builder.CreateElementBitCast(RegAddrLo, DoubleTy)); 3622 CGF.Builder.CreateStore(V, 3623 CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero())); 3624 V = CGF.Builder.CreateLoad( 3625 CGF.Builder.CreateElementBitCast(RegAddrHi, DoubleTy)); 3626 CGF.Builder.CreateStore(V, 3627 CGF.Builder.CreateStructGEP(Tmp, 1, CharUnits::fromQuantity(8))); 3628 3629 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3630 } 3631 3632 // AMD64-ABI 3.5.7p5: Step 5. Set: 3633 // l->gp_offset = l->gp_offset + num_gp * 8 3634 // l->fp_offset = l->fp_offset + num_fp * 16. 3635 if (neededInt) { 3636 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 3637 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 3638 gp_offset_p); 3639 } 3640 if (neededSSE) { 3641 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 3642 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 3643 fp_offset_p); 3644 } 3645 CGF.EmitBranch(ContBlock); 3646 3647 // Emit code to load the value if it was passed in memory. 3648 3649 CGF.EmitBlock(InMemBlock); 3650 Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3651 3652 // Return the appropriate result. 3653 3654 CGF.EmitBlock(ContBlock); 3655 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, 3656 "vaarg.addr"); 3657 return ResAddr; 3658 } 3659 3660 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 3661 QualType Ty) const { 3662 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 3663 CGF.getContext().getTypeInfoInChars(Ty), 3664 CharUnits::fromQuantity(8), 3665 /*allowHigherAlign*/ false); 3666 } 3667 3668 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 3669 bool IsReturnType) const { 3670 3671 if (Ty->isVoidType()) 3672 return ABIArgInfo::getIgnore(); 3673 3674 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3675 Ty = EnumTy->getDecl()->getIntegerType(); 3676 3677 TypeInfo Info = getContext().getTypeInfo(Ty); 3678 uint64_t Width = Info.Width; 3679 CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); 3680 3681 const RecordType *RT = Ty->getAs<RecordType>(); 3682 if (RT) { 3683 if (!IsReturnType) { 3684 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 3685 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 3686 } 3687 3688 if (RT->getDecl()->hasFlexibleArrayMember()) 3689 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 3690 3691 } 3692 3693 // vectorcall adds the concept of a homogenous vector aggregate, similar to 3694 // other targets. 3695 const Type *Base = nullptr; 3696 uint64_t NumElts = 0; 3697 if (FreeSSERegs && isHomogeneousAggregate(Ty, Base, NumElts)) { 3698 if (FreeSSERegs >= NumElts) { 3699 FreeSSERegs -= NumElts; 3700 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 3701 return ABIArgInfo::getDirect(); 3702 return ABIArgInfo::getExpand(); 3703 } 3704 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3705 } 3706 3707 3708 if (Ty->isMemberPointerType()) { 3709 // If the member pointer is represented by an LLVM int or ptr, pass it 3710 // directly. 3711 llvm::Type *LLTy = CGT.ConvertType(Ty); 3712 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 3713 return ABIArgInfo::getDirect(); 3714 } 3715 3716 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { 3717 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 3718 // not 1, 2, 4, or 8 bytes, must be passed by reference." 3719 if (Width > 64 || !llvm::isPowerOf2_64(Width)) 3720 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 3721 3722 // Otherwise, coerce it to a small integer. 3723 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 3724 } 3725 3726 // Bool type is always extended to the ABI, other builtin types are not 3727 // extended. 3728 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 3729 if (BT && BT->getKind() == BuiltinType::Bool) 3730 return ABIArgInfo::getExtend(); 3731 3732 // Mingw64 GCC uses the old 80 bit extended precision floating point unit. It 3733 // passes them indirectly through memory. 3734 if (IsMingw64 && BT && BT->getKind() == BuiltinType::LongDouble) { 3735 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 3736 if (LDF == &llvm::APFloat::x87DoubleExtended()) 3737 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3738 } 3739 3740 return ABIArgInfo::getDirect(); 3741 } 3742 3743 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3744 bool IsVectorCall = 3745 FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall; 3746 bool IsRegCall = FI.getCallingConvention() == llvm::CallingConv::X86_RegCall; 3747 3748 unsigned FreeSSERegs = 0; 3749 if (IsVectorCall) { 3750 // We can use up to 4 SSE return registers with vectorcall. 3751 FreeSSERegs = 4; 3752 } else if (IsRegCall) { 3753 // RegCall gives us 16 SSE registers. 3754 FreeSSERegs = 16; 3755 } 3756 3757 if (!getCXXABI().classifyReturnType(FI)) 3758 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true); 3759 3760 if (IsVectorCall) { 3761 // We can use up to 6 SSE register parameters with vectorcall. 3762 FreeSSERegs = 6; 3763 } else if (IsRegCall) { 3764 FreeSSERegs = 16; 3765 } 3766 3767 for (auto &I : FI.arguments()) 3768 I.info = classify(I.type, FreeSSERegs, false); 3769 } 3770 3771 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3772 QualType Ty) const { 3773 3774 bool IsIndirect = false; 3775 3776 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 3777 // not 1, 2, 4, or 8 bytes, must be passed by reference." 3778 if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) { 3779 uint64_t Width = getContext().getTypeSize(Ty); 3780 IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 3781 } 3782 3783 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 3784 CGF.getContext().getTypeInfoInChars(Ty), 3785 CharUnits::fromQuantity(8), 3786 /*allowHigherAlign*/ false); 3787 } 3788 3789 // PowerPC-32 3790 namespace { 3791 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. 3792 class PPC32_SVR4_ABIInfo : public DefaultABIInfo { 3793 bool IsSoftFloatABI; 3794 public: 3795 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI) 3796 : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI) {} 3797 3798 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3799 QualType Ty) const override; 3800 }; 3801 3802 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { 3803 public: 3804 PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI) 3805 : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT, SoftFloatABI)) {} 3806 3807 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 3808 // This is recovered from gcc output. 3809 return 1; // r1 is the dedicated stack pointer 3810 } 3811 3812 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3813 llvm::Value *Address) const override; 3814 }; 3815 3816 } 3817 3818 // TODO: this implementation is now likely redundant with 3819 // DefaultABIInfo::EmitVAArg. 3820 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList, 3821 QualType Ty) const { 3822 const unsigned OverflowLimit = 8; 3823 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 3824 // TODO: Implement this. For now ignore. 3825 (void)CTy; 3826 return Address::invalid(); // FIXME? 3827 } 3828 3829 // struct __va_list_tag { 3830 // unsigned char gpr; 3831 // unsigned char fpr; 3832 // unsigned short reserved; 3833 // void *overflow_arg_area; 3834 // void *reg_save_area; 3835 // }; 3836 3837 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; 3838 bool isInt = 3839 Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType(); 3840 bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64; 3841 3842 // All aggregates are passed indirectly? That doesn't seem consistent 3843 // with the argument-lowering code. 3844 bool isIndirect = Ty->isAggregateType(); 3845 3846 CGBuilderTy &Builder = CGF.Builder; 3847 3848 // The calling convention either uses 1-2 GPRs or 1 FPR. 3849 Address NumRegsAddr = Address::invalid(); 3850 if (isInt || IsSoftFloatABI) { 3851 NumRegsAddr = Builder.CreateStructGEP(VAList, 0, CharUnits::Zero(), "gpr"); 3852 } else { 3853 NumRegsAddr = Builder.CreateStructGEP(VAList, 1, CharUnits::One(), "fpr"); 3854 } 3855 3856 llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs"); 3857 3858 // "Align" the register count when TY is i64. 3859 if (isI64 || (isF64 && IsSoftFloatABI)) { 3860 NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1)); 3861 NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U)); 3862 } 3863 3864 llvm::Value *CC = 3865 Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond"); 3866 3867 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); 3868 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); 3869 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 3870 3871 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); 3872 3873 llvm::Type *DirectTy = CGF.ConvertType(Ty); 3874 if (isIndirect) DirectTy = DirectTy->getPointerTo(0); 3875 3876 // Case 1: consume registers. 3877 Address RegAddr = Address::invalid(); 3878 { 3879 CGF.EmitBlock(UsingRegs); 3880 3881 Address RegSaveAreaPtr = 3882 Builder.CreateStructGEP(VAList, 4, CharUnits::fromQuantity(8)); 3883 RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr), 3884 CharUnits::fromQuantity(8)); 3885 assert(RegAddr.getElementType() == CGF.Int8Ty); 3886 3887 // Floating-point registers start after the general-purpose registers. 3888 if (!(isInt || IsSoftFloatABI)) { 3889 RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr, 3890 CharUnits::fromQuantity(32)); 3891 } 3892 3893 // Get the address of the saved value by scaling the number of 3894 // registers we've used by the number of 3895 CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8); 3896 llvm::Value *RegOffset = 3897 Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity())); 3898 RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty, 3899 RegAddr.getPointer(), RegOffset), 3900 RegAddr.getAlignment().alignmentOfArrayElement(RegSize)); 3901 RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy); 3902 3903 // Increase the used-register count. 3904 NumRegs = 3905 Builder.CreateAdd(NumRegs, 3906 Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1)); 3907 Builder.CreateStore(NumRegs, NumRegsAddr); 3908 3909 CGF.EmitBranch(Cont); 3910 } 3911 3912 // Case 2: consume space in the overflow area. 3913 Address MemAddr = Address::invalid(); 3914 { 3915 CGF.EmitBlock(UsingOverflow); 3916 3917 Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr); 3918 3919 // Everything in the overflow area is rounded up to a size of at least 4. 3920 CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4); 3921 3922 CharUnits Size; 3923 if (!isIndirect) { 3924 auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty); 3925 Size = TypeInfo.first.alignTo(OverflowAreaAlign); 3926 } else { 3927 Size = CGF.getPointerSize(); 3928 } 3929 3930 Address OverflowAreaAddr = 3931 Builder.CreateStructGEP(VAList, 3, CharUnits::fromQuantity(4)); 3932 Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), 3933 OverflowAreaAlign); 3934 // Round up address of argument to alignment 3935 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 3936 if (Align > OverflowAreaAlign) { 3937 llvm::Value *Ptr = OverflowArea.getPointer(); 3938 OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align), 3939 Align); 3940 } 3941 3942 MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy); 3943 3944 // Increase the overflow area. 3945 OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size); 3946 Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr); 3947 CGF.EmitBranch(Cont); 3948 } 3949 3950 CGF.EmitBlock(Cont); 3951 3952 // Merge the cases with a phi. 3953 Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow, 3954 "vaarg.addr"); 3955 3956 // Load the pointer if the argument was passed indirectly. 3957 if (isIndirect) { 3958 Result = Address(Builder.CreateLoad(Result, "aggr"), 3959 getContext().getTypeAlignInChars(Ty)); 3960 } 3961 3962 return Result; 3963 } 3964 3965 bool 3966 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3967 llvm::Value *Address) const { 3968 // This is calculated from the LLVM and GCC tables and verified 3969 // against gcc output. AFAIK all ABIs use the same encoding. 3970 3971 CodeGen::CGBuilderTy &Builder = CGF.Builder; 3972 3973 llvm::IntegerType *i8 = CGF.Int8Ty; 3974 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 3975 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 3976 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 3977 3978 // 0-31: r0-31, the 4-byte general-purpose registers 3979 AssignToArrayRange(Builder, Address, Four8, 0, 31); 3980 3981 // 32-63: fp0-31, the 8-byte floating-point registers 3982 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 3983 3984 // 64-76 are various 4-byte special-purpose registers: 3985 // 64: mq 3986 // 65: lr 3987 // 66: ctr 3988 // 67: ap 3989 // 68-75 cr0-7 3990 // 76: xer 3991 AssignToArrayRange(Builder, Address, Four8, 64, 76); 3992 3993 // 77-108: v0-31, the 16-byte vector registers 3994 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 3995 3996 // 109: vrsave 3997 // 110: vscr 3998 // 111: spe_acc 3999 // 112: spefscr 4000 // 113: sfp 4001 AssignToArrayRange(Builder, Address, Four8, 109, 113); 4002 4003 return false; 4004 } 4005 4006 // PowerPC-64 4007 4008 namespace { 4009 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 4010 class PPC64_SVR4_ABIInfo : public ABIInfo { 4011 public: 4012 enum ABIKind { 4013 ELFv1 = 0, 4014 ELFv2 4015 }; 4016 4017 private: 4018 static const unsigned GPRBits = 64; 4019 ABIKind Kind; 4020 bool HasQPX; 4021 bool IsSoftFloatABI; 4022 4023 // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and 4024 // will be passed in a QPX register. 4025 bool IsQPXVectorTy(const Type *Ty) const { 4026 if (!HasQPX) 4027 return false; 4028 4029 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4030 unsigned NumElements = VT->getNumElements(); 4031 if (NumElements == 1) 4032 return false; 4033 4034 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) { 4035 if (getContext().getTypeSize(Ty) <= 256) 4036 return true; 4037 } else if (VT->getElementType()-> 4038 isSpecificBuiltinType(BuiltinType::Float)) { 4039 if (getContext().getTypeSize(Ty) <= 128) 4040 return true; 4041 } 4042 } 4043 4044 return false; 4045 } 4046 4047 bool IsQPXVectorTy(QualType Ty) const { 4048 return IsQPXVectorTy(Ty.getTypePtr()); 4049 } 4050 4051 public: 4052 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX, 4053 bool SoftFloatABI) 4054 : ABIInfo(CGT), Kind(Kind), HasQPX(HasQPX), 4055 IsSoftFloatABI(SoftFloatABI) {} 4056 4057 bool isPromotableTypeForABI(QualType Ty) const; 4058 CharUnits getParamTypeAlignment(QualType Ty) const; 4059 4060 ABIArgInfo classifyReturnType(QualType RetTy) const; 4061 ABIArgInfo classifyArgumentType(QualType Ty) const; 4062 4063 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4064 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4065 uint64_t Members) const override; 4066 4067 // TODO: We can add more logic to computeInfo to improve performance. 4068 // Example: For aggregate arguments that fit in a register, we could 4069 // use getDirectInReg (as is done below for structs containing a single 4070 // floating-point value) to avoid pushing them to memory on function 4071 // entry. This would require changing the logic in PPCISelLowering 4072 // when lowering the parameters in the caller and args in the callee. 4073 void computeInfo(CGFunctionInfo &FI) const override { 4074 if (!getCXXABI().classifyReturnType(FI)) 4075 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4076 for (auto &I : FI.arguments()) { 4077 // We rely on the default argument classification for the most part. 4078 // One exception: An aggregate containing a single floating-point 4079 // or vector item must be passed in a register if one is available. 4080 const Type *T = isSingleElementStruct(I.type, getContext()); 4081 if (T) { 4082 const BuiltinType *BT = T->getAs<BuiltinType>(); 4083 if (IsQPXVectorTy(T) || 4084 (T->isVectorType() && getContext().getTypeSize(T) == 128) || 4085 (BT && BT->isFloatingPoint())) { 4086 QualType QT(T, 0); 4087 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 4088 continue; 4089 } 4090 } 4091 I.info = classifyArgumentType(I.type); 4092 } 4093 } 4094 4095 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4096 QualType Ty) const override; 4097 }; 4098 4099 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 4100 4101 public: 4102 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 4103 PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX, 4104 bool SoftFloatABI) 4105 : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX, 4106 SoftFloatABI)) {} 4107 4108 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4109 // This is recovered from gcc output. 4110 return 1; // r1 is the dedicated stack pointer 4111 } 4112 4113 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4114 llvm::Value *Address) const override; 4115 }; 4116 4117 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 4118 public: 4119 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 4120 4121 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4122 // This is recovered from gcc output. 4123 return 1; // r1 is the dedicated stack pointer 4124 } 4125 4126 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4127 llvm::Value *Address) const override; 4128 }; 4129 4130 } 4131 4132 // Return true if the ABI requires Ty to be passed sign- or zero- 4133 // extended to 64 bits. 4134 bool 4135 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 4136 // Treat an enum type as its underlying type. 4137 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4138 Ty = EnumTy->getDecl()->getIntegerType(); 4139 4140 // Promotable integer types are required to be promoted by the ABI. 4141 if (Ty->isPromotableIntegerType()) 4142 return true; 4143 4144 // In addition to the usual promotable integer types, we also need to 4145 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 4146 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4147 switch (BT->getKind()) { 4148 case BuiltinType::Int: 4149 case BuiltinType::UInt: 4150 return true; 4151 default: 4152 break; 4153 } 4154 4155 return false; 4156 } 4157 4158 /// isAlignedParamType - Determine whether a type requires 16-byte or 4159 /// higher alignment in the parameter area. Always returns at least 8. 4160 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4161 // Complex types are passed just like their elements. 4162 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4163 Ty = CTy->getElementType(); 4164 4165 // Only vector types of size 16 bytes need alignment (larger types are 4166 // passed via reference, smaller types are not aligned). 4167 if (IsQPXVectorTy(Ty)) { 4168 if (getContext().getTypeSize(Ty) > 128) 4169 return CharUnits::fromQuantity(32); 4170 4171 return CharUnits::fromQuantity(16); 4172 } else if (Ty->isVectorType()) { 4173 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8); 4174 } 4175 4176 // For single-element float/vector structs, we consider the whole type 4177 // to have the same alignment requirements as its single element. 4178 const Type *AlignAsType = nullptr; 4179 const Type *EltType = isSingleElementStruct(Ty, getContext()); 4180 if (EltType) { 4181 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4182 if (IsQPXVectorTy(EltType) || (EltType->isVectorType() && 4183 getContext().getTypeSize(EltType) == 128) || 4184 (BT && BT->isFloatingPoint())) 4185 AlignAsType = EltType; 4186 } 4187 4188 // Likewise for ELFv2 homogeneous aggregates. 4189 const Type *Base = nullptr; 4190 uint64_t Members = 0; 4191 if (!AlignAsType && Kind == ELFv2 && 4192 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 4193 AlignAsType = Base; 4194 4195 // With special case aggregates, only vector base types need alignment. 4196 if (AlignAsType && IsQPXVectorTy(AlignAsType)) { 4197 if (getContext().getTypeSize(AlignAsType) > 128) 4198 return CharUnits::fromQuantity(32); 4199 4200 return CharUnits::fromQuantity(16); 4201 } else if (AlignAsType) { 4202 return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8); 4203 } 4204 4205 // Otherwise, we only need alignment for any aggregate type that 4206 // has an alignment requirement of >= 16 bytes. 4207 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { 4208 if (HasQPX && getContext().getTypeAlign(Ty) >= 256) 4209 return CharUnits::fromQuantity(32); 4210 return CharUnits::fromQuantity(16); 4211 } 4212 4213 return CharUnits::fromQuantity(8); 4214 } 4215 4216 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 4217 /// aggregate. Base is set to the base element type, and Members is set 4218 /// to the number of base elements. 