1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes wrap the information about a call or function 10 // definition used to handle ABI compliancy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "TargetInfo.h" 15 #include "ABIInfo.h" 16 #include "CGBlocks.h" 17 #include "CGCXXABI.h" 18 #include "CGValue.h" 19 #include "CodeGenFunction.h" 20 #include "clang/AST/Attr.h" 21 #include "clang/AST/RecordLayout.h" 22 #include "clang/Basic/CodeGenOptions.h" 23 #include "clang/CodeGen/CGFunctionInfo.h" 24 #include "clang/CodeGen/SwiftCallingConv.h" 25 #include "llvm/ADT/SmallBitVector.h" 26 #include "llvm/ADT/StringExtras.h" 27 #include "llvm/ADT/StringSwitch.h" 28 #include "llvm/ADT/Triple.h" 29 #include "llvm/ADT/Twine.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/IntrinsicsNVPTX.h" 32 #include "llvm/IR/Type.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include <algorithm> // std::sort 35 36 using namespace clang; 37 using namespace CodeGen; 38 39 // Helper for coercing an aggregate argument or return value into an integer 40 // array of the same size (including padding) and alignment. This alternate 41 // coercion happens only for the RenderScript ABI and can be removed after 42 // runtimes that rely on it are no longer supported. 43 // 44 // RenderScript assumes that the size of the argument / return value in the IR 45 // is the same as the size of the corresponding qualified type. This helper 46 // coerces the aggregate type into an array of the same size (including 47 // padding). This coercion is used in lieu of expansion of struct members or 48 // other canonical coercions that return a coerced-type of larger size. 49 // 50 // Ty - The argument / return value type 51 // Context - The associated ASTContext 52 // LLVMContext - The associated LLVMContext 53 static ABIArgInfo coerceToIntArray(QualType Ty, 54 ASTContext &Context, 55 llvm::LLVMContext &LLVMContext) { 56 // Alignment and Size are measured in bits. 57 const uint64_t Size = Context.getTypeSize(Ty); 58 const uint64_t Alignment = Context.getTypeAlign(Ty); 59 llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment); 60 const uint64_t NumElements = (Size + Alignment - 1) / Alignment; 61 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 62 } 63 64 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 65 llvm::Value *Array, 66 llvm::Value *Value, 67 unsigned FirstIndex, 68 unsigned LastIndex) { 69 // Alternatively, we could emit this as a loop in the source. 70 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 71 llvm::Value *Cell = 72 Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); 73 Builder.CreateAlignedStore(Value, Cell, CharUnits::One()); 74 } 75 } 76 77 static bool isAggregateTypeForABI(QualType T) { 78 return !CodeGenFunction::hasScalarEvaluationKind(T) || 79 T->isMemberFunctionPointerType(); 80 } 81 82 ABIArgInfo 83 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign, 84 llvm::Type *Padding) const { 85 return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), 86 ByRef, Realign, Padding); 87 } 88 89 ABIArgInfo 90 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const { 91 return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty), 92 /*ByRef*/ false, Realign); 93 } 94 95 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 96 QualType Ty) const { 97 return Address::invalid(); 98 } 99 100 ABIInfo::~ABIInfo() {} 101 102 /// Does the given lowering require more than the given number of 103 /// registers when expanded? 104 /// 105 /// This is intended to be the basis of a reasonable basic implementation 106 /// of should{Pass,Return}IndirectlyForSwift. 107 /// 108 /// For most targets, a limit of four total registers is reasonable; this 109 /// limits the amount of code required in order to move around the value 110 /// in case it wasn't produced immediately prior to the call by the caller 111 /// (or wasn't produced in exactly the right registers) or isn't used 112 /// immediately within the callee. But some targets may need to further 113 /// limit the register count due to an inability to support that many 114 /// return registers. 115 static bool occupiesMoreThan(CodeGenTypes &cgt, 116 ArrayRef<llvm::Type*> scalarTypes, 117 unsigned maxAllRegisters) { 118 unsigned intCount = 0, fpCount = 0; 119 for (llvm::Type *type : scalarTypes) { 120 if (type->isPointerTy()) { 121 intCount++; 122 } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) { 123 auto ptrWidth = cgt.getTarget().getPointerWidth(0); 124 intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth; 125 } else { 126 assert(type->isVectorTy() || type->isFloatingPointTy()); 127 fpCount++; 128 } 129 } 130 131 return (intCount + fpCount > maxAllRegisters); 132 } 133 134 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 135 llvm::Type *eltTy, 136 unsigned numElts) const { 137 // The default implementation of this assumes that the target guarantees 138 // 128-bit SIMD support but nothing more. 139 return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16); 140 } 141 142 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 143 CGCXXABI &CXXABI) { 144 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 145 if (!RD) { 146 if (!RT->getDecl()->canPassInRegisters()) 147 return CGCXXABI::RAA_Indirect; 148 return CGCXXABI::RAA_Default; 149 } 150 return CXXABI.getRecordArgABI(RD); 151 } 152 153 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 154 CGCXXABI &CXXABI) { 155 const RecordType *RT = T->getAs<RecordType>(); 156 if (!RT) 157 return CGCXXABI::RAA_Default; 158 return getRecordArgABI(RT, CXXABI); 159 } 160 161 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI, 162 const ABIInfo &Info) { 163 QualType Ty = FI.getReturnType(); 164 165 if (const auto *RT = Ty->getAs<RecordType>()) 166 if (!isa<CXXRecordDecl>(RT->getDecl()) && 167 !RT->getDecl()->canPassInRegisters()) { 168 FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty); 169 return true; 170 } 171 172 return CXXABI.classifyReturnType(FI); 173 } 174 175 /// Pass transparent unions as if they were the type of the first element. Sema 176 /// should ensure that all elements of the union have the same "machine type". 177 static QualType useFirstFieldIfTransparentUnion(QualType Ty) { 178 if (const RecordType *UT = Ty->getAsUnionType()) { 179 const RecordDecl *UD = UT->getDecl(); 180 if (UD->hasAttr<TransparentUnionAttr>()) { 181 assert(!UD->field_empty() && "sema created an empty transparent union"); 182 return UD->field_begin()->getType(); 183 } 184 } 185 return Ty; 186 } 187 188 CGCXXABI &ABIInfo::getCXXABI() const { 189 return CGT.getCXXABI(); 190 } 191 192 ASTContext &ABIInfo::getContext() const { 193 return CGT.getContext(); 194 } 195 196 llvm::LLVMContext &ABIInfo::getVMContext() const { 197 return CGT.getLLVMContext(); 198 } 199 200 const llvm::DataLayout &ABIInfo::getDataLayout() const { 201 return CGT.getDataLayout(); 202 } 203 204 const TargetInfo &ABIInfo::getTarget() const { 205 return CGT.getTarget(); 206 } 207 208 const CodeGenOptions &ABIInfo::getCodeGenOpts() const { 209 return CGT.getCodeGenOpts(); 210 } 211 212 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); } 213 214 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 215 return false; 216 } 217 218 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 219 uint64_t Members) const { 220 return false; 221 } 222 223 LLVM_DUMP_METHOD void ABIArgInfo::dump() const { 224 raw_ostream &OS = llvm::errs(); 225 OS << "(ABIArgInfo Kind="; 226 switch (TheKind) { 227 case Direct: 228 OS << "Direct Type="; 229 if (llvm::Type *Ty = getCoerceToType()) 230 Ty->print(OS); 231 else 232 OS << "null"; 233 break; 234 case Extend: 235 OS << "Extend"; 236 break; 237 case Ignore: 238 OS << "Ignore"; 239 break; 240 case InAlloca: 241 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 242 break; 243 case Indirect: 244 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 245 << " ByVal=" << getIndirectByVal() 246 << " Realign=" << getIndirectRealign(); 247 break; 248 case Expand: 249 OS << "Expand"; 250 break; 251 case CoerceAndExpand: 252 OS << "CoerceAndExpand Type="; 253 getCoerceAndExpandType()->print(OS); 254 break; 255 } 256 OS << ")\n"; 257 } 258 259 // Dynamically round a pointer up to a multiple of the given alignment. 260 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF, 261 llvm::Value *Ptr, 262 CharUnits Align) { 263 llvm::Value *PtrAsInt = Ptr; 264 // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align; 265 PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy); 266 PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt, 267 llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1)); 268 PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt, 269 llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity())); 270 PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt, 271 Ptr->getType(), 272 Ptr->getName() + ".aligned"); 273 return PtrAsInt; 274 } 275 276 /// Emit va_arg for a platform using the common void* representation, 277 /// where arguments are simply emitted in an array of slots on the stack. 278 /// 279 /// This version implements the core direct-value passing rules. 280 /// 281 /// \param SlotSize - The size and alignment of a stack slot. 282 /// Each argument will be allocated to a multiple of this number of 283 /// slots, and all the slots will be aligned to this value. 284 /// \param AllowHigherAlign - The slot alignment is not a cap; 285 /// an argument type with an alignment greater than the slot size 286 /// will be emitted on a higher-alignment address, potentially 287 /// leaving one or more empty slots behind as padding. If this 288 /// is false, the returned address might be less-aligned than 289 /// DirectAlign. 290 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF, 291 Address VAListAddr, 292 llvm::Type *DirectTy, 293 CharUnits DirectSize, 294 CharUnits DirectAlign, 295 CharUnits SlotSize, 296 bool AllowHigherAlign) { 297 // Cast the element type to i8* if necessary. Some platforms define 298 // va_list as a struct containing an i8* instead of just an i8*. 299 if (VAListAddr.getElementType() != CGF.Int8PtrTy) 300 VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy); 301 302 llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur"); 303 304 // If the CC aligns values higher than the slot size, do so if needed. 305 Address Addr = Address::invalid(); 306 if (AllowHigherAlign && DirectAlign > SlotSize) { 307 Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign), 308 DirectAlign); 309 } else { 310 Addr = Address(Ptr, SlotSize); 311 } 312 313 // Advance the pointer past the argument, then store that back. 314 CharUnits FullDirectSize = DirectSize.alignTo(SlotSize); 315 Address NextPtr = 316 CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next"); 317 CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 318 319 // If the argument is smaller than a slot, and this is a big-endian 320 // target, the argument will be right-adjusted in its slot. 321 if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() && 322 !DirectTy->isStructTy()) { 323 Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize); 324 } 325 326 Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy); 327 return Addr; 328 } 329 330 /// Emit va_arg for a platform using the common void* representation, 331 /// where arguments are simply emitted in an array of slots on the stack. 332 /// 333 /// \param IsIndirect - Values of this type are passed indirectly. 334 /// \param ValueInfo - The size and alignment of this type, generally 335 /// computed with getContext().getTypeInfoInChars(ValueTy). 336 /// \param SlotSizeAndAlign - The size and alignment of a stack slot. 337 /// Each argument will be allocated to a multiple of this number of 338 /// slots, and all the slots will be aligned to this value. 339 /// \param AllowHigherAlign - The slot alignment is not a cap; 340 /// an argument type with an alignment greater than the slot size 341 /// will be emitted on a higher-alignment address, potentially 342 /// leaving one or more empty slots behind as padding. 343 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr, 344 QualType ValueTy, bool IsIndirect, 345 std::pair<CharUnits, CharUnits> ValueInfo, 346 CharUnits SlotSizeAndAlign, 347 bool AllowHigherAlign) { 348 // The size and alignment of the value that was passed directly. 349 CharUnits DirectSize, DirectAlign; 350 if (IsIndirect) { 351 DirectSize = CGF.getPointerSize(); 352 DirectAlign = CGF.getPointerAlign(); 353 } else { 354 DirectSize = ValueInfo.first; 355 DirectAlign = ValueInfo.second; 356 } 357 358 // Cast the address we've calculated to the right type. 359 llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy); 360 if (IsIndirect) 361 DirectTy = DirectTy->getPointerTo(0); 362 363 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy, 364 DirectSize, DirectAlign, 365 SlotSizeAndAlign, 366 AllowHigherAlign); 367 368 if (IsIndirect) { 369 Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second); 370 } 371 372 return Addr; 373 374 } 375 376 static Address emitMergePHI(CodeGenFunction &CGF, 377 Address Addr1, llvm::BasicBlock *Block1, 378 Address Addr2, llvm::BasicBlock *Block2, 379 const llvm::Twine &Name = "") { 380 assert(Addr1.getType() == Addr2.getType()); 381 llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name); 382 PHI->addIncoming(Addr1.getPointer(), Block1); 383 PHI->addIncoming(Addr2.getPointer(), Block2); 384 CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment()); 385 return Address(PHI, Align); 386 } 387 388 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; } 389 390 // If someone can figure out a general rule for this, that would be great. 391 // It's probably just doomed to be platform-dependent, though. 392 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 393 // Verified for: 394 // x86-64 FreeBSD, Linux, Darwin 395 // x86-32 FreeBSD, Linux, Darwin 396 // PowerPC Linux, Darwin 397 // ARM Darwin (*not* EABI) 398 // AArch64 Linux 399 return 32; 400 } 401 402 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 403 const FunctionNoProtoType *fnType) const { 404 // The following conventions are known to require this to be false: 405 // x86_stdcall 406 // MIPS 407 // For everything else, we just prefer false unless we opt out. 408 return false; 409 } 410 411 void 412 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 413 llvm::SmallString<24> &Opt) const { 414 // This assumes the user is passing a library name like "rt" instead of a 415 // filename like "librt.a/so", and that they don't care whether it's static or 416 // dynamic. 417 Opt = "-l"; 418 Opt += Lib; 419 } 420 421 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const { 422 // OpenCL kernels are called via an explicit runtime API with arguments 423 // set with clSetKernelArg(), not as normal sub-functions. 424 // Return SPIR_KERNEL by default as the kernel calling convention to 425 // ensure the fingerprint is fixed such way that each OpenCL argument 426 // gets one matching argument in the produced kernel function argument 427 // list to enable feasible implementation of clSetKernelArg() with 428 // aggregates etc. In case we would use the default C calling conv here, 429 // clSetKernelArg() might break depending on the target-specific 430 // conventions; different targets might split structs passed as values 431 // to multiple function arguments etc. 432 return llvm::CallingConv::SPIR_KERNEL; 433 } 434 435 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM, 436 llvm::PointerType *T, QualType QT) const { 437 return llvm::ConstantPointerNull::get(T); 438 } 439 440 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 441 const VarDecl *D) const { 442 assert(!CGM.getLangOpts().OpenCL && 443 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 444 "Address space agnostic languages only"); 445 return D ? D->getType().getAddressSpace() : LangAS::Default; 446 } 447 448 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast( 449 CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr, 450 LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const { 451 // Since target may map different address spaces in AST to the same address 452 // space, an address space conversion may end up as a bitcast. 453 if (auto *C = dyn_cast<llvm::Constant>(Src)) 454 return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy); 455 // Try to preserve the source's name to make IR more readable. 456 return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 457 Src, DestTy, Src->hasName() ? Src->getName() + ".ascast" : ""); 458 } 459 460 llvm::Constant * 461 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src, 462 LangAS SrcAddr, LangAS DestAddr, 463 llvm::Type *DestTy) const { 464 // Since target may map different address spaces in AST to the same address 465 // space, an address space conversion may end up as a bitcast. 466 return llvm::ConstantExpr::getPointerCast(Src, DestTy); 467 } 468 469 llvm::SyncScope::ID 470 TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 471 SyncScope Scope, 472 llvm::AtomicOrdering Ordering, 473 llvm::LLVMContext &Ctx) const { 474 return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */ 475 } 476 477 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 478 479 /// isEmptyField - Return true iff a the field is "empty", that is it 480 /// is an unnamed bit-field or an (array of) empty record(s). 481 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 482 bool AllowArrays) { 483 if (FD->isUnnamedBitfield()) 484 return true; 485 486 QualType FT = FD->getType(); 487 488 // Constant arrays of empty records count as empty, strip them off. 489 // Constant arrays of zero length always count as empty. 490 if (AllowArrays) 491 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 492 if (AT->getSize() == 0) 493 return true; 494 FT = AT->getElementType(); 495 } 496 497 const RecordType *RT = FT->getAs<RecordType>(); 498 if (!RT) 499 return false; 500 501 // C++ record fields are never empty, at least in the Itanium ABI. 502 // 503 // FIXME: We should use a predicate for whether this behavior is true in the 504 // current ABI. 505 if (isa<CXXRecordDecl>(RT->getDecl())) 506 return false; 507 508 return isEmptyRecord(Context, FT, AllowArrays); 509 } 510 511 /// isEmptyRecord - Return true iff a structure contains only empty 512 /// fields. Note that a structure with a flexible array member is not 513 /// considered empty. 514 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 515 const RecordType *RT = T->getAs<RecordType>(); 516 if (!RT) 517 return false; 518 const RecordDecl *RD = RT->getDecl(); 519 if (RD->hasFlexibleArrayMember()) 520 return false; 521 522 // If this is a C++ record, check the bases first. 523 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 524 for (const auto &I : CXXRD->bases()) 525 if (!isEmptyRecord(Context, I.getType(), true)) 526 return false; 527 528 for (const auto *I : RD->fields()) 529 if (!isEmptyField(Context, I, AllowArrays)) 530 return false; 531 return true; 532 } 533 534 /// isSingleElementStruct - Determine if a structure is a "single 535 /// element struct", i.e. it has exactly one non-empty field or 536 /// exactly one field which is itself a single element 537 /// struct. Structures with flexible array members are never 538 /// considered single element structs. 539 /// 540 /// \return The field declaration for the single non-empty field, if 541 /// it exists. 542 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 543 const RecordType *RT = T->getAs<RecordType>(); 544 if (!RT) 545 return nullptr; 546 547 const RecordDecl *RD = RT->getDecl(); 548 if (RD->hasFlexibleArrayMember()) 549 return nullptr; 550 551 const Type *Found = nullptr; 552 553 // If this is a C++ record, check the bases first. 554 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 555 for (const auto &I : CXXRD->bases()) { 556 // Ignore empty records. 557 if (isEmptyRecord(Context, I.getType(), true)) 558 continue; 559 560 // If we already found an element then this isn't a single-element struct. 561 if (Found) 562 return nullptr; 563 564 // If this is non-empty and not a single element struct, the composite 565 // cannot be a single element struct. 566 Found = isSingleElementStruct(I.getType(), Context); 567 if (!Found) 568 return nullptr; 569 } 570 } 571 572 // Check for single element. 573 for (const auto *FD : RD->fields()) { 574 QualType FT = FD->getType(); 575 576 // Ignore empty fields. 577 if (isEmptyField(Context, FD, true)) 578 continue; 579 580 // If we already found an element then this isn't a single-element 581 // struct. 582 if (Found) 583 return nullptr; 584 585 // Treat single element arrays as the element. 586 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 587 if (AT->getSize().getZExtValue() != 1) 588 break; 589 FT = AT->getElementType(); 590 } 591 592 if (!isAggregateTypeForABI(FT)) { 593 Found = FT.getTypePtr(); 594 } else { 595 Found = isSingleElementStruct(FT, Context); 596 if (!Found) 597 return nullptr; 598 } 599 } 600 601 // We don't consider a struct a single-element struct if it has 602 // padding beyond the element type. 603 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 604 return nullptr; 605 606 return Found; 607 } 608 609 namespace { 610 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, 611 const ABIArgInfo &AI) { 612 // This default implementation defers to the llvm backend's va_arg 613 // instruction. It can handle only passing arguments directly 614 // (typically only handled in the backend for primitive types), or 615 // aggregates passed indirectly by pointer (NOTE: if the "byval" 616 // flag has ABI impact in the callee, this implementation cannot 617 // work.) 618 619 // Only a few cases are covered here at the moment -- those needed 620 // by the default abi. 621 llvm::Value *Val; 622 623 if (AI.isIndirect()) { 624 assert(!AI.getPaddingType() && 625 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 626 assert( 627 !AI.getIndirectRealign() && 628 "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!"); 629 630 auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty); 631 CharUnits TyAlignForABI = TyInfo.second; 632 633 llvm::Type *BaseTy = 634 llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 635 llvm::Value *Addr = 636 CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy); 637 return Address(Addr, TyAlignForABI); 638 } else { 639 assert((AI.isDirect() || AI.isExtend()) && 640 "Unexpected ArgInfo Kind in generic VAArg emitter!"); 641 642 assert(!AI.getInReg() && 643 "Unexpected InReg seen in arginfo in generic VAArg emitter!"); 644 assert(!AI.getPaddingType() && 645 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 646 assert(!AI.getDirectOffset() && 647 "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!"); 648 assert(!AI.getCoerceToType() && 649 "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!"); 650 651 Address Temp = CGF.CreateMemTemp(Ty, "varet"); 652 Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty)); 653 CGF.Builder.CreateStore(Val, Temp); 654 return Temp; 655 } 656 } 657 658 /// DefaultABIInfo - The default implementation for ABI specific 659 /// details. This implementation provides information which results in 660 /// self-consistent and sensible LLVM IR generation, but does not 661 /// conform to any particular ABI. 662 class DefaultABIInfo : public ABIInfo { 663 public: 664 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 665 666 ABIArgInfo classifyReturnType(QualType RetTy) const; 667 ABIArgInfo classifyArgumentType(QualType RetTy) const; 668 669 void computeInfo(CGFunctionInfo &FI) const override { 670 if (!getCXXABI().classifyReturnType(FI)) 671 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 672 for (auto &I : FI.arguments()) 673 I.info = classifyArgumentType(I.type); 674 } 675 676 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 677 QualType Ty) const override { 678 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 679 } 680 }; 681 682 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 683 public: 684 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 685 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 686 }; 687 688 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 689 Ty = useFirstFieldIfTransparentUnion(Ty); 690 691 if (isAggregateTypeForABI(Ty)) { 692 // Records with non-trivial destructors/copy-constructors should not be 693 // passed by value. 