1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes wrap the information about a call or function 10 // definition used to handle ABI compliancy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "TargetInfo.h" 15 #include "ABIInfo.h" 16 #include "CGBlocks.h" 17 #include "CGCXXABI.h" 18 #include "CGValue.h" 19 #include "CodeGenFunction.h" 20 #include "clang/AST/Attr.h" 21 #include "clang/AST/RecordLayout.h" 22 #include "clang/Basic/CodeGenOptions.h" 23 #include "clang/Basic/DiagnosticFrontend.h" 24 #include "clang/CodeGen/CGFunctionInfo.h" 25 #include "clang/CodeGen/SwiftCallingConv.h" 26 #include "llvm/ADT/SmallBitVector.h" 27 #include "llvm/ADT/StringExtras.h" 28 #include "llvm/ADT/StringSwitch.h" 29 #include "llvm/ADT/Triple.h" 30 #include "llvm/ADT/Twine.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/IntrinsicsNVPTX.h" 33 #include "llvm/IR/Type.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include <algorithm> // std::sort 36 37 using namespace clang; 38 using namespace CodeGen; 39 40 // Helper for coercing an aggregate argument or return value into an integer 41 // array of the same size (including padding) and alignment. This alternate 42 // coercion happens only for the RenderScript ABI and can be removed after 43 // runtimes that rely on it are no longer supported. 44 // 45 // RenderScript assumes that the size of the argument / return value in the IR 46 // is the same as the size of the corresponding qualified type. This helper 47 // coerces the aggregate type into an array of the same size (including 48 // padding). This coercion is used in lieu of expansion of struct members or 49 // other canonical coercions that return a coerced-type of larger size. 50 // 51 // Ty - The argument / return value type 52 // Context - The associated ASTContext 53 // LLVMContext - The associated LLVMContext 54 static ABIArgInfo coerceToIntArray(QualType Ty, 55 ASTContext &Context, 56 llvm::LLVMContext &LLVMContext) { 57 // Alignment and Size are measured in bits. 58 const uint64_t Size = Context.getTypeSize(Ty); 59 const uint64_t Alignment = Context.getTypeAlign(Ty); 60 llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment); 61 const uint64_t NumElements = (Size + Alignment - 1) / Alignment; 62 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 63 } 64 65 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 66 llvm::Value *Array, 67 llvm::Value *Value, 68 unsigned FirstIndex, 69 unsigned LastIndex) { 70 // Alternatively, we could emit this as a loop in the source. 71 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 72 llvm::Value *Cell = 73 Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); 74 Builder.CreateAlignedStore(Value, Cell, CharUnits::One()); 75 } 76 } 77 78 static bool isAggregateTypeForABI(QualType T) { 79 return !CodeGenFunction::hasScalarEvaluationKind(T) || 80 T->isMemberFunctionPointerType(); 81 } 82 83 ABIArgInfo ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByVal, 84 bool Realign, 85 llvm::Type *Padding) const { 86 return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), ByVal, 87 Realign, Padding); 88 } 89 90 ABIArgInfo 91 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const { 92 return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty), 93 /*ByVal*/ false, Realign); 94 } 95 96 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 97 QualType Ty) const { 98 return Address::invalid(); 99 } 100 101 bool ABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const { 102 if (Ty->isPromotableIntegerType()) 103 return true; 104 105 if (const auto *EIT = Ty->getAs<ExtIntType>()) 106 if (EIT->getNumBits() < getContext().getTypeSize(getContext().IntTy)) 107 return true; 108 109 return false; 110 } 111 112 ABIInfo::~ABIInfo() {} 113 114 /// Does the given lowering require more than the given number of 115 /// registers when expanded? 116 /// 117 /// This is intended to be the basis of a reasonable basic implementation 118 /// of should{Pass,Return}IndirectlyForSwift. 119 /// 120 /// For most targets, a limit of four total registers is reasonable; this 121 /// limits the amount of code required in order to move around the value 122 /// in case it wasn't produced immediately prior to the call by the caller 123 /// (or wasn't produced in exactly the right registers) or isn't used 124 /// immediately within the callee. But some targets may need to further 125 /// limit the register count due to an inability to support that many 126 /// return registers. 127 static bool occupiesMoreThan(CodeGenTypes &cgt, 128 ArrayRef<llvm::Type*> scalarTypes, 129 unsigned maxAllRegisters) { 130 unsigned intCount = 0, fpCount = 0; 131 for (llvm::Type *type : scalarTypes) { 132 if (type->isPointerTy()) { 133 intCount++; 134 } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) { 135 auto ptrWidth = cgt.getTarget().getPointerWidth(0); 136 intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth; 137 } else { 138 assert(type->isVectorTy() || type->isFloatingPointTy()); 139 fpCount++; 140 } 141 } 142 143 return (intCount + fpCount > maxAllRegisters); 144 } 145 146 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 147 llvm::Type *eltTy, 148 unsigned numElts) const { 149 // The default implementation of this assumes that the target guarantees 150 // 128-bit SIMD support but nothing more. 151 return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16); 152 } 153 154 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 155 CGCXXABI &CXXABI) { 156 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 157 if (!RD) { 158 if (!RT->getDecl()->canPassInRegisters()) 159 return CGCXXABI::RAA_Indirect; 160 return CGCXXABI::RAA_Default; 161 } 162 return CXXABI.getRecordArgABI(RD); 163 } 164 165 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 166 CGCXXABI &CXXABI) { 167 const RecordType *RT = T->getAs<RecordType>(); 168 if (!RT) 169 return CGCXXABI::RAA_Default; 170 return getRecordArgABI(RT, CXXABI); 171 } 172 173 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI, 174 const ABIInfo &Info) { 175 QualType Ty = FI.getReturnType(); 176 177 if (const auto *RT = Ty->getAs<RecordType>()) 178 if (!isa<CXXRecordDecl>(RT->getDecl()) && 179 !RT->getDecl()->canPassInRegisters()) { 180 FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty); 181 return true; 182 } 183 184 return CXXABI.classifyReturnType(FI); 185 } 186 187 /// Pass transparent unions as if they were the type of the first element. Sema 188 /// should ensure that all elements of the union have the same "machine type". 189 static QualType useFirstFieldIfTransparentUnion(QualType Ty) { 190 if (const RecordType *UT = Ty->getAsUnionType()) { 191 const RecordDecl *UD = UT->getDecl(); 192 if (UD->hasAttr<TransparentUnionAttr>()) { 193 assert(!UD->field_empty() && "sema created an empty transparent union"); 194 return UD->field_begin()->getType(); 195 } 196 } 197 return Ty; 198 } 199 200 CGCXXABI &ABIInfo::getCXXABI() const { 201 return CGT.getCXXABI(); 202 } 203 204 ASTContext &ABIInfo::getContext() const { 205 return CGT.getContext(); 206 } 207 208 llvm::LLVMContext &ABIInfo::getVMContext() const { 209 return CGT.getLLVMContext(); 210 } 211 212 const llvm::DataLayout &ABIInfo::getDataLayout() const { 213 return CGT.getDataLayout(); 214 } 215 216 const TargetInfo &ABIInfo::getTarget() const { 217 return CGT.getTarget(); 218 } 219 220 const CodeGenOptions &ABIInfo::getCodeGenOpts() const { 221 return CGT.getCodeGenOpts(); 222 } 223 224 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); } 225 226 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 227 return false; 228 } 229 230 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 231 uint64_t Members) const { 232 return false; 233 } 234 235 LLVM_DUMP_METHOD void ABIArgInfo::dump() const { 236 raw_ostream &OS = llvm::errs(); 237 OS << "(ABIArgInfo Kind="; 238 switch (TheKind) { 239 case Direct: 240 OS << "Direct Type="; 241 if (llvm::Type *Ty = getCoerceToType()) 242 Ty->print(OS); 243 else 244 OS << "null"; 245 break; 246 case Extend: 247 OS << "Extend"; 248 break; 249 case Ignore: 250 OS << "Ignore"; 251 break; 252 case InAlloca: 253 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 254 break; 255 case Indirect: 256 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 257 << " ByVal=" << getIndirectByVal() 258 << " Realign=" << getIndirectRealign(); 259 break; 260 case IndirectAliased: 261 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 262 << " AadrSpace=" << getIndirectAddrSpace() 263 << " Realign=" << getIndirectRealign(); 264 break; 265 case Expand: 266 OS << "Expand"; 267 break; 268 case CoerceAndExpand: 269 OS << "CoerceAndExpand Type="; 270 getCoerceAndExpandType()->print(OS); 271 break; 272 } 273 OS << ")\n"; 274 } 275 276 // Dynamically round a pointer up to a multiple of the given alignment. 277 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF, 278 llvm::Value *Ptr, 279 CharUnits Align) { 280 llvm::Value *PtrAsInt = Ptr; 281 // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align; 282 PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy); 283 PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt, 284 llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1)); 285 PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt, 286 llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity())); 287 PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt, 288 Ptr->getType(), 289 Ptr->getName() + ".aligned"); 290 return PtrAsInt; 291 } 292 293 /// Emit va_arg for a platform using the common void* representation, 294 /// where arguments are simply emitted in an array of slots on the stack. 295 /// 296 /// This version implements the core direct-value passing rules. 297 /// 298 /// \param SlotSize - The size and alignment of a stack slot. 299 /// Each argument will be allocated to a multiple of this number of 300 /// slots, and all the slots will be aligned to this value. 301 /// \param AllowHigherAlign - The slot alignment is not a cap; 302 /// an argument type with an alignment greater than the slot size 303 /// will be emitted on a higher-alignment address, potentially 304 /// leaving one or more empty slots behind as padding. If this 305 /// is false, the returned address might be less-aligned than 306 /// DirectAlign. 307 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF, 308 Address VAListAddr, 309 llvm::Type *DirectTy, 310 CharUnits DirectSize, 311 CharUnits DirectAlign, 312 CharUnits SlotSize, 313 bool AllowHigherAlign) { 314 // Cast the element type to i8* if necessary. Some platforms define 315 // va_list as a struct containing an i8* instead of just an i8*. 316 if (VAListAddr.getElementType() != CGF.Int8PtrTy) 317 VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy); 318 319 llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur"); 320 321 // If the CC aligns values higher than the slot size, do so if needed. 322 Address Addr = Address::invalid(); 323 if (AllowHigherAlign && DirectAlign > SlotSize) { 324 Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign), 325 DirectAlign); 326 } else { 327 Addr = Address(Ptr, SlotSize); 328 } 329 330 // Advance the pointer past the argument, then store that back. 331 CharUnits FullDirectSize = DirectSize.alignTo(SlotSize); 332 Address NextPtr = 333 CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next"); 334 CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 335 336 // If the argument is smaller than a slot, and this is a big-endian 337 // target, the argument will be right-adjusted in its slot. 338 if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() && 339 !DirectTy->isStructTy()) { 340 Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize); 341 } 342 343 Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy); 344 return Addr; 345 } 346 347 /// Emit va_arg for a platform using the common void* representation, 348 /// where arguments are simply emitted in an array of slots on the stack. 349 /// 350 /// \param IsIndirect - Values of this type are passed indirectly. 351 /// \param ValueInfo - The size and alignment of this type, generally 352 /// computed with getContext().getTypeInfoInChars(ValueTy). 353 /// \param SlotSizeAndAlign - The size and alignment of a stack slot. 354 /// Each argument will be allocated to a multiple of this number of 355 /// slots, and all the slots will be aligned to this value. 356 /// \param AllowHigherAlign - The slot alignment is not a cap; 357 /// an argument type with an alignment greater than the slot size 358 /// will be emitted on a higher-alignment address, potentially 359 /// leaving one or more empty slots behind as padding. 360 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr, 361 QualType ValueTy, bool IsIndirect, 362 TypeInfoChars ValueInfo, 363 CharUnits SlotSizeAndAlign, 364 bool AllowHigherAlign) { 365 // The size and alignment of the value that was passed directly. 366 CharUnits DirectSize, DirectAlign; 367 if (IsIndirect) { 368 DirectSize = CGF.getPointerSize(); 369 DirectAlign = CGF.getPointerAlign(); 370 } else { 371 DirectSize = ValueInfo.Width; 372 DirectAlign = ValueInfo.Align; 373 } 374 375 // Cast the address we've calculated to the right type. 376 llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy); 377 if (IsIndirect) 378 DirectTy = DirectTy->getPointerTo(0); 379 380 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy, 381 DirectSize, DirectAlign, 382 SlotSizeAndAlign, 383 AllowHigherAlign); 384 385 if (IsIndirect) { 386 Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.Align); 387 } 388 389 return Addr; 390 391 } 392 393 static Address emitMergePHI(CodeGenFunction &CGF, 394 Address Addr1, llvm::BasicBlock *Block1, 395 Address Addr2, llvm::BasicBlock *Block2, 396 const llvm::Twine &Name = "") { 397 assert(Addr1.getType() == Addr2.getType()); 398 llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name); 399 PHI->addIncoming(Addr1.getPointer(), Block1); 400 PHI->addIncoming(Addr2.getPointer(), Block2); 401 CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment()); 402 return Address(PHI, Align); 403 } 404 405 TargetCodeGenInfo::~TargetCodeGenInfo() = default; 406 407 // If someone can figure out a general rule for this, that would be great. 408 // It's probably just doomed to be platform-dependent, though. 409 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 410 // Verified for: 411 // x86-64 FreeBSD, Linux, Darwin 412 // x86-32 FreeBSD, Linux, Darwin 413 // PowerPC Linux, Darwin 414 // ARM Darwin (*not* EABI) 415 // AArch64 Linux 416 return 32; 417 } 418 419 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 420 const FunctionNoProtoType *fnType) const { 421 // The following conventions are known to require this to be false: 422 // x86_stdcall 423 // MIPS 424 // For everything else, we just prefer false unless we opt out. 425 return false; 426 } 427 428 void 429 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 430 llvm::SmallString<24> &Opt) const { 431 // This assumes the user is passing a library name like "rt" instead of a 432 // filename like "librt.a/so", and that they don't care whether it's static or 433 // dynamic. 434 Opt = "-l"; 435 Opt += Lib; 436 } 437 438 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const { 439 // OpenCL kernels are called via an explicit runtime API with arguments 440 // set with clSetKernelArg(), not as normal sub-functions. 441 // Return SPIR_KERNEL by default as the kernel calling convention to 442 // ensure the fingerprint is fixed such way that each OpenCL argument 443 // gets one matching argument in the produced kernel function argument 444 // list to enable feasible implementation of clSetKernelArg() with 445 // aggregates etc. In case we would use the default C calling conv here, 446 // clSetKernelArg() might break depending on the target-specific 447 // conventions; different targets might split structs passed as values 448 // to multiple function arguments etc. 449 return llvm::CallingConv::SPIR_KERNEL; 450 } 451 452 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM, 453 llvm::PointerType *T, QualType QT) const { 454 return llvm::ConstantPointerNull::get(T); 455 } 456 457 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 458 const VarDecl *D) const { 459 assert(!CGM.getLangOpts().OpenCL && 460 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 461 "Address space agnostic languages only"); 462 return D ? D->getType().getAddressSpace() : LangAS::Default; 463 } 464 465 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast( 466 CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr, 467 LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const { 468 // Since target may map different address spaces in AST to the same address 469 // space, an address space conversion may end up as a bitcast. 470 if (auto *C = dyn_cast<llvm::Constant>(Src)) 471 return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy); 472 // Try to preserve the source's name to make IR more readable. 473 return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 474 Src, DestTy, Src->hasName() ? Src->getName() + ".ascast" : ""); 475 } 476 477 llvm::Constant * 478 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src, 479 LangAS SrcAddr, LangAS DestAddr, 480 llvm::Type *DestTy) const { 481 // Since target may map different address spaces in AST to the same address 482 // space, an address space conversion may end up as a bitcast. 483 return llvm::ConstantExpr::getPointerCast(Src, DestTy); 484 } 485 486 llvm::SyncScope::ID 487 TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 488 SyncScope Scope, 489 llvm::AtomicOrdering Ordering, 490 llvm::LLVMContext &Ctx) const { 491 return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */ 492 } 493 494 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 495 496 /// isEmptyField - Return true iff a the field is "empty", that is it 497 /// is an unnamed bit-field or an (array of) empty record(s). 498 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 499 bool AllowArrays) { 500 if (FD->isUnnamedBitfield()) 501 return true; 502 503 QualType FT = FD->getType(); 504 505 // Constant arrays of empty records count as empty, strip them off. 506 // Constant arrays of zero length always count as empty. 507 bool WasArray = false; 508 if (AllowArrays) 509 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 510 if (AT->getSize() == 0) 511 return true; 512 FT = AT->getElementType(); 513 // The [[no_unique_address]] special case below does not apply to 514 // arrays of C++ empty records, so we need to remember this fact. 515 WasArray = true; 516 } 517 518 const RecordType *RT = FT->getAs<RecordType>(); 519 if (!RT) 520 return false; 521 522 // C++ record fields are never empty, at least in the Itanium ABI. 523 // 524 // FIXME: We should use a predicate for whether this behavior is true in the 525 // current ABI. 526 // 527 // The exception to the above rule are fields marked with the 528 // [[no_unique_address]] attribute (since C++20). Those do count as empty 529 // according to the Itanium ABI. The exception applies only to records, 530 // not arrays of records, so we must also check whether we stripped off an 531 // array type above. 532 if (isa<CXXRecordDecl>(RT->getDecl()) && 533 (WasArray || !FD->hasAttr<NoUniqueAddressAttr>())) 534 return false; 535 536 return isEmptyRecord(Context, FT, AllowArrays); 537 } 538 539 /// isEmptyRecord - Return true iff a structure contains only empty 540 /// fields. Note that a structure with a flexible array member is not 541 /// considered empty. 542 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 543 const RecordType *RT = T->getAs<RecordType>(); 544 if (!RT) 545 return false; 546 const RecordDecl *RD = RT->getDecl(); 547 if (RD->hasFlexibleArrayMember()) 548 return false; 549 550 // If this is a C++ record, check the bases first. 551 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 552 for (const auto &I : CXXRD->bases()) 553 if (!isEmptyRecord(Context, I.getType(), true)) 554 return false; 555 556 for (const auto *I : RD->fields()) 557 if (!isEmptyField(Context, I, AllowArrays)) 558 return false; 559 return true; 560 } 561 562 /// isSingleElementStruct - Determine if a structure is a "single 563 /// element struct", i.e. it has exactly one non-empty field or 564 /// exactly one field which is itself a single element 565 /// struct. Structures with flexible array members are never 566 /// considered single element structs. 567 /// 568 /// \return The field declaration for the single non-empty field, if 569 /// it exists. 570 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 571 const RecordType *RT = T->getAs<RecordType>(); 572 if (!RT) 573 return nullptr; 574 575 const RecordDecl *RD = RT->getDecl(); 576 if (RD->hasFlexibleArrayMember()) 577 return nullptr; 578 579 const Type *Found = nullptr; 580 581 // If this is a C++ record, check the bases first. 582 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 583 for (const auto &I : CXXRD->bases()) { 584 // Ignore empty records. 585 if (isEmptyRecord(Context, I.getType(), true)) 586 continue; 587 588 // If we already found an element then this isn't a single-element struct. 589 if (Found) 590 return nullptr; 591 592 // If this is non-empty and not a single element struct, the composite 593 // cannot be a single element struct. 594 Found = isSingleElementStruct(I.getType(), Context); 595 if (!Found) 596 return nullptr; 597 } 598 } 599 600 // Check for single element. 601 for (const auto *FD : RD->fields()) { 602 QualType FT = FD->getType(); 603 604 // Ignore empty fields. 605 if (isEmptyField(Context, FD, true)) 606 continue; 607 608 // If we already found an element then this isn't a single-element 609 // struct. 610 if (Found) 611 return nullptr; 612 613 // Treat single element arrays as the element. 614 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 615 if (AT->getSize().getZExtValue() != 1) 616 break; 617 FT = AT->getElementType(); 618 } 619 620 if (!isAggregateTypeForABI(FT)) { 621 Found = FT.getTypePtr(); 622 } else { 623 Found = isSingleElementStruct(FT, Context); 624 if (!Found) 625 return nullptr; 626 } 627 } 628 629 // We don't consider a struct a single-element struct if it has 630 // padding beyond the element type. 631 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 632 return nullptr; 633 634 return Found; 635 } 636 637 namespace { 638 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, 639 const ABIArgInfo &AI) { 640 // This default implementation defers to the llvm backend's va_arg 641 // instruction. It can handle only passing arguments directly 642 // (typically only handled in the backend for primitive types), or 643 // aggregates passed indirectly by pointer (NOTE: if the "byval" 644 // flag has ABI impact in the callee, this implementation cannot 645 // work.) 646 647 // Only a few cases are covered here at the moment -- those needed 648 // by the default abi. 649 llvm::Value *Val; 650 651 if (AI.isIndirect()) { 652 assert(!AI.getPaddingType() && 653 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 654 assert( 655 !AI.getIndirectRealign() && 656 "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!"); 657 658 auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty); 659 CharUnits TyAlignForABI = TyInfo.Align; 660 661 llvm::Type *BaseTy = 662 llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 663 llvm::Value *Addr = 664 CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy); 665 return Address(Addr, TyAlignForABI); 666 } else { 667 assert((AI.isDirect() || AI.isExtend()) && 668 "Unexpected ArgInfo Kind in generic VAArg emitter!"); 669 670 assert(!AI.getInReg() && 671 "Unexpected InReg seen in arginfo in generic VAArg emitter!"); 672 assert(!AI.getPaddingType() && 673 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 674 assert(!AI.getDirectOffset() && 675 "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!"); 676 assert(!AI.getCoerceToType() && 677 "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!"); 678 679 Address Temp = CGF.CreateMemTemp(Ty, "varet"); 680 Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty)); 681 CGF.Builder.CreateStore(Val, Temp); 682 return Temp; 683 } 684 } 685 686 /// DefaultABIInfo - The default implementation for ABI specific 687 /// details. This implementation provides information which results in 688 /// self-consistent and sensible LLVM IR generation, but does not 689 /// conform to any particular ABI. 690 class DefaultABIInfo : public ABIInfo { 691 public: 692 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 693 694 ABIArgInfo classifyReturnType(QualType RetTy) const; 695 ABIArgInfo classifyArgumentType(QualType RetTy) const; 696 697 void computeInfo(CGFunctionInfo &FI) const override { 698 if (!getCXXABI().classifyReturnType(FI)) 699 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 700 for (auto &I : FI.arguments()) 701 I.info = classifyArgumentType(I.type); 702 } 703 704 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 705 QualType Ty) const override { 706 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 707 } 708 }; 709 710 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 711 public: 712 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 713 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 714 }; 715 716 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 717 Ty = useFirstFieldIfTransparentUnion(Ty); 718 719 if (isAggregateTypeForABI(Ty)) { 720 // Records with non-trivial destructors/copy-constructors should not be 721 // passed by value. 722 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 723 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 724 725 return getNaturalAlignIndirect(Ty); 726 } 727 728 // Treat an enum type as its underlying type. 729 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 730 Ty = EnumTy->getDecl()->getIntegerType(); 731 732 ASTContext &Context = getContext(); 733 if (const auto *EIT = Ty->getAs<ExtIntType>()) 734 if (EIT->getNumBits() > 735 Context.getTypeSize(Context.getTargetInfo().hasInt128Type() 736 ? Context.Int128Ty 737 : Context.LongLongTy)) 738 return getNaturalAlignIndirect(Ty); 739 740 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 741 : ABIArgInfo::getDirect()); 742 } 743 744 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 745 if (RetTy->isVoidType()) 746 return ABIArgInfo::getIgnore(); 747 748 if (isAggregateTypeForABI(RetTy)) 749 return getNaturalAlignIndirect(RetTy); 750 751 // Treat an enum type as its underlying type. 752 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 753 RetTy = EnumTy->getDecl()->getIntegerType(); 754 755 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 756 if (EIT->getNumBits() > 757 getContext().getTypeSize(getContext().getTargetInfo().hasInt128Type() 758 ? getContext().Int128Ty 759 : getContext().LongLongTy)) 760 return getNaturalAlignIndirect(RetTy); 761 762 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 763 : ABIArgInfo::getDirect()); 764 } 765 766 //===----------------------------------------------------------------------===// 767 // WebAssembly ABI Implementation 768 // 769 // This is a very simple ABI that relies a lot on DefaultABIInfo. 770 //===----------------------------------------------------------------------===// 771 772 class WebAssemblyABIInfo final : public SwiftABIInfo { 773 public: 774 enum ABIKind { 775 MVP = 0, 776 ExperimentalMV = 1, 777 }; 778 779 private: 780 DefaultABIInfo defaultInfo; 781 ABIKind Kind; 782 783 public: 784 explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind) 785 : SwiftABIInfo(CGT), defaultInfo(CGT), Kind(Kind) {} 786 787 private: 788 ABIArgInfo classifyReturnType(QualType RetTy) const; 789 ABIArgInfo classifyArgumentType(QualType Ty) const; 790 791 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 792 // non-virtual, but computeInfo and EmitVAArg are virtual, so we 793 // overload them. 794 void computeInfo(CGFunctionInfo &FI) const override { 795 if (!getCXXABI().classifyReturnType(FI)) 796 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 797 for (auto &Arg : FI.arguments()) 798 Arg.info = classifyArgumentType(Arg.type); 799 } 800 801 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 802 QualType Ty) const override; 803 804 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 805 bool asReturnValue) const override { 806 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 807 } 808 809 bool isSwiftErrorInRegister() const override { 810 return false; 811 } 812 }; 813 814 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo { 815 public: 816 explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 817 WebAssemblyABIInfo::ABIKind K) 818 : TargetCodeGenInfo(std::make_unique<WebAssemblyABIInfo>(CGT, K)) {} 819 820 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 821 CodeGen::CodeGenModule &CGM) const override { 822 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 823 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 824 if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) { 825 llvm::Function *Fn = cast<llvm::Function>(GV); 826 llvm::AttrBuilder B; 827 B.addAttribute("wasm-import-module", Attr->getImportModule()); 828 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 829 } 830 if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) { 831 llvm::Function *Fn = cast<llvm::Function>(GV); 832 llvm::AttrBuilder B; 833 B.addAttribute("wasm-import-name", Attr->getImportName()); 834 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 835 } 836 if (const auto *Attr = FD->getAttr<WebAssemblyExportNameAttr>()) { 837 llvm::Function *Fn = cast<llvm::Function>(GV); 838 llvm::AttrBuilder B; 839 B.addAttribute("wasm-export-name", Attr->getExportName()); 840 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 841 } 842 } 843 844 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 845 llvm::Function *Fn = cast<llvm::Function>(GV); 846 if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype()) 847 Fn->addFnAttr("no-prototype"); 848 } 849 } 850 }; 851 852 /// Classify argument of given type \p Ty. 853 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const { 854 Ty = useFirstFieldIfTransparentUnion(Ty); 855 856 if (isAggregateTypeForABI(Ty)) { 857 // Records with non-trivial destructors/copy-constructors should not be 858 // passed by value. 859 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 860 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 861 // Ignore empty structs/unions. 862 if (isEmptyRecord(getContext(), Ty, true)) 863 return ABIArgInfo::getIgnore(); 864 // Lower single-element structs to just pass a regular value. TODO: We 865 // could do reasonable-size multiple-element structs too, using getExpand(), 866 // though watch out for things like bitfields. 867 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 868 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 869 // For the experimental multivalue ABI, fully expand all other aggregates 870 if (Kind == ABIKind::ExperimentalMV) { 871 const RecordType *RT = Ty->getAs<RecordType>(); 872 assert(RT); 873 bool HasBitField = false; 874 for (auto *Field : RT->getDecl()->fields()) { 875 if (Field->isBitField()) { 876 HasBitField = true; 877 break; 878 } 879 } 880 if (!HasBitField) 881 return ABIArgInfo::getExpand(); 882 } 883 } 884 885 // Otherwise just do the default thing. 886 return defaultInfo.classifyArgumentType(Ty); 887 } 888 889 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const { 890 if (isAggregateTypeForABI(RetTy)) { 891 // Records with non-trivial destructors/copy-constructors should not be 892 // returned by value. 893 if (!getRecordArgABI(RetTy, getCXXABI())) { 894 // Ignore empty structs/unions. 895 if (isEmptyRecord(getContext(), RetTy, true)) 896 return ABIArgInfo::getIgnore(); 897 // Lower single-element structs to just return a regular value. TODO: We 898 // could do reasonable-size multiple-element structs too, using 899 // ABIArgInfo::getDirect(). 900 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 901 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 902 // For the experimental multivalue ABI, return all other aggregates 903 if (Kind == ABIKind::ExperimentalMV) 904 return ABIArgInfo::getDirect(); 905 } 906 } 907 908 // Otherwise just do the default thing. 909 return defaultInfo.classifyReturnType(RetTy); 910 } 911 912 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 913 QualType Ty) const { 914 bool IsIndirect = isAggregateTypeForABI(Ty) && 915 !isEmptyRecord(getContext(), Ty, true) && 916 !isSingleElementStruct(Ty, getContext()); 917 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 918 getContext().getTypeInfoInChars(Ty), 919 CharUnits::fromQuantity(4), 920 /*AllowHigherAlign=*/true); 921 } 922 923 //===----------------------------------------------------------------------===// 924 // le32/PNaCl bitcode ABI Implementation 925 // 926 // This is a simplified version of the x86_32 ABI. Arguments and return values 927 // are always passed on the stack. 928 //===----------------------------------------------------------------------===// 929 930 class PNaClABIInfo : public ABIInfo { 931 public: 932 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 933 934 ABIArgInfo classifyReturnType(QualType RetTy) const; 935 ABIArgInfo classifyArgumentType(QualType RetTy) const; 936 937 void computeInfo(CGFunctionInfo &FI) const override; 938 Address EmitVAArg(CodeGenFunction &CGF, 939 Address VAListAddr, QualType Ty) const override; 940 }; 941 942 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 943 public: 944 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 945 : TargetCodeGenInfo(std::make_unique<PNaClABIInfo>(CGT)) {} 946 }; 947 948 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 949 if (!getCXXABI().classifyReturnType(FI)) 950 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 951 952 for (auto &I : FI.arguments()) 953 I.info = classifyArgumentType(I.type); 954 } 955 956 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 957 QualType Ty) const { 958 // The PNaCL ABI is a bit odd, in that varargs don't use normal 959 // function classification. Structs get passed directly for varargs 960 // functions, through a rewriting transform in 961 // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows 962 // this target to actually support a va_arg instructions with an 963 // aggregate type, unlike other targets. 964 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 965 } 966 967 /// Classify argument of given type \p Ty. 968 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 969 if (isAggregateTypeForABI(Ty)) { 970 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 971 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 972 return getNaturalAlignIndirect(Ty); 973 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 974 // Treat an enum type as its underlying type. 975 Ty = EnumTy->getDecl()->getIntegerType(); 976 } else if (Ty->isFloatingType()) { 977 // Floating-point types don't go inreg. 978 return ABIArgInfo::getDirect(); 979 } else if (const auto *EIT = Ty->getAs<ExtIntType>()) { 980 // Treat extended integers as integers if <=64, otherwise pass indirectly. 981 if (EIT->getNumBits() > 64) 982 return getNaturalAlignIndirect(Ty); 983 return ABIArgInfo::getDirect(); 984 } 985 986 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 987 : ABIArgInfo::getDirect()); 988 } 989 990 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 991 if (RetTy->isVoidType()) 992 return ABIArgInfo::getIgnore(); 993 994 // In the PNaCl ABI we always return records/structures on the stack. 995 if (isAggregateTypeForABI(RetTy)) 996 return getNaturalAlignIndirect(RetTy); 997 998 // Treat extended integers as integers if <=64, otherwise pass indirectly. 999 if (const auto *EIT = RetTy->getAs<ExtIntType>()) { 1000 if (EIT->getNumBits() > 64) 1001 return getNaturalAlignIndirect(RetTy); 1002 return ABIArgInfo::getDirect(); 1003 } 1004 1005 // Treat an enum type as its underlying type. 1006 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1007 RetTy = EnumTy->getDecl()->getIntegerType(); 1008 1009 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 1010 : ABIArgInfo::getDirect()); 1011 } 1012 1013 /// IsX86_MMXType - Return true if this is an MMX type. 1014 bool IsX86_MMXType(llvm::Type *IRType) { 1015 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 1016 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 1017 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 1018 IRType->getScalarSizeInBits() != 64; 1019 } 1020 1021 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1022 StringRef Constraint, 1023 llvm::Type* Ty) { 1024 bool IsMMXCons = llvm::StringSwitch<bool>(Constraint) 1025 .Cases("y", "&y", "^Ym", true) 1026 .Default(false); 1027 if (IsMMXCons && Ty->isVectorTy()) { 1028 if (cast<llvm::VectorType>(Ty)->getPrimitiveSizeInBits().getFixedSize() != 1029 64) { 1030 // Invalid MMX constraint 1031 return nullptr; 1032 } 1033 1034 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 1035 } 1036 1037 // No operation needed 1038 return Ty; 1039 } 1040 1041 /// Returns true if this type can be passed in SSE registers with the 1042 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 1043 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 1044 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 1045 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) { 1046 if (BT->getKind() == BuiltinType::LongDouble) { 1047 if (&Context.getTargetInfo().getLongDoubleFormat() == 1048 &llvm::APFloat::x87DoubleExtended()) 1049 return false; 1050 } 1051 return true; 1052 } 1053 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 1054 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 1055 // registers specially. 1056 unsigned VecSize = Context.getTypeSize(VT); 1057 if (VecSize == 128 || VecSize == 256 || VecSize == 512) 1058 return true; 1059 } 1060 return false; 1061 } 1062 1063 /// Returns true if this aggregate is small enough to be passed in SSE registers 1064 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 1065 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 1066 return NumMembers <= 4; 1067 } 1068 1069 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86. 1070 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) { 1071 auto AI = ABIArgInfo::getDirect(T); 1072 AI.setInReg(true); 1073 AI.setCanBeFlattened(false); 1074 return AI; 1075 } 1076 1077 //===----------------------------------------------------------------------===// 1078 // X86-32 ABI Implementation 1079 //===----------------------------------------------------------------------===// 1080 1081 /// Similar to llvm::CCState, but for Clang. 1082 struct CCState { 1083 CCState(CGFunctionInfo &FI) 1084 : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()) {} 1085 1086 llvm::SmallBitVector IsPreassigned; 1087 unsigned CC = CallingConv::CC_C; 1088 unsigned FreeRegs = 0; 1089 unsigned FreeSSERegs = 0; 1090 }; 1091 1092 /// X86_32ABIInfo - The X86-32 ABI information. 1093 class X86_32ABIInfo : public SwiftABIInfo { 1094 enum Class { 1095 Integer, 1096 Float 1097 }; 1098 1099 static const unsigned MinABIStackAlignInBytes = 4; 1100 1101 bool IsDarwinVectorABI; 1102 bool IsRetSmallStructInRegABI; 1103 bool IsWin32StructABI; 1104 bool IsSoftFloatABI; 1105 bool IsMCUABI; 1106 unsigned DefaultNumRegisterParameters; 1107 1108 static bool isRegisterSize(unsigned Size) { 1109 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 1110 } 1111 1112 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 1113 // FIXME: Assumes vectorcall is in use. 1114 return isX86VectorTypeForVectorCall(getContext(), Ty); 1115 } 1116 1117 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 1118 uint64_t NumMembers) const override { 1119 // FIXME: Assumes vectorcall is in use. 1120 return isX86VectorCallAggregateSmallEnough(NumMembers); 1121 } 1122 1123 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 1124 1125 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1126 /// such that the argument will be passed in memory. 1127 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 1128 1129 ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; 1130 1131 /// Return the alignment to use for the given type on the stack. 1132 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 1133 1134 Class classify(QualType Ty) const; 1135 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 1136 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 1137 1138 /// Updates the number of available free registers, returns 1139 /// true if any registers were allocated. 1140 bool updateFreeRegs(QualType Ty, CCState &State) const; 1141 1142 bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, 1143 bool &NeedsPadding) const; 1144 bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; 1145 1146 bool canExpandIndirectArgument(QualType Ty) const; 1147 1148 /// Rewrite the function info so that all memory arguments use 1149 /// inalloca. 1150 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 1151 1152 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1153 CharUnits &StackOffset, ABIArgInfo &Info, 1154 QualType Type) const; 1155 void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const; 1156 1157 public: 1158 1159 void computeInfo(CGFunctionInfo &FI) const override; 1160 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 1161 QualType Ty) const override; 1162 1163 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1164 bool RetSmallStructInRegABI, bool Win32StructABI, 1165 unsigned NumRegisterParameters, bool SoftFloatABI) 1166 : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), 1167 IsRetSmallStructInRegABI(RetSmallStructInRegABI), 1168 IsWin32StructABI(Win32StructABI), 1169 IsSoftFloatABI(SoftFloatABI), 1170 IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), 1171 DefaultNumRegisterParameters(NumRegisterParameters) {} 1172 1173 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 1174 bool asReturnValue) const override { 1175 // LLVM's x86-32 lowering currently only assigns up to three 1176 // integer registers and three fp registers. Oddly, it'll use up to 1177 // four vector registers for vectors, but those can overlap with the 1178 // scalar registers. 1179 return occupiesMoreThan(CGT, scalars, /*total*/ 3); 1180 } 1181 1182 bool isSwiftErrorInRegister() const override { 1183 // x86-32 lowering does not support passing swifterror in a register. 1184 return false; 1185 } 1186 }; 1187 1188 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 1189 public: 1190 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1191 bool RetSmallStructInRegABI, bool Win32StructABI, 1192 unsigned NumRegisterParameters, bool SoftFloatABI) 1193 : TargetCodeGenInfo(std::make_unique<X86_32ABIInfo>( 1194 CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, 1195 NumRegisterParameters, SoftFloatABI)) {} 1196 1197 static bool isStructReturnInRegABI( 1198 const llvm::Triple &Triple, const CodeGenOptions &Opts); 1199 1200 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1201 CodeGen::CodeGenModule &CGM) const override; 1202 1203 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1204 // Darwin uses different dwarf register numbers for EH. 1205 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 1206 return 4; 1207 } 1208 1209 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1210 llvm::Value *Address) const override; 1211 1212 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1213 StringRef Constraint, 1214 llvm::Type* Ty) const override { 1215 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1216 } 1217 1218 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 1219 std::string &Constraints, 1220 std::vector<llvm::Type *> &ResultRegTypes, 1221 std::vector<llvm::Type *> &ResultTruncRegTypes, 1222 std::vector<LValue> &ResultRegDests, 1223 std::string &AsmString, 1224 unsigned NumOutputs) const override; 1225 1226 llvm::Constant * 1227 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1228 unsigned Sig = (0xeb << 0) | // jmp rel8 1229 (0x06 << 8) | // .+0x08 1230 ('v' << 16) | 1231 ('2' << 24); 1232 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1233 } 1234 1235 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 1236 return "movl\t%ebp, %ebp" 1237 "\t\t// marker for objc_retainAutoreleaseReturnValue"; 1238 } 1239 }; 1240 1241 } 1242 1243 /// Rewrite input constraint references after adding some output constraints. 1244 /// In the case where there is one output and one input and we add one output, 1245 /// we need to replace all operand references greater than or equal to 1: 1246 /// mov $0, $1 1247 /// mov eax, $1 1248 /// The result will be: 1249 /// mov $0, $2 1250 /// mov eax, $2 1251 static void rewriteInputConstraintReferences(unsigned FirstIn, 1252 unsigned NumNewOuts, 1253 std::string &AsmString) { 1254 std::string Buf; 1255 llvm::raw_string_ostream OS(Buf); 1256 size_t Pos = 0; 1257 while (Pos < AsmString.size()) { 1258 size_t DollarStart = AsmString.find('$', Pos); 1259 if (DollarStart == std::string::npos) 1260 DollarStart = AsmString.size(); 1261 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 1262 if (DollarEnd == std::string::npos) 1263 DollarEnd = AsmString.size(); 1264 OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 1265 Pos = DollarEnd; 1266 size_t NumDollars = DollarEnd - DollarStart; 1267 if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 1268 // We have an operand reference. 1269 size_t DigitStart = Pos; 1270 if (AsmString[DigitStart] == '{') { 1271 OS << '{'; 1272 ++DigitStart; 1273 } 1274 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 1275 if (DigitEnd == std::string::npos) 1276 DigitEnd = AsmString.size(); 1277 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 1278 unsigned OperandIndex; 1279 if (!OperandStr.getAsInteger(10, OperandIndex)) { 1280 if (OperandIndex >= FirstIn) 1281 OperandIndex += NumNewOuts; 1282 OS << OperandIndex; 1283 } else { 1284 OS << OperandStr; 1285 } 1286 Pos = DigitEnd; 1287 } 1288 } 1289 AsmString = std::move(OS.str()); 1290 } 1291 1292 /// Add output constraints for EAX:EDX because they are return registers. 1293 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 1294 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 1295 std::vector<llvm::Type *> &ResultRegTypes, 1296 std::vector<llvm::Type *> &ResultTruncRegTypes, 1297 std::vector<LValue> &ResultRegDests, std::string &AsmString, 1298 unsigned NumOutputs) const { 1299 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 1300 1301 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 1302 // larger. 1303 if (!Constraints.empty()) 1304 Constraints += ','; 1305 if (RetWidth <= 32) { 1306 Constraints += "={eax}"; 1307 ResultRegTypes.push_back(CGF.Int32Ty); 1308 } else { 1309 // Use the 'A' constraint for EAX:EDX. 1310 Constraints += "=A"; 1311 ResultRegTypes.push_back(CGF.Int64Ty); 1312 } 1313 1314 // Truncate EAX or EAX:EDX to an integer of the appropriate size. 1315 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 1316 ResultTruncRegTypes.push_back(CoerceTy); 1317 1318 // Coerce the integer by bitcasting the return slot pointer. 1319 ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(CGF), 1320 CoerceTy->getPointerTo())); 1321 ResultRegDests.push_back(ReturnSlot); 1322 1323 rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 1324 } 1325 1326 /// shouldReturnTypeInRegister - Determine if the given type should be 1327 /// returned in a register (for the Darwin and MCU ABI). 1328 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 1329 ASTContext &Context) const { 1330 uint64_t Size = Context.getTypeSize(Ty); 1331 1332 // For i386, type must be register sized. 1333 // For the MCU ABI, it only needs to be <= 8-byte 1334 if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) 1335 return false; 1336 1337 if (Ty->isVectorType()) { 1338 // 64- and 128- bit vectors inside structures are not returned in 1339 // registers. 1340 if (Size == 64 || Size == 128) 1341 return false; 1342 1343 return true; 1344 } 1345 1346 // If this is a builtin, pointer, enum, complex type, member pointer, or 1347 // member function pointer it is ok. 1348 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 1349 Ty->isAnyComplexType() || Ty->isEnumeralType() || 1350 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 1351 return true; 1352 1353 // Arrays are treated like records. 1354 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 1355 return shouldReturnTypeInRegister(AT->getElementType(), Context); 1356 1357 // Otherwise, it must be a record type. 1358 const RecordType *RT = Ty->getAs<RecordType>(); 1359 if (!RT) return false; 1360 1361 // FIXME: Traverse bases here too. 1362 1363 // Structure types are passed in register if all fields would be 1364 // passed in a register. 1365 for (const auto *FD : RT->getDecl()->fields()) { 1366 // Empty fields are ignored. 1367 if (isEmptyField(Context, FD, true)) 1368 continue; 1369 1370 // Check fields recursively. 1371 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 1372 return false; 1373 } 1374 return true; 1375 } 1376 1377 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 1378 // Treat complex types as the element type. 1379 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 1380 Ty = CTy->getElementType(); 1381 1382 // Check for a type which we know has a simple scalar argument-passing 1383 // convention without any padding. (We're specifically looking for 32 1384 // and 64-bit integer and integer-equivalents, float, and double.) 1385 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 1386 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 1387 return false; 1388 1389 uint64_t Size = Context.getTypeSize(Ty); 1390 return Size == 32 || Size == 64; 1391 } 1392 1393 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD, 1394 uint64_t &Size) { 1395 for (const auto *FD : RD->fields()) { 1396 // Scalar arguments on the stack get 4 byte alignment on x86. If the 1397 // argument is smaller than 32-bits, expanding the struct will create 1398 // alignment padding. 1399 if (!is32Or64BitBasicType(FD->getType(), Context)) 1400 return false; 1401 1402 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 1403 // how to expand them yet, and the predicate for telling if a bitfield still 1404 // counts as "basic" is more complicated than what we were doing previously. 