1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "TargetInfo.h"
16 #include "ABIInfo.h"
17 #include "CGCXXABI.h"
18 #include "CGValue.h"
19 #include "CodeGenFunction.h"
20 #include "clang/AST/RecordLayout.h"
21 #include "clang/CodeGen/CGFunctionInfo.h"
22 #include "clang/CodeGen/SwiftCallingConv.h"
23 #include "clang/Frontend/CodeGenOptions.h"
24 #include "llvm/ADT/StringExtras.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/Type.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include <algorithm>    // std::sort
30 
31 using namespace clang;
32 using namespace CodeGen;
33 
34 // Helper for coercing an aggregate argument or return value into an integer
35 // array of the same size (including padding) and alignment.  This alternate
36 // coercion happens only for the RenderScript ABI and can be removed after
37 // runtimes that rely on it are no longer supported.
38 //
39 // RenderScript assumes that the size of the argument / return value in the IR
40 // is the same as the size of the corresponding qualified type. This helper
41 // coerces the aggregate type into an array of the same size (including
42 // padding).  This coercion is used in lieu of expansion of struct members or
43 // other canonical coercions that return a coerced-type of larger size.
44 //
45 // Ty          - The argument / return value type
46 // Context     - The associated ASTContext
47 // LLVMContext - The associated LLVMContext
48 static ABIArgInfo coerceToIntArray(QualType Ty,
49                                    ASTContext &Context,
50                                    llvm::LLVMContext &LLVMContext) {
51   // Alignment and Size are measured in bits.
52   const uint64_t Size = Context.getTypeSize(Ty);
53   const uint64_t Alignment = Context.getTypeAlign(Ty);
54   llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment);
55   const uint64_t NumElements = (Size + Alignment - 1) / Alignment;
56   return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
57 }
58 
59 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
60                                llvm::Value *Array,
61                                llvm::Value *Value,
62                                unsigned FirstIndex,
63                                unsigned LastIndex) {
64   // Alternatively, we could emit this as a loop in the source.
65   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
66     llvm::Value *Cell =
67         Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I);
68     Builder.CreateAlignedStore(Value, Cell, CharUnits::One());
69   }
70 }
71 
72 static bool isAggregateTypeForABI(QualType T) {
73   return !CodeGenFunction::hasScalarEvaluationKind(T) ||
74          T->isMemberFunctionPointerType();
75 }
76 
77 ABIArgInfo
78 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign,
79                                  llvm::Type *Padding) const {
80   return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty),
81                                  ByRef, Realign, Padding);
82 }
83 
84 ABIArgInfo
85 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const {
86   return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty),
87                                       /*ByRef*/ false, Realign);
88 }
89 
90 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
91                              QualType Ty) const {
92   return Address::invalid();
93 }
94 
95 ABIInfo::~ABIInfo() {}
96 
97 /// Does the given lowering require more than the given number of
98 /// registers when expanded?
99 ///
100 /// This is intended to be the basis of a reasonable basic implementation
101 /// of should{Pass,Return}IndirectlyForSwift.
102 ///
103 /// For most targets, a limit of four total registers is reasonable; this
104 /// limits the amount of code required in order to move around the value
105 /// in case it wasn't produced immediately prior to the call by the caller
106 /// (or wasn't produced in exactly the right registers) or isn't used
107 /// immediately within the callee.  But some targets may need to further
108 /// limit the register count due to an inability to support that many
109 /// return registers.
110 static bool occupiesMoreThan(CodeGenTypes &cgt,
111                              ArrayRef<llvm::Type*> scalarTypes,
112                              unsigned maxAllRegisters) {
113   unsigned intCount = 0, fpCount = 0;
114   for (llvm::Type *type : scalarTypes) {
115     if (type->isPointerTy()) {
116       intCount++;
117     } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) {
118       auto ptrWidth = cgt.getTarget().getPointerWidth(0);
119       intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth;
120     } else {
121       assert(type->isVectorTy() || type->isFloatingPointTy());
122       fpCount++;
123     }
124   }
125 
126   return (intCount + fpCount > maxAllRegisters);
127 }
128 
129 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
130                                              llvm::Type *eltTy,
131                                              unsigned numElts) const {
132   // The default implementation of this assumes that the target guarantees
133   // 128-bit SIMD support but nothing more.
134   return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16);
135 }
136 
137 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
138                                               CGCXXABI &CXXABI) {
139   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
140   if (!RD)
141     return CGCXXABI::RAA_Default;
142   return CXXABI.getRecordArgABI(RD);
143 }
144 
145 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
146                                               CGCXXABI &CXXABI) {
147   const RecordType *RT = T->getAs<RecordType>();
148   if (!RT)
149     return CGCXXABI::RAA_Default;
150   return getRecordArgABI(RT, CXXABI);
151 }
152 
153 /// Pass transparent unions as if they were the type of the first element. Sema
154 /// should ensure that all elements of the union have the same "machine type".
155 static QualType useFirstFieldIfTransparentUnion(QualType Ty) {
156   if (const RecordType *UT = Ty->getAsUnionType()) {
157     const RecordDecl *UD = UT->getDecl();
158     if (UD->hasAttr<TransparentUnionAttr>()) {
159       assert(!UD->field_empty() && "sema created an empty transparent union");
160       return UD->field_begin()->getType();
161     }
162   }
163   return Ty;
164 }
165 
166 CGCXXABI &ABIInfo::getCXXABI() const {
167   return CGT.getCXXABI();
168 }
169 
170 ASTContext &ABIInfo::getContext() const {
171   return CGT.getContext();
172 }
173 
174 llvm::LLVMContext &ABIInfo::getVMContext() const {
175   return CGT.getLLVMContext();
176 }
177 
178 const llvm::DataLayout &ABIInfo::getDataLayout() const {
179   return CGT.getDataLayout();
180 }
181 
182 const TargetInfo &ABIInfo::getTarget() const {
183   return CGT.getTarget();
184 }
185 
186 bool ABIInfo:: isAndroid() const { return getTarget().getTriple().isAndroid(); }
187 
188 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
189   return false;
190 }
191 
192 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
193                                                 uint64_t Members) const {
194   return false;
195 }
196 
197 bool ABIInfo::shouldSignExtUnsignedType(QualType Ty) const {
198   return false;
199 }
200 
201 LLVM_DUMP_METHOD void ABIArgInfo::dump() const {
202   raw_ostream &OS = llvm::errs();
203   OS << "(ABIArgInfo Kind=";
204   switch (TheKind) {
205   case Direct:
206     OS << "Direct Type=";
207     if (llvm::Type *Ty = getCoerceToType())
208       Ty->print(OS);
209     else
210       OS << "null";
211     break;
212   case Extend:
213     OS << "Extend";
214     break;
215   case Ignore:
216     OS << "Ignore";
217     break;
218   case InAlloca:
219     OS << "InAlloca Offset=" << getInAllocaFieldIndex();
220     break;
221   case Indirect:
222     OS << "Indirect Align=" << getIndirectAlign().getQuantity()
223        << " ByVal=" << getIndirectByVal()
224        << " Realign=" << getIndirectRealign();
225     break;
226   case Expand:
227     OS << "Expand";
228     break;
229   case CoerceAndExpand:
230     OS << "CoerceAndExpand Type=";
231     getCoerceAndExpandType()->print(OS);
232     break;
233   }
234   OS << ")\n";
235 }
236 
237 // Dynamically round a pointer up to a multiple of the given alignment.
238 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF,
239                                                   llvm::Value *Ptr,
240                                                   CharUnits Align) {
241   llvm::Value *PtrAsInt = Ptr;
242   // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align;
243   PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy);
244   PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt,
245         llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1));
246   PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt,
247            llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity()));
248   PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt,
249                                         Ptr->getType(),
250                                         Ptr->getName() + ".aligned");
251   return PtrAsInt;
252 }
253 
254 /// Emit va_arg for a platform using the common void* representation,
255 /// where arguments are simply emitted in an array of slots on the stack.
256 ///
257 /// This version implements the core direct-value passing rules.
258 ///
259 /// \param SlotSize - The size and alignment of a stack slot.
260 ///   Each argument will be allocated to a multiple of this number of
261 ///   slots, and all the slots will be aligned to this value.
262 /// \param AllowHigherAlign - The slot alignment is not a cap;
263 ///   an argument type with an alignment greater than the slot size
264 ///   will be emitted on a higher-alignment address, potentially
265 ///   leaving one or more empty slots behind as padding.  If this
266 ///   is false, the returned address might be less-aligned than
267 ///   DirectAlign.
268 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF,
269                                       Address VAListAddr,
270                                       llvm::Type *DirectTy,
271                                       CharUnits DirectSize,
272                                       CharUnits DirectAlign,
273                                       CharUnits SlotSize,
274                                       bool AllowHigherAlign) {
275   // Cast the element type to i8* if necessary.  Some platforms define
276   // va_list as a struct containing an i8* instead of just an i8*.
277   if (VAListAddr.getElementType() != CGF.Int8PtrTy)
278     VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy);
279 
280   llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur");
281 
282   // If the CC aligns values higher than the slot size, do so if needed.
283   Address Addr = Address::invalid();
284   if (AllowHigherAlign && DirectAlign > SlotSize) {
285     Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign),
286                                                  DirectAlign);
287   } else {
288     Addr = Address(Ptr, SlotSize);
289   }
290 
291   // Advance the pointer past the argument, then store that back.
292   CharUnits FullDirectSize = DirectSize.alignTo(SlotSize);
293   llvm::Value *NextPtr =
294     CGF.Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), FullDirectSize,
295                                            "argp.next");
296   CGF.Builder.CreateStore(NextPtr, VAListAddr);
297 
298   // If the argument is smaller than a slot, and this is a big-endian
299   // target, the argument will be right-adjusted in its slot.
300   if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() &&
301       !DirectTy->isStructTy()) {
302     Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize);
303   }
304 
305   Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy);
306   return Addr;
307 }
308 
309 /// Emit va_arg for a platform using the common void* representation,
310 /// where arguments are simply emitted in an array of slots on the stack.
311 ///
312 /// \param IsIndirect - Values of this type are passed indirectly.
313 /// \param ValueInfo - The size and alignment of this type, generally
314 ///   computed with getContext().getTypeInfoInChars(ValueTy).
315 /// \param SlotSizeAndAlign - The size and alignment of a stack slot.
316 ///   Each argument will be allocated to a multiple of this number of
317 ///   slots, and all the slots will be aligned to this value.
318 /// \param AllowHigherAlign - The slot alignment is not a cap;
319 ///   an argument type with an alignment greater than the slot size
320 ///   will be emitted on a higher-alignment address, potentially
321 ///   leaving one or more empty slots behind as padding.
322 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr,
323                                 QualType ValueTy, bool IsIndirect,
324                                 std::pair<CharUnits, CharUnits> ValueInfo,
325                                 CharUnits SlotSizeAndAlign,
326                                 bool AllowHigherAlign) {
327   // The size and alignment of the value that was passed directly.
328   CharUnits DirectSize, DirectAlign;
329   if (IsIndirect) {
330     DirectSize = CGF.getPointerSize();
331     DirectAlign = CGF.getPointerAlign();
332   } else {
333     DirectSize = ValueInfo.first;
334     DirectAlign = ValueInfo.second;
335   }
336 
337   // Cast the address we've calculated to the right type.
338   llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy);
339   if (IsIndirect)
340     DirectTy = DirectTy->getPointerTo(0);
341 
342   Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy,
343                                         DirectSize, DirectAlign,
344                                         SlotSizeAndAlign,
345                                         AllowHigherAlign);
346 
347   if (IsIndirect) {
348     Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second);
349   }
350 
351   return Addr;
352 
353 }
354 
355 static Address emitMergePHI(CodeGenFunction &CGF,
356                             Address Addr1, llvm::BasicBlock *Block1,
357                             Address Addr2, llvm::BasicBlock *Block2,
358                             const llvm::Twine &Name = "") {
359   assert(Addr1.getType() == Addr2.getType());
360   llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name);
361   PHI->addIncoming(Addr1.getPointer(), Block1);
362   PHI->addIncoming(Addr2.getPointer(), Block2);
363   CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment());
364   return Address(PHI, Align);
365 }
366 
367 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
368 
369 // If someone can figure out a general rule for this, that would be great.
370 // It's probably just doomed to be platform-dependent, though.
371 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
372   // Verified for:
373   //   x86-64     FreeBSD, Linux, Darwin
374   //   x86-32     FreeBSD, Linux, Darwin
375   //   PowerPC    Linux, Darwin
376   //   ARM        Darwin (*not* EABI)
377   //   AArch64    Linux
378   return 32;
379 }
380 
381 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
382                                      const FunctionNoProtoType *fnType) const {
383   // The following conventions are known to require this to be false:
384   //   x86_stdcall
385   //   MIPS
386   // For everything else, we just prefer false unless we opt out.
387   return false;
388 }
389 
390 void
391 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
392                                              llvm::SmallString<24> &Opt) const {
393   // This assumes the user is passing a library name like "rt" instead of a
394   // filename like "librt.a/so", and that they don't care whether it's static or
395   // dynamic.
396   Opt = "-l";
397   Opt += Lib;
398 }
399 
400 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const {
401   return llvm::CallingConv::C;
402 }
403 
404 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
405 
406 /// isEmptyField - Return true iff a the field is "empty", that is it
407 /// is an unnamed bit-field or an (array of) empty record(s).
408 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
409                          bool AllowArrays) {
410   if (FD->isUnnamedBitfield())
411     return true;
412 
413   QualType FT = FD->getType();
414 
415   // Constant arrays of empty records count as empty, strip them off.
416   // Constant arrays of zero length always count as empty.
417   if (AllowArrays)
418     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
419       if (AT->getSize() == 0)
420         return true;
421       FT = AT->getElementType();
422     }
423 
424   const RecordType *RT = FT->getAs<RecordType>();
425   if (!RT)
426     return false;
427 
428   // C++ record fields are never empty, at least in the Itanium ABI.
429   //
430   // FIXME: We should use a predicate for whether this behavior is true in the
431   // current ABI.
432   if (isa<CXXRecordDecl>(RT->getDecl()))
433     return false;
434 
435   return isEmptyRecord(Context, FT, AllowArrays);
436 }
437 
438 /// isEmptyRecord - Return true iff a structure contains only empty
439 /// fields. Note that a structure with a flexible array member is not
440 /// considered empty.
441 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
442   const RecordType *RT = T->getAs<RecordType>();
443   if (!RT)
444     return false;
445   const RecordDecl *RD = RT->getDecl();
446   if (RD->hasFlexibleArrayMember())
447     return false;
448 
449   // If this is a C++ record, check the bases first.
450   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
451     for (const auto &I : CXXRD->bases())
452       if (!isEmptyRecord(Context, I.getType(), true))
453         return false;
454 
455   for (const auto *I : RD->fields())
456     if (!isEmptyField(Context, I, AllowArrays))
457       return false;
458   return true;
459 }
460 
461 /// isSingleElementStruct - Determine if a structure is a "single
462 /// element struct", i.e. it has exactly one non-empty field or
463 /// exactly one field which is itself a single element
464 /// struct. Structures with flexible array members are never
465 /// considered single element structs.
466 ///
467 /// \return The field declaration for the single non-empty field, if
468 /// it exists.
469 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
470   const RecordType *RT = T->getAs<RecordType>();
471   if (!RT)
472     return nullptr;
473 
474   const RecordDecl *RD = RT->getDecl();
475   if (RD->hasFlexibleArrayMember())
476     return nullptr;
477 
478   const Type *Found = nullptr;
479 
480   // If this is a C++ record, check the bases first.
481   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
482     for (const auto &I : CXXRD->bases()) {
483       // Ignore empty records.
484       if (isEmptyRecord(Context, I.getType(), true))
485         continue;
486 
487       // If we already found an element then this isn't a single-element struct.
488       if (Found)
489         return nullptr;
490 
491       // If this is non-empty and not a single element struct, the composite
492       // cannot be a single element struct.
493       Found = isSingleElementStruct(I.getType(), Context);
494       if (!Found)
495         return nullptr;
496     }
497   }
498 
499   // Check for single element.
500   for (const auto *FD : RD->fields()) {
501     QualType FT = FD->getType();
502 
503     // Ignore empty fields.
504     if (isEmptyField(Context, FD, true))
505       continue;
506 
507     // If we already found an element then this isn't a single-element
508     // struct.
509     if (Found)
510       return nullptr;
511 
512     // Treat single element arrays as the element.
513     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
514       if (AT->getSize().getZExtValue() != 1)
515         break;
516       FT = AT->getElementType();
517     }
518 
519     if (!isAggregateTypeForABI(FT)) {
520       Found = FT.getTypePtr();
521     } else {
522       Found = isSingleElementStruct(FT, Context);
523       if (!Found)
524         return nullptr;
525     }
526   }
527 
528   // We don't consider a struct a single-element struct if it has
529   // padding beyond the element type.
530   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
531     return nullptr;
532 
533   return Found;
534 }
535 
536 namespace {
537 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
538                        const ABIArgInfo &AI) {
539   // This default implementation defers to the llvm backend's va_arg
540   // instruction. It can handle only passing arguments directly
541   // (typically only handled in the backend for primitive types), or
542   // aggregates passed indirectly by pointer (NOTE: if the "byval"
543   // flag has ABI impact in the callee, this implementation cannot
544   // work.)
545 
546   // Only a few cases are covered here at the moment -- those needed
547   // by the default abi.
548   llvm::Value *Val;
549 
550   if (AI.isIndirect()) {
551     assert(!AI.getPaddingType() &&
552            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
553     assert(
554         !AI.getIndirectRealign() &&
555         "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!");
556 
557     auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty);
558     CharUnits TyAlignForABI = TyInfo.second;
559 
560     llvm::Type *BaseTy =
561         llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
562     llvm::Value *Addr =
563         CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy);
564     return Address(Addr, TyAlignForABI);
565   } else {
566     assert((AI.isDirect() || AI.isExtend()) &&
567            "Unexpected ArgInfo Kind in generic VAArg emitter!");
568 
569     assert(!AI.getInReg() &&
570            "Unexpected InReg seen in arginfo in generic VAArg emitter!");
571     assert(!AI.getPaddingType() &&
572            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
573     assert(!AI.getDirectOffset() &&
574            "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!");
575     assert(!AI.getCoerceToType() &&
576            "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!");
577 
578     Address Temp = CGF.CreateMemTemp(Ty, "varet");
579     Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty));
580     CGF.Builder.CreateStore(Val, Temp);
581     return Temp;
582   }
583 }
584 
585 /// DefaultABIInfo - The default implementation for ABI specific
586 /// details. This implementation provides information which results in
587 /// self-consistent and sensible LLVM IR generation, but does not
588 /// conform to any particular ABI.
589 class DefaultABIInfo : public ABIInfo {
590 public:
591   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
592 
593   ABIArgInfo classifyReturnType(QualType RetTy) const;
594   ABIArgInfo classifyArgumentType(QualType RetTy) const;
595 
596   void computeInfo(CGFunctionInfo &FI) const override {
597     if (!getCXXABI().classifyReturnType(FI))
598       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
599     for (auto &I : FI.arguments())
600       I.info = classifyArgumentType(I.type);
601   }
602 
603   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
604                     QualType Ty) const override {
605     return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty));
606   }
607 };
608 
609 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
610 public:
611   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
612     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
613 };
614 
615 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
616   Ty = useFirstFieldIfTransparentUnion(Ty);
617 
618   if (isAggregateTypeForABI(Ty)) {
619     // Records with non-trivial destructors/copy-constructors should not be
620     // passed by value.
621     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
622       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
623 
624     return getNaturalAlignIndirect(Ty);
625   }
626 
627   // Treat an enum type as its underlying type.
628   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
629     Ty = EnumTy->getDecl()->getIntegerType();
630 
631   return (Ty->isPromotableIntegerType() ?
632           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
633 }
634 
635 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
636   if (RetTy->isVoidType())
637     return ABIArgInfo::getIgnore();
638 
639   if (isAggregateTypeForABI(RetTy))
640     return getNaturalAlignIndirect(RetTy);
641 
642   // Treat an enum type as its underlying type.
643   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
644     RetTy = EnumTy->getDecl()->getIntegerType();
645 
646   return (RetTy->isPromotableIntegerType() ?
647           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
648 }
649 
650 //===----------------------------------------------------------------------===//
651 // WebAssembly ABI Implementation
652 //
653 // This is a very simple ABI that relies a lot on DefaultABIInfo.
654 //===----------------------------------------------------------------------===//
655 
656 class WebAssemblyABIInfo final : public DefaultABIInfo {
657 public:
658   explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT)
659       : DefaultABIInfo(CGT) {}
660 
661 private:
662   ABIArgInfo classifyReturnType(QualType RetTy) const;
663   ABIArgInfo classifyArgumentType(QualType Ty) const;
664 
665   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
666   // non-virtual, but computeInfo and EmitVAArg are virtual, so we
667   // overload them.
668   void computeInfo(CGFunctionInfo &FI) const override {
669     if (!getCXXABI().classifyReturnType(FI))
670       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
671     for (auto &Arg : FI.arguments())
672       Arg.info = classifyArgumentType(Arg.type);
673   }
674 
675   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
676                     QualType Ty) const override;
677 };
678 
679 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo {
680 public:
681   explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
682       : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT)) {}
683 };
684 
685 /// \brief Classify argument of given type \p Ty.
686 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const {
687   Ty = useFirstFieldIfTransparentUnion(Ty);
688 
689   if (isAggregateTypeForABI(Ty)) {
690     // Records with non-trivial destructors/copy-constructors should not be
691     // passed by value.
692     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
693       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
694     // Ignore empty structs/unions.
695     if (isEmptyRecord(getContext(), Ty, true))
696       return ABIArgInfo::getIgnore();
697     // Lower single-element structs to just pass a regular value. TODO: We
698     // could do reasonable-size multiple-element structs too, using getExpand(),
699     // though watch out for things like bitfields.
700     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
701       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
702   }
703 
704   // Otherwise just do the default thing.
705   return DefaultABIInfo::classifyArgumentType(Ty);
706 }
707 
708 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const {
709   if (isAggregateTypeForABI(RetTy)) {
710     // Records with non-trivial destructors/copy-constructors should not be
711     // returned by value.
712     if (!getRecordArgABI(RetTy, getCXXABI())) {
713       // Ignore empty structs/unions.
714       if (isEmptyRecord(getContext(), RetTy, true))
715         return ABIArgInfo::getIgnore();
716       // Lower single-element structs to just return a regular value. TODO: We
717       // could do reasonable-size multiple-element structs too, using
718       // ABIArgInfo::getDirect().
719       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
720         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
721     }
722   }
723 
724   // Otherwise just do the default thing.
725   return DefaultABIInfo::classifyReturnType(RetTy);
726 }
727 
728 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
729                                       QualType Ty) const {
730   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect=*/ false,
731                           getContext().getTypeInfoInChars(Ty),
732                           CharUnits::fromQuantity(4),
733                           /*AllowHigherAlign=*/ true);
734 }
735 
736 //===----------------------------------------------------------------------===//
737 // le32/PNaCl bitcode ABI Implementation
738 //
739 // This is a simplified version of the x86_32 ABI.  Arguments and return values
740 // are always passed on the stack.
741 //===----------------------------------------------------------------------===//
742 
743 class PNaClABIInfo : public ABIInfo {
744  public:
745   PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
746 
747   ABIArgInfo classifyReturnType(QualType RetTy) const;
748   ABIArgInfo classifyArgumentType(QualType RetTy) const;
749 
750   void computeInfo(CGFunctionInfo &FI) const override;
751   Address EmitVAArg(CodeGenFunction &CGF,
752                     Address VAListAddr, QualType Ty) const override;
753 };
754 
755 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
756  public:
757   PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
758     : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
759 };
760 
761 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
762   if (!getCXXABI().classifyReturnType(FI))
763     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
764 
765   for (auto &I : FI.arguments())
766     I.info = classifyArgumentType(I.type);
767 }
768 
769 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
770                                 QualType Ty) const {
771   // The PNaCL ABI is a bit odd, in that varargs don't use normal
772   // function classification. Structs get passed directly for varargs
773   // functions, through a rewriting transform in
774   // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows
775   // this target to actually support a va_arg instructions with an
776   // aggregate type, unlike other targets.
777   return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
778 }
779 
780 /// \brief Classify argument of given type \p Ty.
781 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
782   if (isAggregateTypeForABI(Ty)) {
783     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
784       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
785     return getNaturalAlignIndirect(Ty);
786   } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
787     // Treat an enum type as its underlying type.
788     Ty = EnumTy->getDecl()->getIntegerType();
789   } else if (Ty->isFloatingType()) {
790     // Floating-point types don't go inreg.
791     return ABIArgInfo::getDirect();
792   }
793 
794   return (Ty->isPromotableIntegerType() ?
795           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
796 }
797 
798 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
799   if (RetTy->isVoidType())
800     return ABIArgInfo::getIgnore();
801 
802   // In the PNaCl ABI we always return records/structures on the stack.
803   if (isAggregateTypeForABI(RetTy))
804     return getNaturalAlignIndirect(RetTy);
805 
806   // Treat an enum type as its underlying type.
807   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
808     RetTy = EnumTy->getDecl()->getIntegerType();
809 
810   return (RetTy->isPromotableIntegerType() ?
811           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
812 }
813 
814 /// IsX86_MMXType - Return true if this is an MMX type.
815 bool IsX86_MMXType(llvm::Type *IRType) {
816   // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
817   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
818     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
819     IRType->getScalarSizeInBits() != 64;
820 }
821 
822 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
823                                           StringRef Constraint,
824                                           llvm::Type* Ty) {
825   if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) {
826     if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) {
827       // Invalid MMX constraint
828       return nullptr;
829     }
830 
831     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
832   }
833 
834   // No operation needed
835   return Ty;
836 }
837 
838 /// Returns true if this type can be passed in SSE registers with the
839 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
840 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
841   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
842     if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half)
843       return true;
844   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
845     // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
846     // registers specially.
847     unsigned VecSize = Context.getTypeSize(VT);
848     if (VecSize == 128 || VecSize == 256 || VecSize == 512)
849       return true;
850   }
851   return false;
852 }
853 
854 /// Returns true if this aggregate is small enough to be passed in SSE registers
855 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
856 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
857   return NumMembers <= 4;
858 }
859 
860 //===----------------------------------------------------------------------===//
861 // X86-32 ABI Implementation
862 //===----------------------------------------------------------------------===//
863 
864 /// \brief Similar to llvm::CCState, but for Clang.
865 struct CCState {
866   CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {}
867 
868   unsigned CC;
869   unsigned FreeRegs;
870   unsigned FreeSSERegs;
871 };
872 
873 /// X86_32ABIInfo - The X86-32 ABI information.
874 class X86_32ABIInfo : public SwiftABIInfo {
875   enum Class {
876     Integer,
877     Float
878   };
879 
880   static const unsigned MinABIStackAlignInBytes = 4;
881 
882   bool IsDarwinVectorABI;
883   bool IsRetSmallStructInRegABI;
884   bool IsWin32StructABI;
885   bool IsSoftFloatABI;
886   bool IsMCUABI;
887   unsigned DefaultNumRegisterParameters;
888 
889   static bool isRegisterSize(unsigned Size) {
890     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
891   }
892 
893   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
894     // FIXME: Assumes vectorcall is in use.
895     return isX86VectorTypeForVectorCall(getContext(), Ty);
896   }
897 
898   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
899                                          uint64_t NumMembers) const override {
900     // FIXME: Assumes vectorcall is in use.
901     return isX86VectorCallAggregateSmallEnough(NumMembers);
902   }
903 
904   bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
905 
906   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
907   /// such that the argument will be passed in memory.
908   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
909 
910   ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const;
911 
912   /// \brief Return the alignment to use for the given type on the stack.
913   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
914 
915   Class classify(QualType Ty) const;
916   ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
917   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
918   /// \brief Updates the number of available free registers, returns
919   /// true if any registers were allocated.
920   bool updateFreeRegs(QualType Ty, CCState &State) const;
921 
922   bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg,
923                                 bool &NeedsPadding) const;
924   bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const;
925 
926   bool canExpandIndirectArgument(QualType Ty) const;
927 
928   /// \brief Rewrite the function info so that all memory arguments use
929   /// inalloca.
930   void rewriteWithInAlloca(CGFunctionInfo &FI) const;
931 
932   void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
933                            CharUnits &StackOffset, ABIArgInfo &Info,
934                            QualType Type) const;
935 
936 public:
937 
938   void computeInfo(CGFunctionInfo &FI) const override;
939   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
940                     QualType Ty) const override;
941 
942   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
943                 bool RetSmallStructInRegABI, bool Win32StructABI,
944                 unsigned NumRegisterParameters, bool SoftFloatABI)
945     : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI),
946       IsRetSmallStructInRegABI(RetSmallStructInRegABI),
947       IsWin32StructABI(Win32StructABI),
948       IsSoftFloatABI(SoftFloatABI),
949       IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()),
950       DefaultNumRegisterParameters(NumRegisterParameters) {}
951 
952   bool shouldPassIndirectlyForSwift(CharUnits totalSize,
953                                     ArrayRef<llvm::Type*> scalars,
954                                     bool asReturnValue) const override {
955     // LLVM's x86-32 lowering currently only assigns up to three
956     // integer registers and three fp registers.  Oddly, it'll use up to
957     // four vector registers for vectors, but those can overlap with the
958     // scalar registers.
959     return occupiesMoreThan(CGT, scalars, /*total*/ 3);
960   }
961 };
962 
963 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
964 public:
965   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
966                           bool RetSmallStructInRegABI, bool Win32StructABI,
967                           unsigned NumRegisterParameters, bool SoftFloatABI)
968       : TargetCodeGenInfo(new X86_32ABIInfo(
969             CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
970             NumRegisterParameters, SoftFloatABI)) {}
971 
972   static bool isStructReturnInRegABI(
973       const llvm::Triple &Triple, const CodeGenOptions &Opts);
974 
975   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
976                            CodeGen::CodeGenModule &CGM) const override;
977 
978   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
979     // Darwin uses different dwarf register numbers for EH.
980     if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
981     return 4;
982   }
983 
984   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
985                                llvm::Value *Address) const override;
986 
987   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
988                                   StringRef Constraint,
989                                   llvm::Type* Ty) const override {
990     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
991   }
992 
993   void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
994                                 std::string &Constraints,
995                                 std::vector<llvm::Type *> &ResultRegTypes,
996                                 std::vector<llvm::Type *> &ResultTruncRegTypes,
997                                 std::vector<LValue> &ResultRegDests,
998                                 std::string &AsmString,
999                                 unsigned NumOutputs) const override;
1000 
1001   llvm::Constant *
1002   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
1003     unsigned Sig = (0xeb << 0) |  // jmp rel8
1004                    (0x06 << 8) |  //           .+0x08
1005                    ('F' << 16) |
1006                    ('T' << 24);
1007     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
1008   }
1009 
1010   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
1011     return "movl\t%ebp, %ebp"
1012            "\t\t## marker for objc_retainAutoreleaseReturnValue";
1013   }
1014 };
1015 
1016 }
1017 
1018 /// Rewrite input constraint references after adding some output constraints.
1019 /// In the case where there is one output and one input and we add one output,
1020 /// we need to replace all operand references greater than or equal to 1:
1021 ///     mov $0, $1
1022 ///     mov eax, $1
1023 /// The result will be:
1024 ///     mov $0, $2
1025 ///     mov eax, $2
1026 static void rewriteInputConstraintReferences(unsigned FirstIn,
1027                                              unsigned NumNewOuts,
1028                                              std::string &AsmString) {
1029   std::string Buf;
1030   llvm::raw_string_ostream OS(Buf);
1031   size_t Pos = 0;
1032   while (Pos < AsmString.size()) {
1033     size_t DollarStart = AsmString.find('$', Pos);
1034     if (DollarStart == std::string::npos)
1035       DollarStart = AsmString.size();
1036     size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
1037     if (DollarEnd == std::string::npos)
1038       DollarEnd = AsmString.size();
1039     OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
1040     Pos = DollarEnd;
1041     size_t NumDollars = DollarEnd - DollarStart;
1042     if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
1043       // We have an operand reference.
1044       size_t DigitStart = Pos;
1045       size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
1046       if (DigitEnd == std::string::npos)
1047         DigitEnd = AsmString.size();
1048       StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
1049       unsigned OperandIndex;
1050       if (!OperandStr.getAsInteger(10, OperandIndex)) {
1051         if (OperandIndex >= FirstIn)
1052           OperandIndex += NumNewOuts;
1053         OS << OperandIndex;
1054       } else {
1055         OS << OperandStr;
1056       }
1057       Pos = DigitEnd;
1058     }
1059   }
1060   AsmString = std::move(OS.str());
1061 }
1062 
1063 /// Add output constraints for EAX:EDX because they are return registers.
1064 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
1065     CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
1066     std::vector<llvm::Type *> &ResultRegTypes,
1067     std::vector<llvm::Type *> &ResultTruncRegTypes,
1068     std::vector<LValue> &ResultRegDests, std::string &AsmString,
1069     unsigned NumOutputs) const {
1070   uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
1071 
1072   // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
1073   // larger.
1074   if (!Constraints.empty())
1075     Constraints += ',';
1076   if (RetWidth <= 32) {
1077     Constraints += "={eax}";
1078     ResultRegTypes.push_back(CGF.Int32Ty);
1079   } else {
1080     // Use the 'A' constraint for EAX:EDX.
1081     Constraints += "=A";
1082     ResultRegTypes.push_back(CGF.Int64Ty);
1083   }
1084 
1085   // Truncate EAX or EAX:EDX to an integer of the appropriate size.
