1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes wrap the information about a call or function 11 // definition used to handle ABI compliancy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "TargetInfo.h" 16 #include "ABIInfo.h" 17 #include "CGCXXABI.h" 18 #include "CGValue.h" 19 #include "CodeGenFunction.h" 20 #include "clang/AST/RecordLayout.h" 21 #include "clang/CodeGen/CGFunctionInfo.h" 22 #include "clang/CodeGen/SwiftCallingConv.h" 23 #include "clang/Frontend/CodeGenOptions.h" 24 #include "llvm/ADT/StringExtras.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/Type.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include <algorithm> // std::sort 30 31 using namespace clang; 32 using namespace CodeGen; 33 34 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 35 llvm::Value *Array, 36 llvm::Value *Value, 37 unsigned FirstIndex, 38 unsigned LastIndex) { 39 // Alternatively, we could emit this as a loop in the source. 40 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 41 llvm::Value *Cell = 42 Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); 43 Builder.CreateAlignedStore(Value, Cell, CharUnits::One()); 44 } 45 } 46 47 static bool isAggregateTypeForABI(QualType T) { 48 return !CodeGenFunction::hasScalarEvaluationKind(T) || 49 T->isMemberFunctionPointerType(); 50 } 51 52 ABIArgInfo 53 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign, 54 llvm::Type *Padding) const { 55 return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), 56 ByRef, Realign, Padding); 57 } 58 59 ABIArgInfo 60 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const { 61 return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty), 62 /*ByRef*/ false, Realign); 63 } 64 65 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 66 QualType Ty) const { 67 return Address::invalid(); 68 } 69 70 ABIInfo::~ABIInfo() {} 71 72 /// Does the given lowering require more than the given number of 73 /// registers when expanded? 74 /// 75 /// This is intended to be the basis of a reasonable basic implementation 76 /// of should{Pass,Return}IndirectlyForSwift. 77 /// 78 /// For most targets, a limit of four total registers is reasonable; this 79 /// limits the amount of code required in order to move around the value 80 /// in case it wasn't produced immediately prior to the call by the caller 81 /// (or wasn't produced in exactly the right registers) or isn't used 82 /// immediately within the callee. But some targets may need to further 83 /// limit the register count due to an inability to support that many 84 /// return registers. 85 static bool occupiesMoreThan(CodeGenTypes &cgt, 86 ArrayRef<llvm::Type*> scalarTypes, 87 unsigned maxAllRegisters) { 88 unsigned intCount = 0, fpCount = 0; 89 for (llvm::Type *type : scalarTypes) { 90 if (type->isPointerTy()) { 91 intCount++; 92 } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) { 93 auto ptrWidth = cgt.getTarget().getPointerWidth(0); 94 intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth; 95 } else { 96 assert(type->isVectorTy() || type->isFloatingPointTy()); 97 fpCount++; 98 } 99 } 100 101 return (intCount + fpCount > maxAllRegisters); 102 } 103 104 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 105 llvm::Type *eltTy, 106 unsigned numElts) const { 107 // The default implementation of this assumes that the target guarantees 108 // 128-bit SIMD support but nothing more. 109 return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16); 110 } 111 112 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 113 CGCXXABI &CXXABI) { 114 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 115 if (!RD) 116 return CGCXXABI::RAA_Default; 117 return CXXABI.getRecordArgABI(RD); 118 } 119 120 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 121 CGCXXABI &CXXABI) { 122 const RecordType *RT = T->getAs<RecordType>(); 123 if (!RT) 124 return CGCXXABI::RAA_Default; 125 return getRecordArgABI(RT, CXXABI); 126 } 127 128 /// Pass transparent unions as if they were the type of the first element. Sema 129 /// should ensure that all elements of the union have the same "machine type". 130 static QualType useFirstFieldIfTransparentUnion(QualType Ty) { 131 if (const RecordType *UT = Ty->getAsUnionType()) { 132 const RecordDecl *UD = UT->getDecl(); 133 if (UD->hasAttr<TransparentUnionAttr>()) { 134 assert(!UD->field_empty() && "sema created an empty transparent union"); 135 return UD->field_begin()->getType(); 136 } 137 } 138 return Ty; 139 } 140 141 CGCXXABI &ABIInfo::getCXXABI() const { 142 return CGT.getCXXABI(); 143 } 144 145 ASTContext &ABIInfo::getContext() const { 146 return CGT.getContext(); 147 } 148 149 llvm::LLVMContext &ABIInfo::getVMContext() const { 150 return CGT.getLLVMContext(); 151 } 152 153 const llvm::DataLayout &ABIInfo::getDataLayout() const { 154 return CGT.getDataLayout(); 155 } 156 157 const TargetInfo &ABIInfo::getTarget() const { 158 return CGT.getTarget(); 159 } 160 161 bool ABIInfo:: isAndroid() const { return getTarget().getTriple().isAndroid(); } 162 163 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 164 return false; 165 } 166 167 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 168 uint64_t Members) const { 169 return false; 170 } 171 172 bool ABIInfo::shouldSignExtUnsignedType(QualType Ty) const { 173 return false; 174 } 175 176 LLVM_DUMP_METHOD void ABIArgInfo::dump() const { 177 raw_ostream &OS = llvm::errs(); 178 OS << "(ABIArgInfo Kind="; 179 switch (TheKind) { 180 case Direct: 181 OS << "Direct Type="; 182 if (llvm::Type *Ty = getCoerceToType()) 183 Ty->print(OS); 184 else 185 OS << "null"; 186 break; 187 case Extend: 188 OS << "Extend"; 189 break; 190 case Ignore: 191 OS << "Ignore"; 192 break; 193 case InAlloca: 194 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 195 break; 196 case Indirect: 197 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 198 << " ByVal=" << getIndirectByVal() 199 << " Realign=" << getIndirectRealign(); 200 break; 201 case Expand: 202 OS << "Expand"; 203 break; 204 case CoerceAndExpand: 205 OS << "CoerceAndExpand Type="; 206 getCoerceAndExpandType()->print(OS); 207 break; 208 } 209 OS << ")\n"; 210 } 211 212 // Dynamically round a pointer up to a multiple of the given alignment. 213 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF, 214 llvm::Value *Ptr, 215 CharUnits Align) { 216 llvm::Value *PtrAsInt = Ptr; 217 // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align; 218 PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy); 219 PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt, 220 llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1)); 221 PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt, 222 llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity())); 223 PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt, 224 Ptr->getType(), 225 Ptr->getName() + ".aligned"); 226 return PtrAsInt; 227 } 228 229 /// Emit va_arg for a platform using the common void* representation, 230 /// where arguments are simply emitted in an array of slots on the stack. 231 /// 232 /// This version implements the core direct-value passing rules. 233 /// 234 /// \param SlotSize - The size and alignment of a stack slot. 235 /// Each argument will be allocated to a multiple of this number of 236 /// slots, and all the slots will be aligned to this value. 237 /// \param AllowHigherAlign - The slot alignment is not a cap; 238 /// an argument type with an alignment greater than the slot size 239 /// will be emitted on a higher-alignment address, potentially 240 /// leaving one or more empty slots behind as padding. If this 241 /// is false, the returned address might be less-aligned than 242 /// DirectAlign. 243 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF, 244 Address VAListAddr, 245 llvm::Type *DirectTy, 246 CharUnits DirectSize, 247 CharUnits DirectAlign, 248 CharUnits SlotSize, 249 bool AllowHigherAlign) { 250 // Cast the element type to i8* if necessary. Some platforms define 251 // va_list as a struct containing an i8* instead of just an i8*. 252 if (VAListAddr.getElementType() != CGF.Int8PtrTy) 253 VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy); 254 255 llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur"); 256 257 // If the CC aligns values higher than the slot size, do so if needed. 258 Address Addr = Address::invalid(); 259 if (AllowHigherAlign && DirectAlign > SlotSize) { 260 Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign), 261 DirectAlign); 262 } else { 263 Addr = Address(Ptr, SlotSize); 264 } 265 266 // Advance the pointer past the argument, then store that back. 267 CharUnits FullDirectSize = DirectSize.alignTo(SlotSize); 268 llvm::Value *NextPtr = 269 CGF.Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), FullDirectSize, 270 "argp.next"); 271 CGF.Builder.CreateStore(NextPtr, VAListAddr); 272 273 // If the argument is smaller than a slot, and this is a big-endian 274 // target, the argument will be right-adjusted in its slot. 275 if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian()) { 276 Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize); 277 } 278 279 Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy); 280 return Addr; 281 } 282 283 /// Emit va_arg for a platform using the common void* representation, 284 /// where arguments are simply emitted in an array of slots on the stack. 285 /// 286 /// \param IsIndirect - Values of this type are passed indirectly. 287 /// \param ValueInfo - The size and alignment of this type, generally 288 /// computed with getContext().getTypeInfoInChars(ValueTy). 289 /// \param SlotSizeAndAlign - The size and alignment of a stack slot. 290 /// Each argument will be allocated to a multiple of this number of 291 /// slots, and all the slots will be aligned to this value. 292 /// \param AllowHigherAlign - The slot alignment is not a cap; 293 /// an argument type with an alignment greater than the slot size 294 /// will be emitted on a higher-alignment address, potentially 295 /// leaving one or more empty slots behind as padding. 296 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr, 297 QualType ValueTy, bool IsIndirect, 298 std::pair<CharUnits, CharUnits> ValueInfo, 299 CharUnits SlotSizeAndAlign, 300 bool AllowHigherAlign) { 301 // The size and alignment of the value that was passed directly. 302 CharUnits DirectSize, DirectAlign; 303 if (IsIndirect) { 304 DirectSize = CGF.getPointerSize(); 305 DirectAlign = CGF.getPointerAlign(); 306 } else { 307 DirectSize = ValueInfo.first; 308 DirectAlign = ValueInfo.second; 309 } 310 311 // Cast the address we've calculated to the right type. 312 llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy); 313 if (IsIndirect) 314 DirectTy = DirectTy->getPointerTo(0); 315 316 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy, 317 DirectSize, DirectAlign, 318 SlotSizeAndAlign, 319 AllowHigherAlign); 320 321 if (IsIndirect) { 322 Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second); 323 } 324 325 return Addr; 326 327 } 328 329 static Address emitMergePHI(CodeGenFunction &CGF, 330 Address Addr1, llvm::BasicBlock *Block1, 331 Address Addr2, llvm::BasicBlock *Block2, 332 const llvm::Twine &Name = "") { 333 assert(Addr1.getType() == Addr2.getType()); 334 llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name); 335 PHI->addIncoming(Addr1.getPointer(), Block1); 336 PHI->addIncoming(Addr2.getPointer(), Block2); 337 CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment()); 338 return Address(PHI, Align); 339 } 340 341 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; } 342 343 // If someone can figure out a general rule for this, that would be great. 344 // It's probably just doomed to be platform-dependent, though. 345 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 346 // Verified for: 347 // x86-64 FreeBSD, Linux, Darwin 348 // x86-32 FreeBSD, Linux, Darwin 349 // PowerPC Linux, Darwin 350 // ARM Darwin (*not* EABI) 351 // AArch64 Linux 352 return 32; 353 } 354 355 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 356 const FunctionNoProtoType *fnType) const { 357 // The following conventions are known to require this to be false: 358 // x86_stdcall 359 // MIPS 360 // For everything else, we just prefer false unless we opt out. 361 return false; 362 } 363 364 void 365 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 366 llvm::SmallString<24> &Opt) const { 367 // This assumes the user is passing a library name like "rt" instead of a 368 // filename like "librt.a/so", and that they don't care whether it's static or 369 // dynamic. 370 Opt = "-l"; 371 Opt += Lib; 372 } 373 374 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 375 376 /// isEmptyField - Return true iff a the field is "empty", that is it 377 /// is an unnamed bit-field or an (array of) empty record(s). 378 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 379 bool AllowArrays) { 380 if (FD->isUnnamedBitfield()) 381 return true; 382 383 QualType FT = FD->getType(); 384 385 // Constant arrays of empty records count as empty, strip them off. 386 // Constant arrays of zero length always count as empty. 387 if (AllowArrays) 388 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 389 if (AT->getSize() == 0) 390 return true; 391 FT = AT->getElementType(); 392 } 393 394 const RecordType *RT = FT->getAs<RecordType>(); 395 if (!RT) 396 return false; 397 398 // C++ record fields are never empty, at least in the Itanium ABI. 399 // 400 // FIXME: We should use a predicate for whether this behavior is true in the 401 // current ABI. 402 if (isa<CXXRecordDecl>(RT->getDecl())) 403 return false; 404 405 return isEmptyRecord(Context, FT, AllowArrays); 406 } 407 408 /// isEmptyRecord - Return true iff a structure contains only empty 409 /// fields. Note that a structure with a flexible array member is not 410 /// considered empty. 411 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 412 const RecordType *RT = T->getAs<RecordType>(); 413 if (!RT) 414 return false; 415 const RecordDecl *RD = RT->getDecl(); 416 if (RD->hasFlexibleArrayMember()) 417 return false; 418 419 // If this is a C++ record, check the bases first. 420 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 421 for (const auto &I : CXXRD->bases()) 422 if (!isEmptyRecord(Context, I.getType(), true)) 423 return false; 424 425 for (const auto *I : RD->fields()) 426 if (!isEmptyField(Context, I, AllowArrays)) 427 return false; 428 return true; 429 } 430 431 /// isSingleElementStruct - Determine if a structure is a "single 432 /// element struct", i.e. it has exactly one non-empty field or 433 /// exactly one field which is itself a single element 434 /// struct. Structures with flexible array members are never 435 /// considered single element structs. 436 /// 437 /// \return The field declaration for the single non-empty field, if 438 /// it exists. 439 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 440 const RecordType *RT = T->getAs<RecordType>(); 441 if (!RT) 442 return nullptr; 443 444 const RecordDecl *RD = RT->getDecl(); 445 if (RD->hasFlexibleArrayMember()) 446 return nullptr; 447 448 const Type *Found = nullptr; 449 450 // If this is a C++ record, check the bases first. 451 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 452 for (const auto &I : CXXRD->bases()) { 453 // Ignore empty records. 454 if (isEmptyRecord(Context, I.getType(), true)) 455 continue; 456 457 // If we already found an element then this isn't a single-element struct. 458 if (Found) 459 return nullptr; 460 461 // If this is non-empty and not a single element struct, the composite 462 // cannot be a single element struct. 463 Found = isSingleElementStruct(I.getType(), Context); 464 if (!Found) 465 return nullptr; 466 } 467 } 468 469 // Check for single element. 470 for (const auto *FD : RD->fields()) { 471 QualType FT = FD->getType(); 472 473 // Ignore empty fields. 474 if (isEmptyField(Context, FD, true)) 475 continue; 476 477 // If we already found an element then this isn't a single-element 478 // struct. 479 if (Found) 480 return nullptr; 481 482 // Treat single element arrays as the element. 483 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 484 if (AT->getSize().getZExtValue() != 1) 485 break; 486 FT = AT->getElementType(); 487 } 488 489 if (!isAggregateTypeForABI(FT)) { 490 Found = FT.getTypePtr(); 491 } else { 492 Found = isSingleElementStruct(FT, Context); 493 if (!Found) 494 return nullptr; 495 } 496 } 497 498 // We don't consider a struct a single-element struct if it has 499 // padding beyond the element type. 500 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 501 return nullptr; 502 503 return Found; 504 } 505 506 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 507 // Treat complex types as the element type. 508 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 509 Ty = CTy->getElementType(); 510 511 // Check for a type which we know has a simple scalar argument-passing 512 // convention without any padding. (We're specifically looking for 32 513 // and 64-bit integer and integer-equivalents, float, and double.) 514 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 515 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 516 return false; 517 518 uint64_t Size = Context.getTypeSize(Ty); 519 return Size == 32 || Size == 64; 520 } 521 522 /// canExpandIndirectArgument - Test whether an argument type which is to be 523 /// passed indirectly (on the stack) would have the equivalent layout if it was 524 /// expanded into separate arguments. If so, we prefer to do the latter to avoid 525 /// inhibiting optimizations. 526 /// 527 // FIXME: This predicate is missing many cases, currently it just follows 528 // llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We 529 // should probably make this smarter, or better yet make the LLVM backend 530 // capable of handling it. 531 static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) { 532 // We can only expand structure types. 533 const RecordType *RT = Ty->getAs<RecordType>(); 534 if (!RT) 535 return false; 536 537 // We can only expand (C) structures. 538 // 539 // FIXME: This needs to be generalized to handle classes as well. 540 const RecordDecl *RD = RT->getDecl(); 541 if (!RD->isStruct()) 542 return false; 543 544 // We try to expand CLike CXXRecordDecl. 545 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 546 if (!CXXRD->isCLike()) 547 return false; 548 } 549 550 uint64_t Size = 0; 551 552 for (const auto *FD : RD->fields()) { 553 if (!is32Or64BitBasicType(FD->getType(), Context)) 554 return false; 555 556 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 557 // how to expand them yet, and the predicate for telling if a bitfield still 558 // counts as "basic" is more complicated than what we were doing previously. 559 if (FD->isBitField()) 560 return false; 561 562 Size += Context.getTypeSize(FD->getType()); 563 } 564 565 // Make sure there are not any holes in the struct. 566 if (Size != Context.getTypeSize(Ty)) 567 return false; 568 569 return true; 570 } 571 572 namespace { 573 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, 574 const ABIArgInfo &AI) { 575 // This default implementation defers to the llvm backend's va_arg 576 // instruction. It can handle only passing arguments directly 577 // (typically only handled in the backend for primitive types), or 578 // aggregates passed indirectly by pointer (NOTE: if the "byval" 579 // flag has ABI impact in the callee, this implementation cannot 580 // work.) 581 582 // Only a few cases are covered here at the moment -- those needed 583 // by the default abi. 584 llvm::Value *Val; 585 586 if (AI.isIndirect()) { 587 assert(!AI.getPaddingType() && 588 "Unepxected PaddingType seen in arginfo in generic VAArg emitter!"); 589 assert( 590 !AI.getIndirectRealign() && 591 "Unepxected IndirectRealign seen in arginfo in generic VAArg emitter!"); 592 593 auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty); 594 CharUnits TyAlignForABI = TyInfo.second; 595 596 llvm::Type *BaseTy = 597 llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 598 llvm::Value *Addr = 599 CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy); 600 return Address(Addr, TyAlignForABI); 601 } else { 602 assert((AI.isDirect() || AI.isExtend()) && 603 "Unexpected ArgInfo Kind in generic VAArg emitter!"); 604 605 assert(!AI.getInReg() && 606 "Unepxected InReg seen in arginfo in generic VAArg emitter!"); 607 assert(!AI.getPaddingType() && 608 "Unepxected PaddingType seen in arginfo in generic VAArg emitter!"); 609 assert(!AI.getDirectOffset() && 610 "Unepxected DirectOffset seen in arginfo in generic VAArg emitter!"); 611 assert(!AI.getCoerceToType() && 612 "Unepxected CoerceToType seen in arginfo in generic VAArg emitter!"); 613 614 Address Temp = CGF.CreateMemTemp(Ty, "varet"); 615 Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty)); 616 CGF.Builder.CreateStore(Val, Temp); 617 return Temp; 618 } 619 } 620 621 /// DefaultABIInfo - The default implementation for ABI specific 622 /// details. This implementation provides information which results in 623 /// self-consistent and sensible LLVM IR generation, but does not 624 /// conform to any particular ABI. 625 class DefaultABIInfo : public ABIInfo { 626 public: 627 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 628 629 ABIArgInfo classifyReturnType(QualType RetTy) const; 630 ABIArgInfo classifyArgumentType(QualType RetTy) const; 631 632 void computeInfo(CGFunctionInfo &FI) const override { 633 if (!getCXXABI().classifyReturnType(FI)) 634 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 635 for (auto &I : FI.arguments()) 636 I.info = classifyArgumentType(I.type); 637 } 638 639 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 640 QualType Ty) const override { 641 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 642 } 643 }; 644 645 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 646 public: 647 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 648 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 649 }; 650 651 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 652 Ty = useFirstFieldIfTransparentUnion(Ty); 653 654 if (isAggregateTypeForABI(Ty)) { 655 // Records with non-trivial destructors/copy-constructors should not be 656 // passed by value. 657 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 658 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 659 660 return getNaturalAlignIndirect(Ty); 661 } 662 663 // Treat an enum type as its underlying type. 664 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 665 Ty = EnumTy->getDecl()->getIntegerType(); 666 667 return (Ty->isPromotableIntegerType() ? 668 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 669 } 670 671 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 672 if (RetTy->isVoidType()) 673 return ABIArgInfo::getIgnore(); 674 675 if (isAggregateTypeForABI(RetTy)) 676 return getNaturalAlignIndirect(RetTy); 677 678 // Treat an enum type as its underlying type. 679 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 680 RetTy = EnumTy->getDecl()->getIntegerType(); 681 682 return (RetTy->isPromotableIntegerType() ? 683 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 684 } 685 686 //===----------------------------------------------------------------------===// 687 // WebAssembly ABI Implementation 688 // 689 // This is a very simple ABI that relies a lot on DefaultABIInfo. 690 //===----------------------------------------------------------------------===// 691 692 class WebAssemblyABIInfo final : public DefaultABIInfo { 693 public: 694 explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT) 695 : DefaultABIInfo(CGT) {} 696 697 private: 698 ABIArgInfo classifyReturnType(QualType RetTy) const; 699 ABIArgInfo classifyArgumentType(QualType Ty) const; 700 701 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 702 // non-virtual, but computeInfo and EmitVAArg is virtual, so we 703 // overload them. 704 void computeInfo(CGFunctionInfo &FI) const override { 705 if (!getCXXABI().classifyReturnType(FI)) 706 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 707 for (auto &Arg : FI.arguments()) 708 Arg.info = classifyArgumentType(Arg.type); 709 } 710 711 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 712 QualType Ty) const override; 713 }; 714 715 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo { 716 public: 717 explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 718 : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT)) {} 719 }; 720 721 /// \brief Classify argument of given type \p Ty. 722 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const { 723 Ty = useFirstFieldIfTransparentUnion(Ty); 724 725 if (isAggregateTypeForABI(Ty)) { 726 // Records with non-trivial destructors/copy-constructors should not be 727 // passed by value. 728 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 729 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 730 // Ignore empty structs/unions. 731 if (isEmptyRecord(getContext(), Ty, true)) 732 return ABIArgInfo::getIgnore(); 733 // Lower single-element structs to just pass a regular value. TODO: We 734 // could do reasonable-size multiple-element structs too, using getExpand(), 735 // though watch out for things like bitfields. 736 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 737 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 738 } 739 740 // Otherwise just do the default thing. 741 return DefaultABIInfo::classifyArgumentType(Ty); 742 } 743 744 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const { 745 if (isAggregateTypeForABI(RetTy)) { 746 // Records with non-trivial destructors/copy-constructors should not be 747 // returned by value. 748 if (!getRecordArgABI(RetTy, getCXXABI())) { 749 // Ignore empty structs/unions. 750 if (isEmptyRecord(getContext(), RetTy, true)) 751 return ABIArgInfo::getIgnore(); 752 // Lower single-element structs to just return a regular value. TODO: We 753 // could do reasonable-size multiple-element structs too, using 754 // ABIArgInfo::getDirect(). 755 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 756 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 757 } 758 } 759 760 // Otherwise just do the default thing. 761 return DefaultABIInfo::classifyReturnType(RetTy); 762 } 763 764 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 765 QualType Ty) const { 766 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect=*/ false, 767 getContext().getTypeInfoInChars(Ty), 768 CharUnits::fromQuantity(4), 769 /*AllowHigherAlign=*/ true); 770 } 771 772 //===----------------------------------------------------------------------===// 773 // le32/PNaCl bitcode ABI Implementation 774 // 775 // This is a simplified version of the x86_32 ABI. Arguments and return values 776 // are always passed on the stack. 777 //===----------------------------------------------------------------------===// 778 779 class PNaClABIInfo : public ABIInfo { 780 public: 781 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 782 783 ABIArgInfo classifyReturnType(QualType RetTy) const; 784 ABIArgInfo classifyArgumentType(QualType RetTy) const; 785 786 void computeInfo(CGFunctionInfo &FI) const override; 787 Address EmitVAArg(CodeGenFunction &CGF, 788 Address VAListAddr, QualType Ty) const override; 789 }; 790 791 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 792 public: 793 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 794 : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {} 795 }; 796 797 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 798 if (!getCXXABI().classifyReturnType(FI)) 799 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 800 801 for (auto &I : FI.arguments()) 802 I.info = classifyArgumentType(I.type); 803 } 804 805 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 806 QualType Ty) const { 807 // The PNaCL ABI is a bit odd, in that varargs don't use normal 808 // function classification. Structs get passed directly for varargs 809 // functions, through a rewriting transform in 810 // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows 811 // this target to actually support a va_arg instructions with an 812 // aggregate type, unlike other targets. 813 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 814 } 815 816 /// \brief Classify argument of given type \p Ty. 817 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 818 if (isAggregateTypeForABI(Ty)) { 819 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 820 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 821 return getNaturalAlignIndirect(Ty); 822 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 823 // Treat an enum type as its underlying type. 824 Ty = EnumTy->getDecl()->getIntegerType(); 825 } else if (Ty->isFloatingType()) { 826 // Floating-point types don't go inreg. 827 return ABIArgInfo::getDirect(); 828 } 829 830 return (Ty->isPromotableIntegerType() ? 831 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 832 } 833 834 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 835 if (RetTy->isVoidType()) 836 return ABIArgInfo::getIgnore(); 837 838 // In the PNaCl ABI we always return records/structures on the stack. 839 if (isAggregateTypeForABI(RetTy)) 840 return getNaturalAlignIndirect(RetTy); 841 842 // Treat an enum type as its underlying type. 843 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 844 RetTy = EnumTy->getDecl()->getIntegerType(); 845 846 return (RetTy->isPromotableIntegerType() ? 847 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 848 } 849 850 /// IsX86_MMXType - Return true if this is an MMX type. 851 bool IsX86_MMXType(llvm::Type *IRType) { 852 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 853 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 854 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 855 IRType->getScalarSizeInBits() != 64; 856 } 857 858 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 859 StringRef Constraint, 860 llvm::Type* Ty) { 861 if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) { 862 if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) { 863 // Invalid MMX constraint 864 return nullptr; 865 } 866 867 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 868 } 869 870 // No operation needed 871 return Ty; 872 } 873 874 /// Returns true if this type can be passed in SSE registers with the 875 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 876 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 877 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 878 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) 879 return true; 880 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 881 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 882 // registers specially. 883 unsigned VecSize = Context.getTypeSize(VT); 884 if (VecSize == 128 || VecSize == 256 || VecSize == 512) 885 return true; 886 } 887 return false; 888 } 889 890 /// Returns true if this aggregate is small enough to be passed in SSE registers 891 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 892 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 893 return NumMembers <= 4; 894 } 895 896 //===----------------------------------------------------------------------===// 897 // X86-32 ABI Implementation 898 //===----------------------------------------------------------------------===// 899 900 /// \brief Similar to llvm::CCState, but for Clang. 901 struct CCState { 902 CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {} 903 904 unsigned CC; 905 unsigned FreeRegs; 906 unsigned FreeSSERegs; 907 }; 908 909 /// X86_32ABIInfo - The X86-32 ABI information. 910 class X86_32ABIInfo : public SwiftABIInfo { 911 enum Class { 912 Integer, 913 Float 914 }; 915 916 static const unsigned MinABIStackAlignInBytes = 4; 917 918 bool IsDarwinVectorABI; 919 bool IsRetSmallStructInRegABI; 920 bool IsWin32StructABI; 921 bool IsSoftFloatABI; 922 bool IsMCUABI; 923 unsigned DefaultNumRegisterParameters; 924 925 static bool isRegisterSize(unsigned Size) { 926 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 927 } 928 929 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 930 // FIXME: Assumes vectorcall is in use. 931 return isX86VectorTypeForVectorCall(getContext(), Ty); 932 } 933 934 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 935 uint64_t NumMembers) const override { 936 // FIXME: Assumes vectorcall is in use. 937 return isX86VectorCallAggregateSmallEnough(NumMembers); 938 } 939 940 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 941 942 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 943 /// such that the argument will be passed in memory. 944 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 945 946 ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; 947 948 /// \brief Return the alignment to use for the given type on the stack. 949 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 950 951 Class classify(QualType Ty) const; 952 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 953 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 954 /// \brief Updates the number of available free registers, returns 955 /// true if any registers were allocated. 956 bool updateFreeRegs(QualType Ty, CCState &State) const; 957 958 bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, 959 bool &NeedsPadding) const; 960 bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; 961 962 /// \brief Rewrite the function info so that all memory arguments use 963 /// inalloca. 964 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 965 966 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 967 CharUnits &StackOffset, ABIArgInfo &Info, 968 QualType Type) const; 969 970 public: 971 972 void computeInfo(CGFunctionInfo &FI) const override; 973 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 974 QualType Ty) const override; 975 976 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 977 bool RetSmallStructInRegABI, bool Win32StructABI, 978 unsigned NumRegisterParameters, bool SoftFloatABI) 979 : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), 980 IsRetSmallStructInRegABI(RetSmallStructInRegABI), 981 IsWin32StructABI(Win32StructABI), 982 IsSoftFloatABI(SoftFloatABI), 983 IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), 984 DefaultNumRegisterParameters(NumRegisterParameters) {} 985 986 bool shouldPassIndirectlyForSwift(CharUnits totalSize, 987 ArrayRef<llvm::Type*> scalars, 988 bool asReturnValue) const override { 989 // LLVM's x86-32 lowering currently only assigns up to three 990 // integer registers and three fp registers. Oddly, it'll use up to 991 // four vector registers for vectors, but those can overlap with the 992 // scalar registers. 