1405 if (FD->isBitField()) 1406 return false; 1407 1408 Size += Context.getTypeSize(FD->getType()); 1409 } 1410 return true; 1411 } 1412 1413 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD, 1414 uint64_t &Size) { 1415 // Don't do this if there are any non-empty bases. 1416 for (const CXXBaseSpecifier &Base : RD->bases()) { 1417 if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(), 1418 Size)) 1419 return false; 1420 } 1421 if (!addFieldSizes(Context, RD, Size)) 1422 return false; 1423 return true; 1424 } 1425 1426 /// Test whether an argument type which is to be passed indirectly (on the 1427 /// stack) would have the equivalent layout if it was expanded into separate 1428 /// arguments. If so, we prefer to do the latter to avoid inhibiting 1429 /// optimizations. 1430 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const { 1431 // We can only expand structure types. 1432 const RecordType *RT = Ty->getAs<RecordType>(); 1433 if (!RT) 1434 return false; 1435 const RecordDecl *RD = RT->getDecl(); 1436 uint64_t Size = 0; 1437 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1438 if (!IsWin32StructABI) { 1439 // On non-Windows, we have to conservatively match our old bitcode 1440 // prototypes in order to be ABI-compatible at the bitcode level. 1441 if (!CXXRD->isCLike()) 1442 return false; 1443 } else { 1444 // Don't do this for dynamic classes. 1445 if (CXXRD->isDynamicClass()) 1446 return false; 1447 } 1448 if (!addBaseAndFieldSizes(getContext(), CXXRD, Size)) 1449 return false; 1450 } else { 1451 if (!addFieldSizes(getContext(), RD, Size)) 1452 return false; 1453 } 1454 1455 // We can do this if there was no alignment padding. 1456 return Size == getContext().getTypeSize(Ty); 1457 } 1458 1459 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { 1460 // If the return value is indirect, then the hidden argument is consuming one 1461 // integer register. 1462 if (State.FreeRegs) { 1463 --State.FreeRegs; 1464 if (!IsMCUABI) 1465 return getNaturalAlignIndirectInReg(RetTy); 1466 } 1467 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 1468 } 1469 1470 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 1471 CCState &State) const { 1472 if (RetTy->isVoidType()) 1473 return ABIArgInfo::getIgnore(); 1474 1475 const Type *Base = nullptr; 1476 uint64_t NumElts = 0; 1477 if ((State.CC == llvm::CallingConv::X86_VectorCall || 1478 State.CC == llvm::CallingConv::X86_RegCall) && 1479 isHomogeneousAggregate(RetTy, Base, NumElts)) { 1480 // The LLVM struct type for such an aggregate should lower properly. 1481 return ABIArgInfo::getDirect(); 1482 } 1483 1484 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 1485 // On Darwin, some vectors are returned in registers. 1486 if (IsDarwinVectorABI) { 1487 uint64_t Size = getContext().getTypeSize(RetTy); 1488 1489 // 128-bit vectors are a special case; they are returned in 1490 // registers and we need to make sure to pick a type the LLVM 1491 // backend will like. 1492 if (Size == 128) 1493 return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 1494 llvm::Type::getInt64Ty(getVMContext()), 2)); 1495 1496 // Always return in register if it fits in a general purpose 1497 // register, or if it is 64 bits and has a single element. 1498 if ((Size == 8 || Size == 16 || Size == 32) || 1499 (Size == 64 && VT->getNumElements() == 1)) 1500 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1501 Size)); 1502 1503 return getIndirectReturnResult(RetTy, State); 1504 } 1505 1506 return ABIArgInfo::getDirect(); 1507 } 1508 1509 if (isAggregateTypeForABI(RetTy)) { 1510 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 1511 // Structures with flexible arrays are always indirect. 1512 if (RT->getDecl()->hasFlexibleArrayMember()) 1513 return getIndirectReturnResult(RetTy, State); 1514 } 1515 1516 // If specified, structs and unions are always indirect. 1517 if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) 1518 return getIndirectReturnResult(RetTy, State); 1519 1520 // Ignore empty structs/unions. 1521 if (isEmptyRecord(getContext(), RetTy, true)) 1522 return ABIArgInfo::getIgnore(); 1523 1524 // Small structures which are register sized are generally returned 1525 // in a register. 1526 if (shouldReturnTypeInRegister(RetTy, getContext())) { 1527 uint64_t Size = getContext().getTypeSize(RetTy); 1528 1529 // As a special-case, if the struct is a "single-element" struct, and 1530 // the field is of type "float" or "double", return it in a 1531 // floating-point register. (MSVC does not apply this special case.) 1532 // We apply a similar transformation for pointer types to improve the 1533 // quality of the generated IR. 1534 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 1535 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 1536 || SeltTy->hasPointerRepresentation()) 1537 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 1538 1539 // FIXME: We should be able to narrow this integer in cases with dead 1540 // padding. 1541 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 1542 } 1543 1544 return getIndirectReturnResult(RetTy, State); 1545 } 1546 1547 // Treat an enum type as its underlying type. 1548 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1549 RetTy = EnumTy->getDecl()->getIntegerType(); 1550 1551 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 1552 if (EIT->getNumBits() > 64) 1553 return getIndirectReturnResult(RetTy, State); 1554 1555 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 1556 : ABIArgInfo::getDirect()); 1557 } 1558 1559 static bool isSIMDVectorType(ASTContext &Context, QualType Ty) { 1560 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 1561 } 1562 1563 static bool isRecordWithSIMDVectorType(ASTContext &Context, QualType Ty) { 1564 const RecordType *RT = Ty->getAs<RecordType>(); 1565 if (!RT) 1566 return 0; 1567 const RecordDecl *RD = RT->getDecl(); 1568 1569 // If this is a C++ record, check the bases first. 1570 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1571 for (const auto &I : CXXRD->bases()) 1572 if (!isRecordWithSIMDVectorType(Context, I.getType())) 1573 return false; 1574 1575 for (const auto *i : RD->fields()) { 1576 QualType FT = i->getType(); 1577 1578 if (isSIMDVectorType(Context, FT)) 1579 return true; 1580 1581 if (isRecordWithSIMDVectorType(Context, FT)) 1582 return true; 1583 } 1584 1585 return false; 1586 } 1587 1588 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 1589 unsigned Align) const { 1590 // Otherwise, if the alignment is less than or equal to the minimum ABI 1591 // alignment, just use the default; the backend will handle this. 1592 if (Align <= MinABIStackAlignInBytes) 1593 return 0; // Use default alignment. 1594 1595 // On non-Darwin, the stack type alignment is always 4. 1596 if (!IsDarwinVectorABI) { 1597 // Set explicit alignment, since we may need to realign the top. 1598 return MinABIStackAlignInBytes; 1599 } 1600 1601 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 1602 if (Align >= 16 && (isSIMDVectorType(getContext(), Ty) || 1603 isRecordWithSIMDVectorType(getContext(), Ty))) 1604 return 16; 1605 1606 return MinABIStackAlignInBytes; 1607 } 1608 1609 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 1610 CCState &State) const { 1611 if (!ByVal) { 1612 if (State.FreeRegs) { 1613 --State.FreeRegs; // Non-byval indirects just use one pointer. 1614 if (!IsMCUABI) 1615 return getNaturalAlignIndirectInReg(Ty); 1616 } 1617 return getNaturalAlignIndirect(Ty, false); 1618 } 1619 1620 // Compute the byval alignment. 1621 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 1622 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 1623 if (StackAlign == 0) 1624 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); 1625 1626 // If the stack alignment is less than the type alignment, realign the 1627 // argument. 1628 bool Realign = TypeAlign > StackAlign; 1629 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), 1630 /*ByVal=*/true, Realign); 1631 } 1632 1633 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 1634 const Type *T = isSingleElementStruct(Ty, getContext()); 1635 if (!T) 1636 T = Ty.getTypePtr(); 1637 1638 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 1639 BuiltinType::Kind K = BT->getKind(); 1640 if (K == BuiltinType::Float || K == BuiltinType::Double) 1641 return Float; 1642 } 1643 return Integer; 1644 } 1645 1646 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { 1647 if (!IsSoftFloatABI) { 1648 Class C = classify(Ty); 1649 if (C == Float) 1650 return false; 1651 } 1652 1653 unsigned Size = getContext().getTypeSize(Ty); 1654 unsigned SizeInRegs = (Size + 31) / 32; 1655 1656 if (SizeInRegs == 0) 1657 return false; 1658 1659 if (!IsMCUABI) { 1660 if (SizeInRegs > State.FreeRegs) { 1661 State.FreeRegs = 0; 1662 return false; 1663 } 1664 } else { 1665 // The MCU psABI allows passing parameters in-reg even if there are 1666 // earlier parameters that are passed on the stack. Also, 1667 // it does not allow passing >8-byte structs in-register, 1668 // even if there are 3 free registers available. 1669 if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) 1670 return false; 1671 } 1672 1673 State.FreeRegs -= SizeInRegs; 1674 return true; 1675 } 1676 1677 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, 1678 bool &InReg, 1679 bool &NeedsPadding) const { 1680 // On Windows, aggregates other than HFAs are never passed in registers, and 1681 // they do not consume register slots. Homogenous floating-point aggregates 1682 // (HFAs) have already been dealt with at this point. 1683 if (IsWin32StructABI && isAggregateTypeForABI(Ty)) 1684 return false; 1685 1686 NeedsPadding = false; 1687 InReg = !IsMCUABI; 1688 1689 if (!updateFreeRegs(Ty, State)) 1690 return false; 1691 1692 if (IsMCUABI) 1693 return true; 1694 1695 if (State.CC == llvm::CallingConv::X86_FastCall || 1696 State.CC == llvm::CallingConv::X86_VectorCall || 1697 State.CC == llvm::CallingConv::X86_RegCall) { 1698 if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) 1699 NeedsPadding = true; 1700 1701 return false; 1702 } 1703 1704 return true; 1705 } 1706 1707 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { 1708 if (!updateFreeRegs(Ty, State)) 1709 return false; 1710 1711 if (IsMCUABI) 1712 return false; 1713 1714 if (State.CC == llvm::CallingConv::X86_FastCall || 1715 State.CC == llvm::CallingConv::X86_VectorCall || 1716 State.CC == llvm::CallingConv::X86_RegCall) { 1717 if (getContext().getTypeSize(Ty) > 32) 1718 return false; 1719 1720 return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || 1721 Ty->isReferenceType()); 1722 } 1723 1724 return true; 1725 } 1726 1727 void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const { 1728 // Vectorcall x86 works subtly different than in x64, so the format is 1729 // a bit different than the x64 version. First, all vector types (not HVAs) 1730 // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers. 1731 // This differs from the x64 implementation, where the first 6 by INDEX get 1732 // registers. 1733 // In the second pass over the arguments, HVAs are passed in the remaining 1734 // vector registers if possible, or indirectly by address. The address will be 1735 // passed in ECX/EDX if available. Any other arguments are passed according to 1736 // the usual fastcall rules. 1737 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); 1738 for (int I = 0, E = Args.size(); I < E; ++I) { 1739 const Type *Base = nullptr; 1740 uint64_t NumElts = 0; 1741 const QualType &Ty = Args[I].type; 1742 if ((Ty->isVectorType() || Ty->isBuiltinType()) && 1743 isHomogeneousAggregate(Ty, Base, NumElts)) { 1744 if (State.FreeSSERegs >= NumElts) { 1745 State.FreeSSERegs -= NumElts; 1746 Args[I].info = ABIArgInfo::getDirectInReg(); 1747 State.IsPreassigned.set(I); 1748 } 1749 } 1750 } 1751 } 1752 1753 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 1754 CCState &State) const { 1755 // FIXME: Set alignment on indirect arguments. 1756 bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall; 1757 bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall; 1758 bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall; 1759 1760 Ty = useFirstFieldIfTransparentUnion(Ty); 1761 TypeInfo TI = getContext().getTypeInfo(Ty); 1762 1763 // Check with the C++ ABI first. 1764 const RecordType *RT = Ty->getAs<RecordType>(); 1765 if (RT) { 1766 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 1767 if (RAA == CGCXXABI::RAA_Indirect) { 1768 return getIndirectResult(Ty, false, State); 1769 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 1770 // The field index doesn't matter, we'll fix it up later. 1771 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 1772 } 1773 } 1774 1775 // Regcall uses the concept of a homogenous vector aggregate, similar 1776 // to other targets. 1777 const Type *Base = nullptr; 1778 uint64_t NumElts = 0; 1779 if ((IsRegCall || IsVectorCall) && 1780 isHomogeneousAggregate(Ty, Base, NumElts)) { 1781 if (State.FreeSSERegs >= NumElts) { 1782 State.FreeSSERegs -= NumElts; 1783 1784 // Vectorcall passes HVAs directly and does not flatten them, but regcall 1785 // does. 1786 if (IsVectorCall) 1787 return getDirectX86Hva(); 1788 1789 if (Ty->isBuiltinType() || Ty->isVectorType()) 1790 return ABIArgInfo::getDirect(); 1791 return ABIArgInfo::getExpand(); 1792 } 1793 return getIndirectResult(Ty, /*ByVal=*/false, State); 1794 } 1795 1796 if (isAggregateTypeForABI(Ty)) { 1797 // Structures with flexible arrays are always indirect. 1798 // FIXME: This should not be byval! 1799 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 1800 return getIndirectResult(Ty, true, State); 1801 1802 // Ignore empty structs/unions on non-Windows. 1803 if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true)) 1804 return ABIArgInfo::getIgnore(); 1805 1806 llvm::LLVMContext &LLVMContext = getVMContext(); 1807 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 1808 bool NeedsPadding = false; 1809 bool InReg; 1810 if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { 1811 unsigned SizeInRegs = (TI.Width + 31) / 32; 1812 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 1813 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 1814 if (InReg) 1815 return ABIArgInfo::getDirectInReg(Result); 1816 else 1817 return ABIArgInfo::getDirect(Result); 1818 } 1819 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 1820 1821 // Pass over-aligned aggregates on Windows indirectly. This behavior was 1822 // added in MSVC 2015. 1823 if (IsWin32StructABI && TI.AlignIsRequired && TI.Align > 32) 1824 return getIndirectResult(Ty, /*ByVal=*/false, State); 1825 1826 // Expand small (<= 128-bit) record types when we know that the stack layout 1827 // of those arguments will match the struct. This is important because the 1828 // LLVM backend isn't smart enough to remove byval, which inhibits many 1829 // optimizations. 1830 // Don't do this for the MCU if there are still free integer registers 1831 // (see X86_64 ABI for full explanation). 1832 if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) && 1833 canExpandIndirectArgument(Ty)) 1834 return ABIArgInfo::getExpandWithPadding( 1835 IsFastCall || IsVectorCall || IsRegCall, PaddingType); 1836 1837 return getIndirectResult(Ty, true, State); 1838 } 1839 1840 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1841 // On Windows, vectors are passed directly if registers are available, or 1842 // indirectly if not. This avoids the need to align argument memory. Pass 1843 // user-defined vector types larger than 512 bits indirectly for simplicity. 1844 if (IsWin32StructABI) { 1845 if (TI.Width <= 512 && State.FreeSSERegs > 0) { 1846 --State.FreeSSERegs; 1847 return ABIArgInfo::getDirectInReg(); 1848 } 1849 return getIndirectResult(Ty, /*ByVal=*/false, State); 1850 } 1851 1852 // On Darwin, some vectors are passed in memory, we handle this by passing 1853 // it as an i8/i16/i32/i64. 1854 if (IsDarwinVectorABI) { 1855 if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) || 1856 (TI.Width == 64 && VT->getNumElements() == 1)) 1857 return ABIArgInfo::getDirect( 1858 llvm::IntegerType::get(getVMContext(), TI.Width)); 1859 } 1860 1861 if (IsX86_MMXType(CGT.ConvertType(Ty))) 1862 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 1863 1864 return ABIArgInfo::getDirect(); 1865 } 1866 1867 1868 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1869 Ty = EnumTy->getDecl()->getIntegerType(); 1870 1871 bool InReg = shouldPrimitiveUseInReg(Ty, State); 1872 1873 if (isPromotableIntegerTypeForABI(Ty)) { 1874 if (InReg) 1875 return ABIArgInfo::getExtendInReg(Ty); 1876 return ABIArgInfo::getExtend(Ty); 1877 } 1878 1879 if (const auto * EIT = Ty->getAs<ExtIntType>()) { 1880 if (EIT->getNumBits() <= 64) { 1881 if (InReg) 1882 return ABIArgInfo::getDirectInReg(); 1883 return ABIArgInfo::getDirect(); 1884 } 1885 return getIndirectResult(Ty, /*ByVal=*/false, State); 1886 } 1887 1888 if (InReg) 1889 return ABIArgInfo::getDirectInReg(); 1890 return ABIArgInfo::getDirect(); 1891 } 1892 1893 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 1894 CCState State(FI); 1895 if (IsMCUABI) 1896 State.FreeRegs = 3; 1897 else if (State.CC == llvm::CallingConv::X86_FastCall) { 1898 State.FreeRegs = 2; 1899 State.FreeSSERegs = 3; 1900 } else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1901 State.FreeRegs = 2; 1902 State.FreeSSERegs = 6; 1903 } else if (FI.getHasRegParm()) 1904 State.FreeRegs = FI.getRegParm(); 1905 else if (State.CC == llvm::CallingConv::X86_RegCall) { 1906 State.FreeRegs = 5; 1907 State.FreeSSERegs = 8; 1908 } else if (IsWin32StructABI) { 1909 // Since MSVC 2015, the first three SSE vectors have been passed in 1910 // registers. The rest are passed indirectly. 1911 State.FreeRegs = DefaultNumRegisterParameters; 1912 State.FreeSSERegs = 3; 1913 } else 1914 State.FreeRegs = DefaultNumRegisterParameters; 1915 1916 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 1917 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 1918 } else if (FI.getReturnInfo().isIndirect()) { 1919 // The C++ ABI is not aware of register usage, so we have to check if the 1920 // return value was sret and put it in a register ourselves if appropriate. 1921 if (State.FreeRegs) { 1922 --State.FreeRegs; // The sret parameter consumes a register. 1923 if (!IsMCUABI) 1924 FI.getReturnInfo().setInReg(true); 1925 } 1926 } 1927 1928 // The chain argument effectively gives us another free register. 1929 if (FI.isChainCall()) 1930 ++State.FreeRegs; 1931 1932 // For vectorcall, do a first pass over the arguments, assigning FP and vector 1933 // arguments to XMM registers as available. 1934 if (State.CC == llvm::CallingConv::X86_VectorCall) 1935 runVectorCallFirstPass(FI, State); 1936 1937 bool UsedInAlloca = false; 1938 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); 1939 for (int I = 0, E = Args.size(); I < E; ++I) { 1940 // Skip arguments that have already been assigned. 1941 if (State.IsPreassigned.test(I)) 1942 continue; 1943 1944 Args[I].info = classifyArgumentType(Args[I].type, State); 1945 UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca); 1946 } 1947 1948 // If we needed to use inalloca for any argument, do a second pass and rewrite 1949 // all the memory arguments to use inalloca. 1950 if (UsedInAlloca) 1951 rewriteWithInAlloca(FI); 1952 } 1953 1954 void 1955 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1956 CharUnits &StackOffset, ABIArgInfo &Info, 1957 QualType Type) const { 1958 // Arguments are always 4-byte-aligned. 1959 CharUnits WordSize = CharUnits::fromQuantity(4); 1960 assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct"); 1961 1962 // sret pointers and indirect things will require an extra pointer 1963 // indirection, unless they are byval. Most things are byval, and will not 1964 // require this indirection. 1965 bool IsIndirect = false; 1966 if (Info.isIndirect() && !Info.getIndirectByVal()) 1967 IsIndirect = true; 1968 Info = ABIArgInfo::getInAlloca(FrameFields.size(), IsIndirect); 1969 llvm::Type *LLTy = CGT.ConvertTypeForMem(Type); 1970 if (IsIndirect) 1971 LLTy = LLTy->getPointerTo(0); 1972 FrameFields.push_back(LLTy); 1973 StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(Type); 1974 1975 // Insert padding bytes to respect alignment. 1976 CharUnits FieldEnd = StackOffset; 1977 StackOffset = FieldEnd.alignTo(WordSize); 1978 if (StackOffset != FieldEnd) { 1979 CharUnits NumBytes = StackOffset - FieldEnd; 1980 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 1981 Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); 1982 FrameFields.push_back(Ty); 1983 } 1984 } 1985 1986 static bool isArgInAlloca(const ABIArgInfo &Info) { 1987 // Leave ignored and inreg arguments alone. 1988 switch (Info.getKind()) { 1989 case ABIArgInfo::InAlloca: 1990 return true; 1991 case ABIArgInfo::Ignore: 1992 case ABIArgInfo::IndirectAliased: 1993 return false; 1994 case ABIArgInfo::Indirect: 1995 case ABIArgInfo::Direct: 1996 case ABIArgInfo::Extend: 1997 return !Info.getInReg(); 1998 case ABIArgInfo::Expand: 1999 case ABIArgInfo::CoerceAndExpand: 2000 // These are aggregate types which are never passed in registers when 2001 // inalloca is involved. 2002 return true; 2003 } 2004 llvm_unreachable("invalid enum"); 2005 } 2006 2007 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 2008 assert(IsWin32StructABI && "inalloca only supported on win32"); 2009 2010 // Build a packed struct type for all of the arguments in memory. 2011 SmallVector<llvm::Type *, 6> FrameFields; 2012 2013 // The stack alignment is always 4. 2014 CharUnits StackAlign = CharUnits::fromQuantity(4); 2015 2016 CharUnits StackOffset; 2017 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 2018 2019 // Put 'this' into the struct before 'sret', if necessary. 2020 bool IsThisCall = 2021 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 2022 ABIArgInfo &Ret = FI.getReturnInfo(); 2023 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 2024 isArgInAlloca(I->info)) { 2025 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 2026 ++I; 2027 } 2028 2029 // Put the sret parameter into the inalloca struct if it's in memory. 2030 if (Ret.isIndirect() && !Ret.getInReg()) { 2031 addFieldToArgStruct(FrameFields, StackOffset, Ret, FI.getReturnType()); 2032 // On Windows, the hidden sret parameter is always returned in eax. 2033 Ret.setInAllocaSRet(IsWin32StructABI); 2034 } 2035 2036 // Skip the 'this' parameter in ecx. 2037 if (IsThisCall) 2038 ++I; 2039 2040 // Put arguments passed in memory into the struct. 2041 for (; I != E; ++I) { 2042 if (isArgInAlloca(I->info)) 2043 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 2044 } 2045 2046 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 2047 /*isPacked=*/true), 2048 StackAlign); 2049 } 2050 2051 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, 2052 Address VAListAddr, QualType Ty) const { 2053 2054 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 2055 2056 // x86-32 changes the alignment of certain arguments on the stack. 2057 // 2058 // Just messing with TypeInfo like this works because we never pass 2059 // anything indirectly. 2060 TypeInfo.Align = CharUnits::fromQuantity( 2061 getTypeStackAlignInBytes(Ty, TypeInfo.Align.getQuantity())); 2062 2063 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 2064 TypeInfo, CharUnits::fromQuantity(4), 2065 /*AllowHigherAlign*/ true); 2066 } 2067 2068 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 2069 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 2070 assert(Triple.getArch() == llvm::Triple::x86); 2071 2072 switch (Opts.getStructReturnConvention()) { 2073 case CodeGenOptions::SRCK_Default: 2074 break; 2075 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 2076 return false; 2077 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 2078 return true; 2079 } 2080 2081 if (Triple.isOSDarwin() || Triple.isOSIAMCU()) 2082 return true; 2083 2084 switch (Triple.getOS()) { 2085 case llvm::Triple::DragonFly: 2086 case llvm::Triple::FreeBSD: 2087 case llvm::Triple::OpenBSD: 2088 case llvm::Triple::Win32: 2089 return true; 2090 default: 2091 return false; 2092 } 2093 } 2094 2095 static void addX86InterruptAttrs(const FunctionDecl *FD, llvm::GlobalValue *GV, 2096 CodeGen::CodeGenModule &CGM) { 2097 if (!FD->hasAttr<AnyX86InterruptAttr>()) 2098 return; 2099 2100 llvm::Function *Fn = cast<llvm::Function>(GV); 2101 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2102 if (FD->getNumParams() == 0) 2103 return; 2104 2105 auto PtrTy = cast<PointerType>(FD->getParamDecl(0)->getType()); 2106 llvm::Type *ByValTy = CGM.getTypes().ConvertType(PtrTy->getPointeeType()); 2107 llvm::Attribute NewAttr = llvm::Attribute::getWithByValType( 2108 Fn->getContext(), ByValTy); 2109 Fn->addParamAttr(0, NewAttr); 2110 } 2111 2112 void X86_32TargetCodeGenInfo::setTargetAttributes( 2113 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2114 if (GV->isDeclaration()) 2115 return; 2116 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2117 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2118 llvm::Function *Fn = cast<llvm::Function>(GV); 2119 Fn->addFnAttr("stackrealign"); 2120 } 2121 2122 addX86InterruptAttrs(FD, GV, CGM); 2123 } 2124 } 2125 2126 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 2127 CodeGen::CodeGenFunction &CGF, 2128 llvm::Value *Address) const { 2129 CodeGen::CGBuilderTy &Builder = CGF.Builder; 2130 2131 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 2132 2133 // 0-7 are the eight integer registers; the order is different 2134 // on Darwin (for EH), but the range is the same. 2135 // 8 is %eip. 2136 AssignToArrayRange(Builder, Address, Four8, 0, 8); 2137 2138 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 2139 // 12-16 are st(0..4). Not sure why we stop at 4. 2140 // These have size 16, which is sizeof(long double) on 2141 // platforms with 8-byte alignment for that type. 2142 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 2143 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 2144 2145 } else { 2146 // 9 is %eflags, which doesn't get a size on Darwin for some 2147 // reason. 2148 Builder.CreateAlignedStore( 2149 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), 2150 CharUnits::One()); 2151 2152 // 11-16 are st(0..5). Not sure why we stop at 5. 2153 // These have size 12, which is sizeof(long double) on 2154 // platforms with 4-byte alignment for that type. 2155 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 2156 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 2157 } 2158 2159 return false; 2160 } 2161 2162 //===----------------------------------------------------------------------===// 2163 // X86-64 ABI Implementation 2164 //===----------------------------------------------------------------------===// 2165 2166 2167 namespace { 2168 /// The AVX ABI level for X86 targets. 2169 enum class X86AVXABILevel { 2170 None, 2171 AVX, 2172 AVX512 2173 }; 2174 2175 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. 2176 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { 2177 switch (AVXLevel) { 2178 case X86AVXABILevel::AVX512: 2179 return 512; 2180 case X86AVXABILevel::AVX: 2181 return 256; 2182 case X86AVXABILevel::None: 2183 return 128; 2184 } 2185 llvm_unreachable("Unknown AVXLevel"); 2186 } 2187 2188 /// X86_64ABIInfo - The X86_64 ABI information. 2189 class X86_64ABIInfo : public SwiftABIInfo { 2190 enum Class { 2191 Integer = 0, 2192 SSE, 2193 SSEUp, 2194 X87, 2195 X87Up, 2196 ComplexX87, 2197 NoClass, 2198 Memory 2199 }; 2200 2201 /// merge - Implement the X86_64 ABI merging algorithm. 2202 /// 2203 /// Merge an accumulating classification \arg Accum with a field 2204 /// classification \arg Field. 2205 /// 2206 /// \param Accum - The accumulating classification. This should 2207 /// always be either NoClass or the result of a previous merge 2208 /// call. In addition, this should never be Memory (the caller 2209 /// should just return Memory for the aggregate). 2210 static Class merge(Class Accum, Class Field); 2211 2212 /// postMerge - Implement the X86_64 ABI post merging algorithm. 2213 /// 2214 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 2215 /// final MEMORY or SSE classes when necessary. 2216 /// 2217 /// \param AggregateSize - The size of the current aggregate in 2218 /// the classification process. 2219 /// 2220 /// \param Lo - The classification for the parts of the type 2221 /// residing in the low word of the containing object. 2222 /// 2223 /// \param Hi - The classification for the parts of the type 2224 /// residing in the higher words of the containing object. 2225 /// 2226 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 2227 2228 /// classify - Determine the x86_64 register classes in which the 2229 /// given type T should be passed. 2230 /// 2231 /// \param Lo - The classification for the parts of the type 2232 /// residing in the low word of the containing object. 2233 /// 2234 /// \param Hi - The classification for the parts of the type 2235 /// residing in the high word of the containing object. 2236 /// 2237 /// \param OffsetBase - The bit offset of this type in the 2238 /// containing object. Some parameters are classified different 2239 /// depending on whether they straddle an eightbyte boundary. 2240 /// 2241 /// \param isNamedArg - Whether the argument in question is a "named" 2242 /// argument, as used in AMD64-ABI 3.5.7. 2243 /// 2244 /// If a word is unused its result will be NoClass; if a type should 2245 /// be passed in Memory then at least the classification of \arg Lo 2246 /// will be Memory. 2247 /// 2248 /// The \arg Lo class will be NoClass iff the argument is ignored. 2249 /// 2250 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 2251 /// also be ComplexX87. 2252 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 2253 bool isNamedArg) const; 2254 2255 llvm::Type *GetByteVectorType(QualType Ty) const; 2256 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 2257 unsigned IROffset, QualType SourceTy, 2258 unsigned SourceOffset) const; 2259 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 2260 unsigned IROffset, QualType SourceTy, 2261 unsigned SourceOffset) const; 2262 2263 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2264 /// such that the argument will be returned in memory. 2265 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 2266 2267 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2268 /// such that the argument will be passed in memory. 2269 /// 2270 /// \param freeIntRegs - The number of free integer registers remaining 2271 /// available. 2272 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 2273 2274 ABIArgInfo classifyReturnType(QualType RetTy) const; 2275 2276 ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs, 2277 unsigned &neededInt, unsigned &neededSSE, 2278 bool isNamedArg) const; 2279 2280 ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt, 2281 unsigned &NeededSSE) const; 2282 2283 ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 2284 unsigned &NeededSSE) const; 2285 2286 bool IsIllegalVectorType(QualType Ty) const; 2287 2288 /// The 0.98 ABI revision clarified a lot of ambiguities, 2289 /// unfortunately in ways that were not always consistent with 2290 /// certain previous compilers. In particular, platforms which 2291 /// required strict binary compatibility with older versions of GCC 2292 /// may need to exempt themselves. 2293 bool honorsRevision0_98() const { 2294 return !getTarget().getTriple().isOSDarwin(); 2295 } 2296 2297 /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to 2298 /// classify it as INTEGER (for compatibility with older clang compilers). 2299 bool classifyIntegerMMXAsSSE() const { 2300 // Clang <= 3.8 did not do this. 2301 if (getContext().getLangOpts().getClangABICompat() <= 2302 LangOptions::ClangABI::Ver3_8) 2303 return false; 2304 2305 const llvm::Triple &Triple = getTarget().getTriple(); 2306 if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4) 2307 return false; 2308 if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10) 2309 return false; 2310 return true; 2311 } 2312 2313 // GCC classifies vectors of __int128 as memory. 2314 bool passInt128VectorsInMem() const { 2315 // Clang <= 9.0 did not do this. 2316 if (getContext().getLangOpts().getClangABICompat() <= 2317 LangOptions::ClangABI::Ver9) 2318 return false; 2319 2320 const llvm::Triple &T = getTarget().getTriple(); 2321 return T.isOSLinux() || T.isOSNetBSD(); 2322 } 2323 2324 X86AVXABILevel AVXLevel; 2325 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 2326 // 64-bit hardware. 2327 bool Has64BitPointers; 2328 2329 public: 2330 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : 2331 SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2332 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 2333 } 2334 2335 bool isPassedUsingAVXType(QualType type) const { 2336 unsigned neededInt, neededSSE; 2337 // The freeIntRegs argument doesn't matter here. 2338 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 2339 /*isNamedArg*/true); 2340 if (info.isDirect()) { 2341 llvm::Type *ty = info.getCoerceToType(); 2342 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 2343 return vectorTy->getPrimitiveSizeInBits().getFixedSize() > 128; 2344 } 2345 return false; 2346 } 2347 2348 void computeInfo(CGFunctionInfo &FI) const override; 2349 2350 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2351 QualType Ty) const override; 2352 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 2353 QualType Ty) const override; 2354 2355 bool has64BitPointers() const { 2356 return Has64BitPointers; 2357 } 2358 2359 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 2360 bool asReturnValue) const override { 2361 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2362 } 2363 bool isSwiftErrorInRegister() const override { 2364 return true; 2365 } 2366 }; 2367 2368 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 2369 class WinX86_64ABIInfo : public SwiftABIInfo { 2370 public: 2371 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2372 : SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2373 IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} 2374 2375 void computeInfo(CGFunctionInfo &FI) const override; 2376 2377 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2378 QualType Ty) const override; 2379 2380 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 2381 // FIXME: Assumes vectorcall is in use. 2382 return isX86VectorTypeForVectorCall(getContext(), Ty); 2383 } 2384 2385 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 2386 uint64_t NumMembers) const override { 2387 // FIXME: Assumes vectorcall is in use. 2388 return isX86VectorCallAggregateSmallEnough(NumMembers); 2389 } 2390 2391 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars, 2392 bool asReturnValue) const override { 2393 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2394 } 2395 2396 bool isSwiftErrorInRegister() const override { 2397 return true; 2398 } 2399 2400 private: 2401 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType, 2402 bool IsVectorCall, bool IsRegCall) const; 2403 ABIArgInfo reclassifyHvaArgForVectorCall(QualType Ty, unsigned &FreeSSERegs, 2404 const ABIArgInfo ¤t) const; 2405 2406 X86AVXABILevel AVXLevel; 2407 2408 bool IsMingw64; 2409 }; 2410 2411 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2412 public: 2413 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2414 : TargetCodeGenInfo(std::make_unique<X86_64ABIInfo>(CGT, AVXLevel)) {} 2415 2416 const X86_64ABIInfo &getABIInfo() const { 2417 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 2418 } 2419 2420 /// Disable tail call on x86-64. The epilogue code before the tail jump blocks 2421 /// autoreleaseRV/retainRV and autoreleaseRV/unsafeClaimRV optimizations. 2422 bool markARCOptimizedReturnCallsAsNoTail() const override { return true; } 2423 2424 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2425 return 7; 2426 } 2427 2428 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2429 llvm::Value *Address) const override { 2430 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2431 2432 // 0-15 are the 16 integer registers. 2433 // 16 is %rip. 2434 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2435 return false; 2436 } 2437 2438 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 2439 StringRef Constraint, 2440 llvm::Type* Ty) const override { 2441 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 2442 } 2443 2444 bool isNoProtoCallVariadic(const CallArgList &args, 2445 const FunctionNoProtoType *fnType) const override { 2446 // The default CC on x86-64 sets %al to the number of SSA 2447 // registers used, and GCC sets this when calling an unprototyped 2448 // function, so we override the default behavior. However, don't do 2449 // that when AVX types are involved: the ABI explicitly states it is 2450 // undefined, and it doesn't work in practice because of how the ABI 2451 // defines varargs anyway. 2452 if (fnType->getCallConv() == CC_C) { 2453 bool HasAVXType = false; 2454 for (CallArgList::const_iterator 2455 it = args.begin(), ie = args.end(); it != ie; ++it) { 2456 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 2457 HasAVXType = true; 2458 break; 2459 } 2460 } 2461 2462 if (!HasAVXType) 2463 return true; 2464 } 2465 2466 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 2467 } 2468 2469 llvm::Constant * 2470 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 2471 unsigned Sig = (0xeb << 0) | // jmp rel8 2472 (0x06 << 8) | // .+0x08 2473 ('v' << 16) | 2474 ('2' << 24); 2475 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 2476 } 2477 2478 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2479 CodeGen::CodeGenModule &CGM) const override { 2480 if (GV->isDeclaration()) 2481 return; 2482 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2483 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2484 llvm::Function *Fn = cast<llvm::Function>(GV); 2485 Fn->addFnAttr("stackrealign"); 2486 } 2487 2488 addX86InterruptAttrs(FD, GV, CGM); 2489 } 2490 } 2491 2492 void checkFunctionCallABI(CodeGenModule &CGM, SourceLocation CallLoc, 2493 const FunctionDecl *Caller, 2494 const FunctionDecl *Callee, 2495 const CallArgList &Args) const override; 2496 }; 2497 2498 static void initFeatureMaps(const ASTContext &Ctx, 2499 llvm::StringMap<bool> &CallerMap, 2500 const FunctionDecl *Caller, 2501 llvm::StringMap<bool> &CalleeMap, 2502 const FunctionDecl *Callee) { 2503 if (CalleeMap.empty() && CallerMap.empty()) { 2504 // The caller is potentially nullptr in the case where the call isn't in a 2505 // function. In this case, the getFunctionFeatureMap ensures we just get 2506 // the TU level setting (since it cannot be modified by 'target'.. 2507 Ctx.getFunctionFeatureMap(CallerMap, Caller); 2508 Ctx.getFunctionFeatureMap(CalleeMap, Callee); 2509 } 2510 } 2511 2512 static bool checkAVXParamFeature(DiagnosticsEngine &Diag, 2513 SourceLocation CallLoc, 2514 const llvm::StringMap<bool> &CallerMap, 2515 const llvm::StringMap<bool> &CalleeMap, 2516 QualType Ty, StringRef Feature, 2517 bool IsArgument) { 2518 bool CallerHasFeat = CallerMap.lookup(Feature); 2519 bool CalleeHasFeat = CalleeMap.lookup(Feature); 2520 if (!CallerHasFeat && !CalleeHasFeat) 2521 return Diag.Report(CallLoc, diag::warn_avx_calling_convention) 2522 << IsArgument << Ty << Feature; 2523 2524 // Mixing calling conventions here is very clearly an error. 2525 if (!CallerHasFeat || !CalleeHasFeat) 2526 return Diag.Report(CallLoc, diag::err_avx_calling_convention) 2527 << IsArgument << Ty << Feature; 2528 2529 // Else, both caller and callee have the required feature, so there is no need 2530 // to diagnose. 2531 return false; 2532 } 2533 2534 static bool checkAVXParam(DiagnosticsEngine &Diag, ASTContext &Ctx, 2535 SourceLocation CallLoc, 2536 const llvm::StringMap<bool> &CallerMap, 2537 const llvm::StringMap<bool> &CalleeMap, QualType Ty, 2538 bool IsArgument) { 2539 uint64_t Size = Ctx.getTypeSize(Ty); 2540 if (Size > 256) 2541 return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, 2542 "avx512f", IsArgument); 2543 2544 if (Size > 128) 2545 return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, "avx", 2546 IsArgument); 2547 2548 return false; 2549 } 2550 2551 void X86_64TargetCodeGenInfo::checkFunctionCallABI( 2552 CodeGenModule &CGM, SourceLocation CallLoc, const FunctionDecl *Caller, 2553 const FunctionDecl *Callee, const CallArgList &Args) const { 2554 llvm::StringMap<bool> CallerMap; 2555 llvm::StringMap<bool> CalleeMap; 2556 unsigned ArgIndex = 0; 2557 2558 // We need to loop through the actual call arguments rather than the the 2559 // function's parameters, in case this variadic. 2560 for (const CallArg &Arg : Args) { 2561 // The "avx" feature changes how vectors >128 in size are passed. "avx512f" 2562 // additionally changes how vectors >256 in size are passed. Like GCC, we 2563 // warn when a function is called with an argument where this will change. 2564 // Unlike GCC, we also error when it is an obvious ABI mismatch, that is, 2565 // the caller and callee features are mismatched. 2566 // Unfortunately, we cannot do this diagnostic in SEMA, since the callee can 2567 // change its ABI with attribute-target after this call. 2568 if (Arg.getType()->isVectorType() && 2569 CGM.getContext().getTypeSize(Arg.getType()) > 128) { 2570 initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee); 2571 QualType Ty = Arg.getType(); 2572 // The CallArg seems to have desugared the type already, so for clearer 2573 // diagnostics, replace it with the type in the FunctionDecl if possible. 2574 if (ArgIndex < Callee->getNumParams()) 2575 Ty = Callee->getParamDecl(ArgIndex)->getType(); 2576 2577 if (checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap, 2578 CalleeMap, Ty, /*IsArgument*/ true)) 2579 return; 2580 } 2581 ++ArgIndex; 2582 } 2583 2584 // Check return always, as we don't have a good way of knowing in codegen 2585 // whether this value is used, tail-called, etc. 2586 if (Callee->getReturnType()->isVectorType() && 2587 CGM.getContext().getTypeSize(Callee->getReturnType()) > 128) { 2588 initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee); 2589 checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap, 2590 CalleeMap, Callee->getReturnType(), 2591 /*IsArgument*/ false); 2592 } 2593 } 2594 2595 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 2596 // If the argument does not end in .lib, automatically add the suffix. 2597 // If the argument contains a space, enclose it in quotes. 2598 // This matches the behavior of MSVC. 2599 bool Quote = (Lib.find(' ') != StringRef::npos); 2600 std::string ArgStr = Quote ? "\"" : ""; 2601 ArgStr += Lib; 2602 if (!Lib.endswith_lower(".lib") && !Lib.endswith_lower(".a")) 2603 ArgStr += ".lib"; 2604 ArgStr += Quote ? "\"" : ""; 2605 return ArgStr; 2606 } 2607 2608 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 2609 public: 2610 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2611 bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, 2612 unsigned NumRegisterParameters) 2613 : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, 2614 Win32StructABI, NumRegisterParameters, false) {} 2615 2616 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2617 CodeGen::CodeGenModule &CGM) const override; 2618 2619 void getDependentLibraryOption(llvm::StringRef Lib, 2620 llvm::SmallString<24> &Opt) const override { 2621 Opt = "/DEFAULTLIB:"; 2622 Opt += qualifyWindowsLibrary(Lib); 2623 } 2624 2625 void getDetectMismatchOption(llvm::StringRef Name, 2626 llvm::StringRef Value, 2627 llvm::SmallString<32> &Opt) const override { 2628 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2629 } 2630 }; 2631 2632 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2633 CodeGen::CodeGenModule &CGM) { 2634 if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) { 2635 2636 if (CGM.getCodeGenOpts().StackProbeSize != 4096) 2637 Fn->addFnAttr("stack-probe-size", 2638 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 2639 if (CGM.getCodeGenOpts().NoStackArgProbe) 2640 Fn->addFnAttr("no-stack-arg-probe"); 2641 } 2642 } 2643 2644 void WinX86_32TargetCodeGenInfo::setTargetAttributes( 2645 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2646 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2647 if (GV->isDeclaration()) 2648 return; 2649 addStackProbeTargetAttributes(D, GV, CGM); 2650 } 2651 2652 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2653 public: 2654 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2655 X86AVXABILevel AVXLevel) 2656 : TargetCodeGenInfo(std::make_unique<WinX86_64ABIInfo>(CGT, AVXLevel)) {} 2657 2658 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2659 CodeGen::CodeGenModule &CGM) const override; 2660 2661 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2662 return 7; 2663 } 2664 2665 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2666 llvm::Value *Address) const override { 2667 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2668 2669 // 0-15 are the 16 integer registers. 2670 // 16 is %rip. 2671 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2672 return false; 2673 } 2674 2675 void getDependentLibraryOption(llvm::StringRef Lib, 2676 llvm::SmallString<24> &Opt) const override { 2677 Opt = "/DEFAULTLIB:"; 2678 Opt += qualifyWindowsLibrary(Lib); 2679 } 2680 2681 void getDetectMismatchOption(llvm::StringRef Name, 2682 llvm::StringRef Value, 2683 llvm::SmallString<32> &Opt) const override { 2684 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2685 } 2686 }; 2687 2688 void WinX86_64TargetCodeGenInfo::setTargetAttributes( 2689 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2690 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2691 if (GV->isDeclaration()) 2692 return; 2693 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2694 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2695 llvm::Function *Fn = cast<llvm::Function>(GV); 2696 Fn->addFnAttr("stackrealign"); 2697 } 2698 2699 addX86InterruptAttrs(FD, GV, CGM); 2700 } 2701 2702 addStackProbeTargetAttributes(D, GV, CGM); 2703 } 2704 } 2705 2706 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 2707 Class &Hi) const { 2708 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 2709 // 2710 // (a) If one of the classes is Memory, the whole argument is passed in 2711 // memory. 2712 // 2713 // (b) If X87UP is not preceded by X87, the whole argument is passed in 2714 // memory. 2715 // 2716 // (c) If the size of the aggregate exceeds two eightbytes and the first 2717 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 2718 // argument is passed in memory. NOTE: This is necessary to keep the 2719 // ABI working for processors that don't support the __m256 type. 2720 // 2721 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 2722 // 2723 // Some of these are enforced by the merging logic. Others can arise 2724 // only with unions; for example: 2725 // union { _Complex double; unsigned; } 2726 // 2727 // Note that clauses (b) and (c) were added in 0.98. 2728 // 2729 if (Hi == Memory) 2730 Lo = Memory; 2731 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 2732 Lo = Memory; 2733 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 2734 Lo = Memory; 2735 if (Hi == SSEUp && Lo != SSE) 2736 Hi = SSE; 2737 } 2738 2739 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 2740 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 2741 // classified recursively so that always two fields are 2742 // considered. The resulting class is calculated according to 2743 // the classes of the fields in the eightbyte: 2744 // 2745 // (a) If both classes are equal, this is the resulting class. 2746 // 2747 // (b) If one of the classes is NO_CLASS, the resulting class is 2748 // the other class. 2749 // 2750 // (c) If one of the classes is MEMORY, the result is the MEMORY 2751 // class. 2752 // 2753 // (d) If one of the classes is INTEGER, the result is the 2754 // INTEGER. 2755 // 2756 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 2757 // MEMORY is used as class. 2758 // 2759 // (f) Otherwise class SSE is used. 2760 2761 // Accum should never be memory (we should have returned) or 2762 // ComplexX87 (because this cannot be passed in a structure). 2763 assert((Accum != Memory && Accum != ComplexX87) && 2764 "Invalid accumulated classification during merge."); 2765 if (Accum == Field || Field == NoClass) 2766 return Accum; 2767 if (Field == Memory) 2768 return Memory; 2769 if (Accum == NoClass) 2770 return Field; 2771 if (Accum == Integer || Field == Integer) 2772 return Integer; 2773 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 2774 Accum == X87 || Accum == X87Up) 2775 return Memory; 2776 return SSE; 2777 } 2778 2779 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 2780 Class &Lo, Class &Hi, bool isNamedArg) const { 2781 // FIXME: This code can be simplified by introducing a simple value class for 2782 // Class pairs with appropriate constructor methods for the various 2783 // situations. 2784 2785 // FIXME: Some of the split computations are wrong; unaligned vectors 2786 // shouldn't be passed in registers for example, so there is no chance they 2787 // can straddle an eightbyte. Verify & simplify. 2788 2789 Lo = Hi = NoClass; 2790 2791 Class &Current = OffsetBase < 64 ? Lo : Hi; 2792 Current = Memory; 2793 2794 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 2795 BuiltinType::Kind k = BT->getKind(); 2796 2797 if (k == BuiltinType::Void) { 2798 Current = NoClass; 2799 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 2800 Lo = Integer; 2801 Hi = Integer; 2802 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 2803 Current = Integer; 2804 } else if (k == BuiltinType::Float || k == BuiltinType::Double) { 2805 Current = SSE; 2806 } else if (k == BuiltinType::LongDouble) { 2807 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2808 if (LDF == &llvm::APFloat::IEEEquad()) { 2809 Lo = SSE; 2810 Hi = SSEUp; 2811 } else if (LDF == &llvm::APFloat::x87DoubleExtended()) { 2812 Lo = X87; 2813 Hi = X87Up; 2814 } else if (LDF == &llvm::APFloat::IEEEdouble()) { 2815 Current = SSE; 2816 } else 2817 llvm_unreachable("unexpected long double representation!"); 2818 } 2819 // FIXME: _Decimal32 and _Decimal64 are SSE. 2820 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 2821 return; 2822 } 2823 2824 if (const EnumType *ET = Ty->getAs<EnumType>()) { 2825 // Classify the underlying integer type. 2826 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 2827 return; 2828 } 2829 2830 if (Ty->hasPointerRepresentation()) { 2831 Current = Integer; 2832 return; 2833 } 2834 2835 if (Ty->isMemberPointerType()) { 2836 if (Ty->isMemberFunctionPointerType()) { 2837 if (Has64BitPointers) { 2838 // If Has64BitPointers, this is an {i64, i64}, so classify both 2839 // Lo and Hi now. 2840 Lo = Hi = Integer; 2841 } else { 2842 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 2843 // straddles an eightbyte boundary, Hi should be classified as well. 2844 uint64_t EB_FuncPtr = (OffsetBase) / 64; 2845 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 2846 if (EB_FuncPtr != EB_ThisAdj) { 2847 Lo = Hi = Integer; 2848 } else { 2849 Current = Integer; 2850 } 2851 } 2852 } else { 2853 Current = Integer; 2854 } 2855 return; 2856 } 2857 2858 if (const VectorType *VT = Ty->getAs<VectorType>()) { 2859 uint64_t Size = getContext().getTypeSize(VT); 2860 if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { 2861 // gcc passes the following as integer: 2862 // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> 2863 // 2 bytes - <2 x char>, <1 x short> 2864 // 1 byte - <1 x char> 2865 Current = Integer; 2866 2867 // If this type crosses an eightbyte boundary, it should be 2868 // split. 