1086   llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
1087   ResultTruncRegTypes.push_back(CoerceTy);
1088 
1089   // Coerce the integer by bitcasting the return slot pointer.
1090   ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(),
1091                                                   CoerceTy->getPointerTo()));
1092   ResultRegDests.push_back(ReturnSlot);
1093 
1094   rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
1095 }
1096 
1097 /// shouldReturnTypeInRegister - Determine if the given type should be
1098 /// returned in a register (for the Darwin and MCU ABI).
1099 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
1100                                                ASTContext &Context) const {
1101   uint64_t Size = Context.getTypeSize(Ty);
1102 
1103   // For i386, type must be register sized.
1104   // For the MCU ABI, it only needs to be <= 8-byte
1105   if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size)))
1106    return false;
1107 
1108   if (Ty->isVectorType()) {
1109     // 64- and 128- bit vectors inside structures are not returned in
1110     // registers.
1111     if (Size == 64 || Size == 128)
1112       return false;
1113 
1114     return true;
1115   }
1116 
1117   // If this is a builtin, pointer, enum, complex type, member pointer, or
1118   // member function pointer it is ok.
1119   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
1120       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
1121       Ty->isBlockPointerType() || Ty->isMemberPointerType())
1122     return true;
1123 
1124   // Arrays are treated like records.
1125   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
1126     return shouldReturnTypeInRegister(AT->getElementType(), Context);
1127 
1128   // Otherwise, it must be a record type.
1129   const RecordType *RT = Ty->getAs<RecordType>();
1130   if (!RT) return false;
1131 
1132   // FIXME: Traverse bases here too.
1133 
1134   // Structure types are passed in register if all fields would be
1135   // passed in a register.
1136   for (const auto *FD : RT->getDecl()->fields()) {
1137     // Empty fields are ignored.
1138     if (isEmptyField(Context, FD, true))
1139       continue;
1140 
1141     // Check fields recursively.
1142     if (!shouldReturnTypeInRegister(FD->getType(), Context))
1143       return false;
1144   }
1145   return true;
1146 }
1147 
1148 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
1149   // Treat complex types as the element type.
1150   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
1151     Ty = CTy->getElementType();
1152 
1153   // Check for a type which we know has a simple scalar argument-passing
1154   // convention without any padding.  (We're specifically looking for 32
1155   // and 64-bit integer and integer-equivalents, float, and double.)
1156   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
1157       !Ty->isEnumeralType() && !Ty->isBlockPointerType())
1158     return false;
1159 
1160   uint64_t Size = Context.getTypeSize(Ty);
1161   return Size == 32 || Size == 64;
1162 }
1163 
1164 /// Test whether an argument type which is to be passed indirectly (on the
1165 /// stack) would have the equivalent layout if it was expanded into separate
1166 /// arguments. If so, we prefer to do the latter to avoid inhibiting
1167 /// optimizations.
1168 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const {
1169   // We can only expand structure types.
1170   const RecordType *RT = Ty->getAs<RecordType>();
1171   if (!RT)
1172     return false;
1173   const RecordDecl *RD = RT->getDecl();
1174   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1175     if (!IsWin32StructABI ) {
1176       // On non-Windows, we have to conservatively match our old bitcode
1177       // prototypes in order to be ABI-compatible at the bitcode level.
1178       if (!CXXRD->isCLike())
1179         return false;
1180     } else {
1181       // Don't do this for dynamic classes.
1182       if (CXXRD->isDynamicClass())
1183         return false;
1184       // Don't do this if there are any non-empty bases.
1185       for (const CXXBaseSpecifier &Base : CXXRD->bases()) {
1186         if (!isEmptyRecord(getContext(), Base.getType(), /*AllowArrays=*/true))
1187           return false;
1188       }
1189     }
1190   }
1191 
1192   uint64_t Size = 0;
1193 
1194   for (const auto *FD : RD->fields()) {
1195     // Scalar arguments on the stack get 4 byte alignment on x86. If the
1196     // argument is smaller than 32-bits, expanding the struct will create
1197     // alignment padding.
1198     if (!is32Or64BitBasicType(FD->getType(), getContext()))
1199       return false;
1200 
1201     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
1202     // how to expand them yet, and the predicate for telling if a bitfield still
1203     // counts as "basic" is more complicated than what we were doing previously.
1204     if (FD->isBitField())
1205       return false;
1206 
1207     Size += getContext().getTypeSize(FD->getType());
1208   }
1209 
1210   // We can do this if there was no alignment padding.
1211   return Size == getContext().getTypeSize(Ty);
1212 }
1213 
1214 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const {
1215   // If the return value is indirect, then the hidden argument is consuming one
1216   // integer register.
1217   if (State.FreeRegs) {
1218     --State.FreeRegs;
1219     if (!IsMCUABI)
1220       return getNaturalAlignIndirectInReg(RetTy);
1221   }
1222   return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
1223 }
1224 
1225 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
1226                                              CCState &State) const {
1227   if (RetTy->isVoidType())
1228     return ABIArgInfo::getIgnore();
1229 
1230   const Type *Base = nullptr;
1231   uint64_t NumElts = 0;
1232   if (State.CC == llvm::CallingConv::X86_VectorCall &&
1233       isHomogeneousAggregate(RetTy, Base, NumElts)) {
1234     // The LLVM struct type for such an aggregate should lower properly.
1235     return ABIArgInfo::getDirect();
1236   }
1237 
1238   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
1239     // On Darwin, some vectors are returned in registers.
1240     if (IsDarwinVectorABI) {
1241       uint64_t Size = getContext().getTypeSize(RetTy);
1242 
1243       // 128-bit vectors are a special case; they are returned in
1244       // registers and we need to make sure to pick a type the LLVM
1245       // backend will like.
1246       if (Size == 128)
1247         return ABIArgInfo::getDirect(llvm::VectorType::get(
1248                   llvm::Type::getInt64Ty(getVMContext()), 2));
1249 
1250       // Always return in register if it fits in a general purpose
1251       // register, or if it is 64 bits and has a single element.
1252       if ((Size == 8 || Size == 16 || Size == 32) ||
1253           (Size == 64 && VT->getNumElements() == 1))
1254         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1255                                                             Size));
1256 
1257       return getIndirectReturnResult(RetTy, State);
1258     }
1259 
1260     return ABIArgInfo::getDirect();
1261   }
1262 
1263   if (isAggregateTypeForABI(RetTy)) {
1264     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
1265       // Structures with flexible arrays are always indirect.
1266       if (RT->getDecl()->hasFlexibleArrayMember())
1267         return getIndirectReturnResult(RetTy, State);
1268     }
1269 
1270     // If specified, structs and unions are always indirect.
1271     if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType())
1272       return getIndirectReturnResult(RetTy, State);
1273 
1274     // Ignore empty structs/unions.
1275     if (isEmptyRecord(getContext(), RetTy, true))
1276       return ABIArgInfo::getIgnore();
1277 
1278     // Small structures which are register sized are generally returned
1279     // in a register.
1280     if (shouldReturnTypeInRegister(RetTy, getContext())) {
1281       uint64_t Size = getContext().getTypeSize(RetTy);
1282 
1283       // As a special-case, if the struct is a "single-element" struct, and
1284       // the field is of type "float" or "double", return it in a
1285       // floating-point register. (MSVC does not apply this special case.)
1286       // We apply a similar transformation for pointer types to improve the
1287       // quality of the generated IR.
1288       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
1289         if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
1290             || SeltTy->hasPointerRepresentation())
1291           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
1292 
1293       // FIXME: We should be able to narrow this integer in cases with dead
1294       // padding.
1295       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
1296     }
1297 
1298     return getIndirectReturnResult(RetTy, State);
1299   }
1300 
1301   // Treat an enum type as its underlying type.
1302   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1303     RetTy = EnumTy->getDecl()->getIntegerType();
1304 
1305   return (RetTy->isPromotableIntegerType() ?
1306           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1307 }
1308 
1309 static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
1310   return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
1311 }
1312 
1313 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
1314   const RecordType *RT = Ty->getAs<RecordType>();
1315   if (!RT)
1316     return 0;
1317   const RecordDecl *RD = RT->getDecl();
1318 
1319   // If this is a C++ record, check the bases first.
1320   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1321     for (const auto &I : CXXRD->bases())
1322       if (!isRecordWithSSEVectorType(Context, I.getType()))
1323         return false;
1324 
1325   for (const auto *i : RD->fields()) {
1326     QualType FT = i->getType();
1327 
1328     if (isSSEVectorType(Context, FT))
1329       return true;
1330 
1331     if (isRecordWithSSEVectorType(Context, FT))
1332       return true;
1333   }
1334 
1335   return false;
1336 }
1337 
1338 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
1339                                                  unsigned Align) const {
1340   // Otherwise, if the alignment is less than or equal to the minimum ABI
1341   // alignment, just use the default; the backend will handle this.
1342   if (Align <= MinABIStackAlignInBytes)
1343     return 0; // Use default alignment.
1344 
1345   // On non-Darwin, the stack type alignment is always 4.
1346   if (!IsDarwinVectorABI) {
1347     // Set explicit alignment, since we may need to realign the top.
1348     return MinABIStackAlignInBytes;
1349   }
1350 
1351   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
1352   if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
1353                       isRecordWithSSEVectorType(getContext(), Ty)))
1354     return 16;
1355 
1356   return MinABIStackAlignInBytes;
1357 }
1358 
1359 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
1360                                             CCState &State) const {
1361   if (!ByVal) {
1362     if (State.FreeRegs) {
1363       --State.FreeRegs; // Non-byval indirects just use one pointer.
1364       if (!IsMCUABI)
1365         return getNaturalAlignIndirectInReg(Ty);
1366     }
1367     return getNaturalAlignIndirect(Ty, false);
1368   }
1369 
1370   // Compute the byval alignment.
1371   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
1372   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
1373   if (StackAlign == 0)
1374     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true);
1375 
1376   // If the stack alignment is less than the type alignment, realign the
1377   // argument.
1378   bool Realign = TypeAlign > StackAlign;
1379   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign),
1380                                  /*ByVal=*/true, Realign);
1381 }
1382 
1383 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
1384   const Type *T = isSingleElementStruct(Ty, getContext());
1385   if (!T)
1386     T = Ty.getTypePtr();
1387 
1388   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
1389     BuiltinType::Kind K = BT->getKind();
1390     if (K == BuiltinType::Float || K == BuiltinType::Double)
1391       return Float;
1392   }
1393   return Integer;
1394 }
1395 
1396 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const {
1397   if (!IsSoftFloatABI) {
1398     Class C = classify(Ty);
1399     if (C == Float)
1400       return false;
1401   }
1402 
1403   unsigned Size = getContext().getTypeSize(Ty);
1404   unsigned SizeInRegs = (Size + 31) / 32;
1405 
1406   if (SizeInRegs == 0)
1407     return false;
1408 
1409   if (!IsMCUABI) {
1410     if (SizeInRegs > State.FreeRegs) {
1411       State.FreeRegs = 0;
1412       return false;
1413     }
1414   } else {
1415     // The MCU psABI allows passing parameters in-reg even if there are
1416     // earlier parameters that are passed on the stack. Also,
1417     // it does not allow passing >8-byte structs in-register,
1418     // even if there are 3 free registers available.
1419     if (SizeInRegs > State.FreeRegs || SizeInRegs > 2)
1420       return false;
1421   }
1422 
1423   State.FreeRegs -= SizeInRegs;
1424   return true;
1425 }
1426 
1427 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State,
1428                                              bool &InReg,
1429                                              bool &NeedsPadding) const {
1430   // On Windows, aggregates other than HFAs are never passed in registers, and
1431   // they do not consume register slots. Homogenous floating-point aggregates
1432   // (HFAs) have already been dealt with at this point.
1433   if (IsWin32StructABI && isAggregateTypeForABI(Ty))
1434     return false;
1435 
1436   NeedsPadding = false;
1437   InReg = !IsMCUABI;
1438 
1439   if (!updateFreeRegs(Ty, State))
1440     return false;
1441 
1442   if (IsMCUABI)
1443     return true;
1444 
1445   if (State.CC == llvm::CallingConv::X86_FastCall ||
1446       State.CC == llvm::CallingConv::X86_VectorCall) {
1447     if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs)
1448       NeedsPadding = true;
1449 
1450     return false;
1451   }
1452 
1453   return true;
1454 }
1455 
1456 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const {
1457   if (!updateFreeRegs(Ty, State))
1458     return false;
1459 
1460   if (IsMCUABI)
1461     return false;
1462 
1463   if (State.CC == llvm::CallingConv::X86_FastCall ||
1464       State.CC == llvm::CallingConv::X86_VectorCall) {
1465     if (getContext().getTypeSize(Ty) > 32)
1466       return false;
1467 
1468     return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() ||
1469         Ty->isReferenceType());
1470   }
1471 
1472   return true;
1473 }
1474 
1475 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
1476                                                CCState &State) const {
1477   // FIXME: Set alignment on indirect arguments.
1478 
1479   Ty = useFirstFieldIfTransparentUnion(Ty);
1480 
1481   // Check with the C++ ABI first.
1482   const RecordType *RT = Ty->getAs<RecordType>();
1483   if (RT) {
1484     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
1485     if (RAA == CGCXXABI::RAA_Indirect) {
1486       return getIndirectResult(Ty, false, State);
1487     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
1488       // The field index doesn't matter, we'll fix it up later.
1489       return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
1490     }
1491   }
1492 
1493   // vectorcall adds the concept of a homogenous vector aggregate, similar
1494   // to other targets.
1495   const Type *Base = nullptr;
1496   uint64_t NumElts = 0;
1497   if (State.CC == llvm::CallingConv::X86_VectorCall &&
1498       isHomogeneousAggregate(Ty, Base, NumElts)) {
1499     if (State.FreeSSERegs >= NumElts) {
1500       State.FreeSSERegs -= NumElts;
1501       if (Ty->isBuiltinType() || Ty->isVectorType())
1502         return ABIArgInfo::getDirect();
1503       return ABIArgInfo::getExpand();
1504     }
1505     return getIndirectResult(Ty, /*ByVal=*/false, State);
1506   }
1507 
1508   if (isAggregateTypeForABI(Ty)) {
1509     // Structures with flexible arrays are always indirect.
1510     // FIXME: This should not be byval!
1511     if (RT && RT->getDecl()->hasFlexibleArrayMember())
1512       return getIndirectResult(Ty, true, State);
1513 
1514     // Ignore empty structs/unions on non-Windows.
1515     if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true))
1516       return ABIArgInfo::getIgnore();
1517 
1518     llvm::LLVMContext &LLVMContext = getVMContext();
1519     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
1520     bool NeedsPadding = false;
1521     bool InReg;
1522     if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) {
1523       unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
1524       SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
1525       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
1526       if (InReg)
1527         return ABIArgInfo::getDirectInReg(Result);
1528       else
1529         return ABIArgInfo::getDirect(Result);
1530     }
1531     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
1532 
1533     // Expand small (<= 128-bit) record types when we know that the stack layout
1534     // of those arguments will match the struct. This is important because the
1535     // LLVM backend isn't smart enough to remove byval, which inhibits many
1536     // optimizations.
1537     // Don't do this for the MCU if there are still free integer registers
1538     // (see X86_64 ABI for full explanation).
1539     if (getContext().getTypeSize(Ty) <= 4 * 32 &&
1540         (!IsMCUABI || State.FreeRegs == 0) && canExpandIndirectArgument(Ty))
1541       return ABIArgInfo::getExpandWithPadding(
1542           State.CC == llvm::CallingConv::X86_FastCall ||
1543               State.CC == llvm::CallingConv::X86_VectorCall,
1544           PaddingType);
1545 
1546     return getIndirectResult(Ty, true, State);
1547   }
1548 
1549   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1550     // On Darwin, some vectors are passed in memory, we handle this by passing
1551     // it as an i8/i16/i32/i64.
1552     if (IsDarwinVectorABI) {
1553       uint64_t Size = getContext().getTypeSize(Ty);
1554       if ((Size == 8 || Size == 16 || Size == 32) ||
1555           (Size == 64 && VT->getNumElements() == 1))
1556         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1557                                                             Size));
1558     }
1559 
1560     if (IsX86_MMXType(CGT.ConvertType(Ty)))
1561       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
1562 
1563     return ABIArgInfo::getDirect();
1564   }
1565 
1566 
1567   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1568     Ty = EnumTy->getDecl()->getIntegerType();
1569 
1570   bool InReg = shouldPrimitiveUseInReg(Ty, State);
1571 
1572   if (Ty->isPromotableIntegerType()) {
1573     if (InReg)
1574       return ABIArgInfo::getExtendInReg();
1575     return ABIArgInfo::getExtend();
1576   }
1577 
1578   if (InReg)
1579     return ABIArgInfo::getDirectInReg();
1580   return ABIArgInfo::getDirect();
1581 }
1582 
1583 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1584   CCState State(FI.getCallingConvention());
1585   if (IsMCUABI)
1586     State.FreeRegs = 3;
1587   else if (State.CC == llvm::CallingConv::X86_FastCall)
1588     State.FreeRegs = 2;
1589   else if (State.CC == llvm::CallingConv::X86_VectorCall) {
1590     State.FreeRegs = 2;
1591     State.FreeSSERegs = 6;
1592   } else if (FI.getHasRegParm())
1593     State.FreeRegs = FI.getRegParm();
1594   else
1595     State.FreeRegs = DefaultNumRegisterParameters;
1596 
1597   if (!getCXXABI().classifyReturnType(FI)) {
1598     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
1599   } else if (FI.getReturnInfo().isIndirect()) {
1600     // The C++ ABI is not aware of register usage, so we have to check if the
1601     // return value was sret and put it in a register ourselves if appropriate.
1602     if (State.FreeRegs) {
1603       --State.FreeRegs;  // The sret parameter consumes a register.
1604       if (!IsMCUABI)
1605         FI.getReturnInfo().setInReg(true);
1606     }
1607   }
1608 
1609   // The chain argument effectively gives us another free register.
1610   if (FI.isChainCall())
1611     ++State.FreeRegs;
1612 
1613   bool UsedInAlloca = false;
1614   for (auto &I : FI.arguments()) {
1615     I.info = classifyArgumentType(I.type, State);
1616     UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1617   }
1618 
1619   // If we needed to use inalloca for any argument, do a second pass and rewrite
1620   // all the memory arguments to use inalloca.
1621   if (UsedInAlloca)
1622     rewriteWithInAlloca(FI);
1623 }
1624 
1625 void
1626 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1627                                    CharUnits &StackOffset, ABIArgInfo &Info,
1628                                    QualType Type) const {
1629   // Arguments are always 4-byte-aligned.
1630   CharUnits FieldAlign = CharUnits::fromQuantity(4);
1631 
1632   assert(StackOffset.isMultipleOf(FieldAlign) && "unaligned inalloca struct");
1633   Info = ABIArgInfo::getInAlloca(FrameFields.size());
1634   FrameFields.push_back(CGT.ConvertTypeForMem(Type));
1635   StackOffset += getContext().getTypeSizeInChars(Type);
1636 
1637   // Insert padding bytes to respect alignment.
1638   CharUnits FieldEnd = StackOffset;
1639   StackOffset = FieldEnd.alignTo(FieldAlign);
1640   if (StackOffset != FieldEnd) {
1641     CharUnits NumBytes = StackOffset - FieldEnd;
1642     llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
1643     Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity());
1644     FrameFields.push_back(Ty);
1645   }
1646 }
1647 
1648 static bool isArgInAlloca(const ABIArgInfo &Info) {
1649   // Leave ignored and inreg arguments alone.
1650   switch (Info.getKind()) {
1651   case ABIArgInfo::InAlloca:
1652     return true;
1653   case ABIArgInfo::Indirect:
1654     assert(Info.getIndirectByVal());
1655     return true;
1656   case ABIArgInfo::Ignore:
1657     return false;
1658   case ABIArgInfo::Direct:
1659   case ABIArgInfo::Extend:
1660     if (Info.getInReg())
1661       return false;
1662     return true;
1663   case ABIArgInfo::Expand:
1664   case ABIArgInfo::CoerceAndExpand:
1665     // These are aggregate types which are never passed in registers when
1666     // inalloca is involved.
1667     return true;
1668   }
1669   llvm_unreachable("invalid enum");
1670 }
1671 
1672 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
1673   assert(IsWin32StructABI && "inalloca only supported on win32");
1674 
1675   // Build a packed struct type for all of the arguments in memory.
1676   SmallVector<llvm::Type *, 6> FrameFields;
1677 
1678   // The stack alignment is always 4.
1679   CharUnits StackAlign = CharUnits::fromQuantity(4);
1680 
1681   CharUnits StackOffset;
1682   CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
1683 
1684   // Put 'this' into the struct before 'sret', if necessary.
1685   bool IsThisCall =
1686       FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
1687   ABIArgInfo &Ret = FI.getReturnInfo();
1688   if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
1689       isArgInAlloca(I->info)) {
1690     addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1691     ++I;
1692   }
1693 
1694   // Put the sret parameter into the inalloca struct if it's in memory.
1695   if (Ret.isIndirect() && !Ret.getInReg()) {
1696     CanQualType PtrTy = getContext().getPointerType(FI.getReturnType());
1697     addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy);
1698     // On Windows, the hidden sret parameter is always returned in eax.
1699     Ret.setInAllocaSRet(IsWin32StructABI);
1700   }
1701 
1702   // Skip the 'this' parameter in ecx.
1703   if (IsThisCall)
1704     ++I;
1705 
1706   // Put arguments passed in memory into the struct.
1707   for (; I != E; ++I) {
1708     if (isArgInAlloca(I->info))
1709       addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1710   }
1711 
1712   FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
1713                                         /*isPacked=*/true),
1714                   StackAlign);
1715 }
1716 
1717 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF,
1718                                  Address VAListAddr, QualType Ty) const {
1719 
1720   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
1721 
1722   // x86-32 changes the alignment of certain arguments on the stack.
1723   //
1724   // Just messing with TypeInfo like this works because we never pass
1725   // anything indirectly.
1726   TypeInfo.second = CharUnits::fromQuantity(
1727                 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity()));
1728 
1729   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
1730                           TypeInfo, CharUnits::fromQuantity(4),
1731                           /*AllowHigherAlign*/ true);
1732 }
1733 
1734 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
1735     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
1736   assert(Triple.getArch() == llvm::Triple::x86);
1737 
1738   switch (Opts.getStructReturnConvention()) {
1739   case CodeGenOptions::SRCK_Default:
1740     break;
1741   case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
1742     return false;
1743   case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
1744     return true;
1745   }
1746 
1747   if (Triple.isOSDarwin() || Triple.isOSIAMCU())
1748     return true;
1749 
1750   switch (Triple.getOS()) {
1751   case llvm::Triple::DragonFly:
1752   case llvm::Triple::FreeBSD:
1753   case llvm::Triple::OpenBSD:
1754   case llvm::Triple::Bitrig:
1755   case llvm::Triple::Win32:
1756     return true;
1757   default:
1758     return false;
1759   }
1760 }
1761 
1762 void X86_32TargetCodeGenInfo::setTargetAttributes(const Decl *D,
1763                                                   llvm::GlobalValue *GV,
1764                                             CodeGen::CodeGenModule &CGM) const {
1765   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
1766     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1767       // Get the LLVM function.
1768       llvm::Function *Fn = cast<llvm::Function>(GV);
1769 
1770       // Now add the 'alignstack' attribute with a value of 16.
1771       llvm::AttrBuilder B;
1772       B.addStackAlignmentAttr(16);
1773       Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
1774                       llvm::AttributeSet::get(CGM.getLLVMContext(),
1775                                               llvm::AttributeSet::FunctionIndex,
1776                                               B));
1777     }
1778     if (FD->hasAttr<AnyX86InterruptAttr>()) {
1779       llvm::Function *Fn = cast<llvm::Function>(GV);
1780       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
1781     }
1782   }
1783 }
1784 
1785 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
1786                                                CodeGen::CodeGenFunction &CGF,
1787                                                llvm::Value *Address) const {
1788   CodeGen::CGBuilderTy &Builder = CGF.Builder;
1789 
1790   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
1791 
1792   // 0-7 are the eight integer registers;  the order is different
1793   //   on Darwin (for EH), but the range is the same.
1794   // 8 is %eip.
1795   AssignToArrayRange(Builder, Address, Four8, 0, 8);
1796 
1797   if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
1798     // 12-16 are st(0..4).  Not sure why we stop at 4.
1799     // These have size 16, which is sizeof(long double) on
1800     // platforms with 8-byte alignment for that type.
1801     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
1802     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
1803 
1804   } else {
1805     // 9 is %eflags, which doesn't get a size on Darwin for some
1806     // reason.
1807     Builder.CreateAlignedStore(
1808         Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9),
1809                                CharUnits::One());
1810 
1811     // 11-16 are st(0..5).  Not sure why we stop at 5.
1812     // These have size 12, which is sizeof(long double) on
1813     // platforms with 4-byte alignment for that type.
1814     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
1815     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
1816   }
1817 
1818   return false;
1819 }
1820 
1821 //===----------------------------------------------------------------------===//
1822 // X86-64 ABI Implementation
1823 //===----------------------------------------------------------------------===//
1824 
1825 
1826 namespace {
1827 /// The AVX ABI level for X86 targets.
1828 enum class X86AVXABILevel {
1829   None,
1830   AVX,
1831   AVX512
1832 };
1833 
1834 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
1835 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
1836   switch (AVXLevel) {
1837   case X86AVXABILevel::AVX512:
1838     return 512;
1839   case X86AVXABILevel::AVX:
1840     return 256;
1841   case X86AVXABILevel::None:
1842     return 128;
1843   }
1844   llvm_unreachable("Unknown AVXLevel");
1845 }
1846 
1847 /// X86_64ABIInfo - The X86_64 ABI information.
1848 class X86_64ABIInfo : public SwiftABIInfo {
1849   enum Class {
1850     Integer = 0,
1851     SSE,
1852     SSEUp,
1853     X87,
1854     X87Up,
1855     ComplexX87,
1856     NoClass,
1857     Memory
1858   };
1859 
1860   /// merge - Implement the X86_64 ABI merging algorithm.
1861   ///
1862   /// Merge an accumulating classification \arg Accum with a field
1863   /// classification \arg Field.
1864   ///
1865   /// \param Accum - The accumulating classification. This should
1866   /// always be either NoClass or the result of a previous merge
1867   /// call. In addition, this should never be Memory (the caller
1868   /// should just return Memory for the aggregate).
1869   static Class merge(Class Accum, Class Field);
1870 
1871   /// postMerge - Implement the X86_64 ABI post merging algorithm.
1872   ///
1873   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
1874   /// final MEMORY or SSE classes when necessary.
1875   ///
1876   /// \param AggregateSize - The size of the current aggregate in
1877   /// the classification process.
1878   ///
1879   /// \param Lo - The classification for the parts of the type
1880   /// residing in the low word of the containing object.
1881   ///
1882   /// \param Hi - The classification for the parts of the type
1883   /// residing in the higher words of the containing object.
1884   ///
1885   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
1886 
1887   /// classify - Determine the x86_64 register classes in which the
1888   /// given type T should be passed.
1889   ///
1890   /// \param Lo - The classification for the parts of the type
1891   /// residing in the low word of the containing object.
1892   ///
1893   /// \param Hi - The classification for the parts of the type
1894   /// residing in the high word of the containing object.
1895   ///
1896   /// \param OffsetBase - The bit offset of this type in the
1897   /// containing object.  Some parameters are classified different
1898   /// depending on whether they straddle an eightbyte boundary.
1899   ///
1900   /// \param isNamedArg - Whether the argument in question is a "named"
1901   /// argument, as used in AMD64-ABI 3.5.7.
1902   ///
1903   /// If a word is unused its result will be NoClass; if a type should
1904   /// be passed in Memory then at least the classification of \arg Lo
1905   /// will be Memory.
1906   ///
1907   /// The \arg Lo class will be NoClass iff the argument is ignored.
1908   ///
1909   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
1910   /// also be ComplexX87.
1911   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
1912                 bool isNamedArg) const;
1913 
1914   llvm::Type *GetByteVectorType(QualType Ty) const;
1915   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
1916                                  unsigned IROffset, QualType SourceTy,
1917                                  unsigned SourceOffset) const;
1918   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
1919                                      unsigned IROffset, QualType SourceTy,
1920                                      unsigned SourceOffset) const;
1921 
1922   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1923   /// such that the argument will be returned in memory.
1924   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
1925 
1926   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1927   /// such that the argument will be passed in memory.
1928   ///
1929   /// \param freeIntRegs - The number of free integer registers remaining
1930   /// available.
1931   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
1932 
1933   ABIArgInfo classifyReturnType(QualType RetTy) const;
1934 
1935   ABIArgInfo classifyArgumentType(QualType Ty,
1936                                   unsigned freeIntRegs,
1937                                   unsigned &neededInt,
1938                                   unsigned &neededSSE,
1939                                   bool isNamedArg) const;
1940 
1941   bool IsIllegalVectorType(QualType Ty) const;
1942 
1943   /// The 0.98 ABI revision clarified a lot of ambiguities,
1944   /// unfortunately in ways that were not always consistent with
1945   /// certain previous compilers.  In particular, platforms which
1946   /// required strict binary compatibility with older versions of GCC
1947   /// may need to exempt themselves.
1948   bool honorsRevision0_98() const {
1949     return !getTarget().getTriple().isOSDarwin();
1950   }
1951 
1952   /// GCC classifies <1 x long long> as SSE but compatibility with older clang
1953   // compilers require us to classify it as INTEGER.
1954   bool classifyIntegerMMXAsSSE() const {
1955     const llvm::Triple &Triple = getTarget().getTriple();
1956     if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4)
1957       return false;
1958     if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10)
1959       return false;
1960     return true;
1961   }
1962 
1963   X86AVXABILevel AVXLevel;
1964   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
1965   // 64-bit hardware.
1966   bool Has64BitPointers;
1967 
1968 public:
1969   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) :
1970       SwiftABIInfo(CGT), AVXLevel(AVXLevel),
1971       Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
1972   }
1973 
1974   bool isPassedUsingAVXType(QualType type) const {
1975     unsigned neededInt, neededSSE;
1976     // The freeIntRegs argument doesn't matter here.
1977     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
1978                                            /*isNamedArg*/true);
1979     if (info.isDirect()) {
1980       llvm::Type *ty = info.getCoerceToType();
1981       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
1982         return (vectorTy->getBitWidth() > 128);
1983     }
1984     return false;
1985   }
1986 
1987   void computeInfo(CGFunctionInfo &FI) const override;
1988 
1989   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1990                     QualType Ty) const override;
1991   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
1992                       QualType Ty) const override;
1993 
1994   bool has64BitPointers() const {
1995     return Has64BitPointers;
1996   }
1997 
1998   bool shouldPassIndirectlyForSwift(CharUnits totalSize,
1999                                     ArrayRef<llvm::Type*> scalars,
2000                                     bool asReturnValue) const override {
2001     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2002   }
2003 };
2004 
2005 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
2006 class WinX86_64ABIInfo : public ABIInfo {
2007 public:
2008   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT)
2009       : ABIInfo(CGT),
2010         IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {}
2011 
2012   void computeInfo(CGFunctionInfo &FI) const override;
2013 
2014   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2015                     QualType Ty) const override;
2016 
2017   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
2018     // FIXME: Assumes vectorcall is in use.
2019     return isX86VectorTypeForVectorCall(getContext(), Ty);
2020   }
2021 
2022   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
2023                                          uint64_t NumMembers) const override {
2024     // FIXME: Assumes vectorcall is in use.
2025     return isX86VectorCallAggregateSmallEnough(NumMembers);
2026   }
2027 
2028 private:
2029   ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs,
2030                       bool IsReturnType) const;
2031 
2032   bool IsMingw64;
2033 };
2034 
2035 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2036 public:
2037   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2038       : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {}
2039 
2040   const X86_64ABIInfo &getABIInfo() const {
2041     return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
2042   }
2043 
2044   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2045     return 7;
2046   }
2047 
2048   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2049                                llvm::Value *Address) const override {
2050     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2051 
2052     // 0-15 are the 16 integer registers.
2053     // 16 is %rip.
2054     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2055     return false;
2056   }
2057 
2058   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
2059                                   StringRef Constraint,
2060                                   llvm::Type* Ty) const override {
2061     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
2062   }
2063 
2064   bool isNoProtoCallVariadic(const CallArgList &args,
2065                              const FunctionNoProtoType *fnType) const override {
2066     // The default CC on x86-64 sets %al to the number of SSA
2067     // registers used, and GCC sets this when calling an unprototyped
2068     // function, so we override the default behavior.  However, don't do
2069     // that when AVX types are involved: the ABI explicitly states it is
2070     // undefined, and it doesn't work in practice because of how the ABI
2071     // defines varargs anyway.
2072     if (fnType->getCallConv() == CC_C) {
2073       bool HasAVXType = false;
2074       for (CallArgList::const_iterator
2075              it = args.begin(), ie = args.end(); it != ie; ++it) {
2076         if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
2077           HasAVXType = true;
2078           break;
2079         }
2080       }
2081 
2082       if (!HasAVXType)
2083         return true;
2084     }
2085 
2086     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
2087   }
2088 
2089   llvm::Constant *
2090   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
2091     unsigned Sig;
2092     if (getABIInfo().has64BitPointers())
2093       Sig = (0xeb << 0) |  // jmp rel8
2094             (0x0a << 8) |  //           .+0x0c
2095             ('F' << 16) |
2096             ('T' << 24);
2097     else
2098       Sig = (0xeb << 0) |  // jmp rel8
2099             (0x06 << 8) |  //           .+0x08
2100             ('F' << 16) |
2101             ('T' << 24);
2102     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
2103   }
2104 
2105   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2106                            CodeGen::CodeGenModule &CGM) const override {
2107     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2108       if (FD->hasAttr<AnyX86InterruptAttr>()) {
2109         llvm::Function *Fn = cast<llvm::Function>(GV);
2110         Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2111       }
2112     }
2113   }
2114 };
2115 
2116 class PS4TargetCodeGenInfo : public X86_64TargetCodeGenInfo {
2117 public:
2118   PS4TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2119     : X86_64TargetCodeGenInfo(CGT, AVXLevel) {}
2120 
2121   void getDependentLibraryOption(llvm::StringRef Lib,
2122                                  llvm::SmallString<24> &Opt) const override {
2123     Opt = "\01";
2124     // If the argument contains a space, enclose it in quotes.