993 return occupiesMoreThan(CGT, scalars, /*total*/ 3); 994 } 995 }; 996 997 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 998 public: 999 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1000 bool RetSmallStructInRegABI, bool Win32StructABI, 1001 unsigned NumRegisterParameters, bool SoftFloatABI) 1002 : TargetCodeGenInfo(new X86_32ABIInfo( 1003 CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, 1004 NumRegisterParameters, SoftFloatABI)) {} 1005 1006 static bool isStructReturnInRegABI( 1007 const llvm::Triple &Triple, const CodeGenOptions &Opts); 1008 1009 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1010 CodeGen::CodeGenModule &CGM) const override; 1011 1012 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1013 // Darwin uses different dwarf register numbers for EH. 1014 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 1015 return 4; 1016 } 1017 1018 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1019 llvm::Value *Address) const override; 1020 1021 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1022 StringRef Constraint, 1023 llvm::Type* Ty) const override { 1024 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1025 } 1026 1027 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 1028 std::string &Constraints, 1029 std::vector<llvm::Type *> &ResultRegTypes, 1030 std::vector<llvm::Type *> &ResultTruncRegTypes, 1031 std::vector<LValue> &ResultRegDests, 1032 std::string &AsmString, 1033 unsigned NumOutputs) const override; 1034 1035 llvm::Constant * 1036 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1037 unsigned Sig = (0xeb << 0) | // jmp rel8 1038 (0x06 << 8) | // .+0x08 1039 ('F' << 16) | 1040 ('T' << 24); 1041 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1042 } 1043 1044 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 1045 return "movl\t%ebp, %ebp" 1046 "\t\t## marker for objc_retainAutoreleaseReturnValue"; 1047 } 1048 }; 1049 1050 } 1051 1052 /// Rewrite input constraint references after adding some output constraints. 1053 /// In the case where there is one output and one input and we add one output, 1054 /// we need to replace all operand references greater than or equal to 1: 1055 /// mov $0, $1 1056 /// mov eax, $1 1057 /// The result will be: 1058 /// mov $0, $2 1059 /// mov eax, $2 1060 static void rewriteInputConstraintReferences(unsigned FirstIn, 1061 unsigned NumNewOuts, 1062 std::string &AsmString) { 1063 std::string Buf; 1064 llvm::raw_string_ostream OS(Buf); 1065 size_t Pos = 0; 1066 while (Pos < AsmString.size()) { 1067 size_t DollarStart = AsmString.find('$', Pos); 1068 if (DollarStart == std::string::npos) 1069 DollarStart = AsmString.size(); 1070 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 1071 if (DollarEnd == std::string::npos) 1072 DollarEnd = AsmString.size(); 1073 OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 1074 Pos = DollarEnd; 1075 size_t NumDollars = DollarEnd - DollarStart; 1076 if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 1077 // We have an operand reference. 1078 size_t DigitStart = Pos; 1079 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 1080 if (DigitEnd == std::string::npos) 1081 DigitEnd = AsmString.size(); 1082 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 1083 unsigned OperandIndex; 1084 if (!OperandStr.getAsInteger(10, OperandIndex)) { 1085 if (OperandIndex >= FirstIn) 1086 OperandIndex += NumNewOuts; 1087 OS << OperandIndex; 1088 } else { 1089 OS << OperandStr; 1090 } 1091 Pos = DigitEnd; 1092 } 1093 } 1094 AsmString = std::move(OS.str()); 1095 } 1096 1097 /// Add output constraints for EAX:EDX because they are return registers. 1098 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 1099 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 1100 std::vector<llvm::Type *> &ResultRegTypes, 1101 std::vector<llvm::Type *> &ResultTruncRegTypes, 1102 std::vector<LValue> &ResultRegDests, std::string &AsmString, 1103 unsigned NumOutputs) const { 1104 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 1105 1106 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 1107 // larger. 1108 if (!Constraints.empty()) 1109 Constraints += ','; 1110 if (RetWidth <= 32) { 1111 Constraints += "={eax}"; 1112 ResultRegTypes.push_back(CGF.Int32Ty); 1113 } else { 1114 // Use the 'A' constraint for EAX:EDX. 1115 Constraints += "=A"; 1116 ResultRegTypes.push_back(CGF.Int64Ty); 1117 } 1118 1119 // Truncate EAX or EAX:EDX to an integer of the appropriate size. 1120 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 1121 ResultTruncRegTypes.push_back(CoerceTy); 1122 1123 // Coerce the integer by bitcasting the return slot pointer. 1124 ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(), 1125 CoerceTy->getPointerTo())); 1126 ResultRegDests.push_back(ReturnSlot); 1127 1128 rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 1129 } 1130 1131 /// shouldReturnTypeInRegister - Determine if the given type should be 1132 /// returned in a register (for the Darwin and MCU ABI). 1133 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 1134 ASTContext &Context) const { 1135 uint64_t Size = Context.getTypeSize(Ty); 1136 1137 // For i386, type must be register sized. 1138 // For the MCU ABI, it only needs to be <= 8-byte 1139 if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) 1140 return false; 1141 1142 if (Ty->isVectorType()) { 1143 // 64- and 128- bit vectors inside structures are not returned in 1144 // registers. 1145 if (Size == 64 || Size == 128) 1146 return false; 1147 1148 return true; 1149 } 1150 1151 // If this is a builtin, pointer, enum, complex type, member pointer, or 1152 // member function pointer it is ok. 1153 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 1154 Ty->isAnyComplexType() || Ty->isEnumeralType() || 1155 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 1156 return true; 1157 1158 // Arrays are treated like records. 1159 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 1160 return shouldReturnTypeInRegister(AT->getElementType(), Context); 1161 1162 // Otherwise, it must be a record type. 1163 const RecordType *RT = Ty->getAs<RecordType>(); 1164 if (!RT) return false; 1165 1166 // FIXME: Traverse bases here too. 1167 1168 // Structure types are passed in register if all fields would be 1169 // passed in a register. 1170 for (const auto *FD : RT->getDecl()->fields()) { 1171 // Empty fields are ignored. 1172 if (isEmptyField(Context, FD, true)) 1173 continue; 1174 1175 // Check fields recursively. 1176 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 1177 return false; 1178 } 1179 return true; 1180 } 1181 1182 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { 1183 // If the return value is indirect, then the hidden argument is consuming one 1184 // integer register. 1185 if (State.FreeRegs) { 1186 --State.FreeRegs; 1187 if (!IsMCUABI) 1188 return getNaturalAlignIndirectInReg(RetTy); 1189 } 1190 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 1191 } 1192 1193 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 1194 CCState &State) const { 1195 if (RetTy->isVoidType()) 1196 return ABIArgInfo::getIgnore(); 1197 1198 const Type *Base = nullptr; 1199 uint64_t NumElts = 0; 1200 if (State.CC == llvm::CallingConv::X86_VectorCall && 1201 isHomogeneousAggregate(RetTy, Base, NumElts)) { 1202 // The LLVM struct type for such an aggregate should lower properly. 1203 return ABIArgInfo::getDirect(); 1204 } 1205 1206 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 1207 // On Darwin, some vectors are returned in registers. 1208 if (IsDarwinVectorABI) { 1209 uint64_t Size = getContext().getTypeSize(RetTy); 1210 1211 // 128-bit vectors are a special case; they are returned in 1212 // registers and we need to make sure to pick a type the LLVM 1213 // backend will like. 1214 if (Size == 128) 1215 return ABIArgInfo::getDirect(llvm::VectorType::get( 1216 llvm::Type::getInt64Ty(getVMContext()), 2)); 1217 1218 // Always return in register if it fits in a general purpose 1219 // register, or if it is 64 bits and has a single element. 1220 if ((Size == 8 || Size == 16 || Size == 32) || 1221 (Size == 64 && VT->getNumElements() == 1)) 1222 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1223 Size)); 1224 1225 return getIndirectReturnResult(RetTy, State); 1226 } 1227 1228 return ABIArgInfo::getDirect(); 1229 } 1230 1231 if (isAggregateTypeForABI(RetTy)) { 1232 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 1233 // Structures with flexible arrays are always indirect. 1234 if (RT->getDecl()->hasFlexibleArrayMember()) 1235 return getIndirectReturnResult(RetTy, State); 1236 } 1237 1238 // If specified, structs and unions are always indirect. 1239 if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) 1240 return getIndirectReturnResult(RetTy, State); 1241 1242 // Ignore empty structs/unions. 1243 if (isEmptyRecord(getContext(), RetTy, true)) 1244 return ABIArgInfo::getIgnore(); 1245 1246 // Small structures which are register sized are generally returned 1247 // in a register. 1248 if (shouldReturnTypeInRegister(RetTy, getContext())) { 1249 uint64_t Size = getContext().getTypeSize(RetTy); 1250 1251 // As a special-case, if the struct is a "single-element" struct, and 1252 // the field is of type "float" or "double", return it in a 1253 // floating-point register. (MSVC does not apply this special case.) 1254 // We apply a similar transformation for pointer types to improve the 1255 // quality of the generated IR. 1256 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 1257 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 1258 || SeltTy->hasPointerRepresentation()) 1259 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 1260 1261 // FIXME: We should be able to narrow this integer in cases with dead 1262 // padding. 1263 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 1264 } 1265 1266 return getIndirectReturnResult(RetTy, State); 1267 } 1268 1269 // Treat an enum type as its underlying type. 1270 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1271 RetTy = EnumTy->getDecl()->getIntegerType(); 1272 1273 return (RetTy->isPromotableIntegerType() ? 1274 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 1275 } 1276 1277 static bool isSSEVectorType(ASTContext &Context, QualType Ty) { 1278 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 1279 } 1280 1281 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) { 1282 const RecordType *RT = Ty->getAs<RecordType>(); 1283 if (!RT) 1284 return 0; 1285 const RecordDecl *RD = RT->getDecl(); 1286 1287 // If this is a C++ record, check the bases first. 1288 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1289 for (const auto &I : CXXRD->bases()) 1290 if (!isRecordWithSSEVectorType(Context, I.getType())) 1291 return false; 1292 1293 for (const auto *i : RD->fields()) { 1294 QualType FT = i->getType(); 1295 1296 if (isSSEVectorType(Context, FT)) 1297 return true; 1298 1299 if (isRecordWithSSEVectorType(Context, FT)) 1300 return true; 1301 } 1302 1303 return false; 1304 } 1305 1306 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 1307 unsigned Align) const { 1308 // Otherwise, if the alignment is less than or equal to the minimum ABI 1309 // alignment, just use the default; the backend will handle this. 1310 if (Align <= MinABIStackAlignInBytes) 1311 return 0; // Use default alignment. 1312 1313 // On non-Darwin, the stack type alignment is always 4. 1314 if (!IsDarwinVectorABI) { 1315 // Set explicit alignment, since we may need to realign the top. 1316 return MinABIStackAlignInBytes; 1317 } 1318 1319 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 1320 if (Align >= 16 && (isSSEVectorType(getContext(), Ty) || 1321 isRecordWithSSEVectorType(getContext(), Ty))) 1322 return 16; 1323 1324 return MinABIStackAlignInBytes; 1325 } 1326 1327 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 1328 CCState &State) const { 1329 if (!ByVal) { 1330 if (State.FreeRegs) { 1331 --State.FreeRegs; // Non-byval indirects just use one pointer. 1332 if (!IsMCUABI) 1333 return getNaturalAlignIndirectInReg(Ty); 1334 } 1335 return getNaturalAlignIndirect(Ty, false); 1336 } 1337 1338 // Compute the byval alignment. 1339 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 1340 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 1341 if (StackAlign == 0) 1342 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); 1343 1344 // If the stack alignment is less than the type alignment, realign the 1345 // argument. 1346 bool Realign = TypeAlign > StackAlign; 1347 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), 1348 /*ByVal=*/true, Realign); 1349 } 1350 1351 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 1352 const Type *T = isSingleElementStruct(Ty, getContext()); 1353 if (!T) 1354 T = Ty.getTypePtr(); 1355 1356 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 1357 BuiltinType::Kind K = BT->getKind(); 1358 if (K == BuiltinType::Float || K == BuiltinType::Double) 1359 return Float; 1360 } 1361 return Integer; 1362 } 1363 1364 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { 1365 if (!IsSoftFloatABI) { 1366 Class C = classify(Ty); 1367 if (C == Float) 1368 return false; 1369 } 1370 1371 unsigned Size = getContext().getTypeSize(Ty); 1372 unsigned SizeInRegs = (Size + 31) / 32; 1373 1374 if (SizeInRegs == 0) 1375 return false; 1376 1377 if (!IsMCUABI) { 1378 if (SizeInRegs > State.FreeRegs) { 1379 State.FreeRegs = 0; 1380 return false; 1381 } 1382 } else { 1383 // The MCU psABI allows passing parameters in-reg even if there are 1384 // earlier parameters that are passed on the stack. Also, 1385 // it does not allow passing >8-byte structs in-register, 1386 // even if there are 3 free registers available. 1387 if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) 1388 return false; 1389 } 1390 1391 State.FreeRegs -= SizeInRegs; 1392 return true; 1393 } 1394 1395 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, 1396 bool &InReg, 1397 bool &NeedsPadding) const { 1398 NeedsPadding = false; 1399 InReg = !IsMCUABI; 1400 1401 if (!updateFreeRegs(Ty, State)) 1402 return false; 1403 1404 if (IsMCUABI) 1405 return true; 1406 1407 if (State.CC == llvm::CallingConv::X86_FastCall || 1408 State.CC == llvm::CallingConv::X86_VectorCall) { 1409 if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) 1410 NeedsPadding = true; 1411 1412 return false; 1413 } 1414 1415 return true; 1416 } 1417 1418 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { 1419 if (!updateFreeRegs(Ty, State)) 1420 return false; 1421 1422 if (IsMCUABI) 1423 return false; 1424 1425 if (State.CC == llvm::CallingConv::X86_FastCall || 1426 State.CC == llvm::CallingConv::X86_VectorCall) { 1427 if (getContext().getTypeSize(Ty) > 32) 1428 return false; 1429 1430 return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || 1431 Ty->isReferenceType()); 1432 } 1433 1434 return true; 1435 } 1436 1437 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 1438 CCState &State) const { 1439 // FIXME: Set alignment on indirect arguments. 1440 1441 Ty = useFirstFieldIfTransparentUnion(Ty); 1442 1443 // Check with the C++ ABI first. 1444 const RecordType *RT = Ty->getAs<RecordType>(); 1445 if (RT) { 1446 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 1447 if (RAA == CGCXXABI::RAA_Indirect) { 1448 return getIndirectResult(Ty, false, State); 1449 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 1450 // The field index doesn't matter, we'll fix it up later. 1451 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 1452 } 1453 } 1454 1455 // vectorcall adds the concept of a homogenous vector aggregate, similar 1456 // to other targets. 1457 const Type *Base = nullptr; 1458 uint64_t NumElts = 0; 1459 if (State.CC == llvm::CallingConv::X86_VectorCall && 1460 isHomogeneousAggregate(Ty, Base, NumElts)) { 1461 if (State.FreeSSERegs >= NumElts) { 1462 State.FreeSSERegs -= NumElts; 1463 if (Ty->isBuiltinType() || Ty->isVectorType()) 1464 return ABIArgInfo::getDirect(); 1465 return ABIArgInfo::getExpand(); 1466 } 1467 return getIndirectResult(Ty, /*ByVal=*/false, State); 1468 } 1469 1470 if (isAggregateTypeForABI(Ty)) { 1471 if (RT) { 1472 // Structs are always byval on win32, regardless of what they contain. 1473 if (IsWin32StructABI) 1474 return getIndirectResult(Ty, true, State); 1475 1476 // Structures with flexible arrays are always indirect. 1477 if (RT->getDecl()->hasFlexibleArrayMember()) 1478 return getIndirectResult(Ty, true, State); 1479 } 1480 1481 // Ignore empty structs/unions. 1482 if (isEmptyRecord(getContext(), Ty, true)) 1483 return ABIArgInfo::getIgnore(); 1484 1485 llvm::LLVMContext &LLVMContext = getVMContext(); 1486 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 1487 bool NeedsPadding, InReg; 1488 if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { 1489 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 1490 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 1491 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 1492 if (InReg) 1493 return ABIArgInfo::getDirectInReg(Result); 1494 else 1495 return ABIArgInfo::getDirect(Result); 1496 } 1497 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 1498 1499 // Expand small (<= 128-bit) record types when we know that the stack layout 1500 // of those arguments will match the struct. This is important because the 1501 // LLVM backend isn't smart enough to remove byval, which inhibits many 1502 // optimizations. 1503 // Don't do this for the MCU if there are still free integer registers 1504 // (see X86_64 ABI for full explanation). 1505 if (getContext().getTypeSize(Ty) <= 4*32 && 1506 canExpandIndirectArgument(Ty, getContext()) && 1507 (!IsMCUABI || State.FreeRegs == 0)) 1508 return ABIArgInfo::getExpandWithPadding( 1509 State.CC == llvm::CallingConv::X86_FastCall || 1510 State.CC == llvm::CallingConv::X86_VectorCall, 1511 PaddingType); 1512 1513 return getIndirectResult(Ty, true, State); 1514 } 1515 1516 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1517 // On Darwin, some vectors are passed in memory, we handle this by passing 1518 // it as an i8/i16/i32/i64. 1519 if (IsDarwinVectorABI) { 1520 uint64_t Size = getContext().getTypeSize(Ty); 1521 if ((Size == 8 || Size == 16 || Size == 32) || 1522 (Size == 64 && VT->getNumElements() == 1)) 1523 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1524 Size)); 1525 } 1526 1527 if (IsX86_MMXType(CGT.ConvertType(Ty))) 1528 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 1529 1530 return ABIArgInfo::getDirect(); 1531 } 1532 1533 1534 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1535 Ty = EnumTy->getDecl()->getIntegerType(); 1536 1537 bool InReg = shouldPrimitiveUseInReg(Ty, State); 1538 1539 if (Ty->isPromotableIntegerType()) { 1540 if (InReg) 1541 return ABIArgInfo::getExtendInReg(); 1542 return ABIArgInfo::getExtend(); 1543 } 1544 1545 if (InReg) 1546 return ABIArgInfo::getDirectInReg(); 1547 return ABIArgInfo::getDirect(); 1548 } 1549 1550 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 1551 CCState State(FI.getCallingConvention()); 1552 if (IsMCUABI) 1553 State.FreeRegs = 3; 1554 else if (State.CC == llvm::CallingConv::X86_FastCall) 1555 State.FreeRegs = 2; 1556 else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1557 State.FreeRegs = 2; 1558 State.FreeSSERegs = 6; 1559 } else if (FI.getHasRegParm()) 1560 State.FreeRegs = FI.getRegParm(); 1561 else 1562 State.FreeRegs = DefaultNumRegisterParameters; 1563 1564 if (!getCXXABI().classifyReturnType(FI)) { 1565 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 1566 } else if (FI.getReturnInfo().isIndirect()) { 1567 // The C++ ABI is not aware of register usage, so we have to check if the 1568 // return value was sret and put it in a register ourselves if appropriate. 1569 if (State.FreeRegs) { 1570 --State.FreeRegs; // The sret parameter consumes a register. 1571 if (!IsMCUABI) 1572 FI.getReturnInfo().setInReg(true); 1573 } 1574 } 1575 1576 // The chain argument effectively gives us another free register. 1577 if (FI.isChainCall()) 1578 ++State.FreeRegs; 1579 1580 bool UsedInAlloca = false; 1581 for (auto &I : FI.arguments()) { 1582 I.info = classifyArgumentType(I.type, State); 1583 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1584 } 1585 1586 // If we needed to use inalloca for any argument, do a second pass and rewrite 1587 // all the memory arguments to use inalloca. 1588 if (UsedInAlloca) 1589 rewriteWithInAlloca(FI); 1590 } 1591 1592 void 1593 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1594 CharUnits &StackOffset, ABIArgInfo &Info, 1595 QualType Type) const { 1596 // Arguments are always 4-byte-aligned. 1597 CharUnits FieldAlign = CharUnits::fromQuantity(4); 1598 1599 assert(StackOffset.isMultipleOf(FieldAlign) && "unaligned inalloca struct"); 1600 Info = ABIArgInfo::getInAlloca(FrameFields.size()); 1601 FrameFields.push_back(CGT.ConvertTypeForMem(Type)); 1602 StackOffset += getContext().getTypeSizeInChars(Type); 1603 1604 // Insert padding bytes to respect alignment. 1605 CharUnits FieldEnd = StackOffset; 1606 StackOffset = FieldEnd.alignTo(FieldAlign); 1607 if (StackOffset != FieldEnd) { 1608 CharUnits NumBytes = StackOffset - FieldEnd; 1609 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 1610 Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); 1611 FrameFields.push_back(Ty); 1612 } 1613 } 1614 1615 static bool isArgInAlloca(const ABIArgInfo &Info) { 1616 // Leave ignored and inreg arguments alone. 1617 switch (Info.getKind()) { 1618 case ABIArgInfo::InAlloca: 1619 return true; 1620 case ABIArgInfo::Indirect: 1621 assert(Info.getIndirectByVal()); 1622 return true; 1623 case ABIArgInfo::Ignore: 1624 return false; 1625 case ABIArgInfo::Direct: 1626 case ABIArgInfo::Extend: 1627 case ABIArgInfo::Expand: 1628 case ABIArgInfo::CoerceAndExpand: 1629 if (Info.getInReg()) 1630 return false; 1631 return true; 1632 } 1633 llvm_unreachable("invalid enum"); 1634 } 1635 1636 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 1637 assert(IsWin32StructABI && "inalloca only supported on win32"); 1638 1639 // Build a packed struct type for all of the arguments in memory. 1640 SmallVector<llvm::Type *, 6> FrameFields; 1641 1642 // The stack alignment is always 4. 1643 CharUnits StackAlign = CharUnits::fromQuantity(4); 1644 1645 CharUnits StackOffset; 1646 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 1647 1648 // Put 'this' into the struct before 'sret', if necessary. 1649 bool IsThisCall = 1650 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 1651 ABIArgInfo &Ret = FI.getReturnInfo(); 1652 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 1653 isArgInAlloca(I->info)) { 1654 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1655 ++I; 1656 } 1657 1658 // Put the sret parameter into the inalloca struct if it's in memory. 1659 if (Ret.isIndirect() && !Ret.getInReg()) { 1660 CanQualType PtrTy = getContext().getPointerType(FI.getReturnType()); 1661 addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy); 1662 // On Windows, the hidden sret parameter is always returned in eax. 1663 Ret.setInAllocaSRet(IsWin32StructABI); 1664 } 1665 1666 // Skip the 'this' parameter in ecx. 1667 if (IsThisCall) 1668 ++I; 1669 1670 // Put arguments passed in memory into the struct. 1671 for (; I != E; ++I) { 1672 if (isArgInAlloca(I->info)) 1673 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1674 } 1675 1676 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 1677 /*isPacked=*/true), 1678 StackAlign); 1679 } 1680 1681 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, 1682 Address VAListAddr, QualType Ty) const { 1683 1684 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 1685 1686 // x86-32 changes the alignment of certain arguments on the stack. 1687 // 1688 // Just messing with TypeInfo like this works because we never pass 1689 // anything indirectly. 1690 TypeInfo.second = CharUnits::fromQuantity( 1691 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity())); 1692 1693 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 1694 TypeInfo, CharUnits::fromQuantity(4), 1695 /*AllowHigherAlign*/ true); 1696 } 1697 1698 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 1699 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 1700 assert(Triple.getArch() == llvm::Triple::x86); 1701 1702 switch (Opts.getStructReturnConvention()) { 1703 case CodeGenOptions::SRCK_Default: 1704 break; 1705 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 1706 return false; 1707 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 1708 return true; 1709 } 1710 1711 if (Triple.isOSDarwin() || Triple.isOSIAMCU()) 1712 return true; 1713 1714 switch (Triple.getOS()) { 1715 case llvm::Triple::DragonFly: 1716 case llvm::Triple::FreeBSD: 1717 case llvm::Triple::OpenBSD: 1718 case llvm::Triple::Bitrig: 1719 case llvm::Triple::Win32: 1720 return true; 1721 default: 1722 return false; 1723 } 1724 } 1725 1726 void X86_32TargetCodeGenInfo::setTargetAttributes(const Decl *D, 1727 llvm::GlobalValue *GV, 1728 CodeGen::CodeGenModule &CGM) const { 1729 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 1730 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 1731 // Get the LLVM function. 1732 llvm::Function *Fn = cast<llvm::Function>(GV); 1733 1734 // Now add the 'alignstack' attribute with a value of 16. 1735 llvm::AttrBuilder B; 1736 B.addStackAlignmentAttr(16); 1737 Fn->addAttributes(llvm::AttributeSet::FunctionIndex, 1738 llvm::AttributeSet::get(CGM.getLLVMContext(), 1739 llvm::AttributeSet::FunctionIndex, 1740 B)); 1741 } 1742 if (FD->hasAttr<AnyX86InterruptAttr>()) { 1743 llvm::Function *Fn = cast<llvm::Function>(GV); 1744 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 1745 } 1746 } 1747 } 1748 1749 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 1750 CodeGen::CodeGenFunction &CGF, 1751 llvm::Value *Address) const { 1752 CodeGen::CGBuilderTy &Builder = CGF.Builder; 1753 1754 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 1755 1756 // 0-7 are the eight integer registers; the order is different 1757 // on Darwin (for EH), but the range is the same. 1758 // 8 is %eip. 1759 AssignToArrayRange(Builder, Address, Four8, 0, 8); 1760 1761 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 1762 // 12-16 are st(0..4). Not sure why we stop at 4. 1763 // These have size 16, which is sizeof(long double) on 1764 // platforms with 8-byte alignment for that type. 1765 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 1766 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 1767 1768 } else { 1769 // 9 is %eflags, which doesn't get a size on Darwin for some 1770 // reason. 1771 Builder.CreateAlignedStore( 1772 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), 1773 CharUnits::One()); 1774 1775 // 11-16 are st(0..5). Not sure why we stop at 5. 1776 // These have size 12, which is sizeof(long double) on 1777 // platforms with 4-byte alignment for that type. 1778 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 1779 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 1780 } 1781 1782 return false; 1783 } 1784 1785 //===----------------------------------------------------------------------===// 1786 // X86-64 ABI Implementation 1787 //===----------------------------------------------------------------------===// 1788 1789 1790 namespace { 1791 /// The AVX ABI level for X86 targets. 1792 enum class X86AVXABILevel { 1793 None, 1794 AVX, 1795 AVX512 1796 }; 1797 1798 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. 1799 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { 1800 switch (AVXLevel) { 1801 case X86AVXABILevel::AVX512: 1802 return 512; 1803 case X86AVXABILevel::AVX: 1804 return 256; 1805 case X86AVXABILevel::None: 1806 return 128; 1807 } 1808 llvm_unreachable("Unknown AVXLevel"); 1809 } 1810 1811 /// X86_64ABIInfo - The X86_64 ABI information. 1812 class X86_64ABIInfo : public SwiftABIInfo { 1813 enum Class { 1814 Integer = 0, 1815 SSE, 1816 SSEUp, 1817 X87, 1818 X87Up, 1819 ComplexX87, 1820 NoClass, 1821 Memory 1822 }; 1823 1824 /// merge - Implement the X86_64 ABI merging algorithm. 1825 /// 1826 /// Merge an accumulating classification \arg Accum with a field 1827 /// classification \arg Field. 1828 /// 1829 /// \param Accum - The accumulating classification. This should 1830 /// always be either NoClass or the result of a previous merge 1831 /// call. In addition, this should never be Memory (the caller 1832 /// should just return Memory for the aggregate). 1833 static Class merge(Class Accum, Class Field); 1834 1835 /// postMerge - Implement the X86_64 ABI post merging algorithm. 1836 /// 1837 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 1838 /// final MEMORY or SSE classes when necessary. 1839 /// 1840 /// \param AggregateSize - The size of the current aggregate in 1841 /// the classification process. 1842 /// 1843 /// \param Lo - The classification for the parts of the type 1844 /// residing in the low word of the containing object. 1845 /// 1846 /// \param Hi - The classification for the parts of the type 1847 /// residing in the higher words of the containing object. 1848 /// 1849 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 1850 1851 /// classify - Determine the x86_64 register classes in which the 1852 /// given type T should be passed. 1853 /// 1854 /// \param Lo - The classification for the parts of the type 1855 /// residing in the low word of the containing object. 1856 /// 1857 /// \param Hi - The classification for the parts of the type 1858 /// residing in the high word of the containing object. 1859 /// 1860 /// \param OffsetBase - The bit offset of this type in the 1861 /// containing object. Some parameters are classified different 1862 /// depending on whether they straddle an eightbyte boundary. 1863 /// 1864 /// \param isNamedArg - Whether the argument in question is a "named" 1865 /// argument, as used in AMD64-ABI 3.5.7. 1866 /// 1867 /// If a word is unused its result will be NoClass; if a type should 1868 /// be passed in Memory then at least the classification of \arg Lo 1869 /// will be Memory. 1870 /// 1871 /// The \arg Lo class will be NoClass iff the argument is ignored. 1872 /// 1873 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 1874 /// also be ComplexX87. 1875 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 1876 bool isNamedArg) const; 1877 1878 llvm::Type *GetByteVectorType(QualType Ty) const; 1879 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 1880 unsigned IROffset, QualType SourceTy, 1881 unsigned SourceOffset) const; 1882 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 1883 unsigned IROffset, QualType SourceTy, 1884 unsigned SourceOffset) const; 1885 1886 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1887 /// such that the argument will be returned in memory. 1888 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 1889 1890 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1891 /// such that the argument will be passed in memory. 1892 /// 1893 /// \param freeIntRegs - The number of free integer registers remaining 1894 /// available. 1895 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 1896 1897 ABIArgInfo classifyReturnType(QualType RetTy) const; 1898 1899 ABIArgInfo classifyArgumentType(QualType Ty, 1900 unsigned freeIntRegs, 1901 unsigned &neededInt, 1902 unsigned &neededSSE, 1903 bool isNamedArg) const; 1904 1905 bool IsIllegalVectorType(QualType Ty) const; 1906 1907 /// The 0.98 ABI revision clarified a lot of ambiguities, 1908 /// unfortunately in ways that were not always consistent with 1909 /// certain previous compilers. In particular, platforms which 1910 /// required strict binary compatibility with older versions of GCC 1911 /// may need to exempt themselves. 1912 bool honorsRevision0_98() const { 1913 return !getTarget().getTriple().isOSDarwin(); 1914 } 1915 1916 /// GCC classifies <1 x long long> as SSE but compatibility with older clang 1917 // compilers require us to classify it as INTEGER. 1918 bool classifyIntegerMMXAsSSE() const { 1919 const llvm::Triple &Triple = getTarget().getTriple(); 1920 if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4) 1921 return false; 1922 if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10) 1923 return false; 1924 return true; 1925 } 1926 1927 X86AVXABILevel AVXLevel; 1928 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 1929 // 64-bit hardware. 1930 bool Has64BitPointers; 1931 1932 public: 1933 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : 1934 SwiftABIInfo(CGT), AVXLevel(AVXLevel), 1935 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 1936 } 1937 1938 bool isPassedUsingAVXType(QualType type) const { 1939 unsigned neededInt, neededSSE; 1940 // The freeIntRegs argument doesn't matter here. 1941 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 1942 /*isNamedArg*/true); 1943 if (info.isDirect()) { 1944 llvm::Type *ty = info.getCoerceToType(); 1945 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 1946 return (vectorTy->getBitWidth() > 128); 1947 } 1948 return false; 1949 } 1950 1951 void computeInfo(CGFunctionInfo &FI) const override; 1952 1953 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 1954 QualType Ty) const override; 1955 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 1956 QualType Ty) const override; 1957 1958 bool has64BitPointers() const { 1959 return Has64BitPointers; 1960 } 1961 1962 bool shouldPassIndirectlyForSwift(CharUnits totalSize, 1963 ArrayRef<llvm::Type*> scalars, 1964 bool asReturnValue) const override { 1965 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 1966 } 1967 }; 1968 1969 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 1970 class WinX86_64ABIInfo : public ABIInfo { 1971 public: 1972 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) 1973 : ABIInfo(CGT), 1974 IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} 1975 1976 void computeInfo(CGFunctionInfo &FI) const override; 1977 1978 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 1979 QualType Ty) const override; 1980 1981 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 1982 // FIXME: Assumes vectorcall is in use. 1983 return isX86VectorTypeForVectorCall(getContext(), Ty); 1984 } 1985 1986 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 1987 uint64_t NumMembers) const override { 1988 // FIXME: Assumes vectorcall is in use. 1989 return isX86VectorCallAggregateSmallEnough(NumMembers); 1990 } 1991 1992 private: 1993 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, 1994 bool IsReturnType) const; 1995 1996 bool IsMingw64; 1997 }; 1998 1999 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2000 public: 2001 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2002 : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {} 2003 2004 const X86_64ABIInfo &getABIInfo() const { 2005 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 2006 } 2007 2008 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2009 return 7; 2010 } 2011 2012 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2013 llvm::Value *Address) const override { 2014 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2015 2016 // 0-15 are the 16 integer registers. 2017 // 16 is %rip. 2018 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2019 return false; 2020 } 2021 2022 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 2023 StringRef Constraint, 2024 llvm::Type* Ty) const override { 2025 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 2026 } 2027 2028 bool isNoProtoCallVariadic(const CallArgList &args, 2029 const FunctionNoProtoType *fnType) const override { 2030 // The default CC on x86-64 sets %al to the number of SSA 2031 // registers used, and GCC sets this when calling an unprototyped 2032 // function, so we override the default behavior. However, don't do 2033 // that when AVX types are involved: the ABI explicitly states it is 2034 // undefined, and it doesn't work in practice because of how the ABI 2035 // defines varargs anyway. 