4219 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 4220 uint64_t &Members) const { 4221 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 4222 uint64_t NElements = AT->getSize().getZExtValue(); 4223 if (NElements == 0) 4224 return false; 4225 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 4226 return false; 4227 Members *= NElements; 4228 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 4229 const RecordDecl *RD = RT->getDecl(); 4230 if (RD->hasFlexibleArrayMember()) 4231 return false; 4232 4233 Members = 0; 4234 4235 // If this is a C++ record, check the bases first. 4236 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 4237 for (const auto &I : CXXRD->bases()) { 4238 // Ignore empty records. 4239 if (isEmptyRecord(getContext(), I.getType(), true)) 4240 continue; 4241 4242 uint64_t FldMembers; 4243 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) 4244 return false; 4245 4246 Members += FldMembers; 4247 } 4248 } 4249 4250 for (const auto *FD : RD->fields()) { 4251 // Ignore (non-zero arrays of) empty records. 4252 QualType FT = FD->getType(); 4253 while (const ConstantArrayType *AT = 4254 getContext().getAsConstantArrayType(FT)) { 4255 if (AT->getSize().getZExtValue() == 0) 4256 return false; 4257 FT = AT->getElementType(); 4258 } 4259 if (isEmptyRecord(getContext(), FT, true)) 4260 continue; 4261 4262 // For compatibility with GCC, ignore empty bitfields in C++ mode. 4263 if (getContext().getLangOpts().CPlusPlus && 4264 FD->isBitField() && FD->getBitWidthValue(getContext()) == 0) 4265 continue; 4266 4267 uint64_t FldMembers; 4268 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 4269 return false; 4270 4271 Members = (RD->isUnion() ? 4272 std::max(Members, FldMembers) : Members + FldMembers); 4273 } 4274 4275 if (!Base) 4276 return false; 4277 4278 // Ensure there is no padding. 4279 if (getContext().getTypeSize(Base) * Members != 4280 getContext().getTypeSize(Ty)) 4281 return false; 4282 } else { 4283 Members = 1; 4284 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 4285 Members = 2; 4286 Ty = CT->getElementType(); 4287 } 4288 4289 // Most ABIs only support float, double, and some vector type widths. 4290 if (!isHomogeneousAggregateBaseType(Ty)) 4291 return false; 4292 4293 // The base type must be the same for all members. Types that 4294 // agree in both total size and mode (float vs. vector) are 4295 // treated as being equivalent here. 4296 const Type *TyPtr = Ty.getTypePtr(); 4297 if (!Base) { 4298 Base = TyPtr; 4299 // If it's a non-power-of-2 vector, its size is already a power-of-2, 4300 // so make sure to widen it explicitly. 4301 if (const VectorType *VT = Base->getAs<VectorType>()) { 4302 QualType EltTy = VT->getElementType(); 4303 unsigned NumElements = 4304 getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy); 4305 Base = getContext() 4306 .getVectorType(EltTy, NumElements, VT->getVectorKind()) 4307 .getTypePtr(); 4308 } 4309 } 4310 4311 if (Base->isVectorType() != TyPtr->isVectorType() || 4312 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 4313 return false; 4314 } 4315 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); 4316 } 4317 4318 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 4319 // Homogeneous aggregates for ELFv2 must have base types of float, 4320 // double, long double, or 128-bit vectors. 4321 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4322 if (BT->getKind() == BuiltinType::Float || 4323 BT->getKind() == BuiltinType::Double || 4324 BT->getKind() == BuiltinType::LongDouble) { 4325 if (IsSoftFloatABI) 4326 return false; 4327 return true; 4328 } 4329 } 4330 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4331 if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty)) 4332 return true; 4333 } 4334 return false; 4335 } 4336 4337 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( 4338 const Type *Base, uint64_t Members) const { 4339 // Vector types require one register, floating point types require one 4340 // or two registers depending on their size. 4341 uint32_t NumRegs = 4342 Base->isVectorType() ? 1 : (getContext().getTypeSize(Base) + 63) / 64; 4343 4344 // Homogeneous Aggregates may occupy at most 8 registers. 4345 return Members * NumRegs <= 8; 4346 } 4347 4348 ABIArgInfo 4349 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 4350 Ty = useFirstFieldIfTransparentUnion(Ty); 4351 4352 if (Ty->isAnyComplexType()) 4353 return ABIArgInfo::getDirect(); 4354 4355 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 4356 // or via reference (larger than 16 bytes). 4357 if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) { 4358 uint64_t Size = getContext().getTypeSize(Ty); 4359 if (Size > 128) 4360 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4361 else if (Size < 128) { 4362 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 4363 return ABIArgInfo::getDirect(CoerceTy); 4364 } 4365 } 4366 4367 if (isAggregateTypeForABI(Ty)) { 4368 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 4369 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4370 4371 uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity(); 4372 uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 4373 4374 // ELFv2 homogeneous aggregates are passed as array types. 4375 const Type *Base = nullptr; 4376 uint64_t Members = 0; 4377 if (Kind == ELFv2 && 4378 isHomogeneousAggregate(Ty, Base, Members)) { 4379 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 4380 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 4381 return ABIArgInfo::getDirect(CoerceTy); 4382 } 4383 4384 // If an aggregate may end up fully in registers, we do not 4385 // use the ByVal method, but pass the aggregate as array. 4386 // This is usually beneficial since we avoid forcing the 4387 // back-end to store the argument to memory. 4388 uint64_t Bits = getContext().getTypeSize(Ty); 4389 if (Bits > 0 && Bits <= 8 * GPRBits) { 4390 llvm::Type *CoerceTy; 4391 4392 // Types up to 8 bytes are passed as integer type (which will be 4393 // properly aligned in the argument save area doubleword). 4394 if (Bits <= GPRBits) 4395 CoerceTy = 4396 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 4397 // Larger types are passed as arrays, with the base type selected 4398 // according to the required alignment in the save area. 4399 else { 4400 uint64_t RegBits = ABIAlign * 8; 4401 uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits; 4402 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 4403 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 4404 } 4405 4406 return ABIArgInfo::getDirect(CoerceTy); 4407 } 4408 4409 // All other aggregates are passed ByVal. 4410 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 4411 /*ByVal=*/true, 4412 /*Realign=*/TyAlign > ABIAlign); 4413 } 4414 4415 return (isPromotableTypeForABI(Ty) ? 4416 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 4417 } 4418 4419 ABIArgInfo 4420 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 4421 if (RetTy->isVoidType()) 4422 return ABIArgInfo::getIgnore(); 4423 4424 if (RetTy->isAnyComplexType()) 4425 return ABIArgInfo::getDirect(); 4426 4427 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 4428 // or via reference (larger than 16 bytes). 4429 if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) { 4430 uint64_t Size = getContext().getTypeSize(RetTy); 4431 if (Size > 128) 4432 return getNaturalAlignIndirect(RetTy); 4433 else if (Size < 128) { 4434 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 4435 return ABIArgInfo::getDirect(CoerceTy); 4436 } 4437 } 4438 4439 if (isAggregateTypeForABI(RetTy)) { 4440 // ELFv2 homogeneous aggregates are returned as array types. 4441 const Type *Base = nullptr; 4442 uint64_t Members = 0; 4443 if (Kind == ELFv2 && 4444 isHomogeneousAggregate(RetTy, Base, Members)) { 4445 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 4446 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 4447 return ABIArgInfo::getDirect(CoerceTy); 4448 } 4449 4450 // ELFv2 small aggregates are returned in up to two registers. 4451 uint64_t Bits = getContext().getTypeSize(RetTy); 4452 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 4453 if (Bits == 0) 4454 return ABIArgInfo::getIgnore(); 4455 4456 llvm::Type *CoerceTy; 4457 if (Bits > GPRBits) { 4458 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 4459 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy, nullptr); 4460 } else 4461 CoerceTy = 4462 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 4463 return ABIArgInfo::getDirect(CoerceTy); 4464 } 4465 4466 // All other aggregates are returned indirectly. 4467 return getNaturalAlignIndirect(RetTy); 4468 } 4469 4470 return (isPromotableTypeForABI(RetTy) ? 4471 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 4472 } 4473 4474 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 4475 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4476 QualType Ty) const { 4477 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 4478 TypeInfo.second = getParamTypeAlignment(Ty); 4479 4480 CharUnits SlotSize = CharUnits::fromQuantity(8); 4481 4482 // If we have a complex type and the base type is smaller than 8 bytes, 4483 // the ABI calls for the real and imaginary parts to be right-adjusted 4484 // in separate doublewords. However, Clang expects us to produce a 4485 // pointer to a structure with the two parts packed tightly. So generate 4486 // loads of the real and imaginary parts relative to the va_list pointer, 4487 // and store them to a temporary structure. 4488 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4489 CharUnits EltSize = TypeInfo.first / 2; 4490 if (EltSize < SlotSize) { 4491 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, 4492 SlotSize * 2, SlotSize, 4493 SlotSize, /*AllowHigher*/ true); 4494 4495 Address RealAddr = Addr; 4496 Address ImagAddr = RealAddr; 4497 if (CGF.CGM.getDataLayout().isBigEndian()) { 4498 RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, 4499 SlotSize - EltSize); 4500 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr, 4501 2 * SlotSize - EltSize); 4502 } else { 4503 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize); 4504 } 4505 4506 llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType()); 4507 RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy); 4508 ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy); 4509 llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal"); 4510 llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag"); 4511 4512 Address Temp = CGF.CreateMemTemp(Ty, "vacplx"); 4513 CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty), 4514 /*init*/ true); 4515 return Temp; 4516 } 4517 } 4518 4519 // Otherwise, just use the general rule. 4520 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 4521 TypeInfo, SlotSize, /*AllowHigher*/ true); 4522 } 4523 4524 static bool 4525 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4526 llvm::Value *Address) { 4527 // This is calculated from the LLVM and GCC tables and verified 4528 // against gcc output. AFAIK all ABIs use the same encoding. 4529 4530 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4531 4532 llvm::IntegerType *i8 = CGF.Int8Ty; 4533 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4534 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4535 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4536 4537 // 0-31: r0-31, the 8-byte general-purpose registers 4538 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 4539 4540 // 32-63: fp0-31, the 8-byte floating-point registers 4541 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4542 4543 // 64-67 are various 8-byte special-purpose registers: 4544 // 64: mq 4545 // 65: lr 4546 // 66: ctr 4547 // 67: ap 4548 AssignToArrayRange(Builder, Address, Eight8, 64, 67); 4549 4550 // 68-76 are various 4-byte special-purpose registers: 4551 // 68-75 cr0-7 4552 // 76: xer 4553 AssignToArrayRange(Builder, Address, Four8, 68, 76); 4554 4555 // 77-108: v0-31, the 16-byte vector registers 4556 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4557 4558 // 109: vrsave 4559 // 110: vscr 4560 // 111: spe_acc 4561 // 112: spefscr 4562 // 113: sfp 4563 // 114: tfhar 4564 // 115: tfiar 4565 // 116: texasr 4566 AssignToArrayRange(Builder, Address, Eight8, 109, 116); 4567 4568 return false; 4569 } 4570 4571 bool 4572 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 4573 CodeGen::CodeGenFunction &CGF, 4574 llvm::Value *Address) const { 4575 4576 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 4577 } 4578 4579 bool 4580 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4581 llvm::Value *Address) const { 4582 4583 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 4584 } 4585 4586 //===----------------------------------------------------------------------===// 4587 // AArch64 ABI Implementation 4588 //===----------------------------------------------------------------------===// 4589 4590 namespace { 4591 4592 class AArch64ABIInfo : public SwiftABIInfo { 4593 public: 4594 enum ABIKind { 4595 AAPCS = 0, 4596 DarwinPCS 4597 }; 4598 4599 private: 4600 ABIKind Kind; 4601 4602 public: 4603 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) 4604 : SwiftABIInfo(CGT), Kind(Kind) {} 4605 4606 private: 4607 ABIKind getABIKind() const { return Kind; } 4608 bool isDarwinPCS() const { return Kind == DarwinPCS; } 4609 4610 ABIArgInfo classifyReturnType(QualType RetTy) const; 4611 ABIArgInfo classifyArgumentType(QualType RetTy) const; 4612 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4613 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4614 uint64_t Members) const override; 4615 4616 bool isIllegalVectorType(QualType Ty) const; 4617 4618 void computeInfo(CGFunctionInfo &FI) const override { 4619 if (!getCXXABI().classifyReturnType(FI)) 4620 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4621 4622 for (auto &it : FI.arguments()) 4623 it.info = classifyArgumentType(it.type); 4624 } 4625 4626 Address EmitDarwinVAArg(Address VAListAddr, QualType Ty, 4627 CodeGenFunction &CGF) const; 4628 4629 Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 4630 CodeGenFunction &CGF) const; 4631 4632 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4633 QualType Ty) const override { 4634 return isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 4635 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 4636 } 4637 4638 bool shouldPassIndirectlyForSwift(CharUnits totalSize, 4639 ArrayRef<llvm::Type*> scalars, 4640 bool asReturnValue) const override { 4641 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 4642 } 4643 bool isSwiftErrorInRegister() const override { 4644 return true; 4645 } 4646 }; 4647 4648 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 4649 public: 4650 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 4651 : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {} 4652 4653 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 4654 return "mov\tfp, fp\t\t; marker for objc_retainAutoreleaseReturnValue"; 4655 } 4656 4657 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4658 return 31; 4659 } 4660 4661 bool doesReturnSlotInterfereWithArgs() const override { return false; } 4662 }; 4663 } 4664 4665 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const { 4666 Ty = useFirstFieldIfTransparentUnion(Ty); 4667 4668 // Handle illegal vector types here. 4669 if (isIllegalVectorType(Ty)) { 4670 uint64_t Size = getContext().getTypeSize(Ty); 4671 // Android promotes <2 x i8> to i16, not i32 4672 if (isAndroid() && (Size <= 16)) { 4673 llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext()); 4674 return ABIArgInfo::getDirect(ResType); 4675 } 4676 if (Size <= 32) { 4677 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 4678 return ABIArgInfo::getDirect(ResType); 4679 } 4680 if (Size == 64) { 4681 llvm::Type *ResType = 4682 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 4683 return ABIArgInfo::getDirect(ResType); 4684 } 4685 if (Size == 128) { 4686 llvm::Type *ResType = 4687 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 4688 return ABIArgInfo::getDirect(ResType); 4689 } 4690 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4691 } 4692 4693 if (!isAggregateTypeForABI(Ty)) { 4694 // Treat an enum type as its underlying type. 4695 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4696 Ty = EnumTy->getDecl()->getIntegerType(); 4697 4698 return (Ty->isPromotableIntegerType() && isDarwinPCS() 4699 ? ABIArgInfo::getExtend() 4700 : ABIArgInfo::getDirect()); 4701 } 4702 4703 // Structures with either a non-trivial destructor or a non-trivial 4704 // copy constructor are always indirect. 4705 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 4706 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 4707 CGCXXABI::RAA_DirectInMemory); 4708 } 4709 4710 // Empty records are always ignored on Darwin, but actually passed in C++ mode 4711 // elsewhere for GNU compatibility. 4712 if (isEmptyRecord(getContext(), Ty, true)) { 4713 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 4714 return ABIArgInfo::getIgnore(); 4715 4716 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 4717 } 4718 4719 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 4720 const Type *Base = nullptr; 4721 uint64_t Members = 0; 4722 if (isHomogeneousAggregate(Ty, Base, Members)) { 4723 return ABIArgInfo::getDirect( 4724 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); 4725 } 4726 4727 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 4728 uint64_t Size = getContext().getTypeSize(Ty); 4729 if (Size <= 128) { 4730 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 4731 // same size and alignment. 4732 if (getTarget().isRenderScriptTarget()) { 4733 return coerceToIntArray(Ty, getContext(), getVMContext()); 4734 } 4735 unsigned Alignment = getContext().getTypeAlign(Ty); 4736 Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes 4737 4738 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 4739 // For aggregates with 16-byte alignment, we use i128. 4740 if (Alignment < 128 && Size == 128) { 4741 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 4742 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 4743 } 4744 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 4745 } 4746 4747 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4748 } 4749 4750 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const { 4751 if (RetTy->isVoidType()) 4752 return ABIArgInfo::getIgnore(); 4753 4754 // Large vector types should be returned via memory. 4755 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 4756 return getNaturalAlignIndirect(RetTy); 4757 4758 if (!isAggregateTypeForABI(RetTy)) { 4759 // Treat an enum type as its underlying type. 4760 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 4761 RetTy = EnumTy->getDecl()->getIntegerType(); 4762 4763 return (RetTy->isPromotableIntegerType() && isDarwinPCS() 4764 ? ABIArgInfo::getExtend() 4765 : ABIArgInfo::getDirect()); 4766 } 4767 4768 if (isEmptyRecord(getContext(), RetTy, true)) 4769 return ABIArgInfo::getIgnore(); 4770 4771 const Type *Base = nullptr; 4772 uint64_t Members = 0; 4773 if (isHomogeneousAggregate(RetTy, Base, Members)) 4774 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 4775 return ABIArgInfo::getDirect(); 4776 4777 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 4778 uint64_t Size = getContext().getTypeSize(RetTy); 4779 if (Size <= 128) { 4780 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 4781 // same size and alignment. 4782 if (getTarget().isRenderScriptTarget()) { 4783 return coerceToIntArray(RetTy, getContext(), getVMContext()); 4784 } 4785 unsigned Alignment = getContext().getTypeAlign(RetTy); 4786 Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes 4787 4788 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 4789 // For aggregates with 16-byte alignment, we use i128. 4790 if (Alignment < 128 && Size == 128) { 4791 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 4792 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 4793 } 4794 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 4795 } 4796 4797 return getNaturalAlignIndirect(RetTy); 4798 } 4799 4800 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 4801 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 4802 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4803 // Check whether VT is legal. 4804 unsigned NumElements = VT->getNumElements(); 4805 uint64_t Size = getContext().getTypeSize(VT); 4806 // NumElements should be power of 2. 4807 if (!llvm::isPowerOf2_32(NumElements)) 4808 return true; 4809 return Size != 64 && (Size != 128 || NumElements == 1); 4810 } 4811 return false; 4812 } 4813 4814 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 4815 // Homogeneous aggregates for AAPCS64 must have base types of a floating 4816 // point type or a short-vector type. This is the same as the 32-bit ABI, 4817 // but with the difference that any floating-point type is allowed, 4818 // including __fp16. 