1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "TargetInfo.h"
16 #include "ABIInfo.h"
17 #include "CGCXXABI.h"
18 #include "CGValue.h"
19 #include "CodeGenFunction.h"
20 #include "clang/AST/RecordLayout.h"
21 #include "clang/CodeGen/CGFunctionInfo.h"
22 #include "clang/CodeGen/SwiftCallingConv.h"
23 #include "clang/Frontend/CodeGenOptions.h"
24 #include "llvm/ADT/StringExtras.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/Type.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include <algorithm>    // std::sort
30 
31 using namespace clang;
32 using namespace CodeGen;
33 
34 // Helper for coercing an aggregate argument or return value into an integer
35 // array of the same size (including padding) and alignment.  This alternate
36 // coercion happens only for the RenderScript ABI and can be removed after
37 // runtimes that rely on it are no longer supported.
38 //
39 // RenderScript assumes that the size of the argument / return value in the IR
40 // is the same as the size of the corresponding qualified type. This helper
41 // coerces the aggregate type into an array of the same size (including
42 // padding).  This coercion is used in lieu of expansion of struct members or
43 // other canonical coercions that return a coerced-type of larger size.
44 //
45 // Ty          - The argument / return value type
46 // Context     - The associated ASTContext
47 // LLVMContext - The associated LLVMContext
48 static ABIArgInfo coerceToIntArray(QualType Ty,
49                                    ASTContext &Context,
50                                    llvm::LLVMContext &LLVMContext) {
51   // Alignment and Size are measured in bits.
52   const uint64_t Size = Context.getTypeSize(Ty);
53   const uint64_t Alignment = Context.getTypeAlign(Ty);
54   llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment);
55   const uint64_t NumElements = (Size + Alignment - 1) / Alignment;
56   return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
57 }
58 
59 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
60                                llvm::Value *Array,
61                                llvm::Value *Value,
62                                unsigned FirstIndex,
63                                unsigned LastIndex) {
64   // Alternatively, we could emit this as a loop in the source.
65   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
66     llvm::Value *Cell =
67         Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I);
68     Builder.CreateAlignedStore(Value, Cell, CharUnits::One());
69   }
70 }
71 
72 static bool isAggregateTypeForABI(QualType T) {
73   return !CodeGenFunction::hasScalarEvaluationKind(T) ||
74          T->isMemberFunctionPointerType();
75 }
76 
77 ABIArgInfo
78 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign,
79                                  llvm::Type *Padding) const {
80   return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty),
81                                  ByRef, Realign, Padding);
82 }
83 
84 ABIArgInfo
85 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const {
86   return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty),
87                                       /*ByRef*/ false, Realign);
88 }
89 
90 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
91                              QualType Ty) const {
92   return Address::invalid();
93 }
94 
95 ABIInfo::~ABIInfo() {}
96 
97 /// Does the given lowering require more than the given number of
98 /// registers when expanded?
99 ///
100 /// This is intended to be the basis of a reasonable basic implementation
101 /// of should{Pass,Return}IndirectlyForSwift.
102 ///
103 /// For most targets, a limit of four total registers is reasonable; this
104 /// limits the amount of code required in order to move around the value
105 /// in case it wasn't produced immediately prior to the call by the caller
106 /// (or wasn't produced in exactly the right registers) or isn't used
107 /// immediately within the callee.  But some targets may need to further
108 /// limit the register count due to an inability to support that many
109 /// return registers.
110 static bool occupiesMoreThan(CodeGenTypes &cgt,
111                              ArrayRef<llvm::Type*> scalarTypes,
112                              unsigned maxAllRegisters) {
113   unsigned intCount = 0, fpCount = 0;
114   for (llvm::Type *type : scalarTypes) {
115     if (type->isPointerTy()) {
116       intCount++;
117     } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) {
118       auto ptrWidth = cgt.getTarget().getPointerWidth(0);
119       intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth;
120     } else {
121       assert(type->isVectorTy() || type->isFloatingPointTy());
122       fpCount++;
123     }
124   }
125 
126   return (intCount + fpCount > maxAllRegisters);
127 }
128 
129 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
130                                              llvm::Type *eltTy,
131                                              unsigned numElts) const {
132   // The default implementation of this assumes that the target guarantees
133   // 128-bit SIMD support but nothing more.
134   return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16);
135 }
136 
137 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
138                                               CGCXXABI &CXXABI) {
139   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
140   if (!RD)
141     return CGCXXABI::RAA_Default;
142   return CXXABI.getRecordArgABI(RD);
143 }
144 
145 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
146                                               CGCXXABI &CXXABI) {
147   const RecordType *RT = T->getAs<RecordType>();
148   if (!RT)
149     return CGCXXABI::RAA_Default;
150   return getRecordArgABI(RT, CXXABI);
151 }
152 
153 /// Pass transparent unions as if they were the type of the first element. Sema
154 /// should ensure that all elements of the union have the same "machine type".
155 static QualType useFirstFieldIfTransparentUnion(QualType Ty) {
156   if (const RecordType *UT = Ty->getAsUnionType()) {
157     const RecordDecl *UD = UT->getDecl();
158     if (UD->hasAttr<TransparentUnionAttr>()) {
159       assert(!UD->field_empty() && "sema created an empty transparent union");
160       return UD->field_begin()->getType();
161     }
162   }
163   return Ty;
164 }
165 
166 CGCXXABI &ABIInfo::getCXXABI() const {
167   return CGT.getCXXABI();
168 }
169 
170 ASTContext &ABIInfo::getContext() const {
171   return CGT.getContext();
172 }
173 
174 llvm::LLVMContext &ABIInfo::getVMContext() const {
175   return CGT.getLLVMContext();
176 }
177 
178 const llvm::DataLayout &ABIInfo::getDataLayout() const {
179   return CGT.getDataLayout();
180 }
181 
182 const TargetInfo &ABIInfo::getTarget() const {
183   return CGT.getTarget();
184 }
185 
186 bool ABIInfo:: isAndroid() const { return getTarget().getTriple().isAndroid(); }
187 
188 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
189   return false;
190 }
191 
192 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
193                                                 uint64_t Members) const {
194   return false;
195 }
196 
197 bool ABIInfo::shouldSignExtUnsignedType(QualType Ty) const {
198   return false;
199 }
200 
201 LLVM_DUMP_METHOD void ABIArgInfo::dump() const {
202   raw_ostream &OS = llvm::errs();
203   OS << "(ABIArgInfo Kind=";
204   switch (TheKind) {
205   case Direct:
206     OS << "Direct Type=";
207     if (llvm::Type *Ty = getCoerceToType())
208       Ty->print(OS);
209     else
210       OS << "null";
211     break;
212   case Extend:
213     OS << "Extend";
214     break;
215   case Ignore:
216     OS << "Ignore";
217     break;
218   case InAlloca:
219     OS << "InAlloca Offset=" << getInAllocaFieldIndex();
220     break;
221   case Indirect:
222     OS << "Indirect Align=" << getIndirectAlign().getQuantity()
223        << " ByVal=" << getIndirectByVal()
224        << " Realign=" << getIndirectRealign();
225     break;
226   case Expand:
227     OS << "Expand";
228     break;
229   case CoerceAndExpand:
230     OS << "CoerceAndExpand Type=";
231     getCoerceAndExpandType()->print(OS);
232     break;
233   }
234   OS << ")\n";
235 }
236 
237 // Dynamically round a pointer up to a multiple of the given alignment.
238 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF,
239                                                   llvm::Value *Ptr,
240                                                   CharUnits Align) {
241   llvm::Value *PtrAsInt = Ptr;
242   // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align;
243   PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy);
244   PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt,
245         llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1));
246   PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt,
247            llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity()));
248   PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt,
249                                         Ptr->getType(),
250                                         Ptr->getName() + ".aligned");
251   return PtrAsInt;
252 }
253 
254 /// Emit va_arg for a platform using the common void* representation,
255 /// where arguments are simply emitted in an array of slots on the stack.
256 ///
257 /// This version implements the core direct-value passing rules.
258 ///
259 /// \param SlotSize - The size and alignment of a stack slot.
260 ///   Each argument will be allocated to a multiple of this number of
261 ///   slots, and all the slots will be aligned to this value.
262 /// \param AllowHigherAlign - The slot alignment is not a cap;
263 ///   an argument type with an alignment greater than the slot size
264 ///   will be emitted on a higher-alignment address, potentially
265 ///   leaving one or more empty slots behind as padding.  If this
266 ///   is false, the returned address might be less-aligned than
267 ///   DirectAlign.
268 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF,
269                                       Address VAListAddr,
270                                       llvm::Type *DirectTy,
271                                       CharUnits DirectSize,
272                                       CharUnits DirectAlign,
273                                       CharUnits SlotSize,
274                                       bool AllowHigherAlign) {
275   // Cast the element type to i8* if necessary.  Some platforms define
276   // va_list as a struct containing an i8* instead of just an i8*.
277   if (VAListAddr.getElementType() != CGF.Int8PtrTy)
278     VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy);
279 
280   llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur");
281 
282   // If the CC aligns values higher than the slot size, do so if needed.
283   Address Addr = Address::invalid();
284   if (AllowHigherAlign && DirectAlign > SlotSize) {
285     Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign),
286                                                  DirectAlign);
287   } else {
288     Addr = Address(Ptr, SlotSize);
289   }
290 
291   // Advance the pointer past the argument, then store that back.
292   CharUnits FullDirectSize = DirectSize.alignTo(SlotSize);
293   llvm::Value *NextPtr =
294     CGF.Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), FullDirectSize,
295                                            "argp.next");
296   CGF.Builder.CreateStore(NextPtr, VAListAddr);
297 
298   // If the argument is smaller than a slot, and this is a big-endian
299   // target, the argument will be right-adjusted in its slot.
300   if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() &&
301       !DirectTy->isStructTy()) {
302     Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize);
303   }
304 
305   Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy);
306   return Addr;
307 }
308 
309 /// Emit va_arg for a platform using the common void* representation,
310 /// where arguments are simply emitted in an array of slots on the stack.
311 ///
312 /// \param IsIndirect - Values of this type are passed indirectly.
313 /// \param ValueInfo - The size and alignment of this type, generally
314 ///   computed with getContext().getTypeInfoInChars(ValueTy).
315 /// \param SlotSizeAndAlign - The size and alignment of a stack slot.
316 ///   Each argument will be allocated to a multiple of this number of
317 ///   slots, and all the slots will be aligned to this value.
318 /// \param AllowHigherAlign - The slot alignment is not a cap;
319 ///   an argument type with an alignment greater than the slot size
320 ///   will be emitted on a higher-alignment address, potentially
321 ///   leaving one or more empty slots behind as padding.
322 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr,
323                                 QualType ValueTy, bool IsIndirect,
324                                 std::pair<CharUnits, CharUnits> ValueInfo,
325                                 CharUnits SlotSizeAndAlign,
326                                 bool AllowHigherAlign) {
327   // The size and alignment of the value that was passed directly.
328   CharUnits DirectSize, DirectAlign;
329   if (IsIndirect) {
330     DirectSize = CGF.getPointerSize();
331     DirectAlign = CGF.getPointerAlign();
332   } else {
333     DirectSize = ValueInfo.first;
334     DirectAlign = ValueInfo.second;
335   }
336 
337   // Cast the address we've calculated to the right type.
338   llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy);
339   if (IsIndirect)
340     DirectTy = DirectTy->getPointerTo(0);
341 
342   Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy,
343                                         DirectSize, DirectAlign,
344                                         SlotSizeAndAlign,
345                                         AllowHigherAlign);
346 
347   if (IsIndirect) {
348     Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second);
349   }
350 
351   return Addr;
352 
353 }
354 
355 static Address emitMergePHI(CodeGenFunction &CGF,
356                             Address Addr1, llvm::BasicBlock *Block1,
357                             Address Addr2, llvm::BasicBlock *Block2,
358                             const llvm::Twine &Name = "") {
359   assert(Addr1.getType() == Addr2.getType());
360   llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name);
361   PHI->addIncoming(Addr1.getPointer(), Block1);
362   PHI->addIncoming(Addr2.getPointer(), Block2);
363   CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment());
364   return Address(PHI, Align);
365 }
366 
367 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
368 
369 // If someone can figure out a general rule for this, that would be great.
370 // It's probably just doomed to be platform-dependent, though.
371 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
372   // Verified for:
373   //   x86-64     FreeBSD, Linux, Darwin
374   //   x86-32     FreeBSD, Linux, Darwin
375   //   PowerPC    Linux, Darwin
376   //   ARM        Darwin (*not* EABI)
377   //   AArch64    Linux
378   return 32;
379 }
380 
381 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
382                                      const FunctionNoProtoType *fnType) const {
383   // The following conventions are known to require this to be false:
384   //   x86_stdcall
385   //   MIPS
386   // For everything else, we just prefer false unless we opt out.
387   return false;
388 }
389 
390 void
391 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
392                                              llvm::SmallString<24> &Opt) const {
393   // This assumes the user is passing a library name like "rt" instead of a
394   // filename like "librt.a/so", and that they don't care whether it's static or
395   // dynamic.
396   Opt = "-l";
397   Opt += Lib;
398 }
399 
400 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const {
401   return llvm::CallingConv::C;
402 }
403 
404 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
405 
406 /// isEmptyField - Return true iff a the field is "empty", that is it
407 /// is an unnamed bit-field or an (array of) empty record(s).
408 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
409                          bool AllowArrays) {
410   if (FD->isUnnamedBitfield())
411     return true;
412 
413   QualType FT = FD->getType();
414 
415   // Constant arrays of empty records count as empty, strip them off.
416   // Constant arrays of zero length always count as empty.
417   if (AllowArrays)
418     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
419       if (AT->getSize() == 0)
420         return true;
421       FT = AT->getElementType();
422     }
423 
424   const RecordType *RT = FT->getAs<RecordType>();
425   if (!RT)
426     return false;
427 
428   // C++ record fields are never empty, at least in the Itanium ABI.
429   //
430   // FIXME: We should use a predicate for whether this behavior is true in the
431   // current ABI.
432   if (isa<CXXRecordDecl>(RT->getDecl()))
433     return false;
434 
435   return isEmptyRecord(Context, FT, AllowArrays);
436 }
437 
438 /// isEmptyRecord - Return true iff a structure contains only empty
439 /// fields. Note that a structure with a flexible array member is not
440 /// considered empty.
441 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
442   const RecordType *RT = T->getAs<RecordType>();
443   if (!RT)
444     return false;
445   const RecordDecl *RD = RT->getDecl();
446   if (RD->hasFlexibleArrayMember())
447     return false;
448 
449   // If this is a C++ record, check the bases first.
450   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
451     for (const auto &I : CXXRD->bases())
452       if (!isEmptyRecord(Context, I.getType(), true))
453         return false;
454 
455   for (const auto *I : RD->fields())
456     if (!isEmptyField(Context, I, AllowArrays))
457       return false;
458   return true;
459 }
460 
461 /// isSingleElementStruct - Determine if a structure is a "single
462 /// element struct", i.e. it has exactly one non-empty field or
463 /// exactly one field which is itself a single element
464 /// struct. Structures with flexible array members are never
465 /// considered single element structs.
466 ///
467 /// \return The field declaration for the single non-empty field, if
468 /// it exists.
469 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
470   const RecordType *RT = T->getAs<RecordType>();
471   if (!RT)
472     return nullptr;
473 
474   const RecordDecl *RD = RT->getDecl();
475   if (RD->hasFlexibleArrayMember())
476     return nullptr;
477 
478   const Type *Found = nullptr;
479 
480   // If this is a C++ record, check the bases first.
481   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
482     for (const auto &I : CXXRD->bases()) {
483       // Ignore empty records.
484       if (isEmptyRecord(Context, I.getType(), true))
485         continue;
486 
487       // If we already found an element then this isn't a single-element struct.
488       if (Found)
489         return nullptr;
490 
491       // If this is non-empty and not a single element struct, the composite
492       // cannot be a single element struct.
493       Found = isSingleElementStruct(I.getType(), Context);
494       if (!Found)
495         return nullptr;
496     }
497   }
498 
499   // Check for single element.
500   for (const auto *FD : RD->fields()) {
501     QualType FT = FD->getType();
502 
503     // Ignore empty fields.
504     if (isEmptyField(Context, FD, true))
505       continue;
506 
507     // If we already found an element then this isn't a single-element
508     // struct.
509     if (Found)
510       return nullptr;
511 
512     // Treat single element arrays as the element.
513     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
514       if (AT->getSize().getZExtValue() != 1)
515         break;
516       FT = AT->getElementType();
517     }
518 
519     if (!isAggregateTypeForABI(FT)) {
520       Found = FT.getTypePtr();
521     } else {
522       Found = isSingleElementStruct(FT, Context);
523       if (!Found)
524         return nullptr;
525     }
526   }
527 
528   // We don't consider a struct a single-element struct if it has
529   // padding beyond the element type.
530   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
531     return nullptr;
532 
533   return Found;
534 }
535 
536 namespace {
537 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
538                        const ABIArgInfo &AI) {
539   // This default implementation defers to the llvm backend's va_arg
540   // instruction. It can handle only passing arguments directly
541   // (typically only handled in the backend for primitive types), or
542   // aggregates passed indirectly by pointer (NOTE: if the "byval"
543   // flag has ABI impact in the callee, this implementation cannot
544   // work.)
545 
546   // Only a few cases are covered here at the moment -- those needed
547   // by the default abi.
548   llvm::Value *Val;
549 
550   if (AI.isIndirect()) {
551     assert(!AI.getPaddingType() &&
552            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
553     assert(
554         !AI.getIndirectRealign() &&
555         "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!");
556 
557     auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty);
558     CharUnits TyAlignForABI = TyInfo.second;
559 
560     llvm::Type *BaseTy =
561         llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
562     llvm::Value *Addr =
563         CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy);
564     return Address(Addr, TyAlignForABI);
565   } else {
566     assert((AI.isDirect() || AI.isExtend()) &&
567            "Unexpected ArgInfo Kind in generic VAArg emitter!");
568 
569     assert(!AI.getInReg() &&
570            "Unexpected InReg seen in arginfo in generic VAArg emitter!");
571     assert(!AI.getPaddingType() &&
572            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
573     assert(!AI.getDirectOffset() &&
574            "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!");
575     assert(!AI.getCoerceToType() &&
576            "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!");
577 
578     Address Temp = CGF.CreateMemTemp(Ty, "varet");
579     Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty));
580     CGF.Builder.CreateStore(Val, Temp);
581     return Temp;
582   }
583 }
584 
585 /// DefaultABIInfo - The default implementation for ABI specific
586 /// details. This implementation provides information which results in
587 /// self-consistent and sensible LLVM IR generation, but does not
588 /// conform to any particular ABI.
589 class DefaultABIInfo : public ABIInfo {
590 public:
591   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
592 
593   ABIArgInfo classifyReturnType(QualType RetTy) const;
594   ABIArgInfo classifyArgumentType(QualType RetTy) const;
595 
596   void computeInfo(CGFunctionInfo &FI) const override {
597     if (!getCXXABI().classifyReturnType(FI))
598       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
599     for (auto &I : FI.arguments())
600       I.info = classifyArgumentType(I.type);
601   }
602 
603   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
604                     QualType Ty) const override {
605     return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty));
606   }
607 };
608 
609 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
610 public:
611   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
612     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
613 };
614 
615 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
616   Ty = useFirstFieldIfTransparentUnion(Ty);
617 
618   if (isAggregateTypeForABI(Ty)) {
619     // Records with non-trivial destructors/copy-constructors should not be
620     // passed by value.
621     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
622       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
623 
624     return getNaturalAlignIndirect(Ty);
625   }
626 
627   // Treat an enum type as its underlying type.
628   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
629     Ty = EnumTy->getDecl()->getIntegerType();
630 
631   return (Ty->isPromotableIntegerType() ?
632           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
633 }
634 
635 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
636   if (RetTy->isVoidType())
637     return ABIArgInfo::getIgnore();
638 
639   if (isAggregateTypeForABI(RetTy))
640     return getNaturalAlignIndirect(RetTy);
641 
642   // Treat an enum type as its underlying type.
643   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
644     RetTy = EnumTy->getDecl()->getIntegerType();
645 
646   return (RetTy->isPromotableIntegerType() ?
647           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
648 }
649 
650 //===----------------------------------------------------------------------===//
651 // WebAssembly ABI Implementation
652 //
653 // This is a very simple ABI that relies a lot on DefaultABIInfo.
654 //===----------------------------------------------------------------------===//
655 
656 class WebAssemblyABIInfo final : public DefaultABIInfo {
657 public:
658   explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT)
659       : DefaultABIInfo(CGT) {}
660 
661 private:
662   ABIArgInfo classifyReturnType(QualType RetTy) const;
663   ABIArgInfo classifyArgumentType(QualType Ty) const;
664 
665   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
666   // non-virtual, but computeInfo and EmitVAArg are virtual, so we
667   // overload them.
668   void computeInfo(CGFunctionInfo &FI) const override {
669     if (!getCXXABI().classifyReturnType(FI))
670       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
671     for (auto &Arg : FI.arguments())
672       Arg.info = classifyArgumentType(Arg.type);
673   }
674 
675   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
676                     QualType Ty) const override;
677 };
678 
679 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo {
680 public:
681   explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
682       : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT)) {}
683 };
684 
685 /// \brief Classify argument of given type \p Ty.
686 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const {
687   Ty = useFirstFieldIfTransparentUnion(Ty);
688 
689   if (isAggregateTypeForABI(Ty)) {
690     // Records with non-trivial destructors/copy-constructors should not be
691     // passed by value.
692     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
693       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
694     // Ignore empty structs/unions.
695     if (isEmptyRecord(getContext(), Ty, true))
696       return ABIArgInfo::getIgnore();
697     // Lower single-element structs to just pass a regular value. TODO: We
698     // could do reasonable-size multiple-element structs too, using getExpand(),
699     // though watch out for things like bitfields.
700     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
701       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
702   }
703 
704   // Otherwise just do the default thing.
705   return DefaultABIInfo::classifyArgumentType(Ty);
706 }
707 
708 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const {
709   if (isAggregateTypeForABI(RetTy)) {
710     // Records with non-trivial destructors/copy-constructors should not be
711     // returned by value.
712     if (!getRecordArgABI(RetTy, getCXXABI())) {
713       // Ignore empty structs/unions.
714       if (isEmptyRecord(getContext(), RetTy, true))
715         return ABIArgInfo::getIgnore();
716       // Lower single-element structs to just return a regular value. TODO: We
717       // could do reasonable-size multiple-element structs too, using
718       // ABIArgInfo::getDirect().
719       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
720         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
721     }
722   }
723 
724   // Otherwise just do the default thing.
725   return DefaultABIInfo::classifyReturnType(RetTy);
726 }
727 
728 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
729                                       QualType Ty) const {
730   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect=*/ false,
731                           getContext().getTypeInfoInChars(Ty),
732                           CharUnits::fromQuantity(4),
733                           /*AllowHigherAlign=*/ true);
734 }
735 
736 //===----------------------------------------------------------------------===//
737 // le32/PNaCl bitcode ABI Implementation
738 //
739 // This is a simplified version of the x86_32 ABI.  Arguments and return values
740 // are always passed on the stack.
741 //===----------------------------------------------------------------------===//
742 
743 class PNaClABIInfo : public ABIInfo {
744  public:
745   PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
746 
747   ABIArgInfo classifyReturnType(QualType RetTy) const;
748   ABIArgInfo classifyArgumentType(QualType RetTy) const;
749 
750   void computeInfo(CGFunctionInfo &FI) const override;
751   Address EmitVAArg(CodeGenFunction &CGF,
752                     Address VAListAddr, QualType Ty) const override;
753 };
754 
755 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
756  public:
757   PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
758     : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
759 };
760 
761 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
762   if (!getCXXABI().classifyReturnType(FI))
763     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
764 
765   for (auto &I : FI.arguments())
766     I.info = classifyArgumentType(I.type);
767 }
768 
769 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
770                                 QualType Ty) const {
771   // The PNaCL ABI is a bit odd, in that varargs don't use normal
772   // function classification. Structs get passed directly for varargs
773   // functions, through a rewriting transform in
774   // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows
775   // this target to actually support a va_arg instructions with an
776   // aggregate type, unlike other targets.
777   return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
778 }
779 
780 /// \brief Classify argument of given type \p Ty.
781 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
782   if (isAggregateTypeForABI(Ty)) {
783     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
784       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
785     return getNaturalAlignIndirect(Ty);
786   } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
787     // Treat an enum type as its underlying type.
788     Ty = EnumTy->getDecl()->getIntegerType();
789   } else if (Ty->isFloatingType()) {
790     // Floating-point types don't go inreg.
791     return ABIArgInfo::getDirect();
792   }
793 
794   return (Ty->isPromotableIntegerType() ?
795           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
796 }
797 
798 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
799   if (RetTy->isVoidType())
800     return ABIArgInfo::getIgnore();
801 
802   // In the PNaCl ABI we always return records/structures on the stack.
803   if (isAggregateTypeForABI(RetTy))
804     return getNaturalAlignIndirect(RetTy);
805 
806   // Treat an enum type as its underlying type.
807   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
808     RetTy = EnumTy->getDecl()->getIntegerType();
809 
810   return (RetTy->isPromotableIntegerType() ?
811           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
812 }
813 
814 /// IsX86_MMXType - Return true if this is an MMX type.
815 bool IsX86_MMXType(llvm::Type *IRType) {
816   // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
817   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
818     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
819     IRType->getScalarSizeInBits() != 64;
820 }
821 
822 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
823                                           StringRef Constraint,
824                                           llvm::Type* Ty) {
825   if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) {
826     if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) {
827       // Invalid MMX constraint
828       return nullptr;
829     }
830 
831     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
832   }
833 
834   // No operation needed
835   return Ty;
836 }
837 
838 /// Returns true if this type can be passed in SSE registers with the
839 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
840 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
841   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
842     if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half)
843       return true;
844   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
845     // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
846     // registers specially.
847     unsigned VecSize = Context.getTypeSize(VT);
848     if (VecSize == 128 || VecSize == 256 || VecSize == 512)
849       return true;
850   }
851   return false;
852 }
853 
854 /// Returns true if this aggregate is small enough to be passed in SSE registers
855 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
856 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
857   return NumMembers <= 4;
858 }
859 
860 //===----------------------------------------------------------------------===//
861 // X86-32 ABI Implementation
862 //===----------------------------------------------------------------------===//
863 
864 /// \brief Similar to llvm::CCState, but for Clang.
865 struct CCState {
866   CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {}
867 
868   unsigned CC;
869   unsigned FreeRegs;
870   unsigned FreeSSERegs;
871 };
872 
873 /// X86_32ABIInfo - The X86-32 ABI information.
874 class X86_32ABIInfo : public SwiftABIInfo {
875   enum Class {
876     Integer,
877     Float
878   };
879 
880   static const unsigned MinABIStackAlignInBytes = 4;
881 
882   bool IsDarwinVectorABI;
883   bool IsRetSmallStructInRegABI;
884   bool IsWin32StructABI;
885   bool IsSoftFloatABI;
886   bool IsMCUABI;
887   unsigned DefaultNumRegisterParameters;
888 
889   static bool isRegisterSize(unsigned Size) {
890     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
891   }
892 
893   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
894     // FIXME: Assumes vectorcall is in use.
895     return isX86VectorTypeForVectorCall(getContext(), Ty);
896   }
897 
898   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
899                                          uint64_t NumMembers) const override {
900     // FIXME: Assumes vectorcall is in use.
901     return isX86VectorCallAggregateSmallEnough(NumMembers);
902   }
903 
904   bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
905 
906   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
907   /// such that the argument will be passed in memory.
908   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
909 
910   ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const;
911 
912   /// \brief Return the alignment to use for the given type on the stack.
913   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
914 
915   Class classify(QualType Ty) const;
916   ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
917   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
918   /// \brief Updates the number of available free registers, returns
919   /// true if any registers were allocated.
920   bool updateFreeRegs(QualType Ty, CCState &State) const;
921 
922   bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg,
923                                 bool &NeedsPadding) const;
924   bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const;
925 
926   bool canExpandIndirectArgument(QualType Ty) const;
927 
928   /// \brief Rewrite the function info so that all memory arguments use
929   /// inalloca.
930   void rewriteWithInAlloca(CGFunctionInfo &FI) const;
931 
932   void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
933                            CharUnits &StackOffset, ABIArgInfo &Info,
934                            QualType Type) const;
935 
936 public:
937 
938   void computeInfo(CGFunctionInfo &FI) const override;
939   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
940                     QualType Ty) const override;
941 
942   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
943                 bool RetSmallStructInRegABI, bool Win32StructABI,
944                 unsigned NumRegisterParameters, bool SoftFloatABI)
945     : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI),
946       IsRetSmallStructInRegABI(RetSmallStructInRegABI),
947       IsWin32StructABI(Win32StructABI),
948       IsSoftFloatABI(SoftFloatABI),
949       IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()),
950       DefaultNumRegisterParameters(NumRegisterParameters) {}
951 
952   bool shouldPassIndirectlyForSwift(CharUnits totalSize,
953                                     ArrayRef<llvm::Type*> scalars,
954                                     bool asReturnValue) const override {
955     // LLVM's x86-32 lowering currently only assigns up to three
956     // integer registers and three fp registers.  Oddly, it'll use up to
957     // four vector registers for vectors, but those can overlap with the
958     // scalar registers.
959     return occupiesMoreThan(CGT, scalars, /*total*/ 3);
960   }
961 };
962 
963 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
964 public:
965   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
966                           bool RetSmallStructInRegABI, bool Win32StructABI,
967                           unsigned NumRegisterParameters, bool SoftFloatABI)
968       : TargetCodeGenInfo(new X86_32ABIInfo(
969             CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
970             NumRegisterParameters, SoftFloatABI)) {}
971 
972   static bool isStructReturnInRegABI(
973       const llvm::Triple &Triple, const CodeGenOptions &Opts);
974 
975   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
976                            CodeGen::CodeGenModule &CGM) const override;
977 
978   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
979     // Darwin uses different dwarf register numbers for EH.
980     if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
981     return 4;
982   }
983 
984   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
985                                llvm::Value *Address) const override;
986 
987   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
988                                   StringRef Constraint,
989                                   llvm::Type* Ty) const override {
990     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
991   }
992 
993   void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
994                                 std::string &Constraints,
995                                 std::vector<llvm::Type *> &ResultRegTypes,
996                                 std::vector<llvm::Type *> &ResultTruncRegTypes,
997                                 std::vector<LValue> &ResultRegDests,
998                                 std::string &AsmString,
999                                 unsigned NumOutputs) const override;
1000 
1001   llvm::Constant *
1002   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
1003     unsigned Sig = (0xeb << 0) |  // jmp rel8
1004                    (0x06 << 8) |  //           .+0x08
1005                    ('F' << 16) |
1006                    ('T' << 24);
1007     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
1008   }
1009 
1010   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
1011     return "movl\t%ebp, %ebp"
1012            "\t\t## marker for objc_retainAutoreleaseReturnValue";
1013   }
1014 };
1015 
1016 }
1017 
1018 /// Rewrite input constraint references after adding some output constraints.
1019 /// In the case where there is one output and one input and we add one output,
1020 /// we need to replace all operand references greater than or equal to 1:
1021 ///     mov $0, $1
1022 ///     mov eax, $1
1023 /// The result will be:
1024 ///     mov $0, $2
1025 ///     mov eax, $2
1026 static void rewriteInputConstraintReferences(unsigned FirstIn,
1027                                              unsigned NumNewOuts,
1028                                              std::string &AsmString) {
1029   std::string Buf;
1030   llvm::raw_string_ostream OS(Buf);
1031   size_t Pos = 0;
1032   while (Pos < AsmString.size()) {
1033     size_t DollarStart = AsmString.find('$', Pos);
1034     if (DollarStart == std::string::npos)
1035       DollarStart = AsmString.size();
1036     size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
1037     if (DollarEnd == std::string::npos)
1038       DollarEnd = AsmString.size();
1039     OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
1040     Pos = DollarEnd;
1041     size_t NumDollars = DollarEnd - DollarStart;
1042     if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
1043       // We have an operand reference.
1044       size_t DigitStart = Pos;
1045       size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
1046       if (DigitEnd == std::string::npos)
1047         DigitEnd = AsmString.size();
1048       StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
1049       unsigned OperandIndex;
1050       if (!OperandStr.getAsInteger(10, OperandIndex)) {
1051         if (OperandIndex >= FirstIn)
1052           OperandIndex += NumNewOuts;
1053         OS << OperandIndex;
1054       } else {
1055         OS << OperandStr;
1056       }
1057       Pos = DigitEnd;
1058     }
1059   }
1060   AsmString = std::move(OS.str());
1061 }
1062 
1063 /// Add output constraints for EAX:EDX because they are return registers.
1064 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
1065     CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
1066     std::vector<llvm::Type *> &ResultRegTypes,
1067     std::vector<llvm::Type *> &ResultTruncRegTypes,
1068     std::vector<LValue> &ResultRegDests, std::string &AsmString,
1069     unsigned NumOutputs) const {
1070   uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
1071 
1072   // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
1073   // larger.
1074   if (!Constraints.empty())
1075     Constraints += ',';
1076   if (RetWidth <= 32) {
1077     Constraints += "={eax}";
1078     ResultRegTypes.push_back(CGF.Int32Ty);
1079   } else {
1080     // Use the 'A' constraint for EAX:EDX.