2036 if (fnType->getCallConv() == CC_C) { 2037 bool HasAVXType = false; 2038 for (CallArgList::const_iterator 2039 it = args.begin(), ie = args.end(); it != ie; ++it) { 2040 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 2041 HasAVXType = true; 2042 break; 2043 } 2044 } 2045 2046 if (!HasAVXType) 2047 return true; 2048 } 2049 2050 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 2051 } 2052 2053 llvm::Constant * 2054 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 2055 unsigned Sig; 2056 if (getABIInfo().has64BitPointers()) 2057 Sig = (0xeb << 0) | // jmp rel8 2058 (0x0a << 8) | // .+0x0c 2059 ('F' << 16) | 2060 ('T' << 24); 2061 else 2062 Sig = (0xeb << 0) | // jmp rel8 2063 (0x06 << 8) | // .+0x08 2064 ('F' << 16) | 2065 ('T' << 24); 2066 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 2067 } 2068 2069 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2070 CodeGen::CodeGenModule &CGM) const override { 2071 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2072 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2073 llvm::Function *Fn = cast<llvm::Function>(GV); 2074 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2075 } 2076 } 2077 } 2078 }; 2079 2080 class PS4TargetCodeGenInfo : public X86_64TargetCodeGenInfo { 2081 public: 2082 PS4TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2083 : X86_64TargetCodeGenInfo(CGT, AVXLevel) {} 2084 2085 void getDependentLibraryOption(llvm::StringRef Lib, 2086 llvm::SmallString<24> &Opt) const override { 2087 Opt = "\01"; 2088 // If the argument contains a space, enclose it in quotes. 2089 if (Lib.find(" ") != StringRef::npos) 2090 Opt += "\"" + Lib.str() + "\""; 2091 else 2092 Opt += Lib; 2093 } 2094 }; 2095 2096 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 2097 // If the argument does not end in .lib, automatically add the suffix. 2098 // If the argument contains a space, enclose it in quotes. 2099 // This matches the behavior of MSVC. 2100 bool Quote = (Lib.find(" ") != StringRef::npos); 2101 std::string ArgStr = Quote ? "\"" : ""; 2102 ArgStr += Lib; 2103 if (!Lib.endswith_lower(".lib")) 2104 ArgStr += ".lib"; 2105 ArgStr += Quote ? "\"" : ""; 2106 return ArgStr; 2107 } 2108 2109 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 2110 public: 2111 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2112 bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, 2113 unsigned NumRegisterParameters) 2114 : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, 2115 Win32StructABI, NumRegisterParameters, false) {} 2116 2117 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2118 CodeGen::CodeGenModule &CGM) const override; 2119 2120 void getDependentLibraryOption(llvm::StringRef Lib, 2121 llvm::SmallString<24> &Opt) const override { 2122 Opt = "/DEFAULTLIB:"; 2123 Opt += qualifyWindowsLibrary(Lib); 2124 } 2125 2126 void getDetectMismatchOption(llvm::StringRef Name, 2127 llvm::StringRef Value, 2128 llvm::SmallString<32> &Opt) const override { 2129 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2130 } 2131 }; 2132 2133 static void addStackProbeSizeTargetAttribute(const Decl *D, 2134 llvm::GlobalValue *GV, 2135 CodeGen::CodeGenModule &CGM) { 2136 if (D && isa<FunctionDecl>(D)) { 2137 if (CGM.getCodeGenOpts().StackProbeSize != 4096) { 2138 llvm::Function *Fn = cast<llvm::Function>(GV); 2139 2140 Fn->addFnAttr("stack-probe-size", 2141 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 2142 } 2143 } 2144 } 2145 2146 void WinX86_32TargetCodeGenInfo::setTargetAttributes(const Decl *D, 2147 llvm::GlobalValue *GV, 2148 CodeGen::CodeGenModule &CGM) const { 2149 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2150 2151 addStackProbeSizeTargetAttribute(D, GV, CGM); 2152 } 2153 2154 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2155 public: 2156 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2157 X86AVXABILevel AVXLevel) 2158 : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {} 2159 2160 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2161 CodeGen::CodeGenModule &CGM) const override; 2162 2163 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2164 return 7; 2165 } 2166 2167 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2168 llvm::Value *Address) const override { 2169 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2170 2171 // 0-15 are the 16 integer registers. 2172 // 16 is %rip. 2173 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2174 return false; 2175 } 2176 2177 void getDependentLibraryOption(llvm::StringRef Lib, 2178 llvm::SmallString<24> &Opt) const override { 2179 Opt = "/DEFAULTLIB:"; 2180 Opt += qualifyWindowsLibrary(Lib); 2181 } 2182 2183 void getDetectMismatchOption(llvm::StringRef Name, 2184 llvm::StringRef Value, 2185 llvm::SmallString<32> &Opt) const override { 2186 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2187 } 2188 }; 2189 2190 void WinX86_64TargetCodeGenInfo::setTargetAttributes(const Decl *D, 2191 llvm::GlobalValue *GV, 2192 CodeGen::CodeGenModule &CGM) const { 2193 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2194 2195 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2196 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2197 llvm::Function *Fn = cast<llvm::Function>(GV); 2198 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2199 } 2200 } 2201 2202 addStackProbeSizeTargetAttribute(D, GV, CGM); 2203 } 2204 } 2205 2206 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 2207 Class &Hi) const { 2208 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 2209 // 2210 // (a) If one of the classes is Memory, the whole argument is passed in 2211 // memory. 2212 // 2213 // (b) If X87UP is not preceded by X87, the whole argument is passed in 2214 // memory. 2215 // 2216 // (c) If the size of the aggregate exceeds two eightbytes and the first 2217 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 2218 // argument is passed in memory. NOTE: This is necessary to keep the 2219 // ABI working for processors that don't support the __m256 type. 2220 // 2221 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 2222 // 2223 // Some of these are enforced by the merging logic. Others can arise 2224 // only with unions; for example: 2225 // union { _Complex double; unsigned; } 2226 // 2227 // Note that clauses (b) and (c) were added in 0.98. 2228 // 2229 if (Hi == Memory) 2230 Lo = Memory; 2231 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 2232 Lo = Memory; 2233 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 2234 Lo = Memory; 2235 if (Hi == SSEUp && Lo != SSE) 2236 Hi = SSE; 2237 } 2238 2239 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 2240 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 2241 // classified recursively so that always two fields are 2242 // considered. The resulting class is calculated according to 2243 // the classes of the fields in the eightbyte: 2244 // 2245 // (a) If both classes are equal, this is the resulting class. 2246 // 2247 // (b) If one of the classes is NO_CLASS, the resulting class is 2248 // the other class. 2249 // 2250 // (c) If one of the classes is MEMORY, the result is the MEMORY 2251 // class. 2252 // 2253 // (d) If one of the classes is INTEGER, the result is the 2254 // INTEGER. 2255 // 2256 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 2257 // MEMORY is used as class. 2258 // 2259 // (f) Otherwise class SSE is used. 2260 2261 // Accum should never be memory (we should have returned) or 2262 // ComplexX87 (because this cannot be passed in a structure). 2263 assert((Accum != Memory && Accum != ComplexX87) && 2264 "Invalid accumulated classification during merge."); 2265 if (Accum == Field || Field == NoClass) 2266 return Accum; 2267 if (Field == Memory) 2268 return Memory; 2269 if (Accum == NoClass) 2270 return Field; 2271 if (Accum == Integer || Field == Integer) 2272 return Integer; 2273 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 2274 Accum == X87 || Accum == X87Up) 2275 return Memory; 2276 return SSE; 2277 } 2278 2279 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 2280 Class &Lo, Class &Hi, bool isNamedArg) const { 2281 // FIXME: This code can be simplified by introducing a simple value class for 2282 // Class pairs with appropriate constructor methods for the various 2283 // situations. 2284 2285 // FIXME: Some of the split computations are wrong; unaligned vectors 2286 // shouldn't be passed in registers for example, so there is no chance they 2287 // can straddle an eightbyte. Verify & simplify. 2288 2289 Lo = Hi = NoClass; 2290 2291 Class &Current = OffsetBase < 64 ? Lo : Hi; 2292 Current = Memory; 2293 2294 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 2295 BuiltinType::Kind k = BT->getKind(); 2296 2297 if (k == BuiltinType::Void) { 2298 Current = NoClass; 2299 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 2300 Lo = Integer; 2301 Hi = Integer; 2302 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 2303 Current = Integer; 2304 } else if (k == BuiltinType::Float || k == BuiltinType::Double) { 2305 Current = SSE; 2306 } else if (k == BuiltinType::LongDouble) { 2307 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2308 if (LDF == &llvm::APFloat::IEEEquad) { 2309 Lo = SSE; 2310 Hi = SSEUp; 2311 } else if (LDF == &llvm::APFloat::x87DoubleExtended) { 2312 Lo = X87; 2313 Hi = X87Up; 2314 } else if (LDF == &llvm::APFloat::IEEEdouble) { 2315 Current = SSE; 2316 } else 2317 llvm_unreachable("unexpected long double representation!"); 2318 } 2319 // FIXME: _Decimal32 and _Decimal64 are SSE. 2320 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 2321 return; 2322 } 2323 2324 if (const EnumType *ET = Ty->getAs<EnumType>()) { 2325 // Classify the underlying integer type. 2326 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 2327 return; 2328 } 2329 2330 if (Ty->hasPointerRepresentation()) { 2331 Current = Integer; 2332 return; 2333 } 2334 2335 if (Ty->isMemberPointerType()) { 2336 if (Ty->isMemberFunctionPointerType()) { 2337 if (Has64BitPointers) { 2338 // If Has64BitPointers, this is an {i64, i64}, so classify both 2339 // Lo and Hi now. 2340 Lo = Hi = Integer; 2341 } else { 2342 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 2343 // straddles an eightbyte boundary, Hi should be classified as well. 2344 uint64_t EB_FuncPtr = (OffsetBase) / 64; 2345 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 2346 if (EB_FuncPtr != EB_ThisAdj) { 2347 Lo = Hi = Integer; 2348 } else { 2349 Current = Integer; 2350 } 2351 } 2352 } else { 2353 Current = Integer; 2354 } 2355 return; 2356 } 2357 2358 if (const VectorType *VT = Ty->getAs<VectorType>()) { 2359 uint64_t Size = getContext().getTypeSize(VT); 2360 if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { 2361 // gcc passes the following as integer: 2362 // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> 2363 // 2 bytes - <2 x char>, <1 x short> 2364 // 1 byte - <1 x char> 2365 Current = Integer; 2366 2367 // If this type crosses an eightbyte boundary, it should be 2368 // split. 2369 uint64_t EB_Lo = (OffsetBase) / 64; 2370 uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; 2371 if (EB_Lo != EB_Hi) 2372 Hi = Lo; 2373 } else if (Size == 64) { 2374 QualType ElementType = VT->getElementType(); 2375 2376 // gcc passes <1 x double> in memory. :( 2377 if (ElementType->isSpecificBuiltinType(BuiltinType::Double)) 2378 return; 2379 2380 // gcc passes <1 x long long> as SSE but clang used to unconditionally 2381 // pass them as integer. For platforms where clang is the de facto 2382 // platform compiler, we must continue to use integer. 2383 if (!classifyIntegerMMXAsSSE() && 2384 (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) || 2385 ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) || 2386 ElementType->isSpecificBuiltinType(BuiltinType::Long) || 2387 ElementType->isSpecificBuiltinType(BuiltinType::ULong))) 2388 Current = Integer; 2389 else 2390 Current = SSE; 2391 2392 // If this type crosses an eightbyte boundary, it should be 2393 // split. 2394 if (OffsetBase && OffsetBase != 64) 2395 Hi = Lo; 2396 } else if (Size == 128 || 2397 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { 2398 // Arguments of 256-bits are split into four eightbyte chunks. The 2399 // least significant one belongs to class SSE and all the others to class 2400 // SSEUP. The original Lo and Hi design considers that types can't be 2401 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 2402 // This design isn't correct for 256-bits, but since there're no cases 2403 // where the upper parts would need to be inspected, avoid adding 2404 // complexity and just consider Hi to match the 64-256 part. 2405 // 2406 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 2407 // registers if they are "named", i.e. not part of the "..." of a 2408 // variadic function. 2409 // 2410 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are 2411 // split into eight eightbyte chunks, one SSE and seven SSEUP. 2412 Lo = SSE; 2413 Hi = SSEUp; 2414 } 2415 return; 2416 } 2417 2418 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 2419 QualType ET = getContext().getCanonicalType(CT->getElementType()); 2420 2421 uint64_t Size = getContext().getTypeSize(Ty); 2422 if (ET->isIntegralOrEnumerationType()) { 2423 if (Size <= 64) 2424 Current = Integer; 2425 else if (Size <= 128) 2426 Lo = Hi = Integer; 2427 } else if (ET == getContext().FloatTy) { 2428 Current = SSE; 2429 } else if (ET == getContext().DoubleTy) { 2430 Lo = Hi = SSE; 2431 } else if (ET == getContext().LongDoubleTy) { 2432 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2433 if (LDF == &llvm::APFloat::IEEEquad) 2434 Current = Memory; 2435 else if (LDF == &llvm::APFloat::x87DoubleExtended) 2436 Current = ComplexX87; 2437 else if (LDF == &llvm::APFloat::IEEEdouble) 2438 Lo = Hi = SSE; 2439 else 2440 llvm_unreachable("unexpected long double representation!"); 2441 } 2442 2443 // If this complex type crosses an eightbyte boundary then it 2444 // should be split. 2445 uint64_t EB_Real = (OffsetBase) / 64; 2446 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 2447 if (Hi == NoClass && EB_Real != EB_Imag) 2448 Hi = Lo; 2449 2450 return; 2451 } 2452 2453 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 2454 // Arrays are treated like structures. 2455 2456 uint64_t Size = getContext().getTypeSize(Ty); 2457 2458 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2459 // than four eightbytes, ..., it has class MEMORY. 2460 if (Size > 256) 2461 return; 2462 2463 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 2464 // fields, it has class MEMORY. 2465 // 2466 // Only need to check alignment of array base. 2467 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 2468 return; 2469 2470 // Otherwise implement simplified merge. We could be smarter about 2471 // this, but it isn't worth it and would be harder to verify. 2472 Current = NoClass; 2473 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 2474 uint64_t ArraySize = AT->getSize().getZExtValue(); 2475 2476 // The only case a 256-bit wide vector could be used is when the array 2477 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2478 // to work for sizes wider than 128, early check and fallback to memory. 2479 if (Size > 128 && EltSize != 256) 2480 return; 2481 2482 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 2483 Class FieldLo, FieldHi; 2484 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 2485 Lo = merge(Lo, FieldLo); 2486 Hi = merge(Hi, FieldHi); 2487 if (Lo == Memory || Hi == Memory) 2488 break; 2489 } 2490 2491 postMerge(Size, Lo, Hi); 2492 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 2493 return; 2494 } 2495 2496 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2497 uint64_t Size = getContext().getTypeSize(Ty); 2498 2499 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2500 // than four eightbytes, ..., it has class MEMORY. 2501 if (Size > 256) 2502 return; 2503 2504 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 2505 // copy constructor or a non-trivial destructor, it is passed by invisible 2506 // reference. 2507 if (getRecordArgABI(RT, getCXXABI())) 2508 return; 2509 2510 const RecordDecl *RD = RT->getDecl(); 2511 2512 // Assume variable sized types are passed in memory. 2513 if (RD->hasFlexibleArrayMember()) 2514 return; 2515 2516 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2517 2518 // Reset Lo class, this will be recomputed. 2519 Current = NoClass; 2520 2521 // If this is a C++ record, classify the bases first. 2522 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2523 for (const auto &I : CXXRD->bases()) { 2524 assert(!I.isVirtual() && !I.getType()->isDependentType() && 2525 "Unexpected base class!"); 2526 const CXXRecordDecl *Base = 2527 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2528 2529 // Classify this field. 2530 // 2531 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 2532 // single eightbyte, each is classified separately. Each eightbyte gets 2533 // initialized to class NO_CLASS. 2534 Class FieldLo, FieldHi; 2535 uint64_t Offset = 2536 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 2537 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 2538 Lo = merge(Lo, FieldLo); 2539 Hi = merge(Hi, FieldHi); 2540 if (Lo == Memory || Hi == Memory) { 2541 postMerge(Size, Lo, Hi); 2542 return; 2543 } 2544 } 2545 } 2546 2547 // Classify the fields one at a time, merging the results. 2548 unsigned idx = 0; 2549 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2550 i != e; ++i, ++idx) { 2551 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2552 bool BitField = i->isBitField(); 2553 2554 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 2555 // four eightbytes, or it contains unaligned fields, it has class MEMORY. 2556 // 2557 // The only case a 256-bit wide vector could be used is when the struct 2558 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2559 // to work for sizes wider than 128, early check and fallback to memory. 2560 // 2561 if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) { 2562 Lo = Memory; 2563 postMerge(Size, Lo, Hi); 2564 return; 2565 } 2566 // Note, skip this test for bit-fields, see below. 2567 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 2568 Lo = Memory; 2569 postMerge(Size, Lo, Hi); 2570 return; 2571 } 2572 2573 // Classify this field. 2574 // 2575 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 2576 // exceeds a single eightbyte, each is classified 2577 // separately. Each eightbyte gets initialized to class 2578 // NO_CLASS. 2579 Class FieldLo, FieldHi; 2580 2581 // Bit-fields require special handling, they do not force the 2582 // structure to be passed in memory even if unaligned, and 2583 // therefore they can straddle an eightbyte. 2584 if (BitField) { 2585 // Ignore padding bit-fields. 2586 if (i->isUnnamedBitfield()) 2587 continue; 2588 2589 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2590 uint64_t Size = i->getBitWidthValue(getContext()); 2591 2592 uint64_t EB_Lo = Offset / 64; 2593 uint64_t EB_Hi = (Offset + Size - 1) / 64; 2594 2595 if (EB_Lo) { 2596 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 2597 FieldLo = NoClass; 2598 FieldHi = Integer; 2599 } else { 2600 FieldLo = Integer; 2601 FieldHi = EB_Hi ? Integer : NoClass; 2602 } 2603 } else 2604 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 2605 Lo = merge(Lo, FieldLo); 2606 Hi = merge(Hi, FieldHi); 2607 if (Lo == Memory || Hi == Memory) 2608 break; 2609 } 2610 2611 postMerge(Size, Lo, Hi); 2612 } 2613 } 2614 2615 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 2616 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2617 // place naturally. 2618 if (!isAggregateTypeForABI(Ty)) { 2619 // Treat an enum type as its underlying type. 2620 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2621 Ty = EnumTy->getDecl()->getIntegerType(); 2622 2623 return (Ty->isPromotableIntegerType() ? 2624 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 2625 } 2626 2627 return getNaturalAlignIndirect(Ty); 2628 } 2629 2630 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 2631 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 2632 uint64_t Size = getContext().getTypeSize(VecTy); 2633 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); 2634 if (Size <= 64 || Size > LargestVector) 2635 return true; 2636 } 2637 2638 return false; 2639 } 2640 2641 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 2642 unsigned freeIntRegs) const { 2643 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2644 // place naturally. 2645 // 2646 // This assumption is optimistic, as there could be free registers available 2647 // when we need to pass this argument in memory, and LLVM could try to pass 2648 // the argument in the free register. This does not seem to happen currently, 2649 // but this code would be much safer if we could mark the argument with 2650 // 'onstack'. See PR12193. 2651 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) { 2652 // Treat an enum type as its underlying type. 2653 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2654 Ty = EnumTy->getDecl()->getIntegerType(); 2655 2656 return (Ty->isPromotableIntegerType() ? 2657 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 2658 } 2659 2660 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 2661 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 2662 2663 // Compute the byval alignment. We specify the alignment of the byval in all 2664 // cases so that the mid-level optimizer knows the alignment of the byval. 2665 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 2666 2667 // Attempt to avoid passing indirect results using byval when possible. This 2668 // is important for good codegen. 2669 // 2670 // We do this by coercing the value into a scalar type which the backend can 2671 // handle naturally (i.e., without using byval). 2672 // 2673 // For simplicity, we currently only do this when we have exhausted all of the 2674 // free integer registers. Doing this when there are free integer registers 2675 // would require more care, as we would have to ensure that the coerced value 2676 // did not claim the unused register. That would require either reording the 2677 // arguments to the function (so that any subsequent inreg values came first), 2678 // or only doing this optimization when there were no following arguments that 2679 // might be inreg. 2680 // 2681 // We currently expect it to be rare (particularly in well written code) for 2682 // arguments to be passed on the stack when there are still free integer 2683 // registers available (this would typically imply large structs being passed 2684 // by value), so this seems like a fair tradeoff for now. 2685 // 2686 // We can revisit this if the backend grows support for 'onstack' parameter 2687 // attributes. See PR12193. 2688 if (freeIntRegs == 0) { 2689 uint64_t Size = getContext().getTypeSize(Ty); 2690 2691 // If this type fits in an eightbyte, coerce it into the matching integral 2692 // type, which will end up on the stack (with alignment 8). 2693 if (Align == 8 && Size <= 64) 2694 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 2695 Size)); 2696 } 2697 2698 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); 2699 } 2700 2701 /// The ABI specifies that a value should be passed in a full vector XMM/YMM 2702 /// register. Pick an LLVM IR type that will be passed as a vector register. 2703 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 2704 // Wrapper structs/arrays that only contain vectors are passed just like 2705 // vectors; strip them off if present. 2706 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) 2707 Ty = QualType(InnerTy, 0); 2708 2709 llvm::Type *IRType = CGT.ConvertType(Ty); 2710 if (isa<llvm::VectorType>(IRType) || 2711 IRType->getTypeID() == llvm::Type::FP128TyID) 2712 return IRType; 2713 2714 // We couldn't find the preferred IR vector type for 'Ty'. 2715 uint64_t Size = getContext().getTypeSize(Ty); 2716 assert((Size == 128 || Size == 256) && "Invalid type found!"); 2717 2718 // Return a LLVM IR vector type based on the size of 'Ty'. 2719 return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2720 Size / 64); 2721 } 2722 2723 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 2724 /// is known to either be off the end of the specified type or being in 2725 /// alignment padding. The user type specified is known to be at most 128 bits 2726 /// in size, and have passed through X86_64ABIInfo::classify with a successful 2727 /// classification that put one of the two halves in the INTEGER class. 2728 /// 2729 /// It is conservatively correct to return false. 2730 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 2731 unsigned EndBit, ASTContext &Context) { 2732 // If the bytes being queried are off the end of the type, there is no user 2733 // data hiding here. This handles analysis of builtins, vectors and other 2734 // types that don't contain interesting padding. 2735 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 2736 if (TySize <= StartBit) 2737 return true; 2738 2739 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 2740 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 2741 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 2742 2743 // Check each element to see if the element overlaps with the queried range. 2744 for (unsigned i = 0; i != NumElts; ++i) { 2745 // If the element is after the span we care about, then we're done.. 2746 unsigned EltOffset = i*EltSize; 2747 if (EltOffset >= EndBit) break; 2748 2749 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 2750 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 2751 EndBit-EltOffset, Context)) 2752 return false; 2753 } 2754 // If it overlaps no elements, then it is safe to process as padding. 2755 return true; 2756 } 2757 2758 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2759 const RecordDecl *RD = RT->getDecl(); 2760 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 2761 2762 // If this is a C++ record, check the bases first. 2763 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2764 for (const auto &I : CXXRD->bases()) { 2765 assert(!I.isVirtual() && !I.getType()->isDependentType() && 2766 "Unexpected base class!"); 2767 const CXXRecordDecl *Base = 2768 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2769 2770 // If the base is after the span we care about, ignore it. 2771 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 2772 if (BaseOffset >= EndBit) continue; 2773 2774 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 2775 if (!BitsContainNoUserData(I.getType(), BaseStart, 2776 EndBit-BaseOffset, Context)) 2777 return false; 2778 } 2779 } 2780 2781 // Verify that no field has data that overlaps the region of interest. Yes 2782 // this could be sped up a lot by being smarter about queried fields, 2783 // however we're only looking at structs up to 16 bytes, so we don't care 2784 // much. 2785 unsigned idx = 0; 2786 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2787 i != e; ++i, ++idx) { 2788 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 2789 2790 // If we found a field after the region we care about, then we're done. 2791 if (FieldOffset >= EndBit) break; 2792 2793 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 2794 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 2795 Context)) 2796 return false; 2797 } 2798 2799 // If nothing in this record overlapped the area of interest, then we're 2800 // clean. 2801 return true; 2802 } 2803 2804 return false; 2805 } 2806 2807 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a 2808 /// float member at the specified offset. For example, {int,{float}} has a 2809 /// float at offset 4. It is conservatively correct for this routine to return 2810 /// false. 2811 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, 2812 const llvm::DataLayout &TD) { 2813 // Base case if we find a float. 2814 if (IROffset == 0 && IRType->isFloatTy()) 2815 return true; 2816 2817 // If this is a struct, recurse into the field at the specified offset. 2818 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 2819 const llvm::StructLayout *SL = TD.getStructLayout(STy); 2820 unsigned Elt = SL->getElementContainingOffset(IROffset); 2821 IROffset -= SL->getElementOffset(Elt); 2822 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); 2823 } 2824 2825 // If this is an array, recurse into the field at the specified offset. 2826 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 2827 llvm::Type *EltTy = ATy->getElementType(); 2828 unsigned EltSize = TD.getTypeAllocSize(EltTy); 2829 IROffset -= IROffset/EltSize*EltSize; 2830 return ContainsFloatAtOffset(EltTy, IROffset, TD); 2831 } 2832 2833 return false; 2834 } 2835 2836 2837 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 2838 /// low 8 bytes of an XMM register, corresponding to the SSE class. 2839 llvm::Type *X86_64ABIInfo:: 2840 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 2841 QualType SourceTy, unsigned SourceOffset) const { 2842 // The only three choices we have are either double, <2 x float>, or float. We 2843 // pass as float if the last 4 bytes is just padding. This happens for 2844 // structs that contain 3 floats. 2845 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, 2846 SourceOffset*8+64, getContext())) 2847 return llvm::Type::getFloatTy(getVMContext()); 2848 2849 // We want to pass as <2 x float> if the LLVM IR type contains a float at 2850 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the 2851 // case. 2852 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && 2853 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) 2854 return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2); 2855 2856 return llvm::Type::getDoubleTy(getVMContext()); 2857 } 2858 2859 2860 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 2861 /// an 8-byte GPR. This means that we either have a scalar or we are talking 2862 /// about the high or low part of an up-to-16-byte struct. This routine picks 2863 /// the best LLVM IR type to represent this, which may be i64 or may be anything 2864 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 2865 /// etc). 2866 /// 2867 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 2868 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 2869 /// the 8-byte value references. PrefType may be null. 2870 /// 2871 /// SourceTy is the source-level type for the entire argument. SourceOffset is 2872 /// an offset into this that we're processing (which is always either 0 or 8). 2873 /// 2874 llvm::Type *X86_64ABIInfo:: 2875 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 2876 QualType SourceTy, unsigned SourceOffset) const { 2877 // If we're dealing with an un-offset LLVM IR type, then it means that we're 2878 // returning an 8-byte unit starting with it. See if we can safely use it. 2879 if (IROffset == 0) { 2880 // Pointers and int64's always fill the 8-byte unit. 2881 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 2882 IRType->isIntegerTy(64)) 2883 return IRType; 2884 2885 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 2886 // goodness in the source type is just tail padding. This is allowed to 2887 // kick in for struct {double,int} on the int, but not on 2888 // struct{double,int,int} because we wouldn't return the second int. We 2889 // have to do this analysis on the source type because we can't depend on 2890 // unions being lowered a specific way etc. 2891 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 2892 IRType->isIntegerTy(32) || 2893 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 2894 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 2895 cast<llvm::IntegerType>(IRType)->getBitWidth(); 2896 2897 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 2898 SourceOffset*8+64, getContext())) 2899 return IRType; 2900 } 2901 } 2902 2903 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 2904 // If this is a struct, recurse into the field at the specified offset. 2905 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 2906 if (IROffset < SL->getSizeInBytes()) { 2907 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 2908 IROffset -= SL->getElementOffset(FieldIdx); 2909 2910 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 2911 SourceTy, SourceOffset); 2912 } 2913 } 2914 2915 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 2916 llvm::Type *EltTy = ATy->getElementType(); 2917 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 2918 unsigned EltOffset = IROffset/EltSize*EltSize; 2919 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 2920 SourceOffset); 2921 } 2922 2923 // Okay, we don't have any better idea of what to pass, so we pass this in an 2924 // integer register that isn't too big to fit the rest of the struct. 2925 unsigned TySizeInBytes = 2926 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 2927 2928 assert(TySizeInBytes != SourceOffset && "Empty field?"); 2929 2930 // It is always safe to classify this as an integer type up to i64 that 2931 // isn't larger than the structure. 2932 return llvm::IntegerType::get(getVMContext(), 2933 std::min(TySizeInBytes-SourceOffset, 8U)*8); 2934 } 2935 2936 2937 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 2938 /// be used as elements of a two register pair to pass or return, return a 2939 /// first class aggregate to represent them. For example, if the low part of 2940 /// a by-value argument should be passed as i32* and the high part as float, 2941 /// return {i32*, float}. 2942 static llvm::Type * 2943 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 2944 const llvm::DataLayout &TD) { 2945 // In order to correctly satisfy the ABI, we need to the high part to start 2946 // at offset 8. If the high and low parts we inferred are both 4-byte types 2947 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 2948 // the second element at offset 8. Check for this: 2949 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 2950 unsigned HiAlign = TD.getABITypeAlignment(Hi); 2951 unsigned HiStart = llvm::alignTo(LoSize, HiAlign); 2952 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 2953 2954 // To handle this, we have to increase the size of the low part so that the 2955 // second element will start at an 8 byte offset. We can't increase the size 2956 // of the second element because it might make us access off the end of the 2957 // struct. 2958 if (HiStart != 8) { 2959 // There are usually two sorts of types the ABI generation code can produce 2960 // for the low part of a pair that aren't 8 bytes in size: float or 2961 // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and 2962 // NaCl). 2963 // Promote these to a larger type. 2964 if (Lo->isFloatTy()) 2965 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 2966 else { 2967 assert((Lo->isIntegerTy() || Lo->isPointerTy()) 2968 && "Invalid/unknown lo type"); 2969 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 2970 } 2971 } 2972 2973 llvm::StructType *Result = llvm::StructType::get(Lo, Hi, nullptr); 2974 2975 2976 // Verify that the second element is at an 8-byte offset. 