4819 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4820 if (BT->isFloatingPoint()) 4821 return true; 4822 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 4823 unsigned VecSize = getContext().getTypeSize(VT); 4824 if (VecSize == 64 || VecSize == 128) 4825 return true; 4826 } 4827 return false; 4828 } 4829 4830 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 4831 uint64_t Members) const { 4832 return Members <= 4; 4833 } 4834 4835 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, 4836 QualType Ty, 4837 CodeGenFunction &CGF) const { 4838 ABIArgInfo AI = classifyArgumentType(Ty); 4839 bool IsIndirect = AI.isIndirect(); 4840 4841 llvm::Type *BaseTy = CGF.ConvertType(Ty); 4842 if (IsIndirect) 4843 BaseTy = llvm::PointerType::getUnqual(BaseTy); 4844 else if (AI.getCoerceToType()) 4845 BaseTy = AI.getCoerceToType(); 4846 4847 unsigned NumRegs = 1; 4848 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { 4849 BaseTy = ArrTy->getElementType(); 4850 NumRegs = ArrTy->getNumElements(); 4851 } 4852 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); 4853 4854 // The AArch64 va_list type and handling is specified in the Procedure Call 4855 // Standard, section B.4: 4856 // 4857 // struct { 4858 // void *__stack; 4859 // void *__gr_top; 4860 // void *__vr_top; 4861 // int __gr_offs; 4862 // int __vr_offs; 4863 // }; 4864 4865 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 4866 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 4867 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 4868 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 4869 4870 auto TyInfo = getContext().getTypeInfoInChars(Ty); 4871 CharUnits TyAlign = TyInfo.second; 4872 4873 Address reg_offs_p = Address::invalid(); 4874 llvm::Value *reg_offs = nullptr; 4875 int reg_top_index; 4876 CharUnits reg_top_offset; 4877 int RegSize = IsIndirect ? 8 : TyInfo.first.getQuantity(); 4878 if (!IsFPR) { 4879 // 3 is the field number of __gr_offs 4880 reg_offs_p = 4881 CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24), 4882 "gr_offs_p"); 4883 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 4884 reg_top_index = 1; // field number for __gr_top 4885 reg_top_offset = CharUnits::fromQuantity(8); 4886 RegSize = llvm::alignTo(RegSize, 8); 4887 } else { 4888 // 4 is the field number of __vr_offs. 4889 reg_offs_p = 4890 CGF.Builder.CreateStructGEP(VAListAddr, 4, CharUnits::fromQuantity(28), 4891 "vr_offs_p"); 4892 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 4893 reg_top_index = 2; // field number for __vr_top 4894 reg_top_offset = CharUnits::fromQuantity(16); 4895 RegSize = 16 * NumRegs; 4896 } 4897 4898 //======================================= 4899 // Find out where argument was passed 4900 //======================================= 4901 4902 // If reg_offs >= 0 we're already using the stack for this type of 4903 // argument. We don't want to keep updating reg_offs (in case it overflows, 4904 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 4905 // whatever they get). 4906 llvm::Value *UsingStack = nullptr; 4907 UsingStack = CGF.Builder.CreateICmpSGE( 4908 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 4909 4910 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 4911 4912 // Otherwise, at least some kind of argument could go in these registers, the 4913 // question is whether this particular type is too big. 4914 CGF.EmitBlock(MaybeRegBlock); 4915 4916 // Integer arguments may need to correct register alignment (for example a 4917 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 4918 // align __gr_offs to calculate the potential address. 4919 if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) { 4920 int Align = TyAlign.getQuantity(); 4921 4922 reg_offs = CGF.Builder.CreateAdd( 4923 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 4924 "align_regoffs"); 4925 reg_offs = CGF.Builder.CreateAnd( 4926 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 4927 "aligned_regoffs"); 4928 } 4929 4930 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 4931 // The fact that this is done unconditionally reflects the fact that 4932 // allocating an argument to the stack also uses up all the remaining 4933 // registers of the appropriate kind. 4934 llvm::Value *NewOffset = nullptr; 4935 NewOffset = CGF.Builder.CreateAdd( 4936 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 4937 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 4938 4939 // Now we're in a position to decide whether this argument really was in 4940 // registers or not. 4941 llvm::Value *InRegs = nullptr; 4942 InRegs = CGF.Builder.CreateICmpSLE( 4943 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 4944 4945 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 4946 4947 //======================================= 4948 // Argument was in registers 4949 //======================================= 4950 4951 // Now we emit the code for if the argument was originally passed in 4952 // registers. First start the appropriate block: 4953 CGF.EmitBlock(InRegBlock); 4954 4955 llvm::Value *reg_top = nullptr; 4956 Address reg_top_p = CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, 4957 reg_top_offset, "reg_top_p"); 4958 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 4959 Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs), 4960 CharUnits::fromQuantity(IsFPR ? 16 : 8)); 4961 Address RegAddr = Address::invalid(); 4962 llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty); 4963 4964 if (IsIndirect) { 4965 // If it's been passed indirectly (actually a struct), whatever we find from 4966 // stored registers or on the stack will actually be a struct **. 4967 MemTy = llvm::PointerType::getUnqual(MemTy); 4968 } 4969 4970 const Type *Base = nullptr; 4971 uint64_t NumMembers = 0; 4972 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); 4973 if (IsHFA && NumMembers > 1) { 4974 // Homogeneous aggregates passed in registers will have their elements split 4975 // and stored 16-bytes apart regardless of size (they're notionally in qN, 4976 // qN+1, ...). We reload and store into a temporary local variable 4977 // contiguously. 4978 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 4979 auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0)); 4980 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 4981 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 4982 Address Tmp = CGF.CreateTempAlloca(HFATy, 4983 std::max(TyAlign, BaseTyInfo.second)); 4984 4985 // On big-endian platforms, the value will be right-aligned in its slot. 4986 int Offset = 0; 4987 if (CGF.CGM.getDataLayout().isBigEndian() && 4988 BaseTyInfo.first.getQuantity() < 16) 4989 Offset = 16 - BaseTyInfo.first.getQuantity(); 4990 4991 for (unsigned i = 0; i < NumMembers; ++i) { 4992 CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset); 4993 Address LoadAddr = 4994 CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset); 4995 LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy); 4996 4997 Address StoreAddr = 4998 CGF.Builder.CreateConstArrayGEP(Tmp, i, BaseTyInfo.first); 4999 5000 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 5001 CGF.Builder.CreateStore(Elem, StoreAddr); 5002 } 5003 5004 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy); 5005 } else { 5006 // Otherwise the object is contiguous in memory. 5007 5008 // It might be right-aligned in its slot. 5009 CharUnits SlotSize = BaseAddr.getAlignment(); 5010 if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect && 5011 (IsHFA || !isAggregateTypeForABI(Ty)) && 5012 TyInfo.first < SlotSize) { 5013 CharUnits Offset = SlotSize - TyInfo.first; 5014 BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset); 5015 } 5016 5017 RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy); 5018 } 5019 5020 CGF.EmitBranch(ContBlock); 5021 5022 //======================================= 5023 // Argument was on the stack 5024 //======================================= 5025 CGF.EmitBlock(OnStackBlock); 5026 5027 Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, 5028 CharUnits::Zero(), "stack_p"); 5029 llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack"); 5030 5031 // Again, stack arguments may need realignment. In this case both integer and 5032 // floating-point ones might be affected. 5033 if (!IsIndirect && TyAlign.getQuantity() > 8) { 5034 int Align = TyAlign.getQuantity(); 5035 5036 OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty); 5037 5038 OnStackPtr = CGF.Builder.CreateAdd( 5039 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 5040 "align_stack"); 5041 OnStackPtr = CGF.Builder.CreateAnd( 5042 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 5043 "align_stack"); 5044 5045 OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy); 5046 } 5047 Address OnStackAddr(OnStackPtr, 5048 std::max(CharUnits::fromQuantity(8), TyAlign)); 5049 5050 // All stack slots are multiples of 8 bytes. 5051 CharUnits StackSlotSize = CharUnits::fromQuantity(8); 5052 CharUnits StackSize; 5053 if (IsIndirect) 5054 StackSize = StackSlotSize; 5055 else 5056 StackSize = TyInfo.first.alignTo(StackSlotSize); 5057 5058 llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize); 5059 llvm::Value *NewStack = 5060 CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack"); 5061 5062 // Write the new value of __stack for the next call to va_arg 5063 CGF.Builder.CreateStore(NewStack, stack_p); 5064 5065 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 5066 TyInfo.first < StackSlotSize) { 5067 CharUnits Offset = StackSlotSize - TyInfo.first; 5068 OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset); 5069 } 5070 5071 OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy); 5072 5073 CGF.EmitBranch(ContBlock); 5074 5075 //======================================= 5076 // Tidy up 5077 //======================================= 5078 CGF.EmitBlock(ContBlock); 5079 5080 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 5081 OnStackAddr, OnStackBlock, "vaargs.addr"); 5082 5083 if (IsIndirect) 5084 return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), 5085 TyInfo.second); 5086 5087 return ResAddr; 5088 } 5089 5090 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty, 5091 CodeGenFunction &CGF) const { 5092 // The backend's lowering doesn't support va_arg for aggregates or 5093 // illegal vector types. Lower VAArg here for these cases and use 5094 // the LLVM va_arg instruction for everything else. 5095 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 5096 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 5097 5098 CharUnits SlotSize = CharUnits::fromQuantity(8); 5099 5100 // Empty records are ignored for parameter passing purposes. 5101 if (isEmptyRecord(getContext(), Ty, true)) { 5102 Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 5103 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 5104 return Addr; 5105 } 5106 5107 // The size of the actual thing passed, which might end up just 5108 // being a pointer for indirect types. 5109 auto TyInfo = getContext().getTypeInfoInChars(Ty); 5110 5111 // Arguments bigger than 16 bytes which aren't homogeneous 5112 // aggregates should be passed indirectly. 5113 bool IsIndirect = false; 5114 if (TyInfo.first.getQuantity() > 16) { 5115 const Type *Base = nullptr; 5116 uint64_t Members = 0; 5117 IsIndirect = !isHomogeneousAggregate(Ty, Base, Members); 5118 } 5119 5120 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 5121 TyInfo, SlotSize, /*AllowHigherAlign*/ true); 5122 } 5123 5124 //===----------------------------------------------------------------------===// 5125 // ARM ABI Implementation 5126 //===----------------------------------------------------------------------===// 5127 5128 namespace { 5129 5130 class ARMABIInfo : public SwiftABIInfo { 5131 public: 5132 enum ABIKind { 5133 APCS = 0, 5134 AAPCS = 1, 5135 AAPCS_VFP = 2, 5136 AAPCS16_VFP = 3, 5137 }; 5138 5139 private: 5140 ABIKind Kind; 5141 5142 public: 5143 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) 5144 : SwiftABIInfo(CGT), Kind(_Kind) { 5145 setCCs(); 5146 } 5147 5148 bool isEABI() const { 5149 switch (getTarget().getTriple().getEnvironment()) { 5150 case llvm::Triple::Android: 5151 case llvm::Triple::EABI: 5152 case llvm::Triple::EABIHF: 5153 case llvm::Triple::GNUEABI: 5154 case llvm::Triple::GNUEABIHF: 5155 case llvm::Triple::MuslEABI: 5156 case llvm::Triple::MuslEABIHF: 5157 return true; 5158 default: 5159 return false; 5160 } 5161 } 5162 5163 bool isEABIHF() const { 5164 switch (getTarget().getTriple().getEnvironment()) { 5165 case llvm::Triple::EABIHF: 5166 case llvm::Triple::GNUEABIHF: 5167 case llvm::Triple::MuslEABIHF: 5168 return true; 5169 default: 5170 return false; 5171 } 5172 } 5173 5174 ABIKind getABIKind() const { return Kind; } 5175 5176 private: 5177 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const; 5178 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic) const; 5179 bool isIllegalVectorType(QualType Ty) const; 5180 5181 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 5182 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 5183 uint64_t Members) const override; 5184 5185 void computeInfo(CGFunctionInfo &FI) const override; 5186 5187 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5188 QualType Ty) const override; 5189 5190 llvm::CallingConv::ID getLLVMDefaultCC() const; 5191 llvm::CallingConv::ID getABIDefaultCC() const; 5192 void setCCs(); 5193 5194 bool shouldPassIndirectlyForSwift(CharUnits totalSize, 5195 ArrayRef<llvm::Type*> scalars, 5196 bool asReturnValue) const override { 5197 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5198 } 5199 bool isSwiftErrorInRegister() const override { 5200 return true; 5201 } 5202 }; 5203 5204 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 5205 public: 5206 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 5207 :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {} 5208 5209 const ARMABIInfo &getABIInfo() const { 5210 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 5211 } 5212 5213 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5214 return 13; 5215 } 5216 5217 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 5218 return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue"; 5219 } 5220 5221 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5222 llvm::Value *Address) const override { 5223 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 5224 5225 // 0-15 are the 16 integer registers. 5226 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 5227 return false; 5228 } 5229 5230 unsigned getSizeOfUnwindException() const override { 5231 if (getABIInfo().isEABI()) return 88; 5232 return TargetCodeGenInfo::getSizeOfUnwindException(); 5233 } 5234 5235 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5236 CodeGen::CodeGenModule &CGM) const override { 5237 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5238 if (!FD) 5239 return; 5240 5241 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 5242 if (!Attr) 5243 return; 5244 5245 const char *Kind; 5246 switch (Attr->getInterrupt()) { 5247 case ARMInterruptAttr::Generic: Kind = ""; break; 5248 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 5249 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 5250 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 5251 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 5252 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 5253 } 5254 5255 llvm::Function *Fn = cast<llvm::Function>(GV); 5256 5257 Fn->addFnAttr("interrupt", Kind); 5258 5259 ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind(); 5260 if (ABI == ARMABIInfo::APCS) 5261 return; 5262 5263 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 5264 // however this is not necessarily true on taking any interrupt. Instruct 5265 // the backend to perform a realignment as part of the function prologue. 5266 llvm::AttrBuilder B; 5267 B.addStackAlignmentAttr(8); 5268 Fn->addAttributes(llvm::AttributeSet::FunctionIndex, 5269 llvm::AttributeSet::get(CGM.getLLVMContext(), 5270 llvm::AttributeSet::FunctionIndex, 5271 B)); 5272 } 5273 }; 5274 5275 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { 5276 public: 5277 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 5278 : ARMTargetCodeGenInfo(CGT, K) {} 5279 5280 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5281 CodeGen::CodeGenModule &CGM) const override; 5282 5283 void getDependentLibraryOption(llvm::StringRef Lib, 5284 llvm::SmallString<24> &Opt) const override { 5285 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5286 } 5287 5288 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5289 llvm::SmallString<32> &Opt) const override { 5290 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5291 } 5292 }; 5293 5294 void WindowsARMTargetCodeGenInfo::setTargetAttributes( 5295 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 5296 ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 5297 addStackProbeSizeTargetAttribute(D, GV, CGM); 5298 } 5299 } 5300 5301 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 5302 if (!getCXXABI().classifyReturnType(FI)) 5303 FI.getReturnInfo() = 5304 classifyReturnType(FI.getReturnType(), FI.isVariadic()); 5305 5306 for (auto &I : FI.arguments()) 5307 I.info = classifyArgumentType(I.type, FI.isVariadic()); 5308 5309 // Always honor user-specified calling convention. 5310 if (FI.getCallingConvention() != llvm::CallingConv::C) 5311 return; 5312 5313 llvm::CallingConv::ID cc = getRuntimeCC(); 5314 if (cc != llvm::CallingConv::C) 5315 FI.setEffectiveCallingConvention(cc); 5316 } 5317 5318 /// Return the default calling convention that LLVM will use. 5319 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 5320 // The default calling convention that LLVM will infer. 5321 if (isEABIHF() || getTarget().getTriple().isWatchABI()) 5322 return llvm::CallingConv::ARM_AAPCS_VFP; 5323 else if (isEABI()) 5324 return llvm::CallingConv::ARM_AAPCS; 5325 else 5326 return llvm::CallingConv::ARM_APCS; 5327 } 5328 5329 /// Return the calling convention that our ABI would like us to use 5330 /// as the C calling convention. 5331 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 5332 switch (getABIKind()) { 5333 case APCS: return llvm::CallingConv::ARM_APCS; 5334 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 5335 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 5336 case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 5337 } 5338 llvm_unreachable("bad ABI kind"); 5339 } 5340 5341 void ARMABIInfo::setCCs() { 5342 assert(getRuntimeCC() == llvm::CallingConv::C); 5343 5344 // Don't muddy up the IR with a ton of explicit annotations if 5345 // they'd just match what LLVM will infer from the triple. 5346 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 5347 if (abiCC != getLLVMDefaultCC()) 5348 RuntimeCC = abiCC; 5349 5350 // AAPCS apparently requires runtime support functions to be soft-float, but 5351 // that's almost certainly for historic reasons (Thumb1 not supporting VFP 5352 // most likely). It's more convenient for AAPCS16_VFP to be hard-float. 5353 switch (getABIKind()) { 5354 case APCS: 5355 case AAPCS16_VFP: 5356 if (abiCC != getLLVMDefaultCC()) 5357 BuiltinCC = abiCC; 5358 break; 5359 case AAPCS: 5360 case AAPCS_VFP: 5361 BuiltinCC = llvm::CallingConv::ARM_AAPCS; 5362 break; 5363 } 5364 } 5365 5366 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, 5367 bool isVariadic) const { 5368 // 6.1.2.1 The following argument types are VFP CPRCs: 5369 // A single-precision floating-point type (including promoted 5370 // half-precision types); A double-precision floating-point type; 5371 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 5372 // with a Base Type of a single- or double-precision floating-point type, 5373 // 64-bit containerized vectors or 128-bit containerized vectors with one 5374 // to four Elements. 5375 bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic; 5376 5377 Ty = useFirstFieldIfTransparentUnion(Ty); 5378 5379 // Handle illegal vector types here. 5380 if (isIllegalVectorType(Ty)) { 5381 uint64_t Size = getContext().getTypeSize(Ty); 5382 if (Size <= 32) { 5383 llvm::Type *ResType = 5384 llvm::Type::getInt32Ty(getVMContext()); 5385 return ABIArgInfo::getDirect(ResType); 5386 } 5387 if (Size == 64) { 5388 llvm::Type *ResType = llvm::VectorType::get( 5389 llvm::Type::getInt32Ty(getVMContext()), 2); 5390 return ABIArgInfo::getDirect(ResType); 5391 } 5392 if (Size == 128) { 5393 llvm::Type *ResType = llvm::VectorType::get( 5394 llvm::Type::getInt32Ty(getVMContext()), 4); 5395 return ABIArgInfo::getDirect(ResType); 5396 } 5397 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5398 } 5399 5400 // __fp16 gets passed as if it were an int or float, but with the top 16 bits 5401 // unspecified. This is not done for OpenCL as it handles the half type 5402 // natively, and does not need to interwork with AAPCS code. 5403 if (Ty->isHalfType() && !getContext().getLangOpts().NativeHalfArgsAndReturns) { 5404 llvm::Type *ResType = IsEffectivelyAAPCS_VFP ? 