1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes wrap the information about a call or function 10 // definition used to handle ABI compliancy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "TargetInfo.h" 15 #include "ABIInfo.h" 16 #include "CGBlocks.h" 17 #include "CGCXXABI.h" 18 #include "CGValue.h" 19 #include "CodeGenFunction.h" 20 #include "clang/AST/Attr.h" 21 #include "clang/AST/RecordLayout.h" 22 #include "clang/Basic/CodeGenOptions.h" 23 #include "clang/Basic/DiagnosticFrontend.h" 24 #include "clang/CodeGen/CGFunctionInfo.h" 25 #include "clang/CodeGen/SwiftCallingConv.h" 26 #include "llvm/ADT/SmallBitVector.h" 27 #include "llvm/ADT/StringExtras.h" 28 #include "llvm/ADT/StringSwitch.h" 29 #include "llvm/ADT/Triple.h" 30 #include "llvm/ADT/Twine.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/IntrinsicsNVPTX.h" 33 #include "llvm/IR/Type.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include <algorithm> // std::sort 36 37 using namespace clang; 38 using namespace CodeGen; 39 40 // Helper for coercing an aggregate argument or return value into an integer 41 // array of the same size (including padding) and alignment. This alternate 42 // coercion happens only for the RenderScript ABI and can be removed after 43 // runtimes that rely on it are no longer supported. 44 // 45 // RenderScript assumes that the size of the argument / return value in the IR 46 // is the same as the size of the corresponding qualified type. This helper 47 // coerces the aggregate type into an array of the same size (including 48 // padding). This coercion is used in lieu of expansion of struct members or 49 // other canonical coercions that return a coerced-type of larger size. 50 // 51 // Ty - The argument / return value type 52 // Context - The associated ASTContext 53 // LLVMContext - The associated LLVMContext 54 static ABIArgInfo coerceToIntArray(QualType Ty, 55 ASTContext &Context, 56 llvm::LLVMContext &LLVMContext) { 57 // Alignment and Size are measured in bits. 58 const uint64_t Size = Context.getTypeSize(Ty); 59 const uint64_t Alignment = Context.getTypeAlign(Ty); 60 llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment); 61 const uint64_t NumElements = (Size + Alignment - 1) / Alignment; 62 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 63 } 64 65 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 66 llvm::Value *Array, 67 llvm::Value *Value, 68 unsigned FirstIndex, 69 unsigned LastIndex) { 70 // Alternatively, we could emit this as a loop in the source. 71 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 72 llvm::Value *Cell = 73 Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); 74 Builder.CreateAlignedStore(Value, Cell, CharUnits::One()); 75 } 76 } 77 78 static bool isAggregateTypeForABI(QualType T) { 79 return !CodeGenFunction::hasScalarEvaluationKind(T) || 80 T->isMemberFunctionPointerType(); 81 } 82 83 ABIArgInfo ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByVal, 84 bool Realign, 85 llvm::Type *Padding) const { 86 return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), ByVal, 87 Realign, Padding); 88 } 89 90 ABIArgInfo 91 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const { 92 return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty), 93 /*ByVal*/ false, Realign); 94 } 95 96 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 97 QualType Ty) const { 98 return Address::invalid(); 99 } 100 101 bool ABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const { 102 if (Ty->isPromotableIntegerType()) 103 return true; 104 105 if (const auto *EIT = Ty->getAs<ExtIntType>()) 106 if (EIT->getNumBits() < getContext().getTypeSize(getContext().IntTy)) 107 return true; 108 109 return false; 110 } 111 112 ABIInfo::~ABIInfo() {} 113 114 /// Does the given lowering require more than the given number of 115 /// registers when expanded? 116 /// 117 /// This is intended to be the basis of a reasonable basic implementation 118 /// of should{Pass,Return}IndirectlyForSwift. 119 /// 120 /// For most targets, a limit of four total registers is reasonable; this 121 /// limits the amount of code required in order to move around the value 122 /// in case it wasn't produced immediately prior to the call by the caller 123 /// (or wasn't produced in exactly the right registers) or isn't used 124 /// immediately within the callee. But some targets may need to further 125 /// limit the register count due to an inability to support that many 126 /// return registers. 127 static bool occupiesMoreThan(CodeGenTypes &cgt, 128 ArrayRef<llvm::Type*> scalarTypes, 129 unsigned maxAllRegisters) { 130 unsigned intCount = 0, fpCount = 0; 131 for (llvm::Type *type : scalarTypes) { 132 if (type->isPointerTy()) { 133 intCount++; 134 } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) { 135 auto ptrWidth = cgt.getTarget().getPointerWidth(0); 136 intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth; 137 } else { 138 assert(type->isVectorTy() || type->isFloatingPointTy()); 139 fpCount++; 140 } 141 } 142 143 return (intCount + fpCount > maxAllRegisters); 144 } 145 146 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 147 llvm::Type *eltTy, 148 unsigned numElts) const { 149 // The default implementation of this assumes that the target guarantees 150 // 128-bit SIMD support but nothing more. 151 return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16); 152 } 153 154 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 155 CGCXXABI &CXXABI) { 156 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 157 if (!RD) { 158 if (!RT->getDecl()->canPassInRegisters()) 159 return CGCXXABI::RAA_Indirect; 160 return CGCXXABI::RAA_Default; 161 } 162 return CXXABI.getRecordArgABI(RD); 163 } 164 165 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 166 CGCXXABI &CXXABI) { 167 const RecordType *RT = T->getAs<RecordType>(); 168 if (!RT) 169 return CGCXXABI::RAA_Default; 170 return getRecordArgABI(RT, CXXABI); 171 } 172 173 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI, 174 const ABIInfo &Info) { 175 QualType Ty = FI.getReturnType(); 176 177 if (const auto *RT = Ty->getAs<RecordType>()) 178 if (!isa<CXXRecordDecl>(RT->getDecl()) && 179 !RT->getDecl()->canPassInRegisters()) { 180 FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty); 181 return true; 182 } 183 184 return CXXABI.classifyReturnType(FI); 185 } 186 187 /// Pass transparent unions as if they were the type of the first element. Sema 188 /// should ensure that all elements of the union have the same "machine type". 189 static QualType useFirstFieldIfTransparentUnion(QualType Ty) { 190 if (const RecordType *UT = Ty->getAsUnionType()) { 191 const RecordDecl *UD = UT->getDecl(); 192 if (UD->hasAttr<TransparentUnionAttr>()) { 193 assert(!UD->field_empty() && "sema created an empty transparent union"); 194 return UD->field_begin()->getType(); 195 } 196 } 197 return Ty; 198 } 199 200 CGCXXABI &ABIInfo::getCXXABI() const { 201 return CGT.getCXXABI(); 202 } 203 204 ASTContext &ABIInfo::getContext() const { 205 return CGT.getContext(); 206 } 207 208 llvm::LLVMContext &ABIInfo::getVMContext() const { 209 return CGT.getLLVMContext(); 210 } 211 212 const llvm::DataLayout &ABIInfo::getDataLayout() const { 213 return CGT.getDataLayout(); 214 } 215 216 const TargetInfo &ABIInfo::getTarget() const { 217 return CGT.getTarget(); 218 } 219 220 const CodeGenOptions &ABIInfo::getCodeGenOpts() const { 221 return CGT.getCodeGenOpts(); 222 } 223 224 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); } 225 226 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 227 return false; 228 } 229 230 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 231 uint64_t Members) const { 232 return false; 233 } 234 235 LLVM_DUMP_METHOD void ABIArgInfo::dump() const { 236 raw_ostream &OS = llvm::errs(); 237 OS << "(ABIArgInfo Kind="; 238 switch (TheKind) { 239 case Direct: 240 OS << "Direct Type="; 241 if (llvm::Type *Ty = getCoerceToType()) 242 Ty->print(OS); 243 else 244 OS << "null"; 245 break; 246 case Extend: 247 OS << "Extend"; 248 break; 249 case Ignore: 250 OS << "Ignore"; 251 break; 252 case InAlloca: 253 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 254 break; 255 case Indirect: 256 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 257 << " ByVal=" << getIndirectByVal() 258 << " Realign=" << getIndirectRealign(); 259 break; 260 case IndirectAliased: 261 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 262 << " AadrSpace=" << getIndirectAddrSpace() 263 << " Realign=" << getIndirectRealign(); 264 break; 265 case Expand: 266 OS << "Expand"; 267 break; 268 case CoerceAndExpand: 269 OS << "CoerceAndExpand Type="; 270 getCoerceAndExpandType()->print(OS); 271 break; 272 } 273 OS << ")\n"; 274 } 275 276 // Dynamically round a pointer up to a multiple of the given alignment. 277 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF, 278 llvm::Value *Ptr, 279 CharUnits Align) { 280 llvm::Value *PtrAsInt = Ptr; 281 // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align; 282 PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy); 283 PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt, 284 llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1)); 285 PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt, 286 llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity())); 287 PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt, 288 Ptr->getType(), 289 Ptr->getName() + ".aligned"); 290 return PtrAsInt; 291 } 292 293 /// Emit va_arg for a platform using the common void* representation, 294 /// where arguments are simply emitted in an array of slots on the stack. 295 /// 296 /// This version implements the core direct-value passing rules. 297 /// 298 /// \param SlotSize - The size and alignment of a stack slot. 299 /// Each argument will be allocated to a multiple of this number of 300 /// slots, and all the slots will be aligned to this value. 301 /// \param AllowHigherAlign - The slot alignment is not a cap; 302 /// an argument type with an alignment greater than the slot size 303 /// will be emitted on a higher-alignment address, potentially 304 /// leaving one or more empty slots behind as padding. If this 305 /// is false, the returned address might be less-aligned than 306 /// DirectAlign. 307 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF, 308 Address VAListAddr, 309 llvm::Type *DirectTy, 310 CharUnits DirectSize, 311 CharUnits DirectAlign, 312 CharUnits SlotSize, 313 bool AllowHigherAlign) { 314 // Cast the element type to i8* if necessary. Some platforms define 315 // va_list as a struct containing an i8* instead of just an i8*. 316 if (VAListAddr.getElementType() != CGF.Int8PtrTy) 317 VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy); 318 319 llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur"); 320 321 // If the CC aligns values higher than the slot size, do so if needed. 322 Address Addr = Address::invalid(); 323 if (AllowHigherAlign && DirectAlign > SlotSize) { 324 Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign), 325 DirectAlign); 326 } else { 327 Addr = Address(Ptr, SlotSize); 328 } 329 330 // Advance the pointer past the argument, then store that back. 331 CharUnits FullDirectSize = DirectSize.alignTo(SlotSize); 332 Address NextPtr = 333 CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next"); 334 CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 335 336 // If the argument is smaller than a slot, and this is a big-endian 337 // target, the argument will be right-adjusted in its slot. 338 if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() && 339 !DirectTy->isStructTy()) { 340 Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize); 341 } 342 343 Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy); 344 return Addr; 345 } 346 347 /// Emit va_arg for a platform using the common void* representation, 348 /// where arguments are simply emitted in an array of slots on the stack. 349 /// 350 /// \param IsIndirect - Values of this type are passed indirectly. 351 /// \param ValueInfo - The size and alignment of this type, generally 352 /// computed with getContext().getTypeInfoInChars(ValueTy). 353 /// \param SlotSizeAndAlign - The size and alignment of a stack slot. 354 /// Each argument will be allocated to a multiple of this number of 355 /// slots, and all the slots will be aligned to this value. 356 /// \param AllowHigherAlign - The slot alignment is not a cap; 357 /// an argument type with an alignment greater than the slot size 358 /// will be emitted on a higher-alignment address, potentially 359 /// leaving one or more empty slots behind as padding. 360 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr, 361 QualType ValueTy, bool IsIndirect, 362 TypeInfoChars ValueInfo, 363 CharUnits SlotSizeAndAlign, 364 bool AllowHigherAlign) { 365 // The size and alignment of the value that was passed directly. 366 CharUnits DirectSize, DirectAlign; 367 if (IsIndirect) { 368 DirectSize = CGF.getPointerSize(); 369 DirectAlign = CGF.getPointerAlign(); 370 } else { 371 DirectSize = ValueInfo.Width; 372 DirectAlign = ValueInfo.Align; 373 } 374 375 // Cast the address we've calculated to the right type. 376 llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy); 377 if (IsIndirect) 378 DirectTy = DirectTy->getPointerTo(0); 379 380 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy, 381 DirectSize, DirectAlign, 382 SlotSizeAndAlign, 383 AllowHigherAlign); 384 385 if (IsIndirect) { 386 Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.Align); 387 } 388 389 return Addr; 390 391 } 392 393 static Address emitMergePHI(CodeGenFunction &CGF, 394 Address Addr1, llvm::BasicBlock *Block1, 395 Address Addr2, llvm::BasicBlock *Block2, 396 const llvm::Twine &Name = "") { 397 assert(Addr1.getType() == Addr2.getType()); 398 llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name); 399 PHI->addIncoming(Addr1.getPointer(), Block1); 400 PHI->addIncoming(Addr2.getPointer(), Block2); 401 CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment()); 402 return Address(PHI, Align); 403 } 404 405 TargetCodeGenInfo::~TargetCodeGenInfo() = default; 406 407 // If someone can figure out a general rule for this, that would be great. 408 // It's probably just doomed to be platform-dependent, though. 409 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 410 // Verified for: 411 // x86-64 FreeBSD, Linux, Darwin 412 // x86-32 FreeBSD, Linux, Darwin 413 // PowerPC Linux, Darwin 414 // ARM Darwin (*not* EABI) 415 // AArch64 Linux 416 return 32; 417 } 418 419 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 420 const FunctionNoProtoType *fnType) const { 421 // The following conventions are known to require this to be false: 422 // x86_stdcall 423 // MIPS 424 // For everything else, we just prefer false unless we opt out. 425 return false; 426 } 427 428 void 429 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 430 llvm::SmallString<24> &Opt) const { 431 // This assumes the user is passing a library name like "rt" instead of a 432 // filename like "librt.a/so", and that they don't care whether it's static or 433 // dynamic. 434 Opt = "-l"; 435 Opt += Lib; 436 } 437 438 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const { 439 // OpenCL kernels are called via an explicit runtime API with arguments 440 // set with clSetKernelArg(), not as normal sub-functions. 441 // Return SPIR_KERNEL by default as the kernel calling convention to 442 // ensure the fingerprint is fixed such way that each OpenCL argument 443 // gets one matching argument in the produced kernel function argument 444 // list to enable feasible implementation of clSetKernelArg() with 445 // aggregates etc. In case we would use the default C calling conv here, 446 // clSetKernelArg() might break depending on the target-specific 447 // conventions; different targets might split structs passed as values 448 // to multiple function arguments etc. 449 return llvm::CallingConv::SPIR_KERNEL; 450 } 451 452 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM, 453 llvm::PointerType *T, QualType QT) const { 454 return llvm::ConstantPointerNull::get(T); 455 } 456 457 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 458 const VarDecl *D) const { 459 assert(!CGM.getLangOpts().OpenCL && 460 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 461 "Address space agnostic languages only"); 462 return D ? D->getType().getAddressSpace() : LangAS::Default; 463 } 464 465 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast( 466 CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr, 467 LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const { 468 // Since target may map different address spaces in AST to the same address 469 // space, an address space conversion may end up as a bitcast. 470 if (auto *C = dyn_cast<llvm::Constant>(Src)) 471 return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy); 472 // Try to preserve the source's name to make IR more readable. 473 return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 474 Src, DestTy, Src->hasName() ? Src->getName() + ".ascast" : ""); 475 } 476 477 llvm::Constant * 478 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src, 479 LangAS SrcAddr, LangAS DestAddr, 480 llvm::Type *DestTy) const { 481 // Since target may map different address spaces in AST to the same address 482 // space, an address space conversion may end up as a bitcast. 483 return llvm::ConstantExpr::getPointerCast(Src, DestTy); 484 } 485 486 llvm::SyncScope::ID 487 TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 488 SyncScope Scope, 489 llvm::AtomicOrdering Ordering, 490 llvm::LLVMContext &Ctx) const { 491 return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */ 492 } 493 494 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 495 496 /// isEmptyField - Return true iff a the field is "empty", that is it 497 /// is an unnamed bit-field or an (array of) empty record(s). 498 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 499 bool AllowArrays) { 500 if (FD->isUnnamedBitfield()) 501 return true; 502 503 QualType FT = FD->getType(); 504 505 // Constant arrays of empty records count as empty, strip them off. 506 // Constant arrays of zero length always count as empty. 507 bool WasArray = false; 508 if (AllowArrays) 509 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 510 if (AT->getSize() == 0) 511 return true; 512 FT = AT->getElementType(); 513 // The [[no_unique_address]] special case below does not apply to 514 // arrays of C++ empty records, so we need to remember this fact. 515 WasArray = true; 516 } 517 518 const RecordType *RT = FT->getAs<RecordType>(); 519 if (!RT) 520 return false; 521 522 // C++ record fields are never empty, at least in the Itanium ABI. 523 // 524 // FIXME: We should use a predicate for whether this behavior is true in the 525 // current ABI. 526 // 527 // The exception to the above rule are fields marked with the 528 // [[no_unique_address]] attribute (since C++20). Those do count as empty 529 // according to the Itanium ABI. The exception applies only to records, 530 // not arrays of records, so we must also check whether we stripped off an 531 // array type above. 532 if (isa<CXXRecordDecl>(RT->getDecl()) && 533 (WasArray || !FD->hasAttr<NoUniqueAddressAttr>())) 534 return false; 535 536 return isEmptyRecord(Context, FT, AllowArrays); 537 } 538 539 /// isEmptyRecord - Return true iff a structure contains only empty 540 /// fields. Note that a structure with a flexible array member is not 541 /// considered empty. 542 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 543 const RecordType *RT = T->getAs<RecordType>(); 544 if (!RT) 545 return false; 546 const RecordDecl *RD = RT->getDecl(); 547 if (RD->hasFlexibleArrayMember()) 548 return false; 549 550 // If this is a C++ record, check the bases first. 551 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 552 for (const auto &I : CXXRD->bases()) 553 if (!isEmptyRecord(Context, I.getType(), true)) 554 return false; 555 556 for (const auto *I : RD->fields()) 557 if (!isEmptyField(Context, I, AllowArrays)) 558 return false; 559 return true; 560 } 561 562 /// isSingleElementStruct - Determine if a structure is a "single 563 /// element struct", i.e. it has exactly one non-empty field or 564 /// exactly one field which is itself a single element 565 /// struct. Structures with flexible array members are never 566 /// considered single element structs. 567 /// 568 /// \return The field declaration for the single non-empty field, if 569 /// it exists. 570 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 571 const RecordType *RT = T->getAs<RecordType>(); 572 if (!RT) 573 return nullptr; 574 575 const RecordDecl *RD = RT->getDecl(); 576 if (RD->hasFlexibleArrayMember()) 577 return nullptr; 578 579 const Type *Found = nullptr; 580 581 // If this is a C++ record, check the bases first. 582 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 583 for (const auto &I : CXXRD->bases()) { 584 // Ignore empty records. 585 if (isEmptyRecord(Context, I.getType(), true)) 586 continue; 587 588 // If we already found an element then this isn't a single-element struct. 589 if (Found) 590 return nullptr; 591 592 // If this is non-empty and not a single element struct, the composite 593 // cannot be a single element struct. 594 Found = isSingleElementStruct(I.getType(), Context); 595 if (!Found) 596 return nullptr; 597 } 598 } 599 600 // Check for single element. 601 for (const auto *FD : RD->fields()) { 602 QualType FT = FD->getType(); 603 604 // Ignore empty fields. 605 if (isEmptyField(Context, FD, true)) 606 continue; 607 608 // If we already found an element then this isn't a single-element 609 // struct. 610 if (Found) 611 return nullptr; 612 613 // Treat single element arrays as the element. 614 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 615 if (AT->getSize().getZExtValue() != 1) 616 break; 617 FT = AT->getElementType(); 618 } 619 620 if (!isAggregateTypeForABI(FT)) { 621 Found = FT.getTypePtr(); 622 } else { 623 Found = isSingleElementStruct(FT, Context); 624 if (!Found) 625 return nullptr; 626 } 627 } 628 629 // We don't consider a struct a single-element struct if it has 630 // padding beyond the element type. 631 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 632 return nullptr; 633 634 return Found; 635 } 636 637 namespace { 638 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, 639 const ABIArgInfo &AI) { 640 // This default implementation defers to the llvm backend's va_arg 641 // instruction. It can handle only passing arguments directly 642 // (typically only handled in the backend for primitive types), or 643 // aggregates passed indirectly by pointer (NOTE: if the "byval" 644 // flag has ABI impact in the callee, this implementation cannot 645 // work.) 646 647 // Only a few cases are covered here at the moment -- those needed 648 // by the default abi. 649 llvm::Value *Val; 650 651 if (AI.isIndirect()) { 652 assert(!AI.getPaddingType() && 653 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 654 assert( 655 !AI.getIndirectRealign() && 656 "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!"); 657 658 auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty); 659 CharUnits TyAlignForABI = TyInfo.Align; 660 661 llvm::Type *BaseTy = 662 llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 663 llvm::Value *Addr = 664 CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy); 665 return Address(Addr, TyAlignForABI); 666 } else { 667 assert((AI.isDirect() || AI.isExtend()) && 668 "Unexpected ArgInfo Kind in generic VAArg emitter!"); 669 670 assert(!AI.getInReg() && 671 "Unexpected InReg seen in arginfo in generic VAArg emitter!"); 672 assert(!AI.getPaddingType() && 673 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 674 assert(!AI.getDirectOffset() && 675 "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!"); 676 assert(!AI.getCoerceToType() && 677 "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!"); 678 679 Address Temp = CGF.CreateMemTemp(Ty, "varet"); 680 Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty)); 681 CGF.Builder.CreateStore(Val, Temp); 682 return Temp; 683 } 684 } 685 686 /// DefaultABIInfo - The default implementation for ABI specific 687 /// details. This implementation provides information which results in 688 /// self-consistent and sensible LLVM IR generation, but does not 689 /// conform to any particular ABI. 690 class DefaultABIInfo : public ABIInfo { 691 public: 692 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 693 694 ABIArgInfo classifyReturnType(QualType RetTy) const; 695 ABIArgInfo classifyArgumentType(QualType RetTy) const; 696 697 void computeInfo(CGFunctionInfo &FI) const override { 698 if (!getCXXABI().classifyReturnType(FI)) 699 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 700 for (auto &I : FI.arguments()) 701 I.info = classifyArgumentType(I.type); 702 } 703 704 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 705 QualType Ty) const override { 706 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 707 } 708 }; 709 710 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 711 public: 712 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 713 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 714 }; 715 716 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 717 Ty = useFirstFieldIfTransparentUnion(Ty); 718 719 if (isAggregateTypeForABI(Ty)) { 720 // Records with non-trivial destructors/copy-constructors should not be 721 // passed by value. 722 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 723 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 724 725 return getNaturalAlignIndirect(Ty); 726 } 727 728 // Treat an enum type as its underlying type. 729 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 730 Ty = EnumTy->getDecl()->getIntegerType(); 731 732 ASTContext &Context = getContext(); 733 if (const auto *EIT = Ty->getAs<ExtIntType>()) 734 if (EIT->getNumBits() > 735 Context.getTypeSize(Context.getTargetInfo().hasInt128Type() 736 ? Context.Int128Ty 737 : Context.LongLongTy)) 738 return getNaturalAlignIndirect(Ty); 739 740 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 741 : ABIArgInfo::getDirect()); 742 } 743 744 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 745 if (RetTy->isVoidType()) 746 return ABIArgInfo::getIgnore(); 747 748 if (isAggregateTypeForABI(RetTy)) 749 return getNaturalAlignIndirect(RetTy); 750 751 // Treat an enum type as its underlying type. 752 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 753 RetTy = EnumTy->getDecl()->getIntegerType(); 754 755 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 756 if (EIT->getNumBits() > 757 getContext().getTypeSize(getContext().getTargetInfo().hasInt128Type() 758 ? getContext().Int128Ty 759 : getContext().LongLongTy)) 760 return getNaturalAlignIndirect(RetTy); 761 762 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 763 : ABIArgInfo::getDirect()); 764 } 765 766 //===----------------------------------------------------------------------===// 767 // WebAssembly ABI Implementation 768 // 769 // This is a very simple ABI that relies a lot on DefaultABIInfo. 770 //===----------------------------------------------------------------------===// 771 772 class WebAssemblyABIInfo final : public SwiftABIInfo { 773 public: 774 enum ABIKind { 775 MVP = 0, 776 ExperimentalMV = 1, 777 }; 778 779 private: 780 DefaultABIInfo defaultInfo; 781 ABIKind Kind; 782 783 public: 784 explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind) 785 : SwiftABIInfo(CGT), defaultInfo(CGT), Kind(Kind) {} 786 787 private: 788 ABIArgInfo classifyReturnType(QualType RetTy) const; 789 ABIArgInfo classifyArgumentType(QualType Ty) const; 790 791 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 792 // non-virtual, but computeInfo and EmitVAArg are virtual, so we 793 // overload them. 794 void computeInfo(CGFunctionInfo &FI) const override { 795 if (!getCXXABI().classifyReturnType(FI)) 796 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 797 for (auto &Arg : FI.arguments()) 798 Arg.info = classifyArgumentType(Arg.type); 799 } 800 801 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 802 QualType Ty) const override; 803 804 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 805 bool asReturnValue) const override { 806 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 807 } 808 809 bool isSwiftErrorInRegister() const override { 810 return false; 811 } 812 }; 813 814 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo { 815 public: 816 explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 817 WebAssemblyABIInfo::ABIKind K) 818 : TargetCodeGenInfo(std::make_unique<WebAssemblyABIInfo>(CGT, K)) {} 819 820 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 821 CodeGen::CodeGenModule &CGM) const override { 822 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 823 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 824 if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) { 825 llvm::Function *Fn = cast<llvm::Function>(GV); 826 llvm::AttrBuilder B; 827 B.addAttribute("wasm-import-module", Attr->getImportModule()); 828 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 829 } 830 if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) { 831 llvm::Function *Fn = cast<llvm::Function>(GV); 832 llvm::AttrBuilder B; 833 B.addAttribute("wasm-import-name", Attr->getImportName()); 834 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 835 } 836 if (const auto *Attr = FD->getAttr<WebAssemblyExportNameAttr>()) { 837 llvm::Function *Fn = cast<llvm::Function>(GV); 838 llvm::AttrBuilder B; 839 B.addAttribute("wasm-export-name", Attr->getExportName()); 840 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 841 } 842 } 843 844 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 845 llvm::Function *Fn = cast<llvm::Function>(GV); 846 if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype()) 847 Fn->addFnAttr("no-prototype"); 848 } 849 } 850 }; 851 852 /// Classify argument of given type \p Ty. 853 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const { 854 Ty = useFirstFieldIfTransparentUnion(Ty); 855 856 if (isAggregateTypeForABI(Ty)) { 857 // Records with non-trivial destructors/copy-constructors should not be 858 // passed by value. 859 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 860 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 861 // Ignore empty structs/unions. 862 if (isEmptyRecord(getContext(), Ty, true)) 863 return ABIArgInfo::getIgnore(); 864 // Lower single-element structs to just pass a regular value. TODO: We 865 // could do reasonable-size multiple-element structs too, using getExpand(), 866 // though watch out for things like bitfields. 867 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 868 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 869 // For the experimental multivalue ABI, fully expand all other aggregates 870 if (Kind == ABIKind::ExperimentalMV) { 871 const RecordType *RT = Ty->getAs<RecordType>(); 872 assert(RT); 873 bool HasBitField = false; 874 for (auto *Field : RT->getDecl()->fields()) { 875 if (Field->isBitField()) { 876 HasBitField = true; 877 break; 878 } 879 } 880 if (!HasBitField) 881 return ABIArgInfo::getExpand(); 882 } 883 } 884 885 // Otherwise just do the default thing. 886 return defaultInfo.classifyArgumentType(Ty); 887 } 888 889 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const { 890 if (isAggregateTypeForABI(RetTy)) { 891 // Records with non-trivial destructors/copy-constructors should not be 892 // returned by value. 893 if (!getRecordArgABI(RetTy, getCXXABI())) { 894 // Ignore empty structs/unions. 895 if (isEmptyRecord(getContext(), RetTy, true)) 896 return ABIArgInfo::getIgnore(); 897 // Lower single-element structs to just return a regular value. TODO: We 898 // could do reasonable-size multiple-element structs too, using 899 // ABIArgInfo::getDirect(). 900 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 901 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 902 // For the experimental multivalue ABI, return all other aggregates 903 if (Kind == ABIKind::ExperimentalMV) 904 return ABIArgInfo::getDirect(); 905 } 906 } 907 908 // Otherwise just do the default thing. 909 return defaultInfo.classifyReturnType(RetTy); 910 } 911 912 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 913 QualType Ty) const { 914 bool IsIndirect = isAggregateTypeForABI(Ty) && 915 !isEmptyRecord(getContext(), Ty, true) && 916 !isSingleElementStruct(Ty, getContext()); 917 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 918 getContext().getTypeInfoInChars(Ty), 919 CharUnits::fromQuantity(4), 920 /*AllowHigherAlign=*/true); 921 } 922 923 //===----------------------------------------------------------------------===// 924 // le32/PNaCl bitcode ABI Implementation 925 // 926 // This is a simplified version of the x86_32 ABI. Arguments and return values 927 // are always passed on the stack. 928 //===----------------------------------------------------------------------===// 929 930 class PNaClABIInfo : public ABIInfo { 931 public: 932 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 933 934 ABIArgInfo classifyReturnType(QualType RetTy) const; 935 ABIArgInfo classifyArgumentType(QualType RetTy) const; 936 937 void computeInfo(CGFunctionInfo &FI) const override; 938 Address EmitVAArg(CodeGenFunction &CGF, 939 Address VAListAddr, QualType Ty) const override; 940 }; 941 942 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 943 public: 944 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 945 : TargetCodeGenInfo(std::make_unique<PNaClABIInfo>(CGT)) {} 946 }; 947 948 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 949 if (!getCXXABI().classifyReturnType(FI)) 950 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 951 952 for (auto &I : FI.arguments()) 953 I.info = classifyArgumentType(I.type); 954 } 955 956 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 957 QualType Ty) const { 958 // The PNaCL ABI is a bit odd, in that varargs don't use normal 959 // function classification. Structs get passed directly for varargs 960 // functions, through a rewriting transform in 961 // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows 962 // this target to actually support a va_arg instructions with an 963 // aggregate type, unlike other targets. 964 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 965 } 966 967 /// Classify argument of given type \p Ty. 968 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 969 if (isAggregateTypeForABI(Ty)) { 970 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 971 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 972 return getNaturalAlignIndirect(Ty); 973 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 974 // Treat an enum type as its underlying type. 975 Ty = EnumTy->getDecl()->getIntegerType(); 976 } else if (Ty->isFloatingType()) { 977 // Floating-point types don't go inreg. 978 return ABIArgInfo::getDirect(); 979 } else if (const auto *EIT = Ty->getAs<ExtIntType>()) { 980 // Treat extended integers as integers if <=64, otherwise pass indirectly. 981 if (EIT->getNumBits() > 64) 982 return getNaturalAlignIndirect(Ty); 983 return ABIArgInfo::getDirect(); 984 } 985 986 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 987 : ABIArgInfo::getDirect()); 988 } 989 990 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 991 if (RetTy->isVoidType()) 992 return ABIArgInfo::getIgnore(); 993 994 // In the PNaCl ABI we always return records/structures on the stack. 995 if (isAggregateTypeForABI(RetTy)) 996 return getNaturalAlignIndirect(RetTy); 997 998 // Treat extended integers as integers if <=64, otherwise pass indirectly. 999 if (const auto *EIT = RetTy->getAs<ExtIntType>()) { 1000 if (EIT->getNumBits() > 64) 1001 return getNaturalAlignIndirect(RetTy); 1002 return ABIArgInfo::getDirect(); 1003 } 1004 1005 // Treat an enum type as its underlying type. 1006 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1007 RetTy = EnumTy->getDecl()->getIntegerType(); 1008 1009 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 1010 : ABIArgInfo::getDirect()); 1011 } 1012 1013 /// IsX86_MMXType - Return true if this is an MMX type. 1014 bool IsX86_MMXType(llvm::Type *IRType) { 1015 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 1016 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 1017 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 1018 IRType->getScalarSizeInBits() != 64; 1019 } 1020 1021 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1022 StringRef Constraint, 1023 llvm::Type* Ty) { 1024 bool IsMMXCons = llvm::StringSwitch<bool>(Constraint) 1025 .Cases("y", "&y", "^Ym", true) 1026 .Default(false); 1027 if (IsMMXCons && Ty->isVectorTy()) { 1028 if (cast<llvm::VectorType>(Ty)->getPrimitiveSizeInBits().getFixedSize() != 1029 64) { 1030 // Invalid MMX constraint 1031 return nullptr; 1032 } 1033 1034 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 1035 } 1036 1037 // No operation needed 1038 return Ty; 1039 } 1040 1041 /// Returns true if this type can be passed in SSE registers with the 1042 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 1043 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 1044 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 1045 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) { 1046 if (BT->getKind() == BuiltinType::LongDouble) { 1047 if (&Context.getTargetInfo().getLongDoubleFormat() == 1048 &llvm::APFloat::x87DoubleExtended()) 1049 return false; 1050 } 1051 return true; 1052 } 1053 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 1054 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 1055 // registers specially. 1056 unsigned VecSize = Context.getTypeSize(VT); 1057 if (VecSize == 128 || VecSize == 256 || VecSize == 512) 1058 return true; 1059 } 1060 return false; 1061 } 1062 1063 /// Returns true if this aggregate is small enough to be passed in SSE registers 1064 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 1065 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 1066 return NumMembers <= 4; 1067 } 1068 1069 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86. 1070 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) { 1071 auto AI = ABIArgInfo::getDirect(T); 1072 AI.setInReg(true); 1073 AI.setCanBeFlattened(false); 1074 return AI; 1075 } 1076 1077 //===----------------------------------------------------------------------===// 1078 // X86-32 ABI Implementation 1079 //===----------------------------------------------------------------------===// 1080 1081 /// Similar to llvm::CCState, but for Clang. 1082 struct CCState { 1083 CCState(CGFunctionInfo &FI) 1084 : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()) {} 1085 1086 llvm::SmallBitVector IsPreassigned; 1087 unsigned CC = CallingConv::CC_C; 1088 unsigned FreeRegs = 0; 1089 unsigned FreeSSERegs = 0; 1090 }; 1091 1092 enum { 1093 // Vectorcall only allows the first 6 parameters to be passed in registers. 1094 VectorcallMaxParamNumAsReg = 6 1095 }; 1096 1097 /// X86_32ABIInfo - The X86-32 ABI information. 1098 class X86_32ABIInfo : public SwiftABIInfo { 1099 enum Class { 1100 Integer, 1101 Float 1102 }; 1103 1104 static const unsigned MinABIStackAlignInBytes = 4; 1105 1106 bool IsDarwinVectorABI; 1107 bool IsRetSmallStructInRegABI; 1108 bool IsWin32StructABI; 1109 bool IsSoftFloatABI; 1110 bool IsMCUABI; 1111 unsigned DefaultNumRegisterParameters; 1112 1113 static bool isRegisterSize(unsigned Size) { 1114 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 1115 } 1116 1117 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 1118 // FIXME: Assumes vectorcall is in use. 1119 return isX86VectorTypeForVectorCall(getContext(), Ty); 1120 } 1121 1122 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 1123 uint64_t NumMembers) const override { 1124 // FIXME: Assumes vectorcall is in use. 1125 return isX86VectorCallAggregateSmallEnough(NumMembers); 1126 } 1127 1128 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 1129 1130 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1131 /// such that the argument will be passed in memory. 1132 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 1133 1134 ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; 1135 1136 /// Return the alignment to use for the given type on the stack. 1137 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 1138 1139 Class classify(QualType Ty) const; 1140 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 1141 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 1142 1143 /// Updates the number of available free registers, returns 1144 /// true if any registers were allocated. 1145 bool updateFreeRegs(QualType Ty, CCState &State) const; 1146 1147 bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, 1148 bool &NeedsPadding) const; 1149 bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; 1150 1151 bool canExpandIndirectArgument(QualType Ty) const; 1152 1153 /// Rewrite the function info so that all memory arguments use 1154 /// inalloca. 1155 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 1156 1157 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1158 CharUnits &StackOffset, ABIArgInfo &Info, 1159 QualType Type) const; 1160 void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const; 1161 1162 public: 1163 1164 void computeInfo(CGFunctionInfo &FI) const override; 1165 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 1166 QualType Ty) const override; 1167 1168 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1169 bool RetSmallStructInRegABI, bool Win32StructABI, 1170 unsigned NumRegisterParameters, bool SoftFloatABI) 1171 : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), 1172 IsRetSmallStructInRegABI(RetSmallStructInRegABI), 1173 IsWin32StructABI(Win32StructABI), 1174 IsSoftFloatABI(SoftFloatABI), 1175 IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), 1176 DefaultNumRegisterParameters(NumRegisterParameters) {} 1177 1178 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 1179 bool asReturnValue) const override { 1180 // LLVM's x86-32 lowering currently only assigns up to three 1181 // integer registers and three fp registers. Oddly, it'll use up to 1182 // four vector registers for vectors, but those can overlap with the 1183 // scalar registers. 1184 return occupiesMoreThan(CGT, scalars, /*total*/ 3); 1185 } 1186 1187 bool isSwiftErrorInRegister() const override { 1188 // x86-32 lowering does not support passing swifterror in a register. 1189 return false; 1190 } 1191 }; 1192 1193 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 1194 public: 1195 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1196 bool RetSmallStructInRegABI, bool Win32StructABI, 1197 unsigned NumRegisterParameters, bool SoftFloatABI) 1198 : TargetCodeGenInfo(std::make_unique<X86_32ABIInfo>( 1199 CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, 1200 NumRegisterParameters, SoftFloatABI)) {} 1201 1202 static bool isStructReturnInRegABI( 1203 const llvm::Triple &Triple, const CodeGenOptions &Opts); 1204 1205 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1206 CodeGen::CodeGenModule &CGM) const override; 1207 1208 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1209 // Darwin uses different dwarf register numbers for EH. 1210 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 1211 return 4; 1212 } 1213 1214 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1215 llvm::Value *Address) const override; 1216 1217 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1218 StringRef Constraint, 1219 llvm::Type* Ty) const override { 1220 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1221 } 1222 1223 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 1224 std::string &Constraints, 1225 std::vector<llvm::Type *> &ResultRegTypes, 1226 std::vector<llvm::Type *> &ResultTruncRegTypes, 1227 std::vector<LValue> &ResultRegDests, 1228 std::string &AsmString, 1229 unsigned NumOutputs) const override; 1230 1231 llvm::Constant * 1232 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1233 unsigned Sig = (0xeb << 0) | // jmp rel8 1234 (0x06 << 8) | // .+0x08 1235 ('v' << 16) | 1236 ('2' << 24); 1237 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1238 } 1239 1240 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 1241 return "movl\t%ebp, %ebp" 1242 "\t\t// marker for objc_retainAutoreleaseReturnValue"; 1243 } 1244 }; 1245 1246 } 1247 1248 /// Rewrite input constraint references after adding some output constraints. 1249 /// In the case where there is one output and one input and we add one output, 1250 /// we need to replace all operand references greater than or equal to 1: 1251 /// mov $0, $1 1252 /// mov eax, $1 1253 /// The result will be: 1254 /// mov $0, $2 1255 /// mov eax, $2 1256 static void rewriteInputConstraintReferences(unsigned FirstIn, 1257 unsigned NumNewOuts, 1258 std::string &AsmString) { 1259 std::string Buf; 1260 llvm::raw_string_ostream OS(Buf); 1261 size_t Pos = 0; 1262 while (Pos < AsmString.size()) { 1263 size_t DollarStart = AsmString.find('$', Pos); 1264 if (DollarStart == std::string::npos) 1265 DollarStart = AsmString.size(); 1266 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 1267 if (DollarEnd == std::string::npos) 1268 DollarEnd = AsmString.size(); 1269 OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 1270 Pos = DollarEnd; 1271 size_t NumDollars = DollarEnd - DollarStart; 1272 if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 1273 // We have an operand reference. 1274 size_t DigitStart = Pos; 1275 if (AsmString[DigitStart] == '{') { 1276 OS << '{'; 1277 ++DigitStart; 1278 } 1279 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 1280 if (DigitEnd == std::string::npos) 1281 DigitEnd = AsmString.size(); 1282 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 1283 unsigned OperandIndex; 1284 if (!OperandStr.getAsInteger(10, OperandIndex)) { 1285 if (OperandIndex >= FirstIn) 1286 OperandIndex += NumNewOuts; 1287 OS << OperandIndex; 1288 } else { 1289 OS << OperandStr; 1290 } 1291 Pos = DigitEnd; 1292 } 1293 } 1294 AsmString = std::move(OS.str()); 1295 } 1296 1297 /// Add output constraints for EAX:EDX because they are return registers. 1298 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 1299 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 1300 std::vector<llvm::Type *> &ResultRegTypes, 1301 std::vector<llvm::Type *> &ResultTruncRegTypes, 1302 std::vector<LValue> &ResultRegDests, std::string &AsmString, 1303 unsigned NumOutputs) const { 1304 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 1305 1306 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 1307 // larger. 1308 if (!Constraints.empty()) 1309 Constraints += ','; 1310 if (RetWidth <= 32) { 1311 Constraints += "={eax}"; 1312 ResultRegTypes.push_back(CGF.Int32Ty); 1313 } else { 1314 // Use the 'A' constraint for EAX:EDX. 1315 Constraints += "=A"; 1316 ResultRegTypes.push_back(CGF.Int64Ty); 1317 } 1318 1319 // Truncate EAX or EAX:EDX to an integer of the appropriate size. 1320 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 1321 ResultTruncRegTypes.push_back(CoerceTy); 1322 1323 // Coerce the integer by bitcasting the return slot pointer. 1324 ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(CGF), 1325 CoerceTy->getPointerTo())); 1326 ResultRegDests.push_back(ReturnSlot); 1327 1328 rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 1329 } 1330 1331 /// shouldReturnTypeInRegister - Determine if the given type should be 1332 /// returned in a register (for the Darwin and MCU ABI). 1333 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 1334 ASTContext &Context) const { 1335 uint64_t Size = Context.getTypeSize(Ty); 1336 1337 // For i386, type must be register sized. 1338 // For the MCU ABI, it only needs to be <= 8-byte 1339 if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) 1340 return false; 1341 1342 if (Ty->isVectorType()) { 1343 // 64- and 128- bit vectors inside structures are not returned in 1344 // registers. 1345 if (Size == 64 || Size == 128) 1346 return false; 1347 1348 return true; 1349 } 1350 1351 // If this is a builtin, pointer, enum, complex type, member pointer, or 1352 // member function pointer it is ok. 1353 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 1354 Ty->isAnyComplexType() || Ty->isEnumeralType() || 1355 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 1356 return true; 1357 1358 // Arrays are treated like records. 1359 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 1360 return shouldReturnTypeInRegister(AT->getElementType(), Context); 1361 1362 // Otherwise, it must be a record type. 1363 const RecordType *RT = Ty->getAs<RecordType>(); 1364 if (!RT) return false; 1365 1366 // FIXME: Traverse bases here too. 1367 1368 // Structure types are passed in register if all fields would be 1369 // passed in a register. 1370 for (const auto *FD : RT->getDecl()->fields()) { 1371 // Empty fields are ignored. 1372 if (isEmptyField(Context, FD, true)) 1373 continue; 1374 1375 // Check fields recursively. 1376 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 1377 return false; 1378 } 1379 return true; 1380 } 1381 1382 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 1383 // Treat complex types as the element type. 1384 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 1385 Ty = CTy->getElementType(); 1386 1387 // Check for a type which we know has a simple scalar argument-passing 1388 // convention without any padding. (We're specifically looking for 32 1389 // and 64-bit integer and integer-equivalents, float, and double.) 1390 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 1391 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 1392 return false; 1393 1394 uint64_t Size = Context.getTypeSize(Ty); 1395 return Size == 32 || Size == 64; 1396 } 1397 1398 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD, 1399 uint64_t &Size) { 1400 for (const auto *FD : RD->fields()) { 1401 // Scalar arguments on the stack get 4 byte alignment on x86. If the 1402 // argument is smaller than 32-bits, expanding the struct will create 1403 // alignment padding. 1404 if (!is32Or64BitBasicType(FD->getType(), Context)) 1405 return false; 1406 1407 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 1408 // how to expand them yet, and the predicate for telling if a bitfield still 1409 // counts as "basic" is more complicated than what we were doing previously. 1410 if (FD->isBitField()) 1411 return false; 1412 1413 Size += Context.getTypeSize(FD->getType()); 1414 } 1415 return true; 1416 } 1417 1418 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD, 1419 uint64_t &Size) { 1420 // Don't do this if there are any non-empty bases. 