2977 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 2978 "Invalid x86-64 argument pair!"); 2979 return Result; 2980 } 2981 2982 ABIArgInfo X86_64ABIInfo:: 2983 classifyReturnType(QualType RetTy) const { 2984 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 2985 // classification algorithm. 2986 X86_64ABIInfo::Class Lo, Hi; 2987 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 2988 2989 // Check some invariants. 2990 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 2991 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 2992 2993 llvm::Type *ResType = nullptr; 2994 switch (Lo) { 2995 case NoClass: 2996 if (Hi == NoClass) 2997 return ABIArgInfo::getIgnore(); 2998 // If the low part is just padding, it takes no register, leave ResType 2999 // null. 3000 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3001 "Unknown missing lo part"); 3002 break; 3003 3004 case SSEUp: 3005 case X87Up: 3006 llvm_unreachable("Invalid classification for lo word."); 3007 3008 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 3009 // hidden argument. 3010 case Memory: 3011 return getIndirectReturnResult(RetTy); 3012 3013 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 3014 // available register of the sequence %rax, %rdx is used. 3015 case Integer: 3016 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3017 3018 // If we have a sign or zero extended integer, make sure to return Extend 3019 // so that the parameter gets the right LLVM IR attributes. 3020 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3021 // Treat an enum type as its underlying type. 3022 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3023 RetTy = EnumTy->getDecl()->getIntegerType(); 3024 3025 if (RetTy->isIntegralOrEnumerationType() && 3026 RetTy->isPromotableIntegerType()) 3027 return ABIArgInfo::getExtend(); 3028 } 3029 break; 3030 3031 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 3032 // available SSE register of the sequence %xmm0, %xmm1 is used. 3033 case SSE: 3034 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3035 break; 3036 3037 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 3038 // returned on the X87 stack in %st0 as 80-bit x87 number. 3039 case X87: 3040 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 3041 break; 3042 3043 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 3044 // part of the value is returned in %st0 and the imaginary part in 3045 // %st1. 3046 case ComplexX87: 3047 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 3048 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 3049 llvm::Type::getX86_FP80Ty(getVMContext()), 3050 nullptr); 3051 break; 3052 } 3053 3054 llvm::Type *HighPart = nullptr; 3055 switch (Hi) { 3056 // Memory was handled previously and X87 should 3057 // never occur as a hi class. 3058 case Memory: 3059 case X87: 3060 llvm_unreachable("Invalid classification for hi word."); 3061 3062 case ComplexX87: // Previously handled. 3063 case NoClass: 3064 break; 3065 3066 case Integer: 3067 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3068 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3069 return ABIArgInfo::getDirect(HighPart, 8); 3070 break; 3071 case SSE: 3072 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3073 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3074 return ABIArgInfo::getDirect(HighPart, 8); 3075 break; 3076 3077 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 3078 // is passed in the next available eightbyte chunk if the last used 3079 // vector register. 3080 // 3081 // SSEUP should always be preceded by SSE, just widen. 3082 case SSEUp: 3083 assert(Lo == SSE && "Unexpected SSEUp classification."); 3084 ResType = GetByteVectorType(RetTy); 3085 break; 3086 3087 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 3088 // returned together with the previous X87 value in %st0. 3089 case X87Up: 3090 // If X87Up is preceded by X87, we don't need to do 3091 // anything. However, in some cases with unions it may not be 3092 // preceded by X87. In such situations we follow gcc and pass the 3093 // extra bits in an SSE reg. 3094 if (Lo != X87) { 3095 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3096 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3097 return ABIArgInfo::getDirect(HighPart, 8); 3098 } 3099 break; 3100 } 3101 3102 // If a high part was specified, merge it together with the low part. It is 3103 // known to pass in the high eightbyte of the result. We do this by forming a 3104 // first class struct aggregate with the high and low part: {low, high} 3105 if (HighPart) 3106 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3107 3108 return ABIArgInfo::getDirect(ResType); 3109 } 3110 3111 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 3112 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 3113 bool isNamedArg) 3114 const 3115 { 3116 Ty = useFirstFieldIfTransparentUnion(Ty); 3117 3118 X86_64ABIInfo::Class Lo, Hi; 3119 classify(Ty, 0, Lo, Hi, isNamedArg); 3120 3121 // Check some invariants. 3122 // FIXME: Enforce these by construction. 3123 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3124 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3125 3126 neededInt = 0; 3127 neededSSE = 0; 3128 llvm::Type *ResType = nullptr; 3129 switch (Lo) { 3130 case NoClass: 3131 if (Hi == NoClass) 3132 return ABIArgInfo::getIgnore(); 3133 // If the low part is just padding, it takes no register, leave ResType 3134 // null. 3135 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3136 "Unknown missing lo part"); 3137 break; 3138 3139 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 3140 // on the stack. 3141 case Memory: 3142 3143 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 3144 // COMPLEX_X87, it is passed in memory. 3145 case X87: 3146 case ComplexX87: 3147 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 3148 ++neededInt; 3149 return getIndirectResult(Ty, freeIntRegs); 3150 3151 case SSEUp: 3152 case X87Up: 3153 llvm_unreachable("Invalid classification for lo word."); 3154 3155 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 3156 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 3157 // and %r9 is used. 3158 case Integer: 3159 ++neededInt; 3160 3161 // Pick an 8-byte type based on the preferred type. 3162 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 3163 3164 // If we have a sign or zero extended integer, make sure to return Extend 3165 // so that the parameter gets the right LLVM IR attributes. 3166 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3167 // Treat an enum type as its underlying type. 3168 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3169 Ty = EnumTy->getDecl()->getIntegerType(); 3170 3171 if (Ty->isIntegralOrEnumerationType() && 3172 Ty->isPromotableIntegerType()) 3173 return ABIArgInfo::getExtend(); 3174 } 3175 3176 break; 3177 3178 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 3179 // available SSE register is used, the registers are taken in the 3180 // order from %xmm0 to %xmm7. 3181 case SSE: { 3182 llvm::Type *IRType = CGT.ConvertType(Ty); 3183 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 3184 ++neededSSE; 3185 break; 3186 } 3187 } 3188 3189 llvm::Type *HighPart = nullptr; 3190 switch (Hi) { 3191 // Memory was handled previously, ComplexX87 and X87 should 3192 // never occur as hi classes, and X87Up must be preceded by X87, 3193 // which is passed in memory. 3194 case Memory: 3195 case X87: 3196 case ComplexX87: 3197 llvm_unreachable("Invalid classification for hi word."); 3198 3199 case NoClass: break; 3200 3201 case Integer: 3202 ++neededInt; 3203 // Pick an 8-byte type based on the preferred type. 3204 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3205 3206 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3207 return ABIArgInfo::getDirect(HighPart, 8); 3208 break; 3209 3210 // X87Up generally doesn't occur here (long double is passed in 3211 // memory), except in situations involving unions. 3212 case X87Up: 3213 case SSE: 3214 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3215 3216 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3217 return ABIArgInfo::getDirect(HighPart, 8); 3218 3219 ++neededSSE; 3220 break; 3221 3222 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 3223 // eightbyte is passed in the upper half of the last used SSE 3224 // register. This only happens when 128-bit vectors are passed. 3225 case SSEUp: 3226 assert(Lo == SSE && "Unexpected SSEUp classification"); 3227 ResType = GetByteVectorType(Ty); 3228 break; 3229 } 3230 3231 // If a high part was specified, merge it together with the low part. It is 3232 // known to pass in the high eightbyte of the result. We do this by forming a 3233 // first class struct aggregate with the high and low part: {low, high} 3234 if (HighPart) 3235 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3236 3237 return ABIArgInfo::getDirect(ResType); 3238 } 3239 3240 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3241 3242 if (!getCXXABI().classifyReturnType(FI)) 3243 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3244 3245 // Keep track of the number of assigned registers. 3246 unsigned freeIntRegs = 6, freeSSERegs = 8; 3247 3248 // If the return value is indirect, then the hidden argument is consuming one 3249 // integer register. 3250 if (FI.getReturnInfo().isIndirect()) 3251 --freeIntRegs; 3252 3253 // The chain argument effectively gives us another free register. 3254 if (FI.isChainCall()) 3255 ++freeIntRegs; 3256 3257 unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 3258 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 3259 // get assigned (in left-to-right order) for passing as follows... 3260 unsigned ArgNo = 0; 3261 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3262 it != ie; ++it, ++ArgNo) { 3263 bool IsNamedArg = ArgNo < NumRequiredArgs; 3264 3265 unsigned neededInt, neededSSE; 3266 it->info = classifyArgumentType(it->type, freeIntRegs, neededInt, 3267 neededSSE, IsNamedArg); 3268 3269 // AMD64-ABI 3.2.3p3: If there are no registers available for any 3270 // eightbyte of an argument, the whole argument is passed on the 3271 // stack. If registers have already been assigned for some 3272 // eightbytes of such an argument, the assignments get reverted. 3273 if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) { 3274 freeIntRegs -= neededInt; 3275 freeSSERegs -= neededSSE; 3276 } else { 3277 it->info = getIndirectResult(it->type, freeIntRegs); 3278 } 3279 } 3280 } 3281 3282 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, 3283 Address VAListAddr, QualType Ty) { 3284 Address overflow_arg_area_p = CGF.Builder.CreateStructGEP( 3285 VAListAddr, 2, CharUnits::fromQuantity(8), "overflow_arg_area_p"); 3286 llvm::Value *overflow_arg_area = 3287 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 3288 3289 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 3290 // byte boundary if alignment needed by type exceeds 8 byte boundary. 3291 // It isn't stated explicitly in the standard, but in practice we use 3292 // alignment greater than 16 where necessary. 3293 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 3294 if (Align > CharUnits::fromQuantity(8)) { 3295 overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, 3296 Align); 3297 } 3298 3299 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 3300 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3301 llvm::Value *Res = 3302 CGF.Builder.CreateBitCast(overflow_arg_area, 3303 llvm::PointerType::getUnqual(LTy)); 3304 3305 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 3306 // l->overflow_arg_area + sizeof(type). 3307 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 3308 // an 8 byte boundary. 3309 3310 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 3311 llvm::Value *Offset = 3312 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 3313 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 3314 "overflow_arg_area.next"); 3315 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 3316 3317 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 3318 return Address(Res, Align); 3319 } 3320 3321 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3322 QualType Ty) const { 3323 // Assume that va_list type is correct; should be pointer to LLVM type: 3324 // struct { 3325 // i32 gp_offset; 3326 // i32 fp_offset; 3327 // i8* overflow_arg_area; 3328 // i8* reg_save_area; 3329 // }; 3330 unsigned neededInt, neededSSE; 3331 3332 Ty = getContext().getCanonicalType(Ty); 3333 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 3334 /*isNamedArg*/false); 3335 3336 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 3337 // in the registers. If not go to step 7. 3338 if (!neededInt && !neededSSE) 3339 return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3340 3341 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 3342 // general purpose registers needed to pass type and num_fp to hold 3343 // the number of floating point registers needed. 3344 3345 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 3346 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 3347 // l->fp_offset > 304 - num_fp * 16 go to step 7. 3348 // 3349 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 3350 // register save space). 3351 3352 llvm::Value *InRegs = nullptr; 3353 Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); 3354 llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; 3355 if (neededInt) { 3356 gp_offset_p = 3357 CGF.Builder.CreateStructGEP(VAListAddr, 0, CharUnits::Zero(), 3358 "gp_offset_p"); 3359 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 3360 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 3361 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 3362 } 3363 3364 if (neededSSE) { 3365 fp_offset_p = 3366 CGF.Builder.CreateStructGEP(VAListAddr, 1, CharUnits::fromQuantity(4), 3367 "fp_offset_p"); 3368 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 3369 llvm::Value *FitsInFP = 3370 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 3371 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 3372 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 3373 } 3374 3375 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 3376 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 3377 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 3378 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 3379 3380 // Emit code to load the value if it was passed in registers. 3381 3382 CGF.EmitBlock(InRegBlock); 3383 3384 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 3385 // an offset of l->gp_offset and/or l->fp_offset. This may require 3386 // copying to a temporary location in case the parameter is passed 3387 // in different register classes or requires an alignment greater 3388 // than 8 for general purpose registers and 16 for XMM registers. 3389 // 3390 // FIXME: This really results in shameful code when we end up needing to 3391 // collect arguments from different places; often what should result in a 3392 // simple assembling of a structure from scattered addresses has many more 3393 // loads than necessary. Can we clean this up? 3394 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3395 llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( 3396 CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(16)), 3397 "reg_save_area"); 3398 3399 Address RegAddr = Address::invalid(); 3400 if (neededInt && neededSSE) { 3401 // FIXME: Cleanup. 3402 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 3403 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 3404 Address Tmp = CGF.CreateMemTemp(Ty); 3405 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3406 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 3407 llvm::Type *TyLo = ST->getElementType(0); 3408 llvm::Type *TyHi = ST->getElementType(1); 3409 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 3410 "Unexpected ABI info for mixed regs"); 3411 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 3412 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 3413 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset); 3414 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset); 3415 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 3416 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 3417 3418 // Copy the first element. 3419 llvm::Value *V = 3420 CGF.Builder.CreateDefaultAlignedLoad( 3421 CGF.Builder.CreateBitCast(RegLoAddr, PTyLo)); 3422 CGF.Builder.CreateStore(V, 3423 CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero())); 3424 3425 // Copy the second element. 3426 V = CGF.Builder.CreateDefaultAlignedLoad( 3427 CGF.Builder.CreateBitCast(RegHiAddr, PTyHi)); 3428 CharUnits Offset = CharUnits::fromQuantity( 3429 getDataLayout().getStructLayout(ST)->getElementOffset(1)); 3430 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1, Offset)); 3431 3432 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3433 } else if (neededInt) { 3434 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset), 3435 CharUnits::fromQuantity(8)); 3436 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3437 3438 // Copy to a temporary if necessary to ensure the appropriate alignment. 3439 std::pair<CharUnits, CharUnits> SizeAlign = 3440 getContext().getTypeInfoInChars(Ty); 3441 uint64_t TySize = SizeAlign.first.getQuantity(); 3442 CharUnits TyAlign = SizeAlign.second; 3443 3444 // Copy into a temporary if the type is more aligned than the 3445 // register save area. 3446 if (TyAlign.getQuantity() > 8) { 3447 Address Tmp = CGF.CreateMemTemp(Ty); 3448 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); 3449 RegAddr = Tmp; 3450 } 3451 3452 } else if (neededSSE == 1) { 3453 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3454 CharUnits::fromQuantity(16)); 3455 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3456 } else { 3457 assert(neededSSE == 2 && "Invalid number of needed registers!"); 3458 // SSE registers are spaced 16 bytes apart in the register save 3459 // area, we need to collect the two eightbytes together. 3460 // The ABI isn't explicit about this, but it seems reasonable 3461 // to assume that the slots are 16-byte aligned, since the stack is 3462 // naturally 16-byte aligned and the prologue is expected to store 3463 // all the SSE registers to the RSA. 3464 Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3465 CharUnits::fromQuantity(16)); 3466 Address RegAddrHi = 3467 CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, 3468 CharUnits::fromQuantity(16)); 3469 llvm::Type *DoubleTy = CGF.DoubleTy; 3470 llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, nullptr); 3471 llvm::Value *V; 3472 Address Tmp = CGF.CreateMemTemp(Ty); 3473 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3474 V = CGF.Builder.CreateLoad( 3475 CGF.Builder.CreateElementBitCast(RegAddrLo, DoubleTy)); 3476 CGF.Builder.CreateStore(V, 3477 CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero())); 3478 V = CGF.Builder.CreateLoad( 3479 CGF.Builder.CreateElementBitCast(RegAddrHi, DoubleTy)); 3480 CGF.Builder.CreateStore(V, 3481 CGF.Builder.CreateStructGEP(Tmp, 1, CharUnits::fromQuantity(8))); 3482 3483 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3484 } 3485 3486 // AMD64-ABI 3.5.7p5: Step 5. Set: 3487 // l->gp_offset = l->gp_offset + num_gp * 8 3488 // l->fp_offset = l->fp_offset + num_fp * 16. 3489 if (neededInt) { 3490 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 3491 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 3492 gp_offset_p); 3493 } 3494 if (neededSSE) { 3495 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 3496 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 3497 fp_offset_p); 3498 } 3499 CGF.EmitBranch(ContBlock); 3500 3501 // Emit code to load the value if it was passed in memory. 3502 3503 CGF.EmitBlock(InMemBlock); 3504 Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3505 3506 // Return the appropriate result. 3507 3508 CGF.EmitBlock(ContBlock); 3509 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, 3510 "vaarg.addr"); 3511 return ResAddr; 3512 } 3513 3514 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 3515 QualType Ty) const { 3516 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 3517 CGF.getContext().getTypeInfoInChars(Ty), 3518 CharUnits::fromQuantity(8), 3519 /*allowHigherAlign*/ false); 3520 } 3521 3522 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 3523 bool IsReturnType) const { 3524 3525 if (Ty->isVoidType()) 3526 return ABIArgInfo::getIgnore(); 3527 3528 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3529 Ty = EnumTy->getDecl()->getIntegerType(); 3530 3531 TypeInfo Info = getContext().getTypeInfo(Ty); 3532 uint64_t Width = Info.Width; 3533 CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); 3534 3535 const RecordType *RT = Ty->getAs<RecordType>(); 3536 if (RT) { 3537 if (!IsReturnType) { 3538 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 3539 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 3540 } 3541 3542 if (RT->getDecl()->hasFlexibleArrayMember()) 3543 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 3544 3545 } 3546 3547 // vectorcall adds the concept of a homogenous vector aggregate, similar to 3548 // other targets. 3549 const Type *Base = nullptr; 3550 uint64_t NumElts = 0; 3551 if (FreeSSERegs && isHomogeneousAggregate(Ty, Base, NumElts)) { 3552 if (FreeSSERegs >= NumElts) { 3553 FreeSSERegs -= NumElts; 3554 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 3555 return ABIArgInfo::getDirect(); 3556 return ABIArgInfo::getExpand(); 3557 } 3558 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3559 } 3560 3561 3562 if (Ty->isMemberPointerType()) { 3563 // If the member pointer is represented by an LLVM int or ptr, pass it 3564 // directly. 3565 llvm::Type *LLTy = CGT.ConvertType(Ty); 3566 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 3567 return ABIArgInfo::getDirect(); 3568 } 3569 3570 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { 3571 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 3572 // not 1, 2, 4, or 8 bytes, must be passed by reference." 3573 if (Width > 64 || !llvm::isPowerOf2_64(Width)) 3574 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 3575 3576 // Otherwise, coerce it to a small integer. 3577 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 3578 } 3579 3580 // Bool type is always extended to the ABI, other builtin types are not 3581 // extended. 3582 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 3583 if (BT && BT->getKind() == BuiltinType::Bool) 3584 return ABIArgInfo::getExtend(); 3585 3586 // Mingw64 GCC uses the old 80 bit extended precision floating point unit. It 3587 // passes them indirectly through memory. 3588 if (IsMingw64 && BT && BT->getKind() == BuiltinType::LongDouble) { 3589 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 3590 if (LDF == &llvm::APFloat::x87DoubleExtended) 3591 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3592 } 3593 3594 return ABIArgInfo::getDirect(); 3595 } 3596 3597 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3598 bool IsVectorCall = 3599 FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall; 3600 3601 // We can use up to 4 SSE return registers with vectorcall. 3602 unsigned FreeSSERegs = IsVectorCall ? 4 : 0; 3603 if (!getCXXABI().classifyReturnType(FI)) 3604 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true); 3605 3606 // We can use up to 6 SSE register parameters with vectorcall. 3607 FreeSSERegs = IsVectorCall ? 6 : 0; 3608 for (auto &I : FI.arguments()) 3609 I.info = classify(I.type, FreeSSERegs, false); 3610 } 3611 3612 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3613 QualType Ty) const { 3614 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 3615 CGF.getContext().getTypeInfoInChars(Ty), 3616 CharUnits::fromQuantity(8), 3617 /*allowHigherAlign*/ false); 3618 } 3619 3620 // PowerPC-32 3621 namespace { 3622 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. 3623 class PPC32_SVR4_ABIInfo : public DefaultABIInfo { 3624 bool IsSoftFloatABI; 3625 public: 3626 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI) 3627 : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI) {} 3628 3629 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3630 QualType Ty) const override; 3631 }; 3632 3633 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { 3634 public: 3635 PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI) 3636 : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT, SoftFloatABI)) {} 3637 3638 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 3639 // This is recovered from gcc output. 3640 return 1; // r1 is the dedicated stack pointer 3641 } 3642 3643 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3644 llvm::Value *Address) const override; 3645 }; 3646 3647 } 3648 3649 // TODO: this implementation is now likely redundant with 3650 // DefaultABIInfo::EmitVAArg. 3651 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList, 3652 QualType Ty) const { 3653 const unsigned OverflowLimit = 8; 3654 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 3655 // TODO: Implement this. For now ignore. 3656 (void)CTy; 3657 return Address::invalid(); // FIXME? 3658 } 3659 3660 // struct __va_list_tag { 3661 // unsigned char gpr; 3662 // unsigned char fpr; 3663 // unsigned short reserved; 3664 // void *overflow_arg_area; 3665 // void *reg_save_area; 3666 // }; 3667 3668 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; 3669 bool isInt = 3670 Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType(); 3671 bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64; 3672 3673 // All aggregates are passed indirectly? That doesn't seem consistent 3674 // with the argument-lowering code. 3675 bool isIndirect = Ty->isAggregateType(); 3676 3677 CGBuilderTy &Builder = CGF.Builder; 3678 3679 // The calling convention either uses 1-2 GPRs or 1 FPR. 3680 Address NumRegsAddr = Address::invalid(); 3681 if (isInt || IsSoftFloatABI) { 3682 NumRegsAddr = Builder.CreateStructGEP(VAList, 0, CharUnits::Zero(), "gpr"); 3683 } else { 3684 NumRegsAddr = Builder.CreateStructGEP(VAList, 1, CharUnits::One(), "fpr"); 3685 } 3686 3687 llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs"); 3688 3689 // "Align" the register count when TY is i64. 3690 if (isI64 || (isF64 && IsSoftFloatABI)) { 3691 NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1)); 3692 NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U)); 3693 } 3694 3695 llvm::Value *CC = 3696 Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond"); 3697 3698 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); 3699 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); 3700 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 3701 3702 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); 3703 3704 llvm::Type *DirectTy = CGF.ConvertType(Ty); 3705 if (isIndirect) DirectTy = DirectTy->getPointerTo(0); 3706 3707 // Case 1: consume registers. 3708 Address RegAddr = Address::invalid(); 3709 { 3710 CGF.EmitBlock(UsingRegs); 3711 3712 Address RegSaveAreaPtr = 3713 Builder.CreateStructGEP(VAList, 4, CharUnits::fromQuantity(8)); 3714 RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr), 3715 CharUnits::fromQuantity(8)); 3716 assert(RegAddr.getElementType() == CGF.Int8Ty); 3717 3718 // Floating-point registers start after the general-purpose registers. 3719 if (!(isInt || IsSoftFloatABI)) { 3720 RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr, 3721 CharUnits::fromQuantity(32)); 3722 } 3723 3724 // Get the address of the saved value by scaling the number of 3725 // registers we've used by the number of 3726 CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8); 3727 llvm::Value *RegOffset = 3728 Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity())); 3729 RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty, 3730 RegAddr.getPointer(), RegOffset), 3731 RegAddr.getAlignment().alignmentOfArrayElement(RegSize)); 3732 RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy); 3733 3734 // Increase the used-register count. 3735 NumRegs = 3736 Builder.CreateAdd(NumRegs, 3737 Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1)); 3738 Builder.CreateStore(NumRegs, NumRegsAddr); 3739 3740 CGF.EmitBranch(Cont); 3741 } 3742 3743 // Case 2: consume space in the overflow area. 3744 Address MemAddr = Address::invalid(); 3745 { 3746 CGF.EmitBlock(UsingOverflow); 3747 3748 Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr); 3749 3750 // Everything in the overflow area is rounded up to a size of at least 4. 3751 CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4); 3752 3753 CharUnits Size; 3754 if (!isIndirect) { 3755 auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty); 3756 Size = TypeInfo.first.alignTo(OverflowAreaAlign); 3757 } else { 3758 Size = CGF.getPointerSize(); 3759 } 3760 3761 Address OverflowAreaAddr = 3762 Builder.CreateStructGEP(VAList, 3, CharUnits::fromQuantity(4)); 3763 Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), 3764 OverflowAreaAlign); 3765 // Round up address of argument to alignment 3766 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 3767 if (Align > OverflowAreaAlign) { 3768 llvm::Value *Ptr = OverflowArea.getPointer(); 3769 OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align), 3770 Align); 3771 } 3772 3773 MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy); 3774 3775 // Increase the overflow area. 3776 OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size); 3777 Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr); 3778 CGF.EmitBranch(Cont); 3779 } 3780 3781 CGF.EmitBlock(Cont); 3782 3783 // Merge the cases with a phi. 3784 Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow, 3785 "vaarg.addr"); 3786 3787 // Load the pointer if the argument was passed indirectly. 3788 if (isIndirect) { 3789 Result = Address(Builder.CreateLoad(Result, "aggr"), 3790 getContext().getTypeAlignInChars(Ty)); 3791 } 3792 3793 return Result; 3794 } 3795 3796 bool 3797 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3798 llvm::Value *Address) const { 3799 // This is calculated from the LLVM and GCC tables and verified 3800 // against gcc output. AFAIK all ABIs use the same encoding. 3801 3802 CodeGen::CGBuilderTy &Builder = CGF.Builder; 3803 3804 llvm::IntegerType *i8 = CGF.Int8Ty; 3805 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 3806 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 3807 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 3808 3809 // 0-31: r0-31, the 4-byte general-purpose registers 3810 AssignToArrayRange(Builder, Address, Four8, 0, 31); 3811 3812 // 32-63: fp0-31, the 8-byte floating-point registers 3813 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 3814 3815 // 64-76 are various 4-byte special-purpose registers: 3816 // 64: mq 3817 // 65: lr 3818 // 66: ctr 3819 // 67: ap 3820 // 68-75 cr0-7 3821 // 76: xer 3822 AssignToArrayRange(Builder, Address, Four8, 64, 76); 3823 3824 // 77-108: v0-31, the 16-byte vector registers 3825 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 3826 3827 // 109: vrsave 3828 // 110: vscr 3829 // 111: spe_acc 3830 // 112: spefscr 3831 // 113: sfp 3832 AssignToArrayRange(Builder, Address, Four8, 109, 113); 3833 3834 return false; 3835 } 3836 3837 // PowerPC-64 3838 3839 namespace { 3840 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 3841 class PPC64_SVR4_ABIInfo : public ABIInfo { 3842 public: 3843 enum ABIKind { 3844 ELFv1 = 0, 3845 ELFv2 3846 }; 3847 3848 private: 3849 static const unsigned GPRBits = 64; 3850 ABIKind Kind; 3851 bool HasQPX; 3852 3853 // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and 3854 // will be passed in a QPX register. 3855 bool IsQPXVectorTy(const Type *Ty) const { 3856 if (!HasQPX) 3857 return false; 3858 3859 if (const VectorType *VT = Ty->getAs<VectorType>()) { 3860 unsigned NumElements = VT->getNumElements(); 3861 if (NumElements == 1) 3862 return false; 3863 3864 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) { 3865 if (getContext().getTypeSize(Ty) <= 256) 3866 return true; 3867 } else if (VT->getElementType()-> 3868 isSpecificBuiltinType(BuiltinType::Float)) { 3869 if (getContext().getTypeSize(Ty) <= 128) 3870 return true; 3871 } 3872 } 3873 3874 return false; 3875 } 3876 3877 bool IsQPXVectorTy(QualType Ty) const { 3878 return IsQPXVectorTy(Ty.getTypePtr()); 3879 } 3880 3881 public: 3882 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX) 3883 : ABIInfo(CGT), Kind(Kind), HasQPX(HasQPX) {} 3884 3885 bool isPromotableTypeForABI(QualType Ty) const; 3886 CharUnits getParamTypeAlignment(QualType Ty) const; 3887 3888 ABIArgInfo classifyReturnType(QualType RetTy) const; 3889 ABIArgInfo classifyArgumentType(QualType Ty) const; 3890 3891 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 3892 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 3893 uint64_t Members) const override; 3894 3895 // TODO: We can add more logic to computeInfo to improve performance. 3896 // Example: For aggregate arguments that fit in a register, we could 3897 // use getDirectInReg (as is done below for structs containing a single 3898 // floating-point value) to avoid pushing them to memory on function 3899 // entry. This would require changing the logic in PPCISelLowering 3900 // when lowering the parameters in the caller and args in the callee. 3901 void computeInfo(CGFunctionInfo &FI) const override { 3902 if (!getCXXABI().classifyReturnType(FI)) 3903 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3904 for (auto &I : FI.arguments()) { 3905 // We rely on the default argument classification for the most part. 3906 // One exception: An aggregate containing a single floating-point 3907 // or vector item must be passed in a register if one is available. 3908 const Type *T = isSingleElementStruct(I.type, getContext()); 3909 if (T) { 3910 const BuiltinType *BT = T->getAs<BuiltinType>(); 3911 if (IsQPXVectorTy(T) || 3912 (T->isVectorType() && getContext().getTypeSize(T) == 128) || 3913 (BT && BT->isFloatingPoint())) { 3914 QualType QT(T, 0); 3915 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 3916 continue; 3917 } 3918 } 3919 I.info = classifyArgumentType(I.type); 3920 } 3921 } 3922 3923 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3924 QualType Ty) const override; 3925 }; 3926 3927 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 3928 3929 public: 3930 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 3931 PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX) 3932 : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX)) {} 3933 3934 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 3935 // This is recovered from gcc output. 3936 return 1; // r1 is the dedicated stack pointer 3937 } 3938 3939 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3940 llvm::Value *Address) const override; 3941 }; 3942 3943 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 3944 public: 3945 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 3946 3947 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 3948 // This is recovered from gcc output. 