1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes wrap the information about a call or function 10 // definition used to handle ABI compliancy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "TargetInfo.h" 15 #include "ABIInfo.h" 16 #include "CGBlocks.h" 17 #include "CGCXXABI.h" 18 #include "CGValue.h" 19 #include "CodeGenFunction.h" 20 #include "clang/AST/RecordLayout.h" 21 #include "clang/Basic/CodeGenOptions.h" 22 #include "clang/CodeGen/CGFunctionInfo.h" 23 #include "clang/CodeGen/SwiftCallingConv.h" 24 #include "llvm/ADT/StringExtras.h" 25 #include "llvm/ADT/StringSwitch.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/ADT/Twine.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Type.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include <algorithm> // std::sort 32 33 using namespace clang; 34 using namespace CodeGen; 35 36 // Helper for coercing an aggregate argument or return value into an integer 37 // array of the same size (including padding) and alignment. This alternate 38 // coercion happens only for the RenderScript ABI and can be removed after 39 // runtimes that rely on it are no longer supported. 40 // 41 // RenderScript assumes that the size of the argument / return value in the IR 42 // is the same as the size of the corresponding qualified type. This helper 43 // coerces the aggregate type into an array of the same size (including 44 // padding). This coercion is used in lieu of expansion of struct members or 45 // other canonical coercions that return a coerced-type of larger size. 46 // 47 // Ty - The argument / return value type 48 // Context - The associated ASTContext 49 // LLVMContext - The associated LLVMContext 50 static ABIArgInfo coerceToIntArray(QualType Ty, 51 ASTContext &Context, 52 llvm::LLVMContext &LLVMContext) { 53 // Alignment and Size are measured in bits. 54 const uint64_t Size = Context.getTypeSize(Ty); 55 const uint64_t Alignment = Context.getTypeAlign(Ty); 56 llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment); 57 const uint64_t NumElements = (Size + Alignment - 1) / Alignment; 58 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 59 } 60 61 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 62 llvm::Value *Array, 63 llvm::Value *Value, 64 unsigned FirstIndex, 65 unsigned LastIndex) { 66 // Alternatively, we could emit this as a loop in the source. 67 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 68 llvm::Value *Cell = 69 Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); 70 Builder.CreateAlignedStore(Value, Cell, CharUnits::One()); 71 } 72 } 73 74 static bool isAggregateTypeForABI(QualType T) { 75 return !CodeGenFunction::hasScalarEvaluationKind(T) || 76 T->isMemberFunctionPointerType(); 77 } 78 79 ABIArgInfo 80 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign, 81 llvm::Type *Padding) const { 82 return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), 83 ByRef, Realign, Padding); 84 } 85 86 ABIArgInfo 87 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const { 88 return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty), 89 /*ByRef*/ false, Realign); 90 } 91 92 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 93 QualType Ty) const { 94 return Address::invalid(); 95 } 96 97 ABIInfo::~ABIInfo() {} 98 99 /// Does the given lowering require more than the given number of 100 /// registers when expanded? 101 /// 102 /// This is intended to be the basis of a reasonable basic implementation 103 /// of should{Pass,Return}IndirectlyForSwift. 104 /// 105 /// For most targets, a limit of four total registers is reasonable; this 106 /// limits the amount of code required in order to move around the value 107 /// in case it wasn't produced immediately prior to the call by the caller 108 /// (or wasn't produced in exactly the right registers) or isn't used 109 /// immediately within the callee. But some targets may need to further 110 /// limit the register count due to an inability to support that many 111 /// return registers. 112 static bool occupiesMoreThan(CodeGenTypes &cgt, 113 ArrayRef<llvm::Type*> scalarTypes, 114 unsigned maxAllRegisters) { 115 unsigned intCount = 0, fpCount = 0; 116 for (llvm::Type *type : scalarTypes) { 117 if (type->isPointerTy()) { 118 intCount++; 119 } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) { 120 auto ptrWidth = cgt.getTarget().getPointerWidth(0); 121 intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth; 122 } else { 123 assert(type->isVectorTy() || type->isFloatingPointTy()); 124 fpCount++; 125 } 126 } 127 128 return (intCount + fpCount > maxAllRegisters); 129 } 130 131 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 132 llvm::Type *eltTy, 133 unsigned numElts) const { 134 // The default implementation of this assumes that the target guarantees 135 // 128-bit SIMD support but nothing more. 136 return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16); 137 } 138 139 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 140 CGCXXABI &CXXABI) { 141 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 142 if (!RD) { 143 if (!RT->getDecl()->canPassInRegisters()) 144 return CGCXXABI::RAA_Indirect; 145 return CGCXXABI::RAA_Default; 146 } 147 return CXXABI.getRecordArgABI(RD); 148 } 149 150 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 151 CGCXXABI &CXXABI) { 152 const RecordType *RT = T->getAs<RecordType>(); 153 if (!RT) 154 return CGCXXABI::RAA_Default; 155 return getRecordArgABI(RT, CXXABI); 156 } 157 158 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI, 159 const ABIInfo &Info) { 160 QualType Ty = FI.getReturnType(); 161 162 if (const auto *RT = Ty->getAs<RecordType>()) 163 if (!isa<CXXRecordDecl>(RT->getDecl()) && 164 !RT->getDecl()->canPassInRegisters()) { 165 FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty); 166 return true; 167 } 168 169 return CXXABI.classifyReturnType(FI); 170 } 171 172 /// Pass transparent unions as if they were the type of the first element. Sema 173 /// should ensure that all elements of the union have the same "machine type". 174 static QualType useFirstFieldIfTransparentUnion(QualType Ty) { 175 if (const RecordType *UT = Ty->getAsUnionType()) { 176 const RecordDecl *UD = UT->getDecl(); 177 if (UD->hasAttr<TransparentUnionAttr>()) { 178 assert(!UD->field_empty() && "sema created an empty transparent union"); 179 return UD->field_begin()->getType(); 180 } 181 } 182 return Ty; 183 } 184 185 CGCXXABI &ABIInfo::getCXXABI() const { 186 return CGT.getCXXABI(); 187 } 188 189 ASTContext &ABIInfo::getContext() const { 190 return CGT.getContext(); 191 } 192 193 llvm::LLVMContext &ABIInfo::getVMContext() const { 194 return CGT.getLLVMContext(); 195 } 196 197 const llvm::DataLayout &ABIInfo::getDataLayout() const { 198 return CGT.getDataLayout(); 199 } 200 201 const TargetInfo &ABIInfo::getTarget() const { 202 return CGT.getTarget(); 203 } 204 205 const CodeGenOptions &ABIInfo::getCodeGenOpts() const { 206 return CGT.getCodeGenOpts(); 207 } 208 209 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); } 210 211 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 212 return false; 213 } 214 215 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 216 uint64_t Members) const { 217 return false; 218 } 219 220 LLVM_DUMP_METHOD void ABIArgInfo::dump() const { 221 raw_ostream &OS = llvm::errs(); 222 OS << "(ABIArgInfo Kind="; 223 switch (TheKind) { 224 case Direct: 225 OS << "Direct Type="; 226 if (llvm::Type *Ty = getCoerceToType()) 227 Ty->print(OS); 228 else 229 OS << "null"; 230 break; 231 case Extend: 232 OS << "Extend"; 233 break; 234 case Ignore: 235 OS << "Ignore"; 236 break; 237 case InAlloca: 238 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 239 break; 240 case Indirect: 241 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 242 << " ByVal=" << getIndirectByVal() 243 << " Realign=" << getIndirectRealign(); 244 break; 245 case Expand: 246 OS << "Expand"; 247 break; 248 case CoerceAndExpand: 249 OS << "CoerceAndExpand Type="; 250 getCoerceAndExpandType()->print(OS); 251 break; 252 } 253 OS << ")\n"; 254 } 255 256 // Dynamically round a pointer up to a multiple of the given alignment. 257 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF, 258 llvm::Value *Ptr, 259 CharUnits Align) { 260 llvm::Value *PtrAsInt = Ptr; 261 // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align; 262 PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy); 263 PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt, 264 llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1)); 265 PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt, 266 llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity())); 267 PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt, 268 Ptr->getType(), 269 Ptr->getName() + ".aligned"); 270 return PtrAsInt; 271 } 272 273 /// Emit va_arg for a platform using the common void* representation, 274 /// where arguments are simply emitted in an array of slots on the stack. 275 /// 276 /// This version implements the core direct-value passing rules. 277 /// 278 /// \param SlotSize - The size and alignment of a stack slot. 279 /// Each argument will be allocated to a multiple of this number of 280 /// slots, and all the slots will be aligned to this value. 281 /// \param AllowHigherAlign - The slot alignment is not a cap; 282 /// an argument type with an alignment greater than the slot size 283 /// will be emitted on a higher-alignment address, potentially 284 /// leaving one or more empty slots behind as padding. If this 285 /// is false, the returned address might be less-aligned than 286 /// DirectAlign. 287 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF, 288 Address VAListAddr, 289 llvm::Type *DirectTy, 290 CharUnits DirectSize, 291 CharUnits DirectAlign, 292 CharUnits SlotSize, 293 bool AllowHigherAlign) { 294 // Cast the element type to i8* if necessary. Some platforms define 295 // va_list as a struct containing an i8* instead of just an i8*. 296 if (VAListAddr.getElementType() != CGF.Int8PtrTy) 297 VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy); 298 299 llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur"); 300 301 // If the CC aligns values higher than the slot size, do so if needed. 302 Address Addr = Address::invalid(); 303 if (AllowHigherAlign && DirectAlign > SlotSize) { 304 Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign), 305 DirectAlign); 306 } else { 307 Addr = Address(Ptr, SlotSize); 308 } 309 310 // Advance the pointer past the argument, then store that back. 311 CharUnits FullDirectSize = DirectSize.alignTo(SlotSize); 312 Address NextPtr = 313 CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next"); 314 CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 315 316 // If the argument is smaller than a slot, and this is a big-endian 317 // target, the argument will be right-adjusted in its slot. 318 if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() && 319 !DirectTy->isStructTy()) { 320 Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize); 321 } 322 323 Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy); 324 return Addr; 325 } 326 327 /// Emit va_arg for a platform using the common void* representation, 328 /// where arguments are simply emitted in an array of slots on the stack. 329 /// 330 /// \param IsIndirect - Values of this type are passed indirectly. 331 /// \param ValueInfo - The size and alignment of this type, generally 332 /// computed with getContext().getTypeInfoInChars(ValueTy). 333 /// \param SlotSizeAndAlign - The size and alignment of a stack slot. 334 /// Each argument will be allocated to a multiple of this number of 335 /// slots, and all the slots will be aligned to this value. 336 /// \param AllowHigherAlign - The slot alignment is not a cap; 337 /// an argument type with an alignment greater than the slot size 338 /// will be emitted on a higher-alignment address, potentially 339 /// leaving one or more empty slots behind as padding. 340 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr, 341 QualType ValueTy, bool IsIndirect, 342 std::pair<CharUnits, CharUnits> ValueInfo, 343 CharUnits SlotSizeAndAlign, 344 bool AllowHigherAlign) { 345 // The size and alignment of the value that was passed directly. 346 CharUnits DirectSize, DirectAlign; 347 if (IsIndirect) { 348 DirectSize = CGF.getPointerSize(); 349 DirectAlign = CGF.getPointerAlign(); 350 } else { 351 DirectSize = ValueInfo.first; 352 DirectAlign = ValueInfo.second; 353 } 354 355 // Cast the address we've calculated to the right type. 356 llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy); 357 if (IsIndirect) 358 DirectTy = DirectTy->getPointerTo(0); 359 360 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy, 361 DirectSize, DirectAlign, 362 SlotSizeAndAlign, 363 AllowHigherAlign); 364 365 if (IsIndirect) { 366 Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second); 367 } 368 369 return Addr; 370 371 } 372 373 static Address emitMergePHI(CodeGenFunction &CGF, 374 Address Addr1, llvm::BasicBlock *Block1, 375 Address Addr2, llvm::BasicBlock *Block2, 376 const llvm::Twine &Name = "") { 377 assert(Addr1.getType() == Addr2.getType()); 378 llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name); 379 PHI->addIncoming(Addr1.getPointer(), Block1); 380 PHI->addIncoming(Addr2.getPointer(), Block2); 381 CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment()); 382 return Address(PHI, Align); 383 } 384 385 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; } 386 387 // If someone can figure out a general rule for this, that would be great. 388 // It's probably just doomed to be platform-dependent, though. 389 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 390 // Verified for: 391 // x86-64 FreeBSD, Linux, Darwin 392 // x86-32 FreeBSD, Linux, Darwin 393 // PowerPC Linux, Darwin 394 // ARM Darwin (*not* EABI) 395 // AArch64 Linux 396 return 32; 397 } 398 399 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 400 const FunctionNoProtoType *fnType) const { 401 // The following conventions are known to require this to be false: 402 // x86_stdcall 403 // MIPS 404 // For everything else, we just prefer false unless we opt out. 405 return false; 406 } 407 408 void 409 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 410 llvm::SmallString<24> &Opt) const { 411 // This assumes the user is passing a library name like "rt" instead of a 412 // filename like "librt.a/so", and that they don't care whether it's static or 413 // dynamic. 414 Opt = "-l"; 415 Opt += Lib; 416 } 417 418 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const { 419 // OpenCL kernels are called via an explicit runtime API with arguments 420 // set with clSetKernelArg(), not as normal sub-functions. 421 // Return SPIR_KERNEL by default as the kernel calling convention to 422 // ensure the fingerprint is fixed such way that each OpenCL argument 423 // gets one matching argument in the produced kernel function argument 424 // list to enable feasible implementation of clSetKernelArg() with 425 // aggregates etc. In case we would use the default C calling conv here, 426 // clSetKernelArg() might break depending on the target-specific 427 // conventions; different targets might split structs passed as values 428 // to multiple function arguments etc. 429 return llvm::CallingConv::SPIR_KERNEL; 430 } 431 432 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM, 433 llvm::PointerType *T, QualType QT) const { 434 return llvm::ConstantPointerNull::get(T); 435 } 436 437 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 438 const VarDecl *D) const { 439 assert(!CGM.getLangOpts().OpenCL && 440 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 441 "Address space agnostic languages only"); 442 return D ? D->getType().getAddressSpace() : LangAS::Default; 443 } 444 445 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast( 446 CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr, 447 LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const { 448 // Since target may map different address spaces in AST to the same address 449 // space, an address space conversion may end up as a bitcast. 450 if (auto *C = dyn_cast<llvm::Constant>(Src)) 451 return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy); 452 return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DestTy); 453 } 454 455 llvm::Constant * 456 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src, 457 LangAS SrcAddr, LangAS DestAddr, 458 llvm::Type *DestTy) const { 459 // Since target may map different address spaces in AST to the same address 460 // space, an address space conversion may end up as a bitcast. 461 return llvm::ConstantExpr::getPointerCast(Src, DestTy); 462 } 463 464 llvm::SyncScope::ID 465 TargetCodeGenInfo::getLLVMSyncScopeID(SyncScope S, llvm::LLVMContext &C) const { 466 return C.getOrInsertSyncScopeID(""); /* default sync scope */ 467 } 468 469 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 470 471 /// isEmptyField - Return true iff a the field is "empty", that is it 472 /// is an unnamed bit-field or an (array of) empty record(s). 473 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 474 bool AllowArrays) { 475 if (FD->isUnnamedBitfield()) 476 return true; 477 478 QualType FT = FD->getType(); 479 480 // Constant arrays of empty records count as empty, strip them off. 481 // Constant arrays of zero length always count as empty. 482 if (AllowArrays) 483 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 484 if (AT->getSize() == 0) 485 return true; 486 FT = AT->getElementType(); 487 } 488 489 const RecordType *RT = FT->getAs<RecordType>(); 490 if (!RT) 491 return false; 492 493 // C++ record fields are never empty, at least in the Itanium ABI. 494 // 495 // FIXME: We should use a predicate for whether this behavior is true in the 496 // current ABI. 497 if (isa<CXXRecordDecl>(RT->getDecl())) 498 return false; 499 500 return isEmptyRecord(Context, FT, AllowArrays); 501 } 502 503 /// isEmptyRecord - Return true iff a structure contains only empty 504 /// fields. Note that a structure with a flexible array member is not 505 /// considered empty. 506 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 507 const RecordType *RT = T->getAs<RecordType>(); 508 if (!RT) 509 return false; 510 const RecordDecl *RD = RT->getDecl(); 511 if (RD->hasFlexibleArrayMember()) 512 return false; 513 514 // If this is a C++ record, check the bases first. 515 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 516 for (const auto &I : CXXRD->bases()) 517 if (!isEmptyRecord(Context, I.getType(), true)) 518 return false; 519 520 for (const auto *I : RD->fields()) 521 if (!isEmptyField(Context, I, AllowArrays)) 522 return false; 523 return true; 524 } 525 526 /// isSingleElementStruct - Determine if a structure is a "single 527 /// element struct", i.e. it has exactly one non-empty field or 528 /// exactly one field which is itself a single element 529 /// struct. Structures with flexible array members are never 530 /// considered single element structs. 531 /// 532 /// \return The field declaration for the single non-empty field, if 533 /// it exists. 534 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 535 const RecordType *RT = T->getAs<RecordType>(); 536 if (!RT) 537 return nullptr; 538 539 const RecordDecl *RD = RT->getDecl(); 540 if (RD->hasFlexibleArrayMember()) 541 return nullptr; 542 543 const Type *Found = nullptr; 544 545 // If this is a C++ record, check the bases first. 546 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 547 for (const auto &I : CXXRD->bases()) { 548 // Ignore empty records. 549 if (isEmptyRecord(Context, I.getType(), true)) 550 continue; 551 552 // If we already found an element then this isn't a single-element struct. 553 if (Found) 554 return nullptr; 555 556 // If this is non-empty and not a single element struct, the composite 557 // cannot be a single element struct. 558 Found = isSingleElementStruct(I.getType(), Context); 559 if (!Found) 560 return nullptr; 561 } 562 } 563 564 // Check for single element. 565 for (const auto *FD : RD->fields()) { 566 QualType FT = FD->getType(); 567 568 // Ignore empty fields. 569 if (isEmptyField(Context, FD, true)) 570 continue; 571 572 // If we already found an element then this isn't a single-element 573 // struct. 574 if (Found) 575 return nullptr; 576 577 // Treat single element arrays as the element. 578 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 579 if (AT->getSize().getZExtValue() != 1) 580 break; 581 FT = AT->getElementType(); 582 } 583 584 if (!isAggregateTypeForABI(FT)) { 585 Found = FT.getTypePtr(); 586 } else { 587 Found = isSingleElementStruct(FT, Context); 588 if (!Found) 589 return nullptr; 590 } 591 } 592 593 // We don't consider a struct a single-element struct if it has 594 // padding beyond the element type. 595 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 596 return nullptr; 597 598 return Found; 599 } 600 601 namespace { 602 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, 603 const ABIArgInfo &AI) { 604 // This default implementation defers to the llvm backend's va_arg 605 // instruction. It can handle only passing arguments directly 606 // (typically only handled in the backend for primitive types), or 607 // aggregates passed indirectly by pointer (NOTE: if the "byval" 608 // flag has ABI impact in the callee, this implementation cannot 609 // work.) 610 611 // Only a few cases are covered here at the moment -- those needed 612 // by the default abi. 613 llvm::Value *Val; 614 615 if (AI.isIndirect()) { 616 assert(!AI.getPaddingType() && 617 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 618 assert( 619 !AI.getIndirectRealign() && 620 "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!"); 621 622 auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty); 623 CharUnits TyAlignForABI = TyInfo.second; 624 625 llvm::Type *BaseTy = 626 llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 627 llvm::Value *Addr = 628 CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy); 629 return Address(Addr, TyAlignForABI); 630 } else { 631 assert((AI.isDirect() || AI.isExtend()) && 632 "Unexpected ArgInfo Kind in generic VAArg emitter!"); 633 634 assert(!AI.getInReg() && 635 "Unexpected InReg seen in arginfo in generic VAArg emitter!"); 636 assert(!AI.getPaddingType() && 637 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 638 assert(!AI.getDirectOffset() && 639 "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!"); 640 assert(!AI.getCoerceToType() && 641 "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!"); 642 643 Address Temp = CGF.CreateMemTemp(Ty, "varet"); 644 Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty)); 645 CGF.Builder.CreateStore(Val, Temp); 646 return Temp; 647 } 648 } 649 650 /// DefaultABIInfo - The default implementation for ABI specific 651 /// details. This implementation provides information which results in 652 /// self-consistent and sensible LLVM IR generation, but does not 653 /// conform to any particular ABI. 654 class DefaultABIInfo : public ABIInfo { 655 public: 656 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 657 658 ABIArgInfo classifyReturnType(QualType RetTy) const; 659 ABIArgInfo classifyArgumentType(QualType RetTy) const; 660 661 void computeInfo(CGFunctionInfo &FI) const override { 662 if (!getCXXABI().classifyReturnType(FI)) 663 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 664 for (auto &I : FI.arguments()) 665 I.info = classifyArgumentType(I.type); 666 } 667 668 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 669 QualType Ty) const override { 670 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 671 } 672 }; 673 674 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 675 public: 676 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 677 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 678 }; 679 680 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 681 Ty = useFirstFieldIfTransparentUnion(Ty); 682 683 if (isAggregateTypeForABI(Ty)) { 684 // Records with non-trivial destructors/copy-constructors should not be 685 // passed by value. 686 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 687 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 688 689 return getNaturalAlignIndirect(Ty); 690 } 691 692 // Treat an enum type as its underlying type. 693 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 694 Ty = EnumTy->getDecl()->getIntegerType(); 695 696 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 697 : ABIArgInfo::getDirect()); 698 } 699 700 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 701 if (RetTy->isVoidType()) 702 return ABIArgInfo::getIgnore(); 703 704 if (isAggregateTypeForABI(RetTy)) 705 return getNaturalAlignIndirect(RetTy); 706 707 // Treat an enum type as its underlying type. 708 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 709 RetTy = EnumTy->getDecl()->getIntegerType(); 710 711 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 712 : ABIArgInfo::getDirect()); 713 } 714 715 //===----------------------------------------------------------------------===// 716 // WebAssembly ABI Implementation 717 // 718 // This is a very simple ABI that relies a lot on DefaultABIInfo. 719 //===----------------------------------------------------------------------===// 720 721 class WebAssemblyABIInfo final : public SwiftABIInfo { 722 DefaultABIInfo defaultInfo; 723 724 public: 725 explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT) 726 : SwiftABIInfo(CGT), defaultInfo(CGT) {} 727 728 private: 729 ABIArgInfo classifyReturnType(QualType RetTy) const; 730 ABIArgInfo classifyArgumentType(QualType Ty) const; 731 732 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 733 // non-virtual, but computeInfo and EmitVAArg are virtual, so we 734 // overload them. 735 void computeInfo(CGFunctionInfo &FI) const override { 736 if (!getCXXABI().classifyReturnType(FI)) 737 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 738 for (auto &Arg : FI.arguments()) 739 Arg.info = classifyArgumentType(Arg.type); 740 } 741 742 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 743 QualType Ty) const override; 744 745 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 746 bool asReturnValue) const override { 747 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 748 } 749 750 bool isSwiftErrorInRegister() const override { 751 return false; 752 } 753 }; 754 755 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo { 756 public: 757 explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 758 : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT)) {} 759 760 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 761 CodeGen::CodeGenModule &CGM) const override { 762 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 763 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 764 if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) { 765 llvm::Function *Fn = cast<llvm::Function>(GV); 766 llvm::AttrBuilder B; 767 B.addAttribute("wasm-import-module", Attr->getImportModule()); 768 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 769 } 770 if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) { 771 llvm::Function *Fn = cast<llvm::Function>(GV); 772 llvm::AttrBuilder B; 773 B.addAttribute("wasm-import-name", Attr->getImportName()); 774 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 775 } 776 } 777 778 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 779 llvm::Function *Fn = cast<llvm::Function>(GV); 780 if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype()) 781 Fn->addFnAttr("no-prototype"); 782 } 783 } 784 }; 785 786 /// Classify argument of given type \p Ty. 787 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const { 788 Ty = useFirstFieldIfTransparentUnion(Ty); 789 790 if (isAggregateTypeForABI(Ty)) { 791 // Records with non-trivial destructors/copy-constructors should not be 792 // passed by value. 793 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 794 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 795 // Ignore empty structs/unions. 796 if (isEmptyRecord(getContext(), Ty, true)) 797 return ABIArgInfo::getIgnore(); 798 // Lower single-element structs to just pass a regular value. TODO: We 799 // could do reasonable-size multiple-element structs too, using getExpand(), 800 // though watch out for things like bitfields. 801 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 802 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 803 } 804 805 // Otherwise just do the default thing. 806 return defaultInfo.classifyArgumentType(Ty); 807 } 808 809 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const { 810 if (isAggregateTypeForABI(RetTy)) { 811 // Records with non-trivial destructors/copy-constructors should not be 812 // returned by value. 813 if (!getRecordArgABI(RetTy, getCXXABI())) { 814 // Ignore empty structs/unions. 815 if (isEmptyRecord(getContext(), RetTy, true)) 816 return ABIArgInfo::getIgnore(); 817 // Lower single-element structs to just return a regular value. TODO: We 818 // could do reasonable-size multiple-element structs too, using 819 // ABIArgInfo::getDirect(). 820 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 821 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 822 } 823 } 824 825 // Otherwise just do the default thing. 826 return defaultInfo.classifyReturnType(RetTy); 827 } 828 829 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 830 QualType Ty) const { 831 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect=*/ false, 832 getContext().getTypeInfoInChars(Ty), 833 CharUnits::fromQuantity(4), 834 /*AllowHigherAlign=*/ true); 835 } 836 837 //===----------------------------------------------------------------------===// 838 // le32/PNaCl bitcode ABI Implementation 839 // 840 // This is a simplified version of the x86_32 ABI. Arguments and return values 841 // are always passed on the stack. 842 //===----------------------------------------------------------------------===// 843 844 class PNaClABIInfo : public ABIInfo { 845 public: 846 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 847 848 ABIArgInfo classifyReturnType(QualType RetTy) const; 849 ABIArgInfo classifyArgumentType(QualType RetTy) const; 850 851 void computeInfo(CGFunctionInfo &FI) const override; 852 Address EmitVAArg(CodeGenFunction &CGF, 853 Address VAListAddr, QualType Ty) const override; 854 }; 855 856 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 857 public: 858 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 859 : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {} 860 }; 861 862 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 863 if (!getCXXABI().classifyReturnType(FI)) 864 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 865 866 for (auto &I : FI.arguments()) 867 I.info = classifyArgumentType(I.type); 868 } 869 870 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 871 QualType Ty) const { 872 // The PNaCL ABI is a bit odd, in that varargs don't use normal 873 // function classification. Structs get passed directly for varargs 874 // functions, through a rewriting transform in 875 // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows 876 // this target to actually support a va_arg instructions with an 877 // aggregate type, unlike other targets. 878 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 879 } 880 881 /// Classify argument of given type \p Ty. 882 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 883 if (isAggregateTypeForABI(Ty)) { 884 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 885 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 886 return getNaturalAlignIndirect(Ty); 887 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 888 // Treat an enum type as its underlying type. 889 Ty = EnumTy->getDecl()->getIntegerType(); 890 } else if (Ty->isFloatingType()) { 891 // Floating-point types don't go inreg. 892 return ABIArgInfo::getDirect(); 893 } 894 895 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 896 : ABIArgInfo::getDirect()); 897 } 898 899 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 900 if (RetTy->isVoidType()) 901 return ABIArgInfo::getIgnore(); 902 903 // In the PNaCl ABI we always return records/structures on the stack. 904 if (isAggregateTypeForABI(RetTy)) 905 return getNaturalAlignIndirect(RetTy); 906 907 // Treat an enum type as its underlying type. 908 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 909 RetTy = EnumTy->getDecl()->getIntegerType(); 910 911 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 912 : ABIArgInfo::getDirect()); 913 } 914 915 /// IsX86_MMXType - Return true if this is an MMX type. 916 bool IsX86_MMXType(llvm::Type *IRType) { 917 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 918 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 919 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 920 IRType->getScalarSizeInBits() != 64; 921 } 922 923 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 924 StringRef Constraint, 925 llvm::Type* Ty) { 926 bool IsMMXCons = llvm::StringSwitch<bool>(Constraint) 927 .Cases("y", "&y", "^Ym", true) 928 .Default(false); 929 if (IsMMXCons && Ty->isVectorTy()) { 930 if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) { 931 // Invalid MMX constraint 932 return nullptr; 933 } 934 935 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 936 } 937 938 // No operation needed 939 return Ty; 940 } 941 942 /// Returns true if this type can be passed in SSE registers with the 943 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 944 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 945 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 946 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) { 947 if (BT->getKind() == BuiltinType::LongDouble) { 948 if (&Context.getTargetInfo().getLongDoubleFormat() == 949 &llvm::APFloat::x87DoubleExtended()) 950 return false; 951 } 952 return true; 953 } 954 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 955 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 956 // registers specially. 957 unsigned VecSize = Context.getTypeSize(VT); 958 if (VecSize == 128 || VecSize == 256 || VecSize == 512) 959 return true; 960 } 961 return false; 962 } 963 964 /// Returns true if this aggregate is small enough to be passed in SSE registers 965 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 966 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 967 return NumMembers <= 4; 968 } 969 970 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86. 971 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) { 972 auto AI = ABIArgInfo::getDirect(T); 973 AI.setInReg(true); 974 AI.setCanBeFlattened(false); 975 return AI; 976 } 977 978 //===----------------------------------------------------------------------===// 979 // X86-32 ABI Implementation 980 //===----------------------------------------------------------------------===// 981 982 /// Similar to llvm::CCState, but for Clang. 983 struct CCState { 984 CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {} 985 986 unsigned CC; 987 unsigned FreeRegs; 988 unsigned FreeSSERegs; 989 }; 990 991 enum { 992 // Vectorcall only allows the first 6 parameters to be passed in registers. 993 VectorcallMaxParamNumAsReg = 6 994 }; 995 996 /// X86_32ABIInfo - The X86-32 ABI information. 997 class X86_32ABIInfo : public SwiftABIInfo { 998 enum Class { 999 Integer, 1000 Float 1001 }; 1002 1003 static const unsigned MinABIStackAlignInBytes = 4; 1004 1005 bool IsDarwinVectorABI; 1006 bool IsRetSmallStructInRegABI; 1007 bool IsWin32StructABI; 1008 bool IsSoftFloatABI; 1009 bool IsMCUABI; 1010 unsigned DefaultNumRegisterParameters; 1011 1012 static bool isRegisterSize(unsigned Size) { 1013 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 1014 } 1015 1016 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 1017 // FIXME: Assumes vectorcall is in use. 1018 return isX86VectorTypeForVectorCall(getContext(), Ty); 1019 } 1020 1021 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 1022 uint64_t NumMembers) const override { 1023 // FIXME: Assumes vectorcall is in use. 1024 return isX86VectorCallAggregateSmallEnough(NumMembers); 1025 } 1026 1027 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 1028 1029 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1030 /// such that the argument will be passed in memory. 1031 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 1032 1033 ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; 1034 1035 /// Return the alignment to use for the given type on the stack. 1036 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 1037 1038 Class classify(QualType Ty) const; 1039 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 1040 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 1041 1042 /// Updates the number of available free registers, returns 1043 /// true if any registers were allocated. 1044 bool updateFreeRegs(QualType Ty, CCState &State) const; 1045 1046 bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, 1047 bool &NeedsPadding) const; 1048 bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; 1049 1050 bool canExpandIndirectArgument(QualType Ty) const; 1051 1052 /// Rewrite the function info so that all memory arguments use 1053 /// inalloca. 1054 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 1055 1056 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1057 CharUnits &StackOffset, ABIArgInfo &Info, 1058 QualType Type) const; 1059 void computeVectorCallArgs(CGFunctionInfo &FI, CCState &State, 1060 bool &UsedInAlloca) const; 1061 1062 public: 1063 1064 void computeInfo(CGFunctionInfo &FI) const override; 1065 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 1066 QualType Ty) const override; 1067 1068 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1069 bool RetSmallStructInRegABI, bool Win32StructABI, 1070 unsigned NumRegisterParameters, bool SoftFloatABI) 1071 : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), 1072 IsRetSmallStructInRegABI(RetSmallStructInRegABI), 1073 IsWin32StructABI(Win32StructABI), 1074 IsSoftFloatABI(SoftFloatABI), 1075 IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), 1076 DefaultNumRegisterParameters(NumRegisterParameters) {} 1077 1078 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 1079 bool asReturnValue) const override { 1080 // LLVM's x86-32 lowering currently only assigns up to three 1081 // integer registers and three fp registers. Oddly, it'll use up to 1082 // four vector registers for vectors, but those can overlap with the 1083 // scalar registers. 1084 return occupiesMoreThan(CGT, scalars, /*total*/ 3); 1085 } 1086 1087 bool isSwiftErrorInRegister() const override { 1088 // x86-32 lowering does not support passing swifterror in a register. 1089 return false; 1090 } 1091 }; 1092 1093 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 1094 public: 1095 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1096 bool RetSmallStructInRegABI, bool Win32StructABI, 1097 unsigned NumRegisterParameters, bool SoftFloatABI) 1098 : TargetCodeGenInfo(new X86_32ABIInfo( 1099 CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, 1100 NumRegisterParameters, SoftFloatABI)) {} 1101 1102 static bool isStructReturnInRegABI( 1103 const llvm::Triple &Triple, const CodeGenOptions &Opts); 1104 1105 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1106 CodeGen::CodeGenModule &CGM) const override; 1107 1108 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1109 // Darwin uses different dwarf register numbers for EH. 1110 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 1111 return 4; 1112 } 1113 1114 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1115 llvm::Value *Address) const override; 1116 1117 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1118 StringRef Constraint, 1119 llvm::Type* Ty) const override { 1120 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1121 } 1122 1123 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 1124 std::string &Constraints, 1125 std::vector<llvm::Type *> &ResultRegTypes, 1126 std::vector<llvm::Type *> &ResultTruncRegTypes, 1127 std::vector<LValue> &ResultRegDests, 1128 std::string &AsmString, 1129 unsigned NumOutputs) const override; 1130 1131 llvm::Constant * 1132 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1133 unsigned Sig = (0xeb << 0) | // jmp rel8 1134 (0x06 << 8) | // .+0x08 1135 ('v' << 16) | 1136 ('2' << 24); 1137 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1138 } 1139 1140 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 1141 return "movl\t%ebp, %ebp" 1142 "\t\t// marker for objc_retainAutoreleaseReturnValue"; 1143 } 1144 }; 1145 1146 } 1147 1148 /// Rewrite input constraint references after adding some output constraints. 1149 /// In the case where there is one output and one input and we add one output, 1150 /// we need to replace all operand references greater than or equal to 1: 1151 /// mov $0, $1 1152 /// mov eax, $1 1153 /// The result will be: 1154 /// mov $0, $2 1155 /// mov eax, $2 1156 static void rewriteInputConstraintReferences(unsigned FirstIn, 1157 unsigned NumNewOuts, 1158 std::string &AsmString) { 1159 std::string Buf; 1160 llvm::raw_string_ostream OS(Buf); 1161 size_t Pos = 0; 1162 while (Pos < AsmString.size()) { 1163 size_t DollarStart = AsmString.find('$', Pos); 1164 if (DollarStart == std::string::npos) 1165 DollarStart = AsmString.size(); 1166 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 1167 if (DollarEnd == std::string::npos) 1168 DollarEnd = AsmString.size(); 1169 OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 1170 Pos = DollarEnd; 1171 size_t NumDollars = DollarEnd - DollarStart; 1172 if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 1173 // We have an operand reference. 1174 size_t DigitStart = Pos; 1175 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 1176 if (DigitEnd == std::string::npos) 1177 DigitEnd = AsmString.size(); 1178 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 1179 unsigned OperandIndex; 1180 if (!OperandStr.getAsInteger(10, OperandIndex)) { 1181 if (OperandIndex >= FirstIn) 1182 OperandIndex += NumNewOuts; 1183 OS << OperandIndex; 1184 } else { 1185 OS << OperandStr; 1186 } 1187 Pos = DigitEnd; 1188 } 1189 } 1190 AsmString = std::move(OS.str()); 1191 } 1192 1193 /// Add output constraints for EAX:EDX because they are return registers. 1194 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 1195 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 1196 std::vector<llvm::Type *> &ResultRegTypes, 1197 std::vector<llvm::Type *> &ResultTruncRegTypes, 1198 std::vector<LValue> &ResultRegDests, std::string &AsmString, 1199 unsigned NumOutputs) const { 1200 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 1201 1202 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 1203 // larger. 