2869 uint64_t EB_Lo = (OffsetBase) / 64; 2870 uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; 2871 if (EB_Lo != EB_Hi) 2872 Hi = Lo; 2873 } else if (Size == 64) { 2874 QualType ElementType = VT->getElementType(); 2875 2876 // gcc passes <1 x double> in memory. :( 2877 if (ElementType->isSpecificBuiltinType(BuiltinType::Double)) 2878 return; 2879 2880 // gcc passes <1 x long long> as SSE but clang used to unconditionally 2881 // pass them as integer. For platforms where clang is the de facto 2882 // platform compiler, we must continue to use integer. 2883 if (!classifyIntegerMMXAsSSE() && 2884 (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) || 2885 ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) || 2886 ElementType->isSpecificBuiltinType(BuiltinType::Long) || 2887 ElementType->isSpecificBuiltinType(BuiltinType::ULong))) 2888 Current = Integer; 2889 else 2890 Current = SSE; 2891 2892 // If this type crosses an eightbyte boundary, it should be 2893 // split. 2894 if (OffsetBase && OffsetBase != 64) 2895 Hi = Lo; 2896 } else if (Size == 128 || 2897 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { 2898 QualType ElementType = VT->getElementType(); 2899 2900 // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :( 2901 if (passInt128VectorsInMem() && Size != 128 && 2902 (ElementType->isSpecificBuiltinType(BuiltinType::Int128) || 2903 ElementType->isSpecificBuiltinType(BuiltinType::UInt128))) 2904 return; 2905 2906 // Arguments of 256-bits are split into four eightbyte chunks. The 2907 // least significant one belongs to class SSE and all the others to class 2908 // SSEUP. The original Lo and Hi design considers that types can't be 2909 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 2910 // This design isn't correct for 256-bits, but since there're no cases 2911 // where the upper parts would need to be inspected, avoid adding 2912 // complexity and just consider Hi to match the 64-256 part. 2913 // 2914 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 2915 // registers if they are "named", i.e. not part of the "..." of a 2916 // variadic function. 2917 // 2918 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are 2919 // split into eight eightbyte chunks, one SSE and seven SSEUP. 2920 Lo = SSE; 2921 Hi = SSEUp; 2922 } 2923 return; 2924 } 2925 2926 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 2927 QualType ET = getContext().getCanonicalType(CT->getElementType()); 2928 2929 uint64_t Size = getContext().getTypeSize(Ty); 2930 if (ET->isIntegralOrEnumerationType()) { 2931 if (Size <= 64) 2932 Current = Integer; 2933 else if (Size <= 128) 2934 Lo = Hi = Integer; 2935 } else if (ET == getContext().FloatTy) { 2936 Current = SSE; 2937 } else if (ET == getContext().DoubleTy) { 2938 Lo = Hi = SSE; 2939 } else if (ET == getContext().LongDoubleTy) { 2940 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2941 if (LDF == &llvm::APFloat::IEEEquad()) 2942 Current = Memory; 2943 else if (LDF == &llvm::APFloat::x87DoubleExtended()) 2944 Current = ComplexX87; 2945 else if (LDF == &llvm::APFloat::IEEEdouble()) 2946 Lo = Hi = SSE; 2947 else 2948 llvm_unreachable("unexpected long double representation!"); 2949 } 2950 2951 // If this complex type crosses an eightbyte boundary then it 2952 // should be split. 2953 uint64_t EB_Real = (OffsetBase) / 64; 2954 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 2955 if (Hi == NoClass && EB_Real != EB_Imag) 2956 Hi = Lo; 2957 2958 return; 2959 } 2960 2961 if (const auto *EITy = Ty->getAs<ExtIntType>()) { 2962 if (EITy->getNumBits() <= 64) 2963 Current = Integer; 2964 else if (EITy->getNumBits() <= 128) 2965 Lo = Hi = Integer; 2966 // Larger values need to get passed in memory. 2967 return; 2968 } 2969 2970 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 2971 // Arrays are treated like structures. 2972 2973 uint64_t Size = getContext().getTypeSize(Ty); 2974 2975 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2976 // than eight eightbytes, ..., it has class MEMORY. 2977 if (Size > 512) 2978 return; 2979 2980 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 2981 // fields, it has class MEMORY. 2982 // 2983 // Only need to check alignment of array base. 2984 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 2985 return; 2986 2987 // Otherwise implement simplified merge. We could be smarter about 2988 // this, but it isn't worth it and would be harder to verify. 2989 Current = NoClass; 2990 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 2991 uint64_t ArraySize = AT->getSize().getZExtValue(); 2992 2993 // The only case a 256-bit wide vector could be used is when the array 2994 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2995 // to work for sizes wider than 128, early check and fallback to memory. 2996 // 2997 if (Size > 128 && 2998 (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel))) 2999 return; 3000 3001 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 3002 Class FieldLo, FieldHi; 3003 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 3004 Lo = merge(Lo, FieldLo); 3005 Hi = merge(Hi, FieldHi); 3006 if (Lo == Memory || Hi == Memory) 3007 break; 3008 } 3009 3010 postMerge(Size, Lo, Hi); 3011 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 3012 return; 3013 } 3014 3015 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3016 uint64_t Size = getContext().getTypeSize(Ty); 3017 3018 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 3019 // than eight eightbytes, ..., it has class MEMORY. 3020 if (Size > 512) 3021 return; 3022 3023 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 3024 // copy constructor or a non-trivial destructor, it is passed by invisible 3025 // reference. 3026 if (getRecordArgABI(RT, getCXXABI())) 3027 return; 3028 3029 const RecordDecl *RD = RT->getDecl(); 3030 3031 // Assume variable sized types are passed in memory. 3032 if (RD->hasFlexibleArrayMember()) 3033 return; 3034 3035 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 3036 3037 // Reset Lo class, this will be recomputed. 3038 Current = NoClass; 3039 3040 // If this is a C++ record, classify the bases first. 3041 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3042 for (const auto &I : CXXRD->bases()) { 3043 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3044 "Unexpected base class!"); 3045 const auto *Base = 3046 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 3047 3048 // Classify this field. 3049 // 3050 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 3051 // single eightbyte, each is classified separately. Each eightbyte gets 3052 // initialized to class NO_CLASS. 3053 Class FieldLo, FieldHi; 3054 uint64_t Offset = 3055 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 3056 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 3057 Lo = merge(Lo, FieldLo); 3058 Hi = merge(Hi, FieldHi); 3059 if (Lo == Memory || Hi == Memory) { 3060 postMerge(Size, Lo, Hi); 3061 return; 3062 } 3063 } 3064 } 3065 3066 // Classify the fields one at a time, merging the results. 3067 unsigned idx = 0; 3068 bool UseClang11Compat = getContext().getLangOpts().getClangABICompat() <= 3069 LangOptions::ClangABI::Ver11 || 3070 getContext().getTargetInfo().getTriple().isPS4(); 3071 bool IsUnion = RT->isUnionType() && !UseClang11Compat; 3072 3073 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3074 i != e; ++i, ++idx) { 3075 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 3076 bool BitField = i->isBitField(); 3077 3078 // Ignore padding bit-fields. 3079 if (BitField && i->isUnnamedBitfield()) 3080 continue; 3081 3082 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 3083 // eight eightbytes, or it contains unaligned fields, it has class MEMORY. 3084 // 3085 // The only case a 256-bit or a 512-bit wide vector could be used is when 3086 // the struct contains a single 256-bit or 512-bit element. Early check 3087 // and fallback to memory. 3088 // 3089 // FIXME: Extended the Lo and Hi logic properly to work for size wider 3090 // than 128. 3091 if (Size > 128 && 3092 ((!IsUnion && Size != getContext().getTypeSize(i->getType())) || 3093 Size > getNativeVectorSizeForAVXABI(AVXLevel))) { 3094 Lo = Memory; 3095 postMerge(Size, Lo, Hi); 3096 return; 3097 } 3098 // Note, skip this test for bit-fields, see below. 3099 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 3100 Lo = Memory; 3101 postMerge(Size, Lo, Hi); 3102 return; 3103 } 3104 3105 // Classify this field. 3106 // 3107 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 3108 // exceeds a single eightbyte, each is classified 3109 // separately. Each eightbyte gets initialized to class 3110 // NO_CLASS. 3111 Class FieldLo, FieldHi; 3112 3113 // Bit-fields require special handling, they do not force the 3114 // structure to be passed in memory even if unaligned, and 3115 // therefore they can straddle an eightbyte. 3116 if (BitField) { 3117 assert(!i->isUnnamedBitfield()); 3118 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 3119 uint64_t Size = i->getBitWidthValue(getContext()); 3120 3121 uint64_t EB_Lo = Offset / 64; 3122 uint64_t EB_Hi = (Offset + Size - 1) / 64; 3123 3124 if (EB_Lo) { 3125 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 3126 FieldLo = NoClass; 3127 FieldHi = Integer; 3128 } else { 3129 FieldLo = Integer; 3130 FieldHi = EB_Hi ? Integer : NoClass; 3131 } 3132 } else 3133 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 3134 Lo = merge(Lo, FieldLo); 3135 Hi = merge(Hi, FieldHi); 3136 if (Lo == Memory || Hi == Memory) 3137 break; 3138 } 3139 3140 postMerge(Size, Lo, Hi); 3141 } 3142 } 3143 3144 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 3145 // If this is a scalar LLVM value then assume LLVM will pass it in the right 3146 // place naturally. 3147 if (!isAggregateTypeForABI(Ty)) { 3148 // Treat an enum type as its underlying type. 3149 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3150 Ty = EnumTy->getDecl()->getIntegerType(); 3151 3152 if (Ty->isExtIntType()) 3153 return getNaturalAlignIndirect(Ty); 3154 3155 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 3156 : ABIArgInfo::getDirect()); 3157 } 3158 3159 return getNaturalAlignIndirect(Ty); 3160 } 3161 3162 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 3163 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 3164 uint64_t Size = getContext().getTypeSize(VecTy); 3165 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); 3166 if (Size <= 64 || Size > LargestVector) 3167 return true; 3168 QualType EltTy = VecTy->getElementType(); 3169 if (passInt128VectorsInMem() && 3170 (EltTy->isSpecificBuiltinType(BuiltinType::Int128) || 3171 EltTy->isSpecificBuiltinType(BuiltinType::UInt128))) 3172 return true; 3173 } 3174 3175 return false; 3176 } 3177 3178 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 3179 unsigned freeIntRegs) const { 3180 // If this is a scalar LLVM value then assume LLVM will pass it in the right 3181 // place naturally. 3182 // 3183 // This assumption is optimistic, as there could be free registers available 3184 // when we need to pass this argument in memory, and LLVM could try to pass 3185 // the argument in the free register. This does not seem to happen currently, 3186 // but this code would be much safer if we could mark the argument with 3187 // 'onstack'. See PR12193. 3188 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty) && 3189 !Ty->isExtIntType()) { 3190 // Treat an enum type as its underlying type. 3191 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3192 Ty = EnumTy->getDecl()->getIntegerType(); 3193 3194 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 3195 : ABIArgInfo::getDirect()); 3196 } 3197 3198 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 3199 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 3200 3201 // Compute the byval alignment. We specify the alignment of the byval in all 3202 // cases so that the mid-level optimizer knows the alignment of the byval. 3203 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 3204 3205 // Attempt to avoid passing indirect results using byval when possible. This 3206 // is important for good codegen. 3207 // 3208 // We do this by coercing the value into a scalar type which the backend can 3209 // handle naturally (i.e., without using byval). 3210 // 3211 // For simplicity, we currently only do this when we have exhausted all of the 3212 // free integer registers. Doing this when there are free integer registers 3213 // would require more care, as we would have to ensure that the coerced value 3214 // did not claim the unused register. That would require either reording the 3215 // arguments to the function (so that any subsequent inreg values came first), 3216 // or only doing this optimization when there were no following arguments that 3217 // might be inreg. 3218 // 3219 // We currently expect it to be rare (particularly in well written code) for 3220 // arguments to be passed on the stack when there are still free integer 3221 // registers available (this would typically imply large structs being passed 3222 // by value), so this seems like a fair tradeoff for now. 3223 // 3224 // We can revisit this if the backend grows support for 'onstack' parameter 3225 // attributes. See PR12193. 3226 if (freeIntRegs == 0) { 3227 uint64_t Size = getContext().getTypeSize(Ty); 3228 3229 // If this type fits in an eightbyte, coerce it into the matching integral 3230 // type, which will end up on the stack (with alignment 8). 3231 if (Align == 8 && Size <= 64) 3232 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 3233 Size)); 3234 } 3235 3236 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); 3237 } 3238 3239 /// The ABI specifies that a value should be passed in a full vector XMM/YMM 3240 /// register. Pick an LLVM IR type that will be passed as a vector register. 3241 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 3242 // Wrapper structs/arrays that only contain vectors are passed just like 3243 // vectors; strip them off if present. 3244 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) 3245 Ty = QualType(InnerTy, 0); 3246 3247 llvm::Type *IRType = CGT.ConvertType(Ty); 3248 if (isa<llvm::VectorType>(IRType)) { 3249 // Don't pass vXi128 vectors in their native type, the backend can't 3250 // legalize them. 3251 if (passInt128VectorsInMem() && 3252 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy(128)) { 3253 // Use a vXi64 vector. 3254 uint64_t Size = getContext().getTypeSize(Ty); 3255 return llvm::FixedVectorType::get(llvm::Type::getInt64Ty(getVMContext()), 3256 Size / 64); 3257 } 3258 3259 return IRType; 3260 } 3261 3262 if (IRType->getTypeID() == llvm::Type::FP128TyID) 3263 return IRType; 3264 3265 // We couldn't find the preferred IR vector type for 'Ty'. 3266 uint64_t Size = getContext().getTypeSize(Ty); 3267 assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!"); 3268 3269 3270 // Return a LLVM IR vector type based on the size of 'Ty'. 3271 return llvm::FixedVectorType::get(llvm::Type::getDoubleTy(getVMContext()), 3272 Size / 64); 3273 } 3274 3275 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 3276 /// is known to either be off the end of the specified type or being in 3277 /// alignment padding. The user type specified is known to be at most 128 bits 3278 /// in size, and have passed through X86_64ABIInfo::classify with a successful 3279 /// classification that put one of the two halves in the INTEGER class. 3280 /// 3281 /// It is conservatively correct to return false. 3282 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 3283 unsigned EndBit, ASTContext &Context) { 3284 // If the bytes being queried are off the end of the type, there is no user 3285 // data hiding here. This handles analysis of builtins, vectors and other 3286 // types that don't contain interesting padding. 3287 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 3288 if (TySize <= StartBit) 3289 return true; 3290 3291 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 3292 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 3293 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 3294 3295 // Check each element to see if the element overlaps with the queried range. 3296 for (unsigned i = 0; i != NumElts; ++i) { 3297 // If the element is after the span we care about, then we're done.. 3298 unsigned EltOffset = i*EltSize; 3299 if (EltOffset >= EndBit) break; 3300 3301 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 3302 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 3303 EndBit-EltOffset, Context)) 3304 return false; 3305 } 3306 // If it overlaps no elements, then it is safe to process as padding. 3307 return true; 3308 } 3309 3310 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3311 const RecordDecl *RD = RT->getDecl(); 3312 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3313 3314 // If this is a C++ record, check the bases first. 3315 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3316 for (const auto &I : CXXRD->bases()) { 3317 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3318 "Unexpected base class!"); 3319 const auto *Base = 3320 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 3321 3322 // If the base is after the span we care about, ignore it. 3323 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 3324 if (BaseOffset >= EndBit) continue; 3325 3326 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 3327 if (!BitsContainNoUserData(I.getType(), BaseStart, 3328 EndBit-BaseOffset, Context)) 3329 return false; 3330 } 3331 } 3332 3333 // Verify that no field has data that overlaps the region of interest. Yes 3334 // this could be sped up a lot by being smarter about queried fields, 3335 // however we're only looking at structs up to 16 bytes, so we don't care 3336 // much. 3337 unsigned idx = 0; 3338 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3339 i != e; ++i, ++idx) { 3340 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 3341 3342 // If we found a field after the region we care about, then we're done. 3343 if (FieldOffset >= EndBit) break; 3344 3345 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 3346 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 3347 Context)) 3348 return false; 3349 } 3350 3351 // If nothing in this record overlapped the area of interest, then we're 3352 // clean. 3353 return true; 3354 } 3355 3356 return false; 3357 } 3358 3359 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a 3360 /// float member at the specified offset. For example, {int,{float}} has a 3361 /// float at offset 4. It is conservatively correct for this routine to return 3362 /// false. 3363 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, 3364 const llvm::DataLayout &TD) { 3365 // Base case if we find a float. 3366 if (IROffset == 0 && IRType->isFloatTy()) 3367 return true; 3368 3369 // If this is a struct, recurse into the field at the specified offset. 3370 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3371 const llvm::StructLayout *SL = TD.getStructLayout(STy); 3372 unsigned Elt = SL->getElementContainingOffset(IROffset); 3373 IROffset -= SL->getElementOffset(Elt); 3374 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); 3375 } 3376 3377 // If this is an array, recurse into the field at the specified offset. 3378 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3379 llvm::Type *EltTy = ATy->getElementType(); 3380 unsigned EltSize = TD.getTypeAllocSize(EltTy); 3381 IROffset -= IROffset/EltSize*EltSize; 3382 return ContainsFloatAtOffset(EltTy, IROffset, TD); 3383 } 3384 3385 return false; 3386 } 3387 3388 3389 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 3390 /// low 8 bytes of an XMM register, corresponding to the SSE class. 3391 llvm::Type *X86_64ABIInfo:: 3392 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3393 QualType SourceTy, unsigned SourceOffset) const { 3394 // The only three choices we have are either double, <2 x float>, or float. We 3395 // pass as float if the last 4 bytes is just padding. This happens for 3396 // structs that contain 3 floats. 3397 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, 3398 SourceOffset*8+64, getContext())) 3399 return llvm::Type::getFloatTy(getVMContext()); 3400 3401 // We want to pass as <2 x float> if the LLVM IR type contains a float at 3402 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the 3403 // case. 3404 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && 3405 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) 3406 return llvm::FixedVectorType::get(llvm::Type::getFloatTy(getVMContext()), 3407 2); 3408 3409 return llvm::Type::getDoubleTy(getVMContext()); 3410 } 3411 3412 3413 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 3414 /// an 8-byte GPR. This means that we either have a scalar or we are talking 3415 /// about the high or low part of an up-to-16-byte struct. This routine picks 3416 /// the best LLVM IR type to represent this, which may be i64 or may be anything 3417 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 3418 /// etc). 3419 /// 3420 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 3421 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 3422 /// the 8-byte value references. PrefType may be null. 3423 /// 3424 /// SourceTy is the source-level type for the entire argument. SourceOffset is 3425 /// an offset into this that we're processing (which is always either 0 or 8). 3426 /// 3427 llvm::Type *X86_64ABIInfo:: 3428 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3429 QualType SourceTy, unsigned SourceOffset) const { 3430 // If we're dealing with an un-offset LLVM IR type, then it means that we're 3431 // returning an 8-byte unit starting with it. See if we can safely use it. 3432 if (IROffset == 0) { 3433 // Pointers and int64's always fill the 8-byte unit. 3434 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 3435 IRType->isIntegerTy(64)) 3436 return IRType; 3437 3438 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 3439 // goodness in the source type is just tail padding. This is allowed to 3440 // kick in for struct {double,int} on the int, but not on 3441 // struct{double,int,int} because we wouldn't return the second int. We 3442 // have to do this analysis on the source type because we can't depend on 3443 // unions being lowered a specific way etc. 3444 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 3445 IRType->isIntegerTy(32) || 3446 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 3447 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 3448 cast<llvm::IntegerType>(IRType)->getBitWidth(); 3449 3450 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 3451 SourceOffset*8+64, getContext())) 3452 return IRType; 3453 } 3454 } 3455 3456 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3457 // If this is a struct, recurse into the field at the specified offset. 3458 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 3459 if (IROffset < SL->getSizeInBytes()) { 3460 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 3461 IROffset -= SL->getElementOffset(FieldIdx); 3462 3463 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 3464 SourceTy, SourceOffset); 3465 } 3466 } 3467 3468 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3469 llvm::Type *EltTy = ATy->getElementType(); 3470 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 3471 unsigned EltOffset = IROffset/EltSize*EltSize; 3472 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 3473 SourceOffset); 3474 } 3475 3476 // Okay, we don't have any better idea of what to pass, so we pass this in an 3477 // integer register that isn't too big to fit the rest of the struct. 3478 unsigned TySizeInBytes = 3479 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 3480 3481 assert(TySizeInBytes != SourceOffset && "Empty field?"); 3482 3483 // It is always safe to classify this as an integer type up to i64 that 3484 // isn't larger than the structure. 3485 return llvm::IntegerType::get(getVMContext(), 3486 std::min(TySizeInBytes-SourceOffset, 8U)*8); 3487 } 3488 3489 3490 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 3491 /// be used as elements of a two register pair to pass or return, return a 3492 /// first class aggregate to represent them. For example, if the low part of 3493 /// a by-value argument should be passed as i32* and the high part as float, 3494 /// return {i32*, float}. 3495 static llvm::Type * 3496 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 3497 const llvm::DataLayout &TD) { 3498 // In order to correctly satisfy the ABI, we need to the high part to start 3499 // at offset 8. If the high and low parts we inferred are both 4-byte types 3500 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 3501 // the second element at offset 8. Check for this: 3502 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 3503 unsigned HiAlign = TD.getABITypeAlignment(Hi); 3504 unsigned HiStart = llvm::alignTo(LoSize, HiAlign); 3505 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 3506 3507 // To handle this, we have to increase the size of the low part so that the 3508 // second element will start at an 8 byte offset. We can't increase the size 3509 // of the second element because it might make us access off the end of the 3510 // struct. 3511 if (HiStart != 8) { 3512 // There are usually two sorts of types the ABI generation code can produce 3513 // for the low part of a pair that aren't 8 bytes in size: float or 3514 // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and 3515 // NaCl). 3516 // Promote these to a larger type. 3517 if (Lo->isFloatTy()) 3518 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 3519 else { 3520 assert((Lo->isIntegerTy() || Lo->isPointerTy()) 3521 && "Invalid/unknown lo type"); 3522 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 3523 } 3524 } 3525 3526 llvm::StructType *Result = llvm::StructType::get(Lo, Hi); 3527 3528 // Verify that the second element is at an 8-byte offset. 3529 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 3530 "Invalid x86-64 argument pair!"); 3531 return Result; 3532 } 3533 3534 ABIArgInfo X86_64ABIInfo:: 3535 classifyReturnType(QualType RetTy) const { 3536 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 3537 // classification algorithm. 3538 X86_64ABIInfo::Class Lo, Hi; 3539 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 3540 3541 // Check some invariants. 3542 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3543 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3544 3545 llvm::Type *ResType = nullptr; 3546 switch (Lo) { 3547 case NoClass: 3548 if (Hi == NoClass) 3549 return ABIArgInfo::getIgnore(); 3550 // If the low part is just padding, it takes no register, leave ResType 3551 // null. 3552 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3553 "Unknown missing lo part"); 3554 break; 3555 3556 case SSEUp: 3557 case X87Up: 3558 llvm_unreachable("Invalid classification for lo word."); 3559 3560 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 3561 // hidden argument. 3562 case Memory: 3563 return getIndirectReturnResult(RetTy); 3564 3565 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 3566 // available register of the sequence %rax, %rdx is used. 3567 case Integer: 3568 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3569 3570 // If we have a sign or zero extended integer, make sure to return Extend 3571 // so that the parameter gets the right LLVM IR attributes. 3572 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3573 // Treat an enum type as its underlying type. 3574 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3575 RetTy = EnumTy->getDecl()->getIntegerType(); 3576 3577 if (RetTy->isIntegralOrEnumerationType() && 3578 isPromotableIntegerTypeForABI(RetTy)) 3579 return ABIArgInfo::getExtend(RetTy); 3580 } 3581 break; 3582 3583 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 3584 // available SSE register of the sequence %xmm0, %xmm1 is used. 3585 case SSE: 3586 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3587 break; 3588 3589 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 3590 // returned on the X87 stack in %st0 as 80-bit x87 number. 3591 case X87: 3592 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 3593 break; 3594 3595 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 3596 // part of the value is returned in %st0 and the imaginary part in 3597 // %st1. 3598 case ComplexX87: 3599 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 3600 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 3601 llvm::Type::getX86_FP80Ty(getVMContext())); 3602 break; 3603 } 3604 3605 llvm::Type *HighPart = nullptr; 3606 switch (Hi) { 3607 // Memory was handled previously and X87 should 3608 // never occur as a hi class. 3609 case Memory: 3610 case X87: 3611 llvm_unreachable("Invalid classification for hi word."); 3612 3613 case ComplexX87: // Previously handled. 3614 case NoClass: 3615 break; 3616 3617 case Integer: 3618 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3619 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3620 return ABIArgInfo::getDirect(HighPart, 8); 3621 break; 3622 case SSE: 3623 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3624 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3625 return ABIArgInfo::getDirect(HighPart, 8); 3626 break; 3627 3628 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 3629 // is passed in the next available eightbyte chunk if the last used 3630 // vector register. 3631 // 3632 // SSEUP should always be preceded by SSE, just widen. 3633 case SSEUp: 3634 assert(Lo == SSE && "Unexpected SSEUp classification."); 3635 ResType = GetByteVectorType(RetTy); 3636 break; 3637 3638 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 3639 // returned together with the previous X87 value in %st0. 3640 case X87Up: 3641 // If X87Up is preceded by X87, we don't need to do 3642 // anything. However, in some cases with unions it may not be 3643 // preceded by X87. In such situations we follow gcc and pass the 3644 // extra bits in an SSE reg. 3645 if (Lo != X87) { 3646 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3647 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3648 return ABIArgInfo::getDirect(HighPart, 8); 3649 } 3650 break; 3651 } 3652 3653 // If a high part was specified, merge it together with the low part. It is 3654 // known to pass in the high eightbyte of the result. We do this by forming a 3655 // first class struct aggregate with the high and low part: {low, high} 3656 if (HighPart) 3657 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3658 3659 return ABIArgInfo::getDirect(ResType); 3660 } 3661 3662 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 3663 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 3664 bool isNamedArg) 3665 const 3666 { 3667 Ty = useFirstFieldIfTransparentUnion(Ty); 3668 3669 X86_64ABIInfo::Class Lo, Hi; 3670 classify(Ty, 0, Lo, Hi, isNamedArg); 3671 3672 // Check some invariants. 3673 // FIXME: Enforce these by construction. 3674 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3675 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3676 3677 neededInt = 0; 3678 neededSSE = 0; 3679 llvm::Type *ResType = nullptr; 3680 switch (Lo) { 3681 case NoClass: 3682 if (Hi == NoClass) 3683 return ABIArgInfo::getIgnore(); 3684 // If the low part is just padding, it takes no register, leave ResType 3685 // null. 3686 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3687 "Unknown missing lo part"); 3688 break; 3689 3690 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 3691 // on the stack. 3692 case Memory: 3693 3694 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 3695 // COMPLEX_X87, it is passed in memory. 3696 case X87: 3697 case ComplexX87: 3698 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 3699 ++neededInt; 3700 return getIndirectResult(Ty, freeIntRegs); 3701 3702 case SSEUp: 3703 case X87Up: 3704 llvm_unreachable("Invalid classification for lo word."); 3705 3706 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 3707 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 3708 // and %r9 is used. 3709 case Integer: 3710 ++neededInt; 3711 3712 // Pick an 8-byte type based on the preferred type. 3713 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 3714 3715 // If we have a sign or zero extended integer, make sure to return Extend 3716 // so that the parameter gets the right LLVM IR attributes. 3717 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3718 // Treat an enum type as its underlying type. 3719 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3720 Ty = EnumTy->getDecl()->getIntegerType(); 3721 3722 if (Ty->isIntegralOrEnumerationType() && 3723 isPromotableIntegerTypeForABI(Ty)) 3724 return ABIArgInfo::getExtend(Ty); 3725 } 3726 3727 break; 3728 3729 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 3730 // available SSE register is used, the registers are taken in the 3731 // order from %xmm0 to %xmm7. 3732 case SSE: { 3733 llvm::Type *IRType = CGT.ConvertType(Ty); 3734 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 3735 ++neededSSE; 3736 break; 3737 } 3738 } 3739 3740 llvm::Type *HighPart = nullptr; 3741 switch (Hi) { 3742 // Memory was handled previously, ComplexX87 and X87 should 3743 // never occur as hi classes, and X87Up must be preceded by X87, 3744 // which is passed in memory. 3745 case Memory: 3746 case X87: 3747 case ComplexX87: 3748 llvm_unreachable("Invalid classification for hi word."); 3749 3750 case NoClass: break; 3751 3752 case Integer: 3753 ++neededInt; 3754 // Pick an 8-byte type based on the preferred type. 3755 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3756 3757 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3758 return ABIArgInfo::getDirect(HighPart, 8); 3759 break; 3760 3761 // X87Up generally doesn't occur here (long double is passed in 3762 // memory), except in situations involving unions. 3763 case X87Up: 3764 case SSE: 3765 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3766 3767 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3768 return ABIArgInfo::getDirect(HighPart, 8); 3769 3770 ++neededSSE; 3771 break; 3772 3773 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 3774 // eightbyte is passed in the upper half of the last used SSE 3775 // register. This only happens when 128-bit vectors are passed. 3776 case SSEUp: 3777 assert(Lo == SSE && "Unexpected SSEUp classification"); 3778 ResType = GetByteVectorType(Ty); 3779 break; 3780 } 3781 3782 // If a high part was specified, merge it together with the low part. It is 3783 // known to pass in the high eightbyte of the result. We do this by forming a 3784 // first class struct aggregate with the high and low part: {low, high} 3785 if (HighPart) 3786 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3787 3788 return ABIArgInfo::getDirect(ResType); 3789 } 3790 3791 ABIArgInfo 3792 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 3793 unsigned &NeededSSE) const { 3794 auto RT = Ty->getAs<RecordType>(); 3795 assert(RT && "classifyRegCallStructType only valid with struct types"); 3796 3797 if (RT->getDecl()->hasFlexibleArrayMember()) 3798 return getIndirectReturnResult(Ty); 3799 3800 // Sum up bases 3801 if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 3802 if (CXXRD->isDynamicClass()) { 3803 NeededInt = NeededSSE = 0; 3804 return getIndirectReturnResult(Ty); 3805 } 3806 3807 for (const auto &I : CXXRD->bases()) 3808 if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE) 3809 .isIndirect()) { 3810 NeededInt = NeededSSE = 0; 3811 return getIndirectReturnResult(Ty); 3812 } 3813 } 3814 3815 // Sum up members 3816 for (const auto *FD : RT->getDecl()->fields()) { 3817 if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) { 3818 if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE) 3819 .isIndirect()) { 3820 NeededInt = NeededSSE = 0; 3821 return getIndirectReturnResult(Ty); 3822 } 3823 } else { 3824 unsigned LocalNeededInt, LocalNeededSSE; 3825 if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt, 3826 LocalNeededSSE, true) 3827 .isIndirect()) { 3828 NeededInt = NeededSSE = 0; 3829 return getIndirectReturnResult(Ty); 3830 } 3831 NeededInt += LocalNeededInt; 3832 NeededSSE += LocalNeededSSE; 3833 } 3834 } 3835 3836 return ABIArgInfo::getDirect(); 3837 } 3838 3839 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty, 3840 unsigned &NeededInt, 3841 unsigned &NeededSSE) const { 3842 3843 NeededInt = 0; 3844 NeededSSE = 0; 3845 3846 return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE); 3847 } 3848 3849 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3850 3851 const unsigned CallingConv = FI.getCallingConvention(); 3852 // It is possible to force Win64 calling convention on any x86_64 target by 3853 // using __attribute__((ms_abi)). In such case to correctly emit Win64 3854 // compatible code delegate this call to WinX86_64ABIInfo::computeInfo. 3855 if (CallingConv == llvm::CallingConv::Win64) { 3856 WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel); 3857 Win64ABIInfo.computeInfo(FI); 3858 return; 3859 } 3860 3861 bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall; 3862 3863 // Keep track of the number of assigned registers. 3864 unsigned FreeIntRegs = IsRegCall ? 11 : 6; 3865 unsigned FreeSSERegs = IsRegCall ? 16 : 8; 3866 unsigned NeededInt, NeededSSE; 3867 3868 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 3869 if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() && 3870 !FI.getReturnType()->getTypePtr()->isUnionType()) { 3871 FI.getReturnInfo() = 3872 classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE); 3873 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3874 FreeIntRegs -= NeededInt; 3875 FreeSSERegs -= NeededSSE; 3876 } else { 3877 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3878 } 3879 } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>() && 3880 getContext().getCanonicalType(FI.getReturnType() 3881 ->getAs<ComplexType>() 3882 ->getElementType()) == 3883 getContext().LongDoubleTy) 3884 // Complex Long Double Type is passed in Memory when Regcall 3885 // calling convention is used. 3886 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3887 else 3888 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3889 } 3890 3891 // If the return value is indirect, then the hidden argument is consuming one 3892 // integer register. 3893 if (FI.getReturnInfo().isIndirect()) 3894 --FreeIntRegs; 3895 3896 // The chain argument effectively gives us another free register. 3897 if (FI.isChainCall()) 3898 ++FreeIntRegs; 3899 3900 unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 3901 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 3902 // get assigned (in left-to-right order) for passing as follows... 3903 unsigned ArgNo = 0; 3904 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3905 it != ie; ++it, ++ArgNo) { 3906 bool IsNamedArg = ArgNo < NumRequiredArgs; 3907 3908 if (IsRegCall && it->type->isStructureOrClassType()) 3909 it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE); 3910 else 3911 it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt, 3912 NeededSSE, IsNamedArg); 3913 3914 // AMD64-ABI 3.2.3p3: If there are no registers available for any 3915 // eightbyte of an argument, the whole argument is passed on the 3916 // stack. If registers have already been assigned for some 3917 // eightbytes of such an argument, the assignments get reverted. 3918 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3919 FreeIntRegs -= NeededInt; 3920 FreeSSERegs -= NeededSSE; 3921 } else { 3922 it->info = getIndirectResult(it->type, FreeIntRegs); 3923 } 3924 } 3925 } 3926 3927 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, 3928 Address VAListAddr, QualType Ty) { 3929 Address overflow_arg_area_p = 3930 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); 3931 llvm::Value *overflow_arg_area = 3932 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 3933 3934 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 3935 // byte boundary if alignment needed by type exceeds 8 byte boundary. 3936 // It isn't stated explicitly in the standard, but in practice we use 3937 // alignment greater than 16 where necessary. 3938 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 3939 if (Align > CharUnits::fromQuantity(8)) { 3940 overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, 3941 Align); 3942 } 3943 3944 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 3945 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3946 llvm::Value *Res = 3947 CGF.Builder.CreateBitCast(overflow_arg_area, 3948 llvm::PointerType::getUnqual(LTy)); 3949 3950 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 3951 // l->overflow_arg_area + sizeof(type). 3952 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 3953 // an 8 byte boundary. 3954 3955 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 3956 llvm::Value *Offset = 3957 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 3958 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 3959 "overflow_arg_area.next"); 3960 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 3961 3962 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 3963 return Address(Res, Align); 3964 } 3965 3966 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3967 QualType Ty) const { 3968 // Assume that va_list type is correct; should be pointer to LLVM type: 3969 // struct { 3970 // i32 gp_offset; 3971 // i32 fp_offset; 3972 // i8* overflow_arg_area; 3973 // i8* reg_save_area; 3974 // }; 3975 unsigned neededInt, neededSSE; 3976 3977 Ty = getContext().getCanonicalType(Ty); 3978 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 3979 /*isNamedArg*/false); 3980 3981 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 3982 // in the registers. If not go to step 7. 3983 if (!neededInt && !neededSSE) 3984 return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3985 3986 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 3987 // general purpose registers needed to pass type and num_fp to hold 3988 // the number of floating point registers needed. 3989 3990 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 3991 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 3992 // l->fp_offset > 304 - num_fp * 16 go to step 7. 3993 // 3994 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 3995 // register save space). 3996 3997 llvm::Value *InRegs = nullptr; 3998 Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); 3999 llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; 4000 if (neededInt) { 4001 gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); 4002 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 4003 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 4004 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 4005 } 4006 4007 if (neededSSE) { 4008 fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); 4009 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 4010 llvm::Value *FitsInFP = 4011 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 4012 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 4013 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 4014 } 4015 4016 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 4017 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 4018 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 4019 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 4020 4021 // Emit code to load the value if it was passed in registers. 4022 4023 CGF.EmitBlock(InRegBlock); 4024 4025 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 4026 // an offset of l->gp_offset and/or l->fp_offset. This may require 4027 // copying to a temporary location in case the parameter is passed 4028 // in different register classes or requires an alignment greater 4029 // than 8 for general purpose registers and 16 for XMM registers. 4030 // 4031 // FIXME: This really results in shameful code when we end up needing to 4032 // collect arguments from different places; often what should result in a 4033 // simple assembling of a structure from scattered addresses has many more 4034 // loads than necessary. Can we clean this up? 4035 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 4036 llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( 4037 CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area"); 4038 4039 Address RegAddr = Address::invalid(); 4040 if (neededInt && neededSSE) { 4041 // FIXME: Cleanup. 4042 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 4043 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 4044 Address Tmp = CGF.CreateMemTemp(Ty); 4045 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 4046 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 4047 llvm::Type *TyLo = ST->getElementType(0); 4048 llvm::Type *TyHi = ST->getElementType(1); 4049 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 4050 "Unexpected ABI info for mixed regs"); 4051 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 4052 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 4053 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset); 4054 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset); 4055 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 4056 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 4057 4058 // Copy the first element. 4059 // FIXME: Our choice of alignment here and below is probably pessimistic. 4060 llvm::Value *V = CGF.Builder.CreateAlignedLoad( 4061 TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo), 4062 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo))); 4063 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 4064 4065 // Copy the second element. 4066 V = CGF.Builder.CreateAlignedLoad( 4067 TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi), 4068 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi))); 4069 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 4070 4071 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 4072 } else if (neededInt) { 4073 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset), 4074 CharUnits::fromQuantity(8)); 4075 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 4076 4077 // Copy to a temporary if necessary to ensure the appropriate alignment. 4078 auto TInfo = getContext().getTypeInfoInChars(Ty); 4079 uint64_t TySize = TInfo.Width.getQuantity(); 4080 CharUnits TyAlign = TInfo.Align; 4081 4082 // Copy into a temporary if the type is more aligned than the 4083 // register save area. 4084 if (TyAlign.getQuantity() > 8) { 4085 Address Tmp = CGF.CreateMemTemp(Ty); 4086 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); 4087 RegAddr = Tmp; 4088 } 4089 4090 } else if (neededSSE == 1) { 4091 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 4092 CharUnits::fromQuantity(16)); 4093 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 4094 } else { 4095 assert(neededSSE == 2 && "Invalid number of needed registers!"); 4096 // SSE registers are spaced 16 bytes apart in the register save 4097 // area, we need to collect the two eightbytes together. 4098 // The ABI isn't explicit about this, but it seems reasonable 4099 // to assume that the slots are 16-byte aligned, since the stack is 4100 // naturally 16-byte aligned and the prologue is expected to store 4101 // all the SSE registers to the RSA. 4102 Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 4103 CharUnits::fromQuantity(16)); 4104 Address RegAddrHi = 4105 CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, 4106 CharUnits::fromQuantity(16)); 4107 llvm::Type *ST = AI.canHaveCoerceToType() 4108 ? AI.getCoerceToType() 4109 : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy); 4110 llvm::Value *V; 4111 Address Tmp = CGF.CreateMemTemp(Ty); 4112 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 4113 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 4114 RegAddrLo, ST->getStructElementType(0))); 4115 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 4116 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 4117 RegAddrHi, ST->getStructElementType(1))); 4118 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 4119 4120 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 4121 } 4122 4123 // AMD64-ABI 3.5.7p5: Step 5. Set: 4124 // l->gp_offset = l->gp_offset + num_gp * 8 4125 // l->fp_offset = l->fp_offset + num_fp * 16. 4126 if (neededInt) { 4127 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 4128 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 4129 gp_offset_p); 4130 } 4131 if (neededSSE) { 4132 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 4133 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 4134 fp_offset_p); 4135 } 4136 CGF.EmitBranch(ContBlock); 4137 4138 // Emit code to load the value if it was passed in memory. 4139 4140 CGF.EmitBlock(InMemBlock); 4141 Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 4142 4143 // Return the appropriate result. 