3949 return 1; // r1 is the dedicated stack pointer 3950 } 3951 3952 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3953 llvm::Value *Address) const override; 3954 }; 3955 3956 } 3957 3958 // Return true if the ABI requires Ty to be passed sign- or zero- 3959 // extended to 64 bits. 3960 bool 3961 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 3962 // Treat an enum type as its underlying type. 3963 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3964 Ty = EnumTy->getDecl()->getIntegerType(); 3965 3966 // Promotable integer types are required to be promoted by the ABI. 3967 if (Ty->isPromotableIntegerType()) 3968 return true; 3969 3970 // In addition to the usual promotable integer types, we also need to 3971 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 3972 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 3973 switch (BT->getKind()) { 3974 case BuiltinType::Int: 3975 case BuiltinType::UInt: 3976 return true; 3977 default: 3978 break; 3979 } 3980 3981 return false; 3982 } 3983 3984 /// isAlignedParamType - Determine whether a type requires 16-byte or 3985 /// higher alignment in the parameter area. Always returns at least 8. 3986 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 3987 // Complex types are passed just like their elements. 3988 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 3989 Ty = CTy->getElementType(); 3990 3991 // Only vector types of size 16 bytes need alignment (larger types are 3992 // passed via reference, smaller types are not aligned). 3993 if (IsQPXVectorTy(Ty)) { 3994 if (getContext().getTypeSize(Ty) > 128) 3995 return CharUnits::fromQuantity(32); 3996 3997 return CharUnits::fromQuantity(16); 3998 } else if (Ty->isVectorType()) { 3999 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8); 4000 } 4001 4002 // For single-element float/vector structs, we consider the whole type 4003 // to have the same alignment requirements as its single element. 4004 const Type *AlignAsType = nullptr; 4005 const Type *EltType = isSingleElementStruct(Ty, getContext()); 4006 if (EltType) { 4007 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4008 if (IsQPXVectorTy(EltType) || (EltType->isVectorType() && 4009 getContext().getTypeSize(EltType) == 128) || 4010 (BT && BT->isFloatingPoint())) 4011 AlignAsType = EltType; 4012 } 4013 4014 // Likewise for ELFv2 homogeneous aggregates. 4015 const Type *Base = nullptr; 4016 uint64_t Members = 0; 4017 if (!AlignAsType && Kind == ELFv2 && 4018 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 4019 AlignAsType = Base; 4020 4021 // With special case aggregates, only vector base types need alignment. 4022 if (AlignAsType && IsQPXVectorTy(AlignAsType)) { 4023 if (getContext().getTypeSize(AlignAsType) > 128) 4024 return CharUnits::fromQuantity(32); 4025 4026 return CharUnits::fromQuantity(16); 4027 } else if (AlignAsType) { 4028 return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8); 4029 } 4030 4031 // Otherwise, we only need alignment for any aggregate type that 4032 // has an alignment requirement of >= 16 bytes. 4033 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { 4034 if (HasQPX && getContext().getTypeAlign(Ty) >= 256) 4035 return CharUnits::fromQuantity(32); 4036 return CharUnits::fromQuantity(16); 4037 } 4038 4039 return CharUnits::fromQuantity(8); 4040 } 4041 4042 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 4043 /// aggregate. Base is set to the base element type, and Members is set 4044 /// to the number of base elements. 4045 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 4046 uint64_t &Members) const { 4047 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 4048 uint64_t NElements = AT->getSize().getZExtValue(); 4049 if (NElements == 0) 4050 return false; 4051 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 4052 return false; 4053 Members *= NElements; 4054 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 4055 const RecordDecl *RD = RT->getDecl(); 4056 if (RD->hasFlexibleArrayMember()) 4057 return false; 4058 4059 Members = 0; 4060 4061 // If this is a C++ record, check the bases first. 4062 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 4063 for (const auto &I : CXXRD->bases()) { 4064 // Ignore empty records. 4065 if (isEmptyRecord(getContext(), I.getType(), true)) 4066 continue; 4067 4068 uint64_t FldMembers; 4069 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) 4070 return false; 4071 4072 Members += FldMembers; 4073 } 4074 } 4075 4076 for (const auto *FD : RD->fields()) { 4077 // Ignore (non-zero arrays of) empty records. 4078 QualType FT = FD->getType(); 4079 while (const ConstantArrayType *AT = 4080 getContext().getAsConstantArrayType(FT)) { 4081 if (AT->getSize().getZExtValue() == 0) 4082 return false; 4083 FT = AT->getElementType(); 4084 } 4085 if (isEmptyRecord(getContext(), FT, true)) 4086 continue; 4087 4088 // For compatibility with GCC, ignore empty bitfields in C++ mode. 4089 if (getContext().getLangOpts().CPlusPlus && 4090 FD->isBitField() && FD->getBitWidthValue(getContext()) == 0) 4091 continue; 4092 4093 uint64_t FldMembers; 4094 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 4095 return false; 4096 4097 Members = (RD->isUnion() ? 4098 std::max(Members, FldMembers) : Members + FldMembers); 4099 } 4100 4101 if (!Base) 4102 return false; 4103 4104 // Ensure there is no padding. 4105 if (getContext().getTypeSize(Base) * Members != 4106 getContext().getTypeSize(Ty)) 4107 return false; 4108 } else { 4109 Members = 1; 4110 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 4111 Members = 2; 4112 Ty = CT->getElementType(); 4113 } 4114 4115 // Most ABIs only support float, double, and some vector type widths. 4116 if (!isHomogeneousAggregateBaseType(Ty)) 4117 return false; 4118 4119 // The base type must be the same for all members. Types that 4120 // agree in both total size and mode (float vs. vector) are 4121 // treated as being equivalent here. 4122 const Type *TyPtr = Ty.getTypePtr(); 4123 if (!Base) 4124 Base = TyPtr; 4125 4126 if (Base->isVectorType() != TyPtr->isVectorType() || 4127 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 4128 return false; 4129 } 4130 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); 4131 } 4132 4133 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 4134 // Homogeneous aggregates for ELFv2 must have base types of float, 4135 // double, long double, or 128-bit vectors. 4136 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4137 if (BT->getKind() == BuiltinType::Float || 4138 BT->getKind() == BuiltinType::Double || 4139 BT->getKind() == BuiltinType::LongDouble) 4140 return true; 4141 } 4142 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4143 if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty)) 4144 return true; 4145 } 4146 return false; 4147 } 4148 4149 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( 4150 const Type *Base, uint64_t Members) const { 4151 // Vector types require one register, floating point types require one 4152 // or two registers depending on their size. 4153 uint32_t NumRegs = 4154 Base->isVectorType() ? 1 : (getContext().getTypeSize(Base) + 63) / 64; 4155 4156 // Homogeneous Aggregates may occupy at most 8 registers. 4157 return Members * NumRegs <= 8; 4158 } 4159 4160 ABIArgInfo 4161 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 4162 Ty = useFirstFieldIfTransparentUnion(Ty); 4163 4164 if (Ty->isAnyComplexType()) 4165 return ABIArgInfo::getDirect(); 4166 4167 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 4168 // or via reference (larger than 16 bytes). 4169 if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) { 4170 uint64_t Size = getContext().getTypeSize(Ty); 4171 if (Size > 128) 4172 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4173 else if (Size < 128) { 4174 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 4175 return ABIArgInfo::getDirect(CoerceTy); 4176 } 4177 } 4178 4179 if (isAggregateTypeForABI(Ty)) { 4180 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 4181 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4182 4183 uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity(); 4184 uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 4185 4186 // ELFv2 homogeneous aggregates are passed as array types. 4187 const Type *Base = nullptr; 4188 uint64_t Members = 0; 4189 if (Kind == ELFv2 && 4190 isHomogeneousAggregate(Ty, Base, Members)) { 4191 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 4192 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 4193 return ABIArgInfo::getDirect(CoerceTy); 4194 } 4195 4196 // If an aggregate may end up fully in registers, we do not 4197 // use the ByVal method, but pass the aggregate as array. 4198 // This is usually beneficial since we avoid forcing the 4199 // back-end to store the argument to memory. 4200 uint64_t Bits = getContext().getTypeSize(Ty); 4201 if (Bits > 0 && Bits <= 8 * GPRBits) { 4202 llvm::Type *CoerceTy; 4203 4204 // Types up to 8 bytes are passed as integer type (which will be 4205 // properly aligned in the argument save area doubleword). 4206 if (Bits <= GPRBits) 4207 CoerceTy = 4208 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 4209 // Larger types are passed as arrays, with the base type selected 4210 // according to the required alignment in the save area. 4211 else { 4212 uint64_t RegBits = ABIAlign * 8; 4213 uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits; 4214 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 4215 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 4216 } 4217 4218 return ABIArgInfo::getDirect(CoerceTy); 4219 } 4220 4221 // All other aggregates are passed ByVal. 4222 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 4223 /*ByVal=*/true, 4224 /*Realign=*/TyAlign > ABIAlign); 4225 } 4226 4227 return (isPromotableTypeForABI(Ty) ? 4228 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 4229 } 4230 4231 ABIArgInfo 4232 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 4233 if (RetTy->isVoidType()) 4234 return ABIArgInfo::getIgnore(); 4235 4236 if (RetTy->isAnyComplexType()) 4237 return ABIArgInfo::getDirect(); 4238 4239 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 4240 // or via reference (larger than 16 bytes). 4241 if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) { 4242 uint64_t Size = getContext().getTypeSize(RetTy); 4243 if (Size > 128) 4244 return getNaturalAlignIndirect(RetTy); 4245 else if (Size < 128) { 4246 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 4247 return ABIArgInfo::getDirect(CoerceTy); 4248 } 4249 } 4250 4251 if (isAggregateTypeForABI(RetTy)) { 4252 // ELFv2 homogeneous aggregates are returned as array types. 4253 const Type *Base = nullptr; 4254 uint64_t Members = 0; 4255 if (Kind == ELFv2 && 4256 isHomogeneousAggregate(RetTy, Base, Members)) { 4257 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 4258 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 4259 return ABIArgInfo::getDirect(CoerceTy); 4260 } 4261 4262 // ELFv2 small aggregates are returned in up to two registers. 4263 uint64_t Bits = getContext().getTypeSize(RetTy); 4264 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 4265 if (Bits == 0) 4266 return ABIArgInfo::getIgnore(); 4267 4268 llvm::Type *CoerceTy; 4269 if (Bits > GPRBits) { 4270 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 4271 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy, nullptr); 4272 } else 4273 CoerceTy = 4274 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 4275 return ABIArgInfo::getDirect(CoerceTy); 4276 } 4277 4278 // All other aggregates are returned indirectly. 4279 return getNaturalAlignIndirect(RetTy); 4280 } 4281 4282 return (isPromotableTypeForABI(RetTy) ? 4283 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 4284 } 4285 4286 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 4287 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4288 QualType Ty) const { 4289 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 4290 TypeInfo.second = getParamTypeAlignment(Ty); 4291 4292 CharUnits SlotSize = CharUnits::fromQuantity(8); 4293 4294 // If we have a complex type and the base type is smaller than 8 bytes, 4295 // the ABI calls for the real and imaginary parts to be right-adjusted 4296 // in separate doublewords. However, Clang expects us to produce a 4297 // pointer to a structure with the two parts packed tightly. So generate 4298 // loads of the real and imaginary parts relative to the va_list pointer, 4299 // and store them to a temporary structure. 4300 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4301 CharUnits EltSize = TypeInfo.first / 2; 4302 if (EltSize < SlotSize) { 4303 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, 4304 SlotSize * 2, SlotSize, 4305 SlotSize, /*AllowHigher*/ true); 4306 4307 Address RealAddr = Addr; 4308 Address ImagAddr = RealAddr; 4309 if (CGF.CGM.getDataLayout().isBigEndian()) { 4310 RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, 4311 SlotSize - EltSize); 4312 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr, 4313 2 * SlotSize - EltSize); 4314 } else { 4315 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize); 4316 } 4317 4318 llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType()); 4319 RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy); 4320 ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy); 4321 llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal"); 4322 llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag"); 4323 4324 Address Temp = CGF.CreateMemTemp(Ty, "vacplx"); 4325 CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty), 4326 /*init*/ true); 4327 return Temp; 4328 } 4329 } 4330 4331 // Otherwise, just use the general rule. 4332 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 4333 TypeInfo, SlotSize, /*AllowHigher*/ true); 4334 } 4335 4336 static bool 4337 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4338 llvm::Value *Address) { 4339 // This is calculated from the LLVM and GCC tables and verified 4340 // against gcc output. AFAIK all ABIs use the same encoding. 4341 4342 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4343 4344 llvm::IntegerType *i8 = CGF.Int8Ty; 4345 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4346 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4347 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4348 4349 // 0-31: r0-31, the 8-byte general-purpose registers 4350 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 4351 4352 // 32-63: fp0-31, the 8-byte floating-point registers 4353 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4354 4355 // 64-76 are various 4-byte special-purpose registers: 4356 // 64: mq 4357 // 65: lr 4358 // 66: ctr 4359 // 67: ap 4360 // 68-75 cr0-7 4361 // 76: xer 4362 AssignToArrayRange(Builder, Address, Four8, 64, 76); 4363 4364 // 77-108: v0-31, the 16-byte vector registers 4365 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4366 4367 // 109: vrsave 4368 // 110: vscr 4369 // 111: spe_acc 4370 // 112: spefscr 4371 // 113: sfp 4372 AssignToArrayRange(Builder, Address, Four8, 109, 113); 4373 4374 return false; 4375 } 4376 4377 bool 4378 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 4379 CodeGen::CodeGenFunction &CGF, 4380 llvm::Value *Address) const { 4381 4382 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 4383 } 4384 4385 bool 4386 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4387 llvm::Value *Address) const { 4388 4389 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 4390 } 4391 4392 //===----------------------------------------------------------------------===// 4393 // AArch64 ABI Implementation 4394 //===----------------------------------------------------------------------===// 4395 4396 namespace { 4397 4398 class AArch64ABIInfo : public SwiftABIInfo { 4399 public: 4400 enum ABIKind { 4401 AAPCS = 0, 4402 DarwinPCS 4403 }; 4404 4405 private: 4406 ABIKind Kind; 4407 4408 public: 4409 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) 4410 : SwiftABIInfo(CGT), Kind(Kind) {} 4411 4412 private: 4413 ABIKind getABIKind() const { return Kind; } 4414 bool isDarwinPCS() const { return Kind == DarwinPCS; } 4415 4416 ABIArgInfo classifyReturnType(QualType RetTy) const; 4417 ABIArgInfo classifyArgumentType(QualType RetTy) const; 4418 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4419 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4420 uint64_t Members) const override; 4421 4422 bool isIllegalVectorType(QualType Ty) const; 4423 4424 void computeInfo(CGFunctionInfo &FI) const override { 4425 if (!getCXXABI().classifyReturnType(FI)) 4426 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4427 4428 for (auto &it : FI.arguments()) 4429 it.info = classifyArgumentType(it.type); 4430 } 4431 4432 Address EmitDarwinVAArg(Address VAListAddr, QualType Ty, 4433 CodeGenFunction &CGF) const; 4434 4435 Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 4436 CodeGenFunction &CGF) const; 4437 4438 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4439 QualType Ty) const override { 4440 return isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 4441 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 4442 } 4443 4444 bool shouldPassIndirectlyForSwift(CharUnits totalSize, 4445 ArrayRef<llvm::Type*> scalars, 4446 bool asReturnValue) const override { 4447 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 4448 } 4449 }; 4450 4451 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 4452 public: 4453 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 4454 : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {} 4455 4456 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 4457 return "mov\tfp, fp\t\t; marker for objc_retainAutoreleaseReturnValue"; 4458 } 4459 4460 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4461 return 31; 4462 } 4463 4464 bool doesReturnSlotInterfereWithArgs() const override { return false; } 4465 }; 4466 } 4467 4468 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const { 4469 Ty = useFirstFieldIfTransparentUnion(Ty); 4470 4471 // Handle illegal vector types here. 4472 if (isIllegalVectorType(Ty)) { 4473 uint64_t Size = getContext().getTypeSize(Ty); 4474 // Android promotes <2 x i8> to i16, not i32 4475 if(isAndroid() && (Size <= 16)) { 4476 llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext()); 4477 return ABIArgInfo::getDirect(ResType); 4478 } 4479 if (Size <= 32) { 4480 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 4481 return ABIArgInfo::getDirect(ResType); 4482 } 4483 if (Size == 64) { 4484 llvm::Type *ResType = 4485 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 4486 return ABIArgInfo::getDirect(ResType); 4487 } 4488 if (Size == 128) { 4489 llvm::Type *ResType = 4490 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 4491 return ABIArgInfo::getDirect(ResType); 4492 } 4493 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4494 } 4495 4496 if (!isAggregateTypeForABI(Ty)) { 4497 // Treat an enum type as its underlying type. 4498 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4499 Ty = EnumTy->getDecl()->getIntegerType(); 4500 4501 return (Ty->isPromotableIntegerType() && isDarwinPCS() 4502 ? ABIArgInfo::getExtend() 4503 : ABIArgInfo::getDirect()); 4504 } 4505 4506 // Structures with either a non-trivial destructor or a non-trivial 4507 // copy constructor are always indirect. 4508 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 4509 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 4510 CGCXXABI::RAA_DirectInMemory); 4511 } 4512 4513 // Empty records are always ignored on Darwin, but actually passed in C++ mode 4514 // elsewhere for GNU compatibility. 4515 if (isEmptyRecord(getContext(), Ty, true)) { 4516 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 4517 return ABIArgInfo::getIgnore(); 4518 4519 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 4520 } 4521 4522 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 4523 const Type *Base = nullptr; 4524 uint64_t Members = 0; 4525 if (isHomogeneousAggregate(Ty, Base, Members)) { 4526 return ABIArgInfo::getDirect( 4527 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); 4528 } 4529 4530 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 4531 uint64_t Size = getContext().getTypeSize(Ty); 4532 if (Size <= 128) { 4533 unsigned Alignment = getContext().getTypeAlign(Ty); 4534 Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes 4535 4536 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 4537 // For aggregates with 16-byte alignment, we use i128. 4538 if (Alignment < 128 && Size == 128) { 4539 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 4540 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 4541 } 4542 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 4543 } 4544 4545 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4546 } 4547 4548 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const { 4549 if (RetTy->isVoidType()) 4550 return ABIArgInfo::getIgnore(); 4551 4552 // Large vector types should be returned via memory. 4553 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 4554 return getNaturalAlignIndirect(RetTy); 4555 4556 if (!isAggregateTypeForABI(RetTy)) { 4557 // Treat an enum type as its underlying type. 4558 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 4559 RetTy = EnumTy->getDecl()->getIntegerType(); 4560 4561 return (RetTy->isPromotableIntegerType() && isDarwinPCS() 4562 ? ABIArgInfo::getExtend() 4563 : ABIArgInfo::getDirect()); 4564 } 4565 4566 if (isEmptyRecord(getContext(), RetTy, true)) 4567 return ABIArgInfo::getIgnore(); 4568 4569 const Type *Base = nullptr; 4570 uint64_t Members = 0; 4571 if (isHomogeneousAggregate(RetTy, Base, Members)) 4572 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 4573 return ABIArgInfo::getDirect(); 4574 4575 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 4576 uint64_t Size = getContext().getTypeSize(RetTy); 4577 if (Size <= 128) { 4578 unsigned Alignment = getContext().getTypeAlign(RetTy); 4579 Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes 4580 4581 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 4582 // For aggregates with 16-byte alignment, we use i128. 4583 if (Alignment < 128 && Size == 128) { 4584 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 4585 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 4586 } 4587 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 4588 } 4589 4590 return getNaturalAlignIndirect(RetTy); 4591 } 4592 4593 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 4594 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 4595 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4596 // Check whether VT is legal. 4597 unsigned NumElements = VT->getNumElements(); 4598 uint64_t Size = getContext().getTypeSize(VT); 4599 // NumElements should be power of 2 between 1 and 16. 4600 if ((NumElements & (NumElements - 1)) != 0 || NumElements > 16) 4601 return true; 4602 return Size != 64 && (Size != 128 || NumElements == 1); 4603 } 4604 return false; 4605 } 4606 4607 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 4608 // Homogeneous aggregates for AAPCS64 must have base types of a floating 4609 // point type or a short-vector type. This is the same as the 32-bit ABI, 4610 // but with the difference that any floating-point type is allowed, 4611 // including __fp16. 4612 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4613 if (BT->isFloatingPoint()) 4614 return true; 4615 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 4616 unsigned VecSize = getContext().getTypeSize(VT); 4617 if (VecSize == 64 || VecSize == 128) 4618 return true; 4619 } 4620 return false; 4621 } 4622 4623 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 4624 uint64_t Members) const { 4625 return Members <= 4; 4626 } 4627 4628 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, 4629 QualType Ty, 4630 CodeGenFunction &CGF) const { 4631 ABIArgInfo AI = classifyArgumentType(Ty); 4632 bool IsIndirect = AI.isIndirect(); 4633 4634 llvm::Type *BaseTy = CGF.ConvertType(Ty); 4635 if (IsIndirect) 4636 BaseTy = llvm::PointerType::getUnqual(BaseTy); 4637 else if (AI.getCoerceToType()) 4638 BaseTy = AI.getCoerceToType(); 4639 4640 unsigned NumRegs = 1; 4641 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { 4642 BaseTy = ArrTy->getElementType(); 4643 NumRegs = ArrTy->getNumElements(); 4644 } 4645 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); 4646 4647 // The AArch64 va_list type and handling is specified in the Procedure Call 4648 // Standard, section B.4: 4649 // 4650 // struct { 4651 // void *__stack; 4652 // void *__gr_top; 4653 // void *__vr_top; 4654 // int __gr_offs; 4655 // int __vr_offs; 4656 // }; 4657 4658 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 4659 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 4660 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 4661 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 4662 4663 auto TyInfo = getContext().getTypeInfoInChars(Ty); 4664 CharUnits TyAlign = TyInfo.second; 4665 4666 Address reg_offs_p = Address::invalid(); 4667 llvm::Value *reg_offs = nullptr; 4668 int reg_top_index; 4669 CharUnits reg_top_offset; 4670 int RegSize = IsIndirect ? 8 : TyInfo.first.getQuantity(); 4671 if (!IsFPR) { 4672 // 3 is the field number of __gr_offs 4673 reg_offs_p = 4674 CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24), 4675 "gr_offs_p"); 4676 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 4677 reg_top_index = 1; // field number for __gr_top 4678 reg_top_offset = CharUnits::fromQuantity(8); 4679 RegSize = llvm::alignTo(RegSize, 8); 4680 } else { 4681 // 4 is the field number of __vr_offs. 4682 reg_offs_p = 4683 CGF.Builder.CreateStructGEP(VAListAddr, 4, CharUnits::fromQuantity(28), 4684 "vr_offs_p"); 4685 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 4686 reg_top_index = 2; // field number for __vr_top 4687 reg_top_offset = CharUnits::fromQuantity(16); 4688 RegSize = 16 * NumRegs; 4689 } 4690 4691 //======================================= 4692 // Find out where argument was passed 4693 //======================================= 4694 4695 // If reg_offs >= 0 we're already using the stack for this type of 4696 // argument. We don't want to keep updating reg_offs (in case it overflows, 4697 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 4698 // whatever they get). 4699 llvm::Value *UsingStack = nullptr; 4700 UsingStack = CGF.Builder.CreateICmpSGE( 4701 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 4702 4703 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 4704 4705 // Otherwise, at least some kind of argument could go in these registers, the 4706 // question is whether this particular type is too big. 4707 CGF.EmitBlock(MaybeRegBlock); 4708 4709 // Integer arguments may need to correct register alignment (for example a 4710 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 4711 // align __gr_offs to calculate the potential address. 4712 if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) { 4713 int Align = TyAlign.getQuantity(); 4714 4715 reg_offs = CGF.Builder.CreateAdd( 4716 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 4717 "align_regoffs"); 4718 reg_offs = CGF.Builder.CreateAnd( 4719 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 4720 "aligned_regoffs"); 4721 } 4722 4723 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 4724 // The fact that this is done unconditionally reflects the fact that 4725 // allocating an argument to the stack also uses up all the remaining 4726 // registers of the appropriate kind. 4727 llvm::Value *NewOffset = nullptr; 4728 NewOffset = CGF.Builder.CreateAdd( 4729 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 4730 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 4731 4732 // Now we're in a position to decide whether this argument really was in 4733 // registers or not. 4734 llvm::Value *InRegs = nullptr; 4735 InRegs = CGF.Builder.CreateICmpSLE( 4736 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 4737 4738 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 4739 4740 //======================================= 4741 // Argument was in registers 4742 //======================================= 4743 4744 // Now we emit the code for if the argument was originally passed in 4745 // registers. First start the appropriate block: 4746 CGF.EmitBlock(InRegBlock); 4747 4748 llvm::Value *reg_top = nullptr; 4749 Address reg_top_p = CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, 4750 reg_top_offset, "reg_top_p"); 4751 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 4752 Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs), 4753 CharUnits::fromQuantity(IsFPR ? 16 : 8)); 4754 Address RegAddr = Address::invalid(); 4755 llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty); 4756 4757 if (IsIndirect) { 4758 // If it's been passed indirectly (actually a struct), whatever we find from 4759 // stored registers or on the stack will actually be a struct **. 4760 MemTy = llvm::PointerType::getUnqual(MemTy); 4761 } 4762 4763 const Type *Base = nullptr; 4764 uint64_t NumMembers = 0; 4765 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); 4766 if (IsHFA && NumMembers > 1) { 4767 // Homogeneous aggregates passed in registers will have their elements split 4768 // and stored 16-bytes apart regardless of size (they're notionally in qN, 4769 // qN+1, ...). We reload and store into a temporary local variable 4770 // contiguously. 4771 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 4772 auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0)); 4773 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 4774 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 4775 Address Tmp = CGF.CreateTempAlloca(HFATy, 4776 std::max(TyAlign, BaseTyInfo.second)); 4777 4778 // On big-endian platforms, the value will be right-aligned in its slot. 4779 int Offset = 0; 4780 if (CGF.CGM.getDataLayout().isBigEndian() && 4781 BaseTyInfo.first.getQuantity() < 16) 4782 Offset = 16 - BaseTyInfo.first.getQuantity(); 4783 4784 for (unsigned i = 0; i < NumMembers; ++i) { 4785 CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset); 4786 Address LoadAddr = 4787 CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset); 4788 LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy); 4789 4790 Address StoreAddr = 4791 CGF.Builder.CreateConstArrayGEP(Tmp, i, BaseTyInfo.first); 4792 4793 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 4794 CGF.Builder.CreateStore(Elem, StoreAddr); 4795 } 4796 4797 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy); 4798 } else { 4799 // Otherwise the object is contiguous in memory. 4800 4801 // It might be right-aligned in its slot. 4802 CharUnits SlotSize = BaseAddr.getAlignment(); 4803 if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect && 4804 (IsHFA || !isAggregateTypeForABI(Ty)) && 4805 TyInfo.first < SlotSize) { 4806 CharUnits Offset = SlotSize - TyInfo.first; 4807 BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset); 4808 } 4809 4810 RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy); 4811 } 4812 4813 CGF.EmitBranch(ContBlock); 4814 4815 //======================================= 4816 // Argument was on the stack 4817 //======================================= 4818 CGF.EmitBlock(OnStackBlock); 4819 4820 Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, 4821 CharUnits::Zero(), "stack_p"); 4822 llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack"); 4823 4824 // Again, stack arguments may need realignment. In this case both integer and 4825 // floating-point ones might be affected. 4826 if (!IsIndirect && TyAlign.getQuantity() > 8) { 4827 int Align = TyAlign.getQuantity(); 4828 4829 OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty); 4830 4831 OnStackPtr = CGF.Builder.CreateAdd( 4832 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 4833 "align_stack"); 4834 OnStackPtr = CGF.Builder.CreateAnd( 4835 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 4836 "align_stack"); 4837 4838 OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy); 4839 } 4840 Address OnStackAddr(OnStackPtr, 4841 std::max(CharUnits::fromQuantity(8), TyAlign)); 4842 4843 // All stack slots are multiples of 8 bytes. 4844 CharUnits StackSlotSize = CharUnits::fromQuantity(8); 4845 CharUnits StackSize; 4846 if (IsIndirect) 4847 StackSize = StackSlotSize; 4848 else 4849 StackSize = TyInfo.first.alignTo(StackSlotSize); 4850 4851 llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize); 4852 llvm::Value *NewStack = 4853 CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack"); 4854 4855 // Write the new value of __stack for the next call to va_arg 4856 CGF.Builder.CreateStore(NewStack, stack_p); 4857 4858 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 4859 TyInfo.first < StackSlotSize) { 4860 CharUnits Offset = StackSlotSize - TyInfo.first; 4861 OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset); 4862 } 4863 4864 OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy); 4865 4866 CGF.EmitBranch(ContBlock); 4867 4868 //======================================= 4869 // Tidy up 4870 //======================================= 4871 CGF.EmitBlock(ContBlock); 4872 4873 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 4874 OnStackAddr, OnStackBlock, "vaargs.addr"); 4875 4876 if (IsIndirect) 4877 return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), 4878 TyInfo.second); 4879 4880 return ResAddr; 4881 } 4882 4883 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty, 4884 CodeGenFunction &CGF) const { 4885 // The backend's lowering doesn't support va_arg for aggregates or 4886 // illegal vector types. Lower VAArg here for these cases and use 4887 // the LLVM va_arg instruction for everything else. 4888 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 4889 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 4890 4891 CharUnits SlotSize = CharUnits::fromQuantity(8); 4892 4893 // Empty records are ignored for parameter passing purposes. 4894 if (isEmptyRecord(getContext(), Ty, true)) { 4895 Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 4896 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 4897 return Addr; 4898 } 4899 4900 // The size of the actual thing passed, which might end up just 4901 // being a pointer for indirect types. 4902 auto TyInfo = getContext().getTypeInfoInChars(Ty); 4903 4904 // Arguments bigger than 16 bytes which aren't homogeneous 4905 // aggregates should be passed indirectly. 