1421 for (const CXXBaseSpecifier &Base : RD->bases()) { 1422 if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(), 1423 Size)) 1424 return false; 1425 } 1426 if (!addFieldSizes(Context, RD, Size)) 1427 return false; 1428 return true; 1429 } 1430 1431 /// Test whether an argument type which is to be passed indirectly (on the 1432 /// stack) would have the equivalent layout if it was expanded into separate 1433 /// arguments. If so, we prefer to do the latter to avoid inhibiting 1434 /// optimizations. 1435 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const { 1436 // We can only expand structure types. 1437 const RecordType *RT = Ty->getAs<RecordType>(); 1438 if (!RT) 1439 return false; 1440 const RecordDecl *RD = RT->getDecl(); 1441 uint64_t Size = 0; 1442 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1443 if (!IsWin32StructABI) { 1444 // On non-Windows, we have to conservatively match our old bitcode 1445 // prototypes in order to be ABI-compatible at the bitcode level. 1446 if (!CXXRD->isCLike()) 1447 return false; 1448 } else { 1449 // Don't do this for dynamic classes. 1450 if (CXXRD->isDynamicClass()) 1451 return false; 1452 } 1453 if (!addBaseAndFieldSizes(getContext(), CXXRD, Size)) 1454 return false; 1455 } else { 1456 if (!addFieldSizes(getContext(), RD, Size)) 1457 return false; 1458 } 1459 1460 // We can do this if there was no alignment padding. 1461 return Size == getContext().getTypeSize(Ty); 1462 } 1463 1464 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { 1465 // If the return value is indirect, then the hidden argument is consuming one 1466 // integer register. 1467 if (State.FreeRegs) { 1468 --State.FreeRegs; 1469 if (!IsMCUABI) 1470 return getNaturalAlignIndirectInReg(RetTy); 1471 } 1472 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 1473 } 1474 1475 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 1476 CCState &State) const { 1477 if (RetTy->isVoidType()) 1478 return ABIArgInfo::getIgnore(); 1479 1480 const Type *Base = nullptr; 1481 uint64_t NumElts = 0; 1482 if ((State.CC == llvm::CallingConv::X86_VectorCall || 1483 State.CC == llvm::CallingConv::X86_RegCall) && 1484 isHomogeneousAggregate(RetTy, Base, NumElts)) { 1485 // The LLVM struct type for such an aggregate should lower properly. 1486 return ABIArgInfo::getDirect(); 1487 } 1488 1489 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 1490 // On Darwin, some vectors are returned in registers. 1491 if (IsDarwinVectorABI) { 1492 uint64_t Size = getContext().getTypeSize(RetTy); 1493 1494 // 128-bit vectors are a special case; they are returned in 1495 // registers and we need to make sure to pick a type the LLVM 1496 // backend will like. 1497 if (Size == 128) 1498 return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 1499 llvm::Type::getInt64Ty(getVMContext()), 2)); 1500 1501 // Always return in register if it fits in a general purpose 1502 // register, or if it is 64 bits and has a single element. 1503 if ((Size == 8 || Size == 16 || Size == 32) || 1504 (Size == 64 && VT->getNumElements() == 1)) 1505 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1506 Size)); 1507 1508 return getIndirectReturnResult(RetTy, State); 1509 } 1510 1511 return ABIArgInfo::getDirect(); 1512 } 1513 1514 if (isAggregateTypeForABI(RetTy)) { 1515 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 1516 // Structures with flexible arrays are always indirect. 1517 if (RT->getDecl()->hasFlexibleArrayMember()) 1518 return getIndirectReturnResult(RetTy, State); 1519 } 1520 1521 // If specified, structs and unions are always indirect. 1522 if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) 1523 return getIndirectReturnResult(RetTy, State); 1524 1525 // Ignore empty structs/unions. 1526 if (isEmptyRecord(getContext(), RetTy, true)) 1527 return ABIArgInfo::getIgnore(); 1528 1529 // Small structures which are register sized are generally returned 1530 // in a register. 1531 if (shouldReturnTypeInRegister(RetTy, getContext())) { 1532 uint64_t Size = getContext().getTypeSize(RetTy); 1533 1534 // As a special-case, if the struct is a "single-element" struct, and 1535 // the field is of type "float" or "double", return it in a 1536 // floating-point register. (MSVC does not apply this special case.) 1537 // We apply a similar transformation for pointer types to improve the 1538 // quality of the generated IR. 1539 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 1540 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 1541 || SeltTy->hasPointerRepresentation()) 1542 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 1543 1544 // FIXME: We should be able to narrow this integer in cases with dead 1545 // padding. 1546 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 1547 } 1548 1549 return getIndirectReturnResult(RetTy, State); 1550 } 1551 1552 // Treat an enum type as its underlying type. 1553 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1554 RetTy = EnumTy->getDecl()->getIntegerType(); 1555 1556 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 1557 if (EIT->getNumBits() > 64) 1558 return getIndirectReturnResult(RetTy, State); 1559 1560 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 1561 : ABIArgInfo::getDirect()); 1562 } 1563 1564 static bool isSIMDVectorType(ASTContext &Context, QualType Ty) { 1565 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 1566 } 1567 1568 static bool isRecordWithSIMDVectorType(ASTContext &Context, QualType Ty) { 1569 const RecordType *RT = Ty->getAs<RecordType>(); 1570 if (!RT) 1571 return 0; 1572 const RecordDecl *RD = RT->getDecl(); 1573 1574 // If this is a C++ record, check the bases first. 1575 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1576 for (const auto &I : CXXRD->bases()) 1577 if (!isRecordWithSIMDVectorType(Context, I.getType())) 1578 return false; 1579 1580 for (const auto *i : RD->fields()) { 1581 QualType FT = i->getType(); 1582 1583 if (isSIMDVectorType(Context, FT)) 1584 return true; 1585 1586 if (isRecordWithSIMDVectorType(Context, FT)) 1587 return true; 1588 } 1589 1590 return false; 1591 } 1592 1593 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 1594 unsigned Align) const { 1595 // Otherwise, if the alignment is less than or equal to the minimum ABI 1596 // alignment, just use the default; the backend will handle this. 1597 if (Align <= MinABIStackAlignInBytes) 1598 return 0; // Use default alignment. 1599 1600 // On non-Darwin, the stack type alignment is always 4. 1601 if (!IsDarwinVectorABI) { 1602 // Set explicit alignment, since we may need to realign the top. 1603 return MinABIStackAlignInBytes; 1604 } 1605 1606 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 1607 if (Align >= 16 && (isSIMDVectorType(getContext(), Ty) || 1608 isRecordWithSIMDVectorType(getContext(), Ty))) 1609 return 16; 1610 1611 return MinABIStackAlignInBytes; 1612 } 1613 1614 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 1615 CCState &State) const { 1616 if (!ByVal) { 1617 if (State.FreeRegs) { 1618 --State.FreeRegs; // Non-byval indirects just use one pointer. 1619 if (!IsMCUABI) 1620 return getNaturalAlignIndirectInReg(Ty); 1621 } 1622 return getNaturalAlignIndirect(Ty, false); 1623 } 1624 1625 // Compute the byval alignment. 1626 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 1627 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 1628 if (StackAlign == 0) 1629 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); 1630 1631 // If the stack alignment is less than the type alignment, realign the 1632 // argument. 1633 bool Realign = TypeAlign > StackAlign; 1634 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), 1635 /*ByVal=*/true, Realign); 1636 } 1637 1638 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 1639 const Type *T = isSingleElementStruct(Ty, getContext()); 1640 if (!T) 1641 T = Ty.getTypePtr(); 1642 1643 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 1644 BuiltinType::Kind K = BT->getKind(); 1645 if (K == BuiltinType::Float || K == BuiltinType::Double) 1646 return Float; 1647 } 1648 return Integer; 1649 } 1650 1651 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { 1652 if (!IsSoftFloatABI) { 1653 Class C = classify(Ty); 1654 if (C == Float) 1655 return false; 1656 } 1657 1658 unsigned Size = getContext().getTypeSize(Ty); 1659 unsigned SizeInRegs = (Size + 31) / 32; 1660 1661 if (SizeInRegs == 0) 1662 return false; 1663 1664 if (!IsMCUABI) { 1665 if (SizeInRegs > State.FreeRegs) { 1666 State.FreeRegs = 0; 1667 return false; 1668 } 1669 } else { 1670 // The MCU psABI allows passing parameters in-reg even if there are 1671 // earlier parameters that are passed on the stack. Also, 1672 // it does not allow passing >8-byte structs in-register, 1673 // even if there are 3 free registers available. 1674 if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) 1675 return false; 1676 } 1677 1678 State.FreeRegs -= SizeInRegs; 1679 return true; 1680 } 1681 1682 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, 1683 bool &InReg, 1684 bool &NeedsPadding) const { 1685 // On Windows, aggregates other than HFAs are never passed in registers, and 1686 // they do not consume register slots. Homogenous floating-point aggregates 1687 // (HFAs) have already been dealt with at this point. 1688 if (IsWin32StructABI && isAggregateTypeForABI(Ty)) 1689 return false; 1690 1691 NeedsPadding = false; 1692 InReg = !IsMCUABI; 1693 1694 if (!updateFreeRegs(Ty, State)) 1695 return false; 1696 1697 if (IsMCUABI) 1698 return true; 1699 1700 if (State.CC == llvm::CallingConv::X86_FastCall || 1701 State.CC == llvm::CallingConv::X86_VectorCall || 1702 State.CC == llvm::CallingConv::X86_RegCall) { 1703 if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) 1704 NeedsPadding = true; 1705 1706 return false; 1707 } 1708 1709 return true; 1710 } 1711 1712 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { 1713 if (!updateFreeRegs(Ty, State)) 1714 return false; 1715 1716 if (IsMCUABI) 1717 return false; 1718 1719 if (State.CC == llvm::CallingConv::X86_FastCall || 1720 State.CC == llvm::CallingConv::X86_VectorCall || 1721 State.CC == llvm::CallingConv::X86_RegCall) { 1722 if (getContext().getTypeSize(Ty) > 32) 1723 return false; 1724 1725 return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || 1726 Ty->isReferenceType()); 1727 } 1728 1729 return true; 1730 } 1731 1732 void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const { 1733 // Vectorcall x86 works subtly different than in x64, so the format is 1734 // a bit different than the x64 version. First, all vector types (not HVAs) 1735 // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers. 1736 // This differs from the x64 implementation, where the first 6 by INDEX get 1737 // registers. 1738 // In the second pass over the arguments, HVAs are passed in the remaining 1739 // vector registers if possible, or indirectly by address. The address will be 1740 // passed in ECX/EDX if available. Any other arguments are passed according to 1741 // the usual fastcall rules. 1742 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); 1743 for (int I = 0, E = Args.size(); I < E; ++I) { 1744 const Type *Base = nullptr; 1745 uint64_t NumElts = 0; 1746 const QualType &Ty = Args[I].type; 1747 if ((Ty->isVectorType() || Ty->isBuiltinType()) && 1748 isHomogeneousAggregate(Ty, Base, NumElts)) { 1749 if (State.FreeSSERegs >= NumElts) { 1750 State.FreeSSERegs -= NumElts; 1751 Args[I].info = ABIArgInfo::getDirectInReg(); 1752 State.IsPreassigned.set(I); 1753 } 1754 } 1755 } 1756 } 1757 1758 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 1759 CCState &State) const { 1760 // FIXME: Set alignment on indirect arguments. 1761 bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall; 1762 bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall; 1763 bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall; 1764 1765 Ty = useFirstFieldIfTransparentUnion(Ty); 1766 TypeInfo TI = getContext().getTypeInfo(Ty); 1767 1768 // Check with the C++ ABI first. 1769 const RecordType *RT = Ty->getAs<RecordType>(); 1770 if (RT) { 1771 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 1772 if (RAA == CGCXXABI::RAA_Indirect) { 1773 return getIndirectResult(Ty, false, State); 1774 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 1775 // The field index doesn't matter, we'll fix it up later. 1776 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 1777 } 1778 } 1779 1780 // Regcall uses the concept of a homogenous vector aggregate, similar 1781 // to other targets. 1782 const Type *Base = nullptr; 1783 uint64_t NumElts = 0; 1784 if ((IsRegCall || IsVectorCall) && 1785 isHomogeneousAggregate(Ty, Base, NumElts)) { 1786 if (State.FreeSSERegs >= NumElts) { 1787 State.FreeSSERegs -= NumElts; 1788 1789 // Vectorcall passes HVAs directly and does not flatten them, but regcall 1790 // does. 1791 if (IsVectorCall) 1792 return getDirectX86Hva(); 1793 1794 if (Ty->isBuiltinType() || Ty->isVectorType()) 1795 return ABIArgInfo::getDirect(); 1796 return ABIArgInfo::getExpand(); 1797 } 1798 return getIndirectResult(Ty, /*ByVal=*/false, State); 1799 } 1800 1801 if (isAggregateTypeForABI(Ty)) { 1802 // Structures with flexible arrays are always indirect. 1803 // FIXME: This should not be byval! 1804 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 1805 return getIndirectResult(Ty, true, State); 1806 1807 // Ignore empty structs/unions on non-Windows. 1808 if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true)) 1809 return ABIArgInfo::getIgnore(); 1810 1811 llvm::LLVMContext &LLVMContext = getVMContext(); 1812 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 1813 bool NeedsPadding = false; 1814 bool InReg; 1815 if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { 1816 unsigned SizeInRegs = (TI.Width + 31) / 32; 1817 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 1818 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 1819 if (InReg) 1820 return ABIArgInfo::getDirectInReg(Result); 1821 else 1822 return ABIArgInfo::getDirect(Result); 1823 } 1824 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 1825 1826 // Pass over-aligned aggregates on Windows indirectly. This behavior was 1827 // added in MSVC 2015. 1828 if (IsWin32StructABI && TI.AlignIsRequired && TI.Align > 32) 1829 return getIndirectResult(Ty, /*ByVal=*/false, State); 1830 1831 // Expand small (<= 128-bit) record types when we know that the stack layout 1832 // of those arguments will match the struct. This is important because the 1833 // LLVM backend isn't smart enough to remove byval, which inhibits many 1834 // optimizations. 1835 // Don't do this for the MCU if there are still free integer registers 1836 // (see X86_64 ABI for full explanation). 1837 if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) && 1838 canExpandIndirectArgument(Ty)) 1839 return ABIArgInfo::getExpandWithPadding( 1840 IsFastCall || IsVectorCall || IsRegCall, PaddingType); 1841 1842 return getIndirectResult(Ty, true, State); 1843 } 1844 1845 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1846 // On Windows, vectors are passed directly if registers are available, or 1847 // indirectly if not. This avoids the need to align argument memory. Pass 1848 // user-defined vector types larger than 512 bits indirectly for simplicity. 1849 if (IsWin32StructABI) { 1850 if (TI.Width <= 512 && State.FreeSSERegs > 0) { 1851 --State.FreeSSERegs; 1852 return ABIArgInfo::getDirectInReg(); 1853 } 1854 return getIndirectResult(Ty, /*ByVal=*/false, State); 1855 } 1856 1857 // On Darwin, some vectors are passed in memory, we handle this by passing 1858 // it as an i8/i16/i32/i64. 1859 if (IsDarwinVectorABI) { 1860 if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) || 1861 (TI.Width == 64 && VT->getNumElements() == 1)) 1862 return ABIArgInfo::getDirect( 1863 llvm::IntegerType::get(getVMContext(), TI.Width)); 1864 } 1865 1866 if (IsX86_MMXType(CGT.ConvertType(Ty))) 1867 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 1868 1869 return ABIArgInfo::getDirect(); 1870 } 1871 1872 1873 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1874 Ty = EnumTy->getDecl()->getIntegerType(); 1875 1876 bool InReg = shouldPrimitiveUseInReg(Ty, State); 1877 1878 if (isPromotableIntegerTypeForABI(Ty)) { 1879 if (InReg) 1880 return ABIArgInfo::getExtendInReg(Ty); 1881 return ABIArgInfo::getExtend(Ty); 1882 } 1883 1884 if (const auto * EIT = Ty->getAs<ExtIntType>()) { 1885 if (EIT->getNumBits() <= 64) { 1886 if (InReg) 1887 return ABIArgInfo::getDirectInReg(); 1888 return ABIArgInfo::getDirect(); 1889 } 1890 return getIndirectResult(Ty, /*ByVal=*/false, State); 1891 } 1892 1893 if (InReg) 1894 return ABIArgInfo::getDirectInReg(); 1895 return ABIArgInfo::getDirect(); 1896 } 1897 1898 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 1899 CCState State(FI); 1900 if (IsMCUABI) 1901 State.FreeRegs = 3; 1902 else if (State.CC == llvm::CallingConv::X86_FastCall) { 1903 State.FreeRegs = 2; 1904 State.FreeSSERegs = 3; 1905 } else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1906 State.FreeRegs = 2; 1907 State.FreeSSERegs = 6; 1908 } else if (FI.getHasRegParm()) 1909 State.FreeRegs = FI.getRegParm(); 1910 else if (State.CC == llvm::CallingConv::X86_RegCall) { 1911 State.FreeRegs = 5; 1912 State.FreeSSERegs = 8; 1913 } else if (IsWin32StructABI) { 1914 // Since MSVC 2015, the first three SSE vectors have been passed in 1915 // registers. The rest are passed indirectly. 1916 State.FreeRegs = DefaultNumRegisterParameters; 1917 State.FreeSSERegs = 3; 1918 } else 1919 State.FreeRegs = DefaultNumRegisterParameters; 1920 1921 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 1922 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 1923 } else if (FI.getReturnInfo().isIndirect()) { 1924 // The C++ ABI is not aware of register usage, so we have to check if the 1925 // return value was sret and put it in a register ourselves if appropriate. 1926 if (State.FreeRegs) { 1927 --State.FreeRegs; // The sret parameter consumes a register. 1928 if (!IsMCUABI) 1929 FI.getReturnInfo().setInReg(true); 1930 } 1931 } 1932 1933 // The chain argument effectively gives us another free register. 1934 if (FI.isChainCall()) 1935 ++State.FreeRegs; 1936 1937 // For vectorcall, do a first pass over the arguments, assigning FP and vector 1938 // arguments to XMM registers as available. 1939 if (State.CC == llvm::CallingConv::X86_VectorCall) 1940 runVectorCallFirstPass(FI, State); 1941 1942 bool UsedInAlloca = false; 1943 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); 1944 for (int I = 0, E = Args.size(); I < E; ++I) { 1945 // Skip arguments that have already been assigned. 1946 if (State.IsPreassigned.test(I)) 1947 continue; 1948 1949 Args[I].info = classifyArgumentType(Args[I].type, State); 1950 UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca); 1951 } 1952 1953 // If we needed to use inalloca for any argument, do a second pass and rewrite 1954 // all the memory arguments to use inalloca. 1955 if (UsedInAlloca) 1956 rewriteWithInAlloca(FI); 1957 } 1958 1959 void 1960 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1961 CharUnits &StackOffset, ABIArgInfo &Info, 1962 QualType Type) const { 1963 // Arguments are always 4-byte-aligned. 1964 CharUnits WordSize = CharUnits::fromQuantity(4); 1965 assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct"); 1966 1967 // sret pointers and indirect things will require an extra pointer 1968 // indirection, unless they are byval. Most things are byval, and will not 1969 // require this indirection. 1970 bool IsIndirect = false; 1971 if (Info.isIndirect() && !Info.getIndirectByVal()) 1972 IsIndirect = true; 1973 Info = ABIArgInfo::getInAlloca(FrameFields.size(), IsIndirect); 1974 llvm::Type *LLTy = CGT.ConvertTypeForMem(Type); 1975 if (IsIndirect) 1976 LLTy = LLTy->getPointerTo(0); 1977 FrameFields.push_back(LLTy); 1978 StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(Type); 1979 1980 // Insert padding bytes to respect alignment. 1981 CharUnits FieldEnd = StackOffset; 1982 StackOffset = FieldEnd.alignTo(WordSize); 1983 if (StackOffset != FieldEnd) { 1984 CharUnits NumBytes = StackOffset - FieldEnd; 1985 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 1986 Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); 1987 FrameFields.push_back(Ty); 1988 } 1989 } 1990 1991 static bool isArgInAlloca(const ABIArgInfo &Info) { 1992 // Leave ignored and inreg arguments alone. 1993 switch (Info.getKind()) { 1994 case ABIArgInfo::InAlloca: 1995 return true; 1996 case ABIArgInfo::Ignore: 1997 case ABIArgInfo::IndirectAliased: 1998 return false; 1999 case ABIArgInfo::Indirect: 2000 case ABIArgInfo::Direct: 2001 case ABIArgInfo::Extend: 2002 return !Info.getInReg(); 2003 case ABIArgInfo::Expand: 2004 case ABIArgInfo::CoerceAndExpand: 2005 // These are aggregate types which are never passed in registers when 2006 // inalloca is involved. 2007 return true; 2008 } 2009 llvm_unreachable("invalid enum"); 2010 } 2011 2012 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 2013 assert(IsWin32StructABI && "inalloca only supported on win32"); 2014 2015 // Build a packed struct type for all of the arguments in memory. 2016 SmallVector<llvm::Type *, 6> FrameFields; 2017 2018 // The stack alignment is always 4. 2019 CharUnits StackAlign = CharUnits::fromQuantity(4); 2020 2021 CharUnits StackOffset; 2022 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 2023 2024 // Put 'this' into the struct before 'sret', if necessary. 2025 bool IsThisCall = 2026 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 2027 ABIArgInfo &Ret = FI.getReturnInfo(); 2028 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 2029 isArgInAlloca(I->info)) { 2030 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 2031 ++I; 2032 } 2033 2034 // Put the sret parameter into the inalloca struct if it's in memory. 2035 if (Ret.isIndirect() && !Ret.getInReg()) { 2036 addFieldToArgStruct(FrameFields, StackOffset, Ret, FI.getReturnType()); 2037 // On Windows, the hidden sret parameter is always returned in eax. 2038 Ret.setInAllocaSRet(IsWin32StructABI); 2039 } 2040 2041 // Skip the 'this' parameter in ecx. 2042 if (IsThisCall) 2043 ++I; 2044 2045 // Put arguments passed in memory into the struct. 2046 for (; I != E; ++I) { 2047 if (isArgInAlloca(I->info)) 2048 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 2049 } 2050 2051 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 2052 /*isPacked=*/true), 2053 StackAlign); 2054 } 2055 2056 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, 2057 Address VAListAddr, QualType Ty) const { 2058 2059 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 2060 2061 // x86-32 changes the alignment of certain arguments on the stack. 2062 // 2063 // Just messing with TypeInfo like this works because we never pass 2064 // anything indirectly. 2065 TypeInfo.Align = CharUnits::fromQuantity( 2066 getTypeStackAlignInBytes(Ty, TypeInfo.Align.getQuantity())); 2067 2068 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 2069 TypeInfo, CharUnits::fromQuantity(4), 2070 /*AllowHigherAlign*/ true); 2071 } 2072 2073 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 2074 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 2075 assert(Triple.getArch() == llvm::Triple::x86); 2076 2077 switch (Opts.getStructReturnConvention()) { 2078 case CodeGenOptions::SRCK_Default: 2079 break; 2080 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 2081 return false; 2082 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 2083 return true; 2084 } 2085 2086 if (Triple.isOSDarwin() || Triple.isOSIAMCU()) 2087 return true; 2088 2089 switch (Triple.getOS()) { 2090 case llvm::Triple::DragonFly: 2091 case llvm::Triple::FreeBSD: 2092 case llvm::Triple::OpenBSD: 2093 case llvm::Triple::Win32: 2094 return true; 2095 default: 2096 return false; 2097 } 2098 } 2099 2100 void X86_32TargetCodeGenInfo::setTargetAttributes( 2101 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2102 if (GV->isDeclaration()) 2103 return; 2104 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2105 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2106 llvm::Function *Fn = cast<llvm::Function>(GV); 2107 Fn->addFnAttr("stackrealign"); 2108 } 2109 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2110 llvm::Function *Fn = cast<llvm::Function>(GV); 2111 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2112 } 2113 } 2114 } 2115 2116 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 2117 CodeGen::CodeGenFunction &CGF, 2118 llvm::Value *Address) const { 2119 CodeGen::CGBuilderTy &Builder = CGF.Builder; 2120 2121 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 2122 2123 // 0-7 are the eight integer registers; the order is different 2124 // on Darwin (for EH), but the range is the same. 2125 // 8 is %eip. 2126 AssignToArrayRange(Builder, Address, Four8, 0, 8); 2127 2128 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 2129 // 12-16 are st(0..4). Not sure why we stop at 4. 2130 // These have size 16, which is sizeof(long double) on 2131 // platforms with 8-byte alignment for that type. 2132 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 2133 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 2134 2135 } else { 2136 // 9 is %eflags, which doesn't get a size on Darwin for some 2137 // reason. 2138 Builder.CreateAlignedStore( 2139 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), 2140 CharUnits::One()); 2141 2142 // 11-16 are st(0..5). Not sure why we stop at 5. 2143 // These have size 12, which is sizeof(long double) on 2144 // platforms with 4-byte alignment for that type. 2145 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 2146 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 2147 } 2148 2149 return false; 2150 } 2151 2152 //===----------------------------------------------------------------------===// 2153 // X86-64 ABI Implementation 2154 //===----------------------------------------------------------------------===// 2155 2156 2157 namespace { 2158 /// The AVX ABI level for X86 targets. 2159 enum class X86AVXABILevel { 2160 None, 2161 AVX, 2162 AVX512 2163 }; 2164 2165 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. 2166 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { 2167 switch (AVXLevel) { 2168 case X86AVXABILevel::AVX512: 2169 return 512; 2170 case X86AVXABILevel::AVX: 2171 return 256; 2172 case X86AVXABILevel::None: 2173 return 128; 2174 } 2175 llvm_unreachable("Unknown AVXLevel"); 2176 } 2177 2178 /// X86_64ABIInfo - The X86_64 ABI information. 2179 class X86_64ABIInfo : public SwiftABIInfo { 2180 enum Class { 2181 Integer = 0, 2182 SSE, 2183 SSEUp, 2184 X87, 2185 X87Up, 2186 ComplexX87, 2187 NoClass, 2188 Memory 2189 }; 2190 2191 /// merge - Implement the X86_64 ABI merging algorithm. 2192 /// 2193 /// Merge an accumulating classification \arg Accum with a field 2194 /// classification \arg Field. 2195 /// 2196 /// \param Accum - The accumulating classification. This should 2197 /// always be either NoClass or the result of a previous merge 2198 /// call. In addition, this should never be Memory (the caller 2199 /// should just return Memory for the aggregate). 2200 static Class merge(Class Accum, Class Field); 2201 2202 /// postMerge - Implement the X86_64 ABI post merging algorithm. 2203 /// 2204 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 2205 /// final MEMORY or SSE classes when necessary. 2206 /// 2207 /// \param AggregateSize - The size of the current aggregate in 2208 /// the classification process. 2209 /// 2210 /// \param Lo - The classification for the parts of the type 2211 /// residing in the low word of the containing object. 2212 /// 2213 /// \param Hi - The classification for the parts of the type 2214 /// residing in the higher words of the containing object. 2215 /// 2216 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 2217 2218 /// classify - Determine the x86_64 register classes in which the 2219 /// given type T should be passed. 2220 /// 2221 /// \param Lo - The classification for the parts of the type 2222 /// residing in the low word of the containing object. 2223 /// 2224 /// \param Hi - The classification for the parts of the type 2225 /// residing in the high word of the containing object. 2226 /// 2227 /// \param OffsetBase - The bit offset of this type in the 2228 /// containing object. Some parameters are classified different 2229 /// depending on whether they straddle an eightbyte boundary. 2230 /// 2231 /// \param isNamedArg - Whether the argument in question is a "named" 2232 /// argument, as used in AMD64-ABI 3.5.7. 2233 /// 2234 /// If a word is unused its result will be NoClass; if a type should 2235 /// be passed in Memory then at least the classification of \arg Lo 2236 /// will be Memory. 2237 /// 2238 /// The \arg Lo class will be NoClass iff the argument is ignored. 2239 /// 2240 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 2241 /// also be ComplexX87. 2242 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 2243 bool isNamedArg) const; 2244 2245 llvm::Type *GetByteVectorType(QualType Ty) const; 2246 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 2247 unsigned IROffset, QualType SourceTy, 2248 unsigned SourceOffset) const; 2249 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 2250 unsigned IROffset, QualType SourceTy, 2251 unsigned SourceOffset) const; 2252 2253 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2254 /// such that the argument will be returned in memory. 2255 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 2256 2257 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2258 /// such that the argument will be passed in memory. 2259 /// 2260 /// \param freeIntRegs - The number of free integer registers remaining 2261 /// available. 2262 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 2263 2264 ABIArgInfo classifyReturnType(QualType RetTy) const; 2265 2266 ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs, 2267 unsigned &neededInt, unsigned &neededSSE, 2268 bool isNamedArg) const; 2269 2270 ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt, 2271 unsigned &NeededSSE) const; 2272 2273 ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 2274 unsigned &NeededSSE) const; 2275 2276 bool IsIllegalVectorType(QualType Ty) const; 2277 2278 /// The 0.98 ABI revision clarified a lot of ambiguities, 2279 /// unfortunately in ways that were not always consistent with 2280 /// certain previous compilers. In particular, platforms which 2281 /// required strict binary compatibility with older versions of GCC 2282 /// may need to exempt themselves. 2283 bool honorsRevision0_98() const { 2284 return !getTarget().getTriple().isOSDarwin(); 2285 } 2286 2287 /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to 2288 /// classify it as INTEGER (for compatibility with older clang compilers). 2289 bool classifyIntegerMMXAsSSE() const { 2290 // Clang <= 3.8 did not do this. 2291 if (getContext().getLangOpts().getClangABICompat() <= 2292 LangOptions::ClangABI::Ver3_8) 2293 return false; 2294 2295 const llvm::Triple &Triple = getTarget().getTriple(); 2296 if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4) 2297 return false; 2298 if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10) 2299 return false; 2300 return true; 2301 } 2302 2303 // GCC classifies vectors of __int128 as memory. 2304 bool passInt128VectorsInMem() const { 2305 // Clang <= 9.0 did not do this. 2306 if (getContext().getLangOpts().getClangABICompat() <= 2307 LangOptions::ClangABI::Ver9) 2308 return false; 2309 2310 const llvm::Triple &T = getTarget().getTriple(); 2311 return T.isOSLinux() || T.isOSNetBSD(); 2312 } 2313 2314 X86AVXABILevel AVXLevel; 2315 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 2316 // 64-bit hardware. 2317 bool Has64BitPointers; 2318 2319 public: 2320 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : 2321 SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2322 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 2323 } 2324 2325 bool isPassedUsingAVXType(QualType type) const { 2326 unsigned neededInt, neededSSE; 2327 // The freeIntRegs argument doesn't matter here. 2328 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 2329 /*isNamedArg*/true); 2330 if (info.isDirect()) { 2331 llvm::Type *ty = info.getCoerceToType(); 2332 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 2333 return vectorTy->getPrimitiveSizeInBits().getFixedSize() > 128; 2334 } 2335 return false; 2336 } 2337 2338 void computeInfo(CGFunctionInfo &FI) const override; 2339 2340 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2341 QualType Ty) const override; 2342 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 2343 QualType Ty) const override; 2344 2345 bool has64BitPointers() const { 2346 return Has64BitPointers; 2347 } 2348 2349 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 2350 bool asReturnValue) const override { 2351 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2352 } 2353 bool isSwiftErrorInRegister() const override { 2354 return true; 2355 } 2356 }; 2357 2358 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 2359 class WinX86_64ABIInfo : public SwiftABIInfo { 2360 public: 2361 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2362 : SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2363 IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} 2364 2365 void computeInfo(CGFunctionInfo &FI) const override; 2366 2367 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2368 QualType Ty) const override; 2369 2370 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 2371 // FIXME: Assumes vectorcall is in use. 2372 return isX86VectorTypeForVectorCall(getContext(), Ty); 2373 } 2374 2375 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 2376 uint64_t NumMembers) const override { 2377 // FIXME: Assumes vectorcall is in use. 2378 return isX86VectorCallAggregateSmallEnough(NumMembers); 2379 } 2380 2381 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars, 2382 bool asReturnValue) const override { 2383 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2384 } 2385 2386 bool isSwiftErrorInRegister() const override { 2387 return true; 2388 } 2389 2390 private: 2391 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType, 2392 bool IsVectorCall, bool IsRegCall) const; 2393 ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 2394 const ABIArgInfo ¤t) const; 2395 void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs, 2396 bool IsVectorCall, bool IsRegCall) const; 2397 2398 X86AVXABILevel AVXLevel; 2399 2400 bool IsMingw64; 2401 }; 2402 2403 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2404 public: 2405 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2406 : TargetCodeGenInfo(std::make_unique<X86_64ABIInfo>(CGT, AVXLevel)) {} 2407 2408 const X86_64ABIInfo &getABIInfo() const { 2409 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 2410 } 2411 2412 /// Disable tail call on x86-64. The epilogue code before the tail jump blocks 2413 /// autoreleaseRV/retainRV and autoreleaseRV/unsafeClaimRV optimizations. 2414 bool markARCOptimizedReturnCallsAsNoTail() const override { return true; } 2415 2416 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2417 return 7; 2418 } 2419 2420 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2421 llvm::Value *Address) const override { 2422 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2423 2424 // 0-15 are the 16 integer registers. 2425 // 16 is %rip. 2426 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2427 return false; 2428 } 2429 2430 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 2431 StringRef Constraint, 2432 llvm::Type* Ty) const override { 2433 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 2434 } 2435 2436 bool isNoProtoCallVariadic(const CallArgList &args, 2437 const FunctionNoProtoType *fnType) const override { 2438 // The default CC on x86-64 sets %al to the number of SSA 2439 // registers used, and GCC sets this when calling an unprototyped 2440 // function, so we override the default behavior. However, don't do 2441 // that when AVX types are involved: the ABI explicitly states it is 2442 // undefined, and it doesn't work in practice because of how the ABI 2443 // defines varargs anyway. 2444 if (fnType->getCallConv() == CC_C) { 2445 bool HasAVXType = false; 2446 for (CallArgList::const_iterator 2447 it = args.begin(), ie = args.end(); it != ie; ++it) { 2448 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 2449 HasAVXType = true; 2450 break; 2451 } 2452 } 2453 2454 if (!HasAVXType) 2455 return true; 2456 } 2457 2458 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 2459 } 2460 2461 llvm::Constant * 2462 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 2463 unsigned Sig = (0xeb << 0) | // jmp rel8 2464 (0x06 << 8) | // .+0x08 2465 ('v' << 16) | 2466 ('2' << 24); 2467 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 2468 } 2469 2470 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2471 CodeGen::CodeGenModule &CGM) const override { 2472 if (GV->isDeclaration()) 2473 return; 2474 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2475 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2476 llvm::Function *Fn = cast<llvm::Function>(GV); 2477 Fn->addFnAttr("stackrealign"); 2478 } 2479 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2480 llvm::Function *Fn = cast<llvm::Function>(GV); 2481 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2482 } 2483 } 2484 } 2485 2486 void checkFunctionCallABI(CodeGenModule &CGM, SourceLocation CallLoc, 2487 const FunctionDecl *Caller, 2488 const FunctionDecl *Callee, 2489 const CallArgList &Args) const override; 2490 }; 2491 2492 static void initFeatureMaps(const ASTContext &Ctx, 2493 llvm::StringMap<bool> &CallerMap, 2494 const FunctionDecl *Caller, 2495 llvm::StringMap<bool> &CalleeMap, 2496 const FunctionDecl *Callee) { 2497 if (CalleeMap.empty() && CallerMap.empty()) { 2498 // The caller is potentially nullptr in the case where the call isn't in a 2499 // function. In this case, the getFunctionFeatureMap ensures we just get 2500 // the TU level setting (since it cannot be modified by 'target'.. 2501 Ctx.getFunctionFeatureMap(CallerMap, Caller); 2502 Ctx.getFunctionFeatureMap(CalleeMap, Callee); 2503 } 2504 } 2505 2506 static bool checkAVXParamFeature(DiagnosticsEngine &Diag, 2507 SourceLocation CallLoc, 2508 const llvm::StringMap<bool> &CallerMap, 2509 const llvm::StringMap<bool> &CalleeMap, 2510 QualType Ty, StringRef Feature, 2511 bool IsArgument) { 2512 bool CallerHasFeat = CallerMap.lookup(Feature); 2513 bool CalleeHasFeat = CalleeMap.lookup(Feature); 2514 if (!CallerHasFeat && !CalleeHasFeat) 2515 return Diag.Report(CallLoc, diag::warn_avx_calling_convention) 2516 << IsArgument << Ty << Feature; 2517 2518 // Mixing calling conventions here is very clearly an error. 2519 if (!CallerHasFeat || !CalleeHasFeat) 2520 return Diag.Report(CallLoc, diag::err_avx_calling_convention) 2521 << IsArgument << Ty << Feature; 2522 2523 // Else, both caller and callee have the required feature, so there is no need 2524 // to diagnose. 2525 return false; 2526 } 2527 2528 static bool checkAVXParam(DiagnosticsEngine &Diag, ASTContext &Ctx, 2529 SourceLocation CallLoc, 2530 const llvm::StringMap<bool> &CallerMap, 2531 const llvm::StringMap<bool> &CalleeMap, QualType Ty, 2532 bool IsArgument) { 2533 uint64_t Size = Ctx.getTypeSize(Ty); 2534 if (Size > 256) 2535 return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, 2536 "avx512f", IsArgument); 2537 2538 if (Size > 128) 2539 return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, "avx", 2540 IsArgument); 2541 2542 return false; 2543 } 2544 2545 void X86_64TargetCodeGenInfo::checkFunctionCallABI( 2546 CodeGenModule &CGM, SourceLocation CallLoc, const FunctionDecl *Caller, 2547 const FunctionDecl *Callee, const CallArgList &Args) const { 2548 llvm::StringMap<bool> CallerMap; 2549 llvm::StringMap<bool> CalleeMap; 2550 unsigned ArgIndex = 0; 2551 2552 // We need to loop through the actual call arguments rather than the the 2553 // function's parameters, in case this variadic. 2554 for (const CallArg &Arg : Args) { 2555 // The "avx" feature changes how vectors >128 in size are passed. "avx512f" 2556 // additionally changes how vectors >256 in size are passed. Like GCC, we 2557 // warn when a function is called with an argument where this will change. 2558 // Unlike GCC, we also error when it is an obvious ABI mismatch, that is, 2559 // the caller and callee features are mismatched. 2560 // Unfortunately, we cannot do this diagnostic in SEMA, since the callee can 2561 // change its ABI with attribute-target after this call. 2562 if (Arg.getType()->isVectorType() && 2563 CGM.getContext().getTypeSize(Arg.getType()) > 128) { 2564 initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee); 2565 QualType Ty = Arg.getType(); 2566 // The CallArg seems to have desugared the type already, so for clearer 2567 // diagnostics, replace it with the type in the FunctionDecl if possible. 2568 if (ArgIndex < Callee->getNumParams()) 2569 Ty = Callee->getParamDecl(ArgIndex)->getType(); 2570 2571 if (checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap, 2572 CalleeMap, Ty, /*IsArgument*/ true)) 2573 return; 2574 } 2575 ++ArgIndex; 2576 } 2577 2578 // Check return always, as we don't have a good way of knowing in codegen 2579 // whether this value is used, tail-called, etc. 2580 if (Callee->getReturnType()->isVectorType() && 2581 CGM.getContext().getTypeSize(Callee->getReturnType()) > 128) { 2582 initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee); 2583 checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap, 2584 CalleeMap, Callee->getReturnType(), 2585 /*IsArgument*/ false); 2586 } 2587 } 2588 2589 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 2590 // If the argument does not end in .lib, automatically add the suffix. 2591 // If the argument contains a space, enclose it in quotes. 2592 // This matches the behavior of MSVC. 2593 bool Quote = (Lib.find(" ") != StringRef::npos); 2594 std::string ArgStr = Quote ? "\"" : ""; 2595 ArgStr += Lib; 2596 if (!Lib.endswith_lower(".lib") && !Lib.endswith_lower(".a")) 2597 ArgStr += ".lib"; 2598 ArgStr += Quote ? "\"" : ""; 2599 return ArgStr; 2600 } 2601 2602 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 2603 public: 2604 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2605 bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, 2606 unsigned NumRegisterParameters) 2607 : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, 2608 Win32StructABI, NumRegisterParameters, false) {} 2609 2610 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2611 CodeGen::CodeGenModule &CGM) const override; 2612 2613 void getDependentLibraryOption(llvm::StringRef Lib, 2614 llvm::SmallString<24> &Opt) const override { 2615 Opt = "/DEFAULTLIB:"; 2616 Opt += qualifyWindowsLibrary(Lib); 2617 } 2618 2619 void getDetectMismatchOption(llvm::StringRef Name, 2620 llvm::StringRef Value, 2621 llvm::SmallString<32> &Opt) const override { 2622 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2623 } 2624 }; 2625 2626 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2627 CodeGen::CodeGenModule &CGM) { 2628 if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) { 2629 2630 if (CGM.getCodeGenOpts().StackProbeSize != 4096) 2631 Fn->addFnAttr("stack-probe-size", 2632 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 2633 if (CGM.getCodeGenOpts().NoStackArgProbe) 2634 Fn->addFnAttr("no-stack-arg-probe"); 2635 } 2636 } 2637 2638 void WinX86_32TargetCodeGenInfo::setTargetAttributes( 2639 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2640 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2641 if (GV->isDeclaration()) 2642 return; 2643 addStackProbeTargetAttributes(D, GV, CGM); 2644 } 2645 2646 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2647 public: 2648 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2649 X86AVXABILevel AVXLevel) 2650 : TargetCodeGenInfo(std::make_unique<WinX86_64ABIInfo>(CGT, AVXLevel)) {} 2651 2652 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2653 CodeGen::CodeGenModule &CGM) const override; 2654 2655 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2656 return 7; 2657 } 2658 2659 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2660 llvm::Value *Address) const override { 2661 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2662 2663 // 0-15 are the 16 integer registers. 2664 // 16 is %rip. 2665 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2666 return false; 2667 } 2668 2669 void getDependentLibraryOption(llvm::StringRef Lib, 2670 llvm::SmallString<24> &Opt) const override { 2671 Opt = "/DEFAULTLIB:"; 2672 Opt += qualifyWindowsLibrary(Lib); 2673 } 2674 2675 void getDetectMismatchOption(llvm::StringRef Name, 2676 llvm::StringRef Value, 2677 llvm::SmallString<32> &Opt) const override { 2678 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2679 } 2680 }; 2681 2682 void WinX86_64TargetCodeGenInfo::setTargetAttributes( 2683 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2684 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2685 if (GV->isDeclaration()) 2686 return; 2687 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2688 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2689 llvm::Function *Fn = cast<llvm::Function>(GV); 2690 Fn->addFnAttr("stackrealign"); 2691 } 2692 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2693 llvm::Function *Fn = cast<llvm::Function>(GV); 2694 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2695 } 2696 } 2697 2698 addStackProbeTargetAttributes(D, GV, CGM); 2699 } 2700 } 2701 2702 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 2703 Class &Hi) const { 2704 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 2705 // 2706 // (a) If one of the classes is Memory, the whole argument is passed in 2707 // memory. 2708 // 2709 // (b) If X87UP is not preceded by X87, the whole argument is passed in 2710 // memory. 2711 // 2712 // (c) If the size of the aggregate exceeds two eightbytes and the first 2713 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 2714 // argument is passed in memory. NOTE: This is necessary to keep the 2715 // ABI working for processors that don't support the __m256 type. 2716 // 2717 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 2718 // 2719 // Some of these are enforced by the merging logic. Others can arise 2720 // only with unions; for example: 2721 // union { _Complex double; unsigned; } 2722 // 2723 // Note that clauses (b) and (c) were added in 0.98. 2724 // 2725 if (Hi == Memory) 2726 Lo = Memory; 2727 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 2728 Lo = Memory; 2729 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 2730 Lo = Memory; 2731 if (Hi == SSEUp && Lo != SSE) 2732 Hi = SSE; 2733 } 2734 2735 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 2736 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 2737 // classified recursively so that always two fields are 2738 // considered. The resulting class is calculated according to 2739 // the classes of the fields in the eightbyte: 2740 // 2741 // (a) If both classes are equal, this is the resulting class. 2742 // 2743 // (b) If one of the classes is NO_CLASS, the resulting class is 2744 // the other class. 2745 // 2746 // (c) If one of the classes is MEMORY, the result is the MEMORY 2747 // class. 2748 // 2749 // (d) If one of the classes is INTEGER, the result is the 2750 // INTEGER. 2751 // 2752 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 2753 // MEMORY is used as class. 2754 // 2755 // (f) Otherwise class SSE is used. 2756 2757 // Accum should never be memory (we should have returned) or 2758 // ComplexX87 (because this cannot be passed in a structure). 2759 assert((Accum != Memory && Accum != ComplexX87) && 2760 "Invalid accumulated classification during merge."); 2761 if (Accum == Field || Field == NoClass) 2762 return Accum; 2763 if (Field == Memory) 2764 return Memory; 2765 if (Accum == NoClass) 2766 return Field; 2767 if (Accum == Integer || Field == Integer) 2768 return Integer; 2769 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 2770 Accum == X87 || Accum == X87Up) 2771 return Memory; 2772 return SSE; 2773 } 2774 2775 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 2776 Class &Lo, Class &Hi, bool isNamedArg) const { 2777 // FIXME: This code can be simplified by introducing a simple value class for 2778 // Class pairs with appropriate constructor methods for the various 2779 // situations. 2780 2781 // FIXME: Some of the split computations are wrong; unaligned vectors 2782 // shouldn't be passed in registers for example, so there is no chance they 2783 // can straddle an eightbyte. Verify & simplify. 2784 2785 Lo = Hi = NoClass; 2786 2787 Class &Current = OffsetBase < 64 ? Lo : Hi; 2788 Current = Memory; 2789 2790 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 2791 BuiltinType::Kind k = BT->getKind(); 2792 2793 if (k == BuiltinType::Void) { 2794 Current = NoClass; 2795 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 2796 Lo = Integer; 2797 Hi = Integer; 2798 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 2799 Current = Integer; 2800 } else if (k == BuiltinType::Float || k == BuiltinType::Double) { 2801 Current = SSE; 2802 } else if (k == BuiltinType::LongDouble) { 2803 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2804 if (LDF == &llvm::APFloat::IEEEquad()) { 2805 Lo = SSE; 2806 Hi = SSEUp; 2807 } else if (LDF == &llvm::APFloat::x87DoubleExtended()) { 2808 Lo = X87; 2809 Hi = X87Up; 2810 } else if (LDF == &llvm::APFloat::IEEEdouble()) { 2811 Current = SSE; 2812 } else 2813 llvm_unreachable("unexpected long double representation!"); 2814 } 2815 // FIXME: _Decimal32 and _Decimal64 are SSE. 2816 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 2817 return; 2818 } 2819 2820 if (const EnumType *ET = Ty->getAs<EnumType>()) { 2821 // Classify the underlying integer type. 2822 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 2823 return; 2824 } 2825 2826 if (Ty->hasPointerRepresentation()) { 2827 Current = Integer; 2828 return; 2829 } 2830 2831 if (Ty->isMemberPointerType()) { 2832 if (Ty->isMemberFunctionPointerType()) { 2833 if (Has64BitPointers) { 2834 // If Has64BitPointers, this is an {i64, i64}, so classify both 2835 // Lo and Hi now. 2836 Lo = Hi = Integer; 2837 } else { 2838 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 2839 // straddles an eightbyte boundary, Hi should be classified as well. 2840 uint64_t EB_FuncPtr = (OffsetBase) / 64; 2841 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 2842 if (EB_FuncPtr != EB_ThisAdj) { 2843 Lo = Hi = Integer; 2844 } else { 2845 Current = Integer; 2846 } 2847 } 2848 } else { 2849 Current = Integer; 2850 } 2851 return; 2852 } 2853 2854 if (const VectorType *VT = Ty->getAs<VectorType>()) { 2855 uint64_t Size = getContext().getTypeSize(VT); 2856 if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { 2857 // gcc passes the following as integer: 2858 // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> 2859 // 2 bytes - <2 x char>, <1 x short> 2860 // 1 byte - <1 x char> 2861 Current = Integer; 2862 2863 // If this type crosses an eightbyte boundary, it should be 2864 // split. 