2125     if (Lib.find(" ") != StringRef::npos)
2126       Opt += "\"" + Lib.str() + "\"";
2127     else
2128       Opt += Lib;
2129   }
2130 };
2131 
2132 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
2133   // If the argument does not end in .lib, automatically add the suffix.
2134   // If the argument contains a space, enclose it in quotes.
2135   // This matches the behavior of MSVC.
2136   bool Quote = (Lib.find(" ") != StringRef::npos);
2137   std::string ArgStr = Quote ? "\"" : "";
2138   ArgStr += Lib;
2139   if (!Lib.endswith_lower(".lib"))
2140     ArgStr += ".lib";
2141   ArgStr += Quote ? "\"" : "";
2142   return ArgStr;
2143 }
2144 
2145 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
2146 public:
2147   WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2148         bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI,
2149         unsigned NumRegisterParameters)
2150     : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI,
2151         Win32StructABI, NumRegisterParameters, false) {}
2152 
2153   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2154                            CodeGen::CodeGenModule &CGM) const override;
2155 
2156   void getDependentLibraryOption(llvm::StringRef Lib,
2157                                  llvm::SmallString<24> &Opt) const override {
2158     Opt = "/DEFAULTLIB:";
2159     Opt += qualifyWindowsLibrary(Lib);
2160   }
2161 
2162   void getDetectMismatchOption(llvm::StringRef Name,
2163                                llvm::StringRef Value,
2164                                llvm::SmallString<32> &Opt) const override {
2165     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2166   }
2167 };
2168 
2169 static void addStackProbeSizeTargetAttribute(const Decl *D,
2170                                              llvm::GlobalValue *GV,
2171                                              CodeGen::CodeGenModule &CGM) {
2172   if (D && isa<FunctionDecl>(D)) {
2173     if (CGM.getCodeGenOpts().StackProbeSize != 4096) {
2174       llvm::Function *Fn = cast<llvm::Function>(GV);
2175 
2176       Fn->addFnAttr("stack-probe-size",
2177                     llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
2178     }
2179   }
2180 }
2181 
2182 void WinX86_32TargetCodeGenInfo::setTargetAttributes(const Decl *D,
2183                                                      llvm::GlobalValue *GV,
2184                                             CodeGen::CodeGenModule &CGM) const {
2185   X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2186 
2187   addStackProbeSizeTargetAttribute(D, GV, CGM);
2188 }
2189 
2190 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2191 public:
2192   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2193                              X86AVXABILevel AVXLevel)
2194       : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
2195 
2196   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2197                            CodeGen::CodeGenModule &CGM) const override;
2198 
2199   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2200     return 7;
2201   }
2202 
2203   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2204                                llvm::Value *Address) const override {
2205     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2206 
2207     // 0-15 are the 16 integer registers.
2208     // 16 is %rip.
2209     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2210     return false;
2211   }
2212 
2213   void getDependentLibraryOption(llvm::StringRef Lib,
2214                                  llvm::SmallString<24> &Opt) const override {
2215     Opt = "/DEFAULTLIB:";
2216     Opt += qualifyWindowsLibrary(Lib);
2217   }
2218 
2219   void getDetectMismatchOption(llvm::StringRef Name,
2220                                llvm::StringRef Value,
2221                                llvm::SmallString<32> &Opt) const override {
2222     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2223   }
2224 };
2225 
2226 void WinX86_64TargetCodeGenInfo::setTargetAttributes(const Decl *D,
2227                                                      llvm::GlobalValue *GV,
2228                                             CodeGen::CodeGenModule &CGM) const {
2229   TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2230 
2231   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2232     if (FD->hasAttr<AnyX86InterruptAttr>()) {
2233       llvm::Function *Fn = cast<llvm::Function>(GV);
2234       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2235     }
2236   }
2237 
2238   addStackProbeSizeTargetAttribute(D, GV, CGM);
2239 }
2240 }
2241 
2242 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
2243                               Class &Hi) const {
2244   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
2245   //
2246   // (a) If one of the classes is Memory, the whole argument is passed in
2247   //     memory.
2248   //
2249   // (b) If X87UP is not preceded by X87, the whole argument is passed in
2250   //     memory.
2251   //
2252   // (c) If the size of the aggregate exceeds two eightbytes and the first
2253   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
2254   //     argument is passed in memory. NOTE: This is necessary to keep the
2255   //     ABI working for processors that don't support the __m256 type.
2256   //
2257   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
2258   //
2259   // Some of these are enforced by the merging logic.  Others can arise
2260   // only with unions; for example:
2261   //   union { _Complex double; unsigned; }
2262   //
2263   // Note that clauses (b) and (c) were added in 0.98.
2264   //
2265   if (Hi == Memory)
2266     Lo = Memory;
2267   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
2268     Lo = Memory;
2269   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
2270     Lo = Memory;
2271   if (Hi == SSEUp && Lo != SSE)
2272     Hi = SSE;
2273 }
2274 
2275 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
2276   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
2277   // classified recursively so that always two fields are
2278   // considered. The resulting class is calculated according to
2279   // the classes of the fields in the eightbyte:
2280   //
2281   // (a) If both classes are equal, this is the resulting class.
2282   //
2283   // (b) If one of the classes is NO_CLASS, the resulting class is
2284   // the other class.
2285   //
2286   // (c) If one of the classes is MEMORY, the result is the MEMORY
2287   // class.
2288   //
2289   // (d) If one of the classes is INTEGER, the result is the
2290   // INTEGER.
2291   //
2292   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
2293   // MEMORY is used as class.
2294   //
2295   // (f) Otherwise class SSE is used.
2296 
2297   // Accum should never be memory (we should have returned) or
2298   // ComplexX87 (because this cannot be passed in a structure).
2299   assert((Accum != Memory && Accum != ComplexX87) &&
2300          "Invalid accumulated classification during merge.");
2301   if (Accum == Field || Field == NoClass)
2302     return Accum;
2303   if (Field == Memory)
2304     return Memory;
2305   if (Accum == NoClass)
2306     return Field;
2307   if (Accum == Integer || Field == Integer)
2308     return Integer;
2309   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
2310       Accum == X87 || Accum == X87Up)
2311     return Memory;
2312   return SSE;
2313 }
2314 
2315 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
2316                              Class &Lo, Class &Hi, bool isNamedArg) const {
2317   // FIXME: This code can be simplified by introducing a simple value class for
2318   // Class pairs with appropriate constructor methods for the various
2319   // situations.
2320 
2321   // FIXME: Some of the split computations are wrong; unaligned vectors
2322   // shouldn't be passed in registers for example, so there is no chance they
2323   // can straddle an eightbyte. Verify & simplify.
2324 
2325   Lo = Hi = NoClass;
2326 
2327   Class &Current = OffsetBase < 64 ? Lo : Hi;
2328   Current = Memory;
2329 
2330   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
2331     BuiltinType::Kind k = BT->getKind();
2332 
2333     if (k == BuiltinType::Void) {
2334       Current = NoClass;
2335     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
2336       Lo = Integer;
2337       Hi = Integer;
2338     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
2339       Current = Integer;
2340     } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
2341       Current = SSE;
2342     } else if (k == BuiltinType::LongDouble) {
2343       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2344       if (LDF == &llvm::APFloat::IEEEquad) {
2345         Lo = SSE;
2346         Hi = SSEUp;
2347       } else if (LDF == &llvm::APFloat::x87DoubleExtended) {
2348         Lo = X87;
2349         Hi = X87Up;
2350       } else if (LDF == &llvm::APFloat::IEEEdouble) {
2351         Current = SSE;
2352       } else
2353         llvm_unreachable("unexpected long double representation!");
2354     }
2355     // FIXME: _Decimal32 and _Decimal64 are SSE.
2356     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
2357     return;
2358   }
2359 
2360   if (const EnumType *ET = Ty->getAs<EnumType>()) {
2361     // Classify the underlying integer type.
2362     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
2363     return;
2364   }
2365 
2366   if (Ty->hasPointerRepresentation()) {
2367     Current = Integer;
2368     return;
2369   }
2370 
2371   if (Ty->isMemberPointerType()) {
2372     if (Ty->isMemberFunctionPointerType()) {
2373       if (Has64BitPointers) {
2374         // If Has64BitPointers, this is an {i64, i64}, so classify both
2375         // Lo and Hi now.
2376         Lo = Hi = Integer;
2377       } else {
2378         // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
2379         // straddles an eightbyte boundary, Hi should be classified as well.
2380         uint64_t EB_FuncPtr = (OffsetBase) / 64;
2381         uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
2382         if (EB_FuncPtr != EB_ThisAdj) {
2383           Lo = Hi = Integer;
2384         } else {
2385           Current = Integer;
2386         }
2387       }
2388     } else {
2389       Current = Integer;
2390     }
2391     return;
2392   }
2393 
2394   if (const VectorType *VT = Ty->getAs<VectorType>()) {
2395     uint64_t Size = getContext().getTypeSize(VT);
2396     if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
2397       // gcc passes the following as integer:
2398       // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
2399       // 2 bytes - <2 x char>, <1 x short>
2400       // 1 byte  - <1 x char>
2401       Current = Integer;
2402 
2403       // If this type crosses an eightbyte boundary, it should be
2404       // split.
2405       uint64_t EB_Lo = (OffsetBase) / 64;
2406       uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
2407       if (EB_Lo != EB_Hi)
2408         Hi = Lo;
2409     } else if (Size == 64) {
2410       QualType ElementType = VT->getElementType();
2411 
2412       // gcc passes <1 x double> in memory. :(
2413       if (ElementType->isSpecificBuiltinType(BuiltinType::Double))
2414         return;
2415 
2416       // gcc passes <1 x long long> as SSE but clang used to unconditionally
2417       // pass them as integer.  For platforms where clang is the de facto
2418       // platform compiler, we must continue to use integer.
2419       if (!classifyIntegerMMXAsSSE() &&
2420           (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) ||
2421            ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
2422            ElementType->isSpecificBuiltinType(BuiltinType::Long) ||
2423            ElementType->isSpecificBuiltinType(BuiltinType::ULong)))
2424         Current = Integer;
2425       else
2426         Current = SSE;
2427 
2428       // If this type crosses an eightbyte boundary, it should be
2429       // split.
2430       if (OffsetBase && OffsetBase != 64)
2431         Hi = Lo;
2432     } else if (Size == 128 ||
2433                (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
2434       // Arguments of 256-bits are split into four eightbyte chunks. The
2435       // least significant one belongs to class SSE and all the others to class
2436       // SSEUP. The original Lo and Hi design considers that types can't be
2437       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
2438       // This design isn't correct for 256-bits, but since there're no cases
2439       // where the upper parts would need to be inspected, avoid adding
2440       // complexity and just consider Hi to match the 64-256 part.
2441       //
2442       // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
2443       // registers if they are "named", i.e. not part of the "..." of a
2444       // variadic function.
2445       //
2446       // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
2447       // split into eight eightbyte chunks, one SSE and seven SSEUP.
2448       Lo = SSE;
2449       Hi = SSEUp;
2450     }
2451     return;
2452   }
2453 
2454   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
2455     QualType ET = getContext().getCanonicalType(CT->getElementType());
2456 
2457     uint64_t Size = getContext().getTypeSize(Ty);
2458     if (ET->isIntegralOrEnumerationType()) {
2459       if (Size <= 64)
2460         Current = Integer;
2461       else if (Size <= 128)
2462         Lo = Hi = Integer;
2463     } else if (ET == getContext().FloatTy) {
2464       Current = SSE;
2465     } else if (ET == getContext().DoubleTy) {
2466       Lo = Hi = SSE;
2467     } else if (ET == getContext().LongDoubleTy) {
2468       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2469       if (LDF == &llvm::APFloat::IEEEquad)
2470         Current = Memory;
2471       else if (LDF == &llvm::APFloat::x87DoubleExtended)
2472         Current = ComplexX87;
2473       else if (LDF == &llvm::APFloat::IEEEdouble)
2474         Lo = Hi = SSE;
2475       else
2476         llvm_unreachable("unexpected long double representation!");
2477     }
2478 
2479     // If this complex type crosses an eightbyte boundary then it
2480     // should be split.
2481     uint64_t EB_Real = (OffsetBase) / 64;
2482     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
2483     if (Hi == NoClass && EB_Real != EB_Imag)
2484       Hi = Lo;
2485 
2486     return;
2487   }
2488 
2489   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
2490     // Arrays are treated like structures.
2491 
2492     uint64_t Size = getContext().getTypeSize(Ty);
2493 
2494     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2495     // than eight eightbytes, ..., it has class MEMORY.
2496     if (Size > 512)
2497       return;
2498 
2499     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
2500     // fields, it has class MEMORY.
2501     //
2502     // Only need to check alignment of array base.
2503     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
2504       return;
2505 
2506     // Otherwise implement simplified merge. We could be smarter about
2507     // this, but it isn't worth it and would be harder to verify.
2508     Current = NoClass;
2509     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
2510     uint64_t ArraySize = AT->getSize().getZExtValue();
2511 
2512     // The only case a 256-bit wide vector could be used is when the array
2513     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2514     // to work for sizes wider than 128, early check and fallback to memory.
2515     //
2516     if (Size > 128 &&
2517         (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel)))
2518       return;
2519 
2520     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
2521       Class FieldLo, FieldHi;
2522       classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
2523       Lo = merge(Lo, FieldLo);
2524       Hi = merge(Hi, FieldHi);
2525       if (Lo == Memory || Hi == Memory)
2526         break;
2527     }
2528 
2529     postMerge(Size, Lo, Hi);
2530     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
2531     return;
2532   }
2533 
2534   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2535     uint64_t Size = getContext().getTypeSize(Ty);
2536 
2537     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2538     // than eight eightbytes, ..., it has class MEMORY.
2539     if (Size > 512)
2540       return;
2541 
2542     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
2543     // copy constructor or a non-trivial destructor, it is passed by invisible
2544     // reference.
2545     if (getRecordArgABI(RT, getCXXABI()))
2546       return;
2547 
2548     const RecordDecl *RD = RT->getDecl();
2549 
2550     // Assume variable sized types are passed in memory.
2551     if (RD->hasFlexibleArrayMember())
2552       return;
2553 
2554     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2555 
2556     // Reset Lo class, this will be recomputed.
2557     Current = NoClass;
2558 
2559     // If this is a C++ record, classify the bases first.
2560     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2561       for (const auto &I : CXXRD->bases()) {
2562         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2563                "Unexpected base class!");
2564         const CXXRecordDecl *Base =
2565           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2566 
2567         // Classify this field.
2568         //
2569         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
2570         // single eightbyte, each is classified separately. Each eightbyte gets
2571         // initialized to class NO_CLASS.
2572         Class FieldLo, FieldHi;
2573         uint64_t Offset =
2574           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
2575         classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
2576         Lo = merge(Lo, FieldLo);
2577         Hi = merge(Hi, FieldHi);
2578         if (Lo == Memory || Hi == Memory) {
2579           postMerge(Size, Lo, Hi);
2580           return;
2581         }
2582       }
2583     }
2584 
2585     // Classify the fields one at a time, merging the results.
2586     unsigned idx = 0;
2587     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2588            i != e; ++i, ++idx) {
2589       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2590       bool BitField = i->isBitField();
2591 
2592       // Ignore padding bit-fields.
2593       if (BitField && i->isUnnamedBitfield())
2594         continue;
2595 
2596       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
2597       // four eightbytes, or it contains unaligned fields, it has class MEMORY.
2598       //
2599       // The only case a 256-bit wide vector could be used is when the struct
2600       // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2601       // to work for sizes wider than 128, early check and fallback to memory.
2602       //
2603       if (Size > 128 && (Size != getContext().getTypeSize(i->getType()) ||
2604                          Size > getNativeVectorSizeForAVXABI(AVXLevel))) {
2605         Lo = Memory;
2606         postMerge(Size, Lo, Hi);
2607         return;
2608       }
2609       // Note, skip this test for bit-fields, see below.
2610       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
2611         Lo = Memory;
2612         postMerge(Size, Lo, Hi);
2613         return;
2614       }
2615 
2616       // Classify this field.
2617       //
2618       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
2619       // exceeds a single eightbyte, each is classified
2620       // separately. Each eightbyte gets initialized to class
2621       // NO_CLASS.
2622       Class FieldLo, FieldHi;
2623 
2624       // Bit-fields require special handling, they do not force the
2625       // structure to be passed in memory even if unaligned, and
2626       // therefore they can straddle an eightbyte.
2627       if (BitField) {
2628         assert(!i->isUnnamedBitfield());
2629         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2630         uint64_t Size = i->getBitWidthValue(getContext());
2631 
2632         uint64_t EB_Lo = Offset / 64;
2633         uint64_t EB_Hi = (Offset + Size - 1) / 64;
2634 
2635         if (EB_Lo) {
2636           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
2637           FieldLo = NoClass;
2638           FieldHi = Integer;
2639         } else {
2640           FieldLo = Integer;
2641           FieldHi = EB_Hi ? Integer : NoClass;
2642         }
2643       } else
2644         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
2645       Lo = merge(Lo, FieldLo);
2646       Hi = merge(Hi, FieldHi);
2647       if (Lo == Memory || Hi == Memory)
2648         break;
2649     }
2650 
2651     postMerge(Size, Lo, Hi);
2652   }
2653 }
2654 
2655 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
2656   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2657   // place naturally.
2658   if (!isAggregateTypeForABI(Ty)) {
2659     // Treat an enum type as its underlying type.
2660     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2661       Ty = EnumTy->getDecl()->getIntegerType();
2662 
2663     return (Ty->isPromotableIntegerType() ?
2664             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2665   }
2666 
2667   return getNaturalAlignIndirect(Ty);
2668 }
2669 
2670 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
2671   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
2672     uint64_t Size = getContext().getTypeSize(VecTy);
2673     unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
2674     if (Size <= 64 || Size > LargestVector)
2675       return true;
2676   }
2677 
2678   return false;
2679 }
2680 
2681 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
2682                                             unsigned freeIntRegs) const {
2683   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2684   // place naturally.
2685   //
2686   // This assumption is optimistic, as there could be free registers available
2687   // when we need to pass this argument in memory, and LLVM could try to pass
2688   // the argument in the free register. This does not seem to happen currently,
2689   // but this code would be much safer if we could mark the argument with
2690   // 'onstack'. See PR12193.
2691   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
2692     // Treat an enum type as its underlying type.
2693     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2694       Ty = EnumTy->getDecl()->getIntegerType();
2695 
2696     return (Ty->isPromotableIntegerType() ?
2697             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2698   }
2699 
2700   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
2701     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
2702 
2703   // Compute the byval alignment. We specify the alignment of the byval in all
2704   // cases so that the mid-level optimizer knows the alignment of the byval.
2705   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
2706 
2707   // Attempt to avoid passing indirect results using byval when possible. This
2708   // is important for good codegen.
2709   //
2710   // We do this by coercing the value into a scalar type which the backend can
2711   // handle naturally (i.e., without using byval).
2712   //
2713   // For simplicity, we currently only do this when we have exhausted all of the
2714   // free integer registers. Doing this when there are free integer registers
2715   // would require more care, as we would have to ensure that the coerced value
2716   // did not claim the unused register. That would require either reording the
2717   // arguments to the function (so that any subsequent inreg values came first),
2718   // or only doing this optimization when there were no following arguments that
2719   // might be inreg.
2720   //
2721   // We currently expect it to be rare (particularly in well written code) for
2722   // arguments to be passed on the stack when there are still free integer
2723   // registers available (this would typically imply large structs being passed
2724   // by value), so this seems like a fair tradeoff for now.
2725   //
2726   // We can revisit this if the backend grows support for 'onstack' parameter
2727   // attributes. See PR12193.
2728   if (freeIntRegs == 0) {
2729     uint64_t Size = getContext().getTypeSize(Ty);
2730 
2731     // If this type fits in an eightbyte, coerce it into the matching integral
2732     // type, which will end up on the stack (with alignment 8).
2733     if (Align == 8 && Size <= 64)
2734       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2735                                                           Size));
2736   }
2737 
2738   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align));
2739 }
2740 
2741 /// The ABI specifies that a value should be passed in a full vector XMM/YMM
2742 /// register. Pick an LLVM IR type that will be passed as a vector register.
2743 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
2744   // Wrapper structs/arrays that only contain vectors are passed just like
2745   // vectors; strip them off if present.
2746   if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
2747     Ty = QualType(InnerTy, 0);
2748 
2749   llvm::Type *IRType = CGT.ConvertType(Ty);
2750   if (isa<llvm::VectorType>(IRType) ||
2751       IRType->getTypeID() == llvm::Type::FP128TyID)
2752     return IRType;
2753 
2754   // We couldn't find the preferred IR vector type for 'Ty'.
2755   uint64_t Size = getContext().getTypeSize(Ty);
2756   assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!");
2757 
2758   // Return a LLVM IR vector type based on the size of 'Ty'.
2759   return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()),
2760                                Size / 64);
2761 }
2762 
2763 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
2764 /// is known to either be off the end of the specified type or being in
2765 /// alignment padding.  The user type specified is known to be at most 128 bits
2766 /// in size, and have passed through X86_64ABIInfo::classify with a successful
2767 /// classification that put one of the two halves in the INTEGER class.
2768 ///
2769 /// It is conservatively correct to return false.
2770 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
2771                                   unsigned EndBit, ASTContext &Context) {
2772   // If the bytes being queried are off the end of the type, there is no user
2773   // data hiding here.  This handles analysis of builtins, vectors and other
2774   // types that don't contain interesting padding.
2775   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
2776   if (TySize <= StartBit)
2777     return true;
2778 
2779   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
2780     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
2781     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
2782 
2783     // Check each element to see if the element overlaps with the queried range.
2784     for (unsigned i = 0; i != NumElts; ++i) {
2785       // If the element is after the span we care about, then we're done..
2786       unsigned EltOffset = i*EltSize;
2787       if (EltOffset >= EndBit) break;
2788 
2789       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
2790       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
2791                                  EndBit-EltOffset, Context))
2792         return false;
2793     }
2794     // If it overlaps no elements, then it is safe to process as padding.
2795     return true;
2796   }
2797 
2798   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2799     const RecordDecl *RD = RT->getDecl();
2800     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
2801 
2802     // If this is a C++ record, check the bases first.
2803     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2804       for (const auto &I : CXXRD->bases()) {
2805         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2806                "Unexpected base class!");
2807         const CXXRecordDecl *Base =
2808           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2809 
2810         // If the base is after the span we care about, ignore it.
2811         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
2812         if (BaseOffset >= EndBit) continue;
2813 
2814         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
2815         if (!BitsContainNoUserData(I.getType(), BaseStart,
2816                                    EndBit-BaseOffset, Context))
2817           return false;
2818       }
2819     }
2820 
2821     // Verify that no field has data that overlaps the region of interest.  Yes
2822     // this could be sped up a lot by being smarter about queried fields,
2823     // however we're only looking at structs up to 16 bytes, so we don't care
2824     // much.
2825     unsigned idx = 0;
2826     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2827          i != e; ++i, ++idx) {
2828       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
2829 
2830       // If we found a field after the region we care about, then we're done.
2831       if (FieldOffset >= EndBit) break;
2832 
2833       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
2834       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
2835                                  Context))
2836         return false;
2837     }
2838 
2839     // If nothing in this record overlapped the area of interest, then we're
2840     // clean.
2841     return true;
2842   }
2843 
2844   return false;
2845 }
2846 
2847 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
2848 /// float member at the specified offset.  For example, {int,{float}} has a
2849 /// float at offset 4.  It is conservatively correct for this routine to return
2850 /// false.
2851 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
2852                                   const llvm::DataLayout &TD) {
2853   // Base case if we find a float.
2854   if (IROffset == 0 && IRType->isFloatTy())
2855     return true;
2856 
2857   // If this is a struct, recurse into the field at the specified offset.
2858   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2859     const llvm::StructLayout *SL = TD.getStructLayout(STy);
2860     unsigned Elt = SL->getElementContainingOffset(IROffset);
2861     IROffset -= SL->getElementOffset(Elt);
2862     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
2863   }
2864 
2865   // If this is an array, recurse into the field at the specified offset.
2866   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2867     llvm::Type *EltTy = ATy->getElementType();
2868     unsigned EltSize = TD.getTypeAllocSize(EltTy);
2869     IROffset -= IROffset/EltSize*EltSize;
2870     return ContainsFloatAtOffset(EltTy, IROffset, TD);
2871   }
2872 
2873   return false;
2874 }
2875 
2876 
2877 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
2878 /// low 8 bytes of an XMM register, corresponding to the SSE class.
2879 llvm::Type *X86_64ABIInfo::
2880 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2881                    QualType SourceTy, unsigned SourceOffset) const {
2882   // The only three choices we have are either double, <2 x float>, or float. We
2883   // pass as float if the last 4 bytes is just padding.  This happens for
2884   // structs that contain 3 floats.
2885   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
2886                             SourceOffset*8+64, getContext()))
2887     return llvm::Type::getFloatTy(getVMContext());
2888 
2889   // We want to pass as <2 x float> if the LLVM IR type contains a float at
2890   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
2891   // case.
2892   if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
2893       ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
2894     return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
2895 
2896   return llvm::Type::getDoubleTy(getVMContext());
2897 }
2898 
2899 
2900 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
2901 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
2902 /// about the high or low part of an up-to-16-byte struct.  This routine picks
2903 /// the best LLVM IR type to represent this, which may be i64 or may be anything
2904 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
2905 /// etc).
2906 ///
2907 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
2908 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
2909 /// the 8-byte value references.  PrefType may be null.
2910 ///
2911 /// SourceTy is the source-level type for the entire argument.  SourceOffset is
2912 /// an offset into this that we're processing (which is always either 0 or 8).
2913 ///
2914 llvm::Type *X86_64ABIInfo::
2915 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2916                        QualType SourceTy, unsigned SourceOffset) const {
2917   // If we're dealing with an un-offset LLVM IR type, then it means that we're
2918   // returning an 8-byte unit starting with it.  See if we can safely use it.
2919   if (IROffset == 0) {
2920     // Pointers and int64's always fill the 8-byte unit.
2921     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
2922         IRType->isIntegerTy(64))
2923       return IRType;
2924 
2925     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
2926     // goodness in the source type is just tail padding.  This is allowed to
2927     // kick in for struct {double,int} on the int, but not on
2928     // struct{double,int,int} because we wouldn't return the second int.  We
2929     // have to do this analysis on the source type because we can't depend on
2930     // unions being lowered a specific way etc.
2931     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
2932         IRType->isIntegerTy(32) ||
2933         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
2934       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
2935           cast<llvm::IntegerType>(IRType)->getBitWidth();
2936 
2937       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
2938                                 SourceOffset*8+64, getContext()))
2939         return IRType;
2940     }
2941   }
2942 
2943   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2944     // If this is a struct, recurse into the field at the specified offset.
2945     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
2946     if (IROffset < SL->getSizeInBytes()) {
2947       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
2948       IROffset -= SL->getElementOffset(FieldIdx);
2949 
2950       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
2951                                     SourceTy, SourceOffset);
2952     }
2953   }
2954 
2955   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2956     llvm::Type *EltTy = ATy->getElementType();
2957     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
2958     unsigned EltOffset = IROffset/EltSize*EltSize;
2959     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
2960                                   SourceOffset);
2961   }
2962 
2963   // Okay, we don't have any better idea of what to pass, so we pass this in an
2964   // integer register that isn't too big to fit the rest of the struct.
2965   unsigned TySizeInBytes =
2966     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
2967 
2968   assert(TySizeInBytes != SourceOffset && "Empty field?");
2969 
2970   // It is always safe to classify this as an integer type up to i64 that
2971   // isn't larger than the structure.
2972   return llvm::IntegerType::get(getVMContext(),
2973                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
2974 }
2975 
2976 
2977 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
2978 /// be used as elements of a two register pair to pass or return, return a
2979 /// first class aggregate to represent them.  For example, if the low part of
2980 /// a by-value argument should be passed as i32* and the high part as float,
2981 /// return {i32*, float}.
2982 static llvm::Type *
2983 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
2984                            const llvm::DataLayout &TD) {
2985   // In order to correctly satisfy the ABI, we need to the high part to start
2986   // at offset 8.  If the high and low parts we inferred are both 4-byte types
2987   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
2988   // the second element at offset 8.  Check for this:
2989   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
2990   unsigned HiAlign = TD.getABITypeAlignment(Hi);
2991   unsigned HiStart = llvm::alignTo(LoSize, HiAlign);
2992   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
2993 
2994   // To handle this, we have to increase the size of the low part so that the
2995   // second element will start at an 8 byte offset.  We can't increase the size
2996   // of the second element because it might make us access off the end of the
2997   // struct.
2998   if (HiStart != 8) {
2999     // There are usually two sorts of types the ABI generation code can produce
3000     // for the low part of a pair that aren't 8 bytes in size: float or
3001     // i8/i16/i32.  This can also include pointers when they are 32-bit (X32 and
3002     // NaCl).
3003     // Promote these to a larger type.
3004     if (Lo->isFloatTy())
3005       Lo = llvm::Type::getDoubleTy(Lo->getContext());
3006     else {
3007       assert((Lo->isIntegerTy() || Lo->isPointerTy())
3008              && "Invalid/unknown lo type");
3009       Lo = llvm::Type::getInt64Ty(Lo->getContext());
3010     }
3011   }
3012 
3013   llvm::StructType *Result = llvm::StructType::get(Lo, Hi, nullptr);
3014 
3015 
3016   // Verify that the second element is at an 8-byte offset.
3017   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
3018          "Invalid x86-64 argument pair!");
3019   return Result;
3020 }
3021 
3022 ABIArgInfo X86_64ABIInfo::
3023 classifyReturnType(QualType RetTy) const {
3024   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
3025   // classification algorithm.
3026   X86_64ABIInfo::Class Lo, Hi;
3027   classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
3028 
3029   // Check some invariants.
3030   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3031   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3032 
3033   llvm::Type *ResType = nullptr;
3034   switch (Lo) {
3035   case NoClass:
3036     if (Hi == NoClass)
3037       return ABIArgInfo::getIgnore();
3038     // If the low part is just padding, it takes no register, leave ResType
3039     // null.
3040     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3041            "Unknown missing lo part");
3042     break;
3043 
3044   case SSEUp:
3045   case X87Up:
3046     llvm_unreachable("Invalid classification for lo word.");
3047 
3048     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
3049     // hidden argument.
3050   case Memory:
3051     return getIndirectReturnResult(RetTy);
3052 
3053     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
3054     // available register of the sequence %rax, %rdx is used.
3055   case Integer:
3056     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3057 
3058     // If we have a sign or zero extended integer, make sure to return Extend
3059     // so that the parameter gets the right LLVM IR attributes.
3060     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3061       // Treat an enum type as its underlying type.
3062       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3063         RetTy = EnumTy->getDecl()->getIntegerType();
3064 
3065       if (RetTy->isIntegralOrEnumerationType() &&
3066           RetTy->isPromotableIntegerType())
3067         return ABIArgInfo::getExtend();
3068     }
3069     break;
3070 
3071     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
3072     // available SSE register of the sequence %xmm0, %xmm1 is used.
3073   case SSE:
3074     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3075     break;
3076 
3077     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
3078     // returned on the X87 stack in %st0 as 80-bit x87 number.
3079   case X87:
3080     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
3081     break;
3082 
3083     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
3084     // part of the value is returned in %st0 and the imaginary part in
3085     // %st1.
3086   case ComplexX87:
3087     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
3088     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
3089                                     llvm::Type::getX86_FP80Ty(getVMContext()),
3090                                     nullptr);
3091     break;
3092   }
3093 
3094   llvm::Type *HighPart = nullptr;
3095   switch (Hi) {
3096     // Memory was handled previously and X87 should
3097     // never occur as a hi class.
3098   case Memory:
3099   case X87:
3100     llvm_unreachable("Invalid classification for hi word.");
3101 
3102   case ComplexX87: // Previously handled.
3103   case NoClass:
3104     break;
3105 
3106   case Integer:
3107     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3108     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3109       return ABIArgInfo::getDirect(HighPart, 8);
3110     break;
3111   case SSE:
3112     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3113     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3114       return ABIArgInfo::getDirect(HighPart, 8);
3115     break;
3116 
3117     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
3118     // is passed in the next available eightbyte chunk if the last used
3119     // vector register.
3120     //
3121     // SSEUP should always be preceded by SSE, just widen.
3122   case SSEUp:
3123     assert(Lo == SSE && "Unexpected SSEUp classification.");
3124     ResType = GetByteVectorType(RetTy);
3125     break;
3126 
3127     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
3128     // returned together with the previous X87 value in %st0.
3129   case X87Up:
3130     // If X87Up is preceded by X87, we don't need to do
3131     // anything. However, in some cases with unions it may not be
3132     // preceded by X87. In such situations we follow gcc and pass the
3133     // extra bits in an SSE reg.