1081     Constraints += "=A";
1082     ResultRegTypes.push_back(CGF.Int64Ty);
1083   }
1084 
1085   // Truncate EAX or EAX:EDX to an integer of the appropriate size.
1086   llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
1087   ResultTruncRegTypes.push_back(CoerceTy);
1088 
1089   // Coerce the integer by bitcasting the return slot pointer.
1090   ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(),
1091                                                   CoerceTy->getPointerTo()));
1092   ResultRegDests.push_back(ReturnSlot);
1093 
1094   rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
1095 }
1096 
1097 /// shouldReturnTypeInRegister - Determine if the given type should be
1098 /// returned in a register (for the Darwin and MCU ABI).
1099 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
1100                                                ASTContext &Context) const {
1101   uint64_t Size = Context.getTypeSize(Ty);
1102 
1103   // For i386, type must be register sized.
1104   // For the MCU ABI, it only needs to be <= 8-byte
1105   if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size)))
1106    return false;
1107 
1108   if (Ty->isVectorType()) {
1109     // 64- and 128- bit vectors inside structures are not returned in
1110     // registers.
1111     if (Size == 64 || Size == 128)
1112       return false;
1113 
1114     return true;
1115   }
1116 
1117   // If this is a builtin, pointer, enum, complex type, member pointer, or
1118   // member function pointer it is ok.
1119   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
1120       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
1121       Ty->isBlockPointerType() || Ty->isMemberPointerType())
1122     return true;
1123 
1124   // Arrays are treated like records.
1125   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
1126     return shouldReturnTypeInRegister(AT->getElementType(), Context);
1127 
1128   // Otherwise, it must be a record type.
1129   const RecordType *RT = Ty->getAs<RecordType>();
1130   if (!RT) return false;
1131 
1132   // FIXME: Traverse bases here too.
1133 
1134   // Structure types are passed in register if all fields would be
1135   // passed in a register.
1136   for (const auto *FD : RT->getDecl()->fields()) {
1137     // Empty fields are ignored.
1138     if (isEmptyField(Context, FD, true))
1139       continue;
1140 
1141     // Check fields recursively.
1142     if (!shouldReturnTypeInRegister(FD->getType(), Context))
1143       return false;
1144   }
1145   return true;
1146 }
1147 
1148 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
1149   // Treat complex types as the element type.
1150   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
1151     Ty = CTy->getElementType();
1152 
1153   // Check for a type which we know has a simple scalar argument-passing
1154   // convention without any padding.  (We're specifically looking for 32
1155   // and 64-bit integer and integer-equivalents, float, and double.)
1156   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
1157       !Ty->isEnumeralType() && !Ty->isBlockPointerType())
1158     return false;
1159 
1160   uint64_t Size = Context.getTypeSize(Ty);
1161   return Size == 32 || Size == 64;
1162 }
1163 
1164 /// Test whether an argument type which is to be passed indirectly (on the
1165 /// stack) would have the equivalent layout if it was expanded into separate
1166 /// arguments. If so, we prefer to do the latter to avoid inhibiting
1167 /// optimizations.
1168 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const {
1169   // We can only expand structure types.
1170   const RecordType *RT = Ty->getAs<RecordType>();
1171   if (!RT)
1172     return false;
1173   const RecordDecl *RD = RT->getDecl();
1174   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1175     if (!IsWin32StructABI ) {
1176       // On non-Windows, we have to conservatively match our old bitcode
1177       // prototypes in order to be ABI-compatible at the bitcode level.
1178       if (!CXXRD->isCLike())
1179         return false;
1180     } else {
1181       // Don't do this for dynamic classes.
1182       if (CXXRD->isDynamicClass())
1183         return false;
1184       // Don't do this if there are any non-empty bases.
1185       for (const CXXBaseSpecifier &Base : CXXRD->bases()) {
1186         if (!isEmptyRecord(getContext(), Base.getType(), /*AllowArrays=*/true))
1187           return false;
1188       }
1189     }
1190   }
1191 
1192   uint64_t Size = 0;
1193 
1194   for (const auto *FD : RD->fields()) {
1195     // Scalar arguments on the stack get 4 byte alignment on x86. If the
1196     // argument is smaller than 32-bits, expanding the struct will create
1197     // alignment padding.
1198     if (!is32Or64BitBasicType(FD->getType(), getContext()))
1199       return false;
1200 
1201     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
1202     // how to expand them yet, and the predicate for telling if a bitfield still
1203     // counts as "basic" is more complicated than what we were doing previously.
1204     if (FD->isBitField())
1205       return false;
1206 
1207     Size += getContext().getTypeSize(FD->getType());
1208   }
1209 
1210   // We can do this if there was no alignment padding.
1211   return Size == getContext().getTypeSize(Ty);
1212 }
1213 
1214 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const {
1215   // If the return value is indirect, then the hidden argument is consuming one
1216   // integer register.
1217   if (State.FreeRegs) {
1218     --State.FreeRegs;
1219     if (!IsMCUABI)
1220       return getNaturalAlignIndirectInReg(RetTy);
1221   }
1222   return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
1223 }
1224 
1225 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
1226                                              CCState &State) const {
1227   if (RetTy->isVoidType())
1228     return ABIArgInfo::getIgnore();
1229 
1230   const Type *Base = nullptr;
1231   uint64_t NumElts = 0;
1232   if (State.CC == llvm::CallingConv::X86_VectorCall &&
1233       isHomogeneousAggregate(RetTy, Base, NumElts)) {
1234     // The LLVM struct type for such an aggregate should lower properly.
1235     return ABIArgInfo::getDirect();
1236   }
1237 
1238   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
1239     // On Darwin, some vectors are returned in registers.
1240     if (IsDarwinVectorABI) {
1241       uint64_t Size = getContext().getTypeSize(RetTy);
1242 
1243       // 128-bit vectors are a special case; they are returned in
1244       // registers and we need to make sure to pick a type the LLVM
1245       // backend will like.
1246       if (Size == 128)
1247         return ABIArgInfo::getDirect(llvm::VectorType::get(
1248                   llvm::Type::getInt64Ty(getVMContext()), 2));
1249 
1250       // Always return in register if it fits in a general purpose
1251       // register, or if it is 64 bits and has a single element.
1252       if ((Size == 8 || Size == 16 || Size == 32) ||
1253           (Size == 64 && VT->getNumElements() == 1))
1254         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1255                                                             Size));
1256 
1257       return getIndirectReturnResult(RetTy, State);
1258     }
1259 
1260     return ABIArgInfo::getDirect();
1261   }
1262 
1263   if (isAggregateTypeForABI(RetTy)) {
1264     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
1265       // Structures with flexible arrays are always indirect.
1266       if (RT->getDecl()->hasFlexibleArrayMember())
1267         return getIndirectReturnResult(RetTy, State);
1268     }
1269 
1270     // If specified, structs and unions are always indirect.
1271     if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType())
1272       return getIndirectReturnResult(RetTy, State);
1273 
1274     // Ignore empty structs/unions.
1275     if (isEmptyRecord(getContext(), RetTy, true))
1276       return ABIArgInfo::getIgnore();
1277 
1278     // Small structures which are register sized are generally returned
1279     // in a register.
1280     if (shouldReturnTypeInRegister(RetTy, getContext())) {
1281       uint64_t Size = getContext().getTypeSize(RetTy);
1282 
1283       // As a special-case, if the struct is a "single-element" struct, and
1284       // the field is of type "float" or "double", return it in a
1285       // floating-point register. (MSVC does not apply this special case.)
1286       // We apply a similar transformation for pointer types to improve the
1287       // quality of the generated IR.
1288       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
1289         if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
1290             || SeltTy->hasPointerRepresentation())
1291           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
1292 
1293       // FIXME: We should be able to narrow this integer in cases with dead
1294       // padding.
1295       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
1296     }
1297 
1298     return getIndirectReturnResult(RetTy, State);
1299   }
1300 
1301   // Treat an enum type as its underlying type.
1302   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1303     RetTy = EnumTy->getDecl()->getIntegerType();
1304 
1305   return (RetTy->isPromotableIntegerType() ?
1306           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1307 }
1308 
1309 static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
1310   return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
1311 }
1312 
1313 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
1314   const RecordType *RT = Ty->getAs<RecordType>();
1315   if (!RT)
1316     return 0;
1317   const RecordDecl *RD = RT->getDecl();
1318 
1319   // If this is a C++ record, check the bases first.
1320   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1321     for (const auto &I : CXXRD->bases())
1322       if (!isRecordWithSSEVectorType(Context, I.getType()))
1323         return false;
1324 
1325   for (const auto *i : RD->fields()) {
1326     QualType FT = i->getType();
1327 
1328     if (isSSEVectorType(Context, FT))
1329       return true;
1330 
1331     if (isRecordWithSSEVectorType(Context, FT))
1332       return true;
1333   }
1334 
1335   return false;
1336 }
1337 
1338 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
1339                                                  unsigned Align) const {
1340   // Otherwise, if the alignment is less than or equal to the minimum ABI
1341   // alignment, just use the default; the backend will handle this.
1342   if (Align <= MinABIStackAlignInBytes)
1343     return 0; // Use default alignment.
1344 
1345   // On non-Darwin, the stack type alignment is always 4.
1346   if (!IsDarwinVectorABI) {
1347     // Set explicit alignment, since we may need to realign the top.
1348     return MinABIStackAlignInBytes;
1349   }
1350 
1351   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
1352   if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
1353                       isRecordWithSSEVectorType(getContext(), Ty)))
1354     return 16;
1355 
1356   return MinABIStackAlignInBytes;
1357 }
1358 
1359 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
1360                                             CCState &State) const {
1361   if (!ByVal) {
1362     if (State.FreeRegs) {
1363       --State.FreeRegs; // Non-byval indirects just use one pointer.
1364       if (!IsMCUABI)
1365         return getNaturalAlignIndirectInReg(Ty);
1366     }
1367     return getNaturalAlignIndirect(Ty, false);
1368   }
1369 
1370   // Compute the byval alignment.
1371   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
1372   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
1373   if (StackAlign == 0)
1374     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true);
1375 
1376   // If the stack alignment is less than the type alignment, realign the
1377   // argument.
1378   bool Realign = TypeAlign > StackAlign;
1379   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign),
1380                                  /*ByVal=*/true, Realign);
1381 }
1382 
1383 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
1384   const Type *T = isSingleElementStruct(Ty, getContext());
1385   if (!T)
1386     T = Ty.getTypePtr();
1387 
1388   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
1389     BuiltinType::Kind K = BT->getKind();
1390     if (K == BuiltinType::Float || K == BuiltinType::Double)
1391       return Float;
1392   }
1393   return Integer;
1394 }
1395 
1396 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const {
1397   if (!IsSoftFloatABI) {
1398     Class C = classify(Ty);
1399     if (C == Float)
1400       return false;
1401   }
1402 
1403   unsigned Size = getContext().getTypeSize(Ty);
1404   unsigned SizeInRegs = (Size + 31) / 32;
1405 
1406   if (SizeInRegs == 0)
1407     return false;
1408 
1409   if (!IsMCUABI) {
1410     if (SizeInRegs > State.FreeRegs) {
1411       State.FreeRegs = 0;
1412       return false;
1413     }
1414   } else {
1415     // The MCU psABI allows passing parameters in-reg even if there are
1416     // earlier parameters that are passed on the stack. Also,
1417     // it does not allow passing >8-byte structs in-register,
1418     // even if there are 3 free registers available.
1419     if (SizeInRegs > State.FreeRegs || SizeInRegs > 2)
1420       return false;
1421   }
1422 
1423   State.FreeRegs -= SizeInRegs;
1424   return true;
1425 }
1426 
1427 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State,
1428                                              bool &InReg,
1429                                              bool &NeedsPadding) const {
1430   // On Windows, aggregates other than HFAs are never passed in registers, and
1431   // they do not consume register slots. Homogenous floating-point aggregates
1432   // (HFAs) have already been dealt with at this point.
1433   if (IsWin32StructABI && isAggregateTypeForABI(Ty))
1434     return false;
1435 
1436   NeedsPadding = false;
1437   InReg = !IsMCUABI;
1438 
1439   if (!updateFreeRegs(Ty, State))
1440     return false;
1441 
1442   if (IsMCUABI)
1443     return true;
1444 
1445   if (State.CC == llvm::CallingConv::X86_FastCall ||
1446       State.CC == llvm::CallingConv::X86_VectorCall) {
1447     if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs)
1448       NeedsPadding = true;
1449 
1450     return false;
1451   }
1452 
1453   return true;
1454 }
1455 
1456 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const {
1457   if (!updateFreeRegs(Ty, State))
1458     return false;
1459 
1460   if (IsMCUABI)
1461     return false;
1462 
1463   if (State.CC == llvm::CallingConv::X86_FastCall ||
1464       State.CC == llvm::CallingConv::X86_VectorCall) {
1465     if (getContext().getTypeSize(Ty) > 32)
1466       return false;
1467 
1468     return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() ||
1469         Ty->isReferenceType());
1470   }
1471 
1472   return true;
1473 }
1474 
1475 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
1476                                                CCState &State) const {
1477   // FIXME: Set alignment on indirect arguments.
1478 
1479   Ty = useFirstFieldIfTransparentUnion(Ty);
1480 
1481   // Check with the C++ ABI first.
1482   const RecordType *RT = Ty->getAs<RecordType>();
1483   if (RT) {
1484     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
1485     if (RAA == CGCXXABI::RAA_Indirect) {
1486       return getIndirectResult(Ty, false, State);
1487     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
1488       // The field index doesn't matter, we'll fix it up later.
1489       return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
1490     }
1491   }
1492 
1493   // vectorcall adds the concept of a homogenous vector aggregate, similar
1494   // to other targets.
1495   const Type *Base = nullptr;
1496   uint64_t NumElts = 0;
1497   if (State.CC == llvm::CallingConv::X86_VectorCall &&
1498       isHomogeneousAggregate(Ty, Base, NumElts)) {
1499     if (State.FreeSSERegs >= NumElts) {
1500       State.FreeSSERegs -= NumElts;
1501       if (Ty->isBuiltinType() || Ty->isVectorType())
1502         return ABIArgInfo::getDirect();
1503       return ABIArgInfo::getExpand();
1504     }
1505     return getIndirectResult(Ty, /*ByVal=*/false, State);
1506   }
1507 
1508   if (isAggregateTypeForABI(Ty)) {
1509     // Structures with flexible arrays are always indirect.
1510     // FIXME: This should not be byval!
1511     if (RT && RT->getDecl()->hasFlexibleArrayMember())
1512       return getIndirectResult(Ty, true, State);
1513 
1514     // Ignore empty structs/unions on non-Windows.
1515     if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true))
1516       return ABIArgInfo::getIgnore();
1517 
1518     llvm::LLVMContext &LLVMContext = getVMContext();
1519     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
1520     bool NeedsPadding = false;
1521     bool InReg;
1522     if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) {
1523       unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
1524       SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
1525       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
1526       if (InReg)
1527         return ABIArgInfo::getDirectInReg(Result);
1528       else
1529         return ABIArgInfo::getDirect(Result);
1530     }
1531     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
1532 
1533     // Expand small (<= 128-bit) record types when we know that the stack layout
1534     // of those arguments will match the struct. This is important because the
1535     // LLVM backend isn't smart enough to remove byval, which inhibits many
1536     // optimizations.
1537     // Don't do this for the MCU if there are still free integer registers
1538     // (see X86_64 ABI for full explanation).
1539     if (getContext().getTypeSize(Ty) <= 4 * 32 &&
1540         (!IsMCUABI || State.FreeRegs == 0) && canExpandIndirectArgument(Ty))
1541       return ABIArgInfo::getExpandWithPadding(
1542           State.CC == llvm::CallingConv::X86_FastCall ||
1543               State.CC == llvm::CallingConv::X86_VectorCall,
1544           PaddingType);
1545 
1546     return getIndirectResult(Ty, true, State);
1547   }
1548 
1549   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1550     // On Darwin, some vectors are passed in memory, we handle this by passing
1551     // it as an i8/i16/i32/i64.
1552     if (IsDarwinVectorABI) {
1553       uint64_t Size = getContext().getTypeSize(Ty);
1554       if ((Size == 8 || Size == 16 || Size == 32) ||
1555           (Size == 64 && VT->getNumElements() == 1))
1556         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1557                                                             Size));
1558     }
1559 
1560     if (IsX86_MMXType(CGT.ConvertType(Ty)))
1561       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
1562 
1563     return ABIArgInfo::getDirect();
1564   }
1565 
1566 
1567   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1568     Ty = EnumTy->getDecl()->getIntegerType();
1569 
1570   bool InReg = shouldPrimitiveUseInReg(Ty, State);
1571 
1572   if (Ty->isPromotableIntegerType()) {
1573     if (InReg)
1574       return ABIArgInfo::getExtendInReg();
1575     return ABIArgInfo::getExtend();
1576   }
1577 
1578   if (InReg)
1579     return ABIArgInfo::getDirectInReg();
1580   return ABIArgInfo::getDirect();
1581 }
1582 
1583 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1584   CCState State(FI.getCallingConvention());
1585   if (IsMCUABI)
1586     State.FreeRegs = 3;
1587   else if (State.CC == llvm::CallingConv::X86_FastCall)
1588     State.FreeRegs = 2;
1589   else if (State.CC == llvm::CallingConv::X86_VectorCall) {
1590     State.FreeRegs = 2;
1591     State.FreeSSERegs = 6;
1592   } else if (FI.getHasRegParm())
1593     State.FreeRegs = FI.getRegParm();
1594   else
1595     State.FreeRegs = DefaultNumRegisterParameters;
1596 
1597   if (!getCXXABI().classifyReturnType(FI)) {
1598     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
1599   } else if (FI.getReturnInfo().isIndirect()) {
1600     // The C++ ABI is not aware of register usage, so we have to check if the
1601     // return value was sret and put it in a register ourselves if appropriate.
1602     if (State.FreeRegs) {
1603       --State.FreeRegs;  // The sret parameter consumes a register.
1604       if (!IsMCUABI)
1605         FI.getReturnInfo().setInReg(true);
1606     }
1607   }
1608 
1609   // The chain argument effectively gives us another free register.
1610   if (FI.isChainCall())
1611     ++State.FreeRegs;
1612 
1613   bool UsedInAlloca = false;
1614   for (auto &I : FI.arguments()) {
1615     I.info = classifyArgumentType(I.type, State);
1616     UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1617   }
1618 
1619   // If we needed to use inalloca for any argument, do a second pass and rewrite
1620   // all the memory arguments to use inalloca.
1621   if (UsedInAlloca)
1622     rewriteWithInAlloca(FI);
1623 }
1624 
1625 void
1626 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1627                                    CharUnits &StackOffset, ABIArgInfo &Info,
1628                                    QualType Type) const {
1629   // Arguments are always 4-byte-aligned.
1630   CharUnits FieldAlign = CharUnits::fromQuantity(4);
1631 
1632   assert(StackOffset.isMultipleOf(FieldAlign) && "unaligned inalloca struct");
1633   Info = ABIArgInfo::getInAlloca(FrameFields.size());
1634   FrameFields.push_back(CGT.ConvertTypeForMem(Type));
1635   StackOffset += getContext().getTypeSizeInChars(Type);
1636 
1637   // Insert padding bytes to respect alignment.
1638   CharUnits FieldEnd = StackOffset;
1639   StackOffset = FieldEnd.alignTo(FieldAlign);
1640   if (StackOffset != FieldEnd) {
1641     CharUnits NumBytes = StackOffset - FieldEnd;
1642     llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
1643     Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity());
1644     FrameFields.push_back(Ty);
1645   }
1646 }
1647 
1648 static bool isArgInAlloca(const ABIArgInfo &Info) {
1649   // Leave ignored and inreg arguments alone.
1650   switch (Info.getKind()) {
1651   case ABIArgInfo::InAlloca:
1652     return true;
1653   case ABIArgInfo::Indirect:
1654     assert(Info.getIndirectByVal());
1655     return true;
1656   case ABIArgInfo::Ignore:
1657     return false;
1658   case ABIArgInfo::Direct:
1659   case ABIArgInfo::Extend:
1660     if (Info.getInReg())
1661       return false;
1662     return true;
1663   case ABIArgInfo::Expand:
1664   case ABIArgInfo::CoerceAndExpand:
1665     // These are aggregate types which are never passed in registers when
1666     // inalloca is involved.
1667     return true;
1668   }
1669   llvm_unreachable("invalid enum");
1670 }
1671 
1672 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
1673   assert(IsWin32StructABI && "inalloca only supported on win32");
1674 
1675   // Build a packed struct type for all of the arguments in memory.
1676   SmallVector<llvm::Type *, 6> FrameFields;
1677 
1678   // The stack alignment is always 4.
1679   CharUnits StackAlign = CharUnits::fromQuantity(4);
1680 
1681   CharUnits StackOffset;
1682   CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
1683 
1684   // Put 'this' into the struct before 'sret', if necessary.
1685   bool IsThisCall =
1686       FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
1687   ABIArgInfo &Ret = FI.getReturnInfo();
1688   if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
1689       isArgInAlloca(I->info)) {
1690     addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1691     ++I;
1692   }
1693 
1694   // Put the sret parameter into the inalloca struct if it's in memory.
1695   if (Ret.isIndirect() && !Ret.getInReg()) {
1696     CanQualType PtrTy = getContext().getPointerType(FI.getReturnType());
1697     addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy);
1698     // On Windows, the hidden sret parameter is always returned in eax.
1699     Ret.setInAllocaSRet(IsWin32StructABI);
1700   }
1701 
1702   // Skip the 'this' parameter in ecx.
1703   if (IsThisCall)
1704     ++I;
1705 
1706   // Put arguments passed in memory into the struct.
1707   for (; I != E; ++I) {
1708     if (isArgInAlloca(I->info))
1709       addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1710   }
1711 
1712   FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
1713                                         /*isPacked=*/true),
1714                   StackAlign);
1715 }
1716 
1717 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF,
1718                                  Address VAListAddr, QualType Ty) const {
1719 
1720   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
1721 
1722   // x86-32 changes the alignment of certain arguments on the stack.
1723   //
1724   // Just messing with TypeInfo like this works because we never pass
1725   // anything indirectly.
1726   TypeInfo.second = CharUnits::fromQuantity(
1727                 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity()));
1728 
1729   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
1730                           TypeInfo, CharUnits::fromQuantity(4),
1731                           /*AllowHigherAlign*/ true);
1732 }
1733 
1734 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
1735     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
1736   assert(Triple.getArch() == llvm::Triple::x86);
1737 
1738   switch (Opts.getStructReturnConvention()) {
1739   case CodeGenOptions::SRCK_Default:
1740     break;
1741   case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
1742     return false;
1743   case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
1744     return true;
1745   }
1746 
1747   if (Triple.isOSDarwin() || Triple.isOSIAMCU())
1748     return true;
1749 
1750   switch (Triple.getOS()) {
1751   case llvm::Triple::DragonFly:
1752   case llvm::Triple::FreeBSD:
1753   case llvm::Triple::OpenBSD:
1754   case llvm::Triple::Bitrig:
1755   case llvm::Triple::Win32:
1756     return true;
1757   default:
1758     return false;
1759   }
1760 }
1761 
1762 void X86_32TargetCodeGenInfo::setTargetAttributes(const Decl *D,
1763                                                   llvm::GlobalValue *GV,
1764                                             CodeGen::CodeGenModule &CGM) const {
1765   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
1766     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1767       // Get the LLVM function.
1768       llvm::Function *Fn = cast<llvm::Function>(GV);
1769 
1770       // Now add the 'alignstack' attribute with a value of 16.
1771       llvm::AttrBuilder B;
1772       B.addStackAlignmentAttr(16);
1773       Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
1774                       llvm::AttributeSet::get(CGM.getLLVMContext(),
1775                                               llvm::AttributeSet::FunctionIndex,
1776                                               B));
1777     }
1778     if (FD->hasAttr<AnyX86InterruptAttr>()) {
1779       llvm::Function *Fn = cast<llvm::Function>(GV);
1780       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
1781     }
1782   }
1783 }
1784 
1785 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
1786                                                CodeGen::CodeGenFunction &CGF,
1787                                                llvm::Value *Address) const {
1788   CodeGen::CGBuilderTy &Builder = CGF.Builder;
1789 
1790   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
1791 
1792   // 0-7 are the eight integer registers;  the order is different
1793   //   on Darwin (for EH), but the range is the same.
1794   // 8 is %eip.
1795   AssignToArrayRange(Builder, Address, Four8, 0, 8);
1796 
1797   if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
1798     // 12-16 are st(0..4).  Not sure why we stop at 4.
1799     // These have size 16, which is sizeof(long double) on
1800     // platforms with 8-byte alignment for that type.
1801     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
1802     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
1803 
1804   } else {
1805     // 9 is %eflags, which doesn't get a size on Darwin for some
1806     // reason.
1807     Builder.CreateAlignedStore(
1808         Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9),
1809                                CharUnits::One());
1810 
1811     // 11-16 are st(0..5).  Not sure why we stop at 5.
1812     // These have size 12, which is sizeof(long double) on
1813     // platforms with 4-byte alignment for that type.
1814     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
1815     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
1816   }
1817 
1818   return false;
1819 }
1820 
1821 //===----------------------------------------------------------------------===//
1822 // X86-64 ABI Implementation
1823 //===----------------------------------------------------------------------===//
1824 
1825 
1826 namespace {
1827 /// The AVX ABI level for X86 targets.
1828 enum class X86AVXABILevel {
1829   None,
1830   AVX,
1831   AVX512
1832 };
1833 
1834 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
1835 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
1836   switch (AVXLevel) {
1837   case X86AVXABILevel::AVX512:
1838     return 512;
1839   case X86AVXABILevel::AVX:
1840     return 256;
1841   case X86AVXABILevel::None:
1842     return 128;
1843   }
1844   llvm_unreachable("Unknown AVXLevel");
1845 }
1846 
1847 /// X86_64ABIInfo - The X86_64 ABI information.
1848 class X86_64ABIInfo : public SwiftABIInfo {
1849   enum Class {
1850     Integer = 0,
1851     SSE,
1852     SSEUp,
1853     X87,
1854     X87Up,
1855     ComplexX87,
1856     NoClass,
1857     Memory
1858   };
1859 
1860   /// merge - Implement the X86_64 ABI merging algorithm.
1861   ///
1862   /// Merge an accumulating classification \arg Accum with a field
1863   /// classification \arg Field.
1864   ///
1865   /// \param Accum - The accumulating classification. This should
1866   /// always be either NoClass or the result of a previous merge
1867   /// call. In addition, this should never be Memory (the caller
1868   /// should just return Memory for the aggregate).
1869   static Class merge(Class Accum, Class Field);
1870 
1871   /// postMerge - Implement the X86_64 ABI post merging algorithm.
1872   ///
1873   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
1874   /// final MEMORY or SSE classes when necessary.
1875   ///
1876   /// \param AggregateSize - The size of the current aggregate in
1877   /// the classification process.
1878   ///
1879   /// \param Lo - The classification for the parts of the type
1880   /// residing in the low word of the containing object.
1881   ///
1882   /// \param Hi - The classification for the parts of the type
1883   /// residing in the higher words of the containing object.
1884   ///
1885   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
1886 
1887   /// classify - Determine the x86_64 register classes in which the
1888   /// given type T should be passed.
1889   ///
1890   /// \param Lo - The classification for the parts of the type
1891   /// residing in the low word of the containing object.
1892   ///
1893   /// \param Hi - The classification for the parts of the type
1894   /// residing in the high word of the containing object.
1895   ///
1896   /// \param OffsetBase - The bit offset of this type in the
1897   /// containing object.  Some parameters are classified different
1898   /// depending on whether they straddle an eightbyte boundary.
1899   ///
1900   /// \param isNamedArg - Whether the argument in question is a "named"
1901   /// argument, as used in AMD64-ABI 3.5.7.
1902   ///
1903   /// If a word is unused its result will be NoClass; if a type should
1904   /// be passed in Memory then at least the classification of \arg Lo
1905   /// will be Memory.
1906   ///
1907   /// The \arg Lo class will be NoClass iff the argument is ignored.
1908   ///
1909   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
1910   /// also be ComplexX87.
1911   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
1912                 bool isNamedArg) const;
1913 
1914   llvm::Type *GetByteVectorType(QualType Ty) const;
1915   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
1916                                  unsigned IROffset, QualType SourceTy,
1917                                  unsigned SourceOffset) const;
1918   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
1919                                      unsigned IROffset, QualType SourceTy,
1920                                      unsigned SourceOffset) const;
1921 
1922   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1923   /// such that the argument will be returned in memory.
1924   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
1925 
1926   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1927   /// such that the argument will be passed in memory.
1928   ///
1929   /// \param freeIntRegs - The number of free integer registers remaining
1930   /// available.
1931   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
1932 
1933   ABIArgInfo classifyReturnType(QualType RetTy) const;
1934 
1935   ABIArgInfo classifyArgumentType(QualType Ty,
1936                                   unsigned freeIntRegs,
1937                                   unsigned &neededInt,
1938                                   unsigned &neededSSE,
1939                                   bool isNamedArg) const;
1940 
1941   bool IsIllegalVectorType(QualType Ty) const;
1942 
1943   /// The 0.98 ABI revision clarified a lot of ambiguities,
1944   /// unfortunately in ways that were not always consistent with
1945   /// certain previous compilers.  In particular, platforms which
1946   /// required strict binary compatibility with older versions of GCC
1947   /// may need to exempt themselves.
1948   bool honorsRevision0_98() const {
1949     return !getTarget().getTriple().isOSDarwin();
1950   }
1951 
1952   /// GCC classifies <1 x long long> as SSE but compatibility with older clang
1953   // compilers require us to classify it as INTEGER.
1954   bool classifyIntegerMMXAsSSE() const {
1955     const llvm::Triple &Triple = getTarget().getTriple();
1956     if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4)
1957       return false;
1958     if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10)
1959       return false;
1960     return true;
1961   }
1962 
1963   X86AVXABILevel AVXLevel;
1964   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
1965   // 64-bit hardware.
1966   bool Has64BitPointers;
1967 
1968 public:
1969   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) :
1970       SwiftABIInfo(CGT), AVXLevel(AVXLevel),
1971       Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
1972   }
1973 
1974   bool isPassedUsingAVXType(QualType type) const {
1975     unsigned neededInt, neededSSE;
1976     // The freeIntRegs argument doesn't matter here.
1977     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
1978                                            /*isNamedArg*/true);
1979     if (info.isDirect()) {
1980       llvm::Type *ty = info.getCoerceToType();
1981       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
1982         return (vectorTy->getBitWidth() > 128);
1983     }
1984     return false;
1985   }
1986 
1987   void computeInfo(CGFunctionInfo &FI) const override;
1988 
1989   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1990                     QualType Ty) const override;
1991   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
1992                       QualType Ty) const override;
1993 
1994   bool has64BitPointers() const {
1995     return Has64BitPointers;
1996   }
1997 
1998   bool shouldPassIndirectlyForSwift(CharUnits totalSize,
1999                                     ArrayRef<llvm::Type*> scalars,
2000                                     bool asReturnValue) const override {
2001     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2002   }
2003 };
2004 
2005 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
2006 class WinX86_64ABIInfo : public ABIInfo {
2007 public:
2008   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT)
2009       : ABIInfo(CGT),
2010         IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {}
2011 
2012   void computeInfo(CGFunctionInfo &FI) const override;
2013 
2014   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2015                     QualType Ty) const override;
2016 
2017   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
2018     // FIXME: Assumes vectorcall is in use.
2019     return isX86VectorTypeForVectorCall(getContext(), Ty);
2020   }
2021 
2022   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
2023                                          uint64_t NumMembers) const override {
2024     // FIXME: Assumes vectorcall is in use.
2025     return isX86VectorCallAggregateSmallEnough(NumMembers);
2026   }
2027 
2028 private:
2029   ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs,
2030                       bool IsReturnType) const;
2031 
2032   bool IsMingw64;
2033 };
2034 
2035 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2036 public:
2037   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2038       : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {}
2039 
2040   const X86_64ABIInfo &getABIInfo() const {
2041     return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
2042   }
2043 
2044   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2045     return 7;
2046   }
2047 
2048   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2049                                llvm::Value *Address) const override {
2050     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2051 
2052     // 0-15 are the 16 integer registers.
2053     // 16 is %rip.
2054     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2055     return false;
2056   }
2057 
2058   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
2059                                   StringRef Constraint,
2060                                   llvm::Type* Ty) const override {
2061     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
2062   }
2063 
2064   bool isNoProtoCallVariadic(const CallArgList &args,
2065                              const FunctionNoProtoType *fnType) const override {
2066     // The default CC on x86-64 sets %al to the number of SSA
2067     // registers used, and GCC sets this when calling an unprototyped
2068     // function, so we override the default behavior.  However, don't do
2069     // that when AVX types are involved: the ABI explicitly states it is
2070     // undefined, and it doesn't work in practice because of how the ABI
2071     // defines varargs anyway.