2865 uint64_t EB_Lo = (OffsetBase) / 64; 2866 uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; 2867 if (EB_Lo != EB_Hi) 2868 Hi = Lo; 2869 } else if (Size == 64) { 2870 QualType ElementType = VT->getElementType(); 2871 2872 // gcc passes <1 x double> in memory. :( 2873 if (ElementType->isSpecificBuiltinType(BuiltinType::Double)) 2874 return; 2875 2876 // gcc passes <1 x long long> as SSE but clang used to unconditionally 2877 // pass them as integer. For platforms where clang is the de facto 2878 // platform compiler, we must continue to use integer. 2879 if (!classifyIntegerMMXAsSSE() && 2880 (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) || 2881 ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) || 2882 ElementType->isSpecificBuiltinType(BuiltinType::Long) || 2883 ElementType->isSpecificBuiltinType(BuiltinType::ULong))) 2884 Current = Integer; 2885 else 2886 Current = SSE; 2887 2888 // If this type crosses an eightbyte boundary, it should be 2889 // split. 2890 if (OffsetBase && OffsetBase != 64) 2891 Hi = Lo; 2892 } else if (Size == 128 || 2893 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { 2894 QualType ElementType = VT->getElementType(); 2895 2896 // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :( 2897 if (passInt128VectorsInMem() && Size != 128 && 2898 (ElementType->isSpecificBuiltinType(BuiltinType::Int128) || 2899 ElementType->isSpecificBuiltinType(BuiltinType::UInt128))) 2900 return; 2901 2902 // Arguments of 256-bits are split into four eightbyte chunks. The 2903 // least significant one belongs to class SSE and all the others to class 2904 // SSEUP. The original Lo and Hi design considers that types can't be 2905 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 2906 // This design isn't correct for 256-bits, but since there're no cases 2907 // where the upper parts would need to be inspected, avoid adding 2908 // complexity and just consider Hi to match the 64-256 part. 2909 // 2910 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 2911 // registers if they are "named", i.e. not part of the "..." of a 2912 // variadic function. 2913 // 2914 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are 2915 // split into eight eightbyte chunks, one SSE and seven SSEUP. 2916 Lo = SSE; 2917 Hi = SSEUp; 2918 } 2919 return; 2920 } 2921 2922 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 2923 QualType ET = getContext().getCanonicalType(CT->getElementType()); 2924 2925 uint64_t Size = getContext().getTypeSize(Ty); 2926 if (ET->isIntegralOrEnumerationType()) { 2927 if (Size <= 64) 2928 Current = Integer; 2929 else if (Size <= 128) 2930 Lo = Hi = Integer; 2931 } else if (ET == getContext().FloatTy) { 2932 Current = SSE; 2933 } else if (ET == getContext().DoubleTy) { 2934 Lo = Hi = SSE; 2935 } else if (ET == getContext().LongDoubleTy) { 2936 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2937 if (LDF == &llvm::APFloat::IEEEquad()) 2938 Current = Memory; 2939 else if (LDF == &llvm::APFloat::x87DoubleExtended()) 2940 Current = ComplexX87; 2941 else if (LDF == &llvm::APFloat::IEEEdouble()) 2942 Lo = Hi = SSE; 2943 else 2944 llvm_unreachable("unexpected long double representation!"); 2945 } 2946 2947 // If this complex type crosses an eightbyte boundary then it 2948 // should be split. 2949 uint64_t EB_Real = (OffsetBase) / 64; 2950 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 2951 if (Hi == NoClass && EB_Real != EB_Imag) 2952 Hi = Lo; 2953 2954 return; 2955 } 2956 2957 if (const auto *EITy = Ty->getAs<ExtIntType>()) { 2958 if (EITy->getNumBits() <= 64) 2959 Current = Integer; 2960 else if (EITy->getNumBits() <= 128) 2961 Lo = Hi = Integer; 2962 // Larger values need to get passed in memory. 2963 return; 2964 } 2965 2966 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 2967 // Arrays are treated like structures. 2968 2969 uint64_t Size = getContext().getTypeSize(Ty); 2970 2971 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2972 // than eight eightbytes, ..., it has class MEMORY. 2973 if (Size > 512) 2974 return; 2975 2976 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 2977 // fields, it has class MEMORY. 2978 // 2979 // Only need to check alignment of array base. 2980 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 2981 return; 2982 2983 // Otherwise implement simplified merge. We could be smarter about 2984 // this, but it isn't worth it and would be harder to verify. 2985 Current = NoClass; 2986 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 2987 uint64_t ArraySize = AT->getSize().getZExtValue(); 2988 2989 // The only case a 256-bit wide vector could be used is when the array 2990 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2991 // to work for sizes wider than 128, early check and fallback to memory. 2992 // 2993 if (Size > 128 && 2994 (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel))) 2995 return; 2996 2997 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 2998 Class FieldLo, FieldHi; 2999 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 3000 Lo = merge(Lo, FieldLo); 3001 Hi = merge(Hi, FieldHi); 3002 if (Lo == Memory || Hi == Memory) 3003 break; 3004 } 3005 3006 postMerge(Size, Lo, Hi); 3007 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 3008 return; 3009 } 3010 3011 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3012 uint64_t Size = getContext().getTypeSize(Ty); 3013 3014 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 3015 // than eight eightbytes, ..., it has class MEMORY. 3016 if (Size > 512) 3017 return; 3018 3019 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 3020 // copy constructor or a non-trivial destructor, it is passed by invisible 3021 // reference. 3022 if (getRecordArgABI(RT, getCXXABI())) 3023 return; 3024 3025 const RecordDecl *RD = RT->getDecl(); 3026 3027 // Assume variable sized types are passed in memory. 3028 if (RD->hasFlexibleArrayMember()) 3029 return; 3030 3031 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 3032 3033 // Reset Lo class, this will be recomputed. 3034 Current = NoClass; 3035 3036 // If this is a C++ record, classify the bases first. 3037 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3038 for (const auto &I : CXXRD->bases()) { 3039 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3040 "Unexpected base class!"); 3041 const auto *Base = 3042 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 3043 3044 // Classify this field. 3045 // 3046 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 3047 // single eightbyte, each is classified separately. Each eightbyte gets 3048 // initialized to class NO_CLASS. 3049 Class FieldLo, FieldHi; 3050 uint64_t Offset = 3051 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 3052 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 3053 Lo = merge(Lo, FieldLo); 3054 Hi = merge(Hi, FieldHi); 3055 if (Lo == Memory || Hi == Memory) { 3056 postMerge(Size, Lo, Hi); 3057 return; 3058 } 3059 } 3060 } 3061 3062 // Classify the fields one at a time, merging the results. 3063 unsigned idx = 0; 3064 bool UseClang11Compat = getContext().getLangOpts().getClangABICompat() <= 3065 LangOptions::ClangABI::Ver11 || 3066 getContext().getTargetInfo().getTriple().isPS4(); 3067 bool IsUnion = RT->isUnionType() && !UseClang11Compat; 3068 3069 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3070 i != e; ++i, ++idx) { 3071 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 3072 bool BitField = i->isBitField(); 3073 3074 // Ignore padding bit-fields. 3075 if (BitField && i->isUnnamedBitfield()) 3076 continue; 3077 3078 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 3079 // eight eightbytes, or it contains unaligned fields, it has class MEMORY. 3080 // 3081 // The only case a 256-bit or a 512-bit wide vector could be used is when 3082 // the struct contains a single 256-bit or 512-bit element. Early check 3083 // and fallback to memory. 3084 // 3085 // FIXME: Extended the Lo and Hi logic properly to work for size wider 3086 // than 128. 3087 if (Size > 128 && 3088 ((!IsUnion && Size != getContext().getTypeSize(i->getType())) || 3089 Size > getNativeVectorSizeForAVXABI(AVXLevel))) { 3090 Lo = Memory; 3091 postMerge(Size, Lo, Hi); 3092 return; 3093 } 3094 // Note, skip this test for bit-fields, see below. 3095 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 3096 Lo = Memory; 3097 postMerge(Size, Lo, Hi); 3098 return; 3099 } 3100 3101 // Classify this field. 3102 // 3103 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 3104 // exceeds a single eightbyte, each is classified 3105 // separately. Each eightbyte gets initialized to class 3106 // NO_CLASS. 3107 Class FieldLo, FieldHi; 3108 3109 // Bit-fields require special handling, they do not force the 3110 // structure to be passed in memory even if unaligned, and 3111 // therefore they can straddle an eightbyte. 3112 if (BitField) { 3113 assert(!i->isUnnamedBitfield()); 3114 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 3115 uint64_t Size = i->getBitWidthValue(getContext()); 3116 3117 uint64_t EB_Lo = Offset / 64; 3118 uint64_t EB_Hi = (Offset + Size - 1) / 64; 3119 3120 if (EB_Lo) { 3121 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 3122 FieldLo = NoClass; 3123 FieldHi = Integer; 3124 } else { 3125 FieldLo = Integer; 3126 FieldHi = EB_Hi ? Integer : NoClass; 3127 } 3128 } else 3129 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 3130 Lo = merge(Lo, FieldLo); 3131 Hi = merge(Hi, FieldHi); 3132 if (Lo == Memory || Hi == Memory) 3133 break; 3134 } 3135 3136 postMerge(Size, Lo, Hi); 3137 } 3138 } 3139 3140 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 3141 // If this is a scalar LLVM value then assume LLVM will pass it in the right 3142 // place naturally. 3143 if (!isAggregateTypeForABI(Ty)) { 3144 // Treat an enum type as its underlying type. 3145 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3146 Ty = EnumTy->getDecl()->getIntegerType(); 3147 3148 if (Ty->isExtIntType()) 3149 return getNaturalAlignIndirect(Ty); 3150 3151 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 3152 : ABIArgInfo::getDirect()); 3153 } 3154 3155 return getNaturalAlignIndirect(Ty); 3156 } 3157 3158 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 3159 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 3160 uint64_t Size = getContext().getTypeSize(VecTy); 3161 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); 3162 if (Size <= 64 || Size > LargestVector) 3163 return true; 3164 QualType EltTy = VecTy->getElementType(); 3165 if (passInt128VectorsInMem() && 3166 (EltTy->isSpecificBuiltinType(BuiltinType::Int128) || 3167 EltTy->isSpecificBuiltinType(BuiltinType::UInt128))) 3168 return true; 3169 } 3170 3171 return false; 3172 } 3173 3174 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 3175 unsigned freeIntRegs) const { 3176 // If this is a scalar LLVM value then assume LLVM will pass it in the right 3177 // place naturally. 3178 // 3179 // This assumption is optimistic, as there could be free registers available 3180 // when we need to pass this argument in memory, and LLVM could try to pass 3181 // the argument in the free register. This does not seem to happen currently, 3182 // but this code would be much safer if we could mark the argument with 3183 // 'onstack'. See PR12193. 3184 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty) && 3185 !Ty->isExtIntType()) { 3186 // Treat an enum type as its underlying type. 3187 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3188 Ty = EnumTy->getDecl()->getIntegerType(); 3189 3190 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 3191 : ABIArgInfo::getDirect()); 3192 } 3193 3194 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 3195 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 3196 3197 // Compute the byval alignment. We specify the alignment of the byval in all 3198 // cases so that the mid-level optimizer knows the alignment of the byval. 3199 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 3200 3201 // Attempt to avoid passing indirect results using byval when possible. This 3202 // is important for good codegen. 3203 // 3204 // We do this by coercing the value into a scalar type which the backend can 3205 // handle naturally (i.e., without using byval). 3206 // 3207 // For simplicity, we currently only do this when we have exhausted all of the 3208 // free integer registers. Doing this when there are free integer registers 3209 // would require more care, as we would have to ensure that the coerced value 3210 // did not claim the unused register. That would require either reording the 3211 // arguments to the function (so that any subsequent inreg values came first), 3212 // or only doing this optimization when there were no following arguments that 3213 // might be inreg. 3214 // 3215 // We currently expect it to be rare (particularly in well written code) for 3216 // arguments to be passed on the stack when there are still free integer 3217 // registers available (this would typically imply large structs being passed 3218 // by value), so this seems like a fair tradeoff for now. 3219 // 3220 // We can revisit this if the backend grows support for 'onstack' parameter 3221 // attributes. See PR12193. 3222 if (freeIntRegs == 0) { 3223 uint64_t Size = getContext().getTypeSize(Ty); 3224 3225 // If this type fits in an eightbyte, coerce it into the matching integral 3226 // type, which will end up on the stack (with alignment 8). 3227 if (Align == 8 && Size <= 64) 3228 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 3229 Size)); 3230 } 3231 3232 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); 3233 } 3234 3235 /// The ABI specifies that a value should be passed in a full vector XMM/YMM 3236 /// register. Pick an LLVM IR type that will be passed as a vector register. 3237 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 3238 // Wrapper structs/arrays that only contain vectors are passed just like 3239 // vectors; strip them off if present. 3240 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) 3241 Ty = QualType(InnerTy, 0); 3242 3243 llvm::Type *IRType = CGT.ConvertType(Ty); 3244 if (isa<llvm::VectorType>(IRType)) { 3245 // Don't pass vXi128 vectors in their native type, the backend can't 3246 // legalize them. 3247 if (passInt128VectorsInMem() && 3248 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy(128)) { 3249 // Use a vXi64 vector. 3250 uint64_t Size = getContext().getTypeSize(Ty); 3251 return llvm::FixedVectorType::get(llvm::Type::getInt64Ty(getVMContext()), 3252 Size / 64); 3253 } 3254 3255 return IRType; 3256 } 3257 3258 if (IRType->getTypeID() == llvm::Type::FP128TyID) 3259 return IRType; 3260 3261 // We couldn't find the preferred IR vector type for 'Ty'. 3262 uint64_t Size = getContext().getTypeSize(Ty); 3263 assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!"); 3264 3265 3266 // Return a LLVM IR vector type based on the size of 'Ty'. 3267 return llvm::FixedVectorType::get(llvm::Type::getDoubleTy(getVMContext()), 3268 Size / 64); 3269 } 3270 3271 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 3272 /// is known to either be off the end of the specified type or being in 3273 /// alignment padding. The user type specified is known to be at most 128 bits 3274 /// in size, and have passed through X86_64ABIInfo::classify with a successful 3275 /// classification that put one of the two halves in the INTEGER class. 3276 /// 3277 /// It is conservatively correct to return false. 3278 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 3279 unsigned EndBit, ASTContext &Context) { 3280 // If the bytes being queried are off the end of the type, there is no user 3281 // data hiding here. This handles analysis of builtins, vectors and other 3282 // types that don't contain interesting padding. 3283 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 3284 if (TySize <= StartBit) 3285 return true; 3286 3287 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 3288 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 3289 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 3290 3291 // Check each element to see if the element overlaps with the queried range. 3292 for (unsigned i = 0; i != NumElts; ++i) { 3293 // If the element is after the span we care about, then we're done.. 3294 unsigned EltOffset = i*EltSize; 3295 if (EltOffset >= EndBit) break; 3296 3297 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 3298 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 3299 EndBit-EltOffset, Context)) 3300 return false; 3301 } 3302 // If it overlaps no elements, then it is safe to process as padding. 3303 return true; 3304 } 3305 3306 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3307 const RecordDecl *RD = RT->getDecl(); 3308 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3309 3310 // If this is a C++ record, check the bases first. 3311 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3312 for (const auto &I : CXXRD->bases()) { 3313 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3314 "Unexpected base class!"); 3315 const auto *Base = 3316 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 3317 3318 // If the base is after the span we care about, ignore it. 3319 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 3320 if (BaseOffset >= EndBit) continue; 3321 3322 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 3323 if (!BitsContainNoUserData(I.getType(), BaseStart, 3324 EndBit-BaseOffset, Context)) 3325 return false; 3326 } 3327 } 3328 3329 // Verify that no field has data that overlaps the region of interest. Yes 3330 // this could be sped up a lot by being smarter about queried fields, 3331 // however we're only looking at structs up to 16 bytes, so we don't care 3332 // much. 3333 unsigned idx = 0; 3334 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3335 i != e; ++i, ++idx) { 3336 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 3337 3338 // If we found a field after the region we care about, then we're done. 3339 if (FieldOffset >= EndBit) break; 3340 3341 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 3342 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 3343 Context)) 3344 return false; 3345 } 3346 3347 // If nothing in this record overlapped the area of interest, then we're 3348 // clean. 3349 return true; 3350 } 3351 3352 return false; 3353 } 3354 3355 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a 3356 /// float member at the specified offset. For example, {int,{float}} has a 3357 /// float at offset 4. It is conservatively correct for this routine to return 3358 /// false. 3359 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, 3360 const llvm::DataLayout &TD) { 3361 // Base case if we find a float. 3362 if (IROffset == 0 && IRType->isFloatTy()) 3363 return true; 3364 3365 // If this is a struct, recurse into the field at the specified offset. 3366 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3367 const llvm::StructLayout *SL = TD.getStructLayout(STy); 3368 unsigned Elt = SL->getElementContainingOffset(IROffset); 3369 IROffset -= SL->getElementOffset(Elt); 3370 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); 3371 } 3372 3373 // If this is an array, recurse into the field at the specified offset. 3374 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3375 llvm::Type *EltTy = ATy->getElementType(); 3376 unsigned EltSize = TD.getTypeAllocSize(EltTy); 3377 IROffset -= IROffset/EltSize*EltSize; 3378 return ContainsFloatAtOffset(EltTy, IROffset, TD); 3379 } 3380 3381 return false; 3382 } 3383 3384 3385 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 3386 /// low 8 bytes of an XMM register, corresponding to the SSE class. 3387 llvm::Type *X86_64ABIInfo:: 3388 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3389 QualType SourceTy, unsigned SourceOffset) const { 3390 // The only three choices we have are either double, <2 x float>, or float. We 3391 // pass as float if the last 4 bytes is just padding. This happens for 3392 // structs that contain 3 floats. 3393 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, 3394 SourceOffset*8+64, getContext())) 3395 return llvm::Type::getFloatTy(getVMContext()); 3396 3397 // We want to pass as <2 x float> if the LLVM IR type contains a float at 3398 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the 3399 // case. 3400 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && 3401 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) 3402 return llvm::FixedVectorType::get(llvm::Type::getFloatTy(getVMContext()), 3403 2); 3404 3405 return llvm::Type::getDoubleTy(getVMContext()); 3406 } 3407 3408 3409 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 3410 /// an 8-byte GPR. This means that we either have a scalar or we are talking 3411 /// about the high or low part of an up-to-16-byte struct. This routine picks 3412 /// the best LLVM IR type to represent this, which may be i64 or may be anything 3413 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 3414 /// etc). 3415 /// 3416 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 3417 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 3418 /// the 8-byte value references. PrefType may be null. 3419 /// 3420 /// SourceTy is the source-level type for the entire argument. SourceOffset is 3421 /// an offset into this that we're processing (which is always either 0 or 8). 3422 /// 3423 llvm::Type *X86_64ABIInfo:: 3424 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3425 QualType SourceTy, unsigned SourceOffset) const { 3426 // If we're dealing with an un-offset LLVM IR type, then it means that we're 3427 // returning an 8-byte unit starting with it. See if we can safely use it. 3428 if (IROffset == 0) { 3429 // Pointers and int64's always fill the 8-byte unit. 3430 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 3431 IRType->isIntegerTy(64)) 3432 return IRType; 3433 3434 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 3435 // goodness in the source type is just tail padding. This is allowed to 3436 // kick in for struct {double,int} on the int, but not on 3437 // struct{double,int,int} because we wouldn't return the second int. We 3438 // have to do this analysis on the source type because we can't depend on 3439 // unions being lowered a specific way etc. 3440 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 3441 IRType->isIntegerTy(32) || 3442 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 3443 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 3444 cast<llvm::IntegerType>(IRType)->getBitWidth(); 3445 3446 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 3447 SourceOffset*8+64, getContext())) 3448 return IRType; 3449 } 3450 } 3451 3452 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3453 // If this is a struct, recurse into the field at the specified offset. 3454 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 3455 if (IROffset < SL->getSizeInBytes()) { 3456 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 3457 IROffset -= SL->getElementOffset(FieldIdx); 3458 3459 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 3460 SourceTy, SourceOffset); 3461 } 3462 } 3463 3464 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3465 llvm::Type *EltTy = ATy->getElementType(); 3466 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 3467 unsigned EltOffset = IROffset/EltSize*EltSize; 3468 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 3469 SourceOffset); 3470 } 3471 3472 // Okay, we don't have any better idea of what to pass, so we pass this in an 3473 // integer register that isn't too big to fit the rest of the struct. 3474 unsigned TySizeInBytes = 3475 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 3476 3477 assert(TySizeInBytes != SourceOffset && "Empty field?"); 3478 3479 // It is always safe to classify this as an integer type up to i64 that 3480 // isn't larger than the structure. 3481 return llvm::IntegerType::get(getVMContext(), 3482 std::min(TySizeInBytes-SourceOffset, 8U)*8); 3483 } 3484 3485 3486 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 3487 /// be used as elements of a two register pair to pass or return, return a 3488 /// first class aggregate to represent them. For example, if the low part of 3489 /// a by-value argument should be passed as i32* and the high part as float, 3490 /// return {i32*, float}. 3491 static llvm::Type * 3492 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 3493 const llvm::DataLayout &TD) { 3494 // In order to correctly satisfy the ABI, we need to the high part to start 3495 // at offset 8. If the high and low parts we inferred are both 4-byte types 3496 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 3497 // the second element at offset 8. Check for this: 3498 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 3499 unsigned HiAlign = TD.getABITypeAlignment(Hi); 3500 unsigned HiStart = llvm::alignTo(LoSize, HiAlign); 3501 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 3502 3503 // To handle this, we have to increase the size of the low part so that the 3504 // second element will start at an 8 byte offset. We can't increase the size 3505 // of the second element because it might make us access off the end of the 3506 // struct. 3507 if (HiStart != 8) { 3508 // There are usually two sorts of types the ABI generation code can produce 3509 // for the low part of a pair that aren't 8 bytes in size: float or 3510 // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and 3511 // NaCl). 3512 // Promote these to a larger type. 3513 if (Lo->isFloatTy()) 3514 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 3515 else { 3516 assert((Lo->isIntegerTy() || Lo->isPointerTy()) 3517 && "Invalid/unknown lo type"); 3518 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 3519 } 3520 } 3521 3522 llvm::StructType *Result = llvm::StructType::get(Lo, Hi); 3523 3524 // Verify that the second element is at an 8-byte offset. 3525 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 3526 "Invalid x86-64 argument pair!"); 3527 return Result; 3528 } 3529 3530 ABIArgInfo X86_64ABIInfo:: 3531 classifyReturnType(QualType RetTy) const { 3532 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 3533 // classification algorithm. 3534 X86_64ABIInfo::Class Lo, Hi; 3535 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 3536 3537 // Check some invariants. 3538 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3539 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3540 3541 llvm::Type *ResType = nullptr; 3542 switch (Lo) { 3543 case NoClass: 3544 if (Hi == NoClass) 3545 return ABIArgInfo::getIgnore(); 3546 // If the low part is just padding, it takes no register, leave ResType 3547 // null. 3548 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3549 "Unknown missing lo part"); 3550 break; 3551 3552 case SSEUp: 3553 case X87Up: 3554 llvm_unreachable("Invalid classification for lo word."); 3555 3556 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 3557 // hidden argument. 3558 case Memory: 3559 return getIndirectReturnResult(RetTy); 3560 3561 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 3562 // available register of the sequence %rax, %rdx is used. 3563 case Integer: 3564 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3565 3566 // If we have a sign or zero extended integer, make sure to return Extend 3567 // so that the parameter gets the right LLVM IR attributes. 3568 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3569 // Treat an enum type as its underlying type. 3570 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3571 RetTy = EnumTy->getDecl()->getIntegerType(); 3572 3573 if (RetTy->isIntegralOrEnumerationType() && 3574 isPromotableIntegerTypeForABI(RetTy)) 3575 return ABIArgInfo::getExtend(RetTy); 3576 } 3577 break; 3578 3579 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 3580 // available SSE register of the sequence %xmm0, %xmm1 is used. 3581 case SSE: 3582 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3583 break; 3584 3585 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 3586 // returned on the X87 stack in %st0 as 80-bit x87 number. 3587 case X87: 3588 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 3589 break; 3590 3591 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 3592 // part of the value is returned in %st0 and the imaginary part in 3593 // %st1. 3594 case ComplexX87: 3595 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 3596 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 3597 llvm::Type::getX86_FP80Ty(getVMContext())); 3598 break; 3599 } 3600 3601 llvm::Type *HighPart = nullptr; 3602 switch (Hi) { 3603 // Memory was handled previously and X87 should 3604 // never occur as a hi class. 3605 case Memory: 3606 case X87: 3607 llvm_unreachable("Invalid classification for hi word."); 3608 3609 case ComplexX87: // Previously handled. 3610 case NoClass: 3611 break; 3612 3613 case Integer: 3614 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3615 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3616 return ABIArgInfo::getDirect(HighPart, 8); 3617 break; 3618 case SSE: 3619 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3620 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3621 return ABIArgInfo::getDirect(HighPart, 8); 3622 break; 3623 3624 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 3625 // is passed in the next available eightbyte chunk if the last used 3626 // vector register. 3627 // 3628 // SSEUP should always be preceded by SSE, just widen. 3629 case SSEUp: 3630 assert(Lo == SSE && "Unexpected SSEUp classification."); 3631 ResType = GetByteVectorType(RetTy); 3632 break; 3633 3634 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 3635 // returned together with the previous X87 value in %st0. 3636 case X87Up: 3637 // If X87Up is preceded by X87, we don't need to do 3638 // anything. However, in some cases with unions it may not be 3639 // preceded by X87. In such situations we follow gcc and pass the 3640 // extra bits in an SSE reg. 3641 if (Lo != X87) { 3642 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3643 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3644 return ABIArgInfo::getDirect(HighPart, 8); 3645 } 3646 break; 3647 } 3648 3649 // If a high part was specified, merge it together with the low part. It is 3650 // known to pass in the high eightbyte of the result. We do this by forming a 3651 // first class struct aggregate with the high and low part: {low, high} 3652 if (HighPart) 3653 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3654 3655 return ABIArgInfo::getDirect(ResType); 3656 } 3657 3658 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 3659 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 3660 bool isNamedArg) 3661 const 3662 { 3663 Ty = useFirstFieldIfTransparentUnion(Ty); 3664 3665 X86_64ABIInfo::Class Lo, Hi; 3666 classify(Ty, 0, Lo, Hi, isNamedArg); 3667 3668 // Check some invariants. 3669 // FIXME: Enforce these by construction. 3670 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3671 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3672 3673 neededInt = 0; 3674 neededSSE = 0; 3675 llvm::Type *ResType = nullptr; 3676 switch (Lo) { 3677 case NoClass: 3678 if (Hi == NoClass) 3679 return ABIArgInfo::getIgnore(); 3680 // If the low part is just padding, it takes no register, leave ResType 3681 // null. 3682 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3683 "Unknown missing lo part"); 3684 break; 3685 3686 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 3687 // on the stack. 3688 case Memory: 3689 3690 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 3691 // COMPLEX_X87, it is passed in memory. 3692 case X87: 3693 case ComplexX87: 3694 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 3695 ++neededInt; 3696 return getIndirectResult(Ty, freeIntRegs); 3697 3698 case SSEUp: 3699 case X87Up: 3700 llvm_unreachable("Invalid classification for lo word."); 3701 3702 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 3703 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 3704 // and %r9 is used. 3705 case Integer: 3706 ++neededInt; 3707 3708 // Pick an 8-byte type based on the preferred type. 3709 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 3710 3711 // If we have a sign or zero extended integer, make sure to return Extend 3712 // so that the parameter gets the right LLVM IR attributes. 3713 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3714 // Treat an enum type as its underlying type. 3715 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3716 Ty = EnumTy->getDecl()->getIntegerType(); 3717 3718 if (Ty->isIntegralOrEnumerationType() && 3719 isPromotableIntegerTypeForABI(Ty)) 3720 return ABIArgInfo::getExtend(Ty); 3721 } 3722 3723 break; 3724 3725 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 3726 // available SSE register is used, the registers are taken in the 3727 // order from %xmm0 to %xmm7. 3728 case SSE: { 3729 llvm::Type *IRType = CGT.ConvertType(Ty); 3730 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 3731 ++neededSSE; 3732 break; 3733 } 3734 } 3735 3736 llvm::Type *HighPart = nullptr; 3737 switch (Hi) { 3738 // Memory was handled previously, ComplexX87 and X87 should 3739 // never occur as hi classes, and X87Up must be preceded by X87, 3740 // which is passed in memory. 3741 case Memory: 3742 case X87: 3743 case ComplexX87: 3744 llvm_unreachable("Invalid classification for hi word."); 3745 3746 case NoClass: break; 3747 3748 case Integer: 3749 ++neededInt; 3750 // Pick an 8-byte type based on the preferred type. 3751 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3752 3753 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3754 return ABIArgInfo::getDirect(HighPart, 8); 3755 break; 3756 3757 // X87Up generally doesn't occur here (long double is passed in 3758 // memory), except in situations involving unions. 3759 case X87Up: 3760 case SSE: 3761 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3762 3763 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3764 return ABIArgInfo::getDirect(HighPart, 8); 3765 3766 ++neededSSE; 3767 break; 3768 3769 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 3770 // eightbyte is passed in the upper half of the last used SSE 3771 // register. This only happens when 128-bit vectors are passed. 3772 case SSEUp: 3773 assert(Lo == SSE && "Unexpected SSEUp classification"); 3774 ResType = GetByteVectorType(Ty); 3775 break; 3776 } 3777 3778 // If a high part was specified, merge it together with the low part. It is 3779 // known to pass in the high eightbyte of the result. We do this by forming a 3780 // first class struct aggregate with the high and low part: {low, high} 3781 if (HighPart) 3782 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3783 3784 return ABIArgInfo::getDirect(ResType); 3785 } 3786 3787 ABIArgInfo 3788 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 3789 unsigned &NeededSSE) const { 3790 auto RT = Ty->getAs<RecordType>(); 3791 assert(RT && "classifyRegCallStructType only valid with struct types"); 3792 3793 if (RT->getDecl()->hasFlexibleArrayMember()) 3794 return getIndirectReturnResult(Ty); 3795 3796 // Sum up bases 3797 if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 3798 if (CXXRD->isDynamicClass()) { 3799 NeededInt = NeededSSE = 0; 3800 return getIndirectReturnResult(Ty); 3801 } 3802 3803 for (const auto &I : CXXRD->bases()) 3804 if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE) 3805 .isIndirect()) { 3806 NeededInt = NeededSSE = 0; 3807 return getIndirectReturnResult(Ty); 3808 } 3809 } 3810 3811 // Sum up members 3812 for (const auto *FD : RT->getDecl()->fields()) { 3813 if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) { 3814 if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE) 3815 .isIndirect()) { 3816 NeededInt = NeededSSE = 0; 3817 return getIndirectReturnResult(Ty); 3818 } 3819 } else { 3820 unsigned LocalNeededInt, LocalNeededSSE; 3821 if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt, 3822 LocalNeededSSE, true) 3823 .isIndirect()) { 3824 NeededInt = NeededSSE = 0; 3825 return getIndirectReturnResult(Ty); 3826 } 3827 NeededInt += LocalNeededInt; 3828 NeededSSE += LocalNeededSSE; 3829 } 3830 } 3831 3832 return ABIArgInfo::getDirect(); 3833 } 3834 3835 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty, 3836 unsigned &NeededInt, 3837 unsigned &NeededSSE) const { 3838 3839 NeededInt = 0; 3840 NeededSSE = 0; 3841 3842 return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE); 3843 } 3844 3845 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3846 3847 const unsigned CallingConv = FI.getCallingConvention(); 3848 // It is possible to force Win64 calling convention on any x86_64 target by 3849 // using __attribute__((ms_abi)). In such case to correctly emit Win64 3850 // compatible code delegate this call to WinX86_64ABIInfo::computeInfo. 3851 if (CallingConv == llvm::CallingConv::Win64) { 3852 WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel); 3853 Win64ABIInfo.computeInfo(FI); 3854 return; 3855 } 3856 3857 bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall; 3858 3859 // Keep track of the number of assigned registers. 3860 unsigned FreeIntRegs = IsRegCall ? 11 : 6; 3861 unsigned FreeSSERegs = IsRegCall ? 16 : 8; 3862 unsigned NeededInt, NeededSSE; 3863 3864 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 3865 if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() && 3866 !FI.getReturnType()->getTypePtr()->isUnionType()) { 3867 FI.getReturnInfo() = 3868 classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE); 3869 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3870 FreeIntRegs -= NeededInt; 3871 FreeSSERegs -= NeededSSE; 3872 } else { 3873 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3874 } 3875 } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>() && 3876 getContext().getCanonicalType(FI.getReturnType() 3877 ->getAs<ComplexType>() 3878 ->getElementType()) == 3879 getContext().LongDoubleTy) 3880 // Complex Long Double Type is passed in Memory when Regcall 3881 // calling convention is used. 3882 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3883 else 3884 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3885 } 3886 3887 // If the return value is indirect, then the hidden argument is consuming one 3888 // integer register. 3889 if (FI.getReturnInfo().isIndirect()) 3890 --FreeIntRegs; 3891 3892 // The chain argument effectively gives us another free register. 3893 if (FI.isChainCall()) 3894 ++FreeIntRegs; 3895 3896 unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 3897 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 3898 // get assigned (in left-to-right order) for passing as follows... 3899 unsigned ArgNo = 0; 3900 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3901 it != ie; ++it, ++ArgNo) { 3902 bool IsNamedArg = ArgNo < NumRequiredArgs; 3903 3904 if (IsRegCall && it->type->isStructureOrClassType()) 3905 it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE); 3906 else 3907 it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt, 3908 NeededSSE, IsNamedArg); 3909 3910 // AMD64-ABI 3.2.3p3: If there are no registers available for any 3911 // eightbyte of an argument, the whole argument is passed on the 3912 // stack. If registers have already been assigned for some 3913 // eightbytes of such an argument, the assignments get reverted. 3914 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3915 FreeIntRegs -= NeededInt; 3916 FreeSSERegs -= NeededSSE; 3917 } else { 3918 it->info = getIndirectResult(it->type, FreeIntRegs); 3919 } 3920 } 3921 } 3922 3923 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, 3924 Address VAListAddr, QualType Ty) { 3925 Address overflow_arg_area_p = 3926 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); 3927 llvm::Value *overflow_arg_area = 3928 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 3929 3930 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 3931 // byte boundary if alignment needed by type exceeds 8 byte boundary. 3932 // It isn't stated explicitly in the standard, but in practice we use 3933 // alignment greater than 16 where necessary. 3934 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 3935 if (Align > CharUnits::fromQuantity(8)) { 3936 overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, 3937 Align); 3938 } 3939 3940 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 3941 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3942 llvm::Value *Res = 3943 CGF.Builder.CreateBitCast(overflow_arg_area, 3944 llvm::PointerType::getUnqual(LTy)); 3945 3946 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 3947 // l->overflow_arg_area + sizeof(type). 3948 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 3949 // an 8 byte boundary. 3950 3951 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 3952 llvm::Value *Offset = 3953 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 3954 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 3955 "overflow_arg_area.next"); 3956 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 3957 3958 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 3959 return Address(Res, Align); 3960 } 3961 3962 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3963 QualType Ty) const { 3964 // Assume that va_list type is correct; should be pointer to LLVM type: 3965 // struct { 3966 // i32 gp_offset; 3967 // i32 fp_offset; 3968 // i8* overflow_arg_area; 3969 // i8* reg_save_area; 3970 // }; 3971 unsigned neededInt, neededSSE; 3972 3973 Ty = getContext().getCanonicalType(Ty); 3974 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 3975 /*isNamedArg*/false); 3976 3977 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 3978 // in the registers. If not go to step 7. 3979 if (!neededInt && !neededSSE) 3980 return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3981 3982 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 3983 // general purpose registers needed to pass type and num_fp to hold 3984 // the number of floating point registers needed. 3985 3986 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 3987 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 3988 // l->fp_offset > 304 - num_fp * 16 go to step 7. 3989 // 3990 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 3991 // register save space). 3992 3993 llvm::Value *InRegs = nullptr; 3994 Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); 3995 llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; 3996 if (neededInt) { 3997 gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); 3998 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 3999 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 4000 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 4001 } 4002 4003 if (neededSSE) { 4004 fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); 4005 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 4006 llvm::Value *FitsInFP = 4007 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 4008 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 4009 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 4010 } 4011 4012 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 4013 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 4014 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 4015 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 4016 4017 // Emit code to load the value if it was passed in registers. 4018 4019 CGF.EmitBlock(InRegBlock); 4020 4021 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 4022 // an offset of l->gp_offset and/or l->fp_offset. This may require 4023 // copying to a temporary location in case the parameter is passed 4024 // in different register classes or requires an alignment greater 4025 // than 8 for general purpose registers and 16 for XMM registers. 4026 // 4027 // FIXME: This really results in shameful code when we end up needing to 4028 // collect arguments from different places; often what should result in a 4029 // simple assembling of a structure from scattered addresses has many more 4030 // loads than necessary. Can we clean this up? 4031 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 4032 llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( 4033 CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area"); 4034 4035 Address RegAddr = Address::invalid(); 4036 if (neededInt && neededSSE) { 4037 // FIXME: Cleanup. 4038 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 4039 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 4040 Address Tmp = CGF.CreateMemTemp(Ty); 4041 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 4042 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 4043 llvm::Type *TyLo = ST->getElementType(0); 4044 llvm::Type *TyHi = ST->getElementType(1); 4045 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 4046 "Unexpected ABI info for mixed regs"); 4047 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 4048 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 4049 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset); 4050 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset); 4051 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 4052 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 4053 4054 // Copy the first element. 4055 // FIXME: Our choice of alignment here and below is probably pessimistic. 4056 llvm::Value *V = CGF.Builder.CreateAlignedLoad( 4057 TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo), 4058 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo))); 4059 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 4060 4061 // Copy the second element. 4062 V = CGF.Builder.CreateAlignedLoad( 4063 TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi), 4064 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi))); 4065 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 4066 4067 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 4068 } else if (neededInt) { 4069 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset), 4070 CharUnits::fromQuantity(8)); 4071 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 4072 4073 // Copy to a temporary if necessary to ensure the appropriate alignment. 4074 auto TInfo = getContext().getTypeInfoInChars(Ty); 4075 uint64_t TySize = TInfo.Width.getQuantity(); 4076 CharUnits TyAlign = TInfo.Align; 4077 4078 // Copy into a temporary if the type is more aligned than the 4079 // register save area. 4080 if (TyAlign.getQuantity() > 8) { 4081 Address Tmp = CGF.CreateMemTemp(Ty); 4082 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); 4083 RegAddr = Tmp; 4084 } 4085 4086 } else if (neededSSE == 1) { 4087 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 4088 CharUnits::fromQuantity(16)); 4089 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 4090 } else { 4091 assert(neededSSE == 2 && "Invalid number of needed registers!"); 4092 // SSE registers are spaced 16 bytes apart in the register save 4093 // area, we need to collect the two eightbytes together. 4094 // The ABI isn't explicit about this, but it seems reasonable 4095 // to assume that the slots are 16-byte aligned, since the stack is 4096 // naturally 16-byte aligned and the prologue is expected to store 4097 // all the SSE registers to the RSA. 4098 Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 4099 CharUnits::fromQuantity(16)); 4100 Address RegAddrHi = 4101 CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, 4102 CharUnits::fromQuantity(16)); 4103 llvm::Type *ST = AI.canHaveCoerceToType() 4104 ? AI.getCoerceToType() 4105 : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy); 4106 llvm::Value *V; 4107 Address Tmp = CGF.CreateMemTemp(Ty); 4108 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 4109 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 4110 RegAddrLo, ST->getStructElementType(0))); 4111 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 4112 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 4113 RegAddrHi, ST->getStructElementType(1))); 4114 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 4115 4116 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 4117 } 4118 4119 // AMD64-ABI 3.5.7p5: Step 5. Set: 4120 // l->gp_offset = l->gp_offset + num_gp * 8 4121 // l->fp_offset = l->fp_offset + num_fp * 16. 4122 if (neededInt) { 4123 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 4124 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 4125 gp_offset_p); 4126 } 4127 if (neededSSE) { 4128 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 4129 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 4130 fp_offset_p); 4131 } 4132 CGF.EmitBranch(ContBlock); 4133 4134 // Emit code to load the value if it was passed in memory. 4135 4136 CGF.EmitBlock(InMemBlock); 4137 Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 4138 4139 // Return the appropriate result. 4140 4141 CGF.EmitBlock(ContBlock); 4142 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, 4143 "vaarg.addr"); 4144 return ResAddr; 4145 } 4146 4147 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 4148 QualType Ty) const { 4149 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 4150 CGF.getContext().getTypeInfoInChars(Ty), 4151 CharUnits::fromQuantity(8), 4152 /*allowHigherAlign*/ false); 4153 } 4154 4155 ABIArgInfo 4156 WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 4157 const ABIArgInfo ¤t) const { 4158 // Assumes vectorCall calling convention. 