4144 4145 CGF.EmitBlock(ContBlock); 4146 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, 4147 "vaarg.addr"); 4148 return ResAddr; 4149 } 4150 4151 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 4152 QualType Ty) const { 4153 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 4154 CGF.getContext().getTypeInfoInChars(Ty), 4155 CharUnits::fromQuantity(8), 4156 /*allowHigherAlign*/ false); 4157 } 4158 4159 ABIArgInfo WinX86_64ABIInfo::reclassifyHvaArgForVectorCall( 4160 QualType Ty, unsigned &FreeSSERegs, const ABIArgInfo ¤t) const { 4161 const Type *Base = nullptr; 4162 uint64_t NumElts = 0; 4163 4164 if (!Ty->isBuiltinType() && !Ty->isVectorType() && 4165 isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) { 4166 FreeSSERegs -= NumElts; 4167 return getDirectX86Hva(); 4168 } 4169 return current; 4170 } 4171 4172 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 4173 bool IsReturnType, bool IsVectorCall, 4174 bool IsRegCall) const { 4175 4176 if (Ty->isVoidType()) 4177 return ABIArgInfo::getIgnore(); 4178 4179 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4180 Ty = EnumTy->getDecl()->getIntegerType(); 4181 4182 TypeInfo Info = getContext().getTypeInfo(Ty); 4183 uint64_t Width = Info.Width; 4184 CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); 4185 4186 const RecordType *RT = Ty->getAs<RecordType>(); 4187 if (RT) { 4188 if (!IsReturnType) { 4189 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 4190 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4191 } 4192 4193 if (RT->getDecl()->hasFlexibleArrayMember()) 4194 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4195 4196 } 4197 4198 const Type *Base = nullptr; 4199 uint64_t NumElts = 0; 4200 // vectorcall adds the concept of a homogenous vector aggregate, similar to 4201 // other targets. 4202 if ((IsVectorCall || IsRegCall) && 4203 isHomogeneousAggregate(Ty, Base, NumElts)) { 4204 if (IsRegCall) { 4205 if (FreeSSERegs >= NumElts) { 4206 FreeSSERegs -= NumElts; 4207 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 4208 return ABIArgInfo::getDirect(); 4209 return ABIArgInfo::getExpand(); 4210 } 4211 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4212 } else if (IsVectorCall) { 4213 if (FreeSSERegs >= NumElts && 4214 (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) { 4215 FreeSSERegs -= NumElts; 4216 return ABIArgInfo::getDirect(); 4217 } else if (IsReturnType) { 4218 return ABIArgInfo::getExpand(); 4219 } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) { 4220 // HVAs are delayed and reclassified in the 2nd step. 4221 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4222 } 4223 } 4224 } 4225 4226 if (Ty->isMemberPointerType()) { 4227 // If the member pointer is represented by an LLVM int or ptr, pass it 4228 // directly. 4229 llvm::Type *LLTy = CGT.ConvertType(Ty); 4230 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 4231 return ABIArgInfo::getDirect(); 4232 } 4233 4234 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { 4235 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4236 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4237 if (Width > 64 || !llvm::isPowerOf2_64(Width)) 4238 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4239 4240 // Otherwise, coerce it to a small integer. 4241 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 4242 } 4243 4244 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4245 switch (BT->getKind()) { 4246 case BuiltinType::Bool: 4247 // Bool type is always extended to the ABI, other builtin types are not 4248 // extended. 4249 return ABIArgInfo::getExtend(Ty); 4250 4251 case BuiltinType::LongDouble: 4252 // Mingw64 GCC uses the old 80 bit extended precision floating point 4253 // unit. It passes them indirectly through memory. 4254 if (IsMingw64) { 4255 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 4256 if (LDF == &llvm::APFloat::x87DoubleExtended()) 4257 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4258 } 4259 break; 4260 4261 case BuiltinType::Int128: 4262 case BuiltinType::UInt128: 4263 // If it's a parameter type, the normal ABI rule is that arguments larger 4264 // than 8 bytes are passed indirectly. GCC follows it. We follow it too, 4265 // even though it isn't particularly efficient. 4266 if (!IsReturnType) 4267 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4268 4269 // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that. 4270 // Clang matches them for compatibility. 4271 return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 4272 llvm::Type::getInt64Ty(getVMContext()), 2)); 4273 4274 default: 4275 break; 4276 } 4277 } 4278 4279 if (Ty->isExtIntType()) { 4280 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4281 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4282 // However, non-power-of-two _ExtInts will be passed as 1,2,4 or 8 bytes 4283 // anyway as long is it fits in them, so we don't have to check the power of 4284 // 2. 4285 if (Width <= 64) 4286 return ABIArgInfo::getDirect(); 4287 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4288 } 4289 4290 return ABIArgInfo::getDirect(); 4291 } 4292 4293 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 4294 const unsigned CC = FI.getCallingConvention(); 4295 bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall; 4296 bool IsRegCall = CC == llvm::CallingConv::X86_RegCall; 4297 4298 // If __attribute__((sysv_abi)) is in use, use the SysV argument 4299 // classification rules. 4300 if (CC == llvm::CallingConv::X86_64_SysV) { 4301 X86_64ABIInfo SysVABIInfo(CGT, AVXLevel); 4302 SysVABIInfo.computeInfo(FI); 4303 return; 4304 } 4305 4306 unsigned FreeSSERegs = 0; 4307 if (IsVectorCall) { 4308 // We can use up to 4 SSE return registers with vectorcall. 4309 FreeSSERegs = 4; 4310 } else if (IsRegCall) { 4311 // RegCall gives us 16 SSE registers. 4312 FreeSSERegs = 16; 4313 } 4314 4315 if (!getCXXABI().classifyReturnType(FI)) 4316 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true, 4317 IsVectorCall, IsRegCall); 4318 4319 if (IsVectorCall) { 4320 // We can use up to 6 SSE register parameters with vectorcall. 4321 FreeSSERegs = 6; 4322 } else if (IsRegCall) { 4323 // RegCall gives us 16 SSE registers, we can reuse the return registers. 4324 FreeSSERegs = 16; 4325 } 4326 4327 unsigned ArgNum = 0; 4328 unsigned ZeroSSERegs = 0; 4329 for (auto &I : FI.arguments()) { 4330 // Vectorcall in x64 only permits the first 6 arguments to be passed as 4331 // XMM/YMM registers. After the sixth argument, pretend no vector 4332 // registers are left. 4333 unsigned *MaybeFreeSSERegs = 4334 (IsVectorCall && ArgNum >= 6) ? &ZeroSSERegs : &FreeSSERegs; 4335 I.info = 4336 classify(I.type, *MaybeFreeSSERegs, false, IsVectorCall, IsRegCall); 4337 ++ArgNum; 4338 } 4339 4340 if (IsVectorCall) { 4341 // For vectorcall, assign aggregate HVAs to any free vector registers in a 4342 // second pass. 4343 for (auto &I : FI.arguments()) 4344 I.info = reclassifyHvaArgForVectorCall(I.type, FreeSSERegs, I.info); 4345 } 4346 } 4347 4348 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4349 QualType Ty) const { 4350 4351 bool IsIndirect = false; 4352 4353 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4354 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4355 if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) { 4356 uint64_t Width = getContext().getTypeSize(Ty); 4357 IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 4358 } 4359 4360 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 4361 CGF.getContext().getTypeInfoInChars(Ty), 4362 CharUnits::fromQuantity(8), 4363 /*allowHigherAlign*/ false); 4364 } 4365 4366 static bool PPC_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4367 llvm::Value *Address, bool Is64Bit, 4368 bool IsAIX) { 4369 // This is calculated from the LLVM and GCC tables and verified 4370 // against gcc output. AFAIK all PPC ABIs use the same encoding. 4371 4372 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4373 4374 llvm::IntegerType *i8 = CGF.Int8Ty; 4375 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4376 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4377 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4378 4379 // 0-31: r0-31, the 4-byte or 8-byte general-purpose registers 4380 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 0, 31); 4381 4382 // 32-63: fp0-31, the 8-byte floating-point registers 4383 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4384 4385 // 64-67 are various 4-byte or 8-byte special-purpose registers: 4386 // 64: mq 4387 // 65: lr 4388 // 66: ctr 4389 // 67: ap 4390 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 64, 67); 4391 4392 // 68-76 are various 4-byte special-purpose registers: 4393 // 68-75 cr0-7 4394 // 76: xer 4395 AssignToArrayRange(Builder, Address, Four8, 68, 76); 4396 4397 // 77-108: v0-31, the 16-byte vector registers 4398 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4399 4400 // 109: vrsave 4401 // 110: vscr 4402 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 109, 110); 4403 4404 // AIX does not utilize the rest of the registers. 4405 if (IsAIX) 4406 return false; 4407 4408 // 111: spe_acc 4409 // 112: spefscr 4410 // 113: sfp 4411 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 111, 113); 4412 4413 if (!Is64Bit) 4414 return false; 4415 4416 // TODO: Need to verify if these registers are used on 64 bit AIX with Power8 4417 // or above CPU. 4418 // 64-bit only registers: 4419 // 114: tfhar 4420 // 115: tfiar 4421 // 116: texasr 4422 AssignToArrayRange(Builder, Address, Eight8, 114, 116); 4423 4424 return false; 4425 } 4426 4427 // AIX 4428 namespace { 4429 /// AIXABIInfo - The AIX XCOFF ABI information. 4430 class AIXABIInfo : public ABIInfo { 4431 const bool Is64Bit; 4432 const unsigned PtrByteSize; 4433 CharUnits getParamTypeAlignment(QualType Ty) const; 4434 4435 public: 4436 AIXABIInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit) 4437 : ABIInfo(CGT), Is64Bit(Is64Bit), PtrByteSize(Is64Bit ? 8 : 4) {} 4438 4439 bool isPromotableTypeForABI(QualType Ty) const; 4440 4441 ABIArgInfo classifyReturnType(QualType RetTy) const; 4442 ABIArgInfo classifyArgumentType(QualType Ty) const; 4443 4444 void computeInfo(CGFunctionInfo &FI) const override { 4445 if (!getCXXABI().classifyReturnType(FI)) 4446 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4447 4448 for (auto &I : FI.arguments()) 4449 I.info = classifyArgumentType(I.type); 4450 } 4451 4452 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4453 QualType Ty) const override; 4454 }; 4455 4456 class AIXTargetCodeGenInfo : public TargetCodeGenInfo { 4457 const bool Is64Bit; 4458 4459 public: 4460 AIXTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit) 4461 : TargetCodeGenInfo(std::make_unique<AIXABIInfo>(CGT, Is64Bit)), 4462 Is64Bit(Is64Bit) {} 4463 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4464 return 1; // r1 is the dedicated stack pointer 4465 } 4466 4467 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4468 llvm::Value *Address) const override; 4469 }; 4470 } // namespace 4471 4472 // Return true if the ABI requires Ty to be passed sign- or zero- 4473 // extended to 32/64 bits. 4474 bool AIXABIInfo::isPromotableTypeForABI(QualType Ty) const { 4475 // Treat an enum type as its underlying type. 4476 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4477 Ty = EnumTy->getDecl()->getIntegerType(); 4478 4479 // Promotable integer types are required to be promoted by the ABI. 4480 if (Ty->isPromotableIntegerType()) 4481 return true; 4482 4483 if (!Is64Bit) 4484 return false; 4485 4486 // For 64 bit mode, in addition to the usual promotable integer types, we also 4487 // need to extend all 32-bit types, since the ABI requires promotion to 64 4488 // bits. 4489 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4490 switch (BT->getKind()) { 4491 case BuiltinType::Int: 4492 case BuiltinType::UInt: 4493 return true; 4494 default: 4495 break; 4496 } 4497 4498 return false; 4499 } 4500 4501 ABIArgInfo AIXABIInfo::classifyReturnType(QualType RetTy) const { 4502 if (RetTy->isAnyComplexType()) 4503 return ABIArgInfo::getDirect(); 4504 4505 if (RetTy->isVectorType()) 4506 return ABIArgInfo::getDirect(); 4507 4508 if (RetTy->isVoidType()) 4509 return ABIArgInfo::getIgnore(); 4510 4511 if (isAggregateTypeForABI(RetTy)) 4512 return getNaturalAlignIndirect(RetTy); 4513 4514 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 4515 : ABIArgInfo::getDirect()); 4516 } 4517 4518 ABIArgInfo AIXABIInfo::classifyArgumentType(QualType Ty) const { 4519 Ty = useFirstFieldIfTransparentUnion(Ty); 4520 4521 if (Ty->isAnyComplexType()) 4522 return ABIArgInfo::getDirect(); 4523 4524 if (Ty->isVectorType()) 4525 return ABIArgInfo::getDirect(); 4526 4527 if (isAggregateTypeForABI(Ty)) { 4528 // Records with non-trivial destructors/copy-constructors should not be 4529 // passed by value. 4530 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 4531 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4532 4533 CharUnits CCAlign = getParamTypeAlignment(Ty); 4534 CharUnits TyAlign = getContext().getTypeAlignInChars(Ty); 4535 4536 return ABIArgInfo::getIndirect(CCAlign, /*ByVal*/ true, 4537 /*Realign*/ TyAlign > CCAlign); 4538 } 4539 4540 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 4541 : ABIArgInfo::getDirect()); 4542 } 4543 4544 CharUnits AIXABIInfo::getParamTypeAlignment(QualType Ty) const { 4545 // Complex types are passed just like their elements. 4546 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4547 Ty = CTy->getElementType(); 4548 4549 if (Ty->isVectorType()) 4550 return CharUnits::fromQuantity(16); 4551 4552 // If the structure contains a vector type, the alignment is 16. 4553 if (isRecordWithSIMDVectorType(getContext(), Ty)) 4554 return CharUnits::fromQuantity(16); 4555 4556 return CharUnits::fromQuantity(PtrByteSize); 4557 } 4558 4559 Address AIXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4560 QualType Ty) const { 4561 if (Ty->isAnyComplexType()) 4562 llvm::report_fatal_error("complex type is not supported on AIX yet"); 4563 4564 if (Ty->isVectorType()) 4565 llvm::report_fatal_error( 4566 "vector types are not yet supported for variadic functions on AIX"); 4567 4568 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 4569 TypeInfo.Align = getParamTypeAlignment(Ty); 4570 4571 CharUnits SlotSize = CharUnits::fromQuantity(PtrByteSize); 4572 4573 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, TypeInfo, 4574 SlotSize, /*AllowHigher*/ true); 4575 } 4576 4577 bool AIXTargetCodeGenInfo::initDwarfEHRegSizeTable( 4578 CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const { 4579 return PPC_initDwarfEHRegSizeTable(CGF, Address, Is64Bit, /*IsAIX*/ true); 4580 } 4581 4582 // PowerPC-32 4583 namespace { 4584 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. 4585 class PPC32_SVR4_ABIInfo : public DefaultABIInfo { 4586 bool IsSoftFloatABI; 4587 bool IsRetSmallStructInRegABI; 4588 4589 CharUnits getParamTypeAlignment(QualType Ty) const; 4590 4591 public: 4592 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI, 4593 bool RetSmallStructInRegABI) 4594 : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI), 4595 IsRetSmallStructInRegABI(RetSmallStructInRegABI) {} 4596 4597 ABIArgInfo classifyReturnType(QualType RetTy) const; 4598 4599 void computeInfo(CGFunctionInfo &FI) const override { 4600 if (!getCXXABI().classifyReturnType(FI)) 4601 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4602 for (auto &I : FI.arguments()) 4603 I.info = classifyArgumentType(I.type); 4604 } 4605 4606 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4607 QualType Ty) const override; 4608 }; 4609 4610 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { 4611 public: 4612 PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI, 4613 bool RetSmallStructInRegABI) 4614 : TargetCodeGenInfo(std::make_unique<PPC32_SVR4_ABIInfo>( 4615 CGT, SoftFloatABI, RetSmallStructInRegABI)) {} 4616 4617 static bool isStructReturnInRegABI(const llvm::Triple &Triple, 4618 const CodeGenOptions &Opts); 4619 4620 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4621 // This is recovered from gcc output. 4622 return 1; // r1 is the dedicated stack pointer 4623 } 4624 4625 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4626 llvm::Value *Address) const override; 4627 }; 4628 } 4629 4630 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4631 // Complex types are passed just like their elements. 4632 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4633 Ty = CTy->getElementType(); 4634 4635 if (Ty->isVectorType()) 4636 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 4637 : 4); 4638 4639 // For single-element float/vector structs, we consider the whole type 4640 // to have the same alignment requirements as its single element. 4641 const Type *AlignTy = nullptr; 4642 if (const Type *EltType = isSingleElementStruct(Ty, getContext())) { 4643 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4644 if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || 4645 (BT && BT->isFloatingPoint())) 4646 AlignTy = EltType; 4647 } 4648 4649 if (AlignTy) 4650 return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4); 4651 return CharUnits::fromQuantity(4); 4652 } 4653 4654 ABIArgInfo PPC32_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 4655 uint64_t Size; 4656 4657 // -msvr4-struct-return puts small aggregates in GPR3 and GPR4. 4658 if (isAggregateTypeForABI(RetTy) && IsRetSmallStructInRegABI && 4659 (Size = getContext().getTypeSize(RetTy)) <= 64) { 4660 // System V ABI (1995), page 3-22, specified: 4661 // > A structure or union whose size is less than or equal to 8 bytes 4662 // > shall be returned in r3 and r4, as if it were first stored in the 4663 // > 8-byte aligned memory area and then the low addressed word were 4664 // > loaded into r3 and the high-addressed word into r4. Bits beyond 4665 // > the last member of the structure or union are not defined. 4666 // 4667 // GCC for big-endian PPC32 inserts the pad before the first member, 4668 // not "beyond the last member" of the struct. To stay compatible 4669 // with GCC, we coerce the struct to an integer of the same size. 4670 // LLVM will extend it and return i32 in r3, or i64 in r3:r4. 4671 if (Size == 0) 4672 return ABIArgInfo::getIgnore(); 4673 else { 4674 llvm::Type *CoerceTy = llvm::Type::getIntNTy(getVMContext(), Size); 4675 return ABIArgInfo::getDirect(CoerceTy); 4676 } 4677 } 4678 4679 return DefaultABIInfo::classifyReturnType(RetTy); 4680 } 4681 4682 // TODO: this implementation is now likely redundant with 4683 // DefaultABIInfo::EmitVAArg. 4684 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList, 4685 QualType Ty) const { 4686 if (getTarget().getTriple().isOSDarwin()) { 4687 auto TI = getContext().getTypeInfoInChars(Ty); 4688 TI.Align = getParamTypeAlignment(Ty); 4689 4690 CharUnits SlotSize = CharUnits::fromQuantity(4); 4691 return emitVoidPtrVAArg(CGF, VAList, Ty, 4692 classifyArgumentType(Ty).isIndirect(), TI, SlotSize, 4693 /*AllowHigherAlign=*/true); 4694 } 4695 4696 const unsigned OverflowLimit = 8; 4697 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4698 // TODO: Implement this. For now ignore. 4699 (void)CTy; 4700 return Address::invalid(); // FIXME? 4701 } 4702 4703 // struct __va_list_tag { 4704 // unsigned char gpr; 4705 // unsigned char fpr; 4706 // unsigned short reserved; 4707 // void *overflow_arg_area; 4708 // void *reg_save_area; 4709 // }; 4710 4711 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; 4712 bool isInt = 4713 Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType(); 4714 bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64; 4715 4716 // All aggregates are passed indirectly? That doesn't seem consistent 4717 // with the argument-lowering code. 4718 bool isIndirect = Ty->isAggregateType(); 4719 4720 CGBuilderTy &Builder = CGF.Builder; 4721 4722 // The calling convention either uses 1-2 GPRs or 1 FPR. 4723 Address NumRegsAddr = Address::invalid(); 4724 if (isInt || IsSoftFloatABI) { 4725 NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr"); 4726 } else { 4727 NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr"); 4728 } 4729 4730 llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs"); 4731 4732 // "Align" the register count when TY is i64. 4733 if (isI64 || (isF64 && IsSoftFloatABI)) { 4734 NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1)); 4735 NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U)); 4736 } 4737 4738 llvm::Value *CC = 4739 Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond"); 4740 4741 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); 4742 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); 4743 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 4744 4745 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); 4746 4747 llvm::Type *DirectTy = CGF.ConvertType(Ty); 4748 if (isIndirect) DirectTy = DirectTy->getPointerTo(0); 4749 4750 // Case 1: consume registers. 4751 Address RegAddr = Address::invalid(); 4752 { 4753 CGF.EmitBlock(UsingRegs); 4754 4755 Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4); 4756 RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr), 4757 CharUnits::fromQuantity(8)); 4758 assert(RegAddr.getElementType() == CGF.Int8Ty); 4759 4760 // Floating-point registers start after the general-purpose registers. 4761 if (!(isInt || IsSoftFloatABI)) { 4762 RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr, 4763 CharUnits::fromQuantity(32)); 4764 } 4765 4766 // Get the address of the saved value by scaling the number of 4767 // registers we've used by the number of 4768 CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8); 4769 llvm::Value *RegOffset = 4770 Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity())); 4771 RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty, 4772 RegAddr.getPointer(), RegOffset), 4773 RegAddr.getAlignment().alignmentOfArrayElement(RegSize)); 4774 RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy); 4775 4776 // Increase the used-register count. 4777 NumRegs = 4778 Builder.CreateAdd(NumRegs, 4779 Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1)); 4780 Builder.CreateStore(NumRegs, NumRegsAddr); 4781 4782 CGF.EmitBranch(Cont); 4783 } 4784 4785 // Case 2: consume space in the overflow area. 4786 Address MemAddr = Address::invalid(); 4787 { 4788 CGF.EmitBlock(UsingOverflow); 4789 4790 Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr); 4791 4792 // Everything in the overflow area is rounded up to a size of at least 4. 4793 CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4); 4794 4795 CharUnits Size; 4796 if (!isIndirect) { 4797 auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty); 4798 Size = TypeInfo.Width.alignTo(OverflowAreaAlign); 4799 } else { 4800 Size = CGF.getPointerSize(); 4801 } 4802 4803 Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3); 4804 Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), 4805 OverflowAreaAlign); 4806 // Round up address of argument to alignment 4807 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 4808 if (Align > OverflowAreaAlign) { 4809 llvm::Value *Ptr = OverflowArea.getPointer(); 4810 OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align), 4811 Align); 4812 } 4813 4814 MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy); 4815 4816 // Increase the overflow area. 4817 OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size); 4818 Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr); 4819 CGF.EmitBranch(Cont); 4820 } 4821 4822 CGF.EmitBlock(Cont); 4823 4824 // Merge the cases with a phi. 4825 Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow, 4826 "vaarg.addr"); 4827 4828 // Load the pointer if the argument was passed indirectly. 4829 if (isIndirect) { 4830 Result = Address(Builder.CreateLoad(Result, "aggr"), 4831 getContext().getTypeAlignInChars(Ty)); 4832 } 4833 4834 return Result; 4835 } 4836 4837 bool PPC32TargetCodeGenInfo::isStructReturnInRegABI( 4838 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 4839 assert(Triple.isPPC32()); 4840 4841 switch (Opts.getStructReturnConvention()) { 4842 case CodeGenOptions::SRCK_Default: 4843 break; 4844 case CodeGenOptions::SRCK_OnStack: // -maix-struct-return 4845 return false; 4846 case CodeGenOptions::SRCK_InRegs: // -msvr4-struct-return 4847 return true; 4848 } 4849 4850 if (Triple.isOSBinFormatELF() && !Triple.isOSLinux()) 4851 return true; 4852 4853 return false; 4854 } 4855 4856 bool 4857 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4858 llvm::Value *Address) const { 4859 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ false, 4860 /*IsAIX*/ false); 4861 } 4862 4863 // PowerPC-64 4864 4865 namespace { 4866 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 4867 class PPC64_SVR4_ABIInfo : public SwiftABIInfo { 4868 public: 4869 enum ABIKind { 4870 ELFv1 = 0, 4871 ELFv2 4872 }; 4873 4874 private: 4875 static const unsigned GPRBits = 64; 4876 ABIKind Kind; 4877 bool IsSoftFloatABI; 4878 4879 public: 4880 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, 4881 bool SoftFloatABI) 4882 : SwiftABIInfo(CGT), Kind(Kind), IsSoftFloatABI(SoftFloatABI) {} 4883 4884 bool isPromotableTypeForABI(QualType Ty) const; 4885 CharUnits getParamTypeAlignment(QualType Ty) const; 4886 4887 ABIArgInfo classifyReturnType(QualType RetTy) const; 4888 ABIArgInfo classifyArgumentType(QualType Ty) const; 4889 4890 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4891 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4892 uint64_t Members) const override; 4893 4894 // TODO: We can add more logic to computeInfo to improve performance. 4895 // Example: For aggregate arguments that fit in a register, we could 4896 // use getDirectInReg (as is done below for structs containing a single 4897 // floating-point value) to avoid pushing them to memory on function 4898 // entry. This would require changing the logic in PPCISelLowering 4899 // when lowering the parameters in the caller and args in the callee. 4900 void computeInfo(CGFunctionInfo &FI) const override { 4901 if (!getCXXABI().classifyReturnType(FI)) 4902 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4903 for (auto &I : FI.arguments()) { 4904 // We rely on the default argument classification for the most part. 4905 // One exception: An aggregate containing a single floating-point 4906 // or vector item must be passed in a register if one is available. 4907 const Type *T = isSingleElementStruct(I.type, getContext()); 4908 if (T) { 4909 const BuiltinType *BT = T->getAs<BuiltinType>(); 4910 if ((T->isVectorType() && getContext().getTypeSize(T) == 128) || 4911 (BT && BT->isFloatingPoint())) { 4912 QualType QT(T, 0); 4913 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 4914 continue; 4915 } 4916 } 4917 I.info = classifyArgumentType(I.type); 4918 } 4919 } 4920 4921 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4922 QualType Ty) const override; 4923 4924 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 4925 bool asReturnValue) const override { 4926 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 4927 } 4928 4929 bool isSwiftErrorInRegister() const override { 4930 return false; 4931 } 4932 }; 4933 4934 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 4935 4936 public: 4937 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 4938 PPC64_SVR4_ABIInfo::ABIKind Kind, 4939 bool SoftFloatABI) 4940 : TargetCodeGenInfo( 4941 std::make_unique<PPC64_SVR4_ABIInfo>(CGT, Kind, SoftFloatABI)) {} 4942 4943 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4944 // This is recovered from gcc output. 4945 return 1; // r1 is the dedicated stack pointer 4946 } 4947 4948 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4949 llvm::Value *Address) const override; 4950 }; 4951 4952 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 4953 public: 4954 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 4955 4956 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4957 // This is recovered from gcc output. 4958 return 1; // r1 is the dedicated stack pointer 4959 } 4960 4961 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4962 llvm::Value *Address) const override; 4963 }; 4964 4965 } 4966 4967 // Return true if the ABI requires Ty to be passed sign- or zero- 4968 // extended to 64 bits. 4969 bool 4970 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 4971 // Treat an enum type as its underlying type. 4972 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4973 Ty = EnumTy->getDecl()->getIntegerType(); 4974 4975 // Promotable integer types are required to be promoted by the ABI. 4976 if (isPromotableIntegerTypeForABI(Ty)) 4977 return true; 4978 4979 // In addition to the usual promotable integer types, we also need to 4980 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 4981 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4982 switch (BT->getKind()) { 4983 case BuiltinType::Int: 4984 case BuiltinType::UInt: 4985 return true; 4986 default: 4987 break; 4988 } 4989 4990 if (const auto *EIT = Ty->getAs<ExtIntType>()) 4991 if (EIT->getNumBits() < 64) 4992 return true; 4993 4994 return false; 4995 } 4996 4997 /// isAlignedParamType - Determine whether a type requires 16-byte or 4998 /// higher alignment in the parameter area. Always returns at least 8. 4999 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 5000 // Complex types are passed just like their elements. 5001 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 5002 Ty = CTy->getElementType(); 5003 5004 // Only vector types of size 16 bytes need alignment (larger types are 5005 // passed via reference, smaller types are not aligned). 5006 if (Ty->isVectorType()) { 5007 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8); 5008 } else if (Ty->isRealFloatingType() && 5009 &getContext().getFloatTypeSemantics(Ty) == 5010 &llvm::APFloat::IEEEquad()) { 5011 // According to ABI document section 'Optional Save Areas': If extended 5012 // precision floating-point values in IEEE BINARY 128 QUADRUPLE PRECISION 5013 // format are supported, map them to a single quadword, quadword aligned. 5014 return CharUnits::fromQuantity(16); 5015 } 5016 5017 // For single-element float/vector structs, we consider the whole type 5018 // to have the same alignment requirements as its single element. 5019 const Type *AlignAsType = nullptr; 5020 const Type *EltType = isSingleElementStruct(Ty, getContext()); 5021 if (EltType) { 5022 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 5023 if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || 5024 (BT && BT->isFloatingPoint())) 5025 AlignAsType = EltType; 5026 } 5027 5028 // Likewise for ELFv2 homogeneous aggregates. 5029 const Type *Base = nullptr; 5030 uint64_t Members = 0; 5031 if (!AlignAsType && Kind == ELFv2 && 5032 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 5033 AlignAsType = Base; 5034 5035 // With special case aggregates, only vector base types need alignment. 5036 if (AlignAsType) { 5037 return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8); 5038 } 5039 5040 // Otherwise, we only need alignment for any aggregate type that 5041 // has an alignment requirement of >= 16 bytes. 5042 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { 5043 return CharUnits::fromQuantity(16); 5044 } 5045 5046 return CharUnits::fromQuantity(8); 5047 } 5048 5049 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 5050 /// aggregate. Base is set to the base element type, and Members is set 5051 /// to the number of base elements. 5052 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 5053 uint64_t &Members) const { 5054 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 5055 uint64_t NElements = AT->getSize().getZExtValue(); 5056 if (NElements == 0) 5057 return false; 5058 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 5059 return false; 5060 Members *= NElements; 5061 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 5062 const RecordDecl *RD = RT->getDecl(); 5063 if (RD->hasFlexibleArrayMember()) 5064 return false; 5065 5066 Members = 0; 5067 5068 // If this is a C++ record, check the properties of the record such as 5069 // bases and ABI specific restrictions 5070 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 5071 if (!getCXXABI().isPermittedToBeHomogeneousAggregate(CXXRD)) 5072 return false; 5073 5074 for (const auto &I : CXXRD->bases()) { 5075 // Ignore empty records. 5076 if (isEmptyRecord(getContext(), I.getType(), true)) 5077 continue; 5078 5079 uint64_t FldMembers; 5080 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) 5081 return false; 5082 5083 Members += FldMembers; 5084 } 5085 } 5086 5087 for (const auto *FD : RD->fields()) { 5088 // Ignore (non-zero arrays of) empty records. 5089 QualType FT = FD->getType(); 5090 while (const ConstantArrayType *AT = 5091 getContext().getAsConstantArrayType(FT)) { 5092 if (AT->getSize().getZExtValue() == 0) 5093 return false; 5094 FT = AT->getElementType(); 5095 } 5096 if (isEmptyRecord(getContext(), FT, true)) 5097 continue; 5098 5099 // For compatibility with GCC, ignore empty bitfields in C++ mode. 5100 if (getContext().getLangOpts().CPlusPlus && 5101 FD->isZeroLengthBitField(getContext())) 5102 continue; 5103 5104 uint64_t FldMembers; 5105 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 5106 return false; 5107 5108 Members = (RD->isUnion() ? 5109 std::max(Members, FldMembers) : Members + FldMembers); 5110 } 5111 5112 if (!Base) 5113 return false; 5114 5115 // Ensure there is no padding. 5116 if (getContext().getTypeSize(Base) * Members != 5117 getContext().getTypeSize(Ty)) 5118 return false; 5119 } else { 5120 Members = 1; 5121 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 5122 Members = 2; 5123 Ty = CT->getElementType(); 5124 } 5125 5126 // Most ABIs only support float, double, and some vector type widths. 5127 if (!isHomogeneousAggregateBaseType(Ty)) 5128 return false; 5129 5130 // The base type must be the same for all members. Types that 5131 // agree in both total size and mode (float vs. vector) are 5132 // treated as being equivalent here. 5133 const Type *TyPtr = Ty.getTypePtr(); 5134 if (!Base) { 5135 Base = TyPtr; 5136 // If it's a non-power-of-2 vector, its size is already a power-of-2, 5137 // so make sure to widen it explicitly. 5138 if (const VectorType *VT = Base->getAs<VectorType>()) { 5139 QualType EltTy = VT->getElementType(); 5140 unsigned NumElements = 5141 getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy); 5142 Base = getContext() 5143 .getVectorType(EltTy, NumElements, VT->getVectorKind()) 5144 .getTypePtr(); 5145 } 5146 } 5147 5148 if (Base->isVectorType() != TyPtr->isVectorType() || 5149 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 5150 return false; 5151 } 5152 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); 5153 } 5154 5155 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5156 // Homogeneous aggregates for ELFv2 must have base types of float, 5157 // double, long double, or 128-bit vectors. 5158 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5159 if (BT->getKind() == BuiltinType::Float || 5160 BT->getKind() == BuiltinType::Double || 5161 BT->getKind() == BuiltinType::LongDouble || 5162 (getContext().getTargetInfo().hasFloat128Type() && 5163 (BT->getKind() == BuiltinType::Float128))) { 5164 if (IsSoftFloatABI) 5165 return false; 5166 return true; 5167 } 5168 } 5169 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5170 if (getContext().getTypeSize(VT) == 128) 5171 return true; 5172 } 5173 return false; 5174 } 5175 5176 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( 5177 const Type *Base, uint64_t Members) const { 5178 // Vector and fp128 types require one register, other floating point types 5179 // require one or two registers depending on their size. 5180 uint32_t NumRegs = 5181 ((getContext().getTargetInfo().hasFloat128Type() && 5182 Base->isFloat128Type()) || 5183 Base->isVectorType()) ? 1 5184 : (getContext().getTypeSize(Base) + 63) / 64; 5185 5186 // Homogeneous Aggregates may occupy at most 8 registers. 5187 return Members * NumRegs <= 8; 5188 } 5189 5190 ABIArgInfo 5191 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 5192 Ty = useFirstFieldIfTransparentUnion(Ty); 5193 5194 if (Ty->isAnyComplexType()) 5195 return ABIArgInfo::getDirect(); 5196 5197 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 5198 // or via reference (larger than 16 bytes). 5199 if (Ty->isVectorType()) { 5200 uint64_t Size = getContext().getTypeSize(Ty); 5201 if (Size > 128) 5202 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5203 else if (Size < 128) { 5204 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 5205 return ABIArgInfo::getDirect(CoerceTy); 5206 } 5207 } 5208 5209 if (const auto *EIT = Ty->getAs<ExtIntType>()) 5210 if (EIT->getNumBits() > 128) 5211 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 5212 5213 if (isAggregateTypeForABI(Ty)) { 5214 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 5215 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 5216 5217 uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity(); 5218 uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 5219 5220 // ELFv2 homogeneous aggregates are passed as array types. 5221 const Type *Base = nullptr; 5222 uint64_t Members = 0; 5223 if (Kind == ELFv2 && 5224 isHomogeneousAggregate(Ty, Base, Members)) { 5225 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 5226 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 5227 return ABIArgInfo::getDirect(CoerceTy); 5228 } 5229 5230 // If an aggregate may end up fully in registers, we do not 5231 // use the ByVal method, but pass the aggregate as array. 5232 // This is usually beneficial since we avoid forcing the 5233 // back-end to store the argument to memory. 5234 uint64_t Bits = getContext().getTypeSize(Ty); 5235 if (Bits > 0 && Bits <= 8 * GPRBits) { 5236 llvm::Type *CoerceTy; 5237 5238 // Types up to 8 bytes are passed as integer type (which will be 5239 // properly aligned in the argument save area doubleword). 5240 if (Bits <= GPRBits) 5241 CoerceTy = 5242 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 5243 // Larger types are passed as arrays, with the base type selected 5244 // according to the required alignment in the save area. 5245 else { 5246 uint64_t RegBits = ABIAlign * 8; 5247 uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits; 5248 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 5249 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 5250 } 5251 5252 return ABIArgInfo::getDirect(CoerceTy); 5253 } 5254 5255 // All other aggregates are passed ByVal. 5256 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 5257 /*ByVal=*/true, 5258 /*Realign=*/TyAlign > ABIAlign); 5259 } 5260 5261 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 5262 : ABIArgInfo::getDirect()); 5263 } 5264 5265 ABIArgInfo 5266 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 5267 if (RetTy->isVoidType()) 5268 return ABIArgInfo::getIgnore(); 5269 5270 if (RetTy->isAnyComplexType()) 5271 return ABIArgInfo::getDirect(); 5272 5273 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 5274 // or via reference (larger than 16 bytes). 5275 if (RetTy->isVectorType()) { 5276 uint64_t Size = getContext().getTypeSize(RetTy); 5277 if (Size > 128) 5278 return getNaturalAlignIndirect(RetTy); 5279 else if (Size < 128) { 5280 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 5281 return ABIArgInfo::getDirect(CoerceTy); 5282 } 5283 } 5284 5285 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 5286 if (EIT->getNumBits() > 128) 5287 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 5288 5289 if (isAggregateTypeForABI(RetTy)) { 5290 // ELFv2 homogeneous aggregates are returned as array types. 5291 const Type *Base = nullptr; 5292 uint64_t Members = 0; 5293 if (Kind == ELFv2 && 5294 isHomogeneousAggregate(RetTy, Base, Members)) { 5295 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 5296 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 5297 return ABIArgInfo::getDirect(CoerceTy); 5298 } 5299 5300 // ELFv2 small aggregates are returned in up to two registers. 5301 uint64_t Bits = getContext().getTypeSize(RetTy); 5302 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 5303 if (Bits == 0) 5304 return ABIArgInfo::getIgnore(); 5305 5306 llvm::Type *CoerceTy; 5307 if (Bits > GPRBits) { 5308 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 5309 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy); 5310 } else 5311 CoerceTy = 5312 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 5313 return ABIArgInfo::getDirect(CoerceTy); 5314 } 5315 5316 // All other aggregates are returned indirectly. 5317 return getNaturalAlignIndirect(RetTy); 5318 } 5319 5320 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 5321 : ABIArgInfo::getDirect()); 5322 } 5323 5324 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 5325 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5326 QualType Ty) const { 5327 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 5328 TypeInfo.Align = getParamTypeAlignment(Ty); 5329 5330 CharUnits SlotSize = CharUnits::fromQuantity(8); 5331 5332 // If we have a complex type and the base type is smaller than 8 bytes, 5333 // the ABI calls for the real and imaginary parts to be right-adjusted 5334 // in separate doublewords. However, Clang expects us to produce a 5335 // pointer to a structure with the two parts packed tightly. So generate 5336 // loads of the real and imaginary parts relative to the va_list pointer, 5337 // and store them to a temporary structure. 5338 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 5339 CharUnits EltSize = TypeInfo.Width / 2; 5340 if (EltSize < SlotSize) { 5341 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, 5342 SlotSize * 2, SlotSize, 5343 SlotSize, /*AllowHigher*/ true); 5344 5345 Address RealAddr = Addr; 5346 Address ImagAddr = RealAddr; 5347 if (CGF.CGM.getDataLayout().isBigEndian()) { 5348 RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, 5349 SlotSize - EltSize); 5350 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr, 5351 2 * SlotSize - EltSize); 5352 } else { 5353 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize); 5354 } 5355 5356 llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType()); 5357 RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy); 5358 ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy); 5359 llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal"); 5360 llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag"); 5361 5362 Address Temp = CGF.CreateMemTemp(Ty, "vacplx"); 5363 CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty), 5364 /*init*/ true); 5365 return Temp; 5366 } 5367 } 5368 5369 // Otherwise, just use the general rule. 5370 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 5371 TypeInfo, SlotSize, /*AllowHigher*/ true); 5372 } 5373 5374 bool 5375 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 5376 CodeGen::CodeGenFunction &CGF, 5377 llvm::Value *Address) const { 5378 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true, 5379 /*IsAIX*/ false); 5380 } 5381 5382 bool 5383 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5384 llvm::Value *Address) const { 5385 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true, 5386 /*IsAIX*/ false); 5387 } 5388 5389 //===----------------------------------------------------------------------===// 5390 // AArch64 ABI Implementation 5391 //===----------------------------------------------------------------------===// 5392 5393 namespace { 5394 5395 class AArch64ABIInfo : public SwiftABIInfo { 5396 public: 5397 enum ABIKind { 5398 AAPCS = 0, 5399 DarwinPCS, 5400 Win64 5401 }; 5402 5403 private: 5404 ABIKind Kind; 5405 5406 public: 5407 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) 5408 : SwiftABIInfo(CGT), Kind(Kind) {} 5409 5410 private: 5411 ABIKind getABIKind() const { return Kind; } 5412 bool isDarwinPCS() const { return Kind == DarwinPCS; } 5413 5414 ABIArgInfo classifyReturnType(QualType RetTy, bool IsVariadic) const; 5415 ABIArgInfo classifyArgumentType(QualType RetTy) const; 5416 ABIArgInfo coerceIllegalVector(QualType Ty) const; 5417 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 5418 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 5419 uint64_t Members) const override; 5420 5421 bool isIllegalVectorType(QualType Ty) const; 5422 5423 void computeInfo(CGFunctionInfo &FI) const override { 5424 if (!::classifyReturnType(getCXXABI(), FI, *this)) 5425 FI.getReturnInfo() = 5426 classifyReturnType(FI.getReturnType(), FI.isVariadic()); 5427 5428 for (auto &it : FI.arguments()) 5429 it.info = classifyArgumentType(it.type); 5430 } 5431 5432 Address EmitDarwinVAArg(Address VAListAddr, QualType Ty, 5433 CodeGenFunction &CGF) const; 5434 5435 Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 5436 CodeGenFunction &CGF) const; 5437 5438 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5439 QualType Ty) const override { 5440 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5441 if (isa<llvm::ScalableVectorType>(BaseTy)) 5442 llvm::report_fatal_error("Passing SVE types to variadic functions is " 5443 "currently not supported"); 5444 5445 return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty) 5446 : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 5447 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 5448 } 5449 5450 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 5451 QualType Ty) const override; 5452 5453 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 5454 bool asReturnValue) const override { 5455 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5456 } 5457 bool isSwiftErrorInRegister() const override { 5458 return true; 5459 } 5460 5461 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 5462 unsigned elts) const override; 5463 5464 bool allowBFloatArgsAndRet() const override { 5465 return getTarget().hasBFloat16Type(); 5466 } 5467 }; 5468 5469 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 5470 public: 5471 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 5472 : TargetCodeGenInfo(std::make_unique<AArch64ABIInfo>(CGT, Kind)) {} 5473 5474 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 5475 return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue"; 5476 } 5477 5478 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5479 return 31; 5480 } 5481 5482 bool doesReturnSlotInterfereWithArgs() const override { return false; } 5483 5484 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5485 CodeGen::CodeGenModule &CGM) const override { 5486 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5487 if (!FD) 5488 return; 5489 5490 const auto *TA = FD->getAttr<TargetAttr>(); 5491 if (TA == nullptr) 5492 return; 5493 5494 ParsedTargetAttr Attr = TA->parse(); 5495 if (Attr.BranchProtection.empty()) 5496 return; 5497 5498 TargetInfo::BranchProtectionInfo BPI; 5499 StringRef Error; 5500 (void)CGM.getTarget().validateBranchProtection(Attr.BranchProtection, 5501 BPI, Error); 5502 assert(Error.empty()); 5503 5504 auto *Fn = cast<llvm::Function>(GV); 5505 static const char *SignReturnAddrStr[] = {"none", "non-leaf", "all"}; 5506 Fn->addFnAttr("sign-return-address", SignReturnAddrStr[static_cast<int>(BPI.SignReturnAddr)]); 5507 5508 if (BPI.SignReturnAddr != LangOptions::SignReturnAddressScopeKind::None) { 5509 Fn->addFnAttr("sign-return-address-key", 5510 BPI.SignKey == LangOptions::SignReturnAddressKeyKind::AKey 5511 ? "a_key" 5512 : "b_key"); 5513 } 5514 5515 Fn->addFnAttr("branch-target-enforcement", 5516 BPI.BranchTargetEnforcement ? "true" : "false"); 5517 } 5518 }; 5519 5520 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo { 5521 public: 5522 WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K) 5523 : AArch64TargetCodeGenInfo(CGT, K) {} 5524 5525 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5526 CodeGen::CodeGenModule &CGM) const override; 5527 5528 void getDependentLibraryOption(llvm::StringRef Lib, 5529 llvm::SmallString<24> &Opt) const override { 5530 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5531 } 5532 5533 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5534 llvm::SmallString<32> &Opt) const override { 5535 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5536 } 5537 }; 5538 5539 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes( 5540 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 5541 AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 5542 if (GV->isDeclaration()) 5543 return; 5544 addStackProbeTargetAttributes(D, GV, CGM); 5545 } 5546 } 5547 5548 ABIArgInfo AArch64ABIInfo::coerceIllegalVector(QualType Ty) const { 5549 assert(Ty->isVectorType() && "expected vector type!"); 5550 5551 const auto *VT = Ty->castAs<VectorType>(); 5552 if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) { 5553 assert(VT->getElementType()->isBuiltinType() && "expected builtin type!"); 5554 assert(VT->getElementType()->castAs<BuiltinType>()->getKind() == 5555 BuiltinType::UChar && 5556 "unexpected builtin type for SVE predicate!"); 5557 return ABIArgInfo::getDirect(llvm::ScalableVectorType::get( 5558 llvm::Type::getInt1Ty(getVMContext()), 16)); 5559 } 5560 5561 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector) { 5562 assert(VT->getElementType()->isBuiltinType() && "expected builtin type!"); 5563 5564 const auto *BT = VT->getElementType()->castAs<BuiltinType>(); 5565 llvm::ScalableVectorType *ResType = nullptr; 5566 switch (BT->getKind()) { 5567 default: 5568 llvm_unreachable("unexpected builtin type for SVE vector!"); 5569 case BuiltinType::SChar: 5570 case BuiltinType::UChar: 5571 ResType = llvm::ScalableVectorType::get( 5572 llvm::Type::getInt8Ty(getVMContext()), 16); 5573 break; 5574 case BuiltinType::Short: 5575 case BuiltinType::UShort: 5576 ResType = llvm::ScalableVectorType::get( 5577 llvm::Type::getInt16Ty(getVMContext()), 8); 5578 break; 5579 case BuiltinType::Int: 5580 case BuiltinType::UInt: 5581 ResType = llvm::ScalableVectorType::get( 5582 llvm::Type::getInt32Ty(getVMContext()), 4); 5583 break; 5584 case BuiltinType::Long: 5585 case BuiltinType::ULong: 5586 ResType = llvm::ScalableVectorType::get( 5587 llvm::Type::getInt64Ty(getVMContext()), 2); 5588 break; 5589 case BuiltinType::Half: 5590 ResType = llvm::ScalableVectorType::get( 5591 llvm::Type::getHalfTy(getVMContext()), 8); 5592 break; 5593 case BuiltinType::Float: 5594 ResType = llvm::ScalableVectorType::get( 5595 llvm::Type::getFloatTy(getVMContext()), 4); 5596 break; 5597 case BuiltinType::Double: 5598 ResType = llvm::ScalableVectorType::get( 5599 llvm::Type::getDoubleTy(getVMContext()), 2); 5600 break; 5601 case BuiltinType::BFloat16: 5602 ResType = llvm::ScalableVectorType::get( 5603 llvm::Type::getBFloatTy(getVMContext()), 8); 5604 break; 5605 } 5606 return ABIArgInfo::getDirect(ResType); 5607 } 5608 5609 uint64_t Size = getContext().getTypeSize(Ty); 5610 // Android promotes <2 x i8> to i16, not i32 5611 if (isAndroid() && (Size <= 16)) { 5612 llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext()); 5613 return ABIArgInfo::getDirect(ResType); 5614 } 5615 if (Size <= 32) { 5616 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 5617 return ABIArgInfo::getDirect(ResType); 5618 } 5619 if (Size == 64) { 5620 auto *ResType = 5621 llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 5622 return ABIArgInfo::getDirect(ResType); 5623 } 5624 if (Size == 128) { 5625 auto *ResType = 5626 llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 5627 return ABIArgInfo::getDirect(ResType); 5628 } 5629 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5630 } 5631 5632 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const { 5633 Ty = useFirstFieldIfTransparentUnion(Ty); 5634 5635 // Handle illegal vector types here. 5636 if (isIllegalVectorType(Ty)) 5637 return coerceIllegalVector(Ty); 5638 5639 if (!isAggregateTypeForABI(Ty)) { 5640 // Treat an enum type as its underlying type. 5641 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5642 Ty = EnumTy->getDecl()->getIntegerType(); 5643 5644 if (const auto *EIT = Ty->getAs<ExtIntType>()) 5645 if (EIT->getNumBits() > 128) 5646 return getNaturalAlignIndirect(Ty); 5647 5648 return (isPromotableIntegerTypeForABI(Ty) && isDarwinPCS() 5649 ? ABIArgInfo::getExtend(Ty) 5650 : ABIArgInfo::getDirect()); 5651 } 5652 5653 // Structures with either a non-trivial destructor or a non-trivial 5654 // copy constructor are always indirect. 