694 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 695 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 696 697 return getNaturalAlignIndirect(Ty); 698 } 699 700 // Treat an enum type as its underlying type. 701 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 702 Ty = EnumTy->getDecl()->getIntegerType(); 703 704 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 705 : ABIArgInfo::getDirect()); 706 } 707 708 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 709 if (RetTy->isVoidType()) 710 return ABIArgInfo::getIgnore(); 711 712 if (isAggregateTypeForABI(RetTy)) 713 return getNaturalAlignIndirect(RetTy); 714 715 // Treat an enum type as its underlying type. 716 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 717 RetTy = EnumTy->getDecl()->getIntegerType(); 718 719 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 720 : ABIArgInfo::getDirect()); 721 } 722 723 //===----------------------------------------------------------------------===// 724 // WebAssembly ABI Implementation 725 // 726 // This is a very simple ABI that relies a lot on DefaultABIInfo. 727 //===----------------------------------------------------------------------===// 728 729 class WebAssemblyABIInfo final : public SwiftABIInfo { 730 public: 731 enum ABIKind { 732 MVP = 0, 733 ExperimentalMV = 1, 734 }; 735 736 private: 737 DefaultABIInfo defaultInfo; 738 ABIKind Kind; 739 740 public: 741 explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind) 742 : SwiftABIInfo(CGT), defaultInfo(CGT), Kind(Kind) {} 743 744 private: 745 ABIArgInfo classifyReturnType(QualType RetTy) const; 746 ABIArgInfo classifyArgumentType(QualType Ty) const; 747 748 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 749 // non-virtual, but computeInfo and EmitVAArg are virtual, so we 750 // overload them. 751 void computeInfo(CGFunctionInfo &FI) const override { 752 if (!getCXXABI().classifyReturnType(FI)) 753 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 754 for (auto &Arg : FI.arguments()) 755 Arg.info = classifyArgumentType(Arg.type); 756 } 757 758 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 759 QualType Ty) const override; 760 761 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 762 bool asReturnValue) const override { 763 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 764 } 765 766 bool isSwiftErrorInRegister() const override { 767 return false; 768 } 769 }; 770 771 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo { 772 public: 773 explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 774 WebAssemblyABIInfo::ABIKind K) 775 : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT, K)) {} 776 777 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 778 CodeGen::CodeGenModule &CGM) const override { 779 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 780 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 781 if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) { 782 llvm::Function *Fn = cast<llvm::Function>(GV); 783 llvm::AttrBuilder B; 784 B.addAttribute("wasm-import-module", Attr->getImportModule()); 785 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 786 } 787 if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) { 788 llvm::Function *Fn = cast<llvm::Function>(GV); 789 llvm::AttrBuilder B; 790 B.addAttribute("wasm-import-name", Attr->getImportName()); 791 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 792 } 793 if (const auto *Attr = FD->getAttr<WebAssemblyExportNameAttr>()) { 794 llvm::Function *Fn = cast<llvm::Function>(GV); 795 llvm::AttrBuilder B; 796 B.addAttribute("wasm-export-name", Attr->getExportName()); 797 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 798 } 799 } 800 801 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 802 llvm::Function *Fn = cast<llvm::Function>(GV); 803 if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype()) 804 Fn->addFnAttr("no-prototype"); 805 } 806 } 807 }; 808 809 /// Classify argument of given type \p Ty. 810 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const { 811 Ty = useFirstFieldIfTransparentUnion(Ty); 812 813 if (isAggregateTypeForABI(Ty)) { 814 // Records with non-trivial destructors/copy-constructors should not be 815 // passed by value. 816 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 817 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 818 // Ignore empty structs/unions. 819 if (isEmptyRecord(getContext(), Ty, true)) 820 return ABIArgInfo::getIgnore(); 821 // Lower single-element structs to just pass a regular value. TODO: We 822 // could do reasonable-size multiple-element structs too, using getExpand(), 823 // though watch out for things like bitfields. 824 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 825 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 826 // For the experimental multivalue ABI, fully expand all other aggregates 827 if (Kind == ABIKind::ExperimentalMV) { 828 const RecordType *RT = Ty->getAs<RecordType>(); 829 assert(RT); 830 bool HasBitField = false; 831 for (auto *Field : RT->getDecl()->fields()) { 832 if (Field->isBitField()) { 833 HasBitField = true; 834 break; 835 } 836 } 837 if (!HasBitField) 838 return ABIArgInfo::getExpand(); 839 } 840 } 841 842 // Otherwise just do the default thing. 843 return defaultInfo.classifyArgumentType(Ty); 844 } 845 846 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const { 847 if (isAggregateTypeForABI(RetTy)) { 848 // Records with non-trivial destructors/copy-constructors should not be 849 // returned by value. 850 if (!getRecordArgABI(RetTy, getCXXABI())) { 851 // Ignore empty structs/unions. 852 if (isEmptyRecord(getContext(), RetTy, true)) 853 return ABIArgInfo::getIgnore(); 854 // Lower single-element structs to just return a regular value. TODO: We 855 // could do reasonable-size multiple-element structs too, using 856 // ABIArgInfo::getDirect(). 857 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 858 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 859 // For the experimental multivalue ABI, return all other aggregates 860 if (Kind == ABIKind::ExperimentalMV) 861 return ABIArgInfo::getDirect(); 862 } 863 } 864 865 // Otherwise just do the default thing. 866 return defaultInfo.classifyReturnType(RetTy); 867 } 868 869 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 870 QualType Ty) const { 871 bool IsIndirect = isAggregateTypeForABI(Ty) && 872 !isEmptyRecord(getContext(), Ty, true) && 873 !isSingleElementStruct(Ty, getContext()); 874 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 875 getContext().getTypeInfoInChars(Ty), 876 CharUnits::fromQuantity(4), 877 /*AllowHigherAlign=*/true); 878 } 879 880 //===----------------------------------------------------------------------===// 881 // le32/PNaCl bitcode ABI Implementation 882 // 883 // This is a simplified version of the x86_32 ABI. Arguments and return values 884 // are always passed on the stack. 885 //===----------------------------------------------------------------------===// 886 887 class PNaClABIInfo : public ABIInfo { 888 public: 889 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 890 891 ABIArgInfo classifyReturnType(QualType RetTy) const; 892 ABIArgInfo classifyArgumentType(QualType RetTy) const; 893 894 void computeInfo(CGFunctionInfo &FI) const override; 895 Address EmitVAArg(CodeGenFunction &CGF, 896 Address VAListAddr, QualType Ty) const override; 897 }; 898 899 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 900 public: 901 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 902 : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {} 903 }; 904 905 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 906 if (!getCXXABI().classifyReturnType(FI)) 907 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 908 909 for (auto &I : FI.arguments()) 910 I.info = classifyArgumentType(I.type); 911 } 912 913 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 914 QualType Ty) const { 915 // The PNaCL ABI is a bit odd, in that varargs don't use normal 916 // function classification. Structs get passed directly for varargs 917 // functions, through a rewriting transform in 918 // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows 919 // this target to actually support a va_arg instructions with an 920 // aggregate type, unlike other targets. 921 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 922 } 923 924 /// Classify argument of given type \p Ty. 925 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 926 if (isAggregateTypeForABI(Ty)) { 927 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 928 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 929 return getNaturalAlignIndirect(Ty); 930 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 931 // Treat an enum type as its underlying type. 932 Ty = EnumTy->getDecl()->getIntegerType(); 933 } else if (Ty->isFloatingType()) { 934 // Floating-point types don't go inreg. 935 return ABIArgInfo::getDirect(); 936 } 937 938 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 939 : ABIArgInfo::getDirect()); 940 } 941 942 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 943 if (RetTy->isVoidType()) 944 return ABIArgInfo::getIgnore(); 945 946 // In the PNaCl ABI we always return records/structures on the stack. 947 if (isAggregateTypeForABI(RetTy)) 948 return getNaturalAlignIndirect(RetTy); 949 950 // Treat an enum type as its underlying type. 951 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 952 RetTy = EnumTy->getDecl()->getIntegerType(); 953 954 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 955 : ABIArgInfo::getDirect()); 956 } 957 958 /// IsX86_MMXType - Return true if this is an MMX type. 959 bool IsX86_MMXType(llvm::Type *IRType) { 960 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 961 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 962 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 963 IRType->getScalarSizeInBits() != 64; 964 } 965 966 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 967 StringRef Constraint, 968 llvm::Type* Ty) { 969 bool IsMMXCons = llvm::StringSwitch<bool>(Constraint) 970 .Cases("y", "&y", "^Ym", true) 971 .Default(false); 972 if (IsMMXCons && Ty->isVectorTy()) { 973 if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) { 974 // Invalid MMX constraint 975 return nullptr; 976 } 977 978 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 979 } 980 981 // No operation needed 982 return Ty; 983 } 984 985 /// Returns true if this type can be passed in SSE registers with the 986 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 987 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 988 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 989 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) { 990 if (BT->getKind() == BuiltinType::LongDouble) { 991 if (&Context.getTargetInfo().getLongDoubleFormat() == 992 &llvm::APFloat::x87DoubleExtended()) 993 return false; 994 } 995 return true; 996 } 997 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 998 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 999 // registers specially. 1000 unsigned VecSize = Context.getTypeSize(VT); 1001 if (VecSize == 128 || VecSize == 256 || VecSize == 512) 1002 return true; 1003 } 1004 return false; 1005 } 1006 1007 /// Returns true if this aggregate is small enough to be passed in SSE registers 1008 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 1009 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 1010 return NumMembers <= 4; 1011 } 1012 1013 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86. 1014 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) { 1015 auto AI = ABIArgInfo::getDirect(T); 1016 AI.setInReg(true); 1017 AI.setCanBeFlattened(false); 1018 return AI; 1019 } 1020 1021 //===----------------------------------------------------------------------===// 1022 // X86-32 ABI Implementation 1023 //===----------------------------------------------------------------------===// 1024 1025 /// Similar to llvm::CCState, but for Clang. 1026 struct CCState { 1027 CCState(CGFunctionInfo &FI) 1028 : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()) {} 1029 1030 llvm::SmallBitVector IsPreassigned; 1031 unsigned CC = CallingConv::CC_C; 1032 unsigned FreeRegs = 0; 1033 unsigned FreeSSERegs = 0; 1034 }; 1035 1036 enum { 1037 // Vectorcall only allows the first 6 parameters to be passed in registers. 1038 VectorcallMaxParamNumAsReg = 6 1039 }; 1040 1041 /// X86_32ABIInfo - The X86-32 ABI information. 1042 class X86_32ABIInfo : public SwiftABIInfo { 1043 enum Class { 1044 Integer, 1045 Float 1046 }; 1047 1048 static const unsigned MinABIStackAlignInBytes = 4; 1049 1050 bool IsDarwinVectorABI; 1051 bool IsRetSmallStructInRegABI; 1052 bool IsWin32StructABI; 1053 bool IsSoftFloatABI; 1054 bool IsMCUABI; 1055 unsigned DefaultNumRegisterParameters; 1056 1057 static bool isRegisterSize(unsigned Size) { 1058 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 1059 } 1060 1061 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 1062 // FIXME: Assumes vectorcall is in use. 1063 return isX86VectorTypeForVectorCall(getContext(), Ty); 1064 } 1065 1066 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 1067 uint64_t NumMembers) const override { 1068 // FIXME: Assumes vectorcall is in use. 1069 return isX86VectorCallAggregateSmallEnough(NumMembers); 1070 } 1071 1072 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 1073 1074 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1075 /// such that the argument will be passed in memory. 1076 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 1077 1078 ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; 1079 1080 /// Return the alignment to use for the given type on the stack. 1081 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 1082 1083 Class classify(QualType Ty) const; 1084 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 1085 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 1086 1087 /// Updates the number of available free registers, returns 1088 /// true if any registers were allocated. 1089 bool updateFreeRegs(QualType Ty, CCState &State) const; 1090 1091 bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, 1092 bool &NeedsPadding) const; 1093 bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; 1094 1095 bool canExpandIndirectArgument(QualType Ty) const; 1096 1097 /// Rewrite the function info so that all memory arguments use 1098 /// inalloca. 1099 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 1100 1101 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1102 CharUnits &StackOffset, ABIArgInfo &Info, 1103 QualType Type) const; 1104 void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const; 1105 1106 public: 1107 1108 void computeInfo(CGFunctionInfo &FI) const override; 1109 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 1110 QualType Ty) const override; 1111 1112 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1113 bool RetSmallStructInRegABI, bool Win32StructABI, 1114 unsigned NumRegisterParameters, bool SoftFloatABI) 1115 : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), 1116 IsRetSmallStructInRegABI(RetSmallStructInRegABI), 1117 IsWin32StructABI(Win32StructABI), 1118 IsSoftFloatABI(SoftFloatABI), 1119 IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), 1120 DefaultNumRegisterParameters(NumRegisterParameters) {} 1121 1122 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 1123 bool asReturnValue) const override { 1124 // LLVM's x86-32 lowering currently only assigns up to three 1125 // integer registers and three fp registers. Oddly, it'll use up to 1126 // four vector registers for vectors, but those can overlap with the 1127 // scalar registers. 1128 return occupiesMoreThan(CGT, scalars, /*total*/ 3); 1129 } 1130 1131 bool isSwiftErrorInRegister() const override { 1132 // x86-32 lowering does not support passing swifterror in a register. 1133 return false; 1134 } 1135 }; 1136 1137 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 1138 public: 1139 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1140 bool RetSmallStructInRegABI, bool Win32StructABI, 1141 unsigned NumRegisterParameters, bool SoftFloatABI) 1142 : TargetCodeGenInfo(new X86_32ABIInfo( 1143 CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, 1144 NumRegisterParameters, SoftFloatABI)) {} 1145 1146 static bool isStructReturnInRegABI( 1147 const llvm::Triple &Triple, const CodeGenOptions &Opts); 1148 1149 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1150 CodeGen::CodeGenModule &CGM) const override; 1151 1152 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1153 // Darwin uses different dwarf register numbers for EH. 1154 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 1155 return 4; 1156 } 1157 1158 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1159 llvm::Value *Address) const override; 1160 1161 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1162 StringRef Constraint, 1163 llvm::Type* Ty) const override { 1164 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1165 } 1166 1167 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 1168 std::string &Constraints, 1169 std::vector<llvm::Type *> &ResultRegTypes, 1170 std::vector<llvm::Type *> &ResultTruncRegTypes, 1171 std::vector<LValue> &ResultRegDests, 1172 std::string &AsmString, 1173 unsigned NumOutputs) const override; 1174 1175 llvm::Constant * 1176 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1177 unsigned Sig = (0xeb << 0) | // jmp rel8 1178 (0x06 << 8) | // .+0x08 1179 ('v' << 16) | 1180 ('2' << 24); 1181 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1182 } 1183 1184 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 1185 return "movl\t%ebp, %ebp" 1186 "\t\t// marker for objc_retainAutoreleaseReturnValue"; 1187 } 1188 }; 1189 1190 } 1191 1192 /// Rewrite input constraint references after adding some output constraints. 1193 /// In the case where there is one output and one input and we add one output, 1194 /// we need to replace all operand references greater than or equal to 1: 1195 /// mov $0, $1 1196 /// mov eax, $1 1197 /// The result will be: 1198 /// mov $0, $2 1199 /// mov eax, $2 1200 static void rewriteInputConstraintReferences(unsigned FirstIn, 1201 unsigned NumNewOuts, 1202 std::string &AsmString) { 1203 std::string Buf; 1204 llvm::raw_string_ostream OS(Buf); 1205 size_t Pos = 0; 1206 while (Pos < AsmString.size()) { 1207 size_t DollarStart = AsmString.find('$', Pos); 1208 if (DollarStart == std::string::npos) 1209 DollarStart = AsmString.size(); 1210 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 1211 if (DollarEnd == std::string::npos) 1212 DollarEnd = AsmString.size(); 1213 OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 1214 Pos = DollarEnd; 1215 size_t NumDollars = DollarEnd - DollarStart; 1216 if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 1217 // We have an operand reference. 1218 size_t DigitStart = Pos; 1219 if (AsmString[DigitStart] == '{') { 1220 OS << '{'; 1221 ++DigitStart; 1222 } 1223 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 1224 if (DigitEnd == std::string::npos) 1225 DigitEnd = AsmString.size(); 1226 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 1227 unsigned OperandIndex; 1228 if (!OperandStr.getAsInteger(10, OperandIndex)) { 1229 if (OperandIndex >= FirstIn) 1230 OperandIndex += NumNewOuts; 1231 OS << OperandIndex; 1232 } else { 1233 OS << OperandStr; 1234 } 1235 Pos = DigitEnd; 1236 } 1237 } 1238 AsmString = std::move(OS.str()); 1239 } 1240 1241 /// Add output constraints for EAX:EDX because they are return registers. 1242 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 1243 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 1244 std::vector<llvm::Type *> &ResultRegTypes, 1245 std::vector<llvm::Type *> &ResultTruncRegTypes, 1246 std::vector<LValue> &ResultRegDests, std::string &AsmString, 1247 unsigned NumOutputs) const { 1248 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 1249 1250 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 1251 // larger. 1252 if (!Constraints.empty()) 1253 Constraints += ','; 1254 if (RetWidth <= 32) { 1255 Constraints += "={eax}"; 1256 ResultRegTypes.push_back(CGF.Int32Ty); 1257 } else { 1258 // Use the 'A' constraint for EAX:EDX. 1259 Constraints += "=A"; 1260 ResultRegTypes.push_back(CGF.Int64Ty); 1261 } 1262 1263 // Truncate EAX or EAX:EDX to an integer of the appropriate size. 1264 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 1265 ResultTruncRegTypes.push_back(CoerceTy); 1266 1267 // Coerce the integer by bitcasting the return slot pointer. 1268 ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(CGF), 1269 CoerceTy->getPointerTo())); 1270 ResultRegDests.push_back(ReturnSlot); 1271 1272 rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 1273 } 1274 1275 /// shouldReturnTypeInRegister - Determine if the given type should be 1276 /// returned in a register (for the Darwin and MCU ABI). 1277 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 1278 ASTContext &Context) const { 1279 uint64_t Size = Context.getTypeSize(Ty); 1280 1281 // For i386, type must be register sized. 1282 // For the MCU ABI, it only needs to be <= 8-byte 1283 if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) 1284 return false; 1285 1286 if (Ty->isVectorType()) { 1287 // 64- and 128- bit vectors inside structures are not returned in 1288 // registers. 1289 if (Size == 64 || Size == 128) 1290 return false; 1291 1292 return true; 1293 } 1294 1295 // If this is a builtin, pointer, enum, complex type, member pointer, or 1296 // member function pointer it is ok. 1297 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 1298 Ty->isAnyComplexType() || Ty->isEnumeralType() || 1299 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 1300 return true; 1301 1302 // Arrays are treated like records. 1303 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 1304 return shouldReturnTypeInRegister(AT->getElementType(), Context); 1305 1306 // Otherwise, it must be a record type. 1307 const RecordType *RT = Ty->getAs<RecordType>(); 1308 if (!RT) return false; 1309 1310 // FIXME: Traverse bases here too. 1311 1312 // Structure types are passed in register if all fields would be 1313 // passed in a register. 1314 for (const auto *FD : RT->getDecl()->fields()) { 1315 // Empty fields are ignored. 1316 if (isEmptyField(Context, FD, true)) 1317 continue; 1318 1319 // Check fields recursively. 1320 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 1321 return false; 1322 } 1323 return true; 1324 } 1325 1326 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 1327 // Treat complex types as the element type. 1328 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 1329 Ty = CTy->getElementType(); 1330 1331 // Check for a type which we know has a simple scalar argument-passing 1332 // convention without any padding. (We're specifically looking for 32 1333 // and 64-bit integer and integer-equivalents, float, and double.) 