5405 llvm::Type::getFloatTy(getVMContext()) : 5406 llvm::Type::getInt32Ty(getVMContext()); 5407 return ABIArgInfo::getDirect(ResType); 5408 } 5409 5410 if (!isAggregateTypeForABI(Ty)) { 5411 // Treat an enum type as its underlying type. 5412 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 5413 Ty = EnumTy->getDecl()->getIntegerType(); 5414 } 5415 5416 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend() 5417 : ABIArgInfo::getDirect()); 5418 } 5419 5420 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5421 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 5422 } 5423 5424 // Ignore empty records. 5425 if (isEmptyRecord(getContext(), Ty, true)) 5426 return ABIArgInfo::getIgnore(); 5427 5428 if (IsEffectivelyAAPCS_VFP) { 5429 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 5430 // into VFP registers. 5431 const Type *Base = nullptr; 5432 uint64_t Members = 0; 5433 if (isHomogeneousAggregate(Ty, Base, Members)) { 5434 assert(Base && "Base class should be set for homogeneous aggregate"); 5435 // Base can be a floating-point or a vector. 5436 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 5437 } 5438 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 5439 // WatchOS does have homogeneous aggregates. Note that we intentionally use 5440 // this convention even for a variadic function: the backend will use GPRs 5441 // if needed. 5442 const Type *Base = nullptr; 5443 uint64_t Members = 0; 5444 if (isHomogeneousAggregate(Ty, Base, Members)) { 5445 assert(Base && Members <= 4 && "unexpected homogeneous aggregate"); 5446 llvm::Type *Ty = 5447 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members); 5448 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 5449 } 5450 } 5451 5452 if (getABIKind() == ARMABIInfo::AAPCS16_VFP && 5453 getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) { 5454 // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're 5455 // bigger than 128-bits, they get placed in space allocated by the caller, 5456 // and a pointer is passed. 5457 return ABIArgInfo::getIndirect( 5458 CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false); 5459 } 5460 5461 // Support byval for ARM. 5462 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 5463 // most 8-byte. We realign the indirect argument if type alignment is bigger 5464 // than ABI alignment. 5465 uint64_t ABIAlign = 4; 5466 uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8; 5467 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 5468 getABIKind() == ARMABIInfo::AAPCS) 5469 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 5470 5471 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 5472 assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval"); 5473 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 5474 /*ByVal=*/true, 5475 /*Realign=*/TyAlign > ABIAlign); 5476 } 5477 5478 // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of 5479 // same size and alignment. 5480 if (getTarget().isRenderScriptTarget()) { 5481 return coerceToIntArray(Ty, getContext(), getVMContext()); 5482 } 5483 5484 // Otherwise, pass by coercing to a structure of the appropriate size. 5485 llvm::Type* ElemTy; 5486 unsigned SizeRegs; 5487 // FIXME: Try to match the types of the arguments more accurately where 5488 // we can. 5489 if (getContext().getTypeAlign(Ty) <= 32) { 5490 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 5491 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 5492 } else { 5493 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 5494 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 5495 } 5496 5497 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); 5498 } 5499 5500 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 5501 llvm::LLVMContext &VMContext) { 5502 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 5503 // is called integer-like if its size is less than or equal to one word, and 5504 // the offset of each of its addressable sub-fields is zero. 5505 5506 uint64_t Size = Context.getTypeSize(Ty); 5507 5508 // Check that the type fits in a word. 5509 if (Size > 32) 5510 return false; 5511 5512 // FIXME: Handle vector types! 5513 if (Ty->isVectorType()) 5514 return false; 5515 5516 // Float types are never treated as "integer like". 5517 if (Ty->isRealFloatingType()) 5518 return false; 5519 5520 // If this is a builtin or pointer type then it is ok. 5521 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 5522 return true; 5523 5524 // Small complex integer types are "integer like". 5525 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 5526 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 5527 5528 // Single element and zero sized arrays should be allowed, by the definition 5529 // above, but they are not. 5530 5531 // Otherwise, it must be a record type. 5532 const RecordType *RT = Ty->getAs<RecordType>(); 5533 if (!RT) return false; 5534 5535 // Ignore records with flexible arrays. 5536 const RecordDecl *RD = RT->getDecl(); 5537 if (RD->hasFlexibleArrayMember()) 5538 return false; 5539 5540 // Check that all sub-fields are at offset 0, and are themselves "integer 5541 // like". 5542 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 5543 5544 bool HadField = false; 5545 unsigned idx = 0; 5546 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 5547 i != e; ++i, ++idx) { 5548 const FieldDecl *FD = *i; 5549 5550 // Bit-fields are not addressable, we only need to verify they are "integer 5551 // like". We still have to disallow a subsequent non-bitfield, for example: 5552 // struct { int : 0; int x } 5553 // is non-integer like according to gcc. 5554 if (FD->isBitField()) { 5555 if (!RD->isUnion()) 5556 HadField = true; 5557 5558 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 5559 return false; 5560 5561 continue; 5562 } 5563 5564 // Check if this field is at offset 0. 5565 if (Layout.getFieldOffset(idx) != 0) 5566 return false; 5567 5568 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 5569 return false; 5570 5571 // Only allow at most one field in a structure. This doesn't match the 5572 // wording above, but follows gcc in situations with a field following an 5573 // empty structure. 5574 if (!RD->isUnion()) { 5575 if (HadField) 5576 return false; 5577 5578 HadField = true; 5579 } 5580 } 5581 5582 return true; 5583 } 5584 5585 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, 5586 bool isVariadic) const { 5587 bool IsEffectivelyAAPCS_VFP = 5588 (getABIKind() == AAPCS_VFP || getABIKind() == AAPCS16_VFP) && !isVariadic; 5589 5590 if (RetTy->isVoidType()) 5591 return ABIArgInfo::getIgnore(); 5592 5593 // Large vector types should be returned via memory. 5594 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) { 5595 return getNaturalAlignIndirect(RetTy); 5596 } 5597 5598 // __fp16 gets returned as if it were an int or float, but with the top 16 5599 // bits unspecified. This is not done for OpenCL as it handles the half type 5600 // natively, and does not need to interwork with AAPCS code. 5601 if (RetTy->isHalfType() && !getContext().getLangOpts().NativeHalfArgsAndReturns) { 5602 llvm::Type *ResType = IsEffectivelyAAPCS_VFP ? 5603 llvm::Type::getFloatTy(getVMContext()) : 5604 llvm::Type::getInt32Ty(getVMContext()); 5605 return ABIArgInfo::getDirect(ResType); 5606 } 5607 5608 if (!isAggregateTypeForABI(RetTy)) { 5609 // Treat an enum type as its underlying type. 5610 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5611 RetTy = EnumTy->getDecl()->getIntegerType(); 5612 5613 return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend() 5614 : ABIArgInfo::getDirect(); 5615 } 5616 5617 // Are we following APCS? 5618 if (getABIKind() == APCS) { 5619 if (isEmptyRecord(getContext(), RetTy, false)) 5620 return ABIArgInfo::getIgnore(); 5621 5622 // Complex types are all returned as packed integers. 5623 // 5624 // FIXME: Consider using 2 x vector types if the back end handles them 5625 // correctly. 5626 if (RetTy->isAnyComplexType()) 5627 return ABIArgInfo::getDirect(llvm::IntegerType::get( 5628 getVMContext(), getContext().getTypeSize(RetTy))); 5629 5630 // Integer like structures are returned in r0. 5631 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 5632 // Return in the smallest viable integer type. 5633 uint64_t Size = getContext().getTypeSize(RetTy); 5634 if (Size <= 8) 5635 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5636 if (Size <= 16) 5637 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 5638 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 5639 } 5640 5641 // Otherwise return in memory. 5642 return getNaturalAlignIndirect(RetTy); 5643 } 5644 5645 // Otherwise this is an AAPCS variant. 5646 5647 if (isEmptyRecord(getContext(), RetTy, true)) 5648 return ABIArgInfo::getIgnore(); 5649 5650 // Check for homogeneous aggregates with AAPCS-VFP. 5651 if (IsEffectivelyAAPCS_VFP) { 5652 const Type *Base = nullptr; 5653 uint64_t Members = 0; 5654 if (isHomogeneousAggregate(RetTy, Base, Members)) { 5655 assert(Base && "Base class should be set for homogeneous aggregate"); 5656 // Homogeneous Aggregates are returned directly. 5657 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 5658 } 5659 } 5660 5661 // Aggregates <= 4 bytes are returned in r0; other aggregates 5662 // are returned indirectly. 5663 uint64_t Size = getContext().getTypeSize(RetTy); 5664 if (Size <= 32) { 5665 // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of 5666 // same size and alignment. 5667 if (getTarget().isRenderScriptTarget()) { 5668 return coerceToIntArray(RetTy, getContext(), getVMContext()); 5669 } 5670 if (getDataLayout().isBigEndian()) 5671 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 5672 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 5673 5674 // Return in the smallest viable integer type. 5675 if (Size <= 8) 5676 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5677 if (Size <= 16) 5678 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 5679 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 5680 } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) { 5681 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext()); 5682 llvm::Type *CoerceTy = 5683 llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32); 5684 return ABIArgInfo::getDirect(CoerceTy); 5685 } 5686 5687 return getNaturalAlignIndirect(RetTy); 5688 } 5689 5690 /// isIllegalVector - check whether Ty is an illegal vector type. 5691 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 5692 if (const VectorType *VT = Ty->getAs<VectorType> ()) { 5693 if (isAndroid()) { 5694 // Android shipped using Clang 3.1, which supported a slightly different 5695 // vector ABI. The primary differences were that 3-element vector types 5696 // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path 5697 // accepts that legacy behavior for Android only. 5698 // Check whether VT is legal. 5699 unsigned NumElements = VT->getNumElements(); 5700 // NumElements should be power of 2 or equal to 3. 5701 if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3) 5702 return true; 5703 } else { 5704 // Check whether VT is legal. 5705 unsigned NumElements = VT->getNumElements(); 5706 uint64_t Size = getContext().getTypeSize(VT); 5707 // NumElements should be power of 2. 5708 if (!llvm::isPowerOf2_32(NumElements)) 5709 return true; 5710 // Size should be greater than 32 bits. 5711 return Size <= 32; 5712 } 5713 } 5714 return false; 5715 } 5716 5717 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5718 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 5719 // double, or 64-bit or 128-bit vectors. 5720 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5721 if (BT->getKind() == BuiltinType::Float || 5722 BT->getKind() == BuiltinType::Double || 5723 BT->getKind() == BuiltinType::LongDouble) 5724 return true; 5725 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 5726 unsigned VecSize = getContext().getTypeSize(VT); 5727 if (VecSize == 64 || VecSize == 128) 5728 return true; 5729 } 5730 return false; 5731 } 5732 5733 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 5734 uint64_t Members) const { 5735 return Members <= 4; 5736 } 5737 5738 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5739 QualType Ty) const { 5740 CharUnits SlotSize = CharUnits::fromQuantity(4); 5741 5742 // Empty records are ignored for parameter passing purposes. 5743 if (isEmptyRecord(getContext(), Ty, true)) { 5744 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 5745 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 5746 return Addr; 5747 } 5748 5749 auto TyInfo = getContext().getTypeInfoInChars(Ty); 5750 CharUnits TyAlignForABI = TyInfo.second; 5751 5752 // Use indirect if size of the illegal vector is bigger than 16 bytes. 5753 bool IsIndirect = false; 5754 const Type *Base = nullptr; 5755 uint64_t Members = 0; 5756 if (TyInfo.first > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) { 5757 IsIndirect = true; 5758 5759 // ARMv7k passes structs bigger than 16 bytes indirectly, in space 5760 // allocated by the caller. 5761 } else if (TyInfo.first > CharUnits::fromQuantity(16) && 5762 getABIKind() == ARMABIInfo::AAPCS16_VFP && 5763 !isHomogeneousAggregate(Ty, Base, Members)) { 5764 IsIndirect = true; 5765 5766 // Otherwise, bound the type's ABI alignment. 5767 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 5768 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 5769 // Our callers should be prepared to handle an under-aligned address. 5770 } else if (getABIKind() == ARMABIInfo::AAPCS_VFP || 5771 getABIKind() == ARMABIInfo::AAPCS) { 5772 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 5773 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8)); 5774 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 5775 // ARMv7k allows type alignment up to 16 bytes. 5776 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 5777 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16)); 5778 } else { 5779 TyAlignForABI = CharUnits::fromQuantity(4); 5780 } 5781 TyInfo.second = TyAlignForABI; 5782 5783 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo, 5784 SlotSize, /*AllowHigherAlign*/ true); 5785 } 5786 5787 //===----------------------------------------------------------------------===// 5788 // NVPTX ABI Implementation 5789 //===----------------------------------------------------------------------===// 5790 5791 namespace { 5792 5793 class NVPTXABIInfo : public ABIInfo { 5794 public: 5795 NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 5796 5797 ABIArgInfo classifyReturnType(QualType RetTy) const; 5798 ABIArgInfo classifyArgumentType(QualType Ty) const; 5799 5800 void computeInfo(CGFunctionInfo &FI) const override; 5801 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5802 QualType Ty) const override; 5803 }; 5804 5805 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 5806 public: 5807 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 5808 : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {} 5809 5810 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5811 CodeGen::CodeGenModule &M) const override; 5812 private: 5813 // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the 5814 // resulting MDNode to the nvvm.annotations MDNode. 5815 static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand); 5816 }; 5817 5818 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 5819 if (RetTy->isVoidType()) 5820 return ABIArgInfo::getIgnore(); 5821 5822 // note: this is different from default ABI 5823 if (!RetTy->isScalarType()) 5824 return ABIArgInfo::getDirect(); 5825 5826 // Treat an enum type as its underlying type. 5827 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5828 RetTy = EnumTy->getDecl()->getIntegerType(); 5829 5830 return (RetTy->isPromotableIntegerType() ? 5831 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5832 } 5833 5834 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 5835 // Treat an enum type as its underlying type. 5836 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5837 Ty = EnumTy->getDecl()->getIntegerType(); 5838 5839 // Return aggregates type as indirect by value 5840 if (isAggregateTypeForABI(Ty)) 5841 return getNaturalAlignIndirect(Ty, /* byval */ true); 5842 5843 return (Ty->isPromotableIntegerType() ? 5844 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5845 } 5846 5847 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 5848 if (!getCXXABI().classifyReturnType(FI)) 5849 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 5850 for (auto &I : FI.arguments()) 5851 I.info = classifyArgumentType(I.type); 5852 5853 // Always honor user-specified calling convention. 5854 if (FI.getCallingConvention() != llvm::CallingConv::C) 5855 return; 5856 5857 FI.setEffectiveCallingConvention(getRuntimeCC()); 5858 } 5859 5860 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5861 QualType Ty) const { 5862 llvm_unreachable("NVPTX does not support varargs"); 5863 } 5864 5865 void NVPTXTargetCodeGenInfo:: 5866 setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5867 CodeGen::CodeGenModule &M) const{ 5868 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5869 if (!FD) return; 5870 5871 llvm::Function *F = cast<llvm::Function>(GV); 5872 5873 // Perform special handling in OpenCL mode 5874 if (M.getLangOpts().OpenCL) { 5875 // Use OpenCL function attributes to check for kernel functions 5876 // By default, all functions are device functions 5877 if (FD->hasAttr<OpenCLKernelAttr>()) { 5878 // OpenCL __kernel functions get kernel metadata 5879 // Create !{<func-ref>, metadata !"kernel", i32 1} node 5880 addNVVMMetadata(F, "kernel", 1); 5881 // And kernel functions are not subject to inlining 5882 F->addFnAttr(llvm::Attribute::NoInline); 5883 } 5884 } 5885 5886 // Perform special handling in CUDA mode. 5887 if (M.getLangOpts().CUDA) { 5888 // CUDA __global__ functions get a kernel metadata entry. Since 5889 // __global__ functions cannot be called from the device, we do not 5890 // need to set the noinline attribute. 5891 if (FD->hasAttr<CUDAGlobalAttr>()) { 5892 // Create !{<func-ref>, metadata !"kernel", i32 1} node 5893 addNVVMMetadata(F, "kernel", 1); 5894 } 5895 if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) { 5896 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 5897 llvm::APSInt MaxThreads(32); 5898 MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); 5899 if (MaxThreads > 0) 5900 addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); 5901 5902 // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was 5903 // not specified in __launch_bounds__ or if the user specified a 0 value, 5904 // we don't have to add a PTX directive. 5905 if (Attr->getMinBlocks()) { 5906 llvm::APSInt MinBlocks(32); 5907 MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); 5908 if (MinBlocks > 0) 5909 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 5910 addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); 5911 } 5912 } 5913 } 5914 } 5915 5916 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name, 5917 int Operand) { 5918 llvm::Module *M = F->getParent(); 5919 llvm::LLVMContext &Ctx = M->getContext(); 5920 5921 // Get "nvvm.annotations" metadata node 5922 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 5923 5924 llvm::Metadata *MDVals[] = { 5925 llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name), 5926 llvm::ConstantAsMetadata::get( 5927 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; 5928 // Append metadata to nvvm.annotations 5929 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 5930 } 5931 } 5932 5933 //===----------------------------------------------------------------------===// 5934 // SystemZ ABI Implementation 5935 //===----------------------------------------------------------------------===// 5936 5937 namespace { 5938 5939 class SystemZABIInfo : public SwiftABIInfo { 5940 bool HasVector; 5941 5942 public: 5943 SystemZABIInfo(CodeGenTypes &CGT, bool HV) 5944 : SwiftABIInfo(CGT), HasVector(HV) {} 5945 5946 bool isPromotableIntegerType(QualType Ty) const; 5947 bool isCompoundType(QualType Ty) const; 5948 bool isVectorArgumentType(QualType Ty) const; 5949 bool isFPArgumentType(QualType Ty) const; 5950 QualType GetSingleElementType(QualType Ty) const; 5951 5952 ABIArgInfo classifyReturnType(QualType RetTy) const; 5953 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 5954 5955 void computeInfo(CGFunctionInfo &FI) const override { 5956 if (!getCXXABI().classifyReturnType(FI)) 5957 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 5958 for (auto &I : FI.arguments()) 5959 I.info = classifyArgumentType(I.type); 5960 } 5961 5962 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5963 QualType Ty) const override; 5964 5965 bool shouldPassIndirectlyForSwift(CharUnits totalSize, 5966 ArrayRef<llvm::Type*> scalars, 5967 bool asReturnValue) const override { 5968 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5969 } 5970 bool isSwiftErrorInRegister() const override { 5971 return true; 5972 } 5973 }; 5974 5975 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 5976 public: 5977 SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector) 5978 : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {} 5979 }; 5980 5981 } 5982 5983 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const { 5984 // Treat an enum type as its underlying type. 5985 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5986 Ty = EnumTy->getDecl()->getIntegerType(); 5987 5988 // Promotable integer types are required to be promoted by the ABI. 5989 if (Ty->isPromotableIntegerType()) 5990 return true; 5991 5992 // 32-bit values must also be promoted. 