2072     if (fnType->getCallConv() == CC_C) {
2073       bool HasAVXType = false;
2074       for (CallArgList::const_iterator
2075              it = args.begin(), ie = args.end(); it != ie; ++it) {
2076         if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
2077           HasAVXType = true;
2078           break;
2079         }
2080       }
2081 
2082       if (!HasAVXType)
2083         return true;
2084     }
2085 
2086     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
2087   }
2088 
2089   llvm::Constant *
2090   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
2091     unsigned Sig;
2092     if (getABIInfo().has64BitPointers())
2093       Sig = (0xeb << 0) |  // jmp rel8
2094             (0x0a << 8) |  //           .+0x0c
2095             ('F' << 16) |
2096             ('T' << 24);
2097     else
2098       Sig = (0xeb << 0) |  // jmp rel8
2099             (0x06 << 8) |  //           .+0x08
2100             ('F' << 16) |
2101             ('T' << 24);
2102     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
2103   }
2104 
2105   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2106                            CodeGen::CodeGenModule &CGM) const override {
2107     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2108       if (FD->hasAttr<AnyX86InterruptAttr>()) {
2109         llvm::Function *Fn = cast<llvm::Function>(GV);
2110         Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2111       }
2112     }
2113   }
2114 };
2115 
2116 class PS4TargetCodeGenInfo : public X86_64TargetCodeGenInfo {
2117 public:
2118   PS4TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2119     : X86_64TargetCodeGenInfo(CGT, AVXLevel) {}
2120 
2121   void getDependentLibraryOption(llvm::StringRef Lib,
2122                                  llvm::SmallString<24> &Opt) const override {
2123     Opt = "\01";
2124     // If the argument contains a space, enclose it in quotes.
2125     if (Lib.find(" ") != StringRef::npos)
2126       Opt += "\"" + Lib.str() + "\"";
2127     else
2128       Opt += Lib;
2129   }
2130 };
2131 
2132 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
2133   // If the argument does not end in .lib, automatically add the suffix.
2134   // If the argument contains a space, enclose it in quotes.
2135   // This matches the behavior of MSVC.
2136   bool Quote = (Lib.find(" ") != StringRef::npos);
2137   std::string ArgStr = Quote ? "\"" : "";
2138   ArgStr += Lib;
2139   if (!Lib.endswith_lower(".lib"))
2140     ArgStr += ".lib";
2141   ArgStr += Quote ? "\"" : "";
2142   return ArgStr;
2143 }
2144 
2145 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
2146 public:
2147   WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2148         bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI,
2149         unsigned NumRegisterParameters)
2150     : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI,
2151         Win32StructABI, NumRegisterParameters, false) {}
2152 
2153   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2154                            CodeGen::CodeGenModule &CGM) const override;
2155 
2156   void getDependentLibraryOption(llvm::StringRef Lib,
2157                                  llvm::SmallString<24> &Opt) const override {
2158     Opt = "/DEFAULTLIB:";
2159     Opt += qualifyWindowsLibrary(Lib);
2160   }
2161 
2162   void getDetectMismatchOption(llvm::StringRef Name,
2163                                llvm::StringRef Value,
2164                                llvm::SmallString<32> &Opt) const override {
2165     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2166   }
2167 };
2168 
2169 static void addStackProbeSizeTargetAttribute(const Decl *D,
2170                                              llvm::GlobalValue *GV,
2171                                              CodeGen::CodeGenModule &CGM) {
2172   if (D && isa<FunctionDecl>(D)) {
2173     if (CGM.getCodeGenOpts().StackProbeSize != 4096) {
2174       llvm::Function *Fn = cast<llvm::Function>(GV);
2175 
2176       Fn->addFnAttr("stack-probe-size",
2177                     llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
2178     }
2179   }
2180 }
2181 
2182 void WinX86_32TargetCodeGenInfo::setTargetAttributes(const Decl *D,
2183                                                      llvm::GlobalValue *GV,
2184                                             CodeGen::CodeGenModule &CGM) const {
2185   X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2186 
2187   addStackProbeSizeTargetAttribute(D, GV, CGM);
2188 }
2189 
2190 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2191 public:
2192   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2193                              X86AVXABILevel AVXLevel)
2194       : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
2195 
2196   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2197                            CodeGen::CodeGenModule &CGM) const override;
2198 
2199   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2200     return 7;
2201   }
2202 
2203   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2204                                llvm::Value *Address) const override {
2205     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2206 
2207     // 0-15 are the 16 integer registers.
2208     // 16 is %rip.
2209     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2210     return false;
2211   }
2212 
2213   void getDependentLibraryOption(llvm::StringRef Lib,
2214                                  llvm::SmallString<24> &Opt) const override {
2215     Opt = "/DEFAULTLIB:";
2216     Opt += qualifyWindowsLibrary(Lib);
2217   }
2218 
2219   void getDetectMismatchOption(llvm::StringRef Name,
2220                                llvm::StringRef Value,
2221                                llvm::SmallString<32> &Opt) const override {
2222     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2223   }
2224 };
2225 
2226 void WinX86_64TargetCodeGenInfo::setTargetAttributes(const Decl *D,
2227                                                      llvm::GlobalValue *GV,
2228                                             CodeGen::CodeGenModule &CGM) const {
2229   TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2230 
2231   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2232     if (FD->hasAttr<AnyX86InterruptAttr>()) {
2233       llvm::Function *Fn = cast<llvm::Function>(GV);
2234       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2235     }
2236   }
2237 
2238   addStackProbeSizeTargetAttribute(D, GV, CGM);
2239 }
2240 }
2241 
2242 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
2243                               Class &Hi) const {
2244   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
2245   //
2246   // (a) If one of the classes is Memory, the whole argument is passed in
2247   //     memory.
2248   //
2249   // (b) If X87UP is not preceded by X87, the whole argument is passed in
2250   //     memory.
2251   //
2252   // (c) If the size of the aggregate exceeds two eightbytes and the first
2253   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
2254   //     argument is passed in memory. NOTE: This is necessary to keep the
2255   //     ABI working for processors that don't support the __m256 type.
2256   //
2257   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
2258   //
2259   // Some of these are enforced by the merging logic.  Others can arise
2260   // only with unions; for example:
2261   //   union { _Complex double; unsigned; }
2262   //
2263   // Note that clauses (b) and (c) were added in 0.98.
2264   //
2265   if (Hi == Memory)
2266     Lo = Memory;
2267   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
2268     Lo = Memory;
2269   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
2270     Lo = Memory;
2271   if (Hi == SSEUp && Lo != SSE)
2272     Hi = SSE;
2273 }
2274 
2275 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
2276   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
2277   // classified recursively so that always two fields are
2278   // considered. The resulting class is calculated according to
2279   // the classes of the fields in the eightbyte:
2280   //
2281   // (a) If both classes are equal, this is the resulting class.
2282   //
2283   // (b) If one of the classes is NO_CLASS, the resulting class is
2284   // the other class.
2285   //
2286   // (c) If one of the classes is MEMORY, the result is the MEMORY
2287   // class.
2288   //
2289   // (d) If one of the classes is INTEGER, the result is the
2290   // INTEGER.
2291   //
2292   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
2293   // MEMORY is used as class.
2294   //
2295   // (f) Otherwise class SSE is used.
2296 
2297   // Accum should never be memory (we should have returned) or
2298   // ComplexX87 (because this cannot be passed in a structure).
2299   assert((Accum != Memory && Accum != ComplexX87) &&
2300          "Invalid accumulated classification during merge.");
2301   if (Accum == Field || Field == NoClass)
2302     return Accum;
2303   if (Field == Memory)
2304     return Memory;
2305   if (Accum == NoClass)
2306     return Field;
2307   if (Accum == Integer || Field == Integer)
2308     return Integer;
2309   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
2310       Accum == X87 || Accum == X87Up)
2311     return Memory;
2312   return SSE;
2313 }
2314 
2315 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
2316                              Class &Lo, Class &Hi, bool isNamedArg) const {
2317   // FIXME: This code can be simplified by introducing a simple value class for
2318   // Class pairs with appropriate constructor methods for the various
2319   // situations.
2320 
2321   // FIXME: Some of the split computations are wrong; unaligned vectors
2322   // shouldn't be passed in registers for example, so there is no chance they
2323   // can straddle an eightbyte. Verify & simplify.
2324 
2325   Lo = Hi = NoClass;
2326 
2327   Class &Current = OffsetBase < 64 ? Lo : Hi;
2328   Current = Memory;
2329 
2330   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
2331     BuiltinType::Kind k = BT->getKind();
2332 
2333     if (k == BuiltinType::Void) {
2334       Current = NoClass;
2335     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
2336       Lo = Integer;
2337       Hi = Integer;
2338     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
2339       Current = Integer;
2340     } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
2341       Current = SSE;
2342     } else if (k == BuiltinType::LongDouble) {
2343       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2344       if (LDF == &llvm::APFloat::IEEEquad) {
2345         Lo = SSE;
2346         Hi = SSEUp;
2347       } else if (LDF == &llvm::APFloat::x87DoubleExtended) {
2348         Lo = X87;
2349         Hi = X87Up;
2350       } else if (LDF == &llvm::APFloat::IEEEdouble) {
2351         Current = SSE;
2352       } else
2353         llvm_unreachable("unexpected long double representation!");
2354     }
2355     // FIXME: _Decimal32 and _Decimal64 are SSE.
2356     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
2357     return;
2358   }
2359 
2360   if (const EnumType *ET = Ty->getAs<EnumType>()) {
2361     // Classify the underlying integer type.
2362     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
2363     return;
2364   }
2365 
2366   if (Ty->hasPointerRepresentation()) {
2367     Current = Integer;
2368     return;
2369   }
2370 
2371   if (Ty->isMemberPointerType()) {
2372     if (Ty->isMemberFunctionPointerType()) {
2373       if (Has64BitPointers) {
2374         // If Has64BitPointers, this is an {i64, i64}, so classify both
2375         // Lo and Hi now.
2376         Lo = Hi = Integer;
2377       } else {
2378         // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
2379         // straddles an eightbyte boundary, Hi should be classified as well.
2380         uint64_t EB_FuncPtr = (OffsetBase) / 64;
2381         uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
2382         if (EB_FuncPtr != EB_ThisAdj) {
2383           Lo = Hi = Integer;
2384         } else {
2385           Current = Integer;
2386         }
2387       }
2388     } else {
2389       Current = Integer;
2390     }
2391     return;
2392   }
2393 
2394   if (const VectorType *VT = Ty->getAs<VectorType>()) {
2395     uint64_t Size = getContext().getTypeSize(VT);
2396     if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
2397       // gcc passes the following as integer:
2398       // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
2399       // 2 bytes - <2 x char>, <1 x short>
2400       // 1 byte  - <1 x char>
2401       Current = Integer;
2402 
2403       // If this type crosses an eightbyte boundary, it should be
2404       // split.
2405       uint64_t EB_Lo = (OffsetBase) / 64;
2406       uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
2407       if (EB_Lo != EB_Hi)
2408         Hi = Lo;
2409     } else if (Size == 64) {
2410       QualType ElementType = VT->getElementType();
2411 
2412       // gcc passes <1 x double> in memory. :(
2413       if (ElementType->isSpecificBuiltinType(BuiltinType::Double))
2414         return;
2415 
2416       // gcc passes <1 x long long> as SSE but clang used to unconditionally
2417       // pass them as integer.  For platforms where clang is the de facto
2418       // platform compiler, we must continue to use integer.
2419       if (!classifyIntegerMMXAsSSE() &&
2420           (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) ||
2421            ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
2422            ElementType->isSpecificBuiltinType(BuiltinType::Long) ||
2423            ElementType->isSpecificBuiltinType(BuiltinType::ULong)))
2424         Current = Integer;
2425       else
2426         Current = SSE;
2427 
2428       // If this type crosses an eightbyte boundary, it should be
2429       // split.
2430       if (OffsetBase && OffsetBase != 64)
2431         Hi = Lo;
2432     } else if (Size == 128 ||
2433                (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
2434       // Arguments of 256-bits are split into four eightbyte chunks. The
2435       // least significant one belongs to class SSE and all the others to class
2436       // SSEUP. The original Lo and Hi design considers that types can't be
2437       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
2438       // This design isn't correct for 256-bits, but since there're no cases
2439       // where the upper parts would need to be inspected, avoid adding
2440       // complexity and just consider Hi to match the 64-256 part.
2441       //
2442       // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
2443       // registers if they are "named", i.e. not part of the "..." of a
2444       // variadic function.
2445       //
2446       // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
2447       // split into eight eightbyte chunks, one SSE and seven SSEUP.
2448       Lo = SSE;
2449       Hi = SSEUp;
2450     }
2451     return;
2452   }
2453 
2454   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
2455     QualType ET = getContext().getCanonicalType(CT->getElementType());
2456 
2457     uint64_t Size = getContext().getTypeSize(Ty);
2458     if (ET->isIntegralOrEnumerationType()) {
2459       if (Size <= 64)
2460         Current = Integer;
2461       else if (Size <= 128)
2462         Lo = Hi = Integer;
2463     } else if (ET == getContext().FloatTy) {
2464       Current = SSE;
2465     } else if (ET == getContext().DoubleTy) {
2466       Lo = Hi = SSE;
2467     } else if (ET == getContext().LongDoubleTy) {
2468       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2469       if (LDF == &llvm::APFloat::IEEEquad)
2470         Current = Memory;
2471       else if (LDF == &llvm::APFloat::x87DoubleExtended)
2472         Current = ComplexX87;
2473       else if (LDF == &llvm::APFloat::IEEEdouble)
2474         Lo = Hi = SSE;
2475       else
2476         llvm_unreachable("unexpected long double representation!");
2477     }
2478 
2479     // If this complex type crosses an eightbyte boundary then it
2480     // should be split.
2481     uint64_t EB_Real = (OffsetBase) / 64;
2482     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
2483     if (Hi == NoClass && EB_Real != EB_Imag)
2484       Hi = Lo;
2485 
2486     return;
2487   }
2488 
2489   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
2490     // Arrays are treated like structures.
2491 
2492     uint64_t Size = getContext().getTypeSize(Ty);
2493 
2494     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2495     // than eight eightbytes, ..., it has class MEMORY.
2496     if (Size > 512)
2497       return;
2498 
2499     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
2500     // fields, it has class MEMORY.
2501     //
2502     // Only need to check alignment of array base.
2503     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
2504       return;
2505 
2506     // Otherwise implement simplified merge. We could be smarter about
2507     // this, but it isn't worth it and would be harder to verify.
2508     Current = NoClass;
2509     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
2510     uint64_t ArraySize = AT->getSize().getZExtValue();
2511 
2512     // The only case a 256-bit wide vector could be used is when the array
2513     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2514     // to work for sizes wider than 128, early check and fallback to memory.
2515     //
2516     if (Size > 128 &&
2517         (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel)))
2518       return;
2519 
2520     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
2521       Class FieldLo, FieldHi;
2522       classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
2523       Lo = merge(Lo, FieldLo);
2524       Hi = merge(Hi, FieldHi);
2525       if (Lo == Memory || Hi == Memory)
2526         break;
2527     }
2528 
2529     postMerge(Size, Lo, Hi);
2530     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
2531     return;
2532   }
2533 
2534   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2535     uint64_t Size = getContext().getTypeSize(Ty);
2536 
2537     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2538     // than eight eightbytes, ..., it has class MEMORY.
2539     if (Size > 512)
2540       return;
2541 
2542     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
2543     // copy constructor or a non-trivial destructor, it is passed by invisible
2544     // reference.
2545     if (getRecordArgABI(RT, getCXXABI()))
2546       return;
2547 
2548     const RecordDecl *RD = RT->getDecl();
2549 
2550     // Assume variable sized types are passed in memory.
2551     if (RD->hasFlexibleArrayMember())
2552       return;
2553 
2554     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2555 
2556     // Reset Lo class, this will be recomputed.
2557     Current = NoClass;
2558 
2559     // If this is a C++ record, classify the bases first.
2560     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2561       for (const auto &I : CXXRD->bases()) {
2562         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2563                "Unexpected base class!");
2564         const CXXRecordDecl *Base =
2565           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2566 
2567         // Classify this field.
2568         //
2569         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
2570         // single eightbyte, each is classified separately. Each eightbyte gets
2571         // initialized to class NO_CLASS.
2572         Class FieldLo, FieldHi;
2573         uint64_t Offset =
2574           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
2575         classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
2576         Lo = merge(Lo, FieldLo);
2577         Hi = merge(Hi, FieldHi);
2578         if (Lo == Memory || Hi == Memory) {
2579           postMerge(Size, Lo, Hi);
2580           return;
2581         }
2582       }
2583     }
2584 
2585     // Classify the fields one at a time, merging the results.
2586     unsigned idx = 0;
2587     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2588            i != e; ++i, ++idx) {
2589       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2590       bool BitField = i->isBitField();
2591 
2592       // Ignore padding bit-fields.
2593       if (BitField && i->isUnnamedBitfield())
2594         continue;
2595 
2596       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
2597       // four eightbytes, or it contains unaligned fields, it has class MEMORY.
2598       //
2599       // The only case a 256-bit wide vector could be used is when the struct
2600       // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2601       // to work for sizes wider than 128, early check and fallback to memory.
2602       //
2603       if (Size > 128 && (Size != getContext().getTypeSize(i->getType()) ||
2604                          Size > getNativeVectorSizeForAVXABI(AVXLevel))) {
2605         Lo = Memory;
2606         postMerge(Size, Lo, Hi);
2607         return;
2608       }
2609       // Note, skip this test for bit-fields, see below.
2610       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
2611         Lo = Memory;
2612         postMerge(Size, Lo, Hi);
2613         return;
2614       }
2615 
2616       // Classify this field.
2617       //
2618       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
2619       // exceeds a single eightbyte, each is classified
2620       // separately. Each eightbyte gets initialized to class
2621       // NO_CLASS.
2622       Class FieldLo, FieldHi;
2623 
2624       // Bit-fields require special handling, they do not force the
2625       // structure to be passed in memory even if unaligned, and
2626       // therefore they can straddle an eightbyte.
2627       if (BitField) {
2628         assert(!i->isUnnamedBitfield());
2629         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2630         uint64_t Size = i->getBitWidthValue(getContext());
2631 
2632         uint64_t EB_Lo = Offset / 64;
2633         uint64_t EB_Hi = (Offset + Size - 1) / 64;
2634 
2635         if (EB_Lo) {
2636           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
2637           FieldLo = NoClass;
2638           FieldHi = Integer;
2639         } else {
2640           FieldLo = Integer;
2641           FieldHi = EB_Hi ? Integer : NoClass;
2642         }
2643       } else
2644         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
2645       Lo = merge(Lo, FieldLo);
2646       Hi = merge(Hi, FieldHi);
2647       if (Lo == Memory || Hi == Memory)
2648         break;
2649     }
2650 
2651     postMerge(Size, Lo, Hi);
2652   }
2653 }
2654 
2655 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
2656   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2657   // place naturally.
2658   if (!isAggregateTypeForABI(Ty)) {
2659     // Treat an enum type as its underlying type.
2660     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2661       Ty = EnumTy->getDecl()->getIntegerType();
2662 
2663     return (Ty->isPromotableIntegerType() ?
2664             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2665   }
2666 
2667   return getNaturalAlignIndirect(Ty);
2668 }
2669 
2670 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
2671   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
2672     uint64_t Size = getContext().getTypeSize(VecTy);
2673     unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
2674     if (Size <= 64 || Size > LargestVector)
2675       return true;
2676   }
2677 
2678   return false;
2679 }
2680 
2681 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
2682                                             unsigned freeIntRegs) const {
2683   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2684   // place naturally.
2685   //
2686   // This assumption is optimistic, as there could be free registers available
2687   // when we need to pass this argument in memory, and LLVM could try to pass
2688   // the argument in the free register. This does not seem to happen currently,
2689   // but this code would be much safer if we could mark the argument with
2690   // 'onstack'. See PR12193.
2691   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
2692     // Treat an enum type as its underlying type.
2693     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2694       Ty = EnumTy->getDecl()->getIntegerType();
2695 
2696     return (Ty->isPromotableIntegerType() ?
2697             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2698   }
2699 
2700   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
2701     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
2702 
2703   // Compute the byval alignment. We specify the alignment of the byval in all
2704   // cases so that the mid-level optimizer knows the alignment of the byval.
2705   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
2706 
2707   // Attempt to avoid passing indirect results using byval when possible. This
2708   // is important for good codegen.
2709   //
2710   // We do this by coercing the value into a scalar type which the backend can
2711   // handle naturally (i.e., without using byval).
2712   //
2713   // For simplicity, we currently only do this when we have exhausted all of the
2714   // free integer registers. Doing this when there are free integer registers
2715   // would require more care, as we would have to ensure that the coerced value
2716   // did not claim the unused register. That would require either reording the
2717   // arguments to the function (so that any subsequent inreg values came first),
2718   // or only doing this optimization when there were no following arguments that
2719   // might be inreg.
2720   //
2721   // We currently expect it to be rare (particularly in well written code) for
2722   // arguments to be passed on the stack when there are still free integer
2723   // registers available (this would typically imply large structs being passed
2724   // by value), so this seems like a fair tradeoff for now.
2725   //
2726   // We can revisit this if the backend grows support for 'onstack' parameter
2727   // attributes. See PR12193.
2728   if (freeIntRegs == 0) {
2729     uint64_t Size = getContext().getTypeSize(Ty);
2730 
2731     // If this type fits in an eightbyte, coerce it into the matching integral
2732     // type, which will end up on the stack (with alignment 8).
2733     if (Align == 8 && Size <= 64)
2734       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2735                                                           Size));
2736   }
2737 
2738   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align));
2739 }
2740 
2741 /// The ABI specifies that a value should be passed in a full vector XMM/YMM
2742 /// register. Pick an LLVM IR type that will be passed as a vector register.
2743 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
2744   // Wrapper structs/arrays that only contain vectors are passed just like
2745   // vectors; strip them off if present.
2746   if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
2747     Ty = QualType(InnerTy, 0);
2748 
2749   llvm::Type *IRType = CGT.ConvertType(Ty);
2750   if (isa<llvm::VectorType>(IRType) ||
2751       IRType->getTypeID() == llvm::Type::FP128TyID)
2752     return IRType;
2753 
2754   // We couldn't find the preferred IR vector type for 'Ty'.
2755   uint64_t Size = getContext().getTypeSize(Ty);
2756   assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!");
2757 
2758   // Return a LLVM IR vector type based on the size of 'Ty'.
2759   return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()),
2760                                Size / 64);
2761 }
2762 
2763 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
2764 /// is known to either be off the end of the specified type or being in
2765 /// alignment padding.  The user type specified is known to be at most 128 bits
2766 /// in size, and have passed through X86_64ABIInfo::classify with a successful
2767 /// classification that put one of the two halves in the INTEGER class.
2768 ///
2769 /// It is conservatively correct to return false.
2770 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
2771                                   unsigned EndBit, ASTContext &Context) {
2772   // If the bytes being queried are off the end of the type, there is no user
2773   // data hiding here.  This handles analysis of builtins, vectors and other
2774   // types that don't contain interesting padding.
2775   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
2776   if (TySize <= StartBit)
2777     return true;
2778 
2779   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
2780     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
2781     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
2782 
2783     // Check each element to see if the element overlaps with the queried range.
2784     for (unsigned i = 0; i != NumElts; ++i) {
2785       // If the element is after the span we care about, then we're done..
2786       unsigned EltOffset = i*EltSize;
2787       if (EltOffset >= EndBit) break;
2788 
2789       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
2790       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
2791                                  EndBit-EltOffset, Context))
2792         return false;
2793     }
2794     // If it overlaps no elements, then it is safe to process as padding.
2795     return true;
2796   }
2797 
2798   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2799     const RecordDecl *RD = RT->getDecl();
2800     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
2801 
2802     // If this is a C++ record, check the bases first.
2803     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2804       for (const auto &I : CXXRD->bases()) {
2805         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2806                "Unexpected base class!");
2807         const CXXRecordDecl *Base =
2808           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2809 
2810         // If the base is after the span we care about, ignore it.
2811         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
2812         if (BaseOffset >= EndBit) continue;
2813 
2814         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
2815         if (!BitsContainNoUserData(I.getType(), BaseStart,
2816                                    EndBit-BaseOffset, Context))
2817           return false;
2818       }
2819     }
2820 
2821     // Verify that no field has data that overlaps the region of interest.  Yes
2822     // this could be sped up a lot by being smarter about queried fields,
2823     // however we're only looking at structs up to 16 bytes, so we don't care
2824     // much.
2825     unsigned idx = 0;
2826     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2827          i != e; ++i, ++idx) {
2828       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
2829 
2830       // If we found a field after the region we care about, then we're done.
2831       if (FieldOffset >= EndBit) break;
2832 
2833       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
2834       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
2835                                  Context))
2836         return false;
2837     }
2838 
2839     // If nothing in this record overlapped the area of interest, then we're
2840     // clean.
2841     return true;
2842   }
2843 
2844   return false;
2845 }
2846 
2847 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
2848 /// float member at the specified offset.  For example, {int,{float}} has a
2849 /// float at offset 4.  It is conservatively correct for this routine to return
2850 /// false.
2851 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
2852                                   const llvm::DataLayout &TD) {
2853   // Base case if we find a float.
2854   if (IROffset == 0 && IRType->isFloatTy())
2855     return true;
2856 
2857   // If this is a struct, recurse into the field at the specified offset.
2858   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2859     const llvm::StructLayout *SL = TD.getStructLayout(STy);
2860     unsigned Elt = SL->getElementContainingOffset(IROffset);
2861     IROffset -= SL->getElementOffset(Elt);
2862     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
2863   }
2864 
2865   // If this is an array, recurse into the field at the specified offset.
2866   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2867     llvm::Type *EltTy = ATy->getElementType();
2868     unsigned EltSize = TD.getTypeAllocSize(EltTy);
2869     IROffset -= IROffset/EltSize*EltSize;
2870     return ContainsFloatAtOffset(EltTy, IROffset, TD);
2871   }
2872 
2873   return false;
2874 }
2875 
2876 
2877 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
2878 /// low 8 bytes of an XMM register, corresponding to the SSE class.
2879 llvm::Type *X86_64ABIInfo::
2880 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2881                    QualType SourceTy, unsigned SourceOffset) const {
2882   // The only three choices we have are either double, <2 x float>, or float. We
2883   // pass as float if the last 4 bytes is just padding.  This happens for
2884   // structs that contain 3 floats.
2885   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
2886                             SourceOffset*8+64, getContext()))
2887     return llvm::Type::getFloatTy(getVMContext());
2888 
2889   // We want to pass as <2 x float> if the LLVM IR type contains a float at
2890   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
2891   // case.
2892   if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
2893       ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
2894     return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
2895 
2896   return llvm::Type::getDoubleTy(getVMContext());
2897 }
2898 
2899 
2900 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
2901 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
2902 /// about the high or low part of an up-to-16-byte struct.  This routine picks
2903 /// the best LLVM IR type to represent this, which may be i64 or may be anything
2904 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
2905 /// etc).
2906 ///
2907 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
2908 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
2909 /// the 8-byte value references.  PrefType may be null.
2910 ///
2911 /// SourceTy is the source-level type for the entire argument.  SourceOffset is
2912 /// an offset into this that we're processing (which is always either 0 or 8).
2913 ///
2914 llvm::Type *X86_64ABIInfo::
2915 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2916                        QualType SourceTy, unsigned SourceOffset) const {
2917   // If we're dealing with an un-offset LLVM IR type, then it means that we're
2918   // returning an 8-byte unit starting with it.  See if we can safely use it.
2919   if (IROffset == 0) {
2920     // Pointers and int64's always fill the 8-byte unit.
2921     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
2922         IRType->isIntegerTy(64))
2923       return IRType;
2924 
2925     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
2926     // goodness in the source type is just tail padding.  This is allowed to
2927     // kick in for struct {double,int} on the int, but not on
2928     // struct{double,int,int} because we wouldn't return the second int.  We
2929     // have to do this analysis on the source type because we can't depend on
2930     // unions being lowered a specific way etc.
2931     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
2932         IRType->isIntegerTy(32) ||
2933         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
2934       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
2935           cast<llvm::IntegerType>(IRType)->getBitWidth();
2936 
2937       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
2938                                 SourceOffset*8+64, getContext()))
2939         return IRType;
2940     }
2941   }
2942 
2943   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2944     // If this is a struct, recurse into the field at the specified offset.
2945     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
2946     if (IROffset < SL->getSizeInBytes()) {
2947       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
2948       IROffset -= SL->getElementOffset(FieldIdx);
2949 
2950       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
2951                                     SourceTy, SourceOffset);
2952     }
2953   }
2954 
2955   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2956     llvm::Type *EltTy = ATy->getElementType();
2957     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
2958     unsigned EltOffset = IROffset/EltSize*EltSize;
2959     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
2960                                   SourceOffset);
2961   }
2962 
2963   // Okay, we don't have any better idea of what to pass, so we pass this in an
2964   // integer register that isn't too big to fit the rest of the struct.
2965   unsigned TySizeInBytes =
2966     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
2967 
2968   assert(TySizeInBytes != SourceOffset && "Empty field?");
2969 
2970   // It is always safe to classify this as an integer type up to i64 that
2971   // isn't larger than the structure.
2972   return llvm::IntegerType::get(getVMContext(),
2973                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
2974 }
2975 
2976 
2977 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
2978 /// be used as elements of a two register pair to pass or return, return a
2979 /// first class aggregate to represent them.  For example, if the low part of
2980 /// a by-value argument should be passed as i32* and the high part as float,
2981 /// return {i32*, float}.
2982 static llvm::Type *
2983 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
2984                            const llvm::DataLayout &TD) {
2985   // In order to correctly satisfy the ABI, we need to the high part to start
2986   // at offset 8.  If the high and low parts we inferred are both 4-byte types
2987   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
2988   // the second element at offset 8.  Check for this:
2989   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
2990   unsigned HiAlign = TD.getABITypeAlignment(Hi);
2991   unsigned HiStart = llvm::alignTo(LoSize, HiAlign);
2992   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
2993 
2994   // To handle this, we have to increase the size of the low part so that the
2995   // second element will start at an 8 byte offset.  We can't increase the size
2996   // of the second element because it might make us access off the end of the
2997   // struct.
2998   if (HiStart != 8) {
2999     // There are usually two sorts of types the ABI generation code can produce
3000     // for the low part of a pair that aren't 8 bytes in size: float or
3001     // i8/i16/i32.  This can also include pointers when they are 32-bit (X32 and
3002     // NaCl).
3003     // Promote these to a larger type.
3004     if (Lo->isFloatTy())
3005       Lo = llvm::Type::getDoubleTy(Lo->getContext());
3006     else {
3007       assert((Lo->isIntegerTy() || Lo->isPointerTy())
3008              && "Invalid/unknown lo type");
3009       Lo = llvm::Type::getInt64Ty(Lo->getContext());
3010     }
3011   }
3012 
3013   llvm::StructType *Result = llvm::StructType::get(Lo, Hi, nullptr);
3014 
3015 
3016   // Verify that the second element is at an 8-byte offset.
3017   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
3018          "Invalid x86-64 argument pair!");
3019   return Result;
3020 }
3021 
3022 ABIArgInfo X86_64ABIInfo::
3023 classifyReturnType(QualType RetTy) const {
3024   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
3025   // classification algorithm.
3026   X86_64ABIInfo::Class Lo, Hi;
3027   classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
3028 
3029   // Check some invariants.
3030   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3031   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3032 
3033   llvm::Type *ResType = nullptr;
3034   switch (Lo) {
3035   case NoClass:
3036     if (Hi == NoClass)
3037       return ABIArgInfo::getIgnore();
3038     // If the low part is just padding, it takes no register, leave ResType
3039     // null.
3040     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3041            "Unknown missing lo part");
3042     break;
3043 
3044   case SSEUp:
3045   case X87Up:
3046     llvm_unreachable("Invalid classification for lo word.");
3047 
3048     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
3049     // hidden argument.
3050   case Memory:
3051     return getIndirectReturnResult(RetTy);
3052 
3053     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
3054     // available register of the sequence %rax, %rdx is used.
3055   case Integer:
3056     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3057 
3058     // If we have a sign or zero extended integer, make sure to return Extend
3059     // so that the parameter gets the right LLVM IR attributes.
3060     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3061       // Treat an enum type as its underlying type.
3062       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3063         RetTy = EnumTy->getDecl()->getIntegerType();
3064 
3065       if (RetTy->isIntegralOrEnumerationType() &&
3066           RetTy->isPromotableIntegerType())
3067         return ABIArgInfo::getExtend();
3068     }
3069     break;
3070 
3071     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
3072     // available SSE register of the sequence %xmm0, %xmm1 is used.
3073   case SSE:
3074     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3075     break;
3076 
3077     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
3078     // returned on the X87 stack in %st0 as 80-bit x87 number.
3079   case X87:
3080     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
3081     break;
3082 
3083     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
3084     // part of the value is returned in %st0 and the imaginary part in
3085     // %st1.
3086   case ComplexX87:
3087     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
3088     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
3089                                     llvm::Type::getX86_FP80Ty(getVMContext()),
3090                                     nullptr);
3091     break;
3092   }
3093 
3094   llvm::Type *HighPart = nullptr;
3095   switch (Hi) {
3096     // Memory was handled previously and X87 should
3097     // never occur as a hi class.
3098   case Memory:
3099   case X87:
3100     llvm_unreachable("Invalid classification for hi word.");
3101 
3102   case ComplexX87: // Previously handled.
3103   case NoClass:
3104     break;
3105 
3106   case Integer:
3107     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3108     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3109       return ABIArgInfo::getDirect(HighPart, 8);
3110     break;
3111   case SSE:
3112     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3113     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3114       return ABIArgInfo::getDirect(HighPart, 8);
3115     break;
3116 
3117     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
3118     // is passed in the next available eightbyte chunk if the last used
3119     // vector register.
3120     //
3121     // SSEUP should always be preceded by SSE, just widen.