4159 const Type *Base = nullptr; 4160 uint64_t NumElts = 0; 4161 4162 if (!Ty->isBuiltinType() && !Ty->isVectorType() && 4163 isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) { 4164 FreeSSERegs -= NumElts; 4165 return getDirectX86Hva(); 4166 } 4167 return current; 4168 } 4169 4170 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 4171 bool IsReturnType, bool IsVectorCall, 4172 bool IsRegCall) const { 4173 4174 if (Ty->isVoidType()) 4175 return ABIArgInfo::getIgnore(); 4176 4177 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4178 Ty = EnumTy->getDecl()->getIntegerType(); 4179 4180 TypeInfo Info = getContext().getTypeInfo(Ty); 4181 uint64_t Width = Info.Width; 4182 CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); 4183 4184 const RecordType *RT = Ty->getAs<RecordType>(); 4185 if (RT) { 4186 if (!IsReturnType) { 4187 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 4188 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4189 } 4190 4191 if (RT->getDecl()->hasFlexibleArrayMember()) 4192 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4193 4194 } 4195 4196 const Type *Base = nullptr; 4197 uint64_t NumElts = 0; 4198 // vectorcall adds the concept of a homogenous vector aggregate, similar to 4199 // other targets. 4200 if ((IsVectorCall || IsRegCall) && 4201 isHomogeneousAggregate(Ty, Base, NumElts)) { 4202 if (IsRegCall) { 4203 if (FreeSSERegs >= NumElts) { 4204 FreeSSERegs -= NumElts; 4205 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 4206 return ABIArgInfo::getDirect(); 4207 return ABIArgInfo::getExpand(); 4208 } 4209 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4210 } else if (IsVectorCall) { 4211 if (FreeSSERegs >= NumElts && 4212 (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) { 4213 FreeSSERegs -= NumElts; 4214 return ABIArgInfo::getDirect(); 4215 } else if (IsReturnType) { 4216 return ABIArgInfo::getExpand(); 4217 } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) { 4218 // HVAs are delayed and reclassified in the 2nd step. 4219 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4220 } 4221 } 4222 } 4223 4224 if (Ty->isMemberPointerType()) { 4225 // If the member pointer is represented by an LLVM int or ptr, pass it 4226 // directly. 4227 llvm::Type *LLTy = CGT.ConvertType(Ty); 4228 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 4229 return ABIArgInfo::getDirect(); 4230 } 4231 4232 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { 4233 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4234 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4235 if (Width > 64 || !llvm::isPowerOf2_64(Width)) 4236 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4237 4238 // Otherwise, coerce it to a small integer. 4239 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 4240 } 4241 4242 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4243 switch (BT->getKind()) { 4244 case BuiltinType::Bool: 4245 // Bool type is always extended to the ABI, other builtin types are not 4246 // extended. 4247 return ABIArgInfo::getExtend(Ty); 4248 4249 case BuiltinType::LongDouble: 4250 // Mingw64 GCC uses the old 80 bit extended precision floating point 4251 // unit. It passes them indirectly through memory. 4252 if (IsMingw64) { 4253 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 4254 if (LDF == &llvm::APFloat::x87DoubleExtended()) 4255 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4256 } 4257 break; 4258 4259 case BuiltinType::Int128: 4260 case BuiltinType::UInt128: 4261 // If it's a parameter type, the normal ABI rule is that arguments larger 4262 // than 8 bytes are passed indirectly. GCC follows it. We follow it too, 4263 // even though it isn't particularly efficient. 4264 if (!IsReturnType) 4265 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4266 4267 // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that. 4268 // Clang matches them for compatibility. 4269 return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 4270 llvm::Type::getInt64Ty(getVMContext()), 2)); 4271 4272 default: 4273 break; 4274 } 4275 } 4276 4277 if (Ty->isExtIntType()) { 4278 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4279 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4280 // However, non-power-of-two _ExtInts will be passed as 1,2,4 or 8 bytes 4281 // anyway as long is it fits in them, so we don't have to check the power of 4282 // 2. 4283 if (Width <= 64) 4284 return ABIArgInfo::getDirect(); 4285 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4286 } 4287 4288 return ABIArgInfo::getDirect(); 4289 } 4290 4291 void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, 4292 unsigned FreeSSERegs, 4293 bool IsVectorCall, 4294 bool IsRegCall) const { 4295 unsigned Count = 0; 4296 for (auto &I : FI.arguments()) { 4297 // Vectorcall in x64 only permits the first 6 arguments to be passed 4298 // as XMM/YMM registers. 4299 if (Count < VectorcallMaxParamNumAsReg) 4300 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 4301 else { 4302 // Since these cannot be passed in registers, pretend no registers 4303 // are left. 4304 unsigned ZeroSSERegsAvail = 0; 4305 I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false, 4306 IsVectorCall, IsRegCall); 4307 } 4308 ++Count; 4309 } 4310 4311 for (auto &I : FI.arguments()) { 4312 I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info); 4313 } 4314 } 4315 4316 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 4317 const unsigned CC = FI.getCallingConvention(); 4318 bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall; 4319 bool IsRegCall = CC == llvm::CallingConv::X86_RegCall; 4320 4321 // If __attribute__((sysv_abi)) is in use, use the SysV argument 4322 // classification rules. 4323 if (CC == llvm::CallingConv::X86_64_SysV) { 4324 X86_64ABIInfo SysVABIInfo(CGT, AVXLevel); 4325 SysVABIInfo.computeInfo(FI); 4326 return; 4327 } 4328 4329 unsigned FreeSSERegs = 0; 4330 if (IsVectorCall) { 4331 // We can use up to 4 SSE return registers with vectorcall. 4332 FreeSSERegs = 4; 4333 } else if (IsRegCall) { 4334 // RegCall gives us 16 SSE registers. 4335 FreeSSERegs = 16; 4336 } 4337 4338 if (!getCXXABI().classifyReturnType(FI)) 4339 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true, 4340 IsVectorCall, IsRegCall); 4341 4342 if (IsVectorCall) { 4343 // We can use up to 6 SSE register parameters with vectorcall. 4344 FreeSSERegs = 6; 4345 } else if (IsRegCall) { 4346 // RegCall gives us 16 SSE registers, we can reuse the return registers. 4347 FreeSSERegs = 16; 4348 } 4349 4350 if (IsVectorCall) { 4351 computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall); 4352 } else { 4353 for (auto &I : FI.arguments()) 4354 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 4355 } 4356 4357 } 4358 4359 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4360 QualType Ty) const { 4361 4362 bool IsIndirect = false; 4363 4364 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4365 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4366 if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) { 4367 uint64_t Width = getContext().getTypeSize(Ty); 4368 IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 4369 } 4370 4371 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 4372 CGF.getContext().getTypeInfoInChars(Ty), 4373 CharUnits::fromQuantity(8), 4374 /*allowHigherAlign*/ false); 4375 } 4376 4377 static bool PPC_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4378 llvm::Value *Address, bool Is64Bit, 4379 bool IsAIX) { 4380 // This is calculated from the LLVM and GCC tables and verified 4381 // against gcc output. AFAIK all PPC ABIs use the same encoding. 4382 4383 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4384 4385 llvm::IntegerType *i8 = CGF.Int8Ty; 4386 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4387 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4388 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4389 4390 // 0-31: r0-31, the 4-byte or 8-byte general-purpose registers 4391 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 0, 31); 4392 4393 // 32-63: fp0-31, the 8-byte floating-point registers 4394 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4395 4396 // 64-67 are various 4-byte or 8-byte special-purpose registers: 4397 // 64: mq 4398 // 65: lr 4399 // 66: ctr 4400 // 67: ap 4401 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 64, 67); 4402 4403 // 68-76 are various 4-byte special-purpose registers: 4404 // 68-75 cr0-7 4405 // 76: xer 4406 AssignToArrayRange(Builder, Address, Four8, 68, 76); 4407 4408 // 77-108: v0-31, the 16-byte vector registers 4409 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4410 4411 // 109: vrsave 4412 // 110: vscr 4413 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 109, 110); 4414 4415 // AIX does not utilize the rest of the registers. 4416 if (IsAIX) 4417 return false; 4418 4419 // 111: spe_acc 4420 // 112: spefscr 4421 // 113: sfp 4422 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 111, 113); 4423 4424 if (!Is64Bit) 4425 return false; 4426 4427 // TODO: Need to verify if these registers are used on 64 bit AIX with Power8 4428 // or above CPU. 4429 // 64-bit only registers: 4430 // 114: tfhar 4431 // 115: tfiar 4432 // 116: texasr 4433 AssignToArrayRange(Builder, Address, Eight8, 114, 116); 4434 4435 return false; 4436 } 4437 4438 // AIX 4439 namespace { 4440 /// AIXABIInfo - The AIX XCOFF ABI information. 4441 class AIXABIInfo : public ABIInfo { 4442 const bool Is64Bit; 4443 const unsigned PtrByteSize; 4444 CharUnits getParamTypeAlignment(QualType Ty) const; 4445 4446 public: 4447 AIXABIInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit) 4448 : ABIInfo(CGT), Is64Bit(Is64Bit), PtrByteSize(Is64Bit ? 8 : 4) {} 4449 4450 bool isPromotableTypeForABI(QualType Ty) const; 4451 4452 ABIArgInfo classifyReturnType(QualType RetTy) const; 4453 ABIArgInfo classifyArgumentType(QualType Ty) const; 4454 4455 void computeInfo(CGFunctionInfo &FI) const override { 4456 if (!getCXXABI().classifyReturnType(FI)) 4457 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4458 4459 for (auto &I : FI.arguments()) 4460 I.info = classifyArgumentType(I.type); 4461 } 4462 4463 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4464 QualType Ty) const override; 4465 }; 4466 4467 class AIXTargetCodeGenInfo : public TargetCodeGenInfo { 4468 const bool Is64Bit; 4469 4470 public: 4471 AIXTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit) 4472 : TargetCodeGenInfo(std::make_unique<AIXABIInfo>(CGT, Is64Bit)), 4473 Is64Bit(Is64Bit) {} 4474 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4475 return 1; // r1 is the dedicated stack pointer 4476 } 4477 4478 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4479 llvm::Value *Address) const override; 4480 }; 4481 } // namespace 4482 4483 // Return true if the ABI requires Ty to be passed sign- or zero- 4484 // extended to 32/64 bits. 4485 bool AIXABIInfo::isPromotableTypeForABI(QualType Ty) const { 4486 // Treat an enum type as its underlying type. 4487 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4488 Ty = EnumTy->getDecl()->getIntegerType(); 4489 4490 // Promotable integer types are required to be promoted by the ABI. 4491 if (Ty->isPromotableIntegerType()) 4492 return true; 4493 4494 if (!Is64Bit) 4495 return false; 4496 4497 // For 64 bit mode, in addition to the usual promotable integer types, we also 4498 // need to extend all 32-bit types, since the ABI requires promotion to 64 4499 // bits. 4500 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4501 switch (BT->getKind()) { 4502 case BuiltinType::Int: 4503 case BuiltinType::UInt: 4504 return true; 4505 default: 4506 break; 4507 } 4508 4509 return false; 4510 } 4511 4512 ABIArgInfo AIXABIInfo::classifyReturnType(QualType RetTy) const { 4513 if (RetTy->isAnyComplexType()) 4514 return ABIArgInfo::getDirect(); 4515 4516 if (RetTy->isVectorType()) 4517 llvm::report_fatal_error("vector type is not supported on AIX yet"); 4518 4519 if (RetTy->isVoidType()) 4520 return ABIArgInfo::getIgnore(); 4521 4522 if (isAggregateTypeForABI(RetTy)) 4523 return getNaturalAlignIndirect(RetTy); 4524 4525 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 4526 : ABIArgInfo::getDirect()); 4527 } 4528 4529 ABIArgInfo AIXABIInfo::classifyArgumentType(QualType Ty) const { 4530 Ty = useFirstFieldIfTransparentUnion(Ty); 4531 4532 if (Ty->isAnyComplexType()) 4533 return ABIArgInfo::getDirect(); 4534 4535 if (Ty->isVectorType()) 4536 llvm::report_fatal_error("vector type is not supported on AIX yet"); 4537 4538 if (isAggregateTypeForABI(Ty)) { 4539 // Records with non-trivial destructors/copy-constructors should not be 4540 // passed by value. 4541 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 4542 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4543 4544 CharUnits CCAlign = getParamTypeAlignment(Ty); 4545 CharUnits TyAlign = getContext().getTypeAlignInChars(Ty); 4546 4547 return ABIArgInfo::getIndirect(CCAlign, /*ByVal*/ true, 4548 /*Realign*/ TyAlign > CCAlign); 4549 } 4550 4551 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 4552 : ABIArgInfo::getDirect()); 4553 } 4554 4555 CharUnits AIXABIInfo::getParamTypeAlignment(QualType Ty) const { 4556 // Complex types are passed just like their elements. 4557 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4558 Ty = CTy->getElementType(); 4559 4560 if (Ty->isVectorType()) 4561 llvm::report_fatal_error("vector type is not supported on AIX yet"); 4562 4563 // If the structure contains a vector type, the alignment is 16. 4564 if (isRecordWithSIMDVectorType(getContext(), Ty)) 4565 return CharUnits::fromQuantity(16); 4566 4567 return CharUnits::fromQuantity(PtrByteSize); 4568 } 4569 4570 Address AIXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4571 QualType Ty) const { 4572 if (Ty->isAnyComplexType()) 4573 llvm::report_fatal_error("complex type is not supported on AIX yet"); 4574 4575 if (Ty->isVectorType()) 4576 llvm::report_fatal_error("vector type is not supported on AIX yet"); 4577 4578 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 4579 TypeInfo.Align = getParamTypeAlignment(Ty); 4580 4581 CharUnits SlotSize = CharUnits::fromQuantity(PtrByteSize); 4582 4583 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, TypeInfo, 4584 SlotSize, /*AllowHigher*/ true); 4585 } 4586 4587 bool AIXTargetCodeGenInfo::initDwarfEHRegSizeTable( 4588 CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const { 4589 return PPC_initDwarfEHRegSizeTable(CGF, Address, Is64Bit, /*IsAIX*/ true); 4590 } 4591 4592 // PowerPC-32 4593 namespace { 4594 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. 4595 class PPC32_SVR4_ABIInfo : public DefaultABIInfo { 4596 bool IsSoftFloatABI; 4597 bool IsRetSmallStructInRegABI; 4598 4599 CharUnits getParamTypeAlignment(QualType Ty) const; 4600 4601 public: 4602 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI, 4603 bool RetSmallStructInRegABI) 4604 : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI), 4605 IsRetSmallStructInRegABI(RetSmallStructInRegABI) {} 4606 4607 ABIArgInfo classifyReturnType(QualType RetTy) const; 4608 4609 void computeInfo(CGFunctionInfo &FI) const override { 4610 if (!getCXXABI().classifyReturnType(FI)) 4611 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4612 for (auto &I : FI.arguments()) 4613 I.info = classifyArgumentType(I.type); 4614 } 4615 4616 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4617 QualType Ty) const override; 4618 }; 4619 4620 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { 4621 public: 4622 PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI, 4623 bool RetSmallStructInRegABI) 4624 : TargetCodeGenInfo(std::make_unique<PPC32_SVR4_ABIInfo>( 4625 CGT, SoftFloatABI, RetSmallStructInRegABI)) {} 4626 4627 static bool isStructReturnInRegABI(const llvm::Triple &Triple, 4628 const CodeGenOptions &Opts); 4629 4630 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4631 // This is recovered from gcc output. 4632 return 1; // r1 is the dedicated stack pointer 4633 } 4634 4635 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4636 llvm::Value *Address) const override; 4637 }; 4638 } 4639 4640 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4641 // Complex types are passed just like their elements. 4642 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4643 Ty = CTy->getElementType(); 4644 4645 if (Ty->isVectorType()) 4646 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 4647 : 4); 4648 4649 // For single-element float/vector structs, we consider the whole type 4650 // to have the same alignment requirements as its single element. 4651 const Type *AlignTy = nullptr; 4652 if (const Type *EltType = isSingleElementStruct(Ty, getContext())) { 4653 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4654 if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || 4655 (BT && BT->isFloatingPoint())) 4656 AlignTy = EltType; 4657 } 4658 4659 if (AlignTy) 4660 return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4); 4661 return CharUnits::fromQuantity(4); 4662 } 4663 4664 ABIArgInfo PPC32_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 4665 uint64_t Size; 4666 4667 // -msvr4-struct-return puts small aggregates in GPR3 and GPR4. 4668 if (isAggregateTypeForABI(RetTy) && IsRetSmallStructInRegABI && 4669 (Size = getContext().getTypeSize(RetTy)) <= 64) { 4670 // System V ABI (1995), page 3-22, specified: 4671 // > A structure or union whose size is less than or equal to 8 bytes 4672 // > shall be returned in r3 and r4, as if it were first stored in the 4673 // > 8-byte aligned memory area and then the low addressed word were 4674 // > loaded into r3 and the high-addressed word into r4. Bits beyond 4675 // > the last member of the structure or union are not defined. 4676 // 4677 // GCC for big-endian PPC32 inserts the pad before the first member, 4678 // not "beyond the last member" of the struct. To stay compatible 4679 // with GCC, we coerce the struct to an integer of the same size. 4680 // LLVM will extend it and return i32 in r3, or i64 in r3:r4. 4681 if (Size == 0) 4682 return ABIArgInfo::getIgnore(); 4683 else { 4684 llvm::Type *CoerceTy = llvm::Type::getIntNTy(getVMContext(), Size); 4685 return ABIArgInfo::getDirect(CoerceTy); 4686 } 4687 } 4688 4689 return DefaultABIInfo::classifyReturnType(RetTy); 4690 } 4691 4692 // TODO: this implementation is now likely redundant with 4693 // DefaultABIInfo::EmitVAArg. 4694 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList, 4695 QualType Ty) const { 4696 if (getTarget().getTriple().isOSDarwin()) { 4697 auto TI = getContext().getTypeInfoInChars(Ty); 4698 TI.Align = getParamTypeAlignment(Ty); 4699 4700 CharUnits SlotSize = CharUnits::fromQuantity(4); 4701 return emitVoidPtrVAArg(CGF, VAList, Ty, 4702 classifyArgumentType(Ty).isIndirect(), TI, SlotSize, 4703 /*AllowHigherAlign=*/true); 4704 } 4705 4706 const unsigned OverflowLimit = 8; 4707 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4708 // TODO: Implement this. For now ignore. 4709 (void)CTy; 4710 return Address::invalid(); // FIXME? 4711 } 4712 4713 // struct __va_list_tag { 4714 // unsigned char gpr; 4715 // unsigned char fpr; 4716 // unsigned short reserved; 4717 // void *overflow_arg_area; 4718 // void *reg_save_area; 4719 // }; 4720 4721 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; 4722 bool isInt = 4723 Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType(); 4724 bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64; 4725 4726 // All aggregates are passed indirectly? That doesn't seem consistent 4727 // with the argument-lowering code. 4728 bool isIndirect = Ty->isAggregateType(); 4729 4730 CGBuilderTy &Builder = CGF.Builder; 4731 4732 // The calling convention either uses 1-2 GPRs or 1 FPR. 4733 Address NumRegsAddr = Address::invalid(); 4734 if (isInt || IsSoftFloatABI) { 4735 NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr"); 4736 } else { 4737 NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr"); 4738 } 4739 4740 llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs"); 4741 4742 // "Align" the register count when TY is i64. 4743 if (isI64 || (isF64 && IsSoftFloatABI)) { 4744 NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1)); 4745 NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U)); 4746 } 4747 4748 llvm::Value *CC = 4749 Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond"); 4750 4751 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); 4752 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); 4753 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 4754 4755 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); 4756 4757 llvm::Type *DirectTy = CGF.ConvertType(Ty); 4758 if (isIndirect) DirectTy = DirectTy->getPointerTo(0); 4759 4760 // Case 1: consume registers. 4761 Address RegAddr = Address::invalid(); 4762 { 4763 CGF.EmitBlock(UsingRegs); 4764 4765 Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4); 4766 RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr), 4767 CharUnits::fromQuantity(8)); 4768 assert(RegAddr.getElementType() == CGF.Int8Ty); 4769 4770 // Floating-point registers start after the general-purpose registers. 4771 if (!(isInt || IsSoftFloatABI)) { 4772 RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr, 4773 CharUnits::fromQuantity(32)); 4774 } 4775 4776 // Get the address of the saved value by scaling the number of 4777 // registers we've used by the number of 4778 CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8); 4779 llvm::Value *RegOffset = 4780 Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity())); 4781 RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty, 4782 RegAddr.getPointer(), RegOffset), 4783 RegAddr.getAlignment().alignmentOfArrayElement(RegSize)); 4784 RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy); 4785 4786 // Increase the used-register count. 4787 NumRegs = 4788 Builder.CreateAdd(NumRegs, 4789 Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1)); 4790 Builder.CreateStore(NumRegs, NumRegsAddr); 4791 4792 CGF.EmitBranch(Cont); 4793 } 4794 4795 // Case 2: consume space in the overflow area. 4796 Address MemAddr = Address::invalid(); 4797 { 4798 CGF.EmitBlock(UsingOverflow); 4799 4800 Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr); 4801 4802 // Everything in the overflow area is rounded up to a size of at least 4. 4803 CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4); 4804 4805 CharUnits Size; 4806 if (!isIndirect) { 4807 auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty); 4808 Size = TypeInfo.Width.alignTo(OverflowAreaAlign); 4809 } else { 4810 Size = CGF.getPointerSize(); 4811 } 4812 4813 Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3); 4814 Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), 4815 OverflowAreaAlign); 4816 // Round up address of argument to alignment 4817 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 4818 if (Align > OverflowAreaAlign) { 4819 llvm::Value *Ptr = OverflowArea.getPointer(); 4820 OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align), 4821 Align); 4822 } 4823 4824 MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy); 4825 4826 // Increase the overflow area. 4827 OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size); 4828 Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr); 4829 CGF.EmitBranch(Cont); 4830 } 4831 4832 CGF.EmitBlock(Cont); 4833 4834 // Merge the cases with a phi. 4835 Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow, 4836 "vaarg.addr"); 4837 4838 // Load the pointer if the argument was passed indirectly. 4839 if (isIndirect) { 4840 Result = Address(Builder.CreateLoad(Result, "aggr"), 4841 getContext().getTypeAlignInChars(Ty)); 4842 } 4843 4844 return Result; 4845 } 4846 4847 bool PPC32TargetCodeGenInfo::isStructReturnInRegABI( 4848 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 4849 assert(Triple.getArch() == llvm::Triple::ppc); 4850 4851 switch (Opts.getStructReturnConvention()) { 4852 case CodeGenOptions::SRCK_Default: 4853 break; 4854 case CodeGenOptions::SRCK_OnStack: // -maix-struct-return 4855 return false; 4856 case CodeGenOptions::SRCK_InRegs: // -msvr4-struct-return 4857 return true; 4858 } 4859 4860 if (Triple.isOSBinFormatELF() && !Triple.isOSLinux()) 4861 return true; 4862 4863 return false; 4864 } 4865 4866 bool 4867 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4868 llvm::Value *Address) const { 4869 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ false, 4870 /*IsAIX*/ false); 4871 } 4872 4873 // PowerPC-64 4874 4875 namespace { 4876 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 4877 class PPC64_SVR4_ABIInfo : public SwiftABIInfo { 4878 public: 4879 enum ABIKind { 4880 ELFv1 = 0, 4881 ELFv2 4882 }; 4883 4884 private: 4885 static const unsigned GPRBits = 64; 4886 ABIKind Kind; 4887 bool HasQPX; 4888 bool IsSoftFloatABI; 4889 4890 // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and 4891 // will be passed in a QPX register. 4892 bool IsQPXVectorTy(const Type *Ty) const { 4893 if (!HasQPX) 4894 return false; 4895 4896 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4897 unsigned NumElements = VT->getNumElements(); 4898 if (NumElements == 1) 4899 return false; 4900 4901 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) { 4902 if (getContext().getTypeSize(Ty) <= 256) 4903 return true; 4904 } else if (VT->getElementType()-> 4905 isSpecificBuiltinType(BuiltinType::Float)) { 4906 if (getContext().getTypeSize(Ty) <= 128) 4907 return true; 4908 } 4909 } 4910 4911 return false; 4912 } 4913 4914 bool IsQPXVectorTy(QualType Ty) const { 4915 return IsQPXVectorTy(Ty.getTypePtr()); 4916 } 4917 4918 public: 4919 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX, 4920 bool SoftFloatABI) 4921 : SwiftABIInfo(CGT), Kind(Kind), HasQPX(HasQPX), 4922 IsSoftFloatABI(SoftFloatABI) {} 4923 4924 bool isPromotableTypeForABI(QualType Ty) const; 4925 CharUnits getParamTypeAlignment(QualType Ty) const; 4926 4927 ABIArgInfo classifyReturnType(QualType RetTy) const; 4928 ABIArgInfo classifyArgumentType(QualType Ty) const; 4929 4930 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4931 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4932 uint64_t Members) const override; 4933 4934 // TODO: We can add more logic to computeInfo to improve performance. 4935 // Example: For aggregate arguments that fit in a register, we could 4936 // use getDirectInReg (as is done below for structs containing a single 4937 // floating-point value) to avoid pushing them to memory on function 4938 // entry. This would require changing the logic in PPCISelLowering 4939 // when lowering the parameters in the caller and args in the callee. 4940 void computeInfo(CGFunctionInfo &FI) const override { 4941 if (!getCXXABI().classifyReturnType(FI)) 4942 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4943 for (auto &I : FI.arguments()) { 4944 // We rely on the default argument classification for the most part. 4945 // One exception: An aggregate containing a single floating-point 4946 // or vector item must be passed in a register if one is available. 4947 const Type *T = isSingleElementStruct(I.type, getContext()); 4948 if (T) { 4949 const BuiltinType *BT = T->getAs<BuiltinType>(); 4950 if (IsQPXVectorTy(T) || 4951 (T->isVectorType() && getContext().getTypeSize(T) == 128) || 4952 (BT && BT->isFloatingPoint())) { 4953 QualType QT(T, 0); 4954 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 4955 continue; 4956 } 4957 } 4958 I.info = classifyArgumentType(I.type); 4959 } 4960 } 4961 4962 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4963 QualType Ty) const override; 4964 4965 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 4966 bool asReturnValue) const override { 4967 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 4968 } 4969 4970 bool isSwiftErrorInRegister() const override { 4971 return false; 4972 } 4973 }; 4974 4975 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 4976 4977 public: 4978 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 4979 PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX, 4980 bool SoftFloatABI) 4981 : TargetCodeGenInfo(std::make_unique<PPC64_SVR4_ABIInfo>( 4982 CGT, Kind, HasQPX, SoftFloatABI)) {} 4983 4984 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4985 // This is recovered from gcc output. 4986 return 1; // r1 is the dedicated stack pointer 4987 } 4988 4989 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4990 llvm::Value *Address) const override; 4991 }; 4992 4993 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 4994 public: 4995 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 4996 4997 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4998 // This is recovered from gcc output. 4999 return 1; // r1 is the dedicated stack pointer 5000 } 5001 5002 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5003 llvm::Value *Address) const override; 5004 }; 5005 5006 } 5007 5008 // Return true if the ABI requires Ty to be passed sign- or zero- 5009 // extended to 64 bits. 5010 bool 5011 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 5012 // Treat an enum type as its underlying type. 5013 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5014 Ty = EnumTy->getDecl()->getIntegerType(); 5015 5016 // Promotable integer types are required to be promoted by the ABI. 5017 if (isPromotableIntegerTypeForABI(Ty)) 5018 return true; 5019 5020 // In addition to the usual promotable integer types, we also need to 5021 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 5022 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 5023 switch (BT->getKind()) { 5024 case BuiltinType::Int: 5025 case BuiltinType::UInt: 5026 return true; 5027 default: 5028 break; 5029 } 5030 5031 if (const auto *EIT = Ty->getAs<ExtIntType>()) 5032 if (EIT->getNumBits() < 64) 5033 return true; 5034 5035 return false; 5036 } 5037 5038 /// isAlignedParamType - Determine whether a type requires 16-byte or 5039 /// higher alignment in the parameter area. Always returns at least 8. 5040 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 5041 // Complex types are passed just like their elements. 5042 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 5043 Ty = CTy->getElementType(); 5044 5045 // Only vector types of size 16 bytes need alignment (larger types are 5046 // passed via reference, smaller types are not aligned). 5047 if (IsQPXVectorTy(Ty)) { 5048 if (getContext().getTypeSize(Ty) > 128) 5049 return CharUnits::fromQuantity(32); 5050 5051 return CharUnits::fromQuantity(16); 5052 } else if (Ty->isVectorType()) { 5053 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8); 5054 } 5055 5056 // For single-element float/vector structs, we consider the whole type 5057 // to have the same alignment requirements as its single element. 5058 const Type *AlignAsType = nullptr; 5059 const Type *EltType = isSingleElementStruct(Ty, getContext()); 5060 if (EltType) { 5061 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 5062 if (IsQPXVectorTy(EltType) || (EltType->isVectorType() && 5063 getContext().getTypeSize(EltType) == 128) || 5064 (BT && BT->isFloatingPoint())) 5065 AlignAsType = EltType; 5066 } 5067 5068 // Likewise for ELFv2 homogeneous aggregates. 5069 const Type *Base = nullptr; 5070 uint64_t Members = 0; 5071 if (!AlignAsType && Kind == ELFv2 && 5072 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 5073 AlignAsType = Base; 5074 5075 // With special case aggregates, only vector base types need alignment. 5076 if (AlignAsType && IsQPXVectorTy(AlignAsType)) { 5077 if (getContext().getTypeSize(AlignAsType) > 128) 5078 return CharUnits::fromQuantity(32); 5079 5080 return CharUnits::fromQuantity(16); 5081 } else if (AlignAsType) { 5082 return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8); 5083 } 5084 5085 // Otherwise, we only need alignment for any aggregate type that 5086 // has an alignment requirement of >= 16 bytes. 5087 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { 5088 if (HasQPX && getContext().getTypeAlign(Ty) >= 256) 5089 return CharUnits::fromQuantity(32); 5090 return CharUnits::fromQuantity(16); 5091 } 5092 5093 return CharUnits::fromQuantity(8); 5094 } 5095 5096 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 5097 /// aggregate. Base is set to the base element type, and Members is set 5098 /// to the number of base elements. 5099 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 5100 uint64_t &Members) const { 5101 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 5102 uint64_t NElements = AT->getSize().getZExtValue(); 5103 if (NElements == 0) 5104 return false; 5105 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 5106 return false; 5107 Members *= NElements; 5108 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 5109 const RecordDecl *RD = RT->getDecl(); 5110 if (RD->hasFlexibleArrayMember()) 5111 return false; 5112 5113 Members = 0; 5114 5115 // If this is a C++ record, check the bases first. 5116 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 5117 for (const auto &I : CXXRD->bases()) { 5118 // Ignore empty records. 5119 if (isEmptyRecord(getContext(), I.getType(), true)) 5120 continue; 5121 5122 uint64_t FldMembers; 5123 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) 5124 return false; 5125 5126 Members += FldMembers; 5127 } 5128 } 5129 5130 for (const auto *FD : RD->fields()) { 5131 // Ignore (non-zero arrays of) empty records. 5132 QualType FT = FD->getType(); 5133 while (const ConstantArrayType *AT = 5134 getContext().getAsConstantArrayType(FT)) { 5135 if (AT->getSize().getZExtValue() == 0) 5136 return false; 5137 FT = AT->getElementType(); 5138 } 5139 if (isEmptyRecord(getContext(), FT, true)) 5140 continue; 5141 5142 // For compatibility with GCC, ignore empty bitfields in C++ mode. 5143 if (getContext().getLangOpts().CPlusPlus && 5144 FD->isZeroLengthBitField(getContext())) 5145 continue; 5146 5147 uint64_t FldMembers; 5148 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 5149 return false; 5150 5151 Members = (RD->isUnion() ? 5152 std::max(Members, FldMembers) : Members + FldMembers); 5153 } 5154 5155 if (!Base) 5156 return false; 5157 5158 // Ensure there is no padding. 5159 if (getContext().getTypeSize(Base) * Members != 5160 getContext().getTypeSize(Ty)) 5161 return false; 5162 } else { 5163 Members = 1; 5164 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 5165 Members = 2; 5166 Ty = CT->getElementType(); 5167 } 5168 5169 // Most ABIs only support float, double, and some vector type widths. 5170 if (!isHomogeneousAggregateBaseType(Ty)) 5171 return false; 5172 5173 // The base type must be the same for all members. Types that 5174 // agree in both total size and mode (float vs. vector) are 5175 // treated as being equivalent here. 5176 const Type *TyPtr = Ty.getTypePtr(); 5177 if (!Base) { 5178 Base = TyPtr; 5179 // If it's a non-power-of-2 vector, its size is already a power-of-2, 5180 // so make sure to widen it explicitly. 5181 if (const VectorType *VT = Base->getAs<VectorType>()) { 5182 QualType EltTy = VT->getElementType(); 5183 unsigned NumElements = 5184 getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy); 5185 Base = getContext() 5186 .getVectorType(EltTy, NumElements, VT->getVectorKind()) 5187 .getTypePtr(); 5188 } 5189 } 5190 5191 if (Base->isVectorType() != TyPtr->isVectorType() || 5192 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 5193 return false; 5194 } 5195 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); 5196 } 5197 5198 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5199 // Homogeneous aggregates for ELFv2 must have base types of float, 5200 // double, long double, or 128-bit vectors. 5201 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5202 if (BT->getKind() == BuiltinType::Float || 5203 BT->getKind() == BuiltinType::Double || 5204 BT->getKind() == BuiltinType::LongDouble || 5205 (getContext().getTargetInfo().hasFloat128Type() && 5206 (BT->getKind() == BuiltinType::Float128))) { 5207 if (IsSoftFloatABI) 5208 return false; 5209 return true; 5210 } 5211 } 5212 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5213 if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty)) 5214 return true; 5215 } 5216 return false; 5217 } 5218 5219 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( 5220 const Type *Base, uint64_t Members) const { 5221 // Vector and fp128 types require one register, other floating point types 5222 // require one or two registers depending on their size. 5223 uint32_t NumRegs = 5224 ((getContext().getTargetInfo().hasFloat128Type() && 5225 Base->isFloat128Type()) || 5226 Base->isVectorType()) ? 1 5227 : (getContext().getTypeSize(Base) + 63) / 64; 5228 5229 // Homogeneous Aggregates may occupy at most 8 registers. 5230 return Members * NumRegs <= 8; 5231 } 5232 5233 ABIArgInfo 5234 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 5235 Ty = useFirstFieldIfTransparentUnion(Ty); 5236 5237 if (Ty->isAnyComplexType()) 5238 return ABIArgInfo::getDirect(); 5239 5240 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 5241 // or via reference (larger than 16 bytes). 5242 if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) { 5243 uint64_t Size = getContext().getTypeSize(Ty); 5244 if (Size > 128) 5245 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5246 else if (Size < 128) { 5247 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 5248 return ABIArgInfo::getDirect(CoerceTy); 5249 } 5250 } 5251 5252 if (const auto *EIT = Ty->getAs<ExtIntType>()) 5253 if (EIT->getNumBits() > 128) 5254 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 5255 5256 if (isAggregateTypeForABI(Ty)) { 5257 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 5258 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 5259 5260 uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity(); 5261 uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 5262 5263 // ELFv2 homogeneous aggregates are passed as array types. 5264 const Type *Base = nullptr; 5265 uint64_t Members = 0; 5266 if (Kind == ELFv2 && 5267 isHomogeneousAggregate(Ty, Base, Members)) { 5268 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 5269 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 5270 return ABIArgInfo::getDirect(CoerceTy); 5271 } 5272 5273 // If an aggregate may end up fully in registers, we do not 5274 // use the ByVal method, but pass the aggregate as array. 5275 // This is usually beneficial since we avoid forcing the 5276 // back-end to store the argument to memory. 5277 uint64_t Bits = getContext().getTypeSize(Ty); 5278 if (Bits > 0 && Bits <= 8 * GPRBits) { 5279 llvm::Type *CoerceTy; 5280 5281 // Types up to 8 bytes are passed as integer type (which will be 5282 // properly aligned in the argument save area doubleword). 5283 if (Bits <= GPRBits) 5284 CoerceTy = 5285 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 5286 // Larger types are passed as arrays, with the base type selected 5287 // according to the required alignment in the save area. 5288 else { 5289 uint64_t RegBits = ABIAlign * 8; 5290 uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits; 5291 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 5292 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 5293 } 5294 5295 return ABIArgInfo::getDirect(CoerceTy); 5296 } 5297 5298 // All other aggregates are passed ByVal. 5299 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 5300 /*ByVal=*/true, 5301 /*Realign=*/TyAlign > ABIAlign); 5302 } 5303 5304 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 5305 : ABIArgInfo::getDirect()); 5306 } 5307 5308 ABIArgInfo 5309 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 5310 if (RetTy->isVoidType()) 5311 return ABIArgInfo::getIgnore(); 5312 5313 if (RetTy->isAnyComplexType()) 5314 return ABIArgInfo::getDirect(); 5315 5316 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 5317 // or via reference (larger than 16 bytes). 5318 if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) { 5319 uint64_t Size = getContext().getTypeSize(RetTy); 5320 if (Size > 128) 5321 return getNaturalAlignIndirect(RetTy); 5322 else if (Size < 128) { 5323 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 5324 return ABIArgInfo::getDirect(CoerceTy); 5325 } 5326 } 5327 5328 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 5329 if (EIT->getNumBits() > 128) 5330 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 5331 5332 if (isAggregateTypeForABI(RetTy)) { 5333 // ELFv2 homogeneous aggregates are returned as array types. 5334 const Type *Base = nullptr; 5335 uint64_t Members = 0; 5336 if (Kind == ELFv2 && 5337 isHomogeneousAggregate(RetTy, Base, Members)) { 5338 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 5339 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 5340 return ABIArgInfo::getDirect(CoerceTy); 5341 } 5342 5343 // ELFv2 small aggregates are returned in up to two registers. 5344 uint64_t Bits = getContext().getTypeSize(RetTy); 5345 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 5346 if (Bits == 0) 5347 return ABIArgInfo::getIgnore(); 5348 5349 llvm::Type *CoerceTy; 5350 if (Bits > GPRBits) { 5351 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 5352 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy); 5353 } else 5354 CoerceTy = 5355 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 5356 return ABIArgInfo::getDirect(CoerceTy); 5357 } 5358 5359 // All other aggregates are returned indirectly. 5360 return getNaturalAlignIndirect(RetTy); 5361 } 5362 5363 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 5364 : ABIArgInfo::getDirect()); 5365 } 5366 5367 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 5368 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5369 QualType Ty) const { 5370 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 5371 TypeInfo.Align = getParamTypeAlignment(Ty); 5372 5373 CharUnits SlotSize = CharUnits::fromQuantity(8); 5374 5375 // If we have a complex type and the base type is smaller than 8 bytes, 5376 // the ABI calls for the real and imaginary parts to be right-adjusted 5377 // in separate doublewords. However, Clang expects us to produce a 5378 // pointer to a structure with the two parts packed tightly. So generate 5379 // loads of the real and imaginary parts relative to the va_list pointer, 5380 // and store them to a temporary structure. 5381 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 5382 CharUnits EltSize = TypeInfo.Width / 2; 5383 if (EltSize < SlotSize) { 5384 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, 5385 SlotSize * 2, SlotSize, 5386 SlotSize, /*AllowHigher*/ true); 5387 5388 Address RealAddr = Addr; 5389 Address ImagAddr = RealAddr; 5390 if (CGF.CGM.getDataLayout().isBigEndian()) { 5391 RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, 5392 SlotSize - EltSize); 5393 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr, 5394 2 * SlotSize - EltSize); 5395 } else { 5396 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize); 5397 } 5398 5399 llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType()); 5400 RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy); 5401 ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy); 5402 llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal"); 5403 llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag"); 5404 5405 Address Temp = CGF.CreateMemTemp(Ty, "vacplx"); 5406 CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty), 5407 /*init*/ true); 5408 return Temp; 5409 } 5410 } 5411 5412 // Otherwise, just use the general rule. 5413 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 5414 TypeInfo, SlotSize, /*AllowHigher*/ true); 5415 } 5416 5417 bool 5418 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 5419 CodeGen::CodeGenFunction &CGF, 5420 llvm::Value *Address) const { 5421 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true, 5422 /*IsAIX*/ false); 5423 } 5424 5425 bool 5426 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5427 llvm::Value *Address) const { 5428 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true, 5429 /*IsAIX*/ false); 5430 } 5431 5432 //===----------------------------------------------------------------------===// 5433 // AArch64 ABI Implementation 5434 //===----------------------------------------------------------------------===// 5435 5436 namespace { 5437 5438 class AArch64ABIInfo : public SwiftABIInfo { 5439 public: 5440 enum ABIKind { 5441 AAPCS = 0, 5442 DarwinPCS, 5443 Win64 5444 }; 5445 5446 private: 5447 ABIKind Kind; 5448 5449 public: 5450 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) 5451 : SwiftABIInfo(CGT), Kind(Kind) {} 5452 5453 private: 5454 ABIKind getABIKind() const { return Kind; } 5455 bool isDarwinPCS() const { return Kind == DarwinPCS; } 5456 5457 ABIArgInfo classifyReturnType(QualType RetTy, bool IsVariadic) const; 5458 ABIArgInfo classifyArgumentType(QualType RetTy) const; 5459 ABIArgInfo coerceIllegalVector(QualType Ty) const; 5460 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 5461 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 5462 uint64_t Members) const override; 5463 5464 bool isIllegalVectorType(QualType Ty) const; 5465 5466 void computeInfo(CGFunctionInfo &FI) const override { 5467 if (!::classifyReturnType(getCXXABI(), FI, *this)) 5468 FI.getReturnInfo() = 5469 classifyReturnType(FI.getReturnType(), FI.isVariadic()); 5470 5471 for (auto &it : FI.arguments()) 5472 it.info = classifyArgumentType(it.type); 5473 } 5474 5475 Address EmitDarwinVAArg(Address VAListAddr, QualType Ty, 5476 CodeGenFunction &CGF) const; 5477 5478 Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 5479 CodeGenFunction &CGF) const; 5480 5481 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5482 QualType Ty) const override { 5483 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5484 if (isa<llvm::ScalableVectorType>(BaseTy)) 5485 llvm::report_fatal_error("Passing SVE types to variadic functions is " 5486 "currently not supported"); 5487 5488 return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty) 5489 : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 5490 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 5491 } 5492 5493 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 5494 QualType Ty) const override; 5495 5496 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 5497 bool asReturnValue) const override { 5498 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5499 } 5500 bool isSwiftErrorInRegister() const override { 5501 return true; 5502 } 5503 5504 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 5505 unsigned elts) const override; 5506 5507 bool allowBFloatArgsAndRet() const override { 5508 return getTarget().hasBFloat16Type(); 5509 } 5510 }; 5511 5512 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 5513 public: 5514 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 5515 : TargetCodeGenInfo(std::make_unique<AArch64ABIInfo>(CGT, Kind)) {} 5516 5517 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 5518 return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue"; 5519 } 5520 5521 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5522 return 31; 5523 } 5524 5525 bool doesReturnSlotInterfereWithArgs() const override { return false; } 5526 5527 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5528 CodeGen::CodeGenModule &CGM) const override { 5529 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5530 if (!FD) 5531 return; 5532 5533 const auto *TA = FD->getAttr<TargetAttr>(); 5534 if (TA == nullptr) 5535 return; 5536 5537 ParsedTargetAttr Attr = TA->parse(); 5538 if (Attr.BranchProtection.empty()) 5539 return; 5540 5541 TargetInfo::BranchProtectionInfo BPI; 5542 StringRef Error; 5543 (void)CGM.getTarget().validateBranchProtection(Attr.BranchProtection, 5544 BPI, Error); 5545 assert(Error.empty()); 5546 5547 auto *Fn = cast<llvm::Function>(GV); 5548 static const char *SignReturnAddrStr[] = {"none", "non-leaf", "all"}; 5549 Fn->addFnAttr("sign-return-address", SignReturnAddrStr[static_cast<int>(BPI.SignReturnAddr)]); 5550 5551 if (BPI.SignReturnAddr != LangOptions::SignReturnAddressScopeKind::None) { 5552 Fn->addFnAttr("sign-return-address-key", 5553 BPI.SignKey == LangOptions::SignReturnAddressKeyKind::AKey 5554 ? "a_key" 5555 : "b_key"); 5556 } 5557 5558 Fn->addFnAttr("branch-target-enforcement", 5559 BPI.BranchTargetEnforcement ? "true" : "false"); 5560 } 5561 }; 5562 5563 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo { 5564 public: 5565 WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K) 5566 : AArch64TargetCodeGenInfo(CGT, K) {} 5567 5568 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5569 CodeGen::CodeGenModule &CGM) const override; 5570 5571 void getDependentLibraryOption(llvm::StringRef Lib, 5572 llvm::SmallString<24> &Opt) const override { 5573 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5574 } 5575 5576 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5577 llvm::SmallString<32> &Opt) const override { 5578 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5579 } 5580 }; 5581 5582 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes( 5583 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 5584 AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 5585 if (GV->isDeclaration()) 5586 return; 5587 addStackProbeTargetAttributes(D, GV, CGM); 5588 } 5589 } 5590 5591 ABIArgInfo AArch64ABIInfo::coerceIllegalVector(QualType Ty) const { 5592 assert(Ty->isVectorType() && "expected vector type!"); 5593 5594 const auto *VT = Ty->castAs<VectorType>(); 5595 if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) { 5596 assert(VT->getElementType()->isBuiltinType() && "expected builtin type!"); 5597 assert(VT->getElementType()->castAs<BuiltinType>()->getKind() == 5598 BuiltinType::UChar && 5599 "unexpected builtin type for SVE predicate!"); 5600 return ABIArgInfo::getDirect(llvm::ScalableVectorType::get( 5601 llvm::Type::getInt1Ty(getVMContext()), 16)); 5602 } 5603 5604 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector) { 5605 assert(VT->getElementType()->isBuiltinType() && "expected builtin type!"); 5606 5607 const auto *BT = VT->getElementType()->castAs<BuiltinType>(); 5608 llvm::ScalableVectorType *ResType = nullptr; 5609 switch (BT->getKind()) { 5610 default: 5611 llvm_unreachable("unexpected builtin type for SVE vector!"); 5612 case BuiltinType::SChar: 5613 case BuiltinType::UChar: 5614 ResType = llvm::ScalableVectorType::get( 5615 llvm::Type::getInt8Ty(getVMContext()), 16); 5616 break; 5617 case BuiltinType::Short: 5618 case BuiltinType::UShort: 5619 ResType = llvm::ScalableVectorType::get( 5620 llvm::Type::getInt16Ty(getVMContext()), 8); 5621 break; 5622 case BuiltinType::Int: 5623 case BuiltinType::UInt: 5624 ResType = llvm::ScalableVectorType::get( 5625 llvm::Type::getInt32Ty(getVMContext()), 4); 5626 break; 5627 case BuiltinType::Long: 5628 case BuiltinType::ULong: 5629 ResType = llvm::ScalableVectorType::get( 5630 llvm::Type::getInt64Ty(getVMContext()), 2); 5631 break; 5632 case BuiltinType::Half: 5633 ResType = llvm::ScalableVectorType::get( 5634 llvm::Type::getHalfTy(getVMContext()), 8); 5635 break; 5636 case BuiltinType::Float: 5637 ResType = llvm::ScalableVectorType::get( 5638 llvm::Type::getFloatTy(getVMContext()), 4); 5639 break; 5640 case BuiltinType::Double: 5641 ResType = llvm::ScalableVectorType::get( 5642 llvm::Type::getDoubleTy(getVMContext()), 2); 5643 break; 5644 case BuiltinType::BFloat16: 5645 ResType = llvm::ScalableVectorType::get( 5646 llvm::Type::getBFloatTy(getVMContext()), 8); 5647 break; 5648 } 5649 return ABIArgInfo::getDirect(ResType); 5650 } 5651 5652 uint64_t Size = getContext().getTypeSize(Ty); 5653 // Android promotes <2 x i8> to i16, not i32 5654 if (isAndroid() && (Size <= 16)) { 5655 llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext()); 5656 return ABIArgInfo::getDirect(ResType); 5657 } 5658 if (Size <= 32) { 5659 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 5660 return ABIArgInfo::getDirect(ResType); 5661 } 5662 if (Size == 64) { 5663 auto *ResType = 5664 llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 5665 return ABIArgInfo::getDirect(ResType); 5666 } 5667 if (Size == 128) { 5668 auto *ResType = 5669 llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 5670 return ABIArgInfo::getDirect(ResType); 5671 } 5672 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5673 } 5674 5675 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const { 5676 Ty = useFirstFieldIfTransparentUnion(Ty); 5677 5678 // Handle illegal vector types here. 5679 if (isIllegalVectorType(Ty)) 5680 return coerceIllegalVector(Ty); 5681 5682 if (!isAggregateTypeForABI(Ty)) { 5683 // Treat an enum type as its underlying type. 5684 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5685 Ty = EnumTy->getDecl()->getIntegerType(); 5686 5687 if (const auto *EIT = Ty->getAs<ExtIntType>()) 5688 if (EIT->getNumBits() > 128) 5689 return getNaturalAlignIndirect(Ty); 5690 5691 return (isPromotableIntegerTypeForABI(Ty) && isDarwinPCS() 5692 ? ABIArgInfo::getExtend(Ty) 5693 : ABIArgInfo::getDirect()); 5694 } 5695 5696 // Structures with either a non-trivial destructor or a non-trivial 5697 // copy constructor are always indirect. 