1204 if (!Constraints.empty()) 1205 Constraints += ','; 1206 if (RetWidth <= 32) { 1207 Constraints += "={eax}"; 1208 ResultRegTypes.push_back(CGF.Int32Ty); 1209 } else { 1210 // Use the 'A' constraint for EAX:EDX. 1211 Constraints += "=A"; 1212 ResultRegTypes.push_back(CGF.Int64Ty); 1213 } 1214 1215 // Truncate EAX or EAX:EDX to an integer of the appropriate size. 1216 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 1217 ResultTruncRegTypes.push_back(CoerceTy); 1218 1219 // Coerce the integer by bitcasting the return slot pointer. 1220 ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(), 1221 CoerceTy->getPointerTo())); 1222 ResultRegDests.push_back(ReturnSlot); 1223 1224 rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 1225 } 1226 1227 /// shouldReturnTypeInRegister - Determine if the given type should be 1228 /// returned in a register (for the Darwin and MCU ABI). 1229 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 1230 ASTContext &Context) const { 1231 uint64_t Size = Context.getTypeSize(Ty); 1232 1233 // For i386, type must be register sized. 1234 // For the MCU ABI, it only needs to be <= 8-byte 1235 if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) 1236 return false; 1237 1238 if (Ty->isVectorType()) { 1239 // 64- and 128- bit vectors inside structures are not returned in 1240 // registers. 1241 if (Size == 64 || Size == 128) 1242 return false; 1243 1244 return true; 1245 } 1246 1247 // If this is a builtin, pointer, enum, complex type, member pointer, or 1248 // member function pointer it is ok. 1249 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 1250 Ty->isAnyComplexType() || Ty->isEnumeralType() || 1251 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 1252 return true; 1253 1254 // Arrays are treated like records. 1255 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 1256 return shouldReturnTypeInRegister(AT->getElementType(), Context); 1257 1258 // Otherwise, it must be a record type. 1259 const RecordType *RT = Ty->getAs<RecordType>(); 1260 if (!RT) return false; 1261 1262 // FIXME: Traverse bases here too. 1263 1264 // Structure types are passed in register if all fields would be 1265 // passed in a register. 1266 for (const auto *FD : RT->getDecl()->fields()) { 1267 // Empty fields are ignored. 1268 if (isEmptyField(Context, FD, true)) 1269 continue; 1270 1271 // Check fields recursively. 1272 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 1273 return false; 1274 } 1275 return true; 1276 } 1277 1278 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 1279 // Treat complex types as the element type. 1280 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 1281 Ty = CTy->getElementType(); 1282 1283 // Check for a type which we know has a simple scalar argument-passing 1284 // convention without any padding. (We're specifically looking for 32 1285 // and 64-bit integer and integer-equivalents, float, and double.) 1286 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 1287 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 1288 return false; 1289 1290 uint64_t Size = Context.getTypeSize(Ty); 1291 return Size == 32 || Size == 64; 1292 } 1293 1294 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD, 1295 uint64_t &Size) { 1296 for (const auto *FD : RD->fields()) { 1297 // Scalar arguments on the stack get 4 byte alignment on x86. If the 1298 // argument is smaller than 32-bits, expanding the struct will create 1299 // alignment padding. 1300 if (!is32Or64BitBasicType(FD->getType(), Context)) 1301 return false; 1302 1303 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 1304 // how to expand them yet, and the predicate for telling if a bitfield still 1305 // counts as "basic" is more complicated than what we were doing previously. 1306 if (FD->isBitField()) 1307 return false; 1308 1309 Size += Context.getTypeSize(FD->getType()); 1310 } 1311 return true; 1312 } 1313 1314 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD, 1315 uint64_t &Size) { 1316 // Don't do this if there are any non-empty bases. 1317 for (const CXXBaseSpecifier &Base : RD->bases()) { 1318 if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(), 1319 Size)) 1320 return false; 1321 } 1322 if (!addFieldSizes(Context, RD, Size)) 1323 return false; 1324 return true; 1325 } 1326 1327 /// Test whether an argument type which is to be passed indirectly (on the 1328 /// stack) would have the equivalent layout if it was expanded into separate 1329 /// arguments. If so, we prefer to do the latter to avoid inhibiting 1330 /// optimizations. 1331 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const { 1332 // We can only expand structure types. 1333 const RecordType *RT = Ty->getAs<RecordType>(); 1334 if (!RT) 1335 return false; 1336 const RecordDecl *RD = RT->getDecl(); 1337 uint64_t Size = 0; 1338 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1339 if (!IsWin32StructABI) { 1340 // On non-Windows, we have to conservatively match our old bitcode 1341 // prototypes in order to be ABI-compatible at the bitcode level. 1342 if (!CXXRD->isCLike()) 1343 return false; 1344 } else { 1345 // Don't do this for dynamic classes. 1346 if (CXXRD->isDynamicClass()) 1347 return false; 1348 } 1349 if (!addBaseAndFieldSizes(getContext(), CXXRD, Size)) 1350 return false; 1351 } else { 1352 if (!addFieldSizes(getContext(), RD, Size)) 1353 return false; 1354 } 1355 1356 // We can do this if there was no alignment padding. 1357 return Size == getContext().getTypeSize(Ty); 1358 } 1359 1360 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { 1361 // If the return value is indirect, then the hidden argument is consuming one 1362 // integer register. 1363 if (State.FreeRegs) { 1364 --State.FreeRegs; 1365 if (!IsMCUABI) 1366 return getNaturalAlignIndirectInReg(RetTy); 1367 } 1368 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 1369 } 1370 1371 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 1372 CCState &State) const { 1373 if (RetTy->isVoidType()) 1374 return ABIArgInfo::getIgnore(); 1375 1376 const Type *Base = nullptr; 1377 uint64_t NumElts = 0; 1378 if ((State.CC == llvm::CallingConv::X86_VectorCall || 1379 State.CC == llvm::CallingConv::X86_RegCall) && 1380 isHomogeneousAggregate(RetTy, Base, NumElts)) { 1381 // The LLVM struct type for such an aggregate should lower properly. 1382 return ABIArgInfo::getDirect(); 1383 } 1384 1385 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 1386 // On Darwin, some vectors are returned in registers. 1387 if (IsDarwinVectorABI) { 1388 uint64_t Size = getContext().getTypeSize(RetTy); 1389 1390 // 128-bit vectors are a special case; they are returned in 1391 // registers and we need to make sure to pick a type the LLVM 1392 // backend will like. 1393 if (Size == 128) 1394 return ABIArgInfo::getDirect(llvm::VectorType::get( 1395 llvm::Type::getInt64Ty(getVMContext()), 2)); 1396 1397 // Always return in register if it fits in a general purpose 1398 // register, or if it is 64 bits and has a single element. 1399 if ((Size == 8 || Size == 16 || Size == 32) || 1400 (Size == 64 && VT->getNumElements() == 1)) 1401 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1402 Size)); 1403 1404 return getIndirectReturnResult(RetTy, State); 1405 } 1406 1407 return ABIArgInfo::getDirect(); 1408 } 1409 1410 if (isAggregateTypeForABI(RetTy)) { 1411 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 1412 // Structures with flexible arrays are always indirect. 1413 if (RT->getDecl()->hasFlexibleArrayMember()) 1414 return getIndirectReturnResult(RetTy, State); 1415 } 1416 1417 // If specified, structs and unions are always indirect. 1418 if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) 1419 return getIndirectReturnResult(RetTy, State); 1420 1421 // Ignore empty structs/unions. 1422 if (isEmptyRecord(getContext(), RetTy, true)) 1423 return ABIArgInfo::getIgnore(); 1424 1425 // Small structures which are register sized are generally returned 1426 // in a register. 1427 if (shouldReturnTypeInRegister(RetTy, getContext())) { 1428 uint64_t Size = getContext().getTypeSize(RetTy); 1429 1430 // As a special-case, if the struct is a "single-element" struct, and 1431 // the field is of type "float" or "double", return it in a 1432 // floating-point register. (MSVC does not apply this special case.) 1433 // We apply a similar transformation for pointer types to improve the 1434 // quality of the generated IR. 1435 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 1436 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 1437 || SeltTy->hasPointerRepresentation()) 1438 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 1439 1440 // FIXME: We should be able to narrow this integer in cases with dead 1441 // padding. 1442 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 1443 } 1444 1445 return getIndirectReturnResult(RetTy, State); 1446 } 1447 1448 // Treat an enum type as its underlying type. 1449 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1450 RetTy = EnumTy->getDecl()->getIntegerType(); 1451 1452 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 1453 : ABIArgInfo::getDirect()); 1454 } 1455 1456 static bool isSSEVectorType(ASTContext &Context, QualType Ty) { 1457 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 1458 } 1459 1460 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) { 1461 const RecordType *RT = Ty->getAs<RecordType>(); 1462 if (!RT) 1463 return 0; 1464 const RecordDecl *RD = RT->getDecl(); 1465 1466 // If this is a C++ record, check the bases first. 1467 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1468 for (const auto &I : CXXRD->bases()) 1469 if (!isRecordWithSSEVectorType(Context, I.getType())) 1470 return false; 1471 1472 for (const auto *i : RD->fields()) { 1473 QualType FT = i->getType(); 1474 1475 if (isSSEVectorType(Context, FT)) 1476 return true; 1477 1478 if (isRecordWithSSEVectorType(Context, FT)) 1479 return true; 1480 } 1481 1482 return false; 1483 } 1484 1485 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 1486 unsigned Align) const { 1487 // Otherwise, if the alignment is less than or equal to the minimum ABI 1488 // alignment, just use the default; the backend will handle this. 1489 if (Align <= MinABIStackAlignInBytes) 1490 return 0; // Use default alignment. 1491 1492 // On non-Darwin, the stack type alignment is always 4. 1493 if (!IsDarwinVectorABI) { 1494 // Set explicit alignment, since we may need to realign the top. 1495 return MinABIStackAlignInBytes; 1496 } 1497 1498 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 1499 if (Align >= 16 && (isSSEVectorType(getContext(), Ty) || 1500 isRecordWithSSEVectorType(getContext(), Ty))) 1501 return 16; 1502 1503 return MinABIStackAlignInBytes; 1504 } 1505 1506 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 1507 CCState &State) const { 1508 if (!ByVal) { 1509 if (State.FreeRegs) { 1510 --State.FreeRegs; // Non-byval indirects just use one pointer. 1511 if (!IsMCUABI) 1512 return getNaturalAlignIndirectInReg(Ty); 1513 } 1514 return getNaturalAlignIndirect(Ty, false); 1515 } 1516 1517 // Compute the byval alignment. 1518 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 1519 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 1520 if (StackAlign == 0) 1521 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); 1522 1523 // If the stack alignment is less than the type alignment, realign the 1524 // argument. 1525 bool Realign = TypeAlign > StackAlign; 1526 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), 1527 /*ByVal=*/true, Realign); 1528 } 1529 1530 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 1531 const Type *T = isSingleElementStruct(Ty, getContext()); 1532 if (!T) 1533 T = Ty.getTypePtr(); 1534 1535 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 1536 BuiltinType::Kind K = BT->getKind(); 1537 if (K == BuiltinType::Float || K == BuiltinType::Double) 1538 return Float; 1539 } 1540 return Integer; 1541 } 1542 1543 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { 1544 if (!IsSoftFloatABI) { 1545 Class C = classify(Ty); 1546 if (C == Float) 1547 return false; 1548 } 1549 1550 unsigned Size = getContext().getTypeSize(Ty); 1551 unsigned SizeInRegs = (Size + 31) / 32; 1552 1553 if (SizeInRegs == 0) 1554 return false; 1555 1556 if (!IsMCUABI) { 1557 if (SizeInRegs > State.FreeRegs) { 1558 State.FreeRegs = 0; 1559 return false; 1560 } 1561 } else { 1562 // The MCU psABI allows passing parameters in-reg even if there are 1563 // earlier parameters that are passed on the stack. Also, 1564 // it does not allow passing >8-byte structs in-register, 1565 // even if there are 3 free registers available. 1566 if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) 1567 return false; 1568 } 1569 1570 State.FreeRegs -= SizeInRegs; 1571 return true; 1572 } 1573 1574 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, 1575 bool &InReg, 1576 bool &NeedsPadding) const { 1577 // On Windows, aggregates other than HFAs are never passed in registers, and 1578 // they do not consume register slots. Homogenous floating-point aggregates 1579 // (HFAs) have already been dealt with at this point. 1580 if (IsWin32StructABI && isAggregateTypeForABI(Ty)) 1581 return false; 1582 1583 NeedsPadding = false; 1584 InReg = !IsMCUABI; 1585 1586 if (!updateFreeRegs(Ty, State)) 1587 return false; 1588 1589 if (IsMCUABI) 1590 return true; 1591 1592 if (State.CC == llvm::CallingConv::X86_FastCall || 1593 State.CC == llvm::CallingConv::X86_VectorCall || 1594 State.CC == llvm::CallingConv::X86_RegCall) { 1595 if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) 1596 NeedsPadding = true; 1597 1598 return false; 1599 } 1600 1601 return true; 1602 } 1603 1604 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { 1605 if (!updateFreeRegs(Ty, State)) 1606 return false; 1607 1608 if (IsMCUABI) 1609 return false; 1610 1611 if (State.CC == llvm::CallingConv::X86_FastCall || 1612 State.CC == llvm::CallingConv::X86_VectorCall || 1613 State.CC == llvm::CallingConv::X86_RegCall) { 1614 if (getContext().getTypeSize(Ty) > 32) 1615 return false; 1616 1617 return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || 1618 Ty->isReferenceType()); 1619 } 1620 1621 return true; 1622 } 1623 1624 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 1625 CCState &State) const { 1626 // FIXME: Set alignment on indirect arguments. 1627 1628 Ty = useFirstFieldIfTransparentUnion(Ty); 1629 1630 // Check with the C++ ABI first. 1631 const RecordType *RT = Ty->getAs<RecordType>(); 1632 if (RT) { 1633 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 1634 if (RAA == CGCXXABI::RAA_Indirect) { 1635 return getIndirectResult(Ty, false, State); 1636 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 1637 // The field index doesn't matter, we'll fix it up later. 1638 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 1639 } 1640 } 1641 1642 // Regcall uses the concept of a homogenous vector aggregate, similar 1643 // to other targets. 1644 const Type *Base = nullptr; 1645 uint64_t NumElts = 0; 1646 if (State.CC == llvm::CallingConv::X86_RegCall && 1647 isHomogeneousAggregate(Ty, Base, NumElts)) { 1648 1649 if (State.FreeSSERegs >= NumElts) { 1650 State.FreeSSERegs -= NumElts; 1651 if (Ty->isBuiltinType() || Ty->isVectorType()) 1652 return ABIArgInfo::getDirect(); 1653 return ABIArgInfo::getExpand(); 1654 } 1655 return getIndirectResult(Ty, /*ByVal=*/false, State); 1656 } 1657 1658 if (isAggregateTypeForABI(Ty)) { 1659 // Structures with flexible arrays are always indirect. 1660 // FIXME: This should not be byval! 1661 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 1662 return getIndirectResult(Ty, true, State); 1663 1664 // Ignore empty structs/unions on non-Windows. 1665 if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true)) 1666 return ABIArgInfo::getIgnore(); 1667 1668 llvm::LLVMContext &LLVMContext = getVMContext(); 1669 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 1670 bool NeedsPadding = false; 1671 bool InReg; 1672 if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { 1673 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 1674 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 1675 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 1676 if (InReg) 1677 return ABIArgInfo::getDirectInReg(Result); 1678 else 1679 return ABIArgInfo::getDirect(Result); 1680 } 1681 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 1682 1683 // Expand small (<= 128-bit) record types when we know that the stack layout 1684 // of those arguments will match the struct. This is important because the 1685 // LLVM backend isn't smart enough to remove byval, which inhibits many 1686 // optimizations. 1687 // Don't do this for the MCU if there are still free integer registers 1688 // (see X86_64 ABI for full explanation). 1689 if (getContext().getTypeSize(Ty) <= 4 * 32 && 1690 (!IsMCUABI || State.FreeRegs == 0) && canExpandIndirectArgument(Ty)) 1691 return ABIArgInfo::getExpandWithPadding( 1692 State.CC == llvm::CallingConv::X86_FastCall || 1693 State.CC == llvm::CallingConv::X86_VectorCall || 1694 State.CC == llvm::CallingConv::X86_RegCall, 1695 PaddingType); 1696 1697 return getIndirectResult(Ty, true, State); 1698 } 1699 1700 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1701 // On Darwin, some vectors are passed in memory, we handle this by passing 1702 // it as an i8/i16/i32/i64. 1703 if (IsDarwinVectorABI) { 1704 uint64_t Size = getContext().getTypeSize(Ty); 1705 if ((Size == 8 || Size == 16 || Size == 32) || 1706 (Size == 64 && VT->getNumElements() == 1)) 1707 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1708 Size)); 1709 } 1710 1711 if (IsX86_MMXType(CGT.ConvertType(Ty))) 1712 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 1713 1714 return ABIArgInfo::getDirect(); 1715 } 1716 1717 1718 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1719 Ty = EnumTy->getDecl()->getIntegerType(); 1720 1721 bool InReg = shouldPrimitiveUseInReg(Ty, State); 1722 1723 if (Ty->isPromotableIntegerType()) { 1724 if (InReg) 1725 return ABIArgInfo::getExtendInReg(Ty); 1726 return ABIArgInfo::getExtend(Ty); 1727 } 1728 1729 if (InReg) 1730 return ABIArgInfo::getDirectInReg(); 1731 return ABIArgInfo::getDirect(); 1732 } 1733 1734 void X86_32ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, CCState &State, 1735 bool &UsedInAlloca) const { 1736 // Vectorcall x86 works subtly different than in x64, so the format is 1737 // a bit different than the x64 version. First, all vector types (not HVAs) 1738 // are assigned, with the first 6 ending up in the YMM0-5 or XMM0-5 registers. 1739 // This differs from the x64 implementation, where the first 6 by INDEX get 1740 // registers. 1741 // After that, integers AND HVAs are assigned Left to Right in the same pass. 1742 // Integers are passed as ECX/EDX if one is available (in order). HVAs will 1743 // first take up the remaining YMM/XMM registers. If insufficient registers 1744 // remain but an integer register (ECX/EDX) is available, it will be passed 1745 // in that, else, on the stack. 1746 for (auto &I : FI.arguments()) { 1747 // First pass do all the vector types. 1748 const Type *Base = nullptr; 1749 uint64_t NumElts = 0; 1750 const QualType& Ty = I.type; 1751 if ((Ty->isVectorType() || Ty->isBuiltinType()) && 1752 isHomogeneousAggregate(Ty, Base, NumElts)) { 1753 if (State.FreeSSERegs >= NumElts) { 1754 State.FreeSSERegs -= NumElts; 1755 I.info = ABIArgInfo::getDirect(); 1756 } else { 1757 I.info = classifyArgumentType(Ty, State); 1758 } 1759 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1760 } 1761 } 1762 1763 for (auto &I : FI.arguments()) { 1764 // Second pass, do the rest! 1765 const Type *Base = nullptr; 1766 uint64_t NumElts = 0; 1767 const QualType& Ty = I.type; 1768 bool IsHva = isHomogeneousAggregate(Ty, Base, NumElts); 1769 1770 if (IsHva && !Ty->isVectorType() && !Ty->isBuiltinType()) { 1771 // Assign true HVAs (non vector/native FP types). 1772 if (State.FreeSSERegs >= NumElts) { 1773 State.FreeSSERegs -= NumElts; 1774 I.info = getDirectX86Hva(); 1775 } else { 1776 I.info = getIndirectResult(Ty, /*ByVal=*/false, State); 1777 } 1778 } else if (!IsHva) { 1779 // Assign all Non-HVAs, so this will exclude Vector/FP args. 1780 I.info = classifyArgumentType(Ty, State); 1781 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1782 } 1783 } 1784 } 1785 1786 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 1787 CCState State(FI.getCallingConvention()); 1788 if (IsMCUABI) 1789 State.FreeRegs = 3; 1790 else if (State.CC == llvm::CallingConv::X86_FastCall) 1791 State.FreeRegs = 2; 1792 else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1793 State.FreeRegs = 2; 1794 State.FreeSSERegs = 6; 1795 } else if (FI.getHasRegParm()) 1796 State.FreeRegs = FI.getRegParm(); 1797 else if (State.CC == llvm::CallingConv::X86_RegCall) { 1798 State.FreeRegs = 5; 1799 State.FreeSSERegs = 8; 1800 } else 1801 State.FreeRegs = DefaultNumRegisterParameters; 1802 1803 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 1804 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 1805 } else if (FI.getReturnInfo().isIndirect()) { 1806 // The C++ ABI is not aware of register usage, so we have to check if the 1807 // return value was sret and put it in a register ourselves if appropriate. 1808 if (State.FreeRegs) { 1809 --State.FreeRegs; // The sret parameter consumes a register. 1810 if (!IsMCUABI) 1811 FI.getReturnInfo().setInReg(true); 1812 } 1813 } 1814 1815 // The chain argument effectively gives us another free register. 1816 if (FI.isChainCall()) 1817 ++State.FreeRegs; 1818 1819 bool UsedInAlloca = false; 1820 if (State.CC == llvm::CallingConv::X86_VectorCall) { 1821 computeVectorCallArgs(FI, State, UsedInAlloca); 1822 } else { 1823 // If not vectorcall, revert to normal behavior. 1824 for (auto &I : FI.arguments()) { 1825 I.info = classifyArgumentType(I.type, State); 1826 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1827 } 1828 } 1829 1830 // If we needed to use inalloca for any argument, do a second pass and rewrite 1831 // all the memory arguments to use inalloca. 1832 if (UsedInAlloca) 1833 rewriteWithInAlloca(FI); 1834 } 1835 1836 void 1837 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1838 CharUnits &StackOffset, ABIArgInfo &Info, 1839 QualType Type) const { 1840 // Arguments are always 4-byte-aligned. 1841 CharUnits FieldAlign = CharUnits::fromQuantity(4); 1842 1843 assert(StackOffset.isMultipleOf(FieldAlign) && "unaligned inalloca struct"); 1844 Info = ABIArgInfo::getInAlloca(FrameFields.size()); 1845 FrameFields.push_back(CGT.ConvertTypeForMem(Type)); 1846 StackOffset += getContext().getTypeSizeInChars(Type); 1847 1848 // Insert padding bytes to respect alignment. 1849 CharUnits FieldEnd = StackOffset; 1850 StackOffset = FieldEnd.alignTo(FieldAlign); 1851 if (StackOffset != FieldEnd) { 1852 CharUnits NumBytes = StackOffset - FieldEnd; 1853 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 1854 Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); 1855 FrameFields.push_back(Ty); 1856 } 1857 } 1858 1859 static bool isArgInAlloca(const ABIArgInfo &Info) { 1860 // Leave ignored and inreg arguments alone. 1861 switch (Info.getKind()) { 1862 case ABIArgInfo::InAlloca: 1863 return true; 1864 case ABIArgInfo::Indirect: 1865 assert(Info.getIndirectByVal()); 1866 return true; 1867 case ABIArgInfo::Ignore: 1868 return false; 1869 case ABIArgInfo::Direct: 1870 case ABIArgInfo::Extend: 1871 if (Info.getInReg()) 1872 return false; 1873 return true; 1874 case ABIArgInfo::Expand: 1875 case ABIArgInfo::CoerceAndExpand: 1876 // These are aggregate types which are never passed in registers when 1877 // inalloca is involved. 1878 return true; 1879 } 1880 llvm_unreachable("invalid enum"); 1881 } 1882 1883 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 1884 assert(IsWin32StructABI && "inalloca only supported on win32"); 1885 1886 // Build a packed struct type for all of the arguments in memory. 1887 SmallVector<llvm::Type *, 6> FrameFields; 1888 1889 // The stack alignment is always 4. 1890 CharUnits StackAlign = CharUnits::fromQuantity(4); 1891 1892 CharUnits StackOffset; 1893 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 1894 1895 // Put 'this' into the struct before 'sret', if necessary. 1896 bool IsThisCall = 1897 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 1898 ABIArgInfo &Ret = FI.getReturnInfo(); 1899 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 1900 isArgInAlloca(I->info)) { 1901 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1902 ++I; 1903 } 1904 1905 // Put the sret parameter into the inalloca struct if it's in memory. 1906 if (Ret.isIndirect() && !Ret.getInReg()) { 1907 CanQualType PtrTy = getContext().getPointerType(FI.getReturnType()); 1908 addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy); 1909 // On Windows, the hidden sret parameter is always returned in eax. 1910 Ret.setInAllocaSRet(IsWin32StructABI); 1911 } 1912 1913 // Skip the 'this' parameter in ecx. 1914 if (IsThisCall) 1915 ++I; 1916 1917 // Put arguments passed in memory into the struct. 1918 for (; I != E; ++I) { 1919 if (isArgInAlloca(I->info)) 1920 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1921 } 1922 1923 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 1924 /*isPacked=*/true), 1925 StackAlign); 1926 } 1927 1928 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, 1929 Address VAListAddr, QualType Ty) const { 1930 1931 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 1932 1933 // x86-32 changes the alignment of certain arguments on the stack. 1934 // 1935 // Just messing with TypeInfo like this works because we never pass 1936 // anything indirectly. 1937 TypeInfo.second = CharUnits::fromQuantity( 1938 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity())); 1939 1940 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 1941 TypeInfo, CharUnits::fromQuantity(4), 1942 /*AllowHigherAlign*/ true); 1943 } 1944 1945 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 1946 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 1947 assert(Triple.getArch() == llvm::Triple::x86); 1948 1949 switch (Opts.getStructReturnConvention()) { 1950 case CodeGenOptions::SRCK_Default: 1951 break; 1952 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 1953 return false; 1954 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 1955 return true; 1956 } 1957 1958 if (Triple.isOSDarwin() || Triple.isOSIAMCU()) 1959 return true; 1960 1961 switch (Triple.getOS()) { 1962 case llvm::Triple::DragonFly: 1963 case llvm::Triple::FreeBSD: 1964 case llvm::Triple::OpenBSD: 1965 case llvm::Triple::Win32: 1966 return true; 1967 default: 1968 return false; 1969 } 1970 } 1971 1972 void X86_32TargetCodeGenInfo::setTargetAttributes( 1973 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 1974 if (GV->isDeclaration()) 1975 return; 1976 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 1977 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 1978 llvm::Function *Fn = cast<llvm::Function>(GV); 1979 Fn->addFnAttr("stackrealign"); 1980 } 1981 if (FD->hasAttr<AnyX86InterruptAttr>()) { 1982 llvm::Function *Fn = cast<llvm::Function>(GV); 1983 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 1984 } 1985 } 1986 } 1987 1988 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 1989 CodeGen::CodeGenFunction &CGF, 1990 llvm::Value *Address) const { 1991 CodeGen::CGBuilderTy &Builder = CGF.Builder; 1992 1993 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 1994 1995 // 0-7 are the eight integer registers; the order is different 1996 // on Darwin (for EH), but the range is the same. 1997 // 8 is %eip. 1998 AssignToArrayRange(Builder, Address, Four8, 0, 8); 1999 2000 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 2001 // 12-16 are st(0..4). Not sure why we stop at 4. 2002 // These have size 16, which is sizeof(long double) on 2003 // platforms with 8-byte alignment for that type. 2004 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 2005 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 2006 2007 } else { 2008 // 9 is %eflags, which doesn't get a size on Darwin for some 2009 // reason. 2010 Builder.CreateAlignedStore( 2011 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), 2012 CharUnits::One()); 2013 2014 // 11-16 are st(0..5). Not sure why we stop at 5. 2015 // These have size 12, which is sizeof(long double) on 2016 // platforms with 4-byte alignment for that type. 2017 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 2018 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 2019 } 2020 2021 return false; 2022 } 2023 2024 //===----------------------------------------------------------------------===// 2025 // X86-64 ABI Implementation 2026 //===----------------------------------------------------------------------===// 2027 2028 2029 namespace { 2030 /// The AVX ABI level for X86 targets. 2031 enum class X86AVXABILevel { 2032 None, 2033 AVX, 2034 AVX512 2035 }; 2036 2037 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. 2038 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { 2039 switch (AVXLevel) { 2040 case X86AVXABILevel::AVX512: 2041 return 512; 2042 case X86AVXABILevel::AVX: 2043 return 256; 2044 case X86AVXABILevel::None: 2045 return 128; 2046 } 2047 llvm_unreachable("Unknown AVXLevel"); 2048 } 2049 2050 /// X86_64ABIInfo - The X86_64 ABI information. 2051 class X86_64ABIInfo : public SwiftABIInfo { 2052 enum Class { 2053 Integer = 0, 2054 SSE, 2055 SSEUp, 2056 X87, 2057 X87Up, 2058 ComplexX87, 2059 NoClass, 2060 Memory 2061 }; 2062 2063 /// merge - Implement the X86_64 ABI merging algorithm. 2064 /// 2065 /// Merge an accumulating classification \arg Accum with a field 2066 /// classification \arg Field. 2067 /// 2068 /// \param Accum - The accumulating classification. This should 2069 /// always be either NoClass or the result of a previous merge 2070 /// call. In addition, this should never be Memory (the caller 2071 /// should just return Memory for the aggregate). 2072 static Class merge(Class Accum, Class Field); 2073 2074 /// postMerge - Implement the X86_64 ABI post merging algorithm. 2075 /// 2076 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 2077 /// final MEMORY or SSE classes when necessary. 2078 /// 2079 /// \param AggregateSize - The size of the current aggregate in 2080 /// the classification process. 2081 /// 2082 /// \param Lo - The classification for the parts of the type 2083 /// residing in the low word of the containing object. 2084 /// 2085 /// \param Hi - The classification for the parts of the type 2086 /// residing in the higher words of the containing object. 2087 /// 2088 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 2089 2090 /// classify - Determine the x86_64 register classes in which the 2091 /// given type T should be passed. 2092 /// 2093 /// \param Lo - The classification for the parts of the type 2094 /// residing in the low word of the containing object. 2095 /// 2096 /// \param Hi - The classification for the parts of the type 2097 /// residing in the high word of the containing object. 2098 /// 2099 /// \param OffsetBase - The bit offset of this type in the 2100 /// containing object. Some parameters are classified different 2101 /// depending on whether they straddle an eightbyte boundary. 2102 /// 2103 /// \param isNamedArg - Whether the argument in question is a "named" 2104 /// argument, as used in AMD64-ABI 3.5.7. 2105 /// 2106 /// If a word is unused its result will be NoClass; if a type should 2107 /// be passed in Memory then at least the classification of \arg Lo 2108 /// will be Memory. 2109 /// 2110 /// The \arg Lo class will be NoClass iff the argument is ignored. 2111 /// 2112 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 2113 /// also be ComplexX87. 2114 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 2115 bool isNamedArg) const; 2116 2117 llvm::Type *GetByteVectorType(QualType Ty) const; 2118 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 2119 unsigned IROffset, QualType SourceTy, 2120 unsigned SourceOffset) const; 2121 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 2122 unsigned IROffset, QualType SourceTy, 2123 unsigned SourceOffset) const; 2124 2125 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2126 /// such that the argument will be returned in memory. 2127 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 2128 2129 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2130 /// such that the argument will be passed in memory. 2131 /// 2132 /// \param freeIntRegs - The number of free integer registers remaining 2133 /// available. 2134 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 2135 2136 ABIArgInfo classifyReturnType(QualType RetTy) const; 2137 2138 ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs, 2139 unsigned &neededInt, unsigned &neededSSE, 2140 bool isNamedArg) const; 2141 2142 ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt, 2143 unsigned &NeededSSE) const; 2144 2145 ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 2146 unsigned &NeededSSE) const; 2147 2148 bool IsIllegalVectorType(QualType Ty) const; 2149 2150 /// The 0.98 ABI revision clarified a lot of ambiguities, 2151 /// unfortunately in ways that were not always consistent with 2152 /// certain previous compilers. In particular, platforms which 2153 /// required strict binary compatibility with older versions of GCC 2154 /// may need to exempt themselves. 2155 bool honorsRevision0_98() const { 2156 return !getTarget().getTriple().isOSDarwin(); 2157 } 2158 2159 /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to 2160 /// classify it as INTEGER (for compatibility with older clang compilers). 2161 bool classifyIntegerMMXAsSSE() const { 2162 // Clang <= 3.8 did not do this. 2163 if (getContext().getLangOpts().getClangABICompat() <= 2164 LangOptions::ClangABI::Ver3_8) 2165 return false; 2166 2167 const llvm::Triple &Triple = getTarget().getTriple(); 2168 if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4) 2169 return false; 2170 if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10) 2171 return false; 2172 return true; 2173 } 2174 2175 X86AVXABILevel AVXLevel; 2176 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 2177 // 64-bit hardware. 2178 bool Has64BitPointers; 2179 2180 public: 2181 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : 2182 SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2183 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 2184 } 2185 2186 bool isPassedUsingAVXType(QualType type) const { 2187 unsigned neededInt, neededSSE; 2188 // The freeIntRegs argument doesn't matter here. 2189 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 2190 /*isNamedArg*/true); 2191 if (info.isDirect()) { 2192 llvm::Type *ty = info.getCoerceToType(); 2193 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 2194 return (vectorTy->getBitWidth() > 128); 2195 } 2196 return false; 2197 } 2198 2199 void computeInfo(CGFunctionInfo &FI) const override; 2200 2201 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2202 QualType Ty) const override; 2203 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 2204 QualType Ty) const override; 2205 2206 bool has64BitPointers() const { 2207 return Has64BitPointers; 2208 } 2209 2210 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 2211 bool asReturnValue) const override { 2212 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2213 } 2214 bool isSwiftErrorInRegister() const override { 2215 return true; 2216 } 2217 }; 2218 2219 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 2220 class WinX86_64ABIInfo : public SwiftABIInfo { 2221 public: 2222 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) 2223 : SwiftABIInfo(CGT), 2224 IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} 2225 2226 void computeInfo(CGFunctionInfo &FI) const override; 2227 2228 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2229 QualType Ty) const override; 2230 2231 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 2232 // FIXME: Assumes vectorcall is in use. 2233 return isX86VectorTypeForVectorCall(getContext(), Ty); 2234 } 2235 2236 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 2237 uint64_t NumMembers) const override { 2238 // FIXME: Assumes vectorcall is in use. 2239 return isX86VectorCallAggregateSmallEnough(NumMembers); 2240 } 2241 2242 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars, 2243 bool asReturnValue) const override { 2244 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2245 } 2246 2247 bool isSwiftErrorInRegister() const override { 2248 return true; 2249 } 2250 2251 private: 2252 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType, 2253 bool IsVectorCall, bool IsRegCall) const; 2254 ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 2255 const ABIArgInfo ¤t) const; 2256 void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs, 2257 bool IsVectorCall, bool IsRegCall) const; 2258 2259 bool IsMingw64; 2260 }; 2261 2262 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2263 public: 2264 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2265 : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {} 2266 2267 const X86_64ABIInfo &getABIInfo() const { 2268 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 2269 } 2270 2271 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2272 return 7; 2273 } 2274 2275 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2276 llvm::Value *Address) const override { 2277 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2278 2279 // 0-15 are the 16 integer registers. 2280 // 16 is %rip. 2281 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2282 return false; 2283 } 2284 2285 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 2286 StringRef Constraint, 2287 llvm::Type* Ty) const override { 2288 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 2289 } 2290 2291 bool isNoProtoCallVariadic(const CallArgList &args, 2292 const FunctionNoProtoType *fnType) const override { 2293 // The default CC on x86-64 sets %al to the number of SSA 2294 // registers used, and GCC sets this when calling an unprototyped 2295 // function, so we override the default behavior. However, don't do 2296 // that when AVX types are involved: the ABI explicitly states it is 2297 // undefined, and it doesn't work in practice because of how the ABI 2298 // defines varargs anyway. 2299 if (fnType->getCallConv() == CC_C) { 2300 bool HasAVXType = false; 2301 for (CallArgList::const_iterator 2302 it = args.begin(), ie = args.end(); it != ie; ++it) { 2303 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 2304 HasAVXType = true; 2305 break; 2306 } 2307 } 2308 2309 if (!HasAVXType) 2310 return true; 2311 } 2312 2313 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 2314 } 2315 2316 llvm::Constant * 2317 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 2318 unsigned Sig = (0xeb << 0) | // jmp rel8 2319 (0x06 << 8) | // .+0x08 2320 ('v' << 16) | 2321 ('2' << 24); 2322 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 2323 } 2324 2325 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2326 CodeGen::CodeGenModule &CGM) const override { 2327 if (GV->isDeclaration()) 2328 return; 2329 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2330 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2331 llvm::Function *Fn = cast<llvm::Function>(GV); 2332 Fn->addFnAttr("stackrealign"); 2333 } 2334 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2335 llvm::Function *Fn = cast<llvm::Function>(GV); 2336 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2337 } 2338 } 2339 } 2340 }; 2341 2342 class PS4TargetCodeGenInfo : public X86_64TargetCodeGenInfo { 2343 public: 2344 PS4TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2345 : X86_64TargetCodeGenInfo(CGT, AVXLevel) {} 2346 2347 void getDependentLibraryOption(llvm::StringRef Lib, 2348 llvm::SmallString<24> &Opt) const override { 2349 Opt = "\01"; 2350 // If the argument contains a space, enclose it in quotes. 2351 if (Lib.find(" ") != StringRef::npos) 2352 Opt += "\"" + Lib.str() + "\""; 2353 else 2354 Opt += Lib; 2355 } 2356 }; 2357 2358 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 2359 // If the argument does not end in .lib, automatically add the suffix. 2360 // If the argument contains a space, enclose it in quotes. 2361 // This matches the behavior of MSVC. 2362 bool Quote = (Lib.find(" ") != StringRef::npos); 2363 std::string ArgStr = Quote ? "\"" : ""; 2364 ArgStr += Lib; 2365 if (!Lib.endswith_lower(".lib") && !Lib.endswith_lower(".a")) 2366 ArgStr += ".lib"; 2367 ArgStr += Quote ? "\"" : ""; 2368 return ArgStr; 2369 } 2370 2371 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 2372 public: 2373 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2374 bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, 2375 unsigned NumRegisterParameters) 2376 : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, 2377 Win32StructABI, NumRegisterParameters, false) {} 2378 2379 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2380 CodeGen::CodeGenModule &CGM) const override; 2381 2382 void getDependentLibraryOption(llvm::StringRef Lib, 2383 llvm::SmallString<24> &Opt) const override { 2384 Opt = "/DEFAULTLIB:"; 2385 Opt += qualifyWindowsLibrary(Lib); 2386 } 2387 2388 void getDetectMismatchOption(llvm::StringRef Name, 2389 llvm::StringRef Value, 2390 llvm::SmallString<32> &Opt) const override { 2391 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2392 } 2393 }; 2394 2395 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2396 CodeGen::CodeGenModule &CGM) { 2397 if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) { 2398 2399 if (CGM.getCodeGenOpts().StackProbeSize != 4096) 2400 Fn->addFnAttr("stack-probe-size", 2401 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 2402 if (CGM.getCodeGenOpts().NoStackArgProbe) 2403 Fn->addFnAttr("no-stack-arg-probe"); 2404 } 2405 } 2406 2407 void WinX86_32TargetCodeGenInfo::setTargetAttributes( 2408 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2409 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2410 if (GV->isDeclaration()) 2411 return; 2412 addStackProbeTargetAttributes(D, GV, CGM); 2413 } 2414 2415 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2416 public: 2417 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2418 X86AVXABILevel AVXLevel) 2419 : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {} 2420 2421 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2422 CodeGen::CodeGenModule &CGM) const override; 2423 2424 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2425 return 7; 2426 } 2427 2428 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2429 llvm::Value *Address) const override { 2430 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2431 2432 // 0-15 are the 16 integer registers. 