3122   case SSEUp:
3123     assert(Lo == SSE && "Unexpected SSEUp classification.");
3124     ResType = GetByteVectorType(RetTy);
3125     break;
3126 
3127     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
3128     // returned together with the previous X87 value in %st0.
3129   case X87Up:
3130     // If X87Up is preceded by X87, we don't need to do
3131     // anything. However, in some cases with unions it may not be
3132     // preceded by X87. In such situations we follow gcc and pass the
3133     // extra bits in an SSE reg.
3134     if (Lo != X87) {
3135       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3136       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3137         return ABIArgInfo::getDirect(HighPart, 8);
3138     }
3139     break;
3140   }
3141 
3142   // If a high part was specified, merge it together with the low part.  It is
3143   // known to pass in the high eightbyte of the result.  We do this by forming a
3144   // first class struct aggregate with the high and low part: {low, high}
3145   if (HighPart)
3146     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3147 
3148   return ABIArgInfo::getDirect(ResType);
3149 }
3150 
3151 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
3152   QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
3153   bool isNamedArg)
3154   const
3155 {
3156   Ty = useFirstFieldIfTransparentUnion(Ty);
3157 
3158   X86_64ABIInfo::Class Lo, Hi;
3159   classify(Ty, 0, Lo, Hi, isNamedArg);
3160 
3161   // Check some invariants.
3162   // FIXME: Enforce these by construction.
3163   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3164   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3165 
3166   neededInt = 0;
3167   neededSSE = 0;
3168   llvm::Type *ResType = nullptr;
3169   switch (Lo) {
3170   case NoClass:
3171     if (Hi == NoClass)
3172       return ABIArgInfo::getIgnore();
3173     // If the low part is just padding, it takes no register, leave ResType
3174     // null.
3175     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3176            "Unknown missing lo part");
3177     break;
3178 
3179     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
3180     // on the stack.
3181   case Memory:
3182 
3183     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
3184     // COMPLEX_X87, it is passed in memory.
3185   case X87:
3186   case ComplexX87:
3187     if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
3188       ++neededInt;
3189     return getIndirectResult(Ty, freeIntRegs);
3190 
3191   case SSEUp:
3192   case X87Up:
3193     llvm_unreachable("Invalid classification for lo word.");
3194 
3195     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
3196     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
3197     // and %r9 is used.
3198   case Integer:
3199     ++neededInt;
3200 
3201     // Pick an 8-byte type based on the preferred type.
3202     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
3203 
3204     // If we have a sign or zero extended integer, make sure to return Extend
3205     // so that the parameter gets the right LLVM IR attributes.
3206     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3207       // Treat an enum type as its underlying type.
3208       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3209         Ty = EnumTy->getDecl()->getIntegerType();
3210 
3211       if (Ty->isIntegralOrEnumerationType() &&
3212           Ty->isPromotableIntegerType())
3213         return ABIArgInfo::getExtend();
3214     }
3215 
3216     break;
3217 
3218     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
3219     // available SSE register is used, the registers are taken in the
3220     // order from %xmm0 to %xmm7.
3221   case SSE: {
3222     llvm::Type *IRType = CGT.ConvertType(Ty);
3223     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
3224     ++neededSSE;
3225     break;
3226   }
3227   }
3228 
3229   llvm::Type *HighPart = nullptr;
3230   switch (Hi) {
3231     // Memory was handled previously, ComplexX87 and X87 should
3232     // never occur as hi classes, and X87Up must be preceded by X87,
3233     // which is passed in memory.
3234   case Memory:
3235   case X87:
3236   case ComplexX87:
3237     llvm_unreachable("Invalid classification for hi word.");
3238 
3239   case NoClass: break;
3240 
3241   case Integer:
3242     ++neededInt;
3243     // Pick an 8-byte type based on the preferred type.
3244     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3245 
3246     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3247       return ABIArgInfo::getDirect(HighPart, 8);
3248     break;
3249 
3250     // X87Up generally doesn't occur here (long double is passed in
3251     // memory), except in situations involving unions.
3252   case X87Up:
3253   case SSE:
3254     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3255 
3256     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3257       return ABIArgInfo::getDirect(HighPart, 8);
3258 
3259     ++neededSSE;
3260     break;
3261 
3262     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
3263     // eightbyte is passed in the upper half of the last used SSE
3264     // register.  This only happens when 128-bit vectors are passed.
3265   case SSEUp:
3266     assert(Lo == SSE && "Unexpected SSEUp classification");
3267     ResType = GetByteVectorType(Ty);
3268     break;
3269   }
3270 
3271   // If a high part was specified, merge it together with the low part.  It is
3272   // known to pass in the high eightbyte of the result.  We do this by forming a
3273   // first class struct aggregate with the high and low part: {low, high}
3274   if (HighPart)
3275     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3276 
3277   return ABIArgInfo::getDirect(ResType);
3278 }
3279 
3280 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3281 
3282   if (!getCXXABI().classifyReturnType(FI))
3283     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3284 
3285   // Keep track of the number of assigned registers.
3286   unsigned freeIntRegs = 6, freeSSERegs = 8;
3287 
3288   // If the return value is indirect, then the hidden argument is consuming one
3289   // integer register.
3290   if (FI.getReturnInfo().isIndirect())
3291     --freeIntRegs;
3292 
3293   // The chain argument effectively gives us another free register.
3294   if (FI.isChainCall())
3295     ++freeIntRegs;
3296 
3297   unsigned NumRequiredArgs = FI.getNumRequiredArgs();
3298   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
3299   // get assigned (in left-to-right order) for passing as follows...
3300   unsigned ArgNo = 0;
3301   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3302        it != ie; ++it, ++ArgNo) {
3303     bool IsNamedArg = ArgNo < NumRequiredArgs;
3304 
3305     unsigned neededInt, neededSSE;
3306     it->info = classifyArgumentType(it->type, freeIntRegs, neededInt,
3307                                     neededSSE, IsNamedArg);
3308 
3309     // AMD64-ABI 3.2.3p3: If there are no registers available for any
3310     // eightbyte of an argument, the whole argument is passed on the
3311     // stack. If registers have already been assigned for some
3312     // eightbytes of such an argument, the assignments get reverted.
3313     if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
3314       freeIntRegs -= neededInt;
3315       freeSSERegs -= neededSSE;
3316     } else {
3317       it->info = getIndirectResult(it->type, freeIntRegs);
3318     }
3319   }
3320 }
3321 
3322 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF,
3323                                          Address VAListAddr, QualType Ty) {
3324   Address overflow_arg_area_p = CGF.Builder.CreateStructGEP(
3325       VAListAddr, 2, CharUnits::fromQuantity(8), "overflow_arg_area_p");
3326   llvm::Value *overflow_arg_area =
3327     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
3328 
3329   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
3330   // byte boundary if alignment needed by type exceeds 8 byte boundary.
3331   // It isn't stated explicitly in the standard, but in practice we use
3332   // alignment greater than 16 where necessary.
3333   CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
3334   if (Align > CharUnits::fromQuantity(8)) {
3335     overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area,
3336                                                       Align);
3337   }
3338 
3339   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
3340   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3341   llvm::Value *Res =
3342     CGF.Builder.CreateBitCast(overflow_arg_area,
3343                               llvm::PointerType::getUnqual(LTy));
3344 
3345   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
3346   // l->overflow_arg_area + sizeof(type).
3347   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
3348   // an 8 byte boundary.
3349 
3350   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
3351   llvm::Value *Offset =
3352       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
3353   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
3354                                             "overflow_arg_area.next");
3355   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
3356 
3357   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
3358   return Address(Res, Align);
3359 }
3360 
3361 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3362                                  QualType Ty) const {
3363   // Assume that va_list type is correct; should be pointer to LLVM type:
3364   // struct {
3365   //   i32 gp_offset;
3366   //   i32 fp_offset;
3367   //   i8* overflow_arg_area;
3368   //   i8* reg_save_area;
3369   // };
3370   unsigned neededInt, neededSSE;
3371 
3372   Ty = getContext().getCanonicalType(Ty);
3373   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
3374                                        /*isNamedArg*/false);
3375 
3376   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
3377   // in the registers. If not go to step 7.
3378   if (!neededInt && !neededSSE)
3379     return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3380 
3381   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
3382   // general purpose registers needed to pass type and num_fp to hold
3383   // the number of floating point registers needed.
3384 
3385   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
3386   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
3387   // l->fp_offset > 304 - num_fp * 16 go to step 7.
3388   //
3389   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
3390   // register save space).
3391 
3392   llvm::Value *InRegs = nullptr;
3393   Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid();
3394   llvm::Value *gp_offset = nullptr, *fp_offset = nullptr;
3395   if (neededInt) {
3396     gp_offset_p =
3397         CGF.Builder.CreateStructGEP(VAListAddr, 0, CharUnits::Zero(),
3398                                     "gp_offset_p");
3399     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
3400     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
3401     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
3402   }
3403 
3404   if (neededSSE) {
3405     fp_offset_p =
3406         CGF.Builder.CreateStructGEP(VAListAddr, 1, CharUnits::fromQuantity(4),
3407                                     "fp_offset_p");
3408     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
3409     llvm::Value *FitsInFP =
3410       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
3411     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
3412     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
3413   }
3414 
3415   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
3416   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
3417   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
3418   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
3419 
3420   // Emit code to load the value if it was passed in registers.
3421 
3422   CGF.EmitBlock(InRegBlock);
3423 
3424   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
3425   // an offset of l->gp_offset and/or l->fp_offset. This may require
3426   // copying to a temporary location in case the parameter is passed
3427   // in different register classes or requires an alignment greater
3428   // than 8 for general purpose registers and 16 for XMM registers.
3429   //
3430   // FIXME: This really results in shameful code when we end up needing to
3431   // collect arguments from different places; often what should result in a
3432   // simple assembling of a structure from scattered addresses has many more
3433   // loads than necessary. Can we clean this up?
3434   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3435   llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(
3436       CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(16)),
3437                                   "reg_save_area");
3438 
3439   Address RegAddr = Address::invalid();
3440   if (neededInt && neededSSE) {
3441     // FIXME: Cleanup.
3442     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
3443     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
3444     Address Tmp = CGF.CreateMemTemp(Ty);
3445     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
3446     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
3447     llvm::Type *TyLo = ST->getElementType(0);
3448     llvm::Type *TyHi = ST->getElementType(1);
3449     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
3450            "Unexpected ABI info for mixed regs");
3451     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
3452     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
3453     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset);
3454     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset);
3455     llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
3456     llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
3457 
3458     // Copy the first element.
3459     llvm::Value *V =
3460       CGF.Builder.CreateDefaultAlignedLoad(
3461                                CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
3462     CGF.Builder.CreateStore(V,
3463                     CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero()));
3464 
3465     // Copy the second element.
3466     V = CGF.Builder.CreateDefaultAlignedLoad(
3467                                CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
3468     CharUnits Offset = CharUnits::fromQuantity(
3469                    getDataLayout().getStructLayout(ST)->getElementOffset(1));
3470     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1, Offset));
3471 
3472     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
3473   } else if (neededInt) {
3474     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset),
3475                       CharUnits::fromQuantity(8));
3476     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
3477 
3478     // Copy to a temporary if necessary to ensure the appropriate alignment.
3479     std::pair<CharUnits, CharUnits> SizeAlign =
3480         getContext().getTypeInfoInChars(Ty);
3481     uint64_t TySize = SizeAlign.first.getQuantity();
3482     CharUnits TyAlign = SizeAlign.second;
3483 
3484     // Copy into a temporary if the type is more aligned than the
3485     // register save area.
3486     if (TyAlign.getQuantity() > 8) {
3487       Address Tmp = CGF.CreateMemTemp(Ty);
3488       CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false);
3489       RegAddr = Tmp;
3490     }
3491 
3492   } else if (neededSSE == 1) {
3493     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
3494                       CharUnits::fromQuantity(16));
3495     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
3496   } else {
3497     assert(neededSSE == 2 && "Invalid number of needed registers!");
3498     // SSE registers are spaced 16 bytes apart in the register save
3499     // area, we need to collect the two eightbytes together.
3500     // The ABI isn't explicit about this, but it seems reasonable
3501     // to assume that the slots are 16-byte aligned, since the stack is
3502     // naturally 16-byte aligned and the prologue is expected to store
3503     // all the SSE registers to the RSA.
3504     Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
3505                                 CharUnits::fromQuantity(16));
3506     Address RegAddrHi =
3507       CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo,
3508                                              CharUnits::fromQuantity(16));
3509     llvm::Type *DoubleTy = CGF.DoubleTy;
3510     llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, nullptr);
3511     llvm::Value *V;
3512     Address Tmp = CGF.CreateMemTemp(Ty);
3513     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
3514     V = CGF.Builder.CreateLoad(
3515                    CGF.Builder.CreateElementBitCast(RegAddrLo, DoubleTy));
3516     CGF.Builder.CreateStore(V,
3517                    CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero()));
3518     V = CGF.Builder.CreateLoad(
3519                    CGF.Builder.CreateElementBitCast(RegAddrHi, DoubleTy));
3520     CGF.Builder.CreateStore(V,
3521           CGF.Builder.CreateStructGEP(Tmp, 1, CharUnits::fromQuantity(8)));
3522 
3523     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
3524   }
3525 
3526   // AMD64-ABI 3.5.7p5: Step 5. Set:
3527   // l->gp_offset = l->gp_offset + num_gp * 8
3528   // l->fp_offset = l->fp_offset + num_fp * 16.
3529   if (neededInt) {
3530     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
3531     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
3532                             gp_offset_p);
3533   }
3534   if (neededSSE) {
3535     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
3536     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
3537                             fp_offset_p);
3538   }
3539   CGF.EmitBranch(ContBlock);
3540 
3541   // Emit code to load the value if it was passed in memory.
3542 
3543   CGF.EmitBlock(InMemBlock);
3544   Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3545 
3546   // Return the appropriate result.
3547 
3548   CGF.EmitBlock(ContBlock);
3549   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
3550                                  "vaarg.addr");
3551   return ResAddr;
3552 }
3553 
3554 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
3555                                    QualType Ty) const {
3556   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
3557                           CGF.getContext().getTypeInfoInChars(Ty),
3558                           CharUnits::fromQuantity(8),
3559                           /*allowHigherAlign*/ false);
3560 }
3561 
3562 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
3563                                       bool IsReturnType) const {
3564 
3565   if (Ty->isVoidType())
3566     return ABIArgInfo::getIgnore();
3567 
3568   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3569     Ty = EnumTy->getDecl()->getIntegerType();
3570 
3571   TypeInfo Info = getContext().getTypeInfo(Ty);
3572   uint64_t Width = Info.Width;
3573   CharUnits Align = getContext().toCharUnitsFromBits(Info.Align);
3574 
3575   const RecordType *RT = Ty->getAs<RecordType>();
3576   if (RT) {
3577     if (!IsReturnType) {
3578       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
3579         return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
3580     }
3581 
3582     if (RT->getDecl()->hasFlexibleArrayMember())
3583       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3584 
3585   }
3586 
3587   // vectorcall adds the concept of a homogenous vector aggregate, similar to
3588   // other targets.
3589   const Type *Base = nullptr;
3590   uint64_t NumElts = 0;
3591   if (FreeSSERegs && isHomogeneousAggregate(Ty, Base, NumElts)) {
3592     if (FreeSSERegs >= NumElts) {
3593       FreeSSERegs -= NumElts;
3594       if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
3595         return ABIArgInfo::getDirect();
3596       return ABIArgInfo::getExpand();
3597     }
3598     return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3599   }
3600 
3601 
3602   if (Ty->isMemberPointerType()) {
3603     // If the member pointer is represented by an LLVM int or ptr, pass it
3604     // directly.
3605     llvm::Type *LLTy = CGT.ConvertType(Ty);
3606     if (LLTy->isPointerTy() || LLTy->isIntegerTy())
3607       return ABIArgInfo::getDirect();
3608   }
3609 
3610   if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
3611     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
3612     // not 1, 2, 4, or 8 bytes, must be passed by reference."
3613     if (Width > 64 || !llvm::isPowerOf2_64(Width))
3614       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3615 
3616     // Otherwise, coerce it to a small integer.
3617     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
3618   }
3619 
3620   // Bool type is always extended to the ABI, other builtin types are not
3621   // extended.
3622   const BuiltinType *BT = Ty->getAs<BuiltinType>();
3623   if (BT && BT->getKind() == BuiltinType::Bool)
3624     return ABIArgInfo::getExtend();
3625 
3626   // Mingw64 GCC uses the old 80 bit extended precision floating point unit. It
3627   // passes them indirectly through memory.
3628   if (IsMingw64 && BT && BT->getKind() == BuiltinType::LongDouble) {
3629     const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
3630     if (LDF == &llvm::APFloat::x87DoubleExtended)
3631       return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3632   }
3633 
3634   return ABIArgInfo::getDirect();
3635 }
3636 
3637 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3638   bool IsVectorCall =
3639       FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall;
3640 
3641   // We can use up to 4 SSE return registers with vectorcall.
3642   unsigned FreeSSERegs = IsVectorCall ? 4 : 0;
3643   if (!getCXXABI().classifyReturnType(FI))
3644     FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true);
3645 
3646   // We can use up to 6 SSE register parameters with vectorcall.
3647   FreeSSERegs = IsVectorCall ? 6 : 0;
3648   for (auto &I : FI.arguments())
3649     I.info = classify(I.type, FreeSSERegs, false);
3650 }
3651 
3652 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3653                                     QualType Ty) const {
3654   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
3655                           CGF.getContext().getTypeInfoInChars(Ty),
3656                           CharUnits::fromQuantity(8),
3657                           /*allowHigherAlign*/ false);
3658 }
3659 
3660 // PowerPC-32
3661 namespace {
3662 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
3663 class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
3664 bool IsSoftFloatABI;
3665 public:
3666   PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI)
3667       : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI) {}
3668 
3669   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3670                     QualType Ty) const override;
3671 };
3672 
3673 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
3674 public:
3675   PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI)
3676       : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT, SoftFloatABI)) {}
3677 
3678   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3679     // This is recovered from gcc output.
3680     return 1; // r1 is the dedicated stack pointer
3681   }
3682 
3683   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3684                                llvm::Value *Address) const override;
3685 };
3686 
3687 }
3688 
3689 // TODO: this implementation is now likely redundant with
3690 // DefaultABIInfo::EmitVAArg.
3691 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList,
3692                                       QualType Ty) const {
3693   const unsigned OverflowLimit = 8;
3694   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
3695     // TODO: Implement this. For now ignore.
3696     (void)CTy;
3697     return Address::invalid(); // FIXME?
3698   }
3699 
3700   // struct __va_list_tag {
3701   //   unsigned char gpr;
3702   //   unsigned char fpr;
3703   //   unsigned short reserved;
3704   //   void *overflow_arg_area;
3705   //   void *reg_save_area;
3706   // };
3707 
3708   bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
3709   bool isInt =
3710       Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType();
3711   bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64;
3712 
3713   // All aggregates are passed indirectly?  That doesn't seem consistent
3714   // with the argument-lowering code.
3715   bool isIndirect = Ty->isAggregateType();
3716 
3717   CGBuilderTy &Builder = CGF.Builder;
3718 
3719   // The calling convention either uses 1-2 GPRs or 1 FPR.
3720   Address NumRegsAddr = Address::invalid();
3721   if (isInt || IsSoftFloatABI) {
3722     NumRegsAddr = Builder.CreateStructGEP(VAList, 0, CharUnits::Zero(), "gpr");
3723   } else {
3724     NumRegsAddr = Builder.CreateStructGEP(VAList, 1, CharUnits::One(), "fpr");
3725   }
3726 
3727   llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs");
3728 
3729   // "Align" the register count when TY is i64.
3730   if (isI64 || (isF64 && IsSoftFloatABI)) {
3731     NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1));
3732     NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U));
3733   }
3734 
3735   llvm::Value *CC =
3736       Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond");
3737 
3738   llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
3739   llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
3740   llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
3741 
3742   Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
3743 
3744   llvm::Type *DirectTy = CGF.ConvertType(Ty);
3745   if (isIndirect) DirectTy = DirectTy->getPointerTo(0);
3746 
3747   // Case 1: consume registers.
3748   Address RegAddr = Address::invalid();
3749   {
3750     CGF.EmitBlock(UsingRegs);
3751 
3752     Address RegSaveAreaPtr =
3753       Builder.CreateStructGEP(VAList, 4, CharUnits::fromQuantity(8));
3754     RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr),
3755                       CharUnits::fromQuantity(8));
3756     assert(RegAddr.getElementType() == CGF.Int8Ty);
3757 
3758     // Floating-point registers start after the general-purpose registers.
3759     if (!(isInt || IsSoftFloatABI)) {
3760       RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr,
3761                                                    CharUnits::fromQuantity(32));
3762     }
3763 
3764     // Get the address of the saved value by scaling the number of
3765     // registers we've used by the number of
3766     CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8);
3767     llvm::Value *RegOffset =
3768       Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity()));
3769     RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty,
3770                                             RegAddr.getPointer(), RegOffset),
3771                       RegAddr.getAlignment().alignmentOfArrayElement(RegSize));
3772     RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy);
3773 
3774     // Increase the used-register count.
3775     NumRegs =
3776       Builder.CreateAdd(NumRegs,
3777                         Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1));
3778     Builder.CreateStore(NumRegs, NumRegsAddr);
3779 
3780     CGF.EmitBranch(Cont);
3781   }
3782 
3783   // Case 2: consume space in the overflow area.
3784   Address MemAddr = Address::invalid();
3785   {
3786     CGF.EmitBlock(UsingOverflow);
3787 
3788     Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr);
3789 
3790     // Everything in the overflow area is rounded up to a size of at least 4.
3791     CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4);
3792 
3793     CharUnits Size;
3794     if (!isIndirect) {
3795       auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty);
3796       Size = TypeInfo.first.alignTo(OverflowAreaAlign);
3797     } else {
3798       Size = CGF.getPointerSize();
3799     }
3800 
3801     Address OverflowAreaAddr =
3802       Builder.CreateStructGEP(VAList, 3, CharUnits::fromQuantity(4));
3803     Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"),
3804                          OverflowAreaAlign);
3805     // Round up address of argument to alignment
3806     CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
3807     if (Align > OverflowAreaAlign) {
3808       llvm::Value *Ptr = OverflowArea.getPointer();
3809       OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align),
3810                                                            Align);
3811     }
3812 
3813     MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy);
3814 
3815     // Increase the overflow area.
3816     OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size);
3817     Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr);
3818     CGF.EmitBranch(Cont);
3819   }
3820 
3821   CGF.EmitBlock(Cont);
3822 
3823   // Merge the cases with a phi.
3824   Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow,
3825                                 "vaarg.addr");
3826 
3827   // Load the pointer if the argument was passed indirectly.
3828   if (isIndirect) {
3829     Result = Address(Builder.CreateLoad(Result, "aggr"),
3830                      getContext().getTypeAlignInChars(Ty));
3831   }
3832 
3833   return Result;
3834 }
3835 
3836 bool
3837 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3838                                                 llvm::Value *Address) const {
3839   // This is calculated from the LLVM and GCC tables and verified
3840   // against gcc output.  AFAIK all ABIs use the same encoding.
3841 
3842   CodeGen::CGBuilderTy &Builder = CGF.Builder;
3843 
3844   llvm::IntegerType *i8 = CGF.Int8Ty;
3845   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
3846   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
3847   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
3848 
3849   // 0-31: r0-31, the 4-byte general-purpose registers
3850   AssignToArrayRange(Builder, Address, Four8, 0, 31);
3851 
3852   // 32-63: fp0-31, the 8-byte floating-point registers
3853   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
3854 
3855   // 64-76 are various 4-byte special-purpose registers:
3856   // 64: mq
3857   // 65: lr
3858   // 66: ctr
3859   // 67: ap
3860   // 68-75 cr0-7
3861   // 76: xer
3862   AssignToArrayRange(Builder, Address, Four8, 64, 76);
3863 
3864   // 77-108: v0-31, the 16-byte vector registers
3865   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
3866 
3867   // 109: vrsave
3868   // 110: vscr
3869   // 111: spe_acc
3870   // 112: spefscr
3871   // 113: sfp
3872   AssignToArrayRange(Builder, Address, Four8, 109, 113);
3873 
3874   return false;
3875 }
3876 
3877 // PowerPC-64
3878 
3879 namespace {
3880 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
3881 class PPC64_SVR4_ABIInfo : public ABIInfo {
3882 public:
3883   enum ABIKind {
3884     ELFv1 = 0,
3885     ELFv2
3886   };
3887 
3888 private:
3889   static const unsigned GPRBits = 64;
3890   ABIKind Kind;
3891   bool HasQPX;
3892 
3893   // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and
3894   // will be passed in a QPX register.
3895   bool IsQPXVectorTy(const Type *Ty) const {
3896     if (!HasQPX)
3897       return false;
3898 
3899     if (const VectorType *VT = Ty->getAs<VectorType>()) {
3900       unsigned NumElements = VT->getNumElements();
3901       if (NumElements == 1)
3902         return false;
3903 
3904       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) {
3905         if (getContext().getTypeSize(Ty) <= 256)
3906           return true;
3907       } else if (VT->getElementType()->
3908                    isSpecificBuiltinType(BuiltinType::Float)) {
3909         if (getContext().getTypeSize(Ty) <= 128)
3910           return true;
3911       }
3912     }
3913 
3914     return false;
3915   }
3916 
3917   bool IsQPXVectorTy(QualType Ty) const {
3918     return IsQPXVectorTy(Ty.getTypePtr());
3919   }
3920 
3921 public:
3922   PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX)
3923       : ABIInfo(CGT), Kind(Kind), HasQPX(HasQPX) {}
3924 
3925   bool isPromotableTypeForABI(QualType Ty) const;
3926   CharUnits getParamTypeAlignment(QualType Ty) const;
3927 
3928   ABIArgInfo classifyReturnType(QualType RetTy) const;
3929   ABIArgInfo classifyArgumentType(QualType Ty) const;
3930 
3931   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
3932   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
3933                                          uint64_t Members) const override;
3934 
3935   // TODO: We can add more logic to computeInfo to improve performance.
3936   // Example: For aggregate arguments that fit in a register, we could
3937   // use getDirectInReg (as is done below for structs containing a single
3938   // floating-point value) to avoid pushing them to memory on function
3939   // entry.  This would require changing the logic in PPCISelLowering
3940   // when lowering the parameters in the caller and args in the callee.
3941   void computeInfo(CGFunctionInfo &FI) const override {
3942     if (!getCXXABI().classifyReturnType(FI))
3943       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3944     for (auto &I : FI.arguments()) {
3945       // We rely on the default argument classification for the most part.
3946       // One exception:  An aggregate containing a single floating-point
3947       // or vector item must be passed in a register if one is available.
3948       const Type *T = isSingleElementStruct(I.type, getContext());
3949       if (T) {
3950         const BuiltinType *BT = T->getAs<BuiltinType>();
3951         if (IsQPXVectorTy(T) ||
3952             (T->isVectorType() && getContext().getTypeSize(T) == 128) ||
3953             (BT && BT->isFloatingPoint())) {
3954           QualType QT(T, 0);
3955           I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
3956           continue;
3957         }
3958       }
3959       I.info = classifyArgumentType(I.type);
3960     }
3961   }
3962 
3963   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3964                     QualType Ty) const override;
3965 };
3966 
3967 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
3968 
3969 public:
3970   PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT,
3971                                PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX)
3972       : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX)) {}
3973 
3974   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3975     // This is recovered from gcc output.
3976     return 1; // r1 is the dedicated stack pointer
3977   }
3978 
3979   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3980                                llvm::Value *Address) const override;
3981 };
3982 
3983 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
3984 public:
3985   PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
3986 
3987   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3988     // This is recovered from gcc output.
3989     return 1; // r1 is the dedicated stack pointer
3990   }
3991 
3992   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3993                                llvm::Value *Address) const override;
3994 };
3995 
3996 }
3997 
3998 // Return true if the ABI requires Ty to be passed sign- or zero-
3999 // extended to 64 bits.
4000 bool
4001 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
4002   // Treat an enum type as its underlying type.
4003   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4004     Ty = EnumTy->getDecl()->getIntegerType();
4005 
4006   // Promotable integer types are required to be promoted by the ABI.
4007   if (Ty->isPromotableIntegerType())
4008     return true;
4009 
4010   // In addition to the usual promotable integer types, we also need to
4011   // extend all 32-bit types, since the ABI requires promotion to 64 bits.
4012   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4013     switch (BT->getKind()) {
4014     case BuiltinType::Int:
4015     case BuiltinType::UInt:
4016       return true;
4017     default:
4018       break;
4019     }
4020 
4021   return false;
4022 }
4023 
4024 /// isAlignedParamType - Determine whether a type requires 16-byte or
4025 /// higher alignment in the parameter area.  Always returns at least 8.
4026 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
4027   // Complex types are passed just like their elements.
4028   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4029     Ty = CTy->getElementType();
4030 
4031   // Only vector types of size 16 bytes need alignment (larger types are
4032   // passed via reference, smaller types are not aligned).
4033   if (IsQPXVectorTy(Ty)) {
4034     if (getContext().getTypeSize(Ty) > 128)
4035       return CharUnits::fromQuantity(32);
4036 
4037     return CharUnits::fromQuantity(16);
4038   } else if (Ty->isVectorType()) {
4039     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8);
4040   }
4041 
4042   // For single-element float/vector structs, we consider the whole type
4043   // to have the same alignment requirements as its single element.
4044   const Type *AlignAsType = nullptr;
4045   const Type *EltType = isSingleElementStruct(Ty, getContext());
4046   if (EltType) {
4047     const BuiltinType *BT = EltType->getAs<BuiltinType>();
4048     if (IsQPXVectorTy(EltType) || (EltType->isVectorType() &&
4049          getContext().getTypeSize(EltType) == 128) ||
4050         (BT && BT->isFloatingPoint()))
4051       AlignAsType = EltType;
4052   }
4053 
4054   // Likewise for ELFv2 homogeneous aggregates.
4055   const Type *Base = nullptr;
4056   uint64_t Members = 0;
4057   if (!AlignAsType && Kind == ELFv2 &&
4058       isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
4059     AlignAsType = Base;
4060 
4061   // With special case aggregates, only vector base types need alignment.
4062   if (AlignAsType && IsQPXVectorTy(AlignAsType)) {
4063     if (getContext().getTypeSize(AlignAsType) > 128)
4064       return CharUnits::fromQuantity(32);
4065 
4066     return CharUnits::fromQuantity(16);
4067   } else if (AlignAsType) {
4068     return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8);
4069   }
4070 
4071   // Otherwise, we only need alignment for any aggregate type that
4072   // has an alignment requirement of >= 16 bytes.
4073   if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) {
4074     if (HasQPX && getContext().getTypeAlign(Ty) >= 256)
4075       return CharUnits::fromQuantity(32);
4076     return CharUnits::fromQuantity(16);
4077   }
4078 
4079   return CharUnits::fromQuantity(8);
4080 }
4081 
4082 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
4083 /// aggregate.  Base is set to the base element type, and Members is set
4084 /// to the number of base elements.
4085 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
4086                                      uint64_t &Members) const {
4087   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
4088     uint64_t NElements = AT->getSize().getZExtValue();
4089     if (NElements == 0)
4090       return false;
4091     if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
4092       return false;
4093     Members *= NElements;
4094   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
4095     const RecordDecl *RD = RT->getDecl();
4096     if (RD->hasFlexibleArrayMember())
4097       return false;
4098 
4099     Members = 0;
4100 
4101     // If this is a C++ record, check the bases first.
4102     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
4103       for (const auto &I : CXXRD->bases()) {
4104         // Ignore empty records.
4105         if (isEmptyRecord(getContext(), I.getType(), true))
4106           continue;
4107 
4108         uint64_t FldMembers;
4109         if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
4110           return false;
4111 
4112         Members += FldMembers;
4113       }
4114     }
4115 
4116     for (const auto *FD : RD->fields()) {
4117       // Ignore (non-zero arrays of) empty records.
4118       QualType FT = FD->getType();
4119       while (const ConstantArrayType *AT =
4120              getContext().getAsConstantArrayType(FT)) {
4121         if (AT->getSize().getZExtValue() == 0)
4122           return false;
4123         FT = AT->getElementType();
4124       }
4125       if (isEmptyRecord(getContext(), FT, true))
4126         continue;
4127 
4128       // For compatibility with GCC, ignore empty bitfields in C++ mode.
4129       if (getContext().getLangOpts().CPlusPlus &&
4130           FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
4131         continue;
4132 
4133       uint64_t FldMembers;
4134       if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
4135         return false;
4136 
4137       Members = (RD->isUnion() ?
4138                  std::max(Members, FldMembers) : Members + FldMembers);
4139     }
4140 
4141     if (!Base)
4142       return false;
4143 
4144     // Ensure there is no padding.
4145     if (getContext().getTypeSize(Base) * Members !=
4146         getContext().getTypeSize(Ty))
4147       return false;
4148   } else {
4149     Members = 1;
4150     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
4151       Members = 2;
4152       Ty = CT->getElementType();
4153     }
4154 
4155     // Most ABIs only support float, double, and some vector type widths.
4156     if (!isHomogeneousAggregateBaseType(Ty))
4157       return false;
4158 
4159     // The base type must be the same for all members.  Types that
4160     // agree in both total size and mode (float vs. vector) are
4161     // treated as being equivalent here.