3134     if (Lo != X87) {
3135       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3136       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3137         return ABIArgInfo::getDirect(HighPart, 8);
3138     }
3139     break;
3140   }
3141 
3142   // If a high part was specified, merge it together with the low part.  It is
3143   // known to pass in the high eightbyte of the result.  We do this by forming a
3144   // first class struct aggregate with the high and low part: {low, high}
3145   if (HighPart)
3146     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3147 
3148   return ABIArgInfo::getDirect(ResType);
3149 }
3150 
3151 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
3152   QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
3153   bool isNamedArg)
3154   const
3155 {
3156   Ty = useFirstFieldIfTransparentUnion(Ty);
3157 
3158   X86_64ABIInfo::Class Lo, Hi;
3159   classify(Ty, 0, Lo, Hi, isNamedArg);
3160 
3161   // Check some invariants.
3162   // FIXME: Enforce these by construction.
3163   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3164   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3165 
3166   neededInt = 0;
3167   neededSSE = 0;
3168   llvm::Type *ResType = nullptr;
3169   switch (Lo) {
3170   case NoClass:
3171     if (Hi == NoClass)
3172       return ABIArgInfo::getIgnore();
3173     // If the low part is just padding, it takes no register, leave ResType
3174     // null.
3175     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3176            "Unknown missing lo part");
3177     break;
3178 
3179     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
3180     // on the stack.
3181   case Memory:
3182 
3183     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
3184     // COMPLEX_X87, it is passed in memory.
3185   case X87:
3186   case ComplexX87:
3187     if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
3188       ++neededInt;
3189     return getIndirectResult(Ty, freeIntRegs);
3190 
3191   case SSEUp:
3192   case X87Up:
3193     llvm_unreachable("Invalid classification for lo word.");
3194 
3195     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
3196     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
3197     // and %r9 is used.
3198   case Integer:
3199     ++neededInt;
3200 
3201     // Pick an 8-byte type based on the preferred type.
3202     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
3203 
3204     // If we have a sign or zero extended integer, make sure to return Extend
3205     // so that the parameter gets the right LLVM IR attributes.
3206     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3207       // Treat an enum type as its underlying type.
3208       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3209         Ty = EnumTy->getDecl()->getIntegerType();
3210 
3211       if (Ty->isIntegralOrEnumerationType() &&
3212           Ty->isPromotableIntegerType())
3213         return ABIArgInfo::getExtend();
3214     }
3215 
3216     break;
3217 
3218     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
3219     // available SSE register is used, the registers are taken in the
3220     // order from %xmm0 to %xmm7.
3221   case SSE: {
3222     llvm::Type *IRType = CGT.ConvertType(Ty);
3223     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
3224     ++neededSSE;
3225     break;
3226   }
3227   }
3228 
3229   llvm::Type *HighPart = nullptr;
3230   switch (Hi) {
3231     // Memory was handled previously, ComplexX87 and X87 should
3232     // never occur as hi classes, and X87Up must be preceded by X87,
3233     // which is passed in memory.
3234   case Memory:
3235   case X87:
3236   case ComplexX87:
3237     llvm_unreachable("Invalid classification for hi word.");
3238 
3239   case NoClass: break;
3240 
3241   case Integer:
3242     ++neededInt;
3243     // Pick an 8-byte type based on the preferred type.
3244     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3245 
3246     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3247       return ABIArgInfo::getDirect(HighPart, 8);
3248     break;
3249 
3250     // X87Up generally doesn't occur here (long double is passed in
3251     // memory), except in situations involving unions.
3252   case X87Up:
3253   case SSE:
3254     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3255 
3256     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3257       return ABIArgInfo::getDirect(HighPart, 8);
3258 
3259     ++neededSSE;
3260     break;
3261 
3262     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
3263     // eightbyte is passed in the upper half of the last used SSE
3264     // register.  This only happens when 128-bit vectors are passed.
3265   case SSEUp:
3266     assert(Lo == SSE && "Unexpected SSEUp classification");
3267     ResType = GetByteVectorType(Ty);
3268     break;
3269   }
3270 
3271   // If a high part was specified, merge it together with the low part.  It is
3272   // known to pass in the high eightbyte of the result.  We do this by forming a
3273   // first class struct aggregate with the high and low part: {low, high}
3274   if (HighPart)
3275     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3276 
3277   return ABIArgInfo::getDirect(ResType);
3278 }
3279 
3280 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3281 
3282   if (!getCXXABI().classifyReturnType(FI))
3283     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3284 
3285   // Keep track of the number of assigned registers.
3286   unsigned freeIntRegs = 6, freeSSERegs = 8;
3287 
3288   // If the return value is indirect, then the hidden argument is consuming one
3289   // integer register.
3290   if (FI.getReturnInfo().isIndirect())
3291     --freeIntRegs;
3292 
3293   // The chain argument effectively gives us another free register.
3294   if (FI.isChainCall())
3295     ++freeIntRegs;
3296 
3297   unsigned NumRequiredArgs = FI.getNumRequiredArgs();
3298   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
3299   // get assigned (in left-to-right order) for passing as follows...
3300   unsigned ArgNo = 0;
3301   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3302        it != ie; ++it, ++ArgNo) {
3303     bool IsNamedArg = ArgNo < NumRequiredArgs;
3304 
3305     unsigned neededInt, neededSSE;
3306     it->info = classifyArgumentType(it->type, freeIntRegs, neededInt,
3307                                     neededSSE, IsNamedArg);
3308 
3309     // AMD64-ABI 3.2.3p3: If there are no registers available for any
3310     // eightbyte of an argument, the whole argument is passed on the
3311     // stack. If registers have already been assigned for some
3312     // eightbytes of such an argument, the assignments get reverted.
3313     if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
3314       freeIntRegs -= neededInt;
3315       freeSSERegs -= neededSSE;
3316     } else {
3317       it->info = getIndirectResult(it->type, freeIntRegs);
3318     }
3319   }
3320 }
3321 
3322 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF,
3323                                          Address VAListAddr, QualType Ty) {
3324   Address overflow_arg_area_p = CGF.Builder.CreateStructGEP(
3325       VAListAddr, 2, CharUnits::fromQuantity(8), "overflow_arg_area_p");
3326   llvm::Value *overflow_arg_area =
3327     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
3328 
3329   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
3330   // byte boundary if alignment needed by type exceeds 8 byte boundary.
3331   // It isn't stated explicitly in the standard, but in practice we use
3332   // alignment greater than 16 where necessary.
3333   CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
3334   if (Align > CharUnits::fromQuantity(8)) {
3335     overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area,
3336                                                       Align);
3337   }
3338 
3339   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
3340   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3341   llvm::Value *Res =
3342     CGF.Builder.CreateBitCast(overflow_arg_area,
3343                               llvm::PointerType::getUnqual(LTy));
3344 
3345   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
3346   // l->overflow_arg_area + sizeof(type).
3347   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
3348   // an 8 byte boundary.
3349 
3350   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
3351   llvm::Value *Offset =
3352       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
3353   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
3354                                             "overflow_arg_area.next");
3355   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
3356 
3357   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
3358   return Address(Res, Align);
3359 }
3360 
3361 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3362                                  QualType Ty) const {
3363   // Assume that va_list type is correct; should be pointer to LLVM type:
3364   // struct {
3365   //   i32 gp_offset;
3366   //   i32 fp_offset;
3367   //   i8* overflow_arg_area;
3368   //   i8* reg_save_area;
3369   // };
3370   unsigned neededInt, neededSSE;
3371 
3372   Ty = getContext().getCanonicalType(Ty);
3373   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
3374                                        /*isNamedArg*/false);
3375 
3376   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
3377   // in the registers. If not go to step 7.
3378   if (!neededInt && !neededSSE)
3379     return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3380 
3381   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
3382   // general purpose registers needed to pass type and num_fp to hold
3383   // the number of floating point registers needed.
3384 
3385   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
3386   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
3387   // l->fp_offset > 304 - num_fp * 16 go to step 7.
3388   //
3389   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
3390   // register save space).
3391 
3392   llvm::Value *InRegs = nullptr;
3393   Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid();
3394   llvm::Value *gp_offset = nullptr, *fp_offset = nullptr;
3395   if (neededInt) {
3396     gp_offset_p =
3397         CGF.Builder.CreateStructGEP(VAListAddr, 0, CharUnits::Zero(),
3398                                     "gp_offset_p");
3399     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
3400     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
3401     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
3402   }
3403 
3404   if (neededSSE) {
3405     fp_offset_p =
3406         CGF.Builder.CreateStructGEP(VAListAddr, 1, CharUnits::fromQuantity(4),
3407                                     "fp_offset_p");
3408     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
3409     llvm::Value *FitsInFP =
3410       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
3411     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
3412     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
3413   }
3414 
3415   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
3416   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
3417   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
3418   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
3419 
3420   // Emit code to load the value if it was passed in registers.
3421 
3422   CGF.EmitBlock(InRegBlock);
3423 
3424   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
3425   // an offset of l->gp_offset and/or l->fp_offset. This may require
3426   // copying to a temporary location in case the parameter is passed
3427   // in different register classes or requires an alignment greater
3428   // than 8 for general purpose registers and 16 for XMM registers.
3429   //
3430   // FIXME: This really results in shameful code when we end up needing to
3431   // collect arguments from different places; often what should result in a
3432   // simple assembling of a structure from scattered addresses has many more
3433   // loads than necessary. Can we clean this up?
3434   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3435   llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(
3436       CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(16)),
3437                                   "reg_save_area");
3438 
3439   Address RegAddr = Address::invalid();
3440   if (neededInt && neededSSE) {
3441     // FIXME: Cleanup.
3442     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
3443     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
3444     Address Tmp = CGF.CreateMemTemp(Ty);
3445     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
3446     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
3447     llvm::Type *TyLo = ST->getElementType(0);
3448     llvm::Type *TyHi = ST->getElementType(1);
3449     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
3450            "Unexpected ABI info for mixed regs");
3451     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
3452     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
3453     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset);
3454     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset);
3455     llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
3456     llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
3457 
3458     // Copy the first element.
3459     llvm::Value *V =
3460       CGF.Builder.CreateDefaultAlignedLoad(
3461                                CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
3462     CGF.Builder.CreateStore(V,
3463                     CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero()));
3464 
3465     // Copy the second element.
3466     V = CGF.Builder.CreateDefaultAlignedLoad(
3467                                CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
3468     CharUnits Offset = CharUnits::fromQuantity(
3469                    getDataLayout().getStructLayout(ST)->getElementOffset(1));
3470     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1, Offset));
3471 
3472     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
3473   } else if (neededInt) {
3474     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset),
3475                       CharUnits::fromQuantity(8));
3476     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
3477 
3478     // Copy to a temporary if necessary to ensure the appropriate alignment.
3479     std::pair<CharUnits, CharUnits> SizeAlign =
3480         getContext().getTypeInfoInChars(Ty);
3481     uint64_t TySize = SizeAlign.first.getQuantity();
3482     CharUnits TyAlign = SizeAlign.second;
3483 
3484     // Copy into a temporary if the type is more aligned than the
3485     // register save area.
3486     if (TyAlign.getQuantity() > 8) {
3487       Address Tmp = CGF.CreateMemTemp(Ty);
3488       CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false);
3489       RegAddr = Tmp;
3490     }
3491 
3492   } else if (neededSSE == 1) {
3493     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
3494                       CharUnits::fromQuantity(16));
3495     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
3496   } else {
3497     assert(neededSSE == 2 && "Invalid number of needed registers!");
3498     // SSE registers are spaced 16 bytes apart in the register save
3499     // area, we need to collect the two eightbytes together.
3500     // The ABI isn't explicit about this, but it seems reasonable
3501     // to assume that the slots are 16-byte aligned, since the stack is
3502     // naturally 16-byte aligned and the prologue is expected to store
3503     // all the SSE registers to the RSA.
3504     Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
3505                                 CharUnits::fromQuantity(16));
3506     Address RegAddrHi =
3507       CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo,
3508                                              CharUnits::fromQuantity(16));
3509     llvm::Type *DoubleTy = CGF.DoubleTy;
3510     llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, nullptr);
3511     llvm::Value *V;
3512     Address Tmp = CGF.CreateMemTemp(Ty);
3513     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
3514     V = CGF.Builder.CreateLoad(
3515                    CGF.Builder.CreateElementBitCast(RegAddrLo, DoubleTy));
3516     CGF.Builder.CreateStore(V,
3517                    CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero()));
3518     V = CGF.Builder.CreateLoad(
3519                    CGF.Builder.CreateElementBitCast(RegAddrHi, DoubleTy));
3520     CGF.Builder.CreateStore(V,
3521           CGF.Builder.CreateStructGEP(Tmp, 1, CharUnits::fromQuantity(8)));
3522 
3523     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
3524   }
3525 
3526   // AMD64-ABI 3.5.7p5: Step 5. Set:
3527   // l->gp_offset = l->gp_offset + num_gp * 8
3528   // l->fp_offset = l->fp_offset + num_fp * 16.
3529   if (neededInt) {
3530     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
3531     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
3532                             gp_offset_p);
3533   }
3534   if (neededSSE) {
3535     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
3536     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
3537                             fp_offset_p);
3538   }
3539   CGF.EmitBranch(ContBlock);
3540 
3541   // Emit code to load the value if it was passed in memory.
3542 
3543   CGF.EmitBlock(InMemBlock);
3544   Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3545 
3546   // Return the appropriate result.
3547 
3548   CGF.EmitBlock(ContBlock);
3549   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
3550                                  "vaarg.addr");
3551   return ResAddr;
3552 }
3553 
3554 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
3555                                    QualType Ty) const {
3556   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
3557                           CGF.getContext().getTypeInfoInChars(Ty),
3558                           CharUnits::fromQuantity(8),
3559                           /*allowHigherAlign*/ false);
3560 }
3561 
3562 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
3563                                       bool IsReturnType) const {
3564 
3565   if (Ty->isVoidType())
3566     return ABIArgInfo::getIgnore();
3567 
3568   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3569     Ty = EnumTy->getDecl()->getIntegerType();
3570 
3571   TypeInfo Info = getContext().getTypeInfo(Ty);
3572   uint64_t Width = Info.Width;
3573   CharUnits Align = getContext().toCharUnitsFromBits(Info.Align);
3574 
3575   const RecordType *RT = Ty->getAs<RecordType>();
3576   if (RT) {
3577     if (!IsReturnType) {
3578       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
3579         return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
3580     }
3581 
3582     if (RT->getDecl()->hasFlexibleArrayMember())
3583       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3584 
3585   }
3586 
3587   // vectorcall adds the concept of a homogenous vector aggregate, similar to
3588   // other targets.
3589   const Type *Base = nullptr;
3590   uint64_t NumElts = 0;
3591   if (FreeSSERegs && isHomogeneousAggregate(Ty, Base, NumElts)) {
3592     if (FreeSSERegs >= NumElts) {
3593       FreeSSERegs -= NumElts;
3594       if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
3595         return ABIArgInfo::getDirect();
3596       return ABIArgInfo::getExpand();
3597     }
3598     return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3599   }
3600 
3601 
3602   if (Ty->isMemberPointerType()) {
3603     // If the member pointer is represented by an LLVM int or ptr, pass it
3604     // directly.
3605     llvm::Type *LLTy = CGT.ConvertType(Ty);
3606     if (LLTy->isPointerTy() || LLTy->isIntegerTy())
3607       return ABIArgInfo::getDirect();
3608   }
3609 
3610   if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
3611     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
3612     // not 1, 2, 4, or 8 bytes, must be passed by reference."
3613     if (Width > 64 || !llvm::isPowerOf2_64(Width))
3614       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3615 
3616     // Otherwise, coerce it to a small integer.
3617     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
3618   }
3619 
3620   // Bool type is always extended to the ABI, other builtin types are not
3621   // extended.
3622   const BuiltinType *BT = Ty->getAs<BuiltinType>();
3623   if (BT && BT->getKind() == BuiltinType::Bool)
3624     return ABIArgInfo::getExtend();
3625 
3626   // Mingw64 GCC uses the old 80 bit extended precision floating point unit. It
3627   // passes them indirectly through memory.
3628   if (IsMingw64 && BT && BT->getKind() == BuiltinType::LongDouble) {
3629     const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
3630     if (LDF == &llvm::APFloat::x87DoubleExtended)
3631       return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3632   }
3633 
3634   return ABIArgInfo::getDirect();
3635 }
3636 
3637 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3638   bool IsVectorCall =
3639       FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall;
3640 
3641   // We can use up to 4 SSE return registers with vectorcall.
3642   unsigned FreeSSERegs = IsVectorCall ? 4 : 0;
3643   if (!getCXXABI().classifyReturnType(FI))
3644     FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true);
3645 
3646   // We can use up to 6 SSE register parameters with vectorcall.
3647   FreeSSERegs = IsVectorCall ? 6 : 0;
3648   for (auto &I : FI.arguments())
3649     I.info = classify(I.type, FreeSSERegs, false);
3650 }
3651 
3652 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3653                                     QualType Ty) const {
3654 
3655   bool IsIndirect = false;
3656 
3657   // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
3658   // not 1, 2, 4, or 8 bytes, must be passed by reference."
3659   if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) {
3660     uint64_t Width = getContext().getTypeSize(Ty);
3661     IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
3662   }
3663 
3664   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
3665                           CGF.getContext().getTypeInfoInChars(Ty),
3666                           CharUnits::fromQuantity(8),
3667                           /*allowHigherAlign*/ false);
3668 }
3669 
3670 // PowerPC-32
3671 namespace {
3672 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
3673 class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
3674 bool IsSoftFloatABI;
3675 public:
3676   PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI)
3677       : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI) {}
3678 
3679   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3680                     QualType Ty) const override;
3681 };
3682 
3683 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
3684 public:
3685   PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI)
3686       : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT, SoftFloatABI)) {}
3687 
3688   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3689     // This is recovered from gcc output.
3690     return 1; // r1 is the dedicated stack pointer
3691   }
3692 
3693   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3694                                llvm::Value *Address) const override;
3695 };
3696 
3697 }
3698 
3699 // TODO: this implementation is now likely redundant with
3700 // DefaultABIInfo::EmitVAArg.
3701 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList,
3702                                       QualType Ty) const {
3703   const unsigned OverflowLimit = 8;
3704   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
3705     // TODO: Implement this. For now ignore.
3706     (void)CTy;
3707     return Address::invalid(); // FIXME?
3708   }
3709 
3710   // struct __va_list_tag {
3711   //   unsigned char gpr;
3712   //   unsigned char fpr;
3713   //   unsigned short reserved;
3714   //   void *overflow_arg_area;
3715   //   void *reg_save_area;
3716   // };
3717 
3718   bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
3719   bool isInt =
3720       Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType();
3721   bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64;
3722 
3723   // All aggregates are passed indirectly?  That doesn't seem consistent
3724   // with the argument-lowering code.
3725   bool isIndirect = Ty->isAggregateType();
3726 
3727   CGBuilderTy &Builder = CGF.Builder;
3728 
3729   // The calling convention either uses 1-2 GPRs or 1 FPR.
3730   Address NumRegsAddr = Address::invalid();
3731   if (isInt || IsSoftFloatABI) {
3732     NumRegsAddr = Builder.CreateStructGEP(VAList, 0, CharUnits::Zero(), "gpr");
3733   } else {
3734     NumRegsAddr = Builder.CreateStructGEP(VAList, 1, CharUnits::One(), "fpr");
3735   }
3736 
3737   llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs");
3738 
3739   // "Align" the register count when TY is i64.
3740   if (isI64 || (isF64 && IsSoftFloatABI)) {
3741     NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1));
3742     NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U));
3743   }
3744 
3745   llvm::Value *CC =
3746       Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond");
3747 
3748   llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
3749   llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
3750   llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
3751 
3752   Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
3753 
3754   llvm::Type *DirectTy = CGF.ConvertType(Ty);
3755   if (isIndirect) DirectTy = DirectTy->getPointerTo(0);
3756 
3757   // Case 1: consume registers.
3758   Address RegAddr = Address::invalid();
3759   {
3760     CGF.EmitBlock(UsingRegs);
3761 
3762     Address RegSaveAreaPtr =
3763       Builder.CreateStructGEP(VAList, 4, CharUnits::fromQuantity(8));
3764     RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr),
3765                       CharUnits::fromQuantity(8));
3766     assert(RegAddr.getElementType() == CGF.Int8Ty);
3767 
3768     // Floating-point registers start after the general-purpose registers.
3769     if (!(isInt || IsSoftFloatABI)) {
3770       RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr,
3771                                                    CharUnits::fromQuantity(32));
3772     }
3773 
3774     // Get the address of the saved value by scaling the number of
3775     // registers we've used by the number of
3776     CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8);
3777     llvm::Value *RegOffset =
3778       Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity()));
3779     RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty,
3780                                             RegAddr.getPointer(), RegOffset),
3781                       RegAddr.getAlignment().alignmentOfArrayElement(RegSize));
3782     RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy);
3783 
3784     // Increase the used-register count.
3785     NumRegs =
3786       Builder.CreateAdd(NumRegs,
3787                         Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1));
3788     Builder.CreateStore(NumRegs, NumRegsAddr);
3789 
3790     CGF.EmitBranch(Cont);
3791   }
3792 
3793   // Case 2: consume space in the overflow area.
3794   Address MemAddr = Address::invalid();
3795   {
3796     CGF.EmitBlock(UsingOverflow);
3797 
3798     Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr);
3799 
3800     // Everything in the overflow area is rounded up to a size of at least 4.
3801     CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4);
3802 
3803     CharUnits Size;
3804     if (!isIndirect) {
3805       auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty);
3806       Size = TypeInfo.first.alignTo(OverflowAreaAlign);
3807     } else {
3808       Size = CGF.getPointerSize();
3809     }
3810 
3811     Address OverflowAreaAddr =
3812       Builder.CreateStructGEP(VAList, 3, CharUnits::fromQuantity(4));
3813     Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"),
3814                          OverflowAreaAlign);
3815     // Round up address of argument to alignment
3816     CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
3817     if (Align > OverflowAreaAlign) {
3818       llvm::Value *Ptr = OverflowArea.getPointer();
3819       OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align),
3820                                                            Align);
3821     }
3822 
3823     MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy);
3824 
3825     // Increase the overflow area.
3826     OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size);
3827     Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr);
3828     CGF.EmitBranch(Cont);
3829   }
3830 
3831   CGF.EmitBlock(Cont);
3832 
3833   // Merge the cases with a phi.
3834   Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow,
3835                                 "vaarg.addr");
3836 
3837   // Load the pointer if the argument was passed indirectly.
3838   if (isIndirect) {
3839     Result = Address(Builder.CreateLoad(Result, "aggr"),
3840                      getContext().getTypeAlignInChars(Ty));
3841   }
3842 
3843   return Result;
3844 }
3845 
3846 bool
3847 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3848                                                 llvm::Value *Address) const {
3849   // This is calculated from the LLVM and GCC tables and verified
3850   // against gcc output.  AFAIK all ABIs use the same encoding.
3851 
3852   CodeGen::CGBuilderTy &Builder = CGF.Builder;
3853 
3854   llvm::IntegerType *i8 = CGF.Int8Ty;
3855   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
3856   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
3857   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
3858 
3859   // 0-31: r0-31, the 4-byte general-purpose registers
3860   AssignToArrayRange(Builder, Address, Four8, 0, 31);
3861 
3862   // 32-63: fp0-31, the 8-byte floating-point registers
3863   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
3864 
3865   // 64-76 are various 4-byte special-purpose registers:
3866   // 64: mq
3867   // 65: lr
3868   // 66: ctr
3869   // 67: ap
3870   // 68-75 cr0-7
3871   // 76: xer
3872   AssignToArrayRange(Builder, Address, Four8, 64, 76);
3873 
3874   // 77-108: v0-31, the 16-byte vector registers
3875   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
3876 
3877   // 109: vrsave
3878   // 110: vscr
3879   // 111: spe_acc
3880   // 112: spefscr
3881   // 113: sfp
3882   AssignToArrayRange(Builder, Address, Four8, 109, 113);
3883 
3884   return false;
3885 }
3886 
3887 // PowerPC-64
3888 
3889 namespace {
3890 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
3891 class PPC64_SVR4_ABIInfo : public ABIInfo {
3892 public:
3893   enum ABIKind {
3894     ELFv1 = 0,
3895     ELFv2
3896   };
3897 
3898 private:
3899   static const unsigned GPRBits = 64;
3900   ABIKind Kind;
3901   bool HasQPX;
3902   bool IsSoftFloatABI;
3903 
3904   // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and
3905   // will be passed in a QPX register.
3906   bool IsQPXVectorTy(const Type *Ty) const {
3907     if (!HasQPX)
3908       return false;
3909 
3910     if (const VectorType *VT = Ty->getAs<VectorType>()) {
3911       unsigned NumElements = VT->getNumElements();
3912       if (NumElements == 1)
3913         return false;
3914 
3915       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) {
3916         if (getContext().getTypeSize(Ty) <= 256)
3917           return true;
3918       } else if (VT->getElementType()->
3919                    isSpecificBuiltinType(BuiltinType::Float)) {
3920         if (getContext().getTypeSize(Ty) <= 128)
3921           return true;
3922       }
3923     }
3924 
3925     return false;
3926   }
3927 
3928   bool IsQPXVectorTy(QualType Ty) const {
3929     return IsQPXVectorTy(Ty.getTypePtr());
3930   }
3931 
3932 public:
3933   PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX,
3934                      bool SoftFloatABI)
3935       : ABIInfo(CGT), Kind(Kind), HasQPX(HasQPX),
3936         IsSoftFloatABI(SoftFloatABI) {}
3937 
3938   bool isPromotableTypeForABI(QualType Ty) const;
3939   CharUnits getParamTypeAlignment(QualType Ty) const;
3940 
3941   ABIArgInfo classifyReturnType(QualType RetTy) const;
3942   ABIArgInfo classifyArgumentType(QualType Ty) const;
3943 
3944   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
3945   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
3946                                          uint64_t Members) const override;
3947 
3948   // TODO: We can add more logic to computeInfo to improve performance.
3949   // Example: For aggregate arguments that fit in a register, we could
3950   // use getDirectInReg (as is done below for structs containing a single
3951   // floating-point value) to avoid pushing them to memory on function
3952   // entry.  This would require changing the logic in PPCISelLowering
3953   // when lowering the parameters in the caller and args in the callee.
3954   void computeInfo(CGFunctionInfo &FI) const override {
3955     if (!getCXXABI().classifyReturnType(FI))
3956       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3957     for (auto &I : FI.arguments()) {
3958       // We rely on the default argument classification for the most part.
3959       // One exception:  An aggregate containing a single floating-point
3960       // or vector item must be passed in a register if one is available.
3961       const Type *T = isSingleElementStruct(I.type, getContext());
3962       if (T) {
3963         const BuiltinType *BT = T->getAs<BuiltinType>();
3964         if (IsQPXVectorTy(T) ||
3965             (T->isVectorType() && getContext().getTypeSize(T) == 128) ||
3966             (BT && BT->isFloatingPoint())) {
3967           QualType QT(T, 0);
3968           I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
3969           continue;
3970         }
3971       }
3972       I.info = classifyArgumentType(I.type);
3973     }
3974   }
3975 
3976   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3977                     QualType Ty) const override;
3978 };
3979 
3980 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
3981 
3982 public:
3983   PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT,
3984                                PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX,
3985                                bool SoftFloatABI)
3986       : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX,
3987                                                  SoftFloatABI)) {}
3988 
3989   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3990     // This is recovered from gcc output.
3991     return 1; // r1 is the dedicated stack pointer
3992   }
3993 
3994   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3995                                llvm::Value *Address) const override;
3996 };
3997 
3998 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
3999 public:
4000   PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
4001 
4002   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4003     // This is recovered from gcc output.
4004     return 1; // r1 is the dedicated stack pointer
4005   }
4006 
4007   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4008                                llvm::Value *Address) const override;
4009 };
4010 
4011 }
4012 
4013 // Return true if the ABI requires Ty to be passed sign- or zero-
4014 // extended to 64 bits.
4015 bool
4016 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
4017   // Treat an enum type as its underlying type.
4018   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4019     Ty = EnumTy->getDecl()->getIntegerType();
4020 
4021   // Promotable integer types are required to be promoted by the ABI.
4022   if (Ty->isPromotableIntegerType())
4023     return true;
4024 
4025   // In addition to the usual promotable integer types, we also need to
4026   // extend all 32-bit types, since the ABI requires promotion to 64 bits.
4027   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4028     switch (BT->getKind()) {
4029     case BuiltinType::Int:
4030     case BuiltinType::UInt:
4031       return true;
4032     default:
4033       break;
4034     }
4035 
4036   return false;
4037 }
4038 
4039 /// isAlignedParamType - Determine whether a type requires 16-byte or
4040 /// higher alignment in the parameter area.  Always returns at least 8.
4041 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
4042   // Complex types are passed just like their elements.
4043   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4044     Ty = CTy->getElementType();
4045 
4046   // Only vector types of size 16 bytes need alignment (larger types are
4047   // passed via reference, smaller types are not aligned).
4048   if (IsQPXVectorTy(Ty)) {
4049     if (getContext().getTypeSize(Ty) > 128)
4050       return CharUnits::fromQuantity(32);
4051 
4052     return CharUnits::fromQuantity(16);
4053   } else if (Ty->isVectorType()) {
4054     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8);
4055   }
4056 
4057   // For single-element float/vector structs, we consider the whole type
4058   // to have the same alignment requirements as its single element.
4059   const Type *AlignAsType = nullptr;
4060   const Type *EltType = isSingleElementStruct(Ty, getContext());
4061   if (EltType) {
4062     const BuiltinType *BT = EltType->getAs<BuiltinType>();
4063     if (IsQPXVectorTy(EltType) || (EltType->isVectorType() &&
4064          getContext().getTypeSize(EltType) == 128) ||
4065         (BT && BT->isFloatingPoint()))
4066       AlignAsType = EltType;
4067   }
4068 
4069   // Likewise for ELFv2 homogeneous aggregates.
4070   const Type *Base = nullptr;
4071   uint64_t Members = 0;
4072   if (!AlignAsType && Kind == ELFv2 &&
4073       isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
4074     AlignAsType = Base;
4075 
4076   // With special case aggregates, only vector base types need alignment.
4077   if (AlignAsType && IsQPXVectorTy(AlignAsType)) {
4078     if (getContext().getTypeSize(AlignAsType) > 128)
4079       return CharUnits::fromQuantity(32);
4080 
4081     return CharUnits::fromQuantity(16);
4082   } else if (AlignAsType) {
4083     return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8);
4084   }
4085 
4086   // Otherwise, we only need alignment for any aggregate type that
4087   // has an alignment requirement of >= 16 bytes.
4088   if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) {
4089     if (HasQPX && getContext().getTypeAlign(Ty) >= 256)
4090       return CharUnits::fromQuantity(32);
4091     return CharUnits::fromQuantity(16);
4092   }
4093 
4094   return CharUnits::fromQuantity(8);
4095 }
4096 
4097 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
4098 /// aggregate.  Base is set to the base element type, and Members is set
4099 /// to the number of base elements.
4100 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
4101                                      uint64_t &Members) const {
4102   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
4103     uint64_t NElements = AT->getSize().getZExtValue();
4104     if (NElements == 0)
4105       return false;
4106     if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
4107       return false;
4108     Members *= NElements;
4109   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
4110     const RecordDecl *RD = RT->getDecl();
4111     if (RD->hasFlexibleArrayMember())
4112       return false;
4113 
4114     Members = 0;
4115 
4116     // If this is a C++ record, check the bases first.
4117     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
4118       for (const auto &I : CXXRD->bases()) {
4119         // Ignore empty records.
4120         if (isEmptyRecord(getContext(), I.getType(), true))
4121           continue;
4122 
4123         uint64_t FldMembers;
4124         if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
4125           return false;
4126 
4127         Members += FldMembers;
4128       }
4129     }
4130 
4131     for (const auto *FD : RD->fields()) {
4132       // Ignore (non-zero arrays of) empty records.
4133       QualType FT = FD->getType();
4134       while (const ConstantArrayType *AT =
4135              getContext().getAsConstantArrayType(FT)) {
4136         if (AT->getSize().getZExtValue() == 0)
4137           return false;
4138         FT = AT->getElementType();
4139       }
4140       if (isEmptyRecord(getContext(), FT, true))
4141         continue;
4142 
4143       // For compatibility with GCC, ignore empty bitfields in C++ mode.
4144       if (getContext().getLangOpts().CPlusPlus &&
4145           FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
4146         continue;
4147 
4148       uint64_t FldMembers;
4149       if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
4150         return false;
4151 
4152       Members = (RD->isUnion() ?
4153                  std::max(Members, FldMembers) : Members + FldMembers);
4154     }
4155 
4156     if (!Base)
4157       return false;
4158 
4159     // Ensure there is no padding.
4160     if (getContext().getTypeSize(Base) * Members !=
4161         getContext().getTypeSize(Ty))
4162       return false;
4163   } else {
4164     Members = 1;
4165     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
4166       Members = 2;
4167       Ty = CT->getElementType();
4168     }
4169 
4170     // Most ABIs only support float, double, and some vector type widths.
4171     if (!isHomogeneousAggregateBaseType(Ty))
4172       return false;
4173 
4174     // The base type must be the same for all members.  Types that
4175     // agree in both total size and mode (float vs. vector) are
4176     // treated as being equivalent here.
4177     const Type *TyPtr = Ty.getTypePtr();
4178     if (!Base) {
4179       Base = TyPtr;
4180       // If it's a non-power-of-2 vector, its size is already a power-of-2,
4181       // so make sure to widen it explicitly.