5698 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5699 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 5700 CGCXXABI::RAA_DirectInMemory); 5701 } 5702 5703 // Empty records are always ignored on Darwin, but actually passed in C++ mode 5704 // elsewhere for GNU compatibility. 5705 uint64_t Size = getContext().getTypeSize(Ty); 5706 bool IsEmpty = isEmptyRecord(getContext(), Ty, true); 5707 if (IsEmpty || Size == 0) { 5708 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 5709 return ABIArgInfo::getIgnore(); 5710 5711 // GNU C mode. The only argument that gets ignored is an empty one with size 5712 // 0. 5713 if (IsEmpty && Size == 0) 5714 return ABIArgInfo::getIgnore(); 5715 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5716 } 5717 5718 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 5719 const Type *Base = nullptr; 5720 uint64_t Members = 0; 5721 if (isHomogeneousAggregate(Ty, Base, Members)) { 5722 return ABIArgInfo::getDirect( 5723 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); 5724 } 5725 5726 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 5727 if (Size <= 128) { 5728 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5729 // same size and alignment. 5730 if (getTarget().isRenderScriptTarget()) { 5731 return coerceToIntArray(Ty, getContext(), getVMContext()); 5732 } 5733 unsigned Alignment; 5734 if (Kind == AArch64ABIInfo::AAPCS) { 5735 Alignment = getContext().getTypeUnadjustedAlign(Ty); 5736 Alignment = Alignment < 128 ? 64 : 128; 5737 } else { 5738 Alignment = std::max(getContext().getTypeAlign(Ty), 5739 (unsigned)getTarget().getPointerWidth(0)); 5740 } 5741 Size = llvm::alignTo(Size, Alignment); 5742 5743 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5744 // For aggregates with 16-byte alignment, we use i128. 5745 llvm::Type *BaseTy = llvm::Type::getIntNTy(getVMContext(), Alignment); 5746 return ABIArgInfo::getDirect( 5747 Size == Alignment ? BaseTy 5748 : llvm::ArrayType::get(BaseTy, Size / Alignment)); 5749 } 5750 5751 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5752 } 5753 5754 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy, 5755 bool IsVariadic) const { 5756 if (RetTy->isVoidType()) 5757 return ABIArgInfo::getIgnore(); 5758 5759 if (const auto *VT = RetTy->getAs<VectorType>()) { 5760 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector || 5761 VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) 5762 return coerceIllegalVector(RetTy); 5763 } 5764 5765 // Large vector types should be returned via memory. 5766 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 5767 return getNaturalAlignIndirect(RetTy); 5768 5769 if (!isAggregateTypeForABI(RetTy)) { 5770 // Treat an enum type as its underlying type. 5771 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5772 RetTy = EnumTy->getDecl()->getIntegerType(); 5773 5774 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 5775 if (EIT->getNumBits() > 128) 5776 return getNaturalAlignIndirect(RetTy); 5777 5778 return (isPromotableIntegerTypeForABI(RetTy) && isDarwinPCS() 5779 ? ABIArgInfo::getExtend(RetTy) 5780 : ABIArgInfo::getDirect()); 5781 } 5782 5783 uint64_t Size = getContext().getTypeSize(RetTy); 5784 if (isEmptyRecord(getContext(), RetTy, true) || Size == 0) 5785 return ABIArgInfo::getIgnore(); 5786 5787 const Type *Base = nullptr; 5788 uint64_t Members = 0; 5789 if (isHomogeneousAggregate(RetTy, Base, Members) && 5790 !(getTarget().getTriple().getArch() == llvm::Triple::aarch64_32 && 5791 IsVariadic)) 5792 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 5793 return ABIArgInfo::getDirect(); 5794 5795 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 5796 if (Size <= 128) { 5797 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5798 // same size and alignment. 5799 if (getTarget().isRenderScriptTarget()) { 5800 return coerceToIntArray(RetTy, getContext(), getVMContext()); 5801 } 5802 unsigned Alignment = getContext().getTypeAlign(RetTy); 5803 Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes 5804 5805 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5806 // For aggregates with 16-byte alignment, we use i128. 5807 if (Alignment < 128 && Size == 128) { 5808 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 5809 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 5810 } 5811 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 5812 } 5813 5814 return getNaturalAlignIndirect(RetTy); 5815 } 5816 5817 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 5818 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 5819 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5820 // Check whether VT is a fixed-length SVE vector. These types are 5821 // represented as scalable vectors in function args/return and must be 5822 // coerced from fixed vectors. 5823 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector || 5824 VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) 5825 return true; 5826 5827 // Check whether VT is legal. 5828 unsigned NumElements = VT->getNumElements(); 5829 uint64_t Size = getContext().getTypeSize(VT); 5830 // NumElements should be power of 2. 5831 if (!llvm::isPowerOf2_32(NumElements)) 5832 return true; 5833 5834 // arm64_32 has to be compatible with the ARM logic here, which allows huge 5835 // vectors for some reason. 5836 llvm::Triple Triple = getTarget().getTriple(); 5837 if (Triple.getArch() == llvm::Triple::aarch64_32 && 5838 Triple.isOSBinFormatMachO()) 5839 return Size <= 32; 5840 5841 return Size != 64 && (Size != 128 || NumElements == 1); 5842 } 5843 return false; 5844 } 5845 5846 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize, 5847 llvm::Type *eltTy, 5848 unsigned elts) const { 5849 if (!llvm::isPowerOf2_32(elts)) 5850 return false; 5851 if (totalSize.getQuantity() != 8 && 5852 (totalSize.getQuantity() != 16 || elts == 1)) 5853 return false; 5854 return true; 5855 } 5856 5857 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5858 // Homogeneous aggregates for AAPCS64 must have base types of a floating 5859 // point type or a short-vector type. This is the same as the 32-bit ABI, 5860 // but with the difference that any floating-point type is allowed, 5861 // including __fp16. 5862 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5863 if (BT->isFloatingPoint()) 5864 return true; 5865 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 5866 unsigned VecSize = getContext().getTypeSize(VT); 5867 if (VecSize == 64 || VecSize == 128) 5868 return true; 5869 } 5870 return false; 5871 } 5872 5873 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 5874 uint64_t Members) const { 5875 return Members <= 4; 5876 } 5877 5878 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, 5879 QualType Ty, 5880 CodeGenFunction &CGF) const { 5881 ABIArgInfo AI = classifyArgumentType(Ty); 5882 bool IsIndirect = AI.isIndirect(); 5883 5884 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5885 if (IsIndirect) 5886 BaseTy = llvm::PointerType::getUnqual(BaseTy); 5887 else if (AI.getCoerceToType()) 5888 BaseTy = AI.getCoerceToType(); 5889 5890 unsigned NumRegs = 1; 5891 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { 5892 BaseTy = ArrTy->getElementType(); 5893 NumRegs = ArrTy->getNumElements(); 5894 } 5895 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); 5896 5897 // The AArch64 va_list type and handling is specified in the Procedure Call 5898 // Standard, section B.4: 5899 // 5900 // struct { 5901 // void *__stack; 5902 // void *__gr_top; 5903 // void *__vr_top; 5904 // int __gr_offs; 5905 // int __vr_offs; 5906 // }; 5907 5908 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 5909 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 5910 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 5911 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 5912 5913 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 5914 CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty); 5915 5916 Address reg_offs_p = Address::invalid(); 5917 llvm::Value *reg_offs = nullptr; 5918 int reg_top_index; 5919 int RegSize = IsIndirect ? 8 : TySize.getQuantity(); 5920 if (!IsFPR) { 5921 // 3 is the field number of __gr_offs 5922 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p"); 5923 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 5924 reg_top_index = 1; // field number for __gr_top 5925 RegSize = llvm::alignTo(RegSize, 8); 5926 } else { 5927 // 4 is the field number of __vr_offs. 5928 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p"); 5929 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 5930 reg_top_index = 2; // field number for __vr_top 5931 RegSize = 16 * NumRegs; 5932 } 5933 5934 //======================================= 5935 // Find out where argument was passed 5936 //======================================= 5937 5938 // If reg_offs >= 0 we're already using the stack for this type of 5939 // argument. We don't want to keep updating reg_offs (in case it overflows, 5940 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 5941 // whatever they get). 5942 llvm::Value *UsingStack = nullptr; 5943 UsingStack = CGF.Builder.CreateICmpSGE( 5944 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 5945 5946 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 5947 5948 // Otherwise, at least some kind of argument could go in these registers, the 5949 // question is whether this particular type is too big. 5950 CGF.EmitBlock(MaybeRegBlock); 5951 5952 // Integer arguments may need to correct register alignment (for example a 5953 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 5954 // align __gr_offs to calculate the potential address. 5955 if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) { 5956 int Align = TyAlign.getQuantity(); 5957 5958 reg_offs = CGF.Builder.CreateAdd( 5959 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 5960 "align_regoffs"); 5961 reg_offs = CGF.Builder.CreateAnd( 5962 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 5963 "aligned_regoffs"); 5964 } 5965 5966 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 5967 // The fact that this is done unconditionally reflects the fact that 5968 // allocating an argument to the stack also uses up all the remaining 5969 // registers of the appropriate kind. 5970 llvm::Value *NewOffset = nullptr; 5971 NewOffset = CGF.Builder.CreateAdd( 5972 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 5973 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 5974 5975 // Now we're in a position to decide whether this argument really was in 5976 // registers or not. 5977 llvm::Value *InRegs = nullptr; 5978 InRegs = CGF.Builder.CreateICmpSLE( 5979 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 5980 5981 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 5982 5983 //======================================= 5984 // Argument was in registers 5985 //======================================= 5986 5987 // Now we emit the code for if the argument was originally passed in 5988 // registers. First start the appropriate block: 5989 CGF.EmitBlock(InRegBlock); 5990 5991 llvm::Value *reg_top = nullptr; 5992 Address reg_top_p = 5993 CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p"); 5994 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 5995 Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs), 5996 CharUnits::fromQuantity(IsFPR ? 16 : 8)); 5997 Address RegAddr = Address::invalid(); 5998 llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty); 5999 6000 if (IsIndirect) { 6001 // If it's been passed indirectly (actually a struct), whatever we find from 6002 // stored registers or on the stack will actually be a struct **. 6003 MemTy = llvm::PointerType::getUnqual(MemTy); 6004 } 6005 6006 const Type *Base = nullptr; 6007 uint64_t NumMembers = 0; 6008 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); 6009 if (IsHFA && NumMembers > 1) { 6010 // Homogeneous aggregates passed in registers will have their elements split 6011 // and stored 16-bytes apart regardless of size (they're notionally in qN, 6012 // qN+1, ...). We reload and store into a temporary local variable 6013 // contiguously. 6014 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 6015 auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0)); 6016 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 6017 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 6018 Address Tmp = CGF.CreateTempAlloca(HFATy, 6019 std::max(TyAlign, BaseTyInfo.Align)); 6020 6021 // On big-endian platforms, the value will be right-aligned in its slot. 6022 int Offset = 0; 6023 if (CGF.CGM.getDataLayout().isBigEndian() && 6024 BaseTyInfo.Width.getQuantity() < 16) 6025 Offset = 16 - BaseTyInfo.Width.getQuantity(); 6026 6027 for (unsigned i = 0; i < NumMembers; ++i) { 6028 CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset); 6029 Address LoadAddr = 6030 CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset); 6031 LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy); 6032 6033 Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i); 6034 6035 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 6036 CGF.Builder.CreateStore(Elem, StoreAddr); 6037 } 6038 6039 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy); 6040 } else { 6041 // Otherwise the object is contiguous in memory. 6042 6043 // It might be right-aligned in its slot. 6044 CharUnits SlotSize = BaseAddr.getAlignment(); 6045 if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect && 6046 (IsHFA || !isAggregateTypeForABI(Ty)) && 6047 TySize < SlotSize) { 6048 CharUnits Offset = SlotSize - TySize; 6049 BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset); 6050 } 6051 6052 RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy); 6053 } 6054 6055 CGF.EmitBranch(ContBlock); 6056 6057 //======================================= 6058 // Argument was on the stack 6059 //======================================= 6060 CGF.EmitBlock(OnStackBlock); 6061 6062 Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p"); 6063 llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack"); 6064 6065 // Again, stack arguments may need realignment. In this case both integer and 6066 // floating-point ones might be affected. 6067 if (!IsIndirect && TyAlign.getQuantity() > 8) { 6068 int Align = TyAlign.getQuantity(); 6069 6070 OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty); 6071 6072 OnStackPtr = CGF.Builder.CreateAdd( 6073 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 6074 "align_stack"); 6075 OnStackPtr = CGF.Builder.CreateAnd( 6076 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 6077 "align_stack"); 6078 6079 OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy); 6080 } 6081 Address OnStackAddr(OnStackPtr, 6082 std::max(CharUnits::fromQuantity(8), TyAlign)); 6083 6084 // All stack slots are multiples of 8 bytes. 6085 CharUnits StackSlotSize = CharUnits::fromQuantity(8); 6086 CharUnits StackSize; 6087 if (IsIndirect) 6088 StackSize = StackSlotSize; 6089 else 6090 StackSize = TySize.alignTo(StackSlotSize); 6091 6092 llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize); 6093 llvm::Value *NewStack = 6094 CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack"); 6095 6096 // Write the new value of __stack for the next call to va_arg 6097 CGF.Builder.CreateStore(NewStack, stack_p); 6098 6099 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 6100 TySize < StackSlotSize) { 6101 CharUnits Offset = StackSlotSize - TySize; 6102 OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset); 6103 } 6104 6105 OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy); 6106 6107 CGF.EmitBranch(ContBlock); 6108 6109 //======================================= 6110 // Tidy up 6111 //======================================= 6112 CGF.EmitBlock(ContBlock); 6113 6114 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 6115 OnStackAddr, OnStackBlock, "vaargs.addr"); 6116 6117 if (IsIndirect) 6118 return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), 6119 TyAlign); 6120 6121 return ResAddr; 6122 } 6123 6124 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty, 6125 CodeGenFunction &CGF) const { 6126 // The backend's lowering doesn't support va_arg for aggregates or 6127 // illegal vector types. Lower VAArg here for these cases and use 6128 // the LLVM va_arg instruction for everything else. 6129 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 6130 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 6131 6132 uint64_t PointerSize = getTarget().getPointerWidth(0) / 8; 6133 CharUnits SlotSize = CharUnits::fromQuantity(PointerSize); 6134 6135 // Empty records are ignored for parameter passing purposes. 6136 if (isEmptyRecord(getContext(), Ty, true)) { 6137 Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 6138 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 6139 return Addr; 6140 } 6141 6142 // The size of the actual thing passed, which might end up just 6143 // being a pointer for indirect types. 6144 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6145 6146 // Arguments bigger than 16 bytes which aren't homogeneous 6147 // aggregates should be passed indirectly. 6148 bool IsIndirect = false; 6149 if (TyInfo.Width.getQuantity() > 16) { 6150 const Type *Base = nullptr; 6151 uint64_t Members = 0; 6152 IsIndirect = !isHomogeneousAggregate(Ty, Base, Members); 6153 } 6154 6155 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 6156 TyInfo, SlotSize, /*AllowHigherAlign*/ true); 6157 } 6158 6159 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 6160 QualType Ty) const { 6161 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 6162 CGF.getContext().getTypeInfoInChars(Ty), 6163 CharUnits::fromQuantity(8), 6164 /*allowHigherAlign*/ false); 6165 } 6166 6167 //===----------------------------------------------------------------------===// 6168 // ARM ABI Implementation 6169 //===----------------------------------------------------------------------===// 6170 6171 namespace { 6172 6173 class ARMABIInfo : public SwiftABIInfo { 6174 public: 6175 enum ABIKind { 6176 APCS = 0, 6177 AAPCS = 1, 6178 AAPCS_VFP = 2, 6179 AAPCS16_VFP = 3, 6180 }; 6181 6182 private: 6183 ABIKind Kind; 6184 bool IsFloatABISoftFP; 6185 6186 public: 6187 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) 6188 : SwiftABIInfo(CGT), Kind(_Kind) { 6189 setCCs(); 6190 IsFloatABISoftFP = CGT.getCodeGenOpts().FloatABI == "softfp" || 6191 CGT.getCodeGenOpts().FloatABI == ""; // default 6192 } 6193 6194 bool isEABI() const { 6195 switch (getTarget().getTriple().getEnvironment()) { 6196 case llvm::Triple::Android: 6197 case llvm::Triple::EABI: 6198 case llvm::Triple::EABIHF: 6199 case llvm::Triple::GNUEABI: 6200 case llvm::Triple::GNUEABIHF: 6201 case llvm::Triple::MuslEABI: 6202 case llvm::Triple::MuslEABIHF: 6203 return true; 6204 default: 6205 return false; 6206 } 6207 } 6208 6209 bool isEABIHF() const { 6210 switch (getTarget().getTriple().getEnvironment()) { 6211 case llvm::Triple::EABIHF: 6212 case llvm::Triple::GNUEABIHF: 6213 case llvm::Triple::MuslEABIHF: 6214 return true; 6215 default: 6216 return false; 6217 } 6218 } 6219 6220 ABIKind getABIKind() const { return Kind; } 6221 6222 bool allowBFloatArgsAndRet() const override { 6223 return !IsFloatABISoftFP && getTarget().hasBFloat16Type(); 6224 } 6225 6226 private: 6227 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic, 6228 unsigned functionCallConv) const; 6229 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic, 6230 unsigned functionCallConv) const; 6231 ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base, 6232 uint64_t Members) const; 6233 ABIArgInfo coerceIllegalVector(QualType Ty) const; 6234 bool isIllegalVectorType(QualType Ty) const; 6235 bool containsAnyFP16Vectors(QualType Ty) const; 6236 6237 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 6238 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 6239 uint64_t Members) const override; 6240 6241 bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const; 6242 6243 void computeInfo(CGFunctionInfo &FI) const override; 6244 6245 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6246 QualType Ty) const override; 6247 6248 llvm::CallingConv::ID getLLVMDefaultCC() const; 6249 llvm::CallingConv::ID getABIDefaultCC() const; 6250 void setCCs(); 6251 6252 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 6253 bool asReturnValue) const override { 6254 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 6255 } 6256 bool isSwiftErrorInRegister() const override { 6257 return true; 6258 } 6259 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 6260 unsigned elts) const override; 6261 }; 6262 6263 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 6264 public: 6265 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 6266 : TargetCodeGenInfo(std::make_unique<ARMABIInfo>(CGT, K)) {} 6267 6268 const ARMABIInfo &getABIInfo() const { 6269 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 6270 } 6271 6272 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 6273 return 13; 6274 } 6275 6276 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 6277 return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue"; 6278 } 6279 6280 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6281 llvm::Value *Address) const override { 6282 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 6283 6284 // 0-15 are the 16 integer registers. 6285 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 6286 return false; 6287 } 6288 6289 unsigned getSizeOfUnwindException() const override { 6290 if (getABIInfo().isEABI()) return 88; 6291 return TargetCodeGenInfo::getSizeOfUnwindException(); 6292 } 6293 6294 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6295 CodeGen::CodeGenModule &CGM) const override { 6296 if (GV->isDeclaration()) 6297 return; 6298 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6299 if (!FD) 6300 return; 6301 6302 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 6303 if (!Attr) 6304 return; 6305 6306 const char *Kind; 6307 switch (Attr->getInterrupt()) { 6308 case ARMInterruptAttr::Generic: Kind = ""; break; 6309 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 6310 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 6311 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 6312 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 6313 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 6314 } 6315 6316 llvm::Function *Fn = cast<llvm::Function>(GV); 6317 6318 Fn->addFnAttr("interrupt", Kind); 6319 6320 ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind(); 6321 if (ABI == ARMABIInfo::APCS) 6322 return; 6323 6324 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 6325 // however this is not necessarily true on taking any interrupt. Instruct 6326 // the backend to perform a realignment as part of the function prologue. 6327 llvm::AttrBuilder B; 6328 B.addStackAlignmentAttr(8); 6329 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 6330 } 6331 }; 6332 6333 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { 6334 public: 6335 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 6336 : ARMTargetCodeGenInfo(CGT, K) {} 6337 6338 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6339 CodeGen::CodeGenModule &CGM) const override; 6340 6341 void getDependentLibraryOption(llvm::StringRef Lib, 6342 llvm::SmallString<24> &Opt) const override { 6343 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 6344 } 6345 6346 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 6347 llvm::SmallString<32> &Opt) const override { 6348 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 6349 } 6350 }; 6351 6352 void WindowsARMTargetCodeGenInfo::setTargetAttributes( 6353 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 6354 ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 6355 if (GV->isDeclaration()) 6356 return; 6357 addStackProbeTargetAttributes(D, GV, CGM); 6358 } 6359 } 6360 6361 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 6362 if (!::classifyReturnType(getCXXABI(), FI, *this)) 6363 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(), 6364 FI.getCallingConvention()); 6365 6366 for (auto &I : FI.arguments()) 6367 I.info = classifyArgumentType(I.type, FI.isVariadic(), 6368 FI.getCallingConvention()); 6369 6370 6371 // Always honor user-specified calling convention. 6372 if (FI.getCallingConvention() != llvm::CallingConv::C) 6373 return; 6374 6375 llvm::CallingConv::ID cc = getRuntimeCC(); 6376 if (cc != llvm::CallingConv::C) 6377 FI.setEffectiveCallingConvention(cc); 6378 } 6379 6380 /// Return the default calling convention that LLVM will use. 6381 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 6382 // The default calling convention that LLVM will infer. 6383 if (isEABIHF() || getTarget().getTriple().isWatchABI()) 6384 return llvm::CallingConv::ARM_AAPCS_VFP; 6385 else if (isEABI()) 6386 return llvm::CallingConv::ARM_AAPCS; 6387 else 6388 return llvm::CallingConv::ARM_APCS; 6389 } 6390 6391 /// Return the calling convention that our ABI would like us to use 6392 /// as the C calling convention. 6393 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 6394 switch (getABIKind()) { 6395 case APCS: return llvm::CallingConv::ARM_APCS; 6396 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 6397 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 6398 case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 6399 } 6400 llvm_unreachable("bad ABI kind"); 6401 } 6402 6403 void ARMABIInfo::setCCs() { 6404 assert(getRuntimeCC() == llvm::CallingConv::C); 6405 6406 // Don't muddy up the IR with a ton of explicit annotations if 6407 // they'd just match what LLVM will infer from the triple. 6408 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 6409 if (abiCC != getLLVMDefaultCC()) 6410 RuntimeCC = abiCC; 6411 } 6412 6413 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const { 6414 uint64_t Size = getContext().getTypeSize(Ty); 6415 if (Size <= 32) { 6416 llvm::Type *ResType = 6417 llvm::Type::getInt32Ty(getVMContext()); 6418 return ABIArgInfo::getDirect(ResType); 6419 } 6420 if (Size == 64 || Size == 128) { 6421 auto *ResType = llvm::FixedVectorType::get( 6422 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 6423 return ABIArgInfo::getDirect(ResType); 6424 } 6425 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6426 } 6427 6428 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty, 6429 const Type *Base, 6430 uint64_t Members) const { 6431 assert(Base && "Base class should be set for homogeneous aggregate"); 6432 // Base can be a floating-point or a vector. 6433 if (const VectorType *VT = Base->getAs<VectorType>()) { 6434 // FP16 vectors should be converted to integer vectors 6435 if (!getTarget().hasLegalHalfType() && containsAnyFP16Vectors(Ty)) { 6436 uint64_t Size = getContext().getTypeSize(VT); 6437 auto *NewVecTy = llvm::FixedVectorType::get( 6438 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 6439 llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members); 6440 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 6441 } 6442 } 6443 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 6444 } 6445 6446 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic, 6447 unsigned functionCallConv) const { 6448 // 6.1.2.1 The following argument types are VFP CPRCs: 6449 // A single-precision floating-point type (including promoted 6450 // half-precision types); A double-precision floating-point type; 6451 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 6452 // with a Base Type of a single- or double-precision floating-point type, 6453 // 64-bit containerized vectors or 128-bit containerized vectors with one 6454 // to four Elements. 6455 // Variadic functions should always marshal to the base standard. 6456 bool IsAAPCS_VFP = 6457 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false); 6458 6459 Ty = useFirstFieldIfTransparentUnion(Ty); 6460 6461 // Handle illegal vector types here. 6462 if (isIllegalVectorType(Ty)) 6463 return coerceIllegalVector(Ty); 6464 6465 if (!isAggregateTypeForABI(Ty)) { 6466 // Treat an enum type as its underlying type. 6467 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 6468 Ty = EnumTy->getDecl()->getIntegerType(); 6469 } 6470 6471 if (const auto *EIT = Ty->getAs<ExtIntType>()) 6472 if (EIT->getNumBits() > 64) 6473 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 6474 6475 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 6476 : ABIArgInfo::getDirect()); 6477 } 6478 6479 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 6480 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6481 } 6482 6483 // Ignore empty records. 6484 if (isEmptyRecord(getContext(), Ty, true)) 6485 return ABIArgInfo::getIgnore(); 6486 6487 if (IsAAPCS_VFP) { 6488 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 6489 // into VFP registers. 6490 const Type *Base = nullptr; 6491 uint64_t Members = 0; 6492 if (isHomogeneousAggregate(Ty, Base, Members)) 6493 return classifyHomogeneousAggregate(Ty, Base, Members); 6494 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6495 // WatchOS does have homogeneous aggregates. Note that we intentionally use 6496 // this convention even for a variadic function: the backend will use GPRs 6497 // if needed. 6498 const Type *Base = nullptr; 6499 uint64_t Members = 0; 6500 if (isHomogeneousAggregate(Ty, Base, Members)) { 6501 assert(Base && Members <= 4 && "unexpected homogeneous aggregate"); 6502 llvm::Type *Ty = 6503 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members); 6504 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 6505 } 6506 } 6507 6508 if (getABIKind() == ARMABIInfo::AAPCS16_VFP && 6509 getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) { 6510 // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're 6511 // bigger than 128-bits, they get placed in space allocated by the caller, 6512 // and a pointer is passed. 6513 return ABIArgInfo::getIndirect( 6514 CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false); 6515 } 6516 6517 // Support byval for ARM. 6518 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 6519 // most 8-byte. We realign the indirect argument if type alignment is bigger 6520 // than ABI alignment. 6521 uint64_t ABIAlign = 4; 6522 uint64_t TyAlign; 6523 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6524 getABIKind() == ARMABIInfo::AAPCS) { 6525 TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); 6526 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 6527 } else { 6528 TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 6529 } 6530 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 6531 assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval"); 6532 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 6533 /*ByVal=*/true, 6534 /*Realign=*/TyAlign > ABIAlign); 6535 } 6536 6537 // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of 6538 // same size and alignment. 6539 if (getTarget().isRenderScriptTarget()) { 6540 return coerceToIntArray(Ty, getContext(), getVMContext()); 6541 } 6542 6543 // Otherwise, pass by coercing to a structure of the appropriate size. 6544 llvm::Type* ElemTy; 6545 unsigned SizeRegs; 6546 // FIXME: Try to match the types of the arguments more accurately where 6547 // we can. 6548 if (TyAlign <= 4) { 6549 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 6550 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 6551 } else { 6552 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 6553 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 6554 } 6555 6556 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); 6557 } 6558 6559 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 6560 llvm::LLVMContext &VMContext) { 6561 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 6562 // is called integer-like if its size is less than or equal to one word, and 6563 // the offset of each of its addressable sub-fields is zero. 6564 6565 uint64_t Size = Context.getTypeSize(Ty); 6566 6567 // Check that the type fits in a word. 6568 if (Size > 32) 6569 return false; 6570 6571 // FIXME: Handle vector types! 6572 if (Ty->isVectorType()) 6573 return false; 6574 6575 // Float types are never treated as "integer like". 6576 if (Ty->isRealFloatingType()) 6577 return false; 6578 6579 // If this is a builtin or pointer type then it is ok. 6580 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 6581 return true; 6582 6583 // Small complex integer types are "integer like". 6584 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 6585 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 6586 6587 // Single element and zero sized arrays should be allowed, by the definition 6588 // above, but they are not. 6589 6590 // Otherwise, it must be a record type. 6591 const RecordType *RT = Ty->getAs<RecordType>(); 6592 if (!RT) return false; 6593 6594 // Ignore records with flexible arrays. 6595 const RecordDecl *RD = RT->getDecl(); 6596 if (RD->hasFlexibleArrayMember()) 6597 return false; 6598 6599 // Check that all sub-fields are at offset 0, and are themselves "integer 6600 // like". 6601 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 6602 6603 bool HadField = false; 6604 unsigned idx = 0; 6605 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 6606 i != e; ++i, ++idx) { 6607 const FieldDecl *FD = *i; 6608 6609 // Bit-fields are not addressable, we only need to verify they are "integer 6610 // like". We still have to disallow a subsequent non-bitfield, for example: 6611 // struct { int : 0; int x } 6612 // is non-integer like according to gcc. 6613 if (FD->isBitField()) { 6614 if (!RD->isUnion()) 6615 HadField = true; 6616 6617 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6618 return false; 6619 6620 continue; 6621 } 6622 6623 // Check if this field is at offset 0. 6624 if (Layout.getFieldOffset(idx) != 0) 6625 return false; 6626 6627 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6628 return false; 6629 6630 // Only allow at most one field in a structure. This doesn't match the 6631 // wording above, but follows gcc in situations with a field following an 6632 // empty structure. 6633 if (!RD->isUnion()) { 6634 if (HadField) 6635 return false; 6636 6637 HadField = true; 6638 } 6639 } 6640 6641 return true; 6642 } 6643 6644 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic, 6645 unsigned functionCallConv) const { 6646 6647 // Variadic functions should always marshal to the base standard. 6648 bool IsAAPCS_VFP = 6649 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true); 6650 6651 if (RetTy->isVoidType()) 6652 return ABIArgInfo::getIgnore(); 6653 6654 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 6655 // Large vector types should be returned via memory. 6656 if (getContext().getTypeSize(RetTy) > 128) 6657 return getNaturalAlignIndirect(RetTy); 6658 // TODO: FP16/BF16 vectors should be converted to integer vectors 6659 // This check is similar to isIllegalVectorType - refactor? 6660 if ((!getTarget().hasLegalHalfType() && 6661 (VT->getElementType()->isFloat16Type() || 6662 VT->getElementType()->isHalfType())) || 6663 (IsFloatABISoftFP && 6664 VT->getElementType()->isBFloat16Type())) 6665 return coerceIllegalVector(RetTy); 6666 } 6667 6668 if (!isAggregateTypeForABI(RetTy)) { 6669 // Treat an enum type as its underlying type. 6670 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6671 RetTy = EnumTy->getDecl()->getIntegerType(); 6672 6673 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 6674 if (EIT->getNumBits() > 64) 6675 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 6676 6677 return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 6678 : ABIArgInfo::getDirect(); 6679 } 6680 6681 // Are we following APCS? 6682 if (getABIKind() == APCS) { 6683 if (isEmptyRecord(getContext(), RetTy, false)) 6684 return ABIArgInfo::getIgnore(); 6685 6686 // Complex types are all returned as packed integers. 6687 // 6688 // FIXME: Consider using 2 x vector types if the back end handles them 6689 // correctly. 6690 if (RetTy->isAnyComplexType()) 6691 return ABIArgInfo::getDirect(llvm::IntegerType::get( 6692 getVMContext(), getContext().getTypeSize(RetTy))); 6693 6694 // Integer like structures are returned in r0. 6695 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 6696 // Return in the smallest viable integer type. 6697 uint64_t Size = getContext().getTypeSize(RetTy); 6698 if (Size <= 8) 6699 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6700 if (Size <= 16) 6701 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6702 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6703 } 6704 6705 // Otherwise return in memory. 6706 return getNaturalAlignIndirect(RetTy); 6707 } 6708 6709 // Otherwise this is an AAPCS variant. 6710 6711 if (isEmptyRecord(getContext(), RetTy, true)) 6712 return ABIArgInfo::getIgnore(); 6713 6714 // Check for homogeneous aggregates with AAPCS-VFP. 6715 if (IsAAPCS_VFP) { 6716 const Type *Base = nullptr; 6717 uint64_t Members = 0; 6718 if (isHomogeneousAggregate(RetTy, Base, Members)) 6719 return classifyHomogeneousAggregate(RetTy, Base, Members); 6720 } 6721 6722 // Aggregates <= 4 bytes are returned in r0; other aggregates 6723 // are returned indirectly. 6724 uint64_t Size = getContext().getTypeSize(RetTy); 6725 if (Size <= 32) { 6726 // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of 6727 // same size and alignment. 6728 if (getTarget().isRenderScriptTarget()) { 6729 return coerceToIntArray(RetTy, getContext(), getVMContext()); 6730 } 6731 if (getDataLayout().isBigEndian()) 6732 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 6733 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6734 6735 // Return in the smallest viable integer type. 6736 if (Size <= 8) 6737 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6738 if (Size <= 16) 6739 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6740 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6741 } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) { 6742 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext()); 6743 llvm::Type *CoerceTy = 6744 llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32); 6745 return ABIArgInfo::getDirect(CoerceTy); 6746 } 6747 6748 return getNaturalAlignIndirect(RetTy); 6749 } 6750 6751 /// isIllegalVector - check whether Ty is an illegal vector type. 6752 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 6753 if (const VectorType *VT = Ty->getAs<VectorType> ()) { 6754 // On targets that don't support half, fp16 or bfloat, they are expanded 6755 // into float, and we don't want the ABI to depend on whether or not they 6756 // are supported in hardware. Thus return false to coerce vectors of these 6757 // types into integer vectors. 6758 // We do not depend on hasLegalHalfType for bfloat as it is a 6759 // separate IR type. 6760 if ((!getTarget().hasLegalHalfType() && 6761 (VT->getElementType()->isFloat16Type() || 6762 VT->getElementType()->isHalfType())) || 6763 (IsFloatABISoftFP && 6764 VT->getElementType()->isBFloat16Type())) 6765 return true; 6766 if (isAndroid()) { 6767 // Android shipped using Clang 3.1, which supported a slightly different 6768 // vector ABI. The primary differences were that 3-element vector types 6769 // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path 6770 // accepts that legacy behavior for Android only. 6771 // Check whether VT is legal. 6772 unsigned NumElements = VT->getNumElements(); 6773 // NumElements should be power of 2 or equal to 3. 6774 if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3) 6775 return true; 6776 } else { 6777 // Check whether VT is legal. 6778 unsigned NumElements = VT->getNumElements(); 6779 uint64_t Size = getContext().getTypeSize(VT); 6780 // NumElements should be power of 2. 6781 if (!llvm::isPowerOf2_32(NumElements)) 6782 return true; 6783 // Size should be greater than 32 bits. 6784 return Size <= 32; 6785 } 6786 } 6787 return false; 6788 } 6789 6790 /// Return true if a type contains any 16-bit floating point vectors 6791 bool ARMABIInfo::containsAnyFP16Vectors(QualType Ty) const { 6792 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 6793 uint64_t NElements = AT->getSize().getZExtValue(); 6794 if (NElements == 0) 6795 return false; 6796 return containsAnyFP16Vectors(AT->getElementType()); 6797 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 6798 const RecordDecl *RD = RT->getDecl(); 6799 6800 // If this is a C++ record, check the bases first. 6801 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6802 if (llvm::any_of(CXXRD->bases(), [this](const CXXBaseSpecifier &B) { 6803 return containsAnyFP16Vectors(B.getType()); 6804 })) 6805 return true; 6806 6807 if (llvm::any_of(RD->fields(), [this](FieldDecl *FD) { 6808 return FD && containsAnyFP16Vectors(FD->getType()); 6809 })) 6810 return true; 6811 6812 return false; 6813 } else { 6814 if (const VectorType *VT = Ty->getAs<VectorType>()) 6815 return (VT->getElementType()->isFloat16Type() || 6816 VT->getElementType()->isBFloat16Type() || 6817 VT->getElementType()->isHalfType()); 6818 return false; 6819 } 6820 } 6821 6822 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 6823 llvm::Type *eltTy, 6824 unsigned numElts) const { 6825 if (!llvm::isPowerOf2_32(numElts)) 6826 return false; 6827 unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy); 6828 if (size > 64) 6829 return false; 6830 if (vectorSize.getQuantity() != 8 && 6831 (vectorSize.getQuantity() != 16 || numElts == 1)) 6832 return false; 6833 return true; 6834 } 6835 6836 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 6837 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 6838 // double, or 64-bit or 128-bit vectors. 6839 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 6840 if (BT->getKind() == BuiltinType::Float || 6841 BT->getKind() == BuiltinType::Double || 6842 BT->getKind() == BuiltinType::LongDouble) 6843 return true; 6844 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 6845 unsigned VecSize = getContext().getTypeSize(VT); 6846 if (VecSize == 64 || VecSize == 128) 6847 return true; 6848 } 6849 return false; 6850 } 6851 6852 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 6853 uint64_t Members) const { 6854 return Members <= 4; 6855 } 6856 6857 bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention, 6858 bool acceptHalf) const { 6859 // Give precedence to user-specified calling conventions. 6860 if (callConvention != llvm::CallingConv::C) 6861 return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP); 6862 else 6863 return (getABIKind() == AAPCS_VFP) || 6864 (acceptHalf && (getABIKind() == AAPCS16_VFP)); 6865 } 6866 6867 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6868 QualType Ty) const { 6869 CharUnits SlotSize = CharUnits::fromQuantity(4); 6870 6871 // Empty records are ignored for parameter passing purposes. 6872 if (isEmptyRecord(getContext(), Ty, true)) { 6873 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 6874 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 6875 return Addr; 6876 } 6877 6878 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 6879 CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty); 6880 6881 // Use indirect if size of the illegal vector is bigger than 16 bytes. 6882 bool IsIndirect = false; 6883 const Type *Base = nullptr; 6884 uint64_t Members = 0; 6885 if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) { 6886 IsIndirect = true; 6887 6888 // ARMv7k passes structs bigger than 16 bytes indirectly, in space 6889 // allocated by the caller. 6890 } else if (TySize > CharUnits::fromQuantity(16) && 6891 getABIKind() == ARMABIInfo::AAPCS16_VFP && 6892 !isHomogeneousAggregate(Ty, Base, Members)) { 6893 IsIndirect = true; 6894 6895 // Otherwise, bound the type's ABI alignment. 6896 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 6897 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 6898 // Our callers should be prepared to handle an under-aligned address. 6899 } else if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6900 getABIKind() == ARMABIInfo::AAPCS) { 6901 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6902 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8)); 6903 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6904 // ARMv7k allows type alignment up to 16 bytes. 6905 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6906 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16)); 6907 } else { 6908 TyAlignForABI = CharUnits::fromQuantity(4); 6909 } 6910 6911 TypeInfoChars TyInfo(TySize, TyAlignForABI, false); 6912 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo, 6913 SlotSize, /*AllowHigherAlign*/ true); 6914 } 6915 6916 //===----------------------------------------------------------------------===// 6917 // NVPTX ABI Implementation 6918 //===----------------------------------------------------------------------===// 6919 6920 namespace { 6921 6922 class NVPTXTargetCodeGenInfo; 6923 6924 class NVPTXABIInfo : public ABIInfo { 6925 NVPTXTargetCodeGenInfo &CGInfo; 6926 6927 public: 6928 NVPTXABIInfo(CodeGenTypes &CGT, NVPTXTargetCodeGenInfo &Info) 6929 : ABIInfo(CGT), CGInfo(Info) {} 6930 6931 ABIArgInfo classifyReturnType(QualType RetTy) const; 6932 ABIArgInfo classifyArgumentType(QualType Ty) const; 6933 6934 void computeInfo(CGFunctionInfo &FI) const override; 6935 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6936 QualType Ty) const override; 6937 bool isUnsupportedType(QualType T) const; 6938 ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, unsigned MaxSize) const; 6939 }; 6940 6941 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 6942 public: 6943 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 6944 : TargetCodeGenInfo(std::make_unique<NVPTXABIInfo>(CGT, *this)) {} 6945 6946 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6947 CodeGen::CodeGenModule &M) const override; 6948 bool shouldEmitStaticExternCAliases() const override; 6949 6950 llvm::Type *getCUDADeviceBuiltinSurfaceDeviceType() const override { 6951 // On the device side, surface reference is represented as an object handle 6952 // in 64-bit integer. 6953 return llvm::Type::getInt64Ty(getABIInfo().getVMContext()); 6954 } 6955 6956 llvm::Type *getCUDADeviceBuiltinTextureDeviceType() const override { 6957 // On the device side, texture reference is represented as an object handle 6958 // in 64-bit integer. 6959 return llvm::Type::getInt64Ty(getABIInfo().getVMContext()); 6960 } 6961 6962 bool emitCUDADeviceBuiltinSurfaceDeviceCopy(CodeGenFunction &CGF, LValue Dst, 6963 LValue Src) const override { 6964 emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src); 6965 return true; 6966 } 6967 6968 bool emitCUDADeviceBuiltinTextureDeviceCopy(CodeGenFunction &CGF, LValue Dst, 6969 LValue Src) const override { 6970 emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src); 6971 return true; 6972 } 6973 6974 private: 6975 // Adds a NamedMDNode with GV, Name, and Operand as operands, and adds the 6976 // resulting MDNode to the nvvm.annotations MDNode. 6977 static void addNVVMMetadata(llvm::GlobalValue *GV, StringRef Name, 6978 int Operand); 6979 6980 static void emitBuiltinSurfTexDeviceCopy(CodeGenFunction &CGF, LValue Dst, 6981 LValue Src) { 6982 llvm::Value *Handle = nullptr; 6983 llvm::Constant *C = 6984 llvm::dyn_cast<llvm::Constant>(Src.getAddress(CGF).getPointer()); 6985 // Lookup `addrspacecast` through the constant pointer if any. 6986 if (auto *ASC = llvm::dyn_cast_or_null<llvm::AddrSpaceCastOperator>(C)) 6987 C = llvm::cast<llvm::Constant>(ASC->getPointerOperand()); 6988 if (auto *GV = llvm::dyn_cast_or_null<llvm::GlobalVariable>(C)) { 6989 // Load the handle from the specific global variable using 6990 // `nvvm.texsurf.handle.internal` intrinsic. 6991 Handle = CGF.EmitRuntimeCall( 6992 CGF.CGM.getIntrinsic(llvm::Intrinsic::nvvm_texsurf_handle_internal, 6993 {GV->getType()}), 6994 {GV}, "texsurf_handle"); 6995 } else 6996 Handle = CGF.EmitLoadOfScalar(Src, SourceLocation()); 6997 CGF.EmitStoreOfScalar(Handle, Dst); 6998 } 6999 }; 7000 7001 /// Checks if the type is unsupported directly by the current target. 7002 bool NVPTXABIInfo::isUnsupportedType(QualType T) const { 7003 ASTContext &Context = getContext(); 7004 if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type()) 7005 return true; 7006 if (!Context.getTargetInfo().hasFloat128Type() && 7007 (T->isFloat128Type() || 7008 (T->isRealFloatingType() && Context.getTypeSize(T) == 128))) 7009 return true; 7010 if (const auto *EIT = T->getAs<ExtIntType>()) 7011 return EIT->getNumBits() > 7012 (Context.getTargetInfo().hasInt128Type() ? 