4162     const Type *TyPtr = Ty.getTypePtr();
4163     if (!Base) {
4164       Base = TyPtr;
4165       // If it's a non-power-of-2 vector, its size is already a power-of-2,
4166       // so make sure to widen it explicitly.
4167       if (const VectorType *VT = Base->getAs<VectorType>()) {
4168         QualType EltTy = VT->getElementType();
4169         unsigned NumElements =
4170             getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy);
4171         Base = getContext()
4172                    .getVectorType(EltTy, NumElements, VT->getVectorKind())
4173                    .getTypePtr();
4174       }
4175     }
4176 
4177     if (Base->isVectorType() != TyPtr->isVectorType() ||
4178         getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
4179       return false;
4180   }
4181   return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
4182 }
4183 
4184 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
4185   // Homogeneous aggregates for ELFv2 must have base types of float,
4186   // double, long double, or 128-bit vectors.
4187   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4188     if (BT->getKind() == BuiltinType::Float ||
4189         BT->getKind() == BuiltinType::Double ||
4190         BT->getKind() == BuiltinType::LongDouble)
4191       return true;
4192   }
4193   if (const VectorType *VT = Ty->getAs<VectorType>()) {
4194     if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty))
4195       return true;
4196   }
4197   return false;
4198 }
4199 
4200 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough(
4201     const Type *Base, uint64_t Members) const {
4202   // Vector types require one register, floating point types require one
4203   // or two registers depending on their size.
4204   uint32_t NumRegs =
4205       Base->isVectorType() ? 1 : (getContext().getTypeSize(Base) + 63) / 64;
4206 
4207   // Homogeneous Aggregates may occupy at most 8 registers.
4208   return Members * NumRegs <= 8;
4209 }
4210 
4211 ABIArgInfo
4212 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
4213   Ty = useFirstFieldIfTransparentUnion(Ty);
4214 
4215   if (Ty->isAnyComplexType())
4216     return ABIArgInfo::getDirect();
4217 
4218   // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
4219   // or via reference (larger than 16 bytes).
4220   if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) {
4221     uint64_t Size = getContext().getTypeSize(Ty);
4222     if (Size > 128)
4223       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4224     else if (Size < 128) {
4225       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
4226       return ABIArgInfo::getDirect(CoerceTy);
4227     }
4228   }
4229 
4230   if (isAggregateTypeForABI(Ty)) {
4231     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
4232       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
4233 
4234     uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity();
4235     uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
4236 
4237     // ELFv2 homogeneous aggregates are passed as array types.
4238     const Type *Base = nullptr;
4239     uint64_t Members = 0;
4240     if (Kind == ELFv2 &&
4241         isHomogeneousAggregate(Ty, Base, Members)) {
4242       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
4243       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
4244       return ABIArgInfo::getDirect(CoerceTy);
4245     }
4246 
4247     // If an aggregate may end up fully in registers, we do not
4248     // use the ByVal method, but pass the aggregate as array.
4249     // This is usually beneficial since we avoid forcing the
4250     // back-end to store the argument to memory.
4251     uint64_t Bits = getContext().getTypeSize(Ty);
4252     if (Bits > 0 && Bits <= 8 * GPRBits) {
4253       llvm::Type *CoerceTy;
4254 
4255       // Types up to 8 bytes are passed as integer type (which will be
4256       // properly aligned in the argument save area doubleword).
4257       if (Bits <= GPRBits)
4258         CoerceTy =
4259             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
4260       // Larger types are passed as arrays, with the base type selected
4261       // according to the required alignment in the save area.
4262       else {
4263         uint64_t RegBits = ABIAlign * 8;
4264         uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits;
4265         llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
4266         CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
4267       }
4268 
4269       return ABIArgInfo::getDirect(CoerceTy);
4270     }
4271 
4272     // All other aggregates are passed ByVal.
4273     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
4274                                    /*ByVal=*/true,
4275                                    /*Realign=*/TyAlign > ABIAlign);
4276   }
4277 
4278   return (isPromotableTypeForABI(Ty) ?
4279           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4280 }
4281 
4282 ABIArgInfo
4283 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
4284   if (RetTy->isVoidType())
4285     return ABIArgInfo::getIgnore();
4286 
4287   if (RetTy->isAnyComplexType())
4288     return ABIArgInfo::getDirect();
4289 
4290   // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
4291   // or via reference (larger than 16 bytes).
4292   if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) {
4293     uint64_t Size = getContext().getTypeSize(RetTy);
4294     if (Size > 128)
4295       return getNaturalAlignIndirect(RetTy);
4296     else if (Size < 128) {
4297       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
4298       return ABIArgInfo::getDirect(CoerceTy);
4299     }
4300   }
4301 
4302   if (isAggregateTypeForABI(RetTy)) {
4303     // ELFv2 homogeneous aggregates are returned as array types.
4304     const Type *Base = nullptr;
4305     uint64_t Members = 0;
4306     if (Kind == ELFv2 &&
4307         isHomogeneousAggregate(RetTy, Base, Members)) {
4308       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
4309       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
4310       return ABIArgInfo::getDirect(CoerceTy);
4311     }
4312 
4313     // ELFv2 small aggregates are returned in up to two registers.
4314     uint64_t Bits = getContext().getTypeSize(RetTy);
4315     if (Kind == ELFv2 && Bits <= 2 * GPRBits) {
4316       if (Bits == 0)
4317         return ABIArgInfo::getIgnore();
4318 
4319       llvm::Type *CoerceTy;
4320       if (Bits > GPRBits) {
4321         CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
4322         CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy, nullptr);
4323       } else
4324         CoerceTy =
4325             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
4326       return ABIArgInfo::getDirect(CoerceTy);
4327     }
4328 
4329     // All other aggregates are returned indirectly.
4330     return getNaturalAlignIndirect(RetTy);
4331   }
4332 
4333   return (isPromotableTypeForABI(RetTy) ?
4334           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4335 }
4336 
4337 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
4338 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4339                                       QualType Ty) const {
4340   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
4341   TypeInfo.second = getParamTypeAlignment(Ty);
4342 
4343   CharUnits SlotSize = CharUnits::fromQuantity(8);
4344 
4345   // If we have a complex type and the base type is smaller than 8 bytes,
4346   // the ABI calls for the real and imaginary parts to be right-adjusted
4347   // in separate doublewords.  However, Clang expects us to produce a
4348   // pointer to a structure with the two parts packed tightly.  So generate
4349   // loads of the real and imaginary parts relative to the va_list pointer,
4350   // and store them to a temporary structure.
4351   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4352     CharUnits EltSize = TypeInfo.first / 2;
4353     if (EltSize < SlotSize) {
4354       Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty,
4355                                             SlotSize * 2, SlotSize,
4356                                             SlotSize, /*AllowHigher*/ true);
4357 
4358       Address RealAddr = Addr;
4359       Address ImagAddr = RealAddr;
4360       if (CGF.CGM.getDataLayout().isBigEndian()) {
4361         RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr,
4362                                                           SlotSize - EltSize);
4363         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr,
4364                                                       2 * SlotSize - EltSize);
4365       } else {
4366         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize);
4367       }
4368 
4369       llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType());
4370       RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy);
4371       ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy);
4372       llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal");
4373       llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag");
4374 
4375       Address Temp = CGF.CreateMemTemp(Ty, "vacplx");
4376       CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty),
4377                              /*init*/ true);
4378       return Temp;
4379     }
4380   }
4381 
4382   // Otherwise, just use the general rule.
4383   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
4384                           TypeInfo, SlotSize, /*AllowHigher*/ true);
4385 }
4386 
4387 static bool
4388 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4389                               llvm::Value *Address) {
4390   // This is calculated from the LLVM and GCC tables and verified
4391   // against gcc output.  AFAIK all ABIs use the same encoding.
4392 
4393   CodeGen::CGBuilderTy &Builder = CGF.Builder;
4394 
4395   llvm::IntegerType *i8 = CGF.Int8Ty;
4396   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
4397   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
4398   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
4399 
4400   // 0-31: r0-31, the 8-byte general-purpose registers
4401   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
4402 
4403   // 32-63: fp0-31, the 8-byte floating-point registers
4404   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
4405 
4406   // 64-76 are various 4-byte special-purpose registers:
4407   // 64: mq
4408   // 65: lr
4409   // 66: ctr
4410   // 67: ap
4411   // 68-75 cr0-7
4412   // 76: xer
4413   AssignToArrayRange(Builder, Address, Four8, 64, 76);
4414 
4415   // 77-108: v0-31, the 16-byte vector registers
4416   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
4417 
4418   // 109: vrsave
4419   // 110: vscr
4420   // 111: spe_acc
4421   // 112: spefscr
4422   // 113: sfp
4423   AssignToArrayRange(Builder, Address, Four8, 109, 113);
4424 
4425   return false;
4426 }
4427 
4428 bool
4429 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
4430   CodeGen::CodeGenFunction &CGF,
4431   llvm::Value *Address) const {
4432 
4433   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
4434 }
4435 
4436 bool
4437 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4438                                                 llvm::Value *Address) const {
4439 
4440   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
4441 }
4442 
4443 //===----------------------------------------------------------------------===//
4444 // AArch64 ABI Implementation
4445 //===----------------------------------------------------------------------===//
4446 
4447 namespace {
4448 
4449 class AArch64ABIInfo : public SwiftABIInfo {
4450 public:
4451   enum ABIKind {
4452     AAPCS = 0,
4453     DarwinPCS
4454   };
4455 
4456 private:
4457   ABIKind Kind;
4458 
4459 public:
4460   AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind)
4461     : SwiftABIInfo(CGT), Kind(Kind) {}
4462 
4463 private:
4464   ABIKind getABIKind() const { return Kind; }
4465   bool isDarwinPCS() const { return Kind == DarwinPCS; }
4466 
4467   ABIArgInfo classifyReturnType(QualType RetTy) const;
4468   ABIArgInfo classifyArgumentType(QualType RetTy) const;
4469   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4470   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4471                                          uint64_t Members) const override;
4472 
4473   bool isIllegalVectorType(QualType Ty) const;
4474 
4475   void computeInfo(CGFunctionInfo &FI) const override {
4476     if (!getCXXABI().classifyReturnType(FI))
4477       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4478 
4479     for (auto &it : FI.arguments())
4480       it.info = classifyArgumentType(it.type);
4481   }
4482 
4483   Address EmitDarwinVAArg(Address VAListAddr, QualType Ty,
4484                           CodeGenFunction &CGF) const;
4485 
4486   Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
4487                          CodeGenFunction &CGF) const;
4488 
4489   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4490                     QualType Ty) const override {
4491     return isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
4492                          : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
4493   }
4494 
4495   bool shouldPassIndirectlyForSwift(CharUnits totalSize,
4496                                     ArrayRef<llvm::Type*> scalars,
4497                                     bool asReturnValue) const override {
4498     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
4499   }
4500 };
4501 
4502 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
4503 public:
4504   AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
4505       : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {}
4506 
4507   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
4508     return "mov\tfp, fp\t\t; marker for objc_retainAutoreleaseReturnValue";
4509   }
4510 
4511   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4512     return 31;
4513   }
4514 
4515   bool doesReturnSlotInterfereWithArgs() const override { return false; }
4516 };
4517 }
4518 
4519 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const {
4520   Ty = useFirstFieldIfTransparentUnion(Ty);
4521 
4522   // Handle illegal vector types here.
4523   if (isIllegalVectorType(Ty)) {
4524     uint64_t Size = getContext().getTypeSize(Ty);
4525     // Android promotes <2 x i8> to i16, not i32
4526     if (isAndroid() && (Size <= 16)) {
4527       llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext());
4528       return ABIArgInfo::getDirect(ResType);
4529     }
4530     if (Size <= 32) {
4531       llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
4532       return ABIArgInfo::getDirect(ResType);
4533     }
4534     if (Size == 64) {
4535       llvm::Type *ResType =
4536           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
4537       return ABIArgInfo::getDirect(ResType);
4538     }
4539     if (Size == 128) {
4540       llvm::Type *ResType =
4541           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
4542       return ABIArgInfo::getDirect(ResType);
4543     }
4544     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4545   }
4546 
4547   if (!isAggregateTypeForABI(Ty)) {
4548     // Treat an enum type as its underlying type.
4549     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4550       Ty = EnumTy->getDecl()->getIntegerType();
4551 
4552     return (Ty->isPromotableIntegerType() && isDarwinPCS()
4553                 ? ABIArgInfo::getExtend()
4554                 : ABIArgInfo::getDirect());
4555   }
4556 
4557   // Structures with either a non-trivial destructor or a non-trivial
4558   // copy constructor are always indirect.
4559   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
4560     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
4561                                      CGCXXABI::RAA_DirectInMemory);
4562   }
4563 
4564   // Empty records are always ignored on Darwin, but actually passed in C++ mode
4565   // elsewhere for GNU compatibility.
4566   if (isEmptyRecord(getContext(), Ty, true)) {
4567     if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
4568       return ABIArgInfo::getIgnore();
4569 
4570     return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
4571   }
4572 
4573   // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
4574   const Type *Base = nullptr;
4575   uint64_t Members = 0;
4576   if (isHomogeneousAggregate(Ty, Base, Members)) {
4577     return ABIArgInfo::getDirect(
4578         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
4579   }
4580 
4581   // Aggregates <= 16 bytes are passed directly in registers or on the stack.
4582   uint64_t Size = getContext().getTypeSize(Ty);
4583   if (Size <= 128) {
4584     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
4585     // same size and alignment.
4586     if (getTarget().isRenderScriptTarget()) {
4587       return coerceToIntArray(Ty, getContext(), getVMContext());
4588     }
4589     unsigned Alignment = getContext().getTypeAlign(Ty);
4590     Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes
4591 
4592     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
4593     // For aggregates with 16-byte alignment, we use i128.
4594     if (Alignment < 128 && Size == 128) {
4595       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
4596       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
4597     }
4598     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
4599   }
4600 
4601   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4602 }
4603 
4604 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const {
4605   if (RetTy->isVoidType())
4606     return ABIArgInfo::getIgnore();
4607 
4608   // Large vector types should be returned via memory.
4609   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
4610     return getNaturalAlignIndirect(RetTy);
4611 
4612   if (!isAggregateTypeForABI(RetTy)) {
4613     // Treat an enum type as its underlying type.
4614     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
4615       RetTy = EnumTy->getDecl()->getIntegerType();
4616 
4617     return (RetTy->isPromotableIntegerType() && isDarwinPCS()
4618                 ? ABIArgInfo::getExtend()
4619                 : ABIArgInfo::getDirect());
4620   }
4621 
4622   if (isEmptyRecord(getContext(), RetTy, true))
4623     return ABIArgInfo::getIgnore();
4624 
4625   const Type *Base = nullptr;
4626   uint64_t Members = 0;
4627   if (isHomogeneousAggregate(RetTy, Base, Members))
4628     // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
4629     return ABIArgInfo::getDirect();
4630 
4631   // Aggregates <= 16 bytes are returned directly in registers or on the stack.
4632   uint64_t Size = getContext().getTypeSize(RetTy);
4633   if (Size <= 128) {
4634     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
4635     // same size and alignment.
4636     if (getTarget().isRenderScriptTarget()) {
4637       return coerceToIntArray(RetTy, getContext(), getVMContext());
4638     }
4639     unsigned Alignment = getContext().getTypeAlign(RetTy);
4640     Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes
4641 
4642     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
4643     // For aggregates with 16-byte alignment, we use i128.
4644     if (Alignment < 128 && Size == 128) {
4645       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
4646       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
4647     }
4648     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
4649   }
4650 
4651   return getNaturalAlignIndirect(RetTy);
4652 }
4653 
4654 /// isIllegalVectorType - check whether the vector type is legal for AArch64.
4655 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
4656   if (const VectorType *VT = Ty->getAs<VectorType>()) {
4657     // Check whether VT is legal.
4658     unsigned NumElements = VT->getNumElements();
4659     uint64_t Size = getContext().getTypeSize(VT);
4660     // NumElements should be power of 2.
4661     if (!llvm::isPowerOf2_32(NumElements))
4662       return true;
4663     return Size != 64 && (Size != 128 || NumElements == 1);
4664   }
4665   return false;
4666 }
4667 
4668 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
4669   // Homogeneous aggregates for AAPCS64 must have base types of a floating
4670   // point type or a short-vector type. This is the same as the 32-bit ABI,
4671   // but with the difference that any floating-point type is allowed,
4672   // including __fp16.
4673   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4674     if (BT->isFloatingPoint())
4675       return true;
4676   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
4677     unsigned VecSize = getContext().getTypeSize(VT);
4678     if (VecSize == 64 || VecSize == 128)
4679       return true;
4680   }
4681   return false;
4682 }
4683 
4684 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
4685                                                        uint64_t Members) const {
4686   return Members <= 4;
4687 }
4688 
4689 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr,
4690                                             QualType Ty,
4691                                             CodeGenFunction &CGF) const {
4692   ABIArgInfo AI = classifyArgumentType(Ty);
4693   bool IsIndirect = AI.isIndirect();
4694 
4695   llvm::Type *BaseTy = CGF.ConvertType(Ty);
4696   if (IsIndirect)
4697     BaseTy = llvm::PointerType::getUnqual(BaseTy);
4698   else if (AI.getCoerceToType())
4699     BaseTy = AI.getCoerceToType();
4700 
4701   unsigned NumRegs = 1;
4702   if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
4703     BaseTy = ArrTy->getElementType();
4704     NumRegs = ArrTy->getNumElements();
4705   }
4706   bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy();
4707 
4708   // The AArch64 va_list type and handling is specified in the Procedure Call
4709   // Standard, section B.4:
4710   //
4711   // struct {
4712   //   void *__stack;
4713   //   void *__gr_top;
4714   //   void *__vr_top;
4715   //   int __gr_offs;
4716   //   int __vr_offs;
4717   // };
4718 
4719   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
4720   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
4721   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
4722   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
4723 
4724   auto TyInfo = getContext().getTypeInfoInChars(Ty);
4725   CharUnits TyAlign = TyInfo.second;
4726 
4727   Address reg_offs_p = Address::invalid();
4728   llvm::Value *reg_offs = nullptr;
4729   int reg_top_index;
4730   CharUnits reg_top_offset;
4731   int RegSize = IsIndirect ? 8 : TyInfo.first.getQuantity();
4732   if (!IsFPR) {
4733     // 3 is the field number of __gr_offs
4734     reg_offs_p =
4735         CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24),
4736                                     "gr_offs_p");
4737     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
4738     reg_top_index = 1; // field number for __gr_top
4739     reg_top_offset = CharUnits::fromQuantity(8);
4740     RegSize = llvm::alignTo(RegSize, 8);
4741   } else {
4742     // 4 is the field number of __vr_offs.
4743     reg_offs_p =
4744         CGF.Builder.CreateStructGEP(VAListAddr, 4, CharUnits::fromQuantity(28),
4745                                     "vr_offs_p");
4746     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
4747     reg_top_index = 2; // field number for __vr_top
4748     reg_top_offset = CharUnits::fromQuantity(16);
4749     RegSize = 16 * NumRegs;
4750   }
4751 
4752   //=======================================
4753   // Find out where argument was passed
4754   //=======================================
4755 
4756   // If reg_offs >= 0 we're already using the stack for this type of
4757   // argument. We don't want to keep updating reg_offs (in case it overflows,
4758   // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
4759   // whatever they get).
4760   llvm::Value *UsingStack = nullptr;
4761   UsingStack = CGF.Builder.CreateICmpSGE(
4762       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
4763 
4764   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
4765 
4766   // Otherwise, at least some kind of argument could go in these registers, the
4767   // question is whether this particular type is too big.
4768   CGF.EmitBlock(MaybeRegBlock);
4769 
4770   // Integer arguments may need to correct register alignment (for example a
4771   // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
4772   // align __gr_offs to calculate the potential address.
4773   if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) {
4774     int Align = TyAlign.getQuantity();
4775 
4776     reg_offs = CGF.Builder.CreateAdd(
4777         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
4778         "align_regoffs");
4779     reg_offs = CGF.Builder.CreateAnd(
4780         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
4781         "aligned_regoffs");
4782   }
4783 
4784   // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
4785   // The fact that this is done unconditionally reflects the fact that
4786   // allocating an argument to the stack also uses up all the remaining
4787   // registers of the appropriate kind.
4788   llvm::Value *NewOffset = nullptr;
4789   NewOffset = CGF.Builder.CreateAdd(
4790       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
4791   CGF.Builder.CreateStore(NewOffset, reg_offs_p);
4792 
4793   // Now we're in a position to decide whether this argument really was in
4794   // registers or not.
4795   llvm::Value *InRegs = nullptr;
4796   InRegs = CGF.Builder.CreateICmpSLE(
4797       NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
4798 
4799   CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
4800 
4801   //=======================================
4802   // Argument was in registers
4803   //=======================================
4804 
4805   // Now we emit the code for if the argument was originally passed in
4806   // registers. First start the appropriate block:
4807   CGF.EmitBlock(InRegBlock);
4808 
4809   llvm::Value *reg_top = nullptr;
4810   Address reg_top_p = CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index,
4811                                                   reg_top_offset, "reg_top_p");
4812   reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
4813   Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs),
4814                    CharUnits::fromQuantity(IsFPR ? 16 : 8));
4815   Address RegAddr = Address::invalid();
4816   llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty);
4817 
4818   if (IsIndirect) {
4819     // If it's been passed indirectly (actually a struct), whatever we find from
4820     // stored registers or on the stack will actually be a struct **.
4821     MemTy = llvm::PointerType::getUnqual(MemTy);
4822   }
4823 
4824   const Type *Base = nullptr;
4825   uint64_t NumMembers = 0;
4826   bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
4827   if (IsHFA && NumMembers > 1) {
4828     // Homogeneous aggregates passed in registers will have their elements split
4829     // and stored 16-bytes apart regardless of size (they're notionally in qN,
4830     // qN+1, ...). We reload and store into a temporary local variable
4831     // contiguously.
4832     assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
4833     auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0));
4834     llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
4835     llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
4836     Address Tmp = CGF.CreateTempAlloca(HFATy,
4837                                        std::max(TyAlign, BaseTyInfo.second));
4838 
4839     // On big-endian platforms, the value will be right-aligned in its slot.
4840     int Offset = 0;
4841     if (CGF.CGM.getDataLayout().isBigEndian() &&
4842         BaseTyInfo.first.getQuantity() < 16)
4843       Offset = 16 - BaseTyInfo.first.getQuantity();
4844 
4845     for (unsigned i = 0; i < NumMembers; ++i) {
4846       CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset);
4847       Address LoadAddr =
4848         CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset);
4849       LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy);
4850 
4851       Address StoreAddr =
4852         CGF.Builder.CreateConstArrayGEP(Tmp, i, BaseTyInfo.first);
4853 
4854       llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
4855       CGF.Builder.CreateStore(Elem, StoreAddr);
4856     }
4857 
4858     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy);
4859   } else {
4860     // Otherwise the object is contiguous in memory.
4861 
4862     // It might be right-aligned in its slot.
4863     CharUnits SlotSize = BaseAddr.getAlignment();
4864     if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect &&
4865         (IsHFA || !isAggregateTypeForABI(Ty)) &&
4866         TyInfo.first < SlotSize) {
4867       CharUnits Offset = SlotSize - TyInfo.first;
4868       BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset);
4869     }
4870 
4871     RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy);
4872   }
4873 
4874   CGF.EmitBranch(ContBlock);
4875 
4876   //=======================================
4877   // Argument was on the stack
4878   //=======================================
4879   CGF.EmitBlock(OnStackBlock);
4880 
4881   Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0,
4882                                                 CharUnits::Zero(), "stack_p");
4883   llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack");
4884 
4885   // Again, stack arguments may need realignment. In this case both integer and
4886   // floating-point ones might be affected.
4887   if (!IsIndirect && TyAlign.getQuantity() > 8) {
4888     int Align = TyAlign.getQuantity();
4889 
4890     OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty);
4891 
4892     OnStackPtr = CGF.Builder.CreateAdd(
4893         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
4894         "align_stack");
4895     OnStackPtr = CGF.Builder.CreateAnd(
4896         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
4897         "align_stack");
4898 
4899     OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy);
4900   }
4901   Address OnStackAddr(OnStackPtr,
4902                       std::max(CharUnits::fromQuantity(8), TyAlign));
4903 
4904   // All stack slots are multiples of 8 bytes.
4905   CharUnits StackSlotSize = CharUnits::fromQuantity(8);
4906   CharUnits StackSize;
4907   if (IsIndirect)
4908     StackSize = StackSlotSize;
4909   else
4910     StackSize = TyInfo.first.alignTo(StackSlotSize);
4911 
4912   llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize);
4913   llvm::Value *NewStack =
4914       CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack");
4915 
4916   // Write the new value of __stack for the next call to va_arg
4917   CGF.Builder.CreateStore(NewStack, stack_p);
4918 
4919   if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
4920       TyInfo.first < StackSlotSize) {
4921     CharUnits Offset = StackSlotSize - TyInfo.first;
4922     OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset);
4923   }
4924 
4925   OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy);
4926 
4927   CGF.EmitBranch(ContBlock);
4928 
4929   //=======================================
4930   // Tidy up
4931   //=======================================
4932   CGF.EmitBlock(ContBlock);
4933 
4934   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
4935                                  OnStackAddr, OnStackBlock, "vaargs.addr");
4936 
4937   if (IsIndirect)
4938     return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"),
4939                    TyInfo.second);
4940 
4941   return ResAddr;
4942 }
4943 
4944 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty,
4945                                         CodeGenFunction &CGF) const {
4946   // The backend's lowering doesn't support va_arg for aggregates or
4947   // illegal vector types.  Lower VAArg here for these cases and use
4948   // the LLVM va_arg instruction for everything else.
4949   if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
4950     return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
4951 
4952   CharUnits SlotSize = CharUnits::fromQuantity(8);
4953 
4954   // Empty records are ignored for parameter passing purposes.
4955   if (isEmptyRecord(getContext(), Ty, true)) {
4956     Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
4957     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
4958     return Addr;
4959   }
4960 
4961   // The size of the actual thing passed, which might end up just
4962   // being a pointer for indirect types.
4963   auto TyInfo = getContext().getTypeInfoInChars(Ty);
4964 
4965   // Arguments bigger than 16 bytes which aren't homogeneous
4966   // aggregates should be passed indirectly.
4967   bool IsIndirect = false;
4968   if (TyInfo.first.getQuantity() > 16) {
4969     const Type *Base = nullptr;
4970     uint64_t Members = 0;
4971     IsIndirect = !isHomogeneousAggregate(Ty, Base, Members);
4972   }
4973 
4974   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
4975                           TyInfo, SlotSize, /*AllowHigherAlign*/ true);
4976 }
4977 
4978 //===----------------------------------------------------------------------===//
4979 // ARM ABI Implementation
4980 //===----------------------------------------------------------------------===//
4981 
4982 namespace {
4983 
4984 class ARMABIInfo : public SwiftABIInfo {
4985 public:
4986   enum ABIKind {
4987     APCS = 0,
4988     AAPCS = 1,
4989     AAPCS_VFP = 2,
4990     AAPCS16_VFP = 3,
4991   };
4992 
4993 private:
4994   ABIKind Kind;
4995 
4996 public:
4997   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind)
4998       : SwiftABIInfo(CGT), Kind(_Kind) {
4999     setCCs();
5000   }
5001 
5002   bool isEABI() const {
5003     switch (getTarget().getTriple().getEnvironment()) {
5004     case llvm::Triple::Android:
5005     case llvm::Triple::EABI:
5006     case llvm::Triple::EABIHF:
5007     case llvm::Triple::GNUEABI:
5008     case llvm::Triple::GNUEABIHF:
5009     case llvm::Triple::MuslEABI:
5010     case llvm::Triple::MuslEABIHF:
5011       return true;
5012     default:
5013       return false;
5014     }
5015   }
5016 
5017   bool isEABIHF() const {
5018     switch (getTarget().getTriple().getEnvironment()) {
5019     case llvm::Triple::EABIHF:
5020     case llvm::Triple::GNUEABIHF:
5021     case llvm::Triple::MuslEABIHF:
5022       return true;
5023     default:
5024       return false;
5025     }
5026   }
5027 
5028   ABIKind getABIKind() const { return Kind; }
5029 
5030 private:
5031   ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const;
5032   ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic) const;
5033   bool isIllegalVectorType(QualType Ty) const;
5034 
5035   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
5036   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
5037                                          uint64_t Members) const override;
5038 
5039   void computeInfo(CGFunctionInfo &FI) const override;
5040 
5041   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5042                     QualType Ty) const override;
5043 
5044   llvm::CallingConv::ID getLLVMDefaultCC() const;
5045   llvm::CallingConv::ID getABIDefaultCC() const;
5046   void setCCs();
5047 
5048   bool shouldPassIndirectlyForSwift(CharUnits totalSize,
5049                                     ArrayRef<llvm::Type*> scalars,
5050                                     bool asReturnValue) const override {
5051     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
5052   }
5053 };
5054 
5055 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
5056 public:
5057   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
5058     :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
5059 
5060   const ARMABIInfo &getABIInfo() const {
5061     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
5062   }
5063 
5064   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5065     return 13;
5066   }
5067 
5068   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
5069     return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue";
5070   }
5071 
5072   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5073                                llvm::Value *Address) const override {
5074     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
5075 
5076     // 0-15 are the 16 integer registers.
5077     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
5078     return false;
5079   }
5080 
5081   unsigned getSizeOfUnwindException() const override {
5082     if (getABIInfo().isEABI()) return 88;
5083     return TargetCodeGenInfo::getSizeOfUnwindException();
5084   }
5085 
5086   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5087                            CodeGen::CodeGenModule &CGM) const override {
5088     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5089     if (!FD)
5090       return;
5091 
5092     const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
5093     if (!Attr)
5094       return;
5095 
5096     const char *Kind;
5097     switch (Attr->getInterrupt()) {
5098     case ARMInterruptAttr::Generic: Kind = ""; break;
5099     case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break;
5100     case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break;
5101     case ARMInterruptAttr::SWI:     Kind = "SWI"; break;
5102     case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break;
5103     case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break;
5104     }
5105 
5106     llvm::Function *Fn = cast<llvm::Function>(GV);
5107 
5108     Fn->addFnAttr("interrupt", Kind);
5109 
5110     ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind();
5111     if (ABI == ARMABIInfo::APCS)
5112       return;
5113 
5114     // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
5115     // however this is not necessarily true on taking any interrupt. Instruct
5116     // the backend to perform a realignment as part of the function prologue.
5117     llvm::AttrBuilder B;
5118     B.addStackAlignmentAttr(8);
5119     Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
5120                       llvm::AttributeSet::get(CGM.getLLVMContext(),
5121                                               llvm::AttributeSet::FunctionIndex,
5122                                               B));
5123   }
5124 };
5125 
5126 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo {
5127 public:
5128   WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
5129       : ARMTargetCodeGenInfo(CGT, K) {}
5130 
5131   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5132                            CodeGen::CodeGenModule &CGM) const override;
5133 
5134   void getDependentLibraryOption(llvm::StringRef Lib,
5135                                  llvm::SmallString<24> &Opt) const override {
5136     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
5137   }
5138 
5139   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
5140                                llvm::SmallString<32> &Opt) const override {
5141     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
5142   }
5143 };
5144 
5145 void WindowsARMTargetCodeGenInfo::setTargetAttributes(
5146     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
5147   ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
5148   addStackProbeSizeTargetAttribute(D, GV, CGM);
5149 }
5150 }
5151 
5152 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
5153   if (!getCXXABI().classifyReturnType(FI))
5154     FI.getReturnInfo() =
5155         classifyReturnType(FI.getReturnType(), FI.isVariadic());
5156 
5157   for (auto &I : FI.arguments())
5158     I.info = classifyArgumentType(I.type, FI.isVariadic());
5159 
5160   // Always honor user-specified calling convention.
5161   if (FI.getCallingConvention() != llvm::CallingConv::C)
5162     return;
5163 
5164   llvm::CallingConv::ID cc = getRuntimeCC();
5165   if (cc != llvm::CallingConv::C)
5166     FI.setEffectiveCallingConvention(cc);
5167 }
5168 
5169 /// Return the default calling convention that LLVM will use.
5170 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
5171   // The default calling convention that LLVM will infer.
5172   if (isEABIHF() || getTarget().getTriple().isWatchABI())
5173     return llvm::CallingConv::ARM_AAPCS_VFP;
5174   else if (isEABI())
5175     return llvm::CallingConv::ARM_AAPCS;
5176   else
5177     return llvm::CallingConv::ARM_APCS;
5178 }
5179 
5180 /// Return the calling convention that our ABI would like us to use
5181 /// as the C calling convention.
5182 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
5183   switch (getABIKind()) {
5184   case APCS: return llvm::CallingConv::ARM_APCS;
5185   case AAPCS: return llvm::CallingConv::ARM_AAPCS;
5186   case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
5187   case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
5188   }
5189   llvm_unreachable("bad ABI kind");
5190 }
5191 
5192 void ARMABIInfo::setCCs() {
5193   assert(getRuntimeCC() == llvm::CallingConv::C);
5194 
5195   // Don't muddy up the IR with a ton of explicit annotations if
5196   // they'd just match what LLVM will infer from the triple.
5197   llvm::CallingConv::ID abiCC = getABIDefaultCC();
5198   if (abiCC != getLLVMDefaultCC())
5199     RuntimeCC = abiCC;
5200 
5201   // AAPCS apparently requires runtime support functions to be soft-float, but
5202   // that's almost certainly for historic reasons (Thumb1 not supporting VFP
5203   // most likely). It's more convenient for AAPCS16_VFP to be hard-float.