4906 bool IsIndirect = false; 4907 if (TyInfo.first.getQuantity() > 16) { 4908 const Type *Base = nullptr; 4909 uint64_t Members = 0; 4910 IsIndirect = !isHomogeneousAggregate(Ty, Base, Members); 4911 } 4912 4913 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 4914 TyInfo, SlotSize, /*AllowHigherAlign*/ true); 4915 } 4916 4917 //===----------------------------------------------------------------------===// 4918 // ARM ABI Implementation 4919 //===----------------------------------------------------------------------===// 4920 4921 namespace { 4922 4923 class ARMABIInfo : public SwiftABIInfo { 4924 public: 4925 enum ABIKind { 4926 APCS = 0, 4927 AAPCS = 1, 4928 AAPCS_VFP = 2, 4929 AAPCS16_VFP = 3, 4930 }; 4931 4932 private: 4933 ABIKind Kind; 4934 4935 public: 4936 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) 4937 : SwiftABIInfo(CGT), Kind(_Kind) { 4938 setCCs(); 4939 } 4940 4941 bool isEABI() const { 4942 switch (getTarget().getTriple().getEnvironment()) { 4943 case llvm::Triple::Android: 4944 case llvm::Triple::EABI: 4945 case llvm::Triple::EABIHF: 4946 case llvm::Triple::GNUEABI: 4947 case llvm::Triple::GNUEABIHF: 4948 return true; 4949 default: 4950 return false; 4951 } 4952 } 4953 4954 bool isEABIHF() const { 4955 switch (getTarget().getTriple().getEnvironment()) { 4956 case llvm::Triple::EABIHF: 4957 case llvm::Triple::GNUEABIHF: 4958 return true; 4959 default: 4960 return false; 4961 } 4962 } 4963 4964 ABIKind getABIKind() const { return Kind; } 4965 4966 private: 4967 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const; 4968 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic) const; 4969 bool isIllegalVectorType(QualType Ty) const; 4970 4971 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4972 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4973 uint64_t Members) const override; 4974 4975 void computeInfo(CGFunctionInfo &FI) const override; 4976 4977 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4978 QualType Ty) const override; 4979 4980 llvm::CallingConv::ID getLLVMDefaultCC() const; 4981 llvm::CallingConv::ID getABIDefaultCC() const; 4982 void setCCs(); 4983 4984 bool shouldPassIndirectlyForSwift(CharUnits totalSize, 4985 ArrayRef<llvm::Type*> scalars, 4986 bool asReturnValue) const override { 4987 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 4988 } 4989 }; 4990 4991 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 4992 public: 4993 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 4994 :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {} 4995 4996 const ARMABIInfo &getABIInfo() const { 4997 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 4998 } 4999 5000 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5001 return 13; 5002 } 5003 5004 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 5005 return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue"; 5006 } 5007 5008 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5009 llvm::Value *Address) const override { 5010 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 5011 5012 // 0-15 are the 16 integer registers. 5013 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 5014 return false; 5015 } 5016 5017 unsigned getSizeOfUnwindException() const override { 5018 if (getABIInfo().isEABI()) return 88; 5019 return TargetCodeGenInfo::getSizeOfUnwindException(); 5020 } 5021 5022 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5023 CodeGen::CodeGenModule &CGM) const override { 5024 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5025 if (!FD) 5026 return; 5027 5028 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 5029 if (!Attr) 5030 return; 5031 5032 const char *Kind; 5033 switch (Attr->getInterrupt()) { 5034 case ARMInterruptAttr::Generic: Kind = ""; break; 5035 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 5036 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 5037 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 5038 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 5039 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 5040 } 5041 5042 llvm::Function *Fn = cast<llvm::Function>(GV); 5043 5044 Fn->addFnAttr("interrupt", Kind); 5045 5046 ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind(); 5047 if (ABI == ARMABIInfo::APCS) 5048 return; 5049 5050 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 5051 // however this is not necessarily true on taking any interrupt. Instruct 5052 // the backend to perform a realignment as part of the function prologue. 5053 llvm::AttrBuilder B; 5054 B.addStackAlignmentAttr(8); 5055 Fn->addAttributes(llvm::AttributeSet::FunctionIndex, 5056 llvm::AttributeSet::get(CGM.getLLVMContext(), 5057 llvm::AttributeSet::FunctionIndex, 5058 B)); 5059 } 5060 }; 5061 5062 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { 5063 public: 5064 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 5065 : ARMTargetCodeGenInfo(CGT, K) {} 5066 5067 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5068 CodeGen::CodeGenModule &CGM) const override; 5069 }; 5070 5071 void WindowsARMTargetCodeGenInfo::setTargetAttributes( 5072 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 5073 ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 5074 addStackProbeSizeTargetAttribute(D, GV, CGM); 5075 } 5076 } 5077 5078 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 5079 if (!getCXXABI().classifyReturnType(FI)) 5080 FI.getReturnInfo() = 5081 classifyReturnType(FI.getReturnType(), FI.isVariadic()); 5082 5083 for (auto &I : FI.arguments()) 5084 I.info = classifyArgumentType(I.type, FI.isVariadic()); 5085 5086 // Always honor user-specified calling convention. 5087 if (FI.getCallingConvention() != llvm::CallingConv::C) 5088 return; 5089 5090 llvm::CallingConv::ID cc = getRuntimeCC(); 5091 if (cc != llvm::CallingConv::C) 5092 FI.setEffectiveCallingConvention(cc); 5093 } 5094 5095 /// Return the default calling convention that LLVM will use. 5096 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 5097 // The default calling convention that LLVM will infer. 5098 if (isEABIHF() || getTarget().getTriple().isWatchABI()) 5099 return llvm::CallingConv::ARM_AAPCS_VFP; 5100 else if (isEABI()) 5101 return llvm::CallingConv::ARM_AAPCS; 5102 else 5103 return llvm::CallingConv::ARM_APCS; 5104 } 5105 5106 /// Return the calling convention that our ABI would like us to use 5107 /// as the C calling convention. 5108 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 5109 switch (getABIKind()) { 5110 case APCS: return llvm::CallingConv::ARM_APCS; 5111 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 5112 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 5113 case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 5114 } 5115 llvm_unreachable("bad ABI kind"); 5116 } 5117 5118 void ARMABIInfo::setCCs() { 5119 assert(getRuntimeCC() == llvm::CallingConv::C); 5120 5121 // Don't muddy up the IR with a ton of explicit annotations if 5122 // they'd just match what LLVM will infer from the triple. 5123 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 5124 if (abiCC != getLLVMDefaultCC()) 5125 RuntimeCC = abiCC; 5126 5127 // AAPCS apparently requires runtime support functions to be soft-float, but 5128 // that's almost certainly for historic reasons (Thumb1 not supporting VFP 5129 // most likely). It's more convenient for AAPCS16_VFP to be hard-float. 5130 switch (getABIKind()) { 5131 case APCS: 5132 case AAPCS16_VFP: 5133 if (abiCC != getLLVMDefaultCC()) 5134 BuiltinCC = abiCC; 5135 break; 5136 case AAPCS: 5137 case AAPCS_VFP: 5138 BuiltinCC = llvm::CallingConv::ARM_AAPCS; 5139 break; 5140 } 5141 } 5142 5143 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, 5144 bool isVariadic) const { 5145 // 6.1.2.1 The following argument types are VFP CPRCs: 5146 // A single-precision floating-point type (including promoted 5147 // half-precision types); A double-precision floating-point type; 5148 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 5149 // with a Base Type of a single- or double-precision floating-point type, 5150 // 64-bit containerized vectors or 128-bit containerized vectors with one 5151 // to four Elements. 5152 bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic; 5153 5154 Ty = useFirstFieldIfTransparentUnion(Ty); 5155 5156 // Handle illegal vector types here. 5157 if (isIllegalVectorType(Ty)) { 5158 uint64_t Size = getContext().getTypeSize(Ty); 5159 if (Size <= 32) { 5160 llvm::Type *ResType = 5161 llvm::Type::getInt32Ty(getVMContext()); 5162 return ABIArgInfo::getDirect(ResType); 5163 } 5164 if (Size == 64) { 5165 llvm::Type *ResType = llvm::VectorType::get( 5166 llvm::Type::getInt32Ty(getVMContext()), 2); 5167 return ABIArgInfo::getDirect(ResType); 5168 } 5169 if (Size == 128) { 5170 llvm::Type *ResType = llvm::VectorType::get( 5171 llvm::Type::getInt32Ty(getVMContext()), 4); 5172 return ABIArgInfo::getDirect(ResType); 5173 } 5174 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5175 } 5176 5177 // __fp16 gets passed as if it were an int or float, but with the top 16 bits 5178 // unspecified. This is not done for OpenCL as it handles the half type 5179 // natively, and does not need to interwork with AAPCS code. 5180 if (Ty->isHalfType() && !getContext().getLangOpts().NativeHalfArgsAndReturns) { 5181 llvm::Type *ResType = IsEffectivelyAAPCS_VFP ? 5182 llvm::Type::getFloatTy(getVMContext()) : 5183 llvm::Type::getInt32Ty(getVMContext()); 5184 return ABIArgInfo::getDirect(ResType); 5185 } 5186 5187 if (!isAggregateTypeForABI(Ty)) { 5188 // Treat an enum type as its underlying type. 5189 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 5190 Ty = EnumTy->getDecl()->getIntegerType(); 5191 } 5192 5193 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend() 5194 : ABIArgInfo::getDirect()); 5195 } 5196 5197 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5198 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 5199 } 5200 5201 // Ignore empty records. 5202 if (isEmptyRecord(getContext(), Ty, true)) 5203 return ABIArgInfo::getIgnore(); 5204 5205 if (IsEffectivelyAAPCS_VFP) { 5206 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 5207 // into VFP registers. 5208 const Type *Base = nullptr; 5209 uint64_t Members = 0; 5210 if (isHomogeneousAggregate(Ty, Base, Members)) { 5211 assert(Base && "Base class should be set for homogeneous aggregate"); 5212 // Base can be a floating-point or a vector. 5213 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 5214 } 5215 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 5216 // WatchOS does have homogeneous aggregates. Note that we intentionally use 5217 // this convention even for a variadic function: the backend will use GPRs 5218 // if needed. 5219 const Type *Base = nullptr; 5220 uint64_t Members = 0; 5221 if (isHomogeneousAggregate(Ty, Base, Members)) { 5222 assert(Base && Members <= 4 && "unexpected homogeneous aggregate"); 5223 llvm::Type *Ty = 5224 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members); 5225 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 5226 } 5227 } 5228 5229 if (getABIKind() == ARMABIInfo::AAPCS16_VFP && 5230 getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) { 5231 // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're 5232 // bigger than 128-bits, they get placed in space allocated by the caller, 5233 // and a pointer is passed. 5234 return ABIArgInfo::getIndirect( 5235 CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false); 5236 } 5237 5238 // Support byval for ARM. 5239 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 5240 // most 8-byte. We realign the indirect argument if type alignment is bigger 5241 // than ABI alignment. 5242 uint64_t ABIAlign = 4; 5243 uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8; 5244 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 5245 getABIKind() == ARMABIInfo::AAPCS) 5246 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 5247 5248 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 5249 assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval"); 5250 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 5251 /*ByVal=*/true, 5252 /*Realign=*/TyAlign > ABIAlign); 5253 } 5254 5255 // Otherwise, pass by coercing to a structure of the appropriate size. 5256 llvm::Type* ElemTy; 5257 unsigned SizeRegs; 5258 // FIXME: Try to match the types of the arguments more accurately where 5259 // we can. 5260 if (getContext().getTypeAlign(Ty) <= 32) { 5261 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 5262 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 5263 } else { 5264 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 5265 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 5266 } 5267 5268 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); 5269 } 5270 5271 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 5272 llvm::LLVMContext &VMContext) { 5273 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 5274 // is called integer-like if its size is less than or equal to one word, and 5275 // the offset of each of its addressable sub-fields is zero. 5276 5277 uint64_t Size = Context.getTypeSize(Ty); 5278 5279 // Check that the type fits in a word. 5280 if (Size > 32) 5281 return false; 5282 5283 // FIXME: Handle vector types! 5284 if (Ty->isVectorType()) 5285 return false; 5286 5287 // Float types are never treated as "integer like". 5288 if (Ty->isRealFloatingType()) 5289 return false; 5290 5291 // If this is a builtin or pointer type then it is ok. 5292 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 5293 return true; 5294 5295 // Small complex integer types are "integer like". 5296 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 5297 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 5298 5299 // Single element and zero sized arrays should be allowed, by the definition 5300 // above, but they are not. 5301 5302 // Otherwise, it must be a record type. 5303 const RecordType *RT = Ty->getAs<RecordType>(); 5304 if (!RT) return false; 5305 5306 // Ignore records with flexible arrays. 5307 const RecordDecl *RD = RT->getDecl(); 5308 if (RD->hasFlexibleArrayMember()) 5309 return false; 5310 5311 // Check that all sub-fields are at offset 0, and are themselves "integer 5312 // like". 5313 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 5314 5315 bool HadField = false; 5316 unsigned idx = 0; 5317 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 5318 i != e; ++i, ++idx) { 5319 const FieldDecl *FD = *i; 5320 5321 // Bit-fields are not addressable, we only need to verify they are "integer 5322 // like". We still have to disallow a subsequent non-bitfield, for example: 5323 // struct { int : 0; int x } 5324 // is non-integer like according to gcc. 5325 if (FD->isBitField()) { 5326 if (!RD->isUnion()) 5327 HadField = true; 5328 5329 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 5330 return false; 5331 5332 continue; 5333 } 5334 5335 // Check if this field is at offset 0. 5336 if (Layout.getFieldOffset(idx) != 0) 5337 return false; 5338 5339 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 5340 return false; 5341 5342 // Only allow at most one field in a structure. This doesn't match the 5343 // wording above, but follows gcc in situations with a field following an 5344 // empty structure. 5345 if (!RD->isUnion()) { 5346 if (HadField) 5347 return false; 5348 5349 HadField = true; 5350 } 5351 } 5352 5353 return true; 5354 } 5355 5356 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, 5357 bool isVariadic) const { 5358 bool IsEffectivelyAAPCS_VFP = 5359 (getABIKind() == AAPCS_VFP || getABIKind() == AAPCS16_VFP) && !isVariadic; 5360 5361 if (RetTy->isVoidType()) 5362 return ABIArgInfo::getIgnore(); 5363 5364 // Large vector types should be returned via memory. 5365 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) { 5366 return getNaturalAlignIndirect(RetTy); 5367 } 5368 5369 // __fp16 gets returned as if it were an int or float, but with the top 16 5370 // bits unspecified. This is not done for OpenCL as it handles the half type 5371 // natively, and does not need to interwork with AAPCS code. 5372 if (RetTy->isHalfType() && !getContext().getLangOpts().NativeHalfArgsAndReturns) { 5373 llvm::Type *ResType = IsEffectivelyAAPCS_VFP ? 5374 llvm::Type::getFloatTy(getVMContext()) : 5375 llvm::Type::getInt32Ty(getVMContext()); 5376 return ABIArgInfo::getDirect(ResType); 5377 } 5378 5379 if (!isAggregateTypeForABI(RetTy)) { 5380 // Treat an enum type as its underlying type. 5381 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5382 RetTy = EnumTy->getDecl()->getIntegerType(); 5383 5384 return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend() 5385 : ABIArgInfo::getDirect(); 5386 } 5387 5388 // Are we following APCS? 5389 if (getABIKind() == APCS) { 5390 if (isEmptyRecord(getContext(), RetTy, false)) 5391 return ABIArgInfo::getIgnore(); 5392 5393 // Complex types are all returned as packed integers. 5394 // 5395 // FIXME: Consider using 2 x vector types if the back end handles them 5396 // correctly. 5397 if (RetTy->isAnyComplexType()) 5398 return ABIArgInfo::getDirect(llvm::IntegerType::get( 5399 getVMContext(), getContext().getTypeSize(RetTy))); 5400 5401 // Integer like structures are returned in r0. 5402 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 5403 // Return in the smallest viable integer type. 5404 uint64_t Size = getContext().getTypeSize(RetTy); 5405 if (Size <= 8) 5406 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5407 if (Size <= 16) 5408 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 5409 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 5410 } 5411 5412 // Otherwise return in memory. 5413 return getNaturalAlignIndirect(RetTy); 5414 } 5415 5416 // Otherwise this is an AAPCS variant. 5417 5418 if (isEmptyRecord(getContext(), RetTy, true)) 5419 return ABIArgInfo::getIgnore(); 5420 5421 // Check for homogeneous aggregates with AAPCS-VFP. 5422 if (IsEffectivelyAAPCS_VFP) { 5423 const Type *Base = nullptr; 5424 uint64_t Members = 0; 5425 if (isHomogeneousAggregate(RetTy, Base, Members)) { 5426 assert(Base && "Base class should be set for homogeneous aggregate"); 5427 // Homogeneous Aggregates are returned directly. 5428 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 5429 } 5430 } 5431 5432 // Aggregates <= 4 bytes are returned in r0; other aggregates 5433 // are returned indirectly. 5434 uint64_t Size = getContext().getTypeSize(RetTy); 5435 if (Size <= 32) { 5436 if (getDataLayout().isBigEndian()) 5437 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 5438 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 5439 5440 // Return in the smallest viable integer type. 5441 if (Size <= 8) 5442 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5443 if (Size <= 16) 5444 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 5445 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 5446 } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) { 5447 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext()); 5448 llvm::Type *CoerceTy = 5449 llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32); 5450 return ABIArgInfo::getDirect(CoerceTy); 5451 } 5452 5453 return getNaturalAlignIndirect(RetTy); 5454 } 5455 5456 /// isIllegalVector - check whether Ty is an illegal vector type. 5457 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 5458 if (const VectorType *VT = Ty->getAs<VectorType> ()) { 5459 if (isAndroid()) { 5460 // Android shipped using Clang 3.1, which supported a slightly different 5461 // vector ABI. The primary differences were that 3-element vector types 5462 // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path 5463 // accepts that legacy behavior for Android only. 5464 // Check whether VT is legal. 5465 unsigned NumElements = VT->getNumElements(); 5466 // NumElements should be power of 2 or equal to 3. 5467 if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3) 5468 return true; 5469 } else { 5470 // Check whether VT is legal. 5471 unsigned NumElements = VT->getNumElements(); 5472 uint64_t Size = getContext().getTypeSize(VT); 5473 // NumElements should be power of 2. 5474 if (!llvm::isPowerOf2_32(NumElements)) 5475 return true; 5476 // Size should be greater than 32 bits. 5477 return Size <= 32; 5478 } 5479 } 5480 return false; 5481 } 5482 5483 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5484 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 5485 // double, or 64-bit or 128-bit vectors. 5486 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5487 if (BT->getKind() == BuiltinType::Float || 5488 BT->getKind() == BuiltinType::Double || 5489 BT->getKind() == BuiltinType::LongDouble) 5490 return true; 5491 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 5492 unsigned VecSize = getContext().getTypeSize(VT); 5493 if (VecSize == 64 || VecSize == 128) 5494 return true; 5495 } 5496 return false; 5497 } 5498 5499 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 5500 uint64_t Members) const { 5501 return Members <= 4; 5502 } 5503 5504 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5505 QualType Ty) const { 5506 CharUnits SlotSize = CharUnits::fromQuantity(4); 5507 5508 // Empty records are ignored for parameter passing purposes. 5509 if (isEmptyRecord(getContext(), Ty, true)) { 5510 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 5511 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 5512 return Addr; 5513 } 5514 5515 auto TyInfo = getContext().getTypeInfoInChars(Ty); 5516 CharUnits TyAlignForABI = TyInfo.second; 5517 5518 // Use indirect if size of the illegal vector is bigger than 16 bytes. 5519 bool IsIndirect = false; 5520 const Type *Base = nullptr; 5521 uint64_t Members = 0; 5522 if (TyInfo.first > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) { 5523 IsIndirect = true; 5524 5525 // ARMv7k passes structs bigger than 16 bytes indirectly, in space 5526 // allocated by the caller. 5527 } else if (TyInfo.first > CharUnits::fromQuantity(16) && 5528 getABIKind() == ARMABIInfo::AAPCS16_VFP && 5529 !isHomogeneousAggregate(Ty, Base, Members)) { 5530 IsIndirect = true; 5531 5532 // Otherwise, bound the type's ABI alignment. 5533 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 5534 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 5535 // Our callers should be prepared to handle an under-aligned address. 5536 } else if (getABIKind() == ARMABIInfo::AAPCS_VFP || 5537 getABIKind() == ARMABIInfo::AAPCS) { 5538 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 5539 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8)); 5540 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 5541 // ARMv7k allows type alignment up to 16 bytes. 5542 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 5543 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16)); 5544 } else { 5545 TyAlignForABI = CharUnits::fromQuantity(4); 5546 } 5547 TyInfo.second = TyAlignForABI; 5548 5549 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo, 5550 SlotSize, /*AllowHigherAlign*/ true); 5551 } 5552 5553 //===----------------------------------------------------------------------===// 5554 // NVPTX ABI Implementation 5555 //===----------------------------------------------------------------------===// 5556 5557 namespace { 5558 5559 class NVPTXABIInfo : public ABIInfo { 5560 public: 5561 NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 5562 5563 ABIArgInfo classifyReturnType(QualType RetTy) const; 5564 ABIArgInfo classifyArgumentType(QualType Ty) const; 5565 5566 void computeInfo(CGFunctionInfo &FI) const override; 5567 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5568 QualType Ty) const override; 5569 }; 5570 5571 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 5572 public: 5573 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 5574 : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {} 5575 5576 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5577 CodeGen::CodeGenModule &M) const override; 5578 private: 5579 // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the 5580 // resulting MDNode to the nvvm.annotations MDNode. 5581 static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand); 5582 }; 5583 5584 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 5585 if (RetTy->isVoidType()) 5586 return ABIArgInfo::getIgnore(); 5587 5588 // note: this is different from default ABI 5589 if (!RetTy->isScalarType()) 5590 return ABIArgInfo::getDirect(); 5591 5592 // Treat an enum type as its underlying type. 5593 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5594 RetTy = EnumTy->getDecl()->getIntegerType(); 5595 5596 return (RetTy->isPromotableIntegerType() ? 5597 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5598 } 5599 5600 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 5601 // Treat an enum type as its underlying type. 5602 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5603 Ty = EnumTy->getDecl()->getIntegerType(); 5604 5605 // Return aggregates type as indirect by value 5606 if (isAggregateTypeForABI(Ty)) 5607 return getNaturalAlignIndirect(Ty, /* byval */ true); 5608 5609 return (Ty->isPromotableIntegerType() ? 5610 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5611 } 5612 5613 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 5614 if (!getCXXABI().classifyReturnType(FI)) 5615 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 5616 for (auto &I : FI.arguments()) 5617 I.info = classifyArgumentType(I.type); 5618 5619 // Always honor user-specified calling convention. 5620 if (FI.getCallingConvention() != llvm::CallingConv::C) 5621 return; 5622 5623 FI.setEffectiveCallingConvention(getRuntimeCC()); 5624 } 5625 5626 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5627 QualType Ty) const { 5628 llvm_unreachable("NVPTX does not support varargs"); 5629 } 5630 5631 void NVPTXTargetCodeGenInfo:: 5632 setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5633 CodeGen::CodeGenModule &M) const{ 5634 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5635 if (!FD) return; 5636 5637 llvm::Function *F = cast<llvm::Function>(GV); 5638 5639 // Perform special handling in OpenCL mode 5640 if (M.getLangOpts().OpenCL) { 5641 // Use OpenCL function attributes to check for kernel functions 5642 // By default, all functions are device functions 5643 if (FD->hasAttr<OpenCLKernelAttr>()) { 5644 // OpenCL __kernel functions get kernel metadata 5645 // Create !{<func-ref>, metadata !"kernel", i32 1} node 5646 addNVVMMetadata(F, "kernel", 1); 5647 // And kernel functions are not subject to inlining 5648 F->addFnAttr(llvm::Attribute::NoInline); 5649 } 5650 } 5651 5652 // Perform special handling in CUDA mode. 5653 if (M.getLangOpts().CUDA) { 5654 // CUDA __global__ functions get a kernel metadata entry. Since 5655 // __global__ functions cannot be called from the device, we do not 5656 // need to set the noinline attribute. 5657 if (FD->hasAttr<CUDAGlobalAttr>()) { 5658 // Create !{<func-ref>, metadata !"kernel", i32 1} node 5659 addNVVMMetadata(F, "kernel", 1); 5660 } 5661 if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) { 5662 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 5663 llvm::APSInt MaxThreads(32); 5664 MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); 5665 if (MaxThreads > 0) 5666 addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); 5667 5668 // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was 5669 // not specified in __launch_bounds__ or if the user specified a 0 value, 5670 // we don't have to add a PTX directive. 5671 if (Attr->getMinBlocks()) { 5672 llvm::APSInt MinBlocks(32); 5673 MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); 5674 if (MinBlocks > 0) 5675 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 5676 addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); 5677 } 5678 } 5679 } 5680 } 5681 5682 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name, 5683 int Operand) { 5684 llvm::Module *M = F->getParent(); 5685 llvm::LLVMContext &Ctx = M->getContext(); 5686 5687 // Get "nvvm.annotations" metadata node 5688 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 5689 5690 llvm::Metadata *MDVals[] = { 5691 llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name), 5692 llvm::ConstantAsMetadata::get( 5693 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; 5694 // Append metadata to nvvm.annotations 5695 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 5696 } 5697 } 5698 5699 //===----------------------------------------------------------------------===// 5700 // SystemZ ABI Implementation 5701 //===----------------------------------------------------------------------===// 5702 5703 namespace { 5704 5705 class SystemZABIInfo : public ABIInfo { 5706 bool HasVector; 5707 5708 public: 5709 SystemZABIInfo(CodeGenTypes &CGT, bool HV) 5710 : ABIInfo(CGT), HasVector(HV) {} 5711 5712 bool isPromotableIntegerType(QualType Ty) const; 5713 bool isCompoundType(QualType Ty) const; 5714 bool isVectorArgumentType(QualType Ty) const; 5715 bool isFPArgumentType(QualType Ty) const; 5716 QualType GetSingleElementType(QualType Ty) const; 5717 5718 ABIArgInfo classifyReturnType(QualType RetTy) const; 5719 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 5720 5721 void computeInfo(CGFunctionInfo &FI) const override { 5722 if (!getCXXABI().classifyReturnType(FI)) 5723 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 5724 for (auto &I : FI.arguments()) 5725 I.info = classifyArgumentType(I.type); 5726 } 5727 5728 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5729 QualType Ty) const override; 5730 }; 5731 5732 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 5733 public: 5734 SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector) 5735 : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {} 5736 }; 5737 5738 } 5739 5740 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const { 5741 // Treat an enum type as its underlying type. 5742 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5743 Ty = EnumTy->getDecl()->getIntegerType(); 5744 5745 // Promotable integer types are required to be promoted by the ABI. 5746 if (Ty->isPromotableIntegerType()) 5747 return true; 5748 5749 // 32-bit values must also be promoted. 5750 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 5751 switch (BT->getKind()) { 5752 case BuiltinType::Int: 5753 case BuiltinType::UInt: 5754 return true; 5755 default: 5756 return false; 5757 } 5758 return false; 5759 } 5760 5761 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 5762 return (Ty->isAnyComplexType() || 5763 Ty->isVectorType() || 5764 isAggregateTypeForABI(Ty)); 5765 } 5766 5767 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { 5768 return (HasVector && 5769 Ty->isVectorType() && 5770 getContext().getTypeSize(Ty) <= 128); 5771 } 5772 5773 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 5774 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 5775 switch (BT->getKind()) { 5776 case BuiltinType::Float: 5777 case BuiltinType::Double: 5778 return true; 5779 default: 5780 return false; 5781 } 5782 5783 return false; 5784 } 5785 5786 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { 5787 if (const RecordType *RT = Ty->getAsStructureType()) { 5788 const RecordDecl *RD = RT->getDecl(); 5789 QualType Found; 5790 5791 // If this is a C++ record, check the bases first. 5792 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 5793 for (const auto &I : CXXRD->bases()) { 5794 QualType Base = I.getType(); 5795 5796 // Empty bases don't affect things either way. 5797 if (isEmptyRecord(getContext(), Base, true)) 5798 continue; 5799 5800 if (!Found.isNull()) 5801 return Ty; 5802 Found = GetSingleElementType(Base); 5803 } 5804 5805 // Check the fields. 5806 for (const auto *FD : RD->fields()) { 5807 // For compatibility with GCC, ignore empty bitfields in C++ mode. 5808 // Unlike isSingleElementStruct(), empty structure and array fields 5809 // do count. So do anonymous bitfields that aren't zero-sized. 5810 if (getContext().getLangOpts().CPlusPlus && 5811 FD->isBitField() && FD->getBitWidthValue(getContext()) == 0) 5812 continue; 5813 5814 // Unlike isSingleElementStruct(), arrays do not count. 5815 // Nested structures still do though. 5816 if (!Found.isNull()) 5817 return Ty; 5818 Found = GetSingleElementType(FD->getType()); 5819 } 5820 5821 // Unlike isSingleElementStruct(), trailing padding is allowed. 5822 // An 8-byte aligned struct s { float f; } is passed as a double. 5823 if (!Found.isNull()) 5824 return Found; 5825 } 5826 5827 return Ty; 5828 } 5829 5830 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5831 QualType Ty) const { 5832 // Assume that va_list type is correct; should be pointer to LLVM type: 5833 // struct { 5834 // i64 __gpr; 5835 // i64 __fpr; 5836 // i8 *__overflow_arg_area; 5837 // i8 *__reg_save_area; 5838 // }; 5839 5840 // Every non-vector argument occupies 8 bytes and is passed by preference 5841 // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are 5842 // always passed on the stack. 5843 Ty = getContext().getCanonicalType(Ty); 5844 auto TyInfo = getContext().getTypeInfoInChars(Ty); 5845 llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); 5846 llvm::Type *DirectTy = ArgTy; 5847 ABIArgInfo AI = classifyArgumentType(Ty); 5848 bool IsIndirect = AI.isIndirect(); 5849 bool InFPRs = false; 5850 bool IsVector = false; 5851 CharUnits UnpaddedSize; 5852 CharUnits DirectAlign; 5853 if (IsIndirect) { 5854 DirectTy = llvm::PointerType::getUnqual(DirectTy); 5855 UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8); 5856 } else { 5857 if (AI.getCoerceToType()) 5858 ArgTy = AI.getCoerceToType(); 5859 InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy(); 5860 IsVector = ArgTy->isVectorTy(); 5861 UnpaddedSize = TyInfo.first; 5862 DirectAlign = TyInfo.second; 5863 } 5864 CharUnits PaddedSize = CharUnits::fromQuantity(8); 5865 if (IsVector && UnpaddedSize > PaddedSize) 5866 PaddedSize = CharUnits::fromQuantity(16); 5867 assert((UnpaddedSize <= PaddedSize) && "Invalid argument size."); 5868 5869 CharUnits Padding = (PaddedSize - UnpaddedSize); 5870 5871 llvm::Type *IndexTy = CGF.Int64Ty; 5872 llvm::Value *PaddedSizeV = 5873 llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity()); 5874 5875 if (IsVector) { 5876 // Work out the address of a vector argument on the stack. 5877 // Vector arguments are always passed in the high bits of a 5878 // single (8 byte) or double (16 byte) stack slot. 5879 Address OverflowArgAreaPtr = 5880 CGF.Builder.CreateStructGEP(VAListAddr, 2, CharUnits::fromQuantity(16), 5881 "overflow_arg_area_ptr"); 5882 Address OverflowArgArea = 5883 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 5884 TyInfo.second); 5885 Address MemAddr = 5886 CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr"); 5887 5888 // Update overflow_arg_area_ptr pointer 5889 llvm::Value *NewOverflowArgArea = 5890 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 5891 "overflow_arg_area"); 5892 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 5893 5894 return MemAddr; 5895 } 5896 5897 assert(PaddedSize.getQuantity() == 8); 5898 5899 unsigned MaxRegs, RegCountField, RegSaveIndex; 5900 CharUnits RegPadding; 5901 if (InFPRs) { 5902 MaxRegs = 4; // Maximum of 4 FPR arguments 5903 RegCountField = 1; // __fpr 5904 RegSaveIndex = 16; // save offset for f0 5905 RegPadding = CharUnits(); // floats are passed in the high bits of an FPR 5906 } else { 5907 MaxRegs = 5; // Maximum of 5 GPR arguments 5908 RegCountField = 0; // __gpr 5909 RegSaveIndex = 2; // save offset for r2 5910 RegPadding = Padding; // values are passed in the low bits of a GPR 5911 } 5912 5913 Address RegCountPtr = CGF.Builder.CreateStructGEP( 5914 VAListAddr, RegCountField, RegCountField * CharUnits::fromQuantity(8), 5915 "reg_count_ptr"); 5916 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 5917 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 5918 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 5919 "fits_in_regs"); 5920 5921 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 5922 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 5923 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 5924 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 5925 5926 // Emit code to load the value if it was passed in registers. 