128U : 64U); 7013 if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() && 7014 Context.getTypeSize(T) > 64U) 7015 return true; 7016 if (const auto *AT = T->getAsArrayTypeUnsafe()) 7017 return isUnsupportedType(AT->getElementType()); 7018 const auto *RT = T->getAs<RecordType>(); 7019 if (!RT) 7020 return false; 7021 const RecordDecl *RD = RT->getDecl(); 7022 7023 // If this is a C++ record, check the bases first. 7024 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 7025 for (const CXXBaseSpecifier &I : CXXRD->bases()) 7026 if (isUnsupportedType(I.getType())) 7027 return true; 7028 7029 for (const FieldDecl *I : RD->fields()) 7030 if (isUnsupportedType(I->getType())) 7031 return true; 7032 return false; 7033 } 7034 7035 /// Coerce the given type into an array with maximum allowed size of elements. 7036 ABIArgInfo NVPTXABIInfo::coerceToIntArrayWithLimit(QualType Ty, 7037 unsigned MaxSize) const { 7038 // Alignment and Size are measured in bits. 7039 const uint64_t Size = getContext().getTypeSize(Ty); 7040 const uint64_t Alignment = getContext().getTypeAlign(Ty); 7041 const unsigned Div = std::min<unsigned>(MaxSize, Alignment); 7042 llvm::Type *IntType = llvm::Type::getIntNTy(getVMContext(), Div); 7043 const uint64_t NumElements = (Size + Div - 1) / Div; 7044 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 7045 } 7046 7047 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 7048 if (RetTy->isVoidType()) 7049 return ABIArgInfo::getIgnore(); 7050 7051 if (getContext().getLangOpts().OpenMP && 7052 getContext().getLangOpts().OpenMPIsDevice && isUnsupportedType(RetTy)) 7053 return coerceToIntArrayWithLimit(RetTy, 64); 7054 7055 // note: this is different from default ABI 7056 if (!RetTy->isScalarType()) 7057 return ABIArgInfo::getDirect(); 7058 7059 // Treat an enum type as its underlying type. 7060 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7061 RetTy = EnumTy->getDecl()->getIntegerType(); 7062 7063 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 7064 : ABIArgInfo::getDirect()); 7065 } 7066 7067 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 7068 // Treat an enum type as its underlying type. 7069 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7070 Ty = EnumTy->getDecl()->getIntegerType(); 7071 7072 // Return aggregates type as indirect by value 7073 if (isAggregateTypeForABI(Ty)) { 7074 // Under CUDA device compilation, tex/surf builtin types are replaced with 7075 // object types and passed directly. 7076 if (getContext().getLangOpts().CUDAIsDevice) { 7077 if (Ty->isCUDADeviceBuiltinSurfaceType()) 7078 return ABIArgInfo::getDirect( 7079 CGInfo.getCUDADeviceBuiltinSurfaceDeviceType()); 7080 if (Ty->isCUDADeviceBuiltinTextureType()) 7081 return ABIArgInfo::getDirect( 7082 CGInfo.getCUDADeviceBuiltinTextureDeviceType()); 7083 } 7084 return getNaturalAlignIndirect(Ty, /* byval */ true); 7085 } 7086 7087 if (const auto *EIT = Ty->getAs<ExtIntType>()) { 7088 if ((EIT->getNumBits() > 128) || 7089 (!getContext().getTargetInfo().hasInt128Type() && 7090 EIT->getNumBits() > 64)) 7091 return getNaturalAlignIndirect(Ty, /* byval */ true); 7092 } 7093 7094 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 7095 : ABIArgInfo::getDirect()); 7096 } 7097 7098 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 7099 if (!getCXXABI().classifyReturnType(FI)) 7100 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7101 for (auto &I : FI.arguments()) 7102 I.info = classifyArgumentType(I.type); 7103 7104 // Always honor user-specified calling convention. 7105 if (FI.getCallingConvention() != llvm::CallingConv::C) 7106 return; 7107 7108 FI.setEffectiveCallingConvention(getRuntimeCC()); 7109 } 7110 7111 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7112 QualType Ty) const { 7113 llvm_unreachable("NVPTX does not support varargs"); 7114 } 7115 7116 void NVPTXTargetCodeGenInfo::setTargetAttributes( 7117 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7118 if (GV->isDeclaration()) 7119 return; 7120 const VarDecl *VD = dyn_cast_or_null<VarDecl>(D); 7121 if (VD) { 7122 if (M.getLangOpts().CUDA) { 7123 if (VD->getType()->isCUDADeviceBuiltinSurfaceType()) 7124 addNVVMMetadata(GV, "surface", 1); 7125 else if (VD->getType()->isCUDADeviceBuiltinTextureType()) 7126 addNVVMMetadata(GV, "texture", 1); 7127 return; 7128 } 7129 } 7130 7131 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7132 if (!FD) return; 7133 7134 llvm::Function *F = cast<llvm::Function>(GV); 7135 7136 // Perform special handling in OpenCL mode 7137 if (M.getLangOpts().OpenCL) { 7138 // Use OpenCL function attributes to check for kernel functions 7139 // By default, all functions are device functions 7140 if (FD->hasAttr<OpenCLKernelAttr>()) { 7141 // OpenCL __kernel functions get kernel metadata 7142 // Create !{<func-ref>, metadata !"kernel", i32 1} node 7143 addNVVMMetadata(F, "kernel", 1); 7144 // And kernel functions are not subject to inlining 7145 F->addFnAttr(llvm::Attribute::NoInline); 7146 } 7147 } 7148 7149 // Perform special handling in CUDA mode. 7150 if (M.getLangOpts().CUDA) { 7151 // CUDA __global__ functions get a kernel metadata entry. Since 7152 // __global__ functions cannot be called from the device, we do not 7153 // need to set the noinline attribute. 7154 if (FD->hasAttr<CUDAGlobalAttr>()) { 7155 // Create !{<func-ref>, metadata !"kernel", i32 1} node 7156 addNVVMMetadata(F, "kernel", 1); 7157 } 7158 if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) { 7159 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 7160 llvm::APSInt MaxThreads(32); 7161 MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); 7162 if (MaxThreads > 0) 7163 addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); 7164 7165 // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was 7166 // not specified in __launch_bounds__ or if the user specified a 0 value, 7167 // we don't have to add a PTX directive. 7168 if (Attr->getMinBlocks()) { 7169 llvm::APSInt MinBlocks(32); 7170 MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); 7171 if (MinBlocks > 0) 7172 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 7173 addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); 7174 } 7175 } 7176 } 7177 } 7178 7179 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::GlobalValue *GV, 7180 StringRef Name, int Operand) { 7181 llvm::Module *M = GV->getParent(); 7182 llvm::LLVMContext &Ctx = M->getContext(); 7183 7184 // Get "nvvm.annotations" metadata node 7185 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 7186 7187 llvm::Metadata *MDVals[] = { 7188 llvm::ConstantAsMetadata::get(GV), llvm::MDString::get(Ctx, Name), 7189 llvm::ConstantAsMetadata::get( 7190 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; 7191 // Append metadata to nvvm.annotations 7192 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 7193 } 7194 7195 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 7196 return false; 7197 } 7198 } 7199 7200 //===----------------------------------------------------------------------===// 7201 // SystemZ ABI Implementation 7202 //===----------------------------------------------------------------------===// 7203 7204 namespace { 7205 7206 class SystemZABIInfo : public SwiftABIInfo { 7207 bool HasVector; 7208 bool IsSoftFloatABI; 7209 7210 public: 7211 SystemZABIInfo(CodeGenTypes &CGT, bool HV, bool SF) 7212 : SwiftABIInfo(CGT), HasVector(HV), IsSoftFloatABI(SF) {} 7213 7214 bool isPromotableIntegerTypeForABI(QualType Ty) const; 7215 bool isCompoundType(QualType Ty) const; 7216 bool isVectorArgumentType(QualType Ty) const; 7217 bool isFPArgumentType(QualType Ty) const; 7218 QualType GetSingleElementType(QualType Ty) const; 7219 7220 ABIArgInfo classifyReturnType(QualType RetTy) const; 7221 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 7222 7223 void computeInfo(CGFunctionInfo &FI) const override { 7224 if (!getCXXABI().classifyReturnType(FI)) 7225 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7226 for (auto &I : FI.arguments()) 7227 I.info = classifyArgumentType(I.type); 7228 } 7229 7230 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7231 QualType Ty) const override; 7232 7233 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 7234 bool asReturnValue) const override { 7235 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 7236 } 7237 bool isSwiftErrorInRegister() const override { 7238 return false; 7239 } 7240 }; 7241 7242 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 7243 public: 7244 SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector, bool SoftFloatABI) 7245 : TargetCodeGenInfo( 7246 std::make_unique<SystemZABIInfo>(CGT, HasVector, SoftFloatABI)) {} 7247 }; 7248 7249 } 7250 7251 bool SystemZABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const { 7252 // Treat an enum type as its underlying type. 7253 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7254 Ty = EnumTy->getDecl()->getIntegerType(); 7255 7256 // Promotable integer types are required to be promoted by the ABI. 7257 if (ABIInfo::isPromotableIntegerTypeForABI(Ty)) 7258 return true; 7259 7260 if (const auto *EIT = Ty->getAs<ExtIntType>()) 7261 if (EIT->getNumBits() < 64) 7262 return true; 7263 7264 // 32-bit values must also be promoted. 7265 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 7266 switch (BT->getKind()) { 7267 case BuiltinType::Int: 7268 case BuiltinType::UInt: 7269 return true; 7270 default: 7271 return false; 7272 } 7273 return false; 7274 } 7275 7276 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 7277 return (Ty->isAnyComplexType() || 7278 Ty->isVectorType() || 7279 isAggregateTypeForABI(Ty)); 7280 } 7281 7282 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { 7283 return (HasVector && 7284 Ty->isVectorType() && 7285 getContext().getTypeSize(Ty) <= 128); 7286 } 7287 7288 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 7289 if (IsSoftFloatABI) 7290 return false; 7291 7292 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 7293 switch (BT->getKind()) { 7294 case BuiltinType::Float: 7295 case BuiltinType::Double: 7296 return true; 7297 default: 7298 return false; 7299 } 7300 7301 return false; 7302 } 7303 7304 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { 7305 const RecordType *RT = Ty->getAs<RecordType>(); 7306 7307 if (RT && RT->isStructureOrClassType()) { 7308 const RecordDecl *RD = RT->getDecl(); 7309 QualType Found; 7310 7311 // If this is a C++ record, check the bases first. 7312 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 7313 for (const auto &I : CXXRD->bases()) { 7314 QualType Base = I.getType(); 7315 7316 // Empty bases don't affect things either way. 7317 if (isEmptyRecord(getContext(), Base, true)) 7318 continue; 7319 7320 if (!Found.isNull()) 7321 return Ty; 7322 Found = GetSingleElementType(Base); 7323 } 7324 7325 // Check the fields. 7326 for (const auto *FD : RD->fields()) { 7327 // For compatibility with GCC, ignore empty bitfields in C++ mode. 7328 // Unlike isSingleElementStruct(), empty structure and array fields 7329 // do count. So do anonymous bitfields that aren't zero-sized. 7330 if (getContext().getLangOpts().CPlusPlus && 7331 FD->isZeroLengthBitField(getContext())) 7332 continue; 7333 // Like isSingleElementStruct(), ignore C++20 empty data members. 7334 if (FD->hasAttr<NoUniqueAddressAttr>() && 7335 isEmptyRecord(getContext(), FD->getType(), true)) 7336 continue; 7337 7338 // Unlike isSingleElementStruct(), arrays do not count. 7339 // Nested structures still do though. 7340 if (!Found.isNull()) 7341 return Ty; 7342 Found = GetSingleElementType(FD->getType()); 7343 } 7344 7345 // Unlike isSingleElementStruct(), trailing padding is allowed. 7346 // An 8-byte aligned struct s { float f; } is passed as a double. 7347 if (!Found.isNull()) 7348 return Found; 7349 } 7350 7351 return Ty; 7352 } 7353 7354 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7355 QualType Ty) const { 7356 // Assume that va_list type is correct; should be pointer to LLVM type: 7357 // struct { 7358 // i64 __gpr; 7359 // i64 __fpr; 7360 // i8 *__overflow_arg_area; 7361 // i8 *__reg_save_area; 7362 // }; 7363 7364 // Every non-vector argument occupies 8 bytes and is passed by preference 7365 // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are 7366 // always passed on the stack. 7367 Ty = getContext().getCanonicalType(Ty); 7368 auto TyInfo = getContext().getTypeInfoInChars(Ty); 7369 llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); 7370 llvm::Type *DirectTy = ArgTy; 7371 ABIArgInfo AI = classifyArgumentType(Ty); 7372 bool IsIndirect = AI.isIndirect(); 7373 bool InFPRs = false; 7374 bool IsVector = false; 7375 CharUnits UnpaddedSize; 7376 CharUnits DirectAlign; 7377 if (IsIndirect) { 7378 DirectTy = llvm::PointerType::getUnqual(DirectTy); 7379 UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8); 7380 } else { 7381 if (AI.getCoerceToType()) 7382 ArgTy = AI.getCoerceToType(); 7383 InFPRs = (!IsSoftFloatABI && (ArgTy->isFloatTy() || ArgTy->isDoubleTy())); 7384 IsVector = ArgTy->isVectorTy(); 7385 UnpaddedSize = TyInfo.Width; 7386 DirectAlign = TyInfo.Align; 7387 } 7388 CharUnits PaddedSize = CharUnits::fromQuantity(8); 7389 if (IsVector && UnpaddedSize > PaddedSize) 7390 PaddedSize = CharUnits::fromQuantity(16); 7391 assert((UnpaddedSize <= PaddedSize) && "Invalid argument size."); 7392 7393 CharUnits Padding = (PaddedSize - UnpaddedSize); 7394 7395 llvm::Type *IndexTy = CGF.Int64Ty; 7396 llvm::Value *PaddedSizeV = 7397 llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity()); 7398 7399 if (IsVector) { 7400 // Work out the address of a vector argument on the stack. 7401 // Vector arguments are always passed in the high bits of a 7402 // single (8 byte) or double (16 byte) stack slot. 7403 Address OverflowArgAreaPtr = 7404 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 7405 Address OverflowArgArea = 7406 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 7407 TyInfo.Align); 7408 Address MemAddr = 7409 CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr"); 7410 7411 // Update overflow_arg_area_ptr pointer 7412 llvm::Value *NewOverflowArgArea = 7413 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 7414 "overflow_arg_area"); 7415 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 7416 7417 return MemAddr; 7418 } 7419 7420 assert(PaddedSize.getQuantity() == 8); 7421 7422 unsigned MaxRegs, RegCountField, RegSaveIndex; 7423 CharUnits RegPadding; 7424 if (InFPRs) { 7425 MaxRegs = 4; // Maximum of 4 FPR arguments 7426 RegCountField = 1; // __fpr 7427 RegSaveIndex = 16; // save offset for f0 7428 RegPadding = CharUnits(); // floats are passed in the high bits of an FPR 7429 } else { 7430 MaxRegs = 5; // Maximum of 5 GPR arguments 7431 RegCountField = 0; // __gpr 7432 RegSaveIndex = 2; // save offset for r2 7433 RegPadding = Padding; // values are passed in the low bits of a GPR 7434 } 7435 7436 Address RegCountPtr = 7437 CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr"); 7438 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 7439 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 7440 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 7441 "fits_in_regs"); 7442 7443 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 7444 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 7445 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 7446 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 7447 7448 // Emit code to load the value if it was passed in registers. 7449 CGF.EmitBlock(InRegBlock); 7450 7451 // Work out the address of an argument register. 7452 llvm::Value *ScaledRegCount = 7453 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 7454 llvm::Value *RegBase = 7455 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity() 7456 + RegPadding.getQuantity()); 7457 llvm::Value *RegOffset = 7458 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 7459 Address RegSaveAreaPtr = 7460 CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr"); 7461 llvm::Value *RegSaveArea = 7462 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 7463 Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset, 7464 "raw_reg_addr"), 7465 PaddedSize); 7466 Address RegAddr = 7467 CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr"); 7468 7469 // Update the register count 7470 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 7471 llvm::Value *NewRegCount = 7472 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 7473 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 7474 CGF.EmitBranch(ContBlock); 7475 7476 // Emit code to load the value if it was passed in memory. 7477 CGF.EmitBlock(InMemBlock); 7478 7479 // Work out the address of a stack argument. 7480 Address OverflowArgAreaPtr = 7481 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 7482 Address OverflowArgArea = 7483 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 7484 PaddedSize); 7485 Address RawMemAddr = 7486 CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr"); 7487 Address MemAddr = 7488 CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr"); 7489 7490 // Update overflow_arg_area_ptr pointer 7491 llvm::Value *NewOverflowArgArea = 7492 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 7493 "overflow_arg_area"); 7494 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 7495 CGF.EmitBranch(ContBlock); 7496 7497 // Return the appropriate result. 7498 CGF.EmitBlock(ContBlock); 7499 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 7500 MemAddr, InMemBlock, "va_arg.addr"); 7501 7502 if (IsIndirect) 7503 ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), 7504 TyInfo.Align); 7505 7506 return ResAddr; 7507 } 7508 7509 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 7510 if (RetTy->isVoidType()) 7511 return ABIArgInfo::getIgnore(); 7512 if (isVectorArgumentType(RetTy)) 7513 return ABIArgInfo::getDirect(); 7514 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 7515 return getNaturalAlignIndirect(RetTy); 7516 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 7517 : ABIArgInfo::getDirect()); 7518 } 7519 7520 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 7521 // Handle the generic C++ ABI. 7522 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 7523 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7524 7525 // Integers and enums are extended to full register width. 7526 if (isPromotableIntegerTypeForABI(Ty)) 7527 return ABIArgInfo::getExtend(Ty); 7528 7529 // Handle vector types and vector-like structure types. Note that 7530 // as opposed to float-like structure types, we do not allow any 7531 // padding for vector-like structures, so verify the sizes match. 7532 uint64_t Size = getContext().getTypeSize(Ty); 7533 QualType SingleElementTy = GetSingleElementType(Ty); 7534 if (isVectorArgumentType(SingleElementTy) && 7535 getContext().getTypeSize(SingleElementTy) == Size) 7536 return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); 7537 7538 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 7539 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 7540 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7541 7542 // Handle small structures. 7543 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7544 // Structures with flexible arrays have variable length, so really 7545 // fail the size test above. 7546 const RecordDecl *RD = RT->getDecl(); 7547 if (RD->hasFlexibleArrayMember()) 7548 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7549 7550 // The structure is passed as an unextended integer, a float, or a double. 7551 llvm::Type *PassTy; 7552 if (isFPArgumentType(SingleElementTy)) { 7553 assert(Size == 32 || Size == 64); 7554 if (Size == 32) 7555 PassTy = llvm::Type::getFloatTy(getVMContext()); 7556 else 7557 PassTy = llvm::Type::getDoubleTy(getVMContext()); 7558 } else 7559 PassTy = llvm::IntegerType::get(getVMContext(), Size); 7560 return ABIArgInfo::getDirect(PassTy); 7561 } 7562 7563 // Non-structure compounds are passed indirectly. 7564 if (isCompoundType(Ty)) 7565 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7566 7567 return ABIArgInfo::getDirect(nullptr); 7568 } 7569 7570 //===----------------------------------------------------------------------===// 7571 // MSP430 ABI Implementation 7572 //===----------------------------------------------------------------------===// 7573 7574 namespace { 7575 7576 class MSP430ABIInfo : public DefaultABIInfo { 7577 static ABIArgInfo complexArgInfo() { 7578 ABIArgInfo Info = ABIArgInfo::getDirect(); 7579 Info.setCanBeFlattened(false); 7580 return Info; 7581 } 7582 7583 public: 7584 MSP430ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7585 7586 ABIArgInfo classifyReturnType(QualType RetTy) const { 7587 if (RetTy->isAnyComplexType()) 7588 return complexArgInfo(); 7589 7590 return DefaultABIInfo::classifyReturnType(RetTy); 7591 } 7592 7593 ABIArgInfo classifyArgumentType(QualType RetTy) const { 7594 if (RetTy->isAnyComplexType()) 7595 return complexArgInfo(); 7596 7597 return DefaultABIInfo::classifyArgumentType(RetTy); 7598 } 7599 7600 // Just copy the original implementations because 7601 // DefaultABIInfo::classify{Return,Argument}Type() are not virtual 7602 void computeInfo(CGFunctionInfo &FI) const override { 7603 if (!getCXXABI().classifyReturnType(FI)) 7604 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7605 for (auto &I : FI.arguments()) 7606 I.info = classifyArgumentType(I.type); 7607 } 7608 7609 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7610 QualType Ty) const override { 7611 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 7612 } 7613 }; 7614 7615 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 7616 public: 7617 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 7618 : TargetCodeGenInfo(std::make_unique<MSP430ABIInfo>(CGT)) {} 7619 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7620 CodeGen::CodeGenModule &M) const override; 7621 }; 7622 7623 } 7624 7625 void MSP430TargetCodeGenInfo::setTargetAttributes( 7626 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7627 if (GV->isDeclaration()) 7628 return; 7629 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 7630 const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>(); 7631 if (!InterruptAttr) 7632 return; 7633 7634 // Handle 'interrupt' attribute: 7635 llvm::Function *F = cast<llvm::Function>(GV); 7636 7637 // Step 1: Set ISR calling convention. 7638 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 7639 7640 // Step 2: Add attributes goodness. 7641 F->addFnAttr(llvm::Attribute::NoInline); 7642 F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber())); 7643 } 7644 } 7645 7646 //===----------------------------------------------------------------------===// 7647 // MIPS ABI Implementation. This works for both little-endian and 7648 // big-endian variants. 7649 //===----------------------------------------------------------------------===// 7650 7651 namespace { 7652 class MipsABIInfo : public ABIInfo { 7653 bool IsO32; 7654 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 7655 void CoerceToIntArgs(uint64_t TySize, 7656 SmallVectorImpl<llvm::Type *> &ArgList) const; 7657 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 7658 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 7659 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 7660 public: 7661 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 7662 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 7663 StackAlignInBytes(IsO32 ? 8 : 16) {} 7664 7665 ABIArgInfo classifyReturnType(QualType RetTy) const; 7666 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 7667 void computeInfo(CGFunctionInfo &FI) const override; 7668 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7669 QualType Ty) const override; 7670 ABIArgInfo extendType(QualType Ty) const; 7671 }; 7672 7673 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 7674 unsigned SizeOfUnwindException; 7675 public: 7676 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 7677 : TargetCodeGenInfo(std::make_unique<MipsABIInfo>(CGT, IsO32)), 7678 SizeOfUnwindException(IsO32 ? 24 : 32) {} 7679 7680 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 7681 return 29; 7682 } 7683 7684 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7685 CodeGen::CodeGenModule &CGM) const override { 7686 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7687 if (!FD) return; 7688 llvm::Function *Fn = cast<llvm::Function>(GV); 7689 7690 if (FD->hasAttr<MipsLongCallAttr>()) 7691 Fn->addFnAttr("long-call"); 7692 else if (FD->hasAttr<MipsShortCallAttr>()) 7693 Fn->addFnAttr("short-call"); 7694 7695 // Other attributes do not have a meaning for declarations. 7696 if (GV->isDeclaration()) 7697 return; 7698 7699 if (FD->hasAttr<Mips16Attr>()) { 7700 Fn->addFnAttr("mips16"); 7701 } 7702 else if (FD->hasAttr<NoMips16Attr>()) { 7703 Fn->addFnAttr("nomips16"); 7704 } 7705 7706 if (FD->hasAttr<MicroMipsAttr>()) 7707 Fn->addFnAttr("micromips"); 7708 else if (FD->hasAttr<NoMicroMipsAttr>()) 7709 Fn->addFnAttr("nomicromips"); 7710 7711 const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>(); 7712 if (!Attr) 7713 return; 7714 7715 const char *Kind; 7716 switch (Attr->getInterrupt()) { 7717 case MipsInterruptAttr::eic: Kind = "eic"; break; 7718 case MipsInterruptAttr::sw0: Kind = "sw0"; break; 7719 case MipsInterruptAttr::sw1: Kind = "sw1"; break; 7720 case MipsInterruptAttr::hw0: Kind = "hw0"; break; 7721 case MipsInterruptAttr::hw1: Kind = "hw1"; break; 7722 case MipsInterruptAttr::hw2: Kind = "hw2"; break; 7723 case MipsInterruptAttr::hw3: Kind = "hw3"; break; 7724 case MipsInterruptAttr::hw4: Kind = "hw4"; break; 7725 case MipsInterruptAttr::hw5: Kind = "hw5"; break; 7726 } 7727 7728 Fn->addFnAttr("interrupt", Kind); 7729 7730 } 7731 7732 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7733 llvm::Value *Address) const override; 7734 7735 unsigned getSizeOfUnwindException() const override { 7736 return SizeOfUnwindException; 7737 } 7738 }; 7739 } 7740 7741 void MipsABIInfo::CoerceToIntArgs( 7742 uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const { 7743 llvm::IntegerType *IntTy = 7744 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 7745 7746 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 7747 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 7748 ArgList.push_back(IntTy); 7749 7750 // If necessary, add one more integer type to ArgList. 7751 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 7752 7753 if (R) 7754 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 7755 } 7756 7757 // In N32/64, an aligned double precision floating point field is passed in 7758 // a register. 7759 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 7760 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 7761 7762 if (IsO32) { 7763 CoerceToIntArgs(TySize, ArgList); 7764 return llvm::StructType::get(getVMContext(), ArgList); 7765 } 7766 7767 if (Ty->isComplexType()) 7768 return CGT.ConvertType(Ty); 7769 7770 const RecordType *RT = Ty->getAs<RecordType>(); 7771 7772 // Unions/vectors are passed in integer registers. 7773 if (!RT || !RT->isStructureOrClassType()) { 7774 CoerceToIntArgs(TySize, ArgList); 7775 return llvm::StructType::get(getVMContext(), ArgList); 7776 } 7777 7778 const RecordDecl *RD = RT->getDecl(); 7779 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 7780 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 7781 7782 uint64_t LastOffset = 0; 7783 unsigned idx = 0; 7784 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 7785 7786 // Iterate over fields in the struct/class and check if there are any aligned 7787 // double fields. 7788 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 7789 i != e; ++i, ++idx) { 7790 const QualType Ty = i->getType(); 7791 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 7792 7793 if (!BT || BT->getKind() != BuiltinType::Double) 7794 continue; 7795 7796 uint64_t Offset = Layout.getFieldOffset(idx); 7797 if (Offset % 64) // Ignore doubles that are not aligned. 7798 continue; 7799 7800 // Add ((Offset - LastOffset) / 64) args of type i64. 7801 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 7802 ArgList.push_back(I64); 7803 7804 // Add double type. 7805 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 7806 LastOffset = Offset + 64; 7807 } 7808 7809 CoerceToIntArgs(TySize - LastOffset, IntArgList); 7810 ArgList.append(IntArgList.begin(), IntArgList.end()); 7811 7812 return llvm::StructType::get(getVMContext(), ArgList); 7813 } 7814 7815 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 7816 uint64_t Offset) const { 7817 if (OrigOffset + MinABIStackAlignInBytes > Offset) 7818 return nullptr; 7819 7820 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 7821 } 7822 7823 ABIArgInfo 7824 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 7825 Ty = useFirstFieldIfTransparentUnion(Ty); 7826 7827 uint64_t OrigOffset = Offset; 7828 uint64_t TySize = getContext().getTypeSize(Ty); 7829 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 7830 7831 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 7832 (uint64_t)StackAlignInBytes); 7833 unsigned CurrOffset = llvm::alignTo(Offset, Align); 7834 Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8; 7835 7836 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 7837 // Ignore empty aggregates. 7838 if (TySize == 0) 7839 return ABIArgInfo::getIgnore(); 7840 7841 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 7842 Offset = OrigOffset + MinABIStackAlignInBytes; 7843 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7844 } 7845 7846 // If we have reached here, aggregates are passed directly by coercing to 7847 // another structure type. Padding is inserted if the offset of the 7848 // aggregate is unaligned. 7849 ABIArgInfo ArgInfo = 7850 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 7851 getPaddingType(OrigOffset, CurrOffset)); 7852 ArgInfo.setInReg(true); 7853 return ArgInfo; 7854 } 7855 7856 // Treat an enum type as its underlying type. 7857 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7858 Ty = EnumTy->getDecl()->getIntegerType(); 7859 7860 // Make sure we pass indirectly things that are too large. 7861 if (const auto *EIT = Ty->getAs<ExtIntType>()) 7862 if (EIT->getNumBits() > 128 || 7863 (EIT->getNumBits() > 64 && 7864 !getContext().getTargetInfo().hasInt128Type())) 7865 return getNaturalAlignIndirect(Ty); 7866 7867 // All integral types are promoted to the GPR width. 7868 if (Ty->isIntegralOrEnumerationType()) 7869 return extendType(Ty); 7870 7871 return ABIArgInfo::getDirect( 7872 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 7873 } 7874 7875 llvm::Type* 7876 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 7877 const RecordType *RT = RetTy->getAs<RecordType>(); 7878 SmallVector<llvm::Type*, 8> RTList; 7879 7880 if (RT && RT->isStructureOrClassType()) { 7881 const RecordDecl *RD = RT->getDecl(); 7882 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 7883 unsigned FieldCnt = Layout.getFieldCount(); 7884 7885 // N32/64 returns struct/classes in floating point registers if the 7886 // following conditions are met: 7887 // 1. The size of the struct/class is no larger than 128-bit. 7888 // 2. The struct/class has one or two fields all of which are floating 7889 // point types. 7890 // 3. The offset of the first field is zero (this follows what gcc does). 7891 // 7892 // Any other composite results are returned in integer registers. 7893 // 7894 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 7895 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 7896 for (; b != e; ++b) { 7897 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 7898 7899 if (!BT || !BT->isFloatingPoint()) 7900 break; 7901 7902 RTList.push_back(CGT.ConvertType(b->getType())); 7903 } 7904 7905 if (b == e) 7906 return llvm::StructType::get(getVMContext(), RTList, 7907 RD->hasAttr<PackedAttr>()); 7908 7909 RTList.clear(); 7910 } 7911 } 7912 7913 CoerceToIntArgs(Size, RTList); 7914 return llvm::StructType::get(getVMContext(), RTList); 7915 } 7916 7917 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 7918 uint64_t Size = getContext().getTypeSize(RetTy); 7919 7920 if (RetTy->isVoidType()) 7921 return ABIArgInfo::getIgnore(); 7922 7923 // O32 doesn't treat zero-sized structs differently from other structs. 7924 // However, N32/N64 ignores zero sized return values. 7925 if (!IsO32 && Size == 0) 7926 return ABIArgInfo::getIgnore(); 7927 7928 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 7929 if (Size <= 128) { 7930 if (RetTy->isAnyComplexType()) 7931 return ABIArgInfo::getDirect(); 7932 7933 // O32 returns integer vectors in registers and N32/N64 returns all small 7934 // aggregates in registers. 7935 if (!IsO32 || 7936 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { 7937 ABIArgInfo ArgInfo = 7938 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 7939 ArgInfo.setInReg(true); 7940 return ArgInfo; 7941 } 7942 } 7943 7944 return getNaturalAlignIndirect(RetTy); 7945 } 7946 7947 // Treat an enum type as its underlying type. 7948 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7949 RetTy = EnumTy->getDecl()->getIntegerType(); 7950 7951 // Make sure we pass indirectly things that are too large. 7952 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 7953 if (EIT->getNumBits() > 128 || 7954 (EIT->getNumBits() > 64 && 7955 !getContext().getTargetInfo().hasInt128Type())) 7956 return getNaturalAlignIndirect(RetTy); 7957 7958 if (isPromotableIntegerTypeForABI(RetTy)) 7959 return ABIArgInfo::getExtend(RetTy); 7960 7961 if ((RetTy->isUnsignedIntegerOrEnumerationType() || 7962 RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32) 7963 return ABIArgInfo::getSignExtend(RetTy); 7964 7965 return ABIArgInfo::getDirect(); 7966 } 7967 7968 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 7969 ABIArgInfo &RetInfo = FI.getReturnInfo(); 7970 if (!getCXXABI().classifyReturnType(FI)) 7971 RetInfo = classifyReturnType(FI.getReturnType()); 7972 7973 // Check if a pointer to an aggregate is passed as a hidden argument. 7974 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 7975 7976 for (auto &I : FI.arguments()) 7977 I.info = classifyArgumentType(I.type, Offset); 7978 } 7979 7980 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7981 QualType OrigTy) const { 7982 QualType Ty = OrigTy; 7983 7984 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. 7985 // Pointers are also promoted in the same way but this only matters for N32. 7986 unsigned SlotSizeInBits = IsO32 ? 32 : 64; 7987 unsigned PtrWidth = getTarget().getPointerWidth(0); 7988 bool DidPromote = false; 7989 if ((Ty->isIntegerType() && 7990 getContext().getIntWidth(Ty) < SlotSizeInBits) || 7991 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { 7992 DidPromote = true; 7993 Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits, 7994 Ty->isSignedIntegerType()); 7995 } 7996 7997 auto TyInfo = getContext().getTypeInfoInChars(Ty); 7998 7999 // The alignment of things in the argument area is never larger than 8000 // StackAlignInBytes. 8001 TyInfo.Align = 8002 std::min(TyInfo.Align, CharUnits::fromQuantity(StackAlignInBytes)); 8003 8004 // MinABIStackAlignInBytes is the size of argument slots on the stack. 8005 CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes); 8006 8007 Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 8008 TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true); 8009 8010 8011 // If there was a promotion, "unpromote" into a temporary. 8012 // TODO: can we just use a pointer into a subset of the original slot? 8013 if (DidPromote) { 8014 Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp"); 8015 llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr); 8016 8017 // Truncate down to the right width. 8018 llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType() 8019 : CGF.IntPtrTy); 8020 llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy); 8021 if (OrigTy->isPointerType()) 8022 V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType()); 8023 8024 CGF.Builder.CreateStore(V, Temp); 8025 Addr = Temp; 8026 } 8027 8028 return Addr; 8029 } 8030 8031 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const { 8032 int TySize = getContext().getTypeSize(Ty); 8033 8034 // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. 8035 if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 8036 return ABIArgInfo::getSignExtend(Ty); 8037 8038 return ABIArgInfo::getExtend(Ty); 8039 } 8040 8041 bool 8042 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 8043 llvm::Value *Address) const { 8044 // This information comes from gcc's implementation, which seems to 8045 // as canonical as it gets. 8046 8047 // Everything on MIPS is 4 bytes. Double-precision FP registers 8048 // are aliased to pairs of single-precision FP registers. 8049 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 8050 8051 // 0-31 are the general purpose registers, $0 - $31. 8052 // 32-63 are the floating-point registers, $f0 - $f31. 8053 // 64 and 65 are the multiply/divide registers, $hi and $lo. 8054 // 66 is the (notional, I think) register for signal-handler return. 8055 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 8056 8057 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 8058 // They are one bit wide and ignored here. 8059 8060 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 8061 // (coprocessor 1 is the FP unit) 8062 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 8063 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 8064 // 176-181 are the DSP accumulator registers. 8065 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 8066 return false; 8067 } 8068 8069 //===----------------------------------------------------------------------===// 8070 // AVR ABI Implementation. 8071 //===----------------------------------------------------------------------===// 8072 8073 namespace { 8074 class AVRTargetCodeGenInfo : public TargetCodeGenInfo { 8075 public: 8076 AVRTargetCodeGenInfo(CodeGenTypes &CGT) 8077 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 8078 8079 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8080 CodeGen::CodeGenModule &CGM) const override { 8081 if (GV->isDeclaration()) 8082 return; 8083 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 8084 if (!FD) return; 8085 auto *Fn = cast<llvm::Function>(GV); 8086 8087 if (FD->getAttr<AVRInterruptAttr>()) 8088 Fn->addFnAttr("interrupt"); 8089 8090 if (FD->getAttr<AVRSignalAttr>()) 8091 Fn->addFnAttr("signal"); 8092 } 8093 }; 8094 } 8095 8096 //===----------------------------------------------------------------------===// 8097 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 8098 // Currently subclassed only to implement custom OpenCL C function attribute 8099 // handling. 8100 //===----------------------------------------------------------------------===// 8101 8102 namespace { 8103 8104 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 8105 public: 8106 TCETargetCodeGenInfo(CodeGenTypes &CGT) 8107 : DefaultTargetCodeGenInfo(CGT) {} 8108 8109 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8110 CodeGen::CodeGenModule &M) const override; 8111 }; 8112 8113 void TCETargetCodeGenInfo::setTargetAttributes( 8114 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 8115 if (GV->isDeclaration()) 8116 return; 8117 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 8118 if (!FD) return; 8119 8120 llvm::Function *F = cast<llvm::Function>(GV); 8121 8122 if (M.getLangOpts().OpenCL) { 8123 if (FD->hasAttr<OpenCLKernelAttr>()) { 8124 // OpenCL C Kernel functions are not subject to inlining 8125 F->addFnAttr(llvm::Attribute::NoInline); 8126 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 8127 if (Attr) { 8128 // Convert the reqd_work_group_size() attributes to metadata. 8129 llvm::LLVMContext &Context = F->getContext(); 8130 llvm::NamedMDNode *OpenCLMetadata = 8131 M.getModule().getOrInsertNamedMetadata( 8132 "opencl.kernel_wg_size_info"); 8133 8134 SmallVector<llvm::Metadata *, 5> Operands; 8135 Operands.push_back(llvm::ConstantAsMetadata::get(F)); 8136 8137 Operands.push_back( 8138 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8139 M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); 8140 Operands.push_back( 8141 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8142 M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); 8143 Operands.push_back( 8144 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8145 M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); 8146 8147 // Add a boolean constant operand for "required" (true) or "hint" 8148 // (false) for implementing the work_group_size_hint attr later. 8149 // Currently always true as the hint is not yet implemented. 8150 Operands.push_back( 8151 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); 8152 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 8153 } 8154 } 8155 } 8156 } 8157 8158 } 8159 8160 //===----------------------------------------------------------------------===// 8161 // Hexagon ABI Implementation 8162 //===----------------------------------------------------------------------===// 8163 8164 namespace { 8165 8166 class HexagonABIInfo : public DefaultABIInfo { 8167 public: 8168 HexagonABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8169 8170 private: 8171 ABIArgInfo classifyReturnType(QualType RetTy) const; 8172 ABIArgInfo classifyArgumentType(QualType RetTy) const; 8173 ABIArgInfo classifyArgumentType(QualType RetTy, unsigned *RegsLeft) const; 8174 8175 void computeInfo(CGFunctionInfo &FI) const override; 8176 8177 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8178 QualType Ty) const override; 8179 Address EmitVAArgFromMemory(CodeGenFunction &CFG, Address VAListAddr, 8180 QualType Ty) const; 8181 Address EmitVAArgForHexagon(CodeGenFunction &CFG, Address VAListAddr, 8182 QualType Ty) const; 8183 Address EmitVAArgForHexagonLinux(CodeGenFunction &CFG, Address VAListAddr, 8184 QualType Ty) const; 8185 }; 8186 8187 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 8188 public: 8189 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 8190 : TargetCodeGenInfo(std::make_unique<HexagonABIInfo>(CGT)) {} 8191 8192 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 8193 return 29; 8194 } 8195 8196 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8197 CodeGen::CodeGenModule &GCM) const override { 8198 if (GV->isDeclaration()) 8199 return; 8200 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 8201 if (!FD) 8202 return; 8203 } 8204 }; 8205 8206 } // namespace 8207 8208 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 8209 unsigned RegsLeft = 6; 8210 if (!getCXXABI().classifyReturnType(FI)) 8211 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8212 for (auto &I : FI.arguments()) 8213 I.info = classifyArgumentType(I.type, &RegsLeft); 8214 } 8215 8216 static bool HexagonAdjustRegsLeft(uint64_t Size, unsigned *RegsLeft) { 8217 assert(Size <= 64 && "Not expecting to pass arguments larger than 64 bits" 8218 " through registers"); 8219 8220 if (*RegsLeft == 0) 8221 return false; 8222 8223 if (Size <= 32) { 8224 (*RegsLeft)--; 8225 return true; 8226 } 8227 8228 if (2 <= (*RegsLeft & (~1U))) { 8229 *RegsLeft = (*RegsLeft & (~1U)) - 2; 8230 return true; 8231 } 8232 8233 // Next available register was r5 but candidate was greater than 32-bits so it 8234 // has to go on the stack. However we still consume r5 8235 if (*RegsLeft == 1) 8236 *RegsLeft = 0; 8237 8238 return false; 8239 } 8240 8241 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty, 8242 unsigned *RegsLeft) const { 8243 if (!isAggregateTypeForABI(Ty)) { 8244 // Treat an enum type as its underlying type. 8245 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 8246 Ty = EnumTy->getDecl()->getIntegerType(); 8247 8248 uint64_t Size = getContext().getTypeSize(Ty); 8249 if (Size <= 64) 8250 HexagonAdjustRegsLeft(Size, RegsLeft); 8251 8252 if (Size > 64 && Ty->isExtIntType()) 8253 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8254 8255 return isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 8256 : ABIArgInfo::getDirect(); 8257 } 8258 8259 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 8260 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 8261 8262 // Ignore empty records. 8263 if (isEmptyRecord(getContext(), Ty, true)) 8264 return ABIArgInfo::getIgnore(); 8265 8266 uint64_t Size = getContext().getTypeSize(Ty); 8267 unsigned Align = getContext().getTypeAlign(Ty); 8268 8269 if (Size > 64) 8270 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8271 8272 if (HexagonAdjustRegsLeft(Size, RegsLeft)) 8273 Align = Size <= 32 ? 32 : 64; 8274 if (Size <= Align) { 8275 // Pass in the smallest viable integer type. 8276 if (!llvm::isPowerOf2_64(Size)) 8277 Size = llvm::NextPowerOf2(Size); 8278 return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size)); 8279 } 8280 return DefaultABIInfo::classifyArgumentType(Ty); 8281 } 8282 8283 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 8284 if (RetTy->isVoidType()) 8285 return ABIArgInfo::getIgnore(); 8286 8287 const TargetInfo &T = CGT.getTarget(); 8288 uint64_t Size = getContext().getTypeSize(RetTy); 8289 8290 if (RetTy->getAs<VectorType>()) { 8291 // HVX vectors are returned in vector registers or register pairs. 8292 if (T.hasFeature("hvx")) { 8293 assert(T.hasFeature("hvx-length64b") || T.hasFeature("hvx-length128b")); 8294 uint64_t VecSize = T.hasFeature("hvx-length64b") ? 64*8 : 128*8; 8295 if (Size == VecSize || Size == 2*VecSize) 8296 return ABIArgInfo::getDirectInReg(); 8297 } 8298 // Large vector types should be returned via memory. 8299 if (Size > 64) 8300 return getNaturalAlignIndirect(RetTy); 8301 } 8302 8303 if (!isAggregateTypeForABI(RetTy)) { 8304 // Treat an enum type as its underlying type. 8305 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 8306 RetTy = EnumTy->getDecl()->getIntegerType(); 8307 8308 if (Size > 64 && RetTy->isExtIntType()) 8309 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 8310 8311 return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 8312 : ABIArgInfo::getDirect(); 8313 } 8314 8315 if (isEmptyRecord(getContext(), RetTy, true)) 8316 return ABIArgInfo::getIgnore(); 8317 8318 // Aggregates <= 8 bytes are returned in registers, other aggregates 8319 // are returned indirectly. 8320 if (Size <= 64) { 8321 // Return in the smallest viable integer type. 8322 if (!llvm::isPowerOf2_64(Size)) 8323 Size = llvm::NextPowerOf2(Size); 8324 return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size)); 8325 } 8326 return getNaturalAlignIndirect(RetTy, /*ByVal=*/true); 8327 } 8328 8329 Address HexagonABIInfo::EmitVAArgFromMemory(CodeGenFunction &CGF, 8330 Address VAListAddr, 8331 QualType Ty) const { 8332 // Load the overflow area pointer. 8333 Address __overflow_area_pointer_p = 8334 CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p"); 8335 llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad( 8336 __overflow_area_pointer_p, "__overflow_area_pointer"); 8337 8338 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; 8339 if (Align > 4) { 8340 // Alignment should be a power of 2. 8341 assert((Align & (Align - 1)) == 0 && "Alignment is not power of 2!"); 8342 8343 // overflow_arg_area = (overflow_arg_area + align - 1) & -align; 8344 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int64Ty, Align - 1); 8345 8346 // Add offset to the current pointer to access the argument. 8347 __overflow_area_pointer = 8348 CGF.Builder.CreateGEP(__overflow_area_pointer, Offset); 8349 llvm::Value *AsInt = 8350 CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty); 8351 8352 // Create a mask which should be "AND"ed 8353 // with (overflow_arg_area + align - 1) 8354 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -(int)Align); 8355 __overflow_area_pointer = CGF.Builder.CreateIntToPtr( 8356 CGF.Builder.CreateAnd(AsInt, Mask), __overflow_area_pointer->getType(), 8357 "__overflow_area_pointer.align"); 8358 } 8359 8360 // Get the type of the argument from memory and bitcast 8361 // overflow area pointer to the argument type. 8362 llvm::Type *PTy = CGF.ConvertTypeForMem(Ty); 8363 Address AddrTyped = CGF.Builder.CreateBitCast( 8364 Address(__overflow_area_pointer, CharUnits::fromQuantity(Align)), 8365 llvm::PointerType::getUnqual(PTy)); 8366 8367 // Round up to the minimum stack alignment for varargs which is 4 bytes. 8368 uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4); 8369 8370 __overflow_area_pointer = CGF.Builder.CreateGEP( 8371 __overflow_area_pointer, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 8372 "__overflow_area_pointer.next"); 8373 CGF.Builder.CreateStore(__overflow_area_pointer, __overflow_area_pointer_p); 8374 8375 return AddrTyped; 8376 } 8377 8378 Address HexagonABIInfo::EmitVAArgForHexagon(CodeGenFunction &CGF, 8379 Address VAListAddr, 8380 QualType Ty) const { 8381 // FIXME: Need to handle alignment 8382 llvm::Type *BP = CGF.Int8PtrTy; 8383 llvm::Type *BPP = CGF.Int8PtrPtrTy; 8384 CGBuilderTy &Builder = CGF.Builder; 8385 Address VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 8386 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 8387 // Handle address alignment for type alignment > 32 bits 8388 uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8; 8389 if (TyAlign > 4) { 8390 assert((TyAlign & (TyAlign - 1)) == 0 && "Alignment is not power of 2!"); 8391 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty); 8392 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1)); 8393 AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1))); 8394 Addr = Builder.CreateIntToPtr(AddrAsInt, BP); 8395 } 8396 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 8397 Address AddrTyped = Builder.CreateBitCast( 8398 Address(Addr, CharUnits::fromQuantity(TyAlign)), PTy); 8399 8400 uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4); 8401 llvm::Value *NextAddr = Builder.CreateGEP( 8402 Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next"); 8403 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 8404 8405 return AddrTyped; 8406 } 8407 8408 Address HexagonABIInfo::EmitVAArgForHexagonLinux(CodeGenFunction &CGF, 8409 Address VAListAddr, 8410 QualType Ty) const { 8411 int ArgSize = CGF.getContext().getTypeSize(Ty) / 8; 8412 8413 if (ArgSize > 8) 8414 return EmitVAArgFromMemory(CGF, VAListAddr, Ty); 8415 8416 // Here we have check if the argument is in register area or 8417 // in overflow area. 8418 // If the saved register area pointer + argsize rounded up to alignment > 8419 // saved register area end pointer, argument is in overflow area. 8420 unsigned RegsLeft = 6; 8421 Ty = CGF.getContext().getCanonicalType(Ty); 8422 (void)classifyArgumentType(Ty, &RegsLeft); 8423 8424 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 8425 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 8426 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 8427 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 8428 8429 // Get rounded size of the argument.GCC does not allow vararg of 8430 // size < 4 bytes. We follow the same logic here. 8431 ArgSize = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8; 8432 int ArgAlign = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8; 8433 8434 // Argument may be in saved register area 8435 CGF.EmitBlock(MaybeRegBlock); 8436 8437 // Load the current saved register area pointer. 