5204   switch (getABIKind()) {
5205   case APCS:
5206   case AAPCS16_VFP:
5207     if (abiCC != getLLVMDefaultCC())
5208       BuiltinCC = abiCC;
5209     break;
5210   case AAPCS:
5211   case AAPCS_VFP:
5212     BuiltinCC = llvm::CallingConv::ARM_AAPCS;
5213     break;
5214   }
5215 }
5216 
5217 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty,
5218                                             bool isVariadic) const {
5219   // 6.1.2.1 The following argument types are VFP CPRCs:
5220   //   A single-precision floating-point type (including promoted
5221   //   half-precision types); A double-precision floating-point type;
5222   //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
5223   //   with a Base Type of a single- or double-precision floating-point type,
5224   //   64-bit containerized vectors or 128-bit containerized vectors with one
5225   //   to four Elements.
5226   bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic;
5227 
5228   Ty = useFirstFieldIfTransparentUnion(Ty);
5229 
5230   // Handle illegal vector types here.
5231   if (isIllegalVectorType(Ty)) {
5232     uint64_t Size = getContext().getTypeSize(Ty);
5233     if (Size <= 32) {
5234       llvm::Type *ResType =
5235           llvm::Type::getInt32Ty(getVMContext());
5236       return ABIArgInfo::getDirect(ResType);
5237     }
5238     if (Size == 64) {
5239       llvm::Type *ResType = llvm::VectorType::get(
5240           llvm::Type::getInt32Ty(getVMContext()), 2);
5241       return ABIArgInfo::getDirect(ResType);
5242     }
5243     if (Size == 128) {
5244       llvm::Type *ResType = llvm::VectorType::get(
5245           llvm::Type::getInt32Ty(getVMContext()), 4);
5246       return ABIArgInfo::getDirect(ResType);
5247     }
5248     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5249   }
5250 
5251   // __fp16 gets passed as if it were an int or float, but with the top 16 bits
5252   // unspecified. This is not done for OpenCL as it handles the half type
5253   // natively, and does not need to interwork with AAPCS code.
5254   if (Ty->isHalfType() && !getContext().getLangOpts().NativeHalfArgsAndReturns) {
5255     llvm::Type *ResType = IsEffectivelyAAPCS_VFP ?
5256       llvm::Type::getFloatTy(getVMContext()) :
5257       llvm::Type::getInt32Ty(getVMContext());
5258     return ABIArgInfo::getDirect(ResType);
5259   }
5260 
5261   if (!isAggregateTypeForABI(Ty)) {
5262     // Treat an enum type as its underlying type.
5263     if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
5264       Ty = EnumTy->getDecl()->getIntegerType();
5265     }
5266 
5267     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend()
5268                                           : ABIArgInfo::getDirect());
5269   }
5270 
5271   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5272     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
5273   }
5274 
5275   // Ignore empty records.
5276   if (isEmptyRecord(getContext(), Ty, true))
5277     return ABIArgInfo::getIgnore();
5278 
5279   if (IsEffectivelyAAPCS_VFP) {
5280     // Homogeneous Aggregates need to be expanded when we can fit the aggregate
5281     // into VFP registers.
5282     const Type *Base = nullptr;
5283     uint64_t Members = 0;
5284     if (isHomogeneousAggregate(Ty, Base, Members)) {
5285       assert(Base && "Base class should be set for homogeneous aggregate");
5286       // Base can be a floating-point or a vector.
5287       return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
5288     }
5289   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
5290     // WatchOS does have homogeneous aggregates. Note that we intentionally use
5291     // this convention even for a variadic function: the backend will use GPRs
5292     // if needed.
5293     const Type *Base = nullptr;
5294     uint64_t Members = 0;
5295     if (isHomogeneousAggregate(Ty, Base, Members)) {
5296       assert(Base && Members <= 4 && "unexpected homogeneous aggregate");
5297       llvm::Type *Ty =
5298         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members);
5299       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
5300     }
5301   }
5302 
5303   if (getABIKind() == ARMABIInfo::AAPCS16_VFP &&
5304       getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) {
5305     // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're
5306     // bigger than 128-bits, they get placed in space allocated by the caller,
5307     // and a pointer is passed.
5308     return ABIArgInfo::getIndirect(
5309         CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false);
5310   }
5311 
5312   // Support byval for ARM.
5313   // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
5314   // most 8-byte. We realign the indirect argument if type alignment is bigger
5315   // than ABI alignment.
5316   uint64_t ABIAlign = 4;
5317   uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8;
5318   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
5319        getABIKind() == ARMABIInfo::AAPCS)
5320     ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
5321 
5322   if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
5323     assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval");
5324     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
5325                                    /*ByVal=*/true,
5326                                    /*Realign=*/TyAlign > ABIAlign);
5327   }
5328 
5329   // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of
5330   // same size and alignment.
5331   if (getTarget().isRenderScriptTarget()) {
5332     return coerceToIntArray(Ty, getContext(), getVMContext());
5333   }
5334 
5335   // Otherwise, pass by coercing to a structure of the appropriate size.
5336   llvm::Type* ElemTy;
5337   unsigned SizeRegs;
5338   // FIXME: Try to match the types of the arguments more accurately where
5339   // we can.
5340   if (getContext().getTypeAlign(Ty) <= 32) {
5341     ElemTy = llvm::Type::getInt32Ty(getVMContext());
5342     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
5343   } else {
5344     ElemTy = llvm::Type::getInt64Ty(getVMContext());
5345     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
5346   }
5347 
5348   return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
5349 }
5350 
5351 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
5352                               llvm::LLVMContext &VMContext) {
5353   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
5354   // is called integer-like if its size is less than or equal to one word, and
5355   // the offset of each of its addressable sub-fields is zero.
5356 
5357   uint64_t Size = Context.getTypeSize(Ty);
5358 
5359   // Check that the type fits in a word.
5360   if (Size > 32)
5361     return false;
5362 
5363   // FIXME: Handle vector types!
5364   if (Ty->isVectorType())
5365     return false;
5366 
5367   // Float types are never treated as "integer like".
5368   if (Ty->isRealFloatingType())
5369     return false;
5370 
5371   // If this is a builtin or pointer type then it is ok.
5372   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
5373     return true;
5374 
5375   // Small complex integer types are "integer like".
5376   if (const ComplexType *CT = Ty->getAs<ComplexType>())
5377     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
5378 
5379   // Single element and zero sized arrays should be allowed, by the definition
5380   // above, but they are not.
5381 
5382   // Otherwise, it must be a record type.
5383   const RecordType *RT = Ty->getAs<RecordType>();
5384   if (!RT) return false;
5385 
5386   // Ignore records with flexible arrays.
5387   const RecordDecl *RD = RT->getDecl();
5388   if (RD->hasFlexibleArrayMember())
5389     return false;
5390 
5391   // Check that all sub-fields are at offset 0, and are themselves "integer
5392   // like".
5393   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
5394 
5395   bool HadField = false;
5396   unsigned idx = 0;
5397   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
5398        i != e; ++i, ++idx) {
5399     const FieldDecl *FD = *i;
5400 
5401     // Bit-fields are not addressable, we only need to verify they are "integer
5402     // like". We still have to disallow a subsequent non-bitfield, for example:
5403     //   struct { int : 0; int x }
5404     // is non-integer like according to gcc.
5405     if (FD->isBitField()) {
5406       if (!RD->isUnion())
5407         HadField = true;
5408 
5409       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
5410         return false;
5411 
5412       continue;
5413     }
5414 
5415     // Check if this field is at offset 0.
5416     if (Layout.getFieldOffset(idx) != 0)
5417       return false;
5418 
5419     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
5420       return false;
5421 
5422     // Only allow at most one field in a structure. This doesn't match the
5423     // wording above, but follows gcc in situations with a field following an
5424     // empty structure.
5425     if (!RD->isUnion()) {
5426       if (HadField)
5427         return false;
5428 
5429       HadField = true;
5430     }
5431   }
5432 
5433   return true;
5434 }
5435 
5436 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy,
5437                                           bool isVariadic) const {
5438   bool IsEffectivelyAAPCS_VFP =
5439       (getABIKind() == AAPCS_VFP || getABIKind() == AAPCS16_VFP) && !isVariadic;
5440 
5441   if (RetTy->isVoidType())
5442     return ABIArgInfo::getIgnore();
5443 
5444   // Large vector types should be returned via memory.
5445   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) {
5446     return getNaturalAlignIndirect(RetTy);
5447   }
5448 
5449   // __fp16 gets returned as if it were an int or float, but with the top 16
5450   // bits unspecified. This is not done for OpenCL as it handles the half type
5451   // natively, and does not need to interwork with AAPCS code.
5452   if (RetTy->isHalfType() && !getContext().getLangOpts().NativeHalfArgsAndReturns) {
5453     llvm::Type *ResType = IsEffectivelyAAPCS_VFP ?
5454       llvm::Type::getFloatTy(getVMContext()) :
5455       llvm::Type::getInt32Ty(getVMContext());
5456     return ABIArgInfo::getDirect(ResType);
5457   }
5458 
5459   if (!isAggregateTypeForABI(RetTy)) {
5460     // Treat an enum type as its underlying type.
5461     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5462       RetTy = EnumTy->getDecl()->getIntegerType();
5463 
5464     return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend()
5465                                             : ABIArgInfo::getDirect();
5466   }
5467 
5468   // Are we following APCS?
5469   if (getABIKind() == APCS) {
5470     if (isEmptyRecord(getContext(), RetTy, false))
5471       return ABIArgInfo::getIgnore();
5472 
5473     // Complex types are all returned as packed integers.
5474     //
5475     // FIXME: Consider using 2 x vector types if the back end handles them
5476     // correctly.
5477     if (RetTy->isAnyComplexType())
5478       return ABIArgInfo::getDirect(llvm::IntegerType::get(
5479           getVMContext(), getContext().getTypeSize(RetTy)));
5480 
5481     // Integer like structures are returned in r0.
5482     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
5483       // Return in the smallest viable integer type.
5484       uint64_t Size = getContext().getTypeSize(RetTy);
5485       if (Size <= 8)
5486         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5487       if (Size <= 16)
5488         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
5489       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5490     }
5491 
5492     // Otherwise return in memory.
5493     return getNaturalAlignIndirect(RetTy);
5494   }
5495 
5496   // Otherwise this is an AAPCS variant.
5497 
5498   if (isEmptyRecord(getContext(), RetTy, true))
5499     return ABIArgInfo::getIgnore();
5500 
5501   // Check for homogeneous aggregates with AAPCS-VFP.
5502   if (IsEffectivelyAAPCS_VFP) {
5503     const Type *Base = nullptr;
5504     uint64_t Members = 0;
5505     if (isHomogeneousAggregate(RetTy, Base, Members)) {
5506       assert(Base && "Base class should be set for homogeneous aggregate");
5507       // Homogeneous Aggregates are returned directly.
5508       return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
5509     }
5510   }
5511 
5512   // Aggregates <= 4 bytes are returned in r0; other aggregates
5513   // are returned indirectly.
5514   uint64_t Size = getContext().getTypeSize(RetTy);
5515   if (Size <= 32) {
5516     // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of
5517     // same size and alignment.
5518     if (getTarget().isRenderScriptTarget()) {
5519       return coerceToIntArray(RetTy, getContext(), getVMContext());
5520     }
5521     if (getDataLayout().isBigEndian())
5522       // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
5523       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5524 
5525     // Return in the smallest viable integer type.
5526     if (Size <= 8)
5527       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5528     if (Size <= 16)
5529       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
5530     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5531   } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) {
5532     llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext());
5533     llvm::Type *CoerceTy =
5534         llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32);
5535     return ABIArgInfo::getDirect(CoerceTy);
5536   }
5537 
5538   return getNaturalAlignIndirect(RetTy);
5539 }
5540 
5541 /// isIllegalVector - check whether Ty is an illegal vector type.
5542 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
5543   if (const VectorType *VT = Ty->getAs<VectorType> ()) {
5544     if (isAndroid()) {
5545       // Android shipped using Clang 3.1, which supported a slightly different
5546       // vector ABI. The primary differences were that 3-element vector types
5547       // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path
5548       // accepts that legacy behavior for Android only.
5549       // Check whether VT is legal.
5550       unsigned NumElements = VT->getNumElements();
5551       // NumElements should be power of 2 or equal to 3.
5552       if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3)
5553         return true;
5554     } else {
5555       // Check whether VT is legal.
5556       unsigned NumElements = VT->getNumElements();
5557       uint64_t Size = getContext().getTypeSize(VT);
5558       // NumElements should be power of 2.
5559       if (!llvm::isPowerOf2_32(NumElements))
5560         return true;
5561       // Size should be greater than 32 bits.
5562       return Size <= 32;
5563     }
5564   }
5565   return false;
5566 }
5567 
5568 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
5569   // Homogeneous aggregates for AAPCS-VFP must have base types of float,
5570   // double, or 64-bit or 128-bit vectors.
5571   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
5572     if (BT->getKind() == BuiltinType::Float ||
5573         BT->getKind() == BuiltinType::Double ||
5574         BT->getKind() == BuiltinType::LongDouble)
5575       return true;
5576   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
5577     unsigned VecSize = getContext().getTypeSize(VT);
5578     if (VecSize == 64 || VecSize == 128)
5579       return true;
5580   }
5581   return false;
5582 }
5583 
5584 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
5585                                                    uint64_t Members) const {
5586   return Members <= 4;
5587 }
5588 
5589 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5590                               QualType Ty) const {
5591   CharUnits SlotSize = CharUnits::fromQuantity(4);
5592 
5593   // Empty records are ignored for parameter passing purposes.
5594   if (isEmptyRecord(getContext(), Ty, true)) {
5595     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
5596     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
5597     return Addr;
5598   }
5599 
5600   auto TyInfo = getContext().getTypeInfoInChars(Ty);
5601   CharUnits TyAlignForABI = TyInfo.second;
5602 
5603   // Use indirect if size of the illegal vector is bigger than 16 bytes.
5604   bool IsIndirect = false;
5605   const Type *Base = nullptr;
5606   uint64_t Members = 0;
5607   if (TyInfo.first > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) {
5608     IsIndirect = true;
5609 
5610   // ARMv7k passes structs bigger than 16 bytes indirectly, in space
5611   // allocated by the caller.
5612   } else if (TyInfo.first > CharUnits::fromQuantity(16) &&
5613              getABIKind() == ARMABIInfo::AAPCS16_VFP &&
5614              !isHomogeneousAggregate(Ty, Base, Members)) {
5615     IsIndirect = true;
5616 
5617   // Otherwise, bound the type's ABI alignment.
5618   // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
5619   // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
5620   // Our callers should be prepared to handle an under-aligned address.
5621   } else if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
5622              getABIKind() == ARMABIInfo::AAPCS) {
5623     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
5624     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8));
5625   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
5626     // ARMv7k allows type alignment up to 16 bytes.
5627     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
5628     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16));
5629   } else {
5630     TyAlignForABI = CharUnits::fromQuantity(4);
5631   }
5632   TyInfo.second = TyAlignForABI;
5633 
5634   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo,
5635                           SlotSize, /*AllowHigherAlign*/ true);
5636 }
5637 
5638 //===----------------------------------------------------------------------===//
5639 // NVPTX ABI Implementation
5640 //===----------------------------------------------------------------------===//
5641 
5642 namespace {
5643 
5644 class NVPTXABIInfo : public ABIInfo {
5645 public:
5646   NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
5647 
5648   ABIArgInfo classifyReturnType(QualType RetTy) const;
5649   ABIArgInfo classifyArgumentType(QualType Ty) const;
5650 
5651   void computeInfo(CGFunctionInfo &FI) const override;
5652   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5653                     QualType Ty) const override;
5654 };
5655 
5656 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
5657 public:
5658   NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
5659     : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
5660 
5661   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5662                            CodeGen::CodeGenModule &M) const override;
5663 private:
5664   // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the
5665   // resulting MDNode to the nvvm.annotations MDNode.
5666   static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand);
5667 };
5668 
5669 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
5670   if (RetTy->isVoidType())
5671     return ABIArgInfo::getIgnore();
5672 
5673   // note: this is different from default ABI
5674   if (!RetTy->isScalarType())
5675     return ABIArgInfo::getDirect();
5676 
5677   // Treat an enum type as its underlying type.
5678   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5679     RetTy = EnumTy->getDecl()->getIntegerType();
5680 
5681   return (RetTy->isPromotableIntegerType() ?
5682           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5683 }
5684 
5685 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
5686   // Treat an enum type as its underlying type.
5687   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5688     Ty = EnumTy->getDecl()->getIntegerType();
5689 
5690   // Return aggregates type as indirect by value
5691   if (isAggregateTypeForABI(Ty))
5692     return getNaturalAlignIndirect(Ty, /* byval */ true);
5693 
5694   return (Ty->isPromotableIntegerType() ?
5695           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5696 }
5697 
5698 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
5699   if (!getCXXABI().classifyReturnType(FI))
5700     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
5701   for (auto &I : FI.arguments())
5702     I.info = classifyArgumentType(I.type);
5703 
5704   // Always honor user-specified calling convention.
5705   if (FI.getCallingConvention() != llvm::CallingConv::C)
5706     return;
5707 
5708   FI.setEffectiveCallingConvention(getRuntimeCC());
5709 }
5710 
5711 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5712                                 QualType Ty) const {
5713   llvm_unreachable("NVPTX does not support varargs");
5714 }
5715 
5716 void NVPTXTargetCodeGenInfo::
5717 setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5718                     CodeGen::CodeGenModule &M) const{
5719   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5720   if (!FD) return;
5721 
5722   llvm::Function *F = cast<llvm::Function>(GV);
5723 
5724   // Perform special handling in OpenCL mode
5725   if (M.getLangOpts().OpenCL) {
5726     // Use OpenCL function attributes to check for kernel functions
5727     // By default, all functions are device functions
5728     if (FD->hasAttr<OpenCLKernelAttr>()) {
5729       // OpenCL __kernel functions get kernel metadata
5730       // Create !{<func-ref>, metadata !"kernel", i32 1} node
5731       addNVVMMetadata(F, "kernel", 1);
5732       // And kernel functions are not subject to inlining
5733       F->addFnAttr(llvm::Attribute::NoInline);
5734     }
5735   }
5736 
5737   // Perform special handling in CUDA mode.
5738   if (M.getLangOpts().CUDA) {
5739     // CUDA __global__ functions get a kernel metadata entry.  Since
5740     // __global__ functions cannot be called from the device, we do not
5741     // need to set the noinline attribute.
5742     if (FD->hasAttr<CUDAGlobalAttr>()) {
5743       // Create !{<func-ref>, metadata !"kernel", i32 1} node
5744       addNVVMMetadata(F, "kernel", 1);
5745     }
5746     if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) {
5747       // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
5748       llvm::APSInt MaxThreads(32);
5749       MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext());
5750       if (MaxThreads > 0)
5751         addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue());
5752 
5753       // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was
5754       // not specified in __launch_bounds__ or if the user specified a 0 value,
5755       // we don't have to add a PTX directive.
5756       if (Attr->getMinBlocks()) {
5757         llvm::APSInt MinBlocks(32);
5758         MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext());
5759         if (MinBlocks > 0)
5760           // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
5761           addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue());
5762       }
5763     }
5764   }
5765 }
5766 
5767 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name,
5768                                              int Operand) {
5769   llvm::Module *M = F->getParent();
5770   llvm::LLVMContext &Ctx = M->getContext();
5771 
5772   // Get "nvvm.annotations" metadata node
5773   llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
5774 
5775   llvm::Metadata *MDVals[] = {
5776       llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name),
5777       llvm::ConstantAsMetadata::get(
5778           llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
5779   // Append metadata to nvvm.annotations
5780   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
5781 }
5782 }
5783 
5784 //===----------------------------------------------------------------------===//
5785 // SystemZ ABI Implementation
5786 //===----------------------------------------------------------------------===//
5787 
5788 namespace {
5789 
5790 class SystemZABIInfo : public SwiftABIInfo {
5791   bool HasVector;
5792 
5793 public:
5794   SystemZABIInfo(CodeGenTypes &CGT, bool HV)
5795     : SwiftABIInfo(CGT), HasVector(HV) {}
5796 
5797   bool isPromotableIntegerType(QualType Ty) const;
5798   bool isCompoundType(QualType Ty) const;
5799   bool isVectorArgumentType(QualType Ty) const;
5800   bool isFPArgumentType(QualType Ty) const;
5801   QualType GetSingleElementType(QualType Ty) const;
5802 
5803   ABIArgInfo classifyReturnType(QualType RetTy) const;
5804   ABIArgInfo classifyArgumentType(QualType ArgTy) const;
5805 
5806   void computeInfo(CGFunctionInfo &FI) const override {
5807     if (!getCXXABI().classifyReturnType(FI))
5808       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
5809     for (auto &I : FI.arguments())
5810       I.info = classifyArgumentType(I.type);
5811   }
5812 
5813   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5814                     QualType Ty) const override;
5815 
5816   bool shouldPassIndirectlyForSwift(CharUnits totalSize,
5817                                     ArrayRef<llvm::Type*> scalars,
5818                                     bool asReturnValue) const override {
5819     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
5820   }
5821 };
5822 
5823 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
5824 public:
5825   SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector)
5826     : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {}
5827 };
5828 
5829 }
5830 
5831 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
5832   // Treat an enum type as its underlying type.
5833   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5834     Ty = EnumTy->getDecl()->getIntegerType();
5835 
5836   // Promotable integer types are required to be promoted by the ABI.
5837   if (Ty->isPromotableIntegerType())
5838     return true;
5839 
5840   // 32-bit values must also be promoted.
5841   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
5842     switch (BT->getKind()) {
5843     case BuiltinType::Int:
5844     case BuiltinType::UInt:
5845       return true;
5846     default:
5847       return false;
5848     }
5849   return false;
5850 }
5851 
5852 bool SystemZABIInfo::isCompoundType(QualType Ty) const {
5853   return (Ty->isAnyComplexType() ||
5854           Ty->isVectorType() ||
5855           isAggregateTypeForABI(Ty));
5856 }
5857 
5858 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const {
5859   return (HasVector &&
5860           Ty->isVectorType() &&
5861           getContext().getTypeSize(Ty) <= 128);
5862 }
5863 
5864 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
5865   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
5866     switch (BT->getKind()) {
5867     case BuiltinType::Float:
5868     case BuiltinType::Double:
5869       return true;
5870     default:
5871       return false;
5872     }
5873 
5874   return false;
5875 }
5876 
5877 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const {
5878   if (const RecordType *RT = Ty->getAsStructureType()) {
5879     const RecordDecl *RD = RT->getDecl();
5880     QualType Found;
5881 
5882     // If this is a C++ record, check the bases first.
5883     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
5884       for (const auto &I : CXXRD->bases()) {
5885         QualType Base = I.getType();
5886 
5887         // Empty bases don't affect things either way.
5888         if (isEmptyRecord(getContext(), Base, true))
5889           continue;
5890 
5891         if (!Found.isNull())
5892           return Ty;
5893         Found = GetSingleElementType(Base);
5894       }
5895 
5896     // Check the fields.
5897     for (const auto *FD : RD->fields()) {
5898       // For compatibility with GCC, ignore empty bitfields in C++ mode.
5899       // Unlike isSingleElementStruct(), empty structure and array fields
5900       // do count.  So do anonymous bitfields that aren't zero-sized.
5901       if (getContext().getLangOpts().CPlusPlus &&
5902           FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
5903         continue;
5904 
5905       // Unlike isSingleElementStruct(), arrays do not count.
5906       // Nested structures still do though.
5907       if (!Found.isNull())
5908         return Ty;
5909       Found = GetSingleElementType(FD->getType());
5910     }
5911 
5912     // Unlike isSingleElementStruct(), trailing padding is allowed.
5913     // An 8-byte aligned struct s { float f; } is passed as a double.
5914     if (!Found.isNull())
5915       return Found;
5916   }
5917 
5918   return Ty;
5919 }
5920 
5921 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5922                                   QualType Ty) const {
5923   // Assume that va_list type is correct; should be pointer to LLVM type:
5924   // struct {
5925   //   i64 __gpr;
5926   //   i64 __fpr;
5927   //   i8 *__overflow_arg_area;
5928   //   i8 *__reg_save_area;
5929   // };
5930 
5931   // Every non-vector argument occupies 8 bytes and is passed by preference
5932   // in either GPRs or FPRs.  Vector arguments occupy 8 or 16 bytes and are
5933   // always passed on the stack.
5934   Ty = getContext().getCanonicalType(Ty);
5935   auto TyInfo = getContext().getTypeInfoInChars(Ty);
5936   llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty);
5937   llvm::Type *DirectTy = ArgTy;
5938   ABIArgInfo AI = classifyArgumentType(Ty);
5939   bool IsIndirect = AI.isIndirect();
5940   bool InFPRs = false;
5941   bool IsVector = false;
5942   CharUnits UnpaddedSize;
5943   CharUnits DirectAlign;
5944   if (IsIndirect) {
5945     DirectTy = llvm::PointerType::getUnqual(DirectTy);
5946     UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8);
5947   } else {
5948     if (AI.getCoerceToType())
5949       ArgTy = AI.getCoerceToType();
5950     InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy();
5951     IsVector = ArgTy->isVectorTy();
5952     UnpaddedSize = TyInfo.first;
5953     DirectAlign = TyInfo.second;
5954   }
5955   CharUnits PaddedSize = CharUnits::fromQuantity(8);
5956   if (IsVector && UnpaddedSize > PaddedSize)
5957     PaddedSize = CharUnits::fromQuantity(16);
5958   assert((UnpaddedSize <= PaddedSize) && "Invalid argument size.");
5959 
5960   CharUnits Padding = (PaddedSize - UnpaddedSize);
5961 
5962   llvm::Type *IndexTy = CGF.Int64Ty;
5963   llvm::Value *PaddedSizeV =
5964     llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity());
5965 
5966   if (IsVector) {
5967     // Work out the address of a vector argument on the stack.
5968     // Vector arguments are always passed in the high bits of a
5969     // single (8 byte) or double (16 byte) stack slot.
5970     Address OverflowArgAreaPtr =
5971       CGF.Builder.CreateStructGEP(VAListAddr, 2, CharUnits::fromQuantity(16),
5972                                   "overflow_arg_area_ptr");
5973     Address OverflowArgArea =
5974       Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
5975               TyInfo.second);
5976     Address MemAddr =
5977       CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr");
5978 
5979     // Update overflow_arg_area_ptr pointer
5980     llvm::Value *NewOverflowArgArea =
5981       CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
5982                             "overflow_arg_area");
5983     CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
5984 
5985     return MemAddr;
5986   }
5987 
5988   assert(PaddedSize.getQuantity() == 8);
5989 
5990   unsigned MaxRegs, RegCountField, RegSaveIndex;
5991   CharUnits RegPadding;
5992   if (InFPRs) {
5993     MaxRegs = 4; // Maximum of 4 FPR arguments
5994     RegCountField = 1; // __fpr
5995     RegSaveIndex = 16; // save offset for f0
5996     RegPadding = CharUnits(); // floats are passed in the high bits of an FPR
5997   } else {
5998     MaxRegs = 5; // Maximum of 5 GPR arguments
5999     RegCountField = 0; // __gpr
6000     RegSaveIndex = 2; // save offset for r2
6001     RegPadding = Padding; // values are passed in the low bits of a GPR
6002   }
6003 
6004   Address RegCountPtr = CGF.Builder.CreateStructGEP(
6005       VAListAddr, RegCountField, RegCountField * CharUnits::fromQuantity(8),
6006       "reg_count_ptr");
6007   llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
6008   llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
6009   llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
6010                                                  "fits_in_regs");
6011 
6012   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
6013   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
6014   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
6015   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
6016 
6017   // Emit code to load the value if it was passed in registers.
6018   CGF.EmitBlock(InRegBlock);
6019 
6020   // Work out the address of an argument register.
6021   llvm::Value *ScaledRegCount =
6022     CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
6023   llvm::Value *RegBase =
6024     llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity()
6025                                       + RegPadding.getQuantity());
6026   llvm::Value *RegOffset =
6027     CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
6028   Address RegSaveAreaPtr =
6029       CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24),
6030                                   "reg_save_area_ptr");
6031   llvm::Value *RegSaveArea =
6032     CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
6033   Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset,
6034                                            "raw_reg_addr"),
6035                      PaddedSize);
6036   Address RegAddr =
6037     CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr");
6038 
6039   // Update the register count
6040   llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
6041   llvm::Value *NewRegCount =
6042     CGF.Builder.CreateAdd(RegCount, One, "reg_count");
6043   CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
6044   CGF.EmitBranch(ContBlock);
6045 
6046   // Emit code to load the value if it was passed in memory.
6047   CGF.EmitBlock(InMemBlock);
6048 
6049   // Work out the address of a stack argument.
6050   Address OverflowArgAreaPtr = CGF.Builder.CreateStructGEP(
6051       VAListAddr, 2, CharUnits::fromQuantity(16), "overflow_arg_area_ptr");
6052   Address OverflowArgArea =
6053     Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
6054             PaddedSize);
6055   Address RawMemAddr =
6056     CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr");
6057   Address MemAddr =
6058     CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr");
6059 
6060   // Update overflow_arg_area_ptr pointer
6061   llvm::Value *NewOverflowArgArea =
6062     CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
6063                           "overflow_arg_area");
6064   CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
6065   CGF.EmitBranch(ContBlock);
6066 
6067   // Return the appropriate result.
6068   CGF.EmitBlock(ContBlock);
6069   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
6070                                  MemAddr, InMemBlock, "va_arg.addr");
6071 
6072   if (IsIndirect)
6073     ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"),
6074                       TyInfo.second);
6075 
6076   return ResAddr;
6077 }
6078 
6079 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
6080   if (RetTy->isVoidType())
6081     return ABIArgInfo::getIgnore();
6082   if (isVectorArgumentType(RetTy))
6083     return ABIArgInfo::getDirect();
6084   if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
6085     return getNaturalAlignIndirect(RetTy);
6086   return (isPromotableIntegerType(RetTy) ?
6087           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
6088 }
6089 
6090 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
6091   // Handle the generic C++ ABI.
6092   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
6093     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6094 
6095   // Integers and enums are extended to full register width.
6096   if (isPromotableIntegerType(Ty))
6097     return ABIArgInfo::getExtend();
6098 
6099   // Handle vector types and vector-like structure types.  Note that
6100   // as opposed to float-like structure types, we do not allow any
6101   // padding for vector-like structures, so verify the sizes match.
6102   uint64_t Size = getContext().getTypeSize(Ty);
6103   QualType SingleElementTy = GetSingleElementType(Ty);
6104   if (isVectorArgumentType(SingleElementTy) &&
6105       getContext().getTypeSize(SingleElementTy) == Size)
6106     return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy));
6107 
6108   // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
6109   if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
6110     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6111 
6112   // Handle small structures.
6113   if (const RecordType *RT = Ty->getAs<RecordType>()) {
6114     // Structures with flexible arrays have variable length, so really
6115     // fail the size test above.
6116     const RecordDecl *RD = RT->getDecl();
6117     if (RD->hasFlexibleArrayMember())
6118       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6119 
6120     // The structure is passed as an unextended integer, a float, or a double.
6121     llvm::Type *PassTy;
6122     if (isFPArgumentType(SingleElementTy)) {
6123       assert(Size == 32 || Size == 64);
6124       if (Size == 32)
6125         PassTy = llvm::Type::getFloatTy(getVMContext());
6126       else
6127         PassTy = llvm::Type::getDoubleTy(getVMContext());
6128     } else
6129       PassTy = llvm::IntegerType::get(getVMContext(), Size);
6130     return ABIArgInfo::getDirect(PassTy);
6131   }
6132 
6133   // Non-structure compounds are passed indirectly.
6134   if (isCompoundType(Ty))
6135     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6136 
6137   return ABIArgInfo::getDirect(nullptr);
6138 }
6139 
6140 //===----------------------------------------------------------------------===//
6141 // MSP430 ABI Implementation
6142 //===----------------------------------------------------------------------===//
6143 
6144 namespace {
6145 
6146 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
6147 public:
6148   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
6149     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
6150   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6151                            CodeGen::CodeGenModule &M) const override;
6152 };
6153 
6154 }
6155 
6156 void MSP430TargetCodeGenInfo::setTargetAttributes(const Decl *D,
6157                                                   llvm::GlobalValue *GV,
6158                                              CodeGen::CodeGenModule &M) const {
6159   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
6160     if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
6161       // Handle 'interrupt' attribute:
6162       llvm::Function *F = cast<llvm::Function>(GV);
6163 
6164       // Step 1: Set ISR calling convention.
6165       F->setCallingConv(llvm::CallingConv::MSP430_INTR);
6166 
6167       // Step 2: Add attributes goodness.
6168       F->addFnAttr(llvm::Attribute::NoInline);
6169 
6170       // Step 3: Emit ISR vector alias.
6171       unsigned Num = attr->getNumber() / 2;
6172       llvm::GlobalAlias::create(llvm::Function::ExternalLinkage,
6173                                 "__isr_" + Twine(Num), F);
6174     }
6175   }
6176 }
6177 
6178 //===----------------------------------------------------------------------===//
6179 // MIPS ABI Implementation.  This works for both little-endian and
6180 // big-endian variants.