2433 // 16 is %rip. 2434 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2435 return false; 2436 } 2437 2438 void getDependentLibraryOption(llvm::StringRef Lib, 2439 llvm::SmallString<24> &Opt) const override { 2440 Opt = "/DEFAULTLIB:"; 2441 Opt += qualifyWindowsLibrary(Lib); 2442 } 2443 2444 void getDetectMismatchOption(llvm::StringRef Name, 2445 llvm::StringRef Value, 2446 llvm::SmallString<32> &Opt) const override { 2447 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2448 } 2449 }; 2450 2451 void WinX86_64TargetCodeGenInfo::setTargetAttributes( 2452 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2453 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2454 if (GV->isDeclaration()) 2455 return; 2456 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2457 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2458 llvm::Function *Fn = cast<llvm::Function>(GV); 2459 Fn->addFnAttr("stackrealign"); 2460 } 2461 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2462 llvm::Function *Fn = cast<llvm::Function>(GV); 2463 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2464 } 2465 } 2466 2467 addStackProbeTargetAttributes(D, GV, CGM); 2468 } 2469 } 2470 2471 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 2472 Class &Hi) const { 2473 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 2474 // 2475 // (a) If one of the classes is Memory, the whole argument is passed in 2476 // memory. 2477 // 2478 // (b) If X87UP is not preceded by X87, the whole argument is passed in 2479 // memory. 2480 // 2481 // (c) If the size of the aggregate exceeds two eightbytes and the first 2482 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 2483 // argument is passed in memory. NOTE: This is necessary to keep the 2484 // ABI working for processors that don't support the __m256 type. 2485 // 2486 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 2487 // 2488 // Some of these are enforced by the merging logic. Others can arise 2489 // only with unions; for example: 2490 // union { _Complex double; unsigned; } 2491 // 2492 // Note that clauses (b) and (c) were added in 0.98. 2493 // 2494 if (Hi == Memory) 2495 Lo = Memory; 2496 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 2497 Lo = Memory; 2498 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 2499 Lo = Memory; 2500 if (Hi == SSEUp && Lo != SSE) 2501 Hi = SSE; 2502 } 2503 2504 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 2505 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 2506 // classified recursively so that always two fields are 2507 // considered. The resulting class is calculated according to 2508 // the classes of the fields in the eightbyte: 2509 // 2510 // (a) If both classes are equal, this is the resulting class. 2511 // 2512 // (b) If one of the classes is NO_CLASS, the resulting class is 2513 // the other class. 2514 // 2515 // (c) If one of the classes is MEMORY, the result is the MEMORY 2516 // class. 2517 // 2518 // (d) If one of the classes is INTEGER, the result is the 2519 // INTEGER. 2520 // 2521 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 2522 // MEMORY is used as class. 2523 // 2524 // (f) Otherwise class SSE is used. 2525 2526 // Accum should never be memory (we should have returned) or 2527 // ComplexX87 (because this cannot be passed in a structure). 2528 assert((Accum != Memory && Accum != ComplexX87) && 2529 "Invalid accumulated classification during merge."); 2530 if (Accum == Field || Field == NoClass) 2531 return Accum; 2532 if (Field == Memory) 2533 return Memory; 2534 if (Accum == NoClass) 2535 return Field; 2536 if (Accum == Integer || Field == Integer) 2537 return Integer; 2538 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 2539 Accum == X87 || Accum == X87Up) 2540 return Memory; 2541 return SSE; 2542 } 2543 2544 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 2545 Class &Lo, Class &Hi, bool isNamedArg) const { 2546 // FIXME: This code can be simplified by introducing a simple value class for 2547 // Class pairs with appropriate constructor methods for the various 2548 // situations. 2549 2550 // FIXME: Some of the split computations are wrong; unaligned vectors 2551 // shouldn't be passed in registers for example, so there is no chance they 2552 // can straddle an eightbyte. Verify & simplify. 2553 2554 Lo = Hi = NoClass; 2555 2556 Class &Current = OffsetBase < 64 ? Lo : Hi; 2557 Current = Memory; 2558 2559 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 2560 BuiltinType::Kind k = BT->getKind(); 2561 2562 if (k == BuiltinType::Void) { 2563 Current = NoClass; 2564 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 2565 Lo = Integer; 2566 Hi = Integer; 2567 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 2568 Current = Integer; 2569 } else if (k == BuiltinType::Float || k == BuiltinType::Double) { 2570 Current = SSE; 2571 } else if (k == BuiltinType::LongDouble) { 2572 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2573 if (LDF == &llvm::APFloat::IEEEquad()) { 2574 Lo = SSE; 2575 Hi = SSEUp; 2576 } else if (LDF == &llvm::APFloat::x87DoubleExtended()) { 2577 Lo = X87; 2578 Hi = X87Up; 2579 } else if (LDF == &llvm::APFloat::IEEEdouble()) { 2580 Current = SSE; 2581 } else 2582 llvm_unreachable("unexpected long double representation!"); 2583 } 2584 // FIXME: _Decimal32 and _Decimal64 are SSE. 2585 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 2586 return; 2587 } 2588 2589 if (const EnumType *ET = Ty->getAs<EnumType>()) { 2590 // Classify the underlying integer type. 2591 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 2592 return; 2593 } 2594 2595 if (Ty->hasPointerRepresentation()) { 2596 Current = Integer; 2597 return; 2598 } 2599 2600 if (Ty->isMemberPointerType()) { 2601 if (Ty->isMemberFunctionPointerType()) { 2602 if (Has64BitPointers) { 2603 // If Has64BitPointers, this is an {i64, i64}, so classify both 2604 // Lo and Hi now. 2605 Lo = Hi = Integer; 2606 } else { 2607 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 2608 // straddles an eightbyte boundary, Hi should be classified as well. 2609 uint64_t EB_FuncPtr = (OffsetBase) / 64; 2610 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 2611 if (EB_FuncPtr != EB_ThisAdj) { 2612 Lo = Hi = Integer; 2613 } else { 2614 Current = Integer; 2615 } 2616 } 2617 } else { 2618 Current = Integer; 2619 } 2620 return; 2621 } 2622 2623 if (const VectorType *VT = Ty->getAs<VectorType>()) { 2624 uint64_t Size = getContext().getTypeSize(VT); 2625 if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { 2626 // gcc passes the following as integer: 2627 // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> 2628 // 2 bytes - <2 x char>, <1 x short> 2629 // 1 byte - <1 x char> 2630 Current = Integer; 2631 2632 // If this type crosses an eightbyte boundary, it should be 2633 // split. 2634 uint64_t EB_Lo = (OffsetBase) / 64; 2635 uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; 2636 if (EB_Lo != EB_Hi) 2637 Hi = Lo; 2638 } else if (Size == 64) { 2639 QualType ElementType = VT->getElementType(); 2640 2641 // gcc passes <1 x double> in memory. :( 2642 if (ElementType->isSpecificBuiltinType(BuiltinType::Double)) 2643 return; 2644 2645 // gcc passes <1 x long long> as SSE but clang used to unconditionally 2646 // pass them as integer. For platforms where clang is the de facto 2647 // platform compiler, we must continue to use integer. 2648 if (!classifyIntegerMMXAsSSE() && 2649 (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) || 2650 ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) || 2651 ElementType->isSpecificBuiltinType(BuiltinType::Long) || 2652 ElementType->isSpecificBuiltinType(BuiltinType::ULong))) 2653 Current = Integer; 2654 else 2655 Current = SSE; 2656 2657 // If this type crosses an eightbyte boundary, it should be 2658 // split. 2659 if (OffsetBase && OffsetBase != 64) 2660 Hi = Lo; 2661 } else if (Size == 128 || 2662 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { 2663 // Arguments of 256-bits are split into four eightbyte chunks. The 2664 // least significant one belongs to class SSE and all the others to class 2665 // SSEUP. The original Lo and Hi design considers that types can't be 2666 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 2667 // This design isn't correct for 256-bits, but since there're no cases 2668 // where the upper parts would need to be inspected, avoid adding 2669 // complexity and just consider Hi to match the 64-256 part. 2670 // 2671 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 2672 // registers if they are "named", i.e. not part of the "..." of a 2673 // variadic function. 2674 // 2675 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are 2676 // split into eight eightbyte chunks, one SSE and seven SSEUP. 2677 Lo = SSE; 2678 Hi = SSEUp; 2679 } 2680 return; 2681 } 2682 2683 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 2684 QualType ET = getContext().getCanonicalType(CT->getElementType()); 2685 2686 uint64_t Size = getContext().getTypeSize(Ty); 2687 if (ET->isIntegralOrEnumerationType()) { 2688 if (Size <= 64) 2689 Current = Integer; 2690 else if (Size <= 128) 2691 Lo = Hi = Integer; 2692 } else if (ET == getContext().FloatTy) { 2693 Current = SSE; 2694 } else if (ET == getContext().DoubleTy) { 2695 Lo = Hi = SSE; 2696 } else if (ET == getContext().LongDoubleTy) { 2697 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2698 if (LDF == &llvm::APFloat::IEEEquad()) 2699 Current = Memory; 2700 else if (LDF == &llvm::APFloat::x87DoubleExtended()) 2701 Current = ComplexX87; 2702 else if (LDF == &llvm::APFloat::IEEEdouble()) 2703 Lo = Hi = SSE; 2704 else 2705 llvm_unreachable("unexpected long double representation!"); 2706 } 2707 2708 // If this complex type crosses an eightbyte boundary then it 2709 // should be split. 2710 uint64_t EB_Real = (OffsetBase) / 64; 2711 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 2712 if (Hi == NoClass && EB_Real != EB_Imag) 2713 Hi = Lo; 2714 2715 return; 2716 } 2717 2718 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 2719 // Arrays are treated like structures. 2720 2721 uint64_t Size = getContext().getTypeSize(Ty); 2722 2723 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2724 // than eight eightbytes, ..., it has class MEMORY. 2725 if (Size > 512) 2726 return; 2727 2728 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 2729 // fields, it has class MEMORY. 2730 // 2731 // Only need to check alignment of array base. 2732 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 2733 return; 2734 2735 // Otherwise implement simplified merge. We could be smarter about 2736 // this, but it isn't worth it and would be harder to verify. 2737 Current = NoClass; 2738 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 2739 uint64_t ArraySize = AT->getSize().getZExtValue(); 2740 2741 // The only case a 256-bit wide vector could be used is when the array 2742 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2743 // to work for sizes wider than 128, early check and fallback to memory. 2744 // 2745 if (Size > 128 && 2746 (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel))) 2747 return; 2748 2749 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 2750 Class FieldLo, FieldHi; 2751 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 2752 Lo = merge(Lo, FieldLo); 2753 Hi = merge(Hi, FieldHi); 2754 if (Lo == Memory || Hi == Memory) 2755 break; 2756 } 2757 2758 postMerge(Size, Lo, Hi); 2759 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 2760 return; 2761 } 2762 2763 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2764 uint64_t Size = getContext().getTypeSize(Ty); 2765 2766 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2767 // than eight eightbytes, ..., it has class MEMORY. 2768 if (Size > 512) 2769 return; 2770 2771 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 2772 // copy constructor or a non-trivial destructor, it is passed by invisible 2773 // reference. 2774 if (getRecordArgABI(RT, getCXXABI())) 2775 return; 2776 2777 const RecordDecl *RD = RT->getDecl(); 2778 2779 // Assume variable sized types are passed in memory. 2780 if (RD->hasFlexibleArrayMember()) 2781 return; 2782 2783 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2784 2785 // Reset Lo class, this will be recomputed. 2786 Current = NoClass; 2787 2788 // If this is a C++ record, classify the bases first. 2789 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2790 for (const auto &I : CXXRD->bases()) { 2791 assert(!I.isVirtual() && !I.getType()->isDependentType() && 2792 "Unexpected base class!"); 2793 const CXXRecordDecl *Base = 2794 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2795 2796 // Classify this field. 2797 // 2798 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 2799 // single eightbyte, each is classified separately. Each eightbyte gets 2800 // initialized to class NO_CLASS. 2801 Class FieldLo, FieldHi; 2802 uint64_t Offset = 2803 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 2804 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 2805 Lo = merge(Lo, FieldLo); 2806 Hi = merge(Hi, FieldHi); 2807 if (Lo == Memory || Hi == Memory) { 2808 postMerge(Size, Lo, Hi); 2809 return; 2810 } 2811 } 2812 } 2813 2814 // Classify the fields one at a time, merging the results. 2815 unsigned idx = 0; 2816 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2817 i != e; ++i, ++idx) { 2818 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2819 bool BitField = i->isBitField(); 2820 2821 // Ignore padding bit-fields. 2822 if (BitField && i->isUnnamedBitfield()) 2823 continue; 2824 2825 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 2826 // four eightbytes, or it contains unaligned fields, it has class MEMORY. 2827 // 2828 // The only case a 256-bit wide vector could be used is when the struct 2829 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2830 // to work for sizes wider than 128, early check and fallback to memory. 2831 // 2832 if (Size > 128 && (Size != getContext().getTypeSize(i->getType()) || 2833 Size > getNativeVectorSizeForAVXABI(AVXLevel))) { 2834 Lo = Memory; 2835 postMerge(Size, Lo, Hi); 2836 return; 2837 } 2838 // Note, skip this test for bit-fields, see below. 2839 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 2840 Lo = Memory; 2841 postMerge(Size, Lo, Hi); 2842 return; 2843 } 2844 2845 // Classify this field. 2846 // 2847 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 2848 // exceeds a single eightbyte, each is classified 2849 // separately. Each eightbyte gets initialized to class 2850 // NO_CLASS. 2851 Class FieldLo, FieldHi; 2852 2853 // Bit-fields require special handling, they do not force the 2854 // structure to be passed in memory even if unaligned, and 2855 // therefore they can straddle an eightbyte. 2856 if (BitField) { 2857 assert(!i->isUnnamedBitfield()); 2858 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2859 uint64_t Size = i->getBitWidthValue(getContext()); 2860 2861 uint64_t EB_Lo = Offset / 64; 2862 uint64_t EB_Hi = (Offset + Size - 1) / 64; 2863 2864 if (EB_Lo) { 2865 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 2866 FieldLo = NoClass; 2867 FieldHi = Integer; 2868 } else { 2869 FieldLo = Integer; 2870 FieldHi = EB_Hi ? Integer : NoClass; 2871 } 2872 } else 2873 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 2874 Lo = merge(Lo, FieldLo); 2875 Hi = merge(Hi, FieldHi); 2876 if (Lo == Memory || Hi == Memory) 2877 break; 2878 } 2879 2880 postMerge(Size, Lo, Hi); 2881 } 2882 } 2883 2884 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 2885 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2886 // place naturally. 2887 if (!isAggregateTypeForABI(Ty)) { 2888 // Treat an enum type as its underlying type. 2889 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2890 Ty = EnumTy->getDecl()->getIntegerType(); 2891 2892 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 2893 : ABIArgInfo::getDirect()); 2894 } 2895 2896 return getNaturalAlignIndirect(Ty); 2897 } 2898 2899 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 2900 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 2901 uint64_t Size = getContext().getTypeSize(VecTy); 2902 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); 2903 if (Size <= 64 || Size > LargestVector) 2904 return true; 2905 } 2906 2907 return false; 2908 } 2909 2910 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 2911 unsigned freeIntRegs) const { 2912 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2913 // place naturally. 2914 // 2915 // This assumption is optimistic, as there could be free registers available 2916 // when we need to pass this argument in memory, and LLVM could try to pass 2917 // the argument in the free register. This does not seem to happen currently, 2918 // but this code would be much safer if we could mark the argument with 2919 // 'onstack'. See PR12193. 2920 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) { 2921 // Treat an enum type as its underlying type. 2922 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2923 Ty = EnumTy->getDecl()->getIntegerType(); 2924 2925 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 2926 : ABIArgInfo::getDirect()); 2927 } 2928 2929 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 2930 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 2931 2932 // Compute the byval alignment. We specify the alignment of the byval in all 2933 // cases so that the mid-level optimizer knows the alignment of the byval. 2934 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 2935 2936 // Attempt to avoid passing indirect results using byval when possible. This 2937 // is important for good codegen. 2938 // 2939 // We do this by coercing the value into a scalar type which the backend can 2940 // handle naturally (i.e., without using byval). 2941 // 2942 // For simplicity, we currently only do this when we have exhausted all of the 2943 // free integer registers. Doing this when there are free integer registers 2944 // would require more care, as we would have to ensure that the coerced value 2945 // did not claim the unused register. That would require either reording the 2946 // arguments to the function (so that any subsequent inreg values came first), 2947 // or only doing this optimization when there were no following arguments that 2948 // might be inreg. 2949 // 2950 // We currently expect it to be rare (particularly in well written code) for 2951 // arguments to be passed on the stack when there are still free integer 2952 // registers available (this would typically imply large structs being passed 2953 // by value), so this seems like a fair tradeoff for now. 2954 // 2955 // We can revisit this if the backend grows support for 'onstack' parameter 2956 // attributes. See PR12193. 2957 if (freeIntRegs == 0) { 2958 uint64_t Size = getContext().getTypeSize(Ty); 2959 2960 // If this type fits in an eightbyte, coerce it into the matching integral 2961 // type, which will end up on the stack (with alignment 8). 2962 if (Align == 8 && Size <= 64) 2963 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 2964 Size)); 2965 } 2966 2967 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); 2968 } 2969 2970 /// The ABI specifies that a value should be passed in a full vector XMM/YMM 2971 /// register. Pick an LLVM IR type that will be passed as a vector register. 2972 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 2973 // Wrapper structs/arrays that only contain vectors are passed just like 2974 // vectors; strip them off if present. 2975 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) 2976 Ty = QualType(InnerTy, 0); 2977 2978 llvm::Type *IRType = CGT.ConvertType(Ty); 2979 if (isa<llvm::VectorType>(IRType) || 2980 IRType->getTypeID() == llvm::Type::FP128TyID) 2981 return IRType; 2982 2983 // We couldn't find the preferred IR vector type for 'Ty'. 2984 uint64_t Size = getContext().getTypeSize(Ty); 2985 assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!"); 2986 2987 // Return a LLVM IR vector type based on the size of 'Ty'. 2988 return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2989 Size / 64); 2990 } 2991 2992 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 2993 /// is known to either be off the end of the specified type or being in 2994 /// alignment padding. The user type specified is known to be at most 128 bits 2995 /// in size, and have passed through X86_64ABIInfo::classify with a successful 2996 /// classification that put one of the two halves in the INTEGER class. 2997 /// 2998 /// It is conservatively correct to return false. 2999 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 3000 unsigned EndBit, ASTContext &Context) { 3001 // If the bytes being queried are off the end of the type, there is no user 3002 // data hiding here. This handles analysis of builtins, vectors and other 3003 // types that don't contain interesting padding. 3004 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 3005 if (TySize <= StartBit) 3006 return true; 3007 3008 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 3009 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 3010 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 3011 3012 // Check each element to see if the element overlaps with the queried range. 3013 for (unsigned i = 0; i != NumElts; ++i) { 3014 // If the element is after the span we care about, then we're done.. 3015 unsigned EltOffset = i*EltSize; 3016 if (EltOffset >= EndBit) break; 3017 3018 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 3019 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 3020 EndBit-EltOffset, Context)) 3021 return false; 3022 } 3023 // If it overlaps no elements, then it is safe to process as padding. 3024 return true; 3025 } 3026 3027 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3028 const RecordDecl *RD = RT->getDecl(); 3029 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3030 3031 // If this is a C++ record, check the bases first. 3032 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3033 for (const auto &I : CXXRD->bases()) { 3034 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3035 "Unexpected base class!"); 3036 const CXXRecordDecl *Base = 3037 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 3038 3039 // If the base is after the span we care about, ignore it. 3040 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 3041 if (BaseOffset >= EndBit) continue; 3042 3043 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 3044 if (!BitsContainNoUserData(I.getType(), BaseStart, 3045 EndBit-BaseOffset, Context)) 3046 return false; 3047 } 3048 } 3049 3050 // Verify that no field has data that overlaps the region of interest. Yes 3051 // this could be sped up a lot by being smarter about queried fields, 3052 // however we're only looking at structs up to 16 bytes, so we don't care 3053 // much. 3054 unsigned idx = 0; 3055 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3056 i != e; ++i, ++idx) { 3057 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 3058 3059 // If we found a field after the region we care about, then we're done. 3060 if (FieldOffset >= EndBit) break; 3061 3062 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 3063 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 3064 Context)) 3065 return false; 3066 } 3067 3068 // If nothing in this record overlapped the area of interest, then we're 3069 // clean. 3070 return true; 3071 } 3072 3073 return false; 3074 } 3075 3076 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a 3077 /// float member at the specified offset. For example, {int,{float}} has a 3078 /// float at offset 4. It is conservatively correct for this routine to return 3079 /// false. 3080 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, 3081 const llvm::DataLayout &TD) { 3082 // Base case if we find a float. 3083 if (IROffset == 0 && IRType->isFloatTy()) 3084 return true; 3085 3086 // If this is a struct, recurse into the field at the specified offset. 3087 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3088 const llvm::StructLayout *SL = TD.getStructLayout(STy); 3089 unsigned Elt = SL->getElementContainingOffset(IROffset); 3090 IROffset -= SL->getElementOffset(Elt); 3091 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); 3092 } 3093 3094 // If this is an array, recurse into the field at the specified offset. 3095 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3096 llvm::Type *EltTy = ATy->getElementType(); 3097 unsigned EltSize = TD.getTypeAllocSize(EltTy); 3098 IROffset -= IROffset/EltSize*EltSize; 3099 return ContainsFloatAtOffset(EltTy, IROffset, TD); 3100 } 3101 3102 return false; 3103 } 3104 3105 3106 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 3107 /// low 8 bytes of an XMM register, corresponding to the SSE class. 3108 llvm::Type *X86_64ABIInfo:: 3109 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3110 QualType SourceTy, unsigned SourceOffset) const { 3111 // The only three choices we have are either double, <2 x float>, or float. We 3112 // pass as float if the last 4 bytes is just padding. This happens for 3113 // structs that contain 3 floats. 3114 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, 3115 SourceOffset*8+64, getContext())) 3116 return llvm::Type::getFloatTy(getVMContext()); 3117 3118 // We want to pass as <2 x float> if the LLVM IR type contains a float at 3119 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the 3120 // case. 3121 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && 3122 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) 3123 return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2); 3124 3125 return llvm::Type::getDoubleTy(getVMContext()); 3126 } 3127 3128 3129 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 3130 /// an 8-byte GPR. This means that we either have a scalar or we are talking 3131 /// about the high or low part of an up-to-16-byte struct. This routine picks 3132 /// the best LLVM IR type to represent this, which may be i64 or may be anything 3133 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 3134 /// etc). 3135 /// 3136 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 3137 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 3138 /// the 8-byte value references. PrefType may be null. 3139 /// 3140 /// SourceTy is the source-level type for the entire argument. SourceOffset is 3141 /// an offset into this that we're processing (which is always either 0 or 8). 3142 /// 3143 llvm::Type *X86_64ABIInfo:: 3144 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3145 QualType SourceTy, unsigned SourceOffset) const { 3146 // If we're dealing with an un-offset LLVM IR type, then it means that we're 3147 // returning an 8-byte unit starting with it. See if we can safely use it. 3148 if (IROffset == 0) { 3149 // Pointers and int64's always fill the 8-byte unit. 3150 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 3151 IRType->isIntegerTy(64)) 3152 return IRType; 3153 3154 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 3155 // goodness in the source type is just tail padding. This is allowed to 3156 // kick in for struct {double,int} on the int, but not on 3157 // struct{double,int,int} because we wouldn't return the second int. We 3158 // have to do this analysis on the source type because we can't depend on 3159 // unions being lowered a specific way etc. 3160 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 3161 IRType->isIntegerTy(32) || 3162 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 3163 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 3164 cast<llvm::IntegerType>(IRType)->getBitWidth(); 3165 3166 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 3167 SourceOffset*8+64, getContext())) 3168 return IRType; 3169 } 3170 } 3171 3172 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3173 // If this is a struct, recurse into the field at the specified offset. 3174 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 3175 if (IROffset < SL->getSizeInBytes()) { 3176 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 3177 IROffset -= SL->getElementOffset(FieldIdx); 3178 3179 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 3180 SourceTy, SourceOffset); 3181 } 3182 } 3183 3184 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3185 llvm::Type *EltTy = ATy->getElementType(); 3186 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 3187 unsigned EltOffset = IROffset/EltSize*EltSize; 3188 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 3189 SourceOffset); 3190 } 3191 3192 // Okay, we don't have any better idea of what to pass, so we pass this in an 3193 // integer register that isn't too big to fit the rest of the struct. 3194 unsigned TySizeInBytes = 3195 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 3196 3197 assert(TySizeInBytes != SourceOffset && "Empty field?"); 3198 3199 // It is always safe to classify this as an integer type up to i64 that 3200 // isn't larger than the structure. 3201 return llvm::IntegerType::get(getVMContext(), 3202 std::min(TySizeInBytes-SourceOffset, 8U)*8); 3203 } 3204 3205 3206 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 3207 /// be used as elements of a two register pair to pass or return, return a 3208 /// first class aggregate to represent them. For example, if the low part of 3209 /// a by-value argument should be passed as i32* and the high part as float, 3210 /// return {i32*, float}. 3211 static llvm::Type * 3212 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 3213 const llvm::DataLayout &TD) { 3214 // In order to correctly satisfy the ABI, we need to the high part to start 3215 // at offset 8. If the high and low parts we inferred are both 4-byte types 3216 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 3217 // the second element at offset 8. Check for this: 3218 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 3219 unsigned HiAlign = TD.getABITypeAlignment(Hi); 3220 unsigned HiStart = llvm::alignTo(LoSize, HiAlign); 3221 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 3222 3223 // To handle this, we have to increase the size of the low part so that the 3224 // second element will start at an 8 byte offset. We can't increase the size 3225 // of the second element because it might make us access off the end of the 3226 // struct. 3227 if (HiStart != 8) { 3228 // There are usually two sorts of types the ABI generation code can produce 3229 // for the low part of a pair that aren't 8 bytes in size: float or 3230 // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and 3231 // NaCl). 3232 // Promote these to a larger type. 3233 if (Lo->isFloatTy()) 3234 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 3235 else { 3236 assert((Lo->isIntegerTy() || Lo->isPointerTy()) 3237 && "Invalid/unknown lo type"); 3238 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 3239 } 3240 } 3241 3242 llvm::StructType *Result = llvm::StructType::get(Lo, Hi); 3243 3244 // Verify that the second element is at an 8-byte offset. 3245 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 3246 "Invalid x86-64 argument pair!"); 3247 return Result; 3248 } 3249 3250 ABIArgInfo X86_64ABIInfo:: 3251 classifyReturnType(QualType RetTy) const { 3252 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 3253 // classification algorithm. 3254 X86_64ABIInfo::Class Lo, Hi; 3255 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 3256 3257 // Check some invariants. 3258 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3259 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3260 3261 llvm::Type *ResType = nullptr; 3262 switch (Lo) { 3263 case NoClass: 3264 if (Hi == NoClass) 3265 return ABIArgInfo::getIgnore(); 3266 // If the low part is just padding, it takes no register, leave ResType 3267 // null. 3268 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3269 "Unknown missing lo part"); 3270 break; 3271 3272 case SSEUp: 3273 case X87Up: 3274 llvm_unreachable("Invalid classification for lo word."); 3275 3276 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 3277 // hidden argument. 3278 case Memory: 3279 return getIndirectReturnResult(RetTy); 3280 3281 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 3282 // available register of the sequence %rax, %rdx is used. 3283 case Integer: 3284 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3285 3286 // If we have a sign or zero extended integer, make sure to return Extend 3287 // so that the parameter gets the right LLVM IR attributes. 3288 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3289 // Treat an enum type as its underlying type. 3290 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3291 RetTy = EnumTy->getDecl()->getIntegerType(); 3292 3293 if (RetTy->isIntegralOrEnumerationType() && 3294 RetTy->isPromotableIntegerType()) 3295 return ABIArgInfo::getExtend(RetTy); 3296 } 3297 break; 3298 3299 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 3300 // available SSE register of the sequence %xmm0, %xmm1 is used. 3301 case SSE: 3302 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3303 break; 3304 3305 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 3306 // returned on the X87 stack in %st0 as 80-bit x87 number. 3307 case X87: 3308 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 3309 break; 3310 3311 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 3312 // part of the value is returned in %st0 and the imaginary part in 3313 // %st1. 3314 case ComplexX87: 3315 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 3316 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 3317 llvm::Type::getX86_FP80Ty(getVMContext())); 3318 break; 3319 } 3320 3321 llvm::Type *HighPart = nullptr; 3322 switch (Hi) { 3323 // Memory was handled previously and X87 should 3324 // never occur as a hi class. 3325 case Memory: 3326 case X87: 3327 llvm_unreachable("Invalid classification for hi word."); 3328 3329 case ComplexX87: // Previously handled. 3330 case NoClass: 3331 break; 3332 3333 case Integer: 3334 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3335 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3336 return ABIArgInfo::getDirect(HighPart, 8); 3337 break; 3338 case SSE: 3339 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3340 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3341 return ABIArgInfo::getDirect(HighPart, 8); 3342 break; 3343 3344 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 3345 // is passed in the next available eightbyte chunk if the last used 3346 // vector register. 3347 // 3348 // SSEUP should always be preceded by SSE, just widen. 3349 case SSEUp: 3350 assert(Lo == SSE && "Unexpected SSEUp classification."); 3351 ResType = GetByteVectorType(RetTy); 3352 break; 3353 3354 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 3355 // returned together with the previous X87 value in %st0. 3356 case X87Up: 3357 // If X87Up is preceded by X87, we don't need to do 3358 // anything. However, in some cases with unions it may not be 3359 // preceded by X87. In such situations we follow gcc and pass the 3360 // extra bits in an SSE reg. 3361 if (Lo != X87) { 3362 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3363 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3364 return ABIArgInfo::getDirect(HighPart, 8); 3365 } 3366 break; 3367 } 3368 3369 // If a high part was specified, merge it together with the low part. It is 3370 // known to pass in the high eightbyte of the result. We do this by forming a 3371 // first class struct aggregate with the high and low part: {low, high} 3372 if (HighPart) 3373 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3374 3375 return ABIArgInfo::getDirect(ResType); 3376 } 3377 3378 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 3379 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 3380 bool isNamedArg) 3381 const 3382 { 3383 Ty = useFirstFieldIfTransparentUnion(Ty); 3384 3385 X86_64ABIInfo::Class Lo, Hi; 3386 classify(Ty, 0, Lo, Hi, isNamedArg); 3387 3388 // Check some invariants. 3389 // FIXME: Enforce these by construction. 3390 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3391 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3392 3393 neededInt = 0; 3394 neededSSE = 0; 3395 llvm::Type *ResType = nullptr; 3396 switch (Lo) { 3397 case NoClass: 3398 if (Hi == NoClass) 3399 return ABIArgInfo::getIgnore(); 3400 // If the low part is just padding, it takes no register, leave ResType 3401 // null. 3402 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3403 "Unknown missing lo part"); 3404 break; 3405 3406 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 3407 // on the stack. 3408 case Memory: 3409 3410 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 3411 // COMPLEX_X87, it is passed in memory. 3412 case X87: 3413 case ComplexX87: 3414 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 3415 ++neededInt; 3416 return getIndirectResult(Ty, freeIntRegs); 3417 3418 case SSEUp: 3419 case X87Up: 3420 llvm_unreachable("Invalid classification for lo word."); 3421 3422 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 3423 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 3424 // and %r9 is used. 3425 case Integer: 3426 ++neededInt; 3427 3428 // Pick an 8-byte type based on the preferred type. 3429 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 3430 3431 // If we have a sign or zero extended integer, make sure to return Extend 3432 // so that the parameter gets the right LLVM IR attributes. 3433 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3434 // Treat an enum type as its underlying type. 3435 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3436 Ty = EnumTy->getDecl()->getIntegerType(); 3437 3438 if (Ty->isIntegralOrEnumerationType() && 3439 Ty->isPromotableIntegerType()) 3440 return ABIArgInfo::getExtend(Ty); 3441 } 3442 3443 break; 3444 3445 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 3446 // available SSE register is used, the registers are taken in the 3447 // order from %xmm0 to %xmm7. 3448 case SSE: { 3449 llvm::Type *IRType = CGT.ConvertType(Ty); 3450 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 3451 ++neededSSE; 3452 break; 3453 } 3454 } 3455 3456 llvm::Type *HighPart = nullptr; 3457 switch (Hi) { 3458 // Memory was handled previously, ComplexX87 and X87 should 3459 // never occur as hi classes, and X87Up must be preceded by X87, 3460 // which is passed in memory. 3461 case Memory: 3462 case X87: 3463 case ComplexX87: 3464 llvm_unreachable("Invalid classification for hi word."); 3465 3466 case NoClass: break; 3467 3468 case Integer: 3469 ++neededInt; 3470 // Pick an 8-byte type based on the preferred type. 3471 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3472 3473 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3474 return ABIArgInfo::getDirect(HighPart, 8); 3475 break; 3476 3477 // X87Up generally doesn't occur here (long double is passed in 3478 // memory), except in situations involving unions. 3479 case X87Up: 3480 case SSE: 3481 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3482 3483 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3484 return ABIArgInfo::getDirect(HighPart, 8); 3485 3486 ++neededSSE; 3487 break; 3488 3489 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 3490 // eightbyte is passed in the upper half of the last used SSE 3491 // register. This only happens when 128-bit vectors are passed. 3492 case SSEUp: 3493 assert(Lo == SSE && "Unexpected SSEUp classification"); 3494 ResType = GetByteVectorType(Ty); 3495 break; 3496 } 3497 3498 // If a high part was specified, merge it together with the low part. It is 3499 // known to pass in the high eightbyte of the result. We do this by forming a 3500 // first class struct aggregate with the high and low part: {low, high} 3501 if (HighPart) 3502 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3503 3504 return ABIArgInfo::getDirect(ResType); 3505 } 3506 3507 ABIArgInfo 3508 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 3509 unsigned &NeededSSE) const { 3510 auto RT = Ty->getAs<RecordType>(); 3511 assert(RT && "classifyRegCallStructType only valid with struct types"); 3512 3513 if (RT->getDecl()->hasFlexibleArrayMember()) 3514 return getIndirectReturnResult(Ty); 3515 3516 // Sum up bases 3517 if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 3518 if (CXXRD->isDynamicClass()) { 3519 NeededInt = NeededSSE = 0; 3520 return getIndirectReturnResult(Ty); 3521 } 3522 3523 for (const auto &I : CXXRD->bases()) 3524 if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE) 3525 .isIndirect()) { 3526 NeededInt = NeededSSE = 0; 3527 return getIndirectReturnResult(Ty); 3528 } 3529 } 3530 3531 // Sum up members 3532 for (const auto *FD : RT->getDecl()->fields()) { 3533 if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) { 3534 if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE) 3535 .isIndirect()) { 3536 NeededInt = NeededSSE = 0; 3537 return getIndirectReturnResult(Ty); 3538 } 3539 } else { 3540 unsigned LocalNeededInt, LocalNeededSSE; 3541 if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt, 3542 LocalNeededSSE, true) 3543 .isIndirect()) { 3544 NeededInt = NeededSSE = 0; 3545 return getIndirectReturnResult(Ty); 3546 } 3547 NeededInt += LocalNeededInt; 3548 NeededSSE += LocalNeededSSE; 3549 } 3550 } 3551 3552 return ABIArgInfo::getDirect(); 3553 } 3554 3555 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty, 3556 unsigned &NeededInt, 3557 unsigned &NeededSSE) const { 3558 3559 NeededInt = 0; 3560 NeededSSE = 0; 3561 3562 return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE); 3563 } 3564 3565 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3566 3567 const unsigned CallingConv = FI.getCallingConvention(); 3568 // It is possible to force Win64 calling convention on any x86_64 target by 3569 // using __attribute__((ms_abi)). In such case to correctly emit Win64 3570 // compatible code delegate this call to WinX86_64ABIInfo::computeInfo. 3571 if (CallingConv == llvm::CallingConv::Win64) { 3572 WinX86_64ABIInfo Win64ABIInfo(CGT); 3573 Win64ABIInfo.computeInfo(FI); 3574 return; 3575 } 3576 3577 bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall; 3578 3579 // Keep track of the number of assigned registers. 3580 unsigned FreeIntRegs = IsRegCall ? 11 : 6; 3581 unsigned FreeSSERegs = IsRegCall ? 16 : 8; 3582 unsigned NeededInt, NeededSSE; 3583 3584 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 3585 if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() && 3586 !FI.getReturnType()->getTypePtr()->isUnionType()) { 3587 FI.getReturnInfo() = 3588 classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE); 3589 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3590 FreeIntRegs -= NeededInt; 3591 FreeSSERegs -= NeededSSE; 3592 } else { 3593 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3594 } 3595 } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>()) { 3596 // Complex Long Double Type is passed in Memory when Regcall 3597 // calling convention is used. 3598 const ComplexType *CT = FI.getReturnType()->getAs<ComplexType>(); 3599 if (getContext().getCanonicalType(CT->getElementType()) == 3600 getContext().LongDoubleTy) 3601 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3602 } else 3603 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3604 } 3605 3606 // If the return value is indirect, then the hidden argument is consuming one 3607 // integer register. 