8438 Address __current_saved_reg_area_pointer_p = CGF.Builder.CreateStructGEP( 8439 VAListAddr, 0, "__current_saved_reg_area_pointer_p"); 8440 llvm::Value *__current_saved_reg_area_pointer = CGF.Builder.CreateLoad( 8441 __current_saved_reg_area_pointer_p, "__current_saved_reg_area_pointer"); 8442 8443 // Load the saved register area end pointer. 8444 Address __saved_reg_area_end_pointer_p = CGF.Builder.CreateStructGEP( 8445 VAListAddr, 1, "__saved_reg_area_end_pointer_p"); 8446 llvm::Value *__saved_reg_area_end_pointer = CGF.Builder.CreateLoad( 8447 __saved_reg_area_end_pointer_p, "__saved_reg_area_end_pointer"); 8448 8449 // If the size of argument is > 4 bytes, check if the stack 8450 // location is aligned to 8 bytes 8451 if (ArgAlign > 4) { 8452 8453 llvm::Value *__current_saved_reg_area_pointer_int = 8454 CGF.Builder.CreatePtrToInt(__current_saved_reg_area_pointer, 8455 CGF.Int32Ty); 8456 8457 __current_saved_reg_area_pointer_int = CGF.Builder.CreateAdd( 8458 __current_saved_reg_area_pointer_int, 8459 llvm::ConstantInt::get(CGF.Int32Ty, (ArgAlign - 1)), 8460 "align_current_saved_reg_area_pointer"); 8461 8462 __current_saved_reg_area_pointer_int = 8463 CGF.Builder.CreateAnd(__current_saved_reg_area_pointer_int, 8464 llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign), 8465 "align_current_saved_reg_area_pointer"); 8466 8467 __current_saved_reg_area_pointer = 8468 CGF.Builder.CreateIntToPtr(__current_saved_reg_area_pointer_int, 8469 __current_saved_reg_area_pointer->getType(), 8470 "align_current_saved_reg_area_pointer"); 8471 } 8472 8473 llvm::Value *__new_saved_reg_area_pointer = 8474 CGF.Builder.CreateGEP(__current_saved_reg_area_pointer, 8475 llvm::ConstantInt::get(CGF.Int32Ty, ArgSize), 8476 "__new_saved_reg_area_pointer"); 8477 8478 llvm::Value *UsingStack = 0; 8479 UsingStack = CGF.Builder.CreateICmpSGT(__new_saved_reg_area_pointer, 8480 __saved_reg_area_end_pointer); 8481 8482 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, InRegBlock); 8483 8484 // Argument in saved register area 8485 // Implement the block where argument is in register saved area 8486 CGF.EmitBlock(InRegBlock); 8487 8488 llvm::Type *PTy = CGF.ConvertType(Ty); 8489 llvm::Value *__saved_reg_area_p = CGF.Builder.CreateBitCast( 8490 __current_saved_reg_area_pointer, llvm::PointerType::getUnqual(PTy)); 8491 8492 CGF.Builder.CreateStore(__new_saved_reg_area_pointer, 8493 __current_saved_reg_area_pointer_p); 8494 8495 CGF.EmitBranch(ContBlock); 8496 8497 // Argument in overflow area 8498 // Implement the block where the argument is in overflow area. 8499 CGF.EmitBlock(OnStackBlock); 8500 8501 // Load the overflow area pointer 8502 Address __overflow_area_pointer_p = 8503 CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p"); 8504 llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad( 8505 __overflow_area_pointer_p, "__overflow_area_pointer"); 8506 8507 // Align the overflow area pointer according to the alignment of the argument 8508 if (ArgAlign > 4) { 8509 llvm::Value *__overflow_area_pointer_int = 8510 CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty); 8511 8512 __overflow_area_pointer_int = 8513 CGF.Builder.CreateAdd(__overflow_area_pointer_int, 8514 llvm::ConstantInt::get(CGF.Int32Ty, ArgAlign - 1), 8515 "align_overflow_area_pointer"); 8516 8517 __overflow_area_pointer_int = 8518 CGF.Builder.CreateAnd(__overflow_area_pointer_int, 8519 llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign), 8520 "align_overflow_area_pointer"); 8521 8522 __overflow_area_pointer = CGF.Builder.CreateIntToPtr( 8523 __overflow_area_pointer_int, __overflow_area_pointer->getType(), 8524 "align_overflow_area_pointer"); 8525 } 8526 8527 // Get the pointer for next argument in overflow area and store it 8528 // to overflow area pointer. 8529 llvm::Value *__new_overflow_area_pointer = CGF.Builder.CreateGEP( 8530 __overflow_area_pointer, llvm::ConstantInt::get(CGF.Int32Ty, ArgSize), 8531 "__overflow_area_pointer.next"); 8532 8533 CGF.Builder.CreateStore(__new_overflow_area_pointer, 8534 __overflow_area_pointer_p); 8535 8536 CGF.Builder.CreateStore(__new_overflow_area_pointer, 8537 __current_saved_reg_area_pointer_p); 8538 8539 // Bitcast the overflow area pointer to the type of argument. 8540 llvm::Type *OverflowPTy = CGF.ConvertTypeForMem(Ty); 8541 llvm::Value *__overflow_area_p = CGF.Builder.CreateBitCast( 8542 __overflow_area_pointer, llvm::PointerType::getUnqual(OverflowPTy)); 8543 8544 CGF.EmitBranch(ContBlock); 8545 8546 // Get the correct pointer to load the variable argument 8547 // Implement the ContBlock 8548 CGF.EmitBlock(ContBlock); 8549 8550 llvm::Type *MemPTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 8551 llvm::PHINode *ArgAddr = CGF.Builder.CreatePHI(MemPTy, 2, "vaarg.addr"); 8552 ArgAddr->addIncoming(__saved_reg_area_p, InRegBlock); 8553 ArgAddr->addIncoming(__overflow_area_p, OnStackBlock); 8554 8555 return Address(ArgAddr, CharUnits::fromQuantity(ArgAlign)); 8556 } 8557 8558 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8559 QualType Ty) const { 8560 8561 if (getTarget().getTriple().isMusl()) 8562 return EmitVAArgForHexagonLinux(CGF, VAListAddr, Ty); 8563 8564 return EmitVAArgForHexagon(CGF, VAListAddr, Ty); 8565 } 8566 8567 //===----------------------------------------------------------------------===// 8568 // Lanai ABI Implementation 8569 //===----------------------------------------------------------------------===// 8570 8571 namespace { 8572 class LanaiABIInfo : public DefaultABIInfo { 8573 public: 8574 LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8575 8576 bool shouldUseInReg(QualType Ty, CCState &State) const; 8577 8578 void computeInfo(CGFunctionInfo &FI) const override { 8579 CCState State(FI); 8580 // Lanai uses 4 registers to pass arguments unless the function has the 8581 // regparm attribute set. 8582 if (FI.getHasRegParm()) { 8583 State.FreeRegs = FI.getRegParm(); 8584 } else { 8585 State.FreeRegs = 4; 8586 } 8587 8588 if (!getCXXABI().classifyReturnType(FI)) 8589 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8590 for (auto &I : FI.arguments()) 8591 I.info = classifyArgumentType(I.type, State); 8592 } 8593 8594 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 8595 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 8596 }; 8597 } // end anonymous namespace 8598 8599 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const { 8600 unsigned Size = getContext().getTypeSize(Ty); 8601 unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U; 8602 8603 if (SizeInRegs == 0) 8604 return false; 8605 8606 if (SizeInRegs > State.FreeRegs) { 8607 State.FreeRegs = 0; 8608 return false; 8609 } 8610 8611 State.FreeRegs -= SizeInRegs; 8612 8613 return true; 8614 } 8615 8616 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal, 8617 CCState &State) const { 8618 if (!ByVal) { 8619 if (State.FreeRegs) { 8620 --State.FreeRegs; // Non-byval indirects just use one pointer. 8621 return getNaturalAlignIndirectInReg(Ty); 8622 } 8623 return getNaturalAlignIndirect(Ty, false); 8624 } 8625 8626 // Compute the byval alignment. 8627 const unsigned MinABIStackAlignInBytes = 4; 8628 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 8629 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 8630 /*Realign=*/TypeAlign > 8631 MinABIStackAlignInBytes); 8632 } 8633 8634 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty, 8635 CCState &State) const { 8636 // Check with the C++ ABI first. 8637 const RecordType *RT = Ty->getAs<RecordType>(); 8638 if (RT) { 8639 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 8640 if (RAA == CGCXXABI::RAA_Indirect) { 8641 return getIndirectResult(Ty, /*ByVal=*/false, State); 8642 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 8643 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8644 } 8645 } 8646 8647 if (isAggregateTypeForABI(Ty)) { 8648 // Structures with flexible arrays are always indirect. 8649 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 8650 return getIndirectResult(Ty, /*ByVal=*/true, State); 8651 8652 // Ignore empty structs/unions. 8653 if (isEmptyRecord(getContext(), Ty, true)) 8654 return ABIArgInfo::getIgnore(); 8655 8656 llvm::LLVMContext &LLVMContext = getVMContext(); 8657 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 8658 if (SizeInRegs <= State.FreeRegs) { 8659 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 8660 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 8661 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 8662 State.FreeRegs -= SizeInRegs; 8663 return ABIArgInfo::getDirectInReg(Result); 8664 } else { 8665 State.FreeRegs = 0; 8666 } 8667 return getIndirectResult(Ty, true, State); 8668 } 8669 8670 // Treat an enum type as its underlying type. 8671 if (const auto *EnumTy = Ty->getAs<EnumType>()) 8672 Ty = EnumTy->getDecl()->getIntegerType(); 8673 8674 bool InReg = shouldUseInReg(Ty, State); 8675 8676 // Don't pass >64 bit integers in registers. 8677 if (const auto *EIT = Ty->getAs<ExtIntType>()) 8678 if (EIT->getNumBits() > 64) 8679 return getIndirectResult(Ty, /*ByVal=*/true, State); 8680 8681 if (isPromotableIntegerTypeForABI(Ty)) { 8682 if (InReg) 8683 return ABIArgInfo::getDirectInReg(); 8684 return ABIArgInfo::getExtend(Ty); 8685 } 8686 if (InReg) 8687 return ABIArgInfo::getDirectInReg(); 8688 return ABIArgInfo::getDirect(); 8689 } 8690 8691 namespace { 8692 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo { 8693 public: 8694 LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 8695 : TargetCodeGenInfo(std::make_unique<LanaiABIInfo>(CGT)) {} 8696 }; 8697 } 8698 8699 //===----------------------------------------------------------------------===// 8700 // AMDGPU ABI Implementation 8701 //===----------------------------------------------------------------------===// 8702 8703 namespace { 8704 8705 class AMDGPUABIInfo final : public DefaultABIInfo { 8706 private: 8707 static const unsigned MaxNumRegsForArgsRet = 16; 8708 8709 unsigned numRegsForType(QualType Ty) const; 8710 8711 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 8712 bool isHomogeneousAggregateSmallEnough(const Type *Base, 8713 uint64_t Members) const override; 8714 8715 // Coerce HIP pointer arguments from generic pointers to global ones. 8716 llvm::Type *coerceKernelArgumentType(llvm::Type *Ty, unsigned FromAS, 8717 unsigned ToAS) const { 8718 // Structure types. 8719 if (auto STy = dyn_cast<llvm::StructType>(Ty)) { 8720 SmallVector<llvm::Type *, 8> EltTys; 8721 bool Changed = false; 8722 for (auto T : STy->elements()) { 8723 auto NT = coerceKernelArgumentType(T, FromAS, ToAS); 8724 EltTys.push_back(NT); 8725 Changed |= (NT != T); 8726 } 8727 // Skip if there is no change in element types. 8728 if (!Changed) 8729 return STy; 8730 if (STy->hasName()) 8731 return llvm::StructType::create( 8732 EltTys, (STy->getName() + ".coerce").str(), STy->isPacked()); 8733 return llvm::StructType::get(getVMContext(), EltTys, STy->isPacked()); 8734 } 8735 // Array types. 8736 if (auto ATy = dyn_cast<llvm::ArrayType>(Ty)) { 8737 auto T = ATy->getElementType(); 8738 auto NT = coerceKernelArgumentType(T, FromAS, ToAS); 8739 // Skip if there is no change in that element type. 8740 if (NT == T) 8741 return ATy; 8742 return llvm::ArrayType::get(NT, ATy->getNumElements()); 8743 } 8744 // Single value types. 8745 if (Ty->isPointerTy() && Ty->getPointerAddressSpace() == FromAS) 8746 return llvm::PointerType::get( 8747 cast<llvm::PointerType>(Ty)->getElementType(), ToAS); 8748 return Ty; 8749 } 8750 8751 public: 8752 explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) : 8753 DefaultABIInfo(CGT) {} 8754 8755 ABIArgInfo classifyReturnType(QualType RetTy) const; 8756 ABIArgInfo classifyKernelArgumentType(QualType Ty) const; 8757 ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const; 8758 8759 void computeInfo(CGFunctionInfo &FI) const override; 8760 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8761 QualType Ty) const override; 8762 }; 8763 8764 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 8765 return true; 8766 } 8767 8768 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough( 8769 const Type *Base, uint64_t Members) const { 8770 uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32; 8771 8772 // Homogeneous Aggregates may occupy at most 16 registers. 8773 return Members * NumRegs <= MaxNumRegsForArgsRet; 8774 } 8775 8776 /// Estimate number of registers the type will use when passed in registers. 8777 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const { 8778 unsigned NumRegs = 0; 8779 8780 if (const VectorType *VT = Ty->getAs<VectorType>()) { 8781 // Compute from the number of elements. The reported size is based on the 8782 // in-memory size, which includes the padding 4th element for 3-vectors. 8783 QualType EltTy = VT->getElementType(); 8784 unsigned EltSize = getContext().getTypeSize(EltTy); 8785 8786 // 16-bit element vectors should be passed as packed. 8787 if (EltSize == 16) 8788 return (VT->getNumElements() + 1) / 2; 8789 8790 unsigned EltNumRegs = (EltSize + 31) / 32; 8791 return EltNumRegs * VT->getNumElements(); 8792 } 8793 8794 if (const RecordType *RT = Ty->getAs<RecordType>()) { 8795 const RecordDecl *RD = RT->getDecl(); 8796 assert(!RD->hasFlexibleArrayMember()); 8797 8798 for (const FieldDecl *Field : RD->fields()) { 8799 QualType FieldTy = Field->getType(); 8800 NumRegs += numRegsForType(FieldTy); 8801 } 8802 8803 return NumRegs; 8804 } 8805 8806 return (getContext().getTypeSize(Ty) + 31) / 32; 8807 } 8808 8809 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const { 8810 llvm::CallingConv::ID CC = FI.getCallingConvention(); 8811 8812 if (!getCXXABI().classifyReturnType(FI)) 8813 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8814 8815 unsigned NumRegsLeft = MaxNumRegsForArgsRet; 8816 for (auto &Arg : FI.arguments()) { 8817 if (CC == llvm::CallingConv::AMDGPU_KERNEL) { 8818 Arg.info = classifyKernelArgumentType(Arg.type); 8819 } else { 8820 Arg.info = classifyArgumentType(Arg.type, NumRegsLeft); 8821 } 8822 } 8823 } 8824 8825 Address AMDGPUABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8826 QualType Ty) const { 8827 llvm_unreachable("AMDGPU does not support varargs"); 8828 } 8829 8830 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const { 8831 if (isAggregateTypeForABI(RetTy)) { 8832 // Records with non-trivial destructors/copy-constructors should not be 8833 // returned by value. 8834 if (!getRecordArgABI(RetTy, getCXXABI())) { 8835 // Ignore empty structs/unions. 8836 if (isEmptyRecord(getContext(), RetTy, true)) 8837 return ABIArgInfo::getIgnore(); 8838 8839 // Lower single-element structs to just return a regular value. 8840 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 8841 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 8842 8843 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 8844 const RecordDecl *RD = RT->getDecl(); 8845 if (RD->hasFlexibleArrayMember()) 8846 return DefaultABIInfo::classifyReturnType(RetTy); 8847 } 8848 8849 // Pack aggregates <= 4 bytes into single VGPR or pair. 8850 uint64_t Size = getContext().getTypeSize(RetTy); 8851 if (Size <= 16) 8852 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 8853 8854 if (Size <= 32) 8855 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 8856 8857 if (Size <= 64) { 8858 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 8859 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 8860 } 8861 8862 if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet) 8863 return ABIArgInfo::getDirect(); 8864 } 8865 } 8866 8867 // Otherwise just do the default thing. 8868 return DefaultABIInfo::classifyReturnType(RetTy); 8869 } 8870 8871 /// For kernels all parameters are really passed in a special buffer. It doesn't 8872 /// make sense to pass anything byval, so everything must be direct. 8873 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const { 8874 Ty = useFirstFieldIfTransparentUnion(Ty); 8875 8876 // TODO: Can we omit empty structs? 8877 8878 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 8879 Ty = QualType(SeltTy, 0); 8880 8881 llvm::Type *OrigLTy = CGT.ConvertType(Ty); 8882 llvm::Type *LTy = OrigLTy; 8883 if (getContext().getLangOpts().HIP) { 8884 LTy = coerceKernelArgumentType( 8885 OrigLTy, /*FromAS=*/getContext().getTargetAddressSpace(LangAS::Default), 8886 /*ToAS=*/getContext().getTargetAddressSpace(LangAS::cuda_device)); 8887 } 8888 8889 // FIXME: Should also use this for OpenCL, but it requires addressing the 8890 // problem of kernels being called. 8891 // 8892 // FIXME: This doesn't apply the optimization of coercing pointers in structs 8893 // to global address space when using byref. This would require implementing a 8894 // new kind of coercion of the in-memory type when for indirect arguments. 8895 if (!getContext().getLangOpts().OpenCL && LTy == OrigLTy && 8896 isAggregateTypeForABI(Ty)) { 8897 return ABIArgInfo::getIndirectAliased( 8898 getContext().getTypeAlignInChars(Ty), 8899 getContext().getTargetAddressSpace(LangAS::opencl_constant), 8900 false /*Realign*/, nullptr /*Padding*/); 8901 } 8902 8903 // If we set CanBeFlattened to true, CodeGen will expand the struct to its 8904 // individual elements, which confuses the Clover OpenCL backend; therefore we 8905 // have to set it to false here. Other args of getDirect() are just defaults. 8906 return ABIArgInfo::getDirect(LTy, 0, nullptr, false); 8907 } 8908 8909 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty, 8910 unsigned &NumRegsLeft) const { 8911 assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow"); 8912 8913 Ty = useFirstFieldIfTransparentUnion(Ty); 8914 8915 if (isAggregateTypeForABI(Ty)) { 8916 // Records with non-trivial destructors/copy-constructors should not be 8917 // passed by value. 8918 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 8919 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 8920 8921 // Ignore empty structs/unions. 8922 if (isEmptyRecord(getContext(), Ty, true)) 8923 return ABIArgInfo::getIgnore(); 8924 8925 // Lower single-element structs to just pass a regular value. TODO: We 8926 // could do reasonable-size multiple-element structs too, using getExpand(), 8927 // though watch out for things like bitfields. 8928 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 8929 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 8930 8931 if (const RecordType *RT = Ty->getAs<RecordType>()) { 8932 const RecordDecl *RD = RT->getDecl(); 8933 if (RD->hasFlexibleArrayMember()) 8934 return DefaultABIInfo::classifyArgumentType(Ty); 8935 } 8936 8937 // Pack aggregates <= 8 bytes into single VGPR or pair. 8938 uint64_t Size = getContext().getTypeSize(Ty); 8939 if (Size <= 64) { 8940 unsigned NumRegs = (Size + 31) / 32; 8941 NumRegsLeft -= std::min(NumRegsLeft, NumRegs); 8942 8943 if (Size <= 16) 8944 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 8945 8946 if (Size <= 32) 8947 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 8948 8949 // XXX: Should this be i64 instead, and should the limit increase? 8950 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 8951 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 8952 } 8953 8954 if (NumRegsLeft > 0) { 8955 unsigned NumRegs = numRegsForType(Ty); 8956 if (NumRegsLeft >= NumRegs) { 8957 NumRegsLeft -= NumRegs; 8958 return ABIArgInfo::getDirect(); 8959 } 8960 } 8961 } 8962 8963 // Otherwise just do the default thing. 8964 ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty); 8965 if (!ArgInfo.isIndirect()) { 8966 unsigned NumRegs = numRegsForType(Ty); 8967 NumRegsLeft -= std::min(NumRegs, NumRegsLeft); 8968 } 8969 8970 return ArgInfo; 8971 } 8972 8973 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { 8974 public: 8975 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) 8976 : TargetCodeGenInfo(std::make_unique<AMDGPUABIInfo>(CGT)) {} 8977 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8978 CodeGen::CodeGenModule &M) const override; 8979 unsigned getOpenCLKernelCallingConv() const override; 8980 8981 llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM, 8982 llvm::PointerType *T, QualType QT) const override; 8983 8984 LangAS getASTAllocaAddressSpace() const override { 8985 return getLangASFromTargetAS( 8986 getABIInfo().getDataLayout().getAllocaAddrSpace()); 8987 } 8988 LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, 8989 const VarDecl *D) const override; 8990 llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts, 8991 SyncScope Scope, 8992 llvm::AtomicOrdering Ordering, 8993 llvm::LLVMContext &Ctx) const override; 8994 llvm::Function * 8995 createEnqueuedBlockKernel(CodeGenFunction &CGF, 8996 llvm::Function *BlockInvokeFunc, 8997 llvm::Value *BlockLiteral) const override; 8998 bool shouldEmitStaticExternCAliases() const override; 8999 void setCUDAKernelCallingConvention(const FunctionType *&FT) const override; 9000 }; 9001 } 9002 9003 static bool requiresAMDGPUProtectedVisibility(const Decl *D, 9004 llvm::GlobalValue *GV) { 9005 if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility) 9006 return false; 9007 9008 return D->hasAttr<OpenCLKernelAttr>() || 9009 (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) || 9010 (isa<VarDecl>(D) && 9011 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 9012 cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinSurfaceType() || 9013 cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinTextureType())); 9014 } 9015 9016 void AMDGPUTargetCodeGenInfo::setTargetAttributes( 9017 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 9018 if (requiresAMDGPUProtectedVisibility(D, GV)) { 9019 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 9020 GV->setDSOLocal(true); 9021 } 9022 9023 if (GV->isDeclaration()) 9024 return; 9025 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 9026 if (!FD) 9027 return; 9028 9029 llvm::Function *F = cast<llvm::Function>(GV); 9030 9031 const auto *ReqdWGS = M.getLangOpts().OpenCL ? 9032 FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr; 9033 9034 9035 const bool IsOpenCLKernel = M.getLangOpts().OpenCL && 9036 FD->hasAttr<OpenCLKernelAttr>(); 9037 const bool IsHIPKernel = M.getLangOpts().HIP && 9038 FD->hasAttr<CUDAGlobalAttr>(); 9039 if ((IsOpenCLKernel || IsHIPKernel) && 9040 (M.getTriple().getOS() == llvm::Triple::AMDHSA)) 9041 F->addFnAttr("amdgpu-implicitarg-num-bytes", "56"); 9042 9043 if (IsHIPKernel) 9044 F->addFnAttr("uniform-work-group-size", "true"); 9045 9046 9047 const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>(); 9048 if (ReqdWGS || FlatWGS) { 9049 unsigned Min = 0; 9050 unsigned Max = 0; 9051 if (FlatWGS) { 9052 Min = FlatWGS->getMin() 9053 ->EvaluateKnownConstInt(M.getContext()) 9054 .getExtValue(); 9055 Max = FlatWGS->getMax() 9056 ->EvaluateKnownConstInt(M.getContext()) 9057 .getExtValue(); 9058 } 9059 if (ReqdWGS && Min == 0 && Max == 0) 9060 Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim(); 9061 9062 if (Min != 0) { 9063 assert(Min <= Max && "Min must be less than or equal Max"); 9064 9065 std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max); 9066 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 9067 } else 9068 assert(Max == 0 && "Max must be zero"); 9069 } else if (IsOpenCLKernel || IsHIPKernel) { 9070 // By default, restrict the maximum size to a value specified by 9071 // --gpu-max-threads-per-block=n or its default value. 9072 std::string AttrVal = 9073 std::string("1,") + llvm::utostr(M.getLangOpts().GPUMaxThreadsPerBlock); 9074 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 9075 } 9076 9077 if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) { 9078 unsigned Min = 9079 Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue(); 9080 unsigned Max = Attr->getMax() ? Attr->getMax() 9081 ->EvaluateKnownConstInt(M.getContext()) 9082 .getExtValue() 9083 : 0; 9084 9085 if (Min != 0) { 9086 assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max"); 9087 9088 std::string AttrVal = llvm::utostr(Min); 9089 if (Max != 0) 9090 AttrVal = AttrVal + "," + llvm::utostr(Max); 9091 F->addFnAttr("amdgpu-waves-per-eu", AttrVal); 9092 } else 9093 assert(Max == 0 && "Max must be zero"); 9094 } 9095 9096 if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { 9097 unsigned NumSGPR = Attr->getNumSGPR(); 9098 9099 if (NumSGPR != 0) 9100 F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR)); 9101 } 9102 9103 if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { 9104 uint32_t NumVGPR = Attr->getNumVGPR(); 9105 9106 if (NumVGPR != 0) 9107 F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR)); 9108 } 9109 } 9110 9111 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 9112 return llvm::CallingConv::AMDGPU_KERNEL; 9113 } 9114 9115 // Currently LLVM assumes null pointers always have value 0, 9116 // which results in incorrectly transformed IR. Therefore, instead of 9117 // emitting null pointers in private and local address spaces, a null 9118 // pointer in generic address space is emitted which is casted to a 9119 // pointer in local or private address space. 9120 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer( 9121 const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT, 9122 QualType QT) const { 9123 if (CGM.getContext().getTargetNullPointerValue(QT) == 0) 9124 return llvm::ConstantPointerNull::get(PT); 9125 9126 auto &Ctx = CGM.getContext(); 9127 auto NPT = llvm::PointerType::get(PT->getElementType(), 9128 Ctx.getTargetAddressSpace(LangAS::opencl_generic)); 9129 return llvm::ConstantExpr::getAddrSpaceCast( 9130 llvm::ConstantPointerNull::get(NPT), PT); 9131 } 9132 9133 LangAS 9134 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 9135 const VarDecl *D) const { 9136 assert(!CGM.getLangOpts().OpenCL && 9137 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 9138 "Address space agnostic languages only"); 9139 LangAS DefaultGlobalAS = getLangASFromTargetAS( 9140 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global)); 9141 if (!D) 9142 return DefaultGlobalAS; 9143 9144 LangAS AddrSpace = D->getType().getAddressSpace(); 9145 assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace)); 9146 if (AddrSpace != LangAS::Default) 9147 return AddrSpace; 9148 9149 if (CGM.isTypeConstant(D->getType(), false)) { 9150 if (auto ConstAS = CGM.getTarget().getConstantAddressSpace()) 9151 return ConstAS.getValue(); 9152 } 9153 return DefaultGlobalAS; 9154 } 9155 9156 llvm::SyncScope::ID 9157 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 9158 SyncScope Scope, 9159 llvm::AtomicOrdering Ordering, 9160 llvm::LLVMContext &Ctx) const { 9161 std::string Name; 9162 switch (Scope) { 9163 case SyncScope::OpenCLWorkGroup: 9164 Name = "workgroup"; 9165 break; 9166 case SyncScope::OpenCLDevice: 9167 Name = "agent"; 9168 break; 9169 case SyncScope::OpenCLAllSVMDevices: 9170 Name = ""; 9171 break; 9172 case SyncScope::OpenCLSubGroup: 9173 Name = "wavefront"; 9174 } 9175 9176 if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) { 9177 if (!Name.empty()) 9178 Name = Twine(Twine(Name) + Twine("-")).str(); 9179 9180 Name = Twine(Twine(Name) + Twine("one-as")).str(); 9181 } 9182 9183 return Ctx.getOrInsertSyncScopeID(Name); 9184 } 9185 9186 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 9187 return false; 9188 } 9189 9190 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention( 9191 const FunctionType *&FT) const { 9192 FT = getABIInfo().getContext().adjustFunctionType( 9193 FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel)); 9194 } 9195 9196 //===----------------------------------------------------------------------===// 9197 // SPARC v8 ABI Implementation. 9198 // Based on the SPARC Compliance Definition version 2.4.1. 9199 // 9200 // Ensures that complex values are passed in registers. 9201 // 9202 namespace { 9203 class SparcV8ABIInfo : public DefaultABIInfo { 9204 public: 9205 SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 9206 9207 private: 9208 ABIArgInfo classifyReturnType(QualType RetTy) const; 9209 void computeInfo(CGFunctionInfo &FI) const override; 9210 }; 9211 } // end anonymous namespace 9212 9213 9214 ABIArgInfo 9215 SparcV8ABIInfo::classifyReturnType(QualType Ty) const { 9216 if (Ty->isAnyComplexType()) { 9217 return ABIArgInfo::getDirect(); 9218 } 9219 else { 9220 return DefaultABIInfo::classifyReturnType(Ty); 9221 } 9222 } 9223 9224 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const { 9225 9226 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 9227 for (auto &Arg : FI.arguments()) 9228 Arg.info = classifyArgumentType(Arg.type); 9229 } 9230 9231 namespace { 9232 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo { 9233 public: 9234 SparcV8TargetCodeGenInfo(CodeGenTypes &CGT) 9235 : TargetCodeGenInfo(std::make_unique<SparcV8ABIInfo>(CGT)) {} 9236 }; 9237 } // end anonymous namespace 9238 9239 //===----------------------------------------------------------------------===// 9240 // SPARC v9 ABI Implementation. 9241 // Based on the SPARC Compliance Definition version 2.4.1. 9242 // 9243 // Function arguments a mapped to a nominal "parameter array" and promoted to 9244 // registers depending on their type. Each argument occupies 8 or 16 bytes in 9245 // the array, structs larger than 16 bytes are passed indirectly. 9246 // 9247 // One case requires special care: 9248 // 9249 // struct mixed { 9250 // int i; 9251 // float f; 9252 // }; 9253 // 9254 // When a struct mixed is passed by value, it only occupies 8 bytes in the 9255 // parameter array, but the int is passed in an integer register, and the float 9256 // is passed in a floating point register. This is represented as two arguments 9257 // with the LLVM IR inreg attribute: 9258 // 9259 // declare void f(i32 inreg %i, float inreg %f) 9260 // 9261 // The code generator will only allocate 4 bytes from the parameter array for 9262 // the inreg arguments. All other arguments are allocated a multiple of 8 9263 // bytes. 9264 // 9265 namespace { 9266 class SparcV9ABIInfo : public ABIInfo { 9267 public: 9268 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 9269 9270 private: 9271 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 9272 void computeInfo(CGFunctionInfo &FI) const override; 9273 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9274 QualType Ty) const override; 9275 9276 // Coercion type builder for structs passed in registers. The coercion type 9277 // serves two purposes: 9278 // 9279 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 9280 // in registers. 9281 // 2. Expose aligned floating point elements as first-level elements, so the 9282 // code generator knows to pass them in floating point registers. 9283 // 9284 // We also compute the InReg flag which indicates that the struct contains 9285 // aligned 32-bit floats. 9286 // 9287 struct CoerceBuilder { 9288 llvm::LLVMContext &Context; 9289 const llvm::DataLayout &DL; 9290 SmallVector<llvm::Type*, 8> Elems; 9291 uint64_t Size; 9292 bool InReg; 9293 9294 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 9295 : Context(c), DL(dl), Size(0), InReg(false) {} 9296 9297 // Pad Elems with integers until Size is ToSize. 9298 void pad(uint64_t ToSize) { 9299 assert(ToSize >= Size && "Cannot remove elements"); 9300 if (ToSize == Size) 9301 return; 9302 9303 // Finish the current 64-bit word. 9304 uint64_t Aligned = llvm::alignTo(Size, 64); 9305 if (Aligned > Size && Aligned <= ToSize) { 9306 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 9307 Size = Aligned; 9308 } 9309 9310 // Add whole 64-bit words. 9311 while (Size + 64 <= ToSize) { 9312 Elems.push_back(llvm::Type::getInt64Ty(Context)); 9313 Size += 64; 9314 } 9315 9316 // Final in-word padding. 9317 if (Size < ToSize) { 9318 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 9319 Size = ToSize; 9320 } 9321 } 9322 9323 // Add a floating point element at Offset. 9324 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 9325 // Unaligned floats are treated as integers. 9326 if (Offset % Bits) 9327 return; 9328 // The InReg flag is only required if there are any floats < 64 bits. 9329 if (Bits < 64) 9330 InReg = true; 9331 pad(Offset); 9332 Elems.push_back(Ty); 9333 Size = Offset + Bits; 9334 } 9335 9336 // Add a struct type to the coercion type, starting at Offset (in bits). 9337 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 9338 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 9339 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 9340 llvm::Type *ElemTy = StrTy->getElementType(i); 9341 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 9342 switch (ElemTy->getTypeID()) { 9343 case llvm::Type::StructTyID: 9344 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 9345 break; 9346 case llvm::Type::FloatTyID: 9347 addFloat(ElemOffset, ElemTy, 32); 9348 break; 9349 case llvm::Type::DoubleTyID: 9350 addFloat(ElemOffset, ElemTy, 64); 9351 break; 9352 case llvm::Type::FP128TyID: 9353 addFloat(ElemOffset, ElemTy, 128); 9354 break; 9355 case llvm::Type::PointerTyID: 9356 if (ElemOffset % 64 == 0) { 9357 pad(ElemOffset); 9358 Elems.push_back(ElemTy); 9359 Size += 64; 9360 } 9361 break; 9362 default: 9363 break; 9364 } 9365 } 9366 } 9367 9368 // Check if Ty is a usable substitute for the coercion type. 9369 bool isUsableType(llvm::StructType *Ty) const { 9370 return llvm::makeArrayRef(Elems) == Ty->elements(); 9371 } 9372 9373 // Get the coercion type as a literal struct type. 9374 llvm::Type *getType() const { 9375 if (Elems.size() == 1) 9376 return Elems.front(); 9377 else 9378 return llvm::StructType::get(Context, Elems); 9379 } 9380 }; 9381 }; 9382 } // end anonymous namespace 9383 9384 ABIArgInfo 9385 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 9386 if (Ty->isVoidType()) 9387 return ABIArgInfo::getIgnore(); 9388 9389 uint64_t Size = getContext().getTypeSize(Ty); 9390 9391 // Anything too big to fit in registers is passed with an explicit indirect 9392 // pointer / sret pointer. 9393 if (Size > SizeLimit) 9394 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 9395 9396 // Treat an enum type as its underlying type. 9397 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 9398 Ty = EnumTy->getDecl()->getIntegerType(); 9399 9400 // Integer types smaller than a register are extended. 9401 if (Size < 64 && Ty->isIntegerType()) 9402 return ABIArgInfo::getExtend(Ty); 9403 9404 if (const auto *EIT = Ty->getAs<ExtIntType>()) 9405 if (EIT->getNumBits() < 64) 9406 return ABIArgInfo::getExtend(Ty); 9407 9408 // Other non-aggregates go in registers. 9409 if (!isAggregateTypeForABI(Ty)) 9410 return ABIArgInfo::getDirect(); 9411 9412 // If a C++ object has either a non-trivial copy constructor or a non-trivial 9413 // destructor, it is passed with an explicit indirect pointer / sret pointer. 9414 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 9415 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 9416 9417 // This is a small aggregate type that should be passed in registers. 9418 // Build a coercion type from the LLVM struct type. 9419 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 9420 if (!StrTy) 9421 return ABIArgInfo::getDirect(); 9422 9423 CoerceBuilder CB(getVMContext(), getDataLayout()); 9424 CB.addStruct(0, StrTy); 9425 CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64)); 9426 9427 // Try to use the original type for coercion. 9428 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 9429 9430 if (CB.InReg) 9431 return ABIArgInfo::getDirectInReg(CoerceTy); 9432 else 9433 return ABIArgInfo::getDirect(CoerceTy); 9434 } 9435 9436 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9437 QualType Ty) const { 9438 ABIArgInfo AI = classifyType(Ty, 16 * 8); 9439 llvm::Type *ArgTy = CGT.ConvertType(Ty); 9440 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 9441 AI.setCoerceToType(ArgTy); 9442 9443 CharUnits SlotSize = CharUnits::fromQuantity(8); 9444 9445 CGBuilderTy &Builder = CGF.Builder; 9446 Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 9447 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 9448 9449 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 9450 9451 Address ArgAddr = Address::invalid(); 9452 CharUnits Stride; 9453 switch (AI.getKind()) { 9454 case ABIArgInfo::Expand: 9455 case ABIArgInfo::CoerceAndExpand: 9456 case ABIArgInfo::InAlloca: 9457 llvm_unreachable("Unsupported ABI kind for va_arg"); 9458 9459 case ABIArgInfo::Extend: { 9460 Stride = SlotSize; 9461 CharUnits Offset = SlotSize - TypeInfo.Width; 9462 ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend"); 9463 break; 9464 } 9465 9466 case ABIArgInfo::Direct: { 9467 auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 9468 Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize); 9469 ArgAddr = Addr; 9470 break; 9471 } 9472 9473 case ABIArgInfo::Indirect: 9474 case ABIArgInfo::IndirectAliased: 9475 Stride = SlotSize; 9476 ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect"); 9477 ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), 9478 TypeInfo.Align); 9479 break; 9480 9481 case ABIArgInfo::Ignore: 9482 return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.Align); 9483 } 9484 9485 // Update VAList. 9486 Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next"); 9487 Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 9488 9489 return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr"); 9490 } 9491 9492 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 9493 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 9494 for (auto &I : FI.arguments()) 9495 I.info = classifyType(I.type, 16 * 8); 9496 } 9497 9498 namespace { 9499 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 9500 public: 9501 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 9502 : TargetCodeGenInfo(std::make_unique<SparcV9ABIInfo>(CGT)) {} 9503 9504 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 9505 return 14; 9506 } 9507 9508 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 9509 llvm::Value *Address) const override; 9510 }; 9511 } // end anonymous namespace 9512 9513 bool 9514 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 9515 llvm::Value *Address) const { 9516 // This is calculated from the LLVM and GCC tables and verified 9517 // against gcc output. AFAIK all ABIs use the same encoding. 9518 9519 CodeGen::CGBuilderTy &Builder = CGF.Builder; 9520 9521 llvm::IntegerType *i8 = CGF.Int8Ty; 9522 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 9523 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 9524 9525 // 0-31: the 8-byte general-purpose registers 9526 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 9527 9528 // 32-63: f0-31, the 4-byte floating-point registers 9529 AssignToArrayRange(Builder, Address, Four8, 32, 63); 9530 9531 // Y = 64 9532 // PSR = 65 9533 // WIM = 66 9534 // TBR = 67 9535 // PC = 68 9536 // NPC = 69 9537 // FSR = 70 9538 // CSR = 71 9539 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 9540 9541 // 72-87: d0-15, the 8-byte floating-point registers 9542 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 9543 9544 return false; 9545 } 9546 9547 // ARC ABI implementation. 9548 namespace { 9549 9550 class ARCABIInfo : public DefaultABIInfo { 9551 public: 9552 using DefaultABIInfo::DefaultABIInfo; 9553 9554 private: 9555 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9556 QualType Ty) const override; 9557 9558 void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const { 9559 if (!State.FreeRegs) 9560 return; 9561 if (Info.isIndirect() && Info.getInReg()) 9562 State.FreeRegs--; 9563 else if (Info.isDirect() && Info.getInReg()) { 9564 unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32; 9565 if (sz < State.FreeRegs) 9566 State.FreeRegs -= sz; 9567 else 9568 State.FreeRegs = 0; 9569 } 9570 } 9571 9572 void computeInfo(CGFunctionInfo &FI) const override { 9573 CCState State(FI); 9574 // ARC uses 8 registers to pass arguments. 9575 State.FreeRegs = 8; 9576 9577 if (!getCXXABI().classifyReturnType(FI)) 9578 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 9579 updateState(FI.getReturnInfo(), FI.getReturnType(), State); 9580 for (auto &I : FI.arguments()) { 9581 I.info = classifyArgumentType(I.type, State.FreeRegs); 9582 updateState(I.info, I.type, State); 9583 } 9584 } 9585 9586 ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const; 9587 ABIArgInfo getIndirectByValue(QualType Ty) const; 9588 ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const; 9589 ABIArgInfo classifyReturnType(QualType RetTy) const; 9590 }; 9591 9592 class ARCTargetCodeGenInfo : public TargetCodeGenInfo { 9593 public: 9594 ARCTargetCodeGenInfo(CodeGenTypes &CGT) 9595 : TargetCodeGenInfo(std::make_unique<ARCABIInfo>(CGT)) {} 9596 }; 9597 9598 9599 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const { 9600 return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) : 9601 getNaturalAlignIndirect(Ty, false); 9602 } 9603 9604 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const { 9605 // Compute the byval alignment. 9606 const unsigned MinABIStackAlignInBytes = 4; 9607 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 9608 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 9609 TypeAlign > MinABIStackAlignInBytes); 9610 } 9611 9612 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9613 QualType Ty) const { 9614 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 9615 getContext().getTypeInfoInChars(Ty), 9616 CharUnits::fromQuantity(4), true); 9617 } 9618 9619 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty, 9620 uint8_t FreeRegs) const { 9621 // Handle the generic C++ ABI. 9622 const RecordType *RT = Ty->getAs<RecordType>(); 9623 if (RT) { 9624 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 9625 if (RAA == CGCXXABI::RAA_Indirect) 9626 return getIndirectByRef(Ty, FreeRegs > 0); 9627 9628 if (RAA == CGCXXABI::RAA_DirectInMemory) 9629 return getIndirectByValue(Ty); 9630 } 9631 9632 // Treat an enum type as its underlying type. 9633 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 9634 Ty = EnumTy->getDecl()->getIntegerType(); 9635 9636 auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32; 9637 9638 if (isAggregateTypeForABI(Ty)) { 9639 // Structures with flexible arrays are always indirect. 9640 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 9641 return getIndirectByValue(Ty); 9642 9643 // Ignore empty structs/unions. 9644 if (isEmptyRecord(getContext(), Ty, true)) 9645 return ABIArgInfo::getIgnore(); 9646 9647 llvm::LLVMContext &LLVMContext = getVMContext(); 9648 9649 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 9650 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 9651 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 9652 9653 return FreeRegs >= SizeInRegs ? 9654 ABIArgInfo::getDirectInReg(Result) : 9655 ABIArgInfo::getDirect(Result, 0, nullptr, false); 9656 } 9657 9658 if (const auto *EIT = Ty->getAs<ExtIntType>()) 9659 if (EIT->getNumBits() > 64) 9660 return getIndirectByValue(Ty); 9661 9662 return isPromotableIntegerTypeForABI(Ty) 9663 ? (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty) 9664 : ABIArgInfo::getExtend(Ty)) 9665 : (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg() 9666 : ABIArgInfo::getDirect()); 9667 } 9668 9669 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const { 9670 if (RetTy->isAnyComplexType()) 9671 return ABIArgInfo::getDirectInReg(); 9672 9673 // Arguments of size > 4 registers are indirect. 9674 auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32; 9675 if (RetSize > 4) 9676 return getIndirectByRef(RetTy, /*HasFreeRegs*/ true); 9677 9678 return DefaultABIInfo::classifyReturnType(RetTy); 9679 } 9680 9681 } // End anonymous namespace. 9682 9683 //===----------------------------------------------------------------------===// 9684 // XCore ABI Implementation 9685 //===----------------------------------------------------------------------===// 9686 9687 namespace { 9688 9689 /// A SmallStringEnc instance is used to build up the TypeString by passing 9690 /// it by reference between functions that append to it. 9691 typedef llvm::SmallString<128> SmallStringEnc; 9692 9693 /// TypeStringCache caches the meta encodings of Types. 9694 /// 9695 /// The reason for caching TypeStrings is two fold: 9696 /// 1. To cache a type's encoding for later uses; 9697 /// 2. As a means to break recursive member type inclusion. 9698 /// 9699 /// A cache Entry can have a Status of: 9700 /// NonRecursive: The type encoding is not recursive; 9701 /// Recursive: The type encoding is recursive; 9702 /// Incomplete: An incomplete TypeString; 9703 /// IncompleteUsed: An incomplete TypeString that has been used in a 9704 /// Recursive type encoding. 9705 /// 9706 /// A NonRecursive entry will have all of its sub-members expanded as fully 9707 /// as possible. Whilst it may contain types which are recursive, the type 9708 /// itself is not recursive and thus its encoding may be safely used whenever 9709 /// the type is encountered. 9710 /// 9711 /// A Recursive entry will have all of its sub-members expanded as fully as 9712 /// possible. The type itself is recursive and it may contain other types which 9713 /// are recursive. The Recursive encoding must not be used during the expansion 9714 /// of a recursive type's recursive branch. For simplicity the code uses 9715 /// IncompleteCount to reject all usage of Recursive encodings for member types. 9716 /// 9717 /// An Incomplete entry is always a RecordType and only encodes its 9718 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 9719 /// are placed into the cache during type expansion as a means to identify and 9720 /// handle recursive inclusion of types as sub-members. If there is recursion 9721 /// the entry becomes IncompleteUsed. 9722 /// 9723 /// During the expansion of a RecordType's members: 9724 /// 9725 /// If the cache contains a NonRecursive encoding for the member type, the 9726 /// cached encoding is used; 9727 /// 9728 /// If the cache contains a Recursive encoding for the member type, the 9729 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 9730 /// 9731 /// If the member is a RecordType, an Incomplete encoding is placed into the 9732 /// cache to break potential recursive inclusion of itself as a sub-member; 9733 /// 9734 /// Once a member RecordType has been expanded, its temporary incomplete 9735 /// entry is removed from the cache. If a Recursive encoding was swapped out 9736 /// it is swapped back in; 9737 /// 9738 /// If an incomplete entry is used to expand a sub-member, the incomplete 9739 /// entry is marked as IncompleteUsed. The cache keeps count of how many 9740 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 9741 /// 9742 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 9743 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 9744 /// Else the member is part of a recursive type and thus the recursion has 9745 /// been exited too soon for the encoding to be correct for the member. 9746 /// 9747 class TypeStringCache { 9748 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 9749 struct Entry { 9750 std::string Str; // The encoded TypeString for the type. 9751 enum Status State; // Information about the encoding in 'Str'. 9752 std::string Swapped; // A temporary place holder for a Recursive encoding 9753 // during the expansion of RecordType's members. 9754 }; 9755 std::map<const IdentifierInfo *, struct Entry> Map; 9756 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 9757 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 9758 public: 9759 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {} 9760 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 9761 bool removeIncomplete(const IdentifierInfo *ID); 9762 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 9763 bool IsRecursive); 9764 StringRef lookupStr(const IdentifierInfo *ID); 9765 }; 9766 9767 /// TypeString encodings for enum & union fields must be order. 9768 /// FieldEncoding is a helper for this ordering process. 9769 class FieldEncoding { 9770 bool HasName; 9771 std::string Enc; 9772 public: 9773 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {} 9774 StringRef str() { return Enc; } 9775 bool operator<(const FieldEncoding &rhs) const { 9776 if (HasName != rhs.HasName) return HasName; 9777 return Enc < rhs.Enc; 9778 } 9779 }; 9780 9781 class XCoreABIInfo : public DefaultABIInfo { 9782 public: 9783 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 9784 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9785 QualType Ty) const override; 9786 }; 9787 9788 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 9789 mutable TypeStringCache TSC; 9790 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 9791 const CodeGen::CodeGenModule &M) const; 9792 9793 public: 9794 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 9795 : TargetCodeGenInfo(std::make_unique<XCoreABIInfo>(CGT)) {} 9796 void emitTargetMetadata(CodeGen::CodeGenModule &CGM, 9797 const llvm::MapVector<GlobalDecl, StringRef> 9798 &MangledDeclNames) const override; 9799 }; 9800 9801 } // End anonymous namespace. 9802 9803 // TODO: this implementation is likely now redundant with the default 9804 // EmitVAArg. 9805 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9806 QualType Ty) const { 9807 CGBuilderTy &Builder = CGF.Builder; 9808 9809 // Get the VAList. 9810 CharUnits SlotSize = CharUnits::fromQuantity(4); 9811 Address AP(Builder.CreateLoad(VAListAddr), SlotSize); 9812 9813 // Handle the argument. 