4182       if (const VectorType *VT = Base->getAs<VectorType>()) {
4183         QualType EltTy = VT->getElementType();
4184         unsigned NumElements =
4185             getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy);
4186         Base = getContext()
4187                    .getVectorType(EltTy, NumElements, VT->getVectorKind())
4188                    .getTypePtr();
4189       }
4190     }
4191 
4192     if (Base->isVectorType() != TyPtr->isVectorType() ||
4193         getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
4194       return false;
4195   }
4196   return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
4197 }
4198 
4199 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
4200   // Homogeneous aggregates for ELFv2 must have base types of float,
4201   // double, long double, or 128-bit vectors.
4202   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4203     if (BT->getKind() == BuiltinType::Float ||
4204         BT->getKind() == BuiltinType::Double ||
4205         BT->getKind() == BuiltinType::LongDouble) {
4206       if (IsSoftFloatABI)
4207         return false;
4208       return true;
4209     }
4210   }
4211   if (const VectorType *VT = Ty->getAs<VectorType>()) {
4212     if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty))
4213       return true;
4214   }
4215   return false;
4216 }
4217 
4218 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough(
4219     const Type *Base, uint64_t Members) const {
4220   // Vector types require one register, floating point types require one
4221   // or two registers depending on their size.
4222   uint32_t NumRegs =
4223       Base->isVectorType() ? 1 : (getContext().getTypeSize(Base) + 63) / 64;
4224 
4225   // Homogeneous Aggregates may occupy at most 8 registers.
4226   return Members * NumRegs <= 8;
4227 }
4228 
4229 ABIArgInfo
4230 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
4231   Ty = useFirstFieldIfTransparentUnion(Ty);
4232 
4233   if (Ty->isAnyComplexType())
4234     return ABIArgInfo::getDirect();
4235 
4236   // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
4237   // or via reference (larger than 16 bytes).
4238   if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) {
4239     uint64_t Size = getContext().getTypeSize(Ty);
4240     if (Size > 128)
4241       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4242     else if (Size < 128) {
4243       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
4244       return ABIArgInfo::getDirect(CoerceTy);
4245     }
4246   }
4247 
4248   if (isAggregateTypeForABI(Ty)) {
4249     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
4250       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
4251 
4252     uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity();
4253     uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
4254 
4255     // ELFv2 homogeneous aggregates are passed as array types.
4256     const Type *Base = nullptr;
4257     uint64_t Members = 0;
4258     if (Kind == ELFv2 &&
4259         isHomogeneousAggregate(Ty, Base, Members)) {
4260       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
4261       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
4262       return ABIArgInfo::getDirect(CoerceTy);
4263     }
4264 
4265     // If an aggregate may end up fully in registers, we do not
4266     // use the ByVal method, but pass the aggregate as array.
4267     // This is usually beneficial since we avoid forcing the
4268     // back-end to store the argument to memory.
4269     uint64_t Bits = getContext().getTypeSize(Ty);
4270     if (Bits > 0 && Bits <= 8 * GPRBits) {
4271       llvm::Type *CoerceTy;
4272 
4273       // Types up to 8 bytes are passed as integer type (which will be
4274       // properly aligned in the argument save area doubleword).
4275       if (Bits <= GPRBits)
4276         CoerceTy =
4277             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
4278       // Larger types are passed as arrays, with the base type selected
4279       // according to the required alignment in the save area.
4280       else {
4281         uint64_t RegBits = ABIAlign * 8;
4282         uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits;
4283         llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
4284         CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
4285       }
4286 
4287       return ABIArgInfo::getDirect(CoerceTy);
4288     }
4289 
4290     // All other aggregates are passed ByVal.
4291     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
4292                                    /*ByVal=*/true,
4293                                    /*Realign=*/TyAlign > ABIAlign);
4294   }
4295 
4296   return (isPromotableTypeForABI(Ty) ?
4297           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4298 }
4299 
4300 ABIArgInfo
4301 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
4302   if (RetTy->isVoidType())
4303     return ABIArgInfo::getIgnore();
4304 
4305   if (RetTy->isAnyComplexType())
4306     return ABIArgInfo::getDirect();
4307 
4308   // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
4309   // or via reference (larger than 16 bytes).
4310   if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) {
4311     uint64_t Size = getContext().getTypeSize(RetTy);
4312     if (Size > 128)
4313       return getNaturalAlignIndirect(RetTy);
4314     else if (Size < 128) {
4315       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
4316       return ABIArgInfo::getDirect(CoerceTy);
4317     }
4318   }
4319 
4320   if (isAggregateTypeForABI(RetTy)) {
4321     // ELFv2 homogeneous aggregates are returned as array types.
4322     const Type *Base = nullptr;
4323     uint64_t Members = 0;
4324     if (Kind == ELFv2 &&
4325         isHomogeneousAggregate(RetTy, Base, Members)) {
4326       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
4327       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
4328       return ABIArgInfo::getDirect(CoerceTy);
4329     }
4330 
4331     // ELFv2 small aggregates are returned in up to two registers.
4332     uint64_t Bits = getContext().getTypeSize(RetTy);
4333     if (Kind == ELFv2 && Bits <= 2 * GPRBits) {
4334       if (Bits == 0)
4335         return ABIArgInfo::getIgnore();
4336 
4337       llvm::Type *CoerceTy;
4338       if (Bits > GPRBits) {
4339         CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
4340         CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy, nullptr);
4341       } else
4342         CoerceTy =
4343             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
4344       return ABIArgInfo::getDirect(CoerceTy);
4345     }
4346 
4347     // All other aggregates are returned indirectly.
4348     return getNaturalAlignIndirect(RetTy);
4349   }
4350 
4351   return (isPromotableTypeForABI(RetTy) ?
4352           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4353 }
4354 
4355 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
4356 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4357                                       QualType Ty) const {
4358   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
4359   TypeInfo.second = getParamTypeAlignment(Ty);
4360 
4361   CharUnits SlotSize = CharUnits::fromQuantity(8);
4362 
4363   // If we have a complex type and the base type is smaller than 8 bytes,
4364   // the ABI calls for the real and imaginary parts to be right-adjusted
4365   // in separate doublewords.  However, Clang expects us to produce a
4366   // pointer to a structure with the two parts packed tightly.  So generate
4367   // loads of the real and imaginary parts relative to the va_list pointer,
4368   // and store them to a temporary structure.
4369   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4370     CharUnits EltSize = TypeInfo.first / 2;
4371     if (EltSize < SlotSize) {
4372       Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty,
4373                                             SlotSize * 2, SlotSize,
4374                                             SlotSize, /*AllowHigher*/ true);
4375 
4376       Address RealAddr = Addr;
4377       Address ImagAddr = RealAddr;
4378       if (CGF.CGM.getDataLayout().isBigEndian()) {
4379         RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr,
4380                                                           SlotSize - EltSize);
4381         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr,
4382                                                       2 * SlotSize - EltSize);
4383       } else {
4384         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize);
4385       }
4386 
4387       llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType());
4388       RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy);
4389       ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy);
4390       llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal");
4391       llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag");
4392 
4393       Address Temp = CGF.CreateMemTemp(Ty, "vacplx");
4394       CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty),
4395                              /*init*/ true);
4396       return Temp;
4397     }
4398   }
4399 
4400   // Otherwise, just use the general rule.
4401   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
4402                           TypeInfo, SlotSize, /*AllowHigher*/ true);
4403 }
4404 
4405 static bool
4406 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4407                               llvm::Value *Address) {
4408   // This is calculated from the LLVM and GCC tables and verified
4409   // against gcc output.  AFAIK all ABIs use the same encoding.
4410 
4411   CodeGen::CGBuilderTy &Builder = CGF.Builder;
4412 
4413   llvm::IntegerType *i8 = CGF.Int8Ty;
4414   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
4415   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
4416   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
4417 
4418   // 0-31: r0-31, the 8-byte general-purpose registers
4419   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
4420 
4421   // 32-63: fp0-31, the 8-byte floating-point registers
4422   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
4423 
4424   // 64-67 are various 8-byte special-purpose registers:
4425   // 64: mq
4426   // 65: lr
4427   // 66: ctr
4428   // 67: ap
4429   AssignToArrayRange(Builder, Address, Eight8, 64, 67);
4430 
4431   // 68-76 are various 4-byte special-purpose registers:
4432   // 68-75 cr0-7
4433   // 76: xer
4434   AssignToArrayRange(Builder, Address, Four8, 68, 76);
4435 
4436   // 77-108: v0-31, the 16-byte vector registers
4437   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
4438 
4439   // 109: vrsave
4440   // 110: vscr
4441   // 111: spe_acc
4442   // 112: spefscr
4443   // 113: sfp
4444   // 114: tfhar
4445   // 115: tfiar
4446   // 116: texasr
4447   AssignToArrayRange(Builder, Address, Eight8, 109, 116);
4448 
4449   return false;
4450 }
4451 
4452 bool
4453 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
4454   CodeGen::CodeGenFunction &CGF,
4455   llvm::Value *Address) const {
4456 
4457   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
4458 }
4459 
4460 bool
4461 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4462                                                 llvm::Value *Address) const {
4463 
4464   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
4465 }
4466 
4467 //===----------------------------------------------------------------------===//
4468 // AArch64 ABI Implementation
4469 //===----------------------------------------------------------------------===//
4470 
4471 namespace {
4472 
4473 class AArch64ABIInfo : public SwiftABIInfo {
4474 public:
4475   enum ABIKind {
4476     AAPCS = 0,
4477     DarwinPCS
4478   };
4479 
4480 private:
4481   ABIKind Kind;
4482 
4483 public:
4484   AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind)
4485     : SwiftABIInfo(CGT), Kind(Kind) {}
4486 
4487 private:
4488   ABIKind getABIKind() const { return Kind; }
4489   bool isDarwinPCS() const { return Kind == DarwinPCS; }
4490 
4491   ABIArgInfo classifyReturnType(QualType RetTy) const;
4492   ABIArgInfo classifyArgumentType(QualType RetTy) const;
4493   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4494   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4495                                          uint64_t Members) const override;
4496 
4497   bool isIllegalVectorType(QualType Ty) const;
4498 
4499   void computeInfo(CGFunctionInfo &FI) const override {
4500     if (!getCXXABI().classifyReturnType(FI))
4501       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4502 
4503     for (auto &it : FI.arguments())
4504       it.info = classifyArgumentType(it.type);
4505   }
4506 
4507   Address EmitDarwinVAArg(Address VAListAddr, QualType Ty,
4508                           CodeGenFunction &CGF) const;
4509 
4510   Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
4511                          CodeGenFunction &CGF) const;
4512 
4513   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4514                     QualType Ty) const override {
4515     return isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
4516                          : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
4517   }
4518 
4519   bool shouldPassIndirectlyForSwift(CharUnits totalSize,
4520                                     ArrayRef<llvm::Type*> scalars,
4521                                     bool asReturnValue) const override {
4522     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
4523   }
4524 };
4525 
4526 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
4527 public:
4528   AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
4529       : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {}
4530 
4531   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
4532     return "mov\tfp, fp\t\t; marker for objc_retainAutoreleaseReturnValue";
4533   }
4534 
4535   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4536     return 31;
4537   }
4538 
4539   bool doesReturnSlotInterfereWithArgs() const override { return false; }
4540 };
4541 }
4542 
4543 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const {
4544   Ty = useFirstFieldIfTransparentUnion(Ty);
4545 
4546   // Handle illegal vector types here.
4547   if (isIllegalVectorType(Ty)) {
4548     uint64_t Size = getContext().getTypeSize(Ty);
4549     // Android promotes <2 x i8> to i16, not i32
4550     if (isAndroid() && (Size <= 16)) {
4551       llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext());
4552       return ABIArgInfo::getDirect(ResType);
4553     }
4554     if (Size <= 32) {
4555       llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
4556       return ABIArgInfo::getDirect(ResType);
4557     }
4558     if (Size == 64) {
4559       llvm::Type *ResType =
4560           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
4561       return ABIArgInfo::getDirect(ResType);
4562     }
4563     if (Size == 128) {
4564       llvm::Type *ResType =
4565           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
4566       return ABIArgInfo::getDirect(ResType);
4567     }
4568     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4569   }
4570 
4571   if (!isAggregateTypeForABI(Ty)) {
4572     // Treat an enum type as its underlying type.
4573     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4574       Ty = EnumTy->getDecl()->getIntegerType();
4575 
4576     return (Ty->isPromotableIntegerType() && isDarwinPCS()
4577                 ? ABIArgInfo::getExtend()
4578                 : ABIArgInfo::getDirect());
4579   }
4580 
4581   // Structures with either a non-trivial destructor or a non-trivial
4582   // copy constructor are always indirect.
4583   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
4584     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
4585                                      CGCXXABI::RAA_DirectInMemory);
4586   }
4587 
4588   // Empty records are always ignored on Darwin, but actually passed in C++ mode
4589   // elsewhere for GNU compatibility.
4590   if (isEmptyRecord(getContext(), Ty, true)) {
4591     if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
4592       return ABIArgInfo::getIgnore();
4593 
4594     return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
4595   }
4596 
4597   // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
4598   const Type *Base = nullptr;
4599   uint64_t Members = 0;
4600   if (isHomogeneousAggregate(Ty, Base, Members)) {
4601     return ABIArgInfo::getDirect(
4602         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
4603   }
4604 
4605   // Aggregates <= 16 bytes are passed directly in registers or on the stack.
4606   uint64_t Size = getContext().getTypeSize(Ty);
4607   if (Size <= 128) {
4608     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
4609     // same size and alignment.
4610     if (getTarget().isRenderScriptTarget()) {
4611       return coerceToIntArray(Ty, getContext(), getVMContext());
4612     }
4613     unsigned Alignment = getContext().getTypeAlign(Ty);
4614     Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes
4615 
4616     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
4617     // For aggregates with 16-byte alignment, we use i128.
4618     if (Alignment < 128 && Size == 128) {
4619       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
4620       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
4621     }
4622     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
4623   }
4624 
4625   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4626 }
4627 
4628 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const {
4629   if (RetTy->isVoidType())
4630     return ABIArgInfo::getIgnore();
4631 
4632   // Large vector types should be returned via memory.
4633   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
4634     return getNaturalAlignIndirect(RetTy);
4635 
4636   if (!isAggregateTypeForABI(RetTy)) {
4637     // Treat an enum type as its underlying type.
4638     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
4639       RetTy = EnumTy->getDecl()->getIntegerType();
4640 
4641     return (RetTy->isPromotableIntegerType() && isDarwinPCS()
4642                 ? ABIArgInfo::getExtend()
4643                 : ABIArgInfo::getDirect());
4644   }
4645 
4646   if (isEmptyRecord(getContext(), RetTy, true))
4647     return ABIArgInfo::getIgnore();
4648 
4649   const Type *Base = nullptr;
4650   uint64_t Members = 0;
4651   if (isHomogeneousAggregate(RetTy, Base, Members))
4652     // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
4653     return ABIArgInfo::getDirect();
4654 
4655   // Aggregates <= 16 bytes are returned directly in registers or on the stack.
4656   uint64_t Size = getContext().getTypeSize(RetTy);
4657   if (Size <= 128) {
4658     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
4659     // same size and alignment.
4660     if (getTarget().isRenderScriptTarget()) {
4661       return coerceToIntArray(RetTy, getContext(), getVMContext());
4662     }
4663     unsigned Alignment = getContext().getTypeAlign(RetTy);
4664     Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes
4665 
4666     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
4667     // For aggregates with 16-byte alignment, we use i128.
4668     if (Alignment < 128 && Size == 128) {
4669       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
4670       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
4671     }
4672     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
4673   }
4674 
4675   return getNaturalAlignIndirect(RetTy);
4676 }
4677 
4678 /// isIllegalVectorType - check whether the vector type is legal for AArch64.
4679 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
4680   if (const VectorType *VT = Ty->getAs<VectorType>()) {
4681     // Check whether VT is legal.
4682     unsigned NumElements = VT->getNumElements();
4683     uint64_t Size = getContext().getTypeSize(VT);
4684     // NumElements should be power of 2.
4685     if (!llvm::isPowerOf2_32(NumElements))
4686       return true;
4687     return Size != 64 && (Size != 128 || NumElements == 1);
4688   }
4689   return false;
4690 }
4691 
4692 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
4693   // Homogeneous aggregates for AAPCS64 must have base types of a floating
4694   // point type or a short-vector type. This is the same as the 32-bit ABI,
4695   // but with the difference that any floating-point type is allowed,
4696   // including __fp16.
4697   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4698     if (BT->isFloatingPoint())
4699       return true;
4700   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
4701     unsigned VecSize = getContext().getTypeSize(VT);
4702     if (VecSize == 64 || VecSize == 128)
4703       return true;
4704   }
4705   return false;
4706 }
4707 
4708 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
4709                                                        uint64_t Members) const {
4710   return Members <= 4;
4711 }
4712 
4713 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr,
4714                                             QualType Ty,
4715                                             CodeGenFunction &CGF) const {
4716   ABIArgInfo AI = classifyArgumentType(Ty);
4717   bool IsIndirect = AI.isIndirect();
4718 
4719   llvm::Type *BaseTy = CGF.ConvertType(Ty);
4720   if (IsIndirect)
4721     BaseTy = llvm::PointerType::getUnqual(BaseTy);
4722   else if (AI.getCoerceToType())
4723     BaseTy = AI.getCoerceToType();
4724 
4725   unsigned NumRegs = 1;
4726   if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
4727     BaseTy = ArrTy->getElementType();
4728     NumRegs = ArrTy->getNumElements();
4729   }
4730   bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy();
4731 
4732   // The AArch64 va_list type and handling is specified in the Procedure Call
4733   // Standard, section B.4:
4734   //
4735   // struct {
4736   //   void *__stack;
4737   //   void *__gr_top;
4738   //   void *__vr_top;
4739   //   int __gr_offs;
4740   //   int __vr_offs;
4741   // };
4742 
4743   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
4744   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
4745   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
4746   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
4747 
4748   auto TyInfo = getContext().getTypeInfoInChars(Ty);
4749   CharUnits TyAlign = TyInfo.second;
4750 
4751   Address reg_offs_p = Address::invalid();
4752   llvm::Value *reg_offs = nullptr;
4753   int reg_top_index;
4754   CharUnits reg_top_offset;
4755   int RegSize = IsIndirect ? 8 : TyInfo.first.getQuantity();
4756   if (!IsFPR) {
4757     // 3 is the field number of __gr_offs
4758     reg_offs_p =
4759         CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24),
4760                                     "gr_offs_p");
4761     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
4762     reg_top_index = 1; // field number for __gr_top
4763     reg_top_offset = CharUnits::fromQuantity(8);
4764     RegSize = llvm::alignTo(RegSize, 8);
4765   } else {
4766     // 4 is the field number of __vr_offs.
4767     reg_offs_p =
4768         CGF.Builder.CreateStructGEP(VAListAddr, 4, CharUnits::fromQuantity(28),
4769                                     "vr_offs_p");
4770     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
4771     reg_top_index = 2; // field number for __vr_top
4772     reg_top_offset = CharUnits::fromQuantity(16);
4773     RegSize = 16 * NumRegs;
4774   }
4775 
4776   //=======================================
4777   // Find out where argument was passed
4778   //=======================================
4779 
4780   // If reg_offs >= 0 we're already using the stack for this type of
4781   // argument. We don't want to keep updating reg_offs (in case it overflows,
4782   // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
4783   // whatever they get).
4784   llvm::Value *UsingStack = nullptr;
4785   UsingStack = CGF.Builder.CreateICmpSGE(
4786       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
4787 
4788   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
4789 
4790   // Otherwise, at least some kind of argument could go in these registers, the
4791   // question is whether this particular type is too big.
4792   CGF.EmitBlock(MaybeRegBlock);
4793 
4794   // Integer arguments may need to correct register alignment (for example a
4795   // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
4796   // align __gr_offs to calculate the potential address.
4797   if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) {
4798     int Align = TyAlign.getQuantity();
4799 
4800     reg_offs = CGF.Builder.CreateAdd(
4801         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
4802         "align_regoffs");
4803     reg_offs = CGF.Builder.CreateAnd(
4804         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
4805         "aligned_regoffs");
4806   }
4807 
4808   // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
4809   // The fact that this is done unconditionally reflects the fact that
4810   // allocating an argument to the stack also uses up all the remaining
4811   // registers of the appropriate kind.
4812   llvm::Value *NewOffset = nullptr;
4813   NewOffset = CGF.Builder.CreateAdd(
4814       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
4815   CGF.Builder.CreateStore(NewOffset, reg_offs_p);
4816 
4817   // Now we're in a position to decide whether this argument really was in
4818   // registers or not.
4819   llvm::Value *InRegs = nullptr;
4820   InRegs = CGF.Builder.CreateICmpSLE(
4821       NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
4822 
4823   CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
4824 
4825   //=======================================
4826   // Argument was in registers
4827   //=======================================
4828 
4829   // Now we emit the code for if the argument was originally passed in
4830   // registers. First start the appropriate block:
4831   CGF.EmitBlock(InRegBlock);
4832 
4833   llvm::Value *reg_top = nullptr;
4834   Address reg_top_p = CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index,
4835                                                   reg_top_offset, "reg_top_p");
4836   reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
4837   Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs),
4838                    CharUnits::fromQuantity(IsFPR ? 16 : 8));
4839   Address RegAddr = Address::invalid();
4840   llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty);
4841 
4842   if (IsIndirect) {
4843     // If it's been passed indirectly (actually a struct), whatever we find from
4844     // stored registers or on the stack will actually be a struct **.
4845     MemTy = llvm::PointerType::getUnqual(MemTy);
4846   }
4847 
4848   const Type *Base = nullptr;
4849   uint64_t NumMembers = 0;
4850   bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
4851   if (IsHFA && NumMembers > 1) {
4852     // Homogeneous aggregates passed in registers will have their elements split
4853     // and stored 16-bytes apart regardless of size (they're notionally in qN,
4854     // qN+1, ...). We reload and store into a temporary local variable
4855     // contiguously.
4856     assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
4857     auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0));
4858     llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
4859     llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
4860     Address Tmp = CGF.CreateTempAlloca(HFATy,
4861                                        std::max(TyAlign, BaseTyInfo.second));
4862 
4863     // On big-endian platforms, the value will be right-aligned in its slot.
4864     int Offset = 0;
4865     if (CGF.CGM.getDataLayout().isBigEndian() &&
4866         BaseTyInfo.first.getQuantity() < 16)
4867       Offset = 16 - BaseTyInfo.first.getQuantity();
4868 
4869     for (unsigned i = 0; i < NumMembers; ++i) {
4870       CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset);
4871       Address LoadAddr =
4872         CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset);
4873       LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy);
4874 
4875       Address StoreAddr =
4876         CGF.Builder.CreateConstArrayGEP(Tmp, i, BaseTyInfo.first);
4877 
4878       llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
4879       CGF.Builder.CreateStore(Elem, StoreAddr);
4880     }
4881 
4882     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy);
4883   } else {
4884     // Otherwise the object is contiguous in memory.
4885 
4886     // It might be right-aligned in its slot.
4887     CharUnits SlotSize = BaseAddr.getAlignment();
4888     if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect &&
4889         (IsHFA || !isAggregateTypeForABI(Ty)) &&
4890         TyInfo.first < SlotSize) {
4891       CharUnits Offset = SlotSize - TyInfo.first;
4892       BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset);
4893     }
4894 
4895     RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy);
4896   }
4897 
4898   CGF.EmitBranch(ContBlock);
4899 
4900   //=======================================
4901   // Argument was on the stack
4902   //=======================================
4903   CGF.EmitBlock(OnStackBlock);
4904 
4905   Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0,
4906                                                 CharUnits::Zero(), "stack_p");
4907   llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack");
4908 
4909   // Again, stack arguments may need realignment. In this case both integer and
4910   // floating-point ones might be affected.
4911   if (!IsIndirect && TyAlign.getQuantity() > 8) {
4912     int Align = TyAlign.getQuantity();
4913 
4914     OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty);
4915 
4916     OnStackPtr = CGF.Builder.CreateAdd(
4917         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
4918         "align_stack");
4919     OnStackPtr = CGF.Builder.CreateAnd(
4920         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
4921         "align_stack");
4922 
4923     OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy);
4924   }
4925   Address OnStackAddr(OnStackPtr,
4926                       std::max(CharUnits::fromQuantity(8), TyAlign));
4927 
4928   // All stack slots are multiples of 8 bytes.
4929   CharUnits StackSlotSize = CharUnits::fromQuantity(8);
4930   CharUnits StackSize;
4931   if (IsIndirect)
4932     StackSize = StackSlotSize;
4933   else
4934     StackSize = TyInfo.first.alignTo(StackSlotSize);
4935 
4936   llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize);
4937   llvm::Value *NewStack =
4938       CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack");
4939 
4940   // Write the new value of __stack for the next call to va_arg
4941   CGF.Builder.CreateStore(NewStack, stack_p);
4942 
4943   if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
4944       TyInfo.first < StackSlotSize) {
4945     CharUnits Offset = StackSlotSize - TyInfo.first;
4946     OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset);
4947   }
4948 
4949   OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy);
4950 
4951   CGF.EmitBranch(ContBlock);
4952 
4953   //=======================================
4954   // Tidy up
4955   //=======================================
4956   CGF.EmitBlock(ContBlock);
4957 
4958   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
4959                                  OnStackAddr, OnStackBlock, "vaargs.addr");
4960 
4961   if (IsIndirect)
4962     return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"),
4963                    TyInfo.second);
4964 
4965   return ResAddr;
4966 }
4967 
4968 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty,
4969                                         CodeGenFunction &CGF) const {
4970   // The backend's lowering doesn't support va_arg for aggregates or
4971   // illegal vector types.  Lower VAArg here for these cases and use
4972   // the LLVM va_arg instruction for everything else.
4973   if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
4974     return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
4975 
4976   CharUnits SlotSize = CharUnits::fromQuantity(8);
4977 
4978   // Empty records are ignored for parameter passing purposes.
4979   if (isEmptyRecord(getContext(), Ty, true)) {
4980     Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
4981     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
4982     return Addr;
4983   }
4984 
4985   // The size of the actual thing passed, which might end up just
4986   // being a pointer for indirect types.
4987   auto TyInfo = getContext().getTypeInfoInChars(Ty);
4988 
4989   // Arguments bigger than 16 bytes which aren't homogeneous
4990   // aggregates should be passed indirectly.
4991   bool IsIndirect = false;
4992   if (TyInfo.first.getQuantity() > 16) {
4993     const Type *Base = nullptr;
4994     uint64_t Members = 0;
4995     IsIndirect = !isHomogeneousAggregate(Ty, Base, Members);
4996   }
4997 
4998   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
4999                           TyInfo, SlotSize, /*AllowHigherAlign*/ true);
5000 }
5001 
5002 //===----------------------------------------------------------------------===//
5003 // ARM ABI Implementation
5004 //===----------------------------------------------------------------------===//
5005 
5006 namespace {
5007 
5008 class ARMABIInfo : public SwiftABIInfo {
5009 public:
5010   enum ABIKind {
5011     APCS = 0,
5012     AAPCS = 1,
5013     AAPCS_VFP = 2,
5014     AAPCS16_VFP = 3,
5015   };
5016 
5017 private:
5018   ABIKind Kind;
5019 
5020 public:
5021   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind)
5022       : SwiftABIInfo(CGT), Kind(_Kind) {
5023     setCCs();
5024   }
5025 
5026   bool isEABI() const {
5027     switch (getTarget().getTriple().getEnvironment()) {
5028     case llvm::Triple::Android:
5029     case llvm::Triple::EABI:
5030     case llvm::Triple::EABIHF:
5031     case llvm::Triple::GNUEABI:
5032     case llvm::Triple::GNUEABIHF:
5033     case llvm::Triple::MuslEABI:
5034     case llvm::Triple::MuslEABIHF:
5035       return true;
5036     default:
5037       return false;
5038     }
5039   }
5040 
5041   bool isEABIHF() const {
5042     switch (getTarget().getTriple().getEnvironment()) {
5043     case llvm::Triple::EABIHF:
5044     case llvm::Triple::GNUEABIHF:
5045     case llvm::Triple::MuslEABIHF:
5046       return true;
5047     default:
5048       return false;
5049     }
5050   }
5051 
5052   ABIKind getABIKind() const { return Kind; }
5053 
5054 private:
5055   ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const;
5056   ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic) const;
5057   bool isIllegalVectorType(QualType Ty) const;
5058 
5059   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
5060   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
5061                                          uint64_t Members) const override;
5062 
5063   void computeInfo(CGFunctionInfo &FI) const override;
5064 
5065   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5066                     QualType Ty) const override;
5067 
5068   llvm::CallingConv::ID getLLVMDefaultCC() const;
5069   llvm::CallingConv::ID getABIDefaultCC() const;
5070   void setCCs();
5071 
5072   bool shouldPassIndirectlyForSwift(CharUnits totalSize,
5073                                     ArrayRef<llvm::Type*> scalars,
5074                                     bool asReturnValue) const override {
5075     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
5076   }
5077 };
5078 
5079 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
5080 public:
5081   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
5082     :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
5083 
5084   const ARMABIInfo &getABIInfo() const {
5085     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
5086   }
5087 
5088   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5089     return 13;
5090   }
5091 
5092   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
5093     return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue";
5094   }
5095 
5096   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5097                                llvm::Value *Address) const override {
5098     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
5099 
5100     // 0-15 are the 16 integer registers.
5101     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
5102     return false;
5103   }
5104 
5105   unsigned getSizeOfUnwindException() const override {
5106     if (getABIInfo().isEABI()) return 88;
5107     return TargetCodeGenInfo::getSizeOfUnwindException();
5108   }
5109 
5110   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5111                            CodeGen::CodeGenModule &CGM) const override {
5112     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5113     if (!FD)
5114       return;
5115 
5116     const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
5117     if (!Attr)
5118       return;
5119 
5120     const char *Kind;
5121     switch (Attr->getInterrupt()) {
5122     case ARMInterruptAttr::Generic: Kind = ""; break;
5123     case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break;
5124     case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break;
5125     case ARMInterruptAttr::SWI:     Kind = "SWI"; break;
5126     case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break;
5127     case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break;
5128     }
5129 
5130     llvm::Function *Fn = cast<llvm::Function>(GV);
5131 
5132     Fn->addFnAttr("interrupt", Kind);
5133 
5134     ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind();
5135     if (ABI == ARMABIInfo::APCS)
5136       return;
5137 
5138     // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
5139     // however this is not necessarily true on taking any interrupt. Instruct
5140     // the backend to perform a realignment as part of the function prologue.
5141     llvm::AttrBuilder B;
5142     B.addStackAlignmentAttr(8);
5143     Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
5144                       llvm::AttributeSet::get(CGM.getLLVMContext(),
5145                                               llvm::AttributeSet::FunctionIndex,
5146                                               B));
5147   }
5148 };
5149 
5150 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo {
5151 public:
5152   WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
5153       : ARMTargetCodeGenInfo(CGT, K) {}
5154 
5155   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5156                            CodeGen::CodeGenModule &CGM) const override;
5157 
5158   void getDependentLibraryOption(llvm::StringRef Lib,
5159                                  llvm::SmallString<24> &Opt) const override {
5160     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
5161   }
5162 
5163   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
5164                                llvm::SmallString<32> &Opt) const override {
5165     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
5166   }
5167 };
5168 
5169 void WindowsARMTargetCodeGenInfo::setTargetAttributes(
5170     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
5171   ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
5172   addStackProbeSizeTargetAttribute(D, GV, CGM);
5173 }
5174 }
5175 
5176 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
5177   if (!getCXXABI().classifyReturnType(FI))
5178     FI.getReturnInfo() =
5179         classifyReturnType(FI.getReturnType(), FI.isVariadic());
5180 
5181   for (auto &I : FI.arguments())
5182     I.info = classifyArgumentType(I.type, FI.isVariadic());
5183 
5184   // Always honor user-specified calling convention.
5185   if (FI.getCallingConvention() != llvm::CallingConv::C)
5186     return;
5187 
5188   llvm::CallingConv::ID cc = getRuntimeCC();
5189   if (cc != llvm::CallingConv::C)
5190     FI.setEffectiveCallingConvention(cc);
5191 }
5192 
5193 /// Return the default calling convention that LLVM will use.
5194 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
5195   // The default calling convention that LLVM will infer.
5196   if (isEABIHF() || getTarget().getTriple().isWatchABI())
5197     return llvm::CallingConv::ARM_AAPCS_VFP;
5198   else if (isEABI())
5199     return llvm::CallingConv::ARM_AAPCS;
5200   else
5201     return llvm::CallingConv::ARM_APCS;
5202 }
5203 
5204 /// Return the calling convention that our ABI would like us to use
5205 /// as the C calling convention.
5206 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
5207   switch (getABIKind()) {
5208   case APCS: return llvm::CallingConv::ARM_APCS;
5209   case AAPCS: return llvm::CallingConv::ARM_AAPCS;
5210   case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
5211   case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
5212   }
5213   llvm_unreachable("bad ABI kind");
5214 }
5215 
5216 void ARMABIInfo::setCCs() {
5217   assert(getRuntimeCC() == llvm::CallingConv::C);
5218 
5219   // Don't muddy up the IR with a ton of explicit annotations if
5220   // they'd just match what LLVM will infer from the triple.
5221   llvm::CallingConv::ID abiCC = getABIDefaultCC();
5222   if (abiCC != getLLVMDefaultCC())
5223     RuntimeCC = abiCC;
5224 
5225   // AAPCS apparently requires runtime support functions to be soft-float, but
5226   // that's almost certainly for historic reasons (Thumb1 not supporting VFP
5227   // most likely). It's more convenient for AAPCS16_VFP to be hard-float.