6181 //===----------------------------------------------------------------------===//
6182 
6183 namespace {
6184 class MipsABIInfo : public ABIInfo {
6185   bool IsO32;
6186   unsigned MinABIStackAlignInBytes, StackAlignInBytes;
6187   void CoerceToIntArgs(uint64_t TySize,
6188                        SmallVectorImpl<llvm::Type *> &ArgList) const;
6189   llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
6190   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
6191   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
6192 public:
6193   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
6194     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
6195     StackAlignInBytes(IsO32 ? 8 : 16) {}
6196 
6197   ABIArgInfo classifyReturnType(QualType RetTy) const;
6198   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
6199   void computeInfo(CGFunctionInfo &FI) const override;
6200   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6201                     QualType Ty) const override;
6202   bool shouldSignExtUnsignedType(QualType Ty) const override;
6203 };
6204 
6205 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
6206   unsigned SizeOfUnwindException;
6207 public:
6208   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
6209     : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
6210       SizeOfUnwindException(IsO32 ? 24 : 32) {}
6211 
6212   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
6213     return 29;
6214   }
6215 
6216   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6217                            CodeGen::CodeGenModule &CGM) const override {
6218     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6219     if (!FD) return;
6220     llvm::Function *Fn = cast<llvm::Function>(GV);
6221     if (FD->hasAttr<Mips16Attr>()) {
6222       Fn->addFnAttr("mips16");
6223     }
6224     else if (FD->hasAttr<NoMips16Attr>()) {
6225       Fn->addFnAttr("nomips16");
6226     }
6227 
6228     const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>();
6229     if (!Attr)
6230       return;
6231 
6232     const char *Kind;
6233     switch (Attr->getInterrupt()) {
6234     case MipsInterruptAttr::eic:     Kind = "eic"; break;
6235     case MipsInterruptAttr::sw0:     Kind = "sw0"; break;
6236     case MipsInterruptAttr::sw1:     Kind = "sw1"; break;
6237     case MipsInterruptAttr::hw0:     Kind = "hw0"; break;
6238     case MipsInterruptAttr::hw1:     Kind = "hw1"; break;
6239     case MipsInterruptAttr::hw2:     Kind = "hw2"; break;
6240     case MipsInterruptAttr::hw3:     Kind = "hw3"; break;
6241     case MipsInterruptAttr::hw4:     Kind = "hw4"; break;
6242     case MipsInterruptAttr::hw5:     Kind = "hw5"; break;
6243     }
6244 
6245     Fn->addFnAttr("interrupt", Kind);
6246 
6247   }
6248 
6249   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6250                                llvm::Value *Address) const override;
6251 
6252   unsigned getSizeOfUnwindException() const override {
6253     return SizeOfUnwindException;
6254   }
6255 };
6256 }
6257 
6258 void MipsABIInfo::CoerceToIntArgs(
6259     uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const {
6260   llvm::IntegerType *IntTy =
6261     llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
6262 
6263   // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
6264   for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
6265     ArgList.push_back(IntTy);
6266 
6267   // If necessary, add one more integer type to ArgList.
6268   unsigned R = TySize % (MinABIStackAlignInBytes * 8);
6269 
6270   if (R)
6271     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
6272 }
6273 
6274 // In N32/64, an aligned double precision floating point field is passed in
6275 // a register.
6276 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
6277   SmallVector<llvm::Type*, 8> ArgList, IntArgList;
6278 
6279   if (IsO32) {
6280     CoerceToIntArgs(TySize, ArgList);
6281     return llvm::StructType::get(getVMContext(), ArgList);
6282   }
6283 
6284   if (Ty->isComplexType())
6285     return CGT.ConvertType(Ty);
6286 
6287   const RecordType *RT = Ty->getAs<RecordType>();
6288 
6289   // Unions/vectors are passed in integer registers.
6290   if (!RT || !RT->isStructureOrClassType()) {
6291     CoerceToIntArgs(TySize, ArgList);
6292     return llvm::StructType::get(getVMContext(), ArgList);
6293   }
6294 
6295   const RecordDecl *RD = RT->getDecl();
6296   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
6297   assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
6298 
6299   uint64_t LastOffset = 0;
6300   unsigned idx = 0;
6301   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
6302 
6303   // Iterate over fields in the struct/class and check if there are any aligned
6304   // double fields.
6305   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
6306        i != e; ++i, ++idx) {
6307     const QualType Ty = i->getType();
6308     const BuiltinType *BT = Ty->getAs<BuiltinType>();
6309 
6310     if (!BT || BT->getKind() != BuiltinType::Double)
6311       continue;
6312 
6313     uint64_t Offset = Layout.getFieldOffset(idx);
6314     if (Offset % 64) // Ignore doubles that are not aligned.
6315       continue;
6316 
6317     // Add ((Offset - LastOffset) / 64) args of type i64.
6318     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
6319       ArgList.push_back(I64);
6320 
6321     // Add double type.
6322     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
6323     LastOffset = Offset + 64;
6324   }
6325 
6326   CoerceToIntArgs(TySize - LastOffset, IntArgList);
6327   ArgList.append(IntArgList.begin(), IntArgList.end());
6328 
6329   return llvm::StructType::get(getVMContext(), ArgList);
6330 }
6331 
6332 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
6333                                         uint64_t Offset) const {
6334   if (OrigOffset + MinABIStackAlignInBytes > Offset)
6335     return nullptr;
6336 
6337   return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
6338 }
6339 
6340 ABIArgInfo
6341 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
6342   Ty = useFirstFieldIfTransparentUnion(Ty);
6343 
6344   uint64_t OrigOffset = Offset;
6345   uint64_t TySize = getContext().getTypeSize(Ty);
6346   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
6347 
6348   Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
6349                    (uint64_t)StackAlignInBytes);
6350   unsigned CurrOffset = llvm::alignTo(Offset, Align);
6351   Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8;
6352 
6353   if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
6354     // Ignore empty aggregates.
6355     if (TySize == 0)
6356       return ABIArgInfo::getIgnore();
6357 
6358     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
6359       Offset = OrigOffset + MinABIStackAlignInBytes;
6360       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6361     }
6362 
6363     // If we have reached here, aggregates are passed directly by coercing to
6364     // another structure type. Padding is inserted if the offset of the
6365     // aggregate is unaligned.
6366     ABIArgInfo ArgInfo =
6367         ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
6368                               getPaddingType(OrigOffset, CurrOffset));
6369     ArgInfo.setInReg(true);
6370     return ArgInfo;
6371   }
6372 
6373   // Treat an enum type as its underlying type.
6374   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6375     Ty = EnumTy->getDecl()->getIntegerType();
6376 
6377   // All integral types are promoted to the GPR width.
6378   if (Ty->isIntegralOrEnumerationType())
6379     return ABIArgInfo::getExtend();
6380 
6381   return ABIArgInfo::getDirect(
6382       nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
6383 }
6384 
6385 llvm::Type*
6386 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
6387   const RecordType *RT = RetTy->getAs<RecordType>();
6388   SmallVector<llvm::Type*, 8> RTList;
6389 
6390   if (RT && RT->isStructureOrClassType()) {
6391     const RecordDecl *RD = RT->getDecl();
6392     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
6393     unsigned FieldCnt = Layout.getFieldCount();
6394 
6395     // N32/64 returns struct/classes in floating point registers if the
6396     // following conditions are met:
6397     // 1. The size of the struct/class is no larger than 128-bit.
6398     // 2. The struct/class has one or two fields all of which are floating
6399     //    point types.
6400     // 3. The offset of the first field is zero (this follows what gcc does).
6401     //
6402     // Any other composite results are returned in integer registers.
6403     //
6404     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
6405       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
6406       for (; b != e; ++b) {
6407         const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
6408 
6409         if (!BT || !BT->isFloatingPoint())
6410           break;
6411 
6412         RTList.push_back(CGT.ConvertType(b->getType()));
6413       }
6414 
6415       if (b == e)
6416         return llvm::StructType::get(getVMContext(), RTList,
6417                                      RD->hasAttr<PackedAttr>());
6418 
6419       RTList.clear();
6420     }
6421   }
6422 
6423   CoerceToIntArgs(Size, RTList);
6424   return llvm::StructType::get(getVMContext(), RTList);
6425 }
6426 
6427 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
6428   uint64_t Size = getContext().getTypeSize(RetTy);
6429 
6430   if (RetTy->isVoidType())
6431     return ABIArgInfo::getIgnore();
6432 
6433   // O32 doesn't treat zero-sized structs differently from other structs.
6434   // However, N32/N64 ignores zero sized return values.
6435   if (!IsO32 && Size == 0)
6436     return ABIArgInfo::getIgnore();
6437 
6438   if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
6439     if (Size <= 128) {
6440       if (RetTy->isAnyComplexType())
6441         return ABIArgInfo::getDirect();
6442 
6443       // O32 returns integer vectors in registers and N32/N64 returns all small
6444       // aggregates in registers.
6445       if (!IsO32 ||
6446           (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
6447         ABIArgInfo ArgInfo =
6448             ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
6449         ArgInfo.setInReg(true);
6450         return ArgInfo;
6451       }
6452     }
6453 
6454     return getNaturalAlignIndirect(RetTy);
6455   }
6456 
6457   // Treat an enum type as its underlying type.
6458   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6459     RetTy = EnumTy->getDecl()->getIntegerType();
6460 
6461   return (RetTy->isPromotableIntegerType() ?
6462           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
6463 }
6464 
6465 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
6466   ABIArgInfo &RetInfo = FI.getReturnInfo();
6467   if (!getCXXABI().classifyReturnType(FI))
6468     RetInfo = classifyReturnType(FI.getReturnType());
6469 
6470   // Check if a pointer to an aggregate is passed as a hidden argument.
6471   uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
6472 
6473   for (auto &I : FI.arguments())
6474     I.info = classifyArgumentType(I.type, Offset);
6475 }
6476 
6477 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6478                                QualType OrigTy) const {
6479   QualType Ty = OrigTy;
6480 
6481   // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64.
6482   // Pointers are also promoted in the same way but this only matters for N32.
6483   unsigned SlotSizeInBits = IsO32 ? 32 : 64;
6484   unsigned PtrWidth = getTarget().getPointerWidth(0);
6485   bool DidPromote = false;
6486   if ((Ty->isIntegerType() &&
6487           getContext().getIntWidth(Ty) < SlotSizeInBits) ||
6488       (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) {
6489     DidPromote = true;
6490     Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits,
6491                                             Ty->isSignedIntegerType());
6492   }
6493 
6494   auto TyInfo = getContext().getTypeInfoInChars(Ty);
6495 
6496   // The alignment of things in the argument area is never larger than
6497   // StackAlignInBytes.
6498   TyInfo.second =
6499     std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes));
6500 
6501   // MinABIStackAlignInBytes is the size of argument slots on the stack.
6502   CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes);
6503 
6504   Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
6505                           TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true);
6506 
6507 
6508   // If there was a promotion, "unpromote" into a temporary.
6509   // TODO: can we just use a pointer into a subset of the original slot?
6510   if (DidPromote) {
6511     Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp");
6512     llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr);
6513 
6514     // Truncate down to the right width.
6515     llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType()
6516                                                  : CGF.IntPtrTy);
6517     llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy);
6518     if (OrigTy->isPointerType())
6519       V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType());
6520 
6521     CGF.Builder.CreateStore(V, Temp);
6522     Addr = Temp;
6523   }
6524 
6525   return Addr;
6526 }
6527 
6528 bool MipsABIInfo::shouldSignExtUnsignedType(QualType Ty) const {
6529   int TySize = getContext().getTypeSize(Ty);
6530 
6531   // MIPS64 ABI requires unsigned 32 bit integers to be sign extended.
6532   if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
6533     return true;
6534 
6535   return false;
6536 }
6537 
6538 bool
6539 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6540                                                llvm::Value *Address) const {
6541   // This information comes from gcc's implementation, which seems to
6542   // as canonical as it gets.
6543 
6544   // Everything on MIPS is 4 bytes.  Double-precision FP registers
6545   // are aliased to pairs of single-precision FP registers.
6546   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
6547 
6548   // 0-31 are the general purpose registers, $0 - $31.
6549   // 32-63 are the floating-point registers, $f0 - $f31.
6550   // 64 and 65 are the multiply/divide registers, $hi and $lo.
6551   // 66 is the (notional, I think) register for signal-handler return.
6552   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
6553 
6554   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
6555   // They are one bit wide and ignored here.
6556 
6557   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
6558   // (coprocessor 1 is the FP unit)
6559   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
6560   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
6561   // 176-181 are the DSP accumulator registers.
6562   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
6563   return false;
6564 }
6565 
6566 //===----------------------------------------------------------------------===//
6567 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
6568 // Currently subclassed only to implement custom OpenCL C function attribute
6569 // handling.
6570 //===----------------------------------------------------------------------===//
6571 
6572 namespace {
6573 
6574 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
6575 public:
6576   TCETargetCodeGenInfo(CodeGenTypes &CGT)
6577     : DefaultTargetCodeGenInfo(CGT) {}
6578 
6579   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6580                            CodeGen::CodeGenModule &M) const override;
6581 };
6582 
6583 void TCETargetCodeGenInfo::setTargetAttributes(
6584     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
6585   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6586   if (!FD) return;
6587 
6588   llvm::Function *F = cast<llvm::Function>(GV);
6589 
6590   if (M.getLangOpts().OpenCL) {
6591     if (FD->hasAttr<OpenCLKernelAttr>()) {
6592       // OpenCL C Kernel functions are not subject to inlining
6593       F->addFnAttr(llvm::Attribute::NoInline);
6594       const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
6595       if (Attr) {
6596         // Convert the reqd_work_group_size() attributes to metadata.
6597         llvm::LLVMContext &Context = F->getContext();
6598         llvm::NamedMDNode *OpenCLMetadata =
6599             M.getModule().getOrInsertNamedMetadata(
6600                 "opencl.kernel_wg_size_info");
6601 
6602         SmallVector<llvm::Metadata *, 5> Operands;
6603         Operands.push_back(llvm::ConstantAsMetadata::get(F));
6604 
6605         Operands.push_back(
6606             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
6607                 M.Int32Ty, llvm::APInt(32, Attr->getXDim()))));
6608         Operands.push_back(
6609             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
6610                 M.Int32Ty, llvm::APInt(32, Attr->getYDim()))));
6611         Operands.push_back(
6612             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
6613                 M.Int32Ty, llvm::APInt(32, Attr->getZDim()))));
6614 
6615         // Add a boolean constant operand for "required" (true) or "hint"
6616         // (false) for implementing the work_group_size_hint attr later.
6617         // Currently always true as the hint is not yet implemented.
6618         Operands.push_back(
6619             llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context)));
6620         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
6621       }
6622     }
6623   }
6624 }
6625 
6626 }
6627 
6628 //===----------------------------------------------------------------------===//
6629 // Hexagon ABI Implementation
6630 //===----------------------------------------------------------------------===//
6631 
6632 namespace {
6633 
6634 class HexagonABIInfo : public ABIInfo {
6635 
6636 
6637 public:
6638   HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
6639 
6640 private:
6641 
6642   ABIArgInfo classifyReturnType(QualType RetTy) const;
6643   ABIArgInfo classifyArgumentType(QualType RetTy) const;
6644 
6645   void computeInfo(CGFunctionInfo &FI) const override;
6646 
6647   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6648                     QualType Ty) const override;
6649 };
6650 
6651 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
6652 public:
6653   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
6654     :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
6655 
6656   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
6657     return 29;
6658   }
6659 };
6660 
6661 }
6662 
6663 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
6664   if (!getCXXABI().classifyReturnType(FI))
6665     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
6666   for (auto &I : FI.arguments())
6667     I.info = classifyArgumentType(I.type);
6668 }
6669 
6670 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
6671   if (!isAggregateTypeForABI(Ty)) {
6672     // Treat an enum type as its underlying type.
6673     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6674       Ty = EnumTy->getDecl()->getIntegerType();
6675 
6676     return (Ty->isPromotableIntegerType() ?
6677             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
6678   }
6679 
6680   // Ignore empty records.
6681   if (isEmptyRecord(getContext(), Ty, true))
6682     return ABIArgInfo::getIgnore();
6683 
6684   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
6685     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6686 
6687   uint64_t Size = getContext().getTypeSize(Ty);
6688   if (Size > 64)
6689     return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
6690     // Pass in the smallest viable integer type.
6691   else if (Size > 32)
6692       return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
6693   else if (Size > 16)
6694       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6695   else if (Size > 8)
6696       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6697   else
6698       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6699 }
6700 
6701 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
6702   if (RetTy->isVoidType())
6703     return ABIArgInfo::getIgnore();
6704 
6705   // Large vector types should be returned via memory.
6706   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
6707     return getNaturalAlignIndirect(RetTy);
6708 
6709   if (!isAggregateTypeForABI(RetTy)) {
6710     // Treat an enum type as its underlying type.
6711     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6712       RetTy = EnumTy->getDecl()->getIntegerType();
6713 
6714     return (RetTy->isPromotableIntegerType() ?
6715             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
6716   }
6717 
6718   if (isEmptyRecord(getContext(), RetTy, true))
6719     return ABIArgInfo::getIgnore();
6720 
6721   // Aggregates <= 8 bytes are returned in r0; other aggregates
6722   // are returned indirectly.
6723   uint64_t Size = getContext().getTypeSize(RetTy);
6724   if (Size <= 64) {
6725     // Return in the smallest viable integer type.
6726     if (Size <= 8)
6727       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6728     if (Size <= 16)
6729       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6730     if (Size <= 32)
6731       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6732     return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
6733   }
6734 
6735   return getNaturalAlignIndirect(RetTy, /*ByVal=*/true);
6736 }
6737 
6738 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6739                                   QualType Ty) const {
6740   // FIXME: Someone needs to audit that this handle alignment correctly.
6741   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
6742                           getContext().getTypeInfoInChars(Ty),
6743                           CharUnits::fromQuantity(4),
6744                           /*AllowHigherAlign*/ true);
6745 }
6746 
6747 //===----------------------------------------------------------------------===//
6748 // Lanai ABI Implementation
6749 //===----------------------------------------------------------------------===//
6750 
6751 namespace {
6752 class LanaiABIInfo : public DefaultABIInfo {
6753 public:
6754   LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
6755 
6756   bool shouldUseInReg(QualType Ty, CCState &State) const;
6757 
6758   void computeInfo(CGFunctionInfo &FI) const override {
6759     CCState State(FI.getCallingConvention());
6760     // Lanai uses 4 registers to pass arguments unless the function has the
6761     // regparm attribute set.
6762     if (FI.getHasRegParm()) {
6763       State.FreeRegs = FI.getRegParm();
6764     } else {
6765       State.FreeRegs = 4;
6766     }
6767 
6768     if (!getCXXABI().classifyReturnType(FI))
6769       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
6770     for (auto &I : FI.arguments())
6771       I.info = classifyArgumentType(I.type, State);
6772   }
6773 
6774   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
6775   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
6776 };
6777 } // end anonymous namespace
6778 
6779 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const {
6780   unsigned Size = getContext().getTypeSize(Ty);
6781   unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U;
6782 
6783   if (SizeInRegs == 0)
6784     return false;
6785 
6786   if (SizeInRegs > State.FreeRegs) {
6787     State.FreeRegs = 0;
6788     return false;
6789   }
6790 
6791   State.FreeRegs -= SizeInRegs;
6792 
6793   return true;
6794 }
6795 
6796 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal,
6797                                            CCState &State) const {
6798   if (!ByVal) {
6799     if (State.FreeRegs) {
6800       --State.FreeRegs; // Non-byval indirects just use one pointer.
6801       return getNaturalAlignIndirectInReg(Ty);
6802     }
6803     return getNaturalAlignIndirect(Ty, false);
6804   }
6805 
6806   // Compute the byval alignment.
6807   const unsigned MinABIStackAlignInBytes = 4;
6808   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
6809   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
6810                                  /*Realign=*/TypeAlign >
6811                                      MinABIStackAlignInBytes);
6812 }
6813 
6814 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty,
6815                                               CCState &State) const {
6816   // Check with the C++ ABI first.
6817   const RecordType *RT = Ty->getAs<RecordType>();
6818   if (RT) {
6819     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
6820     if (RAA == CGCXXABI::RAA_Indirect) {
6821       return getIndirectResult(Ty, /*ByVal=*/false, State);
6822     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
6823       return getNaturalAlignIndirect(Ty, /*ByRef=*/true);
6824     }
6825   }
6826 
6827   if (isAggregateTypeForABI(Ty)) {
6828     // Structures with flexible arrays are always indirect.
6829     if (RT && RT->getDecl()->hasFlexibleArrayMember())
6830       return getIndirectResult(Ty, /*ByVal=*/true, State);
6831 
6832     // Ignore empty structs/unions.
6833     if (isEmptyRecord(getContext(), Ty, true))
6834       return ABIArgInfo::getIgnore();
6835 
6836     llvm::LLVMContext &LLVMContext = getVMContext();
6837     unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
6838     if (SizeInRegs <= State.FreeRegs) {
6839       llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
6840       SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
6841       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
6842       State.FreeRegs -= SizeInRegs;
6843       return ABIArgInfo::getDirectInReg(Result);
6844     } else {
6845       State.FreeRegs = 0;
6846     }
6847     return getIndirectResult(Ty, true, State);
6848   }
6849 
6850   // Treat an enum type as its underlying type.
6851   if (const auto *EnumTy = Ty->getAs<EnumType>())
6852     Ty = EnumTy->getDecl()->getIntegerType();
6853 
6854   bool InReg = shouldUseInReg(Ty, State);
6855   if (Ty->isPromotableIntegerType()) {
6856     if (InReg)
6857       return ABIArgInfo::getDirectInReg();
6858     return ABIArgInfo::getExtend();
6859   }
6860   if (InReg)
6861     return ABIArgInfo::getDirectInReg();
6862   return ABIArgInfo::getDirect();
6863 }
6864 
6865 namespace {
6866 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo {
6867 public:
6868   LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
6869       : TargetCodeGenInfo(new LanaiABIInfo(CGT)) {}
6870 };
6871 }
6872 
6873 //===----------------------------------------------------------------------===//
6874 // AMDGPU ABI Implementation
6875 //===----------------------------------------------------------------------===//
6876 
6877 namespace {
6878 
6879 class AMDGPUABIInfo final : public DefaultABIInfo {
6880 public:
6881   explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
6882 
6883 private:
6884   ABIArgInfo classifyArgumentType(QualType Ty) const;
6885 
6886   void computeInfo(CGFunctionInfo &FI) const override;
6887 };
6888 
6889 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const {
6890   if (!getCXXABI().classifyReturnType(FI))
6891     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
6892 
6893   unsigned CC = FI.getCallingConvention();
6894   for (auto &Arg : FI.arguments())
6895     if (CC == llvm::CallingConv::AMDGPU_KERNEL)
6896       Arg.info = classifyArgumentType(Arg.type);
6897     else
6898       Arg.info = DefaultABIInfo::classifyArgumentType(Arg.type);
6899 }
6900 
6901 /// \brief Classify argument of given type \p Ty.
6902 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty) const {
6903   llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
6904   if (!StrTy) {
6905     return DefaultABIInfo::classifyArgumentType(Ty);
6906   }
6907 
6908   // Coerce single element structs to its element.
6909   if (StrTy->getNumElements() == 1) {
6910     return ABIArgInfo::getDirect();
6911   }
6912 
6913   // If we set CanBeFlattened to true, CodeGen will expand the struct to its
6914   // individual elements, which confuses the Clover OpenCL backend; therefore we
6915   // have to set it to false here. Other args of getDirect() are just defaults.
6916   return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
6917 }
6918 
6919 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
6920 public:
6921   AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
6922     : TargetCodeGenInfo(new AMDGPUABIInfo(CGT)) {}
6923   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6924                            CodeGen::CodeGenModule &M) const override;
6925   unsigned getOpenCLKernelCallingConv() const override;
6926 };
6927 
6928 }
6929 
6930 static void appendOpenCLVersionMD (CodeGen::CodeGenModule &CGM);
6931 
6932 void AMDGPUTargetCodeGenInfo::setTargetAttributes(
6933   const Decl *D,
6934   llvm::GlobalValue *GV,
6935   CodeGen::CodeGenModule &M) const {
6936   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6937   if (!FD)
6938     return;
6939 
6940   if (const auto Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
6941     llvm::Function *F = cast<llvm::Function>(GV);
6942     uint32_t NumVGPR = Attr->getNumVGPR();
6943     if (NumVGPR != 0)
6944       F->addFnAttr("amdgpu_num_vgpr", llvm::utostr(NumVGPR));
6945   }
6946 
6947   if (const auto Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
6948     llvm::Function *F = cast<llvm::Function>(GV);
6949     unsigned NumSGPR = Attr->getNumSGPR();
6950     if (NumSGPR != 0)
6951       F->addFnAttr("amdgpu_num_sgpr", llvm::utostr(NumSGPR));
6952   }
6953 
6954   appendOpenCLVersionMD(M);
6955 }
6956 
6957 
6958 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
6959   return llvm::CallingConv::AMDGPU_KERNEL;
6960 }
6961 
6962 //===----------------------------------------------------------------------===//
6963 // SPARC v8 ABI Implementation.
6964 // Based on the SPARC Compliance Definition version 2.4.1.
6965 //
6966 // Ensures that complex values are passed in registers.
6967 //
6968 namespace {
6969 class SparcV8ABIInfo : public DefaultABIInfo {
6970 public:
6971   SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
6972 
6973 private:
6974   ABIArgInfo classifyReturnType(QualType RetTy) const;
6975   void computeInfo(CGFunctionInfo &FI) const override;
6976 };
6977 } // end anonymous namespace
6978 
6979 
6980 ABIArgInfo
6981 SparcV8ABIInfo::classifyReturnType(QualType Ty) const {
6982   if (Ty->isAnyComplexType()) {
6983     return ABIArgInfo::getDirect();
6984   }
6985   else {
6986     return DefaultABIInfo::classifyReturnType(Ty);
6987   }
6988 }
6989 
6990 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const {
6991 
6992   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
6993   for (auto &Arg : FI.arguments())
6994     Arg.info = classifyArgumentType(Arg.type);
6995 }
6996 
6997 namespace {
6998 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo {
6999 public:
7000   SparcV8TargetCodeGenInfo(CodeGenTypes &CGT)
7001     : TargetCodeGenInfo(new SparcV8ABIInfo(CGT)) {}
7002 };
7003 } // end anonymous namespace
7004 
7005 //===----------------------------------------------------------------------===//
7006 // SPARC v9 ABI Implementation.
7007 // Based on the SPARC Compliance Definition version 2.4.1.
7008 //
7009 // Function arguments a mapped to a nominal "parameter array" and promoted to
7010 // registers depending on their type. Each argument occupies 8 or 16 bytes in
7011 // the array, structs larger than 16 bytes are passed indirectly.
7012 //
7013 // One case requires special care:
7014 //
7015 //   struct mixed {
7016 //     int i;
7017 //     float f;
7018 //   };
7019 //
7020 // When a struct mixed is passed by value, it only occupies 8 bytes in the
7021 // parameter array, but the int is passed in an integer register, and the float
7022 // is passed in a floating point register. This is represented as two arguments
7023 // with the LLVM IR inreg attribute:
7024 //
7025 //   declare void f(i32 inreg %i, float inreg %f)
7026 //
7027 // The code generator will only allocate 4 bytes from the parameter array for
7028 // the inreg arguments. All other arguments are allocated a multiple of 8
7029 // bytes.
7030 //
7031 namespace {
7032 class SparcV9ABIInfo : public ABIInfo {
7033 public:
7034   SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
7035 
7036 private:
7037   ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
7038   void computeInfo(CGFunctionInfo &FI) const override;
7039   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7040                     QualType Ty) const override;
7041 
7042   // Coercion type builder for structs passed in registers. The coercion type
7043   // serves two purposes:
7044   //
7045   // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
7046   //    in registers.
7047   // 2. Expose aligned floating point elements as first-level elements, so the
7048   //    code generator knows to pass them in floating point registers.
7049   //
7050   // We also compute the InReg flag which indicates that the struct contains
7051   // aligned 32-bit floats.
7052   //
7053   struct CoerceBuilder {
7054     llvm::LLVMContext &Context;
7055     const llvm::DataLayout &DL;
7056     SmallVector<llvm::Type*, 8> Elems;
7057     uint64_t Size;
7058     bool InReg;
7059 
7060     CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
7061       : Context(c), DL(dl), Size(0), InReg(false) {}
7062 
7063     // Pad Elems with integers until Size is ToSize.
7064     void pad(uint64_t ToSize) {
7065       assert(ToSize >= Size && "Cannot remove elements");
7066       if (ToSize == Size)
7067         return;
7068 
7069       // Finish the current 64-bit word.
7070       uint64_t Aligned = llvm::alignTo(Size, 64);
7071       if (Aligned > Size && Aligned <= ToSize) {
7072         Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
7073         Size = Aligned;
7074       }
7075 
7076       // Add whole 64-bit words.
7077       while (Size + 64 <= ToSize) {
7078         Elems.push_back(llvm::Type::getInt64Ty(Context));
7079         Size += 64;
7080       }
7081 
7082       // Final in-word padding.
7083       if (Size < ToSize) {
7084         Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
7085         Size = ToSize;
7086       }
7087     }
7088 
7089     // Add a floating point element at Offset.
7090     void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
7091       // Unaligned floats are treated as integers.
7092       if (Offset % Bits)
7093         return;
7094       // The InReg flag is only required if there are any floats < 64 bits.
7095       if (Bits < 64)
7096         InReg = true;
7097       pad(Offset);
7098       Elems.push_back(Ty);
7099       Size = Offset + Bits;
7100     }
7101 
7102     // Add a struct type to the coercion type, starting at Offset (in bits).
7103     void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
7104       const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
7105       for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
7106         llvm::Type *ElemTy = StrTy->getElementType(i);
7107         uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
7108         switch (ElemTy->getTypeID()) {
7109         case llvm::Type::StructTyID:
7110           addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
7111           break;
7112         case llvm::Type::FloatTyID:
7113           addFloat(ElemOffset, ElemTy, 32);
7114           break;
7115         case llvm::Type::DoubleTyID:
7116           addFloat(ElemOffset, ElemTy, 64);
7117           break;
7118         case llvm::Type::FP128TyID:
7119           addFloat(ElemOffset, ElemTy, 128);
7120           break;
7121         case llvm::Type::PointerTyID:
7122           if (ElemOffset % 64 == 0) {
7123             pad(ElemOffset);
7124             Elems.push_back(ElemTy);
7125             Size += 64;
7126           }
7127           break;
7128         default:
7129           break;
7130         }
7131       }
7132     }
7133 
7134     // Check if Ty is a usable substitute for the coercion type.
7135     bool isUsableType(llvm::StructType *Ty) const {
7136       return llvm::makeArrayRef(Elems) == Ty->elements();
7137     }
7138 
7139     // Get the coercion type as a literal struct type.
7140     llvm::Type *getType() const {
7141       if (Elems.size() == 1)
7142         return Elems.front();
7143       else
7144         return llvm::StructType::get(Context, Elems);
7145     }
7146   };
7147 };
7148 } // end anonymous namespace
7149 
7150 ABIArgInfo
7151 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
7152   if (Ty->isVoidType())
7153     return ABIArgInfo::getIgnore();
7154 
7155   uint64_t Size = getContext().getTypeSize(Ty);
7156 
7157   // Anything too big to fit in registers is passed with an explicit indirect
7158   // pointer / sret pointer.
7159   if (Size > SizeLimit)
7160     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
7161 
7162   // Treat an enum type as its underlying type.
7163   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7164     Ty = EnumTy->getDecl()->getIntegerType();
7165 
7166   // Integer types smaller than a register are extended.
7167   if (Size < 64 && Ty->isIntegerType())
7168     return ABIArgInfo::getExtend();
7169 
7170   // Other non-aggregates go in registers.
7171   if (!isAggregateTypeForABI(Ty))
7172     return ABIArgInfo::getDirect();
7173 
7174   // If a C++ object has either a non-trivial copy constructor or a non-trivial
7175   // destructor, it is passed with an explicit indirect pointer / sret pointer.
7176   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
7177     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7178 
7179   // This is a small aggregate type that should be passed in registers.
7180   // Build a coercion type from the LLVM struct type.
7181   llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
7182   if (!StrTy)
7183     return ABIArgInfo::getDirect();
7184 
7185   CoerceBuilder CB(getVMContext(), getDataLayout());
7186   CB.addStruct(0, StrTy);
7187   CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64));
7188 
7189   // Try to use the original type for coercion.
7190   llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
7191 
7192   if (CB.InReg)
7193     return ABIArgInfo::getDirectInReg(CoerceTy);
7194   else
7195     return ABIArgInfo::getDirect(CoerceTy);
7196 }
7197 
7198 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7199                                   QualType Ty) const {
7200   ABIArgInfo AI = classifyType(Ty, 16 * 8);
7201   llvm::Type *ArgTy = CGT.ConvertType(Ty);
7202   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
7203     AI.setCoerceToType(ArgTy);
7204 
7205   CharUnits SlotSize = CharUnits::fromQuantity(8);
7206 
7207   CGBuilderTy &Builder = CGF.Builder;
7208   Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
7209   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
7210 
7211   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
7212 
7213   Address ArgAddr = Address::invalid();
7214   CharUnits Stride;
7215   switch (AI.getKind()) {
7216   case ABIArgInfo::Expand:
7217   case ABIArgInfo::CoerceAndExpand:
7218   case ABIArgInfo::InAlloca:
7219     llvm_unreachable("Unsupported ABI kind for va_arg");
7220 
7221   case ABIArgInfo::Extend: {
7222     Stride = SlotSize;
7223     CharUnits Offset = SlotSize - TypeInfo.first;
7224     ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend");
7225     break;
7226   }
7227 
7228   case ABIArgInfo::Direct: {
7229     auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
7230     Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize);
7231     ArgAddr = Addr;
7232     break;
7233   }
7234 
7235   case ABIArgInfo::Indirect:
7236     Stride = SlotSize;
7237     ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect");
7238     ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"),
7239                       TypeInfo.second);
7240     break;
7241 
7242   case ABIArgInfo::Ignore:
7243     return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second);
7244   }
7245 
7246   // Update VAList.