1334 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 1335 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 1336 return false; 1337 1338 uint64_t Size = Context.getTypeSize(Ty); 1339 return Size == 32 || Size == 64; 1340 } 1341 1342 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD, 1343 uint64_t &Size) { 1344 for (const auto *FD : RD->fields()) { 1345 // Scalar arguments on the stack get 4 byte alignment on x86. If the 1346 // argument is smaller than 32-bits, expanding the struct will create 1347 // alignment padding. 1348 if (!is32Or64BitBasicType(FD->getType(), Context)) 1349 return false; 1350 1351 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 1352 // how to expand them yet, and the predicate for telling if a bitfield still 1353 // counts as "basic" is more complicated than what we were doing previously. 1354 if (FD->isBitField()) 1355 return false; 1356 1357 Size += Context.getTypeSize(FD->getType()); 1358 } 1359 return true; 1360 } 1361 1362 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD, 1363 uint64_t &Size) { 1364 // Don't do this if there are any non-empty bases. 1365 for (const CXXBaseSpecifier &Base : RD->bases()) { 1366 if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(), 1367 Size)) 1368 return false; 1369 } 1370 if (!addFieldSizes(Context, RD, Size)) 1371 return false; 1372 return true; 1373 } 1374 1375 /// Test whether an argument type which is to be passed indirectly (on the 1376 /// stack) would have the equivalent layout if it was expanded into separate 1377 /// arguments. If so, we prefer to do the latter to avoid inhibiting 1378 /// optimizations. 1379 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const { 1380 // We can only expand structure types. 1381 const RecordType *RT = Ty->getAs<RecordType>(); 1382 if (!RT) 1383 return false; 1384 const RecordDecl *RD = RT->getDecl(); 1385 uint64_t Size = 0; 1386 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1387 if (!IsWin32StructABI) { 1388 // On non-Windows, we have to conservatively match our old bitcode 1389 // prototypes in order to be ABI-compatible at the bitcode level. 1390 if (!CXXRD->isCLike()) 1391 return false; 1392 } else { 1393 // Don't do this for dynamic classes. 1394 if (CXXRD->isDynamicClass()) 1395 return false; 1396 } 1397 if (!addBaseAndFieldSizes(getContext(), CXXRD, Size)) 1398 return false; 1399 } else { 1400 if (!addFieldSizes(getContext(), RD, Size)) 1401 return false; 1402 } 1403 1404 // We can do this if there was no alignment padding. 1405 return Size == getContext().getTypeSize(Ty); 1406 } 1407 1408 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { 1409 // If the return value is indirect, then the hidden argument is consuming one 1410 // integer register. 1411 if (State.FreeRegs) { 1412 --State.FreeRegs; 1413 if (!IsMCUABI) 1414 return getNaturalAlignIndirectInReg(RetTy); 1415 } 1416 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 1417 } 1418 1419 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 1420 CCState &State) const { 1421 if (RetTy->isVoidType()) 1422 return ABIArgInfo::getIgnore(); 1423 1424 const Type *Base = nullptr; 1425 uint64_t NumElts = 0; 1426 if ((State.CC == llvm::CallingConv::X86_VectorCall || 1427 State.CC == llvm::CallingConv::X86_RegCall) && 1428 isHomogeneousAggregate(RetTy, Base, NumElts)) { 1429 // The LLVM struct type for such an aggregate should lower properly. 1430 return ABIArgInfo::getDirect(); 1431 } 1432 1433 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 1434 // On Darwin, some vectors are returned in registers. 1435 if (IsDarwinVectorABI) { 1436 uint64_t Size = getContext().getTypeSize(RetTy); 1437 1438 // 128-bit vectors are a special case; they are returned in 1439 // registers and we need to make sure to pick a type the LLVM 1440 // backend will like. 1441 if (Size == 128) 1442 return ABIArgInfo::getDirect(llvm::VectorType::get( 1443 llvm::Type::getInt64Ty(getVMContext()), 2)); 1444 1445 // Always return in register if it fits in a general purpose 1446 // register, or if it is 64 bits and has a single element. 1447 if ((Size == 8 || Size == 16 || Size == 32) || 1448 (Size == 64 && VT->getNumElements() == 1)) 1449 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1450 Size)); 1451 1452 return getIndirectReturnResult(RetTy, State); 1453 } 1454 1455 return ABIArgInfo::getDirect(); 1456 } 1457 1458 if (isAggregateTypeForABI(RetTy)) { 1459 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 1460 // Structures with flexible arrays are always indirect. 1461 if (RT->getDecl()->hasFlexibleArrayMember()) 1462 return getIndirectReturnResult(RetTy, State); 1463 } 1464 1465 // If specified, structs and unions are always indirect. 1466 if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) 1467 return getIndirectReturnResult(RetTy, State); 1468 1469 // Ignore empty structs/unions. 1470 if (isEmptyRecord(getContext(), RetTy, true)) 1471 return ABIArgInfo::getIgnore(); 1472 1473 // Small structures which are register sized are generally returned 1474 // in a register. 1475 if (shouldReturnTypeInRegister(RetTy, getContext())) { 1476 uint64_t Size = getContext().getTypeSize(RetTy); 1477 1478 // As a special-case, if the struct is a "single-element" struct, and 1479 // the field is of type "float" or "double", return it in a 1480 // floating-point register. (MSVC does not apply this special case.) 1481 // We apply a similar transformation for pointer types to improve the 1482 // quality of the generated IR. 1483 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 1484 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 1485 || SeltTy->hasPointerRepresentation()) 1486 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 1487 1488 // FIXME: We should be able to narrow this integer in cases with dead 1489 // padding. 1490 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 1491 } 1492 1493 return getIndirectReturnResult(RetTy, State); 1494 } 1495 1496 // Treat an enum type as its underlying type. 1497 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1498 RetTy = EnumTy->getDecl()->getIntegerType(); 1499 1500 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 1501 : ABIArgInfo::getDirect()); 1502 } 1503 1504 static bool isSSEVectorType(ASTContext &Context, QualType Ty) { 1505 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 1506 } 1507 1508 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) { 1509 const RecordType *RT = Ty->getAs<RecordType>(); 1510 if (!RT) 1511 return 0; 1512 const RecordDecl *RD = RT->getDecl(); 1513 1514 // If this is a C++ record, check the bases first. 1515 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1516 for (const auto &I : CXXRD->bases()) 1517 if (!isRecordWithSSEVectorType(Context, I.getType())) 1518 return false; 1519 1520 for (const auto *i : RD->fields()) { 1521 QualType FT = i->getType(); 1522 1523 if (isSSEVectorType(Context, FT)) 1524 return true; 1525 1526 if (isRecordWithSSEVectorType(Context, FT)) 1527 return true; 1528 } 1529 1530 return false; 1531 } 1532 1533 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 1534 unsigned Align) const { 1535 // Otherwise, if the alignment is less than or equal to the minimum ABI 1536 // alignment, just use the default; the backend will handle this. 1537 if (Align <= MinABIStackAlignInBytes) 1538 return 0; // Use default alignment. 1539 1540 // On non-Darwin, the stack type alignment is always 4. 1541 if (!IsDarwinVectorABI) { 1542 // Set explicit alignment, since we may need to realign the top. 1543 return MinABIStackAlignInBytes; 1544 } 1545 1546 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 1547 if (Align >= 16 && (isSSEVectorType(getContext(), Ty) || 1548 isRecordWithSSEVectorType(getContext(), Ty))) 1549 return 16; 1550 1551 return MinABIStackAlignInBytes; 1552 } 1553 1554 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 1555 CCState &State) const { 1556 if (!ByVal) { 1557 if (State.FreeRegs) { 1558 --State.FreeRegs; // Non-byval indirects just use one pointer. 1559 if (!IsMCUABI) 1560 return getNaturalAlignIndirectInReg(Ty); 1561 } 1562 return getNaturalAlignIndirect(Ty, false); 1563 } 1564 1565 // Compute the byval alignment. 1566 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 1567 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 1568 if (StackAlign == 0) 1569 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); 1570 1571 // If the stack alignment is less than the type alignment, realign the 1572 // argument. 1573 bool Realign = TypeAlign > StackAlign; 1574 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), 1575 /*ByVal=*/true, Realign); 1576 } 1577 1578 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 1579 const Type *T = isSingleElementStruct(Ty, getContext()); 1580 if (!T) 1581 T = Ty.getTypePtr(); 1582 1583 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 1584 BuiltinType::Kind K = BT->getKind(); 1585 if (K == BuiltinType::Float || K == BuiltinType::Double) 1586 return Float; 1587 } 1588 return Integer; 1589 } 1590 1591 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { 1592 if (!IsSoftFloatABI) { 1593 Class C = classify(Ty); 1594 if (C == Float) 1595 return false; 1596 } 1597 1598 unsigned Size = getContext().getTypeSize(Ty); 1599 unsigned SizeInRegs = (Size + 31) / 32; 1600 1601 if (SizeInRegs == 0) 1602 return false; 1603 1604 if (!IsMCUABI) { 1605 if (SizeInRegs > State.FreeRegs) { 1606 State.FreeRegs = 0; 1607 return false; 1608 } 1609 } else { 1610 // The MCU psABI allows passing parameters in-reg even if there are 1611 // earlier parameters that are passed on the stack. Also, 1612 // it does not allow passing >8-byte structs in-register, 1613 // even if there are 3 free registers available. 1614 if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) 1615 return false; 1616 } 1617 1618 State.FreeRegs -= SizeInRegs; 1619 return true; 1620 } 1621 1622 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, 1623 bool &InReg, 1624 bool &NeedsPadding) const { 1625 // On Windows, aggregates other than HFAs are never passed in registers, and 1626 // they do not consume register slots. Homogenous floating-point aggregates 1627 // (HFAs) have already been dealt with at this point. 1628 if (IsWin32StructABI && isAggregateTypeForABI(Ty)) 1629 return false; 1630 1631 NeedsPadding = false; 1632 InReg = !IsMCUABI; 1633 1634 if (!updateFreeRegs(Ty, State)) 1635 return false; 1636 1637 if (IsMCUABI) 1638 return true; 1639 1640 if (State.CC == llvm::CallingConv::X86_FastCall || 1641 State.CC == llvm::CallingConv::X86_VectorCall || 1642 State.CC == llvm::CallingConv::X86_RegCall) { 1643 if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) 1644 NeedsPadding = true; 1645 1646 return false; 1647 } 1648 1649 return true; 1650 } 1651 1652 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { 1653 if (!updateFreeRegs(Ty, State)) 1654 return false; 1655 1656 if (IsMCUABI) 1657 return false; 1658 1659 if (State.CC == llvm::CallingConv::X86_FastCall || 1660 State.CC == llvm::CallingConv::X86_VectorCall || 1661 State.CC == llvm::CallingConv::X86_RegCall) { 1662 if (getContext().getTypeSize(Ty) > 32) 1663 return false; 1664 1665 return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || 1666 Ty->isReferenceType()); 1667 } 1668 1669 return true; 1670 } 1671 1672 void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const { 1673 // Vectorcall x86 works subtly different than in x64, so the format is 1674 // a bit different than the x64 version. First, all vector types (not HVAs) 1675 // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers. 1676 // This differs from the x64 implementation, where the first 6 by INDEX get 1677 // registers. 1678 // In the second pass over the arguments, HVAs are passed in the remaining 1679 // vector registers if possible, or indirectly by address. The address will be 1680 // passed in ECX/EDX if available. Any other arguments are passed according to 1681 // the usual fastcall rules. 1682 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); 1683 for (int I = 0, E = Args.size(); I < E; ++I) { 1684 const Type *Base = nullptr; 1685 uint64_t NumElts = 0; 1686 const QualType &Ty = Args[I].type; 1687 if ((Ty->isVectorType() || Ty->isBuiltinType()) && 1688 isHomogeneousAggregate(Ty, Base, NumElts)) { 1689 if (State.FreeSSERegs >= NumElts) { 1690 State.FreeSSERegs -= NumElts; 1691 Args[I].info = ABIArgInfo::getDirectInReg(); 1692 State.IsPreassigned.set(I); 1693 } 1694 } 1695 } 1696 } 1697 1698 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 1699 CCState &State) const { 1700 // FIXME: Set alignment on indirect arguments. 1701 bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall; 1702 bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall; 1703 bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall; 1704 1705 Ty = useFirstFieldIfTransparentUnion(Ty); 1706 TypeInfo TI = getContext().getTypeInfo(Ty); 1707 1708 // Check with the C++ ABI first. 1709 const RecordType *RT = Ty->getAs<RecordType>(); 1710 if (RT) { 1711 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 1712 if (RAA == CGCXXABI::RAA_Indirect) { 1713 return getIndirectResult(Ty, false, State); 1714 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 1715 // The field index doesn't matter, we'll fix it up later. 1716 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 1717 } 1718 } 1719 1720 // Regcall uses the concept of a homogenous vector aggregate, similar 1721 // to other targets. 1722 const Type *Base = nullptr; 1723 uint64_t NumElts = 0; 1724 if ((IsRegCall || IsVectorCall) && 1725 isHomogeneousAggregate(Ty, Base, NumElts)) { 1726 if (State.FreeSSERegs >= NumElts) { 1727 State.FreeSSERegs -= NumElts; 1728 1729 // Vectorcall passes HVAs directly and does not flatten them, but regcall 1730 // does. 1731 if (IsVectorCall) 1732 return getDirectX86Hva(); 1733 1734 if (Ty->isBuiltinType() || Ty->isVectorType()) 1735 return ABIArgInfo::getDirect(); 1736 return ABIArgInfo::getExpand(); 1737 } 1738 return getIndirectResult(Ty, /*ByVal=*/false, State); 1739 } 1740 1741 if (isAggregateTypeForABI(Ty)) { 1742 // Structures with flexible arrays are always indirect. 1743 // FIXME: This should not be byval! 1744 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 1745 return getIndirectResult(Ty, true, State); 1746 1747 // Ignore empty structs/unions on non-Windows. 1748 if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true)) 1749 return ABIArgInfo::getIgnore(); 1750 1751 llvm::LLVMContext &LLVMContext = getVMContext(); 1752 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 1753 bool NeedsPadding = false; 1754 bool InReg; 1755 if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { 1756 unsigned SizeInRegs = (TI.Width + 31) / 32; 1757 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 1758 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 1759 if (InReg) 1760 return ABIArgInfo::getDirectInReg(Result); 1761 else 1762 return ABIArgInfo::getDirect(Result); 1763 } 1764 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 1765 1766 // Pass over-aligned aggregates on Windows indirectly. This behavior was 1767 // added in MSVC 2015. 1768 if (IsWin32StructABI && TI.AlignIsRequired && TI.Align > 32) 1769 return getIndirectResult(Ty, /*ByVal=*/false, State); 1770 1771 // Expand small (<= 128-bit) record types when we know that the stack layout 1772 // of those arguments will match the struct. This is important because the 1773 // LLVM backend isn't smart enough to remove byval, which inhibits many 1774 // optimizations. 1775 // Don't do this for the MCU if there are still free integer registers 1776 // (see X86_64 ABI for full explanation). 1777 if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) && 1778 canExpandIndirectArgument(Ty)) 1779 return ABIArgInfo::getExpandWithPadding( 1780 IsFastCall || IsVectorCall || IsRegCall, PaddingType); 1781 1782 return getIndirectResult(Ty, true, State); 1783 } 1784 1785 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1786 // On Windows, vectors are passed directly if registers are available, or 1787 // indirectly if not. This avoids the need to align argument memory. Pass 1788 // user-defined vector types larger than 512 bits indirectly for simplicity. 1789 if (IsWin32StructABI) { 1790 if (TI.Width <= 512 && State.FreeSSERegs > 0) { 1791 --State.FreeSSERegs; 1792 return ABIArgInfo::getDirectInReg(); 1793 } 1794 return getIndirectResult(Ty, /*ByVal=*/false, State); 1795 } 1796 1797 // On Darwin, some vectors are passed in memory, we handle this by passing 1798 // it as an i8/i16/i32/i64. 1799 if (IsDarwinVectorABI) { 1800 if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) || 1801 (TI.Width == 64 && VT->getNumElements() == 1)) 1802 return ABIArgInfo::getDirect( 1803 llvm::IntegerType::get(getVMContext(), TI.Width)); 1804 } 1805 1806 if (IsX86_MMXType(CGT.ConvertType(Ty))) 1807 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 1808 1809 return ABIArgInfo::getDirect(); 1810 } 1811 1812 1813 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1814 Ty = EnumTy->getDecl()->getIntegerType(); 1815 1816 bool InReg = shouldPrimitiveUseInReg(Ty, State); 1817 1818 if (Ty->isPromotableIntegerType()) { 1819 if (InReg) 1820 return ABIArgInfo::getExtendInReg(Ty); 1821 return ABIArgInfo::getExtend(Ty); 1822 } 1823 1824 if (InReg) 1825 return ABIArgInfo::getDirectInReg(); 1826 return ABIArgInfo::getDirect(); 1827 } 1828 1829 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 1830 CCState State(FI); 1831 if (IsMCUABI) 1832 State.FreeRegs = 3; 1833 else if (State.CC == llvm::CallingConv::X86_FastCall) { 1834 State.FreeRegs = 2; 1835 State.FreeSSERegs = 3; 1836 } else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1837 State.FreeRegs = 2; 1838 State.FreeSSERegs = 6; 1839 } else if (FI.getHasRegParm()) 1840 State.FreeRegs = FI.getRegParm(); 1841 else if (State.CC == llvm::CallingConv::X86_RegCall) { 1842 State.FreeRegs = 5; 1843 State.FreeSSERegs = 8; 1844 } else if (IsWin32StructABI) { 1845 // Since MSVC 2015, the first three SSE vectors have been passed in 1846 // registers. The rest are passed indirectly. 1847 State.FreeRegs = DefaultNumRegisterParameters; 1848 State.FreeSSERegs = 3; 1849 } else 1850 State.FreeRegs = DefaultNumRegisterParameters; 1851 1852 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 1853 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 1854 } else if (FI.getReturnInfo().isIndirect()) { 1855 // The C++ ABI is not aware of register usage, so we have to check if the 1856 // return value was sret and put it in a register ourselves if appropriate. 1857 if (State.FreeRegs) { 1858 --State.FreeRegs; // The sret parameter consumes a register. 1859 if (!IsMCUABI) 1860 FI.getReturnInfo().setInReg(true); 1861 } 1862 } 1863 1864 // The chain argument effectively gives us another free register. 1865 if (FI.isChainCall()) 1866 ++State.FreeRegs; 1867 1868 // For vectorcall, do a first pass over the arguments, assigning FP and vector 1869 // arguments to XMM registers as available. 1870 if (State.CC == llvm::CallingConv::X86_VectorCall) 1871 runVectorCallFirstPass(FI, State); 1872 1873 bool UsedInAlloca = false; 1874 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); 1875 for (int I = 0, E = Args.size(); I < E; ++I) { 1876 // Skip arguments that have already been assigned. 1877 if (State.IsPreassigned.test(I)) 1878 continue; 1879 1880 Args[I].info = classifyArgumentType(Args[I].type, State); 1881 UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca); 1882 } 1883 1884 // If we needed to use inalloca for any argument, do a second pass and rewrite 1885 // all the memory arguments to use inalloca. 1886 if (UsedInAlloca) 1887 rewriteWithInAlloca(FI); 1888 } 1889 1890 void 1891 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1892 CharUnits &StackOffset, ABIArgInfo &Info, 1893 QualType Type) const { 1894 // Arguments are always 4-byte-aligned. 1895 CharUnits WordSize = CharUnits::fromQuantity(4); 1896 assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct"); 1897 1898 // sret pointers and indirect things will require an extra pointer 1899 // indirection, unless they are byval. Most things are byval, and will not 1900 // require this indirection. 1901 bool IsIndirect = false; 1902 if (Info.isIndirect() && !Info.getIndirectByVal()) 1903 IsIndirect = true; 1904 Info = ABIArgInfo::getInAlloca(FrameFields.size(), IsIndirect); 1905 llvm::Type *LLTy = CGT.ConvertTypeForMem(Type); 1906 if (IsIndirect) 1907 LLTy = LLTy->getPointerTo(0); 1908 FrameFields.push_back(LLTy); 1909 StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(Type); 1910 1911 // Insert padding bytes to respect alignment. 1912 CharUnits FieldEnd = StackOffset; 1913 StackOffset = FieldEnd.alignTo(WordSize); 1914 if (StackOffset != FieldEnd) { 1915 CharUnits NumBytes = StackOffset - FieldEnd; 1916 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 1917 Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); 1918 FrameFields.push_back(Ty); 1919 } 1920 } 1921 1922 static bool isArgInAlloca(const ABIArgInfo &Info) { 1923 // Leave ignored and inreg arguments alone. 1924 switch (Info.getKind()) { 1925 case ABIArgInfo::InAlloca: 1926 return true; 1927 case ABIArgInfo::Ignore: 1928 return false; 1929 case ABIArgInfo::Indirect: 1930 case ABIArgInfo::Direct: 1931 case ABIArgInfo::Extend: 1932 return !Info.getInReg(); 1933 case ABIArgInfo::Expand: 1934 case ABIArgInfo::CoerceAndExpand: 1935 // These are aggregate types which are never passed in registers when 1936 // inalloca is involved. 1937 return true; 1938 } 1939 llvm_unreachable("invalid enum"); 1940 } 1941 1942 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 1943 assert(IsWin32StructABI && "inalloca only supported on win32"); 1944 1945 // Build a packed struct type for all of the arguments in memory. 1946 SmallVector<llvm::Type *, 6> FrameFields; 1947 1948 // The stack alignment is always 4. 1949 CharUnits StackAlign = CharUnits::fromQuantity(4); 1950 1951 CharUnits StackOffset; 1952 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 1953 1954 // Put 'this' into the struct before 'sret', if necessary. 1955 bool IsThisCall = 1956 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 1957 ABIArgInfo &Ret = FI.getReturnInfo(); 1958 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 1959 isArgInAlloca(I->info)) { 1960 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1961 ++I; 1962 } 1963 1964 // Put the sret parameter into the inalloca struct if it's in memory. 1965 if (Ret.isIndirect() && !Ret.getInReg()) { 1966 addFieldToArgStruct(FrameFields, StackOffset, Ret, FI.getReturnType()); 1967 // On Windows, the hidden sret parameter is always returned in eax. 1968 Ret.setInAllocaSRet(IsWin32StructABI); 1969 } 1970 1971 // Skip the 'this' parameter in ecx. 1972 if (IsThisCall) 1973 ++I; 1974 1975 // Put arguments passed in memory into the struct. 1976 for (; I != E; ++I) { 1977 if (isArgInAlloca(I->info)) 1978 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1979 } 1980 1981 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 1982 /*isPacked=*/true), 1983 StackAlign); 1984 } 1985 1986 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, 1987 Address VAListAddr, QualType Ty) const { 1988 1989 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 1990 1991 // x86-32 changes the alignment of certain arguments on the stack. 