5655 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5656 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 5657 CGCXXABI::RAA_DirectInMemory); 5658 } 5659 5660 // Empty records are always ignored on Darwin, but actually passed in C++ mode 5661 // elsewhere for GNU compatibility. 5662 uint64_t Size = getContext().getTypeSize(Ty); 5663 bool IsEmpty = isEmptyRecord(getContext(), Ty, true); 5664 if (IsEmpty || Size == 0) { 5665 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 5666 return ABIArgInfo::getIgnore(); 5667 5668 // GNU C mode. The only argument that gets ignored is an empty one with size 5669 // 0. 5670 if (IsEmpty && Size == 0) 5671 return ABIArgInfo::getIgnore(); 5672 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5673 } 5674 5675 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 5676 const Type *Base = nullptr; 5677 uint64_t Members = 0; 5678 if (isHomogeneousAggregate(Ty, Base, Members)) { 5679 return ABIArgInfo::getDirect( 5680 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); 5681 } 5682 5683 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 5684 if (Size <= 128) { 5685 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5686 // same size and alignment. 5687 if (getTarget().isRenderScriptTarget()) { 5688 return coerceToIntArray(Ty, getContext(), getVMContext()); 5689 } 5690 unsigned Alignment; 5691 if (Kind == AArch64ABIInfo::AAPCS) { 5692 Alignment = getContext().getTypeUnadjustedAlign(Ty); 5693 Alignment = Alignment < 128 ? 64 : 128; 5694 } else { 5695 Alignment = std::max(getContext().getTypeAlign(Ty), 5696 (unsigned)getTarget().getPointerWidth(0)); 5697 } 5698 Size = llvm::alignTo(Size, Alignment); 5699 5700 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5701 // For aggregates with 16-byte alignment, we use i128. 5702 llvm::Type *BaseTy = llvm::Type::getIntNTy(getVMContext(), Alignment); 5703 return ABIArgInfo::getDirect( 5704 Size == Alignment ? BaseTy 5705 : llvm::ArrayType::get(BaseTy, Size / Alignment)); 5706 } 5707 5708 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5709 } 5710 5711 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy, 5712 bool IsVariadic) const { 5713 if (RetTy->isVoidType()) 5714 return ABIArgInfo::getIgnore(); 5715 5716 if (const auto *VT = RetTy->getAs<VectorType>()) { 5717 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector || 5718 VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) 5719 return coerceIllegalVector(RetTy); 5720 } 5721 5722 // Large vector types should be returned via memory. 5723 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 5724 return getNaturalAlignIndirect(RetTy); 5725 5726 if (!isAggregateTypeForABI(RetTy)) { 5727 // Treat an enum type as its underlying type. 5728 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5729 RetTy = EnumTy->getDecl()->getIntegerType(); 5730 5731 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 5732 if (EIT->getNumBits() > 128) 5733 return getNaturalAlignIndirect(RetTy); 5734 5735 return (isPromotableIntegerTypeForABI(RetTy) && isDarwinPCS() 5736 ? ABIArgInfo::getExtend(RetTy) 5737 : ABIArgInfo::getDirect()); 5738 } 5739 5740 uint64_t Size = getContext().getTypeSize(RetTy); 5741 if (isEmptyRecord(getContext(), RetTy, true) || Size == 0) 5742 return ABIArgInfo::getIgnore(); 5743 5744 const Type *Base = nullptr; 5745 uint64_t Members = 0; 5746 if (isHomogeneousAggregate(RetTy, Base, Members) && 5747 !(getTarget().getTriple().getArch() == llvm::Triple::aarch64_32 && 5748 IsVariadic)) 5749 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 5750 return ABIArgInfo::getDirect(); 5751 5752 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 5753 if (Size <= 128) { 5754 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5755 // same size and alignment. 5756 if (getTarget().isRenderScriptTarget()) { 5757 return coerceToIntArray(RetTy, getContext(), getVMContext()); 5758 } 5759 unsigned Alignment = getContext().getTypeAlign(RetTy); 5760 Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes 5761 5762 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5763 // For aggregates with 16-byte alignment, we use i128. 5764 if (Alignment < 128 && Size == 128) { 5765 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 5766 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 5767 } 5768 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 5769 } 5770 5771 return getNaturalAlignIndirect(RetTy); 5772 } 5773 5774 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 5775 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 5776 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5777 // Check whether VT is a fixed-length SVE vector. These types are 5778 // represented as scalable vectors in function args/return and must be 5779 // coerced from fixed vectors. 5780 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector || 5781 VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) 5782 return true; 5783 5784 // Check whether VT is legal. 5785 unsigned NumElements = VT->getNumElements(); 5786 uint64_t Size = getContext().getTypeSize(VT); 5787 // NumElements should be power of 2. 5788 if (!llvm::isPowerOf2_32(NumElements)) 5789 return true; 5790 5791 // arm64_32 has to be compatible with the ARM logic here, which allows huge 5792 // vectors for some reason. 5793 llvm::Triple Triple = getTarget().getTriple(); 5794 if (Triple.getArch() == llvm::Triple::aarch64_32 && 5795 Triple.isOSBinFormatMachO()) 5796 return Size <= 32; 5797 5798 return Size != 64 && (Size != 128 || NumElements == 1); 5799 } 5800 return false; 5801 } 5802 5803 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize, 5804 llvm::Type *eltTy, 5805 unsigned elts) const { 5806 if (!llvm::isPowerOf2_32(elts)) 5807 return false; 5808 if (totalSize.getQuantity() != 8 && 5809 (totalSize.getQuantity() != 16 || elts == 1)) 5810 return false; 5811 return true; 5812 } 5813 5814 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5815 // Homogeneous aggregates for AAPCS64 must have base types of a floating 5816 // point type or a short-vector type. This is the same as the 32-bit ABI, 5817 // but with the difference that any floating-point type is allowed, 5818 // including __fp16. 5819 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5820 if (BT->isFloatingPoint()) 5821 return true; 5822 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 5823 unsigned VecSize = getContext().getTypeSize(VT); 5824 if (VecSize == 64 || VecSize == 128) 5825 return true; 5826 } 5827 return false; 5828 } 5829 5830 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 5831 uint64_t Members) const { 5832 return Members <= 4; 5833 } 5834 5835 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, 5836 QualType Ty, 5837 CodeGenFunction &CGF) const { 5838 ABIArgInfo AI = classifyArgumentType(Ty); 5839 bool IsIndirect = AI.isIndirect(); 5840 5841 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5842 if (IsIndirect) 5843 BaseTy = llvm::PointerType::getUnqual(BaseTy); 5844 else if (AI.getCoerceToType()) 5845 BaseTy = AI.getCoerceToType(); 5846 5847 unsigned NumRegs = 1; 5848 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { 5849 BaseTy = ArrTy->getElementType(); 5850 NumRegs = ArrTy->getNumElements(); 5851 } 5852 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); 5853 5854 // The AArch64 va_list type and handling is specified in the Procedure Call 5855 // Standard, section B.4: 5856 // 5857 // struct { 5858 // void *__stack; 5859 // void *__gr_top; 5860 // void *__vr_top; 5861 // int __gr_offs; 5862 // int __vr_offs; 5863 // }; 5864 5865 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 5866 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 5867 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 5868 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 5869 5870 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 5871 CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty); 5872 5873 Address reg_offs_p = Address::invalid(); 5874 llvm::Value *reg_offs = nullptr; 5875 int reg_top_index; 5876 int RegSize = IsIndirect ? 8 : TySize.getQuantity(); 5877 if (!IsFPR) { 5878 // 3 is the field number of __gr_offs 5879 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p"); 5880 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 5881 reg_top_index = 1; // field number for __gr_top 5882 RegSize = llvm::alignTo(RegSize, 8); 5883 } else { 5884 // 4 is the field number of __vr_offs. 5885 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p"); 5886 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 5887 reg_top_index = 2; // field number for __vr_top 5888 RegSize = 16 * NumRegs; 5889 } 5890 5891 //======================================= 5892 // Find out where argument was passed 5893 //======================================= 5894 5895 // If reg_offs >= 0 we're already using the stack for this type of 5896 // argument. We don't want to keep updating reg_offs (in case it overflows, 5897 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 5898 // whatever they get). 5899 llvm::Value *UsingStack = nullptr; 5900 UsingStack = CGF.Builder.CreateICmpSGE( 5901 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 5902 5903 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 5904 5905 // Otherwise, at least some kind of argument could go in these registers, the 5906 // question is whether this particular type is too big. 5907 CGF.EmitBlock(MaybeRegBlock); 5908 5909 // Integer arguments may need to correct register alignment (for example a 5910 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 5911 // align __gr_offs to calculate the potential address. 5912 if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) { 5913 int Align = TyAlign.getQuantity(); 5914 5915 reg_offs = CGF.Builder.CreateAdd( 5916 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 5917 "align_regoffs"); 5918 reg_offs = CGF.Builder.CreateAnd( 5919 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 5920 "aligned_regoffs"); 5921 } 5922 5923 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 5924 // The fact that this is done unconditionally reflects the fact that 5925 // allocating an argument to the stack also uses up all the remaining 5926 // registers of the appropriate kind. 5927 llvm::Value *NewOffset = nullptr; 5928 NewOffset = CGF.Builder.CreateAdd( 5929 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 5930 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 5931 5932 // Now we're in a position to decide whether this argument really was in 5933 // registers or not. 5934 llvm::Value *InRegs = nullptr; 5935 InRegs = CGF.Builder.CreateICmpSLE( 5936 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 5937 5938 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 5939 5940 //======================================= 5941 // Argument was in registers 5942 //======================================= 5943 5944 // Now we emit the code for if the argument was originally passed in 5945 // registers. First start the appropriate block: 5946 CGF.EmitBlock(InRegBlock); 5947 5948 llvm::Value *reg_top = nullptr; 5949 Address reg_top_p = 5950 CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p"); 5951 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 5952 Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs), 5953 CharUnits::fromQuantity(IsFPR ? 16 : 8)); 5954 Address RegAddr = Address::invalid(); 5955 llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty); 5956 5957 if (IsIndirect) { 5958 // If it's been passed indirectly (actually a struct), whatever we find from 5959 // stored registers or on the stack will actually be a struct **. 5960 MemTy = llvm::PointerType::getUnqual(MemTy); 5961 } 5962 5963 const Type *Base = nullptr; 5964 uint64_t NumMembers = 0; 5965 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); 5966 if (IsHFA && NumMembers > 1) { 5967 // Homogeneous aggregates passed in registers will have their elements split 5968 // and stored 16-bytes apart regardless of size (they're notionally in qN, 5969 // qN+1, ...). We reload and store into a temporary local variable 5970 // contiguously. 5971 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 5972 auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0)); 5973 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 5974 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 5975 Address Tmp = CGF.CreateTempAlloca(HFATy, 5976 std::max(TyAlign, BaseTyInfo.Align)); 5977 5978 // On big-endian platforms, the value will be right-aligned in its slot. 5979 int Offset = 0; 5980 if (CGF.CGM.getDataLayout().isBigEndian() && 5981 BaseTyInfo.Width.getQuantity() < 16) 5982 Offset = 16 - BaseTyInfo.Width.getQuantity(); 5983 5984 for (unsigned i = 0; i < NumMembers; ++i) { 5985 CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset); 5986 Address LoadAddr = 5987 CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset); 5988 LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy); 5989 5990 Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i); 5991 5992 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 5993 CGF.Builder.CreateStore(Elem, StoreAddr); 5994 } 5995 5996 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy); 5997 } else { 5998 // Otherwise the object is contiguous in memory. 5999 6000 // It might be right-aligned in its slot. 6001 CharUnits SlotSize = BaseAddr.getAlignment(); 6002 if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect && 6003 (IsHFA || !isAggregateTypeForABI(Ty)) && 6004 TySize < SlotSize) { 6005 CharUnits Offset = SlotSize - TySize; 6006 BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset); 6007 } 6008 6009 RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy); 6010 } 6011 6012 CGF.EmitBranch(ContBlock); 6013 6014 //======================================= 6015 // Argument was on the stack 6016 //======================================= 6017 CGF.EmitBlock(OnStackBlock); 6018 6019 Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p"); 6020 llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack"); 6021 6022 // Again, stack arguments may need realignment. In this case both integer and 6023 // floating-point ones might be affected. 6024 if (!IsIndirect && TyAlign.getQuantity() > 8) { 6025 int Align = TyAlign.getQuantity(); 6026 6027 OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty); 6028 6029 OnStackPtr = CGF.Builder.CreateAdd( 6030 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 6031 "align_stack"); 6032 OnStackPtr = CGF.Builder.CreateAnd( 6033 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 6034 "align_stack"); 6035 6036 OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy); 6037 } 6038 Address OnStackAddr(OnStackPtr, 6039 std::max(CharUnits::fromQuantity(8), TyAlign)); 6040 6041 // All stack slots are multiples of 8 bytes. 6042 CharUnits StackSlotSize = CharUnits::fromQuantity(8); 6043 CharUnits StackSize; 6044 if (IsIndirect) 6045 StackSize = StackSlotSize; 6046 else 6047 StackSize = TySize.alignTo(StackSlotSize); 6048 6049 llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize); 6050 llvm::Value *NewStack = 6051 CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack"); 6052 6053 // Write the new value of __stack for the next call to va_arg 6054 CGF.Builder.CreateStore(NewStack, stack_p); 6055 6056 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 6057 TySize < StackSlotSize) { 6058 CharUnits Offset = StackSlotSize - TySize; 6059 OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset); 6060 } 6061 6062 OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy); 6063 6064 CGF.EmitBranch(ContBlock); 6065 6066 //======================================= 6067 // Tidy up 6068 //======================================= 6069 CGF.EmitBlock(ContBlock); 6070 6071 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 6072 OnStackAddr, OnStackBlock, "vaargs.addr"); 6073 6074 if (IsIndirect) 6075 return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), 6076 TyAlign); 6077 6078 return ResAddr; 6079 } 6080 6081 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty, 6082 CodeGenFunction &CGF) const { 6083 // The backend's lowering doesn't support va_arg for aggregates or 6084 // illegal vector types. Lower VAArg here for these cases and use 6085 // the LLVM va_arg instruction for everything else. 6086 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 6087 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 6088 6089 uint64_t PointerSize = getTarget().getPointerWidth(0) / 8; 6090 CharUnits SlotSize = CharUnits::fromQuantity(PointerSize); 6091 6092 // Empty records are ignored for parameter passing purposes. 6093 if (isEmptyRecord(getContext(), Ty, true)) { 6094 Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 6095 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 6096 return Addr; 6097 } 6098 6099 // The size of the actual thing passed, which might end up just 6100 // being a pointer for indirect types. 6101 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6102 6103 // Arguments bigger than 16 bytes which aren't homogeneous 6104 // aggregates should be passed indirectly. 6105 bool IsIndirect = false; 6106 if (TyInfo.Width.getQuantity() > 16) { 6107 const Type *Base = nullptr; 6108 uint64_t Members = 0; 6109 IsIndirect = !isHomogeneousAggregate(Ty, Base, Members); 6110 } 6111 6112 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 6113 TyInfo, SlotSize, /*AllowHigherAlign*/ true); 6114 } 6115 6116 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 6117 QualType Ty) const { 6118 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 6119 CGF.getContext().getTypeInfoInChars(Ty), 6120 CharUnits::fromQuantity(8), 6121 /*allowHigherAlign*/ false); 6122 } 6123 6124 //===----------------------------------------------------------------------===// 6125 // ARM ABI Implementation 6126 //===----------------------------------------------------------------------===// 6127 6128 namespace { 6129 6130 class ARMABIInfo : public SwiftABIInfo { 6131 public: 6132 enum ABIKind { 6133 APCS = 0, 6134 AAPCS = 1, 6135 AAPCS_VFP = 2, 6136 AAPCS16_VFP = 3, 6137 }; 6138 6139 private: 6140 ABIKind Kind; 6141 bool IsFloatABISoftFP; 6142 6143 public: 6144 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) 6145 : SwiftABIInfo(CGT), Kind(_Kind) { 6146 setCCs(); 6147 IsFloatABISoftFP = CGT.getCodeGenOpts().FloatABI == "softfp" || 6148 CGT.getCodeGenOpts().FloatABI == ""; // default 6149 } 6150 6151 bool isEABI() const { 6152 switch (getTarget().getTriple().getEnvironment()) { 6153 case llvm::Triple::Android: 6154 case llvm::Triple::EABI: 6155 case llvm::Triple::EABIHF: 6156 case llvm::Triple::GNUEABI: 6157 case llvm::Triple::GNUEABIHF: 6158 case llvm::Triple::MuslEABI: 6159 case llvm::Triple::MuslEABIHF: 6160 return true; 6161 default: 6162 return false; 6163 } 6164 } 6165 6166 bool isEABIHF() const { 6167 switch (getTarget().getTriple().getEnvironment()) { 6168 case llvm::Triple::EABIHF: 6169 case llvm::Triple::GNUEABIHF: 6170 case llvm::Triple::MuslEABIHF: 6171 return true; 6172 default: 6173 return false; 6174 } 6175 } 6176 6177 ABIKind getABIKind() const { return Kind; } 6178 6179 bool allowBFloatArgsAndRet() const override { 6180 return !IsFloatABISoftFP && getTarget().hasBFloat16Type(); 6181 } 6182 6183 private: 6184 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic, 6185 unsigned functionCallConv) const; 6186 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic, 6187 unsigned functionCallConv) const; 6188 ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base, 6189 uint64_t Members) const; 6190 ABIArgInfo coerceIllegalVector(QualType Ty) const; 6191 bool isIllegalVectorType(QualType Ty) const; 6192 bool containsAnyFP16Vectors(QualType Ty) const; 6193 6194 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 6195 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 6196 uint64_t Members) const override; 6197 6198 bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const; 6199 6200 void computeInfo(CGFunctionInfo &FI) const override; 6201 6202 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6203 QualType Ty) const override; 6204 6205 llvm::CallingConv::ID getLLVMDefaultCC() const; 6206 llvm::CallingConv::ID getABIDefaultCC() const; 6207 void setCCs(); 6208 6209 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 6210 bool asReturnValue) const override { 6211 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 6212 } 6213 bool isSwiftErrorInRegister() const override { 6214 return true; 6215 } 6216 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 6217 unsigned elts) const override; 6218 }; 6219 6220 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 6221 public: 6222 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 6223 : TargetCodeGenInfo(std::make_unique<ARMABIInfo>(CGT, K)) {} 6224 6225 const ARMABIInfo &getABIInfo() const { 6226 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 6227 } 6228 6229 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 6230 return 13; 6231 } 6232 6233 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 6234 return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue"; 6235 } 6236 6237 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6238 llvm::Value *Address) const override { 6239 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 6240 6241 // 0-15 are the 16 integer registers. 6242 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 6243 return false; 6244 } 6245 6246 unsigned getSizeOfUnwindException() const override { 6247 if (getABIInfo().isEABI()) return 88; 6248 return TargetCodeGenInfo::getSizeOfUnwindException(); 6249 } 6250 6251 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6252 CodeGen::CodeGenModule &CGM) const override { 6253 if (GV->isDeclaration()) 6254 return; 6255 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6256 if (!FD) 6257 return; 6258 6259 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 6260 if (!Attr) 6261 return; 6262 6263 const char *Kind; 6264 switch (Attr->getInterrupt()) { 6265 case ARMInterruptAttr::Generic: Kind = ""; break; 6266 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 6267 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 6268 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 6269 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 6270 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 6271 } 6272 6273 llvm::Function *Fn = cast<llvm::Function>(GV); 6274 6275 Fn->addFnAttr("interrupt", Kind); 6276 6277 ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind(); 6278 if (ABI == ARMABIInfo::APCS) 6279 return; 6280 6281 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 6282 // however this is not necessarily true on taking any interrupt. Instruct 6283 // the backend to perform a realignment as part of the function prologue. 6284 llvm::AttrBuilder B; 6285 B.addStackAlignmentAttr(8); 6286 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 6287 } 6288 }; 6289 6290 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { 6291 public: 6292 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 6293 : ARMTargetCodeGenInfo(CGT, K) {} 6294 6295 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6296 CodeGen::CodeGenModule &CGM) const override; 6297 6298 void getDependentLibraryOption(llvm::StringRef Lib, 6299 llvm::SmallString<24> &Opt) const override { 6300 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 6301 } 6302 6303 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 6304 llvm::SmallString<32> &Opt) const override { 6305 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 6306 } 6307 }; 6308 6309 void WindowsARMTargetCodeGenInfo::setTargetAttributes( 6310 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 6311 ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 6312 if (GV->isDeclaration()) 6313 return; 6314 addStackProbeTargetAttributes(D, GV, CGM); 6315 } 6316 } 6317 6318 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 6319 if (!::classifyReturnType(getCXXABI(), FI, *this)) 6320 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(), 6321 FI.getCallingConvention()); 6322 6323 for (auto &I : FI.arguments()) 6324 I.info = classifyArgumentType(I.type, FI.isVariadic(), 6325 FI.getCallingConvention()); 6326 6327 6328 // Always honor user-specified calling convention. 6329 if (FI.getCallingConvention() != llvm::CallingConv::C) 6330 return; 6331 6332 llvm::CallingConv::ID cc = getRuntimeCC(); 6333 if (cc != llvm::CallingConv::C) 6334 FI.setEffectiveCallingConvention(cc); 6335 } 6336 6337 /// Return the default calling convention that LLVM will use. 6338 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 6339 // The default calling convention that LLVM will infer. 6340 if (isEABIHF() || getTarget().getTriple().isWatchABI()) 6341 return llvm::CallingConv::ARM_AAPCS_VFP; 6342 else if (isEABI()) 6343 return llvm::CallingConv::ARM_AAPCS; 6344 else 6345 return llvm::CallingConv::ARM_APCS; 6346 } 6347 6348 /// Return the calling convention that our ABI would like us to use 6349 /// as the C calling convention. 6350 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 6351 switch (getABIKind()) { 6352 case APCS: return llvm::CallingConv::ARM_APCS; 6353 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 6354 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 6355 case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 6356 } 6357 llvm_unreachable("bad ABI kind"); 6358 } 6359 6360 void ARMABIInfo::setCCs() { 6361 assert(getRuntimeCC() == llvm::CallingConv::C); 6362 6363 // Don't muddy up the IR with a ton of explicit annotations if 6364 // they'd just match what LLVM will infer from the triple. 6365 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 6366 if (abiCC != getLLVMDefaultCC()) 6367 RuntimeCC = abiCC; 6368 } 6369 6370 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const { 6371 uint64_t Size = getContext().getTypeSize(Ty); 6372 if (Size <= 32) { 6373 llvm::Type *ResType = 6374 llvm::Type::getInt32Ty(getVMContext()); 6375 return ABIArgInfo::getDirect(ResType); 6376 } 6377 if (Size == 64 || Size == 128) { 6378 auto *ResType = llvm::FixedVectorType::get( 6379 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 6380 return ABIArgInfo::getDirect(ResType); 6381 } 6382 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6383 } 6384 6385 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty, 6386 const Type *Base, 6387 uint64_t Members) const { 6388 assert(Base && "Base class should be set for homogeneous aggregate"); 6389 // Base can be a floating-point or a vector. 6390 if (const VectorType *VT = Base->getAs<VectorType>()) { 6391 // FP16 vectors should be converted to integer vectors 6392 if (!getTarget().hasLegalHalfType() && containsAnyFP16Vectors(Ty)) { 6393 uint64_t Size = getContext().getTypeSize(VT); 6394 auto *NewVecTy = llvm::FixedVectorType::get( 6395 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 6396 llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members); 6397 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 6398 } 6399 } 6400 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 6401 } 6402 6403 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic, 6404 unsigned functionCallConv) const { 6405 // 6.1.2.1 The following argument types are VFP CPRCs: 6406 // A single-precision floating-point type (including promoted 6407 // half-precision types); A double-precision floating-point type; 6408 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 6409 // with a Base Type of a single- or double-precision floating-point type, 6410 // 64-bit containerized vectors or 128-bit containerized vectors with one 6411 // to four Elements. 6412 // Variadic functions should always marshal to the base standard. 6413 bool IsAAPCS_VFP = 6414 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false); 6415 6416 Ty = useFirstFieldIfTransparentUnion(Ty); 6417 6418 // Handle illegal vector types here. 6419 if (isIllegalVectorType(Ty)) 6420 return coerceIllegalVector(Ty); 6421 6422 if (!isAggregateTypeForABI(Ty)) { 6423 // Treat an enum type as its underlying type. 6424 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 6425 Ty = EnumTy->getDecl()->getIntegerType(); 6426 } 6427 6428 if (const auto *EIT = Ty->getAs<ExtIntType>()) 6429 if (EIT->getNumBits() > 64) 6430 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 6431 6432 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 6433 : ABIArgInfo::getDirect()); 6434 } 6435 6436 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 6437 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6438 } 6439 6440 // Ignore empty records. 6441 if (isEmptyRecord(getContext(), Ty, true)) 6442 return ABIArgInfo::getIgnore(); 6443 6444 if (IsAAPCS_VFP) { 6445 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 6446 // into VFP registers. 6447 const Type *Base = nullptr; 6448 uint64_t Members = 0; 6449 if (isHomogeneousAggregate(Ty, Base, Members)) 6450 return classifyHomogeneousAggregate(Ty, Base, Members); 6451 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6452 // WatchOS does have homogeneous aggregates. Note that we intentionally use 6453 // this convention even for a variadic function: the backend will use GPRs 6454 // if needed. 6455 const Type *Base = nullptr; 6456 uint64_t Members = 0; 6457 if (isHomogeneousAggregate(Ty, Base, Members)) { 6458 assert(Base && Members <= 4 && "unexpected homogeneous aggregate"); 6459 llvm::Type *Ty = 6460 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members); 6461 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 6462 } 6463 } 6464 6465 if (getABIKind() == ARMABIInfo::AAPCS16_VFP && 6466 getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) { 6467 // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're 6468 // bigger than 128-bits, they get placed in space allocated by the caller, 6469 // and a pointer is passed. 6470 return ABIArgInfo::getIndirect( 6471 CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false); 6472 } 6473 6474 // Support byval for ARM. 6475 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 6476 // most 8-byte. We realign the indirect argument if type alignment is bigger 6477 // than ABI alignment. 6478 uint64_t ABIAlign = 4; 6479 uint64_t TyAlign; 6480 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6481 getABIKind() == ARMABIInfo::AAPCS) { 6482 TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); 6483 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 6484 } else { 6485 TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 6486 } 6487 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 6488 assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval"); 6489 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 6490 /*ByVal=*/true, 6491 /*Realign=*/TyAlign > ABIAlign); 6492 } 6493 6494 // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of 6495 // same size and alignment. 6496 if (getTarget().isRenderScriptTarget()) { 6497 return coerceToIntArray(Ty, getContext(), getVMContext()); 6498 } 6499 6500 // Otherwise, pass by coercing to a structure of the appropriate size. 6501 llvm::Type* ElemTy; 6502 unsigned SizeRegs; 6503 // FIXME: Try to match the types of the arguments more accurately where 6504 // we can. 6505 if (TyAlign <= 4) { 6506 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 6507 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 6508 } else { 6509 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 6510 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 6511 } 6512 6513 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); 6514 } 6515 6516 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 6517 llvm::LLVMContext &VMContext) { 6518 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 6519 // is called integer-like if its size is less than or equal to one word, and 6520 // the offset of each of its addressable sub-fields is zero. 6521 6522 uint64_t Size = Context.getTypeSize(Ty); 6523 6524 // Check that the type fits in a word. 6525 if (Size > 32) 6526 return false; 6527 6528 // FIXME: Handle vector types! 6529 if (Ty->isVectorType()) 6530 return false; 6531 6532 // Float types are never treated as "integer like". 6533 if (Ty->isRealFloatingType()) 6534 return false; 6535 6536 // If this is a builtin or pointer type then it is ok. 6537 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 6538 return true; 6539 6540 // Small complex integer types are "integer like". 6541 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 6542 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 6543 6544 // Single element and zero sized arrays should be allowed, by the definition 6545 // above, but they are not. 6546 6547 // Otherwise, it must be a record type. 6548 const RecordType *RT = Ty->getAs<RecordType>(); 6549 if (!RT) return false; 6550 6551 // Ignore records with flexible arrays. 6552 const RecordDecl *RD = RT->getDecl(); 6553 if (RD->hasFlexibleArrayMember()) 6554 return false; 6555 6556 // Check that all sub-fields are at offset 0, and are themselves "integer 6557 // like". 6558 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 6559 6560 bool HadField = false; 6561 unsigned idx = 0; 6562 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 6563 i != e; ++i, ++idx) { 6564 const FieldDecl *FD = *i; 6565 6566 // Bit-fields are not addressable, we only need to verify they are "integer 6567 // like". We still have to disallow a subsequent non-bitfield, for example: 6568 // struct { int : 0; int x } 6569 // is non-integer like according to gcc. 6570 if (FD->isBitField()) { 6571 if (!RD->isUnion()) 6572 HadField = true; 6573 6574 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6575 return false; 6576 6577 continue; 6578 } 6579 6580 // Check if this field is at offset 0. 6581 if (Layout.getFieldOffset(idx) != 0) 6582 return false; 6583 6584 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6585 return false; 6586 6587 // Only allow at most one field in a structure. This doesn't match the 6588 // wording above, but follows gcc in situations with a field following an 6589 // empty structure. 6590 if (!RD->isUnion()) { 6591 if (HadField) 6592 return false; 6593 6594 HadField = true; 6595 } 6596 } 6597 6598 return true; 6599 } 6600 6601 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic, 6602 unsigned functionCallConv) const { 6603 6604 // Variadic functions should always marshal to the base standard. 6605 bool IsAAPCS_VFP = 6606 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true); 6607 6608 if (RetTy->isVoidType()) 6609 return ABIArgInfo::getIgnore(); 6610 6611 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 6612 // Large vector types should be returned via memory. 6613 if (getContext().getTypeSize(RetTy) > 128) 6614 return getNaturalAlignIndirect(RetTy); 6615 // TODO: FP16/BF16 vectors should be converted to integer vectors 6616 // This check is similar to isIllegalVectorType - refactor? 6617 if ((!getTarget().hasLegalHalfType() && 6618 (VT->getElementType()->isFloat16Type() || 6619 VT->getElementType()->isHalfType())) || 6620 (IsFloatABISoftFP && 6621 VT->getElementType()->isBFloat16Type())) 6622 return coerceIllegalVector(RetTy); 6623 } 6624 6625 if (!isAggregateTypeForABI(RetTy)) { 6626 // Treat an enum type as its underlying type. 6627 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6628 RetTy = EnumTy->getDecl()->getIntegerType(); 6629 6630 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 6631 if (EIT->getNumBits() > 64) 6632 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 6633 6634 return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 6635 : ABIArgInfo::getDirect(); 6636 } 6637 6638 // Are we following APCS? 6639 if (getABIKind() == APCS) { 6640 if (isEmptyRecord(getContext(), RetTy, false)) 6641 return ABIArgInfo::getIgnore(); 6642 6643 // Complex types are all returned as packed integers. 6644 // 6645 // FIXME: Consider using 2 x vector types if the back end handles them 6646 // correctly. 6647 if (RetTy->isAnyComplexType()) 6648 return ABIArgInfo::getDirect(llvm::IntegerType::get( 6649 getVMContext(), getContext().getTypeSize(RetTy))); 6650 6651 // Integer like structures are returned in r0. 6652 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 6653 // Return in the smallest viable integer type. 6654 uint64_t Size = getContext().getTypeSize(RetTy); 6655 if (Size <= 8) 6656 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6657 if (Size <= 16) 6658 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6659 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6660 } 6661 6662 // Otherwise return in memory. 6663 return getNaturalAlignIndirect(RetTy); 6664 } 6665 6666 // Otherwise this is an AAPCS variant. 6667 6668 if (isEmptyRecord(getContext(), RetTy, true)) 6669 return ABIArgInfo::getIgnore(); 6670 6671 // Check for homogeneous aggregates with AAPCS-VFP. 6672 if (IsAAPCS_VFP) { 6673 const Type *Base = nullptr; 6674 uint64_t Members = 0; 6675 if (isHomogeneousAggregate(RetTy, Base, Members)) 6676 return classifyHomogeneousAggregate(RetTy, Base, Members); 6677 } 6678 6679 // Aggregates <= 4 bytes are returned in r0; other aggregates 6680 // are returned indirectly. 6681 uint64_t Size = getContext().getTypeSize(RetTy); 6682 if (Size <= 32) { 6683 // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of 6684 // same size and alignment. 6685 if (getTarget().isRenderScriptTarget()) { 6686 return coerceToIntArray(RetTy, getContext(), getVMContext()); 6687 } 6688 if (getDataLayout().isBigEndian()) 6689 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 6690 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6691 6692 // Return in the smallest viable integer type. 6693 if (Size <= 8) 6694 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6695 if (Size <= 16) 6696 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6697 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6698 } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) { 6699 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext()); 6700 llvm::Type *CoerceTy = 6701 llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32); 6702 return ABIArgInfo::getDirect(CoerceTy); 6703 } 6704 6705 return getNaturalAlignIndirect(RetTy); 6706 } 6707 6708 /// isIllegalVector - check whether Ty is an illegal vector type. 6709 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 6710 if (const VectorType *VT = Ty->getAs<VectorType> ()) { 6711 // On targets that don't support half, fp16 or bfloat, they are expanded 6712 // into float, and we don't want the ABI to depend on whether or not they 6713 // are supported in hardware. Thus return false to coerce vectors of these 6714 // types into integer vectors. 6715 // We do not depend on hasLegalHalfType for bfloat as it is a 6716 // separate IR type. 6717 if ((!getTarget().hasLegalHalfType() && 6718 (VT->getElementType()->isFloat16Type() || 6719 VT->getElementType()->isHalfType())) || 6720 (IsFloatABISoftFP && 6721 VT->getElementType()->isBFloat16Type())) 6722 return true; 6723 if (isAndroid()) { 6724 // Android shipped using Clang 3.1, which supported a slightly different 6725 // vector ABI. The primary differences were that 3-element vector types 6726 // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path 6727 // accepts that legacy behavior for Android only. 6728 // Check whether VT is legal. 6729 unsigned NumElements = VT->getNumElements(); 6730 // NumElements should be power of 2 or equal to 3. 6731 if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3) 6732 return true; 6733 } else { 6734 // Check whether VT is legal. 6735 unsigned NumElements = VT->getNumElements(); 6736 uint64_t Size = getContext().getTypeSize(VT); 6737 // NumElements should be power of 2. 6738 if (!llvm::isPowerOf2_32(NumElements)) 6739 return true; 6740 // Size should be greater than 32 bits. 6741 return Size <= 32; 6742 } 6743 } 6744 return false; 6745 } 6746 6747 /// Return true if a type contains any 16-bit floating point vectors 6748 bool ARMABIInfo::containsAnyFP16Vectors(QualType Ty) const { 6749 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 6750 uint64_t NElements = AT->getSize().getZExtValue(); 6751 if (NElements == 0) 6752 return false; 6753 return containsAnyFP16Vectors(AT->getElementType()); 6754 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 6755 const RecordDecl *RD = RT->getDecl(); 6756 6757 // If this is a C++ record, check the bases first. 6758 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6759 if (llvm::any_of(CXXRD->bases(), [this](const CXXBaseSpecifier &B) { 6760 return containsAnyFP16Vectors(B.getType()); 6761 })) 6762 return true; 6763 6764 if (llvm::any_of(RD->fields(), [this](FieldDecl *FD) { 6765 return FD && containsAnyFP16Vectors(FD->getType()); 6766 })) 6767 return true; 6768 6769 return false; 6770 } else { 6771 if (const VectorType *VT = Ty->getAs<VectorType>()) 6772 return (VT->getElementType()->isFloat16Type() || 6773 VT->getElementType()->isBFloat16Type() || 6774 VT->getElementType()->isHalfType()); 6775 return false; 6776 } 6777 } 6778 6779 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 6780 llvm::Type *eltTy, 6781 unsigned numElts) const { 6782 if (!llvm::isPowerOf2_32(numElts)) 6783 return false; 6784 unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy); 6785 if (size > 64) 6786 return false; 6787 if (vectorSize.getQuantity() != 8 && 6788 (vectorSize.getQuantity() != 16 || numElts == 1)) 6789 return false; 6790 return true; 6791 } 6792 6793 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 6794 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 6795 // double, or 64-bit or 128-bit vectors. 6796 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 6797 if (BT->getKind() == BuiltinType::Float || 6798 BT->getKind() == BuiltinType::Double || 6799 BT->getKind() == BuiltinType::LongDouble) 6800 return true; 6801 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 6802 unsigned VecSize = getContext().getTypeSize(VT); 6803 if (VecSize == 64 || VecSize == 128) 6804 return true; 6805 } 6806 return false; 6807 } 6808 6809 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 6810 uint64_t Members) const { 6811 return Members <= 4; 6812 } 6813 6814 bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention, 6815 bool acceptHalf) const { 6816 // Give precedence to user-specified calling conventions. 6817 if (callConvention != llvm::CallingConv::C) 6818 return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP); 6819 else 6820 return (getABIKind() == AAPCS_VFP) || 6821 (acceptHalf && (getABIKind() == AAPCS16_VFP)); 6822 } 6823 6824 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6825 QualType Ty) const { 6826 CharUnits SlotSize = CharUnits::fromQuantity(4); 6827 6828 // Empty records are ignored for parameter passing purposes. 6829 if (isEmptyRecord(getContext(), Ty, true)) { 6830 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 6831 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 6832 return Addr; 6833 } 6834 6835 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 6836 CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty); 6837 6838 // Use indirect if size of the illegal vector is bigger than 16 bytes. 6839 bool IsIndirect = false; 6840 const Type *Base = nullptr; 6841 uint64_t Members = 0; 6842 if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) { 6843 IsIndirect = true; 6844 6845 // ARMv7k passes structs bigger than 16 bytes indirectly, in space 6846 // allocated by the caller. 6847 } else if (TySize > CharUnits::fromQuantity(16) && 6848 getABIKind() == ARMABIInfo::AAPCS16_VFP && 6849 !isHomogeneousAggregate(Ty, Base, Members)) { 6850 IsIndirect = true; 6851 6852 // Otherwise, bound the type's ABI alignment. 6853 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 6854 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 6855 // Our callers should be prepared to handle an under-aligned address. 6856 } else if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6857 getABIKind() == ARMABIInfo::AAPCS) { 6858 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6859 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8)); 6860 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6861 // ARMv7k allows type alignment up to 16 bytes. 6862 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6863 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16)); 6864 } else { 6865 TyAlignForABI = CharUnits::fromQuantity(4); 6866 } 6867 6868 TypeInfoChars TyInfo(TySize, TyAlignForABI, false); 6869 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo, 6870 SlotSize, /*AllowHigherAlign*/ true); 6871 } 6872 6873 //===----------------------------------------------------------------------===// 6874 // NVPTX ABI Implementation 6875 //===----------------------------------------------------------------------===// 6876 6877 namespace { 6878 6879 class NVPTXTargetCodeGenInfo; 6880 6881 class NVPTXABIInfo : public ABIInfo { 6882 NVPTXTargetCodeGenInfo &CGInfo; 6883 6884 public: 6885 NVPTXABIInfo(CodeGenTypes &CGT, NVPTXTargetCodeGenInfo &Info) 6886 : ABIInfo(CGT), CGInfo(Info) {} 6887 6888 ABIArgInfo classifyReturnType(QualType RetTy) const; 6889 ABIArgInfo classifyArgumentType(QualType Ty) const; 6890 6891 void computeInfo(CGFunctionInfo &FI) const override; 6892 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6893 QualType Ty) const override; 6894 bool isUnsupportedType(QualType T) const; 6895 ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, unsigned MaxSize) const; 6896 }; 6897 6898 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 6899 public: 6900 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 6901 : TargetCodeGenInfo(std::make_unique<NVPTXABIInfo>(CGT, *this)) {} 6902 6903 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6904 CodeGen::CodeGenModule &M) const override; 6905 bool shouldEmitStaticExternCAliases() const override; 6906 6907 llvm::Type *getCUDADeviceBuiltinSurfaceDeviceType() const override { 6908 // On the device side, surface reference is represented as an object handle 6909 // in 64-bit integer. 6910 return llvm::Type::getInt64Ty(getABIInfo().getVMContext()); 6911 } 6912 6913 llvm::Type *getCUDADeviceBuiltinTextureDeviceType() const override { 6914 // On the device side, texture reference is represented as an object handle 6915 // in 64-bit integer. 6916 return llvm::Type::getInt64Ty(getABIInfo().getVMContext()); 6917 } 6918 6919 bool emitCUDADeviceBuiltinSurfaceDeviceCopy(CodeGenFunction &CGF, LValue Dst, 6920 LValue Src) const override { 6921 emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src); 6922 return true; 6923 } 6924 6925 bool emitCUDADeviceBuiltinTextureDeviceCopy(CodeGenFunction &CGF, LValue Dst, 6926 LValue Src) const override { 6927 emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src); 6928 return true; 6929 } 6930 6931 private: 6932 // Adds a NamedMDNode with GV, Name, and Operand as operands, and adds the 6933 // resulting MDNode to the nvvm.annotations MDNode. 6934 static void addNVVMMetadata(llvm::GlobalValue *GV, StringRef Name, 6935 int Operand); 6936 6937 static void emitBuiltinSurfTexDeviceCopy(CodeGenFunction &CGF, LValue Dst, 6938 LValue Src) { 6939 llvm::Value *Handle = nullptr; 6940 llvm::Constant *C = 6941 llvm::dyn_cast<llvm::Constant>(Src.getAddress(CGF).getPointer()); 6942 // Lookup `addrspacecast` through the constant pointer if any. 6943 if (auto *ASC = llvm::dyn_cast_or_null<llvm::AddrSpaceCastOperator>(C)) 6944 C = llvm::cast<llvm::Constant>(ASC->getPointerOperand()); 6945 if (auto *GV = llvm::dyn_cast_or_null<llvm::GlobalVariable>(C)) { 6946 // Load the handle from the specific global variable using 6947 // `nvvm.texsurf.handle.internal` intrinsic. 6948 Handle = CGF.EmitRuntimeCall( 6949 CGF.CGM.getIntrinsic(llvm::Intrinsic::nvvm_texsurf_handle_internal, 6950 {GV->getType()}), 6951 {GV}, "texsurf_handle"); 6952 } else 6953 Handle = CGF.EmitLoadOfScalar(Src, SourceLocation()); 6954 CGF.EmitStoreOfScalar(Handle, Dst); 6955 } 6956 }; 6957 6958 /// Checks if the type is unsupported directly by the current target. 6959 bool NVPTXABIInfo::isUnsupportedType(QualType T) const { 6960 ASTContext &Context = getContext(); 6961 if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type()) 6962 return true; 6963 if (!Context.getTargetInfo().hasFloat128Type() && 6964 (T->isFloat128Type() || 6965 (T->isRealFloatingType() && Context.getTypeSize(T) == 128))) 6966 return true; 6967 if (const auto *EIT = T->getAs<ExtIntType>()) 6968 return EIT->getNumBits() > 6969 (Context.getTargetInfo().hasInt128Type() ? 128U : 64U); 6970 if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() && 6971 Context.getTypeSize(T) > 64U) 6972 return true; 6973 if (const auto *AT = T->getAsArrayTypeUnsafe()) 6974 return isUnsupportedType(AT->getElementType()); 6975 const auto *RT = T->getAs<RecordType>(); 6976 if (!RT) 6977 return false; 6978 const RecordDecl *RD = RT->getDecl(); 6979 6980 // If this is a C++ record, check the bases first. 