7247   llvm::Value *NextPtr =
7248     Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), Stride, "ap.next");
7249   Builder.CreateStore(NextPtr, VAListAddr);
7250 
7251   return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr");
7252 }
7253 
7254 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
7255   FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
7256   for (auto &I : FI.arguments())
7257     I.info = classifyType(I.type, 16 * 8);
7258 }
7259 
7260 namespace {
7261 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
7262 public:
7263   SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
7264     : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {}
7265 
7266   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
7267     return 14;
7268   }
7269 
7270   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
7271                                llvm::Value *Address) const override;
7272 };
7273 } // end anonymous namespace
7274 
7275 bool
7276 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
7277                                                 llvm::Value *Address) const {
7278   // This is calculated from the LLVM and GCC tables and verified
7279   // against gcc output.  AFAIK all ABIs use the same encoding.
7280 
7281   CodeGen::CGBuilderTy &Builder = CGF.Builder;
7282 
7283   llvm::IntegerType *i8 = CGF.Int8Ty;
7284   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
7285   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
7286 
7287   // 0-31: the 8-byte general-purpose registers
7288   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
7289 
7290   // 32-63: f0-31, the 4-byte floating-point registers
7291   AssignToArrayRange(Builder, Address, Four8, 32, 63);
7292 
7293   //   Y   = 64
7294   //   PSR = 65
7295   //   WIM = 66
7296   //   TBR = 67
7297   //   PC  = 68
7298   //   NPC = 69
7299   //   FSR = 70
7300   //   CSR = 71
7301   AssignToArrayRange(Builder, Address, Eight8, 64, 71);
7302 
7303   // 72-87: d0-15, the 8-byte floating-point registers
7304   AssignToArrayRange(Builder, Address, Eight8, 72, 87);
7305 
7306   return false;
7307 }
7308 
7309 
7310 //===----------------------------------------------------------------------===//
7311 // XCore ABI Implementation
7312 //===----------------------------------------------------------------------===//
7313 
7314 namespace {
7315 
7316 /// A SmallStringEnc instance is used to build up the TypeString by passing
7317 /// it by reference between functions that append to it.
7318 typedef llvm::SmallString<128> SmallStringEnc;
7319 
7320 /// TypeStringCache caches the meta encodings of Types.
7321 ///
7322 /// The reason for caching TypeStrings is two fold:
7323 ///   1. To cache a type's encoding for later uses;
7324 ///   2. As a means to break recursive member type inclusion.
7325 ///
7326 /// A cache Entry can have a Status of:
7327 ///   NonRecursive:   The type encoding is not recursive;
7328 ///   Recursive:      The type encoding is recursive;
7329 ///   Incomplete:     An incomplete TypeString;
7330 ///   IncompleteUsed: An incomplete TypeString that has been used in a
7331 ///                   Recursive type encoding.
7332 ///
7333 /// A NonRecursive entry will have all of its sub-members expanded as fully
7334 /// as possible. Whilst it may contain types which are recursive, the type
7335 /// itself is not recursive and thus its encoding may be safely used whenever
7336 /// the type is encountered.
7337 ///
7338 /// A Recursive entry will have all of its sub-members expanded as fully as
7339 /// possible. The type itself is recursive and it may contain other types which
7340 /// are recursive. The Recursive encoding must not be used during the expansion
7341 /// of a recursive type's recursive branch. For simplicity the code uses
7342 /// IncompleteCount to reject all usage of Recursive encodings for member types.
7343 ///
7344 /// An Incomplete entry is always a RecordType and only encodes its
7345 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
7346 /// are placed into the cache during type expansion as a means to identify and
7347 /// handle recursive inclusion of types as sub-members. If there is recursion
7348 /// the entry becomes IncompleteUsed.
7349 ///
7350 /// During the expansion of a RecordType's members:
7351 ///
7352 ///   If the cache contains a NonRecursive encoding for the member type, the
7353 ///   cached encoding is used;
7354 ///
7355 ///   If the cache contains a Recursive encoding for the member type, the
7356 ///   cached encoding is 'Swapped' out, as it may be incorrect, and...
7357 ///
7358 ///   If the member is a RecordType, an Incomplete encoding is placed into the
7359 ///   cache to break potential recursive inclusion of itself as a sub-member;
7360 ///
7361 ///   Once a member RecordType has been expanded, its temporary incomplete
7362 ///   entry is removed from the cache. If a Recursive encoding was swapped out
7363 ///   it is swapped back in;
7364 ///
7365 ///   If an incomplete entry is used to expand a sub-member, the incomplete
7366 ///   entry is marked as IncompleteUsed. The cache keeps count of how many
7367 ///   IncompleteUsed entries it currently contains in IncompleteUsedCount;
7368 ///
7369 ///   If a member's encoding is found to be a NonRecursive or Recursive viz:
7370 ///   IncompleteUsedCount==0, the member's encoding is added to the cache.
7371 ///   Else the member is part of a recursive type and thus the recursion has
7372 ///   been exited too soon for the encoding to be correct for the member.
7373 ///
7374 class TypeStringCache {
7375   enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
7376   struct Entry {
7377     std::string Str;     // The encoded TypeString for the type.
7378     enum Status State;   // Information about the encoding in 'Str'.
7379     std::string Swapped; // A temporary place holder for a Recursive encoding
7380                          // during the expansion of RecordType's members.
7381   };
7382   std::map<const IdentifierInfo *, struct Entry> Map;
7383   unsigned IncompleteCount;     // Number of Incomplete entries in the Map.
7384   unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
7385 public:
7386   TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}
7387   void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
7388   bool removeIncomplete(const IdentifierInfo *ID);
7389   void addIfComplete(const IdentifierInfo *ID, StringRef Str,
7390                      bool IsRecursive);
7391   StringRef lookupStr(const IdentifierInfo *ID);
7392 };
7393 
7394 /// TypeString encodings for enum & union fields must be order.
7395 /// FieldEncoding is a helper for this ordering process.
7396 class FieldEncoding {
7397   bool HasName;
7398   std::string Enc;
7399 public:
7400   FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}
7401   StringRef str() {return Enc.c_str();}
7402   bool operator<(const FieldEncoding &rhs) const {
7403     if (HasName != rhs.HasName) return HasName;
7404     return Enc < rhs.Enc;
7405   }
7406 };
7407 
7408 class XCoreABIInfo : public DefaultABIInfo {
7409 public:
7410   XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
7411   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7412                     QualType Ty) const override;
7413 };
7414 
7415 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
7416   mutable TypeStringCache TSC;
7417 public:
7418   XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
7419     :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {}
7420   void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
7421                     CodeGen::CodeGenModule &M) const override;
7422 };
7423 
7424 } // End anonymous namespace.
7425 
7426 // TODO: this implementation is likely now redundant with the default
7427 // EmitVAArg.
7428 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7429                                 QualType Ty) const {
7430   CGBuilderTy &Builder = CGF.Builder;
7431 
7432   // Get the VAList.
7433   CharUnits SlotSize = CharUnits::fromQuantity(4);
7434   Address AP(Builder.CreateLoad(VAListAddr), SlotSize);
7435 
7436   // Handle the argument.
7437   ABIArgInfo AI = classifyArgumentType(Ty);
7438   CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty);
7439   llvm::Type *ArgTy = CGT.ConvertType(Ty);
7440   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
7441     AI.setCoerceToType(ArgTy);
7442   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
7443 
7444   Address Val = Address::invalid();
7445   CharUnits ArgSize = CharUnits::Zero();
7446   switch (AI.getKind()) {
7447   case ABIArgInfo::Expand:
7448   case ABIArgInfo::CoerceAndExpand:
7449   case ABIArgInfo::InAlloca:
7450     llvm_unreachable("Unsupported ABI kind for va_arg");
7451   case ABIArgInfo::Ignore:
7452     Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign);
7453     ArgSize = CharUnits::Zero();
7454     break;
7455   case ABIArgInfo::Extend:
7456   case ABIArgInfo::Direct:
7457     Val = Builder.CreateBitCast(AP, ArgPtrTy);
7458     ArgSize = CharUnits::fromQuantity(
7459                        getDataLayout().getTypeAllocSize(AI.getCoerceToType()));
7460     ArgSize = ArgSize.alignTo(SlotSize);
7461     break;
7462   case ABIArgInfo::Indirect:
7463     Val = Builder.CreateElementBitCast(AP, ArgPtrTy);
7464     Val = Address(Builder.CreateLoad(Val), TypeAlign);
7465     ArgSize = SlotSize;
7466     break;
7467   }
7468 
7469   // Increment the VAList.
7470   if (!ArgSize.isZero()) {
7471     llvm::Value *APN =
7472       Builder.CreateConstInBoundsByteGEP(AP.getPointer(), ArgSize);
7473     Builder.CreateStore(APN, VAListAddr);
7474   }
7475 
7476   return Val;
7477 }
7478 
7479 /// During the expansion of a RecordType, an incomplete TypeString is placed
7480 /// into the cache as a means to identify and break recursion.
7481 /// If there is a Recursive encoding in the cache, it is swapped out and will
7482 /// be reinserted by removeIncomplete().
7483 /// All other types of encoding should have been used rather than arriving here.
7484 void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
7485                                     std::string StubEnc) {
7486   if (!ID)
7487     return;
7488   Entry &E = Map[ID];
7489   assert( (E.Str.empty() || E.State == Recursive) &&
7490          "Incorrectly use of addIncomplete");
7491   assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
7492   E.Swapped.swap(E.Str); // swap out the Recursive
7493   E.Str.swap(StubEnc);
7494   E.State = Incomplete;
7495   ++IncompleteCount;
7496 }
7497 
7498 /// Once the RecordType has been expanded, the temporary incomplete TypeString
7499 /// must be removed from the cache.
7500 /// If a Recursive was swapped out by addIncomplete(), it will be replaced.
7501 /// Returns true if the RecordType was defined recursively.
7502 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
7503   if (!ID)
7504     return false;
7505   auto I = Map.find(ID);
7506   assert(I != Map.end() && "Entry not present");
7507   Entry &E = I->second;
7508   assert( (E.State == Incomplete ||
7509            E.State == IncompleteUsed) &&
7510          "Entry must be an incomplete type");
7511   bool IsRecursive = false;
7512   if (E.State == IncompleteUsed) {
7513     // We made use of our Incomplete encoding, thus we are recursive.
7514     IsRecursive = true;
7515     --IncompleteUsedCount;
7516   }
7517   if (E.Swapped.empty())
7518     Map.erase(I);
7519   else {
7520     // Swap the Recursive back.
7521     E.Swapped.swap(E.Str);
7522     E.Swapped.clear();
7523     E.State = Recursive;
7524   }
7525   --IncompleteCount;
7526   return IsRecursive;
7527 }
7528 
7529 /// Add the encoded TypeString to the cache only if it is NonRecursive or
7530 /// Recursive (viz: all sub-members were expanded as fully as possible).
7531 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
7532                                     bool IsRecursive) {
7533   if (!ID || IncompleteUsedCount)
7534     return; // No key or it is is an incomplete sub-type so don't add.
7535   Entry &E = Map[ID];
7536   if (IsRecursive && !E.Str.empty()) {
7537     assert(E.State==Recursive && E.Str.size() == Str.size() &&
7538            "This is not the same Recursive entry");
7539     // The parent container was not recursive after all, so we could have used
7540     // this Recursive sub-member entry after all, but we assumed the worse when
7541     // we started viz: IncompleteCount!=0.
7542     return;
7543   }
7544   assert(E.Str.empty() && "Entry already present");
7545   E.Str = Str.str();
7546   E.State = IsRecursive? Recursive : NonRecursive;
7547 }
7548 
7549 /// Return a cached TypeString encoding for the ID. If there isn't one, or we
7550 /// are recursively expanding a type (IncompleteCount != 0) and the cached
7551 /// encoding is Recursive, return an empty StringRef.
7552 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
7553   if (!ID)
7554     return StringRef();   // We have no key.
7555   auto I = Map.find(ID);
7556   if (I == Map.end())
7557     return StringRef();   // We have no encoding.
7558   Entry &E = I->second;
7559   if (E.State == Recursive && IncompleteCount)
7560     return StringRef();   // We don't use Recursive encodings for member types.
7561 
7562   if (E.State == Incomplete) {
7563     // The incomplete type is being used to break out of recursion.
7564     E.State = IncompleteUsed;
7565     ++IncompleteUsedCount;
7566   }
7567   return E.Str.c_str();
7568 }
7569 
7570 /// The XCore ABI includes a type information section that communicates symbol
7571 /// type information to the linker. The linker uses this information to verify
7572 /// safety/correctness of things such as array bound and pointers et al.
7573 /// The ABI only requires C (and XC) language modules to emit TypeStrings.
7574 /// This type information (TypeString) is emitted into meta data for all global
7575 /// symbols: definitions, declarations, functions & variables.
7576 ///
7577 /// The TypeString carries type, qualifier, name, size & value details.
7578 /// Please see 'Tools Development Guide' section 2.16.2 for format details:
7579 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf
7580 /// The output is tested by test/CodeGen/xcore-stringtype.c.
7581 ///
7582 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
7583                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC);
7584 
7585 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
7586 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
7587                                           CodeGen::CodeGenModule &CGM) const {
7588   SmallStringEnc Enc;
7589   if (getTypeString(Enc, D, CGM, TSC)) {
7590     llvm::LLVMContext &Ctx = CGM.getModule().getContext();
7591     llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV),
7592                                 llvm::MDString::get(Ctx, Enc.str())};
7593     llvm::NamedMDNode *MD =
7594       CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
7595     MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
7596   }
7597 }
7598 
7599 //===----------------------------------------------------------------------===//
7600 // SPIR ABI Implementation
7601 //===----------------------------------------------------------------------===//
7602 
7603 namespace {
7604 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo {
7605 public:
7606   SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
7607     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
7608   void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
7609                     CodeGen::CodeGenModule &M) const override;
7610   unsigned getOpenCLKernelCallingConv() const override;
7611 };
7612 } // End anonymous namespace.
7613 
7614 /// Emit SPIR specific metadata: OpenCL and SPIR version.
7615 void SPIRTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
7616                                          CodeGen::CodeGenModule &CGM) const {
7617   llvm::LLVMContext &Ctx = CGM.getModule().getContext();
7618   llvm::Type *Int32Ty = llvm::Type::getInt32Ty(Ctx);
7619   llvm::Module &M = CGM.getModule();
7620   // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
7621   // opencl.spir.version named metadata.
7622   llvm::Metadata *SPIRVerElts[] = {
7623       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int32Ty, 2)),
7624       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int32Ty, 0))};
7625   llvm::NamedMDNode *SPIRVerMD =
7626       M.getOrInsertNamedMetadata("opencl.spir.version");
7627   SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
7628   appendOpenCLVersionMD(CGM);
7629 }
7630 
7631 static void appendOpenCLVersionMD (CodeGen::CodeGenModule &CGM) {
7632   llvm::LLVMContext &Ctx = CGM.getModule().getContext();
7633   llvm::Type *Int32Ty = llvm::Type::getInt32Ty(Ctx);
7634   llvm::Module &M = CGM.getModule();
7635   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
7636   // opencl.ocl.version named metadata node.
7637   llvm::Metadata *OCLVerElts[] = {
7638       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
7639           Int32Ty, CGM.getLangOpts().OpenCLVersion / 100)),
7640       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
7641           Int32Ty, (CGM.getLangOpts().OpenCLVersion % 100) / 10))};
7642   llvm::NamedMDNode *OCLVerMD =
7643       M.getOrInsertNamedMetadata("opencl.ocl.version");
7644   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
7645 }
7646 
7647 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
7648   return llvm::CallingConv::SPIR_KERNEL;
7649 }
7650 
7651 static bool appendType(SmallStringEnc &Enc, QualType QType,
7652                        const CodeGen::CodeGenModule &CGM,
7653                        TypeStringCache &TSC);
7654 
7655 /// Helper function for appendRecordType().
7656 /// Builds a SmallVector containing the encoded field types in declaration
7657 /// order.
7658 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
7659                              const RecordDecl *RD,
7660                              const CodeGen::CodeGenModule &CGM,
7661                              TypeStringCache &TSC) {
7662   for (const auto *Field : RD->fields()) {
7663     SmallStringEnc Enc;
7664     Enc += "m(";
7665     Enc += Field->getName();
7666     Enc += "){";
7667     if (Field->isBitField()) {
7668       Enc += "b(";
7669       llvm::raw_svector_ostream OS(Enc);
7670       OS << Field->getBitWidthValue(CGM.getContext());
7671       Enc += ':';
7672     }
7673     if (!appendType(Enc, Field->getType(), CGM, TSC))
7674       return false;
7675     if (Field->isBitField())
7676       Enc += ')';
7677     Enc += '}';
7678     FE.emplace_back(!Field->getName().empty(), Enc);
7679   }
7680   return true;
7681 }
7682 
7683 /// Appends structure and union types to Enc and adds encoding to cache.
7684 /// Recursively calls appendType (via extractFieldType) for each field.
7685 /// Union types have their fields ordered according to the ABI.
7686 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
7687                              const CodeGen::CodeGenModule &CGM,
7688                              TypeStringCache &TSC, const IdentifierInfo *ID) {
7689   // Append the cached TypeString if we have one.
7690   StringRef TypeString = TSC.lookupStr(ID);
7691   if (!TypeString.empty()) {
7692     Enc += TypeString;
7693     return true;
7694   }
7695 
7696   // Start to emit an incomplete TypeString.
7697   size_t Start = Enc.size();
7698   Enc += (RT->isUnionType()? 'u' : 's');
7699   Enc += '(';
7700   if (ID)
7701     Enc += ID->getName();
7702   Enc += "){";
7703 
7704   // We collect all encoded fields and order as necessary.
7705   bool IsRecursive = false;
7706   const RecordDecl *RD = RT->getDecl()->getDefinition();
7707   if (RD && !RD->field_empty()) {
7708     // An incomplete TypeString stub is placed in the cache for this RecordType
7709     // so that recursive calls to this RecordType will use it whilst building a
7710     // complete TypeString for this RecordType.
7711     SmallVector<FieldEncoding, 16> FE;
7712     std::string StubEnc(Enc.substr(Start).str());
7713     StubEnc += '}';  // StubEnc now holds a valid incomplete TypeString.
7714     TSC.addIncomplete(ID, std::move(StubEnc));
7715     if (!extractFieldType(FE, RD, CGM, TSC)) {
7716       (void) TSC.removeIncomplete(ID);
7717       return false;
7718     }
7719     IsRecursive = TSC.removeIncomplete(ID);
7720     // The ABI requires unions to be sorted but not structures.
7721     // See FieldEncoding::operator< for sort algorithm.
7722     if (RT->isUnionType())
7723       std::sort(FE.begin(), FE.end());
7724     // We can now complete the TypeString.
7725     unsigned E = FE.size();
7726     for (unsigned I = 0; I != E; ++I) {
7727       if (I)
7728         Enc += ',';
7729       Enc += FE[I].str();
7730     }
7731   }
7732   Enc += '}';
7733   TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
7734   return true;
7735 }
7736 
7737 /// Appends enum types to Enc and adds the encoding to the cache.
7738 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
7739                            TypeStringCache &TSC,
7740                            const IdentifierInfo *ID) {
7741   // Append the cached TypeString if we have one.
7742   StringRef TypeString = TSC.lookupStr(ID);
7743   if (!TypeString.empty()) {
7744     Enc += TypeString;
7745     return true;
7746   }
7747 
7748   size_t Start = Enc.size();
7749   Enc += "e(";
7750   if (ID)
7751     Enc += ID->getName();
7752   Enc += "){";
7753 
7754   // We collect all encoded enumerations and order them alphanumerically.
7755   if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
7756     SmallVector<FieldEncoding, 16> FE;
7757     for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
7758          ++I) {
7759       SmallStringEnc EnumEnc;
7760       EnumEnc += "m(";
7761       EnumEnc += I->getName();
7762       EnumEnc += "){";
7763       I->getInitVal().toString(EnumEnc);
7764       EnumEnc += '}';
7765       FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
7766     }
7767     std::sort(FE.begin(), FE.end());
7768     unsigned E = FE.size();
7769     for (unsigned I = 0; I != E; ++I) {
7770       if (I)
7771         Enc += ',';
7772       Enc += FE[I].str();
7773     }
7774   }
7775   Enc += '}';
7776   TSC.addIfComplete(ID, Enc.substr(Start), false);
7777   return true;
7778 }
7779 
7780 /// Appends type's qualifier to Enc.
7781 /// This is done prior to appending the type's encoding.
7782 static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
7783   // Qualifiers are emitted in alphabetical order.
7784   static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"};
7785   int Lookup = 0;
7786   if (QT.isConstQualified())
7787     Lookup += 1<<0;
7788   if (QT.isRestrictQualified())
7789     Lookup += 1<<1;
7790   if (QT.isVolatileQualified())
7791     Lookup += 1<<2;
7792   Enc += Table[Lookup];
7793 }
7794 
7795 /// Appends built-in types to Enc.
7796 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
7797   const char *EncType;
7798   switch (BT->getKind()) {
7799     case BuiltinType::Void:
7800       EncType = "0";
7801       break;
7802     case BuiltinType::Bool:
7803       EncType = "b";
7804       break;
7805     case BuiltinType::Char_U:
7806       EncType = "uc";
7807       break;
7808     case BuiltinType::UChar:
7809       EncType = "uc";
7810       break;
7811     case BuiltinType::SChar:
7812       EncType = "sc";
7813       break;
7814     case BuiltinType::UShort:
7815       EncType = "us";
7816       break;
7817     case BuiltinType::Short:
7818       EncType = "ss";
7819       break;
7820     case BuiltinType::UInt:
7821       EncType = "ui";
7822       break;
7823     case BuiltinType::Int:
7824       EncType = "si";
7825       break;
7826     case BuiltinType::ULong:
7827       EncType = "ul";
7828       break;
7829     case BuiltinType::Long:
7830       EncType = "sl";
7831       break;
7832     case BuiltinType::ULongLong:
7833       EncType = "ull";
7834       break;
7835     case BuiltinType::LongLong:
7836       EncType = "sll";
7837       break;
7838     case BuiltinType::Float:
7839       EncType = "ft";
7840       break;
7841     case BuiltinType::Double:
7842       EncType = "d";
7843       break;
7844     case BuiltinType::LongDouble:
7845       EncType = "ld";
7846       break;
7847     default:
7848       return false;
7849   }
7850   Enc += EncType;
7851   return true;
7852 }
7853 
7854 /// Appends a pointer encoding to Enc before calling appendType for the pointee.
7855 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
7856                               const CodeGen::CodeGenModule &CGM,
7857                               TypeStringCache &TSC) {
7858   Enc += "p(";
7859   if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
7860     return false;
7861   Enc += ')';
7862   return true;
7863 }
7864 
7865 /// Appends array encoding to Enc before calling appendType for the element.
7866 static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
7867                             const ArrayType *AT,
7868                             const CodeGen::CodeGenModule &CGM,
7869                             TypeStringCache &TSC, StringRef NoSizeEnc) {
7870   if (AT->getSizeModifier() != ArrayType::Normal)
7871     return false;
7872   Enc += "a(";
7873   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
7874     CAT->getSize().toStringUnsigned(Enc);
7875   else
7876     Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
7877   Enc += ':';
7878   // The Qualifiers should be attached to the type rather than the array.
7879   appendQualifier(Enc, QT);
7880   if (!appendType(Enc, AT->getElementType(), CGM, TSC))
7881     return false;
7882   Enc += ')';
7883   return true;
7884 }
7885 
7886 /// Appends a function encoding to Enc, calling appendType for the return type
7887 /// and the arguments.
7888 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
7889                              const CodeGen::CodeGenModule &CGM,
7890                              TypeStringCache &TSC) {
7891   Enc += "f{";
7892   if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
7893     return false;
7894   Enc += "}(";
7895   if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
7896     // N.B. we are only interested in the adjusted param types.
7897     auto I = FPT->param_type_begin();
7898     auto E = FPT->param_type_end();
7899     if (I != E) {
7900       do {
7901         if (!appendType(Enc, *I, CGM, TSC))
7902           return false;
7903         ++I;
7904         if (I != E)
7905           Enc += ',';
7906       } while (I != E);
7907       if (FPT->isVariadic())
7908         Enc += ",va";
7909     } else {
7910       if (FPT->isVariadic())
7911         Enc += "va";
7912       else
7913         Enc += '0';
7914     }
7915   }
7916   Enc += ')';
7917   return true;
7918 }
7919 
7920 /// Handles the type's qualifier before dispatching a call to handle specific
7921 /// type encodings.
7922 static bool appendType(SmallStringEnc &Enc, QualType QType,
7923                        const CodeGen::CodeGenModule &CGM,
7924                        TypeStringCache &TSC) {
7925 
7926   QualType QT = QType.getCanonicalType();
7927 
7928   if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
7929     // The Qualifiers should be attached to the type rather than the array.
7930     // Thus we don't call appendQualifier() here.
7931     return appendArrayType(Enc, QT, AT, CGM, TSC, "");
7932 
7933   appendQualifier(Enc, QT);
7934 
7935   if (const BuiltinType *BT = QT->getAs<BuiltinType>())
7936     return appendBuiltinType(Enc, BT);
7937 
7938   if (const PointerType *PT = QT->getAs<PointerType>())
7939     return appendPointerType(Enc, PT, CGM, TSC);
7940 
7941   if (const EnumType *ET = QT->getAs<EnumType>())
7942     return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
7943 
7944   if (const RecordType *RT = QT->getAsStructureType())
7945     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
7946 
7947   if (const RecordType *RT = QT->getAsUnionType())
7948     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
7949 
7950   if (const FunctionType *FT = QT->getAs<FunctionType>())
7951     return appendFunctionType(Enc, FT, CGM, TSC);
7952 
7953   return false;
7954 }
7955 
7956 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
7957                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) {
7958   if (!D)
7959     return false;
7960 
7961   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7962     if (FD->getLanguageLinkage() != CLanguageLinkage)
7963       return false;
7964     return appendType(Enc, FD->getType(), CGM, TSC);
7965   }
7966 
7967   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
7968     if (VD->getLanguageLinkage() != CLanguageLinkage)
7969       return false;
7970     QualType QT = VD->getType().getCanonicalType();
7971     if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
7972       // Global ArrayTypes are given a size of '*' if the size is unknown.
7973       // The Qualifiers should be attached to the type rather than the array.
7974       // Thus we don't call appendQualifier() here.
7975       return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
7976     }
7977     return appendType(Enc, QT, CGM, TSC);
7978   }
7979   return false;
7980 }
7981 
7982 
7983 //===----------------------------------------------------------------------===//
7984 // Driver code
7985 //===----------------------------------------------------------------------===//
7986 
7987 const llvm::Triple &CodeGenModule::getTriple() const {
7988   return getTarget().getTriple();
7989 }
7990 
7991 bool CodeGenModule::supportsCOMDAT() const {
7992   return getTriple().supportsCOMDAT();
7993 }
7994 
7995 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
7996   if (TheTargetCodeGenInfo)
7997     return *TheTargetCodeGenInfo;
7998 
7999   // Helper to set the unique_ptr while still keeping the return value.
8000   auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & {
8001     this->TheTargetCodeGenInfo.reset(P);
8002     return *P;
8003   };
8004 
8005   const llvm::Triple &Triple = getTarget().getTriple();
8006   switch (Triple.getArch()) {
8007   default:
8008     return SetCGInfo(new DefaultTargetCodeGenInfo(Types));
8009 
8010   case llvm::Triple::le32:
8011     return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
8012   case llvm::Triple::mips:
8013   case llvm::Triple::mipsel:
8014     if (Triple.getOS() == llvm::Triple::NaCl)
8015       return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
8016     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true));
8017 
8018   case llvm::Triple::mips64:
8019   case llvm::Triple::mips64el:
8020     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false));
8021 
8022   case llvm::Triple::aarch64:
8023   case llvm::Triple::aarch64_be: {
8024     AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
8025     if (getTarget().getABI() == "darwinpcs")
8026       Kind = AArch64ABIInfo::DarwinPCS;
8027 
8028     return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind));
8029   }
8030 
8031   case llvm::Triple::wasm32:
8032   case llvm::Triple::wasm64:
8033     return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types));
8034 
8035   case llvm::Triple::arm:
8036   case llvm::Triple::armeb:
8037   case llvm::Triple::thumb:
8038   case llvm::Triple::thumbeb: {
8039     if (Triple.getOS() == llvm::Triple::Win32) {
8040       return SetCGInfo(
8041           new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP));
8042     }
8043 
8044     ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
8045     StringRef ABIStr = getTarget().getABI();
8046     if (ABIStr == "apcs-gnu")
8047       Kind = ARMABIInfo::APCS;
8048     else if (ABIStr == "aapcs16")
8049       Kind = ARMABIInfo::AAPCS16_VFP;
8050     else if (CodeGenOpts.FloatABI == "hard" ||
8051              (CodeGenOpts.FloatABI != "soft" &&
8052               (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
8053                Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
8054                Triple.getEnvironment() == llvm::Triple::EABIHF)))
8055       Kind = ARMABIInfo::AAPCS_VFP;
8056 
8057     return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind));
8058   }
8059 
8060   case llvm::Triple::ppc:
8061     return SetCGInfo(
8062         new PPC32TargetCodeGenInfo(Types, CodeGenOpts.FloatABI == "soft"));
8063   case llvm::Triple::ppc64:
8064     if (Triple.isOSBinFormatELF()) {
8065       PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1;
8066       if (getTarget().getABI() == "elfv2")
8067         Kind = PPC64_SVR4_ABIInfo::ELFv2;
8068       bool HasQPX = getTarget().getABI() == "elfv1-qpx";
8069 
8070       return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX));
8071     } else
8072       return SetCGInfo(new PPC64TargetCodeGenInfo(Types));
8073   case llvm::Triple::ppc64le: {
8074     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
8075     PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2;
8076     if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx")
8077       Kind = PPC64_SVR4_ABIInfo::ELFv1;
8078     bool HasQPX = getTarget().getABI() == "elfv1-qpx";
8079 
8080     return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX));
8081   }
8082 
8083   case llvm::Triple::nvptx:
8084   case llvm::Triple::nvptx64:
8085     return SetCGInfo(new NVPTXTargetCodeGenInfo(Types));
8086 
8087   case llvm::Triple::msp430:
8088     return SetCGInfo(new MSP430TargetCodeGenInfo(Types));
8089 
8090   case llvm::Triple::systemz: {
8091     bool HasVector = getTarget().getABI() == "vector";
8092     return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector));
8093   }
8094 
8095   case llvm::Triple::tce:
8096     return SetCGInfo(new TCETargetCodeGenInfo(Types));
8097 
8098   case llvm::Triple::x86: {
8099     bool IsDarwinVectorABI = Triple.isOSDarwin();
8100     bool RetSmallStructInRegABI =
8101         X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
8102     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
8103 
8104     if (Triple.getOS() == llvm::Triple::Win32) {
8105       return SetCGInfo(new WinX86_32TargetCodeGenInfo(
8106           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
8107           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters));
8108     } else {
8109       return SetCGInfo(new X86_32TargetCodeGenInfo(
8110           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
8111           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters,
8112           CodeGenOpts.FloatABI == "soft"));
8113     }
8114   }
8115 
8116   case llvm::Triple::x86_64: {
8117     StringRef ABI = getTarget().getABI();
8118     X86AVXABILevel AVXLevel =
8119         (ABI == "avx512"
8120              ? X86AVXABILevel::AVX512
8121              : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None);
8122 
8123     switch (Triple.getOS()) {
8124     case llvm::Triple::Win32:
8125       return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel));
8126     case llvm::Triple::PS4:
8127       return SetCGInfo(new PS4TargetCodeGenInfo(Types, AVXLevel));
8128     default:
8129       return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel));
8130     }
8131   }
8132   case llvm::Triple::hexagon:
8133     return SetCGInfo(new HexagonTargetCodeGenInfo(Types));
8134   case llvm::Triple::lanai:
8135     return SetCGInfo(new LanaiTargetCodeGenInfo(Types));
8136   case llvm::Triple::r600:
8137     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
8138   case llvm::Triple::amdgcn:
8139     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
8140   case llvm::Triple::sparc:
8141     return SetCGInfo(new SparcV8TargetCodeGenInfo(Types));
8142   case llvm::Triple::sparcv9:
8143     return SetCGInfo(new SparcV9TargetCodeGenInfo(Types));
8144   case llvm::Triple::xcore:
8145     return SetCGInfo(new XCoreTargetCodeGenInfo(Types));
8146   case llvm::Triple::spir:
8147   case llvm::Triple::spir64:
8148     return SetCGInfo(new SPIRTargetCodeGenInfo(Types));
8149   }
8150 }
8151