5927 CGF.EmitBlock(InRegBlock); 5928 5929 // Work out the address of an argument register. 5930 llvm::Value *ScaledRegCount = 5931 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 5932 llvm::Value *RegBase = 5933 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity() 5934 + RegPadding.getQuantity()); 5935 llvm::Value *RegOffset = 5936 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 5937 Address RegSaveAreaPtr = 5938 CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24), 5939 "reg_save_area_ptr"); 5940 llvm::Value *RegSaveArea = 5941 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 5942 Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset, 5943 "raw_reg_addr"), 5944 PaddedSize); 5945 Address RegAddr = 5946 CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr"); 5947 5948 // Update the register count 5949 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 5950 llvm::Value *NewRegCount = 5951 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 5952 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 5953 CGF.EmitBranch(ContBlock); 5954 5955 // Emit code to load the value if it was passed in memory. 5956 CGF.EmitBlock(InMemBlock); 5957 5958 // Work out the address of a stack argument. 5959 Address OverflowArgAreaPtr = CGF.Builder.CreateStructGEP( 5960 VAListAddr, 2, CharUnits::fromQuantity(16), "overflow_arg_area_ptr"); 5961 Address OverflowArgArea = 5962 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 5963 PaddedSize); 5964 Address RawMemAddr = 5965 CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr"); 5966 Address MemAddr = 5967 CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr"); 5968 5969 // Update overflow_arg_area_ptr pointer 5970 llvm::Value *NewOverflowArgArea = 5971 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 5972 "overflow_arg_area"); 5973 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 5974 CGF.EmitBranch(ContBlock); 5975 5976 // Return the appropriate result. 5977 CGF.EmitBlock(ContBlock); 5978 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 5979 MemAddr, InMemBlock, "va_arg.addr"); 5980 5981 if (IsIndirect) 5982 ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), 5983 TyInfo.second); 5984 5985 return ResAddr; 5986 } 5987 5988 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 5989 if (RetTy->isVoidType()) 5990 return ABIArgInfo::getIgnore(); 5991 if (isVectorArgumentType(RetTy)) 5992 return ABIArgInfo::getDirect(); 5993 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 5994 return getNaturalAlignIndirect(RetTy); 5995 return (isPromotableIntegerType(RetTy) ? 5996 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5997 } 5998 5999 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 6000 // Handle the generic C++ ABI. 6001 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 6002 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6003 6004 // Integers and enums are extended to full register width. 6005 if (isPromotableIntegerType(Ty)) 6006 return ABIArgInfo::getExtend(); 6007 6008 // Handle vector types and vector-like structure types. Note that 6009 // as opposed to float-like structure types, we do not allow any 6010 // padding for vector-like structures, so verify the sizes match. 6011 uint64_t Size = getContext().getTypeSize(Ty); 6012 QualType SingleElementTy = GetSingleElementType(Ty); 6013 if (isVectorArgumentType(SingleElementTy) && 6014 getContext().getTypeSize(SingleElementTy) == Size) 6015 return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); 6016 6017 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 6018 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 6019 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6020 6021 // Handle small structures. 6022 if (const RecordType *RT = Ty->getAs<RecordType>()) { 6023 // Structures with flexible arrays have variable length, so really 6024 // fail the size test above. 6025 const RecordDecl *RD = RT->getDecl(); 6026 if (RD->hasFlexibleArrayMember()) 6027 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6028 6029 // The structure is passed as an unextended integer, a float, or a double. 6030 llvm::Type *PassTy; 6031 if (isFPArgumentType(SingleElementTy)) { 6032 assert(Size == 32 || Size == 64); 6033 if (Size == 32) 6034 PassTy = llvm::Type::getFloatTy(getVMContext()); 6035 else 6036 PassTy = llvm::Type::getDoubleTy(getVMContext()); 6037 } else 6038 PassTy = llvm::IntegerType::get(getVMContext(), Size); 6039 return ABIArgInfo::getDirect(PassTy); 6040 } 6041 6042 // Non-structure compounds are passed indirectly. 6043 if (isCompoundType(Ty)) 6044 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6045 6046 return ABIArgInfo::getDirect(nullptr); 6047 } 6048 6049 //===----------------------------------------------------------------------===// 6050 // MSP430 ABI Implementation 6051 //===----------------------------------------------------------------------===// 6052 6053 namespace { 6054 6055 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 6056 public: 6057 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 6058 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 6059 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6060 CodeGen::CodeGenModule &M) const override; 6061 }; 6062 6063 } 6064 6065 void MSP430TargetCodeGenInfo::setTargetAttributes(const Decl *D, 6066 llvm::GlobalValue *GV, 6067 CodeGen::CodeGenModule &M) const { 6068 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 6069 if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) { 6070 // Handle 'interrupt' attribute: 6071 llvm::Function *F = cast<llvm::Function>(GV); 6072 6073 // Step 1: Set ISR calling convention. 6074 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 6075 6076 // Step 2: Add attributes goodness. 6077 F->addFnAttr(llvm::Attribute::NoInline); 6078 6079 // Step 3: Emit ISR vector alias. 6080 unsigned Num = attr->getNumber() / 2; 6081 llvm::GlobalAlias::create(llvm::Function::ExternalLinkage, 6082 "__isr_" + Twine(Num), F); 6083 } 6084 } 6085 } 6086 6087 //===----------------------------------------------------------------------===// 6088 // MIPS ABI Implementation. This works for both little-endian and 6089 // big-endian variants. 6090 //===----------------------------------------------------------------------===// 6091 6092 namespace { 6093 class MipsABIInfo : public ABIInfo { 6094 bool IsO32; 6095 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 6096 void CoerceToIntArgs(uint64_t TySize, 6097 SmallVectorImpl<llvm::Type *> &ArgList) const; 6098 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 6099 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 6100 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 6101 public: 6102 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 6103 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 6104 StackAlignInBytes(IsO32 ? 8 : 16) {} 6105 6106 ABIArgInfo classifyReturnType(QualType RetTy) const; 6107 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 6108 void computeInfo(CGFunctionInfo &FI) const override; 6109 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6110 QualType Ty) const override; 6111 bool shouldSignExtUnsignedType(QualType Ty) const override; 6112 }; 6113 6114 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 6115 unsigned SizeOfUnwindException; 6116 public: 6117 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 6118 : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)), 6119 SizeOfUnwindException(IsO32 ? 24 : 32) {} 6120 6121 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 6122 return 29; 6123 } 6124 6125 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6126 CodeGen::CodeGenModule &CGM) const override { 6127 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6128 if (!FD) return; 6129 llvm::Function *Fn = cast<llvm::Function>(GV); 6130 if (FD->hasAttr<Mips16Attr>()) { 6131 Fn->addFnAttr("mips16"); 6132 } 6133 else if (FD->hasAttr<NoMips16Attr>()) { 6134 Fn->addFnAttr("nomips16"); 6135 } 6136 6137 const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>(); 6138 if (!Attr) 6139 return; 6140 6141 const char *Kind; 6142 switch (Attr->getInterrupt()) { 6143 case MipsInterruptAttr::eic: Kind = "eic"; break; 6144 case MipsInterruptAttr::sw0: Kind = "sw0"; break; 6145 case MipsInterruptAttr::sw1: Kind = "sw1"; break; 6146 case MipsInterruptAttr::hw0: Kind = "hw0"; break; 6147 case MipsInterruptAttr::hw1: Kind = "hw1"; break; 6148 case MipsInterruptAttr::hw2: Kind = "hw2"; break; 6149 case MipsInterruptAttr::hw3: Kind = "hw3"; break; 6150 case MipsInterruptAttr::hw4: Kind = "hw4"; break; 6151 case MipsInterruptAttr::hw5: Kind = "hw5"; break; 6152 } 6153 6154 Fn->addFnAttr("interrupt", Kind); 6155 6156 } 6157 6158 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6159 llvm::Value *Address) const override; 6160 6161 unsigned getSizeOfUnwindException() const override { 6162 return SizeOfUnwindException; 6163 } 6164 }; 6165 } 6166 6167 void MipsABIInfo::CoerceToIntArgs( 6168 uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const { 6169 llvm::IntegerType *IntTy = 6170 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 6171 6172 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 6173 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 6174 ArgList.push_back(IntTy); 6175 6176 // If necessary, add one more integer type to ArgList. 6177 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 6178 6179 if (R) 6180 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 6181 } 6182 6183 // In N32/64, an aligned double precision floating point field is passed in 6184 // a register. 6185 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 6186 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 6187 6188 if (IsO32) { 6189 CoerceToIntArgs(TySize, ArgList); 6190 return llvm::StructType::get(getVMContext(), ArgList); 6191 } 6192 6193 if (Ty->isComplexType()) 6194 return CGT.ConvertType(Ty); 6195 6196 const RecordType *RT = Ty->getAs<RecordType>(); 6197 6198 // Unions/vectors are passed in integer registers. 6199 if (!RT || !RT->isStructureOrClassType()) { 6200 CoerceToIntArgs(TySize, ArgList); 6201 return llvm::StructType::get(getVMContext(), ArgList); 6202 } 6203 6204 const RecordDecl *RD = RT->getDecl(); 6205 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 6206 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 6207 6208 uint64_t LastOffset = 0; 6209 unsigned idx = 0; 6210 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 6211 6212 // Iterate over fields in the struct/class and check if there are any aligned 6213 // double fields. 6214 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 6215 i != e; ++i, ++idx) { 6216 const QualType Ty = i->getType(); 6217 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 6218 6219 if (!BT || BT->getKind() != BuiltinType::Double) 6220 continue; 6221 6222 uint64_t Offset = Layout.getFieldOffset(idx); 6223 if (Offset % 64) // Ignore doubles that are not aligned. 6224 continue; 6225 6226 // Add ((Offset - LastOffset) / 64) args of type i64. 6227 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 6228 ArgList.push_back(I64); 6229 6230 // Add double type. 6231 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 6232 LastOffset = Offset + 64; 6233 } 6234 6235 CoerceToIntArgs(TySize - LastOffset, IntArgList); 6236 ArgList.append(IntArgList.begin(), IntArgList.end()); 6237 6238 return llvm::StructType::get(getVMContext(), ArgList); 6239 } 6240 6241 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 6242 uint64_t Offset) const { 6243 if (OrigOffset + MinABIStackAlignInBytes > Offset) 6244 return nullptr; 6245 6246 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 6247 } 6248 6249 ABIArgInfo 6250 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 6251 Ty = useFirstFieldIfTransparentUnion(Ty); 6252 6253 uint64_t OrigOffset = Offset; 6254 uint64_t TySize = getContext().getTypeSize(Ty); 6255 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 6256 6257 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 6258 (uint64_t)StackAlignInBytes); 6259 unsigned CurrOffset = llvm::alignTo(Offset, Align); 6260 Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8; 6261 6262 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 6263 // Ignore empty aggregates. 6264 if (TySize == 0) 6265 return ABIArgInfo::getIgnore(); 6266 6267 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 6268 Offset = OrigOffset + MinABIStackAlignInBytes; 6269 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6270 } 6271 6272 // If we have reached here, aggregates are passed directly by coercing to 6273 // another structure type. Padding is inserted if the offset of the 6274 // aggregate is unaligned. 6275 ABIArgInfo ArgInfo = 6276 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 6277 getPaddingType(OrigOffset, CurrOffset)); 6278 ArgInfo.setInReg(true); 6279 return ArgInfo; 6280 } 6281 6282 // Treat an enum type as its underlying type. 6283 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6284 Ty = EnumTy->getDecl()->getIntegerType(); 6285 6286 // All integral types are promoted to the GPR width. 6287 if (Ty->isIntegralOrEnumerationType()) 6288 return ABIArgInfo::getExtend(); 6289 6290 return ABIArgInfo::getDirect( 6291 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 6292 } 6293 6294 llvm::Type* 6295 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 6296 const RecordType *RT = RetTy->getAs<RecordType>(); 6297 SmallVector<llvm::Type*, 8> RTList; 6298 6299 if (RT && RT->isStructureOrClassType()) { 6300 const RecordDecl *RD = RT->getDecl(); 6301 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 6302 unsigned FieldCnt = Layout.getFieldCount(); 6303 6304 // N32/64 returns struct/classes in floating point registers if the 6305 // following conditions are met: 6306 // 1. The size of the struct/class is no larger than 128-bit. 6307 // 2. The struct/class has one or two fields all of which are floating 6308 // point types. 6309 // 3. The offset of the first field is zero (this follows what gcc does). 6310 // 6311 // Any other composite results are returned in integer registers. 6312 // 6313 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 6314 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 6315 for (; b != e; ++b) { 6316 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 6317 6318 if (!BT || !BT->isFloatingPoint()) 6319 break; 6320 6321 RTList.push_back(CGT.ConvertType(b->getType())); 6322 } 6323 6324 if (b == e) 6325 return llvm::StructType::get(getVMContext(), RTList, 6326 RD->hasAttr<PackedAttr>()); 6327 6328 RTList.clear(); 6329 } 6330 } 6331 6332 CoerceToIntArgs(Size, RTList); 6333 return llvm::StructType::get(getVMContext(), RTList); 6334 } 6335 6336 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 6337 uint64_t Size = getContext().getTypeSize(RetTy); 6338 6339 if (RetTy->isVoidType()) 6340 return ABIArgInfo::getIgnore(); 6341 6342 // O32 doesn't treat zero-sized structs differently from other structs. 6343 // However, N32/N64 ignores zero sized return values. 6344 if (!IsO32 && Size == 0) 6345 return ABIArgInfo::getIgnore(); 6346 6347 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 6348 if (Size <= 128) { 6349 if (RetTy->isAnyComplexType()) 6350 return ABIArgInfo::getDirect(); 6351 6352 // O32 returns integer vectors in registers and N32/N64 returns all small 6353 // aggregates in registers. 6354 if (!IsO32 || 6355 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { 6356 ABIArgInfo ArgInfo = 6357 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 6358 ArgInfo.setInReg(true); 6359 return ArgInfo; 6360 } 6361 } 6362 6363 return getNaturalAlignIndirect(RetTy); 6364 } 6365 6366 // Treat an enum type as its underlying type. 6367 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6368 RetTy = EnumTy->getDecl()->getIntegerType(); 6369 6370 return (RetTy->isPromotableIntegerType() ? 6371 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 6372 } 6373 6374 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 6375 ABIArgInfo &RetInfo = FI.getReturnInfo(); 6376 if (!getCXXABI().classifyReturnType(FI)) 6377 RetInfo = classifyReturnType(FI.getReturnType()); 6378 6379 // Check if a pointer to an aggregate is passed as a hidden argument. 6380 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 6381 6382 for (auto &I : FI.arguments()) 6383 I.info = classifyArgumentType(I.type, Offset); 6384 } 6385 6386 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6387 QualType OrigTy) const { 6388 QualType Ty = OrigTy; 6389 6390 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. 6391 // Pointers are also promoted in the same way but this only matters for N32. 6392 unsigned SlotSizeInBits = IsO32 ? 32 : 64; 6393 unsigned PtrWidth = getTarget().getPointerWidth(0); 6394 bool DidPromote = false; 6395 if ((Ty->isIntegerType() && 6396 getContext().getIntWidth(Ty) < SlotSizeInBits) || 6397 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { 6398 DidPromote = true; 6399 Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits, 6400 Ty->isSignedIntegerType()); 6401 } 6402 6403 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6404 6405 // The alignment of things in the argument area is never larger than 6406 // StackAlignInBytes. 6407 TyInfo.second = 6408 std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes)); 6409 6410 // MinABIStackAlignInBytes is the size of argument slots on the stack. 6411 CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes); 6412 6413 Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 6414 TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true); 6415 6416 6417 // If there was a promotion, "unpromote" into a temporary. 6418 // TODO: can we just use a pointer into a subset of the original slot? 6419 if (DidPromote) { 6420 Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp"); 6421 llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr); 6422 6423 // Truncate down to the right width. 6424 llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType() 6425 : CGF.IntPtrTy); 6426 llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy); 6427 if (OrigTy->isPointerType()) 6428 V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType()); 6429 6430 CGF.Builder.CreateStore(V, Temp); 6431 Addr = Temp; 6432 } 6433 6434 return Addr; 6435 } 6436 6437 bool MipsABIInfo::shouldSignExtUnsignedType(QualType Ty) const { 6438 int TySize = getContext().getTypeSize(Ty); 6439 6440 // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. 6441 if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 6442 return true; 6443 6444 return false; 6445 } 6446 6447 bool 6448 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6449 llvm::Value *Address) const { 6450 // This information comes from gcc's implementation, which seems to 6451 // as canonical as it gets. 6452 6453 // Everything on MIPS is 4 bytes. Double-precision FP registers 6454 // are aliased to pairs of single-precision FP registers. 6455 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 6456 6457 // 0-31 are the general purpose registers, $0 - $31. 6458 // 32-63 are the floating-point registers, $f0 - $f31. 6459 // 64 and 65 are the multiply/divide registers, $hi and $lo. 6460 // 66 is the (notional, I think) register for signal-handler return. 6461 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 6462 6463 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 6464 // They are one bit wide and ignored here. 6465 6466 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 6467 // (coprocessor 1 is the FP unit) 6468 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 6469 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 6470 // 176-181 are the DSP accumulator registers. 6471 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 6472 return false; 6473 } 6474 6475 //===----------------------------------------------------------------------===// 6476 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 6477 // Currently subclassed only to implement custom OpenCL C function attribute 6478 // handling. 6479 //===----------------------------------------------------------------------===// 6480 6481 namespace { 6482 6483 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 6484 public: 6485 TCETargetCodeGenInfo(CodeGenTypes &CGT) 6486 : DefaultTargetCodeGenInfo(CGT) {} 6487 6488 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6489 CodeGen::CodeGenModule &M) const override; 6490 }; 6491 6492 void TCETargetCodeGenInfo::setTargetAttributes( 6493 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 6494 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6495 if (!FD) return; 6496 6497 llvm::Function *F = cast<llvm::Function>(GV); 6498 6499 if (M.getLangOpts().OpenCL) { 6500 if (FD->hasAttr<OpenCLKernelAttr>()) { 6501 // OpenCL C Kernel functions are not subject to inlining 6502 F->addFnAttr(llvm::Attribute::NoInline); 6503 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 6504 if (Attr) { 6505 // Convert the reqd_work_group_size() attributes to metadata. 6506 llvm::LLVMContext &Context = F->getContext(); 6507 llvm::NamedMDNode *OpenCLMetadata = 6508 M.getModule().getOrInsertNamedMetadata( 6509 "opencl.kernel_wg_size_info"); 6510 6511 SmallVector<llvm::Metadata *, 5> Operands; 6512 Operands.push_back(llvm::ConstantAsMetadata::get(F)); 6513 6514 Operands.push_back( 6515 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 6516 M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); 6517 Operands.push_back( 6518 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 6519 M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); 6520 Operands.push_back( 6521 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 6522 M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); 6523 6524 // Add a boolean constant operand for "required" (true) or "hint" 6525 // (false) for implementing the work_group_size_hint attr later. 6526 // Currently always true as the hint is not yet implemented. 6527 Operands.push_back( 6528 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); 6529 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 6530 } 6531 } 6532 } 6533 } 6534 6535 } 6536 6537 //===----------------------------------------------------------------------===// 6538 // Hexagon ABI Implementation 6539 //===----------------------------------------------------------------------===// 6540 6541 namespace { 6542 6543 class HexagonABIInfo : public ABIInfo { 6544 6545 6546 public: 6547 HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 6548 6549 private: 6550 6551 ABIArgInfo classifyReturnType(QualType RetTy) const; 6552 ABIArgInfo classifyArgumentType(QualType RetTy) const; 6553 6554 void computeInfo(CGFunctionInfo &FI) const override; 6555 6556 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6557 QualType Ty) const override; 6558 }; 6559 6560 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 6561 public: 6562 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 6563 :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {} 6564 6565 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 6566 return 29; 6567 } 6568 }; 6569 6570 } 6571 6572 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 6573 if (!getCXXABI().classifyReturnType(FI)) 6574 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6575 for (auto &I : FI.arguments()) 6576 I.info = classifyArgumentType(I.type); 6577 } 6578 6579 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const { 6580 if (!isAggregateTypeForABI(Ty)) { 6581 // Treat an enum type as its underlying type. 6582 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6583 Ty = EnumTy->getDecl()->getIntegerType(); 6584 6585 return (Ty->isPromotableIntegerType() ? 6586 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 6587 } 6588 6589 // Ignore empty records. 6590 if (isEmptyRecord(getContext(), Ty, true)) 6591 return ABIArgInfo::getIgnore(); 6592 6593 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 6594 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6595 6596 uint64_t Size = getContext().getTypeSize(Ty); 6597 if (Size > 64) 6598 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 6599 // Pass in the smallest viable integer type. 6600 else if (Size > 32) 6601 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 6602 else if (Size > 16) 6603 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6604 else if (Size > 8) 6605 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6606 else 6607 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6608 } 6609 6610 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 6611 if (RetTy->isVoidType()) 6612 return ABIArgInfo::getIgnore(); 6613 6614 // Large vector types should be returned via memory. 6615 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64) 6616 return getNaturalAlignIndirect(RetTy); 6617 6618 if (!isAggregateTypeForABI(RetTy)) { 6619 // Treat an enum type as its underlying type. 6620 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6621 RetTy = EnumTy->getDecl()->getIntegerType(); 6622 6623 return (RetTy->isPromotableIntegerType() ? 6624 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 6625 } 6626 6627 if (isEmptyRecord(getContext(), RetTy, true)) 6628 return ABIArgInfo::getIgnore(); 6629 6630 // Aggregates <= 8 bytes are returned in r0; other aggregates 6631 // are returned indirectly. 6632 uint64_t Size = getContext().getTypeSize(RetTy); 6633 if (Size <= 64) { 6634 // Return in the smallest viable integer type. 6635 if (Size <= 8) 6636 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6637 if (Size <= 16) 6638 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6639 if (Size <= 32) 6640 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6641 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 6642 } 6643 6644 return getNaturalAlignIndirect(RetTy, /*ByVal=*/true); 6645 } 6646 6647 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6648 QualType Ty) const { 6649 // FIXME: Someone needs to audit that this handle alignment correctly. 6650 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 6651 getContext().getTypeInfoInChars(Ty), 6652 CharUnits::fromQuantity(4), 6653 /*AllowHigherAlign*/ true); 6654 } 6655 6656 //===----------------------------------------------------------------------===// 6657 // Lanai ABI Implementation 6658 //===----------------------------------------------------------------------===// 6659 6660 namespace { 6661 class LanaiABIInfo : public DefaultABIInfo { 6662 public: 6663 LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 6664 6665 bool shouldUseInReg(QualType Ty, CCState &State) const; 6666 6667 void computeInfo(CGFunctionInfo &FI) const override { 6668 CCState State(FI.getCallingConvention()); 6669 // Lanai uses 4 registers to pass arguments unless the function has the 6670 // regparm attribute set. 6671 if (FI.getHasRegParm()) { 6672 State.FreeRegs = FI.getRegParm(); 6673 } else { 6674 State.FreeRegs = 4; 6675 } 6676 6677 if (!getCXXABI().classifyReturnType(FI)) 6678 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6679 for (auto &I : FI.arguments()) 6680 I.info = classifyArgumentType(I.type, State); 6681 } 6682 6683 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 6684 }; 6685 } // end anonymous namespace 6686 6687 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const { 6688 unsigned Size = getContext().getTypeSize(Ty); 6689 unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U; 6690 6691 if (SizeInRegs == 0) 6692 return false; 6693 6694 if (SizeInRegs > State.FreeRegs) { 6695 State.FreeRegs = 0; 6696 return false; 6697 } 6698 6699 State.FreeRegs -= SizeInRegs; 6700 6701 return true; 6702 } 6703 6704 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty, 6705 CCState &State) const { 6706 if (isAggregateTypeForABI(Ty)) 6707 return getNaturalAlignIndirect(Ty); 6708 6709 // Treat an enum type as its underlying type. 6710 if (const auto *EnumTy = Ty->getAs<EnumType>()) 6711 Ty = EnumTy->getDecl()->getIntegerType(); 6712 6713 if (shouldUseInReg(Ty, State)) 6714 return ABIArgInfo::getDirectInReg(); 6715 6716 if (Ty->isPromotableIntegerType()) 6717 return ABIArgInfo::getExtend(); 6718 6719 return ABIArgInfo::getDirect(); 6720 } 6721 6722 namespace { 6723 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo { 6724 public: 6725 LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 6726 : TargetCodeGenInfo(new LanaiABIInfo(CGT)) {} 6727 }; 6728 } 6729 6730 //===----------------------------------------------------------------------===// 6731 // AMDGPU ABI Implementation 6732 //===----------------------------------------------------------------------===// 6733 6734 namespace { 6735 6736 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { 6737 public: 6738 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) 6739 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 6740 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6741 CodeGen::CodeGenModule &M) const override; 6742 }; 6743 6744 } 6745 6746 void AMDGPUTargetCodeGenInfo::setTargetAttributes( 6747 const Decl *D, 6748 llvm::GlobalValue *GV, 6749 CodeGen::CodeGenModule &M) const { 6750 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6751 if (!FD) 6752 return; 6753 6754 if (const auto Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { 6755 llvm::Function *F = cast<llvm::Function>(GV); 6756 uint32_t NumVGPR = Attr->getNumVGPR(); 6757 if (NumVGPR != 0) 6758 F->addFnAttr("amdgpu_num_vgpr", llvm::utostr(NumVGPR)); 6759 } 6760 6761 if (const auto Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { 6762 llvm::Function *F = cast<llvm::Function>(GV); 6763 unsigned NumSGPR = Attr->getNumSGPR(); 6764 if (NumSGPR != 0) 6765 F->addFnAttr("amdgpu_num_sgpr", llvm::utostr(NumSGPR)); 6766 } 6767 } 6768 6769 6770 //===----------------------------------------------------------------------===// 6771 // SPARC v9 ABI Implementation. 6772 // Based on the SPARC Compliance Definition version 2.4.1. 6773 // 6774 // Function arguments a mapped to a nominal "parameter array" and promoted to 6775 // registers depending on their type. Each argument occupies 8 or 16 bytes in 6776 // the array, structs larger than 16 bytes are passed indirectly. 6777 // 6778 // One case requires special care: 6779 // 6780 // struct mixed { 6781 // int i; 6782 // float f; 6783 // }; 6784 // 6785 // When a struct mixed is passed by value, it only occupies 8 bytes in the 6786 // parameter array, but the int is passed in an integer register, and the float 6787 // is passed in a floating point register. This is represented as two arguments 6788 // with the LLVM IR inreg attribute: 6789 // 6790 // declare void f(i32 inreg %i, float inreg %f) 6791 // 6792 // The code generator will only allocate 4 bytes from the parameter array for 6793 // the inreg arguments. All other arguments are allocated a multiple of 8 6794 // bytes. 6795 // 6796 namespace { 6797 class SparcV9ABIInfo : public ABIInfo { 6798 public: 6799 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 6800 6801 private: 6802 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 6803 void computeInfo(CGFunctionInfo &FI) const override; 6804 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6805 QualType Ty) const override; 6806 6807 // Coercion type builder for structs passed in registers. The coercion type 6808 // serves two purposes: 6809 // 6810 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 6811 // in registers. 6812 // 2. Expose aligned floating point elements as first-level elements, so the 6813 // code generator knows to pass them in floating point registers. 6814 // 6815 // We also compute the InReg flag which indicates that the struct contains 6816 // aligned 32-bit floats. 6817 // 6818 struct CoerceBuilder { 6819 llvm::LLVMContext &Context; 6820 const llvm::DataLayout &DL; 6821 SmallVector<llvm::Type*, 8> Elems; 6822 uint64_t Size; 6823 bool InReg; 6824 6825 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 6826 : Context(c), DL(dl), Size(0), InReg(false) {} 6827 6828 // Pad Elems with integers until Size is ToSize. 6829 void pad(uint64_t ToSize) { 6830 assert(ToSize >= Size && "Cannot remove elements"); 6831 if (ToSize == Size) 6832 return; 6833 6834 // Finish the current 64-bit word. 6835 uint64_t Aligned = llvm::alignTo(Size, 64); 6836 if (Aligned > Size && Aligned <= ToSize) { 6837 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 6838 Size = Aligned; 6839 } 6840 6841 // Add whole 64-bit words. 6842 while (Size + 64 <= ToSize) { 6843 Elems.push_back(llvm::Type::getInt64Ty(Context)); 6844 Size += 64; 6845 } 6846 6847 // Final in-word padding. 6848 if (Size < ToSize) { 6849 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 6850 Size = ToSize; 6851 } 6852 } 6853 6854 // Add a floating point element at Offset. 6855 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 6856 // Unaligned floats are treated as integers. 6857 if (Offset % Bits) 6858 return; 6859 // The InReg flag is only required if there are any floats < 64 bits. 6860 if (Bits < 64) 6861 InReg = true; 6862 pad(Offset); 6863 Elems.push_back(Ty); 6864 Size = Offset + Bits; 6865 } 6866 6867 // Add a struct type to the coercion type, starting at Offset (in bits). 6868 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 6869 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 6870 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 6871 llvm::Type *ElemTy = StrTy->getElementType(i); 6872 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 6873 switch (ElemTy->getTypeID()) { 6874 case llvm::Type::StructTyID: 6875 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 6876 break; 6877 case llvm::Type::FloatTyID: 6878 addFloat(ElemOffset, ElemTy, 32); 6879 break; 6880 case llvm::Type::DoubleTyID: 6881 addFloat(ElemOffset, ElemTy, 64); 6882 break; 6883 case llvm::Type::FP128TyID: 6884 addFloat(ElemOffset, ElemTy, 128); 6885 break; 6886 case llvm::Type::PointerTyID: 6887 if (ElemOffset % 64 == 0) { 6888 pad(ElemOffset); 6889 Elems.push_back(ElemTy); 6890 Size += 64; 6891 } 6892 break; 6893 default: 6894 break; 6895 } 6896 } 6897 } 6898 6899 // Check if Ty is a usable substitute for the coercion type. 6900 bool isUsableType(llvm::StructType *Ty) const { 6901 return llvm::makeArrayRef(Elems) == Ty->elements(); 6902 } 6903 6904 // Get the coercion type as a literal struct type. 6905 llvm::Type *getType() const { 6906 if (Elems.size() == 1) 6907 return Elems.front(); 6908 else 6909 return llvm::StructType::get(Context, Elems); 6910 } 6911 }; 6912 }; 6913 } // end anonymous namespace 6914 6915 ABIArgInfo 6916 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 6917 if (Ty->isVoidType()) 6918 return ABIArgInfo::getIgnore(); 6919 6920 uint64_t Size = getContext().getTypeSize(Ty); 6921 6922 // Anything too big to fit in registers is passed with an explicit indirect 6923 // pointer / sret pointer. 