1992 // 1993 // Just messing with TypeInfo like this works because we never pass 1994 // anything indirectly. 1995 TypeInfo.second = CharUnits::fromQuantity( 1996 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity())); 1997 1998 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 1999 TypeInfo, CharUnits::fromQuantity(4), 2000 /*AllowHigherAlign*/ true); 2001 } 2002 2003 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 2004 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 2005 assert(Triple.getArch() == llvm::Triple::x86); 2006 2007 switch (Opts.getStructReturnConvention()) { 2008 case CodeGenOptions::SRCK_Default: 2009 break; 2010 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 2011 return false; 2012 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 2013 return true; 2014 } 2015 2016 if (Triple.isOSDarwin() || Triple.isOSIAMCU()) 2017 return true; 2018 2019 switch (Triple.getOS()) { 2020 case llvm::Triple::DragonFly: 2021 case llvm::Triple::FreeBSD: 2022 case llvm::Triple::OpenBSD: 2023 case llvm::Triple::Win32: 2024 return true; 2025 default: 2026 return false; 2027 } 2028 } 2029 2030 void X86_32TargetCodeGenInfo::setTargetAttributes( 2031 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2032 if (GV->isDeclaration()) 2033 return; 2034 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2035 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2036 llvm::Function *Fn = cast<llvm::Function>(GV); 2037 Fn->addFnAttr("stackrealign"); 2038 } 2039 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2040 llvm::Function *Fn = cast<llvm::Function>(GV); 2041 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2042 } 2043 } 2044 } 2045 2046 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 2047 CodeGen::CodeGenFunction &CGF, 2048 llvm::Value *Address) const { 2049 CodeGen::CGBuilderTy &Builder = CGF.Builder; 2050 2051 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 2052 2053 // 0-7 are the eight integer registers; the order is different 2054 // on Darwin (for EH), but the range is the same. 2055 // 8 is %eip. 2056 AssignToArrayRange(Builder, Address, Four8, 0, 8); 2057 2058 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 2059 // 12-16 are st(0..4). Not sure why we stop at 4. 2060 // These have size 16, which is sizeof(long double) on 2061 // platforms with 8-byte alignment for that type. 2062 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 2063 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 2064 2065 } else { 2066 // 9 is %eflags, which doesn't get a size on Darwin for some 2067 // reason. 2068 Builder.CreateAlignedStore( 2069 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), 2070 CharUnits::One()); 2071 2072 // 11-16 are st(0..5). Not sure why we stop at 5. 2073 // These have size 12, which is sizeof(long double) on 2074 // platforms with 4-byte alignment for that type. 2075 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 2076 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 2077 } 2078 2079 return false; 2080 } 2081 2082 //===----------------------------------------------------------------------===// 2083 // X86-64 ABI Implementation 2084 //===----------------------------------------------------------------------===// 2085 2086 2087 namespace { 2088 /// The AVX ABI level for X86 targets. 2089 enum class X86AVXABILevel { 2090 None, 2091 AVX, 2092 AVX512 2093 }; 2094 2095 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. 2096 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { 2097 switch (AVXLevel) { 2098 case X86AVXABILevel::AVX512: 2099 return 512; 2100 case X86AVXABILevel::AVX: 2101 return 256; 2102 case X86AVXABILevel::None: 2103 return 128; 2104 } 2105 llvm_unreachable("Unknown AVXLevel"); 2106 } 2107 2108 /// X86_64ABIInfo - The X86_64 ABI information. 2109 class X86_64ABIInfo : public SwiftABIInfo { 2110 enum Class { 2111 Integer = 0, 2112 SSE, 2113 SSEUp, 2114 X87, 2115 X87Up, 2116 ComplexX87, 2117 NoClass, 2118 Memory 2119 }; 2120 2121 /// merge - Implement the X86_64 ABI merging algorithm. 2122 /// 2123 /// Merge an accumulating classification \arg Accum with a field 2124 /// classification \arg Field. 2125 /// 2126 /// \param Accum - The accumulating classification. This should 2127 /// always be either NoClass or the result of a previous merge 2128 /// call. In addition, this should never be Memory (the caller 2129 /// should just return Memory for the aggregate). 2130 static Class merge(Class Accum, Class Field); 2131 2132 /// postMerge - Implement the X86_64 ABI post merging algorithm. 2133 /// 2134 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 2135 /// final MEMORY or SSE classes when necessary. 2136 /// 2137 /// \param AggregateSize - The size of the current aggregate in 2138 /// the classification process. 2139 /// 2140 /// \param Lo - The classification for the parts of the type 2141 /// residing in the low word of the containing object. 2142 /// 2143 /// \param Hi - The classification for the parts of the type 2144 /// residing in the higher words of the containing object. 2145 /// 2146 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 2147 2148 /// classify - Determine the x86_64 register classes in which the 2149 /// given type T should be passed. 2150 /// 2151 /// \param Lo - The classification for the parts of the type 2152 /// residing in the low word of the containing object. 2153 /// 2154 /// \param Hi - The classification for the parts of the type 2155 /// residing in the high word of the containing object. 2156 /// 2157 /// \param OffsetBase - The bit offset of this type in the 2158 /// containing object. Some parameters are classified different 2159 /// depending on whether they straddle an eightbyte boundary. 2160 /// 2161 /// \param isNamedArg - Whether the argument in question is a "named" 2162 /// argument, as used in AMD64-ABI 3.5.7. 2163 /// 2164 /// If a word is unused its result will be NoClass; if a type should 2165 /// be passed in Memory then at least the classification of \arg Lo 2166 /// will be Memory. 2167 /// 2168 /// The \arg Lo class will be NoClass iff the argument is ignored. 2169 /// 2170 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 2171 /// also be ComplexX87. 2172 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 2173 bool isNamedArg) const; 2174 2175 llvm::Type *GetByteVectorType(QualType Ty) const; 2176 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 2177 unsigned IROffset, QualType SourceTy, 2178 unsigned SourceOffset) const; 2179 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 2180 unsigned IROffset, QualType SourceTy, 2181 unsigned SourceOffset) const; 2182 2183 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2184 /// such that the argument will be returned in memory. 2185 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 2186 2187 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2188 /// such that the argument will be passed in memory. 2189 /// 2190 /// \param freeIntRegs - The number of free integer registers remaining 2191 /// available. 2192 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 2193 2194 ABIArgInfo classifyReturnType(QualType RetTy) const; 2195 2196 ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs, 2197 unsigned &neededInt, unsigned &neededSSE, 2198 bool isNamedArg) const; 2199 2200 ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt, 2201 unsigned &NeededSSE) const; 2202 2203 ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 2204 unsigned &NeededSSE) const; 2205 2206 bool IsIllegalVectorType(QualType Ty) const; 2207 2208 /// The 0.98 ABI revision clarified a lot of ambiguities, 2209 /// unfortunately in ways that were not always consistent with 2210 /// certain previous compilers. In particular, platforms which 2211 /// required strict binary compatibility with older versions of GCC 2212 /// may need to exempt themselves. 2213 bool honorsRevision0_98() const { 2214 return !getTarget().getTriple().isOSDarwin(); 2215 } 2216 2217 /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to 2218 /// classify it as INTEGER (for compatibility with older clang compilers). 2219 bool classifyIntegerMMXAsSSE() const { 2220 // Clang <= 3.8 did not do this. 2221 if (getContext().getLangOpts().getClangABICompat() <= 2222 LangOptions::ClangABI::Ver3_8) 2223 return false; 2224 2225 const llvm::Triple &Triple = getTarget().getTriple(); 2226 if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4) 2227 return false; 2228 if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10) 2229 return false; 2230 return true; 2231 } 2232 2233 // GCC classifies vectors of __int128 as memory. 2234 bool passInt128VectorsInMem() const { 2235 // Clang <= 9.0 did not do this. 2236 if (getContext().getLangOpts().getClangABICompat() <= 2237 LangOptions::ClangABI::Ver9) 2238 return false; 2239 2240 const llvm::Triple &T = getTarget().getTriple(); 2241 return T.isOSLinux() || T.isOSNetBSD(); 2242 } 2243 2244 X86AVXABILevel AVXLevel; 2245 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 2246 // 64-bit hardware. 2247 bool Has64BitPointers; 2248 2249 public: 2250 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : 2251 SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2252 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 2253 } 2254 2255 bool isPassedUsingAVXType(QualType type) const { 2256 unsigned neededInt, neededSSE; 2257 // The freeIntRegs argument doesn't matter here. 2258 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 2259 /*isNamedArg*/true); 2260 if (info.isDirect()) { 2261 llvm::Type *ty = info.getCoerceToType(); 2262 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 2263 return (vectorTy->getBitWidth() > 128); 2264 } 2265 return false; 2266 } 2267 2268 void computeInfo(CGFunctionInfo &FI) const override; 2269 2270 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2271 QualType Ty) const override; 2272 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 2273 QualType Ty) const override; 2274 2275 bool has64BitPointers() const { 2276 return Has64BitPointers; 2277 } 2278 2279 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 2280 bool asReturnValue) const override { 2281 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2282 } 2283 bool isSwiftErrorInRegister() const override { 2284 return true; 2285 } 2286 }; 2287 2288 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 2289 class WinX86_64ABIInfo : public SwiftABIInfo { 2290 public: 2291 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2292 : SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2293 IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} 2294 2295 void computeInfo(CGFunctionInfo &FI) const override; 2296 2297 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2298 QualType Ty) const override; 2299 2300 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 2301 // FIXME: Assumes vectorcall is in use. 2302 return isX86VectorTypeForVectorCall(getContext(), Ty); 2303 } 2304 2305 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 2306 uint64_t NumMembers) const override { 2307 // FIXME: Assumes vectorcall is in use. 2308 return isX86VectorCallAggregateSmallEnough(NumMembers); 2309 } 2310 2311 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars, 2312 bool asReturnValue) const override { 2313 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2314 } 2315 2316 bool isSwiftErrorInRegister() const override { 2317 return true; 2318 } 2319 2320 private: 2321 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType, 2322 bool IsVectorCall, bool IsRegCall) const; 2323 ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 2324 const ABIArgInfo ¤t) const; 2325 void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs, 2326 bool IsVectorCall, bool IsRegCall) const; 2327 2328 X86AVXABILevel AVXLevel; 2329 2330 bool IsMingw64; 2331 }; 2332 2333 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2334 public: 2335 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2336 : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {} 2337 2338 const X86_64ABIInfo &getABIInfo() const { 2339 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 2340 } 2341 2342 /// Disable tail call on x86-64. The epilogue code before the tail jump blocks 2343 /// the autoreleaseRV/retainRV optimization. 2344 bool shouldSuppressTailCallsOfRetainAutoreleasedReturnValue() const override { 2345 return true; 2346 } 2347 2348 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2349 return 7; 2350 } 2351 2352 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2353 llvm::Value *Address) const override { 2354 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2355 2356 // 0-15 are the 16 integer registers. 2357 // 16 is %rip. 2358 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2359 return false; 2360 } 2361 2362 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 2363 StringRef Constraint, 2364 llvm::Type* Ty) const override { 2365 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 2366 } 2367 2368 bool isNoProtoCallVariadic(const CallArgList &args, 2369 const FunctionNoProtoType *fnType) const override { 2370 // The default CC on x86-64 sets %al to the number of SSA 2371 // registers used, and GCC sets this when calling an unprototyped 2372 // function, so we override the default behavior. However, don't do 2373 // that when AVX types are involved: the ABI explicitly states it is 2374 // undefined, and it doesn't work in practice because of how the ABI 2375 // defines varargs anyway. 2376 if (fnType->getCallConv() == CC_C) { 2377 bool HasAVXType = false; 2378 for (CallArgList::const_iterator 2379 it = args.begin(), ie = args.end(); it != ie; ++it) { 2380 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 2381 HasAVXType = true; 2382 break; 2383 } 2384 } 2385 2386 if (!HasAVXType) 2387 return true; 2388 } 2389 2390 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 2391 } 2392 2393 llvm::Constant * 2394 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 2395 unsigned Sig = (0xeb << 0) | // jmp rel8 2396 (0x06 << 8) | // .+0x08 2397 ('v' << 16) | 2398 ('2' << 24); 2399 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 2400 } 2401 2402 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2403 CodeGen::CodeGenModule &CGM) const override { 2404 if (GV->isDeclaration()) 2405 return; 2406 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2407 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2408 llvm::Function *Fn = cast<llvm::Function>(GV); 2409 Fn->addFnAttr("stackrealign"); 2410 } 2411 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2412 llvm::Function *Fn = cast<llvm::Function>(GV); 2413 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2414 } 2415 } 2416 } 2417 }; 2418 2419 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 2420 // If the argument does not end in .lib, automatically add the suffix. 2421 // If the argument contains a space, enclose it in quotes. 2422 // This matches the behavior of MSVC. 2423 bool Quote = (Lib.find(" ") != StringRef::npos); 2424 std::string ArgStr = Quote ? "\"" : ""; 2425 ArgStr += Lib; 2426 if (!Lib.endswith_lower(".lib") && !Lib.endswith_lower(".a")) 2427 ArgStr += ".lib"; 2428 ArgStr += Quote ? "\"" : ""; 2429 return ArgStr; 2430 } 2431 2432 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 2433 public: 2434 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2435 bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, 2436 unsigned NumRegisterParameters) 2437 : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, 2438 Win32StructABI, NumRegisterParameters, false) {} 2439 2440 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2441 CodeGen::CodeGenModule &CGM) const override; 2442 2443 void getDependentLibraryOption(llvm::StringRef Lib, 2444 llvm::SmallString<24> &Opt) const override { 2445 Opt = "/DEFAULTLIB:"; 2446 Opt += qualifyWindowsLibrary(Lib); 2447 } 2448 2449 void getDetectMismatchOption(llvm::StringRef Name, 2450 llvm::StringRef Value, 2451 llvm::SmallString<32> &Opt) const override { 2452 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2453 } 2454 }; 2455 2456 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2457 CodeGen::CodeGenModule &CGM) { 2458 if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) { 2459 2460 if (CGM.getCodeGenOpts().StackProbeSize != 4096) 2461 Fn->addFnAttr("stack-probe-size", 2462 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 2463 if (CGM.getCodeGenOpts().NoStackArgProbe) 2464 Fn->addFnAttr("no-stack-arg-probe"); 2465 } 2466 } 2467 2468 void WinX86_32TargetCodeGenInfo::setTargetAttributes( 2469 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2470 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2471 if (GV->isDeclaration()) 2472 return; 2473 addStackProbeTargetAttributes(D, GV, CGM); 2474 } 2475 2476 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2477 public: 2478 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2479 X86AVXABILevel AVXLevel) 2480 : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT, AVXLevel)) {} 2481 2482 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2483 CodeGen::CodeGenModule &CGM) const override; 2484 2485 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2486 return 7; 2487 } 2488 2489 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2490 llvm::Value *Address) const override { 2491 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2492 2493 // 0-15 are the 16 integer registers. 2494 // 16 is %rip. 2495 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2496 return false; 2497 } 2498 2499 void getDependentLibraryOption(llvm::StringRef Lib, 2500 llvm::SmallString<24> &Opt) const override { 2501 Opt = "/DEFAULTLIB:"; 2502 Opt += qualifyWindowsLibrary(Lib); 2503 } 2504 2505 void getDetectMismatchOption(llvm::StringRef Name, 2506 llvm::StringRef Value, 2507 llvm::SmallString<32> &Opt) const override { 2508 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2509 } 2510 }; 2511 2512 void WinX86_64TargetCodeGenInfo::setTargetAttributes( 2513 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2514 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2515 if (GV->isDeclaration()) 2516 return; 2517 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2518 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2519 llvm::Function *Fn = cast<llvm::Function>(GV); 2520 Fn->addFnAttr("stackrealign"); 2521 } 2522 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2523 llvm::Function *Fn = cast<llvm::Function>(GV); 2524 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2525 } 2526 } 2527 2528 addStackProbeTargetAttributes(D, GV, CGM); 2529 } 2530 } 2531 2532 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 2533 Class &Hi) const { 2534 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 2535 // 2536 // (a) If one of the classes is Memory, the whole argument is passed in 2537 // memory. 2538 // 2539 // (b) If X87UP is not preceded by X87, the whole argument is passed in 2540 // memory. 2541 // 2542 // (c) If the size of the aggregate exceeds two eightbytes and the first 2543 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 2544 // argument is passed in memory. NOTE: This is necessary to keep the 2545 // ABI working for processors that don't support the __m256 type. 2546 // 2547 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 2548 // 2549 // Some of these are enforced by the merging logic. Others can arise 2550 // only with unions; for example: 2551 // union { _Complex double; unsigned; } 2552 // 2553 // Note that clauses (b) and (c) were added in 0.98. 2554 // 2555 if (Hi == Memory) 2556 Lo = Memory; 2557 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 2558 Lo = Memory; 2559 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 2560 Lo = Memory; 2561 if (Hi == SSEUp && Lo != SSE) 2562 Hi = SSE; 2563 } 2564 2565 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 2566 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 2567 // classified recursively so that always two fields are 2568 // considered. The resulting class is calculated according to 2569 // the classes of the fields in the eightbyte: 2570 // 2571 // (a) If both classes are equal, this is the resulting class. 2572 // 2573 // (b) If one of the classes is NO_CLASS, the resulting class is 2574 // the other class. 2575 // 2576 // (c) If one of the classes is MEMORY, the result is the MEMORY 2577 // class. 2578 // 2579 // (d) If one of the classes is INTEGER, the result is the 2580 // INTEGER. 2581 // 2582 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 2583 // MEMORY is used as class. 2584 // 2585 // (f) Otherwise class SSE is used. 2586 2587 // Accum should never be memory (we should have returned) or 2588 // ComplexX87 (because this cannot be passed in a structure). 2589 assert((Accum != Memory && Accum != ComplexX87) && 2590 "Invalid accumulated classification during merge."); 2591 if (Accum == Field || Field == NoClass) 2592 return Accum; 2593 if (Field == Memory) 2594 return Memory; 2595 if (Accum == NoClass) 2596 return Field; 2597 if (Accum == Integer || Field == Integer) 2598 return Integer; 2599 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 2600 Accum == X87 || Accum == X87Up) 2601 return Memory; 2602 return SSE; 2603 } 2604 2605 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 2606 Class &Lo, Class &Hi, bool isNamedArg) const { 2607 // FIXME: This code can be simplified by introducing a simple value class for 2608 // Class pairs with appropriate constructor methods for the various 2609 // situations. 2610 2611 // FIXME: Some of the split computations are wrong; unaligned vectors 2612 // shouldn't be passed in registers for example, so there is no chance they 2613 // can straddle an eightbyte. Verify & simplify. 2614 2615 Lo = Hi = NoClass; 2616 2617 Class &Current = OffsetBase < 64 ? Lo : Hi; 2618 Current = Memory; 2619 2620 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 2621 BuiltinType::Kind k = BT->getKind(); 2622 2623 if (k == BuiltinType::Void) { 2624 Current = NoClass; 2625 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 2626 Lo = Integer; 2627 Hi = Integer; 2628 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 2629 Current = Integer; 2630 } else if (k == BuiltinType::Float || k == BuiltinType::Double) { 2631 Current = SSE; 2632 } else if (k == BuiltinType::LongDouble) { 2633 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2634 if (LDF == &llvm::APFloat::IEEEquad()) { 2635 Lo = SSE; 2636 Hi = SSEUp; 2637 } else if (LDF == &llvm::APFloat::x87DoubleExtended()) { 2638 Lo = X87; 2639 Hi = X87Up; 2640 } else if (LDF == &llvm::APFloat::IEEEdouble()) { 2641 Current = SSE; 2642 } else 2643 llvm_unreachable("unexpected long double representation!"); 2644 } 2645 // FIXME: _Decimal32 and _Decimal64 are SSE. 2646 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 2647 return; 2648 } 2649 2650 if (const EnumType *ET = Ty->getAs<EnumType>()) { 2651 // Classify the underlying integer type. 2652 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 2653 return; 2654 } 2655 2656 if (Ty->hasPointerRepresentation()) { 2657 Current = Integer; 2658 return; 2659 } 2660 2661 if (Ty->isMemberPointerType()) { 2662 if (Ty->isMemberFunctionPointerType()) { 2663 if (Has64BitPointers) { 2664 // If Has64BitPointers, this is an {i64, i64}, so classify both 2665 // Lo and Hi now. 2666 Lo = Hi = Integer; 2667 } else { 2668 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 2669 // straddles an eightbyte boundary, Hi should be classified as well. 2670 uint64_t EB_FuncPtr = (OffsetBase) / 64; 2671 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 2672 if (EB_FuncPtr != EB_ThisAdj) { 2673 Lo = Hi = Integer; 2674 } else { 2675 Current = Integer; 2676 } 2677 } 2678 } else { 2679 Current = Integer; 2680 } 2681 return; 2682 } 2683 2684 if (const VectorType *VT = Ty->getAs<VectorType>()) { 2685 uint64_t Size = getContext().getTypeSize(VT); 2686 if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { 2687 // gcc passes the following as integer: 2688 // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> 2689 // 2 bytes - <2 x char>, <1 x short> 2690 // 1 byte - <1 x char> 2691 Current = Integer; 2692 2693 // If this type crosses an eightbyte boundary, it should be 2694 // split. 