3608 if (FI.getReturnInfo().isIndirect()) 3609 --FreeIntRegs; 3610 3611 // The chain argument effectively gives us another free register. 3612 if (FI.isChainCall()) 3613 ++FreeIntRegs; 3614 3615 unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 3616 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 3617 // get assigned (in left-to-right order) for passing as follows... 3618 unsigned ArgNo = 0; 3619 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3620 it != ie; ++it, ++ArgNo) { 3621 bool IsNamedArg = ArgNo < NumRequiredArgs; 3622 3623 if (IsRegCall && it->type->isStructureOrClassType()) 3624 it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE); 3625 else 3626 it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt, 3627 NeededSSE, IsNamedArg); 3628 3629 // AMD64-ABI 3.2.3p3: If there are no registers available for any 3630 // eightbyte of an argument, the whole argument is passed on the 3631 // stack. If registers have already been assigned for some 3632 // eightbytes of such an argument, the assignments get reverted. 3633 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3634 FreeIntRegs -= NeededInt; 3635 FreeSSERegs -= NeededSSE; 3636 } else { 3637 it->info = getIndirectResult(it->type, FreeIntRegs); 3638 } 3639 } 3640 } 3641 3642 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, 3643 Address VAListAddr, QualType Ty) { 3644 Address overflow_arg_area_p = 3645 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); 3646 llvm::Value *overflow_arg_area = 3647 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 3648 3649 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 3650 // byte boundary if alignment needed by type exceeds 8 byte boundary. 3651 // It isn't stated explicitly in the standard, but in practice we use 3652 // alignment greater than 16 where necessary. 3653 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 3654 if (Align > CharUnits::fromQuantity(8)) { 3655 overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, 3656 Align); 3657 } 3658 3659 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 3660 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3661 llvm::Value *Res = 3662 CGF.Builder.CreateBitCast(overflow_arg_area, 3663 llvm::PointerType::getUnqual(LTy)); 3664 3665 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 3666 // l->overflow_arg_area + sizeof(type). 3667 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 3668 // an 8 byte boundary. 3669 3670 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 3671 llvm::Value *Offset = 3672 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 3673 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 3674 "overflow_arg_area.next"); 3675 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 3676 3677 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 3678 return Address(Res, Align); 3679 } 3680 3681 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3682 QualType Ty) const { 3683 // Assume that va_list type is correct; should be pointer to LLVM type: 3684 // struct { 3685 // i32 gp_offset; 3686 // i32 fp_offset; 3687 // i8* overflow_arg_area; 3688 // i8* reg_save_area; 3689 // }; 3690 unsigned neededInt, neededSSE; 3691 3692 Ty = getContext().getCanonicalType(Ty); 3693 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 3694 /*isNamedArg*/false); 3695 3696 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 3697 // in the registers. If not go to step 7. 3698 if (!neededInt && !neededSSE) 3699 return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3700 3701 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 3702 // general purpose registers needed to pass type and num_fp to hold 3703 // the number of floating point registers needed. 3704 3705 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 3706 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 3707 // l->fp_offset > 304 - num_fp * 16 go to step 7. 3708 // 3709 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 3710 // register save space). 3711 3712 llvm::Value *InRegs = nullptr; 3713 Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); 3714 llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; 3715 if (neededInt) { 3716 gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); 3717 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 3718 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 3719 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 3720 } 3721 3722 if (neededSSE) { 3723 fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); 3724 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 3725 llvm::Value *FitsInFP = 3726 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 3727 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 3728 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 3729 } 3730 3731 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 3732 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 3733 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 3734 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 3735 3736 // Emit code to load the value if it was passed in registers. 3737 3738 CGF.EmitBlock(InRegBlock); 3739 3740 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 3741 // an offset of l->gp_offset and/or l->fp_offset. This may require 3742 // copying to a temporary location in case the parameter is passed 3743 // in different register classes or requires an alignment greater 3744 // than 8 for general purpose registers and 16 for XMM registers. 3745 // 3746 // FIXME: This really results in shameful code when we end up needing to 3747 // collect arguments from different places; often what should result in a 3748 // simple assembling of a structure from scattered addresses has many more 3749 // loads than necessary. Can we clean this up? 3750 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3751 llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( 3752 CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area"); 3753 3754 Address RegAddr = Address::invalid(); 3755 if (neededInt && neededSSE) { 3756 // FIXME: Cleanup. 3757 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 3758 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 3759 Address Tmp = CGF.CreateMemTemp(Ty); 3760 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3761 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 3762 llvm::Type *TyLo = ST->getElementType(0); 3763 llvm::Type *TyHi = ST->getElementType(1); 3764 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 3765 "Unexpected ABI info for mixed regs"); 3766 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 3767 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 3768 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset); 3769 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset); 3770 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 3771 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 3772 3773 // Copy the first element. 3774 // FIXME: Our choice of alignment here and below is probably pessimistic. 3775 llvm::Value *V = CGF.Builder.CreateAlignedLoad( 3776 TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo), 3777 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo))); 3778 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 3779 3780 // Copy the second element. 3781 V = CGF.Builder.CreateAlignedLoad( 3782 TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi), 3783 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi))); 3784 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 3785 3786 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3787 } else if (neededInt) { 3788 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset), 3789 CharUnits::fromQuantity(8)); 3790 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3791 3792 // Copy to a temporary if necessary to ensure the appropriate alignment. 3793 std::pair<CharUnits, CharUnits> SizeAlign = 3794 getContext().getTypeInfoInChars(Ty); 3795 uint64_t TySize = SizeAlign.first.getQuantity(); 3796 CharUnits TyAlign = SizeAlign.second; 3797 3798 // Copy into a temporary if the type is more aligned than the 3799 // register save area. 3800 if (TyAlign.getQuantity() > 8) { 3801 Address Tmp = CGF.CreateMemTemp(Ty); 3802 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); 3803 RegAddr = Tmp; 3804 } 3805 3806 } else if (neededSSE == 1) { 3807 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3808 CharUnits::fromQuantity(16)); 3809 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3810 } else { 3811 assert(neededSSE == 2 && "Invalid number of needed registers!"); 3812 // SSE registers are spaced 16 bytes apart in the register save 3813 // area, we need to collect the two eightbytes together. 3814 // The ABI isn't explicit about this, but it seems reasonable 3815 // to assume that the slots are 16-byte aligned, since the stack is 3816 // naturally 16-byte aligned and the prologue is expected to store 3817 // all the SSE registers to the RSA. 3818 Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3819 CharUnits::fromQuantity(16)); 3820 Address RegAddrHi = 3821 CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, 3822 CharUnits::fromQuantity(16)); 3823 llvm::Type *ST = AI.canHaveCoerceToType() 3824 ? AI.getCoerceToType() 3825 : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy); 3826 llvm::Value *V; 3827 Address Tmp = CGF.CreateMemTemp(Ty); 3828 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3829 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 3830 RegAddrLo, ST->getStructElementType(0))); 3831 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 3832 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 3833 RegAddrHi, ST->getStructElementType(1))); 3834 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 3835 3836 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3837 } 3838 3839 // AMD64-ABI 3.5.7p5: Step 5. Set: 3840 // l->gp_offset = l->gp_offset + num_gp * 8 3841 // l->fp_offset = l->fp_offset + num_fp * 16. 3842 if (neededInt) { 3843 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 3844 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 3845 gp_offset_p); 3846 } 3847 if (neededSSE) { 3848 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 3849 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 3850 fp_offset_p); 3851 } 3852 CGF.EmitBranch(ContBlock); 3853 3854 // Emit code to load the value if it was passed in memory. 3855 3856 CGF.EmitBlock(InMemBlock); 3857 Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3858 3859 // Return the appropriate result. 3860 3861 CGF.EmitBlock(ContBlock); 3862 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, 3863 "vaarg.addr"); 3864 return ResAddr; 3865 } 3866 3867 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 3868 QualType Ty) const { 3869 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 3870 CGF.getContext().getTypeInfoInChars(Ty), 3871 CharUnits::fromQuantity(8), 3872 /*allowHigherAlign*/ false); 3873 } 3874 3875 ABIArgInfo 3876 WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 3877 const ABIArgInfo ¤t) const { 3878 // Assumes vectorCall calling convention. 3879 const Type *Base = nullptr; 3880 uint64_t NumElts = 0; 3881 3882 if (!Ty->isBuiltinType() && !Ty->isVectorType() && 3883 isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) { 3884 FreeSSERegs -= NumElts; 3885 return getDirectX86Hva(); 3886 } 3887 return current; 3888 } 3889 3890 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 3891 bool IsReturnType, bool IsVectorCall, 3892 bool IsRegCall) const { 3893 3894 if (Ty->isVoidType()) 3895 return ABIArgInfo::getIgnore(); 3896 3897 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3898 Ty = EnumTy->getDecl()->getIntegerType(); 3899 3900 TypeInfo Info = getContext().getTypeInfo(Ty); 3901 uint64_t Width = Info.Width; 3902 CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); 3903 3904 const RecordType *RT = Ty->getAs<RecordType>(); 3905 if (RT) { 3906 if (!IsReturnType) { 3907 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 3908 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 3909 } 3910 3911 if (RT->getDecl()->hasFlexibleArrayMember()) 3912 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 3913 3914 } 3915 3916 const Type *Base = nullptr; 3917 uint64_t NumElts = 0; 3918 // vectorcall adds the concept of a homogenous vector aggregate, similar to 3919 // other targets. 3920 if ((IsVectorCall || IsRegCall) && 3921 isHomogeneousAggregate(Ty, Base, NumElts)) { 3922 if (IsRegCall) { 3923 if (FreeSSERegs >= NumElts) { 3924 FreeSSERegs -= NumElts; 3925 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 3926 return ABIArgInfo::getDirect(); 3927 return ABIArgInfo::getExpand(); 3928 } 3929 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3930 } else if (IsVectorCall) { 3931 if (FreeSSERegs >= NumElts && 3932 (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) { 3933 FreeSSERegs -= NumElts; 3934 return ABIArgInfo::getDirect(); 3935 } else if (IsReturnType) { 3936 return ABIArgInfo::getExpand(); 3937 } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) { 3938 // HVAs are delayed and reclassified in the 2nd step. 3939 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3940 } 3941 } 3942 } 3943 3944 if (Ty->isMemberPointerType()) { 3945 // If the member pointer is represented by an LLVM int or ptr, pass it 3946 // directly. 3947 llvm::Type *LLTy = CGT.ConvertType(Ty); 3948 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 3949 return ABIArgInfo::getDirect(); 3950 } 3951 3952 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { 3953 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 3954 // not 1, 2, 4, or 8 bytes, must be passed by reference." 3955 if (Width > 64 || !llvm::isPowerOf2_64(Width)) 3956 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 3957 3958 // Otherwise, coerce it to a small integer. 3959 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 3960 } 3961 3962 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 3963 switch (BT->getKind()) { 3964 case BuiltinType::Bool: 3965 // Bool type is always extended to the ABI, other builtin types are not 3966 // extended. 3967 return ABIArgInfo::getExtend(Ty); 3968 3969 case BuiltinType::LongDouble: 3970 // Mingw64 GCC uses the old 80 bit extended precision floating point 3971 // unit. It passes them indirectly through memory. 3972 if (IsMingw64) { 3973 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 3974 if (LDF == &llvm::APFloat::x87DoubleExtended()) 3975 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3976 } 3977 break; 3978 3979 case BuiltinType::Int128: 3980 case BuiltinType::UInt128: 3981 // If it's a parameter type, the normal ABI rule is that arguments larger 3982 // than 8 bytes are passed indirectly. GCC follows it. We follow it too, 3983 // even though it isn't particularly efficient. 3984 if (!IsReturnType) 3985 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3986 3987 // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that. 3988 // Clang matches them for compatibility. 3989 return ABIArgInfo::getDirect( 3990 llvm::VectorType::get(llvm::Type::getInt64Ty(getVMContext()), 2)); 3991 3992 default: 3993 break; 3994 } 3995 } 3996 3997 return ABIArgInfo::getDirect(); 3998 } 3999 4000 void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, 4001 unsigned FreeSSERegs, 4002 bool IsVectorCall, 4003 bool IsRegCall) const { 4004 unsigned Count = 0; 4005 for (auto &I : FI.arguments()) { 4006 // Vectorcall in x64 only permits the first 6 arguments to be passed 4007 // as XMM/YMM registers. 4008 if (Count < VectorcallMaxParamNumAsReg) 4009 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 4010 else { 4011 // Since these cannot be passed in registers, pretend no registers 4012 // are left. 4013 unsigned ZeroSSERegsAvail = 0; 4014 I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false, 4015 IsVectorCall, IsRegCall); 4016 } 4017 ++Count; 4018 } 4019 4020 for (auto &I : FI.arguments()) { 4021 I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info); 4022 } 4023 } 4024 4025 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 4026 bool IsVectorCall = 4027 FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall; 4028 bool IsRegCall = FI.getCallingConvention() == llvm::CallingConv::X86_RegCall; 4029 4030 unsigned FreeSSERegs = 0; 4031 if (IsVectorCall) { 4032 // We can use up to 4 SSE return registers with vectorcall. 4033 FreeSSERegs = 4; 4034 } else if (IsRegCall) { 4035 // RegCall gives us 16 SSE registers. 4036 FreeSSERegs = 16; 4037 } 4038 4039 if (!getCXXABI().classifyReturnType(FI)) 4040 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true, 4041 IsVectorCall, IsRegCall); 4042 4043 if (IsVectorCall) { 4044 // We can use up to 6 SSE register parameters with vectorcall. 4045 FreeSSERegs = 6; 4046 } else if (IsRegCall) { 4047 // RegCall gives us 16 SSE registers, we can reuse the return registers. 4048 FreeSSERegs = 16; 4049 } 4050 4051 if (IsVectorCall) { 4052 computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall); 4053 } else { 4054 for (auto &I : FI.arguments()) 4055 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 4056 } 4057 4058 } 4059 4060 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4061 QualType Ty) const { 4062 4063 bool IsIndirect = false; 4064 4065 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4066 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4067 if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) { 4068 uint64_t Width = getContext().getTypeSize(Ty); 4069 IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 4070 } 4071 4072 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 4073 CGF.getContext().getTypeInfoInChars(Ty), 4074 CharUnits::fromQuantity(8), 4075 /*allowHigherAlign*/ false); 4076 } 4077 4078 // PowerPC-32 4079 namespace { 4080 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. 4081 class PPC32_SVR4_ABIInfo : public DefaultABIInfo { 4082 bool IsSoftFloatABI; 4083 4084 CharUnits getParamTypeAlignment(QualType Ty) const; 4085 4086 public: 4087 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI) 4088 : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI) {} 4089 4090 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4091 QualType Ty) const override; 4092 }; 4093 4094 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { 4095 public: 4096 PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI) 4097 : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT, SoftFloatABI)) {} 4098 4099 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4100 // This is recovered from gcc output. 4101 return 1; // r1 is the dedicated stack pointer 4102 } 4103 4104 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4105 llvm::Value *Address) const override; 4106 }; 4107 } 4108 4109 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4110 // Complex types are passed just like their elements 4111 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4112 Ty = CTy->getElementType(); 4113 4114 if (Ty->isVectorType()) 4115 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 4116 : 4); 4117 4118 // For single-element float/vector structs, we consider the whole type 4119 // to have the same alignment requirements as its single element. 4120 const Type *AlignTy = nullptr; 4121 if (const Type *EltType = isSingleElementStruct(Ty, getContext())) { 4122 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4123 if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || 4124 (BT && BT->isFloatingPoint())) 4125 AlignTy = EltType; 4126 } 4127 4128 if (AlignTy) 4129 return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4); 4130 return CharUnits::fromQuantity(4); 4131 } 4132 4133 // TODO: this implementation is now likely redundant with 4134 // DefaultABIInfo::EmitVAArg. 4135 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList, 4136 QualType Ty) const { 4137 if (getTarget().getTriple().isOSDarwin()) { 4138 auto TI = getContext().getTypeInfoInChars(Ty); 4139 TI.second = getParamTypeAlignment(Ty); 4140 4141 CharUnits SlotSize = CharUnits::fromQuantity(4); 4142 return emitVoidPtrVAArg(CGF, VAList, Ty, 4143 classifyArgumentType(Ty).isIndirect(), TI, SlotSize, 4144 /*AllowHigherAlign=*/true); 4145 } 4146 4147 const unsigned OverflowLimit = 8; 4148 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4149 // TODO: Implement this. For now ignore. 4150 (void)CTy; 4151 return Address::invalid(); // FIXME? 4152 } 4153 4154 // struct __va_list_tag { 4155 // unsigned char gpr; 4156 // unsigned char fpr; 4157 // unsigned short reserved; 4158 // void *overflow_arg_area; 4159 // void *reg_save_area; 4160 // }; 4161 4162 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; 4163 bool isInt = 4164 Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType(); 4165 bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64; 4166 4167 // All aggregates are passed indirectly? That doesn't seem consistent 4168 // with the argument-lowering code. 4169 bool isIndirect = Ty->isAggregateType(); 4170 4171 CGBuilderTy &Builder = CGF.Builder; 4172 4173 // The calling convention either uses 1-2 GPRs or 1 FPR. 4174 Address NumRegsAddr = Address::invalid(); 4175 if (isInt || IsSoftFloatABI) { 4176 NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr"); 4177 } else { 4178 NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr"); 4179 } 4180 4181 llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs"); 4182 4183 // "Align" the register count when TY is i64. 4184 if (isI64 || (isF64 && IsSoftFloatABI)) { 4185 NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1)); 4186 NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U)); 4187 } 4188 4189 llvm::Value *CC = 4190 Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond"); 4191 4192 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); 4193 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); 4194 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 4195 4196 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); 4197 4198 llvm::Type *DirectTy = CGF.ConvertType(Ty); 4199 if (isIndirect) DirectTy = DirectTy->getPointerTo(0); 4200 4201 // Case 1: consume registers. 4202 Address RegAddr = Address::invalid(); 4203 { 4204 CGF.EmitBlock(UsingRegs); 4205 4206 Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4); 4207 RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr), 4208 CharUnits::fromQuantity(8)); 4209 assert(RegAddr.getElementType() == CGF.Int8Ty); 4210 4211 // Floating-point registers start after the general-purpose registers. 4212 if (!(isInt || IsSoftFloatABI)) { 4213 RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr, 4214 CharUnits::fromQuantity(32)); 4215 } 4216 4217 // Get the address of the saved value by scaling the number of 4218 // registers we've used by the number of 4219 CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8); 4220 llvm::Value *RegOffset = 4221 Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity())); 4222 RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty, 4223 RegAddr.getPointer(), RegOffset), 4224 RegAddr.getAlignment().alignmentOfArrayElement(RegSize)); 4225 RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy); 4226 4227 // Increase the used-register count. 4228 NumRegs = 4229 Builder.CreateAdd(NumRegs, 4230 Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1)); 4231 Builder.CreateStore(NumRegs, NumRegsAddr); 4232 4233 CGF.EmitBranch(Cont); 4234 } 4235 4236 // Case 2: consume space in the overflow area. 4237 Address MemAddr = Address::invalid(); 4238 { 4239 CGF.EmitBlock(UsingOverflow); 4240 4241 Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr); 4242 4243 // Everything in the overflow area is rounded up to a size of at least 4. 4244 CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4); 4245 4246 CharUnits Size; 4247 if (!isIndirect) { 4248 auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty); 4249 Size = TypeInfo.first.alignTo(OverflowAreaAlign); 4250 } else { 4251 Size = CGF.getPointerSize(); 4252 } 4253 4254 Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3); 4255 Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), 4256 OverflowAreaAlign); 4257 // Round up address of argument to alignment 4258 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 4259 if (Align > OverflowAreaAlign) { 4260 llvm::Value *Ptr = OverflowArea.getPointer(); 4261 OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align), 4262 Align); 4263 } 4264 4265 MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy); 4266 4267 // Increase the overflow area. 4268 OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size); 4269 Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr); 4270 CGF.EmitBranch(Cont); 4271 } 4272 4273 CGF.EmitBlock(Cont); 4274 4275 // Merge the cases with a phi. 4276 Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow, 4277 "vaarg.addr"); 4278 4279 // Load the pointer if the argument was passed indirectly. 4280 if (isIndirect) { 4281 Result = Address(Builder.CreateLoad(Result, "aggr"), 4282 getContext().getTypeAlignInChars(Ty)); 4283 } 4284 4285 return Result; 4286 } 4287 4288 bool 4289 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4290 llvm::Value *Address) const { 4291 // This is calculated from the LLVM and GCC tables and verified 4292 // against gcc output. AFAIK all ABIs use the same encoding. 4293 4294 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4295 4296 llvm::IntegerType *i8 = CGF.Int8Ty; 4297 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4298 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4299 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4300 4301 // 0-31: r0-31, the 4-byte general-purpose registers 4302 AssignToArrayRange(Builder, Address, Four8, 0, 31); 4303 4304 // 32-63: fp0-31, the 8-byte floating-point registers 4305 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4306 4307 // 64-76 are various 4-byte special-purpose registers: 4308 // 64: mq 4309 // 65: lr 4310 // 66: ctr 4311 // 67: ap 4312 // 68-75 cr0-7 4313 // 76: xer 4314 AssignToArrayRange(Builder, Address, Four8, 64, 76); 4315 4316 // 77-108: v0-31, the 16-byte vector registers 4317 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4318 4319 // 109: vrsave 4320 // 110: vscr 4321 // 111: spe_acc 4322 // 112: spefscr 4323 // 113: sfp 4324 AssignToArrayRange(Builder, Address, Four8, 109, 113); 4325 4326 return false; 4327 } 4328 4329 // PowerPC-64 4330 4331 namespace { 4332 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 4333 class PPC64_SVR4_ABIInfo : public SwiftABIInfo { 4334 public: 4335 enum ABIKind { 4336 ELFv1 = 0, 4337 ELFv2 4338 }; 4339 4340 private: 4341 static const unsigned GPRBits = 64; 4342 ABIKind Kind; 4343 bool HasQPX; 4344 bool IsSoftFloatABI; 4345 4346 // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and 4347 // will be passed in a QPX register. 4348 bool IsQPXVectorTy(const Type *Ty) const { 4349 if (!HasQPX) 4350 return false; 4351 4352 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4353 unsigned NumElements = VT->getNumElements(); 4354 if (NumElements == 1) 4355 return false; 4356 4357 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) { 4358 if (getContext().getTypeSize(Ty) <= 256) 4359 return true; 4360 } else if (VT->getElementType()-> 4361 isSpecificBuiltinType(BuiltinType::Float)) { 4362 if (getContext().getTypeSize(Ty) <= 128) 4363 return true; 4364 } 4365 } 4366 4367 return false; 4368 } 4369 4370 bool IsQPXVectorTy(QualType Ty) const { 4371 return IsQPXVectorTy(Ty.getTypePtr()); 4372 } 4373 4374 public: 4375 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX, 4376 bool SoftFloatABI) 4377 : SwiftABIInfo(CGT), Kind(Kind), HasQPX(HasQPX), 4378 IsSoftFloatABI(SoftFloatABI) {} 4379 4380 bool isPromotableTypeForABI(QualType Ty) const; 4381 CharUnits getParamTypeAlignment(QualType Ty) const; 4382 4383 ABIArgInfo classifyReturnType(QualType RetTy) const; 4384 ABIArgInfo classifyArgumentType(QualType Ty) const; 4385 4386 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4387 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4388 uint64_t Members) const override; 4389 4390 // TODO: We can add more logic to computeInfo to improve performance. 4391 // Example: For aggregate arguments that fit in a register, we could 4392 // use getDirectInReg (as is done below for structs containing a single 4393 // floating-point value) to avoid pushing them to memory on function 4394 // entry. This would require changing the logic in PPCISelLowering 4395 // when lowering the parameters in the caller and args in the callee. 4396 void computeInfo(CGFunctionInfo &FI) const override { 4397 if (!getCXXABI().classifyReturnType(FI)) 4398 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4399 for (auto &I : FI.arguments()) { 4400 // We rely on the default argument classification for the most part. 4401 // One exception: An aggregate containing a single floating-point 4402 // or vector item must be passed in a register if one is available. 4403 const Type *T = isSingleElementStruct(I.type, getContext()); 4404 if (T) { 4405 const BuiltinType *BT = T->getAs<BuiltinType>(); 4406 if (IsQPXVectorTy(T) || 4407 (T->isVectorType() && getContext().getTypeSize(T) == 128) || 4408 (BT && BT->isFloatingPoint())) { 4409 QualType QT(T, 0); 4410 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 4411 continue; 4412 } 4413 } 4414 I.info = classifyArgumentType(I.type); 4415 } 4416 } 4417 4418 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4419 QualType Ty) const override; 4420 4421 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 4422 bool asReturnValue) const override { 4423 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 4424 } 4425 4426 bool isSwiftErrorInRegister() const override { 4427 return false; 4428 } 4429 }; 4430 4431 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 4432 4433 public: 4434 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 4435 PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX, 4436 bool SoftFloatABI) 4437 : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX, 4438 SoftFloatABI)) {} 4439 4440 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4441 // This is recovered from gcc output. 4442 return 1; // r1 is the dedicated stack pointer 4443 } 4444 4445 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4446 llvm::Value *Address) const override; 4447 }; 4448 4449 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 4450 public: 4451 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 4452 4453 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4454 // This is recovered from gcc output. 4455 return 1; // r1 is the dedicated stack pointer 4456 } 4457 4458 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4459 llvm::Value *Address) const override; 4460 }; 4461 4462 } 4463 4464 // Return true if the ABI requires Ty to be passed sign- or zero- 4465 // extended to 64 bits. 4466 bool 4467 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 4468 // Treat an enum type as its underlying type. 4469 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4470 Ty = EnumTy->getDecl()->getIntegerType(); 4471 4472 // Promotable integer types are required to be promoted by the ABI. 4473 if (Ty->isPromotableIntegerType()) 4474 return true; 4475 4476 // In addition to the usual promotable integer types, we also need to 4477 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 4478 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4479 switch (BT->getKind()) { 4480 case BuiltinType::Int: 4481 case BuiltinType::UInt: 4482 return true; 4483 default: 4484 break; 4485 } 4486 4487 return false; 4488 } 4489 4490 /// isAlignedParamType - Determine whether a type requires 16-byte or 4491 /// higher alignment in the parameter area. Always returns at least 8. 4492 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4493 // Complex types are passed just like their elements. 4494 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4495 Ty = CTy->getElementType(); 4496 4497 // Only vector types of size 16 bytes need alignment (larger types are 4498 // passed via reference, smaller types are not aligned). 4499 if (IsQPXVectorTy(Ty)) { 4500 if (getContext().getTypeSize(Ty) > 128) 4501 return CharUnits::fromQuantity(32); 4502 4503 return CharUnits::fromQuantity(16); 4504 } else if (Ty->isVectorType()) { 4505 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8); 4506 } 4507 4508 // For single-element float/vector structs, we consider the whole type 4509 // to have the same alignment requirements as its single element. 4510 const Type *AlignAsType = nullptr; 4511 const Type *EltType = isSingleElementStruct(Ty, getContext()); 4512 if (EltType) { 4513 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4514 if (IsQPXVectorTy(EltType) || (EltType->isVectorType() && 4515 getContext().getTypeSize(EltType) == 128) || 4516 (BT && BT->isFloatingPoint())) 4517 AlignAsType = EltType; 4518 } 4519 4520 // Likewise for ELFv2 homogeneous aggregates. 4521 const Type *Base = nullptr; 4522 uint64_t Members = 0; 4523 if (!AlignAsType && Kind == ELFv2 && 4524 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 4525 AlignAsType = Base; 4526 4527 // With special case aggregates, only vector base types need alignment. 4528 if (AlignAsType && IsQPXVectorTy(AlignAsType)) { 4529 if (getContext().getTypeSize(AlignAsType) > 128) 4530 return CharUnits::fromQuantity(32); 4531 4532 return CharUnits::fromQuantity(16); 4533 } else if (AlignAsType) { 4534 return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8); 4535 } 4536 4537 // Otherwise, we only need alignment for any aggregate type that 4538 // has an alignment requirement of >= 16 bytes. 4539 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { 4540 if (HasQPX && getContext().getTypeAlign(Ty) >= 256) 4541 return CharUnits::fromQuantity(32); 4542 return CharUnits::fromQuantity(16); 4543 } 4544 4545 return CharUnits::fromQuantity(8); 4546 } 4547 4548 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 4549 /// aggregate. Base is set to the base element type, and Members is set 4550 /// to the number of base elements. 4551 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 4552 uint64_t &Members) const { 4553 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 4554 uint64_t NElements = AT->getSize().getZExtValue(); 4555 if (NElements == 0) 4556 return false; 4557 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 4558 return false; 4559 Members *= NElements; 4560 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 4561 const RecordDecl *RD = RT->getDecl(); 4562 if (RD->hasFlexibleArrayMember()) 4563 return false; 4564 4565 Members = 0; 4566 4567 // If this is a C++ record, check the bases first. 4568 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 4569 for (const auto &I : CXXRD->bases()) { 4570 // Ignore empty records. 4571 if (isEmptyRecord(getContext(), I.getType(), true)) 4572 continue; 4573 4574 uint64_t FldMembers; 4575 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) 4576 return false; 4577 4578 Members += FldMembers; 4579 } 4580 } 4581 4582 for (const auto *FD : RD->fields()) { 4583 // Ignore (non-zero arrays of) empty records. 4584 QualType FT = FD->getType(); 4585 while (const ConstantArrayType *AT = 4586 getContext().getAsConstantArrayType(FT)) { 4587 if (AT->getSize().getZExtValue() == 0) 4588 return false; 4589 FT = AT->getElementType(); 4590 } 4591 if (isEmptyRecord(getContext(), FT, true)) 4592 continue; 4593 4594 // For compatibility with GCC, ignore empty bitfields in C++ mode. 4595 if (getContext().getLangOpts().CPlusPlus && 4596 FD->isZeroLengthBitField(getContext())) 4597 continue; 4598 4599 uint64_t FldMembers; 4600 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 4601 return false; 4602 4603 Members = (RD->isUnion() ? 4604 std::max(Members, FldMembers) : Members + FldMembers); 4605 } 4606 4607 if (!Base) 4608 return false; 4609 4610 // Ensure there is no padding. 4611 if (getContext().getTypeSize(Base) * Members != 4612 getContext().getTypeSize(Ty)) 4613 return false; 4614 } else { 4615 Members = 1; 4616 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 4617 Members = 2; 4618 Ty = CT->getElementType(); 4619 } 4620 4621 // Most ABIs only support float, double, and some vector type widths. 4622 if (!isHomogeneousAggregateBaseType(Ty)) 4623 return false; 4624 4625 // The base type must be the same for all members. Types that 4626 // agree in both total size and mode (float vs. vector) are 4627 // treated as being equivalent here. 4628 const Type *TyPtr = Ty.getTypePtr(); 4629 if (!Base) { 4630 Base = TyPtr; 4631 // If it's a non-power-of-2 vector, its size is already a power-of-2, 4632 // so make sure to widen it explicitly. 4633 if (const VectorType *VT = Base->getAs<VectorType>()) { 4634 QualType EltTy = VT->getElementType(); 4635 unsigned NumElements = 4636 getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy); 4637 Base = getContext() 4638 .getVectorType(EltTy, NumElements, VT->getVectorKind()) 4639 .getTypePtr(); 4640 } 4641 } 4642 4643 if (Base->isVectorType() != TyPtr->isVectorType() || 4644 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 4645 return false; 4646 } 4647 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); 4648 } 4649 4650 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 4651 // Homogeneous aggregates for ELFv2 must have base types of float, 4652 // double, long double, or 128-bit vectors. 4653 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4654 if (BT->getKind() == BuiltinType::Float || 4655 BT->getKind() == BuiltinType::Double || 4656 BT->getKind() == BuiltinType::LongDouble || 4657 (getContext().getTargetInfo().hasFloat128Type() && 4658 (BT->getKind() == BuiltinType::Float128))) { 4659 if (IsSoftFloatABI) 4660 return false; 4661 return true; 4662 } 4663 } 4664 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4665 if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty)) 4666 return true; 4667 } 4668 return false; 4669 } 4670 4671 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( 4672 const Type *Base, uint64_t Members) const { 4673 // Vector and fp128 types require one register, other floating point types 4674 // require one or two registers depending on their size. 4675 uint32_t NumRegs = 4676 ((getContext().getTargetInfo().hasFloat128Type() && 4677 Base->isFloat128Type()) || 4678 Base->isVectorType()) ? 1 4679 : (getContext().getTypeSize(Base) + 63) / 64; 4680 4681 // Homogeneous Aggregates may occupy at most 8 registers. 4682 return Members * NumRegs <= 8; 4683 } 4684 4685 ABIArgInfo 4686 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 4687 Ty = useFirstFieldIfTransparentUnion(Ty); 4688 4689 if (Ty->isAnyComplexType()) 4690 return ABIArgInfo::getDirect(); 4691 4692 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 4693 // or via reference (larger than 16 bytes). 4694 if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) { 4695 uint64_t Size = getContext().getTypeSize(Ty); 4696 if (Size > 128) 4697 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4698 else if (Size < 128) { 4699 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 4700 return ABIArgInfo::getDirect(CoerceTy); 4701 } 4702 } 4703 4704 if (isAggregateTypeForABI(Ty)) { 4705 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 4706 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4707 4708 uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity(); 4709 uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 4710 4711 // ELFv2 homogeneous aggregates are passed as array types. 4712 const Type *Base = nullptr; 4713 uint64_t Members = 0; 4714 if (Kind == ELFv2 && 4715 isHomogeneousAggregate(Ty, Base, Members)) { 4716 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 4717 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 4718 return ABIArgInfo::getDirect(CoerceTy); 4719 } 4720 4721 // If an aggregate may end up fully in registers, we do not 4722 // use the ByVal method, but pass the aggregate as array. 4723 // This is usually beneficial since we avoid forcing the 4724 // back-end to store the argument to memory. 4725 uint64_t Bits = getContext().getTypeSize(Ty); 4726 if (Bits > 0 && Bits <= 8 * GPRBits) { 4727 llvm::Type *CoerceTy; 4728 4729 // Types up to 8 bytes are passed as integer type (which will be 4730 // properly aligned in the argument save area doubleword). 4731 if (Bits <= GPRBits) 4732 CoerceTy = 4733 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 4734 // Larger types are passed as arrays, with the base type selected 4735 // according to the required alignment in the save area. 4736 else { 4737 uint64_t RegBits = ABIAlign * 8; 4738 uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits; 4739 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 4740 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 4741 } 4742 4743 return ABIArgInfo::getDirect(CoerceTy); 4744 } 4745 4746 // All other aggregates are passed ByVal. 4747 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 4748 /*ByVal=*/true, 4749 /*Realign=*/TyAlign > ABIAlign); 4750 } 4751 4752 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 4753 : ABIArgInfo::getDirect()); 4754 } 4755 4756 ABIArgInfo 4757 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 4758 if (RetTy->isVoidType()) 4759 return ABIArgInfo::getIgnore(); 4760 4761 if (RetTy->isAnyComplexType()) 4762 return ABIArgInfo::getDirect(); 4763 4764 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 4765 // or via reference (larger than 16 bytes). 4766 if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) { 4767 uint64_t Size = getContext().getTypeSize(RetTy); 4768 if (Size > 128) 4769 return getNaturalAlignIndirect(RetTy); 4770 else if (Size < 128) { 4771 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 4772 return ABIArgInfo::getDirect(CoerceTy); 4773 } 4774 } 4775 4776 if (isAggregateTypeForABI(RetTy)) { 4777 // ELFv2 homogeneous aggregates are returned as array types. 4778 const Type *Base = nullptr; 4779 uint64_t Members = 0; 4780 if (Kind == ELFv2 && 4781 isHomogeneousAggregate(RetTy, Base, Members)) { 4782 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 4783 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 4784 return ABIArgInfo::getDirect(CoerceTy); 4785 } 4786 4787 // ELFv2 small aggregates are returned in up to two registers. 