6924 if (Size > SizeLimit) 6925 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6926 6927 // Treat an enum type as its underlying type. 6928 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6929 Ty = EnumTy->getDecl()->getIntegerType(); 6930 6931 // Integer types smaller than a register are extended. 6932 if (Size < 64 && Ty->isIntegerType()) 6933 return ABIArgInfo::getExtend(); 6934 6935 // Other non-aggregates go in registers. 6936 if (!isAggregateTypeForABI(Ty)) 6937 return ABIArgInfo::getDirect(); 6938 6939 // If a C++ object has either a non-trivial copy constructor or a non-trivial 6940 // destructor, it is passed with an explicit indirect pointer / sret pointer. 6941 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 6942 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6943 6944 // This is a small aggregate type that should be passed in registers. 6945 // Build a coercion type from the LLVM struct type. 6946 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 6947 if (!StrTy) 6948 return ABIArgInfo::getDirect(); 6949 6950 CoerceBuilder CB(getVMContext(), getDataLayout()); 6951 CB.addStruct(0, StrTy); 6952 CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64)); 6953 6954 // Try to use the original type for coercion. 6955 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 6956 6957 if (CB.InReg) 6958 return ABIArgInfo::getDirectInReg(CoerceTy); 6959 else 6960 return ABIArgInfo::getDirect(CoerceTy); 6961 } 6962 6963 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6964 QualType Ty) const { 6965 ABIArgInfo AI = classifyType(Ty, 16 * 8); 6966 llvm::Type *ArgTy = CGT.ConvertType(Ty); 6967 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 6968 AI.setCoerceToType(ArgTy); 6969 6970 CharUnits SlotSize = CharUnits::fromQuantity(8); 6971 6972 CGBuilderTy &Builder = CGF.Builder; 6973 Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 6974 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 6975 6976 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 6977 6978 Address ArgAddr = Address::invalid(); 6979 CharUnits Stride; 6980 switch (AI.getKind()) { 6981 case ABIArgInfo::Expand: 6982 case ABIArgInfo::CoerceAndExpand: 6983 case ABIArgInfo::InAlloca: 6984 llvm_unreachable("Unsupported ABI kind for va_arg"); 6985 6986 case ABIArgInfo::Extend: { 6987 Stride = SlotSize; 6988 CharUnits Offset = SlotSize - TypeInfo.first; 6989 ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend"); 6990 break; 6991 } 6992 6993 case ABIArgInfo::Direct: { 6994 auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 6995 Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize); 6996 ArgAddr = Addr; 6997 break; 6998 } 6999 7000 case ABIArgInfo::Indirect: 7001 Stride = SlotSize; 7002 ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect"); 7003 ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), 7004 TypeInfo.second); 7005 break; 7006 7007 case ABIArgInfo::Ignore: 7008 return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second); 7009 } 7010 7011 // Update VAList. 7012 llvm::Value *NextPtr = 7013 Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), Stride, "ap.next"); 7014 Builder.CreateStore(NextPtr, VAListAddr); 7015 7016 return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr"); 7017 } 7018 7019 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 7020 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 7021 for (auto &I : FI.arguments()) 7022 I.info = classifyType(I.type, 16 * 8); 7023 } 7024 7025 namespace { 7026 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 7027 public: 7028 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 7029 : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {} 7030 7031 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 7032 return 14; 7033 } 7034 7035 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7036 llvm::Value *Address) const override; 7037 }; 7038 } // end anonymous namespace 7039 7040 bool 7041 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7042 llvm::Value *Address) const { 7043 // This is calculated from the LLVM and GCC tables and verified 7044 // against gcc output. AFAIK all ABIs use the same encoding. 7045 7046 CodeGen::CGBuilderTy &Builder = CGF.Builder; 7047 7048 llvm::IntegerType *i8 = CGF.Int8Ty; 7049 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 7050 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 7051 7052 // 0-31: the 8-byte general-purpose registers 7053 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 7054 7055 // 32-63: f0-31, the 4-byte floating-point registers 7056 AssignToArrayRange(Builder, Address, Four8, 32, 63); 7057 7058 // Y = 64 7059 // PSR = 65 7060 // WIM = 66 7061 // TBR = 67 7062 // PC = 68 7063 // NPC = 69 7064 // FSR = 70 7065 // CSR = 71 7066 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 7067 7068 // 72-87: d0-15, the 8-byte floating-point registers 7069 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 7070 7071 return false; 7072 } 7073 7074 7075 //===----------------------------------------------------------------------===// 7076 // XCore ABI Implementation 7077 //===----------------------------------------------------------------------===// 7078 7079 namespace { 7080 7081 /// A SmallStringEnc instance is used to build up the TypeString by passing 7082 /// it by reference between functions that append to it. 7083 typedef llvm::SmallString<128> SmallStringEnc; 7084 7085 /// TypeStringCache caches the meta encodings of Types. 7086 /// 7087 /// The reason for caching TypeStrings is two fold: 7088 /// 1. To cache a type's encoding for later uses; 7089 /// 2. As a means to break recursive member type inclusion. 7090 /// 7091 /// A cache Entry can have a Status of: 7092 /// NonRecursive: The type encoding is not recursive; 7093 /// Recursive: The type encoding is recursive; 7094 /// Incomplete: An incomplete TypeString; 7095 /// IncompleteUsed: An incomplete TypeString that has been used in a 7096 /// Recursive type encoding. 7097 /// 7098 /// A NonRecursive entry will have all of its sub-members expanded as fully 7099 /// as possible. Whilst it may contain types which are recursive, the type 7100 /// itself is not recursive and thus its encoding may be safely used whenever 7101 /// the type is encountered. 7102 /// 7103 /// A Recursive entry will have all of its sub-members expanded as fully as 7104 /// possible. The type itself is recursive and it may contain other types which 7105 /// are recursive. The Recursive encoding must not be used during the expansion 7106 /// of a recursive type's recursive branch. For simplicity the code uses 7107 /// IncompleteCount to reject all usage of Recursive encodings for member types. 7108 /// 7109 /// An Incomplete entry is always a RecordType and only encodes its 7110 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 7111 /// are placed into the cache during type expansion as a means to identify and 7112 /// handle recursive inclusion of types as sub-members. If there is recursion 7113 /// the entry becomes IncompleteUsed. 7114 /// 7115 /// During the expansion of a RecordType's members: 7116 /// 7117 /// If the cache contains a NonRecursive encoding for the member type, the 7118 /// cached encoding is used; 7119 /// 7120 /// If the cache contains a Recursive encoding for the member type, the 7121 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 7122 /// 7123 /// If the member is a RecordType, an Incomplete encoding is placed into the 7124 /// cache to break potential recursive inclusion of itself as a sub-member; 7125 /// 7126 /// Once a member RecordType has been expanded, its temporary incomplete 7127 /// entry is removed from the cache. If a Recursive encoding was swapped out 7128 /// it is swapped back in; 7129 /// 7130 /// If an incomplete entry is used to expand a sub-member, the incomplete 7131 /// entry is marked as IncompleteUsed. The cache keeps count of how many 7132 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 7133 /// 7134 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 7135 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 7136 /// Else the member is part of a recursive type and thus the recursion has 7137 /// been exited too soon for the encoding to be correct for the member. 7138 /// 7139 class TypeStringCache { 7140 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 7141 struct Entry { 7142 std::string Str; // The encoded TypeString for the type. 7143 enum Status State; // Information about the encoding in 'Str'. 7144 std::string Swapped; // A temporary place holder for a Recursive encoding 7145 // during the expansion of RecordType's members. 7146 }; 7147 std::map<const IdentifierInfo *, struct Entry> Map; 7148 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 7149 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 7150 public: 7151 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {} 7152 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 7153 bool removeIncomplete(const IdentifierInfo *ID); 7154 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 7155 bool IsRecursive); 7156 StringRef lookupStr(const IdentifierInfo *ID); 7157 }; 7158 7159 /// TypeString encodings for enum & union fields must be order. 7160 /// FieldEncoding is a helper for this ordering process. 7161 class FieldEncoding { 7162 bool HasName; 7163 std::string Enc; 7164 public: 7165 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {} 7166 StringRef str() {return Enc.c_str();} 7167 bool operator<(const FieldEncoding &rhs) const { 7168 if (HasName != rhs.HasName) return HasName; 7169 return Enc < rhs.Enc; 7170 } 7171 }; 7172 7173 class XCoreABIInfo : public DefaultABIInfo { 7174 public: 7175 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7176 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7177 QualType Ty) const override; 7178 }; 7179 7180 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 7181 mutable TypeStringCache TSC; 7182 public: 7183 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 7184 :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {} 7185 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 7186 CodeGen::CodeGenModule &M) const override; 7187 }; 7188 7189 } // End anonymous namespace. 7190 7191 // TODO: this implementation is likely now redundant with the default 7192 // EmitVAArg. 7193 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7194 QualType Ty) const { 7195 CGBuilderTy &Builder = CGF.Builder; 7196 7197 // Get the VAList. 7198 CharUnits SlotSize = CharUnits::fromQuantity(4); 7199 Address AP(Builder.CreateLoad(VAListAddr), SlotSize); 7200 7201 // Handle the argument. 7202 ABIArgInfo AI = classifyArgumentType(Ty); 7203 CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty); 7204 llvm::Type *ArgTy = CGT.ConvertType(Ty); 7205 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 7206 AI.setCoerceToType(ArgTy); 7207 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 7208 7209 Address Val = Address::invalid(); 7210 CharUnits ArgSize = CharUnits::Zero(); 7211 switch (AI.getKind()) { 7212 case ABIArgInfo::Expand: 7213 case ABIArgInfo::CoerceAndExpand: 7214 case ABIArgInfo::InAlloca: 7215 llvm_unreachable("Unsupported ABI kind for va_arg"); 7216 case ABIArgInfo::Ignore: 7217 Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign); 7218 ArgSize = CharUnits::Zero(); 7219 break; 7220 case ABIArgInfo::Extend: 7221 case ABIArgInfo::Direct: 7222 Val = Builder.CreateBitCast(AP, ArgPtrTy); 7223 ArgSize = CharUnits::fromQuantity( 7224 getDataLayout().getTypeAllocSize(AI.getCoerceToType())); 7225 ArgSize = ArgSize.alignTo(SlotSize); 7226 break; 7227 case ABIArgInfo::Indirect: 7228 Val = Builder.CreateElementBitCast(AP, ArgPtrTy); 7229 Val = Address(Builder.CreateLoad(Val), TypeAlign); 7230 ArgSize = SlotSize; 7231 break; 7232 } 7233 7234 // Increment the VAList. 7235 if (!ArgSize.isZero()) { 7236 llvm::Value *APN = 7237 Builder.CreateConstInBoundsByteGEP(AP.getPointer(), ArgSize); 7238 Builder.CreateStore(APN, VAListAddr); 7239 } 7240 7241 return Val; 7242 } 7243 7244 /// During the expansion of a RecordType, an incomplete TypeString is placed 7245 /// into the cache as a means to identify and break recursion. 7246 /// If there is a Recursive encoding in the cache, it is swapped out and will 7247 /// be reinserted by removeIncomplete(). 7248 /// All other types of encoding should have been used rather than arriving here. 7249 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 7250 std::string StubEnc) { 7251 if (!ID) 7252 return; 7253 Entry &E = Map[ID]; 7254 assert( (E.Str.empty() || E.State == Recursive) && 7255 "Incorrectly use of addIncomplete"); 7256 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 7257 E.Swapped.swap(E.Str); // swap out the Recursive 7258 E.Str.swap(StubEnc); 7259 E.State = Incomplete; 7260 ++IncompleteCount; 7261 } 7262 7263 /// Once the RecordType has been expanded, the temporary incomplete TypeString 7264 /// must be removed from the cache. 7265 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 7266 /// Returns true if the RecordType was defined recursively. 7267 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 7268 if (!ID) 7269 return false; 7270 auto I = Map.find(ID); 7271 assert(I != Map.end() && "Entry not present"); 7272 Entry &E = I->second; 7273 assert( (E.State == Incomplete || 7274 E.State == IncompleteUsed) && 7275 "Entry must be an incomplete type"); 7276 bool IsRecursive = false; 7277 if (E.State == IncompleteUsed) { 7278 // We made use of our Incomplete encoding, thus we are recursive. 7279 IsRecursive = true; 7280 --IncompleteUsedCount; 7281 } 7282 if (E.Swapped.empty()) 7283 Map.erase(I); 7284 else { 7285 // Swap the Recursive back. 7286 E.Swapped.swap(E.Str); 7287 E.Swapped.clear(); 7288 E.State = Recursive; 7289 } 7290 --IncompleteCount; 7291 return IsRecursive; 7292 } 7293 7294 /// Add the encoded TypeString to the cache only if it is NonRecursive or 7295 /// Recursive (viz: all sub-members were expanded as fully as possible). 7296 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 7297 bool IsRecursive) { 7298 if (!ID || IncompleteUsedCount) 7299 return; // No key or it is is an incomplete sub-type so don't add. 7300 Entry &E = Map[ID]; 7301 if (IsRecursive && !E.Str.empty()) { 7302 assert(E.State==Recursive && E.Str.size() == Str.size() && 7303 "This is not the same Recursive entry"); 7304 // The parent container was not recursive after all, so we could have used 7305 // this Recursive sub-member entry after all, but we assumed the worse when 7306 // we started viz: IncompleteCount!=0. 7307 return; 7308 } 7309 assert(E.Str.empty() && "Entry already present"); 7310 E.Str = Str.str(); 7311 E.State = IsRecursive? Recursive : NonRecursive; 7312 } 7313 7314 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 7315 /// are recursively expanding a type (IncompleteCount != 0) and the cached 7316 /// encoding is Recursive, return an empty StringRef. 7317 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 7318 if (!ID) 7319 return StringRef(); // We have no key. 7320 auto I = Map.find(ID); 7321 if (I == Map.end()) 7322 return StringRef(); // We have no encoding. 7323 Entry &E = I->second; 7324 if (E.State == Recursive && IncompleteCount) 7325 return StringRef(); // We don't use Recursive encodings for member types. 7326 7327 if (E.State == Incomplete) { 7328 // The incomplete type is being used to break out of recursion. 7329 E.State = IncompleteUsed; 7330 ++IncompleteUsedCount; 7331 } 7332 return E.Str.c_str(); 7333 } 7334 7335 /// The XCore ABI includes a type information section that communicates symbol 7336 /// type information to the linker. The linker uses this information to verify 7337 /// safety/correctness of things such as array bound and pointers et al. 7338 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 7339 /// This type information (TypeString) is emitted into meta data for all global 7340 /// symbols: definitions, declarations, functions & variables. 7341 /// 7342 /// The TypeString carries type, qualifier, name, size & value details. 7343 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 7344 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf 7345 /// The output is tested by test/CodeGen/xcore-stringtype.c. 7346 /// 7347 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 7348 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC); 7349 7350 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 7351 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 7352 CodeGen::CodeGenModule &CGM) const { 7353 SmallStringEnc Enc; 7354 if (getTypeString(Enc, D, CGM, TSC)) { 7355 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 7356 llvm::SmallVector<llvm::Metadata *, 2> MDVals; 7357 MDVals.push_back(llvm::ConstantAsMetadata::get(GV)); 7358 MDVals.push_back(llvm::MDString::get(Ctx, Enc.str())); 7359 llvm::NamedMDNode *MD = 7360 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 7361 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 7362 } 7363 } 7364 7365 //===----------------------------------------------------------------------===// 7366 // SPIR ABI Implementation 7367 //===----------------------------------------------------------------------===// 7368 7369 namespace { 7370 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo { 7371 public: 7372 SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 7373 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 7374 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 7375 CodeGen::CodeGenModule &M) const override; 7376 }; 7377 } // End anonymous namespace. 7378 7379 /// Emit SPIR specific metadata: OpenCL and SPIR version. 7380 void SPIRTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 7381 CodeGen::CodeGenModule &CGM) const { 7382 assert(CGM.getLangOpts().OpenCL && "SPIR is only for OpenCL"); 7383 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 7384 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(Ctx); 7385 llvm::Module &M = CGM.getModule(); 7386 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 7387 // opencl.spir.version named metadata. 7388 llvm::Metadata *SPIRVerElts[] = { 7389 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int32Ty, 2)), 7390 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int32Ty, 0))}; 7391 llvm::NamedMDNode *SPIRVerMD = 7392 M.getOrInsertNamedMetadata("opencl.spir.version"); 7393 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 7394 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 7395 // opencl.ocl.version named metadata node. 7396 llvm::Metadata *OCLVerElts[] = { 7397 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 7398 Int32Ty, CGM.getLangOpts().OpenCLVersion / 100)), 7399 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 7400 Int32Ty, (CGM.getLangOpts().OpenCLVersion % 100) / 10))}; 7401 llvm::NamedMDNode *OCLVerMD = 7402 M.getOrInsertNamedMetadata("opencl.ocl.version"); 7403 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 7404 } 7405 7406 static bool appendType(SmallStringEnc &Enc, QualType QType, 7407 const CodeGen::CodeGenModule &CGM, 7408 TypeStringCache &TSC); 7409 7410 /// Helper function for appendRecordType(). 7411 /// Builds a SmallVector containing the encoded field types in declaration 7412 /// order. 7413 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 7414 const RecordDecl *RD, 7415 const CodeGen::CodeGenModule &CGM, 7416 TypeStringCache &TSC) { 7417 for (const auto *Field : RD->fields()) { 7418 SmallStringEnc Enc; 7419 Enc += "m("; 7420 Enc += Field->getName(); 7421 Enc += "){"; 7422 if (Field->isBitField()) { 7423 Enc += "b("; 7424 llvm::raw_svector_ostream OS(Enc); 7425 OS << Field->getBitWidthValue(CGM.getContext()); 7426 Enc += ':'; 7427 } 7428 if (!appendType(Enc, Field->getType(), CGM, TSC)) 7429 return false; 7430 if (Field->isBitField()) 7431 Enc += ')'; 7432 Enc += '}'; 7433 FE.emplace_back(!Field->getName().empty(), Enc); 7434 } 7435 return true; 7436 } 7437 7438 /// Appends structure and union types to Enc and adds encoding to cache. 7439 /// Recursively calls appendType (via extractFieldType) for each field. 7440 /// Union types have their fields ordered according to the ABI. 7441 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 7442 const CodeGen::CodeGenModule &CGM, 7443 TypeStringCache &TSC, const IdentifierInfo *ID) { 7444 // Append the cached TypeString if we have one. 7445 StringRef TypeString = TSC.lookupStr(ID); 7446 if (!TypeString.empty()) { 7447 Enc += TypeString; 7448 return true; 7449 } 7450 7451 // Start to emit an incomplete TypeString. 7452 size_t Start = Enc.size(); 7453 Enc += (RT->isUnionType()? 'u' : 's'); 7454 Enc += '('; 7455 if (ID) 7456 Enc += ID->getName(); 7457 Enc += "){"; 7458 7459 // We collect all encoded fields and order as necessary. 7460 bool IsRecursive = false; 7461 const RecordDecl *RD = RT->getDecl()->getDefinition(); 7462 if (RD && !RD->field_empty()) { 7463 // An incomplete TypeString stub is placed in the cache for this RecordType 7464 // so that recursive calls to this RecordType will use it whilst building a 7465 // complete TypeString for this RecordType. 7466 SmallVector<FieldEncoding, 16> FE; 7467 std::string StubEnc(Enc.substr(Start).str()); 7468 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 7469 TSC.addIncomplete(ID, std::move(StubEnc)); 7470 if (!extractFieldType(FE, RD, CGM, TSC)) { 7471 (void) TSC.removeIncomplete(ID); 7472 return false; 7473 } 7474 IsRecursive = TSC.removeIncomplete(ID); 7475 // The ABI requires unions to be sorted but not structures. 7476 // See FieldEncoding::operator< for sort algorithm. 7477 if (RT->isUnionType()) 7478 std::sort(FE.begin(), FE.end()); 7479 // We can now complete the TypeString. 7480 unsigned E = FE.size(); 7481 for (unsigned I = 0; I != E; ++I) { 7482 if (I) 7483 Enc += ','; 7484 Enc += FE[I].str(); 7485 } 7486 } 7487 Enc += '}'; 7488 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 7489 return true; 7490 } 7491 7492 /// Appends enum types to Enc and adds the encoding to the cache. 7493 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 7494 TypeStringCache &TSC, 7495 const IdentifierInfo *ID) { 7496 // Append the cached TypeString if we have one. 7497 StringRef TypeString = TSC.lookupStr(ID); 7498 if (!TypeString.empty()) { 7499 Enc += TypeString; 7500 return true; 7501 } 7502 7503 size_t Start = Enc.size(); 7504 Enc += "e("; 7505 if (ID) 7506 Enc += ID->getName(); 7507 Enc += "){"; 7508 7509 // We collect all encoded enumerations and order them alphanumerically. 7510 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 7511 SmallVector<FieldEncoding, 16> FE; 7512 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 7513 ++I) { 7514 SmallStringEnc EnumEnc; 7515 EnumEnc += "m("; 7516 EnumEnc += I->getName(); 7517 EnumEnc += "){"; 7518 I->getInitVal().toString(EnumEnc); 7519 EnumEnc += '}'; 7520 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 7521 } 7522 std::sort(FE.begin(), FE.end()); 7523 unsigned E = FE.size(); 7524 for (unsigned I = 0; I != E; ++I) { 7525 if (I) 7526 Enc += ','; 7527 Enc += FE[I].str(); 7528 } 7529 } 7530 Enc += '}'; 7531 TSC.addIfComplete(ID, Enc.substr(Start), false); 7532 return true; 7533 } 7534 7535 /// Appends type's qualifier to Enc. 7536 /// This is done prior to appending the type's encoding. 7537 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 7538 // Qualifiers are emitted in alphabetical order. 7539 static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 7540 int Lookup = 0; 7541 if (QT.isConstQualified()) 7542 Lookup += 1<<0; 7543 if (QT.isRestrictQualified()) 7544 Lookup += 1<<1; 7545 if (QT.isVolatileQualified()) 7546 Lookup += 1<<2; 7547 Enc += Table[Lookup]; 7548 } 7549 7550 /// Appends built-in types to Enc. 7551 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 7552 const char *EncType; 7553 switch (BT->getKind()) { 7554 case BuiltinType::Void: 7555 EncType = "0"; 7556 break; 7557 case BuiltinType::Bool: 7558 EncType = "b"; 7559 break; 7560 case BuiltinType::Char_U: 7561 EncType = "uc"; 7562 break; 7563 case BuiltinType::UChar: 7564 EncType = "uc"; 7565 break; 7566 case BuiltinType::SChar: 7567 EncType = "sc"; 7568 break; 7569 case BuiltinType::UShort: 7570 EncType = "us"; 7571 break; 7572 case BuiltinType::Short: 7573 EncType = "ss"; 7574 break; 7575 case BuiltinType::UInt: 7576 EncType = "ui"; 7577 break; 7578 case BuiltinType::Int: 7579 EncType = "si"; 7580 break; 7581 case BuiltinType::ULong: 7582 EncType = "ul"; 7583 break; 7584 case BuiltinType::Long: 7585 EncType = "sl"; 7586 break; 7587 case BuiltinType::ULongLong: 7588 EncType = "ull"; 7589 break; 7590 case BuiltinType::LongLong: 7591 EncType = "sll"; 7592 break; 7593 case BuiltinType::Float: 7594 EncType = "ft"; 7595 break; 7596 case BuiltinType::Double: 7597 EncType = "d"; 7598 break; 7599 case BuiltinType::LongDouble: 7600 EncType = "ld"; 7601 break; 7602 default: 7603 return false; 7604 } 7605 Enc += EncType; 7606 return true; 7607 } 7608 7609 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 7610 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 7611 const CodeGen::CodeGenModule &CGM, 7612 TypeStringCache &TSC) { 7613 Enc += "p("; 7614 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 7615 return false; 7616 Enc += ')'; 7617 return true; 7618 } 7619 7620 /// Appends array encoding to Enc before calling appendType for the element. 7621 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 7622 const ArrayType *AT, 7623 const CodeGen::CodeGenModule &CGM, 7624 TypeStringCache &TSC, StringRef NoSizeEnc) { 7625 if (AT->getSizeModifier() != ArrayType::Normal) 7626 return false; 7627 Enc += "a("; 7628 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 7629 CAT->getSize().toStringUnsigned(Enc); 7630 else 7631 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 7632 Enc += ':'; 7633 // The Qualifiers should be attached to the type rather than the array. 7634 appendQualifier(Enc, QT); 7635 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 7636 return false; 7637 Enc += ')'; 7638 return true; 7639 } 7640 7641 /// Appends a function encoding to Enc, calling appendType for the return type 7642 /// and the arguments. 7643 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 7644 const CodeGen::CodeGenModule &CGM, 7645 TypeStringCache &TSC) { 7646 Enc += "f{"; 7647 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 7648 return false; 7649 Enc += "}("; 7650 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 7651 // N.B. we are only interested in the adjusted param types. 7652 auto I = FPT->param_type_begin(); 7653 auto E = FPT->param_type_end(); 7654 if (I != E) { 7655 do { 7656 if (!appendType(Enc, *I, CGM, TSC)) 7657 return false; 7658 ++I; 7659 if (I != E) 7660 Enc += ','; 7661 } while (I != E); 7662 if (FPT->isVariadic()) 7663 Enc += ",va"; 7664 } else { 7665 if (FPT->isVariadic()) 7666 Enc += "va"; 7667 else 7668 Enc += '0'; 7669 } 7670 } 7671 Enc += ')'; 7672 return true; 7673 } 7674 7675 /// Handles the type's qualifier before dispatching a call to handle specific 7676 /// type encodings. 7677 static bool appendType(SmallStringEnc &Enc, QualType QType, 7678 const CodeGen::CodeGenModule &CGM, 7679 TypeStringCache &TSC) { 7680 7681 QualType QT = QType.getCanonicalType(); 7682 7683 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 7684 // The Qualifiers should be attached to the type rather than the array. 7685 // Thus we don't call appendQualifier() here. 7686 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 7687 7688 appendQualifier(Enc, QT); 7689 7690 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 7691 return appendBuiltinType(Enc, BT); 7692 7693 if (const PointerType *PT = QT->getAs<PointerType>()) 7694 return appendPointerType(Enc, PT, CGM, TSC); 7695 7696 if (const EnumType *ET = QT->getAs<EnumType>()) 7697 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 7698 7699 if (const RecordType *RT = QT->getAsStructureType()) 7700 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 7701 7702 if (const RecordType *RT = QT->getAsUnionType()) 7703 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 7704 7705 if (const FunctionType *FT = QT->getAs<FunctionType>()) 7706 return appendFunctionType(Enc, FT, CGM, TSC); 7707 7708 return false; 7709 } 7710 7711 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 7712 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) { 7713 if (!D) 7714 return false; 7715 7716 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 7717 if (FD->getLanguageLinkage() != CLanguageLinkage) 7718 return false; 7719 return appendType(Enc, FD->getType(), CGM, TSC); 7720 } 7721 7722 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 7723 if (VD->getLanguageLinkage() != CLanguageLinkage) 7724 return false; 7725 QualType QT = VD->getType().getCanonicalType(); 7726 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 7727 // Global ArrayTypes are given a size of '*' if the size is unknown. 7728 // The Qualifiers should be attached to the type rather than the array. 7729 // Thus we don't call appendQualifier() here. 7730 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 7731 } 7732 return appendType(Enc, QT, CGM, TSC); 7733 } 7734 return false; 7735 } 7736 7737 7738 //===----------------------------------------------------------------------===// 7739 // Driver code 7740 //===----------------------------------------------------------------------===// 7741 7742 const llvm::Triple &CodeGenModule::getTriple() const { 7743 return getTarget().getTriple(); 7744 } 7745 7746 bool CodeGenModule::supportsCOMDAT() const { 7747 return !getTriple().isOSBinFormatMachO(); 7748 } 7749 7750 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 7751 if (TheTargetCodeGenInfo) 7752 return *TheTargetCodeGenInfo; 7753 7754 // Helper to set the unique_ptr while still keeping the return value. 7755 auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & { 7756 this->TheTargetCodeGenInfo.reset(P); 7757 return *P; 7758 }; 7759 7760 const llvm::Triple &Triple = getTarget().getTriple(); 7761 switch (Triple.getArch()) { 7762 default: 7763 return SetCGInfo(new DefaultTargetCodeGenInfo(Types)); 7764 7765 case llvm::Triple::le32: 7766 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 7767 case llvm::Triple::mips: 7768 case llvm::Triple::mipsel: 7769 if (Triple.getOS() == llvm::Triple::NaCl) 7770 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 7771 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true)); 7772 7773 case llvm::Triple::mips64: 7774 case llvm::Triple::mips64el: 7775 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false)); 7776 7777 case llvm::Triple::aarch64: 7778 case llvm::Triple::aarch64_be: { 7779 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 7780 if (getTarget().getABI() == "darwinpcs") 7781 Kind = AArch64ABIInfo::DarwinPCS; 7782 7783 return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind)); 7784 } 7785 7786 case llvm::Triple::wasm32: 7787 case llvm::Triple::wasm64: 7788 return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types)); 7789 7790 case llvm::Triple::arm: 7791 case llvm::Triple::armeb: 7792 case llvm::Triple::thumb: 7793 case llvm::Triple::thumbeb: { 7794 if (Triple.getOS() == llvm::Triple::Win32) { 7795 return SetCGInfo( 7796 new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP)); 7797 } 7798 7799 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 7800 StringRef ABIStr = getTarget().getABI(); 7801 if (ABIStr == "apcs-gnu") 7802 Kind = ARMABIInfo::APCS; 7803 else if (ABIStr == "aapcs16") 7804 Kind = ARMABIInfo::AAPCS16_VFP; 7805 else if (CodeGenOpts.FloatABI == "hard" || 7806 (CodeGenOpts.FloatABI != "soft" && 7807 Triple.getEnvironment() == llvm::Triple::GNUEABIHF)) 7808 Kind = ARMABIInfo::AAPCS_VFP; 7809 7810 return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind)); 7811 } 7812 7813 case llvm::Triple::ppc: 7814 return SetCGInfo( 7815 new PPC32TargetCodeGenInfo(Types, CodeGenOpts.FloatABI == "soft")); 7816 case llvm::Triple::ppc64: 7817 if (Triple.isOSBinFormatELF()) { 7818 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 7819 if (getTarget().getABI() == "elfv2") 7820 Kind = PPC64_SVR4_ABIInfo::ELFv2; 7821 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 7822 7823 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX)); 7824 } else 7825 return SetCGInfo(new PPC64TargetCodeGenInfo(Types)); 7826 case llvm::Triple::ppc64le: { 7827 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 7828 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 7829 if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx") 7830 Kind = PPC64_SVR4_ABIInfo::ELFv1; 7831 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 7832 7833 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX)); 7834 } 7835 7836 case llvm::Triple::nvptx: 7837 case llvm::Triple::nvptx64: 7838 return SetCGInfo(new NVPTXTargetCodeGenInfo(Types)); 7839 7840 case llvm::Triple::msp430: 7841 return SetCGInfo(new MSP430TargetCodeGenInfo(Types)); 7842 7843 case llvm::Triple::systemz: { 7844 bool HasVector = getTarget().getABI() == "vector"; 7845 return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector)); 7846 } 7847 7848 case llvm::Triple::tce: 7849 return SetCGInfo(new TCETargetCodeGenInfo(Types)); 7850 7851 case llvm::Triple::x86: { 7852 bool IsDarwinVectorABI = Triple.isOSDarwin(); 7853 bool RetSmallStructInRegABI = 7854 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 7855 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 7856 7857 if (Triple.getOS() == llvm::Triple::Win32) { 7858 return SetCGInfo(new WinX86_32TargetCodeGenInfo( 7859 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 7860 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); 7861 } else { 7862 return SetCGInfo(new X86_32TargetCodeGenInfo( 7863 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 7864 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters, 7865 CodeGenOpts.FloatABI == "soft")); 7866 } 7867 } 7868 7869 case llvm::Triple::x86_64: { 7870 StringRef ABI = getTarget().getABI(); 7871 X86AVXABILevel AVXLevel = 7872 (ABI == "avx512" 7873 ? X86AVXABILevel::AVX512 7874 : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None); 7875 7876 switch (Triple.getOS()) { 7877 case llvm::Triple::Win32: 7878 return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel)); 7879 case llvm::Triple::PS4: 7880 return SetCGInfo(new PS4TargetCodeGenInfo(Types, AVXLevel)); 7881 default: 7882 return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel)); 7883 } 7884 } 7885 case llvm::Triple::hexagon: 7886 return SetCGInfo(new HexagonTargetCodeGenInfo(Types)); 7887 case llvm::Triple::lanai: 7888 return SetCGInfo(new LanaiTargetCodeGenInfo(Types)); 7889 case llvm::Triple::r600: 7890 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 7891 case llvm::Triple::amdgcn: 7892 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 7893 case llvm::Triple::sparcv9: 7894 return SetCGInfo(new SparcV9TargetCodeGenInfo(Types)); 7895 case llvm::Triple::xcore: 7896 return SetCGInfo(new XCoreTargetCodeGenInfo(Types)); 7897 case llvm::Triple::spir: 7898 case llvm::Triple::spir64: 7899 return SetCGInfo(new SPIRTargetCodeGenInfo(Types)); 7900 } 7901 } 7902