5993 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 5994 switch (BT->getKind()) { 5995 case BuiltinType::Int: 5996 case BuiltinType::UInt: 5997 return true; 5998 default: 5999 return false; 6000 } 6001 return false; 6002 } 6003 6004 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 6005 return (Ty->isAnyComplexType() || 6006 Ty->isVectorType() || 6007 isAggregateTypeForABI(Ty)); 6008 } 6009 6010 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { 6011 return (HasVector && 6012 Ty->isVectorType() && 6013 getContext().getTypeSize(Ty) <= 128); 6014 } 6015 6016 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 6017 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 6018 switch (BT->getKind()) { 6019 case BuiltinType::Float: 6020 case BuiltinType::Double: 6021 return true; 6022 default: 6023 return false; 6024 } 6025 6026 return false; 6027 } 6028 6029 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { 6030 if (const RecordType *RT = Ty->getAsStructureType()) { 6031 const RecordDecl *RD = RT->getDecl(); 6032 QualType Found; 6033 6034 // If this is a C++ record, check the bases first. 6035 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6036 for (const auto &I : CXXRD->bases()) { 6037 QualType Base = I.getType(); 6038 6039 // Empty bases don't affect things either way. 6040 if (isEmptyRecord(getContext(), Base, true)) 6041 continue; 6042 6043 if (!Found.isNull()) 6044 return Ty; 6045 Found = GetSingleElementType(Base); 6046 } 6047 6048 // Check the fields. 6049 for (const auto *FD : RD->fields()) { 6050 // For compatibility with GCC, ignore empty bitfields in C++ mode. 6051 // Unlike isSingleElementStruct(), empty structure and array fields 6052 // do count. So do anonymous bitfields that aren't zero-sized. 6053 if (getContext().getLangOpts().CPlusPlus && 6054 FD->isBitField() && FD->getBitWidthValue(getContext()) == 0) 6055 continue; 6056 6057 // Unlike isSingleElementStruct(), arrays do not count. 6058 // Nested structures still do though. 6059 if (!Found.isNull()) 6060 return Ty; 6061 Found = GetSingleElementType(FD->getType()); 6062 } 6063 6064 // Unlike isSingleElementStruct(), trailing padding is allowed. 6065 // An 8-byte aligned struct s { float f; } is passed as a double. 6066 if (!Found.isNull()) 6067 return Found; 6068 } 6069 6070 return Ty; 6071 } 6072 6073 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6074 QualType Ty) const { 6075 // Assume that va_list type is correct; should be pointer to LLVM type: 6076 // struct { 6077 // i64 __gpr; 6078 // i64 __fpr; 6079 // i8 *__overflow_arg_area; 6080 // i8 *__reg_save_area; 6081 // }; 6082 6083 // Every non-vector argument occupies 8 bytes and is passed by preference 6084 // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are 6085 // always passed on the stack. 6086 Ty = getContext().getCanonicalType(Ty); 6087 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6088 llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); 6089 llvm::Type *DirectTy = ArgTy; 6090 ABIArgInfo AI = classifyArgumentType(Ty); 6091 bool IsIndirect = AI.isIndirect(); 6092 bool InFPRs = false; 6093 bool IsVector = false; 6094 CharUnits UnpaddedSize; 6095 CharUnits DirectAlign; 6096 if (IsIndirect) { 6097 DirectTy = llvm::PointerType::getUnqual(DirectTy); 6098 UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8); 6099 } else { 6100 if (AI.getCoerceToType()) 6101 ArgTy = AI.getCoerceToType(); 6102 InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy(); 6103 IsVector = ArgTy->isVectorTy(); 6104 UnpaddedSize = TyInfo.first; 6105 DirectAlign = TyInfo.second; 6106 } 6107 CharUnits PaddedSize = CharUnits::fromQuantity(8); 6108 if (IsVector && UnpaddedSize > PaddedSize) 6109 PaddedSize = CharUnits::fromQuantity(16); 6110 assert((UnpaddedSize <= PaddedSize) && "Invalid argument size."); 6111 6112 CharUnits Padding = (PaddedSize - UnpaddedSize); 6113 6114 llvm::Type *IndexTy = CGF.Int64Ty; 6115 llvm::Value *PaddedSizeV = 6116 llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity()); 6117 6118 if (IsVector) { 6119 // Work out the address of a vector argument on the stack. 6120 // Vector arguments are always passed in the high bits of a 6121 // single (8 byte) or double (16 byte) stack slot. 6122 Address OverflowArgAreaPtr = 6123 CGF.Builder.CreateStructGEP(VAListAddr, 2, CharUnits::fromQuantity(16), 6124 "overflow_arg_area_ptr"); 6125 Address OverflowArgArea = 6126 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 6127 TyInfo.second); 6128 Address MemAddr = 6129 CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr"); 6130 6131 // Update overflow_arg_area_ptr pointer 6132 llvm::Value *NewOverflowArgArea = 6133 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 6134 "overflow_arg_area"); 6135 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 6136 6137 return MemAddr; 6138 } 6139 6140 assert(PaddedSize.getQuantity() == 8); 6141 6142 unsigned MaxRegs, RegCountField, RegSaveIndex; 6143 CharUnits RegPadding; 6144 if (InFPRs) { 6145 MaxRegs = 4; // Maximum of 4 FPR arguments 6146 RegCountField = 1; // __fpr 6147 RegSaveIndex = 16; // save offset for f0 6148 RegPadding = CharUnits(); // floats are passed in the high bits of an FPR 6149 } else { 6150 MaxRegs = 5; // Maximum of 5 GPR arguments 6151 RegCountField = 0; // __gpr 6152 RegSaveIndex = 2; // save offset for r2 6153 RegPadding = Padding; // values are passed in the low bits of a GPR 6154 } 6155 6156 Address RegCountPtr = CGF.Builder.CreateStructGEP( 6157 VAListAddr, RegCountField, RegCountField * CharUnits::fromQuantity(8), 6158 "reg_count_ptr"); 6159 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 6160 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 6161 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 6162 "fits_in_regs"); 6163 6164 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 6165 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 6166 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 6167 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 6168 6169 // Emit code to load the value if it was passed in registers. 6170 CGF.EmitBlock(InRegBlock); 6171 6172 // Work out the address of an argument register. 6173 llvm::Value *ScaledRegCount = 6174 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 6175 llvm::Value *RegBase = 6176 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity() 6177 + RegPadding.getQuantity()); 6178 llvm::Value *RegOffset = 6179 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 6180 Address RegSaveAreaPtr = 6181 CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24), 6182 "reg_save_area_ptr"); 6183 llvm::Value *RegSaveArea = 6184 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 6185 Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset, 6186 "raw_reg_addr"), 6187 PaddedSize); 6188 Address RegAddr = 6189 CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr"); 6190 6191 // Update the register count 6192 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 6193 llvm::Value *NewRegCount = 6194 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 6195 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 6196 CGF.EmitBranch(ContBlock); 6197 6198 // Emit code to load the value if it was passed in memory. 6199 CGF.EmitBlock(InMemBlock); 6200 6201 // Work out the address of a stack argument. 6202 Address OverflowArgAreaPtr = CGF.Builder.CreateStructGEP( 6203 VAListAddr, 2, CharUnits::fromQuantity(16), "overflow_arg_area_ptr"); 6204 Address OverflowArgArea = 6205 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 6206 PaddedSize); 6207 Address RawMemAddr = 6208 CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr"); 6209 Address MemAddr = 6210 CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr"); 6211 6212 // Update overflow_arg_area_ptr pointer 6213 llvm::Value *NewOverflowArgArea = 6214 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 6215 "overflow_arg_area"); 6216 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 6217 CGF.EmitBranch(ContBlock); 6218 6219 // Return the appropriate result. 6220 CGF.EmitBlock(ContBlock); 6221 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 6222 MemAddr, InMemBlock, "va_arg.addr"); 6223 6224 if (IsIndirect) 6225 ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), 6226 TyInfo.second); 6227 6228 return ResAddr; 6229 } 6230 6231 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 6232 if (RetTy->isVoidType()) 6233 return ABIArgInfo::getIgnore(); 6234 if (isVectorArgumentType(RetTy)) 6235 return ABIArgInfo::getDirect(); 6236 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 6237 return getNaturalAlignIndirect(RetTy); 6238 return (isPromotableIntegerType(RetTy) ? 6239 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 6240 } 6241 6242 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 6243 // Handle the generic C++ ABI. 6244 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 6245 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6246 6247 // Integers and enums are extended to full register width. 6248 if (isPromotableIntegerType(Ty)) 6249 return ABIArgInfo::getExtend(); 6250 6251 // Handle vector types and vector-like structure types. Note that 6252 // as opposed to float-like structure types, we do not allow any 6253 // padding for vector-like structures, so verify the sizes match. 6254 uint64_t Size = getContext().getTypeSize(Ty); 6255 QualType SingleElementTy = GetSingleElementType(Ty); 6256 if (isVectorArgumentType(SingleElementTy) && 6257 getContext().getTypeSize(SingleElementTy) == Size) 6258 return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); 6259 6260 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 6261 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 6262 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6263 6264 // Handle small structures. 6265 if (const RecordType *RT = Ty->getAs<RecordType>()) { 6266 // Structures with flexible arrays have variable length, so really 6267 // fail the size test above. 6268 const RecordDecl *RD = RT->getDecl(); 6269 if (RD->hasFlexibleArrayMember()) 6270 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6271 6272 // The structure is passed as an unextended integer, a float, or a double. 6273 llvm::Type *PassTy; 6274 if (isFPArgumentType(SingleElementTy)) { 6275 assert(Size == 32 || Size == 64); 6276 if (Size == 32) 6277 PassTy = llvm::Type::getFloatTy(getVMContext()); 6278 else 6279 PassTy = llvm::Type::getDoubleTy(getVMContext()); 6280 } else 6281 PassTy = llvm::IntegerType::get(getVMContext(), Size); 6282 return ABIArgInfo::getDirect(PassTy); 6283 } 6284 6285 // Non-structure compounds are passed indirectly. 6286 if (isCompoundType(Ty)) 6287 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6288 6289 return ABIArgInfo::getDirect(nullptr); 6290 } 6291 6292 //===----------------------------------------------------------------------===// 6293 // MSP430 ABI Implementation 6294 //===----------------------------------------------------------------------===// 6295 6296 namespace { 6297 6298 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 6299 public: 6300 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 6301 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 6302 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6303 CodeGen::CodeGenModule &M) const override; 6304 }; 6305 6306 } 6307 6308 void MSP430TargetCodeGenInfo::setTargetAttributes(const Decl *D, 6309 llvm::GlobalValue *GV, 6310 CodeGen::CodeGenModule &M) const { 6311 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 6312 if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) { 6313 // Handle 'interrupt' attribute: 6314 llvm::Function *F = cast<llvm::Function>(GV); 6315 6316 // Step 1: Set ISR calling convention. 6317 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 6318 6319 // Step 2: Add attributes goodness. 6320 F->addFnAttr(llvm::Attribute::NoInline); 6321 6322 // Step 3: Emit ISR vector alias. 6323 unsigned Num = attr->getNumber() / 2; 6324 llvm::GlobalAlias::create(llvm::Function::ExternalLinkage, 6325 "__isr_" + Twine(Num), F); 6326 } 6327 } 6328 } 6329 6330 //===----------------------------------------------------------------------===// 6331 // MIPS ABI Implementation. This works for both little-endian and 6332 // big-endian variants. 6333 //===----------------------------------------------------------------------===// 6334 6335 namespace { 6336 class MipsABIInfo : public ABIInfo { 6337 bool IsO32; 6338 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 6339 void CoerceToIntArgs(uint64_t TySize, 6340 SmallVectorImpl<llvm::Type *> &ArgList) const; 6341 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 6342 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 6343 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 6344 public: 6345 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 6346 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 6347 StackAlignInBytes(IsO32 ? 8 : 16) {} 6348 6349 ABIArgInfo classifyReturnType(QualType RetTy) const; 6350 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 6351 void computeInfo(CGFunctionInfo &FI) const override; 6352 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6353 QualType Ty) const override; 6354 bool shouldSignExtUnsignedType(QualType Ty) const override; 6355 }; 6356 6357 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 6358 unsigned SizeOfUnwindException; 6359 public: 6360 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 6361 : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)), 6362 SizeOfUnwindException(IsO32 ? 24 : 32) {} 6363 6364 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 6365 return 29; 6366 } 6367 6368 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6369 CodeGen::CodeGenModule &CGM) const override { 6370 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6371 if (!FD) return; 6372 llvm::Function *Fn = cast<llvm::Function>(GV); 6373 if (FD->hasAttr<Mips16Attr>()) { 6374 Fn->addFnAttr("mips16"); 6375 } 6376 else if (FD->hasAttr<NoMips16Attr>()) { 6377 Fn->addFnAttr("nomips16"); 6378 } 6379 6380 const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>(); 6381 if (!Attr) 6382 return; 6383 6384 const char *Kind; 6385 switch (Attr->getInterrupt()) { 6386 case MipsInterruptAttr::eic: Kind = "eic"; break; 6387 case MipsInterruptAttr::sw0: Kind = "sw0"; break; 6388 case MipsInterruptAttr::sw1: Kind = "sw1"; break; 6389 case MipsInterruptAttr::hw0: Kind = "hw0"; break; 6390 case MipsInterruptAttr::hw1: Kind = "hw1"; break; 6391 case MipsInterruptAttr::hw2: Kind = "hw2"; break; 6392 case MipsInterruptAttr::hw3: Kind = "hw3"; break; 6393 case MipsInterruptAttr::hw4: Kind = "hw4"; break; 6394 case MipsInterruptAttr::hw5: Kind = "hw5"; break; 6395 } 6396 6397 Fn->addFnAttr("interrupt", Kind); 6398 6399 } 6400 6401 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6402 llvm::Value *Address) const override; 6403 6404 unsigned getSizeOfUnwindException() const override { 6405 return SizeOfUnwindException; 6406 } 6407 }; 6408 } 6409 6410 void MipsABIInfo::CoerceToIntArgs( 6411 uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const { 6412 llvm::IntegerType *IntTy = 6413 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 6414 6415 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 6416 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 6417 ArgList.push_back(IntTy); 6418 6419 // If necessary, add one more integer type to ArgList. 6420 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 6421 6422 if (R) 6423 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 6424 } 6425 6426 // In N32/64, an aligned double precision floating point field is passed in 6427 // a register. 6428 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 6429 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 6430 6431 if (IsO32) { 6432 CoerceToIntArgs(TySize, ArgList); 6433 return llvm::StructType::get(getVMContext(), ArgList); 6434 } 6435 6436 if (Ty->isComplexType()) 6437 return CGT.ConvertType(Ty); 6438 6439 const RecordType *RT = Ty->getAs<RecordType>(); 6440 6441 // Unions/vectors are passed in integer registers. 6442 if (!RT || !RT->isStructureOrClassType()) { 6443 CoerceToIntArgs(TySize, ArgList); 6444 return llvm::StructType::get(getVMContext(), ArgList); 6445 } 6446 6447 const RecordDecl *RD = RT->getDecl(); 6448 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 6449 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 6450 6451 uint64_t LastOffset = 0; 6452 unsigned idx = 0; 6453 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 6454 6455 // Iterate over fields in the struct/class and check if there are any aligned 6456 // double fields. 6457 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 6458 i != e; ++i, ++idx) { 6459 const QualType Ty = i->getType(); 6460 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 6461 6462 if (!BT || BT->getKind() != BuiltinType::Double) 6463 continue; 6464 6465 uint64_t Offset = Layout.getFieldOffset(idx); 6466 if (Offset % 64) // Ignore doubles that are not aligned. 6467 continue; 6468 6469 // Add ((Offset - LastOffset) / 64) args of type i64. 6470 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 6471 ArgList.push_back(I64); 6472 6473 // Add double type. 6474 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 6475 LastOffset = Offset + 64; 6476 } 6477 6478 CoerceToIntArgs(TySize - LastOffset, IntArgList); 6479 ArgList.append(IntArgList.begin(), IntArgList.end()); 6480 6481 return llvm::StructType::get(getVMContext(), ArgList); 6482 } 6483 6484 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 6485 uint64_t Offset) const { 6486 if (OrigOffset + MinABIStackAlignInBytes > Offset) 6487 return nullptr; 6488 6489 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 6490 } 6491 6492 ABIArgInfo 6493 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 6494 Ty = useFirstFieldIfTransparentUnion(Ty); 6495 6496 uint64_t OrigOffset = Offset; 6497 uint64_t TySize = getContext().getTypeSize(Ty); 6498 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 6499 6500 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 6501 (uint64_t)StackAlignInBytes); 6502 unsigned CurrOffset = llvm::alignTo(Offset, Align); 6503 Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8; 6504 6505 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 6506 // Ignore empty aggregates. 6507 if (TySize == 0) 6508 return ABIArgInfo::getIgnore(); 6509 6510 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 6511 Offset = OrigOffset + MinABIStackAlignInBytes; 6512 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6513 } 6514 6515 // If we have reached here, aggregates are passed directly by coercing to 6516 // another structure type. Padding is inserted if the offset of the 6517 // aggregate is unaligned. 6518 ABIArgInfo ArgInfo = 6519 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 6520 getPaddingType(OrigOffset, CurrOffset)); 6521 ArgInfo.setInReg(true); 6522 return ArgInfo; 6523 } 6524 6525 // Treat an enum type as its underlying type. 6526 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6527 Ty = EnumTy->getDecl()->getIntegerType(); 6528 6529 // All integral types are promoted to the GPR width. 6530 if (Ty->isIntegralOrEnumerationType()) 6531 return ABIArgInfo::getExtend(); 6532 6533 return ABIArgInfo::getDirect( 6534 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 6535 } 6536 6537 llvm::Type* 6538 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 6539 const RecordType *RT = RetTy->getAs<RecordType>(); 6540 SmallVector<llvm::Type*, 8> RTList; 6541 6542 if (RT && RT->isStructureOrClassType()) { 6543 const RecordDecl *RD = RT->getDecl(); 6544 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 6545 unsigned FieldCnt = Layout.getFieldCount(); 6546 6547 // N32/64 returns struct/classes in floating point registers if the 6548 // following conditions are met: 6549 // 1. The size of the struct/class is no larger than 128-bit. 6550 // 2. The struct/class has one or two fields all of which are floating 6551 // point types. 