5228   switch (getABIKind()) {
5229   case APCS:
5230   case AAPCS16_VFP:
5231     if (abiCC != getLLVMDefaultCC())
5232       BuiltinCC = abiCC;
5233     break;
5234   case AAPCS:
5235   case AAPCS_VFP:
5236     BuiltinCC = llvm::CallingConv::ARM_AAPCS;
5237     break;
5238   }
5239 }
5240 
5241 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty,
5242                                             bool isVariadic) const {
5243   // 6.1.2.1 The following argument types are VFP CPRCs:
5244   //   A single-precision floating-point type (including promoted
5245   //   half-precision types); A double-precision floating-point type;
5246   //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
5247   //   with a Base Type of a single- or double-precision floating-point type,
5248   //   64-bit containerized vectors or 128-bit containerized vectors with one
5249   //   to four Elements.
5250   bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic;
5251 
5252   Ty = useFirstFieldIfTransparentUnion(Ty);
5253 
5254   // Handle illegal vector types here.
5255   if (isIllegalVectorType(Ty)) {
5256     uint64_t Size = getContext().getTypeSize(Ty);
5257     if (Size <= 32) {
5258       llvm::Type *ResType =
5259           llvm::Type::getInt32Ty(getVMContext());
5260       return ABIArgInfo::getDirect(ResType);
5261     }
5262     if (Size == 64) {
5263       llvm::Type *ResType = llvm::VectorType::get(
5264           llvm::Type::getInt32Ty(getVMContext()), 2);
5265       return ABIArgInfo::getDirect(ResType);
5266     }
5267     if (Size == 128) {
5268       llvm::Type *ResType = llvm::VectorType::get(
5269           llvm::Type::getInt32Ty(getVMContext()), 4);
5270       return ABIArgInfo::getDirect(ResType);
5271     }
5272     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5273   }
5274 
5275   // __fp16 gets passed as if it were an int or float, but with the top 16 bits
5276   // unspecified. This is not done for OpenCL as it handles the half type
5277   // natively, and does not need to interwork with AAPCS code.
5278   if (Ty->isHalfType() && !getContext().getLangOpts().NativeHalfArgsAndReturns) {
5279     llvm::Type *ResType = IsEffectivelyAAPCS_VFP ?
5280       llvm::Type::getFloatTy(getVMContext()) :
5281       llvm::Type::getInt32Ty(getVMContext());
5282     return ABIArgInfo::getDirect(ResType);
5283   }
5284 
5285   if (!isAggregateTypeForABI(Ty)) {
5286     // Treat an enum type as its underlying type.
5287     if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
5288       Ty = EnumTy->getDecl()->getIntegerType();
5289     }
5290 
5291     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend()
5292                                           : ABIArgInfo::getDirect());
5293   }
5294 
5295   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5296     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
5297   }
5298 
5299   // Ignore empty records.
5300   if (isEmptyRecord(getContext(), Ty, true))
5301     return ABIArgInfo::getIgnore();
5302 
5303   if (IsEffectivelyAAPCS_VFP) {
5304     // Homogeneous Aggregates need to be expanded when we can fit the aggregate
5305     // into VFP registers.
5306     const Type *Base = nullptr;
5307     uint64_t Members = 0;
5308     if (isHomogeneousAggregate(Ty, Base, Members)) {
5309       assert(Base && "Base class should be set for homogeneous aggregate");
5310       // Base can be a floating-point or a vector.
5311       return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
5312     }
5313   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
5314     // WatchOS does have homogeneous aggregates. Note that we intentionally use
5315     // this convention even for a variadic function: the backend will use GPRs
5316     // if needed.
5317     const Type *Base = nullptr;
5318     uint64_t Members = 0;
5319     if (isHomogeneousAggregate(Ty, Base, Members)) {
5320       assert(Base && Members <= 4 && "unexpected homogeneous aggregate");
5321       llvm::Type *Ty =
5322         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members);
5323       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
5324     }
5325   }
5326 
5327   if (getABIKind() == ARMABIInfo::AAPCS16_VFP &&
5328       getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) {
5329     // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're
5330     // bigger than 128-bits, they get placed in space allocated by the caller,
5331     // and a pointer is passed.
5332     return ABIArgInfo::getIndirect(
5333         CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false);
5334   }
5335 
5336   // Support byval for ARM.
5337   // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
5338   // most 8-byte. We realign the indirect argument if type alignment is bigger
5339   // than ABI alignment.
5340   uint64_t ABIAlign = 4;
5341   uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8;
5342   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
5343        getABIKind() == ARMABIInfo::AAPCS)
5344     ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
5345 
5346   if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
5347     assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval");
5348     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
5349                                    /*ByVal=*/true,
5350                                    /*Realign=*/TyAlign > ABIAlign);
5351   }
5352 
5353   // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of
5354   // same size and alignment.
5355   if (getTarget().isRenderScriptTarget()) {
5356     return coerceToIntArray(Ty, getContext(), getVMContext());
5357   }
5358 
5359   // Otherwise, pass by coercing to a structure of the appropriate size.
5360   llvm::Type* ElemTy;
5361   unsigned SizeRegs;
5362   // FIXME: Try to match the types of the arguments more accurately where
5363   // we can.
5364   if (getContext().getTypeAlign(Ty) <= 32) {
5365     ElemTy = llvm::Type::getInt32Ty(getVMContext());
5366     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
5367   } else {
5368     ElemTy = llvm::Type::getInt64Ty(getVMContext());
5369     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
5370   }
5371 
5372   return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
5373 }
5374 
5375 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
5376                               llvm::LLVMContext &VMContext) {
5377   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
5378   // is called integer-like if its size is less than or equal to one word, and
5379   // the offset of each of its addressable sub-fields is zero.
5380 
5381   uint64_t Size = Context.getTypeSize(Ty);
5382 
5383   // Check that the type fits in a word.
5384   if (Size > 32)
5385     return false;
5386 
5387   // FIXME: Handle vector types!
5388   if (Ty->isVectorType())
5389     return false;
5390 
5391   // Float types are never treated as "integer like".
5392   if (Ty->isRealFloatingType())
5393     return false;
5394 
5395   // If this is a builtin or pointer type then it is ok.
5396   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
5397     return true;
5398 
5399   // Small complex integer types are "integer like".
5400   if (const ComplexType *CT = Ty->getAs<ComplexType>())
5401     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
5402 
5403   // Single element and zero sized arrays should be allowed, by the definition
5404   // above, but they are not.
5405 
5406   // Otherwise, it must be a record type.
5407   const RecordType *RT = Ty->getAs<RecordType>();
5408   if (!RT) return false;
5409 
5410   // Ignore records with flexible arrays.
5411   const RecordDecl *RD = RT->getDecl();
5412   if (RD->hasFlexibleArrayMember())
5413     return false;
5414 
5415   // Check that all sub-fields are at offset 0, and are themselves "integer
5416   // like".
5417   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
5418 
5419   bool HadField = false;
5420   unsigned idx = 0;
5421   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
5422        i != e; ++i, ++idx) {
5423     const FieldDecl *FD = *i;
5424 
5425     // Bit-fields are not addressable, we only need to verify they are "integer
5426     // like". We still have to disallow a subsequent non-bitfield, for example:
5427     //   struct { int : 0; int x }
5428     // is non-integer like according to gcc.
5429     if (FD->isBitField()) {
5430       if (!RD->isUnion())
5431         HadField = true;
5432 
5433       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
5434         return false;
5435 
5436       continue;
5437     }
5438 
5439     // Check if this field is at offset 0.
5440     if (Layout.getFieldOffset(idx) != 0)
5441       return false;
5442 
5443     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
5444       return false;
5445 
5446     // Only allow at most one field in a structure. This doesn't match the
5447     // wording above, but follows gcc in situations with a field following an
5448     // empty structure.
5449     if (!RD->isUnion()) {
5450       if (HadField)
5451         return false;
5452 
5453       HadField = true;
5454     }
5455   }
5456 
5457   return true;
5458 }
5459 
5460 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy,
5461                                           bool isVariadic) const {
5462   bool IsEffectivelyAAPCS_VFP =
5463       (getABIKind() == AAPCS_VFP || getABIKind() == AAPCS16_VFP) && !isVariadic;
5464 
5465   if (RetTy->isVoidType())
5466     return ABIArgInfo::getIgnore();
5467 
5468   // Large vector types should be returned via memory.
5469   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) {
5470     return getNaturalAlignIndirect(RetTy);
5471   }
5472 
5473   // __fp16 gets returned as if it were an int or float, but with the top 16
5474   // bits unspecified. This is not done for OpenCL as it handles the half type
5475   // natively, and does not need to interwork with AAPCS code.
5476   if (RetTy->isHalfType() && !getContext().getLangOpts().NativeHalfArgsAndReturns) {
5477     llvm::Type *ResType = IsEffectivelyAAPCS_VFP ?
5478       llvm::Type::getFloatTy(getVMContext()) :
5479       llvm::Type::getInt32Ty(getVMContext());
5480     return ABIArgInfo::getDirect(ResType);
5481   }
5482 
5483   if (!isAggregateTypeForABI(RetTy)) {
5484     // Treat an enum type as its underlying type.
5485     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5486       RetTy = EnumTy->getDecl()->getIntegerType();
5487 
5488     return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend()
5489                                             : ABIArgInfo::getDirect();
5490   }
5491 
5492   // Are we following APCS?
5493   if (getABIKind() == APCS) {
5494     if (isEmptyRecord(getContext(), RetTy, false))
5495       return ABIArgInfo::getIgnore();
5496 
5497     // Complex types are all returned as packed integers.
5498     //
5499     // FIXME: Consider using 2 x vector types if the back end handles them
5500     // correctly.
5501     if (RetTy->isAnyComplexType())
5502       return ABIArgInfo::getDirect(llvm::IntegerType::get(
5503           getVMContext(), getContext().getTypeSize(RetTy)));
5504 
5505     // Integer like structures are returned in r0.
5506     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
5507       // Return in the smallest viable integer type.
5508       uint64_t Size = getContext().getTypeSize(RetTy);
5509       if (Size <= 8)
5510         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5511       if (Size <= 16)
5512         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
5513       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5514     }
5515 
5516     // Otherwise return in memory.
5517     return getNaturalAlignIndirect(RetTy);
5518   }
5519 
5520   // Otherwise this is an AAPCS variant.
5521 
5522   if (isEmptyRecord(getContext(), RetTy, true))
5523     return ABIArgInfo::getIgnore();
5524 
5525   // Check for homogeneous aggregates with AAPCS-VFP.
5526   if (IsEffectivelyAAPCS_VFP) {
5527     const Type *Base = nullptr;
5528     uint64_t Members = 0;
5529     if (isHomogeneousAggregate(RetTy, Base, Members)) {
5530       assert(Base && "Base class should be set for homogeneous aggregate");
5531       // Homogeneous Aggregates are returned directly.
5532       return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
5533     }
5534   }
5535 
5536   // Aggregates <= 4 bytes are returned in r0; other aggregates
5537   // are returned indirectly.
5538   uint64_t Size = getContext().getTypeSize(RetTy);
5539   if (Size <= 32) {
5540     // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of
5541     // same size and alignment.
5542     if (getTarget().isRenderScriptTarget()) {
5543       return coerceToIntArray(RetTy, getContext(), getVMContext());
5544     }
5545     if (getDataLayout().isBigEndian())
5546       // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
5547       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5548 
5549     // Return in the smallest viable integer type.
5550     if (Size <= 8)
5551       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5552     if (Size <= 16)
5553       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
5554     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5555   } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) {
5556     llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext());
5557     llvm::Type *CoerceTy =
5558         llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32);
5559     return ABIArgInfo::getDirect(CoerceTy);
5560   }
5561 
5562   return getNaturalAlignIndirect(RetTy);
5563 }
5564 
5565 /// isIllegalVector - check whether Ty is an illegal vector type.
5566 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
5567   if (const VectorType *VT = Ty->getAs<VectorType> ()) {
5568     if (isAndroid()) {
5569       // Android shipped using Clang 3.1, which supported a slightly different
5570       // vector ABI. The primary differences were that 3-element vector types
5571       // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path
5572       // accepts that legacy behavior for Android only.
5573       // Check whether VT is legal.
5574       unsigned NumElements = VT->getNumElements();
5575       // NumElements should be power of 2 or equal to 3.
5576       if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3)
5577         return true;
5578     } else {
5579       // Check whether VT is legal.
5580       unsigned NumElements = VT->getNumElements();
5581       uint64_t Size = getContext().getTypeSize(VT);
5582       // NumElements should be power of 2.
5583       if (!llvm::isPowerOf2_32(NumElements))
5584         return true;
5585       // Size should be greater than 32 bits.
5586       return Size <= 32;
5587     }
5588   }
5589   return false;
5590 }
5591 
5592 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
5593   // Homogeneous aggregates for AAPCS-VFP must have base types of float,
5594   // double, or 64-bit or 128-bit vectors.
5595   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
5596     if (BT->getKind() == BuiltinType::Float ||
5597         BT->getKind() == BuiltinType::Double ||
5598         BT->getKind() == BuiltinType::LongDouble)
5599       return true;
5600   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
5601     unsigned VecSize = getContext().getTypeSize(VT);
5602     if (VecSize == 64 || VecSize == 128)
5603       return true;
5604   }
5605   return false;
5606 }
5607 
5608 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
5609                                                    uint64_t Members) const {
5610   return Members <= 4;
5611 }
5612 
5613 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5614                               QualType Ty) const {
5615   CharUnits SlotSize = CharUnits::fromQuantity(4);
5616 
5617   // Empty records are ignored for parameter passing purposes.
5618   if (isEmptyRecord(getContext(), Ty, true)) {
5619     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
5620     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
5621     return Addr;
5622   }
5623 
5624   auto TyInfo = getContext().getTypeInfoInChars(Ty);
5625   CharUnits TyAlignForABI = TyInfo.second;
5626 
5627   // Use indirect if size of the illegal vector is bigger than 16 bytes.
5628   bool IsIndirect = false;
5629   const Type *Base = nullptr;
5630   uint64_t Members = 0;
5631   if (TyInfo.first > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) {
5632     IsIndirect = true;
5633 
5634   // ARMv7k passes structs bigger than 16 bytes indirectly, in space
5635   // allocated by the caller.
5636   } else if (TyInfo.first > CharUnits::fromQuantity(16) &&
5637              getABIKind() == ARMABIInfo::AAPCS16_VFP &&
5638              !isHomogeneousAggregate(Ty, Base, Members)) {
5639     IsIndirect = true;
5640 
5641   // Otherwise, bound the type's ABI alignment.
5642   // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
5643   // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
5644   // Our callers should be prepared to handle an under-aligned address.
5645   } else if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
5646              getABIKind() == ARMABIInfo::AAPCS) {
5647     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
5648     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8));
5649   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
5650     // ARMv7k allows type alignment up to 16 bytes.
5651     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
5652     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16));
5653   } else {
5654     TyAlignForABI = CharUnits::fromQuantity(4);
5655   }
5656   TyInfo.second = TyAlignForABI;
5657 
5658   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo,
5659                           SlotSize, /*AllowHigherAlign*/ true);
5660 }
5661 
5662 //===----------------------------------------------------------------------===//
5663 // NVPTX ABI Implementation
5664 //===----------------------------------------------------------------------===//
5665 
5666 namespace {
5667 
5668 class NVPTXABIInfo : public ABIInfo {
5669 public:
5670   NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
5671 
5672   ABIArgInfo classifyReturnType(QualType RetTy) const;
5673   ABIArgInfo classifyArgumentType(QualType Ty) const;
5674 
5675   void computeInfo(CGFunctionInfo &FI) const override;
5676   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5677                     QualType Ty) const override;
5678 };
5679 
5680 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
5681 public:
5682   NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
5683     : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
5684 
5685   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5686                            CodeGen::CodeGenModule &M) const override;
5687 private:
5688   // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the
5689   // resulting MDNode to the nvvm.annotations MDNode.
5690   static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand);
5691 };
5692 
5693 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
5694   if (RetTy->isVoidType())
5695     return ABIArgInfo::getIgnore();
5696 
5697   // note: this is different from default ABI
5698   if (!RetTy->isScalarType())
5699     return ABIArgInfo::getDirect();
5700 
5701   // Treat an enum type as its underlying type.
5702   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5703     RetTy = EnumTy->getDecl()->getIntegerType();
5704 
5705   return (RetTy->isPromotableIntegerType() ?
5706           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5707 }
5708 
5709 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
5710   // Treat an enum type as its underlying type.
5711   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5712     Ty = EnumTy->getDecl()->getIntegerType();
5713 
5714   // Return aggregates type as indirect by value
5715   if (isAggregateTypeForABI(Ty))
5716     return getNaturalAlignIndirect(Ty, /* byval */ true);
5717 
5718   return (Ty->isPromotableIntegerType() ?
5719           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5720 }
5721 
5722 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
5723   if (!getCXXABI().classifyReturnType(FI))
5724     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
5725   for (auto &I : FI.arguments())
5726     I.info = classifyArgumentType(I.type);
5727 
5728   // Always honor user-specified calling convention.
5729   if (FI.getCallingConvention() != llvm::CallingConv::C)
5730     return;
5731 
5732   FI.setEffectiveCallingConvention(getRuntimeCC());
5733 }
5734 
5735 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5736                                 QualType Ty) const {
5737   llvm_unreachable("NVPTX does not support varargs");
5738 }
5739 
5740 void NVPTXTargetCodeGenInfo::
5741 setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5742                     CodeGen::CodeGenModule &M) const{
5743   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5744   if (!FD) return;
5745 
5746   llvm::Function *F = cast<llvm::Function>(GV);
5747 
5748   // Perform special handling in OpenCL mode
5749   if (M.getLangOpts().OpenCL) {
5750     // Use OpenCL function attributes to check for kernel functions
5751     // By default, all functions are device functions
5752     if (FD->hasAttr<OpenCLKernelAttr>()) {
5753       // OpenCL __kernel functions get kernel metadata
5754       // Create !{<func-ref>, metadata !"kernel", i32 1} node
5755       addNVVMMetadata(F, "kernel", 1);
5756       // And kernel functions are not subject to inlining
5757       F->addFnAttr(llvm::Attribute::NoInline);
5758     }
5759   }
5760 
5761   // Perform special handling in CUDA mode.
5762   if (M.getLangOpts().CUDA) {
5763     // CUDA __global__ functions get a kernel metadata entry.  Since
5764     // __global__ functions cannot be called from the device, we do not
5765     // need to set the noinline attribute.
5766     if (FD->hasAttr<CUDAGlobalAttr>()) {
5767       // Create !{<func-ref>, metadata !"kernel", i32 1} node
5768       addNVVMMetadata(F, "kernel", 1);
5769     }
5770     if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) {
5771       // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
5772       llvm::APSInt MaxThreads(32);
5773       MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext());
5774       if (MaxThreads > 0)
5775         addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue());
5776 
5777       // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was
5778       // not specified in __launch_bounds__ or if the user specified a 0 value,
5779       // we don't have to add a PTX directive.
5780       if (Attr->getMinBlocks()) {
5781         llvm::APSInt MinBlocks(32);
5782         MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext());
5783         if (MinBlocks > 0)
5784           // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
5785           addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue());
5786       }
5787     }
5788   }
5789 }
5790 
5791 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name,
5792                                              int Operand) {
5793   llvm::Module *M = F->getParent();
5794   llvm::LLVMContext &Ctx = M->getContext();
5795 
5796   // Get "nvvm.annotations" metadata node
5797   llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
5798 
5799   llvm::Metadata *MDVals[] = {
5800       llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name),
5801       llvm::ConstantAsMetadata::get(
5802           llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
5803   // Append metadata to nvvm.annotations
5804   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
5805 }
5806 }
5807 
5808 //===----------------------------------------------------------------------===//
5809 // SystemZ ABI Implementation
5810 //===----------------------------------------------------------------------===//
5811 
5812 namespace {
5813 
5814 class SystemZABIInfo : public SwiftABIInfo {
5815   bool HasVector;
5816 
5817 public:
5818   SystemZABIInfo(CodeGenTypes &CGT, bool HV)
5819     : SwiftABIInfo(CGT), HasVector(HV) {}
5820 
5821   bool isPromotableIntegerType(QualType Ty) const;
5822   bool isCompoundType(QualType Ty) const;
5823   bool isVectorArgumentType(QualType Ty) const;
5824   bool isFPArgumentType(QualType Ty) const;
5825   QualType GetSingleElementType(QualType Ty) const;
5826 
5827   ABIArgInfo classifyReturnType(QualType RetTy) const;
5828   ABIArgInfo classifyArgumentType(QualType ArgTy) const;
5829 
5830   void computeInfo(CGFunctionInfo &FI) const override {
5831     if (!getCXXABI().classifyReturnType(FI))
5832       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
5833     for (auto &I : FI.arguments())
5834       I.info = classifyArgumentType(I.type);
5835   }
5836 
5837   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5838                     QualType Ty) const override;
5839 
5840   bool shouldPassIndirectlyForSwift(CharUnits totalSize,
5841                                     ArrayRef<llvm::Type*> scalars,
5842                                     bool asReturnValue) const override {
5843     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
5844   }
5845 };
5846 
5847 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
5848 public:
5849   SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector)
5850     : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {}
5851 };
5852 
5853 }
5854 
5855 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
5856   // Treat an enum type as its underlying type.
5857   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5858     Ty = EnumTy->getDecl()->getIntegerType();
5859 
5860   // Promotable integer types are required to be promoted by the ABI.
5861   if (Ty->isPromotableIntegerType())
5862     return true;
5863 
5864   // 32-bit values must also be promoted.
5865   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
5866     switch (BT->getKind()) {
5867     case BuiltinType::Int:
5868     case BuiltinType::UInt:
5869       return true;
5870     default:
5871       return false;
5872     }
5873   return false;
5874 }
5875 
5876 bool SystemZABIInfo::isCompoundType(QualType Ty) const {
5877   return (Ty->isAnyComplexType() ||
5878           Ty->isVectorType() ||
5879           isAggregateTypeForABI(Ty));
5880 }
5881 
5882 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const {
5883   return (HasVector &&
5884           Ty->isVectorType() &&
5885           getContext().getTypeSize(Ty) <= 128);
5886 }
5887 
5888 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
5889   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
5890     switch (BT->getKind()) {
5891     case BuiltinType::Float:
5892     case BuiltinType::Double:
5893       return true;
5894     default:
5895       return false;
5896     }
5897 
5898   return false;
5899 }
5900 
5901 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const {
5902   if (const RecordType *RT = Ty->getAsStructureType()) {
5903     const RecordDecl *RD = RT->getDecl();
5904     QualType Found;
5905 
5906     // If this is a C++ record, check the bases first.
5907     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
5908       for (const auto &I : CXXRD->bases()) {
5909         QualType Base = I.getType();
5910 
5911         // Empty bases don't affect things either way.
5912         if (isEmptyRecord(getContext(), Base, true))
5913           continue;
5914 
5915         if (!Found.isNull())
5916           return Ty;
5917         Found = GetSingleElementType(Base);
5918       }
5919 
5920     // Check the fields.
5921     for (const auto *FD : RD->fields()) {
5922       // For compatibility with GCC, ignore empty bitfields in C++ mode.
5923       // Unlike isSingleElementStruct(), empty structure and array fields
5924       // do count.  So do anonymous bitfields that aren't zero-sized.
5925       if (getContext().getLangOpts().CPlusPlus &&
5926           FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
5927         continue;
5928 
5929       // Unlike isSingleElementStruct(), arrays do not count.
5930       // Nested structures still do though.
5931       if (!Found.isNull())
5932         return Ty;
5933       Found = GetSingleElementType(FD->getType());
5934     }
5935 
5936     // Unlike isSingleElementStruct(), trailing padding is allowed.
5937     // An 8-byte aligned struct s { float f; } is passed as a double.
5938     if (!Found.isNull())
5939       return Found;
5940   }
5941 
5942   return Ty;
5943 }
5944 
5945 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5946                                   QualType Ty) const {
5947   // Assume that va_list type is correct; should be pointer to LLVM type:
5948   // struct {
5949   //   i64 __gpr;
5950   //   i64 __fpr;
5951   //   i8 *__overflow_arg_area;
5952   //   i8 *__reg_save_area;
5953   // };
5954 
5955   // Every non-vector argument occupies 8 bytes and is passed by preference
5956   // in either GPRs or FPRs.  Vector arguments occupy 8 or 16 bytes and are
5957   // always passed on the stack.
5958   Ty = getContext().getCanonicalType(Ty);
5959   auto TyInfo = getContext().getTypeInfoInChars(Ty);
5960   llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty);
5961   llvm::Type *DirectTy = ArgTy;
5962   ABIArgInfo AI = classifyArgumentType(Ty);
5963   bool IsIndirect = AI.isIndirect();
5964   bool InFPRs = false;
5965   bool IsVector = false;
5966   CharUnits UnpaddedSize;
5967   CharUnits DirectAlign;
5968   if (IsIndirect) {
5969     DirectTy = llvm::PointerType::getUnqual(DirectTy);
5970     UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8);
5971   } else {
5972     if (AI.getCoerceToType())
5973       ArgTy = AI.getCoerceToType();
5974     InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy();
5975     IsVector = ArgTy->isVectorTy();
5976     UnpaddedSize = TyInfo.first;
5977     DirectAlign = TyInfo.second;
5978   }
5979   CharUnits PaddedSize = CharUnits::fromQuantity(8);
5980   if (IsVector && UnpaddedSize > PaddedSize)
5981     PaddedSize = CharUnits::fromQuantity(16);
5982   assert((UnpaddedSize <= PaddedSize) && "Invalid argument size.");
5983 
5984   CharUnits Padding = (PaddedSize - UnpaddedSize);
5985 
5986   llvm::Type *IndexTy = CGF.Int64Ty;
5987   llvm::Value *PaddedSizeV =
5988     llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity());
5989 
5990   if (IsVector) {
5991     // Work out the address of a vector argument on the stack.
5992     // Vector arguments are always passed in the high bits of a
5993     // single (8 byte) or double (16 byte) stack slot.
5994     Address OverflowArgAreaPtr =
5995       CGF.Builder.CreateStructGEP(VAListAddr, 2, CharUnits::fromQuantity(16),
5996                                   "overflow_arg_area_ptr");
5997     Address OverflowArgArea =
5998       Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
5999               TyInfo.second);
6000     Address MemAddr =
6001       CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr");
6002 
6003     // Update overflow_arg_area_ptr pointer
6004     llvm::Value *NewOverflowArgArea =
6005       CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
6006                             "overflow_arg_area");
6007     CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
6008 
6009     return MemAddr;
6010   }
6011 
6012   assert(PaddedSize.getQuantity() == 8);
6013 
6014   unsigned MaxRegs, RegCountField, RegSaveIndex;
6015   CharUnits RegPadding;
6016   if (InFPRs) {
6017     MaxRegs = 4; // Maximum of 4 FPR arguments
6018     RegCountField = 1; // __fpr
6019     RegSaveIndex = 16; // save offset for f0
6020     RegPadding = CharUnits(); // floats are passed in the high bits of an FPR
6021   } else {
6022     MaxRegs = 5; // Maximum of 5 GPR arguments
6023     RegCountField = 0; // __gpr
6024     RegSaveIndex = 2; // save offset for r2
6025     RegPadding = Padding; // values are passed in the low bits of a GPR
6026   }
6027 
6028   Address RegCountPtr = CGF.Builder.CreateStructGEP(
6029       VAListAddr, RegCountField, RegCountField * CharUnits::fromQuantity(8),
6030       "reg_count_ptr");
6031   llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
6032   llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
6033   llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
6034                                                  "fits_in_regs");
6035 
6036   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
6037   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
6038   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
6039   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
6040 
6041   // Emit code to load the value if it was passed in registers.
6042   CGF.EmitBlock(InRegBlock);
6043 
6044   // Work out the address of an argument register.
6045   llvm::Value *ScaledRegCount =
6046     CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
6047   llvm::Value *RegBase =
6048     llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity()
6049                                       + RegPadding.getQuantity());
6050   llvm::Value *RegOffset =
6051     CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
6052   Address RegSaveAreaPtr =
6053       CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24),
6054                                   "reg_save_area_ptr");
6055   llvm::Value *RegSaveArea =
6056     CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
6057   Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset,
6058                                            "raw_reg_addr"),
6059                      PaddedSize);
6060   Address RegAddr =
6061     CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr");
6062 
6063   // Update the register count
6064   llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
6065   llvm::Value *NewRegCount =
6066     CGF.Builder.CreateAdd(RegCount, One, "reg_count");
6067   CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
6068   CGF.EmitBranch(ContBlock);
6069 
6070   // Emit code to load the value if it was passed in memory.
6071   CGF.EmitBlock(InMemBlock);
6072 
6073   // Work out the address of a stack argument.
6074   Address OverflowArgAreaPtr = CGF.Builder.CreateStructGEP(
6075       VAListAddr, 2, CharUnits::fromQuantity(16), "overflow_arg_area_ptr");
6076   Address OverflowArgArea =
6077     Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
6078             PaddedSize);
6079   Address RawMemAddr =
6080     CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr");
6081   Address MemAddr =
6082     CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr");
6083 
6084   // Update overflow_arg_area_ptr pointer
6085   llvm::Value *NewOverflowArgArea =
6086     CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
6087                           "overflow_arg_area");
6088   CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
6089   CGF.EmitBranch(ContBlock);
6090 
6091   // Return the appropriate result.
6092   CGF.EmitBlock(ContBlock);
6093   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
6094                                  MemAddr, InMemBlock, "va_arg.addr");
6095 
6096   if (IsIndirect)
6097     ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"),
6098                       TyInfo.second);
6099 
6100   return ResAddr;
6101 }
6102 
6103 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
6104   if (RetTy->isVoidType())
6105     return ABIArgInfo::getIgnore();
6106   if (isVectorArgumentType(RetTy))
6107     return ABIArgInfo::getDirect();
6108   if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
6109     return getNaturalAlignIndirect(RetTy);
6110   return (isPromotableIntegerType(RetTy) ?
6111           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
6112 }
6113 
6114 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
6115   // Handle the generic C++ ABI.
6116   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
6117     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6118 
6119   // Integers and enums are extended to full register width.
6120   if (isPromotableIntegerType(Ty))
6121     return ABIArgInfo::getExtend();
6122 
6123   // Handle vector types and vector-like structure types.  Note that
6124   // as opposed to float-like structure types, we do not allow any
6125   // padding for vector-like structures, so verify the sizes match.
6126   uint64_t Size = getContext().getTypeSize(Ty);
6127   QualType SingleElementTy = GetSingleElementType(Ty);
6128   if (isVectorArgumentType(SingleElementTy) &&
6129       getContext().getTypeSize(SingleElementTy) == Size)
6130     return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy));
6131 
6132   // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
6133   if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
6134     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6135 
6136   // Handle small structures.
6137   if (const RecordType *RT = Ty->getAs<RecordType>()) {
6138     // Structures with flexible arrays have variable length, so really
6139     // fail the size test above.
6140     const RecordDecl *RD = RT->getDecl();
6141     if (RD->hasFlexibleArrayMember())
6142       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6143 
6144     // The structure is passed as an unextended integer, a float, or a double.
6145     llvm::Type *PassTy;
6146     if (isFPArgumentType(SingleElementTy)) {
6147       assert(Size == 32 || Size == 64);
6148       if (Size == 32)
6149         PassTy = llvm::Type::getFloatTy(getVMContext());
6150       else
6151         PassTy = llvm::Type::getDoubleTy(getVMContext());
6152     } else
6153       PassTy = llvm::IntegerType::get(getVMContext(), Size);
6154     return ABIArgInfo::getDirect(PassTy);
6155   }
6156 
6157   // Non-structure compounds are passed indirectly.
6158   if (isCompoundType(Ty))
6159     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6160 
6161   return ABIArgInfo::getDirect(nullptr);
6162 }
6163 
6164 //===----------------------------------------------------------------------===//
6165 // MSP430 ABI Implementation
6166 //===----------------------------------------------------------------------===//
6167 
6168 namespace {
6169 
6170 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
6171 public:
6172   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
6173     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
6174   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6175                            CodeGen::CodeGenModule &M) const override;
6176 };
6177 
6178 }
6179 
6180 void MSP430TargetCodeGenInfo::setTargetAttributes(const Decl *D,
6181                                                   llvm::GlobalValue *GV,
6182                                              CodeGen::CodeGenModule &M) const {
6183   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
6184     if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
6185       // Handle 'interrupt' attribute:
6186       llvm::Function *F = cast<llvm::Function>(GV);
6187 
6188       // Step 1: Set ISR calling convention.
6189       F->setCallingConv(llvm::CallingConv::MSP430_INTR);
6190 
6191       // Step 2: Add attributes goodness.
6192       F->addFnAttr(llvm::Attribute::NoInline);
6193 
6194       // Step 3: Emit ISR vector alias.
6195       unsigned Num = attr->getNumber() / 2;
6196       llvm::GlobalAlias::create(llvm::Function::ExternalLinkage,
6197                                 "__isr_" + Twine(Num), F);
6198     }
6199   }
6200 }
6201 
6202 //===----------------------------------------------------------------------===//
6203 // MIPS ABI Implementation.  This works for both little-endian and
6204 // big-endian variants.