6981 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6982 for (const CXXBaseSpecifier &I : CXXRD->bases()) 6983 if (isUnsupportedType(I.getType())) 6984 return true; 6985 6986 for (const FieldDecl *I : RD->fields()) 6987 if (isUnsupportedType(I->getType())) 6988 return true; 6989 return false; 6990 } 6991 6992 /// Coerce the given type into an array with maximum allowed size of elements. 6993 ABIArgInfo NVPTXABIInfo::coerceToIntArrayWithLimit(QualType Ty, 6994 unsigned MaxSize) const { 6995 // Alignment and Size are measured in bits. 6996 const uint64_t Size = getContext().getTypeSize(Ty); 6997 const uint64_t Alignment = getContext().getTypeAlign(Ty); 6998 const unsigned Div = std::min<unsigned>(MaxSize, Alignment); 6999 llvm::Type *IntType = llvm::Type::getIntNTy(getVMContext(), Div); 7000 const uint64_t NumElements = (Size + Div - 1) / Div; 7001 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 7002 } 7003 7004 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 7005 if (RetTy->isVoidType()) 7006 return ABIArgInfo::getIgnore(); 7007 7008 if (getContext().getLangOpts().OpenMP && 7009 getContext().getLangOpts().OpenMPIsDevice && isUnsupportedType(RetTy)) 7010 return coerceToIntArrayWithLimit(RetTy, 64); 7011 7012 // note: this is different from default ABI 7013 if (!RetTy->isScalarType()) 7014 return ABIArgInfo::getDirect(); 7015 7016 // Treat an enum type as its underlying type. 7017 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7018 RetTy = EnumTy->getDecl()->getIntegerType(); 7019 7020 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 7021 : ABIArgInfo::getDirect()); 7022 } 7023 7024 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 7025 // Treat an enum type as its underlying type. 7026 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7027 Ty = EnumTy->getDecl()->getIntegerType(); 7028 7029 // Return aggregates type as indirect by value 7030 if (isAggregateTypeForABI(Ty)) { 7031 // Under CUDA device compilation, tex/surf builtin types are replaced with 7032 // object types and passed directly. 7033 if (getContext().getLangOpts().CUDAIsDevice) { 7034 if (Ty->isCUDADeviceBuiltinSurfaceType()) 7035 return ABIArgInfo::getDirect( 7036 CGInfo.getCUDADeviceBuiltinSurfaceDeviceType()); 7037 if (Ty->isCUDADeviceBuiltinTextureType()) 7038 return ABIArgInfo::getDirect( 7039 CGInfo.getCUDADeviceBuiltinTextureDeviceType()); 7040 } 7041 return getNaturalAlignIndirect(Ty, /* byval */ true); 7042 } 7043 7044 if (const auto *EIT = Ty->getAs<ExtIntType>()) { 7045 if ((EIT->getNumBits() > 128) || 7046 (!getContext().getTargetInfo().hasInt128Type() && 7047 EIT->getNumBits() > 64)) 7048 return getNaturalAlignIndirect(Ty, /* byval */ true); 7049 } 7050 7051 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 7052 : ABIArgInfo::getDirect()); 7053 } 7054 7055 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 7056 if (!getCXXABI().classifyReturnType(FI)) 7057 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7058 for (auto &I : FI.arguments()) 7059 I.info = classifyArgumentType(I.type); 7060 7061 // Always honor user-specified calling convention. 7062 if (FI.getCallingConvention() != llvm::CallingConv::C) 7063 return; 7064 7065 FI.setEffectiveCallingConvention(getRuntimeCC()); 7066 } 7067 7068 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7069 QualType Ty) const { 7070 llvm_unreachable("NVPTX does not support varargs"); 7071 } 7072 7073 void NVPTXTargetCodeGenInfo::setTargetAttributes( 7074 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7075 if (GV->isDeclaration()) 7076 return; 7077 const VarDecl *VD = dyn_cast_or_null<VarDecl>(D); 7078 if (VD) { 7079 if (M.getLangOpts().CUDA) { 7080 if (VD->getType()->isCUDADeviceBuiltinSurfaceType()) 7081 addNVVMMetadata(GV, "surface", 1); 7082 else if (VD->getType()->isCUDADeviceBuiltinTextureType()) 7083 addNVVMMetadata(GV, "texture", 1); 7084 return; 7085 } 7086 } 7087 7088 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7089 if (!FD) return; 7090 7091 llvm::Function *F = cast<llvm::Function>(GV); 7092 7093 // Perform special handling in OpenCL mode 7094 if (M.getLangOpts().OpenCL) { 7095 // Use OpenCL function attributes to check for kernel functions 7096 // By default, all functions are device functions 7097 if (FD->hasAttr<OpenCLKernelAttr>()) { 7098 // OpenCL __kernel functions get kernel metadata 7099 // Create !{<func-ref>, metadata !"kernel", i32 1} node 7100 addNVVMMetadata(F, "kernel", 1); 7101 // And kernel functions are not subject to inlining 7102 F->addFnAttr(llvm::Attribute::NoInline); 7103 } 7104 } 7105 7106 // Perform special handling in CUDA mode. 7107 if (M.getLangOpts().CUDA) { 7108 // CUDA __global__ functions get a kernel metadata entry. Since 7109 // __global__ functions cannot be called from the device, we do not 7110 // need to set the noinline attribute. 7111 if (FD->hasAttr<CUDAGlobalAttr>()) { 7112 // Create !{<func-ref>, metadata !"kernel", i32 1} node 7113 addNVVMMetadata(F, "kernel", 1); 7114 } 7115 if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) { 7116 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 7117 llvm::APSInt MaxThreads(32); 7118 MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); 7119 if (MaxThreads > 0) 7120 addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); 7121 7122 // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was 7123 // not specified in __launch_bounds__ or if the user specified a 0 value, 7124 // we don't have to add a PTX directive. 7125 if (Attr->getMinBlocks()) { 7126 llvm::APSInt MinBlocks(32); 7127 MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); 7128 if (MinBlocks > 0) 7129 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 7130 addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); 7131 } 7132 } 7133 } 7134 } 7135 7136 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::GlobalValue *GV, 7137 StringRef Name, int Operand) { 7138 llvm::Module *M = GV->getParent(); 7139 llvm::LLVMContext &Ctx = M->getContext(); 7140 7141 // Get "nvvm.annotations" metadata node 7142 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 7143 7144 llvm::Metadata *MDVals[] = { 7145 llvm::ConstantAsMetadata::get(GV), llvm::MDString::get(Ctx, Name), 7146 llvm::ConstantAsMetadata::get( 7147 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; 7148 // Append metadata to nvvm.annotations 7149 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 7150 } 7151 7152 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 7153 return false; 7154 } 7155 } 7156 7157 //===----------------------------------------------------------------------===// 7158 // SystemZ ABI Implementation 7159 //===----------------------------------------------------------------------===// 7160 7161 namespace { 7162 7163 class SystemZABIInfo : public SwiftABIInfo { 7164 bool HasVector; 7165 bool IsSoftFloatABI; 7166 7167 public: 7168 SystemZABIInfo(CodeGenTypes &CGT, bool HV, bool SF) 7169 : SwiftABIInfo(CGT), HasVector(HV), IsSoftFloatABI(SF) {} 7170 7171 bool isPromotableIntegerTypeForABI(QualType Ty) const; 7172 bool isCompoundType(QualType Ty) const; 7173 bool isVectorArgumentType(QualType Ty) const; 7174 bool isFPArgumentType(QualType Ty) const; 7175 QualType GetSingleElementType(QualType Ty) const; 7176 7177 ABIArgInfo classifyReturnType(QualType RetTy) const; 7178 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 7179 7180 void computeInfo(CGFunctionInfo &FI) const override { 7181 if (!getCXXABI().classifyReturnType(FI)) 7182 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7183 for (auto &I : FI.arguments()) 7184 I.info = classifyArgumentType(I.type); 7185 } 7186 7187 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7188 QualType Ty) const override; 7189 7190 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 7191 bool asReturnValue) const override { 7192 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 7193 } 7194 bool isSwiftErrorInRegister() const override { 7195 return false; 7196 } 7197 }; 7198 7199 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 7200 public: 7201 SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector, bool SoftFloatABI) 7202 : TargetCodeGenInfo( 7203 std::make_unique<SystemZABIInfo>(CGT, HasVector, SoftFloatABI)) {} 7204 }; 7205 7206 } 7207 7208 bool SystemZABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const { 7209 // Treat an enum type as its underlying type. 7210 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7211 Ty = EnumTy->getDecl()->getIntegerType(); 7212 7213 // Promotable integer types are required to be promoted by the ABI. 7214 if (ABIInfo::isPromotableIntegerTypeForABI(Ty)) 7215 return true; 7216 7217 if (const auto *EIT = Ty->getAs<ExtIntType>()) 7218 if (EIT->getNumBits() < 64) 7219 return true; 7220 7221 // 32-bit values must also be promoted. 7222 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 7223 switch (BT->getKind()) { 7224 case BuiltinType::Int: 7225 case BuiltinType::UInt: 7226 return true; 7227 default: 7228 return false; 7229 } 7230 return false; 7231 } 7232 7233 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 7234 return (Ty->isAnyComplexType() || 7235 Ty->isVectorType() || 7236 isAggregateTypeForABI(Ty)); 7237 } 7238 7239 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { 7240 return (HasVector && 7241 Ty->isVectorType() && 7242 getContext().getTypeSize(Ty) <= 128); 7243 } 7244 7245 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 7246 if (IsSoftFloatABI) 7247 return false; 7248 7249 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 7250 switch (BT->getKind()) { 7251 case BuiltinType::Float: 7252 case BuiltinType::Double: 7253 return true; 7254 default: 7255 return false; 7256 } 7257 7258 return false; 7259 } 7260 7261 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { 7262 const RecordType *RT = Ty->getAs<RecordType>(); 7263 7264 if (RT && RT->isStructureOrClassType()) { 7265 const RecordDecl *RD = RT->getDecl(); 7266 QualType Found; 7267 7268 // If this is a C++ record, check the bases first. 7269 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 7270 for (const auto &I : CXXRD->bases()) { 7271 QualType Base = I.getType(); 7272 7273 // Empty bases don't affect things either way. 7274 if (isEmptyRecord(getContext(), Base, true)) 7275 continue; 7276 7277 if (!Found.isNull()) 7278 return Ty; 7279 Found = GetSingleElementType(Base); 7280 } 7281 7282 // Check the fields. 7283 for (const auto *FD : RD->fields()) { 7284 // For compatibility with GCC, ignore empty bitfields in C++ mode. 7285 // Unlike isSingleElementStruct(), empty structure and array fields 7286 // do count. So do anonymous bitfields that aren't zero-sized. 7287 if (getContext().getLangOpts().CPlusPlus && 7288 FD->isZeroLengthBitField(getContext())) 7289 continue; 7290 // Like isSingleElementStruct(), ignore C++20 empty data members. 7291 if (FD->hasAttr<NoUniqueAddressAttr>() && 7292 isEmptyRecord(getContext(), FD->getType(), true)) 7293 continue; 7294 7295 // Unlike isSingleElementStruct(), arrays do not count. 7296 // Nested structures still do though. 7297 if (!Found.isNull()) 7298 return Ty; 7299 Found = GetSingleElementType(FD->getType()); 7300 } 7301 7302 // Unlike isSingleElementStruct(), trailing padding is allowed. 7303 // An 8-byte aligned struct s { float f; } is passed as a double. 7304 if (!Found.isNull()) 7305 return Found; 7306 } 7307 7308 return Ty; 7309 } 7310 7311 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7312 QualType Ty) const { 7313 // Assume that va_list type is correct; should be pointer to LLVM type: 7314 // struct { 7315 // i64 __gpr; 7316 // i64 __fpr; 7317 // i8 *__overflow_arg_area; 7318 // i8 *__reg_save_area; 7319 // }; 7320 7321 // Every non-vector argument occupies 8 bytes and is passed by preference 7322 // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are 7323 // always passed on the stack. 7324 Ty = getContext().getCanonicalType(Ty); 7325 auto TyInfo = getContext().getTypeInfoInChars(Ty); 7326 llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); 7327 llvm::Type *DirectTy = ArgTy; 7328 ABIArgInfo AI = classifyArgumentType(Ty); 7329 bool IsIndirect = AI.isIndirect(); 7330 bool InFPRs = false; 7331 bool IsVector = false; 7332 CharUnits UnpaddedSize; 7333 CharUnits DirectAlign; 7334 if (IsIndirect) { 7335 DirectTy = llvm::PointerType::getUnqual(DirectTy); 7336 UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8); 7337 } else { 7338 if (AI.getCoerceToType()) 7339 ArgTy = AI.getCoerceToType(); 7340 InFPRs = (!IsSoftFloatABI && (ArgTy->isFloatTy() || ArgTy->isDoubleTy())); 7341 IsVector = ArgTy->isVectorTy(); 7342 UnpaddedSize = TyInfo.Width; 7343 DirectAlign = TyInfo.Align; 7344 } 7345 CharUnits PaddedSize = CharUnits::fromQuantity(8); 7346 if (IsVector && UnpaddedSize > PaddedSize) 7347 PaddedSize = CharUnits::fromQuantity(16); 7348 assert((UnpaddedSize <= PaddedSize) && "Invalid argument size."); 7349 7350 CharUnits Padding = (PaddedSize - UnpaddedSize); 7351 7352 llvm::Type *IndexTy = CGF.Int64Ty; 7353 llvm::Value *PaddedSizeV = 7354 llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity()); 7355 7356 if (IsVector) { 7357 // Work out the address of a vector argument on the stack. 7358 // Vector arguments are always passed in the high bits of a 7359 // single (8 byte) or double (16 byte) stack slot. 7360 Address OverflowArgAreaPtr = 7361 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 7362 Address OverflowArgArea = 7363 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 7364 TyInfo.Align); 7365 Address MemAddr = 7366 CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr"); 7367 7368 // Update overflow_arg_area_ptr pointer 7369 llvm::Value *NewOverflowArgArea = 7370 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 7371 "overflow_arg_area"); 7372 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 7373 7374 return MemAddr; 7375 } 7376 7377 assert(PaddedSize.getQuantity() == 8); 7378 7379 unsigned MaxRegs, RegCountField, RegSaveIndex; 7380 CharUnits RegPadding; 7381 if (InFPRs) { 7382 MaxRegs = 4; // Maximum of 4 FPR arguments 7383 RegCountField = 1; // __fpr 7384 RegSaveIndex = 16; // save offset for f0 7385 RegPadding = CharUnits(); // floats are passed in the high bits of an FPR 7386 } else { 7387 MaxRegs = 5; // Maximum of 5 GPR arguments 7388 RegCountField = 0; // __gpr 7389 RegSaveIndex = 2; // save offset for r2 7390 RegPadding = Padding; // values are passed in the low bits of a GPR 7391 } 7392 7393 Address RegCountPtr = 7394 CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr"); 7395 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 7396 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 7397 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 7398 "fits_in_regs"); 7399 7400 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 7401 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 7402 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 7403 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 7404 7405 // Emit code to load the value if it was passed in registers. 7406 CGF.EmitBlock(InRegBlock); 7407 7408 // Work out the address of an argument register. 7409 llvm::Value *ScaledRegCount = 7410 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 7411 llvm::Value *RegBase = 7412 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity() 7413 + RegPadding.getQuantity()); 7414 llvm::Value *RegOffset = 7415 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 7416 Address RegSaveAreaPtr = 7417 CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr"); 7418 llvm::Value *RegSaveArea = 7419 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 7420 Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset, 7421 "raw_reg_addr"), 7422 PaddedSize); 7423 Address RegAddr = 7424 CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr"); 7425 7426 // Update the register count 7427 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 7428 llvm::Value *NewRegCount = 7429 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 7430 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 7431 CGF.EmitBranch(ContBlock); 7432 7433 // Emit code to load the value if it was passed in memory. 7434 CGF.EmitBlock(InMemBlock); 7435 7436 // Work out the address of a stack argument. 7437 Address OverflowArgAreaPtr = 7438 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 7439 Address OverflowArgArea = 7440 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 7441 PaddedSize); 7442 Address RawMemAddr = 7443 CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr"); 7444 Address MemAddr = 7445 CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr"); 7446 7447 // Update overflow_arg_area_ptr pointer 7448 llvm::Value *NewOverflowArgArea = 7449 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 7450 "overflow_arg_area"); 7451 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 7452 CGF.EmitBranch(ContBlock); 7453 7454 // Return the appropriate result. 7455 CGF.EmitBlock(ContBlock); 7456 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 7457 MemAddr, InMemBlock, "va_arg.addr"); 7458 7459 if (IsIndirect) 7460 ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), 7461 TyInfo.Align); 7462 7463 return ResAddr; 7464 } 7465 7466 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 7467 if (RetTy->isVoidType()) 7468 return ABIArgInfo::getIgnore(); 7469 if (isVectorArgumentType(RetTy)) 7470 return ABIArgInfo::getDirect(); 7471 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 7472 return getNaturalAlignIndirect(RetTy); 7473 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 7474 : ABIArgInfo::getDirect()); 7475 } 7476 7477 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 7478 // Handle the generic C++ ABI. 7479 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 7480 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7481 7482 // Integers and enums are extended to full register width. 7483 if (isPromotableIntegerTypeForABI(Ty)) 7484 return ABIArgInfo::getExtend(Ty); 7485 7486 // Handle vector types and vector-like structure types. Note that 7487 // as opposed to float-like structure types, we do not allow any 7488 // padding for vector-like structures, so verify the sizes match. 7489 uint64_t Size = getContext().getTypeSize(Ty); 7490 QualType SingleElementTy = GetSingleElementType(Ty); 7491 if (isVectorArgumentType(SingleElementTy) && 7492 getContext().getTypeSize(SingleElementTy) == Size) 7493 return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); 7494 7495 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 7496 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 7497 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7498 7499 // Handle small structures. 7500 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7501 // Structures with flexible arrays have variable length, so really 7502 // fail the size test above. 7503 const RecordDecl *RD = RT->getDecl(); 7504 if (RD->hasFlexibleArrayMember()) 7505 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7506 7507 // The structure is passed as an unextended integer, a float, or a double. 7508 llvm::Type *PassTy; 7509 if (isFPArgumentType(SingleElementTy)) { 7510 assert(Size == 32 || Size == 64); 7511 if (Size == 32) 7512 PassTy = llvm::Type::getFloatTy(getVMContext()); 7513 else 7514 PassTy = llvm::Type::getDoubleTy(getVMContext()); 7515 } else 7516 PassTy = llvm::IntegerType::get(getVMContext(), Size); 7517 return ABIArgInfo::getDirect(PassTy); 7518 } 7519 7520 // Non-structure compounds are passed indirectly. 7521 if (isCompoundType(Ty)) 7522 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7523 7524 return ABIArgInfo::getDirect(nullptr); 7525 } 7526 7527 //===----------------------------------------------------------------------===// 7528 // MSP430 ABI Implementation 7529 //===----------------------------------------------------------------------===// 7530 7531 namespace { 7532 7533 class MSP430ABIInfo : public DefaultABIInfo { 7534 static ABIArgInfo complexArgInfo() { 7535 ABIArgInfo Info = ABIArgInfo::getDirect(); 7536 Info.setCanBeFlattened(false); 7537 return Info; 7538 } 7539 7540 public: 7541 MSP430ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7542 7543 ABIArgInfo classifyReturnType(QualType RetTy) const { 7544 if (RetTy->isAnyComplexType()) 7545 return complexArgInfo(); 7546 7547 return DefaultABIInfo::classifyReturnType(RetTy); 7548 } 7549 7550 ABIArgInfo classifyArgumentType(QualType RetTy) const { 7551 if (RetTy->isAnyComplexType()) 7552 return complexArgInfo(); 7553 7554 return DefaultABIInfo::classifyArgumentType(RetTy); 7555 } 7556 7557 // Just copy the original implementations because 7558 // DefaultABIInfo::classify{Return,Argument}Type() are not virtual 7559 void computeInfo(CGFunctionInfo &FI) const override { 7560 if (!getCXXABI().classifyReturnType(FI)) 7561 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7562 for (auto &I : FI.arguments()) 7563 I.info = classifyArgumentType(I.type); 7564 } 7565 7566 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7567 QualType Ty) const override { 7568 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 7569 } 7570 }; 7571 7572 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 7573 public: 7574 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 7575 : TargetCodeGenInfo(std::make_unique<MSP430ABIInfo>(CGT)) {} 7576 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7577 CodeGen::CodeGenModule &M) const override; 7578 }; 7579 7580 } 7581 7582 void MSP430TargetCodeGenInfo::setTargetAttributes( 7583 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7584 if (GV->isDeclaration()) 7585 return; 7586 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 7587 const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>(); 7588 if (!InterruptAttr) 7589 return; 7590 7591 // Handle 'interrupt' attribute: 7592 llvm::Function *F = cast<llvm::Function>(GV); 7593 7594 // Step 1: Set ISR calling convention. 7595 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 7596 7597 // Step 2: Add attributes goodness. 7598 F->addFnAttr(llvm::Attribute::NoInline); 7599 F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber())); 7600 } 7601 } 7602 7603 //===----------------------------------------------------------------------===// 7604 // MIPS ABI Implementation. This works for both little-endian and 7605 // big-endian variants. 7606 //===----------------------------------------------------------------------===// 7607 7608 namespace { 7609 class MipsABIInfo : public ABIInfo { 7610 bool IsO32; 7611 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 7612 void CoerceToIntArgs(uint64_t TySize, 7613 SmallVectorImpl<llvm::Type *> &ArgList) const; 7614 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 7615 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 7616 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 7617 public: 7618 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 7619 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 7620 StackAlignInBytes(IsO32 ? 8 : 16) {} 7621 7622 ABIArgInfo classifyReturnType(QualType RetTy) const; 7623 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 7624 void computeInfo(CGFunctionInfo &FI) const override; 7625 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7626 QualType Ty) const override; 7627 ABIArgInfo extendType(QualType Ty) const; 7628 }; 7629 7630 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 7631 unsigned SizeOfUnwindException; 7632 public: 7633 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 7634 : TargetCodeGenInfo(std::make_unique<MipsABIInfo>(CGT, IsO32)), 7635 SizeOfUnwindException(IsO32 ? 24 : 32) {} 7636 7637 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 7638 return 29; 7639 } 7640 7641 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7642 CodeGen::CodeGenModule &CGM) const override { 7643 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7644 if (!FD) return; 7645 llvm::Function *Fn = cast<llvm::Function>(GV); 7646 7647 if (FD->hasAttr<MipsLongCallAttr>()) 7648 Fn->addFnAttr("long-call"); 7649 else if (FD->hasAttr<MipsShortCallAttr>()) 7650 Fn->addFnAttr("short-call"); 7651 7652 // Other attributes do not have a meaning for declarations. 7653 if (GV->isDeclaration()) 7654 return; 7655 7656 if (FD->hasAttr<Mips16Attr>()) { 7657 Fn->addFnAttr("mips16"); 7658 } 7659 else if (FD->hasAttr<NoMips16Attr>()) { 7660 Fn->addFnAttr("nomips16"); 7661 } 7662 7663 if (FD->hasAttr<MicroMipsAttr>()) 7664 Fn->addFnAttr("micromips"); 7665 else if (FD->hasAttr<NoMicroMipsAttr>()) 7666 Fn->addFnAttr("nomicromips"); 7667 7668 const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>(); 7669 if (!Attr) 7670 return; 7671 7672 const char *Kind; 7673 switch (Attr->getInterrupt()) { 7674 case MipsInterruptAttr::eic: Kind = "eic"; break; 7675 case MipsInterruptAttr::sw0: Kind = "sw0"; break; 7676 case MipsInterruptAttr::sw1: Kind = "sw1"; break; 7677 case MipsInterruptAttr::hw0: Kind = "hw0"; break; 7678 case MipsInterruptAttr::hw1: Kind = "hw1"; break; 7679 case MipsInterruptAttr::hw2: Kind = "hw2"; break; 7680 case MipsInterruptAttr::hw3: Kind = "hw3"; break; 7681 case MipsInterruptAttr::hw4: Kind = "hw4"; break; 7682 case MipsInterruptAttr::hw5: Kind = "hw5"; break; 7683 } 7684 7685 Fn->addFnAttr("interrupt", Kind); 7686 7687 } 7688 7689 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7690 llvm::Value *Address) const override; 7691 7692 unsigned getSizeOfUnwindException() const override { 7693 return SizeOfUnwindException; 7694 } 7695 }; 7696 } 7697 7698 void MipsABIInfo::CoerceToIntArgs( 7699 uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const { 7700 llvm::IntegerType *IntTy = 7701 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 7702 7703 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 7704 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 7705 ArgList.push_back(IntTy); 7706 7707 // If necessary, add one more integer type to ArgList. 7708 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 7709 7710 if (R) 7711 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 7712 } 7713 7714 // In N32/64, an aligned double precision floating point field is passed in 7715 // a register. 7716 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 7717 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 7718 7719 if (IsO32) { 7720 CoerceToIntArgs(TySize, ArgList); 7721 return llvm::StructType::get(getVMContext(), ArgList); 7722 } 7723 7724 if (Ty->isComplexType()) 7725 return CGT.ConvertType(Ty); 7726 7727 const RecordType *RT = Ty->getAs<RecordType>(); 7728 7729 // Unions/vectors are passed in integer registers. 7730 if (!RT || !RT->isStructureOrClassType()) { 7731 CoerceToIntArgs(TySize, ArgList); 7732 return llvm::StructType::get(getVMContext(), ArgList); 7733 } 7734 7735 const RecordDecl *RD = RT->getDecl(); 7736 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 7737 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 7738 7739 uint64_t LastOffset = 0; 7740 unsigned idx = 0; 7741 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 7742 7743 // Iterate over fields in the struct/class and check if there are any aligned 7744 // double fields. 7745 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 7746 i != e; ++i, ++idx) { 7747 const QualType Ty = i->getType(); 7748 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 7749 7750 if (!BT || BT->getKind() != BuiltinType::Double) 7751 continue; 7752 7753 uint64_t Offset = Layout.getFieldOffset(idx); 7754 if (Offset % 64) // Ignore doubles that are not aligned. 7755 continue; 7756 7757 // Add ((Offset - LastOffset) / 64) args of type i64. 7758 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 7759 ArgList.push_back(I64); 7760 7761 // Add double type. 7762 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 7763 LastOffset = Offset + 64; 7764 } 7765 7766 CoerceToIntArgs(TySize - LastOffset, IntArgList); 7767 ArgList.append(IntArgList.begin(), IntArgList.end()); 7768 7769 return llvm::StructType::get(getVMContext(), ArgList); 7770 } 7771 7772 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 7773 uint64_t Offset) const { 7774 if (OrigOffset + MinABIStackAlignInBytes > Offset) 7775 return nullptr; 7776 7777 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 7778 } 7779 7780 ABIArgInfo 7781 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 7782 Ty = useFirstFieldIfTransparentUnion(Ty); 7783 7784 uint64_t OrigOffset = Offset; 7785 uint64_t TySize = getContext().getTypeSize(Ty); 7786 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 7787 7788 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 7789 (uint64_t)StackAlignInBytes); 7790 unsigned CurrOffset = llvm::alignTo(Offset, Align); 7791 Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8; 7792 7793 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 7794 // Ignore empty aggregates. 7795 if (TySize == 0) 7796 return ABIArgInfo::getIgnore(); 7797 7798 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 7799 Offset = OrigOffset + MinABIStackAlignInBytes; 7800 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7801 } 7802 7803 // If we have reached here, aggregates are passed directly by coercing to 7804 // another structure type. Padding is inserted if the offset of the 7805 // aggregate is unaligned. 7806 ABIArgInfo ArgInfo = 7807 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 7808 getPaddingType(OrigOffset, CurrOffset)); 7809 ArgInfo.setInReg(true); 7810 return ArgInfo; 7811 } 7812 7813 // Treat an enum type as its underlying type. 7814 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7815 Ty = EnumTy->getDecl()->getIntegerType(); 7816 7817 // Make sure we pass indirectly things that are too large. 7818 if (const auto *EIT = Ty->getAs<ExtIntType>()) 7819 if (EIT->getNumBits() > 128 || 7820 (EIT->getNumBits() > 64 && 7821 !getContext().getTargetInfo().hasInt128Type())) 7822 return getNaturalAlignIndirect(Ty); 7823 7824 // All integral types are promoted to the GPR width. 7825 if (Ty->isIntegralOrEnumerationType()) 7826 return extendType(Ty); 7827 7828 return ABIArgInfo::getDirect( 7829 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 7830 } 7831 7832 llvm::Type* 7833 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 7834 const RecordType *RT = RetTy->getAs<RecordType>(); 7835 SmallVector<llvm::Type*, 8> RTList; 7836 7837 if (RT && RT->isStructureOrClassType()) { 7838 const RecordDecl *RD = RT->getDecl(); 7839 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 7840 unsigned FieldCnt = Layout.getFieldCount(); 7841 7842 // N32/64 returns struct/classes in floating point registers if the 7843 // following conditions are met: 7844 // 1. The size of the struct/class is no larger than 128-bit. 7845 // 2. The struct/class has one or two fields all of which are floating 7846 // point types. 7847 // 3. The offset of the first field is zero (this follows what gcc does). 7848 // 7849 // Any other composite results are returned in integer registers. 7850 // 7851 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 7852 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 7853 for (; b != e; ++b) { 7854 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 7855 7856 if (!BT || !BT->isFloatingPoint()) 7857 break; 7858 7859 RTList.push_back(CGT.ConvertType(b->getType())); 7860 } 7861 7862 if (b == e) 7863 return llvm::StructType::get(getVMContext(), RTList, 7864 RD->hasAttr<PackedAttr>()); 7865 7866 RTList.clear(); 7867 } 7868 } 7869 7870 CoerceToIntArgs(Size, RTList); 7871 return llvm::StructType::get(getVMContext(), RTList); 7872 } 7873 7874 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 7875 uint64_t Size = getContext().getTypeSize(RetTy); 7876 7877 if (RetTy->isVoidType()) 7878 return ABIArgInfo::getIgnore(); 7879 7880 // O32 doesn't treat zero-sized structs differently from other structs. 7881 // However, N32/N64 ignores zero sized return values. 7882 if (!IsO32 && Size == 0) 7883 return ABIArgInfo::getIgnore(); 7884 7885 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 7886 if (Size <= 128) { 7887 if (RetTy->isAnyComplexType()) 7888 return ABIArgInfo::getDirect(); 7889 7890 // O32 returns integer vectors in registers and N32/N64 returns all small 7891 // aggregates in registers. 7892 if (!IsO32 || 7893 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { 7894 ABIArgInfo ArgInfo = 7895 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 7896 ArgInfo.setInReg(true); 7897 return ArgInfo; 7898 } 7899 } 7900 7901 return getNaturalAlignIndirect(RetTy); 7902 } 7903 7904 // Treat an enum type as its underlying type. 7905 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7906 RetTy = EnumTy->getDecl()->getIntegerType(); 7907 7908 // Make sure we pass indirectly things that are too large. 7909 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 7910 if (EIT->getNumBits() > 128 || 7911 (EIT->getNumBits() > 64 && 7912 !getContext().getTargetInfo().hasInt128Type())) 7913 return getNaturalAlignIndirect(RetTy); 7914 7915 if (isPromotableIntegerTypeForABI(RetTy)) 7916 return ABIArgInfo::getExtend(RetTy); 7917 7918 if ((RetTy->isUnsignedIntegerOrEnumerationType() || 7919 RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32) 7920 return ABIArgInfo::getSignExtend(RetTy); 7921 7922 return ABIArgInfo::getDirect(); 7923 } 7924 7925 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 7926 ABIArgInfo &RetInfo = FI.getReturnInfo(); 7927 if (!getCXXABI().classifyReturnType(FI)) 7928 RetInfo = classifyReturnType(FI.getReturnType()); 7929 7930 // Check if a pointer to an aggregate is passed as a hidden argument. 7931 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 7932 7933 for (auto &I : FI.arguments()) 7934 I.info = classifyArgumentType(I.type, Offset); 7935 } 7936 7937 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7938 QualType OrigTy) const { 7939 QualType Ty = OrigTy; 7940 7941 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. 7942 // Pointers are also promoted in the same way but this only matters for N32. 7943 unsigned SlotSizeInBits = IsO32 ? 32 : 64; 7944 unsigned PtrWidth = getTarget().getPointerWidth(0); 7945 bool DidPromote = false; 7946 if ((Ty->isIntegerType() && 7947 getContext().getIntWidth(Ty) < SlotSizeInBits) || 7948 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { 7949 DidPromote = true; 7950 Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits, 7951 Ty->isSignedIntegerType()); 7952 } 7953 7954 auto TyInfo = getContext().getTypeInfoInChars(Ty); 7955 7956 // The alignment of things in the argument area is never larger than 7957 // StackAlignInBytes. 7958 TyInfo.Align = 7959 std::min(TyInfo.Align, CharUnits::fromQuantity(StackAlignInBytes)); 7960 7961 // MinABIStackAlignInBytes is the size of argument slots on the stack. 7962 CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes); 7963 7964 Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 7965 TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true); 7966 7967 7968 // If there was a promotion, "unpromote" into a temporary. 7969 // TODO: can we just use a pointer into a subset of the original slot? 7970 if (DidPromote) { 7971 Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp"); 7972 llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr); 7973 7974 // Truncate down to the right width. 7975 llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType() 7976 : CGF.IntPtrTy); 7977 llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy); 7978 if (OrigTy->isPointerType()) 7979 V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType()); 7980 7981 CGF.Builder.CreateStore(V, Temp); 7982 Addr = Temp; 7983 } 7984 7985 return Addr; 7986 } 7987 7988 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const { 7989 int TySize = getContext().getTypeSize(Ty); 7990 7991 // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. 7992 if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 7993 return ABIArgInfo::getSignExtend(Ty); 7994 7995 return ABIArgInfo::getExtend(Ty); 7996 } 7997 7998 bool 7999 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 8000 llvm::Value *Address) const { 8001 // This information comes from gcc's implementation, which seems to 8002 // as canonical as it gets. 8003 8004 // Everything on MIPS is 4 bytes. Double-precision FP registers 8005 // are aliased to pairs of single-precision FP registers. 8006 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 8007 8008 // 0-31 are the general purpose registers, $0 - $31. 8009 // 32-63 are the floating-point registers, $f0 - $f31. 8010 // 64 and 65 are the multiply/divide registers, $hi and $lo. 8011 // 66 is the (notional, I think) register for signal-handler return. 8012 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 8013 8014 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 8015 // They are one bit wide and ignored here. 8016 8017 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 8018 // (coprocessor 1 is the FP unit) 8019 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 8020 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 8021 // 176-181 are the DSP accumulator registers. 8022 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 8023 return false; 8024 } 8025 8026 //===----------------------------------------------------------------------===// 8027 // AVR ABI Implementation. 8028 //===----------------------------------------------------------------------===// 8029 8030 namespace { 8031 class AVRTargetCodeGenInfo : public TargetCodeGenInfo { 8032 public: 8033 AVRTargetCodeGenInfo(CodeGenTypes &CGT) 8034 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 8035 8036 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8037 CodeGen::CodeGenModule &CGM) const override { 8038 if (GV->isDeclaration()) 8039 return; 8040 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 8041 if (!FD) return; 8042 auto *Fn = cast<llvm::Function>(GV); 8043 8044 if (FD->getAttr<AVRInterruptAttr>()) 8045 Fn->addFnAttr("interrupt"); 8046 8047 if (FD->getAttr<AVRSignalAttr>()) 8048 Fn->addFnAttr("signal"); 8049 } 8050 }; 8051 } 8052 8053 //===----------------------------------------------------------------------===// 8054 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 8055 // Currently subclassed only to implement custom OpenCL C function attribute 8056 // handling. 8057 //===----------------------------------------------------------------------===// 8058 8059 namespace { 8060 8061 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 8062 public: 8063 TCETargetCodeGenInfo(CodeGenTypes &CGT) 8064 : DefaultTargetCodeGenInfo(CGT) {} 8065 8066 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8067 CodeGen::CodeGenModule &M) const override; 8068 }; 8069 8070 void TCETargetCodeGenInfo::setTargetAttributes( 8071 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 8072 if (GV->isDeclaration()) 8073 return; 8074 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 8075 if (!FD) return; 8076 8077 llvm::Function *F = cast<llvm::Function>(GV); 8078 8079 if (M.getLangOpts().OpenCL) { 8080 if (FD->hasAttr<OpenCLKernelAttr>()) { 8081 // OpenCL C Kernel functions are not subject to inlining 8082 F->addFnAttr(llvm::Attribute::NoInline); 8083 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 8084 if (Attr) { 8085 // Convert the reqd_work_group_size() attributes to metadata. 8086 llvm::LLVMContext &Context = F->getContext(); 8087 llvm::NamedMDNode *OpenCLMetadata = 8088 M.getModule().getOrInsertNamedMetadata( 8089 "opencl.kernel_wg_size_info"); 8090 8091 SmallVector<llvm::Metadata *, 5> Operands; 8092 Operands.push_back(llvm::ConstantAsMetadata::get(F)); 8093 8094 Operands.push_back( 8095 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8096 M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); 8097 Operands.push_back( 8098 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8099 M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); 8100 Operands.push_back( 8101 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8102 M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); 8103 8104 // Add a boolean constant operand for "required" (true) or "hint" 8105 // (false) for implementing the work_group_size_hint attr later. 8106 // Currently always true as the hint is not yet implemented. 8107 Operands.push_back( 8108 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); 8109 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 8110 } 8111 } 8112 } 8113 } 8114 8115 } 8116 8117 //===----------------------------------------------------------------------===// 8118 // Hexagon ABI Implementation 8119 //===----------------------------------------------------------------------===// 8120 8121 namespace { 8122 8123 class HexagonABIInfo : public DefaultABIInfo { 8124 public: 8125 HexagonABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8126 8127 private: 8128 ABIArgInfo classifyReturnType(QualType RetTy) const; 8129 ABIArgInfo classifyArgumentType(QualType RetTy) const; 8130 ABIArgInfo classifyArgumentType(QualType RetTy, unsigned *RegsLeft) const; 8131 8132 void computeInfo(CGFunctionInfo &FI) const override; 8133 8134 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8135 QualType Ty) const override; 8136 Address EmitVAArgFromMemory(CodeGenFunction &CFG, Address VAListAddr, 8137 QualType Ty) const; 8138 Address EmitVAArgForHexagon(CodeGenFunction &CFG, Address VAListAddr, 8139 QualType Ty) const; 8140 Address EmitVAArgForHexagonLinux(CodeGenFunction &CFG, Address VAListAddr, 8141 QualType Ty) const; 8142 }; 8143 8144 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 8145 public: 8146 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 8147 : TargetCodeGenInfo(std::make_unique<HexagonABIInfo>(CGT)) {} 8148 8149 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 8150 return 29; 8151 } 8152 8153 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8154 CodeGen::CodeGenModule &GCM) const override { 8155 if (GV->isDeclaration()) 8156 return; 8157 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 8158 if (!FD) 8159 return; 8160 } 8161 }; 8162 8163 } // namespace 8164 8165 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 8166 unsigned RegsLeft = 6; 8167 if (!getCXXABI().classifyReturnType(FI)) 8168 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8169 for (auto &I : FI.arguments()) 8170 I.info = classifyArgumentType(I.type, &RegsLeft); 8171 } 8172 8173 static bool HexagonAdjustRegsLeft(uint64_t Size, unsigned *RegsLeft) { 8174 assert(Size <= 64 && "Not expecting to pass arguments larger than 64 bits" 8175 " through registers"); 8176 8177 if (*RegsLeft == 0) 8178 return false; 8179 8180 if (Size <= 32) { 8181 (*RegsLeft)--; 8182 return true; 8183 } 8184 8185 if (2 <= (*RegsLeft & (~1U))) { 8186 *RegsLeft = (*RegsLeft & (~1U)) - 2; 8187 return true; 8188 } 8189 8190 // Next available register was r5 but candidate was greater than 32-bits so it 8191 // has to go on the stack. However we still consume r5 8192 if (*RegsLeft == 1) 8193 *RegsLeft = 0; 8194 8195 return false; 8196 } 8197 8198 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty, 8199 unsigned *RegsLeft) const { 8200 if (!isAggregateTypeForABI(Ty)) { 8201 // Treat an enum type as its underlying type. 8202 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 8203 Ty = EnumTy->getDecl()->getIntegerType(); 8204 8205 uint64_t Size = getContext().getTypeSize(Ty); 8206 if (Size <= 64) 8207 HexagonAdjustRegsLeft(Size, RegsLeft); 8208 8209 if (Size > 64 && Ty->isExtIntType()) 8210 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8211 8212 return isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 8213 : ABIArgInfo::getDirect(); 8214 } 8215 8216 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 8217 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 8218 8219 // Ignore empty records. 8220 if (isEmptyRecord(getContext(), Ty, true)) 8221 return ABIArgInfo::getIgnore(); 8222 8223 uint64_t Size = getContext().getTypeSize(Ty); 8224 unsigned Align = getContext().getTypeAlign(Ty); 8225 8226 if (Size > 64) 8227 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8228 8229 if (HexagonAdjustRegsLeft(Size, RegsLeft)) 8230 Align = Size <= 32 ? 32 : 64; 8231 if (Size <= Align) { 8232 // Pass in the smallest viable integer type. 8233 if (!llvm::isPowerOf2_64(Size)) 8234 Size = llvm::NextPowerOf2(Size); 8235 return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size)); 8236 } 8237 return DefaultABIInfo::classifyArgumentType(Ty); 8238 } 8239 8240 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 8241 if (RetTy->isVoidType()) 8242 return ABIArgInfo::getIgnore(); 8243 8244 const TargetInfo &T = CGT.getTarget(); 8245 uint64_t Size = getContext().getTypeSize(RetTy); 8246 8247 if (RetTy->getAs<VectorType>()) { 8248 // HVX vectors are returned in vector registers or register pairs. 8249 if (T.hasFeature("hvx")) { 8250 assert(T.hasFeature("hvx-length64b") || T.hasFeature("hvx-length128b")); 8251 uint64_t VecSize = T.hasFeature("hvx-length64b") ? 64*8 : 128*8; 8252 if (Size == VecSize || Size == 2*VecSize) 8253 return ABIArgInfo::getDirectInReg(); 8254 } 8255 // Large vector types should be returned via memory. 8256 if (Size > 64) 8257 return getNaturalAlignIndirect(RetTy); 8258 } 8259 8260 if (!isAggregateTypeForABI(RetTy)) { 8261 // Treat an enum type as its underlying type. 8262 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 8263 RetTy = EnumTy->getDecl()->getIntegerType(); 8264 8265 if (Size > 64 && RetTy->isExtIntType()) 8266 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 8267 8268 return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 8269 : ABIArgInfo::getDirect(); 8270 } 8271 8272 if (isEmptyRecord(getContext(), RetTy, true)) 8273 return ABIArgInfo::getIgnore(); 8274 8275 // Aggregates <= 8 bytes are returned in registers, other aggregates 8276 // are returned indirectly. 8277 if (Size <= 64) { 8278 // Return in the smallest viable integer type. 8279 if (!llvm::isPowerOf2_64(Size)) 8280 Size = llvm::NextPowerOf2(Size); 8281 return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size)); 8282 } 8283 return getNaturalAlignIndirect(RetTy, /*ByVal=*/true); 8284 } 8285 8286 Address HexagonABIInfo::EmitVAArgFromMemory(CodeGenFunction &CGF, 8287 Address VAListAddr, 8288 QualType Ty) const { 8289 // Load the overflow area pointer. 8290 Address __overflow_area_pointer_p = 8291 CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p"); 8292 llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad( 8293 __overflow_area_pointer_p, "__overflow_area_pointer"); 8294 8295 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; 8296 if (Align > 4) { 8297 // Alignment should be a power of 2. 8298 assert((Align & (Align - 1)) == 0 && "Alignment is not power of 2!"); 8299 8300 // overflow_arg_area = (overflow_arg_area + align - 1) & -align; 8301 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int64Ty, Align - 1); 8302 8303 // Add offset to the current pointer to access the argument. 8304 __overflow_area_pointer = 8305 CGF.Builder.CreateGEP(__overflow_area_pointer, Offset); 8306 llvm::Value *AsInt = 8307 CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty); 8308 8309 // Create a mask which should be "AND"ed 8310 // with (overflow_arg_area + align - 1) 8311 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -(int)Align); 8312 __overflow_area_pointer = CGF.Builder.CreateIntToPtr( 8313 CGF.Builder.CreateAnd(AsInt, Mask), __overflow_area_pointer->getType(), 8314 "__overflow_area_pointer.align"); 8315 } 8316 8317 // Get the type of the argument from memory and bitcast 8318 // overflow area pointer to the argument type. 8319 llvm::Type *PTy = CGF.ConvertTypeForMem(Ty); 8320 Address AddrTyped = CGF.Builder.CreateBitCast( 8321 Address(__overflow_area_pointer, CharUnits::fromQuantity(Align)), 8322 llvm::PointerType::getUnqual(PTy)); 8323 8324 // Round up to the minimum stack alignment for varargs which is 4 bytes. 8325 uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4); 8326 8327 __overflow_area_pointer = CGF.Builder.CreateGEP( 8328 __overflow_area_pointer, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 8329 "__overflow_area_pointer.next"); 8330 CGF.Builder.CreateStore(__overflow_area_pointer, __overflow_area_pointer_p); 8331 8332 return AddrTyped; 8333 } 8334 8335 Address HexagonABIInfo::EmitVAArgForHexagon(CodeGenFunction &CGF, 8336 Address VAListAddr, 8337 QualType Ty) const { 8338 // FIXME: Need to handle alignment 8339 llvm::Type *BP = CGF.Int8PtrTy; 8340 llvm::Type *BPP = CGF.Int8PtrPtrTy; 8341 CGBuilderTy &Builder = CGF.Builder; 8342 Address VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 8343 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 8344 // Handle address alignment for type alignment > 32 bits 8345 uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8; 8346 if (TyAlign > 4) { 8347 assert((TyAlign & (TyAlign - 1)) == 0 && "Alignment is not power of 2!"); 8348 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty); 8349 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1)); 8350 AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1))); 8351 Addr = Builder.CreateIntToPtr(AddrAsInt, BP); 8352 } 8353 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 8354 Address AddrTyped = Builder.CreateBitCast( 8355 Address(Addr, CharUnits::fromQuantity(TyAlign)), PTy); 8356 8357 uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4); 8358 llvm::Value *NextAddr = Builder.CreateGEP( 8359 Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next"); 8360 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 8361 8362 return AddrTyped; 8363 } 8364 8365 Address HexagonABIInfo::EmitVAArgForHexagonLinux(CodeGenFunction &CGF, 8366 Address VAListAddr, 8367 QualType Ty) const { 8368 int ArgSize = CGF.getContext().getTypeSize(Ty) / 8; 8369 8370 if (ArgSize > 8) 8371 return EmitVAArgFromMemory(CGF, VAListAddr, Ty); 8372 8373 // Here we have check if the argument is in register area or 8374 // in overflow area. 8375 // If the saved register area pointer + argsize rounded up to alignment > 8376 // saved register area end pointer, argument is in overflow area. 8377 unsigned RegsLeft = 6; 8378 Ty = CGF.getContext().getCanonicalType(Ty); 8379 (void)classifyArgumentType(Ty, &RegsLeft); 8380 8381 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 8382 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 8383 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 8384 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 8385 8386 // Get rounded size of the argument.GCC does not allow vararg of 8387 // size < 4 bytes. We follow the same logic here. 8388 ArgSize = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8; 8389 int ArgAlign = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8; 8390 8391 // Argument may be in saved register area 8392 CGF.EmitBlock(MaybeRegBlock); 8393 8394 // Load the current saved register area pointer. 