6552 // 3. The offset of the first field is zero (this follows what gcc does). 6553 // 6554 // Any other composite results are returned in integer registers. 6555 // 6556 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 6557 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 6558 for (; b != e; ++b) { 6559 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 6560 6561 if (!BT || !BT->isFloatingPoint()) 6562 break; 6563 6564 RTList.push_back(CGT.ConvertType(b->getType())); 6565 } 6566 6567 if (b == e) 6568 return llvm::StructType::get(getVMContext(), RTList, 6569 RD->hasAttr<PackedAttr>()); 6570 6571 RTList.clear(); 6572 } 6573 } 6574 6575 CoerceToIntArgs(Size, RTList); 6576 return llvm::StructType::get(getVMContext(), RTList); 6577 } 6578 6579 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 6580 uint64_t Size = getContext().getTypeSize(RetTy); 6581 6582 if (RetTy->isVoidType()) 6583 return ABIArgInfo::getIgnore(); 6584 6585 // O32 doesn't treat zero-sized structs differently from other structs. 6586 // However, N32/N64 ignores zero sized return values. 6587 if (!IsO32 && Size == 0) 6588 return ABIArgInfo::getIgnore(); 6589 6590 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 6591 if (Size <= 128) { 6592 if (RetTy->isAnyComplexType()) 6593 return ABIArgInfo::getDirect(); 6594 6595 // O32 returns integer vectors in registers and N32/N64 returns all small 6596 // aggregates in registers. 6597 if (!IsO32 || 6598 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { 6599 ABIArgInfo ArgInfo = 6600 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 6601 ArgInfo.setInReg(true); 6602 return ArgInfo; 6603 } 6604 } 6605 6606 return getNaturalAlignIndirect(RetTy); 6607 } 6608 6609 // Treat an enum type as its underlying type. 6610 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6611 RetTy = EnumTy->getDecl()->getIntegerType(); 6612 6613 return (RetTy->isPromotableIntegerType() ? 6614 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 6615 } 6616 6617 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 6618 ABIArgInfo &RetInfo = FI.getReturnInfo(); 6619 if (!getCXXABI().classifyReturnType(FI)) 6620 RetInfo = classifyReturnType(FI.getReturnType()); 6621 6622 // Check if a pointer to an aggregate is passed as a hidden argument. 6623 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 6624 6625 for (auto &I : FI.arguments()) 6626 I.info = classifyArgumentType(I.type, Offset); 6627 } 6628 6629 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6630 QualType OrigTy) const { 6631 QualType Ty = OrigTy; 6632 6633 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. 6634 // Pointers are also promoted in the same way but this only matters for N32. 6635 unsigned SlotSizeInBits = IsO32 ? 32 : 64; 6636 unsigned PtrWidth = getTarget().getPointerWidth(0); 6637 bool DidPromote = false; 6638 if ((Ty->isIntegerType() && 6639 getContext().getIntWidth(Ty) < SlotSizeInBits) || 6640 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { 6641 DidPromote = true; 6642 Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits, 6643 Ty->isSignedIntegerType()); 6644 } 6645 6646 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6647 6648 // The alignment of things in the argument area is never larger than 6649 // StackAlignInBytes. 6650 TyInfo.second = 6651 std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes)); 6652 6653 // MinABIStackAlignInBytes is the size of argument slots on the stack. 6654 CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes); 6655 6656 Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 6657 TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true); 6658 6659 6660 // If there was a promotion, "unpromote" into a temporary. 6661 // TODO: can we just use a pointer into a subset of the original slot? 6662 if (DidPromote) { 6663 Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp"); 6664 llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr); 6665 6666 // Truncate down to the right width. 6667 llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType() 6668 : CGF.IntPtrTy); 6669 llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy); 6670 if (OrigTy->isPointerType()) 6671 V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType()); 6672 6673 CGF.Builder.CreateStore(V, Temp); 6674 Addr = Temp; 6675 } 6676 6677 return Addr; 6678 } 6679 6680 bool MipsABIInfo::shouldSignExtUnsignedType(QualType Ty) const { 6681 int TySize = getContext().getTypeSize(Ty); 6682 6683 // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. 6684 if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 6685 return true; 6686 6687 return false; 6688 } 6689 6690 bool 6691 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6692 llvm::Value *Address) const { 6693 // This information comes from gcc's implementation, which seems to 6694 // as canonical as it gets. 6695 6696 // Everything on MIPS is 4 bytes. Double-precision FP registers 6697 // are aliased to pairs of single-precision FP registers. 6698 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 6699 6700 // 0-31 are the general purpose registers, $0 - $31. 6701 // 32-63 are the floating-point registers, $f0 - $f31. 6702 // 64 and 65 are the multiply/divide registers, $hi and $lo. 6703 // 66 is the (notional, I think) register for signal-handler return. 6704 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 6705 6706 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 6707 // They are one bit wide and ignored here. 6708 6709 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 6710 // (coprocessor 1 is the FP unit) 6711 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 6712 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 6713 // 176-181 are the DSP accumulator registers. 6714 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 6715 return false; 6716 } 6717 6718 //===----------------------------------------------------------------------===// 6719 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 6720 // Currently subclassed only to implement custom OpenCL C function attribute 6721 // handling. 6722 //===----------------------------------------------------------------------===// 6723 6724 namespace { 6725 6726 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 6727 public: 6728 TCETargetCodeGenInfo(CodeGenTypes &CGT) 6729 : DefaultTargetCodeGenInfo(CGT) {} 6730 6731 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6732 CodeGen::CodeGenModule &M) const override; 6733 }; 6734 6735 void TCETargetCodeGenInfo::setTargetAttributes( 6736 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 6737 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6738 if (!FD) return; 6739 6740 llvm::Function *F = cast<llvm::Function>(GV); 6741 6742 if (M.getLangOpts().OpenCL) { 6743 if (FD->hasAttr<OpenCLKernelAttr>()) { 6744 // OpenCL C Kernel functions are not subject to inlining 6745 F->addFnAttr(llvm::Attribute::NoInline); 6746 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 6747 if (Attr) { 6748 // Convert the reqd_work_group_size() attributes to metadata. 6749 llvm::LLVMContext &Context = F->getContext(); 6750 llvm::NamedMDNode *OpenCLMetadata = 6751 M.getModule().getOrInsertNamedMetadata( 6752 "opencl.kernel_wg_size_info"); 6753 6754 SmallVector<llvm::Metadata *, 5> Operands; 6755 Operands.push_back(llvm::ConstantAsMetadata::get(F)); 6756 6757 Operands.push_back( 6758 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 6759 M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); 6760 Operands.push_back( 6761 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 6762 M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); 6763 Operands.push_back( 6764 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 6765 M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); 6766 6767 // Add a boolean constant operand for "required" (true) or "hint" 6768 // (false) for implementing the work_group_size_hint attr later. 6769 // Currently always true as the hint is not yet implemented. 6770 Operands.push_back( 6771 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); 6772 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 6773 } 6774 } 6775 } 6776 } 6777 6778 } 6779 6780 //===----------------------------------------------------------------------===// 6781 // Hexagon ABI Implementation 6782 //===----------------------------------------------------------------------===// 6783 6784 namespace { 6785 6786 class HexagonABIInfo : public ABIInfo { 6787 6788 6789 public: 6790 HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 6791 6792 private: 6793 6794 ABIArgInfo classifyReturnType(QualType RetTy) const; 6795 ABIArgInfo classifyArgumentType(QualType RetTy) const; 6796 6797 void computeInfo(CGFunctionInfo &FI) const override; 6798 6799 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6800 QualType Ty) const override; 6801 }; 6802 6803 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 6804 public: 6805 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 6806 :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {} 6807 6808 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 6809 return 29; 6810 } 6811 }; 6812 6813 } 6814 6815 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 6816 if (!getCXXABI().classifyReturnType(FI)) 6817 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6818 for (auto &I : FI.arguments()) 6819 I.info = classifyArgumentType(I.type); 6820 } 6821 6822 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const { 6823 if (!isAggregateTypeForABI(Ty)) { 6824 // Treat an enum type as its underlying type. 6825 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6826 Ty = EnumTy->getDecl()->getIntegerType(); 6827 6828 return (Ty->isPromotableIntegerType() ? 6829 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 6830 } 6831 6832 // Ignore empty records. 6833 if (isEmptyRecord(getContext(), Ty, true)) 6834 return ABIArgInfo::getIgnore(); 6835 6836 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 6837 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6838 6839 uint64_t Size = getContext().getTypeSize(Ty); 6840 if (Size > 64) 6841 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 6842 // Pass in the smallest viable integer type. 6843 else if (Size > 32) 6844 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 6845 else if (Size > 16) 6846 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6847 else if (Size > 8) 6848 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6849 else 6850 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6851 } 6852 6853 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 6854 if (RetTy->isVoidType()) 6855 return ABIArgInfo::getIgnore(); 6856 6857 // Large vector types should be returned via memory. 6858 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64) 6859 return getNaturalAlignIndirect(RetTy); 6860 6861 if (!isAggregateTypeForABI(RetTy)) { 6862 // Treat an enum type as its underlying type. 6863 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6864 RetTy = EnumTy->getDecl()->getIntegerType(); 6865 6866 return (RetTy->isPromotableIntegerType() ? 6867 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 6868 } 6869 6870 if (isEmptyRecord(getContext(), RetTy, true)) 6871 return ABIArgInfo::getIgnore(); 6872 6873 // Aggregates <= 8 bytes are returned in r0; other aggregates 6874 // are returned indirectly. 6875 uint64_t Size = getContext().getTypeSize(RetTy); 6876 if (Size <= 64) { 6877 // Return in the smallest viable integer type. 6878 if (Size <= 8) 6879 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6880 if (Size <= 16) 6881 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6882 if (Size <= 32) 6883 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6884 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 6885 } 6886 6887 return getNaturalAlignIndirect(RetTy, /*ByVal=*/true); 6888 } 6889 6890 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6891 QualType Ty) const { 6892 // FIXME: Someone needs to audit that this handle alignment correctly. 6893 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 6894 getContext().getTypeInfoInChars(Ty), 6895 CharUnits::fromQuantity(4), 6896 /*AllowHigherAlign*/ true); 6897 } 6898 6899 //===----------------------------------------------------------------------===// 6900 // Lanai ABI Implementation 6901 //===----------------------------------------------------------------------===// 6902 6903 namespace { 6904 class LanaiABIInfo : public DefaultABIInfo { 6905 public: 6906 LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 6907 6908 bool shouldUseInReg(QualType Ty, CCState &State) const; 6909 6910 void computeInfo(CGFunctionInfo &FI) const override { 6911 CCState State(FI.getCallingConvention()); 6912 // Lanai uses 4 registers to pass arguments unless the function has the 6913 // regparm attribute set. 6914 if (FI.getHasRegParm()) { 6915 State.FreeRegs = FI.getRegParm(); 6916 } else { 6917 State.FreeRegs = 4; 6918 } 6919 6920 if (!getCXXABI().classifyReturnType(FI)) 6921 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6922 for (auto &I : FI.arguments()) 6923 I.info = classifyArgumentType(I.type, State); 6924 } 6925 6926 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 6927 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 6928 }; 6929 } // end anonymous namespace 6930 6931 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const { 6932 unsigned Size = getContext().getTypeSize(Ty); 6933 unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U; 6934 6935 if (SizeInRegs == 0) 6936 return false; 6937 6938 if (SizeInRegs > State.FreeRegs) { 6939 State.FreeRegs = 0; 6940 return false; 6941 } 6942 6943 State.FreeRegs -= SizeInRegs; 6944 6945 return true; 6946 } 6947 6948 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal, 6949 CCState &State) const { 6950 if (!ByVal) { 6951 if (State.FreeRegs) { 6952 --State.FreeRegs; // Non-byval indirects just use one pointer. 6953 return getNaturalAlignIndirectInReg(Ty); 6954 } 6955 return getNaturalAlignIndirect(Ty, false); 6956 } 6957 6958 // Compute the byval alignment. 6959 const unsigned MinABIStackAlignInBytes = 4; 6960 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 6961 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 6962 /*Realign=*/TypeAlign > 6963 MinABIStackAlignInBytes); 6964 } 6965 6966 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty, 6967 CCState &State) const { 6968 // Check with the C++ ABI first. 6969 const RecordType *RT = Ty->getAs<RecordType>(); 6970 if (RT) { 6971 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 6972 if (RAA == CGCXXABI::RAA_Indirect) { 6973 return getIndirectResult(Ty, /*ByVal=*/false, State); 6974 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 6975 return getNaturalAlignIndirect(Ty, /*ByRef=*/true); 6976 } 6977 } 6978 6979 if (isAggregateTypeForABI(Ty)) { 6980 // Structures with flexible arrays are always indirect. 6981 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 6982 return getIndirectResult(Ty, /*ByVal=*/true, State); 6983 6984 // Ignore empty structs/unions. 6985 if (isEmptyRecord(getContext(), Ty, true)) 6986 return ABIArgInfo::getIgnore(); 6987 6988 llvm::LLVMContext &LLVMContext = getVMContext(); 6989 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 6990 if (SizeInRegs <= State.FreeRegs) { 6991 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 6992 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 6993 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 6994 State.FreeRegs -= SizeInRegs; 6995 return ABIArgInfo::getDirectInReg(Result); 6996 } else { 6997 State.FreeRegs = 0; 6998 } 6999 return getIndirectResult(Ty, true, State); 7000 } 7001 7002 // Treat an enum type as its underlying type. 7003 if (const auto *EnumTy = Ty->getAs<EnumType>()) 7004 Ty = EnumTy->getDecl()->getIntegerType(); 7005 7006 bool InReg = shouldUseInReg(Ty, State); 7007 if (Ty->isPromotableIntegerType()) { 7008 if (InReg) 7009 return ABIArgInfo::getDirectInReg(); 7010 return ABIArgInfo::getExtend(); 7011 } 7012 if (InReg) 7013 return ABIArgInfo::getDirectInReg(); 7014 return ABIArgInfo::getDirect(); 7015 } 7016 7017 namespace { 7018 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo { 7019 public: 7020 LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 7021 : TargetCodeGenInfo(new LanaiABIInfo(CGT)) {} 7022 }; 7023 } 7024 7025 //===----------------------------------------------------------------------===// 7026 // AMDGPU ABI Implementation 7027 //===----------------------------------------------------------------------===// 7028 7029 namespace { 7030 7031 class AMDGPUABIInfo final : public DefaultABIInfo { 7032 public: 7033 explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7034 7035 private: 7036 ABIArgInfo classifyArgumentType(QualType Ty) const; 7037 7038 void computeInfo(CGFunctionInfo &FI) const override; 7039 }; 7040 7041 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const { 7042 if (!getCXXABI().classifyReturnType(FI)) 7043 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7044 7045 unsigned CC = FI.getCallingConvention(); 7046 for (auto &Arg : FI.arguments()) 7047 if (CC == llvm::CallingConv::AMDGPU_KERNEL) 7048 Arg.info = classifyArgumentType(Arg.type); 7049 else 7050 Arg.info = DefaultABIInfo::classifyArgumentType(Arg.type); 7051 } 7052 7053 /// \brief Classify argument of given type \p Ty. 7054 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty) const { 7055 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 7056 if (!StrTy) { 7057 return DefaultABIInfo::classifyArgumentType(Ty); 7058 } 7059 7060 // Coerce single element structs to its element. 7061 if (StrTy->getNumElements() == 1) { 7062 return ABIArgInfo::getDirect(); 7063 } 7064 7065 // If we set CanBeFlattened to true, CodeGen will expand the struct to its 7066 // individual elements, which confuses the Clover OpenCL backend; therefore we 7067 // have to set it to false here. Other args of getDirect() are just defaults. 7068 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 7069 } 7070 7071 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { 7072 public: 7073 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) 7074 : TargetCodeGenInfo(new AMDGPUABIInfo(CGT)) {} 7075 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7076 CodeGen::CodeGenModule &M) const override; 7077 unsigned getOpenCLKernelCallingConv() const override; 7078 }; 7079 7080 } 7081 7082 static void appendOpenCLVersionMD (CodeGen::CodeGenModule &CGM); 7083 7084 void AMDGPUTargetCodeGenInfo::setTargetAttributes( 7085 const Decl *D, 7086 llvm::GlobalValue *GV, 7087 CodeGen::CodeGenModule &M) const { 7088 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7089 if (!FD) 7090 return; 7091 7092 llvm::Function *F = cast<llvm::Function>(GV); 7093 7094 if (const auto *Attr = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>()) { 7095 unsigned Min = Attr->getMin(); 7096 unsigned Max = Attr->getMax(); 7097 7098 if (Min != 0) { 7099 assert(Min <= Max && "Min must be less than or equal Max"); 7100 7101 std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max); 7102 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 7103 } else 7104 assert(Max == 0 && "Max must be zero"); 7105 } 7106 7107 if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) { 7108 unsigned Min = Attr->getMin(); 7109 unsigned Max = Attr->getMax(); 7110 7111 if (Min != 0) { 7112 assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max"); 7113 7114 std::string AttrVal = llvm::utostr(Min); 7115 if (Max != 0) 7116 AttrVal = AttrVal + "," + llvm::utostr(Max); 7117 F->addFnAttr("amdgpu-waves-per-eu", AttrVal); 7118 } else 7119 assert(Max == 0 && "Max must be zero"); 7120 } 7121 7122 if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { 7123 unsigned NumSGPR = Attr->getNumSGPR(); 7124 7125 if (NumSGPR != 0) 7126 F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR)); 7127 } 7128 7129 if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { 7130 uint32_t NumVGPR = Attr->getNumVGPR(); 7131 7132 if (NumVGPR != 0) 7133 F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR)); 7134 } 7135 7136 appendOpenCLVersionMD(M); 7137 } 7138 7139 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 7140 return llvm::CallingConv::AMDGPU_KERNEL; 7141 } 7142 7143 //===----------------------------------------------------------------------===// 7144 // SPARC v8 ABI Implementation. 7145 // Based on the SPARC Compliance Definition version 2.4.1. 7146 // 7147 // Ensures that complex values are passed in registers. 