2695 uint64_t EB_Lo = (OffsetBase) / 64; 2696 uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; 2697 if (EB_Lo != EB_Hi) 2698 Hi = Lo; 2699 } else if (Size == 64) { 2700 QualType ElementType = VT->getElementType(); 2701 2702 // gcc passes <1 x double> in memory. :( 2703 if (ElementType->isSpecificBuiltinType(BuiltinType::Double)) 2704 return; 2705 2706 // gcc passes <1 x long long> as SSE but clang used to unconditionally 2707 // pass them as integer. For platforms where clang is the de facto 2708 // platform compiler, we must continue to use integer. 2709 if (!classifyIntegerMMXAsSSE() && 2710 (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) || 2711 ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) || 2712 ElementType->isSpecificBuiltinType(BuiltinType::Long) || 2713 ElementType->isSpecificBuiltinType(BuiltinType::ULong))) 2714 Current = Integer; 2715 else 2716 Current = SSE; 2717 2718 // If this type crosses an eightbyte boundary, it should be 2719 // split. 2720 if (OffsetBase && OffsetBase != 64) 2721 Hi = Lo; 2722 } else if (Size == 128 || 2723 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { 2724 QualType ElementType = VT->getElementType(); 2725 2726 // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :( 2727 if (passInt128VectorsInMem() && Size != 128 && 2728 (ElementType->isSpecificBuiltinType(BuiltinType::Int128) || 2729 ElementType->isSpecificBuiltinType(BuiltinType::UInt128))) 2730 return; 2731 2732 // Arguments of 256-bits are split into four eightbyte chunks. The 2733 // least significant one belongs to class SSE and all the others to class 2734 // SSEUP. The original Lo and Hi design considers that types can't be 2735 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 2736 // This design isn't correct for 256-bits, but since there're no cases 2737 // where the upper parts would need to be inspected, avoid adding 2738 // complexity and just consider Hi to match the 64-256 part. 2739 // 2740 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 2741 // registers if they are "named", i.e. not part of the "..." of a 2742 // variadic function. 2743 // 2744 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are 2745 // split into eight eightbyte chunks, one SSE and seven SSEUP. 2746 Lo = SSE; 2747 Hi = SSEUp; 2748 } 2749 return; 2750 } 2751 2752 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 2753 QualType ET = getContext().getCanonicalType(CT->getElementType()); 2754 2755 uint64_t Size = getContext().getTypeSize(Ty); 2756 if (ET->isIntegralOrEnumerationType()) { 2757 if (Size <= 64) 2758 Current = Integer; 2759 else if (Size <= 128) 2760 Lo = Hi = Integer; 2761 } else if (ET == getContext().FloatTy) { 2762 Current = SSE; 2763 } else if (ET == getContext().DoubleTy) { 2764 Lo = Hi = SSE; 2765 } else if (ET == getContext().LongDoubleTy) { 2766 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2767 if (LDF == &llvm::APFloat::IEEEquad()) 2768 Current = Memory; 2769 else if (LDF == &llvm::APFloat::x87DoubleExtended()) 2770 Current = ComplexX87; 2771 else if (LDF == &llvm::APFloat::IEEEdouble()) 2772 Lo = Hi = SSE; 2773 else 2774 llvm_unreachable("unexpected long double representation!"); 2775 } 2776 2777 // If this complex type crosses an eightbyte boundary then it 2778 // should be split. 2779 uint64_t EB_Real = (OffsetBase) / 64; 2780 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 2781 if (Hi == NoClass && EB_Real != EB_Imag) 2782 Hi = Lo; 2783 2784 return; 2785 } 2786 2787 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 2788 // Arrays are treated like structures. 2789 2790 uint64_t Size = getContext().getTypeSize(Ty); 2791 2792 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2793 // than eight eightbytes, ..., it has class MEMORY. 2794 if (Size > 512) 2795 return; 2796 2797 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 2798 // fields, it has class MEMORY. 2799 // 2800 // Only need to check alignment of array base. 2801 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 2802 return; 2803 2804 // Otherwise implement simplified merge. We could be smarter about 2805 // this, but it isn't worth it and would be harder to verify. 2806 Current = NoClass; 2807 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 2808 uint64_t ArraySize = AT->getSize().getZExtValue(); 2809 2810 // The only case a 256-bit wide vector could be used is when the array 2811 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2812 // to work for sizes wider than 128, early check and fallback to memory. 2813 // 2814 if (Size > 128 && 2815 (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel))) 2816 return; 2817 2818 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 2819 Class FieldLo, FieldHi; 2820 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 2821 Lo = merge(Lo, FieldLo); 2822 Hi = merge(Hi, FieldHi); 2823 if (Lo == Memory || Hi == Memory) 2824 break; 2825 } 2826 2827 postMerge(Size, Lo, Hi); 2828 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 2829 return; 2830 } 2831 2832 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2833 uint64_t Size = getContext().getTypeSize(Ty); 2834 2835 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2836 // than eight eightbytes, ..., it has class MEMORY. 2837 if (Size > 512) 2838 return; 2839 2840 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 2841 // copy constructor or a non-trivial destructor, it is passed by invisible 2842 // reference. 2843 if (getRecordArgABI(RT, getCXXABI())) 2844 return; 2845 2846 const RecordDecl *RD = RT->getDecl(); 2847 2848 // Assume variable sized types are passed in memory. 2849 if (RD->hasFlexibleArrayMember()) 2850 return; 2851 2852 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2853 2854 // Reset Lo class, this will be recomputed. 2855 Current = NoClass; 2856 2857 // If this is a C++ record, classify the bases first. 2858 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2859 for (const auto &I : CXXRD->bases()) { 2860 assert(!I.isVirtual() && !I.getType()->isDependentType() && 2861 "Unexpected base class!"); 2862 const auto *Base = 2863 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 2864 2865 // Classify this field. 2866 // 2867 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 2868 // single eightbyte, each is classified separately. Each eightbyte gets 2869 // initialized to class NO_CLASS. 2870 Class FieldLo, FieldHi; 2871 uint64_t Offset = 2872 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 2873 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 2874 Lo = merge(Lo, FieldLo); 2875 Hi = merge(Hi, FieldHi); 2876 if (Lo == Memory || Hi == Memory) { 2877 postMerge(Size, Lo, Hi); 2878 return; 2879 } 2880 } 2881 } 2882 2883 // Classify the fields one at a time, merging the results. 2884 unsigned idx = 0; 2885 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2886 i != e; ++i, ++idx) { 2887 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2888 bool BitField = i->isBitField(); 2889 2890 // Ignore padding bit-fields. 2891 if (BitField && i->isUnnamedBitfield()) 2892 continue; 2893 2894 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 2895 // four eightbytes, or it contains unaligned fields, it has class MEMORY. 2896 // 2897 // The only case a 256-bit wide vector could be used is when the struct 2898 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2899 // to work for sizes wider than 128, early check and fallback to memory. 2900 // 2901 if (Size > 128 && (Size != getContext().getTypeSize(i->getType()) || 2902 Size > getNativeVectorSizeForAVXABI(AVXLevel))) { 2903 Lo = Memory; 2904 postMerge(Size, Lo, Hi); 2905 return; 2906 } 2907 // Note, skip this test for bit-fields, see below. 2908 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 2909 Lo = Memory; 2910 postMerge(Size, Lo, Hi); 2911 return; 2912 } 2913 2914 // Classify this field. 2915 // 2916 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 2917 // exceeds a single eightbyte, each is classified 2918 // separately. Each eightbyte gets initialized to class 2919 // NO_CLASS. 2920 Class FieldLo, FieldHi; 2921 2922 // Bit-fields require special handling, they do not force the 2923 // structure to be passed in memory even if unaligned, and 2924 // therefore they can straddle an eightbyte. 2925 if (BitField) { 2926 assert(!i->isUnnamedBitfield()); 2927 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2928 uint64_t Size = i->getBitWidthValue(getContext()); 2929 2930 uint64_t EB_Lo = Offset / 64; 2931 uint64_t EB_Hi = (Offset + Size - 1) / 64; 2932 2933 if (EB_Lo) { 2934 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 2935 FieldLo = NoClass; 2936 FieldHi = Integer; 2937 } else { 2938 FieldLo = Integer; 2939 FieldHi = EB_Hi ? Integer : NoClass; 2940 } 2941 } else 2942 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 2943 Lo = merge(Lo, FieldLo); 2944 Hi = merge(Hi, FieldHi); 2945 if (Lo == Memory || Hi == Memory) 2946 break; 2947 } 2948 2949 postMerge(Size, Lo, Hi); 2950 } 2951 } 2952 2953 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 2954 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2955 // place naturally. 2956 if (!isAggregateTypeForABI(Ty)) { 2957 // Treat an enum type as its underlying type. 2958 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2959 Ty = EnumTy->getDecl()->getIntegerType(); 2960 2961 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 2962 : ABIArgInfo::getDirect()); 2963 } 2964 2965 return getNaturalAlignIndirect(Ty); 2966 } 2967 2968 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 2969 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 2970 uint64_t Size = getContext().getTypeSize(VecTy); 2971 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); 2972 if (Size <= 64 || Size > LargestVector) 2973 return true; 2974 QualType EltTy = VecTy->getElementType(); 2975 if (passInt128VectorsInMem() && 2976 (EltTy->isSpecificBuiltinType(BuiltinType::Int128) || 2977 EltTy->isSpecificBuiltinType(BuiltinType::UInt128))) 2978 return true; 2979 } 2980 2981 return false; 2982 } 2983 2984 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 2985 unsigned freeIntRegs) const { 2986 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2987 // place naturally. 2988 // 2989 // This assumption is optimistic, as there could be free registers available 2990 // when we need to pass this argument in memory, and LLVM could try to pass 2991 // the argument in the free register. This does not seem to happen currently, 2992 // but this code would be much safer if we could mark the argument with 2993 // 'onstack'. See PR12193. 2994 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) { 2995 // Treat an enum type as its underlying type. 2996 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2997 Ty = EnumTy->getDecl()->getIntegerType(); 2998 2999 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 3000 : ABIArgInfo::getDirect()); 3001 } 3002 3003 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 3004 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 3005 3006 // Compute the byval alignment. We specify the alignment of the byval in all 3007 // cases so that the mid-level optimizer knows the alignment of the byval. 3008 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 3009 3010 // Attempt to avoid passing indirect results using byval when possible. This 3011 // is important for good codegen. 3012 // 3013 // We do this by coercing the value into a scalar type which the backend can 3014 // handle naturally (i.e., without using byval). 3015 // 3016 // For simplicity, we currently only do this when we have exhausted all of the 3017 // free integer registers. Doing this when there are free integer registers 3018 // would require more care, as we would have to ensure that the coerced value 3019 // did not claim the unused register. That would require either reording the 3020 // arguments to the function (so that any subsequent inreg values came first), 3021 // or only doing this optimization when there were no following arguments that 3022 // might be inreg. 3023 // 3024 // We currently expect it to be rare (particularly in well written code) for 3025 // arguments to be passed on the stack when there are still free integer 3026 // registers available (this would typically imply large structs being passed 3027 // by value), so this seems like a fair tradeoff for now. 3028 // 3029 // We can revisit this if the backend grows support for 'onstack' parameter 3030 // attributes. See PR12193. 3031 if (freeIntRegs == 0) { 3032 uint64_t Size = getContext().getTypeSize(Ty); 3033 3034 // If this type fits in an eightbyte, coerce it into the matching integral 3035 // type, which will end up on the stack (with alignment 8). 3036 if (Align == 8 && Size <= 64) 3037 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 3038 Size)); 3039 } 3040 3041 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); 3042 } 3043 3044 /// The ABI specifies that a value should be passed in a full vector XMM/YMM 3045 /// register. Pick an LLVM IR type that will be passed as a vector register. 3046 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 3047 // Wrapper structs/arrays that only contain vectors are passed just like 3048 // vectors; strip them off if present. 3049 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) 3050 Ty = QualType(InnerTy, 0); 3051 3052 llvm::Type *IRType = CGT.ConvertType(Ty); 3053 if (isa<llvm::VectorType>(IRType)) { 3054 // Don't pass vXi128 vectors in their native type, the backend can't 3055 // legalize them. 3056 if (passInt128VectorsInMem() && 3057 IRType->getVectorElementType()->isIntegerTy(128)) { 3058 // Use a vXi64 vector. 3059 uint64_t Size = getContext().getTypeSize(Ty); 3060 return llvm::VectorType::get(llvm::Type::getInt64Ty(getVMContext()), 3061 Size / 64); 3062 } 3063 3064 return IRType; 3065 } 3066 3067 if (IRType->getTypeID() == llvm::Type::FP128TyID) 3068 return IRType; 3069 3070 // We couldn't find the preferred IR vector type for 'Ty'. 3071 uint64_t Size = getContext().getTypeSize(Ty); 3072 assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!"); 3073 3074 3075 // Return a LLVM IR vector type based on the size of 'Ty'. 3076 return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 3077 Size / 64); 3078 } 3079 3080 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 3081 /// is known to either be off the end of the specified type or being in 3082 /// alignment padding. The user type specified is known to be at most 128 bits 3083 /// in size, and have passed through X86_64ABIInfo::classify with a successful 3084 /// classification that put one of the two halves in the INTEGER class. 3085 /// 3086 /// It is conservatively correct to return false. 3087 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 3088 unsigned EndBit, ASTContext &Context) { 3089 // If the bytes being queried are off the end of the type, there is no user 3090 // data hiding here. This handles analysis of builtins, vectors and other 3091 // types that don't contain interesting padding. 3092 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 3093 if (TySize <= StartBit) 3094 return true; 3095 3096 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 3097 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 3098 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 3099 3100 // Check each element to see if the element overlaps with the queried range. 3101 for (unsigned i = 0; i != NumElts; ++i) { 3102 // If the element is after the span we care about, then we're done.. 3103 unsigned EltOffset = i*EltSize; 3104 if (EltOffset >= EndBit) break; 3105 3106 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 3107 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 3108 EndBit-EltOffset, Context)) 3109 return false; 3110 } 3111 // If it overlaps no elements, then it is safe to process as padding. 3112 return true; 3113 } 3114 3115 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3116 const RecordDecl *RD = RT->getDecl(); 3117 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3118 3119 // If this is a C++ record, check the bases first. 3120 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3121 for (const auto &I : CXXRD->bases()) { 3122 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3123 "Unexpected base class!"); 3124 const auto *Base = 3125 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 3126 3127 // If the base is after the span we care about, ignore it. 3128 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 3129 if (BaseOffset >= EndBit) continue; 3130 3131 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 3132 if (!BitsContainNoUserData(I.getType(), BaseStart, 3133 EndBit-BaseOffset, Context)) 3134 return false; 3135 } 3136 } 3137 3138 // Verify that no field has data that overlaps the region of interest. Yes 3139 // this could be sped up a lot by being smarter about queried fields, 3140 // however we're only looking at structs up to 16 bytes, so we don't care 3141 // much. 3142 unsigned idx = 0; 3143 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3144 i != e; ++i, ++idx) { 3145 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 3146 3147 // If we found a field after the region we care about, then we're done. 3148 if (FieldOffset >= EndBit) break; 3149 3150 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 3151 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 3152 Context)) 3153 return false; 3154 } 3155 3156 // If nothing in this record overlapped the area of interest, then we're 3157 // clean. 3158 return true; 3159 } 3160 3161 return false; 3162 } 3163 3164 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a 3165 /// float member at the specified offset. For example, {int,{float}} has a 3166 /// float at offset 4. It is conservatively correct for this routine to return 3167 /// false. 3168 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, 3169 const llvm::DataLayout &TD) { 3170 // Base case if we find a float. 3171 if (IROffset == 0 && IRType->isFloatTy()) 3172 return true; 3173 3174 // If this is a struct, recurse into the field at the specified offset. 3175 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3176 const llvm::StructLayout *SL = TD.getStructLayout(STy); 3177 unsigned Elt = SL->getElementContainingOffset(IROffset); 3178 IROffset -= SL->getElementOffset(Elt); 3179 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); 3180 } 3181 3182 // If this is an array, recurse into the field at the specified offset. 3183 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3184 llvm::Type *EltTy = ATy->getElementType(); 3185 unsigned EltSize = TD.getTypeAllocSize(EltTy); 3186 IROffset -= IROffset/EltSize*EltSize; 3187 return ContainsFloatAtOffset(EltTy, IROffset, TD); 3188 } 3189 3190 return false; 3191 } 3192 3193 3194 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 3195 /// low 8 bytes of an XMM register, corresponding to the SSE class. 3196 llvm::Type *X86_64ABIInfo:: 3197 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3198 QualType SourceTy, unsigned SourceOffset) const { 3199 // The only three choices we have are either double, <2 x float>, or float. We 3200 // pass as float if the last 4 bytes is just padding. This happens for 3201 // structs that contain 3 floats. 3202 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, 3203 SourceOffset*8+64, getContext())) 3204 return llvm::Type::getFloatTy(getVMContext()); 3205 3206 // We want to pass as <2 x float> if the LLVM IR type contains a float at 3207 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the 3208 // case. 3209 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && 3210 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) 3211 return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2); 3212 3213 return llvm::Type::getDoubleTy(getVMContext()); 3214 } 3215 3216 3217 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 3218 /// an 8-byte GPR. This means that we either have a scalar or we are talking 3219 /// about the high or low part of an up-to-16-byte struct. This routine picks 3220 /// the best LLVM IR type to represent this, which may be i64 or may be anything 3221 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 3222 /// etc). 3223 /// 3224 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 3225 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 3226 /// the 8-byte value references. PrefType may be null. 3227 /// 3228 /// SourceTy is the source-level type for the entire argument. SourceOffset is 3229 /// an offset into this that we're processing (which is always either 0 or 8). 3230 /// 3231 llvm::Type *X86_64ABIInfo:: 3232 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3233 QualType SourceTy, unsigned SourceOffset) const { 3234 // If we're dealing with an un-offset LLVM IR type, then it means that we're 3235 // returning an 8-byte unit starting with it. See if we can safely use it. 3236 if (IROffset == 0) { 3237 // Pointers and int64's always fill the 8-byte unit. 3238 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 3239 IRType->isIntegerTy(64)) 3240 return IRType; 3241 3242 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 3243 // goodness in the source type is just tail padding. This is allowed to 3244 // kick in for struct {double,int} on the int, but not on 3245 // struct{double,int,int} because we wouldn't return the second int. We 3246 // have to do this analysis on the source type because we can't depend on 3247 // unions being lowered a specific way etc. 3248 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 3249 IRType->isIntegerTy(32) || 3250 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 3251 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 3252 cast<llvm::IntegerType>(IRType)->getBitWidth(); 3253 3254 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 3255 SourceOffset*8+64, getContext())) 3256 return IRType; 3257 } 3258 } 3259 3260 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3261 // If this is a struct, recurse into the field at the specified offset. 3262 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 3263 if (IROffset < SL->getSizeInBytes()) { 3264 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 3265 IROffset -= SL->getElementOffset(FieldIdx); 3266 3267 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 3268 SourceTy, SourceOffset); 3269 } 3270 } 3271 3272 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3273 llvm::Type *EltTy = ATy->getElementType(); 3274 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 3275 unsigned EltOffset = IROffset/EltSize*EltSize; 3276 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 3277 SourceOffset); 3278 } 3279 3280 // Okay, we don't have any better idea of what to pass, so we pass this in an 3281 // integer register that isn't too big to fit the rest of the struct. 