6205 //===----------------------------------------------------------------------===//
6206 
6207 namespace {
6208 class MipsABIInfo : public ABIInfo {
6209   bool IsO32;
6210   unsigned MinABIStackAlignInBytes, StackAlignInBytes;
6211   void CoerceToIntArgs(uint64_t TySize,
6212                        SmallVectorImpl<llvm::Type *> &ArgList) const;
6213   llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
6214   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
6215   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
6216 public:
6217   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
6218     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
6219     StackAlignInBytes(IsO32 ? 8 : 16) {}
6220 
6221   ABIArgInfo classifyReturnType(QualType RetTy) const;
6222   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
6223   void computeInfo(CGFunctionInfo &FI) const override;
6224   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6225                     QualType Ty) const override;
6226   bool shouldSignExtUnsignedType(QualType Ty) const override;
6227 };
6228 
6229 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
6230   unsigned SizeOfUnwindException;
6231 public:
6232   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
6233     : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
6234       SizeOfUnwindException(IsO32 ? 24 : 32) {}
6235 
6236   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
6237     return 29;
6238   }
6239 
6240   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6241                            CodeGen::CodeGenModule &CGM) const override {
6242     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6243     if (!FD) return;
6244     llvm::Function *Fn = cast<llvm::Function>(GV);
6245     if (FD->hasAttr<Mips16Attr>()) {
6246       Fn->addFnAttr("mips16");
6247     }
6248     else if (FD->hasAttr<NoMips16Attr>()) {
6249       Fn->addFnAttr("nomips16");
6250     }
6251 
6252     const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>();
6253     if (!Attr)
6254       return;
6255 
6256     const char *Kind;
6257     switch (Attr->getInterrupt()) {
6258     case MipsInterruptAttr::eic:     Kind = "eic"; break;
6259     case MipsInterruptAttr::sw0:     Kind = "sw0"; break;
6260     case MipsInterruptAttr::sw1:     Kind = "sw1"; break;
6261     case MipsInterruptAttr::hw0:     Kind = "hw0"; break;
6262     case MipsInterruptAttr::hw1:     Kind = "hw1"; break;
6263     case MipsInterruptAttr::hw2:     Kind = "hw2"; break;
6264     case MipsInterruptAttr::hw3:     Kind = "hw3"; break;
6265     case MipsInterruptAttr::hw4:     Kind = "hw4"; break;
6266     case MipsInterruptAttr::hw5:     Kind = "hw5"; break;
6267     }
6268 
6269     Fn->addFnAttr("interrupt", Kind);
6270 
6271   }
6272 
6273   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6274                                llvm::Value *Address) const override;
6275 
6276   unsigned getSizeOfUnwindException() const override {
6277     return SizeOfUnwindException;
6278   }
6279 };
6280 }
6281 
6282 void MipsABIInfo::CoerceToIntArgs(
6283     uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const {
6284   llvm::IntegerType *IntTy =
6285     llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
6286 
6287   // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
6288   for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
6289     ArgList.push_back(IntTy);
6290 
6291   // If necessary, add one more integer type to ArgList.
6292   unsigned R = TySize % (MinABIStackAlignInBytes * 8);
6293 
6294   if (R)
6295     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
6296 }
6297 
6298 // In N32/64, an aligned double precision floating point field is passed in
6299 // a register.
6300 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
6301   SmallVector<llvm::Type*, 8> ArgList, IntArgList;
6302 
6303   if (IsO32) {
6304     CoerceToIntArgs(TySize, ArgList);
6305     return llvm::StructType::get(getVMContext(), ArgList);
6306   }
6307 
6308   if (Ty->isComplexType())
6309     return CGT.ConvertType(Ty);
6310 
6311   const RecordType *RT = Ty->getAs<RecordType>();
6312 
6313   // Unions/vectors are passed in integer registers.
6314   if (!RT || !RT->isStructureOrClassType()) {
6315     CoerceToIntArgs(TySize, ArgList);
6316     return llvm::StructType::get(getVMContext(), ArgList);
6317   }
6318 
6319   const RecordDecl *RD = RT->getDecl();
6320   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
6321   assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
6322 
6323   uint64_t LastOffset = 0;
6324   unsigned idx = 0;
6325   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
6326 
6327   // Iterate over fields in the struct/class and check if there are any aligned
6328   // double fields.
6329   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
6330        i != e; ++i, ++idx) {
6331     const QualType Ty = i->getType();
6332     const BuiltinType *BT = Ty->getAs<BuiltinType>();
6333 
6334     if (!BT || BT->getKind() != BuiltinType::Double)
6335       continue;
6336 
6337     uint64_t Offset = Layout.getFieldOffset(idx);
6338     if (Offset % 64) // Ignore doubles that are not aligned.
6339       continue;
6340 
6341     // Add ((Offset - LastOffset) / 64) args of type i64.
6342     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
6343       ArgList.push_back(I64);
6344 
6345     // Add double type.
6346     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
6347     LastOffset = Offset + 64;
6348   }
6349 
6350   CoerceToIntArgs(TySize - LastOffset, IntArgList);
6351   ArgList.append(IntArgList.begin(), IntArgList.end());
6352 
6353   return llvm::StructType::get(getVMContext(), ArgList);
6354 }
6355 
6356 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
6357                                         uint64_t Offset) const {
6358   if (OrigOffset + MinABIStackAlignInBytes > Offset)
6359     return nullptr;
6360 
6361   return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
6362 }
6363 
6364 ABIArgInfo
6365 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
6366   Ty = useFirstFieldIfTransparentUnion(Ty);
6367 
6368   uint64_t OrigOffset = Offset;
6369   uint64_t TySize = getContext().getTypeSize(Ty);
6370   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
6371 
6372   Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
6373                    (uint64_t)StackAlignInBytes);
6374   unsigned CurrOffset = llvm::alignTo(Offset, Align);
6375   Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8;
6376 
6377   if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
6378     // Ignore empty aggregates.
6379     if (TySize == 0)
6380       return ABIArgInfo::getIgnore();
6381 
6382     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
6383       Offset = OrigOffset + MinABIStackAlignInBytes;
6384       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6385     }
6386 
6387     // If we have reached here, aggregates are passed directly by coercing to
6388     // another structure type. Padding is inserted if the offset of the
6389     // aggregate is unaligned.
6390     ABIArgInfo ArgInfo =
6391         ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
6392                               getPaddingType(OrigOffset, CurrOffset));
6393     ArgInfo.setInReg(true);
6394     return ArgInfo;
6395   }
6396 
6397   // Treat an enum type as its underlying type.
6398   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6399     Ty = EnumTy->getDecl()->getIntegerType();
6400 
6401   // All integral types are promoted to the GPR width.
6402   if (Ty->isIntegralOrEnumerationType())
6403     return ABIArgInfo::getExtend();
6404 
6405   return ABIArgInfo::getDirect(
6406       nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
6407 }
6408 
6409 llvm::Type*
6410 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
6411   const RecordType *RT = RetTy->getAs<RecordType>();
6412   SmallVector<llvm::Type*, 8> RTList;
6413 
6414   if (RT && RT->isStructureOrClassType()) {
6415     const RecordDecl *RD = RT->getDecl();
6416     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
6417     unsigned FieldCnt = Layout.getFieldCount();
6418 
6419     // N32/64 returns struct/classes in floating point registers if the
6420     // following conditions are met:
6421     // 1. The size of the struct/class is no larger than 128-bit.
6422     // 2. The struct/class has one or two fields all of which are floating
6423     //    point types.
6424     // 3. The offset of the first field is zero (this follows what gcc does).
6425     //
6426     // Any other composite results are returned in integer registers.
6427     //
6428     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
6429       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
6430       for (; b != e; ++b) {
6431         const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
6432 
6433         if (!BT || !BT->isFloatingPoint())
6434           break;
6435 
6436         RTList.push_back(CGT.ConvertType(b->getType()));
6437       }
6438 
6439       if (b == e)
6440         return llvm::StructType::get(getVMContext(), RTList,
6441                                      RD->hasAttr<PackedAttr>());
6442 
6443       RTList.clear();
6444     }
6445   }
6446 
6447   CoerceToIntArgs(Size, RTList);
6448   return llvm::StructType::get(getVMContext(), RTList);
6449 }
6450 
6451 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
6452   uint64_t Size = getContext().getTypeSize(RetTy);
6453 
6454   if (RetTy->isVoidType())
6455     return ABIArgInfo::getIgnore();
6456 
6457   // O32 doesn't treat zero-sized structs differently from other structs.
6458   // However, N32/N64 ignores zero sized return values.
6459   if (!IsO32 && Size == 0)
6460     return ABIArgInfo::getIgnore();
6461 
6462   if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
6463     if (Size <= 128) {
6464       if (RetTy->isAnyComplexType())
6465         return ABIArgInfo::getDirect();
6466 
6467       // O32 returns integer vectors in registers and N32/N64 returns all small
6468       // aggregates in registers.
6469       if (!IsO32 ||
6470           (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
6471         ABIArgInfo ArgInfo =
6472             ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
6473         ArgInfo.setInReg(true);
6474         return ArgInfo;
6475       }
6476     }
6477 
6478     return getNaturalAlignIndirect(RetTy);
6479   }
6480 
6481   // Treat an enum type as its underlying type.
6482   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6483     RetTy = EnumTy->getDecl()->getIntegerType();
6484 
6485   return (RetTy->isPromotableIntegerType() ?
6486           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
6487 }
6488 
6489 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
6490   ABIArgInfo &RetInfo = FI.getReturnInfo();
6491   if (!getCXXABI().classifyReturnType(FI))
6492     RetInfo = classifyReturnType(FI.getReturnType());
6493 
6494   // Check if a pointer to an aggregate is passed as a hidden argument.
6495   uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
6496 
6497   for (auto &I : FI.arguments())
6498     I.info = classifyArgumentType(I.type, Offset);
6499 }
6500 
6501 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6502                                QualType OrigTy) const {
6503   QualType Ty = OrigTy;
6504 
6505   // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64.
6506   // Pointers are also promoted in the same way but this only matters for N32.
6507   unsigned SlotSizeInBits = IsO32 ? 32 : 64;
6508   unsigned PtrWidth = getTarget().getPointerWidth(0);
6509   bool DidPromote = false;
6510   if ((Ty->isIntegerType() &&
6511           getContext().getIntWidth(Ty) < SlotSizeInBits) ||
6512       (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) {
6513     DidPromote = true;
6514     Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits,
6515                                             Ty->isSignedIntegerType());
6516   }
6517 
6518   auto TyInfo = getContext().getTypeInfoInChars(Ty);
6519 
6520   // The alignment of things in the argument area is never larger than
6521   // StackAlignInBytes.
6522   TyInfo.second =
6523     std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes));
6524 
6525   // MinABIStackAlignInBytes is the size of argument slots on the stack.
6526   CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes);
6527 
6528   Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
6529                           TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true);
6530 
6531 
6532   // If there was a promotion, "unpromote" into a temporary.
6533   // TODO: can we just use a pointer into a subset of the original slot?
6534   if (DidPromote) {
6535     Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp");
6536     llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr);
6537 
6538     // Truncate down to the right width.
6539     llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType()
6540                                                  : CGF.IntPtrTy);
6541     llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy);
6542     if (OrigTy->isPointerType())
6543       V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType());
6544 
6545     CGF.Builder.CreateStore(V, Temp);
6546     Addr = Temp;
6547   }
6548 
6549   return Addr;
6550 }
6551 
6552 bool MipsABIInfo::shouldSignExtUnsignedType(QualType Ty) const {
6553   int TySize = getContext().getTypeSize(Ty);
6554 
6555   // MIPS64 ABI requires unsigned 32 bit integers to be sign extended.
6556   if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
6557     return true;
6558 
6559   return false;
6560 }
6561 
6562 bool
6563 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6564                                                llvm::Value *Address) const {
6565   // This information comes from gcc's implementation, which seems to
6566   // as canonical as it gets.
6567 
6568   // Everything on MIPS is 4 bytes.  Double-precision FP registers
6569   // are aliased to pairs of single-precision FP registers.
6570   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
6571 
6572   // 0-31 are the general purpose registers, $0 - $31.
6573   // 32-63 are the floating-point registers, $f0 - $f31.
6574   // 64 and 65 are the multiply/divide registers, $hi and $lo.
6575   // 66 is the (notional, I think) register for signal-handler return.
6576   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
6577 
6578   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
6579   // They are one bit wide and ignored here.
6580 
6581   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
6582   // (coprocessor 1 is the FP unit)
6583   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
6584   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
6585   // 176-181 are the DSP accumulator registers.
6586   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
6587   return false;
6588 }
6589 
6590 //===----------------------------------------------------------------------===//
6591 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
6592 // Currently subclassed only to implement custom OpenCL C function attribute
6593 // handling.
6594 //===----------------------------------------------------------------------===//
6595 
6596 namespace {
6597 
6598 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
6599 public:
6600   TCETargetCodeGenInfo(CodeGenTypes &CGT)
6601     : DefaultTargetCodeGenInfo(CGT) {}
6602 
6603   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6604                            CodeGen::CodeGenModule &M) const override;
6605 };
6606 
6607 void TCETargetCodeGenInfo::setTargetAttributes(
6608     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
6609   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6610   if (!FD) return;
6611 
6612   llvm::Function *F = cast<llvm::Function>(GV);
6613 
6614   if (M.getLangOpts().OpenCL) {
6615     if (FD->hasAttr<OpenCLKernelAttr>()) {
6616       // OpenCL C Kernel functions are not subject to inlining
6617       F->addFnAttr(llvm::Attribute::NoInline);
6618       const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
6619       if (Attr) {
6620         // Convert the reqd_work_group_size() attributes to metadata.
6621         llvm::LLVMContext &Context = F->getContext();
6622         llvm::NamedMDNode *OpenCLMetadata =
6623             M.getModule().getOrInsertNamedMetadata(
6624                 "opencl.kernel_wg_size_info");
6625 
6626         SmallVector<llvm::Metadata *, 5> Operands;
6627         Operands.push_back(llvm::ConstantAsMetadata::get(F));
6628 
6629         Operands.push_back(
6630             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
6631                 M.Int32Ty, llvm::APInt(32, Attr->getXDim()))));
6632         Operands.push_back(
6633             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
6634                 M.Int32Ty, llvm::APInt(32, Attr->getYDim()))));
6635         Operands.push_back(
6636             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
6637                 M.Int32Ty, llvm::APInt(32, Attr->getZDim()))));
6638 
6639         // Add a boolean constant operand for "required" (true) or "hint"
6640         // (false) for implementing the work_group_size_hint attr later.
6641         // Currently always true as the hint is not yet implemented.
6642         Operands.push_back(
6643             llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context)));
6644         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
6645       }
6646     }
6647   }
6648 }
6649 
6650 }
6651 
6652 //===----------------------------------------------------------------------===//
6653 // Hexagon ABI Implementation
6654 //===----------------------------------------------------------------------===//
6655 
6656 namespace {
6657 
6658 class HexagonABIInfo : public ABIInfo {
6659 
6660 
6661 public:
6662   HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
6663 
6664 private:
6665 
6666   ABIArgInfo classifyReturnType(QualType RetTy) const;
6667   ABIArgInfo classifyArgumentType(QualType RetTy) const;
6668 
6669   void computeInfo(CGFunctionInfo &FI) const override;
6670 
6671   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6672                     QualType Ty) const override;
6673 };
6674 
6675 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
6676 public:
6677   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
6678     :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
6679 
6680   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
6681     return 29;
6682   }
6683 };
6684 
6685 }
6686 
6687 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
6688   if (!getCXXABI().classifyReturnType(FI))
6689     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
6690   for (auto &I : FI.arguments())
6691     I.info = classifyArgumentType(I.type);
6692 }
6693 
6694 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
6695   if (!isAggregateTypeForABI(Ty)) {
6696     // Treat an enum type as its underlying type.
6697     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6698       Ty = EnumTy->getDecl()->getIntegerType();
6699 
6700     return (Ty->isPromotableIntegerType() ?
6701             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
6702   }
6703 
6704   // Ignore empty records.
6705   if (isEmptyRecord(getContext(), Ty, true))
6706     return ABIArgInfo::getIgnore();
6707 
6708   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
6709     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6710 
6711   uint64_t Size = getContext().getTypeSize(Ty);
6712   if (Size > 64)
6713     return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
6714     // Pass in the smallest viable integer type.
6715   else if (Size > 32)
6716       return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
6717   else if (Size > 16)
6718       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6719   else if (Size > 8)
6720       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6721   else
6722       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6723 }
6724 
6725 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
6726   if (RetTy->isVoidType())
6727     return ABIArgInfo::getIgnore();
6728 
6729   // Large vector types should be returned via memory.
6730   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
6731     return getNaturalAlignIndirect(RetTy);
6732 
6733   if (!isAggregateTypeForABI(RetTy)) {
6734     // Treat an enum type as its underlying type.
6735     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6736       RetTy = EnumTy->getDecl()->getIntegerType();
6737 
6738     return (RetTy->isPromotableIntegerType() ?
6739             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
6740   }
6741 
6742   if (isEmptyRecord(getContext(), RetTy, true))
6743     return ABIArgInfo::getIgnore();
6744 
6745   // Aggregates <= 8 bytes are returned in r0; other aggregates
6746   // are returned indirectly.
6747   uint64_t Size = getContext().getTypeSize(RetTy);
6748   if (Size <= 64) {
6749     // Return in the smallest viable integer type.
6750     if (Size <= 8)
6751       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6752     if (Size <= 16)
6753       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6754     if (Size <= 32)
6755       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6756     return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
6757   }
6758 
6759   return getNaturalAlignIndirect(RetTy, /*ByVal=*/true);
6760 }
6761 
6762 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6763                                   QualType Ty) const {
6764   // FIXME: Someone needs to audit that this handle alignment correctly.
6765   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
6766                           getContext().getTypeInfoInChars(Ty),
6767                           CharUnits::fromQuantity(4),
6768                           /*AllowHigherAlign*/ true);
6769 }
6770 
6771 //===----------------------------------------------------------------------===//
6772 // Lanai ABI Implementation
6773 //===----------------------------------------------------------------------===//
6774 
6775 namespace {
6776 class LanaiABIInfo : public DefaultABIInfo {
6777 public:
6778   LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
6779 
6780   bool shouldUseInReg(QualType Ty, CCState &State) const;
6781 
6782   void computeInfo(CGFunctionInfo &FI) const override {
6783     CCState State(FI.getCallingConvention());
6784     // Lanai uses 4 registers to pass arguments unless the function has the
6785     // regparm attribute set.
6786     if (FI.getHasRegParm()) {
6787       State.FreeRegs = FI.getRegParm();
6788     } else {
6789       State.FreeRegs = 4;
6790     }
6791 
6792     if (!getCXXABI().classifyReturnType(FI))
6793       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
6794     for (auto &I : FI.arguments())
6795       I.info = classifyArgumentType(I.type, State);
6796   }
6797 
6798   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
6799   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
6800 };
6801 } // end anonymous namespace
6802 
6803 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const {
6804   unsigned Size = getContext().getTypeSize(Ty);
6805   unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U;
6806 
6807   if (SizeInRegs == 0)
6808     return false;
6809 
6810   if (SizeInRegs > State.FreeRegs) {
6811     State.FreeRegs = 0;
6812     return false;
6813   }
6814 
6815   State.FreeRegs -= SizeInRegs;
6816 
6817   return true;
6818 }
6819 
6820 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal,
6821                                            CCState &State) const {
6822   if (!ByVal) {
6823     if (State.FreeRegs) {
6824       --State.FreeRegs; // Non-byval indirects just use one pointer.
6825       return getNaturalAlignIndirectInReg(Ty);
6826     }
6827     return getNaturalAlignIndirect(Ty, false);
6828   }
6829 
6830   // Compute the byval alignment.
6831   const unsigned MinABIStackAlignInBytes = 4;
6832   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
6833   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
6834                                  /*Realign=*/TypeAlign >
6835                                      MinABIStackAlignInBytes);
6836 }
6837 
6838 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty,
6839                                               CCState &State) const {
6840   // Check with the C++ ABI first.
6841   const RecordType *RT = Ty->getAs<RecordType>();
6842   if (RT) {
6843     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
6844     if (RAA == CGCXXABI::RAA_Indirect) {
6845       return getIndirectResult(Ty, /*ByVal=*/false, State);
6846     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
6847       return getNaturalAlignIndirect(Ty, /*ByRef=*/true);
6848     }
6849   }
6850 
6851   if (isAggregateTypeForABI(Ty)) {
6852     // Structures with flexible arrays are always indirect.
6853     if (RT && RT->getDecl()->hasFlexibleArrayMember())
6854       return getIndirectResult(Ty, /*ByVal=*/true, State);
6855 
6856     // Ignore empty structs/unions.
6857     if (isEmptyRecord(getContext(), Ty, true))
6858       return ABIArgInfo::getIgnore();
6859 
6860     llvm::LLVMContext &LLVMContext = getVMContext();
6861     unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
6862     if (SizeInRegs <= State.FreeRegs) {
6863       llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
6864       SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
6865       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
6866       State.FreeRegs -= SizeInRegs;
6867       return ABIArgInfo::getDirectInReg(Result);
6868     } else {
6869       State.FreeRegs = 0;
6870     }
6871     return getIndirectResult(Ty, true, State);
6872   }
6873 
6874   // Treat an enum type as its underlying type.
6875   if (const auto *EnumTy = Ty->getAs<EnumType>())
6876     Ty = EnumTy->getDecl()->getIntegerType();
6877 
6878   bool InReg = shouldUseInReg(Ty, State);
6879   if (Ty->isPromotableIntegerType()) {
6880     if (InReg)
6881       return ABIArgInfo::getDirectInReg();
6882     return ABIArgInfo::getExtend();
6883   }
6884   if (InReg)
6885     return ABIArgInfo::getDirectInReg();
6886   return ABIArgInfo::getDirect();
6887 }
6888 
6889 namespace {
6890 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo {
6891 public:
6892   LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
6893       : TargetCodeGenInfo(new LanaiABIInfo(CGT)) {}
6894 };
6895 }
6896 
6897 //===----------------------------------------------------------------------===//
6898 // AMDGPU ABI Implementation
6899 //===----------------------------------------------------------------------===//
6900 
6901 namespace {
6902 
6903 class AMDGPUABIInfo final : public DefaultABIInfo {
6904 public:
6905   explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
6906 
6907 private:
6908   ABIArgInfo classifyArgumentType(QualType Ty) const;
6909 
6910   void computeInfo(CGFunctionInfo &FI) const override;
6911 };
6912 
6913 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const {
6914   if (!getCXXABI().classifyReturnType(FI))
6915     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
6916 
6917   unsigned CC = FI.getCallingConvention();
6918   for (auto &Arg : FI.arguments())
6919     if (CC == llvm::CallingConv::AMDGPU_KERNEL)
6920       Arg.info = classifyArgumentType(Arg.type);
6921     else
6922       Arg.info = DefaultABIInfo::classifyArgumentType(Arg.type);
6923 }
6924 
6925 /// \brief Classify argument of given type \p Ty.
6926 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty) const {
6927   llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
6928   if (!StrTy) {
6929     return DefaultABIInfo::classifyArgumentType(Ty);
6930   }
6931 
6932   // Coerce single element structs to its element.
6933   if (StrTy->getNumElements() == 1) {
6934     return ABIArgInfo::getDirect();
6935   }
6936 
6937   // If we set CanBeFlattened to true, CodeGen will expand the struct to its
6938   // individual elements, which confuses the Clover OpenCL backend; therefore we
6939   // have to set it to false here. Other args of getDirect() are just defaults.
6940   return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
6941 }
6942 
6943 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
6944 public:
6945   AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
6946     : TargetCodeGenInfo(new AMDGPUABIInfo(CGT)) {}
6947   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6948                            CodeGen::CodeGenModule &M) const override;
6949   unsigned getOpenCLKernelCallingConv() const override;
6950 };
6951 
6952 }
6953 
6954 static void appendOpenCLVersionMD (CodeGen::CodeGenModule &CGM);
6955 
6956 void AMDGPUTargetCodeGenInfo::setTargetAttributes(
6957     const Decl *D,
6958     llvm::GlobalValue *GV,
6959     CodeGen::CodeGenModule &M) const {
6960   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6961   if (!FD)
6962     return;
6963 
6964   llvm::Function *F = cast<llvm::Function>(GV);
6965 
6966   if (const auto *Attr = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>()) {
6967     unsigned Min = Attr->getMin();
6968     unsigned Max = Attr->getMax();
6969 
6970     if (Min != 0) {
6971       assert(Min <= Max && "Min must be less than or equal Max");
6972 
6973       std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max);
6974       F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
6975     } else
6976       assert(Max == 0 && "Max must be zero");
6977   }
6978 
6979   if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) {
6980     unsigned Min = Attr->getMin();
6981     unsigned Max = Attr->getMax();
6982 
6983     if (Min != 0) {
6984       assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max");
6985 
6986       std::string AttrVal = llvm::utostr(Min);
6987       if (Max != 0)
6988         AttrVal = AttrVal + "," + llvm::utostr(Max);
6989       F->addFnAttr("amdgpu-waves-per-eu", AttrVal);
6990     } else
6991       assert(Max == 0 && "Max must be zero");
6992   }
6993 
6994   if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
6995     unsigned NumSGPR = Attr->getNumSGPR();
6996 
6997     if (NumSGPR != 0)
6998       F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR));
6999   }
7000 
7001   if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
7002     uint32_t NumVGPR = Attr->getNumVGPR();
7003 
7004     if (NumVGPR != 0)
7005       F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR));
7006   }
7007 
7008   appendOpenCLVersionMD(M);
7009 }
7010 
7011 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
7012   return llvm::CallingConv::AMDGPU_KERNEL;
7013 }
7014 
7015 //===----------------------------------------------------------------------===//
7016 // SPARC v8 ABI Implementation.
7017 // Based on the SPARC Compliance Definition version 2.4.1.
7018 //
7019 // Ensures that complex values are passed in registers.
7020 //
7021 namespace {
7022 class SparcV8ABIInfo : public DefaultABIInfo {
7023 public:
7024   SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
7025 
7026 private:
7027   ABIArgInfo classifyReturnType(QualType RetTy) const;
7028   void computeInfo(CGFunctionInfo &FI) const override;
7029 };
7030 } // end anonymous namespace
7031 
7032 
7033 ABIArgInfo
7034 SparcV8ABIInfo::classifyReturnType(QualType Ty) const {
7035   if (Ty->isAnyComplexType()) {
7036     return ABIArgInfo::getDirect();
7037   }
7038   else {
7039     return DefaultABIInfo::classifyReturnType(Ty);
7040   }
7041 }
7042 
7043 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const {
7044 
7045   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7046   for (auto &Arg : FI.arguments())
7047     Arg.info = classifyArgumentType(Arg.type);
7048 }
7049 
7050 namespace {
7051 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo {
7052 public:
7053   SparcV8TargetCodeGenInfo(CodeGenTypes &CGT)
7054     : TargetCodeGenInfo(new SparcV8ABIInfo(CGT)) {}
7055 };
7056 } // end anonymous namespace
7057 
7058 //===----------------------------------------------------------------------===//
7059 // SPARC v9 ABI Implementation.
7060 // Based on the SPARC Compliance Definition version 2.4.1.
7061 //
7062 // Function arguments a mapped to a nominal "parameter array" and promoted to
7063 // registers depending on their type. Each argument occupies 8 or 16 bytes in
7064 // the array, structs larger than 16 bytes are passed indirectly.
7065 //
7066 // One case requires special care:
7067 //
7068 //   struct mixed {
7069 //     int i;
7070 //     float f;
7071 //   };
7072 //
7073 // When a struct mixed is passed by value, it only occupies 8 bytes in the
7074 // parameter array, but the int is passed in an integer register, and the float
7075 // is passed in a floating point register. This is represented as two arguments
7076 // with the LLVM IR inreg attribute:
7077 //
7078 //   declare void f(i32 inreg %i, float inreg %f)
7079 //
7080 // The code generator will only allocate 4 bytes from the parameter array for
7081 // the inreg arguments. All other arguments are allocated a multiple of 8
7082 // bytes.
7083 //
7084 namespace {
7085 class SparcV9ABIInfo : public ABIInfo {
7086 public:
7087   SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
7088 
7089 private:
7090   ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
7091   void computeInfo(CGFunctionInfo &FI) const override;
7092   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7093                     QualType Ty) const override;
7094 
7095   // Coercion type builder for structs passed in registers. The coercion type
7096   // serves two purposes:
7097   //
7098   // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
7099   //    in registers.
7100   // 2. Expose aligned floating point elements as first-level elements, so the
7101   //    code generator knows to pass them in floating point registers.
7102   //
7103   // We also compute the InReg flag which indicates that the struct contains
7104   // aligned 32-bit floats.
7105   //
7106   struct CoerceBuilder {
7107     llvm::LLVMContext &Context;
7108     const llvm::DataLayout &DL;
7109     SmallVector<llvm::Type*, 8> Elems;
7110     uint64_t Size;
7111     bool InReg;
7112 
7113     CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
7114       : Context(c), DL(dl), Size(0), InReg(false) {}
7115 
7116     // Pad Elems with integers until Size is ToSize.
7117     void pad(uint64_t ToSize) {
7118       assert(ToSize >= Size && "Cannot remove elements");
7119       if (ToSize == Size)
7120         return;
7121 
7122       // Finish the current 64-bit word.
7123       uint64_t Aligned = llvm::alignTo(Size, 64);
7124       if (Aligned > Size && Aligned <= ToSize) {
7125         Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
7126         Size = Aligned;
7127       }
7128 
7129       // Add whole 64-bit words.
7130       while (Size + 64 <= ToSize) {
7131         Elems.push_back(llvm::Type::getInt64Ty(Context));
7132         Size += 64;
7133       }
7134 
7135       // Final in-word padding.
7136       if (Size < ToSize) {
7137         Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
7138         Size = ToSize;
7139       }
7140     }
7141 
7142     // Add a floating point element at Offset.
7143     void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
7144       // Unaligned floats are treated as integers.
7145       if (Offset % Bits)
7146         return;
7147       // The InReg flag is only required if there are any floats < 64 bits.
7148       if (Bits < 64)
7149         InReg = true;
7150       pad(Offset);
7151       Elems.push_back(Ty);
7152       Size = Offset + Bits;
7153     }
7154 
7155     // Add a struct type to the coercion type, starting at Offset (in bits).
7156     void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
7157       const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
7158       for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
7159         llvm::Type *ElemTy = StrTy->getElementType(i);
7160         uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
7161         switch (ElemTy->getTypeID()) {
7162         case llvm::Type::StructTyID:
7163           addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
7164           break;
7165         case llvm::Type::FloatTyID:
7166           addFloat(ElemOffset, ElemTy, 32);
7167           break;
7168         case llvm::Type::DoubleTyID:
7169           addFloat(ElemOffset, ElemTy, 64);
7170           break;
7171         case llvm::Type::FP128TyID:
7172           addFloat(ElemOffset, ElemTy, 128);
7173           break;
7174         case llvm::Type::PointerTyID:
7175           if (ElemOffset % 64 == 0) {
7176             pad(ElemOffset);
7177             Elems.push_back(ElemTy);
7178             Size += 64;
7179           }
7180           break;
7181         default:
7182           break;
7183         }
7184       }
7185     }
7186 
7187     // Check if Ty is a usable substitute for the coercion type.
7188     bool isUsableType(llvm::StructType *Ty) const {
7189       return llvm::makeArrayRef(Elems) == Ty->elements();
7190     }
7191 
7192     // Get the coercion type as a literal struct type.
7193     llvm::Type *getType() const {
7194       if (Elems.size() == 1)
7195         return Elems.front();
7196       else
7197         return llvm::StructType::get(Context, Elems);
7198     }
7199   };
7200 };
7201 } // end anonymous namespace
7202 
7203 ABIArgInfo
7204 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
7205   if (Ty->isVoidType())
7206     return ABIArgInfo::getIgnore();
7207 
7208   uint64_t Size = getContext().getTypeSize(Ty);
7209 
7210   // Anything too big to fit in registers is passed with an explicit indirect
7211   // pointer / sret pointer.
7212   if (Size > SizeLimit)
7213     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
7214 
7215   // Treat an enum type as its underlying type.
7216   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7217     Ty = EnumTy->getDecl()->getIntegerType();
7218 
7219   // Integer types smaller than a register are extended.
7220   if (Size < 64 && Ty->isIntegerType())
7221     return ABIArgInfo::getExtend();
7222 
7223   // Other non-aggregates go in registers.
7224   if (!isAggregateTypeForABI(Ty))
7225     return ABIArgInfo::getDirect();
7226 
7227   // If a C++ object has either a non-trivial copy constructor or a non-trivial
7228   // destructor, it is passed with an explicit indirect pointer / sret pointer.
7229   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
7230     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7231 
7232   // This is a small aggregate type that should be passed in registers.
7233   // Build a coercion type from the LLVM struct type.
7234   llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
7235   if (!StrTy)
7236     return ABIArgInfo::getDirect();
7237 
7238   CoerceBuilder CB(getVMContext(), getDataLayout());
7239   CB.addStruct(0, StrTy);
7240   CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64));
7241 
7242   // Try to use the original type for coercion.