7148 // 7149 namespace { 7150 class SparcV8ABIInfo : public DefaultABIInfo { 7151 public: 7152 SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7153 7154 private: 7155 ABIArgInfo classifyReturnType(QualType RetTy) const; 7156 void computeInfo(CGFunctionInfo &FI) const override; 7157 }; 7158 } // end anonymous namespace 7159 7160 7161 ABIArgInfo 7162 SparcV8ABIInfo::classifyReturnType(QualType Ty) const { 7163 if (Ty->isAnyComplexType()) { 7164 return ABIArgInfo::getDirect(); 7165 } 7166 else { 7167 return DefaultABIInfo::classifyReturnType(Ty); 7168 } 7169 } 7170 7171 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const { 7172 7173 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7174 for (auto &Arg : FI.arguments()) 7175 Arg.info = classifyArgumentType(Arg.type); 7176 } 7177 7178 namespace { 7179 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo { 7180 public: 7181 SparcV8TargetCodeGenInfo(CodeGenTypes &CGT) 7182 : TargetCodeGenInfo(new SparcV8ABIInfo(CGT)) {} 7183 }; 7184 } // end anonymous namespace 7185 7186 //===----------------------------------------------------------------------===// 7187 // SPARC v9 ABI Implementation. 7188 // Based on the SPARC Compliance Definition version 2.4.1. 7189 // 7190 // Function arguments a mapped to a nominal "parameter array" and promoted to 7191 // registers depending on their type. Each argument occupies 8 or 16 bytes in 7192 // the array, structs larger than 16 bytes are passed indirectly. 7193 // 7194 // One case requires special care: 7195 // 7196 // struct mixed { 7197 // int i; 7198 // float f; 7199 // }; 7200 // 7201 // When a struct mixed is passed by value, it only occupies 8 bytes in the 7202 // parameter array, but the int is passed in an integer register, and the float 7203 // is passed in a floating point register. This is represented as two arguments 7204 // with the LLVM IR inreg attribute: 7205 // 7206 // declare void f(i32 inreg %i, float inreg %f) 7207 // 7208 // The code generator will only allocate 4 bytes from the parameter array for 7209 // the inreg arguments. All other arguments are allocated a multiple of 8 7210 // bytes. 7211 // 7212 namespace { 7213 class SparcV9ABIInfo : public ABIInfo { 7214 public: 7215 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 7216 7217 private: 7218 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 7219 void computeInfo(CGFunctionInfo &FI) const override; 7220 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7221 QualType Ty) const override; 7222 7223 // Coercion type builder for structs passed in registers. The coercion type 7224 // serves two purposes: 7225 // 7226 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 7227 // in registers. 7228 // 2. Expose aligned floating point elements as first-level elements, so the 7229 // code generator knows to pass them in floating point registers. 7230 // 7231 // We also compute the InReg flag which indicates that the struct contains 7232 // aligned 32-bit floats. 7233 // 7234 struct CoerceBuilder { 7235 llvm::LLVMContext &Context; 7236 const llvm::DataLayout &DL; 7237 SmallVector<llvm::Type*, 8> Elems; 7238 uint64_t Size; 7239 bool InReg; 7240 7241 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 7242 : Context(c), DL(dl), Size(0), InReg(false) {} 7243 7244 // Pad Elems with integers until Size is ToSize. 7245 void pad(uint64_t ToSize) { 7246 assert(ToSize >= Size && "Cannot remove elements"); 7247 if (ToSize == Size) 7248 return; 7249 7250 // Finish the current 64-bit word. 7251 uint64_t Aligned = llvm::alignTo(Size, 64); 7252 if (Aligned > Size && Aligned <= ToSize) { 7253 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 7254 Size = Aligned; 7255 } 7256 7257 // Add whole 64-bit words. 7258 while (Size + 64 <= ToSize) { 7259 Elems.push_back(llvm::Type::getInt64Ty(Context)); 7260 Size += 64; 7261 } 7262 7263 // Final in-word padding. 7264 if (Size < ToSize) { 7265 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 7266 Size = ToSize; 7267 } 7268 } 7269 7270 // Add a floating point element at Offset. 7271 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 7272 // Unaligned floats are treated as integers. 7273 if (Offset % Bits) 7274 return; 7275 // The InReg flag is only required if there are any floats < 64 bits. 7276 if (Bits < 64) 7277 InReg = true; 7278 pad(Offset); 7279 Elems.push_back(Ty); 7280 Size = Offset + Bits; 7281 } 7282 7283 // Add a struct type to the coercion type, starting at Offset (in bits). 7284 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 7285 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 7286 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 7287 llvm::Type *ElemTy = StrTy->getElementType(i); 7288 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 7289 switch (ElemTy->getTypeID()) { 7290 case llvm::Type::StructTyID: 7291 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 7292 break; 7293 case llvm::Type::FloatTyID: 7294 addFloat(ElemOffset, ElemTy, 32); 7295 break; 7296 case llvm::Type::DoubleTyID: 7297 addFloat(ElemOffset, ElemTy, 64); 7298 break; 7299 case llvm::Type::FP128TyID: 7300 addFloat(ElemOffset, ElemTy, 128); 7301 break; 7302 case llvm::Type::PointerTyID: 7303 if (ElemOffset % 64 == 0) { 7304 pad(ElemOffset); 7305 Elems.push_back(ElemTy); 7306 Size += 64; 7307 } 7308 break; 7309 default: 7310 break; 7311 } 7312 } 7313 } 7314 7315 // Check if Ty is a usable substitute for the coercion type. 7316 bool isUsableType(llvm::StructType *Ty) const { 7317 return llvm::makeArrayRef(Elems) == Ty->elements(); 7318 } 7319 7320 // Get the coercion type as a literal struct type. 7321 llvm::Type *getType() const { 7322 if (Elems.size() == 1) 7323 return Elems.front(); 7324 else 7325 return llvm::StructType::get(Context, Elems); 7326 } 7327 }; 7328 }; 7329 } // end anonymous namespace 7330 7331 ABIArgInfo 7332 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 7333 if (Ty->isVoidType()) 7334 return ABIArgInfo::getIgnore(); 7335 7336 uint64_t Size = getContext().getTypeSize(Ty); 7337 7338 // Anything too big to fit in registers is passed with an explicit indirect 7339 // pointer / sret pointer. 7340 if (Size > SizeLimit) 7341 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7342 7343 // Treat an enum type as its underlying type. 7344 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7345 Ty = EnumTy->getDecl()->getIntegerType(); 7346 7347 // Integer types smaller than a register are extended. 7348 if (Size < 64 && Ty->isIntegerType()) 7349 return ABIArgInfo::getExtend(); 7350 7351 // Other non-aggregates go in registers. 7352 if (!isAggregateTypeForABI(Ty)) 7353 return ABIArgInfo::getDirect(); 7354 7355 // If a C++ object has either a non-trivial copy constructor or a non-trivial 7356 // destructor, it is passed with an explicit indirect pointer / sret pointer. 7357 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 7358 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7359 7360 // This is a small aggregate type that should be passed in registers. 7361 // Build a coercion type from the LLVM struct type. 7362 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 7363 if (!StrTy) 7364 return ABIArgInfo::getDirect(); 7365 7366 CoerceBuilder CB(getVMContext(), getDataLayout()); 7367 CB.addStruct(0, StrTy); 7368 CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64)); 7369 7370 // Try to use the original type for coercion. 7371 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 7372 7373 if (CB.InReg) 7374 return ABIArgInfo::getDirectInReg(CoerceTy); 7375 else 7376 return ABIArgInfo::getDirect(CoerceTy); 7377 } 7378 7379 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7380 QualType Ty) const { 7381 ABIArgInfo AI = classifyType(Ty, 16 * 8); 7382 llvm::Type *ArgTy = CGT.ConvertType(Ty); 7383 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 7384 AI.setCoerceToType(ArgTy); 7385 7386 CharUnits SlotSize = CharUnits::fromQuantity(8); 7387 7388 CGBuilderTy &Builder = CGF.Builder; 7389 Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 7390 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 7391 7392 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 7393 7394 Address ArgAddr = Address::invalid(); 7395 CharUnits Stride; 7396 switch (AI.getKind()) { 7397 case ABIArgInfo::Expand: 7398 case ABIArgInfo::CoerceAndExpand: 7399 case ABIArgInfo::InAlloca: 7400 llvm_unreachable("Unsupported ABI kind for va_arg"); 7401 7402 case ABIArgInfo::Extend: { 7403 Stride = SlotSize; 7404 CharUnits Offset = SlotSize - TypeInfo.first; 7405 ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend"); 7406 break; 7407 } 7408 7409 case ABIArgInfo::Direct: { 7410 auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 7411 Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize); 7412 ArgAddr = Addr; 7413 break; 7414 } 7415 7416 case ABIArgInfo::Indirect: 7417 Stride = SlotSize; 7418 ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect"); 7419 ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), 7420 TypeInfo.second); 7421 break; 7422 7423 case ABIArgInfo::Ignore: 7424 return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second); 7425 } 7426 7427 // Update VAList. 7428 llvm::Value *NextPtr = 7429 Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), Stride, "ap.next"); 7430 Builder.CreateStore(NextPtr, VAListAddr); 7431 7432 return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr"); 7433 } 7434 7435 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 7436 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 7437 for (auto &I : FI.arguments()) 7438 I.info = classifyType(I.type, 16 * 8); 7439 } 7440 7441 namespace { 7442 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 7443 public: 7444 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 7445 : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {} 7446 7447 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 7448 return 14; 7449 } 7450 7451 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7452 llvm::Value *Address) const override; 7453 }; 7454 } // end anonymous namespace 7455 7456 bool 7457 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7458 llvm::Value *Address) const { 7459 // This is calculated from the LLVM and GCC tables and verified 7460 // against gcc output. AFAIK all ABIs use the same encoding. 7461 7462 CodeGen::CGBuilderTy &Builder = CGF.Builder; 7463 7464 llvm::IntegerType *i8 = CGF.Int8Ty; 7465 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 7466 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 7467 7468 // 0-31: the 8-byte general-purpose registers 7469 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 7470 7471 // 32-63: f0-31, the 4-byte floating-point registers 7472 AssignToArrayRange(Builder, Address, Four8, 32, 63); 7473 7474 // Y = 64 7475 // PSR = 65 7476 // WIM = 66 7477 // TBR = 67 7478 // PC = 68 7479 // NPC = 69 7480 // FSR = 70 7481 // CSR = 71 7482 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 7483 7484 // 72-87: d0-15, the 8-byte floating-point registers 7485 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 7486 7487 return false; 7488 } 7489 7490 7491 //===----------------------------------------------------------------------===// 7492 // XCore ABI Implementation 7493 //===----------------------------------------------------------------------===// 7494 7495 namespace { 7496 7497 /// A SmallStringEnc instance is used to build up the TypeString by passing 7498 /// it by reference between functions that append to it. 7499 typedef llvm::SmallString<128> SmallStringEnc; 7500 7501 /// TypeStringCache caches the meta encodings of Types. 7502 /// 7503 /// The reason for caching TypeStrings is two fold: 7504 /// 1. To cache a type's encoding for later uses; 7505 /// 2. As a means to break recursive member type inclusion. 7506 /// 7507 /// A cache Entry can have a Status of: 7508 /// NonRecursive: The type encoding is not recursive; 7509 /// Recursive: The type encoding is recursive; 7510 /// Incomplete: An incomplete TypeString; 7511 /// IncompleteUsed: An incomplete TypeString that has been used in a 7512 /// Recursive type encoding. 7513 /// 7514 /// A NonRecursive entry will have all of its sub-members expanded as fully 7515 /// as possible. Whilst it may contain types which are recursive, the type 7516 /// itself is not recursive and thus its encoding may be safely used whenever 7517 /// the type is encountered. 7518 /// 7519 /// A Recursive entry will have all of its sub-members expanded as fully as 7520 /// possible. The type itself is recursive and it may contain other types which 7521 /// are recursive. The Recursive encoding must not be used during the expansion 7522 /// of a recursive type's recursive branch. For simplicity the code uses 7523 /// IncompleteCount to reject all usage of Recursive encodings for member types. 7524 /// 7525 /// An Incomplete entry is always a RecordType and only encodes its 7526 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 7527 /// are placed into the cache during type expansion as a means to identify and 7528 /// handle recursive inclusion of types as sub-members. If there is recursion 7529 /// the entry becomes IncompleteUsed. 7530 /// 7531 /// During the expansion of a RecordType's members: 7532 /// 7533 /// If the cache contains a NonRecursive encoding for the member type, the 7534 /// cached encoding is used; 7535 /// 7536 /// If the cache contains a Recursive encoding for the member type, the 7537 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 7538 /// 7539 /// If the member is a RecordType, an Incomplete encoding is placed into the 7540 /// cache to break potential recursive inclusion of itself as a sub-member; 7541 /// 7542 /// Once a member RecordType has been expanded, its temporary incomplete 7543 /// entry is removed from the cache. If a Recursive encoding was swapped out 7544 /// it is swapped back in; 7545 /// 7546 /// If an incomplete entry is used to expand a sub-member, the incomplete 7547 /// entry is marked as IncompleteUsed. The cache keeps count of how many 7548 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 7549 /// 7550 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 7551 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 7552 /// Else the member is part of a recursive type and thus the recursion has 7553 /// been exited too soon for the encoding to be correct for the member. 7554 /// 7555 class TypeStringCache { 7556 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 7557 struct Entry { 7558 std::string Str; // The encoded TypeString for the type. 7559 enum Status State; // Information about the encoding in 'Str'. 7560 std::string Swapped; // A temporary place holder for a Recursive encoding 7561 // during the expansion of RecordType's members. 7562 }; 7563 std::map<const IdentifierInfo *, struct Entry> Map; 7564 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 7565 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 7566 public: 7567 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {} 7568 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 7569 bool removeIncomplete(const IdentifierInfo *ID); 7570 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 7571 bool IsRecursive); 7572 StringRef lookupStr(const IdentifierInfo *ID); 7573 }; 7574 7575 /// TypeString encodings for enum & union fields must be order. 7576 /// FieldEncoding is a helper for this ordering process. 7577 class FieldEncoding { 7578 bool HasName; 7579 std::string Enc; 7580 public: 7581 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {} 7582 StringRef str() { return Enc; } 7583 bool operator<(const FieldEncoding &rhs) const { 7584 if (HasName != rhs.HasName) return HasName; 7585 return Enc < rhs.Enc; 7586 } 7587 }; 7588 7589 class XCoreABIInfo : public DefaultABIInfo { 7590 public: 7591 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7592 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7593 QualType Ty) const override; 7594 }; 7595 7596 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 7597 mutable TypeStringCache TSC; 7598 public: 7599 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 7600 :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {} 7601 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 7602 CodeGen::CodeGenModule &M) const override; 7603 }; 7604 7605 } // End anonymous namespace. 7606 7607 // TODO: this implementation is likely now redundant with the default 7608 // EmitVAArg. 7609 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7610 QualType Ty) const { 7611 CGBuilderTy &Builder = CGF.Builder; 7612 7613 // Get the VAList. 7614 CharUnits SlotSize = CharUnits::fromQuantity(4); 7615 Address AP(Builder.CreateLoad(VAListAddr), SlotSize); 7616 7617 // Handle the argument. 7618 ABIArgInfo AI = classifyArgumentType(Ty); 7619 CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty); 7620 llvm::Type *ArgTy = CGT.ConvertType(Ty); 7621 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 7622 AI.setCoerceToType(ArgTy); 7623 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 7624 7625 Address Val = Address::invalid(); 7626 CharUnits ArgSize = CharUnits::Zero(); 7627 switch (AI.getKind()) { 7628 case ABIArgInfo::Expand: 7629 case ABIArgInfo::CoerceAndExpand: 7630 case ABIArgInfo::InAlloca: 7631 llvm_unreachable("Unsupported ABI kind for va_arg"); 7632 case ABIArgInfo::Ignore: 7633 Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign); 7634 ArgSize = CharUnits::Zero(); 7635 break; 7636 case ABIArgInfo::Extend: 7637 case ABIArgInfo::Direct: 7638 Val = Builder.CreateBitCast(AP, ArgPtrTy); 7639 ArgSize = CharUnits::fromQuantity( 7640 getDataLayout().getTypeAllocSize(AI.getCoerceToType())); 7641 ArgSize = ArgSize.alignTo(SlotSize); 7642 break; 7643 case ABIArgInfo::Indirect: 7644 Val = Builder.CreateElementBitCast(AP, ArgPtrTy); 7645 Val = Address(Builder.CreateLoad(Val), TypeAlign); 7646 ArgSize = SlotSize; 7647 break; 7648 } 7649 7650 // Increment the VAList. 7651 if (!ArgSize.isZero()) { 7652 llvm::Value *APN = 7653 Builder.CreateConstInBoundsByteGEP(AP.getPointer(), ArgSize); 7654 Builder.CreateStore(APN, VAListAddr); 7655 } 7656 7657 return Val; 7658 } 7659 7660 /// During the expansion of a RecordType, an incomplete TypeString is placed 7661 /// into the cache as a means to identify and break recursion. 7662 /// If there is a Recursive encoding in the cache, it is swapped out and will 7663 /// be reinserted by removeIncomplete(). 7664 /// All other types of encoding should have been used rather than arriving here. 7665 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 7666 std::string StubEnc) { 7667 if (!ID) 7668 return; 7669 Entry &E = Map[ID]; 7670 assert( (E.Str.empty() || E.State == Recursive) && 7671 "Incorrectly use of addIncomplete"); 7672 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 7673 E.Swapped.swap(E.Str); // swap out the Recursive 7674 E.Str.swap(StubEnc); 7675 E.State = Incomplete; 7676 ++IncompleteCount; 7677 } 7678 7679 /// Once the RecordType has been expanded, the temporary incomplete TypeString 7680 /// must be removed from the cache. 7681 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 7682 /// Returns true if the RecordType was defined recursively. 7683 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 7684 if (!ID) 7685 return false; 7686 auto I = Map.find(ID); 7687 assert(I != Map.end() && "Entry not present"); 7688 Entry &E = I->second; 7689 assert( (E.State == Incomplete || 7690 E.State == IncompleteUsed) && 7691 "Entry must be an incomplete type"); 7692 bool IsRecursive = false; 7693 if (E.State == IncompleteUsed) { 7694 // We made use of our Incomplete encoding, thus we are recursive. 7695 IsRecursive = true; 7696 --IncompleteUsedCount; 7697 } 7698 if (E.Swapped.empty()) 7699 Map.erase(I); 7700 else { 7701 // Swap the Recursive back. 7702 E.Swapped.swap(E.Str); 7703 E.Swapped.clear(); 7704 E.State = Recursive; 7705 } 7706 --IncompleteCount; 7707 return IsRecursive; 7708 } 7709 7710 /// Add the encoded TypeString to the cache only if it is NonRecursive or 7711 /// Recursive (viz: all sub-members were expanded as fully as possible). 7712 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 7713 bool IsRecursive) { 7714 if (!ID || IncompleteUsedCount) 7715 return; // No key or it is is an incomplete sub-type so don't add. 7716 Entry &E = Map[ID]; 7717 if (IsRecursive && !E.Str.empty()) { 7718 assert(E.State==Recursive && E.Str.size() == Str.size() && 7719 "This is not the same Recursive entry"); 7720 // The parent container was not recursive after all, so we could have used 7721 // this Recursive sub-member entry after all, but we assumed the worse when 7722 // we started viz: IncompleteCount!=0. 7723 return; 7724 } 7725 assert(E.Str.empty() && "Entry already present"); 7726 E.Str = Str.str(); 7727 E.State = IsRecursive? Recursive : NonRecursive; 7728 } 7729 7730 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 7731 /// are recursively expanding a type (IncompleteCount != 0) and the cached 7732 /// encoding is Recursive, return an empty StringRef. 