9814 ABIArgInfo AI = classifyArgumentType(Ty); 9815 CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty); 9816 llvm::Type *ArgTy = CGT.ConvertType(Ty); 9817 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 9818 AI.setCoerceToType(ArgTy); 9819 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 9820 9821 Address Val = Address::invalid(); 9822 CharUnits ArgSize = CharUnits::Zero(); 9823 switch (AI.getKind()) { 9824 case ABIArgInfo::Expand: 9825 case ABIArgInfo::CoerceAndExpand: 9826 case ABIArgInfo::InAlloca: 9827 llvm_unreachable("Unsupported ABI kind for va_arg"); 9828 case ABIArgInfo::Ignore: 9829 Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign); 9830 ArgSize = CharUnits::Zero(); 9831 break; 9832 case ABIArgInfo::Extend: 9833 case ABIArgInfo::Direct: 9834 Val = Builder.CreateBitCast(AP, ArgPtrTy); 9835 ArgSize = CharUnits::fromQuantity( 9836 getDataLayout().getTypeAllocSize(AI.getCoerceToType())); 9837 ArgSize = ArgSize.alignTo(SlotSize); 9838 break; 9839 case ABIArgInfo::Indirect: 9840 case ABIArgInfo::IndirectAliased: 9841 Val = Builder.CreateElementBitCast(AP, ArgPtrTy); 9842 Val = Address(Builder.CreateLoad(Val), TypeAlign); 9843 ArgSize = SlotSize; 9844 break; 9845 } 9846 9847 // Increment the VAList. 9848 if (!ArgSize.isZero()) { 9849 Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize); 9850 Builder.CreateStore(APN.getPointer(), VAListAddr); 9851 } 9852 9853 return Val; 9854 } 9855 9856 /// During the expansion of a RecordType, an incomplete TypeString is placed 9857 /// into the cache as a means to identify and break recursion. 9858 /// If there is a Recursive encoding in the cache, it is swapped out and will 9859 /// be reinserted by removeIncomplete(). 9860 /// All other types of encoding should have been used rather than arriving here. 9861 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 9862 std::string StubEnc) { 9863 if (!ID) 9864 return; 9865 Entry &E = Map[ID]; 9866 assert( (E.Str.empty() || E.State == Recursive) && 9867 "Incorrectly use of addIncomplete"); 9868 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 9869 E.Swapped.swap(E.Str); // swap out the Recursive 9870 E.Str.swap(StubEnc); 9871 E.State = Incomplete; 9872 ++IncompleteCount; 9873 } 9874 9875 /// Once the RecordType has been expanded, the temporary incomplete TypeString 9876 /// must be removed from the cache. 9877 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 9878 /// Returns true if the RecordType was defined recursively. 9879 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 9880 if (!ID) 9881 return false; 9882 auto I = Map.find(ID); 9883 assert(I != Map.end() && "Entry not present"); 9884 Entry &E = I->second; 9885 assert( (E.State == Incomplete || 9886 E.State == IncompleteUsed) && 9887 "Entry must be an incomplete type"); 9888 bool IsRecursive = false; 9889 if (E.State == IncompleteUsed) { 9890 // We made use of our Incomplete encoding, thus we are recursive. 9891 IsRecursive = true; 9892 --IncompleteUsedCount; 9893 } 9894 if (E.Swapped.empty()) 9895 Map.erase(I); 9896 else { 9897 // Swap the Recursive back. 9898 E.Swapped.swap(E.Str); 9899 E.Swapped.clear(); 9900 E.State = Recursive; 9901 } 9902 --IncompleteCount; 9903 return IsRecursive; 9904 } 9905 9906 /// Add the encoded TypeString to the cache only if it is NonRecursive or 9907 /// Recursive (viz: all sub-members were expanded as fully as possible). 9908 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 9909 bool IsRecursive) { 9910 if (!ID || IncompleteUsedCount) 9911 return; // No key or it is is an incomplete sub-type so don't add. 9912 Entry &E = Map[ID]; 9913 if (IsRecursive && !E.Str.empty()) { 9914 assert(E.State==Recursive && E.Str.size() == Str.size() && 9915 "This is not the same Recursive entry"); 9916 // The parent container was not recursive after all, so we could have used 9917 // this Recursive sub-member entry after all, but we assumed the worse when 9918 // we started viz: IncompleteCount!=0. 9919 return; 9920 } 9921 assert(E.Str.empty() && "Entry already present"); 9922 E.Str = Str.str(); 9923 E.State = IsRecursive? Recursive : NonRecursive; 9924 } 9925 9926 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 9927 /// are recursively expanding a type (IncompleteCount != 0) and the cached 9928 /// encoding is Recursive, return an empty StringRef. 9929 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 9930 if (!ID) 9931 return StringRef(); // We have no key. 9932 auto I = Map.find(ID); 9933 if (I == Map.end()) 9934 return StringRef(); // We have no encoding. 9935 Entry &E = I->second; 9936 if (E.State == Recursive && IncompleteCount) 9937 return StringRef(); // We don't use Recursive encodings for member types. 9938 9939 if (E.State == Incomplete) { 9940 // The incomplete type is being used to break out of recursion. 9941 E.State = IncompleteUsed; 9942 ++IncompleteUsedCount; 9943 } 9944 return E.Str; 9945 } 9946 9947 /// The XCore ABI includes a type information section that communicates symbol 9948 /// type information to the linker. The linker uses this information to verify 9949 /// safety/correctness of things such as array bound and pointers et al. 9950 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 9951 /// This type information (TypeString) is emitted into meta data for all global 9952 /// symbols: definitions, declarations, functions & variables. 9953 /// 9954 /// The TypeString carries type, qualifier, name, size & value details. 9955 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 9956 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf 9957 /// The output is tested by test/CodeGen/xcore-stringtype.c. 9958 /// 9959 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 9960 const CodeGen::CodeGenModule &CGM, 9961 TypeStringCache &TSC); 9962 9963 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 9964 void XCoreTargetCodeGenInfo::emitTargetMD( 9965 const Decl *D, llvm::GlobalValue *GV, 9966 const CodeGen::CodeGenModule &CGM) const { 9967 SmallStringEnc Enc; 9968 if (getTypeString(Enc, D, CGM, TSC)) { 9969 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 9970 llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV), 9971 llvm::MDString::get(Ctx, Enc.str())}; 9972 llvm::NamedMDNode *MD = 9973 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 9974 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 9975 } 9976 } 9977 9978 void XCoreTargetCodeGenInfo::emitTargetMetadata( 9979 CodeGen::CodeGenModule &CGM, 9980 const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames) const { 9981 // Warning, new MangledDeclNames may be appended within this loop. 9982 // We rely on MapVector insertions adding new elements to the end 9983 // of the container. 9984 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 9985 auto Val = *(MangledDeclNames.begin() + I); 9986 llvm::GlobalValue *GV = CGM.GetGlobalValue(Val.second); 9987 if (GV) { 9988 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 9989 emitTargetMD(D, GV, CGM); 9990 } 9991 } 9992 } 9993 //===----------------------------------------------------------------------===// 9994 // SPIR ABI Implementation 9995 //===----------------------------------------------------------------------===// 9996 9997 namespace { 9998 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo { 9999 public: 10000 SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 10001 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 10002 unsigned getOpenCLKernelCallingConv() const override; 10003 }; 10004 10005 } // End anonymous namespace. 10006 10007 namespace clang { 10008 namespace CodeGen { 10009 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) { 10010 DefaultABIInfo SPIRABI(CGM.getTypes()); 10011 SPIRABI.computeInfo(FI); 10012 } 10013 } 10014 } 10015 10016 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 10017 return llvm::CallingConv::SPIR_KERNEL; 10018 } 10019 10020 static bool appendType(SmallStringEnc &Enc, QualType QType, 10021 const CodeGen::CodeGenModule &CGM, 10022 TypeStringCache &TSC); 10023 10024 /// Helper function for appendRecordType(). 10025 /// Builds a SmallVector containing the encoded field types in declaration 10026 /// order. 10027 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 10028 const RecordDecl *RD, 10029 const CodeGen::CodeGenModule &CGM, 10030 TypeStringCache &TSC) { 10031 for (const auto *Field : RD->fields()) { 10032 SmallStringEnc Enc; 10033 Enc += "m("; 10034 Enc += Field->getName(); 10035 Enc += "){"; 10036 if (Field->isBitField()) { 10037 Enc += "b("; 10038 llvm::raw_svector_ostream OS(Enc); 10039 OS << Field->getBitWidthValue(CGM.getContext()); 10040 Enc += ':'; 10041 } 10042 if (!appendType(Enc, Field->getType(), CGM, TSC)) 10043 return false; 10044 if (Field->isBitField()) 10045 Enc += ')'; 10046 Enc += '}'; 10047 FE.emplace_back(!Field->getName().empty(), Enc); 10048 } 10049 return true; 10050 } 10051 10052 /// Appends structure and union types to Enc and adds encoding to cache. 10053 /// Recursively calls appendType (via extractFieldType) for each field. 10054 /// Union types have their fields ordered according to the ABI. 10055 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 10056 const CodeGen::CodeGenModule &CGM, 10057 TypeStringCache &TSC, const IdentifierInfo *ID) { 10058 // Append the cached TypeString if we have one. 10059 StringRef TypeString = TSC.lookupStr(ID); 10060 if (!TypeString.empty()) { 10061 Enc += TypeString; 10062 return true; 10063 } 10064 10065 // Start to emit an incomplete TypeString. 10066 size_t Start = Enc.size(); 10067 Enc += (RT->isUnionType()? 'u' : 's'); 10068 Enc += '('; 10069 if (ID) 10070 Enc += ID->getName(); 10071 Enc += "){"; 10072 10073 // We collect all encoded fields and order as necessary. 10074 bool IsRecursive = false; 10075 const RecordDecl *RD = RT->getDecl()->getDefinition(); 10076 if (RD && !RD->field_empty()) { 10077 // An incomplete TypeString stub is placed in the cache for this RecordType 10078 // so that recursive calls to this RecordType will use it whilst building a 10079 // complete TypeString for this RecordType. 10080 SmallVector<FieldEncoding, 16> FE; 10081 std::string StubEnc(Enc.substr(Start).str()); 10082 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 10083 TSC.addIncomplete(ID, std::move(StubEnc)); 10084 if (!extractFieldType(FE, RD, CGM, TSC)) { 10085 (void) TSC.removeIncomplete(ID); 10086 return false; 10087 } 10088 IsRecursive = TSC.removeIncomplete(ID); 10089 // The ABI requires unions to be sorted but not structures. 10090 // See FieldEncoding::operator< for sort algorithm. 10091 if (RT->isUnionType()) 10092 llvm::sort(FE); 10093 // We can now complete the TypeString. 10094 unsigned E = FE.size(); 10095 for (unsigned I = 0; I != E; ++I) { 10096 if (I) 10097 Enc += ','; 10098 Enc += FE[I].str(); 10099 } 10100 } 10101 Enc += '}'; 10102 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 10103 return true; 10104 } 10105 10106 /// Appends enum types to Enc and adds the encoding to the cache. 10107 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 10108 TypeStringCache &TSC, 10109 const IdentifierInfo *ID) { 10110 // Append the cached TypeString if we have one. 10111 StringRef TypeString = TSC.lookupStr(ID); 10112 if (!TypeString.empty()) { 10113 Enc += TypeString; 10114 return true; 10115 } 10116 10117 size_t Start = Enc.size(); 10118 Enc += "e("; 10119 if (ID) 10120 Enc += ID->getName(); 10121 Enc += "){"; 10122 10123 // We collect all encoded enumerations and order them alphanumerically. 10124 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 10125 SmallVector<FieldEncoding, 16> FE; 10126 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 10127 ++I) { 10128 SmallStringEnc EnumEnc; 10129 EnumEnc += "m("; 10130 EnumEnc += I->getName(); 10131 EnumEnc += "){"; 10132 I->getInitVal().toString(EnumEnc); 10133 EnumEnc += '}'; 10134 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 10135 } 10136 llvm::sort(FE); 10137 unsigned E = FE.size(); 10138 for (unsigned I = 0; I != E; ++I) { 10139 if (I) 10140 Enc += ','; 10141 Enc += FE[I].str(); 10142 } 10143 } 10144 Enc += '}'; 10145 TSC.addIfComplete(ID, Enc.substr(Start), false); 10146 return true; 10147 } 10148 10149 /// Appends type's qualifier to Enc. 10150 /// This is done prior to appending the type's encoding. 10151 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 10152 // Qualifiers are emitted in alphabetical order. 10153 static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 10154 int Lookup = 0; 10155 if (QT.isConstQualified()) 10156 Lookup += 1<<0; 10157 if (QT.isRestrictQualified()) 10158 Lookup += 1<<1; 10159 if (QT.isVolatileQualified()) 10160 Lookup += 1<<2; 10161 Enc += Table[Lookup]; 10162 } 10163 10164 /// Appends built-in types to Enc. 10165 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 10166 const char *EncType; 10167 switch (BT->getKind()) { 10168 case BuiltinType::Void: 10169 EncType = "0"; 10170 break; 10171 case BuiltinType::Bool: 10172 EncType = "b"; 10173 break; 10174 case BuiltinType::Char_U: 10175 EncType = "uc"; 10176 break; 10177 case BuiltinType::UChar: 10178 EncType = "uc"; 10179 break; 10180 case BuiltinType::SChar: 10181 EncType = "sc"; 10182 break; 10183 case BuiltinType::UShort: 10184 EncType = "us"; 10185 break; 10186 case BuiltinType::Short: 10187 EncType = "ss"; 10188 break; 10189 case BuiltinType::UInt: 10190 EncType = "ui"; 10191 break; 10192 case BuiltinType::Int: 10193 EncType = "si"; 10194 break; 10195 case BuiltinType::ULong: 10196 EncType = "ul"; 10197 break; 10198 case BuiltinType::Long: 10199 EncType = "sl"; 10200 break; 10201 case BuiltinType::ULongLong: 10202 EncType = "ull"; 10203 break; 10204 case BuiltinType::LongLong: 10205 EncType = "sll"; 10206 break; 10207 case BuiltinType::Float: 10208 EncType = "ft"; 10209 break; 10210 case BuiltinType::Double: 10211 EncType = "d"; 10212 break; 10213 case BuiltinType::LongDouble: 10214 EncType = "ld"; 10215 break; 10216 default: 10217 return false; 10218 } 10219 Enc += EncType; 10220 return true; 10221 } 10222 10223 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 10224 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 10225 const CodeGen::CodeGenModule &CGM, 10226 TypeStringCache &TSC) { 10227 Enc += "p("; 10228 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 10229 return false; 10230 Enc += ')'; 10231 return true; 10232 } 10233 10234 /// Appends array encoding to Enc before calling appendType for the element. 10235 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 10236 const ArrayType *AT, 10237 const CodeGen::CodeGenModule &CGM, 10238 TypeStringCache &TSC, StringRef NoSizeEnc) { 10239 if (AT->getSizeModifier() != ArrayType::Normal) 10240 return false; 10241 Enc += "a("; 10242 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 10243 CAT->getSize().toStringUnsigned(Enc); 10244 else 10245 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 10246 Enc += ':'; 10247 // The Qualifiers should be attached to the type rather than the array. 10248 appendQualifier(Enc, QT); 10249 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 10250 return false; 10251 Enc += ')'; 10252 return true; 10253 } 10254 10255 /// Appends a function encoding to Enc, calling appendType for the return type 10256 /// and the arguments. 10257 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 10258 const CodeGen::CodeGenModule &CGM, 10259 TypeStringCache &TSC) { 10260 Enc += "f{"; 10261 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 10262 return false; 10263 Enc += "}("; 10264 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 10265 // N.B. we are only interested in the adjusted param types. 10266 auto I = FPT->param_type_begin(); 10267 auto E = FPT->param_type_end(); 10268 if (I != E) { 10269 do { 10270 if (!appendType(Enc, *I, CGM, TSC)) 10271 return false; 10272 ++I; 10273 if (I != E) 10274 Enc += ','; 10275 } while (I != E); 10276 if (FPT->isVariadic()) 10277 Enc += ",va"; 10278 } else { 10279 if (FPT->isVariadic()) 10280 Enc += "va"; 10281 else 10282 Enc += '0'; 10283 } 10284 } 10285 Enc += ')'; 10286 return true; 10287 } 10288 10289 /// Handles the type's qualifier before dispatching a call to handle specific 10290 /// type encodings. 10291 static bool appendType(SmallStringEnc &Enc, QualType QType, 10292 const CodeGen::CodeGenModule &CGM, 10293 TypeStringCache &TSC) { 10294 10295 QualType QT = QType.getCanonicalType(); 10296 10297 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 10298 // The Qualifiers should be attached to the type rather than the array. 10299 // Thus we don't call appendQualifier() here. 10300 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 10301 10302 appendQualifier(Enc, QT); 10303 10304 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 10305 return appendBuiltinType(Enc, BT); 10306 10307 if (const PointerType *PT = QT->getAs<PointerType>()) 10308 return appendPointerType(Enc, PT, CGM, TSC); 10309 10310 if (const EnumType *ET = QT->getAs<EnumType>()) 10311 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 10312 10313 if (const RecordType *RT = QT->getAsStructureType()) 10314 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 10315 10316 if (const RecordType *RT = QT->getAsUnionType()) 10317 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 10318 10319 if (const FunctionType *FT = QT->getAs<FunctionType>()) 10320 return appendFunctionType(Enc, FT, CGM, TSC); 10321 10322 return false; 10323 } 10324 10325 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 10326 const CodeGen::CodeGenModule &CGM, 10327 TypeStringCache &TSC) { 10328 if (!D) 10329 return false; 10330 10331 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 10332 if (FD->getLanguageLinkage() != CLanguageLinkage) 10333 return false; 10334 return appendType(Enc, FD->getType(), CGM, TSC); 10335 } 10336 10337 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 10338 if (VD->getLanguageLinkage() != CLanguageLinkage) 10339 return false; 10340 QualType QT = VD->getType().getCanonicalType(); 10341 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 10342 // Global ArrayTypes are given a size of '*' if the size is unknown. 10343 // The Qualifiers should be attached to the type rather than the array. 10344 // Thus we don't call appendQualifier() here. 10345 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 10346 } 10347 return appendType(Enc, QT, CGM, TSC); 10348 } 10349 return false; 10350 } 10351 10352 //===----------------------------------------------------------------------===// 10353 // RISCV ABI Implementation 10354 //===----------------------------------------------------------------------===// 10355 10356 namespace { 10357 class RISCVABIInfo : public DefaultABIInfo { 10358 private: 10359 // Size of the integer ('x') registers in bits. 10360 unsigned XLen; 10361 // Size of the floating point ('f') registers in bits. Note that the target 10362 // ISA might have a wider FLen than the selected ABI (e.g. an RV32IF target 10363 // with soft float ABI has FLen==0). 10364 unsigned FLen; 10365 static const int NumArgGPRs = 8; 10366 static const int NumArgFPRs = 8; 10367 bool detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, 10368 llvm::Type *&Field1Ty, 10369 CharUnits &Field1Off, 10370 llvm::Type *&Field2Ty, 10371 CharUnits &Field2Off) const; 10372 10373 public: 10374 RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen) 10375 : DefaultABIInfo(CGT), XLen(XLen), FLen(FLen) {} 10376 10377 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 10378 // non-virtual, but computeInfo is virtual, so we overload it. 10379 void computeInfo(CGFunctionInfo &FI) const override; 10380 10381 ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &ArgGPRsLeft, 10382 int &ArgFPRsLeft) const; 10383 ABIArgInfo classifyReturnType(QualType RetTy) const; 10384 10385 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 10386 QualType Ty) const override; 10387 10388 ABIArgInfo extendType(QualType Ty) const; 10389 10390 bool detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, 10391 CharUnits &Field1Off, llvm::Type *&Field2Ty, 10392 CharUnits &Field2Off, int &NeededArgGPRs, 10393 int &NeededArgFPRs) const; 10394 ABIArgInfo coerceAndExpandFPCCEligibleStruct(llvm::Type *Field1Ty, 10395 CharUnits Field1Off, 10396 llvm::Type *Field2Ty, 10397 CharUnits Field2Off) const; 10398 }; 10399 } // end anonymous namespace 10400 10401 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const { 10402 QualType RetTy = FI.getReturnType(); 10403 if (!getCXXABI().classifyReturnType(FI)) 10404 FI.getReturnInfo() = classifyReturnType(RetTy); 10405 10406 // IsRetIndirect is true if classifyArgumentType indicated the value should 10407 // be passed indirect, or if the type size is a scalar greater than 2*XLen 10408 // and not a complex type with elements <= FLen. e.g. fp128 is passed direct 10409 // in LLVM IR, relying on the backend lowering code to rewrite the argument 10410 // list and pass indirectly on RV32. 10411 bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect; 10412 if (!IsRetIndirect && RetTy->isScalarType() && 10413 getContext().getTypeSize(RetTy) > (2 * XLen)) { 10414 if (RetTy->isComplexType() && FLen) { 10415 QualType EltTy = RetTy->getAs<ComplexType>()->getElementType(); 10416 IsRetIndirect = getContext().getTypeSize(EltTy) > FLen; 10417 } else { 10418 // This is a normal scalar > 2*XLen, such as fp128 on RV32. 10419 IsRetIndirect = true; 10420 } 10421 } 10422 10423 // We must track the number of GPRs used in order to conform to the RISC-V 10424 // ABI, as integer scalars passed in registers should have signext/zeroext 10425 // when promoted, but are anyext if passed on the stack. As GPR usage is 10426 // different for variadic arguments, we must also track whether we are 10427 // examining a vararg or not. 10428 int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs; 10429 int ArgFPRsLeft = FLen ? NumArgFPRs : 0; 10430 int NumFixedArgs = FI.getNumRequiredArgs(); 10431 10432 int ArgNum = 0; 10433 for (auto &ArgInfo : FI.arguments()) { 10434 bool IsFixed = ArgNum < NumFixedArgs; 10435 ArgInfo.info = 10436 classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft, ArgFPRsLeft); 10437 ArgNum++; 10438 } 10439 } 10440 10441 // Returns true if the struct is a potential candidate for the floating point 10442 // calling convention. If this function returns true, the caller is 10443 // responsible for checking that if there is only a single field then that 10444 // field is a float. 10445 bool RISCVABIInfo::detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, 10446 llvm::Type *&Field1Ty, 10447 CharUnits &Field1Off, 10448 llvm::Type *&Field2Ty, 10449 CharUnits &Field2Off) const { 10450 bool IsInt = Ty->isIntegralOrEnumerationType(); 10451 bool IsFloat = Ty->isRealFloatingType(); 10452 10453 if (IsInt || IsFloat) { 10454 uint64_t Size = getContext().getTypeSize(Ty); 10455 if (IsInt && Size > XLen) 10456 return false; 10457 // Can't be eligible if larger than the FP registers. Half precision isn't 10458 // currently supported on RISC-V and the ABI hasn't been confirmed, so 10459 // default to the integer ABI in that case. 10460 if (IsFloat && (Size > FLen || Size < 32)) 10461 return false; 10462 // Can't be eligible if an integer type was already found (int+int pairs 10463 // are not eligible). 10464 if (IsInt && Field1Ty && Field1Ty->isIntegerTy()) 10465 return false; 10466 if (!Field1Ty) { 10467 Field1Ty = CGT.ConvertType(Ty); 10468 Field1Off = CurOff; 10469 return true; 10470 } 10471 if (!Field2Ty) { 10472 Field2Ty = CGT.ConvertType(Ty); 10473 Field2Off = CurOff; 10474 return true; 10475 } 10476 return false; 10477 } 10478 10479 if (auto CTy = Ty->getAs<ComplexType>()) { 10480 if (Field1Ty) 10481 return false; 10482 QualType EltTy = CTy->getElementType(); 10483 if (getContext().getTypeSize(EltTy) > FLen) 10484 return false; 10485 Field1Ty = CGT.ConvertType(EltTy); 10486 Field1Off = CurOff; 10487 assert(CurOff.isZero() && "Unexpected offset for first field"); 10488 Field2Ty = Field1Ty; 10489 Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy); 10490 return true; 10491 } 10492 10493 if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) { 10494 uint64_t ArraySize = ATy->getSize().getZExtValue(); 10495 QualType EltTy = ATy->getElementType(); 10496 CharUnits EltSize = getContext().getTypeSizeInChars(EltTy); 10497 for (uint64_t i = 0; i < ArraySize; ++i) { 10498 bool Ret = detectFPCCEligibleStructHelper(EltTy, CurOff, Field1Ty, 10499 Field1Off, Field2Ty, Field2Off); 10500 if (!Ret) 10501 return false; 10502 CurOff += EltSize; 10503 } 10504 return true; 10505 } 10506 10507 if (const auto *RTy = Ty->getAs<RecordType>()) { 10508 // Structures with either a non-trivial destructor or a non-trivial 10509 // copy constructor are not eligible for the FP calling convention. 10510 if (getRecordArgABI(Ty, CGT.getCXXABI())) 10511 return false; 10512 if (isEmptyRecord(getContext(), Ty, true)) 10513 return true; 10514 const RecordDecl *RD = RTy->getDecl(); 10515 // Unions aren't eligible unless they're empty (which is caught above). 10516 if (RD->isUnion()) 10517 return false; 10518 int ZeroWidthBitFieldCount = 0; 10519 for (const FieldDecl *FD : RD->fields()) { 10520 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 10521 uint64_t FieldOffInBits = Layout.getFieldOffset(FD->getFieldIndex()); 10522 QualType QTy = FD->getType(); 10523 if (FD->isBitField()) { 10524 unsigned BitWidth = FD->getBitWidthValue(getContext()); 10525 // Allow a bitfield with a type greater than XLen as long as the 10526 // bitwidth is XLen or less. 10527 if (getContext().getTypeSize(QTy) > XLen && BitWidth <= XLen) 10528 QTy = getContext().getIntTypeForBitwidth(XLen, false); 10529 if (BitWidth == 0) { 10530 ZeroWidthBitFieldCount++; 10531 continue; 10532 } 10533 } 10534 10535 bool Ret = detectFPCCEligibleStructHelper( 10536 QTy, CurOff + getContext().toCharUnitsFromBits(FieldOffInBits), 10537 Field1Ty, Field1Off, Field2Ty, Field2Off); 10538 if (!Ret) 10539 return false; 10540 10541 // As a quirk of the ABI, zero-width bitfields aren't ignored for fp+fp 10542 // or int+fp structs, but are ignored for a struct with an fp field and 10543 // any number of zero-width bitfields. 10544 if (Field2Ty && ZeroWidthBitFieldCount > 0) 10545 return false; 10546 } 10547 return Field1Ty != nullptr; 10548 } 10549 10550 return false; 10551 } 10552 10553 // Determine if a struct is eligible for passing according to the floating 10554 // point calling convention (i.e., when flattened it contains a single fp 10555 // value, fp+fp, or int+fp of appropriate size). If so, NeededArgFPRs and 10556 // NeededArgGPRs are incremented appropriately. 10557 bool RISCVABIInfo::detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, 10558 CharUnits &Field1Off, 10559 llvm::Type *&Field2Ty, 10560 CharUnits &Field2Off, 10561 int &NeededArgGPRs, 10562 int &NeededArgFPRs) const { 10563 Field1Ty = nullptr; 10564 Field2Ty = nullptr; 10565 NeededArgGPRs = 0; 10566 NeededArgFPRs = 0; 10567 bool IsCandidate = detectFPCCEligibleStructHelper( 10568 Ty, CharUnits::Zero(), Field1Ty, Field1Off, Field2Ty, Field2Off); 10569 // Not really a candidate if we have a single int but no float. 10570 if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy()) 10571 return false; 10572 if (!IsCandidate) 10573 return false; 10574 if (Field1Ty && Field1Ty->isFloatingPointTy()) 10575 NeededArgFPRs++; 10576 else if (Field1Ty) 10577 NeededArgGPRs++; 10578 if (Field2Ty && Field2Ty->isFloatingPointTy()) 10579 NeededArgFPRs++; 10580 else if (Field2Ty) 10581 NeededArgGPRs++; 10582 return IsCandidate; 10583 } 10584 10585 // Call getCoerceAndExpand for the two-element flattened struct described by 10586 // Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an 10587 // appropriate coerceToType and unpaddedCoerceToType. 10588 ABIArgInfo RISCVABIInfo::coerceAndExpandFPCCEligibleStruct( 10589 llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty, 10590 CharUnits Field2Off) const { 10591 SmallVector<llvm::Type *, 3> CoerceElts; 10592 SmallVector<llvm::Type *, 2> UnpaddedCoerceElts; 10593 if (!Field1Off.isZero()) 10594 CoerceElts.push_back(llvm::ArrayType::get( 10595 llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity())); 10596 10597 CoerceElts.push_back(Field1Ty); 10598 UnpaddedCoerceElts.push_back(Field1Ty); 10599 10600 if (!Field2Ty) { 10601 return ABIArgInfo::getCoerceAndExpand( 10602 llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()), 10603 UnpaddedCoerceElts[0]); 10604 } 10605 10606 CharUnits Field2Align = 10607 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(Field2Ty)); 10608 CharUnits Field1Size = 10609 CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty)); 10610 CharUnits Field2OffNoPadNoPack = Field1Size.alignTo(Field2Align); 10611 10612 CharUnits Padding = CharUnits::Zero(); 10613 if (Field2Off > Field2OffNoPadNoPack) 10614 Padding = Field2Off - Field2OffNoPadNoPack; 10615 else if (Field2Off != Field2Align && Field2Off > Field1Size) 10616 Padding = Field2Off - Field1Size; 10617 10618 bool IsPacked = !Field2Off.isMultipleOf(Field2Align); 10619 10620 if (!Padding.isZero()) 10621 CoerceElts.push_back(llvm::ArrayType::get( 10622 llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity())); 10623 10624 CoerceElts.push_back(Field2Ty); 10625 UnpaddedCoerceElts.push_back(Field2Ty); 10626 10627 auto CoerceToType = 10628 llvm::StructType::get(getVMContext(), CoerceElts, IsPacked); 10629 auto UnpaddedCoerceToType = 10630 llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked); 10631 10632 return ABIArgInfo::getCoerceAndExpand(CoerceToType, UnpaddedCoerceToType); 10633 } 10634 10635 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed, 10636 int &ArgGPRsLeft, 10637 int &ArgFPRsLeft) const { 10638 assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow"); 10639 Ty = useFirstFieldIfTransparentUnion(Ty); 10640 10641 // Structures with either a non-trivial destructor or a non-trivial 10642 // copy constructor are always passed indirectly. 10643 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 10644 if (ArgGPRsLeft) 10645 ArgGPRsLeft -= 1; 10646 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 10647 CGCXXABI::RAA_DirectInMemory); 10648 } 10649 10650 // Ignore empty structs/unions. 10651 if (isEmptyRecord(getContext(), Ty, true)) 10652 return ABIArgInfo::getIgnore(); 10653 10654 uint64_t Size = getContext().getTypeSize(Ty); 10655 10656 // Pass floating point values via FPRs if possible. 10657 if (IsFixed && Ty->isFloatingType() && !Ty->isComplexType() && 10658 FLen >= Size && ArgFPRsLeft) { 10659 ArgFPRsLeft--; 10660 return ABIArgInfo::getDirect(); 10661 } 10662 10663 // Complex types for the hard float ABI must be passed direct rather than 10664 // using CoerceAndExpand. 10665 if (IsFixed && Ty->isComplexType() && FLen && ArgFPRsLeft >= 2) { 10666 QualType EltTy = Ty->castAs<ComplexType>()->getElementType(); 10667 if (getContext().getTypeSize(EltTy) <= FLen) { 10668 ArgFPRsLeft -= 2; 10669 return ABIArgInfo::getDirect(); 10670 } 10671 } 10672 10673 if (IsFixed && FLen && Ty->isStructureOrClassType()) { 10674 llvm::Type *Field1Ty = nullptr; 10675 llvm::Type *Field2Ty = nullptr; 10676 CharUnits Field1Off = CharUnits::Zero(); 10677 CharUnits Field2Off = CharUnits::Zero(); 10678 int NeededArgGPRs; 10679 int NeededArgFPRs; 10680 bool IsCandidate = 10681 detectFPCCEligibleStruct(Ty, Field1Ty, Field1Off, Field2Ty, Field2Off, 10682 NeededArgGPRs, NeededArgFPRs); 10683 if (IsCandidate && NeededArgGPRs <= ArgGPRsLeft && 10684 NeededArgFPRs <= ArgFPRsLeft) { 10685 ArgGPRsLeft -= NeededArgGPRs; 10686 ArgFPRsLeft -= NeededArgFPRs; 10687 return coerceAndExpandFPCCEligibleStruct(Field1Ty, Field1Off, Field2Ty, 10688 Field2Off); 10689 } 10690 } 10691 10692 uint64_t NeededAlign = getContext().getTypeAlign(Ty); 10693 bool MustUseStack = false; 10694 // Determine the number of GPRs needed to pass the current argument 10695 // according to the ABI. 2*XLen-aligned varargs are passed in "aligned" 10696 // register pairs, so may consume 3 registers. 10697 int NeededArgGPRs = 1; 10698 if (!IsFixed && NeededAlign == 2 * XLen) 10699 NeededArgGPRs = 2 + (ArgGPRsLeft % 2); 10700 else if (Size > XLen && Size <= 2 * XLen) 10701 NeededArgGPRs = 2; 10702 10703 if (NeededArgGPRs > ArgGPRsLeft) { 10704 MustUseStack = true; 10705 NeededArgGPRs = ArgGPRsLeft; 10706 } 10707 10708 ArgGPRsLeft -= NeededArgGPRs; 10709 10710 if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) { 10711 // Treat an enum type as its underlying type. 10712 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 10713 Ty = EnumTy->getDecl()->getIntegerType(); 10714 10715 // All integral types are promoted to XLen width, unless passed on the 10716 // stack. 10717 if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) { 10718 return extendType(Ty); 10719 } 10720 10721 if (const auto *EIT = Ty->getAs<ExtIntType>()) { 10722 if (EIT->getNumBits() < XLen && !MustUseStack) 10723 return extendType(Ty); 10724 if (EIT->getNumBits() > 128 || 10725 (!getContext().getTargetInfo().hasInt128Type() && 10726 EIT->getNumBits() > 64)) 10727 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 10728 } 10729 10730 return ABIArgInfo::getDirect(); 10731 } 10732 10733 // Aggregates which are <= 2*XLen will be passed in registers if possible, 10734 // so coerce to integers. 10735 if (Size <= 2 * XLen) { 10736 unsigned Alignment = getContext().getTypeAlign(Ty); 10737 10738 // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is 10739 // required, and a 2-element XLen array if only XLen alignment is required. 10740 if (Size <= XLen) { 10741 return ABIArgInfo::getDirect( 10742 llvm::IntegerType::get(getVMContext(), XLen)); 10743 } else if (Alignment == 2 * XLen) { 10744 return ABIArgInfo::getDirect( 10745 llvm::IntegerType::get(getVMContext(), 2 * XLen)); 10746 } else { 10747 return ABIArgInfo::getDirect(llvm::ArrayType::get( 10748 llvm::IntegerType::get(getVMContext(), XLen), 2)); 10749 } 10750 } 10751 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 10752 } 10753 10754 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const { 10755 if (RetTy->isVoidType()) 10756 return ABIArgInfo::getIgnore(); 10757 10758 int ArgGPRsLeft = 2; 10759 int ArgFPRsLeft = FLen ? 2 : 0; 10760 10761 // The rules for return and argument types are the same, so defer to 10762 // classifyArgumentType. 10763 return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft, 10764 ArgFPRsLeft); 10765 } 10766 10767 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 10768 QualType Ty) const { 10769 CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8); 10770 10771 // Empty records are ignored for parameter passing purposes. 10772 if (isEmptyRecord(getContext(), Ty, true)) { 10773 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 10774 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 10775 return Addr; 10776 } 10777 10778 auto TInfo = getContext().getTypeInfoInChars(Ty); 10779 10780 // Arguments bigger than 2*Xlen bytes are passed indirectly. 10781 bool IsIndirect = TInfo.Width > 2 * SlotSize; 10782 10783 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TInfo, 10784 SlotSize, /*AllowHigherAlign=*/true); 10785 } 10786 10787 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const { 10788 int TySize = getContext().getTypeSize(Ty); 10789 // RV64 ABI requires unsigned 32 bit integers to be sign extended. 10790 if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 10791 return ABIArgInfo::getSignExtend(Ty); 10792 return ABIArgInfo::getExtend(Ty); 10793 } 10794 10795 namespace { 10796 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo { 10797 public: 10798 RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, 10799 unsigned FLen) 10800 : TargetCodeGenInfo(std::make_unique<RISCVABIInfo>(CGT, XLen, FLen)) {} 10801 10802 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 10803 CodeGen::CodeGenModule &CGM) const override { 10804 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 10805 if (!FD) return; 10806 10807 const auto *Attr = FD->getAttr<RISCVInterruptAttr>(); 10808 if (!Attr) 10809 return; 10810 10811 const char *Kind; 10812 switch (Attr->getInterrupt()) { 10813 case RISCVInterruptAttr::user: Kind = "user"; break; 10814 case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break; 10815 case RISCVInterruptAttr::machine: Kind = "machine"; break; 10816 } 10817 10818 auto *Fn = cast<llvm::Function>(GV); 10819 10820 Fn->addFnAttr("interrupt", Kind); 10821 } 10822 }; 10823 } // namespace 10824 10825 //===----------------------------------------------------------------------===// 10826 // VE ABI Implementation. 10827 // 10828 namespace { 10829 class VEABIInfo : public DefaultABIInfo { 10830 public: 10831 VEABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 10832 10833 private: 10834 ABIArgInfo classifyReturnType(QualType RetTy) const; 10835 ABIArgInfo classifyArgumentType(QualType RetTy) const; 10836 void computeInfo(CGFunctionInfo &FI) const override; 10837 }; 10838 } // end anonymous namespace 10839 10840 ABIArgInfo VEABIInfo::classifyReturnType(QualType Ty) const { 10841 if (Ty->isAnyComplexType()) 10842 return ABIArgInfo::getDirect(); 10843 uint64_t Size = getContext().getTypeSize(Ty); 10844 if (Size < 64 && Ty->isIntegerType()) 10845 return ABIArgInfo::getExtend(Ty); 10846 return DefaultABIInfo::classifyReturnType(Ty); 10847 } 10848 10849 ABIArgInfo VEABIInfo::classifyArgumentType(QualType Ty) const { 10850 if (Ty->isAnyComplexType()) 10851 return ABIArgInfo::getDirect(); 10852 uint64_t Size = getContext().getTypeSize(Ty); 10853 if (Size < 64 && Ty->isIntegerType()) 10854 return ABIArgInfo::getExtend(Ty); 10855 return DefaultABIInfo::classifyArgumentType(Ty); 10856 } 10857 10858 void VEABIInfo::computeInfo(CGFunctionInfo &FI) const { 10859 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 10860 for (auto &Arg : FI.arguments()) 10861 Arg.info = classifyArgumentType(Arg.type); 10862 } 10863 10864 namespace { 10865 class VETargetCodeGenInfo : public TargetCodeGenInfo { 10866 public: 10867 VETargetCodeGenInfo(CodeGenTypes &CGT) 10868 : TargetCodeGenInfo(std::make_unique<VEABIInfo>(CGT)) {} 10869 // VE ABI requires the arguments of variadic and prototype-less functions 10870 // are passed in both registers and memory. 10871 bool isNoProtoCallVariadic(const CallArgList &args, 10872 const FunctionNoProtoType *fnType) const override { 10873 return true; 10874 } 10875 }; 10876 } // end anonymous namespace 10877 10878 //===----------------------------------------------------------------------===// 10879 // Driver code 10880 //===----------------------------------------------------------------------===// 10881 10882 bool CodeGenModule::supportsCOMDAT() const { 10883 return getTriple().supportsCOMDAT(); 10884 } 10885 10886 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 10887 if (TheTargetCodeGenInfo) 10888 return *TheTargetCodeGenInfo; 10889 10890 // Helper to set the unique_ptr while still keeping the return value. 10891 auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & { 10892 this->TheTargetCodeGenInfo.reset(P); 10893 return *P; 10894 }; 10895 10896 const llvm::Triple &Triple = getTarget().getTriple(); 10897 switch (Triple.getArch()) { 10898 default: 10899 return SetCGInfo(new DefaultTargetCodeGenInfo(Types)); 10900 10901 case llvm::Triple::le32: 10902 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 10903 case llvm::Triple::mips: 10904 case llvm::Triple::mipsel: 10905 if (Triple.getOS() == llvm::Triple::NaCl) 10906 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 10907 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true)); 10908 10909 case llvm::Triple::mips64: 10910 case llvm::Triple::mips64el: 10911 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false)); 10912 10913 case llvm::Triple::avr: 10914 return SetCGInfo(new AVRTargetCodeGenInfo(Types)); 10915 10916 case llvm::Triple::aarch64: 10917 case llvm::Triple::aarch64_32: 10918 case llvm::Triple::aarch64_be: { 10919 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 10920 if (getTarget().getABI() == "darwinpcs") 10921 Kind = AArch64ABIInfo::DarwinPCS; 10922 else if (Triple.isOSWindows()) 10923 return SetCGInfo( 10924 new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64)); 10925 10926 return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind)); 10927 } 10928 10929 case llvm::Triple::wasm32: 10930 case llvm::Triple::wasm64: { 10931 WebAssemblyABIInfo::ABIKind Kind = WebAssemblyABIInfo::MVP; 10932 if (getTarget().getABI() == "experimental-mv") 10933 Kind = WebAssemblyABIInfo::ExperimentalMV; 10934 return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types, Kind)); 10935 } 10936 10937 case llvm::Triple::arm: 10938 case llvm::Triple::armeb: 10939 case llvm::Triple::thumb: 10940 case llvm::Triple::thumbeb: { 10941 if (Triple.getOS() == llvm::Triple::Win32) { 10942 return SetCGInfo( 10943 new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP)); 10944 } 10945 10946 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 10947 StringRef ABIStr = getTarget().getABI(); 10948 if (ABIStr == "apcs-gnu") 10949 Kind = ARMABIInfo::APCS; 10950 else if (ABIStr == "aapcs16") 10951 Kind = ARMABIInfo::AAPCS16_VFP; 10952 else if (CodeGenOpts.FloatABI == "hard" || 10953 (CodeGenOpts.FloatABI != "soft" && 10954 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 10955 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 10956 Triple.getEnvironment() == llvm::Triple::EABIHF))) 10957 Kind = ARMABIInfo::AAPCS_VFP; 10958 10959 return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind)); 10960 } 10961 10962 case llvm::Triple::ppc: { 10963 if (Triple.isOSAIX()) 10964 return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ false)); 10965 10966 bool IsSoftFloat = 10967 CodeGenOpts.FloatABI == "soft" || getTarget().hasFeature("spe"); 10968 bool RetSmallStructInRegABI = 10969 PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 10970 return SetCGInfo( 10971 new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI)); 10972 } 10973 case llvm::Triple::ppc64: 10974 if (Triple.isOSAIX()) 10975 return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ true)); 10976 10977 if (Triple.isOSBinFormatELF()) { 10978 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 10979 if (getTarget().getABI() == "elfv2") 10980 Kind = PPC64_SVR4_ABIInfo::ELFv2; 10981 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 10982 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 10983 10984 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 10985 IsSoftFloat)); 10986 } 10987 return SetCGInfo(new PPC64TargetCodeGenInfo(Types)); 10988 case llvm::Triple::ppc64le: { 10989 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 10990 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 10991 if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx") 10992 Kind = PPC64_SVR4_ABIInfo::ELFv1; 10993 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 10994 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 10995 10996 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 10997 IsSoftFloat)); 10998 } 10999 11000 case llvm::Triple::nvptx: 11001 case llvm::Triple::nvptx64: 11002 return SetCGInfo(new NVPTXTargetCodeGenInfo(Types)); 11003 11004 case llvm::Triple::msp430: 11005 return SetCGInfo(new MSP430TargetCodeGenInfo(Types)); 11006 11007 case llvm::Triple::riscv32: 11008 case llvm::Triple::riscv64: { 11009 StringRef ABIStr = getTarget().getABI(); 11010 unsigned XLen = getTarget().getPointerWidth(0); 11011 unsigned ABIFLen = 0; 11012 if (ABIStr.endswith("f")) 11013 ABIFLen = 32; 11014 else if (ABIStr.endswith("d")) 11015 ABIFLen = 64; 11016 return SetCGInfo(new RISCVTargetCodeGenInfo(Types, XLen, ABIFLen)); 11017 } 11018 11019 case llvm::Triple::systemz: { 11020 bool SoftFloat = CodeGenOpts.FloatABI == "soft"; 11021 bool HasVector = !SoftFloat && getTarget().getABI() == "vector"; 11022 return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector, SoftFloat)); 11023 } 11024 11025 case llvm::Triple::tce: 11026 case llvm::Triple::tcele: 11027 return SetCGInfo(new TCETargetCodeGenInfo(Types)); 11028 11029 case llvm::Triple::x86: { 11030 bool IsDarwinVectorABI = Triple.isOSDarwin(); 11031 bool RetSmallStructInRegABI = 11032 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 11033 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 11034 11035 if (Triple.getOS() == llvm::Triple::Win32) { 11036 return SetCGInfo(new WinX86_32TargetCodeGenInfo( 11037 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 11038 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); 11039 } else { 11040 return SetCGInfo(new X86_32TargetCodeGenInfo( 11041 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 11042 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters, 11043 CodeGenOpts.FloatABI == "soft")); 11044 } 11045 } 11046 11047 case llvm::Triple::x86_64: { 11048 StringRef ABI = getTarget().getABI(); 11049 X86AVXABILevel AVXLevel = 11050 (ABI == "avx512" 11051 ? X86AVXABILevel::AVX512 11052 : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None); 11053 11054 switch (Triple.getOS()) { 11055 case llvm::Triple::Win32: 11056 return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel)); 11057 default: 11058 return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel)); 11059 } 11060 } 11061 case llvm::Triple::hexagon: 11062 return SetCGInfo(new HexagonTargetCodeGenInfo(Types)); 11063 case llvm::Triple::lanai: 11064 return SetCGInfo(new LanaiTargetCodeGenInfo(Types)); 11065 case llvm::Triple::r600: 11066 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 11067 case llvm::Triple::amdgcn: 11068 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 11069 case llvm::Triple::sparc: 11070 return SetCGInfo(new SparcV8TargetCodeGenInfo(Types)); 11071 case llvm::Triple::sparcv9: 11072 return SetCGInfo(new SparcV9TargetCodeGenInfo(Types)); 11073 case llvm::Triple::xcore: 11074 return SetCGInfo(new XCoreTargetCodeGenInfo(Types)); 11075 case llvm::Triple::arc: 11076 return SetCGInfo(new ARCTargetCodeGenInfo(Types)); 11077 case llvm::Triple::spir: 11078 case llvm::Triple::spir64: 11079 return SetCGInfo(new SPIRTargetCodeGenInfo(Types)); 11080 case llvm::Triple::ve: 11081 return SetCGInfo(new VETargetCodeGenInfo(Types)); 11082 } 11083 } 11084 11085 /// Create an OpenCL kernel for an enqueued block. 11086 /// 11087 /// The kernel has the same function type as the block invoke function. Its 11088 /// name is the name of the block invoke function postfixed with "_kernel". 11089 /// It simply calls the block invoke function then returns. 11090 llvm::Function * 11091 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF, 11092 llvm::Function *Invoke, 11093 llvm::Value *BlockLiteral) const { 11094 auto *InvokeFT = Invoke->getFunctionType(); 11095 llvm::SmallVector<llvm::Type *, 2> ArgTys; 11096 for (auto &P : InvokeFT->params()) 11097 ArgTys.push_back(P); 11098 auto &C = CGF.getLLVMContext(); 11099 std::string Name = Invoke->getName().str() + "_kernel"; 11100 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 11101 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 11102 &CGF.CGM.getModule()); 11103 auto IP = CGF.Builder.saveIP(); 11104 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 11105 auto &Builder = CGF.Builder; 11106 Builder.SetInsertPoint(BB); 11107 llvm::SmallVector<llvm::Value *, 2> Args; 11108 for (auto &A : F->args()) 11109 Args.push_back(&A); 11110 Builder.CreateCall(Invoke, Args); 11111 Builder.CreateRetVoid(); 11112 Builder.restoreIP(IP); 11113 return F; 11114 } 11115 11116 /// Create an OpenCL kernel for an enqueued block. 11117 /// 11118 /// The type of the first argument (the block literal) is the struct type 11119 /// of the block literal instead of a pointer type. The first argument 11120 /// (block literal) is passed directly by value to the kernel. The kernel 11121 /// allocates the same type of struct on stack and stores the block literal 11122 /// to it and passes its pointer to the block invoke function. The kernel 11123 /// has "enqueued-block" function attribute and kernel argument metadata. 11124 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel( 11125 CodeGenFunction &CGF, llvm::Function *Invoke, 11126 llvm::Value *BlockLiteral) const { 11127 auto &Builder = CGF.Builder; 11128 auto &C = CGF.getLLVMContext(); 11129 11130 auto *BlockTy = BlockLiteral->getType()->getPointerElementType(); 11131 auto *InvokeFT = Invoke->getFunctionType(); 11132 llvm::SmallVector<llvm::Type *, 2> ArgTys; 11133 llvm::SmallVector<llvm::Metadata *, 8> AddressQuals; 11134 llvm::SmallVector<llvm::Metadata *, 8> AccessQuals; 11135 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames; 11136 llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames; 11137 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals; 11138 llvm::SmallVector<llvm::Metadata *, 8> ArgNames; 11139 11140 ArgTys.push_back(BlockTy); 11141 ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 11142 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0))); 11143 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 11144 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 11145 AccessQuals.push_back(llvm::MDString::get(C, "none")); 11146 ArgNames.push_back(llvm::MDString::get(C, "block_literal")); 11147 for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) { 11148 ArgTys.push_back(InvokeFT->getParamType(I)); 11149 ArgTypeNames.push_back(llvm::MDString::get(C, "void*")); 11150 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3))); 11151 AccessQuals.push_back(llvm::MDString::get(C, "none")); 11152 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*")); 11153 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 11154 ArgNames.push_back( 11155 llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str())); 11156 } 11157 std::string Name = Invoke->getName().str() + "_kernel"; 11158 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 11159 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 11160 &CGF.CGM.getModule()); 11161 F->addFnAttr("enqueued-block"); 11162 auto IP = CGF.Builder.saveIP(); 11163 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 11164 Builder.SetInsertPoint(BB); 11165 const auto BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(BlockTy); 11166 auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr); 11167 BlockPtr->setAlignment(BlockAlign); 11168 Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign); 11169 auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0)); 11170 llvm::SmallVector<llvm::Value *, 2> Args; 11171 Args.push_back(Cast); 11172 for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I) 11173 Args.push_back(I); 11174 Builder.CreateCall(Invoke, Args); 11175 Builder.CreateRetVoid(); 11176 Builder.restoreIP(IP); 11177 11178 F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals)); 11179 F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals)); 11180 F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames)); 11181 F->setMetadata("kernel_arg_base_type", 11182 llvm::MDNode::get(C, ArgBaseTypeNames)); 11183 F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals)); 11184 if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 11185 F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames)); 11186 11187 return F; 11188 } 11189