4788 uint64_t Bits = getContext().getTypeSize(RetTy); 4789 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 4790 if (Bits == 0) 4791 return ABIArgInfo::getIgnore(); 4792 4793 llvm::Type *CoerceTy; 4794 if (Bits > GPRBits) { 4795 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 4796 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy); 4797 } else 4798 CoerceTy = 4799 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 4800 return ABIArgInfo::getDirect(CoerceTy); 4801 } 4802 4803 // All other aggregates are returned indirectly. 4804 return getNaturalAlignIndirect(RetTy); 4805 } 4806 4807 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 4808 : ABIArgInfo::getDirect()); 4809 } 4810 4811 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 4812 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4813 QualType Ty) const { 4814 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 4815 TypeInfo.second = getParamTypeAlignment(Ty); 4816 4817 CharUnits SlotSize = CharUnits::fromQuantity(8); 4818 4819 // If we have a complex type and the base type is smaller than 8 bytes, 4820 // the ABI calls for the real and imaginary parts to be right-adjusted 4821 // in separate doublewords. However, Clang expects us to produce a 4822 // pointer to a structure with the two parts packed tightly. So generate 4823 // loads of the real and imaginary parts relative to the va_list pointer, 4824 // and store them to a temporary structure. 4825 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4826 CharUnits EltSize = TypeInfo.first / 2; 4827 if (EltSize < SlotSize) { 4828 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, 4829 SlotSize * 2, SlotSize, 4830 SlotSize, /*AllowHigher*/ true); 4831 4832 Address RealAddr = Addr; 4833 Address ImagAddr = RealAddr; 4834 if (CGF.CGM.getDataLayout().isBigEndian()) { 4835 RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, 4836 SlotSize - EltSize); 4837 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr, 4838 2 * SlotSize - EltSize); 4839 } else { 4840 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize); 4841 } 4842 4843 llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType()); 4844 RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy); 4845 ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy); 4846 llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal"); 4847 llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag"); 4848 4849 Address Temp = CGF.CreateMemTemp(Ty, "vacplx"); 4850 CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty), 4851 /*init*/ true); 4852 return Temp; 4853 } 4854 } 4855 4856 // Otherwise, just use the general rule. 4857 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 4858 TypeInfo, SlotSize, /*AllowHigher*/ true); 4859 } 4860 4861 static bool 4862 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4863 llvm::Value *Address) { 4864 // This is calculated from the LLVM and GCC tables and verified 4865 // against gcc output. AFAIK all ABIs use the same encoding. 4866 4867 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4868 4869 llvm::IntegerType *i8 = CGF.Int8Ty; 4870 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4871 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4872 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4873 4874 // 0-31: r0-31, the 8-byte general-purpose registers 4875 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 4876 4877 // 32-63: fp0-31, the 8-byte floating-point registers 4878 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4879 4880 // 64-67 are various 8-byte special-purpose registers: 4881 // 64: mq 4882 // 65: lr 4883 // 66: ctr 4884 // 67: ap 4885 AssignToArrayRange(Builder, Address, Eight8, 64, 67); 4886 4887 // 68-76 are various 4-byte special-purpose registers: 4888 // 68-75 cr0-7 4889 // 76: xer 4890 AssignToArrayRange(Builder, Address, Four8, 68, 76); 4891 4892 // 77-108: v0-31, the 16-byte vector registers 4893 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4894 4895 // 109: vrsave 4896 // 110: vscr 4897 // 111: spe_acc 4898 // 112: spefscr 4899 // 113: sfp 4900 // 114: tfhar 4901 // 115: tfiar 4902 // 116: texasr 4903 AssignToArrayRange(Builder, Address, Eight8, 109, 116); 4904 4905 return false; 4906 } 4907 4908 bool 4909 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 4910 CodeGen::CodeGenFunction &CGF, 4911 llvm::Value *Address) const { 4912 4913 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 4914 } 4915 4916 bool 4917 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4918 llvm::Value *Address) const { 4919 4920 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 4921 } 4922 4923 //===----------------------------------------------------------------------===// 4924 // AArch64 ABI Implementation 4925 //===----------------------------------------------------------------------===// 4926 4927 namespace { 4928 4929 class AArch64ABIInfo : public SwiftABIInfo { 4930 public: 4931 enum ABIKind { 4932 AAPCS = 0, 4933 DarwinPCS, 4934 Win64 4935 }; 4936 4937 private: 4938 ABIKind Kind; 4939 4940 public: 4941 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) 4942 : SwiftABIInfo(CGT), Kind(Kind) {} 4943 4944 private: 4945 ABIKind getABIKind() const { return Kind; } 4946 bool isDarwinPCS() const { return Kind == DarwinPCS; } 4947 4948 ABIArgInfo classifyReturnType(QualType RetTy) const; 4949 ABIArgInfo classifyArgumentType(QualType RetTy) const; 4950 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4951 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4952 uint64_t Members) const override; 4953 4954 bool isIllegalVectorType(QualType Ty) const; 4955 4956 void computeInfo(CGFunctionInfo &FI) const override { 4957 if (!::classifyReturnType(getCXXABI(), FI, *this)) 4958 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4959 4960 for (auto &it : FI.arguments()) 4961 it.info = classifyArgumentType(it.type); 4962 } 4963 4964 Address EmitDarwinVAArg(Address VAListAddr, QualType Ty, 4965 CodeGenFunction &CGF) const; 4966 4967 Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 4968 CodeGenFunction &CGF) const; 4969 4970 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4971 QualType Ty) const override { 4972 return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty) 4973 : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 4974 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 4975 } 4976 4977 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 4978 QualType Ty) const override; 4979 4980 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 4981 bool asReturnValue) const override { 4982 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 4983 } 4984 bool isSwiftErrorInRegister() const override { 4985 return true; 4986 } 4987 4988 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 4989 unsigned elts) const override; 4990 }; 4991 4992 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 4993 public: 4994 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 4995 : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {} 4996 4997 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 4998 return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue"; 4999 } 5000 5001 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5002 return 31; 5003 } 5004 5005 bool doesReturnSlotInterfereWithArgs() const override { return false; } 5006 5007 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5008 CodeGen::CodeGenModule &CGM) const override { 5009 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5010 if (!FD) 5011 return; 5012 llvm::Function *Fn = cast<llvm::Function>(GV); 5013 5014 auto Kind = CGM.getCodeGenOpts().getSignReturnAddress(); 5015 if (Kind != CodeGenOptions::SignReturnAddressScope::None) { 5016 Fn->addFnAttr("sign-return-address", 5017 Kind == CodeGenOptions::SignReturnAddressScope::All 5018 ? "all" 5019 : "non-leaf"); 5020 5021 auto Key = CGM.getCodeGenOpts().getSignReturnAddressKey(); 5022 Fn->addFnAttr("sign-return-address-key", 5023 Key == CodeGenOptions::SignReturnAddressKeyValue::AKey 5024 ? "a_key" 5025 : "b_key"); 5026 } 5027 5028 if (CGM.getCodeGenOpts().BranchTargetEnforcement) 5029 Fn->addFnAttr("branch-target-enforcement"); 5030 } 5031 }; 5032 5033 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo { 5034 public: 5035 WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K) 5036 : AArch64TargetCodeGenInfo(CGT, K) {} 5037 5038 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5039 CodeGen::CodeGenModule &CGM) const override; 5040 5041 void getDependentLibraryOption(llvm::StringRef Lib, 5042 llvm::SmallString<24> &Opt) const override { 5043 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5044 } 5045 5046 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5047 llvm::SmallString<32> &Opt) const override { 5048 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5049 } 5050 }; 5051 5052 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes( 5053 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 5054 AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 5055 if (GV->isDeclaration()) 5056 return; 5057 addStackProbeTargetAttributes(D, GV, CGM); 5058 } 5059 } 5060 5061 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const { 5062 Ty = useFirstFieldIfTransparentUnion(Ty); 5063 5064 // Handle illegal vector types here. 5065 if (isIllegalVectorType(Ty)) { 5066 uint64_t Size = getContext().getTypeSize(Ty); 5067 // Android promotes <2 x i8> to i16, not i32 5068 if (isAndroid() && (Size <= 16)) { 5069 llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext()); 5070 return ABIArgInfo::getDirect(ResType); 5071 } 5072 if (Size <= 32) { 5073 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 5074 return ABIArgInfo::getDirect(ResType); 5075 } 5076 if (Size == 64) { 5077 llvm::Type *ResType = 5078 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 5079 return ABIArgInfo::getDirect(ResType); 5080 } 5081 if (Size == 128) { 5082 llvm::Type *ResType = 5083 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 5084 return ABIArgInfo::getDirect(ResType); 5085 } 5086 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5087 } 5088 5089 if (!isAggregateTypeForABI(Ty)) { 5090 // Treat an enum type as its underlying type. 5091 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5092 Ty = EnumTy->getDecl()->getIntegerType(); 5093 5094 return (Ty->isPromotableIntegerType() && isDarwinPCS() 5095 ? ABIArgInfo::getExtend(Ty) 5096 : ABIArgInfo::getDirect()); 5097 } 5098 5099 // Structures with either a non-trivial destructor or a non-trivial 5100 // copy constructor are always indirect. 5101 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5102 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 5103 CGCXXABI::RAA_DirectInMemory); 5104 } 5105 5106 // Empty records are always ignored on Darwin, but actually passed in C++ mode 5107 // elsewhere for GNU compatibility. 5108 uint64_t Size = getContext().getTypeSize(Ty); 5109 bool IsEmpty = isEmptyRecord(getContext(), Ty, true); 5110 if (IsEmpty || Size == 0) { 5111 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 5112 return ABIArgInfo::getIgnore(); 5113 5114 // GNU C mode. The only argument that gets ignored is an empty one with size 5115 // 0. 5116 if (IsEmpty && Size == 0) 5117 return ABIArgInfo::getIgnore(); 5118 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5119 } 5120 5121 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 5122 const Type *Base = nullptr; 5123 uint64_t Members = 0; 5124 if (isHomogeneousAggregate(Ty, Base, Members)) { 5125 return ABIArgInfo::getDirect( 5126 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); 5127 } 5128 5129 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 5130 if (Size <= 128) { 5131 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5132 // same size and alignment. 5133 if (getTarget().isRenderScriptTarget()) { 5134 return coerceToIntArray(Ty, getContext(), getVMContext()); 5135 } 5136 unsigned Alignment; 5137 if (Kind == AArch64ABIInfo::AAPCS) { 5138 Alignment = getContext().getTypeUnadjustedAlign(Ty); 5139 Alignment = Alignment < 128 ? 64 : 128; 5140 } else { 5141 Alignment = getContext().getTypeAlign(Ty); 5142 } 5143 Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes 5144 5145 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5146 // For aggregates with 16-byte alignment, we use i128. 5147 if (Alignment < 128 && Size == 128) { 5148 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 5149 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 5150 } 5151 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 5152 } 5153 5154 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5155 } 5156 5157 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const { 5158 if (RetTy->isVoidType()) 5159 return ABIArgInfo::getIgnore(); 5160 5161 // Large vector types should be returned via memory. 5162 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 5163 return getNaturalAlignIndirect(RetTy); 5164 5165 if (!isAggregateTypeForABI(RetTy)) { 5166 // Treat an enum type as its underlying type. 5167 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5168 RetTy = EnumTy->getDecl()->getIntegerType(); 5169 5170 return (RetTy->isPromotableIntegerType() && isDarwinPCS() 5171 ? ABIArgInfo::getExtend(RetTy) 5172 : ABIArgInfo::getDirect()); 5173 } 5174 5175 uint64_t Size = getContext().getTypeSize(RetTy); 5176 if (isEmptyRecord(getContext(), RetTy, true) || Size == 0) 5177 return ABIArgInfo::getIgnore(); 5178 5179 const Type *Base = nullptr; 5180 uint64_t Members = 0; 5181 if (isHomogeneousAggregate(RetTy, Base, Members)) 5182 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 5183 return ABIArgInfo::getDirect(); 5184 5185 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 5186 if (Size <= 128) { 5187 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5188 // same size and alignment. 5189 if (getTarget().isRenderScriptTarget()) { 5190 return coerceToIntArray(RetTy, getContext(), getVMContext()); 5191 } 5192 unsigned Alignment = getContext().getTypeAlign(RetTy); 5193 Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes 5194 5195 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5196 // For aggregates with 16-byte alignment, we use i128. 5197 if (Alignment < 128 && Size == 128) { 5198 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 5199 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 5200 } 5201 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 5202 } 5203 5204 return getNaturalAlignIndirect(RetTy); 5205 } 5206 5207 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 5208 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 5209 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5210 // Check whether VT is legal. 5211 unsigned NumElements = VT->getNumElements(); 5212 uint64_t Size = getContext().getTypeSize(VT); 5213 // NumElements should be power of 2. 5214 if (!llvm::isPowerOf2_32(NumElements)) 5215 return true; 5216 return Size != 64 && (Size != 128 || NumElements == 1); 5217 } 5218 return false; 5219 } 5220 5221 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize, 5222 llvm::Type *eltTy, 5223 unsigned elts) const { 5224 if (!llvm::isPowerOf2_32(elts)) 5225 return false; 5226 if (totalSize.getQuantity() != 8 && 5227 (totalSize.getQuantity() != 16 || elts == 1)) 5228 return false; 5229 return true; 5230 } 5231 5232 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5233 // Homogeneous aggregates for AAPCS64 must have base types of a floating 5234 // point type or a short-vector type. This is the same as the 32-bit ABI, 5235 // but with the difference that any floating-point type is allowed, 5236 // including __fp16. 5237 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5238 if (BT->isFloatingPoint()) 5239 return true; 5240 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 5241 unsigned VecSize = getContext().getTypeSize(VT); 5242 if (VecSize == 64 || VecSize == 128) 5243 return true; 5244 } 5245 return false; 5246 } 5247 5248 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 5249 uint64_t Members) const { 5250 return Members <= 4; 5251 } 5252 5253 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, 5254 QualType Ty, 5255 CodeGenFunction &CGF) const { 5256 ABIArgInfo AI = classifyArgumentType(Ty); 5257 bool IsIndirect = AI.isIndirect(); 5258 5259 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5260 if (IsIndirect) 5261 BaseTy = llvm::PointerType::getUnqual(BaseTy); 5262 else if (AI.getCoerceToType()) 5263 BaseTy = AI.getCoerceToType(); 5264 5265 unsigned NumRegs = 1; 5266 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { 5267 BaseTy = ArrTy->getElementType(); 5268 NumRegs = ArrTy->getNumElements(); 5269 } 5270 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); 5271 5272 // The AArch64 va_list type and handling is specified in the Procedure Call 5273 // Standard, section B.4: 5274 // 5275 // struct { 5276 // void *__stack; 5277 // void *__gr_top; 5278 // void *__vr_top; 5279 // int __gr_offs; 5280 // int __vr_offs; 5281 // }; 5282 5283 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 5284 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 5285 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 5286 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 5287 5288 auto TyInfo = getContext().getTypeInfoInChars(Ty); 5289 CharUnits TyAlign = TyInfo.second; 5290 5291 Address reg_offs_p = Address::invalid(); 5292 llvm::Value *reg_offs = nullptr; 5293 int reg_top_index; 5294 int RegSize = IsIndirect ? 8 : TyInfo.first.getQuantity(); 5295 if (!IsFPR) { 5296 // 3 is the field number of __gr_offs 5297 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p"); 5298 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 5299 reg_top_index = 1; // field number for __gr_top 5300 RegSize = llvm::alignTo(RegSize, 8); 5301 } else { 5302 // 4 is the field number of __vr_offs. 5303 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p"); 5304 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 5305 reg_top_index = 2; // field number for __vr_top 5306 RegSize = 16 * NumRegs; 5307 } 5308 5309 //======================================= 5310 // Find out where argument was passed 5311 //======================================= 5312 5313 // If reg_offs >= 0 we're already using the stack for this type of 5314 // argument. We don't want to keep updating reg_offs (in case it overflows, 5315 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 5316 // whatever they get). 5317 llvm::Value *UsingStack = nullptr; 5318 UsingStack = CGF.Builder.CreateICmpSGE( 5319 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 5320 5321 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 5322 5323 // Otherwise, at least some kind of argument could go in these registers, the 5324 // question is whether this particular type is too big. 5325 CGF.EmitBlock(MaybeRegBlock); 5326 5327 // Integer arguments may need to correct register alignment (for example a 5328 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 5329 // align __gr_offs to calculate the potential address. 5330 if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) { 5331 int Align = TyAlign.getQuantity(); 5332 5333 reg_offs = CGF.Builder.CreateAdd( 5334 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 5335 "align_regoffs"); 5336 reg_offs = CGF.Builder.CreateAnd( 5337 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 5338 "aligned_regoffs"); 5339 } 5340 5341 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 5342 // The fact that this is done unconditionally reflects the fact that 5343 // allocating an argument to the stack also uses up all the remaining 5344 // registers of the appropriate kind. 5345 llvm::Value *NewOffset = nullptr; 5346 NewOffset = CGF.Builder.CreateAdd( 5347 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 5348 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 5349 5350 // Now we're in a position to decide whether this argument really was in 5351 // registers or not. 5352 llvm::Value *InRegs = nullptr; 5353 InRegs = CGF.Builder.CreateICmpSLE( 5354 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 5355 5356 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 5357 5358 //======================================= 5359 // Argument was in registers 5360 //======================================= 5361 5362 // Now we emit the code for if the argument was originally passed in 5363 // registers. First start the appropriate block: 5364 CGF.EmitBlock(InRegBlock); 5365 5366 llvm::Value *reg_top = nullptr; 5367 Address reg_top_p = 5368 CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p"); 5369 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 5370 Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs), 5371 CharUnits::fromQuantity(IsFPR ? 16 : 8)); 5372 Address RegAddr = Address::invalid(); 5373 llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty); 5374 5375 if (IsIndirect) { 5376 // If it's been passed indirectly (actually a struct), whatever we find from 5377 // stored registers or on the stack will actually be a struct **. 5378 MemTy = llvm::PointerType::getUnqual(MemTy); 5379 } 5380 5381 const Type *Base = nullptr; 5382 uint64_t NumMembers = 0; 5383 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); 5384 if (IsHFA && NumMembers > 1) { 5385 // Homogeneous aggregates passed in registers will have their elements split 5386 // and stored 16-bytes apart regardless of size (they're notionally in qN, 5387 // qN+1, ...). We reload and store into a temporary local variable 5388 // contiguously. 5389 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 5390 auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0)); 5391 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 5392 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 5393 Address Tmp = CGF.CreateTempAlloca(HFATy, 5394 std::max(TyAlign, BaseTyInfo.second)); 5395 5396 // On big-endian platforms, the value will be right-aligned in its slot. 5397 int Offset = 0; 5398 if (CGF.CGM.getDataLayout().isBigEndian() && 5399 BaseTyInfo.first.getQuantity() < 16) 5400 Offset = 16 - BaseTyInfo.first.getQuantity(); 5401 5402 for (unsigned i = 0; i < NumMembers; ++i) { 5403 CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset); 5404 Address LoadAddr = 5405 CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset); 5406 LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy); 5407 5408 Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i); 5409 5410 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 5411 CGF.Builder.CreateStore(Elem, StoreAddr); 5412 } 5413 5414 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy); 5415 } else { 5416 // Otherwise the object is contiguous in memory. 5417 5418 // It might be right-aligned in its slot. 5419 CharUnits SlotSize = BaseAddr.getAlignment(); 5420 if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect && 5421 (IsHFA || !isAggregateTypeForABI(Ty)) && 5422 TyInfo.first < SlotSize) { 5423 CharUnits Offset = SlotSize - TyInfo.first; 5424 BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset); 5425 } 5426 5427 RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy); 5428 } 5429 5430 CGF.EmitBranch(ContBlock); 5431 5432 //======================================= 5433 // Argument was on the stack 5434 //======================================= 5435 CGF.EmitBlock(OnStackBlock); 5436 5437 Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p"); 5438 llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack"); 5439 5440 // Again, stack arguments may need realignment. In this case both integer and 5441 // floating-point ones might be affected. 5442 if (!IsIndirect && TyAlign.getQuantity() > 8) { 5443 int Align = TyAlign.getQuantity(); 5444 5445 OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty); 5446 5447 OnStackPtr = CGF.Builder.CreateAdd( 5448 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 5449 "align_stack"); 5450 OnStackPtr = CGF.Builder.CreateAnd( 5451 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 5452 "align_stack"); 5453 5454 OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy); 5455 } 5456 Address OnStackAddr(OnStackPtr, 5457 std::max(CharUnits::fromQuantity(8), TyAlign)); 5458 5459 // All stack slots are multiples of 8 bytes. 5460 CharUnits StackSlotSize = CharUnits::fromQuantity(8); 5461 CharUnits StackSize; 5462 if (IsIndirect) 5463 StackSize = StackSlotSize; 5464 else 5465 StackSize = TyInfo.first.alignTo(StackSlotSize); 5466 5467 llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize); 5468 llvm::Value *NewStack = 5469 CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack"); 5470 5471 // Write the new value of __stack for the next call to va_arg 5472 CGF.Builder.CreateStore(NewStack, stack_p); 5473 5474 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 5475 TyInfo.first < StackSlotSize) { 5476 CharUnits Offset = StackSlotSize - TyInfo.first; 5477 OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset); 5478 } 5479 5480 OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy); 5481 5482 CGF.EmitBranch(ContBlock); 5483 5484 //======================================= 5485 // Tidy up 5486 //======================================= 5487 CGF.EmitBlock(ContBlock); 5488 5489 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 5490 OnStackAddr, OnStackBlock, "vaargs.addr"); 5491 5492 if (IsIndirect) 5493 return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), 5494 TyInfo.second); 5495 5496 return ResAddr; 5497 } 5498 5499 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty, 5500 CodeGenFunction &CGF) const { 5501 // The backend's lowering doesn't support va_arg for aggregates or 5502 // illegal vector types. Lower VAArg here for these cases and use 5503 // the LLVM va_arg instruction for everything else. 5504 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 5505 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 5506 5507 CharUnits SlotSize = CharUnits::fromQuantity(8); 5508 5509 // Empty records are ignored for parameter passing purposes. 5510 if (isEmptyRecord(getContext(), Ty, true)) { 5511 Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 5512 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 5513 return Addr; 5514 } 5515 5516 // The size of the actual thing passed, which might end up just 5517 // being a pointer for indirect types. 5518 auto TyInfo = getContext().getTypeInfoInChars(Ty); 5519 5520 // Arguments bigger than 16 bytes which aren't homogeneous 5521 // aggregates should be passed indirectly. 5522 bool IsIndirect = false; 5523 if (TyInfo.first.getQuantity() > 16) { 5524 const Type *Base = nullptr; 5525 uint64_t Members = 0; 5526 IsIndirect = !isHomogeneousAggregate(Ty, Base, Members); 5527 } 5528 5529 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 5530 TyInfo, SlotSize, /*AllowHigherAlign*/ true); 5531 } 5532 5533 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 5534 QualType Ty) const { 5535 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 5536 CGF.getContext().getTypeInfoInChars(Ty), 5537 CharUnits::fromQuantity(8), 5538 /*allowHigherAlign*/ false); 5539 } 5540 5541 //===----------------------------------------------------------------------===// 5542 // ARM ABI Implementation 5543 //===----------------------------------------------------------------------===// 5544 5545 namespace { 5546 5547 class ARMABIInfo : public SwiftABIInfo { 5548 public: 5549 enum ABIKind { 5550 APCS = 0, 5551 AAPCS = 1, 5552 AAPCS_VFP = 2, 5553 AAPCS16_VFP = 3, 5554 }; 5555 5556 private: 5557 ABIKind Kind; 5558 5559 public: 5560 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) 5561 : SwiftABIInfo(CGT), Kind(_Kind) { 5562 setCCs(); 5563 } 5564 5565 bool isEABI() const { 5566 switch (getTarget().getTriple().getEnvironment()) { 5567 case llvm::Triple::Android: 5568 case llvm::Triple::EABI: 5569 case llvm::Triple::EABIHF: 5570 case llvm::Triple::GNUEABI: 5571 case llvm::Triple::GNUEABIHF: 5572 case llvm::Triple::MuslEABI: 5573 case llvm::Triple::MuslEABIHF: 5574 return true; 5575 default: 5576 return false; 5577 } 5578 } 5579 5580 bool isEABIHF() const { 5581 switch (getTarget().getTriple().getEnvironment()) { 5582 case llvm::Triple::EABIHF: 5583 case llvm::Triple::GNUEABIHF: 5584 case llvm::Triple::MuslEABIHF: 5585 return true; 5586 default: 5587 return false; 5588 } 5589 } 5590 5591 ABIKind getABIKind() const { return Kind; } 5592 5593 private: 5594 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const; 5595 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic) const; 5596 ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base, 5597 uint64_t Members) const; 5598 ABIArgInfo coerceIllegalVector(QualType Ty) const; 5599 bool isIllegalVectorType(QualType Ty) const; 5600 5601 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 5602 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 5603 uint64_t Members) const override; 5604 5605 void computeInfo(CGFunctionInfo &FI) const override; 5606 5607 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5608 QualType Ty) const override; 5609 5610 llvm::CallingConv::ID getLLVMDefaultCC() const; 5611 llvm::CallingConv::ID getABIDefaultCC() const; 5612 void setCCs(); 5613 5614 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 5615 bool asReturnValue) const override { 5616 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5617 } 5618 bool isSwiftErrorInRegister() const override { 5619 return true; 5620 } 5621 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 5622 unsigned elts) const override; 5623 }; 5624 5625 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 5626 public: 5627 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 5628 :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {} 5629 5630 const ARMABIInfo &getABIInfo() const { 5631 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 5632 } 5633 5634 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5635 return 13; 5636 } 5637 5638 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 5639 return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue"; 5640 } 5641 5642 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5643 llvm::Value *Address) const override { 5644 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 5645 5646 // 0-15 are the 16 integer registers. 5647 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 5648 return false; 5649 } 5650 5651 unsigned getSizeOfUnwindException() const override { 5652 if (getABIInfo().isEABI()) return 88; 5653 return TargetCodeGenInfo::getSizeOfUnwindException(); 5654 } 5655 5656 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5657 CodeGen::CodeGenModule &CGM) const override { 5658 if (GV->isDeclaration()) 5659 return; 5660 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5661 if (!FD) 5662 return; 5663 5664 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 5665 if (!Attr) 5666 return; 5667 5668 const char *Kind; 5669 switch (Attr->getInterrupt()) { 5670 case ARMInterruptAttr::Generic: Kind = ""; break; 5671 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 5672 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 5673 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 5674 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 5675 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 5676 } 5677 5678 llvm::Function *Fn = cast<llvm::Function>(GV); 5679 5680 Fn->addFnAttr("interrupt", Kind); 5681 5682 ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind(); 5683 if (ABI == ARMABIInfo::APCS) 5684 return; 5685 5686 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 5687 // however this is not necessarily true on taking any interrupt. Instruct 5688 // the backend to perform a realignment as part of the function prologue. 5689 llvm::AttrBuilder B; 5690 B.addStackAlignmentAttr(8); 5691 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 5692 } 5693 }; 5694 5695 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { 5696 public: 5697 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 5698 : ARMTargetCodeGenInfo(CGT, K) {} 5699 5700 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5701 CodeGen::CodeGenModule &CGM) const override; 5702 5703 void getDependentLibraryOption(llvm::StringRef Lib, 5704 llvm::SmallString<24> &Opt) const override { 5705 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5706 } 5707 5708 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5709 llvm::SmallString<32> &Opt) const override { 5710 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5711 } 5712 }; 5713 5714 void WindowsARMTargetCodeGenInfo::setTargetAttributes( 5715 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 5716 ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 5717 if (GV->isDeclaration()) 5718 return; 5719 addStackProbeTargetAttributes(D, GV, CGM); 5720 } 5721 } 5722 5723 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 5724 if (!::classifyReturnType(getCXXABI(), FI, *this)) 5725 FI.getReturnInfo() = 5726 classifyReturnType(FI.getReturnType(), FI.isVariadic()); 5727 5728 for (auto &I : FI.arguments()) 5729 I.info = classifyArgumentType(I.type, FI.isVariadic()); 5730 5731 // Always honor user-specified calling convention. 5732 if (FI.getCallingConvention() != llvm::CallingConv::C) 5733 return; 5734 5735 llvm::CallingConv::ID cc = getRuntimeCC(); 5736 if (cc != llvm::CallingConv::C) 5737 FI.setEffectiveCallingConvention(cc); 5738 } 5739 5740 /// Return the default calling convention that LLVM will use. 5741 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 5742 // The default calling convention that LLVM will infer. 5743 if (isEABIHF() || getTarget().getTriple().isWatchABI()) 5744 return llvm::CallingConv::ARM_AAPCS_VFP; 5745 else if (isEABI()) 5746 return llvm::CallingConv::ARM_AAPCS; 5747 else 5748 return llvm::CallingConv::ARM_APCS; 5749 } 5750 5751 /// Return the calling convention that our ABI would like us to use 5752 /// as the C calling convention. 5753 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 5754 switch (getABIKind()) { 5755 case APCS: return llvm::CallingConv::ARM_APCS; 5756 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 5757 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 5758 case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 5759 } 5760 llvm_unreachable("bad ABI kind"); 5761 } 5762 5763 void ARMABIInfo::setCCs() { 5764 assert(getRuntimeCC() == llvm::CallingConv::C); 5765 5766 // Don't muddy up the IR with a ton of explicit annotations if 5767 // they'd just match what LLVM will infer from the triple. 5768 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 5769 if (abiCC != getLLVMDefaultCC()) 5770 RuntimeCC = abiCC; 5771 } 5772 5773 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const { 5774 uint64_t Size = getContext().getTypeSize(Ty); 5775 if (Size <= 32) { 5776 llvm::Type *ResType = 5777 llvm::Type::getInt32Ty(getVMContext()); 5778 return ABIArgInfo::getDirect(ResType); 5779 } 5780 if (Size == 64 || Size == 128) { 5781 llvm::Type *ResType = llvm::VectorType::get( 5782 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 5783 return ABIArgInfo::getDirect(ResType); 5784 } 5785 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5786 } 5787 5788 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty, 5789 const Type *Base, 5790 uint64_t Members) const { 5791 assert(Base && "Base class should be set for homogeneous aggregate"); 5792 // Base can be a floating-point or a vector. 5793 if (const VectorType *VT = Base->getAs<VectorType>()) { 5794 // FP16 vectors should be converted to integer vectors 5795 if (!getTarget().hasLegalHalfType() && 5796 (VT->getElementType()->isFloat16Type() || 5797 VT->getElementType()->isHalfType())) { 5798 uint64_t Size = getContext().getTypeSize(VT); 5799 llvm::Type *NewVecTy = llvm::VectorType::get( 5800 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 5801 llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members); 5802 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 5803 } 5804 } 5805 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 5806 } 5807 5808 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, 5809 bool isVariadic) const { 5810 // 6.1.2.1 The following argument types are VFP CPRCs: 5811 // A single-precision floating-point type (including promoted 5812 // half-precision types); A double-precision floating-point type; 5813 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 5814 // with a Base Type of a single- or double-precision floating-point type, 5815 // 64-bit containerized vectors or 128-bit containerized vectors with one 5816 // to four Elements. 5817 bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic; 5818 5819 Ty = useFirstFieldIfTransparentUnion(Ty); 5820 5821 // Handle illegal vector types here. 5822 if (isIllegalVectorType(Ty)) 5823 return coerceIllegalVector(Ty); 5824 5825 // _Float16 and __fp16 get passed as if it were an int or float, but with 5826 // the top 16 bits unspecified. This is not done for OpenCL as it handles the 5827 // half type natively, and does not need to interwork with AAPCS code. 5828 if ((Ty->isFloat16Type() || Ty->isHalfType()) && 5829 !getContext().getLangOpts().NativeHalfArgsAndReturns) { 5830 llvm::Type *ResType = IsEffectivelyAAPCS_VFP ? 5831 llvm::Type::getFloatTy(getVMContext()) : 5832 llvm::Type::getInt32Ty(getVMContext()); 5833 return ABIArgInfo::getDirect(ResType); 5834 } 5835 5836 if (!isAggregateTypeForABI(Ty)) { 5837 // Treat an enum type as its underlying type. 5838 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 5839 Ty = EnumTy->getDecl()->getIntegerType(); 5840 } 5841 5842 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 5843 : ABIArgInfo::getDirect()); 5844 } 5845 5846 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5847 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 5848 } 5849 5850 // Ignore empty records. 5851 if (isEmptyRecord(getContext(), Ty, true)) 5852 return ABIArgInfo::getIgnore(); 5853 5854 if (IsEffectivelyAAPCS_VFP) { 5855 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 5856 // into VFP registers. 5857 const Type *Base = nullptr; 5858 uint64_t Members = 0; 5859 if (isHomogeneousAggregate(Ty, Base, Members)) 5860 return classifyHomogeneousAggregate(Ty, Base, Members); 5861 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 5862 // WatchOS does have homogeneous aggregates. Note that we intentionally use 5863 // this convention even for a variadic function: the backend will use GPRs 5864 // if needed. 5865 const Type *Base = nullptr; 5866 uint64_t Members = 0; 5867 if (isHomogeneousAggregate(Ty, Base, Members)) { 5868 assert(Base && Members <= 4 && "unexpected homogeneous aggregate"); 5869 llvm::Type *Ty = 5870 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members); 5871 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 5872 } 5873 } 5874 5875 if (getABIKind() == ARMABIInfo::AAPCS16_VFP && 5876 getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) { 5877 // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're 5878 // bigger than 128-bits, they get placed in space allocated by the caller, 5879 // and a pointer is passed. 5880 return ABIArgInfo::getIndirect( 5881 CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false); 5882 } 5883 5884 // Support byval for ARM. 5885 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 5886 // most 8-byte. We realign the indirect argument if type alignment is bigger 5887 // than ABI alignment. 5888 uint64_t ABIAlign = 4; 5889 uint64_t TyAlign; 5890 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 5891 getABIKind() == ARMABIInfo::AAPCS) { 5892 TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); 5893 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 5894 } else { 5895 TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 5896 } 5897 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 5898 assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval"); 5899 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 5900 /*ByVal=*/true, 5901 /*Realign=*/TyAlign > ABIAlign); 5902 } 5903 5904 // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of 5905 // same size and alignment. 5906 if (getTarget().isRenderScriptTarget()) { 5907 return coerceToIntArray(Ty, getContext(), getVMContext()); 5908 } 5909 5910 // Otherwise, pass by coercing to a structure of the appropriate size. 5911 llvm::Type* ElemTy; 5912 unsigned SizeRegs; 5913 // FIXME: Try to match the types of the arguments more accurately where 5914 // we can. 5915 if (TyAlign <= 4) { 5916 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 5917 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 5918 } else { 5919 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 5920 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 5921 } 5922 5923 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); 5924 } 5925 5926 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 5927 llvm::LLVMContext &VMContext) { 5928 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 5929 // is called integer-like if its size is less than or equal to one word, and 5930 // the offset of each of its addressable sub-fields is zero. 5931 5932 uint64_t Size = Context.getTypeSize(Ty); 5933 5934 // Check that the type fits in a word. 5935 if (Size > 32) 5936 return false; 5937 5938 // FIXME: Handle vector types! 5939 if (Ty->isVectorType()) 5940 return false; 5941 5942 // Float types are never treated as "integer like". 5943 if (Ty->isRealFloatingType()) 5944 return false; 5945 5946 // If this is a builtin or pointer type then it is ok. 5947 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 5948 return true; 5949 5950 // Small complex integer types are "integer like". 5951 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 5952 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 5953 5954 // Single element and zero sized arrays should be allowed, by the definition 5955 // above, but they are not. 5956 5957 // Otherwise, it must be a record type. 5958 const RecordType *RT = Ty->getAs<RecordType>(); 5959 if (!RT) return false; 5960 5961 // Ignore records with flexible arrays. 5962 const RecordDecl *RD = RT->getDecl(); 5963 if (RD->hasFlexibleArrayMember()) 5964 return false; 5965 5966 // Check that all sub-fields are at offset 0, and are themselves "integer 5967 // like". 5968 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 5969 5970 bool HadField = false; 5971 unsigned idx = 0; 5972 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 5973 i != e; ++i, ++idx) { 5974 const FieldDecl *FD = *i; 5975 5976 // Bit-fields are not addressable, we only need to verify they are "integer 5977 // like". We still have to disallow a subsequent non-bitfield, for example: 5978 // struct { int : 0; int x } 5979 // is non-integer like according to gcc. 5980 if (FD->isBitField()) { 5981 if (!RD->isUnion()) 5982 HadField = true; 5983 5984 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 5985 return false; 5986 5987 continue; 5988 } 5989 5990 // Check if this field is at offset 0. 