8395 Address __current_saved_reg_area_pointer_p = CGF.Builder.CreateStructGEP( 8396 VAListAddr, 0, "__current_saved_reg_area_pointer_p"); 8397 llvm::Value *__current_saved_reg_area_pointer = CGF.Builder.CreateLoad( 8398 __current_saved_reg_area_pointer_p, "__current_saved_reg_area_pointer"); 8399 8400 // Load the saved register area end pointer. 8401 Address __saved_reg_area_end_pointer_p = CGF.Builder.CreateStructGEP( 8402 VAListAddr, 1, "__saved_reg_area_end_pointer_p"); 8403 llvm::Value *__saved_reg_area_end_pointer = CGF.Builder.CreateLoad( 8404 __saved_reg_area_end_pointer_p, "__saved_reg_area_end_pointer"); 8405 8406 // If the size of argument is > 4 bytes, check if the stack 8407 // location is aligned to 8 bytes 8408 if (ArgAlign > 4) { 8409 8410 llvm::Value *__current_saved_reg_area_pointer_int = 8411 CGF.Builder.CreatePtrToInt(__current_saved_reg_area_pointer, 8412 CGF.Int32Ty); 8413 8414 __current_saved_reg_area_pointer_int = CGF.Builder.CreateAdd( 8415 __current_saved_reg_area_pointer_int, 8416 llvm::ConstantInt::get(CGF.Int32Ty, (ArgAlign - 1)), 8417 "align_current_saved_reg_area_pointer"); 8418 8419 __current_saved_reg_area_pointer_int = 8420 CGF.Builder.CreateAnd(__current_saved_reg_area_pointer_int, 8421 llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign), 8422 "align_current_saved_reg_area_pointer"); 8423 8424 __current_saved_reg_area_pointer = 8425 CGF.Builder.CreateIntToPtr(__current_saved_reg_area_pointer_int, 8426 __current_saved_reg_area_pointer->getType(), 8427 "align_current_saved_reg_area_pointer"); 8428 } 8429 8430 llvm::Value *__new_saved_reg_area_pointer = 8431 CGF.Builder.CreateGEP(__current_saved_reg_area_pointer, 8432 llvm::ConstantInt::get(CGF.Int32Ty, ArgSize), 8433 "__new_saved_reg_area_pointer"); 8434 8435 llvm::Value *UsingStack = 0; 8436 UsingStack = CGF.Builder.CreateICmpSGT(__new_saved_reg_area_pointer, 8437 __saved_reg_area_end_pointer); 8438 8439 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, InRegBlock); 8440 8441 // Argument in saved register area 8442 // Implement the block where argument is in register saved area 8443 CGF.EmitBlock(InRegBlock); 8444 8445 llvm::Type *PTy = CGF.ConvertType(Ty); 8446 llvm::Value *__saved_reg_area_p = CGF.Builder.CreateBitCast( 8447 __current_saved_reg_area_pointer, llvm::PointerType::getUnqual(PTy)); 8448 8449 CGF.Builder.CreateStore(__new_saved_reg_area_pointer, 8450 __current_saved_reg_area_pointer_p); 8451 8452 CGF.EmitBranch(ContBlock); 8453 8454 // Argument in overflow area 8455 // Implement the block where the argument is in overflow area. 8456 CGF.EmitBlock(OnStackBlock); 8457 8458 // Load the overflow area pointer 8459 Address __overflow_area_pointer_p = 8460 CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p"); 8461 llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad( 8462 __overflow_area_pointer_p, "__overflow_area_pointer"); 8463 8464 // Align the overflow area pointer according to the alignment of the argument 8465 if (ArgAlign > 4) { 8466 llvm::Value *__overflow_area_pointer_int = 8467 CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty); 8468 8469 __overflow_area_pointer_int = 8470 CGF.Builder.CreateAdd(__overflow_area_pointer_int, 8471 llvm::ConstantInt::get(CGF.Int32Ty, ArgAlign - 1), 8472 "align_overflow_area_pointer"); 8473 8474 __overflow_area_pointer_int = 8475 CGF.Builder.CreateAnd(__overflow_area_pointer_int, 8476 llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign), 8477 "align_overflow_area_pointer"); 8478 8479 __overflow_area_pointer = CGF.Builder.CreateIntToPtr( 8480 __overflow_area_pointer_int, __overflow_area_pointer->getType(), 8481 "align_overflow_area_pointer"); 8482 } 8483 8484 // Get the pointer for next argument in overflow area and store it 8485 // to overflow area pointer. 8486 llvm::Value *__new_overflow_area_pointer = CGF.Builder.CreateGEP( 8487 __overflow_area_pointer, llvm::ConstantInt::get(CGF.Int32Ty, ArgSize), 8488 "__overflow_area_pointer.next"); 8489 8490 CGF.Builder.CreateStore(__new_overflow_area_pointer, 8491 __overflow_area_pointer_p); 8492 8493 CGF.Builder.CreateStore(__new_overflow_area_pointer, 8494 __current_saved_reg_area_pointer_p); 8495 8496 // Bitcast the overflow area pointer to the type of argument. 8497 llvm::Type *OverflowPTy = CGF.ConvertTypeForMem(Ty); 8498 llvm::Value *__overflow_area_p = CGF.Builder.CreateBitCast( 8499 __overflow_area_pointer, llvm::PointerType::getUnqual(OverflowPTy)); 8500 8501 CGF.EmitBranch(ContBlock); 8502 8503 // Get the correct pointer to load the variable argument 8504 // Implement the ContBlock 8505 CGF.EmitBlock(ContBlock); 8506 8507 llvm::Type *MemPTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 8508 llvm::PHINode *ArgAddr = CGF.Builder.CreatePHI(MemPTy, 2, "vaarg.addr"); 8509 ArgAddr->addIncoming(__saved_reg_area_p, InRegBlock); 8510 ArgAddr->addIncoming(__overflow_area_p, OnStackBlock); 8511 8512 return Address(ArgAddr, CharUnits::fromQuantity(ArgAlign)); 8513 } 8514 8515 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8516 QualType Ty) const { 8517 8518 if (getTarget().getTriple().isMusl()) 8519 return EmitVAArgForHexagonLinux(CGF, VAListAddr, Ty); 8520 8521 return EmitVAArgForHexagon(CGF, VAListAddr, Ty); 8522 } 8523 8524 //===----------------------------------------------------------------------===// 8525 // Lanai ABI Implementation 8526 //===----------------------------------------------------------------------===// 8527 8528 namespace { 8529 class LanaiABIInfo : public DefaultABIInfo { 8530 public: 8531 LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8532 8533 bool shouldUseInReg(QualType Ty, CCState &State) const; 8534 8535 void computeInfo(CGFunctionInfo &FI) const override { 8536 CCState State(FI); 8537 // Lanai uses 4 registers to pass arguments unless the function has the 8538 // regparm attribute set. 8539 if (FI.getHasRegParm()) { 8540 State.FreeRegs = FI.getRegParm(); 8541 } else { 8542 State.FreeRegs = 4; 8543 } 8544 8545 if (!getCXXABI().classifyReturnType(FI)) 8546 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8547 for (auto &I : FI.arguments()) 8548 I.info = classifyArgumentType(I.type, State); 8549 } 8550 8551 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 8552 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 8553 }; 8554 } // end anonymous namespace 8555 8556 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const { 8557 unsigned Size = getContext().getTypeSize(Ty); 8558 unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U; 8559 8560 if (SizeInRegs == 0) 8561 return false; 8562 8563 if (SizeInRegs > State.FreeRegs) { 8564 State.FreeRegs = 0; 8565 return false; 8566 } 8567 8568 State.FreeRegs -= SizeInRegs; 8569 8570 return true; 8571 } 8572 8573 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal, 8574 CCState &State) const { 8575 if (!ByVal) { 8576 if (State.FreeRegs) { 8577 --State.FreeRegs; // Non-byval indirects just use one pointer. 8578 return getNaturalAlignIndirectInReg(Ty); 8579 } 8580 return getNaturalAlignIndirect(Ty, false); 8581 } 8582 8583 // Compute the byval alignment. 8584 const unsigned MinABIStackAlignInBytes = 4; 8585 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 8586 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 8587 /*Realign=*/TypeAlign > 8588 MinABIStackAlignInBytes); 8589 } 8590 8591 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty, 8592 CCState &State) const { 8593 // Check with the C++ ABI first. 8594 const RecordType *RT = Ty->getAs<RecordType>(); 8595 if (RT) { 8596 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 8597 if (RAA == CGCXXABI::RAA_Indirect) { 8598 return getIndirectResult(Ty, /*ByVal=*/false, State); 8599 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 8600 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8601 } 8602 } 8603 8604 if (isAggregateTypeForABI(Ty)) { 8605 // Structures with flexible arrays are always indirect. 8606 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 8607 return getIndirectResult(Ty, /*ByVal=*/true, State); 8608 8609 // Ignore empty structs/unions. 8610 if (isEmptyRecord(getContext(), Ty, true)) 8611 return ABIArgInfo::getIgnore(); 8612 8613 llvm::LLVMContext &LLVMContext = getVMContext(); 8614 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 8615 if (SizeInRegs <= State.FreeRegs) { 8616 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 8617 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 8618 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 8619 State.FreeRegs -= SizeInRegs; 8620 return ABIArgInfo::getDirectInReg(Result); 8621 } else { 8622 State.FreeRegs = 0; 8623 } 8624 return getIndirectResult(Ty, true, State); 8625 } 8626 8627 // Treat an enum type as its underlying type. 8628 if (const auto *EnumTy = Ty->getAs<EnumType>()) 8629 Ty = EnumTy->getDecl()->getIntegerType(); 8630 8631 bool InReg = shouldUseInReg(Ty, State); 8632 8633 // Don't pass >64 bit integers in registers. 8634 if (const auto *EIT = Ty->getAs<ExtIntType>()) 8635 if (EIT->getNumBits() > 64) 8636 return getIndirectResult(Ty, /*ByVal=*/true, State); 8637 8638 if (isPromotableIntegerTypeForABI(Ty)) { 8639 if (InReg) 8640 return ABIArgInfo::getDirectInReg(); 8641 return ABIArgInfo::getExtend(Ty); 8642 } 8643 if (InReg) 8644 return ABIArgInfo::getDirectInReg(); 8645 return ABIArgInfo::getDirect(); 8646 } 8647 8648 namespace { 8649 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo { 8650 public: 8651 LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 8652 : TargetCodeGenInfo(std::make_unique<LanaiABIInfo>(CGT)) {} 8653 }; 8654 } 8655 8656 //===----------------------------------------------------------------------===// 8657 // AMDGPU ABI Implementation 8658 //===----------------------------------------------------------------------===// 8659 8660 namespace { 8661 8662 class AMDGPUABIInfo final : public DefaultABIInfo { 8663 private: 8664 static const unsigned MaxNumRegsForArgsRet = 16; 8665 8666 unsigned numRegsForType(QualType Ty) const; 8667 8668 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 8669 bool isHomogeneousAggregateSmallEnough(const Type *Base, 8670 uint64_t Members) const override; 8671 8672 // Coerce HIP scalar pointer arguments from generic pointers to global ones. 8673 llvm::Type *coerceKernelArgumentType(llvm::Type *Ty, unsigned FromAS, 8674 unsigned ToAS) const { 8675 // Single value types. 8676 if (Ty->isPointerTy() && Ty->getPointerAddressSpace() == FromAS) 8677 return llvm::PointerType::get( 8678 cast<llvm::PointerType>(Ty)->getElementType(), ToAS); 8679 return Ty; 8680 } 8681 8682 public: 8683 explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) : 8684 DefaultABIInfo(CGT) {} 8685 8686 ABIArgInfo classifyReturnType(QualType RetTy) const; 8687 ABIArgInfo classifyKernelArgumentType(QualType Ty) const; 8688 ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const; 8689 8690 void computeInfo(CGFunctionInfo &FI) const override; 8691 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8692 QualType Ty) const override; 8693 }; 8694 8695 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 8696 return true; 8697 } 8698 8699 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough( 8700 const Type *Base, uint64_t Members) const { 8701 uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32; 8702 8703 // Homogeneous Aggregates may occupy at most 16 registers. 8704 return Members * NumRegs <= MaxNumRegsForArgsRet; 8705 } 8706 8707 /// Estimate number of registers the type will use when passed in registers. 8708 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const { 8709 unsigned NumRegs = 0; 8710 8711 if (const VectorType *VT = Ty->getAs<VectorType>()) { 8712 // Compute from the number of elements. The reported size is based on the 8713 // in-memory size, which includes the padding 4th element for 3-vectors. 8714 QualType EltTy = VT->getElementType(); 8715 unsigned EltSize = getContext().getTypeSize(EltTy); 8716 8717 // 16-bit element vectors should be passed as packed. 8718 if (EltSize == 16) 8719 return (VT->getNumElements() + 1) / 2; 8720 8721 unsigned EltNumRegs = (EltSize + 31) / 32; 8722 return EltNumRegs * VT->getNumElements(); 8723 } 8724 8725 if (const RecordType *RT = Ty->getAs<RecordType>()) { 8726 const RecordDecl *RD = RT->getDecl(); 8727 assert(!RD->hasFlexibleArrayMember()); 8728 8729 for (const FieldDecl *Field : RD->fields()) { 8730 QualType FieldTy = Field->getType(); 8731 NumRegs += numRegsForType(FieldTy); 8732 } 8733 8734 return NumRegs; 8735 } 8736 8737 return (getContext().getTypeSize(Ty) + 31) / 32; 8738 } 8739 8740 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const { 8741 llvm::CallingConv::ID CC = FI.getCallingConvention(); 8742 8743 if (!getCXXABI().classifyReturnType(FI)) 8744 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8745 8746 unsigned NumRegsLeft = MaxNumRegsForArgsRet; 8747 for (auto &Arg : FI.arguments()) { 8748 if (CC == llvm::CallingConv::AMDGPU_KERNEL) { 8749 Arg.info = classifyKernelArgumentType(Arg.type); 8750 } else { 8751 Arg.info = classifyArgumentType(Arg.type, NumRegsLeft); 8752 } 8753 } 8754 } 8755 8756 Address AMDGPUABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8757 QualType Ty) const { 8758 llvm_unreachable("AMDGPU does not support varargs"); 8759 } 8760 8761 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const { 8762 if (isAggregateTypeForABI(RetTy)) { 8763 // Records with non-trivial destructors/copy-constructors should not be 8764 // returned by value. 8765 if (!getRecordArgABI(RetTy, getCXXABI())) { 8766 // Ignore empty structs/unions. 8767 if (isEmptyRecord(getContext(), RetTy, true)) 8768 return ABIArgInfo::getIgnore(); 8769 8770 // Lower single-element structs to just return a regular value. 8771 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 8772 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 8773 8774 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 8775 const RecordDecl *RD = RT->getDecl(); 8776 if (RD->hasFlexibleArrayMember()) 8777 return DefaultABIInfo::classifyReturnType(RetTy); 8778 } 8779 8780 // Pack aggregates <= 4 bytes into single VGPR or pair. 8781 uint64_t Size = getContext().getTypeSize(RetTy); 8782 if (Size <= 16) 8783 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 8784 8785 if (Size <= 32) 8786 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 8787 8788 if (Size <= 64) { 8789 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 8790 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 8791 } 8792 8793 if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet) 8794 return ABIArgInfo::getDirect(); 8795 } 8796 } 8797 8798 // Otherwise just do the default thing. 8799 return DefaultABIInfo::classifyReturnType(RetTy); 8800 } 8801 8802 /// For kernels all parameters are really passed in a special buffer. It doesn't 8803 /// make sense to pass anything byval, so everything must be direct. 8804 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const { 8805 Ty = useFirstFieldIfTransparentUnion(Ty); 8806 8807 // TODO: Can we omit empty structs? 8808 8809 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 8810 Ty = QualType(SeltTy, 0); 8811 8812 llvm::Type *OrigLTy = CGT.ConvertType(Ty); 8813 llvm::Type *LTy = OrigLTy; 8814 if (getContext().getLangOpts().HIP) { 8815 LTy = coerceKernelArgumentType( 8816 OrigLTy, /*FromAS=*/getContext().getTargetAddressSpace(LangAS::Default), 8817 /*ToAS=*/getContext().getTargetAddressSpace(LangAS::cuda_device)); 8818 } 8819 8820 // FIXME: Should also use this for OpenCL, but it requires addressing the 8821 // problem of kernels being called. 8822 // 8823 // FIXME: This doesn't apply the optimization of coercing pointers in structs 8824 // to global address space when using byref. This would require implementing a 8825 // new kind of coercion of the in-memory type when for indirect arguments. 8826 if (!getContext().getLangOpts().OpenCL && LTy == OrigLTy && 8827 isAggregateTypeForABI(Ty)) { 8828 return ABIArgInfo::getIndirectAliased( 8829 getContext().getTypeAlignInChars(Ty), 8830 getContext().getTargetAddressSpace(LangAS::opencl_constant), 8831 false /*Realign*/, nullptr /*Padding*/); 8832 } 8833 8834 // If we set CanBeFlattened to true, CodeGen will expand the struct to its 8835 // individual elements, which confuses the Clover OpenCL backend; therefore we 8836 // have to set it to false here. Other args of getDirect() are just defaults. 8837 return ABIArgInfo::getDirect(LTy, 0, nullptr, false); 8838 } 8839 8840 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty, 8841 unsigned &NumRegsLeft) const { 8842 assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow"); 8843 8844 Ty = useFirstFieldIfTransparentUnion(Ty); 8845 8846 if (isAggregateTypeForABI(Ty)) { 8847 // Records with non-trivial destructors/copy-constructors should not be 8848 // passed by value. 8849 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 8850 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 8851 8852 // Ignore empty structs/unions. 8853 if (isEmptyRecord(getContext(), Ty, true)) 8854 return ABIArgInfo::getIgnore(); 8855 8856 // Lower single-element structs to just pass a regular value. TODO: We 8857 // could do reasonable-size multiple-element structs too, using getExpand(), 8858 // though watch out for things like bitfields. 8859 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 8860 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 8861 8862 if (const RecordType *RT = Ty->getAs<RecordType>()) { 8863 const RecordDecl *RD = RT->getDecl(); 8864 if (RD->hasFlexibleArrayMember()) 8865 return DefaultABIInfo::classifyArgumentType(Ty); 8866 } 8867 8868 // Pack aggregates <= 8 bytes into single VGPR or pair. 8869 uint64_t Size = getContext().getTypeSize(Ty); 8870 if (Size <= 64) { 8871 unsigned NumRegs = (Size + 31) / 32; 8872 NumRegsLeft -= std::min(NumRegsLeft, NumRegs); 8873 8874 if (Size <= 16) 8875 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 8876 8877 if (Size <= 32) 8878 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 8879 8880 // XXX: Should this be i64 instead, and should the limit increase? 8881 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 8882 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 8883 } 8884 8885 if (NumRegsLeft > 0) { 8886 unsigned NumRegs = numRegsForType(Ty); 8887 if (NumRegsLeft >= NumRegs) { 8888 NumRegsLeft -= NumRegs; 8889 return ABIArgInfo::getDirect(); 8890 } 8891 } 8892 } 8893 8894 // Otherwise just do the default thing. 8895 ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty); 8896 if (!ArgInfo.isIndirect()) { 8897 unsigned NumRegs = numRegsForType(Ty); 8898 NumRegsLeft -= std::min(NumRegs, NumRegsLeft); 8899 } 8900 8901 return ArgInfo; 8902 } 8903 8904 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { 8905 public: 8906 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) 8907 : TargetCodeGenInfo(std::make_unique<AMDGPUABIInfo>(CGT)) {} 8908 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8909 CodeGen::CodeGenModule &M) const override; 8910 unsigned getOpenCLKernelCallingConv() const override; 8911 8912 llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM, 8913 llvm::PointerType *T, QualType QT) const override; 8914 8915 LangAS getASTAllocaAddressSpace() const override { 8916 return getLangASFromTargetAS( 8917 getABIInfo().getDataLayout().getAllocaAddrSpace()); 8918 } 8919 LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, 8920 const VarDecl *D) const override; 8921 llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts, 8922 SyncScope Scope, 8923 llvm::AtomicOrdering Ordering, 8924 llvm::LLVMContext &Ctx) const override; 8925 llvm::Function * 8926 createEnqueuedBlockKernel(CodeGenFunction &CGF, 8927 llvm::Function *BlockInvokeFunc, 8928 llvm::Value *BlockLiteral) const override; 8929 bool shouldEmitStaticExternCAliases() const override; 8930 void setCUDAKernelCallingConvention(const FunctionType *&FT) const override; 8931 }; 8932 } 8933 8934 static bool requiresAMDGPUProtectedVisibility(const Decl *D, 8935 llvm::GlobalValue *GV) { 8936 if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility) 8937 return false; 8938 8939 return D->hasAttr<OpenCLKernelAttr>() || 8940 (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) || 8941 (isa<VarDecl>(D) && 8942 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 8943 cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinSurfaceType() || 8944 cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinTextureType())); 8945 } 8946 8947 void AMDGPUTargetCodeGenInfo::setTargetAttributes( 8948 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 8949 if (requiresAMDGPUProtectedVisibility(D, GV)) { 8950 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 8951 GV->setDSOLocal(true); 8952 } 8953 8954 if (GV->isDeclaration()) 8955 return; 8956 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 8957 if (!FD) 8958 return; 8959 8960 llvm::Function *F = cast<llvm::Function>(GV); 8961 8962 const auto *ReqdWGS = M.getLangOpts().OpenCL ? 8963 FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr; 8964 8965 8966 const bool IsOpenCLKernel = M.getLangOpts().OpenCL && 8967 FD->hasAttr<OpenCLKernelAttr>(); 8968 const bool IsHIPKernel = M.getLangOpts().HIP && 8969 FD->hasAttr<CUDAGlobalAttr>(); 8970 if ((IsOpenCLKernel || IsHIPKernel) && 8971 (M.getTriple().getOS() == llvm::Triple::AMDHSA)) 8972 F->addFnAttr("amdgpu-implicitarg-num-bytes", "56"); 8973 8974 if (IsHIPKernel) 8975 F->addFnAttr("uniform-work-group-size", "true"); 8976 8977 8978 const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>(); 8979 if (ReqdWGS || FlatWGS) { 8980 unsigned Min = 0; 8981 unsigned Max = 0; 8982 if (FlatWGS) { 8983 Min = FlatWGS->getMin() 8984 ->EvaluateKnownConstInt(M.getContext()) 8985 .getExtValue(); 8986 Max = FlatWGS->getMax() 8987 ->EvaluateKnownConstInt(M.getContext()) 8988 .getExtValue(); 8989 } 8990 if (ReqdWGS && Min == 0 && Max == 0) 8991 Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim(); 8992 8993 if (Min != 0) { 8994 assert(Min <= Max && "Min must be less than or equal Max"); 8995 8996 std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max); 8997 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 8998 } else 8999 assert(Max == 0 && "Max must be zero"); 9000 } else if (IsOpenCLKernel || IsHIPKernel) { 9001 // By default, restrict the maximum size to a value specified by 9002 // --gpu-max-threads-per-block=n or its default value. 9003 std::string AttrVal = 9004 std::string("1,") + llvm::utostr(M.getLangOpts().GPUMaxThreadsPerBlock); 9005 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 9006 } 9007 9008 if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) { 9009 unsigned Min = 9010 Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue(); 9011 unsigned Max = Attr->getMax() ? Attr->getMax() 9012 ->EvaluateKnownConstInt(M.getContext()) 9013 .getExtValue() 9014 : 0; 9015 9016 if (Min != 0) { 9017 assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max"); 9018 9019 std::string AttrVal = llvm::utostr(Min); 9020 if (Max != 0) 9021 AttrVal = AttrVal + "," + llvm::utostr(Max); 9022 F->addFnAttr("amdgpu-waves-per-eu", AttrVal); 9023 } else 9024 assert(Max == 0 && "Max must be zero"); 9025 } 9026 9027 if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { 9028 unsigned NumSGPR = Attr->getNumSGPR(); 9029 9030 if (NumSGPR != 0) 9031 F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR)); 9032 } 9033 9034 if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { 9035 uint32_t NumVGPR = Attr->getNumVGPR(); 9036 9037 if (NumVGPR != 0) 9038 F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR)); 9039 } 9040 9041 if (M.getContext().getTargetInfo().allowAMDGPUUnsafeFPAtomics()) 9042 F->addFnAttr("amdgpu-unsafe-fp-atomics", "true"); 9043 } 9044 9045 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 9046 return llvm::CallingConv::AMDGPU_KERNEL; 9047 } 9048 9049 // Currently LLVM assumes null pointers always have value 0, 9050 // which results in incorrectly transformed IR. Therefore, instead of 9051 // emitting null pointers in private and local address spaces, a null 9052 // pointer in generic address space is emitted which is casted to a 9053 // pointer in local or private address space. 9054 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer( 9055 const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT, 9056 QualType QT) const { 9057 if (CGM.getContext().getTargetNullPointerValue(QT) == 0) 9058 return llvm::ConstantPointerNull::get(PT); 9059 9060 auto &Ctx = CGM.getContext(); 9061 auto NPT = llvm::PointerType::get(PT->getElementType(), 9062 Ctx.getTargetAddressSpace(LangAS::opencl_generic)); 9063 return llvm::ConstantExpr::getAddrSpaceCast( 9064 llvm::ConstantPointerNull::get(NPT), PT); 9065 } 9066 9067 LangAS 9068 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 9069 const VarDecl *D) const { 9070 assert(!CGM.getLangOpts().OpenCL && 9071 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 9072 "Address space agnostic languages only"); 9073 LangAS DefaultGlobalAS = getLangASFromTargetAS( 9074 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global)); 9075 if (!D) 9076 return DefaultGlobalAS; 9077 9078 LangAS AddrSpace = D->getType().getAddressSpace(); 9079 assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace)); 9080 if (AddrSpace != LangAS::Default) 9081 return AddrSpace; 9082 9083 if (CGM.isTypeConstant(D->getType(), false)) { 9084 if (auto ConstAS = CGM.getTarget().getConstantAddressSpace()) 9085 return ConstAS.getValue(); 9086 } 9087 return DefaultGlobalAS; 9088 } 9089 9090 llvm::SyncScope::ID 9091 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 9092 SyncScope Scope, 9093 llvm::AtomicOrdering Ordering, 9094 llvm::LLVMContext &Ctx) const { 9095 std::string Name; 9096 switch (Scope) { 9097 case SyncScope::OpenCLWorkGroup: 9098 Name = "workgroup"; 9099 break; 9100 case SyncScope::OpenCLDevice: 9101 Name = "agent"; 9102 break; 9103 case SyncScope::OpenCLAllSVMDevices: 9104 Name = ""; 9105 break; 9106 case SyncScope::OpenCLSubGroup: 9107 Name = "wavefront"; 9108 } 9109 9110 if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) { 9111 if (!Name.empty()) 9112 Name = Twine(Twine(Name) + Twine("-")).str(); 9113 9114 Name = Twine(Twine(Name) + Twine("one-as")).str(); 9115 } 9116 9117 return Ctx.getOrInsertSyncScopeID(Name); 9118 } 9119 9120 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 9121 return false; 9122 } 9123 9124 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention( 9125 const FunctionType *&FT) const { 9126 FT = getABIInfo().getContext().adjustFunctionType( 9127 FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel)); 9128 } 9129 9130 //===----------------------------------------------------------------------===// 9131 // SPARC v8 ABI Implementation. 9132 // Based on the SPARC Compliance Definition version 2.4.1. 9133 // 9134 // Ensures that complex values are passed in registers. 9135 // 9136 namespace { 9137 class SparcV8ABIInfo : public DefaultABIInfo { 9138 public: 9139 SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 9140 9141 private: 9142 ABIArgInfo classifyReturnType(QualType RetTy) const; 9143 void computeInfo(CGFunctionInfo &FI) const override; 9144 }; 9145 } // end anonymous namespace 9146 9147 9148 ABIArgInfo 9149 SparcV8ABIInfo::classifyReturnType(QualType Ty) const { 9150 if (Ty->isAnyComplexType()) { 9151 return ABIArgInfo::getDirect(); 9152 } 9153 else { 9154 return DefaultABIInfo::classifyReturnType(Ty); 9155 } 9156 } 9157 9158 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const { 9159 9160 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 9161 for (auto &Arg : FI.arguments()) 9162 Arg.info = classifyArgumentType(Arg.type); 9163 } 9164 9165 namespace { 9166 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo { 9167 public: 9168 SparcV8TargetCodeGenInfo(CodeGenTypes &CGT) 9169 : TargetCodeGenInfo(std::make_unique<SparcV8ABIInfo>(CGT)) {} 9170 }; 9171 } // end anonymous namespace 9172 9173 //===----------------------------------------------------------------------===// 9174 // SPARC v9 ABI Implementation. 9175 // Based on the SPARC Compliance Definition version 2.4.1. 9176 // 9177 // Function arguments a mapped to a nominal "parameter array" and promoted to 9178 // registers depending on their type. Each argument occupies 8 or 16 bytes in 9179 // the array, structs larger than 16 bytes are passed indirectly. 9180 // 9181 // One case requires special care: 9182 // 9183 // struct mixed { 9184 // int i; 9185 // float f; 9186 // }; 9187 // 9188 // When a struct mixed is passed by value, it only occupies 8 bytes in the 9189 // parameter array, but the int is passed in an integer register, and the float 9190 // is passed in a floating point register. This is represented as two arguments 9191 // with the LLVM IR inreg attribute: 9192 // 9193 // declare void f(i32 inreg %i, float inreg %f) 9194 // 9195 // The code generator will only allocate 4 bytes from the parameter array for 9196 // the inreg arguments. All other arguments are allocated a multiple of 8 9197 // bytes. 9198 // 9199 namespace { 9200 class SparcV9ABIInfo : public ABIInfo { 9201 public: 9202 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 9203 9204 private: 9205 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 9206 void computeInfo(CGFunctionInfo &FI) const override; 9207 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9208 QualType Ty) const override; 9209 9210 // Coercion type builder for structs passed in registers. The coercion type 9211 // serves two purposes: 9212 // 9213 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 9214 // in registers. 9215 // 2. Expose aligned floating point elements as first-level elements, so the 9216 // code generator knows to pass them in floating point registers. 9217 // 9218 // We also compute the InReg flag which indicates that the struct contains 9219 // aligned 32-bit floats. 9220 // 9221 struct CoerceBuilder { 9222 llvm::LLVMContext &Context; 9223 const llvm::DataLayout &DL; 9224 SmallVector<llvm::Type*, 8> Elems; 9225 uint64_t Size; 9226 bool InReg; 9227 9228 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 9229 : Context(c), DL(dl), Size(0), InReg(false) {} 9230 9231 // Pad Elems with integers until Size is ToSize. 9232 void pad(uint64_t ToSize) { 9233 assert(ToSize >= Size && "Cannot remove elements"); 9234 if (ToSize == Size) 9235 return; 9236 9237 // Finish the current 64-bit word. 9238 uint64_t Aligned = llvm::alignTo(Size, 64); 9239 if (Aligned > Size && Aligned <= ToSize) { 9240 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 9241 Size = Aligned; 9242 } 9243 9244 // Add whole 64-bit words. 9245 while (Size + 64 <= ToSize) { 9246 Elems.push_back(llvm::Type::getInt64Ty(Context)); 9247 Size += 64; 9248 } 9249 9250 // Final in-word padding. 9251 if (Size < ToSize) { 9252 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 9253 Size = ToSize; 9254 } 9255 } 9256 9257 // Add a floating point element at Offset. 9258 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 9259 // Unaligned floats are treated as integers. 9260 if (Offset % Bits) 9261 return; 9262 // The InReg flag is only required if there are any floats < 64 bits. 9263 if (Bits < 64) 9264 InReg = true; 9265 pad(Offset); 9266 Elems.push_back(Ty); 9267 Size = Offset + Bits; 9268 } 9269 9270 // Add a struct type to the coercion type, starting at Offset (in bits). 9271 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 9272 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 9273 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 9274 llvm::Type *ElemTy = StrTy->getElementType(i); 9275 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 9276 switch (ElemTy->getTypeID()) { 9277 case llvm::Type::StructTyID: 9278 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 9279 break; 9280 case llvm::Type::FloatTyID: 9281 addFloat(ElemOffset, ElemTy, 32); 9282 break; 9283 case llvm::Type::DoubleTyID: 9284 addFloat(ElemOffset, ElemTy, 64); 9285 break; 9286 case llvm::Type::FP128TyID: 9287 addFloat(ElemOffset, ElemTy, 128); 9288 break; 9289 case llvm::Type::PointerTyID: 9290 if (ElemOffset % 64 == 0) { 9291 pad(ElemOffset); 9292 Elems.push_back(ElemTy); 9293 Size += 64; 9294 } 9295 break; 9296 default: 9297 break; 9298 } 9299 } 9300 } 9301 9302 // Check if Ty is a usable substitute for the coercion type. 9303 bool isUsableType(llvm::StructType *Ty) const { 9304 return llvm::makeArrayRef(Elems) == Ty->elements(); 9305 } 9306 9307 // Get the coercion type as a literal struct type. 9308 llvm::Type *getType() const { 9309 if (Elems.size() == 1) 9310 return Elems.front(); 9311 else 9312 return llvm::StructType::get(Context, Elems); 9313 } 9314 }; 9315 }; 9316 } // end anonymous namespace 9317 9318 ABIArgInfo 9319 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 9320 if (Ty->isVoidType()) 9321 return ABIArgInfo::getIgnore(); 9322 9323 uint64_t Size = getContext().getTypeSize(Ty); 9324 9325 // Anything too big to fit in registers is passed with an explicit indirect 9326 // pointer / sret pointer. 9327 if (Size > SizeLimit) 9328 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 9329 9330 // Treat an enum type as its underlying type. 9331 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 9332 Ty = EnumTy->getDecl()->getIntegerType(); 9333 9334 // Integer types smaller than a register are extended. 9335 if (Size < 64 && Ty->isIntegerType()) 9336 return ABIArgInfo::getExtend(Ty); 9337 9338 if (const auto *EIT = Ty->getAs<ExtIntType>()) 9339 if (EIT->getNumBits() < 64) 9340 return ABIArgInfo::getExtend(Ty); 9341 9342 // Other non-aggregates go in registers. 9343 if (!isAggregateTypeForABI(Ty)) 9344 return ABIArgInfo::getDirect(); 9345 9346 // If a C++ object has either a non-trivial copy constructor or a non-trivial 9347 // destructor, it is passed with an explicit indirect pointer / sret pointer. 9348 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 9349 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 9350 9351 // This is a small aggregate type that should be passed in registers. 9352 // Build a coercion type from the LLVM struct type. 9353 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 9354 if (!StrTy) 9355 return ABIArgInfo::getDirect(); 9356 9357 CoerceBuilder CB(getVMContext(), getDataLayout()); 9358 CB.addStruct(0, StrTy); 9359 CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64)); 9360 9361 // Try to use the original type for coercion. 9362 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 9363 9364 if (CB.InReg) 9365 return ABIArgInfo::getDirectInReg(CoerceTy); 9366 else 9367 return ABIArgInfo::getDirect(CoerceTy); 9368 } 9369 9370 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9371 QualType Ty) const { 9372 ABIArgInfo AI = classifyType(Ty, 16 * 8); 9373 llvm::Type *ArgTy = CGT.ConvertType(Ty); 9374 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 9375 AI.setCoerceToType(ArgTy); 9376 9377 CharUnits SlotSize = CharUnits::fromQuantity(8); 9378 9379 CGBuilderTy &Builder = CGF.Builder; 9380 Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 9381 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 9382 9383 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 9384 9385 Address ArgAddr = Address::invalid(); 9386 CharUnits Stride; 9387 switch (AI.getKind()) { 9388 case ABIArgInfo::Expand: 9389 case ABIArgInfo::CoerceAndExpand: 9390 case ABIArgInfo::InAlloca: 9391 llvm_unreachable("Unsupported ABI kind for va_arg"); 9392 9393 case ABIArgInfo::Extend: { 9394 Stride = SlotSize; 9395 CharUnits Offset = SlotSize - TypeInfo.Width; 9396 ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend"); 9397 break; 9398 } 9399 9400 case ABIArgInfo::Direct: { 9401 auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 9402 Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize); 9403 ArgAddr = Addr; 9404 break; 9405 } 9406 9407 case ABIArgInfo::Indirect: 9408 case ABIArgInfo::IndirectAliased: 9409 Stride = SlotSize; 9410 ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect"); 9411 ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), 9412 TypeInfo.Align); 9413 break; 9414 9415 case ABIArgInfo::Ignore: 9416 return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.Align); 9417 } 9418 9419 // Update VAList. 9420 Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next"); 9421 Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 9422 9423 return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr"); 9424 } 9425 9426 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 9427 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 9428 for (auto &I : FI.arguments()) 9429 I.info = classifyType(I.type, 16 * 8); 9430 } 9431 9432 namespace { 9433 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 9434 public: 9435 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 9436 : TargetCodeGenInfo(std::make_unique<SparcV9ABIInfo>(CGT)) {} 9437 9438 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 9439 return 14; 9440 } 9441 9442 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 9443 llvm::Value *Address) const override; 9444 }; 9445 } // end anonymous namespace 9446 9447 bool 9448 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 9449 llvm::Value *Address) const { 9450 // This is calculated from the LLVM and GCC tables and verified 9451 // against gcc output. AFAIK all ABIs use the same encoding. 9452 9453 CodeGen::CGBuilderTy &Builder = CGF.Builder; 9454 9455 llvm::IntegerType *i8 = CGF.Int8Ty; 9456 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 9457 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 9458 9459 // 0-31: the 8-byte general-purpose registers 9460 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 9461 9462 // 32-63: f0-31, the 4-byte floating-point registers 9463 AssignToArrayRange(Builder, Address, Four8, 32, 63); 9464 9465 // Y = 64 9466 // PSR = 65 9467 // WIM = 66 9468 // TBR = 67 9469 // PC = 68 9470 // NPC = 69 9471 // FSR = 70 9472 // CSR = 71 9473 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 9474 9475 // 72-87: d0-15, the 8-byte floating-point registers 9476 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 9477 9478 return false; 9479 } 9480 9481 // ARC ABI implementation. 9482 namespace { 9483 9484 class ARCABIInfo : public DefaultABIInfo { 9485 public: 9486 using DefaultABIInfo::DefaultABIInfo; 9487 9488 private: 9489 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9490 QualType Ty) const override; 9491 9492 void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const { 9493 if (!State.FreeRegs) 9494 return; 9495 if (Info.isIndirect() && Info.getInReg()) 9496 State.FreeRegs--; 9497 else if (Info.isDirect() && Info.getInReg()) { 9498 unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32; 9499 if (sz < State.FreeRegs) 9500 State.FreeRegs -= sz; 9501 else 9502 State.FreeRegs = 0; 9503 } 9504 } 9505 9506 void computeInfo(CGFunctionInfo &FI) const override { 9507 CCState State(FI); 9508 // ARC uses 8 registers to pass arguments. 9509 State.FreeRegs = 8; 9510 9511 if (!getCXXABI().classifyReturnType(FI)) 9512 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 9513 updateState(FI.getReturnInfo(), FI.getReturnType(), State); 9514 for (auto &I : FI.arguments()) { 9515 I.info = classifyArgumentType(I.type, State.FreeRegs); 9516 updateState(I.info, I.type, State); 9517 } 9518 } 9519 9520 ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const; 9521 ABIArgInfo getIndirectByValue(QualType Ty) const; 9522 ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const; 9523 ABIArgInfo classifyReturnType(QualType RetTy) const; 9524 }; 9525 9526 class ARCTargetCodeGenInfo : public TargetCodeGenInfo { 9527 public: 9528 ARCTargetCodeGenInfo(CodeGenTypes &CGT) 9529 : TargetCodeGenInfo(std::make_unique<ARCABIInfo>(CGT)) {} 9530 }; 9531 9532 9533 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const { 9534 return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) : 9535 getNaturalAlignIndirect(Ty, false); 9536 } 9537 9538 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const { 9539 // Compute the byval alignment. 9540 const unsigned MinABIStackAlignInBytes = 4; 9541 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 9542 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 9543 TypeAlign > MinABIStackAlignInBytes); 9544 } 9545 9546 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9547 QualType Ty) const { 9548 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 9549 getContext().getTypeInfoInChars(Ty), 9550 CharUnits::fromQuantity(4), true); 9551 } 9552 9553 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty, 9554 uint8_t FreeRegs) const { 9555 // Handle the generic C++ ABI. 9556 const RecordType *RT = Ty->getAs<RecordType>(); 9557 if (RT) { 9558 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 9559 if (RAA == CGCXXABI::RAA_Indirect) 9560 return getIndirectByRef(Ty, FreeRegs > 0); 9561 9562 if (RAA == CGCXXABI::RAA_DirectInMemory) 9563 return getIndirectByValue(Ty); 9564 } 9565 9566 // Treat an enum type as its underlying type. 9567 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 9568 Ty = EnumTy->getDecl()->getIntegerType(); 9569 9570 auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32; 9571 9572 if (isAggregateTypeForABI(Ty)) { 9573 // Structures with flexible arrays are always indirect. 9574 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 9575 return getIndirectByValue(Ty); 9576 9577 // Ignore empty structs/unions. 9578 if (isEmptyRecord(getContext(), Ty, true)) 9579 return ABIArgInfo::getIgnore(); 9580 9581 llvm::LLVMContext &LLVMContext = getVMContext(); 9582 9583 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 9584 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 9585 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 9586 9587 return FreeRegs >= SizeInRegs ? 9588 ABIArgInfo::getDirectInReg(Result) : 9589 ABIArgInfo::getDirect(Result, 0, nullptr, false); 9590 } 9591 9592 if (const auto *EIT = Ty->getAs<ExtIntType>()) 9593 if (EIT->getNumBits() > 64) 9594 return getIndirectByValue(Ty); 9595 9596 return isPromotableIntegerTypeForABI(Ty) 9597 ? (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty) 9598 : ABIArgInfo::getExtend(Ty)) 9599 : (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg() 9600 : ABIArgInfo::getDirect()); 9601 } 9602 9603 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const { 9604 if (RetTy->isAnyComplexType()) 9605 return ABIArgInfo::getDirectInReg(); 9606 9607 // Arguments of size > 4 registers are indirect. 9608 auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32; 9609 if (RetSize > 4) 9610 return getIndirectByRef(RetTy, /*HasFreeRegs*/ true); 9611 9612 return DefaultABIInfo::classifyReturnType(RetTy); 9613 } 9614 9615 } // End anonymous namespace. 9616 9617 //===----------------------------------------------------------------------===// 9618 // XCore ABI Implementation 9619 //===----------------------------------------------------------------------===// 9620 9621 namespace { 9622 9623 /// A SmallStringEnc instance is used to build up the TypeString by passing 9624 /// it by reference between functions that append to it. 9625 typedef llvm::SmallString<128> SmallStringEnc; 9626 9627 /// TypeStringCache caches the meta encodings of Types. 9628 /// 9629 /// The reason for caching TypeStrings is two fold: 9630 /// 1. To cache a type's encoding for later uses; 9631 /// 2. As a means to break recursive member type inclusion. 9632 /// 9633 /// A cache Entry can have a Status of: 9634 /// NonRecursive: The type encoding is not recursive; 9635 /// Recursive: The type encoding is recursive; 9636 /// Incomplete: An incomplete TypeString; 9637 /// IncompleteUsed: An incomplete TypeString that has been used in a 9638 /// Recursive type encoding. 9639 /// 9640 /// A NonRecursive entry will have all of its sub-members expanded as fully 9641 /// as possible. Whilst it may contain types which are recursive, the type 9642 /// itself is not recursive and thus its encoding may be safely used whenever 9643 /// the type is encountered. 9644 /// 9645 /// A Recursive entry will have all of its sub-members expanded as fully as 9646 /// possible. The type itself is recursive and it may contain other types which 9647 /// are recursive. The Recursive encoding must not be used during the expansion 9648 /// of a recursive type's recursive branch. For simplicity the code uses 9649 /// IncompleteCount to reject all usage of Recursive encodings for member types. 9650 /// 9651 /// An Incomplete entry is always a RecordType and only encodes its 9652 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 9653 /// are placed into the cache during type expansion as a means to identify and 9654 /// handle recursive inclusion of types as sub-members. If there is recursion 9655 /// the entry becomes IncompleteUsed. 9656 /// 9657 /// During the expansion of a RecordType's members: 9658 /// 9659 /// If the cache contains a NonRecursive encoding for the member type, the 9660 /// cached encoding is used; 9661 /// 9662 /// If the cache contains a Recursive encoding for the member type, the 9663 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 9664 /// 9665 /// If the member is a RecordType, an Incomplete encoding is placed into the 9666 /// cache to break potential recursive inclusion of itself as a sub-member; 9667 /// 9668 /// Once a member RecordType has been expanded, its temporary incomplete 9669 /// entry is removed from the cache. If a Recursive encoding was swapped out 9670 /// it is swapped back in; 9671 /// 9672 /// If an incomplete entry is used to expand a sub-member, the incomplete 9673 /// entry is marked as IncompleteUsed. The cache keeps count of how many 9674 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 9675 /// 9676 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 9677 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 9678 /// Else the member is part of a recursive type and thus the recursion has 9679 /// been exited too soon for the encoding to be correct for the member. 9680 /// 9681 class TypeStringCache { 9682 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 9683 struct Entry { 9684 std::string Str; // The encoded TypeString for the type. 9685 enum Status State; // Information about the encoding in 'Str'. 9686 std::string Swapped; // A temporary place holder for a Recursive encoding 9687 // during the expansion of RecordType's members. 9688 }; 9689 std::map<const IdentifierInfo *, struct Entry> Map; 9690 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 9691 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 9692 public: 9693 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {} 9694 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 9695 bool removeIncomplete(const IdentifierInfo *ID); 9696 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 9697 bool IsRecursive); 9698 StringRef lookupStr(const IdentifierInfo *ID); 9699 }; 9700 9701 /// TypeString encodings for enum & union fields must be order. 9702 /// FieldEncoding is a helper for this ordering process. 9703 class FieldEncoding { 9704 bool HasName; 9705 std::string Enc; 9706 public: 9707 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {} 9708 StringRef str() { return Enc; } 9709 bool operator<(const FieldEncoding &rhs) const { 9710 if (HasName != rhs.HasName) return HasName; 9711 return Enc < rhs.Enc; 9712 } 9713 }; 9714 9715 class XCoreABIInfo : public DefaultABIInfo { 9716 public: 9717 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 9718 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9719 QualType Ty) const override; 9720 }; 9721 9722 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 9723 mutable TypeStringCache TSC; 9724 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 9725 const CodeGen::CodeGenModule &M) const; 9726 9727 public: 9728 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 9729 : TargetCodeGenInfo(std::make_unique<XCoreABIInfo>(CGT)) {} 9730 void emitTargetMetadata(CodeGen::CodeGenModule &CGM, 9731 const llvm::MapVector<GlobalDecl, StringRef> 9732 &MangledDeclNames) const override; 9733 }; 9734 9735 } // End anonymous namespace. 9736 9737 // TODO: this implementation is likely now redundant with the default 9738 // EmitVAArg. 9739 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9740 QualType Ty) const { 9741 CGBuilderTy &Builder = CGF.Builder; 9742 9743 // Get the VAList. 9744 CharUnits SlotSize = CharUnits::fromQuantity(4); 9745 Address AP(Builder.CreateLoad(VAListAddr), SlotSize); 9746 9747 // Handle the argument. 9748 ABIArgInfo AI = classifyArgumentType(Ty); 9749 CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty); 9750 llvm::Type *ArgTy = CGT.ConvertType(Ty); 9751 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 9752 AI.setCoerceToType(ArgTy); 9753 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 9754 9755 Address Val = Address::invalid(); 9756 CharUnits ArgSize = CharUnits::Zero(); 9757 switch (AI.getKind()) { 9758 case ABIArgInfo::Expand: 9759 case ABIArgInfo::CoerceAndExpand: 9760 case ABIArgInfo::InAlloca: 9761 llvm_unreachable("Unsupported ABI kind for va_arg"); 9762 case ABIArgInfo::Ignore: 9763 Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign); 9764 ArgSize = CharUnits::Zero(); 9765 break; 9766 case ABIArgInfo::Extend: 9767 case ABIArgInfo::Direct: 9768 Val = Builder.CreateBitCast(AP, ArgPtrTy); 9769 ArgSize = CharUnits::fromQuantity( 9770 getDataLayout().getTypeAllocSize(AI.getCoerceToType())); 9771 ArgSize = ArgSize.alignTo(SlotSize); 9772 break; 9773 case ABIArgInfo::Indirect: 9774 case ABIArgInfo::IndirectAliased: 9775 Val = Builder.CreateElementBitCast(AP, ArgPtrTy); 9776 Val = Address(Builder.CreateLoad(Val), TypeAlign); 9777 ArgSize = SlotSize; 9778 break; 9779 } 9780 9781 // Increment the VAList. 