7733 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 7734 if (!ID) 7735 return StringRef(); // We have no key. 7736 auto I = Map.find(ID); 7737 if (I == Map.end()) 7738 return StringRef(); // We have no encoding. 7739 Entry &E = I->second; 7740 if (E.State == Recursive && IncompleteCount) 7741 return StringRef(); // We don't use Recursive encodings for member types. 7742 7743 if (E.State == Incomplete) { 7744 // The incomplete type is being used to break out of recursion. 7745 E.State = IncompleteUsed; 7746 ++IncompleteUsedCount; 7747 } 7748 return E.Str; 7749 } 7750 7751 /// The XCore ABI includes a type information section that communicates symbol 7752 /// type information to the linker. The linker uses this information to verify 7753 /// safety/correctness of things such as array bound and pointers et al. 7754 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 7755 /// This type information (TypeString) is emitted into meta data for all global 7756 /// symbols: definitions, declarations, functions & variables. 7757 /// 7758 /// The TypeString carries type, qualifier, name, size & value details. 7759 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 7760 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf 7761 /// The output is tested by test/CodeGen/xcore-stringtype.c. 7762 /// 7763 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 7764 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC); 7765 7766 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 7767 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 7768 CodeGen::CodeGenModule &CGM) const { 7769 SmallStringEnc Enc; 7770 if (getTypeString(Enc, D, CGM, TSC)) { 7771 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 7772 llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV), 7773 llvm::MDString::get(Ctx, Enc.str())}; 7774 llvm::NamedMDNode *MD = 7775 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 7776 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 7777 } 7778 } 7779 7780 //===----------------------------------------------------------------------===// 7781 // SPIR ABI Implementation 7782 //===----------------------------------------------------------------------===// 7783 7784 namespace { 7785 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo { 7786 public: 7787 SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 7788 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 7789 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 7790 CodeGen::CodeGenModule &M) const override; 7791 unsigned getOpenCLKernelCallingConv() const override; 7792 }; 7793 } // End anonymous namespace. 7794 7795 /// Emit SPIR specific metadata: OpenCL and SPIR version. 7796 void SPIRTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 7797 CodeGen::CodeGenModule &CGM) const { 7798 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 7799 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(Ctx); 7800 llvm::Module &M = CGM.getModule(); 7801 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 7802 // opencl.spir.version named metadata. 7803 llvm::Metadata *SPIRVerElts[] = { 7804 llvm::ConstantAsMetadata::get( 7805 llvm::ConstantInt::get(Int32Ty, CGM.getLangOpts().OpenCLVersion / 100)), 7806 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 7807 Int32Ty, (CGM.getLangOpts().OpenCLVersion / 100 > 1) ? 0 : 2))}; 7808 llvm::NamedMDNode *SPIRVerMD = 7809 M.getOrInsertNamedMetadata("opencl.spir.version"); 7810 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 7811 appendOpenCLVersionMD(CGM); 7812 } 7813 7814 static void appendOpenCLVersionMD(CodeGen::CodeGenModule &CGM) { 7815 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 7816 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(Ctx); 7817 llvm::Module &M = CGM.getModule(); 7818 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 7819 // opencl.ocl.version named metadata node. 7820 llvm::Metadata *OCLVerElts[] = { 7821 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 7822 Int32Ty, CGM.getLangOpts().OpenCLVersion / 100)), 7823 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 7824 Int32Ty, (CGM.getLangOpts().OpenCLVersion % 100) / 10))}; 7825 llvm::NamedMDNode *OCLVerMD = 7826 M.getOrInsertNamedMetadata("opencl.ocl.version"); 7827 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 7828 } 7829 7830 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 7831 return llvm::CallingConv::SPIR_KERNEL; 7832 } 7833 7834 static bool appendType(SmallStringEnc &Enc, QualType QType, 7835 const CodeGen::CodeGenModule &CGM, 7836 TypeStringCache &TSC); 7837 7838 /// Helper function for appendRecordType(). 7839 /// Builds a SmallVector containing the encoded field types in declaration 7840 /// order. 7841 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 7842 const RecordDecl *RD, 7843 const CodeGen::CodeGenModule &CGM, 7844 TypeStringCache &TSC) { 7845 for (const auto *Field : RD->fields()) { 7846 SmallStringEnc Enc; 7847 Enc += "m("; 7848 Enc += Field->getName(); 7849 Enc += "){"; 7850 if (Field->isBitField()) { 7851 Enc += "b("; 7852 llvm::raw_svector_ostream OS(Enc); 7853 OS << Field->getBitWidthValue(CGM.getContext()); 7854 Enc += ':'; 7855 } 7856 if (!appendType(Enc, Field->getType(), CGM, TSC)) 7857 return false; 7858 if (Field->isBitField()) 7859 Enc += ')'; 7860 Enc += '}'; 7861 FE.emplace_back(!Field->getName().empty(), Enc); 7862 } 7863 return true; 7864 } 7865 7866 /// Appends structure and union types to Enc and adds encoding to cache. 7867 /// Recursively calls appendType (via extractFieldType) for each field. 7868 /// Union types have their fields ordered according to the ABI. 7869 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 7870 const CodeGen::CodeGenModule &CGM, 7871 TypeStringCache &TSC, const IdentifierInfo *ID) { 7872 // Append the cached TypeString if we have one. 7873 StringRef TypeString = TSC.lookupStr(ID); 7874 if (!TypeString.empty()) { 7875 Enc += TypeString; 7876 return true; 7877 } 7878 7879 // Start to emit an incomplete TypeString. 7880 size_t Start = Enc.size(); 7881 Enc += (RT->isUnionType()? 'u' : 's'); 7882 Enc += '('; 7883 if (ID) 7884 Enc += ID->getName(); 7885 Enc += "){"; 7886 7887 // We collect all encoded fields and order as necessary. 7888 bool IsRecursive = false; 7889 const RecordDecl *RD = RT->getDecl()->getDefinition(); 7890 if (RD && !RD->field_empty()) { 7891 // An incomplete TypeString stub is placed in the cache for this RecordType 7892 // so that recursive calls to this RecordType will use it whilst building a 7893 // complete TypeString for this RecordType. 7894 SmallVector<FieldEncoding, 16> FE; 7895 std::string StubEnc(Enc.substr(Start).str()); 7896 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 7897 TSC.addIncomplete(ID, std::move(StubEnc)); 7898 if (!extractFieldType(FE, RD, CGM, TSC)) { 7899 (void) TSC.removeIncomplete(ID); 7900 return false; 7901 } 7902 IsRecursive = TSC.removeIncomplete(ID); 7903 // The ABI requires unions to be sorted but not structures. 7904 // See FieldEncoding::operator< for sort algorithm. 7905 if (RT->isUnionType()) 7906 std::sort(FE.begin(), FE.end()); 7907 // We can now complete the TypeString. 7908 unsigned E = FE.size(); 7909 for (unsigned I = 0; I != E; ++I) { 7910 if (I) 7911 Enc += ','; 7912 Enc += FE[I].str(); 7913 } 7914 } 7915 Enc += '}'; 7916 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 7917 return true; 7918 } 7919 7920 /// Appends enum types to Enc and adds the encoding to the cache. 7921 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 7922 TypeStringCache &TSC, 7923 const IdentifierInfo *ID) { 7924 // Append the cached TypeString if we have one. 7925 StringRef TypeString = TSC.lookupStr(ID); 7926 if (!TypeString.empty()) { 7927 Enc += TypeString; 7928 return true; 7929 } 7930 7931 size_t Start = Enc.size(); 7932 Enc += "e("; 7933 if (ID) 7934 Enc += ID->getName(); 7935 Enc += "){"; 7936 7937 // We collect all encoded enumerations and order them alphanumerically. 7938 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 7939 SmallVector<FieldEncoding, 16> FE; 7940 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 7941 ++I) { 7942 SmallStringEnc EnumEnc; 7943 EnumEnc += "m("; 7944 EnumEnc += I->getName(); 7945 EnumEnc += "){"; 7946 I->getInitVal().toString(EnumEnc); 7947 EnumEnc += '}'; 7948 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 7949 } 7950 std::sort(FE.begin(), FE.end()); 7951 unsigned E = FE.size(); 7952 for (unsigned I = 0; I != E; ++I) { 7953 if (I) 7954 Enc += ','; 7955 Enc += FE[I].str(); 7956 } 7957 } 7958 Enc += '}'; 7959 TSC.addIfComplete(ID, Enc.substr(Start), false); 7960 return true; 7961 } 7962 7963 /// Appends type's qualifier to Enc. 7964 /// This is done prior to appending the type's encoding. 7965 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 7966 // Qualifiers are emitted in alphabetical order. 7967 static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 7968 int Lookup = 0; 7969 if (QT.isConstQualified()) 7970 Lookup += 1<<0; 7971 if (QT.isRestrictQualified()) 7972 Lookup += 1<<1; 7973 if (QT.isVolatileQualified()) 7974 Lookup += 1<<2; 7975 Enc += Table[Lookup]; 7976 } 7977 7978 /// Appends built-in types to Enc. 7979 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 7980 const char *EncType; 7981 switch (BT->getKind()) { 7982 case BuiltinType::Void: 7983 EncType = "0"; 7984 break; 7985 case BuiltinType::Bool: 7986 EncType = "b"; 7987 break; 7988 case BuiltinType::Char_U: 7989 EncType = "uc"; 7990 break; 7991 case BuiltinType::UChar: 7992 EncType = "uc"; 7993 break; 7994 case BuiltinType::SChar: 7995 EncType = "sc"; 7996 break; 7997 case BuiltinType::UShort: 7998 EncType = "us"; 7999 break; 8000 case BuiltinType::Short: 8001 EncType = "ss"; 8002 break; 8003 case BuiltinType::UInt: 8004 EncType = "ui"; 8005 break; 8006 case BuiltinType::Int: 8007 EncType = "si"; 8008 break; 8009 case BuiltinType::ULong: 8010 EncType = "ul"; 8011 break; 8012 case BuiltinType::Long: 8013 EncType = "sl"; 8014 break; 8015 case BuiltinType::ULongLong: 8016 EncType = "ull"; 8017 break; 8018 case BuiltinType::LongLong: 8019 EncType = "sll"; 8020 break; 8021 case BuiltinType::Float: 8022 EncType = "ft"; 8023 break; 8024 case BuiltinType::Double: 8025 EncType = "d"; 8026 break; 8027 case BuiltinType::LongDouble: 8028 EncType = "ld"; 8029 break; 8030 default: 8031 return false; 8032 } 8033 Enc += EncType; 8034 return true; 8035 } 8036 8037 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 8038 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 8039 const CodeGen::CodeGenModule &CGM, 8040 TypeStringCache &TSC) { 8041 Enc += "p("; 8042 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 8043 return false; 8044 Enc += ')'; 8045 return true; 8046 } 8047 8048 /// Appends array encoding to Enc before calling appendType for the element. 8049 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 8050 const ArrayType *AT, 8051 const CodeGen::CodeGenModule &CGM, 8052 TypeStringCache &TSC, StringRef NoSizeEnc) { 8053 if (AT->getSizeModifier() != ArrayType::Normal) 8054 return false; 8055 Enc += "a("; 8056 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 8057 CAT->getSize().toStringUnsigned(Enc); 8058 else 8059 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 8060 Enc += ':'; 8061 // The Qualifiers should be attached to the type rather than the array. 8062 appendQualifier(Enc, QT); 8063 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 8064 return false; 8065 Enc += ')'; 8066 return true; 8067 } 8068 8069 /// Appends a function encoding to Enc, calling appendType for the return type 8070 /// and the arguments. 8071 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 8072 const CodeGen::CodeGenModule &CGM, 8073 TypeStringCache &TSC) { 8074 Enc += "f{"; 8075 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 8076 return false; 8077 Enc += "}("; 8078 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 8079 // N.B. we are only interested in the adjusted param types. 8080 auto I = FPT->param_type_begin(); 8081 auto E = FPT->param_type_end(); 8082 if (I != E) { 8083 do { 8084 if (!appendType(Enc, *I, CGM, TSC)) 8085 return false; 8086 ++I; 8087 if (I != E) 8088 Enc += ','; 8089 } while (I != E); 8090 if (FPT->isVariadic()) 8091 Enc += ",va"; 8092 } else { 8093 if (FPT->isVariadic()) 8094 Enc += "va"; 8095 else 8096 Enc += '0'; 8097 } 8098 } 8099 Enc += ')'; 8100 return true; 8101 } 8102 8103 /// Handles the type's qualifier before dispatching a call to handle specific 8104 /// type encodings. 8105 static bool appendType(SmallStringEnc &Enc, QualType QType, 8106 const CodeGen::CodeGenModule &CGM, 8107 TypeStringCache &TSC) { 8108 8109 QualType QT = QType.getCanonicalType(); 8110 8111 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 8112 // The Qualifiers should be attached to the type rather than the array. 8113 // Thus we don't call appendQualifier() here. 8114 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 8115 8116 appendQualifier(Enc, QT); 8117 8118 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 8119 return appendBuiltinType(Enc, BT); 8120 8121 if (const PointerType *PT = QT->getAs<PointerType>()) 8122 return appendPointerType(Enc, PT, CGM, TSC); 8123 8124 if (const EnumType *ET = QT->getAs<EnumType>()) 8125 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 8126 8127 if (const RecordType *RT = QT->getAsStructureType()) 8128 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 8129 8130 if (const RecordType *RT = QT->getAsUnionType()) 8131 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 8132 8133 if (const FunctionType *FT = QT->getAs<FunctionType>()) 8134 return appendFunctionType(Enc, FT, CGM, TSC); 8135 8136 return false; 8137 } 8138 8139 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 8140 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) { 8141 if (!D) 8142 return false; 8143 8144 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 8145 if (FD->getLanguageLinkage() != CLanguageLinkage) 8146 return false; 8147 return appendType(Enc, FD->getType(), CGM, TSC); 8148 } 8149 8150 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 8151 if (VD->getLanguageLinkage() != CLanguageLinkage) 8152 return false; 8153 QualType QT = VD->getType().getCanonicalType(); 8154 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 8155 // Global ArrayTypes are given a size of '*' if the size is unknown. 8156 // The Qualifiers should be attached to the type rather than the array. 8157 // Thus we don't call appendQualifier() here. 8158 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 8159 } 8160 return appendType(Enc, QT, CGM, TSC); 8161 } 8162 return false; 8163 } 8164 8165 8166 //===----------------------------------------------------------------------===// 8167 // Driver code 8168 //===----------------------------------------------------------------------===// 8169 8170 bool CodeGenModule::supportsCOMDAT() const { 8171 return getTriple().supportsCOMDAT(); 8172 } 8173 8174 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 8175 if (TheTargetCodeGenInfo) 8176 return *TheTargetCodeGenInfo; 8177 8178 // Helper to set the unique_ptr while still keeping the return value. 8179 auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & { 8180 this->TheTargetCodeGenInfo.reset(P); 8181 return *P; 8182 }; 8183 8184 const llvm::Triple &Triple = getTarget().getTriple(); 8185 switch (Triple.getArch()) { 8186 default: 8187 return SetCGInfo(new DefaultTargetCodeGenInfo(Types)); 8188 8189 case llvm::Triple::le32: 8190 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 8191 case llvm::Triple::mips: 8192 case llvm::Triple::mipsel: 8193 if (Triple.getOS() == llvm::Triple::NaCl) 8194 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 8195 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true)); 8196 8197 case llvm::Triple::mips64: 8198 case llvm::Triple::mips64el: 8199 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false)); 8200 8201 case llvm::Triple::aarch64: 8202 case llvm::Triple::aarch64_be: { 8203 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 8204 if (getTarget().getABI() == "darwinpcs") 8205 Kind = AArch64ABIInfo::DarwinPCS; 8206 8207 return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind)); 8208 } 8209 8210 case llvm::Triple::wasm32: 8211 case llvm::Triple::wasm64: 8212 return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types)); 8213 8214 case llvm::Triple::arm: 8215 case llvm::Triple::armeb: 8216 case llvm::Triple::thumb: 8217 case llvm::Triple::thumbeb: { 8218 if (Triple.getOS() == llvm::Triple::Win32) { 8219 return SetCGInfo( 8220 new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP)); 8221 } 8222 8223 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 8224 StringRef ABIStr = getTarget().getABI(); 8225 if (ABIStr == "apcs-gnu") 8226 Kind = ARMABIInfo::APCS; 8227 else if (ABIStr == "aapcs16") 8228 Kind = ARMABIInfo::AAPCS16_VFP; 8229 else if (CodeGenOpts.FloatABI == "hard" || 8230 (CodeGenOpts.FloatABI != "soft" && 8231 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 8232 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 8233 Triple.getEnvironment() == llvm::Triple::EABIHF))) 8234 Kind = ARMABIInfo::AAPCS_VFP; 8235 8236 return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind)); 8237 } 8238 8239 case llvm::Triple::ppc: 8240 return SetCGInfo( 8241 new PPC32TargetCodeGenInfo(Types, CodeGenOpts.FloatABI == "soft")); 8242 case llvm::Triple::ppc64: 8243 if (Triple.isOSBinFormatELF()) { 8244 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 8245 if (getTarget().getABI() == "elfv2") 8246 Kind = PPC64_SVR4_ABIInfo::ELFv2; 8247 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 8248 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 8249 8250 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 8251 IsSoftFloat)); 8252 } else 8253 return SetCGInfo(new PPC64TargetCodeGenInfo(Types)); 8254 case llvm::Triple::ppc64le: { 8255 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 8256 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 8257 if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx") 8258 Kind = PPC64_SVR4_ABIInfo::ELFv1; 8259 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 8260 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 8261 8262 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 8263 IsSoftFloat)); 8264 } 8265 8266 case llvm::Triple::nvptx: 8267 case llvm::Triple::nvptx64: 8268 return SetCGInfo(new NVPTXTargetCodeGenInfo(Types)); 8269 8270 case llvm::Triple::msp430: 8271 return SetCGInfo(new MSP430TargetCodeGenInfo(Types)); 8272 8273 case llvm::Triple::systemz: { 8274 bool HasVector = getTarget().getABI() == "vector"; 8275 return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector)); 8276 } 8277 8278 case llvm::Triple::tce: 8279 case llvm::Triple::tcele: 8280 return SetCGInfo(new TCETargetCodeGenInfo(Types)); 8281 8282 case llvm::Triple::x86: { 8283 bool IsDarwinVectorABI = Triple.isOSDarwin(); 8284 bool RetSmallStructInRegABI = 8285 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 8286 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 8287 8288 if (Triple.getOS() == llvm::Triple::Win32) { 8289 return SetCGInfo(new WinX86_32TargetCodeGenInfo( 8290 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 8291 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); 8292 } else { 8293 return SetCGInfo(new X86_32TargetCodeGenInfo( 8294 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 8295 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters, 8296 CodeGenOpts.FloatABI == "soft")); 8297 } 8298 } 8299 8300 case llvm::Triple::x86_64: { 8301 StringRef ABI = getTarget().getABI(); 8302 X86AVXABILevel AVXLevel = 8303 (ABI == "avx512" 8304 ? X86AVXABILevel::AVX512 8305 : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None); 8306 8307 switch (Triple.getOS()) { 8308 case llvm::Triple::Win32: 8309 return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel)); 8310 case llvm::Triple::PS4: 8311 return SetCGInfo(new PS4TargetCodeGenInfo(Types, AVXLevel)); 8312 default: 8313 return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel)); 8314 } 8315 } 8316 case llvm::Triple::hexagon: 8317 return SetCGInfo(new HexagonTargetCodeGenInfo(Types)); 8318 case llvm::Triple::lanai: 8319 return SetCGInfo(new LanaiTargetCodeGenInfo(Types)); 8320 case llvm::Triple::r600: 8321 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 8322 case llvm::Triple::amdgcn: 8323 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 8324 case llvm::Triple::sparc: 8325 return SetCGInfo(new SparcV8TargetCodeGenInfo(Types)); 8326 case llvm::Triple::sparcv9: 8327 return SetCGInfo(new SparcV9TargetCodeGenInfo(Types)); 8328 case llvm::Triple::xcore: 8329 return SetCGInfo(new XCoreTargetCodeGenInfo(Types)); 8330 case llvm::Triple::spir: 8331 case llvm::Triple::spir64: 8332 return SetCGInfo(new SPIRTargetCodeGenInfo(Types)); 8333 } 8334 } 8335