5991 if (Layout.getFieldOffset(idx) != 0) 5992 return false; 5993 5994 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 5995 return false; 5996 5997 // Only allow at most one field in a structure. This doesn't match the 5998 // wording above, but follows gcc in situations with a field following an 5999 // empty structure. 6000 if (!RD->isUnion()) { 6001 if (HadField) 6002 return false; 6003 6004 HadField = true; 6005 } 6006 } 6007 6008 return true; 6009 } 6010 6011 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, 6012 bool isVariadic) const { 6013 bool IsEffectivelyAAPCS_VFP = 6014 (getABIKind() == AAPCS_VFP || getABIKind() == AAPCS16_VFP) && !isVariadic; 6015 6016 if (RetTy->isVoidType()) 6017 return ABIArgInfo::getIgnore(); 6018 6019 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 6020 // Large vector types should be returned via memory. 6021 if (getContext().getTypeSize(RetTy) > 128) 6022 return getNaturalAlignIndirect(RetTy); 6023 // FP16 vectors should be converted to integer vectors 6024 if (!getTarget().hasLegalHalfType() && 6025 (VT->getElementType()->isFloat16Type() || 6026 VT->getElementType()->isHalfType())) 6027 return coerceIllegalVector(RetTy); 6028 } 6029 6030 // _Float16 and __fp16 get returned as if it were an int or float, but with 6031 // the top 16 bits unspecified. This is not done for OpenCL as it handles the 6032 // half type natively, and does not need to interwork with AAPCS code. 6033 if ((RetTy->isFloat16Type() || RetTy->isHalfType()) && 6034 !getContext().getLangOpts().NativeHalfArgsAndReturns) { 6035 llvm::Type *ResType = IsEffectivelyAAPCS_VFP ? 6036 llvm::Type::getFloatTy(getVMContext()) : 6037 llvm::Type::getInt32Ty(getVMContext()); 6038 return ABIArgInfo::getDirect(ResType); 6039 } 6040 6041 if (!isAggregateTypeForABI(RetTy)) { 6042 // Treat an enum type as its underlying type. 6043 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6044 RetTy = EnumTy->getDecl()->getIntegerType(); 6045 6046 return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 6047 : ABIArgInfo::getDirect(); 6048 } 6049 6050 // Are we following APCS? 6051 if (getABIKind() == APCS) { 6052 if (isEmptyRecord(getContext(), RetTy, false)) 6053 return ABIArgInfo::getIgnore(); 6054 6055 // Complex types are all returned as packed integers. 6056 // 6057 // FIXME: Consider using 2 x vector types if the back end handles them 6058 // correctly. 6059 if (RetTy->isAnyComplexType()) 6060 return ABIArgInfo::getDirect(llvm::IntegerType::get( 6061 getVMContext(), getContext().getTypeSize(RetTy))); 6062 6063 // Integer like structures are returned in r0. 6064 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 6065 // Return in the smallest viable integer type. 6066 uint64_t Size = getContext().getTypeSize(RetTy); 6067 if (Size <= 8) 6068 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6069 if (Size <= 16) 6070 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6071 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6072 } 6073 6074 // Otherwise return in memory. 6075 return getNaturalAlignIndirect(RetTy); 6076 } 6077 6078 // Otherwise this is an AAPCS variant. 6079 6080 if (isEmptyRecord(getContext(), RetTy, true)) 6081 return ABIArgInfo::getIgnore(); 6082 6083 // Check for homogeneous aggregates with AAPCS-VFP. 6084 if (IsEffectivelyAAPCS_VFP) { 6085 const Type *Base = nullptr; 6086 uint64_t Members = 0; 6087 if (isHomogeneousAggregate(RetTy, Base, Members)) 6088 return classifyHomogeneousAggregate(RetTy, Base, Members); 6089 } 6090 6091 // Aggregates <= 4 bytes are returned in r0; other aggregates 6092 // are returned indirectly. 6093 uint64_t Size = getContext().getTypeSize(RetTy); 6094 if (Size <= 32) { 6095 // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of 6096 // same size and alignment. 6097 if (getTarget().isRenderScriptTarget()) { 6098 return coerceToIntArray(RetTy, getContext(), getVMContext()); 6099 } 6100 if (getDataLayout().isBigEndian()) 6101 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 6102 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6103 6104 // Return in the smallest viable integer type. 6105 if (Size <= 8) 6106 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6107 if (Size <= 16) 6108 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6109 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6110 } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) { 6111 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext()); 6112 llvm::Type *CoerceTy = 6113 llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32); 6114 return ABIArgInfo::getDirect(CoerceTy); 6115 } 6116 6117 return getNaturalAlignIndirect(RetTy); 6118 } 6119 6120 /// isIllegalVector - check whether Ty is an illegal vector type. 6121 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 6122 if (const VectorType *VT = Ty->getAs<VectorType> ()) { 6123 // On targets that don't support FP16, FP16 is expanded into float, and we 6124 // don't want the ABI to depend on whether or not FP16 is supported in 6125 // hardware. Thus return false to coerce FP16 vectors into integer vectors. 6126 if (!getTarget().hasLegalHalfType() && 6127 (VT->getElementType()->isFloat16Type() || 6128 VT->getElementType()->isHalfType())) 6129 return true; 6130 if (isAndroid()) { 6131 // Android shipped using Clang 3.1, which supported a slightly different 6132 // vector ABI. The primary differences were that 3-element vector types 6133 // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path 6134 // accepts that legacy behavior for Android only. 6135 // Check whether VT is legal. 6136 unsigned NumElements = VT->getNumElements(); 6137 // NumElements should be power of 2 or equal to 3. 6138 if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3) 6139 return true; 6140 } else { 6141 // Check whether VT is legal. 6142 unsigned NumElements = VT->getNumElements(); 6143 uint64_t Size = getContext().getTypeSize(VT); 6144 // NumElements should be power of 2. 6145 if (!llvm::isPowerOf2_32(NumElements)) 6146 return true; 6147 // Size should be greater than 32 bits. 6148 return Size <= 32; 6149 } 6150 } 6151 return false; 6152 } 6153 6154 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 6155 llvm::Type *eltTy, 6156 unsigned numElts) const { 6157 if (!llvm::isPowerOf2_32(numElts)) 6158 return false; 6159 unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy); 6160 if (size > 64) 6161 return false; 6162 if (vectorSize.getQuantity() != 8 && 6163 (vectorSize.getQuantity() != 16 || numElts == 1)) 6164 return false; 6165 return true; 6166 } 6167 6168 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 6169 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 6170 // double, or 64-bit or 128-bit vectors. 6171 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 6172 if (BT->getKind() == BuiltinType::Float || 6173 BT->getKind() == BuiltinType::Double || 6174 BT->getKind() == BuiltinType::LongDouble) 6175 return true; 6176 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 6177 unsigned VecSize = getContext().getTypeSize(VT); 6178 if (VecSize == 64 || VecSize == 128) 6179 return true; 6180 } 6181 return false; 6182 } 6183 6184 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 6185 uint64_t Members) const { 6186 return Members <= 4; 6187 } 6188 6189 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6190 QualType Ty) const { 6191 CharUnits SlotSize = CharUnits::fromQuantity(4); 6192 6193 // Empty records are ignored for parameter passing purposes. 6194 if (isEmptyRecord(getContext(), Ty, true)) { 6195 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 6196 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 6197 return Addr; 6198 } 6199 6200 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6201 CharUnits TyAlignForABI = TyInfo.second; 6202 6203 // Use indirect if size of the illegal vector is bigger than 16 bytes. 6204 bool IsIndirect = false; 6205 const Type *Base = nullptr; 6206 uint64_t Members = 0; 6207 if (TyInfo.first > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) { 6208 IsIndirect = true; 6209 6210 // ARMv7k passes structs bigger than 16 bytes indirectly, in space 6211 // allocated by the caller. 6212 } else if (TyInfo.first > CharUnits::fromQuantity(16) && 6213 getABIKind() == ARMABIInfo::AAPCS16_VFP && 6214 !isHomogeneousAggregate(Ty, Base, Members)) { 6215 IsIndirect = true; 6216 6217 // Otherwise, bound the type's ABI alignment. 6218 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 6219 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 6220 // Our callers should be prepared to handle an under-aligned address. 6221 } else if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6222 getABIKind() == ARMABIInfo::AAPCS) { 6223 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6224 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8)); 6225 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6226 // ARMv7k allows type alignment up to 16 bytes. 6227 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6228 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16)); 6229 } else { 6230 TyAlignForABI = CharUnits::fromQuantity(4); 6231 } 6232 TyInfo.second = TyAlignForABI; 6233 6234 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo, 6235 SlotSize, /*AllowHigherAlign*/ true); 6236 } 6237 6238 //===----------------------------------------------------------------------===// 6239 // NVPTX ABI Implementation 6240 //===----------------------------------------------------------------------===// 6241 6242 namespace { 6243 6244 class NVPTXABIInfo : public ABIInfo { 6245 public: 6246 NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 6247 6248 ABIArgInfo classifyReturnType(QualType RetTy) const; 6249 ABIArgInfo classifyArgumentType(QualType Ty) const; 6250 6251 void computeInfo(CGFunctionInfo &FI) const override; 6252 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6253 QualType Ty) const override; 6254 }; 6255 6256 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 6257 public: 6258 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 6259 : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {} 6260 6261 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6262 CodeGen::CodeGenModule &M) const override; 6263 bool shouldEmitStaticExternCAliases() const override; 6264 6265 private: 6266 // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the 6267 // resulting MDNode to the nvvm.annotations MDNode. 6268 static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand); 6269 }; 6270 6271 /// Checks if the type is unsupported directly by the current target. 6272 static bool isUnsupportedType(ASTContext &Context, QualType T) { 6273 if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type()) 6274 return true; 6275 if (!Context.getTargetInfo().hasFloat128Type() && T->isFloat128Type()) 6276 return true; 6277 if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() && 6278 Context.getTypeSize(T) > 64) 6279 return true; 6280 if (const auto *AT = T->getAsArrayTypeUnsafe()) 6281 return isUnsupportedType(Context, AT->getElementType()); 6282 const auto *RT = T->getAs<RecordType>(); 6283 if (!RT) 6284 return false; 6285 const RecordDecl *RD = RT->getDecl(); 6286 6287 // If this is a C++ record, check the bases first. 6288 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6289 for (const CXXBaseSpecifier &I : CXXRD->bases()) 6290 if (isUnsupportedType(Context, I.getType())) 6291 return true; 6292 6293 for (const FieldDecl *I : RD->fields()) 6294 if (isUnsupportedType(Context, I->getType())) 6295 return true; 6296 return false; 6297 } 6298 6299 /// Coerce the given type into an array with maximum allowed size of elements. 6300 static ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, ASTContext &Context, 6301 llvm::LLVMContext &LLVMContext, 6302 unsigned MaxSize) { 6303 // Alignment and Size are measured in bits. 6304 const uint64_t Size = Context.getTypeSize(Ty); 6305 const uint64_t Alignment = Context.getTypeAlign(Ty); 6306 const unsigned Div = std::min<unsigned>(MaxSize, Alignment); 6307 llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Div); 6308 const uint64_t NumElements = (Size + Div - 1) / Div; 6309 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 6310 } 6311 6312 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 6313 if (RetTy->isVoidType()) 6314 return ABIArgInfo::getIgnore(); 6315 6316 if (getContext().getLangOpts().OpenMP && 6317 getContext().getLangOpts().OpenMPIsDevice && 6318 isUnsupportedType(getContext(), RetTy)) 6319 return coerceToIntArrayWithLimit(RetTy, getContext(), getVMContext(), 64); 6320 6321 // note: this is different from default ABI 6322 if (!RetTy->isScalarType()) 6323 return ABIArgInfo::getDirect(); 6324 6325 // Treat an enum type as its underlying type. 6326 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6327 RetTy = EnumTy->getDecl()->getIntegerType(); 6328 6329 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 6330 : ABIArgInfo::getDirect()); 6331 } 6332 6333 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 6334 // Treat an enum type as its underlying type. 6335 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6336 Ty = EnumTy->getDecl()->getIntegerType(); 6337 6338 // Return aggregates type as indirect by value 6339 if (isAggregateTypeForABI(Ty)) 6340 return getNaturalAlignIndirect(Ty, /* byval */ true); 6341 6342 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 6343 : ABIArgInfo::getDirect()); 6344 } 6345 6346 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 6347 if (!getCXXABI().classifyReturnType(FI)) 6348 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6349 for (auto &I : FI.arguments()) 6350 I.info = classifyArgumentType(I.type); 6351 6352 // Always honor user-specified calling convention. 6353 if (FI.getCallingConvention() != llvm::CallingConv::C) 6354 return; 6355 6356 FI.setEffectiveCallingConvention(getRuntimeCC()); 6357 } 6358 6359 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6360 QualType Ty) const { 6361 llvm_unreachable("NVPTX does not support varargs"); 6362 } 6363 6364 void NVPTXTargetCodeGenInfo::setTargetAttributes( 6365 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 6366 if (GV->isDeclaration()) 6367 return; 6368 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6369 if (!FD) return; 6370 6371 llvm::Function *F = cast<llvm::Function>(GV); 6372 6373 // Perform special handling in OpenCL mode 6374 if (M.getLangOpts().OpenCL) { 6375 // Use OpenCL function attributes to check for kernel functions 6376 // By default, all functions are device functions 6377 if (FD->hasAttr<OpenCLKernelAttr>()) { 6378 // OpenCL __kernel functions get kernel metadata 6379 // Create !{<func-ref>, metadata !"kernel", i32 1} node 6380 addNVVMMetadata(F, "kernel", 1); 6381 // And kernel functions are not subject to inlining 6382 F->addFnAttr(llvm::Attribute::NoInline); 6383 } 6384 } 6385 6386 // Perform special handling in CUDA mode. 6387 if (M.getLangOpts().CUDA) { 6388 // CUDA __global__ functions get a kernel metadata entry. Since 6389 // __global__ functions cannot be called from the device, we do not 6390 // need to set the noinline attribute. 6391 if (FD->hasAttr<CUDAGlobalAttr>()) { 6392 // Create !{<func-ref>, metadata !"kernel", i32 1} node 6393 addNVVMMetadata(F, "kernel", 1); 6394 } 6395 if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) { 6396 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 6397 llvm::APSInt MaxThreads(32); 6398 MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); 6399 if (MaxThreads > 0) 6400 addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); 6401 6402 // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was 6403 // not specified in __launch_bounds__ or if the user specified a 0 value, 6404 // we don't have to add a PTX directive. 6405 if (Attr->getMinBlocks()) { 6406 llvm::APSInt MinBlocks(32); 6407 MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); 6408 if (MinBlocks > 0) 6409 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 6410 addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); 6411 } 6412 } 6413 } 6414 } 6415 6416 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name, 6417 int Operand) { 6418 llvm::Module *M = F->getParent(); 6419 llvm::LLVMContext &Ctx = M->getContext(); 6420 6421 // Get "nvvm.annotations" metadata node 6422 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 6423 6424 llvm::Metadata *MDVals[] = { 6425 llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name), 6426 llvm::ConstantAsMetadata::get( 6427 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; 6428 // Append metadata to nvvm.annotations 6429 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 6430 } 6431 6432 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 6433 return false; 6434 } 6435 } 6436 6437 //===----------------------------------------------------------------------===// 6438 // SystemZ ABI Implementation 6439 //===----------------------------------------------------------------------===// 6440 6441 namespace { 6442 6443 class SystemZABIInfo : public SwiftABIInfo { 6444 bool HasVector; 6445 6446 public: 6447 SystemZABIInfo(CodeGenTypes &CGT, bool HV) 6448 : SwiftABIInfo(CGT), HasVector(HV) {} 6449 6450 bool isPromotableIntegerType(QualType Ty) const; 6451 bool isCompoundType(QualType Ty) const; 6452 bool isVectorArgumentType(QualType Ty) const; 6453 bool isFPArgumentType(QualType Ty) const; 6454 QualType GetSingleElementType(QualType Ty) const; 6455 6456 ABIArgInfo classifyReturnType(QualType RetTy) const; 6457 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 6458 6459 void computeInfo(CGFunctionInfo &FI) const override { 6460 if (!getCXXABI().classifyReturnType(FI)) 6461 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6462 for (auto &I : FI.arguments()) 6463 I.info = classifyArgumentType(I.type); 6464 } 6465 6466 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6467 QualType Ty) const override; 6468 6469 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 6470 bool asReturnValue) const override { 6471 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 6472 } 6473 bool isSwiftErrorInRegister() const override { 6474 return false; 6475 } 6476 }; 6477 6478 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 6479 public: 6480 SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector) 6481 : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {} 6482 }; 6483 6484 } 6485 6486 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const { 6487 // Treat an enum type as its underlying type. 6488 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6489 Ty = EnumTy->getDecl()->getIntegerType(); 6490 6491 // Promotable integer types are required to be promoted by the ABI. 6492 if (Ty->isPromotableIntegerType()) 6493 return true; 6494 6495 // 32-bit values must also be promoted. 6496 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 6497 switch (BT->getKind()) { 6498 case BuiltinType::Int: 6499 case BuiltinType::UInt: 6500 return true; 6501 default: 6502 return false; 6503 } 6504 return false; 6505 } 6506 6507 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 6508 return (Ty->isAnyComplexType() || 6509 Ty->isVectorType() || 6510 isAggregateTypeForABI(Ty)); 6511 } 6512 6513 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { 6514 return (HasVector && 6515 Ty->isVectorType() && 6516 getContext().getTypeSize(Ty) <= 128); 6517 } 6518 6519 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 6520 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 6521 switch (BT->getKind()) { 6522 case BuiltinType::Float: 6523 case BuiltinType::Double: 6524 return true; 6525 default: 6526 return false; 6527 } 6528 6529 return false; 6530 } 6531 6532 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { 6533 if (const RecordType *RT = Ty->getAsStructureType()) { 6534 const RecordDecl *RD = RT->getDecl(); 6535 QualType Found; 6536 6537 // If this is a C++ record, check the bases first. 6538 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6539 for (const auto &I : CXXRD->bases()) { 6540 QualType Base = I.getType(); 6541 6542 // Empty bases don't affect things either way. 6543 if (isEmptyRecord(getContext(), Base, true)) 6544 continue; 6545 6546 if (!Found.isNull()) 6547 return Ty; 6548 Found = GetSingleElementType(Base); 6549 } 6550 6551 // Check the fields. 6552 for (const auto *FD : RD->fields()) { 6553 // For compatibility with GCC, ignore empty bitfields in C++ mode. 6554 // Unlike isSingleElementStruct(), empty structure and array fields 6555 // do count. So do anonymous bitfields that aren't zero-sized. 6556 if (getContext().getLangOpts().CPlusPlus && 6557 FD->isZeroLengthBitField(getContext())) 6558 continue; 6559 6560 // Unlike isSingleElementStruct(), arrays do not count. 6561 // Nested structures still do though. 6562 if (!Found.isNull()) 6563 return Ty; 6564 Found = GetSingleElementType(FD->getType()); 6565 } 6566 6567 // Unlike isSingleElementStruct(), trailing padding is allowed. 6568 // An 8-byte aligned struct s { float f; } is passed as a double. 6569 if (!Found.isNull()) 6570 return Found; 6571 } 6572 6573 return Ty; 6574 } 6575 6576 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6577 QualType Ty) const { 6578 // Assume that va_list type is correct; should be pointer to LLVM type: 6579 // struct { 6580 // i64 __gpr; 6581 // i64 __fpr; 6582 // i8 *__overflow_arg_area; 6583 // i8 *__reg_save_area; 6584 // }; 6585 6586 // Every non-vector argument occupies 8 bytes and is passed by preference 6587 // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are 6588 // always passed on the stack. 6589 Ty = getContext().getCanonicalType(Ty); 6590 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6591 llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); 6592 llvm::Type *DirectTy = ArgTy; 6593 ABIArgInfo AI = classifyArgumentType(Ty); 6594 bool IsIndirect = AI.isIndirect(); 6595 bool InFPRs = false; 6596 bool IsVector = false; 6597 CharUnits UnpaddedSize; 6598 CharUnits DirectAlign; 6599 if (IsIndirect) { 6600 DirectTy = llvm::PointerType::getUnqual(DirectTy); 6601 UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8); 6602 } else { 6603 if (AI.getCoerceToType()) 6604 ArgTy = AI.getCoerceToType(); 6605 InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy(); 6606 IsVector = ArgTy->isVectorTy(); 6607 UnpaddedSize = TyInfo.first; 6608 DirectAlign = TyInfo.second; 6609 } 6610 CharUnits PaddedSize = CharUnits::fromQuantity(8); 6611 if (IsVector && UnpaddedSize > PaddedSize) 6612 PaddedSize = CharUnits::fromQuantity(16); 6613 assert((UnpaddedSize <= PaddedSize) && "Invalid argument size."); 6614 6615 CharUnits Padding = (PaddedSize - UnpaddedSize); 6616 6617 llvm::Type *IndexTy = CGF.Int64Ty; 6618 llvm::Value *PaddedSizeV = 6619 llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity()); 6620 6621 if (IsVector) { 6622 // Work out the address of a vector argument on the stack. 6623 // Vector arguments are always passed in the high bits of a 6624 // single (8 byte) or double (16 byte) stack slot. 6625 Address OverflowArgAreaPtr = 6626 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 6627 Address OverflowArgArea = 6628 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 6629 TyInfo.second); 6630 Address MemAddr = 6631 CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr"); 6632 6633 // Update overflow_arg_area_ptr pointer 6634 llvm::Value *NewOverflowArgArea = 6635 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 6636 "overflow_arg_area"); 6637 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 6638 6639 return MemAddr; 6640 } 6641 6642 assert(PaddedSize.getQuantity() == 8); 6643 6644 unsigned MaxRegs, RegCountField, RegSaveIndex; 6645 CharUnits RegPadding; 6646 if (InFPRs) { 6647 MaxRegs = 4; // Maximum of 4 FPR arguments 6648 RegCountField = 1; // __fpr 6649 RegSaveIndex = 16; // save offset for f0 6650 RegPadding = CharUnits(); // floats are passed in the high bits of an FPR 6651 } else { 6652 MaxRegs = 5; // Maximum of 5 GPR arguments 6653 RegCountField = 0; // __gpr 6654 RegSaveIndex = 2; // save offset for r2 6655 RegPadding = Padding; // values are passed in the low bits of a GPR 6656 } 6657 6658 Address RegCountPtr = 6659 CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr"); 6660 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 6661 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 6662 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 6663 "fits_in_regs"); 6664 6665 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 6666 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 6667 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 6668 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 6669 6670 // Emit code to load the value if it was passed in registers. 6671 CGF.EmitBlock(InRegBlock); 6672 6673 // Work out the address of an argument register. 6674 llvm::Value *ScaledRegCount = 6675 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 6676 llvm::Value *RegBase = 6677 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity() 6678 + RegPadding.getQuantity()); 6679 llvm::Value *RegOffset = 6680 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 6681 Address RegSaveAreaPtr = 6682 CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr"); 6683 llvm::Value *RegSaveArea = 6684 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 6685 Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset, 6686 "raw_reg_addr"), 6687 PaddedSize); 6688 Address RegAddr = 6689 CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr"); 6690 6691 // Update the register count 6692 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 6693 llvm::Value *NewRegCount = 6694 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 6695 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 6696 CGF.EmitBranch(ContBlock); 6697 6698 // Emit code to load the value if it was passed in memory. 6699 CGF.EmitBlock(InMemBlock); 6700 6701 // Work out the address of a stack argument. 6702 Address OverflowArgAreaPtr = 6703 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 6704 Address OverflowArgArea = 6705 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 6706 PaddedSize); 6707 Address RawMemAddr = 6708 CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr"); 6709 Address MemAddr = 6710 CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr"); 6711 6712 // Update overflow_arg_area_ptr pointer 6713 llvm::Value *NewOverflowArgArea = 6714 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 6715 "overflow_arg_area"); 6716 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 6717 CGF.EmitBranch(ContBlock); 6718 6719 // Return the appropriate result. 6720 CGF.EmitBlock(ContBlock); 6721 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 6722 MemAddr, InMemBlock, "va_arg.addr"); 6723 6724 if (IsIndirect) 6725 ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), 6726 TyInfo.second); 6727 6728 return ResAddr; 6729 } 6730 6731 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 6732 if (RetTy->isVoidType()) 6733 return ABIArgInfo::getIgnore(); 6734 if (isVectorArgumentType(RetTy)) 6735 return ABIArgInfo::getDirect(); 6736 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 6737 return getNaturalAlignIndirect(RetTy); 6738 return (isPromotableIntegerType(RetTy) ? ABIArgInfo::getExtend(RetTy) 6739 : ABIArgInfo::getDirect()); 6740 } 6741 6742 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 6743 // Handle the generic C++ ABI. 6744 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 6745 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6746 6747 // Integers and enums are extended to full register width. 6748 if (isPromotableIntegerType(Ty)) 6749 return ABIArgInfo::getExtend(Ty); 6750 6751 // Handle vector types and vector-like structure types. Note that 6752 // as opposed to float-like structure types, we do not allow any 6753 // padding for vector-like structures, so verify the sizes match. 6754 uint64_t Size = getContext().getTypeSize(Ty); 6755 QualType SingleElementTy = GetSingleElementType(Ty); 6756 if (isVectorArgumentType(SingleElementTy) && 6757 getContext().getTypeSize(SingleElementTy) == Size) 6758 return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); 6759 6760 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 6761 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 6762 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6763 6764 // Handle small structures. 6765 if (const RecordType *RT = Ty->getAs<RecordType>()) { 6766 // Structures with flexible arrays have variable length, so really 6767 // fail the size test above. 6768 const RecordDecl *RD = RT->getDecl(); 6769 if (RD->hasFlexibleArrayMember()) 6770 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6771 6772 // The structure is passed as an unextended integer, a float, or a double. 6773 llvm::Type *PassTy; 6774 if (isFPArgumentType(SingleElementTy)) { 6775 assert(Size == 32 || Size == 64); 6776 if (Size == 32) 6777 PassTy = llvm::Type::getFloatTy(getVMContext()); 6778 else 6779 PassTy = llvm::Type::getDoubleTy(getVMContext()); 6780 } else 6781 PassTy = llvm::IntegerType::get(getVMContext(), Size); 6782 return ABIArgInfo::getDirect(PassTy); 6783 } 6784 6785 // Non-structure compounds are passed indirectly. 6786 if (isCompoundType(Ty)) 6787 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6788 6789 return ABIArgInfo::getDirect(nullptr); 6790 } 6791 6792 //===----------------------------------------------------------------------===// 6793 // MSP430 ABI Implementation 6794 //===----------------------------------------------------------------------===// 6795 6796 namespace { 6797 6798 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 6799 public: 6800 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 6801 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 6802 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6803 CodeGen::CodeGenModule &M) const override; 6804 }; 6805 6806 } 6807 6808 void MSP430TargetCodeGenInfo::setTargetAttributes( 6809 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 6810 if (GV->isDeclaration()) 6811 return; 6812 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 6813 const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>(); 6814 if (!InterruptAttr) 6815 return; 6816 6817 // Handle 'interrupt' attribute: 6818 llvm::Function *F = cast<llvm::Function>(GV); 6819 6820 // Step 1: Set ISR calling convention. 6821 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 6822 6823 // Step 2: Add attributes goodness. 6824 F->addFnAttr(llvm::Attribute::NoInline); 6825 F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber())); 6826 } 6827 } 6828 6829 //===----------------------------------------------------------------------===// 6830 // MIPS ABI Implementation. This works for both little-endian and 6831 // big-endian variants. 6832 //===----------------------------------------------------------------------===// 6833 6834 namespace { 6835 class MipsABIInfo : public ABIInfo { 6836 bool IsO32; 6837 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 6838 void CoerceToIntArgs(uint64_t TySize, 6839 SmallVectorImpl<llvm::Type *> &ArgList) const; 6840 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 6841 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 6842 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 6843 public: 6844 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 6845 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 6846 StackAlignInBytes(IsO32 ? 8 : 16) {} 6847 6848 ABIArgInfo classifyReturnType(QualType RetTy) const; 6849 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 6850 void computeInfo(CGFunctionInfo &FI) const override; 6851 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6852 QualType Ty) const override; 6853 ABIArgInfo extendType(QualType Ty) const; 6854 }; 6855 6856 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 6857 unsigned SizeOfUnwindException; 6858 public: 6859 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 6860 : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)), 6861 SizeOfUnwindException(IsO32 ? 24 : 32) {} 6862 6863 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 6864 return 29; 6865 } 6866 6867 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6868 CodeGen::CodeGenModule &CGM) const override { 6869 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6870 if (!FD) return; 6871 llvm::Function *Fn = cast<llvm::Function>(GV); 6872 6873 if (FD->hasAttr<MipsLongCallAttr>()) 6874 Fn->addFnAttr("long-call"); 6875 else if (FD->hasAttr<MipsShortCallAttr>()) 6876 Fn->addFnAttr("short-call"); 6877 6878 // Other attributes do not have a meaning for declarations. 6879 if (GV->isDeclaration()) 6880 return; 6881 6882 if (FD->hasAttr<Mips16Attr>()) { 6883 Fn->addFnAttr("mips16"); 6884 } 6885 else if (FD->hasAttr<NoMips16Attr>()) { 6886 Fn->addFnAttr("nomips16"); 6887 } 6888 6889 if (FD->hasAttr<MicroMipsAttr>()) 6890 Fn->addFnAttr("micromips"); 6891 else if (FD->hasAttr<NoMicroMipsAttr>()) 6892 Fn->addFnAttr("nomicromips"); 6893 6894 const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>(); 6895 if (!Attr) 6896 return; 6897 6898 const char *Kind; 6899 switch (Attr->getInterrupt()) { 6900 case MipsInterruptAttr::eic: Kind = "eic"; break; 6901 case MipsInterruptAttr::sw0: Kind = "sw0"; break; 6902 case MipsInterruptAttr::sw1: Kind = "sw1"; break; 6903 case MipsInterruptAttr::hw0: Kind = "hw0"; break; 6904 case MipsInterruptAttr::hw1: Kind = "hw1"; break; 6905 case MipsInterruptAttr::hw2: Kind = "hw2"; break; 6906 case MipsInterruptAttr::hw3: Kind = "hw3"; break; 6907 case MipsInterruptAttr::hw4: Kind = "hw4"; break; 6908 case MipsInterruptAttr::hw5: Kind = "hw5"; break; 6909 } 6910 6911 Fn->addFnAttr("interrupt", Kind); 6912 6913 } 6914 6915 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6916 llvm::Value *Address) const override; 6917 6918 unsigned getSizeOfUnwindException() const override { 6919 return SizeOfUnwindException; 6920 } 6921 }; 6922 } 6923 6924 void MipsABIInfo::CoerceToIntArgs( 6925 uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const { 6926 llvm::IntegerType *IntTy = 6927 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 6928 6929 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 6930 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 6931 ArgList.push_back(IntTy); 6932 6933 // If necessary, add one more integer type to ArgList. 6934 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 6935 6936 if (R) 6937 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 6938 } 6939 6940 // In N32/64, an aligned double precision floating point field is passed in 6941 // a register. 6942 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 6943 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 6944 6945 if (IsO32) { 6946 CoerceToIntArgs(TySize, ArgList); 6947 return llvm::StructType::get(getVMContext(), ArgList); 6948 } 6949 6950 if (Ty->isComplexType()) 6951 return CGT.ConvertType(Ty); 6952 6953 const RecordType *RT = Ty->getAs<RecordType>(); 6954 6955 // Unions/vectors are passed in integer registers. 6956 if (!RT || !RT->isStructureOrClassType()) { 6957 CoerceToIntArgs(TySize, ArgList); 6958 return llvm::StructType::get(getVMContext(), ArgList); 6959 } 6960 6961 const RecordDecl *RD = RT->getDecl(); 6962 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 6963 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 6964 6965 uint64_t LastOffset = 0; 6966 unsigned idx = 0; 6967 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 6968 6969 // Iterate over fields in the struct/class and check if there are any aligned 6970 // double fields. 6971 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 6972 i != e; ++i, ++idx) { 6973 const QualType Ty = i->getType(); 6974 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 6975 6976 if (!BT || BT->getKind() != BuiltinType::Double) 6977 continue; 6978 6979 uint64_t Offset = Layout.getFieldOffset(idx); 6980 if (Offset % 64) // Ignore doubles that are not aligned. 6981 continue; 6982 6983 // Add ((Offset - LastOffset) / 64) args of type i64. 6984 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 6985 ArgList.push_back(I64); 6986 6987 // Add double type. 6988 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 6989 LastOffset = Offset + 64; 6990 } 6991 6992 CoerceToIntArgs(TySize - LastOffset, IntArgList); 6993 ArgList.append(IntArgList.begin(), IntArgList.end()); 6994 6995 return llvm::StructType::get(getVMContext(), ArgList); 6996 } 6997 6998 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 6999 uint64_t Offset) const { 7000 if (OrigOffset + MinABIStackAlignInBytes > Offset) 7001 return nullptr; 7002 7003 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 7004 } 7005 7006 ABIArgInfo 7007 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 7008 Ty = useFirstFieldIfTransparentUnion(Ty); 7009 7010 uint64_t OrigOffset = Offset; 7011 uint64_t TySize = getContext().getTypeSize(Ty); 7012 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 7013 7014 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 7015 (uint64_t)StackAlignInBytes); 7016 unsigned CurrOffset = llvm::alignTo(Offset, Align); 7017 Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8; 7018 7019 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 7020 // Ignore empty aggregates. 7021 if (TySize == 0) 7022 return ABIArgInfo::getIgnore(); 7023 7024 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 7025 Offset = OrigOffset + MinABIStackAlignInBytes; 7026 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7027 } 7028 7029 // If we have reached here, aggregates are passed directly by coercing to 7030 // another structure type. Padding is inserted if the offset of the 7031 // aggregate is unaligned. 7032 ABIArgInfo ArgInfo = 7033 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 7034 getPaddingType(OrigOffset, CurrOffset)); 7035 ArgInfo.setInReg(true); 7036 return ArgInfo; 7037 } 7038 7039 // Treat an enum type as its underlying type. 7040 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7041 Ty = EnumTy->getDecl()->getIntegerType(); 7042 7043 // All integral types are promoted to the GPR width. 7044 if (Ty->isIntegralOrEnumerationType()) 7045 return extendType(Ty); 7046 7047 return ABIArgInfo::getDirect( 7048 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 7049 } 7050 7051 llvm::Type* 7052 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 7053 const RecordType *RT = RetTy->getAs<RecordType>(); 7054 SmallVector<llvm::Type*, 8> RTList; 7055 7056 if (RT && RT->isStructureOrClassType()) { 7057 const RecordDecl *RD = RT->getDecl(); 7058 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 7059 unsigned FieldCnt = Layout.getFieldCount(); 7060 7061 // N32/64 returns struct/classes in floating point registers if the 7062 // following conditions are met: 7063 // 1. The size of the struct/class is no larger than 128-bit. 7064 // 2. The struct/class has one or two fields all of which are floating 7065 // point types. 7066 // 3. The offset of the first field is zero (this follows what gcc does). 7067 // 7068 // Any other composite results are returned in integer registers. 7069 // 7070 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 7071 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 7072 for (; b != e; ++b) { 7073 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 7074 7075 if (!BT || !BT->isFloatingPoint()) 7076 break; 7077 7078 RTList.push_back(CGT.ConvertType(b->getType())); 7079 } 7080 7081 if (b == e) 7082 return llvm::StructType::get(getVMContext(), RTList, 7083 RD->hasAttr<PackedAttr>()); 7084 7085 RTList.clear(); 7086 } 7087 } 7088 7089 CoerceToIntArgs(Size, RTList); 7090 return llvm::StructType::get(getVMContext(), RTList); 7091 } 7092 7093 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 7094 uint64_t Size = getContext().getTypeSize(RetTy); 7095 7096 if (RetTy->isVoidType()) 7097 return ABIArgInfo::getIgnore(); 7098 7099 // O32 doesn't treat zero-sized structs differently from other structs. 7100 // However, N32/N64 ignores zero sized return values. 7101 if (!IsO32 && Size == 0) 7102 return ABIArgInfo::getIgnore(); 7103 7104 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 7105 if (Size <= 128) { 7106 if (RetTy->isAnyComplexType()) 7107 return ABIArgInfo::getDirect(); 7108 7109 // O32 returns integer vectors in registers and N32/N64 returns all small 7110 // aggregates in registers. 7111 if (!IsO32 || 7112 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { 7113 ABIArgInfo ArgInfo = 7114 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 7115 ArgInfo.setInReg(true); 7116 return ArgInfo; 7117 } 7118 } 7119 7120 return getNaturalAlignIndirect(RetTy); 7121 } 7122 7123 // Treat an enum type as its underlying type. 7124 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7125 RetTy = EnumTy->getDecl()->getIntegerType(); 7126 7127 if (RetTy->isPromotableIntegerType()) 7128 return ABIArgInfo::getExtend(RetTy); 7129 7130 if ((RetTy->isUnsignedIntegerOrEnumerationType() || 7131 RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32) 7132 return ABIArgInfo::getSignExtend(RetTy); 7133 7134 return ABIArgInfo::getDirect(); 7135 } 7136 7137 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 7138 ABIArgInfo &RetInfo = FI.getReturnInfo(); 7139 if (!getCXXABI().classifyReturnType(FI)) 7140 RetInfo = classifyReturnType(FI.getReturnType()); 7141 7142 // Check if a pointer to an aggregate is passed as a hidden argument. 7143 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 7144 7145 for (auto &I : FI.arguments()) 7146 I.info = classifyArgumentType(I.type, Offset); 7147 } 7148 7149 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7150 QualType OrigTy) const { 7151 QualType Ty = OrigTy; 7152 7153 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. 7154 // Pointers are also promoted in the same way but this only matters for N32. 7155 unsigned SlotSizeInBits = IsO32 ? 32 : 64; 7156 unsigned PtrWidth = getTarget().getPointerWidth(0); 7157 bool DidPromote = false; 7158 if ((Ty->isIntegerType() && 7159 getContext().getIntWidth(Ty) < SlotSizeInBits) || 7160 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { 7161 DidPromote = true; 7162 Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits, 7163 Ty->isSignedIntegerType()); 7164 } 7165 7166 auto TyInfo = getContext().getTypeInfoInChars(Ty); 7167 7168 // The alignment of things in the argument area is never larger than 7169 // StackAlignInBytes. 7170 TyInfo.second = 7171 std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes)); 7172 7173 // MinABIStackAlignInBytes is the size of argument slots on the stack. 