9782 if (!ArgSize.isZero()) { 9783 Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize); 9784 Builder.CreateStore(APN.getPointer(), VAListAddr); 9785 } 9786 9787 return Val; 9788 } 9789 9790 /// During the expansion of a RecordType, an incomplete TypeString is placed 9791 /// into the cache as a means to identify and break recursion. 9792 /// If there is a Recursive encoding in the cache, it is swapped out and will 9793 /// be reinserted by removeIncomplete(). 9794 /// All other types of encoding should have been used rather than arriving here. 9795 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 9796 std::string StubEnc) { 9797 if (!ID) 9798 return; 9799 Entry &E = Map[ID]; 9800 assert( (E.Str.empty() || E.State == Recursive) && 9801 "Incorrectly use of addIncomplete"); 9802 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 9803 E.Swapped.swap(E.Str); // swap out the Recursive 9804 E.Str.swap(StubEnc); 9805 E.State = Incomplete; 9806 ++IncompleteCount; 9807 } 9808 9809 /// Once the RecordType has been expanded, the temporary incomplete TypeString 9810 /// must be removed from the cache. 9811 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 9812 /// Returns true if the RecordType was defined recursively. 9813 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 9814 if (!ID) 9815 return false; 9816 auto I = Map.find(ID); 9817 assert(I != Map.end() && "Entry not present"); 9818 Entry &E = I->second; 9819 assert( (E.State == Incomplete || 9820 E.State == IncompleteUsed) && 9821 "Entry must be an incomplete type"); 9822 bool IsRecursive = false; 9823 if (E.State == IncompleteUsed) { 9824 // We made use of our Incomplete encoding, thus we are recursive. 9825 IsRecursive = true; 9826 --IncompleteUsedCount; 9827 } 9828 if (E.Swapped.empty()) 9829 Map.erase(I); 9830 else { 9831 // Swap the Recursive back. 9832 E.Swapped.swap(E.Str); 9833 E.Swapped.clear(); 9834 E.State = Recursive; 9835 } 9836 --IncompleteCount; 9837 return IsRecursive; 9838 } 9839 9840 /// Add the encoded TypeString to the cache only if it is NonRecursive or 9841 /// Recursive (viz: all sub-members were expanded as fully as possible). 9842 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 9843 bool IsRecursive) { 9844 if (!ID || IncompleteUsedCount) 9845 return; // No key or it is is an incomplete sub-type so don't add. 9846 Entry &E = Map[ID]; 9847 if (IsRecursive && !E.Str.empty()) { 9848 assert(E.State==Recursive && E.Str.size() == Str.size() && 9849 "This is not the same Recursive entry"); 9850 // The parent container was not recursive after all, so we could have used 9851 // this Recursive sub-member entry after all, but we assumed the worse when 9852 // we started viz: IncompleteCount!=0. 9853 return; 9854 } 9855 assert(E.Str.empty() && "Entry already present"); 9856 E.Str = Str.str(); 9857 E.State = IsRecursive? Recursive : NonRecursive; 9858 } 9859 9860 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 9861 /// are recursively expanding a type (IncompleteCount != 0) and the cached 9862 /// encoding is Recursive, return an empty StringRef. 9863 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 9864 if (!ID) 9865 return StringRef(); // We have no key. 9866 auto I = Map.find(ID); 9867 if (I == Map.end()) 9868 return StringRef(); // We have no encoding. 9869 Entry &E = I->second; 9870 if (E.State == Recursive && IncompleteCount) 9871 return StringRef(); // We don't use Recursive encodings for member types. 9872 9873 if (E.State == Incomplete) { 9874 // The incomplete type is being used to break out of recursion. 9875 E.State = IncompleteUsed; 9876 ++IncompleteUsedCount; 9877 } 9878 return E.Str; 9879 } 9880 9881 /// The XCore ABI includes a type information section that communicates symbol 9882 /// type information to the linker. The linker uses this information to verify 9883 /// safety/correctness of things such as array bound and pointers et al. 9884 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 9885 /// This type information (TypeString) is emitted into meta data for all global 9886 /// symbols: definitions, declarations, functions & variables. 9887 /// 9888 /// The TypeString carries type, qualifier, name, size & value details. 9889 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 9890 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf 9891 /// The output is tested by test/CodeGen/xcore-stringtype.c. 9892 /// 9893 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 9894 const CodeGen::CodeGenModule &CGM, 9895 TypeStringCache &TSC); 9896 9897 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 9898 void XCoreTargetCodeGenInfo::emitTargetMD( 9899 const Decl *D, llvm::GlobalValue *GV, 9900 const CodeGen::CodeGenModule &CGM) const { 9901 SmallStringEnc Enc; 9902 if (getTypeString(Enc, D, CGM, TSC)) { 9903 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 9904 llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV), 9905 llvm::MDString::get(Ctx, Enc.str())}; 9906 llvm::NamedMDNode *MD = 9907 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 9908 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 9909 } 9910 } 9911 9912 void XCoreTargetCodeGenInfo::emitTargetMetadata( 9913 CodeGen::CodeGenModule &CGM, 9914 const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames) const { 9915 // Warning, new MangledDeclNames may be appended within this loop. 9916 // We rely on MapVector insertions adding new elements to the end 9917 // of the container. 9918 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 9919 auto Val = *(MangledDeclNames.begin() + I); 9920 llvm::GlobalValue *GV = CGM.GetGlobalValue(Val.second); 9921 if (GV) { 9922 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 9923 emitTargetMD(D, GV, CGM); 9924 } 9925 } 9926 } 9927 //===----------------------------------------------------------------------===// 9928 // SPIR ABI Implementation 9929 //===----------------------------------------------------------------------===// 9930 9931 namespace { 9932 class SPIRABIInfo : public DefaultABIInfo { 9933 public: 9934 SPIRABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) { setCCs(); } 9935 9936 private: 9937 void setCCs(); 9938 }; 9939 } // end anonymous namespace 9940 namespace { 9941 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo { 9942 public: 9943 SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 9944 : TargetCodeGenInfo(std::make_unique<SPIRABIInfo>(CGT)) {} 9945 unsigned getOpenCLKernelCallingConv() const override; 9946 }; 9947 9948 } // End anonymous namespace. 9949 void SPIRABIInfo::setCCs() { 9950 assert(getRuntimeCC() == llvm::CallingConv::C); 9951 RuntimeCC = llvm::CallingConv::SPIR_FUNC; 9952 } 9953 9954 namespace clang { 9955 namespace CodeGen { 9956 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) { 9957 DefaultABIInfo SPIRABI(CGM.getTypes()); 9958 SPIRABI.computeInfo(FI); 9959 } 9960 } 9961 } 9962 9963 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 9964 return llvm::CallingConv::SPIR_KERNEL; 9965 } 9966 9967 static bool appendType(SmallStringEnc &Enc, QualType QType, 9968 const CodeGen::CodeGenModule &CGM, 9969 TypeStringCache &TSC); 9970 9971 /// Helper function for appendRecordType(). 9972 /// Builds a SmallVector containing the encoded field types in declaration 9973 /// order. 9974 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 9975 const RecordDecl *RD, 9976 const CodeGen::CodeGenModule &CGM, 9977 TypeStringCache &TSC) { 9978 for (const auto *Field : RD->fields()) { 9979 SmallStringEnc Enc; 9980 Enc += "m("; 9981 Enc += Field->getName(); 9982 Enc += "){"; 9983 if (Field->isBitField()) { 9984 Enc += "b("; 9985 llvm::raw_svector_ostream OS(Enc); 9986 OS << Field->getBitWidthValue(CGM.getContext()); 9987 Enc += ':'; 9988 } 9989 if (!appendType(Enc, Field->getType(), CGM, TSC)) 9990 return false; 9991 if (Field->isBitField()) 9992 Enc += ')'; 9993 Enc += '}'; 9994 FE.emplace_back(!Field->getName().empty(), Enc); 9995 } 9996 return true; 9997 } 9998 9999 /// Appends structure and union types to Enc and adds encoding to cache. 10000 /// Recursively calls appendType (via extractFieldType) for each field. 10001 /// Union types have their fields ordered according to the ABI. 10002 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 10003 const CodeGen::CodeGenModule &CGM, 10004 TypeStringCache &TSC, const IdentifierInfo *ID) { 10005 // Append the cached TypeString if we have one. 10006 StringRef TypeString = TSC.lookupStr(ID); 10007 if (!TypeString.empty()) { 10008 Enc += TypeString; 10009 return true; 10010 } 10011 10012 // Start to emit an incomplete TypeString. 10013 size_t Start = Enc.size(); 10014 Enc += (RT->isUnionType()? 'u' : 's'); 10015 Enc += '('; 10016 if (ID) 10017 Enc += ID->getName(); 10018 Enc += "){"; 10019 10020 // We collect all encoded fields and order as necessary. 10021 bool IsRecursive = false; 10022 const RecordDecl *RD = RT->getDecl()->getDefinition(); 10023 if (RD && !RD->field_empty()) { 10024 // An incomplete TypeString stub is placed in the cache for this RecordType 10025 // so that recursive calls to this RecordType will use it whilst building a 10026 // complete TypeString for this RecordType. 10027 SmallVector<FieldEncoding, 16> FE; 10028 std::string StubEnc(Enc.substr(Start).str()); 10029 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 10030 TSC.addIncomplete(ID, std::move(StubEnc)); 10031 if (!extractFieldType(FE, RD, CGM, TSC)) { 10032 (void) TSC.removeIncomplete(ID); 10033 return false; 10034 } 10035 IsRecursive = TSC.removeIncomplete(ID); 10036 // The ABI requires unions to be sorted but not structures. 10037 // See FieldEncoding::operator< for sort algorithm. 10038 if (RT->isUnionType()) 10039 llvm::sort(FE); 10040 // We can now complete the TypeString. 10041 unsigned E = FE.size(); 10042 for (unsigned I = 0; I != E; ++I) { 10043 if (I) 10044 Enc += ','; 10045 Enc += FE[I].str(); 10046 } 10047 } 10048 Enc += '}'; 10049 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 10050 return true; 10051 } 10052 10053 /// Appends enum types to Enc and adds the encoding to the cache. 10054 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 10055 TypeStringCache &TSC, 10056 const IdentifierInfo *ID) { 10057 // Append the cached TypeString if we have one. 10058 StringRef TypeString = TSC.lookupStr(ID); 10059 if (!TypeString.empty()) { 10060 Enc += TypeString; 10061 return true; 10062 } 10063 10064 size_t Start = Enc.size(); 10065 Enc += "e("; 10066 if (ID) 10067 Enc += ID->getName(); 10068 Enc += "){"; 10069 10070 // We collect all encoded enumerations and order them alphanumerically. 10071 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 10072 SmallVector<FieldEncoding, 16> FE; 10073 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 10074 ++I) { 10075 SmallStringEnc EnumEnc; 10076 EnumEnc += "m("; 10077 EnumEnc += I->getName(); 10078 EnumEnc += "){"; 10079 I->getInitVal().toString(EnumEnc); 10080 EnumEnc += '}'; 10081 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 10082 } 10083 llvm::sort(FE); 10084 unsigned E = FE.size(); 10085 for (unsigned I = 0; I != E; ++I) { 10086 if (I) 10087 Enc += ','; 10088 Enc += FE[I].str(); 10089 } 10090 } 10091 Enc += '}'; 10092 TSC.addIfComplete(ID, Enc.substr(Start), false); 10093 return true; 10094 } 10095 10096 /// Appends type's qualifier to Enc. 10097 /// This is done prior to appending the type's encoding. 10098 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 10099 // Qualifiers are emitted in alphabetical order. 10100 static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 10101 int Lookup = 0; 10102 if (QT.isConstQualified()) 10103 Lookup += 1<<0; 10104 if (QT.isRestrictQualified()) 10105 Lookup += 1<<1; 10106 if (QT.isVolatileQualified()) 10107 Lookup += 1<<2; 10108 Enc += Table[Lookup]; 10109 } 10110 10111 /// Appends built-in types to Enc. 10112 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 10113 const char *EncType; 10114 switch (BT->getKind()) { 10115 case BuiltinType::Void: 10116 EncType = "0"; 10117 break; 10118 case BuiltinType::Bool: 10119 EncType = "b"; 10120 break; 10121 case BuiltinType::Char_U: 10122 EncType = "uc"; 10123 break; 10124 case BuiltinType::UChar: 10125 EncType = "uc"; 10126 break; 10127 case BuiltinType::SChar: 10128 EncType = "sc"; 10129 break; 10130 case BuiltinType::UShort: 10131 EncType = "us"; 10132 break; 10133 case BuiltinType::Short: 10134 EncType = "ss"; 10135 break; 10136 case BuiltinType::UInt: 10137 EncType = "ui"; 10138 break; 10139 case BuiltinType::Int: 10140 EncType = "si"; 10141 break; 10142 case BuiltinType::ULong: 10143 EncType = "ul"; 10144 break; 10145 case BuiltinType::Long: 10146 EncType = "sl"; 10147 break; 10148 case BuiltinType::ULongLong: 10149 EncType = "ull"; 10150 break; 10151 case BuiltinType::LongLong: 10152 EncType = "sll"; 10153 break; 10154 case BuiltinType::Float: 10155 EncType = "ft"; 10156 break; 10157 case BuiltinType::Double: 10158 EncType = "d"; 10159 break; 10160 case BuiltinType::LongDouble: 10161 EncType = "ld"; 10162 break; 10163 default: 10164 return false; 10165 } 10166 Enc += EncType; 10167 return true; 10168 } 10169 10170 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 10171 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 10172 const CodeGen::CodeGenModule &CGM, 10173 TypeStringCache &TSC) { 10174 Enc += "p("; 10175 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 10176 return false; 10177 Enc += ')'; 10178 return true; 10179 } 10180 10181 /// Appends array encoding to Enc before calling appendType for the element. 10182 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 10183 const ArrayType *AT, 10184 const CodeGen::CodeGenModule &CGM, 10185 TypeStringCache &TSC, StringRef NoSizeEnc) { 10186 if (AT->getSizeModifier() != ArrayType::Normal) 10187 return false; 10188 Enc += "a("; 10189 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 10190 CAT->getSize().toStringUnsigned(Enc); 10191 else 10192 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 10193 Enc += ':'; 10194 // The Qualifiers should be attached to the type rather than the array. 10195 appendQualifier(Enc, QT); 10196 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 10197 return false; 10198 Enc += ')'; 10199 return true; 10200 } 10201 10202 /// Appends a function encoding to Enc, calling appendType for the return type 10203 /// and the arguments. 10204 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 10205 const CodeGen::CodeGenModule &CGM, 10206 TypeStringCache &TSC) { 10207 Enc += "f{"; 10208 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 10209 return false; 10210 Enc += "}("; 10211 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 10212 // N.B. we are only interested in the adjusted param types. 10213 auto I = FPT->param_type_begin(); 10214 auto E = FPT->param_type_end(); 10215 if (I != E) { 10216 do { 10217 if (!appendType(Enc, *I, CGM, TSC)) 10218 return false; 10219 ++I; 10220 if (I != E) 10221 Enc += ','; 10222 } while (I != E); 10223 if (FPT->isVariadic()) 10224 Enc += ",va"; 10225 } else { 10226 if (FPT->isVariadic()) 10227 Enc += "va"; 10228 else 10229 Enc += '0'; 10230 } 10231 } 10232 Enc += ')'; 10233 return true; 10234 } 10235 10236 /// Handles the type's qualifier before dispatching a call to handle specific 10237 /// type encodings. 10238 static bool appendType(SmallStringEnc &Enc, QualType QType, 10239 const CodeGen::CodeGenModule &CGM, 10240 TypeStringCache &TSC) { 10241 10242 QualType QT = QType.getCanonicalType(); 10243 10244 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 10245 // The Qualifiers should be attached to the type rather than the array. 10246 // Thus we don't call appendQualifier() here. 10247 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 10248 10249 appendQualifier(Enc, QT); 10250 10251 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 10252 return appendBuiltinType(Enc, BT); 10253 10254 if (const PointerType *PT = QT->getAs<PointerType>()) 10255 return appendPointerType(Enc, PT, CGM, TSC); 10256 10257 if (const EnumType *ET = QT->getAs<EnumType>()) 10258 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 10259 10260 if (const RecordType *RT = QT->getAsStructureType()) 10261 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 10262 10263 if (const RecordType *RT = QT->getAsUnionType()) 10264 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 10265 10266 if (const FunctionType *FT = QT->getAs<FunctionType>()) 10267 return appendFunctionType(Enc, FT, CGM, TSC); 10268 10269 return false; 10270 } 10271 10272 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 10273 const CodeGen::CodeGenModule &CGM, 10274 TypeStringCache &TSC) { 10275 if (!D) 10276 return false; 10277 10278 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 10279 if (FD->getLanguageLinkage() != CLanguageLinkage) 10280 return false; 10281 return appendType(Enc, FD->getType(), CGM, TSC); 10282 } 10283 10284 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 10285 if (VD->getLanguageLinkage() != CLanguageLinkage) 10286 return false; 10287 QualType QT = VD->getType().getCanonicalType(); 10288 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 10289 // Global ArrayTypes are given a size of '*' if the size is unknown. 10290 // The Qualifiers should be attached to the type rather than the array. 10291 // Thus we don't call appendQualifier() here. 10292 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 10293 } 10294 return appendType(Enc, QT, CGM, TSC); 10295 } 10296 return false; 10297 } 10298 10299 //===----------------------------------------------------------------------===// 10300 // RISCV ABI Implementation 10301 //===----------------------------------------------------------------------===// 10302 10303 namespace { 10304 class RISCVABIInfo : public DefaultABIInfo { 10305 private: 10306 // Size of the integer ('x') registers in bits. 10307 unsigned XLen; 10308 // Size of the floating point ('f') registers in bits. Note that the target 10309 // ISA might have a wider FLen than the selected ABI (e.g. an RV32IF target 10310 // with soft float ABI has FLen==0). 10311 unsigned FLen; 10312 static const int NumArgGPRs = 8; 10313 static const int NumArgFPRs = 8; 10314 bool detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, 10315 llvm::Type *&Field1Ty, 10316 CharUnits &Field1Off, 10317 llvm::Type *&Field2Ty, 10318 CharUnits &Field2Off) const; 10319 10320 public: 10321 RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen) 10322 : DefaultABIInfo(CGT), XLen(XLen), FLen(FLen) {} 10323 10324 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 10325 // non-virtual, but computeInfo is virtual, so we overload it. 10326 void computeInfo(CGFunctionInfo &FI) const override; 10327 10328 ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &ArgGPRsLeft, 10329 int &ArgFPRsLeft) const; 10330 ABIArgInfo classifyReturnType(QualType RetTy) const; 10331 10332 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 10333 QualType Ty) const override; 10334 10335 ABIArgInfo extendType(QualType Ty) const; 10336 10337 bool detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, 10338 CharUnits &Field1Off, llvm::Type *&Field2Ty, 10339 CharUnits &Field2Off, int &NeededArgGPRs, 10340 int &NeededArgFPRs) const; 10341 ABIArgInfo coerceAndExpandFPCCEligibleStruct(llvm::Type *Field1Ty, 10342 CharUnits Field1Off, 10343 llvm::Type *Field2Ty, 10344 CharUnits Field2Off) const; 10345 }; 10346 } // end anonymous namespace 10347 10348 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const { 10349 QualType RetTy = FI.getReturnType(); 10350 if (!getCXXABI().classifyReturnType(FI)) 10351 FI.getReturnInfo() = classifyReturnType(RetTy); 10352 10353 // IsRetIndirect is true if classifyArgumentType indicated the value should 10354 // be passed indirect, or if the type size is a scalar greater than 2*XLen 10355 // and not a complex type with elements <= FLen. e.g. fp128 is passed direct 10356 // in LLVM IR, relying on the backend lowering code to rewrite the argument 10357 // list and pass indirectly on RV32. 10358 bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect; 10359 if (!IsRetIndirect && RetTy->isScalarType() && 10360 getContext().getTypeSize(RetTy) > (2 * XLen)) { 10361 if (RetTy->isComplexType() && FLen) { 10362 QualType EltTy = RetTy->castAs<ComplexType>()->getElementType(); 10363 IsRetIndirect = getContext().getTypeSize(EltTy) > FLen; 10364 } else { 10365 // This is a normal scalar > 2*XLen, such as fp128 on RV32. 10366 IsRetIndirect = true; 10367 } 10368 } 10369 10370 // We must track the number of GPRs used in order to conform to the RISC-V 10371 // ABI, as integer scalars passed in registers should have signext/zeroext 10372 // when promoted, but are anyext if passed on the stack. As GPR usage is 10373 // different for variadic arguments, we must also track whether we are 10374 // examining a vararg or not. 10375 int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs; 10376 int ArgFPRsLeft = FLen ? NumArgFPRs : 0; 10377 int NumFixedArgs = FI.getNumRequiredArgs(); 10378 10379 int ArgNum = 0; 10380 for (auto &ArgInfo : FI.arguments()) { 10381 bool IsFixed = ArgNum < NumFixedArgs; 10382 ArgInfo.info = 10383 classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft, ArgFPRsLeft); 10384 ArgNum++; 10385 } 10386 } 10387 10388 // Returns true if the struct is a potential candidate for the floating point 10389 // calling convention. If this function returns true, the caller is 10390 // responsible for checking that if there is only a single field then that 10391 // field is a float. 10392 bool RISCVABIInfo::detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, 10393 llvm::Type *&Field1Ty, 10394 CharUnits &Field1Off, 10395 llvm::Type *&Field2Ty, 10396 CharUnits &Field2Off) const { 10397 bool IsInt = Ty->isIntegralOrEnumerationType(); 10398 bool IsFloat = Ty->isRealFloatingType(); 10399 10400 if (IsInt || IsFloat) { 10401 uint64_t Size = getContext().getTypeSize(Ty); 10402 if (IsInt && Size > XLen) 10403 return false; 10404 // Can't be eligible if larger than the FP registers. Half precision isn't 10405 // currently supported on RISC-V and the ABI hasn't been confirmed, so 10406 // default to the integer ABI in that case. 10407 if (IsFloat && (Size > FLen || Size < 32)) 10408 return false; 10409 // Can't be eligible if an integer type was already found (int+int pairs 10410 // are not eligible). 10411 if (IsInt && Field1Ty && Field1Ty->isIntegerTy()) 10412 return false; 10413 if (!Field1Ty) { 10414 Field1Ty = CGT.ConvertType(Ty); 10415 Field1Off = CurOff; 10416 return true; 10417 } 10418 if (!Field2Ty) { 10419 Field2Ty = CGT.ConvertType(Ty); 10420 Field2Off = CurOff; 10421 return true; 10422 } 10423 return false; 10424 } 10425 10426 if (auto CTy = Ty->getAs<ComplexType>()) { 10427 if (Field1Ty) 10428 return false; 10429 QualType EltTy = CTy->getElementType(); 10430 if (getContext().getTypeSize(EltTy) > FLen) 10431 return false; 10432 Field1Ty = CGT.ConvertType(EltTy); 10433 Field1Off = CurOff; 10434 Field2Ty = Field1Ty; 10435 Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy); 10436 return true; 10437 } 10438 10439 if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) { 10440 uint64_t ArraySize = ATy->getSize().getZExtValue(); 10441 QualType EltTy = ATy->getElementType(); 10442 CharUnits EltSize = getContext().getTypeSizeInChars(EltTy); 10443 for (uint64_t i = 0; i < ArraySize; ++i) { 10444 bool Ret = detectFPCCEligibleStructHelper(EltTy, CurOff, Field1Ty, 10445 Field1Off, Field2Ty, Field2Off); 10446 if (!Ret) 10447 return false; 10448 CurOff += EltSize; 10449 } 10450 return true; 10451 } 10452 10453 if (const auto *RTy = Ty->getAs<RecordType>()) { 10454 // Structures with either a non-trivial destructor or a non-trivial 10455 // copy constructor are not eligible for the FP calling convention. 10456 if (getRecordArgABI(Ty, CGT.getCXXABI())) 10457 return false; 10458 if (isEmptyRecord(getContext(), Ty, true)) 10459 return true; 10460 const RecordDecl *RD = RTy->getDecl(); 10461 // Unions aren't eligible unless they're empty (which is caught above). 10462 if (RD->isUnion()) 10463 return false; 10464 int ZeroWidthBitFieldCount = 0; 10465 for (const FieldDecl *FD : RD->fields()) { 10466 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 10467 uint64_t FieldOffInBits = Layout.getFieldOffset(FD->getFieldIndex()); 10468 QualType QTy = FD->getType(); 10469 if (FD->isBitField()) { 10470 unsigned BitWidth = FD->getBitWidthValue(getContext()); 10471 // Allow a bitfield with a type greater than XLen as long as the 10472 // bitwidth is XLen or less. 10473 if (getContext().getTypeSize(QTy) > XLen && BitWidth <= XLen) 10474 QTy = getContext().getIntTypeForBitwidth(XLen, false); 10475 if (BitWidth == 0) { 10476 ZeroWidthBitFieldCount++; 10477 continue; 10478 } 10479 } 10480 10481 bool Ret = detectFPCCEligibleStructHelper( 10482 QTy, CurOff + getContext().toCharUnitsFromBits(FieldOffInBits), 10483 Field1Ty, Field1Off, Field2Ty, Field2Off); 10484 if (!Ret) 10485 return false; 10486 10487 // As a quirk of the ABI, zero-width bitfields aren't ignored for fp+fp 10488 // or int+fp structs, but are ignored for a struct with an fp field and 10489 // any number of zero-width bitfields. 10490 if (Field2Ty && ZeroWidthBitFieldCount > 0) 10491 return false; 10492 } 10493 return Field1Ty != nullptr; 10494 } 10495 10496 return false; 10497 } 10498 10499 // Determine if a struct is eligible for passing according to the floating 10500 // point calling convention (i.e., when flattened it contains a single fp 10501 // value, fp+fp, or int+fp of appropriate size). If so, NeededArgFPRs and 10502 // NeededArgGPRs are incremented appropriately. 10503 bool RISCVABIInfo::detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, 10504 CharUnits &Field1Off, 10505 llvm::Type *&Field2Ty, 10506 CharUnits &Field2Off, 10507 int &NeededArgGPRs, 10508 int &NeededArgFPRs) const { 10509 Field1Ty = nullptr; 10510 Field2Ty = nullptr; 10511 NeededArgGPRs = 0; 10512 NeededArgFPRs = 0; 10513 bool IsCandidate = detectFPCCEligibleStructHelper( 10514 Ty, CharUnits::Zero(), Field1Ty, Field1Off, Field2Ty, Field2Off); 10515 // Not really a candidate if we have a single int but no float. 10516 if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy()) 10517 return false; 10518 if (!IsCandidate) 10519 return false; 10520 if (Field1Ty && Field1Ty->isFloatingPointTy()) 10521 NeededArgFPRs++; 10522 else if (Field1Ty) 10523 NeededArgGPRs++; 10524 if (Field2Ty && Field2Ty->isFloatingPointTy()) 10525 NeededArgFPRs++; 10526 else if (Field2Ty) 10527 NeededArgGPRs++; 10528 return true; 10529 } 10530 10531 // Call getCoerceAndExpand for the two-element flattened struct described by 10532 // Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an 10533 // appropriate coerceToType and unpaddedCoerceToType. 10534 ABIArgInfo RISCVABIInfo::coerceAndExpandFPCCEligibleStruct( 10535 llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty, 10536 CharUnits Field2Off) const { 10537 SmallVector<llvm::Type *, 3> CoerceElts; 10538 SmallVector<llvm::Type *, 2> UnpaddedCoerceElts; 10539 if (!Field1Off.isZero()) 10540 CoerceElts.push_back(llvm::ArrayType::get( 10541 llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity())); 10542 10543 CoerceElts.push_back(Field1Ty); 10544 UnpaddedCoerceElts.push_back(Field1Ty); 10545 10546 if (!Field2Ty) { 10547 return ABIArgInfo::getCoerceAndExpand( 10548 llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()), 10549 UnpaddedCoerceElts[0]); 10550 } 10551 10552 CharUnits Field2Align = 10553 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(Field2Ty)); 10554 CharUnits Field1End = Field1Off + 10555 CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty)); 10556 CharUnits Field2OffNoPadNoPack = Field1End.alignTo(Field2Align); 10557 10558 CharUnits Padding = CharUnits::Zero(); 10559 if (Field2Off > Field2OffNoPadNoPack) 10560 Padding = Field2Off - Field2OffNoPadNoPack; 10561 else if (Field2Off != Field2Align && Field2Off > Field1End) 10562 Padding = Field2Off - Field1End; 10563 10564 bool IsPacked = !Field2Off.isMultipleOf(Field2Align); 10565 10566 if (!Padding.isZero()) 10567 CoerceElts.push_back(llvm::ArrayType::get( 10568 llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity())); 10569 10570 CoerceElts.push_back(Field2Ty); 10571 UnpaddedCoerceElts.push_back(Field2Ty); 10572 10573 auto CoerceToType = 10574 llvm::StructType::get(getVMContext(), CoerceElts, IsPacked); 10575 auto UnpaddedCoerceToType = 10576 llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked); 10577 10578 return ABIArgInfo::getCoerceAndExpand(CoerceToType, UnpaddedCoerceToType); 10579 } 10580 10581 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed, 10582 int &ArgGPRsLeft, 10583 int &ArgFPRsLeft) const { 10584 assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow"); 10585 Ty = useFirstFieldIfTransparentUnion(Ty); 10586 10587 // Structures with either a non-trivial destructor or a non-trivial 10588 // copy constructor are always passed indirectly. 10589 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 10590 if (ArgGPRsLeft) 10591 ArgGPRsLeft -= 1; 10592 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 10593 CGCXXABI::RAA_DirectInMemory); 10594 } 10595 10596 // Ignore empty structs/unions. 10597 if (isEmptyRecord(getContext(), Ty, true)) 10598 return ABIArgInfo::getIgnore(); 10599 10600 uint64_t Size = getContext().getTypeSize(Ty); 10601 10602 // Pass floating point values via FPRs if possible. 10603 if (IsFixed && Ty->isFloatingType() && !Ty->isComplexType() && 10604 FLen >= Size && ArgFPRsLeft) { 10605 ArgFPRsLeft--; 10606 return ABIArgInfo::getDirect(); 10607 } 10608 10609 // Complex types for the hard float ABI must be passed direct rather than 10610 // using CoerceAndExpand. 10611 if (IsFixed && Ty->isComplexType() && FLen && ArgFPRsLeft >= 2) { 10612 QualType EltTy = Ty->castAs<ComplexType>()->getElementType(); 10613 if (getContext().getTypeSize(EltTy) <= FLen) { 10614 ArgFPRsLeft -= 2; 10615 return ABIArgInfo::getDirect(); 10616 } 10617 } 10618 10619 if (IsFixed && FLen && Ty->isStructureOrClassType()) { 10620 llvm::Type *Field1Ty = nullptr; 10621 llvm::Type *Field2Ty = nullptr; 10622 CharUnits Field1Off = CharUnits::Zero(); 10623 CharUnits Field2Off = CharUnits::Zero(); 10624 int NeededArgGPRs; 10625 int NeededArgFPRs; 10626 bool IsCandidate = 10627 detectFPCCEligibleStruct(Ty, Field1Ty, Field1Off, Field2Ty, Field2Off, 10628 NeededArgGPRs, NeededArgFPRs); 10629 if (IsCandidate && NeededArgGPRs <= ArgGPRsLeft && 10630 NeededArgFPRs <= ArgFPRsLeft) { 10631 ArgGPRsLeft -= NeededArgGPRs; 10632 ArgFPRsLeft -= NeededArgFPRs; 10633 return coerceAndExpandFPCCEligibleStruct(Field1Ty, Field1Off, Field2Ty, 10634 Field2Off); 10635 } 10636 } 10637 10638 uint64_t NeededAlign = getContext().getTypeAlign(Ty); 10639 bool MustUseStack = false; 10640 // Determine the number of GPRs needed to pass the current argument 10641 // according to the ABI. 2*XLen-aligned varargs are passed in "aligned" 10642 // register pairs, so may consume 3 registers. 10643 int NeededArgGPRs = 1; 10644 if (!IsFixed && NeededAlign == 2 * XLen) 10645 NeededArgGPRs = 2 + (ArgGPRsLeft % 2); 10646 else if (Size > XLen && Size <= 2 * XLen) 10647 NeededArgGPRs = 2; 10648 10649 if (NeededArgGPRs > ArgGPRsLeft) { 10650 MustUseStack = true; 10651 NeededArgGPRs = ArgGPRsLeft; 10652 } 10653 10654 ArgGPRsLeft -= NeededArgGPRs; 10655 10656 if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) { 10657 // Treat an enum type as its underlying type. 10658 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 10659 Ty = EnumTy->getDecl()->getIntegerType(); 10660 10661 // All integral types are promoted to XLen width, unless passed on the 10662 // stack. 10663 if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) { 10664 return extendType(Ty); 10665 } 10666 10667 if (const auto *EIT = Ty->getAs<ExtIntType>()) { 10668 if (EIT->getNumBits() < XLen && !MustUseStack) 10669 return extendType(Ty); 10670 if (EIT->getNumBits() > 128 || 10671 (!getContext().getTargetInfo().hasInt128Type() && 10672 EIT->getNumBits() > 64)) 10673 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 10674 } 10675 10676 return ABIArgInfo::getDirect(); 10677 } 10678 10679 // Aggregates which are <= 2*XLen will be passed in registers if possible, 10680 // so coerce to integers. 10681 if (Size <= 2 * XLen) { 10682 unsigned Alignment = getContext().getTypeAlign(Ty); 10683 10684 // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is 10685 // required, and a 2-element XLen array if only XLen alignment is required. 10686 if (Size <= XLen) { 10687 return ABIArgInfo::getDirect( 10688 llvm::IntegerType::get(getVMContext(), XLen)); 10689 } else if (Alignment == 2 * XLen) { 10690 return ABIArgInfo::getDirect( 10691 llvm::IntegerType::get(getVMContext(), 2 * XLen)); 10692 } else { 10693 return ABIArgInfo::getDirect(llvm::ArrayType::get( 10694 llvm::IntegerType::get(getVMContext(), XLen), 2)); 10695 } 10696 } 10697 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 10698 } 10699 10700 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const { 10701 if (RetTy->isVoidType()) 10702 return ABIArgInfo::getIgnore(); 10703 10704 int ArgGPRsLeft = 2; 10705 int ArgFPRsLeft = FLen ? 2 : 0; 10706 10707 // The rules for return and argument types are the same, so defer to 10708 // classifyArgumentType. 10709 return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft, 10710 ArgFPRsLeft); 10711 } 10712 10713 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 10714 QualType Ty) const { 10715 CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8); 10716 10717 // Empty records are ignored for parameter passing purposes. 10718 if (isEmptyRecord(getContext(), Ty, true)) { 10719 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 10720 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 10721 return Addr; 10722 } 10723 10724 auto TInfo = getContext().getTypeInfoInChars(Ty); 10725 10726 // Arguments bigger than 2*Xlen bytes are passed indirectly. 10727 bool IsIndirect = TInfo.Width > 2 * SlotSize; 10728 10729 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TInfo, 10730 SlotSize, /*AllowHigherAlign=*/true); 10731 } 10732 10733 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const { 10734 int TySize = getContext().getTypeSize(Ty); 10735 // RV64 ABI requires unsigned 32 bit integers to be sign extended. 10736 if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 10737 return ABIArgInfo::getSignExtend(Ty); 10738 return ABIArgInfo::getExtend(Ty); 10739 } 10740 10741 namespace { 10742 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo { 10743 public: 10744 RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, 10745 unsigned FLen) 10746 : TargetCodeGenInfo(std::make_unique<RISCVABIInfo>(CGT, XLen, FLen)) {} 10747 10748 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 10749 CodeGen::CodeGenModule &CGM) const override { 10750 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 10751 if (!FD) return; 10752 10753 const auto *Attr = FD->getAttr<RISCVInterruptAttr>(); 10754 if (!Attr) 10755 return; 10756 10757 const char *Kind; 10758 switch (Attr->getInterrupt()) { 10759 case RISCVInterruptAttr::user: Kind = "user"; break; 10760 case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break; 10761 case RISCVInterruptAttr::machine: Kind = "machine"; break; 10762 } 10763 10764 auto *Fn = cast<llvm::Function>(GV); 10765 10766 Fn->addFnAttr("interrupt", Kind); 10767 } 10768 }; 10769 } // namespace 10770 10771 //===----------------------------------------------------------------------===// 10772 // VE ABI Implementation. 10773 // 10774 namespace { 10775 class VEABIInfo : public DefaultABIInfo { 10776 public: 10777 VEABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 10778 10779 private: 10780 ABIArgInfo classifyReturnType(QualType RetTy) const; 10781 ABIArgInfo classifyArgumentType(QualType RetTy) const; 10782 void computeInfo(CGFunctionInfo &FI) const override; 10783 }; 10784 } // end anonymous namespace 10785 10786 ABIArgInfo VEABIInfo::classifyReturnType(QualType Ty) const { 10787 if (Ty->isAnyComplexType()) 10788 return ABIArgInfo::getDirect(); 10789 uint64_t Size = getContext().getTypeSize(Ty); 10790 if (Size < 64 && Ty->isIntegerType()) 10791 return ABIArgInfo::getExtend(Ty); 10792 return DefaultABIInfo::classifyReturnType(Ty); 10793 } 10794 10795 ABIArgInfo VEABIInfo::classifyArgumentType(QualType Ty) const { 10796 if (Ty->isAnyComplexType()) 10797 return ABIArgInfo::getDirect(); 10798 uint64_t Size = getContext().getTypeSize(Ty); 10799 if (Size < 64 && Ty->isIntegerType()) 10800 return ABIArgInfo::getExtend(Ty); 10801 return DefaultABIInfo::classifyArgumentType(Ty); 10802 } 10803 10804 void VEABIInfo::computeInfo(CGFunctionInfo &FI) const { 10805 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 10806 for (auto &Arg : FI.arguments()) 10807 Arg.info = classifyArgumentType(Arg.type); 10808 } 10809 10810 namespace { 10811 class VETargetCodeGenInfo : public TargetCodeGenInfo { 10812 public: 10813 VETargetCodeGenInfo(CodeGenTypes &CGT) 10814 : TargetCodeGenInfo(std::make_unique<VEABIInfo>(CGT)) {} 10815 // VE ABI requires the arguments of variadic and prototype-less functions 10816 // are passed in both registers and memory. 10817 bool isNoProtoCallVariadic(const CallArgList &args, 10818 const FunctionNoProtoType *fnType) const override { 10819 return true; 10820 } 10821 }; 10822 } // end anonymous namespace 10823 10824 //===----------------------------------------------------------------------===// 10825 // Driver code 10826 //===----------------------------------------------------------------------===// 10827 10828 bool CodeGenModule::supportsCOMDAT() const { 10829 return getTriple().supportsCOMDAT(); 10830 } 10831 10832 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 10833 if (TheTargetCodeGenInfo) 10834 return *TheTargetCodeGenInfo; 10835 10836 // Helper to set the unique_ptr while still keeping the return value. 10837 auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & { 10838 this->TheTargetCodeGenInfo.reset(P); 10839 return *P; 10840 }; 10841 10842 const llvm::Triple &Triple = getTarget().getTriple(); 10843 switch (Triple.getArch()) { 10844 default: 10845 return SetCGInfo(new DefaultTargetCodeGenInfo(Types)); 10846 10847 case llvm::Triple::le32: 10848 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 10849 case llvm::Triple::mips: 10850 case llvm::Triple::mipsel: 10851 if (Triple.getOS() == llvm::Triple::NaCl) 10852 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 10853 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true)); 10854 10855 case llvm::Triple::mips64: 10856 case llvm::Triple::mips64el: 10857 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false)); 10858 10859 case llvm::Triple::avr: 10860 return SetCGInfo(new AVRTargetCodeGenInfo(Types)); 10861 10862 case llvm::Triple::aarch64: 10863 case llvm::Triple::aarch64_32: 10864 case llvm::Triple::aarch64_be: { 10865 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 10866 if (getTarget().getABI() == "darwinpcs") 10867 Kind = AArch64ABIInfo::DarwinPCS; 10868 else if (Triple.isOSWindows()) 10869 return SetCGInfo( 10870 new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64)); 10871 10872 return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind)); 10873 } 10874 10875 case llvm::Triple::wasm32: 10876 case llvm::Triple::wasm64: { 10877 WebAssemblyABIInfo::ABIKind Kind = WebAssemblyABIInfo::MVP; 10878 if (getTarget().getABI() == "experimental-mv") 10879 Kind = WebAssemblyABIInfo::ExperimentalMV; 10880 return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types, Kind)); 10881 } 10882 10883 case llvm::Triple::arm: 10884 case llvm::Triple::armeb: 10885 case llvm::Triple::thumb: 10886 case llvm::Triple::thumbeb: { 10887 if (Triple.getOS() == llvm::Triple::Win32) { 10888 return SetCGInfo( 10889 new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP)); 10890 } 10891 10892 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 10893 StringRef ABIStr = getTarget().getABI(); 10894 if (ABIStr == "apcs-gnu") 10895 Kind = ARMABIInfo::APCS; 10896 else if (ABIStr == "aapcs16") 10897 Kind = ARMABIInfo::AAPCS16_VFP; 10898 else if (CodeGenOpts.FloatABI == "hard" || 10899 (CodeGenOpts.FloatABI != "soft" && 10900 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 10901 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 10902 Triple.getEnvironment() == llvm::Triple::EABIHF))) 10903 Kind = ARMABIInfo::AAPCS_VFP; 10904 10905 return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind)); 10906 } 10907 10908 case llvm::Triple::ppc: { 10909 if (Triple.isOSAIX()) 10910 return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ false)); 10911 10912 bool IsSoftFloat = 10913 CodeGenOpts.FloatABI == "soft" || getTarget().hasFeature("spe"); 10914 bool RetSmallStructInRegABI = 10915 PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 10916 return SetCGInfo( 10917 new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI)); 10918 } 10919 case llvm::Triple::ppcle: { 10920 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 10921 bool RetSmallStructInRegABI = 10922 PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 10923 return SetCGInfo( 10924 new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI)); 10925 } 10926 case llvm::Triple::ppc64: 10927 if (Triple.isOSAIX()) 10928 return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ true)); 10929 10930 if (Triple.isOSBinFormatELF()) { 10931 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 10932 if (getTarget().getABI() == "elfv2") 10933 Kind = PPC64_SVR4_ABIInfo::ELFv2; 10934 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 10935 10936 return SetCGInfo( 10937 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, IsSoftFloat)); 10938 } 10939 return SetCGInfo(new PPC64TargetCodeGenInfo(Types)); 10940 case llvm::Triple::ppc64le: { 10941 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 10942 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 10943 if (getTarget().getABI() == "elfv1") 10944 Kind = PPC64_SVR4_ABIInfo::ELFv1; 10945 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 10946 10947 return SetCGInfo( 10948 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, IsSoftFloat)); 10949 } 10950 10951 case llvm::Triple::nvptx: 10952 case llvm::Triple::nvptx64: 10953 return SetCGInfo(new NVPTXTargetCodeGenInfo(Types)); 10954 10955 case llvm::Triple::msp430: 10956 return SetCGInfo(new MSP430TargetCodeGenInfo(Types)); 10957 10958 case llvm::Triple::riscv32: 10959 case llvm::Triple::riscv64: { 10960 StringRef ABIStr = getTarget().getABI(); 10961 unsigned XLen = getTarget().getPointerWidth(0); 10962 unsigned ABIFLen = 0; 10963 if (ABIStr.endswith("f")) 10964 ABIFLen = 32; 10965 else if (ABIStr.endswith("d")) 10966 ABIFLen = 64; 10967 return SetCGInfo(new RISCVTargetCodeGenInfo(Types, XLen, ABIFLen)); 10968 } 10969 10970 case llvm::Triple::systemz: { 10971 bool SoftFloat = CodeGenOpts.FloatABI == "soft"; 10972 bool HasVector = !SoftFloat && getTarget().getABI() == "vector"; 10973 return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector, SoftFloat)); 10974 } 10975 10976 case llvm::Triple::tce: 10977 case llvm::Triple::tcele: 10978 return SetCGInfo(new TCETargetCodeGenInfo(Types)); 10979 10980 case llvm::Triple::x86: { 10981 bool IsDarwinVectorABI = Triple.isOSDarwin(); 10982 bool RetSmallStructInRegABI = 10983 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 10984 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 10985 10986 if (Triple.getOS() == llvm::Triple::Win32) { 10987 return SetCGInfo(new WinX86_32TargetCodeGenInfo( 10988 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 10989 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); 10990 } else { 10991 return SetCGInfo(new X86_32TargetCodeGenInfo( 10992 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 10993 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters, 10994 CodeGenOpts.FloatABI == "soft")); 10995 } 10996 } 10997 10998 case llvm::Triple::x86_64: { 10999 StringRef ABI = getTarget().getABI(); 11000 X86AVXABILevel AVXLevel = 11001 (ABI == "avx512" 11002 ? X86AVXABILevel::AVX512 11003 : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None); 11004 11005 switch (Triple.getOS()) { 11006 case llvm::Triple::Win32: 11007 return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel)); 11008 default: 11009 return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel)); 11010 } 11011 } 11012 case llvm::Triple::hexagon: 11013 return SetCGInfo(new HexagonTargetCodeGenInfo(Types)); 11014 case llvm::Triple::lanai: 11015 return SetCGInfo(new LanaiTargetCodeGenInfo(Types)); 11016 case llvm::Triple::r600: 11017 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 11018 case llvm::Triple::amdgcn: 11019 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 11020 case llvm::Triple::sparc: 11021 return SetCGInfo(new SparcV8TargetCodeGenInfo(Types)); 11022 case llvm::Triple::sparcv9: 11023 return SetCGInfo(new SparcV9TargetCodeGenInfo(Types)); 11024 case llvm::Triple::xcore: 11025 return SetCGInfo(new XCoreTargetCodeGenInfo(Types)); 11026 case llvm::Triple::arc: 11027 return SetCGInfo(new ARCTargetCodeGenInfo(Types)); 11028 case llvm::Triple::spir: 11029 case llvm::Triple::spir64: 11030 return SetCGInfo(new SPIRTargetCodeGenInfo(Types)); 11031 case llvm::Triple::ve: 11032 return SetCGInfo(new VETargetCodeGenInfo(Types)); 11033 } 11034 } 11035 11036 /// Create an OpenCL kernel for an enqueued block. 11037 /// 11038 /// The kernel has the same function type as the block invoke function. Its 11039 /// name is the name of the block invoke function postfixed with "_kernel". 11040 /// It simply calls the block invoke function then returns. 11041 llvm::Function * 11042 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF, 11043 llvm::Function *Invoke, 11044 llvm::Value *BlockLiteral) const { 11045 auto *InvokeFT = Invoke->getFunctionType(); 11046 llvm::SmallVector<llvm::Type *, 2> ArgTys; 11047 for (auto &P : InvokeFT->params()) 11048 ArgTys.push_back(P); 11049 auto &C = CGF.getLLVMContext(); 11050 std::string Name = Invoke->getName().str() + "_kernel"; 11051 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 11052 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 11053 &CGF.CGM.getModule()); 11054 auto IP = CGF.Builder.saveIP(); 11055 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 11056 auto &Builder = CGF.Builder; 11057 Builder.SetInsertPoint(BB); 11058 llvm::SmallVector<llvm::Value *, 2> Args; 11059 for (auto &A : F->args()) 11060 Args.push_back(&A); 11061 llvm::CallInst *call = Builder.CreateCall(Invoke, Args); 11062 call->setCallingConv(Invoke->getCallingConv()); 11063 Builder.CreateRetVoid(); 11064 Builder.restoreIP(IP); 11065 return F; 11066 } 11067 11068 /// Create an OpenCL kernel for an enqueued block. 11069 /// 11070 /// The type of the first argument (the block literal) is the struct type 11071 /// of the block literal instead of a pointer type. The first argument 11072 /// (block literal) is passed directly by value to the kernel. The kernel 11073 /// allocates the same type of struct on stack and stores the block literal 11074 /// to it and passes its pointer to the block invoke function. The kernel 11075 /// has "enqueued-block" function attribute and kernel argument metadata. 11076 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel( 11077 CodeGenFunction &CGF, llvm::Function *Invoke, 11078 llvm::Value *BlockLiteral) const { 11079 auto &Builder = CGF.Builder; 11080 auto &C = CGF.getLLVMContext(); 11081 11082 auto *BlockTy = BlockLiteral->getType()->getPointerElementType(); 11083 auto *InvokeFT = Invoke->getFunctionType(); 11084 llvm::SmallVector<llvm::Type *, 2> ArgTys; 11085 llvm::SmallVector<llvm::Metadata *, 8> AddressQuals; 11086 llvm::SmallVector<llvm::Metadata *, 8> AccessQuals; 11087 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames; 11088 llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames; 11089 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals; 11090 llvm::SmallVector<llvm::Metadata *, 8> ArgNames; 11091 11092 ArgTys.push_back(BlockTy); 11093 ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 11094 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0))); 11095 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 11096 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 11097 AccessQuals.push_back(llvm::MDString::get(C, "none")); 11098 ArgNames.push_back(llvm::MDString::get(C, "block_literal")); 11099 for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) { 11100 ArgTys.push_back(InvokeFT->getParamType(I)); 11101 ArgTypeNames.push_back(llvm::MDString::get(C, "void*")); 11102 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3))); 11103 AccessQuals.push_back(llvm::MDString::get(C, "none")); 11104 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*")); 11105 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 11106 ArgNames.push_back( 11107 llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str())); 11108 } 11109 std::string Name = Invoke->getName().str() + "_kernel"; 11110 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 11111 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 11112 &CGF.CGM.getModule()); 11113 F->addFnAttr("enqueued-block"); 11114 auto IP = CGF.Builder.saveIP(); 11115 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 11116 Builder.SetInsertPoint(BB); 11117 const auto BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(BlockTy); 11118 auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr); 11119 BlockPtr->setAlignment(BlockAlign); 11120 Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign); 11121 auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0)); 11122 llvm::SmallVector<llvm::Value *, 2> Args; 11123 Args.push_back(Cast); 11124 for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I) 11125 Args.push_back(I); 11126 llvm::CallInst *call = Builder.CreateCall(Invoke, Args); 11127 call->setCallingConv(Invoke->getCallingConv()); 11128 Builder.CreateRetVoid(); 11129 Builder.restoreIP(IP); 11130 11131 F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals)); 11132 F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals)); 11133 F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames)); 11134 F->setMetadata("kernel_arg_base_type", 11135 llvm::MDNode::get(C, ArgBaseTypeNames)); 11136 F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals)); 11137 if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 11138 F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames)); 11139 11140 return F; 11141 } 11142