7243   llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
7244 
7245   if (CB.InReg)
7246     return ABIArgInfo::getDirectInReg(CoerceTy);
7247   else
7248     return ABIArgInfo::getDirect(CoerceTy);
7249 }
7250 
7251 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7252                                   QualType Ty) const {
7253   ABIArgInfo AI = classifyType(Ty, 16 * 8);
7254   llvm::Type *ArgTy = CGT.ConvertType(Ty);
7255   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
7256     AI.setCoerceToType(ArgTy);
7257 
7258   CharUnits SlotSize = CharUnits::fromQuantity(8);
7259 
7260   CGBuilderTy &Builder = CGF.Builder;
7261   Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
7262   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
7263 
7264   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
7265 
7266   Address ArgAddr = Address::invalid();
7267   CharUnits Stride;
7268   switch (AI.getKind()) {
7269   case ABIArgInfo::Expand:
7270   case ABIArgInfo::CoerceAndExpand:
7271   case ABIArgInfo::InAlloca:
7272     llvm_unreachable("Unsupported ABI kind for va_arg");
7273 
7274   case ABIArgInfo::Extend: {
7275     Stride = SlotSize;
7276     CharUnits Offset = SlotSize - TypeInfo.first;
7277     ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend");
7278     break;
7279   }
7280 
7281   case ABIArgInfo::Direct: {
7282     auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
7283     Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize);
7284     ArgAddr = Addr;
7285     break;
7286   }
7287 
7288   case ABIArgInfo::Indirect:
7289     Stride = SlotSize;
7290     ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect");
7291     ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"),
7292                       TypeInfo.second);
7293     break;
7294 
7295   case ABIArgInfo::Ignore:
7296     return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second);
7297   }
7298 
7299   // Update VAList.
7300   llvm::Value *NextPtr =
7301     Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), Stride, "ap.next");
7302   Builder.CreateStore(NextPtr, VAListAddr);
7303 
7304   return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr");
7305 }
7306 
7307 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
7308   FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
7309   for (auto &I : FI.arguments())
7310     I.info = classifyType(I.type, 16 * 8);
7311 }
7312 
7313 namespace {
7314 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
7315 public:
7316   SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
7317     : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {}
7318 
7319   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
7320     return 14;
7321   }
7322 
7323   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
7324                                llvm::Value *Address) const override;
7325 };
7326 } // end anonymous namespace
7327 
7328 bool
7329 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
7330                                                 llvm::Value *Address) const {
7331   // This is calculated from the LLVM and GCC tables and verified
7332   // against gcc output.  AFAIK all ABIs use the same encoding.
7333 
7334   CodeGen::CGBuilderTy &Builder = CGF.Builder;
7335 
7336   llvm::IntegerType *i8 = CGF.Int8Ty;
7337   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
7338   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
7339 
7340   // 0-31: the 8-byte general-purpose registers
7341   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
7342 
7343   // 32-63: f0-31, the 4-byte floating-point registers
7344   AssignToArrayRange(Builder, Address, Four8, 32, 63);
7345 
7346   //   Y   = 64
7347   //   PSR = 65
7348   //   WIM = 66
7349   //   TBR = 67
7350   //   PC  = 68
7351   //   NPC = 69
7352   //   FSR = 70
7353   //   CSR = 71
7354   AssignToArrayRange(Builder, Address, Eight8, 64, 71);
7355 
7356   // 72-87: d0-15, the 8-byte floating-point registers
7357   AssignToArrayRange(Builder, Address, Eight8, 72, 87);
7358 
7359   return false;
7360 }
7361 
7362 
7363 //===----------------------------------------------------------------------===//
7364 // XCore ABI Implementation
7365 //===----------------------------------------------------------------------===//
7366 
7367 namespace {
7368 
7369 /// A SmallStringEnc instance is used to build up the TypeString by passing
7370 /// it by reference between functions that append to it.
7371 typedef llvm::SmallString<128> SmallStringEnc;
7372 
7373 /// TypeStringCache caches the meta encodings of Types.
7374 ///
7375 /// The reason for caching TypeStrings is two fold:
7376 ///   1. To cache a type's encoding for later uses;
7377 ///   2. As a means to break recursive member type inclusion.
7378 ///
7379 /// A cache Entry can have a Status of:
7380 ///   NonRecursive:   The type encoding is not recursive;
7381 ///   Recursive:      The type encoding is recursive;
7382 ///   Incomplete:     An incomplete TypeString;
7383 ///   IncompleteUsed: An incomplete TypeString that has been used in a
7384 ///                   Recursive type encoding.
7385 ///
7386 /// A NonRecursive entry will have all of its sub-members expanded as fully
7387 /// as possible. Whilst it may contain types which are recursive, the type
7388 /// itself is not recursive and thus its encoding may be safely used whenever
7389 /// the type is encountered.
7390 ///
7391 /// A Recursive entry will have all of its sub-members expanded as fully as
7392 /// possible. The type itself is recursive and it may contain other types which
7393 /// are recursive. The Recursive encoding must not be used during the expansion
7394 /// of a recursive type's recursive branch. For simplicity the code uses
7395 /// IncompleteCount to reject all usage of Recursive encodings for member types.
7396 ///
7397 /// An Incomplete entry is always a RecordType and only encodes its
7398 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
7399 /// are placed into the cache during type expansion as a means to identify and
7400 /// handle recursive inclusion of types as sub-members. If there is recursion
7401 /// the entry becomes IncompleteUsed.
7402 ///
7403 /// During the expansion of a RecordType's members:
7404 ///
7405 ///   If the cache contains a NonRecursive encoding for the member type, the
7406 ///   cached encoding is used;
7407 ///
7408 ///   If the cache contains a Recursive encoding for the member type, the
7409 ///   cached encoding is 'Swapped' out, as it may be incorrect, and...
7410 ///
7411 ///   If the member is a RecordType, an Incomplete encoding is placed into the
7412 ///   cache to break potential recursive inclusion of itself as a sub-member;
7413 ///
7414 ///   Once a member RecordType has been expanded, its temporary incomplete
7415 ///   entry is removed from the cache. If a Recursive encoding was swapped out
7416 ///   it is swapped back in;
7417 ///
7418 ///   If an incomplete entry is used to expand a sub-member, the incomplete
7419 ///   entry is marked as IncompleteUsed. The cache keeps count of how many
7420 ///   IncompleteUsed entries it currently contains in IncompleteUsedCount;
7421 ///
7422 ///   If a member's encoding is found to be a NonRecursive or Recursive viz:
7423 ///   IncompleteUsedCount==0, the member's encoding is added to the cache.
7424 ///   Else the member is part of a recursive type and thus the recursion has
7425 ///   been exited too soon for the encoding to be correct for the member.
7426 ///
7427 class TypeStringCache {
7428   enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
7429   struct Entry {
7430     std::string Str;     // The encoded TypeString for the type.
7431     enum Status State;   // Information about the encoding in 'Str'.
7432     std::string Swapped; // A temporary place holder for a Recursive encoding
7433                          // during the expansion of RecordType's members.
7434   };
7435   std::map<const IdentifierInfo *, struct Entry> Map;
7436   unsigned IncompleteCount;     // Number of Incomplete entries in the Map.
7437   unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
7438 public:
7439   TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}
7440   void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
7441   bool removeIncomplete(const IdentifierInfo *ID);
7442   void addIfComplete(const IdentifierInfo *ID, StringRef Str,
7443                      bool IsRecursive);
7444   StringRef lookupStr(const IdentifierInfo *ID);
7445 };
7446 
7447 /// TypeString encodings for enum & union fields must be order.
7448 /// FieldEncoding is a helper for this ordering process.
7449 class FieldEncoding {
7450   bool HasName;
7451   std::string Enc;
7452 public:
7453   FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}
7454   StringRef str() {return Enc.c_str();}
7455   bool operator<(const FieldEncoding &rhs) const {
7456     if (HasName != rhs.HasName) return HasName;
7457     return Enc < rhs.Enc;
7458   }
7459 };
7460 
7461 class XCoreABIInfo : public DefaultABIInfo {
7462 public:
7463   XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
7464   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7465                     QualType Ty) const override;
7466 };
7467 
7468 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
7469   mutable TypeStringCache TSC;
7470 public:
7471   XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
7472     :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {}
7473   void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
7474                     CodeGen::CodeGenModule &M) const override;
7475 };
7476 
7477 } // End anonymous namespace.
7478 
7479 // TODO: this implementation is likely now redundant with the default
7480 // EmitVAArg.
7481 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7482                                 QualType Ty) const {
7483   CGBuilderTy &Builder = CGF.Builder;
7484 
7485   // Get the VAList.
7486   CharUnits SlotSize = CharUnits::fromQuantity(4);
7487   Address AP(Builder.CreateLoad(VAListAddr), SlotSize);
7488 
7489   // Handle the argument.
7490   ABIArgInfo AI = classifyArgumentType(Ty);
7491   CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty);
7492   llvm::Type *ArgTy = CGT.ConvertType(Ty);
7493   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
7494     AI.setCoerceToType(ArgTy);
7495   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
7496 
7497   Address Val = Address::invalid();
7498   CharUnits ArgSize = CharUnits::Zero();
7499   switch (AI.getKind()) {
7500   case ABIArgInfo::Expand:
7501   case ABIArgInfo::CoerceAndExpand:
7502   case ABIArgInfo::InAlloca:
7503     llvm_unreachable("Unsupported ABI kind for va_arg");
7504   case ABIArgInfo::Ignore:
7505     Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign);
7506     ArgSize = CharUnits::Zero();
7507     break;
7508   case ABIArgInfo::Extend:
7509   case ABIArgInfo::Direct:
7510     Val = Builder.CreateBitCast(AP, ArgPtrTy);
7511     ArgSize = CharUnits::fromQuantity(
7512                        getDataLayout().getTypeAllocSize(AI.getCoerceToType()));
7513     ArgSize = ArgSize.alignTo(SlotSize);
7514     break;
7515   case ABIArgInfo::Indirect:
7516     Val = Builder.CreateElementBitCast(AP, ArgPtrTy);
7517     Val = Address(Builder.CreateLoad(Val), TypeAlign);
7518     ArgSize = SlotSize;
7519     break;
7520   }
7521 
7522   // Increment the VAList.
7523   if (!ArgSize.isZero()) {
7524     llvm::Value *APN =
7525       Builder.CreateConstInBoundsByteGEP(AP.getPointer(), ArgSize);
7526     Builder.CreateStore(APN, VAListAddr);
7527   }
7528 
7529   return Val;
7530 }
7531 
7532 /// During the expansion of a RecordType, an incomplete TypeString is placed
7533 /// into the cache as a means to identify and break recursion.
7534 /// If there is a Recursive encoding in the cache, it is swapped out and will
7535 /// be reinserted by removeIncomplete().
7536 /// All other types of encoding should have been used rather than arriving here.
7537 void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
7538                                     std::string StubEnc) {
7539   if (!ID)
7540     return;
7541   Entry &E = Map[ID];
7542   assert( (E.Str.empty() || E.State == Recursive) &&
7543          "Incorrectly use of addIncomplete");
7544   assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
7545   E.Swapped.swap(E.Str); // swap out the Recursive
7546   E.Str.swap(StubEnc);
7547   E.State = Incomplete;
7548   ++IncompleteCount;
7549 }
7550 
7551 /// Once the RecordType has been expanded, the temporary incomplete TypeString
7552 /// must be removed from the cache.
7553 /// If a Recursive was swapped out by addIncomplete(), it will be replaced.
7554 /// Returns true if the RecordType was defined recursively.
7555 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
7556   if (!ID)
7557     return false;
7558   auto I = Map.find(ID);
7559   assert(I != Map.end() && "Entry not present");
7560   Entry &E = I->second;
7561   assert( (E.State == Incomplete ||
7562            E.State == IncompleteUsed) &&
7563          "Entry must be an incomplete type");
7564   bool IsRecursive = false;
7565   if (E.State == IncompleteUsed) {
7566     // We made use of our Incomplete encoding, thus we are recursive.
7567     IsRecursive = true;
7568     --IncompleteUsedCount;
7569   }
7570   if (E.Swapped.empty())
7571     Map.erase(I);
7572   else {
7573     // Swap the Recursive back.
7574     E.Swapped.swap(E.Str);
7575     E.Swapped.clear();
7576     E.State = Recursive;
7577   }
7578   --IncompleteCount;
7579   return IsRecursive;
7580 }
7581 
7582 /// Add the encoded TypeString to the cache only if it is NonRecursive or
7583 /// Recursive (viz: all sub-members were expanded as fully as possible).
7584 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
7585                                     bool IsRecursive) {
7586   if (!ID || IncompleteUsedCount)
7587     return; // No key or it is is an incomplete sub-type so don't add.
7588   Entry &E = Map[ID];
7589   if (IsRecursive && !E.Str.empty()) {
7590     assert(E.State==Recursive && E.Str.size() == Str.size() &&
7591            "This is not the same Recursive entry");
7592     // The parent container was not recursive after all, so we could have used
7593     // this Recursive sub-member entry after all, but we assumed the worse when
7594     // we started viz: IncompleteCount!=0.
7595     return;
7596   }
7597   assert(E.Str.empty() && "Entry already present");
7598   E.Str = Str.str();
7599   E.State = IsRecursive? Recursive : NonRecursive;
7600 }
7601 
7602 /// Return a cached TypeString encoding for the ID. If there isn't one, or we
7603 /// are recursively expanding a type (IncompleteCount != 0) and the cached
7604 /// encoding is Recursive, return an empty StringRef.
7605 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
7606   if (!ID)
7607     return StringRef();   // We have no key.
7608   auto I = Map.find(ID);
7609   if (I == Map.end())
7610     return StringRef();   // We have no encoding.
7611   Entry &E = I->second;
7612   if (E.State == Recursive && IncompleteCount)
7613     return StringRef();   // We don't use Recursive encodings for member types.
7614 
7615   if (E.State == Incomplete) {
7616     // The incomplete type is being used to break out of recursion.
7617     E.State = IncompleteUsed;
7618     ++IncompleteUsedCount;
7619   }
7620   return E.Str.c_str();
7621 }
7622 
7623 /// The XCore ABI includes a type information section that communicates symbol
7624 /// type information to the linker. The linker uses this information to verify
7625 /// safety/correctness of things such as array bound and pointers et al.
7626 /// The ABI only requires C (and XC) language modules to emit TypeStrings.
7627 /// This type information (TypeString) is emitted into meta data for all global
7628 /// symbols: definitions, declarations, functions & variables.
7629 ///
7630 /// The TypeString carries type, qualifier, name, size & value details.
7631 /// Please see 'Tools Development Guide' section 2.16.2 for format details:
7632 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf
7633 /// The output is tested by test/CodeGen/xcore-stringtype.c.
7634 ///
7635 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
7636                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC);
7637 
7638 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
7639 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
7640                                           CodeGen::CodeGenModule &CGM) const {
7641   SmallStringEnc Enc;
7642   if (getTypeString(Enc, D, CGM, TSC)) {
7643     llvm::LLVMContext &Ctx = CGM.getModule().getContext();
7644     llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV),
7645                                 llvm::MDString::get(Ctx, Enc.str())};
7646     llvm::NamedMDNode *MD =
7647       CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
7648     MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
7649   }
7650 }
7651 
7652 //===----------------------------------------------------------------------===//
7653 // SPIR ABI Implementation
7654 //===----------------------------------------------------------------------===//
7655 
7656 namespace {
7657 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo {
7658 public:
7659   SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
7660     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
7661   void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
7662                     CodeGen::CodeGenModule &M) const override;
7663   unsigned getOpenCLKernelCallingConv() const override;
7664 };
7665 } // End anonymous namespace.
7666 
7667 /// Emit SPIR specific metadata: OpenCL and SPIR version.
7668 void SPIRTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
7669                                          CodeGen::CodeGenModule &CGM) const {
7670   llvm::LLVMContext &Ctx = CGM.getModule().getContext();
7671   llvm::Type *Int32Ty = llvm::Type::getInt32Ty(Ctx);
7672   llvm::Module &M = CGM.getModule();
7673   // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
7674   // opencl.spir.version named metadata.
7675   llvm::Metadata *SPIRVerElts[] = {
7676       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int32Ty, 2)),
7677       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int32Ty, 0))};
7678   llvm::NamedMDNode *SPIRVerMD =
7679       M.getOrInsertNamedMetadata("opencl.spir.version");
7680   SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
7681   appendOpenCLVersionMD(CGM);
7682 }
7683 
7684 static void appendOpenCLVersionMD(CodeGen::CodeGenModule &CGM) {
7685   llvm::LLVMContext &Ctx = CGM.getModule().getContext();
7686   llvm::Type *Int32Ty = llvm::Type::getInt32Ty(Ctx);
7687   llvm::Module &M = CGM.getModule();
7688   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
7689   // opencl.ocl.version named metadata node.
7690   llvm::Metadata *OCLVerElts[] = {
7691       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
7692           Int32Ty, CGM.getLangOpts().OpenCLVersion / 100)),
7693       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
7694           Int32Ty, (CGM.getLangOpts().OpenCLVersion % 100) / 10))};
7695   llvm::NamedMDNode *OCLVerMD =
7696       M.getOrInsertNamedMetadata("opencl.ocl.version");
7697   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
7698 }
7699 
7700 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
7701   return llvm::CallingConv::SPIR_KERNEL;
7702 }
7703 
7704 static bool appendType(SmallStringEnc &Enc, QualType QType,
7705                        const CodeGen::CodeGenModule &CGM,
7706                        TypeStringCache &TSC);
7707 
7708 /// Helper function for appendRecordType().
7709 /// Builds a SmallVector containing the encoded field types in declaration
7710 /// order.
7711 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
7712                              const RecordDecl *RD,
7713                              const CodeGen::CodeGenModule &CGM,
7714                              TypeStringCache &TSC) {
7715   for (const auto *Field : RD->fields()) {
7716     SmallStringEnc Enc;
7717     Enc += "m(";
7718     Enc += Field->getName();
7719     Enc += "){";
7720     if (Field->isBitField()) {
7721       Enc += "b(";
7722       llvm::raw_svector_ostream OS(Enc);
7723       OS << Field->getBitWidthValue(CGM.getContext());
7724       Enc += ':';
7725     }
7726     if (!appendType(Enc, Field->getType(), CGM, TSC))
7727       return false;
7728     if (Field->isBitField())
7729       Enc += ')';
7730     Enc += '}';
7731     FE.emplace_back(!Field->getName().empty(), Enc);
7732   }
7733   return true;
7734 }
7735 
7736 /// Appends structure and union types to Enc and adds encoding to cache.
7737 /// Recursively calls appendType (via extractFieldType) for each field.
7738 /// Union types have their fields ordered according to the ABI.
7739 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
7740                              const CodeGen::CodeGenModule &CGM,
7741                              TypeStringCache &TSC, const IdentifierInfo *ID) {
7742   // Append the cached TypeString if we have one.
7743   StringRef TypeString = TSC.lookupStr(ID);
7744   if (!TypeString.empty()) {
7745     Enc += TypeString;
7746     return true;
7747   }
7748 
7749   // Start to emit an incomplete TypeString.
7750   size_t Start = Enc.size();
7751   Enc += (RT->isUnionType()? 'u' : 's');
7752   Enc += '(';
7753   if (ID)
7754     Enc += ID->getName();
7755   Enc += "){";
7756 
7757   // We collect all encoded fields and order as necessary.
7758   bool IsRecursive = false;
7759   const RecordDecl *RD = RT->getDecl()->getDefinition();
7760   if (RD && !RD->field_empty()) {
7761     // An incomplete TypeString stub is placed in the cache for this RecordType
7762     // so that recursive calls to this RecordType will use it whilst building a
7763     // complete TypeString for this RecordType.
7764     SmallVector<FieldEncoding, 16> FE;
7765     std::string StubEnc(Enc.substr(Start).str());
7766     StubEnc += '}';  // StubEnc now holds a valid incomplete TypeString.
7767     TSC.addIncomplete(ID, std::move(StubEnc));
7768     if (!extractFieldType(FE, RD, CGM, TSC)) {
7769       (void) TSC.removeIncomplete(ID);
7770       return false;
7771     }
7772     IsRecursive = TSC.removeIncomplete(ID);
7773     // The ABI requires unions to be sorted but not structures.
7774     // See FieldEncoding::operator< for sort algorithm.
7775     if (RT->isUnionType())
7776       std::sort(FE.begin(), FE.end());
7777     // We can now complete the TypeString.
7778     unsigned E = FE.size();
7779     for (unsigned I = 0; I != E; ++I) {
7780       if (I)
7781         Enc += ',';
7782       Enc += FE[I].str();
7783     }
7784   }
7785   Enc += '}';
7786   TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
7787   return true;
7788 }
7789 
7790 /// Appends enum types to Enc and adds the encoding to the cache.
7791 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
7792                            TypeStringCache &TSC,
7793                            const IdentifierInfo *ID) {
7794   // Append the cached TypeString if we have one.
7795   StringRef TypeString = TSC.lookupStr(ID);
7796   if (!TypeString.empty()) {
7797     Enc += TypeString;
7798     return true;
7799   }
7800 
7801   size_t Start = Enc.size();
7802   Enc += "e(";
7803   if (ID)
7804     Enc += ID->getName();
7805   Enc += "){";
7806 
7807   // We collect all encoded enumerations and order them alphanumerically.
7808   if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
7809     SmallVector<FieldEncoding, 16> FE;
7810     for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
7811          ++I) {
7812       SmallStringEnc EnumEnc;
7813       EnumEnc += "m(";
7814       EnumEnc += I->getName();
7815       EnumEnc += "){";
7816       I->getInitVal().toString(EnumEnc);
7817       EnumEnc += '}';
7818       FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
7819     }
7820     std::sort(FE.begin(), FE.end());
7821     unsigned E = FE.size();
7822     for (unsigned I = 0; I != E; ++I) {
7823       if (I)
7824         Enc += ',';
7825       Enc += FE[I].str();
7826     }
7827   }
7828   Enc += '}';
7829   TSC.addIfComplete(ID, Enc.substr(Start), false);
7830   return true;
7831 }
7832 
7833 /// Appends type's qualifier to Enc.
7834 /// This is done prior to appending the type's encoding.
7835 static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
7836   // Qualifiers are emitted in alphabetical order.
7837   static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"};
7838   int Lookup = 0;
7839   if (QT.isConstQualified())
7840     Lookup += 1<<0;
7841   if (QT.isRestrictQualified())
7842     Lookup += 1<<1;
7843   if (QT.isVolatileQualified())
7844     Lookup += 1<<2;
7845   Enc += Table[Lookup];
7846 }
7847 
7848 /// Appends built-in types to Enc.
7849 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
7850   const char *EncType;
7851   switch (BT->getKind()) {
7852     case BuiltinType::Void:
7853       EncType = "0";
7854       break;
7855     case BuiltinType::Bool:
7856       EncType = "b";
7857       break;
7858     case BuiltinType::Char_U:
7859       EncType = "uc";
7860       break;
7861     case BuiltinType::UChar:
7862       EncType = "uc";
7863       break;
7864     case BuiltinType::SChar:
7865       EncType = "sc";
7866       break;
7867     case BuiltinType::UShort:
7868       EncType = "us";
7869       break;
7870     case BuiltinType::Short:
7871       EncType = "ss";
7872       break;
7873     case BuiltinType::UInt:
7874       EncType = "ui";
7875       break;
7876     case BuiltinType::Int:
7877       EncType = "si";
7878       break;
7879     case BuiltinType::ULong:
7880       EncType = "ul";
7881       break;
7882     case BuiltinType::Long:
7883       EncType = "sl";
7884       break;
7885     case BuiltinType::ULongLong:
7886       EncType = "ull";
7887       break;
7888     case BuiltinType::LongLong:
7889       EncType = "sll";
7890       break;
7891     case BuiltinType::Float:
7892       EncType = "ft";
7893       break;
7894     case BuiltinType::Double:
7895       EncType = "d";
7896       break;
7897     case BuiltinType::LongDouble:
7898       EncType = "ld";
7899       break;
7900     default:
7901       return false;
7902   }
7903   Enc += EncType;
7904   return true;
7905 }
7906 
7907 /// Appends a pointer encoding to Enc before calling appendType for the pointee.
7908 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
7909                               const CodeGen::CodeGenModule &CGM,
7910                               TypeStringCache &TSC) {
7911   Enc += "p(";
7912   if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
7913     return false;
7914   Enc += ')';
7915   return true;
7916 }
7917 
7918 /// Appends array encoding to Enc before calling appendType for the element.
7919 static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
7920                             const ArrayType *AT,
7921                             const CodeGen::CodeGenModule &CGM,
7922                             TypeStringCache &TSC, StringRef NoSizeEnc) {
7923   if (AT->getSizeModifier() != ArrayType::Normal)
7924     return false;
7925   Enc += "a(";
7926   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
7927     CAT->getSize().toStringUnsigned(Enc);
7928   else
7929     Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
7930   Enc += ':';
7931   // The Qualifiers should be attached to the type rather than the array.
7932   appendQualifier(Enc, QT);
7933   if (!appendType(Enc, AT->getElementType(), CGM, TSC))
7934     return false;
7935   Enc += ')';
7936   return true;
7937 }
7938 
7939 /// Appends a function encoding to Enc, calling appendType for the return type
7940 /// and the arguments.
7941 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
7942                              const CodeGen::CodeGenModule &CGM,
7943                              TypeStringCache &TSC) {
7944   Enc += "f{";
7945   if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
7946     return false;
7947   Enc += "}(";
7948   if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
7949     // N.B. we are only interested in the adjusted param types.
7950     auto I = FPT->param_type_begin();
7951     auto E = FPT->param_type_end();
7952     if (I != E) {
7953       do {
7954         if (!appendType(Enc, *I, CGM, TSC))
7955           return false;
7956         ++I;
7957         if (I != E)
7958           Enc += ',';
7959       } while (I != E);
7960       if (FPT->isVariadic())
7961         Enc += ",va";
7962     } else {
7963       if (FPT->isVariadic())
7964         Enc += "va";
7965       else
7966         Enc += '0';
7967     }
7968   }
7969   Enc += ')';
7970   return true;
7971 }
7972 
7973 /// Handles the type's qualifier before dispatching a call to handle specific
7974 /// type encodings.
7975 static bool appendType(SmallStringEnc &Enc, QualType QType,
7976                        const CodeGen::CodeGenModule &CGM,
7977                        TypeStringCache &TSC) {
7978 
7979   QualType QT = QType.getCanonicalType();
7980 
7981   if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
7982     // The Qualifiers should be attached to the type rather than the array.
7983     // Thus we don't call appendQualifier() here.
7984     return appendArrayType(Enc, QT, AT, CGM, TSC, "");
7985 
7986   appendQualifier(Enc, QT);
7987 
7988   if (const BuiltinType *BT = QT->getAs<BuiltinType>())
7989     return appendBuiltinType(Enc, BT);
7990 
7991   if (const PointerType *PT = QT->getAs<PointerType>())
7992     return appendPointerType(Enc, PT, CGM, TSC);
7993 
7994   if (const EnumType *ET = QT->getAs<EnumType>())
7995     return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
7996 
7997   if (const RecordType *RT = QT->getAsStructureType())
7998     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
7999 
8000   if (const RecordType *RT = QT->getAsUnionType())
8001     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
8002 
8003   if (const FunctionType *FT = QT->getAs<FunctionType>())
8004     return appendFunctionType(Enc, FT, CGM, TSC);
8005 
8006   return false;
8007 }
8008 
8009 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
8010                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) {
8011   if (!D)
8012     return false;
8013 
8014   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
8015     if (FD->getLanguageLinkage() != CLanguageLinkage)
8016       return false;
8017     return appendType(Enc, FD->getType(), CGM, TSC);
8018   }
8019 
8020   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
8021     if (VD->getLanguageLinkage() != CLanguageLinkage)
8022       return false;
8023     QualType QT = VD->getType().getCanonicalType();
8024     if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
8025       // Global ArrayTypes are given a size of '*' if the size is unknown.
8026       // The Qualifiers should be attached to the type rather than the array.
8027       // Thus we don't call appendQualifier() here.
8028       return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
8029     }
8030     return appendType(Enc, QT, CGM, TSC);
8031   }
8032   return false;
8033 }
8034 
8035 
8036 //===----------------------------------------------------------------------===//
8037 // Driver code
8038 //===----------------------------------------------------------------------===//
8039 
8040 bool CodeGenModule::supportsCOMDAT() const {
8041   return getTriple().supportsCOMDAT();
8042 }
8043 
8044 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
8045   if (TheTargetCodeGenInfo)
8046     return *TheTargetCodeGenInfo;
8047 
8048   // Helper to set the unique_ptr while still keeping the return value.
8049   auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & {
8050     this->TheTargetCodeGenInfo.reset(P);
8051     return *P;
8052   };
8053 
8054   const llvm::Triple &Triple = getTarget().getTriple();
8055   switch (Triple.getArch()) {
8056   default:
8057     return SetCGInfo(new DefaultTargetCodeGenInfo(Types));
8058 
8059   case llvm::Triple::le32:
8060     return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
8061   case llvm::Triple::mips:
8062   case llvm::Triple::mipsel:
8063     if (Triple.getOS() == llvm::Triple::NaCl)
8064       return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
8065     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true));
8066 
8067   case llvm::Triple::mips64:
8068   case llvm::Triple::mips64el:
8069     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false));
8070 
8071   case llvm::Triple::aarch64:
8072   case llvm::Triple::aarch64_be: {
8073     AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
8074     if (getTarget().getABI() == "darwinpcs")
8075       Kind = AArch64ABIInfo::DarwinPCS;
8076 
8077     return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind));
8078   }
8079 
8080   case llvm::Triple::wasm32:
8081   case llvm::Triple::wasm64:
8082     return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types));
8083 
8084   case llvm::Triple::arm:
8085   case llvm::Triple::armeb:
8086   case llvm::Triple::thumb:
8087   case llvm::Triple::thumbeb: {
8088     if (Triple.getOS() == llvm::Triple::Win32) {
8089       return SetCGInfo(
8090           new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP));
8091     }
8092 
8093     ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
8094     StringRef ABIStr = getTarget().getABI();
8095     if (ABIStr == "apcs-gnu")
8096       Kind = ARMABIInfo::APCS;
8097     else if (ABIStr == "aapcs16")
8098       Kind = ARMABIInfo::AAPCS16_VFP;
8099     else if (CodeGenOpts.FloatABI == "hard" ||
8100              (CodeGenOpts.FloatABI != "soft" &&
8101               (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
8102                Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
8103                Triple.getEnvironment() == llvm::Triple::EABIHF)))
8104       Kind = ARMABIInfo::AAPCS_VFP;
8105 
8106     return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind));
8107   }
8108 
8109   case llvm::Triple::ppc:
8110     return SetCGInfo(
8111         new PPC32TargetCodeGenInfo(Types, CodeGenOpts.FloatABI == "soft"));
8112   case llvm::Triple::ppc64:
8113     if (Triple.isOSBinFormatELF()) {
8114       PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1;
8115       if (getTarget().getABI() == "elfv2")
8116         Kind = PPC64_SVR4_ABIInfo::ELFv2;
8117       bool HasQPX = getTarget().getABI() == "elfv1-qpx";
8118       bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
8119 
8120       return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX,
8121                                                         IsSoftFloat));
8122     } else
8123       return SetCGInfo(new PPC64TargetCodeGenInfo(Types));
8124   case llvm::Triple::ppc64le: {
8125     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
8126     PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2;
8127     if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx")
8128       Kind = PPC64_SVR4_ABIInfo::ELFv1;
8129     bool HasQPX = getTarget().getABI() == "elfv1-qpx";
8130     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
8131 
8132     return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX,
8133                                                       IsSoftFloat));
8134   }
8135 
8136   case llvm::Triple::nvptx:
8137   case llvm::Triple::nvptx64:
8138     return SetCGInfo(new NVPTXTargetCodeGenInfo(Types));
8139 
8140   case llvm::Triple::msp430:
8141     return SetCGInfo(new MSP430TargetCodeGenInfo(Types));
8142 
8143   case llvm::Triple::systemz: {
8144     bool HasVector = getTarget().getABI() == "vector";
8145     return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector));
8146   }
8147 
8148   case llvm::Triple::tce:
8149     return SetCGInfo(new TCETargetCodeGenInfo(Types));
8150 
8151   case llvm::Triple::x86: {
8152     bool IsDarwinVectorABI = Triple.isOSDarwin();
8153     bool RetSmallStructInRegABI =
8154         X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
8155     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
8156 
8157     if (Triple.getOS() == llvm::Triple::Win32) {
8158       return SetCGInfo(new WinX86_32TargetCodeGenInfo(
8159           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
8160           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters));
8161     } else {
8162       return SetCGInfo(new X86_32TargetCodeGenInfo(
8163           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
8164           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters,
8165           CodeGenOpts.FloatABI == "soft"));
8166     }
8167   }
8168 
8169   case llvm::Triple::x86_64: {
8170     StringRef ABI = getTarget().getABI();
8171     X86AVXABILevel AVXLevel =
8172         (ABI == "avx512"
8173              ? X86AVXABILevel::AVX512
8174              : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None);
8175 
8176     switch (Triple.getOS()) {
8177     case llvm::Triple::Win32:
8178       return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel));
8179     case llvm::Triple::PS4:
8180       return SetCGInfo(new PS4TargetCodeGenInfo(Types, AVXLevel));
8181     default:
8182       return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel));
8183     }
8184   }
8185   case llvm::Triple::hexagon:
8186     return SetCGInfo(new HexagonTargetCodeGenInfo(Types));
8187   case llvm::Triple::lanai:
8188     return SetCGInfo(new LanaiTargetCodeGenInfo(Types));
8189   case llvm::Triple::r600:
8190     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
8191   case llvm::Triple::amdgcn:
8192     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
8193   case llvm::Triple::sparc:
8194     return SetCGInfo(new SparcV8TargetCodeGenInfo(Types));
8195   case llvm::Triple::sparcv9:
8196     return SetCGInfo(new SparcV9TargetCodeGenInfo(Types));
8197   case llvm::Triple::xcore:
8198     return SetCGInfo(new XCoreTargetCodeGenInfo(Types));
8199   case llvm::Triple::spir:
8200   case llvm::Triple::spir64:
8201     return SetCGInfo(new SPIRTargetCodeGenInfo(Types));
8202   }
8203 }
8204