7174 CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes); 7175 7176 Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 7177 TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true); 7178 7179 7180 // If there was a promotion, "unpromote" into a temporary. 7181 // TODO: can we just use a pointer into a subset of the original slot? 7182 if (DidPromote) { 7183 Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp"); 7184 llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr); 7185 7186 // Truncate down to the right width. 7187 llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType() 7188 : CGF.IntPtrTy); 7189 llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy); 7190 if (OrigTy->isPointerType()) 7191 V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType()); 7192 7193 CGF.Builder.CreateStore(V, Temp); 7194 Addr = Temp; 7195 } 7196 7197 return Addr; 7198 } 7199 7200 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const { 7201 int TySize = getContext().getTypeSize(Ty); 7202 7203 // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. 7204 if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 7205 return ABIArgInfo::getSignExtend(Ty); 7206 7207 return ABIArgInfo::getExtend(Ty); 7208 } 7209 7210 bool 7211 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7212 llvm::Value *Address) const { 7213 // This information comes from gcc's implementation, which seems to 7214 // as canonical as it gets. 7215 7216 // Everything on MIPS is 4 bytes. Double-precision FP registers 7217 // are aliased to pairs of single-precision FP registers. 7218 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 7219 7220 // 0-31 are the general purpose registers, $0 - $31. 7221 // 32-63 are the floating-point registers, $f0 - $f31. 7222 // 64 and 65 are the multiply/divide registers, $hi and $lo. 7223 // 66 is the (notional, I think) register for signal-handler return. 7224 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 7225 7226 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 7227 // They are one bit wide and ignored here. 7228 7229 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 7230 // (coprocessor 1 is the FP unit) 7231 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 7232 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 7233 // 176-181 are the DSP accumulator registers. 7234 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 7235 return false; 7236 } 7237 7238 //===----------------------------------------------------------------------===// 7239 // AVR ABI Implementation. 7240 //===----------------------------------------------------------------------===// 7241 7242 namespace { 7243 class AVRTargetCodeGenInfo : public TargetCodeGenInfo { 7244 public: 7245 AVRTargetCodeGenInfo(CodeGenTypes &CGT) 7246 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) { } 7247 7248 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7249 CodeGen::CodeGenModule &CGM) const override { 7250 if (GV->isDeclaration()) 7251 return; 7252 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 7253 if (!FD) return; 7254 auto *Fn = cast<llvm::Function>(GV); 7255 7256 if (FD->getAttr<AVRInterruptAttr>()) 7257 Fn->addFnAttr("interrupt"); 7258 7259 if (FD->getAttr<AVRSignalAttr>()) 7260 Fn->addFnAttr("signal"); 7261 } 7262 }; 7263 } 7264 7265 //===----------------------------------------------------------------------===// 7266 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 7267 // Currently subclassed only to implement custom OpenCL C function attribute 7268 // handling. 7269 //===----------------------------------------------------------------------===// 7270 7271 namespace { 7272 7273 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 7274 public: 7275 TCETargetCodeGenInfo(CodeGenTypes &CGT) 7276 : DefaultTargetCodeGenInfo(CGT) {} 7277 7278 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7279 CodeGen::CodeGenModule &M) const override; 7280 }; 7281 7282 void TCETargetCodeGenInfo::setTargetAttributes( 7283 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7284 if (GV->isDeclaration()) 7285 return; 7286 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7287 if (!FD) return; 7288 7289 llvm::Function *F = cast<llvm::Function>(GV); 7290 7291 if (M.getLangOpts().OpenCL) { 7292 if (FD->hasAttr<OpenCLKernelAttr>()) { 7293 // OpenCL C Kernel functions are not subject to inlining 7294 F->addFnAttr(llvm::Attribute::NoInline); 7295 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 7296 if (Attr) { 7297 // Convert the reqd_work_group_size() attributes to metadata. 7298 llvm::LLVMContext &Context = F->getContext(); 7299 llvm::NamedMDNode *OpenCLMetadata = 7300 M.getModule().getOrInsertNamedMetadata( 7301 "opencl.kernel_wg_size_info"); 7302 7303 SmallVector<llvm::Metadata *, 5> Operands; 7304 Operands.push_back(llvm::ConstantAsMetadata::get(F)); 7305 7306 Operands.push_back( 7307 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7308 M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); 7309 Operands.push_back( 7310 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7311 M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); 7312 Operands.push_back( 7313 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7314 M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); 7315 7316 // Add a boolean constant operand for "required" (true) or "hint" 7317 // (false) for implementing the work_group_size_hint attr later. 7318 // Currently always true as the hint is not yet implemented. 7319 Operands.push_back( 7320 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); 7321 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 7322 } 7323 } 7324 } 7325 } 7326 7327 } 7328 7329 //===----------------------------------------------------------------------===// 7330 // Hexagon ABI Implementation 7331 //===----------------------------------------------------------------------===// 7332 7333 namespace { 7334 7335 class HexagonABIInfo : public ABIInfo { 7336 7337 7338 public: 7339 HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 7340 7341 private: 7342 7343 ABIArgInfo classifyReturnType(QualType RetTy) const; 7344 ABIArgInfo classifyArgumentType(QualType RetTy) const; 7345 7346 void computeInfo(CGFunctionInfo &FI) const override; 7347 7348 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7349 QualType Ty) const override; 7350 }; 7351 7352 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 7353 public: 7354 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 7355 :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {} 7356 7357 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 7358 return 29; 7359 } 7360 }; 7361 7362 } 7363 7364 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 7365 if (!getCXXABI().classifyReturnType(FI)) 7366 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7367 for (auto &I : FI.arguments()) 7368 I.info = classifyArgumentType(I.type); 7369 } 7370 7371 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const { 7372 if (!isAggregateTypeForABI(Ty)) { 7373 // Treat an enum type as its underlying type. 7374 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7375 Ty = EnumTy->getDecl()->getIntegerType(); 7376 7377 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 7378 : ABIArgInfo::getDirect()); 7379 } 7380 7381 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 7382 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7383 7384 // Ignore empty records. 7385 if (isEmptyRecord(getContext(), Ty, true)) 7386 return ABIArgInfo::getIgnore(); 7387 7388 uint64_t Size = getContext().getTypeSize(Ty); 7389 if (Size > 64) 7390 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 7391 // Pass in the smallest viable integer type. 7392 else if (Size > 32) 7393 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 7394 else if (Size > 16) 7395 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7396 else if (Size > 8) 7397 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7398 else 7399 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 7400 } 7401 7402 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 7403 if (RetTy->isVoidType()) 7404 return ABIArgInfo::getIgnore(); 7405 7406 // Large vector types should be returned via memory. 7407 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64) 7408 return getNaturalAlignIndirect(RetTy); 7409 7410 if (!isAggregateTypeForABI(RetTy)) { 7411 // Treat an enum type as its underlying type. 7412 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7413 RetTy = EnumTy->getDecl()->getIntegerType(); 7414 7415 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 7416 : ABIArgInfo::getDirect()); 7417 } 7418 7419 if (isEmptyRecord(getContext(), RetTy, true)) 7420 return ABIArgInfo::getIgnore(); 7421 7422 // Aggregates <= 8 bytes are returned in r0; other aggregates 7423 // are returned indirectly. 7424 uint64_t Size = getContext().getTypeSize(RetTy); 7425 if (Size <= 64) { 7426 // Return in the smallest viable integer type. 7427 if (Size <= 8) 7428 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 7429 if (Size <= 16) 7430 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7431 if (Size <= 32) 7432 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7433 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 7434 } 7435 7436 return getNaturalAlignIndirect(RetTy, /*ByVal=*/true); 7437 } 7438 7439 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7440 QualType Ty) const { 7441 // FIXME: Someone needs to audit that this handle alignment correctly. 7442 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 7443 getContext().getTypeInfoInChars(Ty), 7444 CharUnits::fromQuantity(4), 7445 /*AllowHigherAlign*/ true); 7446 } 7447 7448 //===----------------------------------------------------------------------===// 7449 // Lanai ABI Implementation 7450 //===----------------------------------------------------------------------===// 7451 7452 namespace { 7453 class LanaiABIInfo : public DefaultABIInfo { 7454 public: 7455 LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7456 7457 bool shouldUseInReg(QualType Ty, CCState &State) const; 7458 7459 void computeInfo(CGFunctionInfo &FI) const override { 7460 CCState State(FI.getCallingConvention()); 7461 // Lanai uses 4 registers to pass arguments unless the function has the 7462 // regparm attribute set. 7463 if (FI.getHasRegParm()) { 7464 State.FreeRegs = FI.getRegParm(); 7465 } else { 7466 State.FreeRegs = 4; 7467 } 7468 7469 if (!getCXXABI().classifyReturnType(FI)) 7470 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7471 for (auto &I : FI.arguments()) 7472 I.info = classifyArgumentType(I.type, State); 7473 } 7474 7475 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 7476 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 7477 }; 7478 } // end anonymous namespace 7479 7480 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const { 7481 unsigned Size = getContext().getTypeSize(Ty); 7482 unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U; 7483 7484 if (SizeInRegs == 0) 7485 return false; 7486 7487 if (SizeInRegs > State.FreeRegs) { 7488 State.FreeRegs = 0; 7489 return false; 7490 } 7491 7492 State.FreeRegs -= SizeInRegs; 7493 7494 return true; 7495 } 7496 7497 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal, 7498 CCState &State) const { 7499 if (!ByVal) { 7500 if (State.FreeRegs) { 7501 --State.FreeRegs; // Non-byval indirects just use one pointer. 7502 return getNaturalAlignIndirectInReg(Ty); 7503 } 7504 return getNaturalAlignIndirect(Ty, false); 7505 } 7506 7507 // Compute the byval alignment. 7508 const unsigned MinABIStackAlignInBytes = 4; 7509 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 7510 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 7511 /*Realign=*/TypeAlign > 7512 MinABIStackAlignInBytes); 7513 } 7514 7515 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty, 7516 CCState &State) const { 7517 // Check with the C++ ABI first. 7518 const RecordType *RT = Ty->getAs<RecordType>(); 7519 if (RT) { 7520 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 7521 if (RAA == CGCXXABI::RAA_Indirect) { 7522 return getIndirectResult(Ty, /*ByVal=*/false, State); 7523 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 7524 return getNaturalAlignIndirect(Ty, /*ByRef=*/true); 7525 } 7526 } 7527 7528 if (isAggregateTypeForABI(Ty)) { 7529 // Structures with flexible arrays are always indirect. 7530 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 7531 return getIndirectResult(Ty, /*ByVal=*/true, State); 7532 7533 // Ignore empty structs/unions. 7534 if (isEmptyRecord(getContext(), Ty, true)) 7535 return ABIArgInfo::getIgnore(); 7536 7537 llvm::LLVMContext &LLVMContext = getVMContext(); 7538 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 7539 if (SizeInRegs <= State.FreeRegs) { 7540 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 7541 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 7542 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 7543 State.FreeRegs -= SizeInRegs; 7544 return ABIArgInfo::getDirectInReg(Result); 7545 } else { 7546 State.FreeRegs = 0; 7547 } 7548 return getIndirectResult(Ty, true, State); 7549 } 7550 7551 // Treat an enum type as its underlying type. 7552 if (const auto *EnumTy = Ty->getAs<EnumType>()) 7553 Ty = EnumTy->getDecl()->getIntegerType(); 7554 7555 bool InReg = shouldUseInReg(Ty, State); 7556 if (Ty->isPromotableIntegerType()) { 7557 if (InReg) 7558 return ABIArgInfo::getDirectInReg(); 7559 return ABIArgInfo::getExtend(Ty); 7560 } 7561 if (InReg) 7562 return ABIArgInfo::getDirectInReg(); 7563 return ABIArgInfo::getDirect(); 7564 } 7565 7566 namespace { 7567 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo { 7568 public: 7569 LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 7570 : TargetCodeGenInfo(new LanaiABIInfo(CGT)) {} 7571 }; 7572 } 7573 7574 //===----------------------------------------------------------------------===// 7575 // AMDGPU ABI Implementation 7576 //===----------------------------------------------------------------------===// 7577 7578 namespace { 7579 7580 class AMDGPUABIInfo final : public DefaultABIInfo { 7581 private: 7582 static const unsigned MaxNumRegsForArgsRet = 16; 7583 7584 unsigned numRegsForType(QualType Ty) const; 7585 7586 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 7587 bool isHomogeneousAggregateSmallEnough(const Type *Base, 7588 uint64_t Members) const override; 7589 7590 public: 7591 explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) : 7592 DefaultABIInfo(CGT) {} 7593 7594 ABIArgInfo classifyReturnType(QualType RetTy) const; 7595 ABIArgInfo classifyKernelArgumentType(QualType Ty) const; 7596 ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const; 7597 7598 void computeInfo(CGFunctionInfo &FI) const override; 7599 }; 7600 7601 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 7602 return true; 7603 } 7604 7605 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough( 7606 const Type *Base, uint64_t Members) const { 7607 uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32; 7608 7609 // Homogeneous Aggregates may occupy at most 16 registers. 7610 return Members * NumRegs <= MaxNumRegsForArgsRet; 7611 } 7612 7613 /// Estimate number of registers the type will use when passed in registers. 7614 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const { 7615 unsigned NumRegs = 0; 7616 7617 if (const VectorType *VT = Ty->getAs<VectorType>()) { 7618 // Compute from the number of elements. The reported size is based on the 7619 // in-memory size, which includes the padding 4th element for 3-vectors. 7620 QualType EltTy = VT->getElementType(); 7621 unsigned EltSize = getContext().getTypeSize(EltTy); 7622 7623 // 16-bit element vectors should be passed as packed. 7624 if (EltSize == 16) 7625 return (VT->getNumElements() + 1) / 2; 7626 7627 unsigned EltNumRegs = (EltSize + 31) / 32; 7628 return EltNumRegs * VT->getNumElements(); 7629 } 7630 7631 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7632 const RecordDecl *RD = RT->getDecl(); 7633 assert(!RD->hasFlexibleArrayMember()); 7634 7635 for (const FieldDecl *Field : RD->fields()) { 7636 QualType FieldTy = Field->getType(); 7637 NumRegs += numRegsForType(FieldTy); 7638 } 7639 7640 return NumRegs; 7641 } 7642 7643 return (getContext().getTypeSize(Ty) + 31) / 32; 7644 } 7645 7646 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const { 7647 llvm::CallingConv::ID CC = FI.getCallingConvention(); 7648 7649 if (!getCXXABI().classifyReturnType(FI)) 7650 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7651 7652 unsigned NumRegsLeft = MaxNumRegsForArgsRet; 7653 for (auto &Arg : FI.arguments()) { 7654 if (CC == llvm::CallingConv::AMDGPU_KERNEL) { 7655 Arg.info = classifyKernelArgumentType(Arg.type); 7656 } else { 7657 Arg.info = classifyArgumentType(Arg.type, NumRegsLeft); 7658 } 7659 } 7660 } 7661 7662 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const { 7663 if (isAggregateTypeForABI(RetTy)) { 7664 // Records with non-trivial destructors/copy-constructors should not be 7665 // returned by value. 7666 if (!getRecordArgABI(RetTy, getCXXABI())) { 7667 // Ignore empty structs/unions. 7668 if (isEmptyRecord(getContext(), RetTy, true)) 7669 return ABIArgInfo::getIgnore(); 7670 7671 // Lower single-element structs to just return a regular value. 7672 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 7673 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 7674 7675 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 7676 const RecordDecl *RD = RT->getDecl(); 7677 if (RD->hasFlexibleArrayMember()) 7678 return DefaultABIInfo::classifyReturnType(RetTy); 7679 } 7680 7681 // Pack aggregates <= 4 bytes into single VGPR or pair. 7682 uint64_t Size = getContext().getTypeSize(RetTy); 7683 if (Size <= 16) 7684 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7685 7686 if (Size <= 32) 7687 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7688 7689 if (Size <= 64) { 7690 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 7691 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 7692 } 7693 7694 if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet) 7695 return ABIArgInfo::getDirect(); 7696 } 7697 } 7698 7699 // Otherwise just do the default thing. 7700 return DefaultABIInfo::classifyReturnType(RetTy); 7701 } 7702 7703 /// For kernels all parameters are really passed in a special buffer. It doesn't 7704 /// make sense to pass anything byval, so everything must be direct. 7705 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const { 7706 Ty = useFirstFieldIfTransparentUnion(Ty); 7707 7708 // TODO: Can we omit empty structs? 7709 7710 // Coerce single element structs to its element. 7711 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 7712 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 7713 7714 // If we set CanBeFlattened to true, CodeGen will expand the struct to its 7715 // individual elements, which confuses the Clover OpenCL backend; therefore we 7716 // have to set it to false here. Other args of getDirect() are just defaults. 7717 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 7718 } 7719 7720 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty, 7721 unsigned &NumRegsLeft) const { 7722 assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow"); 7723 7724 Ty = useFirstFieldIfTransparentUnion(Ty); 7725 7726 if (isAggregateTypeForABI(Ty)) { 7727 // Records with non-trivial destructors/copy-constructors should not be 7728 // passed by value. 7729 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 7730 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7731 7732 // Ignore empty structs/unions. 7733 if (isEmptyRecord(getContext(), Ty, true)) 7734 return ABIArgInfo::getIgnore(); 7735 7736 // Lower single-element structs to just pass a regular value. TODO: We 7737 // could do reasonable-size multiple-element structs too, using getExpand(), 7738 // though watch out for things like bitfields. 7739 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 7740 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 7741 7742 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7743 const RecordDecl *RD = RT->getDecl(); 7744 if (RD->hasFlexibleArrayMember()) 7745 return DefaultABIInfo::classifyArgumentType(Ty); 7746 } 7747 7748 // Pack aggregates <= 8 bytes into single VGPR or pair. 7749 uint64_t Size = getContext().getTypeSize(Ty); 7750 if (Size <= 64) { 7751 unsigned NumRegs = (Size + 31) / 32; 7752 NumRegsLeft -= std::min(NumRegsLeft, NumRegs); 7753 7754 if (Size <= 16) 7755 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7756 7757 if (Size <= 32) 7758 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7759 7760 // XXX: Should this be i64 instead, and should the limit increase? 7761 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 7762 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 7763 } 7764 7765 if (NumRegsLeft > 0) { 7766 unsigned NumRegs = numRegsForType(Ty); 7767 if (NumRegsLeft >= NumRegs) { 7768 NumRegsLeft -= NumRegs; 7769 return ABIArgInfo::getDirect(); 7770 } 7771 } 7772 } 7773 7774 // Otherwise just do the default thing. 7775 ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty); 7776 if (!ArgInfo.isIndirect()) { 7777 unsigned NumRegs = numRegsForType(Ty); 7778 NumRegsLeft -= std::min(NumRegs, NumRegsLeft); 7779 } 7780 7781 return ArgInfo; 7782 } 7783 7784 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { 7785 public: 7786 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) 7787 : TargetCodeGenInfo(new AMDGPUABIInfo(CGT)) {} 7788 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7789 CodeGen::CodeGenModule &M) const override; 7790 unsigned getOpenCLKernelCallingConv() const override; 7791 7792 llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM, 7793 llvm::PointerType *T, QualType QT) const override; 7794 7795 LangAS getASTAllocaAddressSpace() const override { 7796 return getLangASFromTargetAS( 7797 getABIInfo().getDataLayout().getAllocaAddrSpace()); 7798 } 7799 LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, 7800 const VarDecl *D) const override; 7801 llvm::SyncScope::ID getLLVMSyncScopeID(SyncScope S, 7802 llvm::LLVMContext &C) const override; 7803 llvm::Function * 7804 createEnqueuedBlockKernel(CodeGenFunction &CGF, 7805 llvm::Function *BlockInvokeFunc, 7806 llvm::Value *BlockLiteral) const override; 7807 bool shouldEmitStaticExternCAliases() const override; 7808 void setCUDAKernelCallingConvention(const FunctionType *&FT) const override; 7809 }; 7810 } 7811 7812 static bool requiresAMDGPUProtectedVisibility(const Decl *D, 7813 llvm::GlobalValue *GV) { 7814 if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility) 7815 return false; 7816 7817 return D->hasAttr<OpenCLKernelAttr>() || 7818 (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) || 7819 (isa<VarDecl>(D) && D->hasAttr<CUDADeviceAttr>()); 7820 } 7821 7822 void AMDGPUTargetCodeGenInfo::setTargetAttributes( 7823 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7824 if (requiresAMDGPUProtectedVisibility(D, GV)) { 7825 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 7826 GV->setDSOLocal(true); 7827 } 7828 7829 if (GV->isDeclaration()) 7830 return; 7831 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7832 if (!FD) 7833 return; 7834 7835 llvm::Function *F = cast<llvm::Function>(GV); 7836 7837 const auto *ReqdWGS = M.getLangOpts().OpenCL ? 7838 FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr; 7839 7840 if (M.getLangOpts().OpenCL && FD->hasAttr<OpenCLKernelAttr>() && 7841 (M.getTriple().getOS() == llvm::Triple::AMDHSA)) 7842 F->addFnAttr("amdgpu-implicitarg-num-bytes", "48"); 7843 7844 const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>(); 7845 if (ReqdWGS || FlatWGS) { 7846 unsigned Min = 0; 7847 unsigned Max = 0; 7848 if (FlatWGS) { 7849 Min = FlatWGS->getMin() 7850 ->EvaluateKnownConstInt(M.getContext()) 7851 .getExtValue(); 7852 Max = FlatWGS->getMax() 7853 ->EvaluateKnownConstInt(M.getContext()) 7854 .getExtValue(); 7855 } 7856 if (ReqdWGS && Min == 0 && Max == 0) 7857 Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim(); 7858 7859 if (Min != 0) { 7860 assert(Min <= Max && "Min must be less than or equal Max"); 7861 7862 std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max); 7863 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 7864 } else 7865 assert(Max == 0 && "Max must be zero"); 7866 } 7867 7868 if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) { 7869 unsigned Min = 7870 Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue(); 7871 unsigned Max = Attr->getMax() ? Attr->getMax() 7872 ->EvaluateKnownConstInt(M.getContext()) 7873 .getExtValue() 7874 : 0; 7875 7876 if (Min != 0) { 7877 assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max"); 7878 7879 std::string AttrVal = llvm::utostr(Min); 7880 if (Max != 0) 7881 AttrVal = AttrVal + "," + llvm::utostr(Max); 7882 F->addFnAttr("amdgpu-waves-per-eu", AttrVal); 7883 } else 7884 assert(Max == 0 && "Max must be zero"); 7885 } 7886 7887 if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { 7888 unsigned NumSGPR = Attr->getNumSGPR(); 7889 7890 if (NumSGPR != 0) 7891 F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR)); 7892 } 7893 7894 if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { 7895 uint32_t NumVGPR = Attr->getNumVGPR(); 7896 7897 if (NumVGPR != 0) 7898 F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR)); 7899 } 7900 } 7901 7902 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 7903 return llvm::CallingConv::AMDGPU_KERNEL; 7904 } 7905 7906 // Currently LLVM assumes null pointers always have value 0, 7907 // which results in incorrectly transformed IR. Therefore, instead of 7908 // emitting null pointers in private and local address spaces, a null 7909 // pointer in generic address space is emitted which is casted to a 7910 // pointer in local or private address space. 7911 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer( 7912 const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT, 7913 QualType QT) const { 7914 if (CGM.getContext().getTargetNullPointerValue(QT) == 0) 7915 return llvm::ConstantPointerNull::get(PT); 7916 7917 auto &Ctx = CGM.getContext(); 7918 auto NPT = llvm::PointerType::get(PT->getElementType(), 7919 Ctx.getTargetAddressSpace(LangAS::opencl_generic)); 7920 return llvm::ConstantExpr::getAddrSpaceCast( 7921 llvm::ConstantPointerNull::get(NPT), PT); 7922 } 7923 7924 LangAS 7925 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 7926 const VarDecl *D) const { 7927 assert(!CGM.getLangOpts().OpenCL && 7928 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 7929 "Address space agnostic languages only"); 7930 LangAS DefaultGlobalAS = getLangASFromTargetAS( 7931 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global)); 7932 if (!D) 7933 return DefaultGlobalAS; 7934 7935 LangAS AddrSpace = D->getType().getAddressSpace(); 7936 assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace)); 7937 if (AddrSpace != LangAS::Default) 7938 return AddrSpace; 7939 7940 if (CGM.isTypeConstant(D->getType(), false)) { 7941 if (auto ConstAS = CGM.getTarget().getConstantAddressSpace()) 7942 return ConstAS.getValue(); 7943 } 7944 return DefaultGlobalAS; 7945 } 7946 7947 llvm::SyncScope::ID 7948 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(SyncScope S, 7949 llvm::LLVMContext &C) const { 7950 StringRef Name; 7951 switch (S) { 7952 case SyncScope::OpenCLWorkGroup: 7953 Name = "workgroup"; 7954 break; 7955 case SyncScope::OpenCLDevice: 7956 Name = "agent"; 7957 break; 7958 case SyncScope::OpenCLAllSVMDevices: 7959 Name = ""; 7960 break; 7961 case SyncScope::OpenCLSubGroup: 7962 Name = "wavefront"; 7963 } 7964 return C.getOrInsertSyncScopeID(Name); 7965 } 7966 7967 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 7968 return false; 7969 } 7970 7971 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention( 7972 const FunctionType *&FT) const { 7973 FT = getABIInfo().getContext().adjustFunctionType( 7974 FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel)); 7975 } 7976 7977 //===----------------------------------------------------------------------===// 7978 // SPARC v8 ABI Implementation. 7979 // Based on the SPARC Compliance Definition version 2.4.1. 7980 // 7981 // Ensures that complex values are passed in registers. 7982 // 7983 namespace { 7984 class SparcV8ABIInfo : public DefaultABIInfo { 7985 public: 7986 SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7987 7988 private: 7989 ABIArgInfo classifyReturnType(QualType RetTy) const; 7990 void computeInfo(CGFunctionInfo &FI) const override; 7991 }; 7992 } // end anonymous namespace 7993 7994 7995 ABIArgInfo 7996 SparcV8ABIInfo::classifyReturnType(QualType Ty) const { 7997 if (Ty->isAnyComplexType()) { 7998 return ABIArgInfo::getDirect(); 7999 } 8000 else { 8001 return DefaultABIInfo::classifyReturnType(Ty); 8002 } 8003 } 8004 8005 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const { 8006 8007 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8008 for (auto &Arg : FI.arguments()) 8009 Arg.info = classifyArgumentType(Arg.type); 8010 } 8011 8012 namespace { 8013 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo { 8014 public: 8015 SparcV8TargetCodeGenInfo(CodeGenTypes &CGT) 8016 : TargetCodeGenInfo(new SparcV8ABIInfo(CGT)) {} 8017 }; 8018 } // end anonymous namespace 8019 8020 //===----------------------------------------------------------------------===// 8021 // SPARC v9 ABI Implementation. 8022 // Based on the SPARC Compliance Definition version 2.4.1. 8023 // 8024 // Function arguments a mapped to a nominal "parameter array" and promoted to 8025 // registers depending on their type. Each argument occupies 8 or 16 bytes in 8026 // the array, structs larger than 16 bytes are passed indirectly. 8027 // 8028 // One case requires special care: 8029 // 8030 // struct mixed { 8031 // int i; 8032 // float f; 8033 // }; 8034 // 8035 // When a struct mixed is passed by value, it only occupies 8 bytes in the 8036 // parameter array, but the int is passed in an integer register, and the float 8037 // is passed in a floating point register. This is represented as two arguments 8038 // with the LLVM IR inreg attribute: 8039 // 8040 // declare void f(i32 inreg %i, float inreg %f) 8041 // 8042 // The code generator will only allocate 4 bytes from the parameter array for 8043 // the inreg arguments. All other arguments are allocated a multiple of 8 8044 // bytes. 8045 // 8046 namespace { 8047 class SparcV9ABIInfo : public ABIInfo { 8048 public: 8049 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 8050 8051 private: 8052 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 8053 void computeInfo(CGFunctionInfo &FI) const override; 8054 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8055 QualType Ty) const override; 8056 8057 // Coercion type builder for structs passed in registers. The coercion type 8058 // serves two purposes: 8059 // 8060 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 8061 // in registers. 8062 // 2. Expose aligned floating point elements as first-level elements, so the 8063 // code generator knows to pass them in floating point registers. 8064 // 8065 // We also compute the InReg flag which indicates that the struct contains 8066 // aligned 32-bit floats. 8067 // 8068 struct CoerceBuilder { 8069 llvm::LLVMContext &Context; 8070 const llvm::DataLayout &DL; 8071 SmallVector<llvm::Type*, 8> Elems; 8072 uint64_t Size; 8073 bool InReg; 8074 8075 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 8076 : Context(c), DL(dl), Size(0), InReg(false) {} 8077 8078 // Pad Elems with integers until Size is ToSize. 8079 void pad(uint64_t ToSize) { 8080 assert(ToSize >= Size && "Cannot remove elements"); 8081 if (ToSize == Size) 8082 return; 8083 8084 // Finish the current 64-bit word. 8085 uint64_t Aligned = llvm::alignTo(Size, 64); 8086 if (Aligned > Size && Aligned <= ToSize) { 8087 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 8088 Size = Aligned; 8089 } 8090 8091 // Add whole 64-bit words. 8092 while (Size + 64 <= ToSize) { 8093 Elems.push_back(llvm::Type::getInt64Ty(Context)); 8094 Size += 64; 8095 } 8096 8097 // Final in-word padding. 8098 if (Size < ToSize) { 8099 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 8100 Size = ToSize; 8101 } 8102 } 8103 8104 // Add a floating point element at Offset. 8105 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 8106 // Unaligned floats are treated as integers. 8107 if (Offset % Bits) 8108 return; 8109 // The InReg flag is only required if there are any floats < 64 bits. 8110 if (Bits < 64) 8111 InReg = true; 8112 pad(Offset); 8113 Elems.push_back(Ty); 8114 Size = Offset + Bits; 8115 } 8116 8117 // Add a struct type to the coercion type, starting at Offset (in bits). 8118 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 8119 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 8120 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 8121 llvm::Type *ElemTy = StrTy->getElementType(i); 8122 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 8123 switch (ElemTy->getTypeID()) { 8124 case llvm::Type::StructTyID: 8125 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 8126 break; 8127 case llvm::Type::FloatTyID: 8128 addFloat(ElemOffset, ElemTy, 32); 8129 break; 8130 case llvm::Type::DoubleTyID: 8131 addFloat(ElemOffset, ElemTy, 64); 8132 break; 8133 case llvm::Type::FP128TyID: 8134 addFloat(ElemOffset, ElemTy, 128); 8135 break; 8136 case llvm::Type::PointerTyID: 8137 if (ElemOffset % 64 == 0) { 8138 pad(ElemOffset); 8139 Elems.push_back(ElemTy); 8140 Size += 64; 8141 } 8142 break; 8143 default: 8144 break; 8145 } 8146 } 8147 } 8148 8149 // Check if Ty is a usable substitute for the coercion type. 8150 bool isUsableType(llvm::StructType *Ty) const { 8151 return llvm::makeArrayRef(Elems) == Ty->elements(); 8152 } 8153 8154 // Get the coercion type as a literal struct type. 8155 llvm::Type *getType() const { 8156 if (Elems.size() == 1) 8157 return Elems.front(); 8158 else 8159 return llvm::StructType::get(Context, Elems); 8160 } 8161 }; 8162 }; 8163 } // end anonymous namespace 8164 8165 ABIArgInfo 8166 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 8167 if (Ty->isVoidType()) 8168 return ABIArgInfo::getIgnore(); 8169 8170 uint64_t Size = getContext().getTypeSize(Ty); 8171 8172 // Anything too big to fit in registers is passed with an explicit indirect 8173 // pointer / sret pointer. 8174 if (Size > SizeLimit) 8175 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 8176 8177 // Treat an enum type as its underlying type. 8178 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 8179 Ty = EnumTy->getDecl()->getIntegerType(); 8180 8181 // Integer types smaller than a register are extended. 8182 if (Size < 64 && Ty->isIntegerType()) 8183 return ABIArgInfo::getExtend(Ty); 8184 8185 // Other non-aggregates go in registers. 8186 if (!isAggregateTypeForABI(Ty)) 8187 return ABIArgInfo::getDirect(); 8188 8189 // If a C++ object has either a non-trivial copy constructor or a non-trivial 8190 // destructor, it is passed with an explicit indirect pointer / sret pointer. 8191 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 8192 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 8193 8194 // This is a small aggregate type that should be passed in registers. 8195 // Build a coercion type from the LLVM struct type. 8196 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 8197 if (!StrTy) 8198 return ABIArgInfo::getDirect(); 8199 8200 CoerceBuilder CB(getVMContext(), getDataLayout()); 8201 CB.addStruct(0, StrTy); 8202 CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64)); 8203 8204 // Try to use the original type for coercion. 8205 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 8206 8207 if (CB.InReg) 8208 return ABIArgInfo::getDirectInReg(CoerceTy); 8209 else 8210 return ABIArgInfo::getDirect(CoerceTy); 8211 } 8212 8213 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8214 QualType Ty) const { 8215 ABIArgInfo AI = classifyType(Ty, 16 * 8); 8216 llvm::Type *ArgTy = CGT.ConvertType(Ty); 8217 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 8218 AI.setCoerceToType(ArgTy); 8219 8220 CharUnits SlotSize = CharUnits::fromQuantity(8); 8221 8222 CGBuilderTy &Builder = CGF.Builder; 8223 Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 8224 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 8225 8226 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 8227 8228 Address ArgAddr = Address::invalid(); 8229 CharUnits Stride; 8230 switch (AI.getKind()) { 8231 case ABIArgInfo::Expand: 8232 case ABIArgInfo::CoerceAndExpand: 8233 case ABIArgInfo::InAlloca: 8234 llvm_unreachable("Unsupported ABI kind for va_arg"); 8235 8236 case ABIArgInfo::Extend: { 8237 Stride = SlotSize; 8238 CharUnits Offset = SlotSize - TypeInfo.first; 8239 ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend"); 8240 break; 8241 } 8242 8243 case ABIArgInfo::Direct: { 8244 auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 8245 Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize); 8246 ArgAddr = Addr; 8247 break; 8248 } 8249 8250 case ABIArgInfo::Indirect: 8251 Stride = SlotSize; 8252 ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect"); 8253 ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), 8254 TypeInfo.second); 8255 break; 8256 8257 case ABIArgInfo::Ignore: 8258 return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second); 8259 } 8260 8261 // Update VAList. 8262 Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next"); 8263 Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 8264 8265 return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr"); 8266 } 8267 8268 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 8269 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 8270 for (auto &I : FI.arguments()) 8271 I.info = classifyType(I.type, 16 * 8); 8272 } 8273 8274 namespace { 8275 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 8276 public: 8277 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 8278 : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {} 8279 8280 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 8281 return 14; 8282 } 8283 8284 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 8285 llvm::Value *Address) const override; 8286 }; 8287 } // end anonymous namespace 8288 8289 bool 8290 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 8291 llvm::Value *Address) const { 8292 // This is calculated from the LLVM and GCC tables and verified 8293 // against gcc output. AFAIK all ABIs use the same encoding. 8294 8295 CodeGen::CGBuilderTy &Builder = CGF.Builder; 8296 8297 llvm::IntegerType *i8 = CGF.Int8Ty; 8298 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 8299 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 8300 8301 // 0-31: the 8-byte general-purpose registers 8302 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 8303 8304 // 32-63: f0-31, the 4-byte floating-point registers 8305 AssignToArrayRange(Builder, Address, Four8, 32, 63); 8306 8307 // Y = 64 8308 // PSR = 65 8309 // WIM = 66 8310 // TBR = 67 8311 // PC = 68 8312 // NPC = 69 8313 // FSR = 70 8314 // CSR = 71 8315 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 8316 8317 // 72-87: d0-15, the 8-byte floating-point registers 8318 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 8319 8320 return false; 8321 } 8322 8323 // ARC ABI implementation. 8324 namespace { 8325 8326 class ARCABIInfo : public DefaultABIInfo { 8327 public: 8328 using DefaultABIInfo::DefaultABIInfo; 8329 8330 private: 8331 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8332 QualType Ty) const override; 8333 8334 void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const { 8335 if (!State.FreeRegs) 8336 return; 8337 if (Info.isIndirect() && Info.getInReg()) 8338 State.FreeRegs--; 8339 else if (Info.isDirect() && Info.getInReg()) { 8340 unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32; 8341 if (sz < State.FreeRegs) 8342 State.FreeRegs -= sz; 8343 else 8344 State.FreeRegs = 0; 8345 } 8346 } 8347 8348 void computeInfo(CGFunctionInfo &FI) const override { 8349 CCState State(FI.getCallingConvention()); 8350 // ARC uses 8 registers to pass arguments. 8351 State.FreeRegs = 8; 8352 8353 if (!getCXXABI().classifyReturnType(FI)) 8354 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8355 updateState(FI.getReturnInfo(), FI.getReturnType(), State); 8356 for (auto &I : FI.arguments()) { 8357 I.info = classifyArgumentType(I.type, State.FreeRegs); 8358 updateState(I.info, I.type, State); 8359 } 8360 } 8361 8362 ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const; 8363 ABIArgInfo getIndirectByValue(QualType Ty) const; 8364 ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const; 8365 ABIArgInfo classifyReturnType(QualType RetTy) const; 8366 }; 8367 8368 class ARCTargetCodeGenInfo : public TargetCodeGenInfo { 8369 public: 8370 ARCTargetCodeGenInfo(CodeGenTypes &CGT) 8371 : TargetCodeGenInfo(new ARCABIInfo(CGT)) {} 8372 }; 8373 8374 8375 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const { 8376 return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) : 8377 getNaturalAlignIndirect(Ty, false); 8378 } 8379 8380 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const { 8381 // Compute the byval alignment. 8382 const unsigned MinABIStackAlignInBytes = 4; 8383 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 8384 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 8385 TypeAlign > MinABIStackAlignInBytes); 8386 } 8387 8388 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8389 QualType Ty) const { 8390 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 8391 getContext().getTypeInfoInChars(Ty), 8392 CharUnits::fromQuantity(4), true); 8393 } 8394 8395 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty, 8396 uint8_t FreeRegs) const { 8397 // Handle the generic C++ ABI. 8398 const RecordType *RT = Ty->getAs<RecordType>(); 8399 if (RT) { 8400 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 8401 if (RAA == CGCXXABI::RAA_Indirect) 8402 return getIndirectByRef(Ty, FreeRegs > 0); 8403 8404 if (RAA == CGCXXABI::RAA_DirectInMemory) 8405 return getIndirectByValue(Ty); 8406 } 8407 8408 // Treat an enum type as its underlying type. 8409 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 8410 Ty = EnumTy->getDecl()->getIntegerType(); 8411 8412 auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32; 8413 8414 if (isAggregateTypeForABI(Ty)) { 8415 // Structures with flexible arrays are always indirect. 8416 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 8417 return getIndirectByValue(Ty); 8418 8419 // Ignore empty structs/unions. 8420 if (isEmptyRecord(getContext(), Ty, true)) 8421 return ABIArgInfo::getIgnore(); 8422 8423 llvm::LLVMContext &LLVMContext = getVMContext(); 8424 8425 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 8426 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 8427 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 8428 8429 return FreeRegs >= SizeInRegs ? 