3282 unsigned TySizeInBytes = 3283 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 3284 3285 assert(TySizeInBytes != SourceOffset && "Empty field?"); 3286 3287 // It is always safe to classify this as an integer type up to i64 that 3288 // isn't larger than the structure. 3289 return llvm::IntegerType::get(getVMContext(), 3290 std::min(TySizeInBytes-SourceOffset, 8U)*8); 3291 } 3292 3293 3294 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 3295 /// be used as elements of a two register pair to pass or return, return a 3296 /// first class aggregate to represent them. For example, if the low part of 3297 /// a by-value argument should be passed as i32* and the high part as float, 3298 /// return {i32*, float}. 3299 static llvm::Type * 3300 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 3301 const llvm::DataLayout &TD) { 3302 // In order to correctly satisfy the ABI, we need to the high part to start 3303 // at offset 8. If the high and low parts we inferred are both 4-byte types 3304 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 3305 // the second element at offset 8. Check for this: 3306 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 3307 unsigned HiAlign = TD.getABITypeAlignment(Hi); 3308 unsigned HiStart = llvm::alignTo(LoSize, HiAlign); 3309 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 3310 3311 // To handle this, we have to increase the size of the low part so that the 3312 // second element will start at an 8 byte offset. We can't increase the size 3313 // of the second element because it might make us access off the end of the 3314 // struct. 3315 if (HiStart != 8) { 3316 // There are usually two sorts of types the ABI generation code can produce 3317 // for the low part of a pair that aren't 8 bytes in size: float or 3318 // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and 3319 // NaCl). 3320 // Promote these to a larger type. 3321 if (Lo->isFloatTy()) 3322 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 3323 else { 3324 assert((Lo->isIntegerTy() || Lo->isPointerTy()) 3325 && "Invalid/unknown lo type"); 3326 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 3327 } 3328 } 3329 3330 llvm::StructType *Result = llvm::StructType::get(Lo, Hi); 3331 3332 // Verify that the second element is at an 8-byte offset. 3333 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 3334 "Invalid x86-64 argument pair!"); 3335 return Result; 3336 } 3337 3338 ABIArgInfo X86_64ABIInfo:: 3339 classifyReturnType(QualType RetTy) const { 3340 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 3341 // classification algorithm. 3342 X86_64ABIInfo::Class Lo, Hi; 3343 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 3344 3345 // Check some invariants. 3346 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3347 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3348 3349 llvm::Type *ResType = nullptr; 3350 switch (Lo) { 3351 case NoClass: 3352 if (Hi == NoClass) 3353 return ABIArgInfo::getIgnore(); 3354 // If the low part is just padding, it takes no register, leave ResType 3355 // null. 3356 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3357 "Unknown missing lo part"); 3358 break; 3359 3360 case SSEUp: 3361 case X87Up: 3362 llvm_unreachable("Invalid classification for lo word."); 3363 3364 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 3365 // hidden argument. 3366 case Memory: 3367 return getIndirectReturnResult(RetTy); 3368 3369 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 3370 // available register of the sequence %rax, %rdx is used. 3371 case Integer: 3372 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3373 3374 // If we have a sign or zero extended integer, make sure to return Extend 3375 // so that the parameter gets the right LLVM IR attributes. 3376 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3377 // Treat an enum type as its underlying type. 3378 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3379 RetTy = EnumTy->getDecl()->getIntegerType(); 3380 3381 if (RetTy->isIntegralOrEnumerationType() && 3382 RetTy->isPromotableIntegerType()) 3383 return ABIArgInfo::getExtend(RetTy); 3384 } 3385 break; 3386 3387 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 3388 // available SSE register of the sequence %xmm0, %xmm1 is used. 3389 case SSE: 3390 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3391 break; 3392 3393 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 3394 // returned on the X87 stack in %st0 as 80-bit x87 number. 3395 case X87: 3396 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 3397 break; 3398 3399 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 3400 // part of the value is returned in %st0 and the imaginary part in 3401 // %st1. 3402 case ComplexX87: 3403 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 3404 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 3405 llvm::Type::getX86_FP80Ty(getVMContext())); 3406 break; 3407 } 3408 3409 llvm::Type *HighPart = nullptr; 3410 switch (Hi) { 3411 // Memory was handled previously and X87 should 3412 // never occur as a hi class. 3413 case Memory: 3414 case X87: 3415 llvm_unreachable("Invalid classification for hi word."); 3416 3417 case ComplexX87: // Previously handled. 3418 case NoClass: 3419 break; 3420 3421 case Integer: 3422 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3423 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3424 return ABIArgInfo::getDirect(HighPart, 8); 3425 break; 3426 case SSE: 3427 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3428 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3429 return ABIArgInfo::getDirect(HighPart, 8); 3430 break; 3431 3432 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 3433 // is passed in the next available eightbyte chunk if the last used 3434 // vector register. 3435 // 3436 // SSEUP should always be preceded by SSE, just widen. 3437 case SSEUp: 3438 assert(Lo == SSE && "Unexpected SSEUp classification."); 3439 ResType = GetByteVectorType(RetTy); 3440 break; 3441 3442 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 3443 // returned together with the previous X87 value in %st0. 3444 case X87Up: 3445 // If X87Up is preceded by X87, we don't need to do 3446 // anything. However, in some cases with unions it may not be 3447 // preceded by X87. In such situations we follow gcc and pass the 3448 // extra bits in an SSE reg. 3449 if (Lo != X87) { 3450 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3451 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3452 return ABIArgInfo::getDirect(HighPart, 8); 3453 } 3454 break; 3455 } 3456 3457 // If a high part was specified, merge it together with the low part. It is 3458 // known to pass in the high eightbyte of the result. We do this by forming a 3459 // first class struct aggregate with the high and low part: {low, high} 3460 if (HighPart) 3461 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3462 3463 return ABIArgInfo::getDirect(ResType); 3464 } 3465 3466 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 3467 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 3468 bool isNamedArg) 3469 const 3470 { 3471 Ty = useFirstFieldIfTransparentUnion(Ty); 3472 3473 X86_64ABIInfo::Class Lo, Hi; 3474 classify(Ty, 0, Lo, Hi, isNamedArg); 3475 3476 // Check some invariants. 3477 // FIXME: Enforce these by construction. 3478 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3479 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3480 3481 neededInt = 0; 3482 neededSSE = 0; 3483 llvm::Type *ResType = nullptr; 3484 switch (Lo) { 3485 case NoClass: 3486 if (Hi == NoClass) 3487 return ABIArgInfo::getIgnore(); 3488 // If the low part is just padding, it takes no register, leave ResType 3489 // null. 3490 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3491 "Unknown missing lo part"); 3492 break; 3493 3494 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 3495 // on the stack. 3496 case Memory: 3497 3498 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 3499 // COMPLEX_X87, it is passed in memory. 3500 case X87: 3501 case ComplexX87: 3502 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 3503 ++neededInt; 3504 return getIndirectResult(Ty, freeIntRegs); 3505 3506 case SSEUp: 3507 case X87Up: 3508 llvm_unreachable("Invalid classification for lo word."); 3509 3510 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 3511 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 3512 // and %r9 is used. 3513 case Integer: 3514 ++neededInt; 3515 3516 // Pick an 8-byte type based on the preferred type. 3517 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 3518 3519 // If we have a sign or zero extended integer, make sure to return Extend 3520 // so that the parameter gets the right LLVM IR attributes. 3521 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3522 // Treat an enum type as its underlying type. 3523 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3524 Ty = EnumTy->getDecl()->getIntegerType(); 3525 3526 if (Ty->isIntegralOrEnumerationType() && 3527 Ty->isPromotableIntegerType()) 3528 return ABIArgInfo::getExtend(Ty); 3529 } 3530 3531 break; 3532 3533 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 3534 // available SSE register is used, the registers are taken in the 3535 // order from %xmm0 to %xmm7. 3536 case SSE: { 3537 llvm::Type *IRType = CGT.ConvertType(Ty); 3538 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 3539 ++neededSSE; 3540 break; 3541 } 3542 } 3543 3544 llvm::Type *HighPart = nullptr; 3545 switch (Hi) { 3546 // Memory was handled previously, ComplexX87 and X87 should 3547 // never occur as hi classes, and X87Up must be preceded by X87, 3548 // which is passed in memory. 3549 case Memory: 3550 case X87: 3551 case ComplexX87: 3552 llvm_unreachable("Invalid classification for hi word."); 3553 3554 case NoClass: break; 3555 3556 case Integer: 3557 ++neededInt; 3558 // Pick an 8-byte type based on the preferred type. 3559 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3560 3561 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3562 return ABIArgInfo::getDirect(HighPart, 8); 3563 break; 3564 3565 // X87Up generally doesn't occur here (long double is passed in 3566 // memory), except in situations involving unions. 3567 case X87Up: 3568 case SSE: 3569 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3570 3571 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3572 return ABIArgInfo::getDirect(HighPart, 8); 3573 3574 ++neededSSE; 3575 break; 3576 3577 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 3578 // eightbyte is passed in the upper half of the last used SSE 3579 // register. This only happens when 128-bit vectors are passed. 3580 case SSEUp: 3581 assert(Lo == SSE && "Unexpected SSEUp classification"); 3582 ResType = GetByteVectorType(Ty); 3583 break; 3584 } 3585 3586 // If a high part was specified, merge it together with the low part. It is 3587 // known to pass in the high eightbyte of the result. We do this by forming a 3588 // first class struct aggregate with the high and low part: {low, high} 3589 if (HighPart) 3590 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3591 3592 return ABIArgInfo::getDirect(ResType); 3593 } 3594 3595 ABIArgInfo 3596 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 3597 unsigned &NeededSSE) const { 3598 auto RT = Ty->getAs<RecordType>(); 3599 assert(RT && "classifyRegCallStructType only valid with struct types"); 3600 3601 if (RT->getDecl()->hasFlexibleArrayMember()) 3602 return getIndirectReturnResult(Ty); 3603 3604 // Sum up bases 3605 if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 3606 if (CXXRD->isDynamicClass()) { 3607 NeededInt = NeededSSE = 0; 3608 return getIndirectReturnResult(Ty); 3609 } 3610 3611 for (const auto &I : CXXRD->bases()) 3612 if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE) 3613 .isIndirect()) { 3614 NeededInt = NeededSSE = 0; 3615 return getIndirectReturnResult(Ty); 3616 } 3617 } 3618 3619 // Sum up members 3620 for (const auto *FD : RT->getDecl()->fields()) { 3621 if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) { 3622 if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE) 3623 .isIndirect()) { 3624 NeededInt = NeededSSE = 0; 3625 return getIndirectReturnResult(Ty); 3626 } 3627 } else { 3628 unsigned LocalNeededInt, LocalNeededSSE; 3629 if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt, 3630 LocalNeededSSE, true) 3631 .isIndirect()) { 3632 NeededInt = NeededSSE = 0; 3633 return getIndirectReturnResult(Ty); 3634 } 3635 NeededInt += LocalNeededInt; 3636 NeededSSE += LocalNeededSSE; 3637 } 3638 } 3639 3640 return ABIArgInfo::getDirect(); 3641 } 3642 3643 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty, 3644 unsigned &NeededInt, 3645 unsigned &NeededSSE) const { 3646 3647 NeededInt = 0; 3648 NeededSSE = 0; 3649 3650 return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE); 3651 } 3652 3653 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3654 3655 const unsigned CallingConv = FI.getCallingConvention(); 3656 // It is possible to force Win64 calling convention on any x86_64 target by 3657 // using __attribute__((ms_abi)). In such case to correctly emit Win64 3658 // compatible code delegate this call to WinX86_64ABIInfo::computeInfo. 3659 if (CallingConv == llvm::CallingConv::Win64) { 3660 WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel); 3661 Win64ABIInfo.computeInfo(FI); 3662 return; 3663 } 3664 3665 bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall; 3666 3667 // Keep track of the number of assigned registers. 3668 unsigned FreeIntRegs = IsRegCall ? 11 : 6; 3669 unsigned FreeSSERegs = IsRegCall ? 16 : 8; 3670 unsigned NeededInt, NeededSSE; 3671 3672 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 3673 if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() && 3674 !FI.getReturnType()->getTypePtr()->isUnionType()) { 3675 FI.getReturnInfo() = 3676 classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE); 3677 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3678 FreeIntRegs -= NeededInt; 3679 FreeSSERegs -= NeededSSE; 3680 } else { 3681 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3682 } 3683 } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>()) { 3684 // Complex Long Double Type is passed in Memory when Regcall 3685 // calling convention is used. 3686 const ComplexType *CT = FI.getReturnType()->getAs<ComplexType>(); 3687 if (getContext().getCanonicalType(CT->getElementType()) == 3688 getContext().LongDoubleTy) 3689 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3690 } else 3691 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3692 } 3693 3694 // If the return value is indirect, then the hidden argument is consuming one 3695 // integer register. 3696 if (FI.getReturnInfo().isIndirect()) 3697 --FreeIntRegs; 3698 3699 // The chain argument effectively gives us another free register. 3700 if (FI.isChainCall()) 3701 ++FreeIntRegs; 3702 3703 unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 3704 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 3705 // get assigned (in left-to-right order) for passing as follows... 3706 unsigned ArgNo = 0; 3707 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3708 it != ie; ++it, ++ArgNo) { 3709 bool IsNamedArg = ArgNo < NumRequiredArgs; 3710 3711 if (IsRegCall && it->type->isStructureOrClassType()) 3712 it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE); 3713 else 3714 it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt, 3715 NeededSSE, IsNamedArg); 3716 3717 // AMD64-ABI 3.2.3p3: If there are no registers available for any 3718 // eightbyte of an argument, the whole argument is passed on the 3719 // stack. If registers have already been assigned for some 3720 // eightbytes of such an argument, the assignments get reverted. 3721 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3722 FreeIntRegs -= NeededInt; 3723 FreeSSERegs -= NeededSSE; 3724 } else { 3725 it->info = getIndirectResult(it->type, FreeIntRegs); 3726 } 3727 } 3728 } 3729 3730 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, 3731 Address VAListAddr, QualType Ty) { 3732 Address overflow_arg_area_p = 3733 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); 3734 llvm::Value *overflow_arg_area = 3735 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 3736 3737 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 3738 // byte boundary if alignment needed by type exceeds 8 byte boundary. 3739 // It isn't stated explicitly in the standard, but in practice we use 3740 // alignment greater than 16 where necessary. 3741 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 3742 if (Align > CharUnits::fromQuantity(8)) { 3743 overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, 3744 Align); 3745 } 3746 3747 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 3748 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3749 llvm::Value *Res = 3750 CGF.Builder.CreateBitCast(overflow_arg_area, 3751 llvm::PointerType::getUnqual(LTy)); 3752 3753 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 3754 // l->overflow_arg_area + sizeof(type). 3755 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 3756 // an 8 byte boundary. 3757 3758 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 3759 llvm::Value *Offset = 3760 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 3761 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 3762 "overflow_arg_area.next"); 3763 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 3764 3765 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 3766 return Address(Res, Align); 3767 } 3768 3769 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3770 QualType Ty) const { 3771 // Assume that va_list type is correct; should be pointer to LLVM type: 3772 // struct { 3773 // i32 gp_offset; 3774 // i32 fp_offset; 3775 // i8* overflow_arg_area; 3776 // i8* reg_save_area; 3777 // }; 3778 unsigned neededInt, neededSSE; 3779 3780 Ty = getContext().getCanonicalType(Ty); 3781 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 3782 /*isNamedArg*/false); 3783 3784 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 3785 // in the registers. If not go to step 7. 3786 if (!neededInt && !neededSSE) 3787 return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3788 3789 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 3790 // general purpose registers needed to pass type and num_fp to hold 3791 // the number of floating point registers needed. 3792 3793 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 3794 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 3795 // l->fp_offset > 304 - num_fp * 16 go to step 7. 3796 // 3797 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 3798 // register save space). 3799 3800 llvm::Value *InRegs = nullptr; 3801 Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); 3802 llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; 3803 if (neededInt) { 3804 gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); 3805 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 3806 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 3807 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 3808 } 3809 3810 if (neededSSE) { 3811 fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); 3812 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 3813 llvm::Value *FitsInFP = 3814 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 3815 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 3816 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 3817 } 3818 3819 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 3820 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 3821 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 3822 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 3823 3824 // Emit code to load the value if it was passed in registers. 3825 3826 CGF.EmitBlock(InRegBlock); 3827 3828 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 3829 // an offset of l->gp_offset and/or l->fp_offset. This may require 3830 // copying to a temporary location in case the parameter is passed 3831 // in different register classes or requires an alignment greater 3832 // than 8 for general purpose registers and 16 for XMM registers. 3833 // 3834 // FIXME: This really results in shameful code when we end up needing to 3835 // collect arguments from different places; often what should result in a 3836 // simple assembling of a structure from scattered addresses has many more 3837 // loads than necessary. Can we clean this up? 3838 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3839 llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( 3840 CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area"); 3841 3842 Address RegAddr = Address::invalid(); 3843 if (neededInt && neededSSE) { 3844 // FIXME: Cleanup. 3845 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 3846 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 3847 Address Tmp = CGF.CreateMemTemp(Ty); 3848 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3849 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 3850 llvm::Type *TyLo = ST->getElementType(0); 3851 llvm::Type *TyHi = ST->getElementType(1); 3852 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 3853 "Unexpected ABI info for mixed regs"); 3854 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 3855 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 3856 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset); 3857 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset); 3858 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 3859 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 3860 3861 // Copy the first element. 3862 // FIXME: Our choice of alignment here and below is probably pessimistic. 3863 llvm::Value *V = CGF.Builder.CreateAlignedLoad( 3864 TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo), 3865 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo))); 3866 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 3867 3868 // Copy the second element. 3869 V = CGF.Builder.CreateAlignedLoad( 3870 TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi), 3871 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi))); 3872 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 3873 3874 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3875 } else if (neededInt) { 3876 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset), 3877 CharUnits::fromQuantity(8)); 3878 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3879 3880 // Copy to a temporary if necessary to ensure the appropriate alignment. 3881 std::pair<CharUnits, CharUnits> SizeAlign = 3882 getContext().getTypeInfoInChars(Ty); 3883 uint64_t TySize = SizeAlign.first.getQuantity(); 3884 CharUnits TyAlign = SizeAlign.second; 3885 3886 // Copy into a temporary if the type is more aligned than the 3887 // register save area. 3888 if (TyAlign.getQuantity() > 8) { 3889 Address Tmp = CGF.CreateMemTemp(Ty); 3890 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); 3891 RegAddr = Tmp; 3892 } 3893 3894 } else if (neededSSE == 1) { 3895 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3896 CharUnits::fromQuantity(16)); 3897 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3898 } else { 3899 assert(neededSSE == 2 && "Invalid number of needed registers!"); 3900 // SSE registers are spaced 16 bytes apart in the register save 3901 // area, we need to collect the two eightbytes together. 