8430 ABIArgInfo::getDirectInReg(Result) : 8431 ABIArgInfo::getDirect(Result, 0, nullptr, false); 8432 } 8433 8434 return Ty->isPromotableIntegerType() ? 8435 (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty) : 8436 ABIArgInfo::getExtend(Ty)) : 8437 (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg() : 8438 ABIArgInfo::getDirect()); 8439 } 8440 8441 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const { 8442 if (RetTy->isAnyComplexType()) 8443 return ABIArgInfo::getDirectInReg(); 8444 8445 // Arguments of size > 4 registers are indirect. 8446 auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32; 8447 if (RetSize > 4) 8448 return getIndirectByRef(RetTy, /*HasFreeRegs*/ true); 8449 8450 return DefaultABIInfo::classifyReturnType(RetTy); 8451 } 8452 8453 } // End anonymous namespace. 8454 8455 //===----------------------------------------------------------------------===// 8456 // XCore ABI Implementation 8457 //===----------------------------------------------------------------------===// 8458 8459 namespace { 8460 8461 /// A SmallStringEnc instance is used to build up the TypeString by passing 8462 /// it by reference between functions that append to it. 8463 typedef llvm::SmallString<128> SmallStringEnc; 8464 8465 /// TypeStringCache caches the meta encodings of Types. 8466 /// 8467 /// The reason for caching TypeStrings is two fold: 8468 /// 1. To cache a type's encoding for later uses; 8469 /// 2. As a means to break recursive member type inclusion. 8470 /// 8471 /// A cache Entry can have a Status of: 8472 /// NonRecursive: The type encoding is not recursive; 8473 /// Recursive: The type encoding is recursive; 8474 /// Incomplete: An incomplete TypeString; 8475 /// IncompleteUsed: An incomplete TypeString that has been used in a 8476 /// Recursive type encoding. 8477 /// 8478 /// A NonRecursive entry will have all of its sub-members expanded as fully 8479 /// as possible. Whilst it may contain types which are recursive, the type 8480 /// itself is not recursive and thus its encoding may be safely used whenever 8481 /// the type is encountered. 8482 /// 8483 /// A Recursive entry will have all of its sub-members expanded as fully as 8484 /// possible. The type itself is recursive and it may contain other types which 8485 /// are recursive. The Recursive encoding must not be used during the expansion 8486 /// of a recursive type's recursive branch. For simplicity the code uses 8487 /// IncompleteCount to reject all usage of Recursive encodings for member types. 8488 /// 8489 /// An Incomplete entry is always a RecordType and only encodes its 8490 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 8491 /// are placed into the cache during type expansion as a means to identify and 8492 /// handle recursive inclusion of types as sub-members. If there is recursion 8493 /// the entry becomes IncompleteUsed. 8494 /// 8495 /// During the expansion of a RecordType's members: 8496 /// 8497 /// If the cache contains a NonRecursive encoding for the member type, the 8498 /// cached encoding is used; 8499 /// 8500 /// If the cache contains a Recursive encoding for the member type, the 8501 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 8502 /// 8503 /// If the member is a RecordType, an Incomplete encoding is placed into the 8504 /// cache to break potential recursive inclusion of itself as a sub-member; 8505 /// 8506 /// Once a member RecordType has been expanded, its temporary incomplete 8507 /// entry is removed from the cache. If a Recursive encoding was swapped out 8508 /// it is swapped back in; 8509 /// 8510 /// If an incomplete entry is used to expand a sub-member, the incomplete 8511 /// entry is marked as IncompleteUsed. The cache keeps count of how many 8512 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 8513 /// 8514 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 8515 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 8516 /// Else the member is part of a recursive type and thus the recursion has 8517 /// been exited too soon for the encoding to be correct for the member. 8518 /// 8519 class TypeStringCache { 8520 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 8521 struct Entry { 8522 std::string Str; // The encoded TypeString for the type. 8523 enum Status State; // Information about the encoding in 'Str'. 8524 std::string Swapped; // A temporary place holder for a Recursive encoding 8525 // during the expansion of RecordType's members. 8526 }; 8527 std::map<const IdentifierInfo *, struct Entry> Map; 8528 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 8529 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 8530 public: 8531 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {} 8532 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 8533 bool removeIncomplete(const IdentifierInfo *ID); 8534 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 8535 bool IsRecursive); 8536 StringRef lookupStr(const IdentifierInfo *ID); 8537 }; 8538 8539 /// TypeString encodings for enum & union fields must be order. 8540 /// FieldEncoding is a helper for this ordering process. 8541 class FieldEncoding { 8542 bool HasName; 8543 std::string Enc; 8544 public: 8545 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {} 8546 StringRef str() { return Enc; } 8547 bool operator<(const FieldEncoding &rhs) const { 8548 if (HasName != rhs.HasName) return HasName; 8549 return Enc < rhs.Enc; 8550 } 8551 }; 8552 8553 class XCoreABIInfo : public DefaultABIInfo { 8554 public: 8555 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8556 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8557 QualType Ty) const override; 8558 }; 8559 8560 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 8561 mutable TypeStringCache TSC; 8562 public: 8563 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 8564 :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {} 8565 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 8566 CodeGen::CodeGenModule &M) const override; 8567 }; 8568 8569 } // End anonymous namespace. 8570 8571 // TODO: this implementation is likely now redundant with the default 8572 // EmitVAArg. 8573 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8574 QualType Ty) const { 8575 CGBuilderTy &Builder = CGF.Builder; 8576 8577 // Get the VAList. 8578 CharUnits SlotSize = CharUnits::fromQuantity(4); 8579 Address AP(Builder.CreateLoad(VAListAddr), SlotSize); 8580 8581 // Handle the argument. 8582 ABIArgInfo AI = classifyArgumentType(Ty); 8583 CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty); 8584 llvm::Type *ArgTy = CGT.ConvertType(Ty); 8585 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 8586 AI.setCoerceToType(ArgTy); 8587 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 8588 8589 Address Val = Address::invalid(); 8590 CharUnits ArgSize = CharUnits::Zero(); 8591 switch (AI.getKind()) { 8592 case ABIArgInfo::Expand: 8593 case ABIArgInfo::CoerceAndExpand: 8594 case ABIArgInfo::InAlloca: 8595 llvm_unreachable("Unsupported ABI kind for va_arg"); 8596 case ABIArgInfo::Ignore: 8597 Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign); 8598 ArgSize = CharUnits::Zero(); 8599 break; 8600 case ABIArgInfo::Extend: 8601 case ABIArgInfo::Direct: 8602 Val = Builder.CreateBitCast(AP, ArgPtrTy); 8603 ArgSize = CharUnits::fromQuantity( 8604 getDataLayout().getTypeAllocSize(AI.getCoerceToType())); 8605 ArgSize = ArgSize.alignTo(SlotSize); 8606 break; 8607 case ABIArgInfo::Indirect: 8608 Val = Builder.CreateElementBitCast(AP, ArgPtrTy); 8609 Val = Address(Builder.CreateLoad(Val), TypeAlign); 8610 ArgSize = SlotSize; 8611 break; 8612 } 8613 8614 // Increment the VAList. 8615 if (!ArgSize.isZero()) { 8616 Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize); 8617 Builder.CreateStore(APN.getPointer(), VAListAddr); 8618 } 8619 8620 return Val; 8621 } 8622 8623 /// During the expansion of a RecordType, an incomplete TypeString is placed 8624 /// into the cache as a means to identify and break recursion. 8625 /// If there is a Recursive encoding in the cache, it is swapped out and will 8626 /// be reinserted by removeIncomplete(). 8627 /// All other types of encoding should have been used rather than arriving here. 8628 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 8629 std::string StubEnc) { 8630 if (!ID) 8631 return; 8632 Entry &E = Map[ID]; 8633 assert( (E.Str.empty() || E.State == Recursive) && 8634 "Incorrectly use of addIncomplete"); 8635 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 8636 E.Swapped.swap(E.Str); // swap out the Recursive 8637 E.Str.swap(StubEnc); 8638 E.State = Incomplete; 8639 ++IncompleteCount; 8640 } 8641 8642 /// Once the RecordType has been expanded, the temporary incomplete TypeString 8643 /// must be removed from the cache. 8644 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 8645 /// Returns true if the RecordType was defined recursively. 8646 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 8647 if (!ID) 8648 return false; 8649 auto I = Map.find(ID); 8650 assert(I != Map.end() && "Entry not present"); 8651 Entry &E = I->second; 8652 assert( (E.State == Incomplete || 8653 E.State == IncompleteUsed) && 8654 "Entry must be an incomplete type"); 8655 bool IsRecursive = false; 8656 if (E.State == IncompleteUsed) { 8657 // We made use of our Incomplete encoding, thus we are recursive. 8658 IsRecursive = true; 8659 --IncompleteUsedCount; 8660 } 8661 if (E.Swapped.empty()) 8662 Map.erase(I); 8663 else { 8664 // Swap the Recursive back. 8665 E.Swapped.swap(E.Str); 8666 E.Swapped.clear(); 8667 E.State = Recursive; 8668 } 8669 --IncompleteCount; 8670 return IsRecursive; 8671 } 8672 8673 /// Add the encoded TypeString to the cache only if it is NonRecursive or 8674 /// Recursive (viz: all sub-members were expanded as fully as possible). 8675 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 8676 bool IsRecursive) { 8677 if (!ID || IncompleteUsedCount) 8678 return; // No key or it is is an incomplete sub-type so don't add. 8679 Entry &E = Map[ID]; 8680 if (IsRecursive && !E.Str.empty()) { 8681 assert(E.State==Recursive && E.Str.size() == Str.size() && 8682 "This is not the same Recursive entry"); 8683 // The parent container was not recursive after all, so we could have used 8684 // this Recursive sub-member entry after all, but we assumed the worse when 8685 // we started viz: IncompleteCount!=0. 8686 return; 8687 } 8688 assert(E.Str.empty() && "Entry already present"); 8689 E.Str = Str.str(); 8690 E.State = IsRecursive? Recursive : NonRecursive; 8691 } 8692 8693 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 8694 /// are recursively expanding a type (IncompleteCount != 0) and the cached 8695 /// encoding is Recursive, return an empty StringRef. 8696 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 8697 if (!ID) 8698 return StringRef(); // We have no key. 8699 auto I = Map.find(ID); 8700 if (I == Map.end()) 8701 return StringRef(); // We have no encoding. 8702 Entry &E = I->second; 8703 if (E.State == Recursive && IncompleteCount) 8704 return StringRef(); // We don't use Recursive encodings for member types. 8705 8706 if (E.State == Incomplete) { 8707 // The incomplete type is being used to break out of recursion. 8708 E.State = IncompleteUsed; 8709 ++IncompleteUsedCount; 8710 } 8711 return E.Str; 8712 } 8713 8714 /// The XCore ABI includes a type information section that communicates symbol 8715 /// type information to the linker. The linker uses this information to verify 8716 /// safety/correctness of things such as array bound and pointers et al. 8717 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 8718 /// This type information (TypeString) is emitted into meta data for all global 8719 /// symbols: definitions, declarations, functions & variables. 8720 /// 8721 /// The TypeString carries type, qualifier, name, size & value details. 8722 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 8723 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf 8724 /// The output is tested by test/CodeGen/xcore-stringtype.c. 8725 /// 8726 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 8727 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC); 8728 8729 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 8730 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 8731 CodeGen::CodeGenModule &CGM) const { 8732 SmallStringEnc Enc; 8733 if (getTypeString(Enc, D, CGM, TSC)) { 8734 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 8735 llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV), 8736 llvm::MDString::get(Ctx, Enc.str())}; 8737 llvm::NamedMDNode *MD = 8738 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 8739 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 8740 } 8741 } 8742 8743 //===----------------------------------------------------------------------===// 8744 // SPIR ABI Implementation 8745 //===----------------------------------------------------------------------===// 8746 8747 namespace { 8748 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo { 8749 public: 8750 SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 8751 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 8752 unsigned getOpenCLKernelCallingConv() const override; 8753 }; 8754 8755 } // End anonymous namespace. 8756 8757 namespace clang { 8758 namespace CodeGen { 8759 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) { 8760 DefaultABIInfo SPIRABI(CGM.getTypes()); 8761 SPIRABI.computeInfo(FI); 8762 } 8763 } 8764 } 8765 8766 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 8767 return llvm::CallingConv::SPIR_KERNEL; 8768 } 8769 8770 static bool appendType(SmallStringEnc &Enc, QualType QType, 8771 const CodeGen::CodeGenModule &CGM, 8772 TypeStringCache &TSC); 8773 8774 /// Helper function for appendRecordType(). 8775 /// Builds a SmallVector containing the encoded field types in declaration 8776 /// order. 8777 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 8778 const RecordDecl *RD, 8779 const CodeGen::CodeGenModule &CGM, 8780 TypeStringCache &TSC) { 8781 for (const auto *Field : RD->fields()) { 8782 SmallStringEnc Enc; 8783 Enc += "m("; 8784 Enc += Field->getName(); 8785 Enc += "){"; 8786 if (Field->isBitField()) { 8787 Enc += "b("; 8788 llvm::raw_svector_ostream OS(Enc); 8789 OS << Field->getBitWidthValue(CGM.getContext()); 8790 Enc += ':'; 8791 } 8792 if (!appendType(Enc, Field->getType(), CGM, TSC)) 8793 return false; 8794 if (Field->isBitField()) 8795 Enc += ')'; 8796 Enc += '}'; 8797 FE.emplace_back(!Field->getName().empty(), Enc); 8798 } 8799 return true; 8800 } 8801 8802 /// Appends structure and union types to Enc and adds encoding to cache. 8803 /// Recursively calls appendType (via extractFieldType) for each field. 8804 /// Union types have their fields ordered according to the ABI. 8805 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 8806 const CodeGen::CodeGenModule &CGM, 8807 TypeStringCache &TSC, const IdentifierInfo *ID) { 8808 // Append the cached TypeString if we have one. 8809 StringRef TypeString = TSC.lookupStr(ID); 8810 if (!TypeString.empty()) { 8811 Enc += TypeString; 8812 return true; 8813 } 8814 8815 // Start to emit an incomplete TypeString. 8816 size_t Start = Enc.size(); 8817 Enc += (RT->isUnionType()? 'u' : 's'); 8818 Enc += '('; 8819 if (ID) 8820 Enc += ID->getName(); 8821 Enc += "){"; 8822 8823 // We collect all encoded fields and order as necessary. 8824 bool IsRecursive = false; 8825 const RecordDecl *RD = RT->getDecl()->getDefinition(); 8826 if (RD && !RD->field_empty()) { 8827 // An incomplete TypeString stub is placed in the cache for this RecordType 8828 // so that recursive calls to this RecordType will use it whilst building a 8829 // complete TypeString for this RecordType. 8830 SmallVector<FieldEncoding, 16> FE; 8831 std::string StubEnc(Enc.substr(Start).str()); 8832 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 8833 TSC.addIncomplete(ID, std::move(StubEnc)); 8834 if (!extractFieldType(FE, RD, CGM, TSC)) { 8835 (void) TSC.removeIncomplete(ID); 8836 return false; 8837 } 8838 IsRecursive = TSC.removeIncomplete(ID); 8839 // The ABI requires unions to be sorted but not structures. 8840 // See FieldEncoding::operator< for sort algorithm. 8841 if (RT->isUnionType()) 8842 llvm::sort(FE); 8843 // We can now complete the TypeString. 8844 unsigned E = FE.size(); 8845 for (unsigned I = 0; I != E; ++I) { 8846 if (I) 8847 Enc += ','; 8848 Enc += FE[I].str(); 8849 } 8850 } 8851 Enc += '}'; 8852 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 8853 return true; 8854 } 8855 8856 /// Appends enum types to Enc and adds the encoding to the cache. 8857 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 8858 TypeStringCache &TSC, 8859 const IdentifierInfo *ID) { 8860 // Append the cached TypeString if we have one. 8861 StringRef TypeString = TSC.lookupStr(ID); 8862 if (!TypeString.empty()) { 8863 Enc += TypeString; 8864 return true; 8865 } 8866 8867 size_t Start = Enc.size(); 8868 Enc += "e("; 8869 if (ID) 8870 Enc += ID->getName(); 8871 Enc += "){"; 8872 8873 // We collect all encoded enumerations and order them alphanumerically. 8874 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 8875 SmallVector<FieldEncoding, 16> FE; 8876 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 8877 ++I) { 8878 SmallStringEnc EnumEnc; 8879 EnumEnc += "m("; 8880 EnumEnc += I->getName(); 8881 EnumEnc += "){"; 8882 I->getInitVal().toString(EnumEnc); 8883 EnumEnc += '}'; 8884 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 8885 } 8886 llvm::sort(FE); 8887 unsigned E = FE.size(); 8888 for (unsigned I = 0; I != E; ++I) { 8889 if (I) 8890 Enc += ','; 8891 Enc += FE[I].str(); 8892 } 8893 } 8894 Enc += '}'; 8895 TSC.addIfComplete(ID, Enc.substr(Start), false); 8896 return true; 8897 } 8898 8899 /// Appends type's qualifier to Enc. 8900 /// This is done prior to appending the type's encoding. 8901 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 8902 // Qualifiers are emitted in alphabetical order. 8903 static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 8904 int Lookup = 0; 8905 if (QT.isConstQualified()) 8906 Lookup += 1<<0; 8907 if (QT.isRestrictQualified()) 8908 Lookup += 1<<1; 8909 if (QT.isVolatileQualified()) 8910 Lookup += 1<<2; 8911 Enc += Table[Lookup]; 8912 } 8913 8914 /// Appends built-in types to Enc. 8915 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 8916 const char *EncType; 8917 switch (BT->getKind()) { 8918 case BuiltinType::Void: 8919 EncType = "0"; 8920 break; 8921 case BuiltinType::Bool: 8922 EncType = "b"; 8923 break; 8924 case BuiltinType::Char_U: 8925 EncType = "uc"; 8926 break; 8927 case BuiltinType::UChar: 8928 EncType = "uc"; 8929 break; 8930 case BuiltinType::SChar: 8931 EncType = "sc"; 8932 break; 8933 case BuiltinType::UShort: 8934 EncType = "us"; 8935 break; 8936 case BuiltinType::Short: 8937 EncType = "ss"; 8938 break; 8939 case BuiltinType::UInt: 8940 EncType = "ui"; 8941 break; 8942 case BuiltinType::Int: 8943 EncType = "si"; 8944 break; 8945 case BuiltinType::ULong: 8946 EncType = "ul"; 8947 break; 8948 case BuiltinType::Long: 8949 EncType = "sl"; 8950 break; 8951 case BuiltinType::ULongLong: 8952 EncType = "ull"; 8953 break; 8954 case BuiltinType::LongLong: 8955 EncType = "sll"; 8956 break; 8957 case BuiltinType::Float: 8958 EncType = "ft"; 8959 break; 8960 case BuiltinType::Double: 8961 EncType = "d"; 8962 break; 8963 case BuiltinType::LongDouble: 8964 EncType = "ld"; 8965 break; 8966 default: 8967 return false; 8968 } 8969 Enc += EncType; 8970 return true; 8971 } 8972 8973 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 8974 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 8975 const CodeGen::CodeGenModule &CGM, 8976 TypeStringCache &TSC) { 8977 Enc += "p("; 8978 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 8979 return false; 8980 Enc += ')'; 8981 return true; 8982 } 8983 8984 /// Appends array encoding to Enc before calling appendType for the element. 8985 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 8986 const ArrayType *AT, 8987 const CodeGen::CodeGenModule &CGM, 8988 TypeStringCache &TSC, StringRef NoSizeEnc) { 8989 if (AT->getSizeModifier() != ArrayType::Normal) 8990 return false; 8991 Enc += "a("; 8992 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 8993 CAT->getSize().toStringUnsigned(Enc); 8994 else 8995 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 8996 Enc += ':'; 8997 // The Qualifiers should be attached to the type rather than the array. 8998 appendQualifier(Enc, QT); 8999 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 9000 return false; 9001 Enc += ')'; 9002 return true; 9003 } 9004 9005 /// Appends a function encoding to Enc, calling appendType for the return type 9006 /// and the arguments. 9007 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 9008 const CodeGen::CodeGenModule &CGM, 9009 TypeStringCache &TSC) { 9010 Enc += "f{"; 9011 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 9012 return false; 9013 Enc += "}("; 9014 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 9015 // N.B. we are only interested in the adjusted param types. 9016 auto I = FPT->param_type_begin(); 9017 auto E = FPT->param_type_end(); 9018 if (I != E) { 9019 do { 9020 if (!appendType(Enc, *I, CGM, TSC)) 9021 return false; 9022 ++I; 9023 if (I != E) 9024 Enc += ','; 9025 } while (I != E); 9026 if (FPT->isVariadic()) 9027 Enc += ",va"; 9028 } else { 9029 if (FPT->isVariadic()) 9030 Enc += "va"; 9031 else 9032 Enc += '0'; 9033 } 9034 } 9035 Enc += ')'; 9036 return true; 9037 } 9038 9039 /// Handles the type's qualifier before dispatching a call to handle specific 9040 /// type encodings. 9041 static bool appendType(SmallStringEnc &Enc, QualType QType, 9042 const CodeGen::CodeGenModule &CGM, 9043 TypeStringCache &TSC) { 9044 9045 QualType QT = QType.getCanonicalType(); 9046 9047 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 9048 // The Qualifiers should be attached to the type rather than the array. 9049 // Thus we don't call appendQualifier() here. 9050 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 9051 9052 appendQualifier(Enc, QT); 9053 9054 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 9055 return appendBuiltinType(Enc, BT); 9056 9057 if (const PointerType *PT = QT->getAs<PointerType>()) 9058 return appendPointerType(Enc, PT, CGM, TSC); 9059 9060 if (const EnumType *ET = QT->getAs<EnumType>()) 9061 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 9062 9063 if (const RecordType *RT = QT->getAsStructureType()) 9064 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 9065 9066 if (const RecordType *RT = QT->getAsUnionType()) 9067 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 9068 9069 if (const FunctionType *FT = QT->getAs<FunctionType>()) 9070 return appendFunctionType(Enc, FT, CGM, TSC); 9071 9072 return false; 9073 } 9074 9075 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 9076 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) { 9077 if (!D) 9078 return false; 9079 9080 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 9081 if (FD->getLanguageLinkage() != CLanguageLinkage) 9082 return false; 9083 return appendType(Enc, FD->getType(), CGM, TSC); 9084 } 9085 9086 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 9087 if (VD->getLanguageLinkage() != CLanguageLinkage) 9088 return false; 9089 QualType QT = VD->getType().getCanonicalType(); 9090 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 9091 // Global ArrayTypes are given a size of '*' if the size is unknown. 9092 // The Qualifiers should be attached to the type rather than the array. 9093 // Thus we don't call appendQualifier() here. 9094 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 9095 } 9096 return appendType(Enc, QT, CGM, TSC); 9097 } 9098 return false; 9099 } 9100 9101 //===----------------------------------------------------------------------===// 9102 // RISCV ABI Implementation 9103 //===----------------------------------------------------------------------===// 9104 9105 namespace { 9106 class RISCVABIInfo : public DefaultABIInfo { 9107 private: 9108 unsigned XLen; // Size of the integer ('x') registers in bits. 9109 static const int NumArgGPRs = 8; 9110 9111 public: 9112 RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen) 9113 : DefaultABIInfo(CGT), XLen(XLen) {} 9114 9115 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 9116 // non-virtual, but computeInfo is virtual, so we overload it. 9117 void computeInfo(CGFunctionInfo &FI) const override; 9118 9119 ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, 9120 int &ArgGPRsLeft) const; 9121 ABIArgInfo classifyReturnType(QualType RetTy) const; 9122 9123 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9124 QualType Ty) const override; 9125 9126 ABIArgInfo extendType(QualType Ty) const; 9127 }; 9128 } // end anonymous namespace 9129 9130 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const { 9131 QualType RetTy = FI.getReturnType(); 9132 if (!getCXXABI().classifyReturnType(FI)) 9133 FI.getReturnInfo() = classifyReturnType(RetTy); 9134 9135 // IsRetIndirect is true if classifyArgumentType indicated the value should 9136 // be passed indirect or if the type size is greater than 2*xlen. e.g. fp128 9137 // is passed direct in LLVM IR, relying on the backend lowering code to 9138 // rewrite the argument list and pass indirectly on RV32. 9139 bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect || 9140 getContext().getTypeSize(RetTy) > (2 * XLen); 9141 9142 // We must track the number of GPRs used in order to conform to the RISC-V 9143 // ABI, as integer scalars passed in registers should have signext/zeroext 9144 // when promoted, but are anyext if passed on the stack. As GPR usage is 9145 // different for variadic arguments, we must also track whether we are 9146 // examining a vararg or not. 9147 int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs; 9148 int NumFixedArgs = FI.getNumRequiredArgs(); 9149 9150 int ArgNum = 0; 9151 for (auto &ArgInfo : FI.arguments()) { 9152 bool IsFixed = ArgNum < NumFixedArgs; 9153 ArgInfo.info = classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft); 9154 ArgNum++; 9155 } 9156 } 9157 9158 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed, 9159 int &ArgGPRsLeft) const { 9160 assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow"); 9161 Ty = useFirstFieldIfTransparentUnion(Ty); 9162 9163 // Structures with either a non-trivial destructor or a non-trivial 9164 // copy constructor are always passed indirectly. 9165 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 9166 if (ArgGPRsLeft) 9167 ArgGPRsLeft -= 1; 9168 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 9169 CGCXXABI::RAA_DirectInMemory); 9170 } 9171 9172 // Ignore empty structs/unions. 9173 if (isEmptyRecord(getContext(), Ty, true)) 9174 return ABIArgInfo::getIgnore(); 9175 9176 uint64_t Size = getContext().getTypeSize(Ty); 9177 uint64_t NeededAlign = getContext().getTypeAlign(Ty); 9178 bool MustUseStack = false; 9179 // Determine the number of GPRs needed to pass the current argument 9180 // according to the ABI. 2*XLen-aligned varargs are passed in "aligned" 9181 // register pairs, so may consume 3 registers. 9182 int NeededArgGPRs = 1; 9183 if (!IsFixed && NeededAlign == 2 * XLen) 9184 NeededArgGPRs = 2 + (ArgGPRsLeft % 2); 9185 else if (Size > XLen && Size <= 2 * XLen) 9186 NeededArgGPRs = 2; 9187 9188 if (NeededArgGPRs > ArgGPRsLeft) { 9189 MustUseStack = true; 9190 NeededArgGPRs = ArgGPRsLeft; 9191 } 9192 9193 ArgGPRsLeft -= NeededArgGPRs; 9194 9195 if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) { 9196 // Treat an enum type as its underlying type. 9197 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 9198 Ty = EnumTy->getDecl()->getIntegerType(); 9199 9200 // All integral types are promoted to XLen width, unless passed on the 9201 // stack. 9202 if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) { 9203 return extendType(Ty); 9204 } 9205 9206 return ABIArgInfo::getDirect(); 9207 } 9208 9209 // Aggregates which are <= 2*XLen will be passed in registers if possible, 9210 // so coerce to integers. 9211 if (Size <= 2 * XLen) { 9212 unsigned Alignment = getContext().getTypeAlign(Ty); 9213 9214 // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is 9215 // required, and a 2-element XLen array if only XLen alignment is required. 9216 if (Size <= XLen) { 9217 return ABIArgInfo::getDirect( 9218 llvm::IntegerType::get(getVMContext(), XLen)); 9219 } else if (Alignment == 2 * XLen) { 9220 return ABIArgInfo::getDirect( 9221 llvm::IntegerType::get(getVMContext(), 2 * XLen)); 9222 } else { 9223 return ABIArgInfo::getDirect(llvm::ArrayType::get( 9224 llvm::IntegerType::get(getVMContext(), XLen), 2)); 9225 } 9226 } 9227 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 9228 } 9229 9230 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const { 9231 if (RetTy->isVoidType()) 9232 return ABIArgInfo::getIgnore(); 9233 9234 int ArgGPRsLeft = 2; 9235 9236 // The rules for return and argument types are the same, so defer to 9237 // classifyArgumentType. 9238 return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft); 9239 } 9240 9241 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9242 QualType Ty) const { 9243 CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8); 9244 9245 // Empty records are ignored for parameter passing purposes. 9246 if (isEmptyRecord(getContext(), Ty, true)) { 9247 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 9248 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 9249 return Addr; 9250 } 9251 9252 std::pair<CharUnits, CharUnits> SizeAndAlign = 9253 getContext().getTypeInfoInChars(Ty); 9254 9255 // Arguments bigger than 2*Xlen bytes are passed indirectly. 9256 bool IsIndirect = SizeAndAlign.first > 2 * SlotSize; 9257 9258 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, SizeAndAlign, 9259 SlotSize, /*AllowHigherAlign=*/true); 9260 } 9261 9262 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const { 9263 int TySize = getContext().getTypeSize(Ty); 9264 // RV64 ABI requires unsigned 32 bit integers to be sign extended. 9265 if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 9266 return ABIArgInfo::getSignExtend(Ty); 9267 return ABIArgInfo::getExtend(Ty); 9268 } 9269 9270 namespace { 9271 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo { 9272 public: 9273 RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen) 9274 : TargetCodeGenInfo(new RISCVABIInfo(CGT, XLen)) {} 9275 9276 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 9277 CodeGen::CodeGenModule &CGM) const override { 9278 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 9279 if (!FD) return; 9280 9281 const auto *Attr = FD->getAttr<RISCVInterruptAttr>(); 9282 if (!Attr) 9283 return; 9284 9285 const char *Kind; 9286 switch (Attr->getInterrupt()) { 9287 case RISCVInterruptAttr::user: Kind = "user"; break; 9288 case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break; 9289 case RISCVInterruptAttr::machine: Kind = "machine"; break; 9290 } 9291 9292 auto *Fn = cast<llvm::Function>(GV); 9293 9294 Fn->addFnAttr("interrupt", Kind); 9295 } 9296 }; 9297 } // namespace 9298 9299 //===----------------------------------------------------------------------===// 9300 // Driver code 9301 //===----------------------------------------------------------------------===// 9302 9303 bool CodeGenModule::supportsCOMDAT() const { 9304 return getTriple().supportsCOMDAT(); 9305 } 9306 9307 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 9308 if (TheTargetCodeGenInfo) 9309 return *TheTargetCodeGenInfo; 9310 9311 // Helper to set the unique_ptr while still keeping the return value. 9312 auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & { 9313 this->TheTargetCodeGenInfo.reset(P); 9314 return *P; 9315 }; 9316 9317 const llvm::Triple &Triple = getTarget().getTriple(); 9318 switch (Triple.getArch()) { 9319 default: 9320 return SetCGInfo(new DefaultTargetCodeGenInfo(Types)); 9321 9322 case llvm::Triple::le32: 9323 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 9324 case llvm::Triple::mips: 9325 case llvm::Triple::mipsel: 9326 if (Triple.getOS() == llvm::Triple::NaCl) 9327 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 9328 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true)); 9329 9330 case llvm::Triple::mips64: 9331 case llvm::Triple::mips64el: 9332 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false)); 9333 9334 case llvm::Triple::avr: 9335 return SetCGInfo(new AVRTargetCodeGenInfo(Types)); 9336 9337 case llvm::Triple::aarch64: 9338 case llvm::Triple::aarch64_be: { 9339 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 9340 if (getTarget().getABI() == "darwinpcs") 9341 Kind = AArch64ABIInfo::DarwinPCS; 9342 else if (Triple.isOSWindows()) 9343 return SetCGInfo( 9344 new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64)); 9345 9346 return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind)); 9347 } 9348 9349 case llvm::Triple::wasm32: 9350 case llvm::Triple::wasm64: 9351 return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types)); 9352 9353 case llvm::Triple::arm: 9354 case llvm::Triple::armeb: 9355 case llvm::Triple::thumb: 9356 case llvm::Triple::thumbeb: { 9357 if (Triple.getOS() == llvm::Triple::Win32) { 9358 return SetCGInfo( 9359 new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP)); 9360 } 9361 9362 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 9363 StringRef ABIStr = getTarget().getABI(); 9364 if (ABIStr == "apcs-gnu") 9365 Kind = ARMABIInfo::APCS; 9366 else if (ABIStr == "aapcs16") 9367 Kind = ARMABIInfo::AAPCS16_VFP; 9368 else if (CodeGenOpts.FloatABI == "hard" || 9369 (CodeGenOpts.FloatABI != "soft" && 9370 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 9371 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 9372 Triple.getEnvironment() == llvm::Triple::EABIHF))) 9373 Kind = ARMABIInfo::AAPCS_VFP; 9374 9375 return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind)); 9376 } 9377 9378 case llvm::Triple::ppc: 9379 return SetCGInfo( 9380 new PPC32TargetCodeGenInfo(Types, CodeGenOpts.FloatABI == "soft")); 9381 case llvm::Triple::ppc64: 9382 if (Triple.isOSBinFormatELF()) { 9383 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 9384 if (getTarget().getABI() == "elfv2") 9385 Kind = PPC64_SVR4_ABIInfo::ELFv2; 9386 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 9387 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 9388 9389 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 9390 IsSoftFloat)); 9391 } else 9392 return SetCGInfo(new PPC64TargetCodeGenInfo(Types)); 9393 case llvm::Triple::ppc64le: { 9394 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 9395 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 9396 if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx") 9397 Kind = PPC64_SVR4_ABIInfo::ELFv1; 9398 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 9399 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 9400 9401 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 9402 IsSoftFloat)); 9403 } 9404 9405 case llvm::Triple::nvptx: 9406 case llvm::Triple::nvptx64: 9407 return SetCGInfo(new NVPTXTargetCodeGenInfo(Types)); 9408 9409 case llvm::Triple::msp430: 9410 return SetCGInfo(new MSP430TargetCodeGenInfo(Types)); 9411 9412 case llvm::Triple::riscv32: 9413 return SetCGInfo(new RISCVTargetCodeGenInfo(Types, 32)); 9414 case llvm::Triple::riscv64: 9415 return SetCGInfo(new RISCVTargetCodeGenInfo(Types, 64)); 9416 9417 case llvm::Triple::systemz: { 9418 bool HasVector = getTarget().getABI() == "vector"; 9419 return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector)); 9420 } 9421 9422 case llvm::Triple::tce: 9423 case llvm::Triple::tcele: 9424 return SetCGInfo(new TCETargetCodeGenInfo(Types)); 9425 9426 case llvm::Triple::x86: { 9427 bool IsDarwinVectorABI = Triple.isOSDarwin(); 9428 bool RetSmallStructInRegABI = 9429 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 9430 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 9431 9432 if (Triple.getOS() == llvm::Triple::Win32) { 9433 return SetCGInfo(new WinX86_32TargetCodeGenInfo( 9434 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 9435 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); 9436 } else { 9437 return SetCGInfo(new X86_32TargetCodeGenInfo( 9438 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 9439 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters, 9440 CodeGenOpts.FloatABI == "soft")); 9441 } 9442 } 9443 9444 case llvm::Triple::x86_64: { 9445 StringRef ABI = getTarget().getABI(); 9446 X86AVXABILevel AVXLevel = 9447 (ABI == "avx512" 9448 ? X86AVXABILevel::AVX512 9449 : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None); 9450 9451 switch (Triple.getOS()) { 9452 case llvm::Triple::Win32: 9453 return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel)); 9454 case llvm::Triple::PS4: 9455 return SetCGInfo(new PS4TargetCodeGenInfo(Types, AVXLevel)); 9456 default: 9457 return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel)); 9458 } 9459 } 9460 case llvm::Triple::hexagon: 9461 return SetCGInfo(new HexagonTargetCodeGenInfo(Types)); 9462 case llvm::Triple::lanai: 9463 return SetCGInfo(new LanaiTargetCodeGenInfo(Types)); 9464 case llvm::Triple::r600: 9465 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 9466 case llvm::Triple::amdgcn: 9467 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 9468 case llvm::Triple::sparc: 9469 return SetCGInfo(new SparcV8TargetCodeGenInfo(Types)); 9470 case llvm::Triple::sparcv9: 9471 return SetCGInfo(new SparcV9TargetCodeGenInfo(Types)); 9472 case llvm::Triple::xcore: 9473 return SetCGInfo(new XCoreTargetCodeGenInfo(Types)); 9474 case llvm::Triple::arc: 9475 return SetCGInfo(new ARCTargetCodeGenInfo(Types)); 9476 case llvm::Triple::spir: 9477 case llvm::Triple::spir64: 9478 return SetCGInfo(new SPIRTargetCodeGenInfo(Types)); 9479 } 9480 } 9481 9482 /// Create an OpenCL kernel for an enqueued block. 9483 /// 9484 /// The kernel has the same function type as the block invoke function. Its 9485 /// name is the name of the block invoke function postfixed with "_kernel". 9486 /// It simply calls the block invoke function then returns. 9487 llvm::Function * 9488 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF, 9489 llvm::Function *Invoke, 9490 llvm::Value *BlockLiteral) const { 9491 auto *InvokeFT = Invoke->getFunctionType(); 9492 llvm::SmallVector<llvm::Type *, 2> ArgTys; 9493 for (auto &P : InvokeFT->params()) 9494 ArgTys.push_back(P); 9495 auto &C = CGF.getLLVMContext(); 9496 std::string Name = Invoke->getName().str() + "_kernel"; 9497 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 9498 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 9499 &CGF.CGM.getModule()); 9500 auto IP = CGF.Builder.saveIP(); 9501 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 9502 auto &Builder = CGF.Builder; 9503 Builder.SetInsertPoint(BB); 9504 llvm::SmallVector<llvm::Value *, 2> Args; 9505 for (auto &A : F->args()) 9506 Args.push_back(&A); 9507 Builder.CreateCall(Invoke, Args); 9508 Builder.CreateRetVoid(); 9509 Builder.restoreIP(IP); 9510 return F; 9511 } 9512 9513 /// Create an OpenCL kernel for an enqueued block. 9514 /// 9515 /// The type of the first argument (the block literal) is the struct type 9516 /// of the block literal instead of a pointer type. The first argument 9517 /// (block literal) is passed directly by value to the kernel. The kernel 9518 /// allocates the same type of struct on stack and stores the block literal 9519 /// to it and passes its pointer to the block invoke function. The kernel 9520 /// has "enqueued-block" function attribute and kernel argument metadata. 9521 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel( 9522 CodeGenFunction &CGF, llvm::Function *Invoke, 9523 llvm::Value *BlockLiteral) const { 9524 auto &Builder = CGF.Builder; 9525 auto &C = CGF.getLLVMContext(); 9526 9527 auto *BlockTy = BlockLiteral->getType()->getPointerElementType(); 9528 auto *InvokeFT = Invoke->getFunctionType(); 9529 llvm::SmallVector<llvm::Type *, 2> ArgTys; 9530 llvm::SmallVector<llvm::Metadata *, 8> AddressQuals; 9531 llvm::SmallVector<llvm::Metadata *, 8> AccessQuals; 9532 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames; 9533 llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames; 9534 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals; 9535 llvm::SmallVector<llvm::Metadata *, 8> ArgNames; 9536 9537 ArgTys.push_back(BlockTy); 9538 ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 9539 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0))); 9540 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 9541 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 9542 AccessQuals.push_back(llvm::MDString::get(C, "none")); 9543 ArgNames.push_back(llvm::MDString::get(C, "block_literal")); 9544 for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) { 9545 ArgTys.push_back(InvokeFT->getParamType(I)); 9546 ArgTypeNames.push_back(llvm::MDString::get(C, "void*")); 9547 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3))); 9548 AccessQuals.push_back(llvm::MDString::get(C, "none")); 9549 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*")); 9550 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 9551 ArgNames.push_back( 9552 llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str())); 9553 } 9554 std::string Name = Invoke->getName().str() + "_kernel"; 9555 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 9556 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 9557 &CGF.CGM.getModule()); 9558 F->addFnAttr("enqueued-block"); 9559 auto IP = CGF.Builder.saveIP(); 9560 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 9561 Builder.SetInsertPoint(BB); 9562 unsigned BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(BlockTy); 9563 auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr); 9564 BlockPtr->setAlignment(BlockAlign); 9565 Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign); 9566 auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0)); 9567 llvm::SmallVector<llvm::Value *, 2> Args; 9568 Args.push_back(Cast); 9569 for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I) 9570 Args.push_back(I); 9571 Builder.CreateCall(Invoke, Args); 9572 Builder.CreateRetVoid(); 9573 Builder.restoreIP(IP); 9574 9575 F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals)); 9576 F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals)); 9577 F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames)); 9578 F->setMetadata("kernel_arg_base_type", 9579 llvm::MDNode::get(C, ArgBaseTypeNames)); 9580 F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals)); 9581 if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 9582 F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames)); 9583 9584 return F; 9585 } 9586