3902 // The ABI isn't explicit about this, but it seems reasonable 3903 // to assume that the slots are 16-byte aligned, since the stack is 3904 // naturally 16-byte aligned and the prologue is expected to store 3905 // all the SSE registers to the RSA. 3906 Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3907 CharUnits::fromQuantity(16)); 3908 Address RegAddrHi = 3909 CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, 3910 CharUnits::fromQuantity(16)); 3911 llvm::Type *ST = AI.canHaveCoerceToType() 3912 ? AI.getCoerceToType() 3913 : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy); 3914 llvm::Value *V; 3915 Address Tmp = CGF.CreateMemTemp(Ty); 3916 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3917 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 3918 RegAddrLo, ST->getStructElementType(0))); 3919 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 3920 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 3921 RegAddrHi, ST->getStructElementType(1))); 3922 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 3923 3924 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3925 } 3926 3927 // AMD64-ABI 3.5.7p5: Step 5. Set: 3928 // l->gp_offset = l->gp_offset + num_gp * 8 3929 // l->fp_offset = l->fp_offset + num_fp * 16. 3930 if (neededInt) { 3931 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 3932 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 3933 gp_offset_p); 3934 } 3935 if (neededSSE) { 3936 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 3937 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 3938 fp_offset_p); 3939 } 3940 CGF.EmitBranch(ContBlock); 3941 3942 // Emit code to load the value if it was passed in memory. 3943 3944 CGF.EmitBlock(InMemBlock); 3945 Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3946 3947 // Return the appropriate result. 3948 3949 CGF.EmitBlock(ContBlock); 3950 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, 3951 "vaarg.addr"); 3952 return ResAddr; 3953 } 3954 3955 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 3956 QualType Ty) const { 3957 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 3958 CGF.getContext().getTypeInfoInChars(Ty), 3959 CharUnits::fromQuantity(8), 3960 /*allowHigherAlign*/ false); 3961 } 3962 3963 ABIArgInfo 3964 WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 3965 const ABIArgInfo ¤t) const { 3966 // Assumes vectorCall calling convention. 3967 const Type *Base = nullptr; 3968 uint64_t NumElts = 0; 3969 3970 if (!Ty->isBuiltinType() && !Ty->isVectorType() && 3971 isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) { 3972 FreeSSERegs -= NumElts; 3973 return getDirectX86Hva(); 3974 } 3975 return current; 3976 } 3977 3978 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 3979 bool IsReturnType, bool IsVectorCall, 3980 bool IsRegCall) const { 3981 3982 if (Ty->isVoidType()) 3983 return ABIArgInfo::getIgnore(); 3984 3985 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3986 Ty = EnumTy->getDecl()->getIntegerType(); 3987 3988 TypeInfo Info = getContext().getTypeInfo(Ty); 3989 uint64_t Width = Info.Width; 3990 CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); 3991 3992 const RecordType *RT = Ty->getAs<RecordType>(); 3993 if (RT) { 3994 if (!IsReturnType) { 3995 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 3996 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 3997 } 3998 3999 if (RT->getDecl()->hasFlexibleArrayMember()) 4000 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4001 4002 } 4003 4004 const Type *Base = nullptr; 4005 uint64_t NumElts = 0; 4006 // vectorcall adds the concept of a homogenous vector aggregate, similar to 4007 // other targets. 4008 if ((IsVectorCall || IsRegCall) && 4009 isHomogeneousAggregate(Ty, Base, NumElts)) { 4010 if (IsRegCall) { 4011 if (FreeSSERegs >= NumElts) { 4012 FreeSSERegs -= NumElts; 4013 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 4014 return ABIArgInfo::getDirect(); 4015 return ABIArgInfo::getExpand(); 4016 } 4017 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4018 } else if (IsVectorCall) { 4019 if (FreeSSERegs >= NumElts && 4020 (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) { 4021 FreeSSERegs -= NumElts; 4022 return ABIArgInfo::getDirect(); 4023 } else if (IsReturnType) { 4024 return ABIArgInfo::getExpand(); 4025 } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) { 4026 // HVAs are delayed and reclassified in the 2nd step. 4027 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4028 } 4029 } 4030 } 4031 4032 if (Ty->isMemberPointerType()) { 4033 // If the member pointer is represented by an LLVM int or ptr, pass it 4034 // directly. 4035 llvm::Type *LLTy = CGT.ConvertType(Ty); 4036 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 4037 return ABIArgInfo::getDirect(); 4038 } 4039 4040 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { 4041 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4042 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4043 if (Width > 64 || !llvm::isPowerOf2_64(Width)) 4044 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4045 4046 // Otherwise, coerce it to a small integer. 4047 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 4048 } 4049 4050 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4051 switch (BT->getKind()) { 4052 case BuiltinType::Bool: 4053 // Bool type is always extended to the ABI, other builtin types are not 4054 // extended. 4055 return ABIArgInfo::getExtend(Ty); 4056 4057 case BuiltinType::LongDouble: 4058 // Mingw64 GCC uses the old 80 bit extended precision floating point 4059 // unit. It passes them indirectly through memory. 4060 if (IsMingw64) { 4061 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 4062 if (LDF == &llvm::APFloat::x87DoubleExtended()) 4063 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4064 } 4065 break; 4066 4067 case BuiltinType::Int128: 4068 case BuiltinType::UInt128: 4069 // If it's a parameter type, the normal ABI rule is that arguments larger 4070 // than 8 bytes are passed indirectly. GCC follows it. We follow it too, 4071 // even though it isn't particularly efficient. 4072 if (!IsReturnType) 4073 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4074 4075 // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that. 4076 // Clang matches them for compatibility. 4077 return ABIArgInfo::getDirect( 4078 llvm::VectorType::get(llvm::Type::getInt64Ty(getVMContext()), 2)); 4079 4080 default: 4081 break; 4082 } 4083 } 4084 4085 return ABIArgInfo::getDirect(); 4086 } 4087 4088 void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, 4089 unsigned FreeSSERegs, 4090 bool IsVectorCall, 4091 bool IsRegCall) const { 4092 unsigned Count = 0; 4093 for (auto &I : FI.arguments()) { 4094 // Vectorcall in x64 only permits the first 6 arguments to be passed 4095 // as XMM/YMM registers. 4096 if (Count < VectorcallMaxParamNumAsReg) 4097 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 4098 else { 4099 // Since these cannot be passed in registers, pretend no registers 4100 // are left. 4101 unsigned ZeroSSERegsAvail = 0; 4102 I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false, 4103 IsVectorCall, IsRegCall); 4104 } 4105 ++Count; 4106 } 4107 4108 for (auto &I : FI.arguments()) { 4109 I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info); 4110 } 4111 } 4112 4113 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 4114 const unsigned CC = FI.getCallingConvention(); 4115 bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall; 4116 bool IsRegCall = CC == llvm::CallingConv::X86_RegCall; 4117 4118 // If __attribute__((sysv_abi)) is in use, use the SysV argument 4119 // classification rules. 4120 if (CC == llvm::CallingConv::X86_64_SysV) { 4121 X86_64ABIInfo SysVABIInfo(CGT, AVXLevel); 4122 SysVABIInfo.computeInfo(FI); 4123 return; 4124 } 4125 4126 unsigned FreeSSERegs = 0; 4127 if (IsVectorCall) { 4128 // We can use up to 4 SSE return registers with vectorcall. 4129 FreeSSERegs = 4; 4130 } else if (IsRegCall) { 4131 // RegCall gives us 16 SSE registers. 4132 FreeSSERegs = 16; 4133 } 4134 4135 if (!getCXXABI().classifyReturnType(FI)) 4136 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true, 4137 IsVectorCall, IsRegCall); 4138 4139 if (IsVectorCall) { 4140 // We can use up to 6 SSE register parameters with vectorcall. 4141 FreeSSERegs = 6; 4142 } else if (IsRegCall) { 4143 // RegCall gives us 16 SSE registers, we can reuse the return registers. 4144 FreeSSERegs = 16; 4145 } 4146 4147 if (IsVectorCall) { 4148 computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall); 4149 } else { 4150 for (auto &I : FI.arguments()) 4151 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 4152 } 4153 4154 } 4155 4156 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4157 QualType Ty) const { 4158 4159 bool IsIndirect = false; 4160 4161 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4162 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4163 if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) { 4164 uint64_t Width = getContext().getTypeSize(Ty); 4165 IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 4166 } 4167 4168 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 4169 CGF.getContext().getTypeInfoInChars(Ty), 4170 CharUnits::fromQuantity(8), 4171 /*allowHigherAlign*/ false); 4172 } 4173 4174 // PowerPC-32 4175 namespace { 4176 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. 4177 class PPC32_SVR4_ABIInfo : public DefaultABIInfo { 4178 bool IsSoftFloatABI; 4179 4180 CharUnits getParamTypeAlignment(QualType Ty) const; 4181 4182 public: 4183 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI) 4184 : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI) {} 4185 4186 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4187 QualType Ty) const override; 4188 }; 4189 4190 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { 4191 public: 4192 PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI) 4193 : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT, SoftFloatABI)) {} 4194 4195 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4196 // This is recovered from gcc output. 4197 return 1; // r1 is the dedicated stack pointer 4198 } 4199 4200 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4201 llvm::Value *Address) const override; 4202 }; 4203 } 4204 4205 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4206 // Complex types are passed just like their elements 4207 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4208 Ty = CTy->getElementType(); 4209 4210 if (Ty->isVectorType()) 4211 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 4212 : 4); 4213 4214 // For single-element float/vector structs, we consider the whole type 4215 // to have the same alignment requirements as its single element. 4216 const Type *AlignTy = nullptr; 4217 if (const Type *EltType = isSingleElementStruct(Ty, getContext())) { 4218 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4219 if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || 4220 (BT && BT->isFloatingPoint())) 4221 AlignTy = EltType; 4222 } 4223 4224 if (AlignTy) 4225 return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4); 4226 return CharUnits::fromQuantity(4); 4227 } 4228 4229 // TODO: this implementation is now likely redundant with 4230 // DefaultABIInfo::EmitVAArg. 4231 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList, 4232 QualType Ty) const { 4233 if (getTarget().getTriple().isOSDarwin()) { 4234 auto TI = getContext().getTypeInfoInChars(Ty); 4235 TI.second = getParamTypeAlignment(Ty); 4236 4237 CharUnits SlotSize = CharUnits::fromQuantity(4); 4238 return emitVoidPtrVAArg(CGF, VAList, Ty, 4239 classifyArgumentType(Ty).isIndirect(), TI, SlotSize, 4240 /*AllowHigherAlign=*/true); 4241 } 4242 4243 const unsigned OverflowLimit = 8; 4244 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4245 // TODO: Implement this. For now ignore. 4246 (void)CTy; 4247 return Address::invalid(); // FIXME? 4248 } 4249 4250 // struct __va_list_tag { 4251 // unsigned char gpr; 4252 // unsigned char fpr; 4253 // unsigned short reserved; 4254 // void *overflow_arg_area; 4255 // void *reg_save_area; 4256 // }; 4257 4258 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; 4259 bool isInt = 4260 Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType(); 4261 bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64; 4262 4263 // All aggregates are passed indirectly? That doesn't seem consistent 4264 // with the argument-lowering code. 4265 bool isIndirect = Ty->isAggregateType(); 4266 4267 CGBuilderTy &Builder = CGF.Builder; 4268 4269 // The calling convention either uses 1-2 GPRs or 1 FPR. 4270 Address NumRegsAddr = Address::invalid(); 4271 if (isInt || IsSoftFloatABI) { 4272 NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr"); 4273 } else { 4274 NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr"); 4275 } 4276 4277 llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs"); 4278 4279 // "Align" the register count when TY is i64. 4280 if (isI64 || (isF64 && IsSoftFloatABI)) { 4281 NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1)); 4282 NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U)); 4283 } 4284 4285 llvm::Value *CC = 4286 Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond"); 4287 4288 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); 4289 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); 4290 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 4291 4292 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); 4293 4294 llvm::Type *DirectTy = CGF.ConvertType(Ty); 4295 if (isIndirect) DirectTy = DirectTy->getPointerTo(0); 4296 4297 // Case 1: consume registers. 4298 Address RegAddr = Address::invalid(); 4299 { 4300 CGF.EmitBlock(UsingRegs); 4301 4302 Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4); 4303 RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr), 4304 CharUnits::fromQuantity(8)); 4305 assert(RegAddr.getElementType() == CGF.Int8Ty); 4306 4307 // Floating-point registers start after the general-purpose registers. 4308 if (!(isInt || IsSoftFloatABI)) { 4309 RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr, 4310 CharUnits::fromQuantity(32)); 4311 } 4312 4313 // Get the address of the saved value by scaling the number of 4314 // registers we've used by the number of 4315 CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8); 4316 llvm::Value *RegOffset = 4317 Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity())); 4318 RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty, 4319 RegAddr.getPointer(), RegOffset), 4320 RegAddr.getAlignment().alignmentOfArrayElement(RegSize)); 4321 RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy); 4322 4323 // Increase the used-register count. 4324 NumRegs = 4325 Builder.CreateAdd(NumRegs, 4326 Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1)); 4327 Builder.CreateStore(NumRegs, NumRegsAddr); 4328 4329 CGF.EmitBranch(Cont); 4330 } 4331 4332 // Case 2: consume space in the overflow area. 4333 Address MemAddr = Address::invalid(); 4334 { 4335 CGF.EmitBlock(UsingOverflow); 4336 4337 Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr); 4338 4339 // Everything in the overflow area is rounded up to a size of at least 4. 4340 CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4); 4341 4342 CharUnits Size; 4343 if (!isIndirect) { 4344 auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty); 4345 Size = TypeInfo.first.alignTo(OverflowAreaAlign); 4346 } else { 4347 Size = CGF.getPointerSize(); 4348 } 4349 4350 Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3); 4351 Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), 4352 OverflowAreaAlign); 4353 // Round up address of argument to alignment 4354 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 4355 if (Align > OverflowAreaAlign) { 4356 llvm::Value *Ptr = OverflowArea.getPointer(); 4357 OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align), 4358 Align); 4359 } 4360 4361 MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy); 4362 4363 // Increase the overflow area. 4364 OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size); 4365 Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr); 4366 CGF.EmitBranch(Cont); 4367 } 4368 4369 CGF.EmitBlock(Cont); 4370 4371 // Merge the cases with a phi. 4372 Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow, 4373 "vaarg.addr"); 4374 4375 // Load the pointer if the argument was passed indirectly. 4376 if (isIndirect) { 4377 Result = Address(Builder.CreateLoad(Result, "aggr"), 4378 getContext().getTypeAlignInChars(Ty)); 4379 } 4380 4381 return Result; 4382 } 4383 4384 bool 4385 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4386 llvm::Value *Address) const { 4387 // This is calculated from the LLVM and GCC tables and verified 4388 // against gcc output. AFAIK all ABIs use the same encoding. 4389 4390 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4391 4392 llvm::IntegerType *i8 = CGF.Int8Ty; 4393 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4394 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4395 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4396 4397 // 0-31: r0-31, the 4-byte general-purpose registers 4398 AssignToArrayRange(Builder, Address, Four8, 0, 31); 4399 4400 // 32-63: fp0-31, the 8-byte floating-point registers 4401 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4402 4403 // 64-76 are various 4-byte special-purpose registers: 4404 // 64: mq 4405 // 65: lr 4406 // 66: ctr 4407 // 67: ap 4408 // 68-75 cr0-7 4409 // 76: xer 4410 AssignToArrayRange(Builder, Address, Four8, 64, 76); 4411 4412 // 77-108: v0-31, the 16-byte vector registers 4413 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4414 4415 // 109: vrsave 4416 // 110: vscr 4417 // 111: spe_acc 4418 // 112: spefscr 4419 // 113: sfp 4420 AssignToArrayRange(Builder, Address, Four8, 109, 113); 4421 4422 return false; 4423 } 4424 4425 // PowerPC-64 4426 4427 namespace { 4428 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 4429 class PPC64_SVR4_ABIInfo : public SwiftABIInfo { 4430 public: 4431 enum ABIKind { 4432 ELFv1 = 0, 4433 ELFv2 4434 }; 4435 4436 private: 4437 static const unsigned GPRBits = 64; 4438 ABIKind Kind; 4439 bool HasQPX; 4440 bool IsSoftFloatABI; 4441 4442 // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and 4443 // will be passed in a QPX register. 4444 bool IsQPXVectorTy(const Type *Ty) const { 4445 if (!HasQPX) 4446 return false; 4447 4448 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4449 unsigned NumElements = VT->getNumElements(); 4450 if (NumElements == 1) 4451 return false; 4452 4453 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) { 4454 if (getContext().getTypeSize(Ty) <= 256) 4455 return true; 4456 } else if (VT->getElementType()-> 4457 isSpecificBuiltinType(BuiltinType::Float)) { 4458 if (getContext().getTypeSize(Ty) <= 128) 4459 return true; 4460 } 4461 } 4462 4463 return false; 4464 } 4465 4466 bool IsQPXVectorTy(QualType Ty) const { 4467 return IsQPXVectorTy(Ty.getTypePtr()); 4468 } 4469 4470 public: 4471 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX, 4472 bool SoftFloatABI) 4473 : SwiftABIInfo(CGT), Kind(Kind), HasQPX(HasQPX), 4474 IsSoftFloatABI(SoftFloatABI) {} 4475 4476 bool isPromotableTypeForABI(QualType Ty) const; 4477 CharUnits getParamTypeAlignment(QualType Ty) const; 4478 4479 ABIArgInfo classifyReturnType(QualType RetTy) const; 4480 ABIArgInfo classifyArgumentType(QualType Ty) const; 4481 4482 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4483 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4484 uint64_t Members) const override; 4485 4486 // TODO: We can add more logic to computeInfo to improve performance. 4487 // Example: For aggregate arguments that fit in a register, we could 4488 // use getDirectInReg (as is done below for structs containing a single 4489 // floating-point value) to avoid pushing them to memory on function 4490 // entry. This would require changing the logic in PPCISelLowering 4491 // when lowering the parameters in the caller and args in the callee. 4492 void computeInfo(CGFunctionInfo &FI) const override { 4493 if (!getCXXABI().classifyReturnType(FI)) 4494 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4495 for (auto &I : FI.arguments()) { 4496 // We rely on the default argument classification for the most part. 4497 // One exception: An aggregate containing a single floating-point 4498 // or vector item must be passed in a register if one is available. 4499 const Type *T = isSingleElementStruct(I.type, getContext()); 4500 if (T) { 4501 const BuiltinType *BT = T->getAs<BuiltinType>(); 4502 if (IsQPXVectorTy(T) || 4503 (T->isVectorType() && getContext().getTypeSize(T) == 128) || 4504 (BT && BT->isFloatingPoint())) { 4505 QualType QT(T, 0); 4506 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 4507 continue; 4508 } 4509 } 4510 I.info = classifyArgumentType(I.type); 4511 } 4512 } 4513 4514 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4515 QualType Ty) const override; 4516 4517 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 4518 bool asReturnValue) const override { 4519 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 4520 } 4521 4522 bool isSwiftErrorInRegister() const override { 4523 return false; 4524 } 4525 }; 4526 4527 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 4528 4529 public: 4530 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 4531 PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX, 4532 bool SoftFloatABI) 4533 : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX, 4534 SoftFloatABI)) {} 4535 4536 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4537 // This is recovered from gcc output. 4538 return 1; // r1 is the dedicated stack pointer 4539 } 4540 4541 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4542 llvm::Value *Address) const override; 4543 }; 4544 4545 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 4546 public: 4547 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 4548 4549 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4550 // This is recovered from gcc output. 4551 return 1; // r1 is the dedicated stack pointer 4552 } 4553 4554 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4555 llvm::Value *Address) const override; 4556 }; 4557 4558 } 4559 4560 // Return true if the ABI requires Ty to be passed sign- or zero- 4561 // extended to 64 bits. 4562 bool 4563 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 4564 // Treat an enum type as its underlying type. 4565 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4566 Ty = EnumTy->getDecl()->getIntegerType(); 4567 4568 // Promotable integer types are required to be promoted by the ABI. 4569 if (Ty->isPromotableIntegerType()) 4570 return true; 4571 4572 // In addition to the usual promotable integer types, we also need to 4573 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 4574 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4575 switch (BT->getKind()) { 4576 case BuiltinType::Int: 4577 case BuiltinType::UInt: 4578 return true; 4579 default: 4580 break; 4581 } 4582 4583 return false; 4584 } 4585 4586 /// isAlignedParamType - Determine whether a type requires 16-byte or 4587 /// higher alignment in the parameter area. Always returns at least 8. 4588 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4589 // Complex types are passed just like their elements. 4590 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4591 Ty = CTy->getElementType(); 4592 4593 // Only vector types of size 16 bytes need alignment (larger types are 4594 // passed via reference, smaller types are not aligned). 4595 if (IsQPXVectorTy(Ty)) { 4596 if (getContext().getTypeSize(Ty) > 128) 4597 return CharUnits::fromQuantity(32); 4598 4599 return CharUnits::fromQuantity(16); 4600 } else if (Ty->isVectorType()) { 4601 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8); 4602 } 4603 4604 // For single-element float/vector structs, we consider the whole type 4605 // to have the same alignment requirements as its single element. 4606 const Type *AlignAsType = nullptr; 4607 const Type *EltType = isSingleElementStruct(Ty, getContext()); 4608 if (EltType) { 4609 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4610 if (IsQPXVectorTy(EltType) || (EltType->isVectorType() && 4611 getContext().getTypeSize(EltType) == 128) || 4612 (BT && BT->isFloatingPoint())) 4613 AlignAsType = EltType; 4614 } 4615 4616 // Likewise for ELFv2 homogeneous aggregates. 4617 const Type *Base = nullptr; 4618 uint64_t Members = 0; 4619 if (!AlignAsType && Kind == ELFv2 && 4620 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 4621 AlignAsType = Base; 4622 4623 // With special case aggregates, only vector base types need alignment. 4624 if (AlignAsType && IsQPXVectorTy(AlignAsType)) { 4625 if (getContext().getTypeSize(AlignAsType) > 128) 4626 return CharUnits::fromQuantity(32); 4627 4628 return CharUnits::fromQuantity(16); 4629 } else if (AlignAsType) { 4630 return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8); 4631 } 4632 4633 // Otherwise, we only need alignment for any aggregate type that 4634 // has an alignment requirement of >= 16 bytes. 4635 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { 4636 if (HasQPX && getContext().getTypeAlign(Ty) >= 256) 4637 return CharUnits::fromQuantity(32); 4638 return CharUnits::fromQuantity(16); 4639 } 4640 4641 return CharUnits::fromQuantity(8); 4642 } 4643 4644 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 4645 /// aggregate. Base is set to the base element type, and Members is set 4646 /// to the number of base elements. 4647 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 4648 uint64_t &Members) const { 4649 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 4650 uint64_t NElements = AT->getSize().getZExtValue(); 4651 if (NElements == 0) 4652 return false; 4653 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 4654 return false; 4655 Members *= NElements; 4656 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 4657 const RecordDecl *RD = RT->getDecl(); 4658 if (RD->hasFlexibleArrayMember()) 4659 return false; 4660 4661 Members = 0; 4662 4663 // If this is a C++ record, check the bases first. 4664 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 4665 for (const auto &I : CXXRD->bases()) { 4666 // Ignore empty records. 4667 if (isEmptyRecord(getContext(), I.getType(), true)) 4668 continue; 4669 4670 uint64_t FldMembers; 4671 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) 4672 return false; 4673 4674 Members += FldMembers; 4675 } 4676 } 4677 4678 for (const auto *FD : RD->fields()) { 4679 // Ignore (non-zero arrays of) empty records. 4680 QualType FT = FD->getType(); 4681 while (const ConstantArrayType *AT = 4682 getContext().getAsConstantArrayType(FT)) { 4683 if (AT->getSize().getZExtValue() == 0) 4684 return false; 4685 FT = AT->getElementType(); 4686 } 4687 if (isEmptyRecord(getContext(), FT, true)) 4688 continue; 4689 4690 // For compatibility with GCC, ignore empty bitfields in C++ mode. 4691 if (getContext().getLangOpts().CPlusPlus && 4692 FD->isZeroLengthBitField(getContext())) 4693 continue; 4694 4695 uint64_t FldMembers; 4696 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 4697 return false; 4698 4699 Members = (RD->isUnion() ? 4700 std::max(Members, FldMembers) : Members + FldMembers); 4701 } 4702 4703 if (!Base) 4704 return false; 4705 4706 // Ensure there is no padding. 4707 if (getContext().getTypeSize(Base) * Members != 4708 getContext().getTypeSize(Ty)) 4709 return false; 4710 } else { 4711 Members = 1; 4712 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 4713 Members = 2; 4714 Ty = CT->getElementType(); 4715 } 4716 4717 // Most ABIs only support float, double, and some vector type widths. 4718 if (!isHomogeneousAggregateBaseType(Ty)) 4719 return false; 4720 4721 // The base type must be the same for all members. Types that 4722 // agree in both total size and mode (float vs. vector) are 4723 // treated as being equivalent here. 4724 const Type *TyPtr = Ty.getTypePtr(); 4725 if (!Base) { 4726 Base = TyPtr; 4727 // If it's a non-power-of-2 vector, its size is already a power-of-2, 4728 // so make sure to widen it explicitly. 4729 if (const VectorType *VT = Base->getAs<VectorType>()) { 4730 QualType EltTy = VT->getElementType(); 4731 unsigned NumElements = 4732 getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy); 4733 Base = getContext() 4734 .getVectorType(EltTy, NumElements, VT->getVectorKind()) 4735 .getTypePtr(); 4736 } 4737 } 4738 4739 if (Base->isVectorType() != TyPtr->isVectorType() || 4740 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 4741 return false; 4742 } 4743 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); 4744 } 4745 4746 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 4747 // Homogeneous aggregates for ELFv2 must have base types of float, 4748 // double, long double, or 128-bit vectors. 4749 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4750 if (BT->getKind() == BuiltinType::Float || 4751 BT->getKind() == BuiltinType::Double || 4752 BT->getKind() == BuiltinType::LongDouble || 4753 (getContext().getTargetInfo().hasFloat128Type() && 4754 (BT->getKind() == BuiltinType::Float128))) { 4755 if (IsSoftFloatABI) 4756 return false; 4757 return true; 4758 } 4759 } 4760 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4761 if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty)) 4762 return true; 4763 } 4764 return false; 4765 } 4766 4767 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( 4768 const Type *Base, uint64_t Members) const { 4769 // Vector and fp128 types require one register, other floating point types 4770 // require one or two registers depending on their size. 4771 uint32_t NumRegs = 4772 ((getContext().getTargetInfo().hasFloat128Type() && 4773 Base->isFloat128Type()) || 4774 Base->isVectorType()) ? 1 4775 : (getContext().getTypeSize(Base) + 63) / 64; 4776 4777 // Homogeneous Aggregates may occupy at most 8 registers. 4778 return Members * NumRegs <= 8; 4779 } 4780 4781 ABIArgInfo 4782 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 4783 Ty = useFirstFieldIfTransparentUnion(Ty); 4784 4785 if (Ty->isAnyComplexType()) 4786 return ABIArgInfo::getDirect(); 4787 4788 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 4789 // or via reference (larger than 16 bytes). 4790 if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) { 4791 uint64_t Size = getContext().getTypeSize(Ty); 4792 if (Size > 128) 4793 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4794 else if (Size < 128) { 4795 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 4796 return ABIArgInfo::getDirect(CoerceTy); 4797 } 4798 } 4799 4800 if (isAggregateTypeForABI(Ty)) { 4801 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 4802 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4803 4804 uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity(); 4805 uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 4806 4807 // ELFv2 homogeneous aggregates are passed as array types. 4808 const Type *Base = nullptr; 4809 uint64_t Members = 0; 4810 if (Kind == ELFv2 && 4811 isHomogeneousAggregate(Ty, Base, Members)) { 4812 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 4813 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 4814 return ABIArgInfo::getDirect(CoerceTy); 4815 } 4816 4817 // If an aggregate may end up fully in registers, we do not 4818 // use the ByVal method, but pass the aggregate as array. 4819 // This is usually beneficial since we avoid forcing the 4820 // back-end to store the argument to memory. 4821 uint64_t Bits = getContext().getTypeSize(Ty); 4822 if (Bits > 0 && Bits <= 8 * GPRBits) { 4823 llvm::Type *CoerceTy; 4824 4825 // Types up to 8 bytes are passed as integer type (which will be 4826 // properly aligned in the argument save area doubleword). 4827 if (Bits <= GPRBits) 4828 CoerceTy = 4829 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 4830 // Larger types are passed as arrays, with the base type selected 4831 // according to the required alignment in the save area. 4832 else { 4833 uint64_t RegBits = ABIAlign * 8; 4834 uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits; 4835 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 4836 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 4837 } 4838 4839 return ABIArgInfo::getDirect(CoerceTy); 4840 } 4841 4842 // All other aggregates are passed ByVal. 4843 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 4844 /*ByVal=*/true, 4845 /*Realign=*/TyAlign > ABIAlign); 4846 } 4847 4848 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 4849 : ABIArgInfo::getDirect()); 4850 } 4851 4852 ABIArgInfo 4853 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 4854 if (RetTy->isVoidType()) 4855 return ABIArgInfo::getIgnore(); 4856 4857 if (RetTy->isAnyComplexType()) 4858 return ABIArgInfo::getDirect(); 4859 4860 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 4861 // or via reference (larger than 16 bytes). 4862 if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) { 4863 uint64_t Size = getContext().getTypeSize(RetTy); 4864 if (Size > 128) 4865 return getNaturalAlignIndirect(RetTy); 4866 else if (Size < 128) { 4867 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 4868 return ABIArgInfo::getDirect(CoerceTy); 4869 } 4870 } 4871 4872 if (isAggregateTypeForABI(RetTy)) { 4873 // ELFv2 homogeneous aggregates are returned as array types. 4874 const Type *Base = nullptr; 4875 uint64_t Members = 0; 4876 if (Kind == ELFv2 && 4877 isHomogeneousAggregate(RetTy, Base, Members)) { 4878 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 4879 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 4880 return ABIArgInfo::getDirect(CoerceTy); 4881 } 4882 4883 // ELFv2 small aggregates are returned in up to two registers. 4884 uint64_t Bits = getContext().getTypeSize(RetTy); 4885 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 4886 if (Bits == 0) 4887 return ABIArgInfo::getIgnore(); 4888 4889 llvm::Type *CoerceTy; 4890 if (Bits > GPRBits) { 4891 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 4892 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy); 4893 } else 4894 CoerceTy = 4895 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 4896 return ABIArgInfo::getDirect(CoerceTy); 4897 } 4898 4899 // All other aggregates are returned indirectly. 4900 return getNaturalAlignIndirect(RetTy); 4901 } 4902 4903 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 4904 : ABIArgInfo::getDirect()); 4905 } 4906 4907 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 4908 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4909 QualType Ty) const { 4910 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 4911 TypeInfo.second = getParamTypeAlignment(Ty); 4912 4913 CharUnits SlotSize = CharUnits::fromQuantity(8); 4914 4915 // If we have a complex type and the base type is smaller than 8 bytes, 4916 // the ABI calls for the real and imaginary parts to be right-adjusted 4917 // in separate doublewords. However, Clang expects us to produce a 4918 // pointer to a structure with the two parts packed tightly. So generate 4919 // loads of the real and imaginary parts relative to the va_list pointer, 4920 // and store them to a temporary structure. 4921 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4922 CharUnits EltSize = TypeInfo.first / 2; 4923 if (EltSize < SlotSize) { 4924 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, 4925 SlotSize * 2, SlotSize, 4926 SlotSize, /*AllowHigher*/ true); 4927 4928 Address RealAddr = Addr; 4929 Address ImagAddr = RealAddr; 4930 if (CGF.CGM.getDataLayout().isBigEndian()) { 4931 RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, 4932 SlotSize - EltSize); 4933 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr, 4934 2 * SlotSize - EltSize); 4935 } else { 4936 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize); 4937 } 4938 4939 llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType()); 4940 RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy); 4941 ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy); 4942 llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal"); 4943 llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag"); 4944 4945 Address Temp = CGF.CreateMemTemp(Ty, "vacplx"); 4946 CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty), 4947 /*init*/ true); 4948 return Temp; 4949 } 4950 } 4951 4952 // Otherwise, just use the general rule. 4953 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 4954 TypeInfo, SlotSize, /*AllowHigher*/ true); 4955 } 4956 4957 static bool 4958 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4959 llvm::Value *Address) { 4960 // This is calculated from the LLVM and GCC tables and verified 4961 // against gcc output. AFAIK all ABIs use the same encoding. 4962 4963 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4964 4965 llvm::IntegerType *i8 = CGF.Int8Ty; 4966 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4967 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4968 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4969 4970 // 0-31: r0-31, the 8-byte general-purpose registers 4971 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 4972 4973 // 32-63: fp0-31, the 8-byte floating-point registers 4974 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4975 4976 // 64-67 are various 8-byte special-purpose registers: 4977 // 64: mq 4978 // 65: lr 4979 // 66: ctr 4980 // 67: ap 4981 AssignToArrayRange(Builder, Address, Eight8, 64, 67); 4982 4983 // 68-76 are various 4-byte special-purpose registers: 4984 // 68-75 cr0-7 4985 // 76: xer 4986 AssignToArrayRange(Builder, Address, Four8, 68, 76); 4987 4988 // 77-108: v0-31, the 16-byte vector registers 4989 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4990 4991 // 109: vrsave 4992 // 110: vscr 4993 // 111: spe_acc 4994 // 112: spefscr 4995 // 113: sfp 4996 // 114: tfhar 4997 // 115: tfiar 4998 // 116: texasr 4999 AssignToArrayRange(Builder, Address, Eight8, 109, 116); 5000 5001 return false; 5002 } 5003 5004 bool 5005 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 5006 CodeGen::CodeGenFunction &CGF, 5007 llvm::Value *Address) const { 5008 5009 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 5010 } 5011 5012 bool 5013 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5014 llvm::Value *Address) const { 5015 5016 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 5017 } 5018 5019 //===----------------------------------------------------------------------===// 5020 // AArch64 ABI Implementation 5021 //===----------------------------------------------------------------------===// 5022 5023 namespace { 5024 5025 class AArch64ABIInfo : public SwiftABIInfo { 5026 public: 5027 enum ABIKind { 5028 AAPCS = 0, 5029 DarwinPCS, 5030 Win64 5031 }; 5032 5033 private: 5034 ABIKind Kind; 5035 5036 public: 5037 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) 5038 : SwiftABIInfo(CGT), Kind(Kind) {} 5039 5040 private: 5041 ABIKind getABIKind() const { return Kind; } 5042 bool isDarwinPCS() const { return Kind == DarwinPCS; } 5043 5044 ABIArgInfo classifyReturnType(QualType RetTy, bool IsVariadic) const; 5045 ABIArgInfo classifyArgumentType(QualType RetTy) const; 5046 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 5047 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 5048 uint64_t Members) const override; 5049 5050 bool isIllegalVectorType(QualType Ty) const; 5051 5052 void computeInfo(CGFunctionInfo &FI) const override { 5053 if (!::classifyReturnType(getCXXABI(), FI, *this)) 5054 FI.getReturnInfo() = 5055 classifyReturnType(FI.getReturnType(), FI.isVariadic()); 5056 5057 for (auto &it : FI.arguments()) 5058 it.info = classifyArgumentType(it.type); 5059 } 5060 5061 Address EmitDarwinVAArg(Address VAListAddr, QualType Ty, 5062 CodeGenFunction &CGF) const; 5063 5064 Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 5065 CodeGenFunction &CGF) const; 5066 5067 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5068 QualType Ty) const override { 5069 return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty) 5070 : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 5071 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 5072 } 5073 5074 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 5075 QualType Ty) const override; 5076 5077 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 5078 bool asReturnValue) const override { 5079 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5080 } 5081 bool isSwiftErrorInRegister() const override { 5082 return true; 5083 } 5084 5085 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 5086 unsigned elts) const override; 5087 }; 5088 5089 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 5090 public: 5091 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 5092 : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {} 5093 5094 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 5095 return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue"; 5096 } 5097 5098 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5099 return 31; 5100 } 5101 5102 bool doesReturnSlotInterfereWithArgs() const override { return false; } 5103 5104 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5105 CodeGen::CodeGenModule &CGM) const override { 5106 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5107 if (!FD) 5108 return; 5109 5110 CodeGenOptions::SignReturnAddressScope Scope = CGM.getCodeGenOpts().getSignReturnAddress(); 5111 CodeGenOptions::SignReturnAddressKeyValue Key = CGM.getCodeGenOpts().getSignReturnAddressKey(); 5112 bool BranchTargetEnforcement = CGM.getCodeGenOpts().BranchTargetEnforcement; 5113 if (const auto *TA = FD->getAttr<TargetAttr>()) { 5114 ParsedTargetAttr Attr = TA->parse(); 5115 if (!Attr.BranchProtection.empty()) { 5116 TargetInfo::BranchProtectionInfo BPI; 5117 StringRef Error; 5118 (void)CGM.getTarget().validateBranchProtection(Attr.BranchProtection, 5119 BPI, Error); 5120 assert(Error.empty()); 5121 Scope = BPI.SignReturnAddr; 5122 Key = BPI.SignKey; 5123 BranchTargetEnforcement = BPI.BranchTargetEnforcement; 5124 } 5125 } 5126 5127 auto *Fn = cast<llvm::Function>(GV); 5128 if (Scope != CodeGenOptions::SignReturnAddressScope::None) { 5129 Fn->addFnAttr("sign-return-address", 5130 Scope == CodeGenOptions::SignReturnAddressScope::All 5131 ? "all" 5132 : "non-leaf"); 5133 5134 Fn->addFnAttr("sign-return-address-key", 5135 Key == CodeGenOptions::SignReturnAddressKeyValue::AKey 5136 ? "a_key" 5137 : "b_key"); 5138 } 5139 5140 if (BranchTargetEnforcement) 5141 Fn->addFnAttr("branch-target-enforcement"); 5142 } 5143 }; 5144 5145 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo { 5146 public: 5147 WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K) 5148 : AArch64TargetCodeGenInfo(CGT, K) {} 5149 5150 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5151 CodeGen::CodeGenModule &CGM) const override; 5152 5153 void getDependentLibraryOption(llvm::StringRef Lib, 5154 llvm::SmallString<24> &Opt) const override { 5155 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5156 } 5157 5158 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5159 llvm::SmallString<32> &Opt) const override { 5160 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5161 } 5162 }; 5163 5164 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes( 5165 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 5166 AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 5167 if (GV->isDeclaration()) 5168 return; 5169 addStackProbeTargetAttributes(D, GV, CGM); 5170 } 5171 } 5172 5173 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const { 5174 Ty = useFirstFieldIfTransparentUnion(Ty); 5175 5176 // Handle illegal vector types here. 5177 if (isIllegalVectorType(Ty)) { 5178 uint64_t Size = getContext().getTypeSize(Ty); 5179 // Android promotes <2 x i8> to i16, not i32 5180 if (isAndroid() && (Size <= 16)) { 5181 llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext()); 5182 return ABIArgInfo::getDirect(ResType); 5183 } 5184 if (Size <= 32) { 5185 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 5186 return ABIArgInfo::getDirect(ResType); 5187 } 5188 if (Size == 64) { 5189 llvm::Type *ResType = 5190 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 5191 return ABIArgInfo::getDirect(ResType); 5192 } 5193 if (Size == 128) { 5194 llvm::Type *ResType = 5195 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 5196 return ABIArgInfo::getDirect(ResType); 5197 } 5198 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5199 } 5200 5201 if (!isAggregateTypeForABI(Ty)) { 5202 // Treat an enum type as its underlying type. 5203 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5204 Ty = EnumTy->getDecl()->getIntegerType(); 5205 5206 return (Ty->isPromotableIntegerType() && isDarwinPCS() 5207 ? ABIArgInfo::getExtend(Ty) 5208 : ABIArgInfo::getDirect()); 5209 } 5210 5211 // Structures with either a non-trivial destructor or a non-trivial 5212 // copy constructor are always indirect. 5213 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5214 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 5215 CGCXXABI::RAA_DirectInMemory); 5216 } 5217 5218 // Empty records are always ignored on Darwin, but actually passed in C++ mode 5219 // elsewhere for GNU compatibility. 5220 uint64_t Size = getContext().getTypeSize(Ty); 5221 bool IsEmpty = isEmptyRecord(getContext(), Ty, true); 5222 if (IsEmpty || Size == 0) { 5223 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 5224 return ABIArgInfo::getIgnore(); 5225 5226 // GNU C mode. The only argument that gets ignored is an empty one with size 5227 // 0. 5228 if (IsEmpty && Size == 0) 5229 return ABIArgInfo::getIgnore(); 5230 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5231 } 5232 5233 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 5234 const Type *Base = nullptr; 5235 uint64_t Members = 0; 5236 if (isHomogeneousAggregate(Ty, Base, Members)) { 5237 return ABIArgInfo::getDirect( 5238 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); 5239 } 5240 5241 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 5242 if (Size <= 128) { 5243 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5244 // same size and alignment. 5245 if (getTarget().isRenderScriptTarget()) { 5246 return coerceToIntArray(Ty, getContext(), getVMContext()); 5247 } 5248 unsigned Alignment; 5249 if (Kind == AArch64ABIInfo::AAPCS) { 5250 Alignment = getContext().getTypeUnadjustedAlign(Ty); 5251 Alignment = Alignment < 128 ? 64 : 128; 5252 } else { 5253 Alignment = std::max(getContext().getTypeAlign(Ty), 5254 (unsigned)getTarget().getPointerWidth(0)); 5255 } 5256 Size = llvm::alignTo(Size, Alignment); 5257 5258 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5259 // For aggregates with 16-byte alignment, we use i128. 5260 llvm::Type *BaseTy = llvm::Type::getIntNTy(getVMContext(), Alignment); 5261 return ABIArgInfo::getDirect( 5262 Size == Alignment ? BaseTy 5263 : llvm::ArrayType::get(BaseTy, Size / Alignment)); 5264 } 5265 5266 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5267 } 5268 5269 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy, 5270 bool IsVariadic) const { 5271 if (RetTy->isVoidType()) 5272 return ABIArgInfo::getIgnore(); 5273 5274 // Large vector types should be returned via memory. 5275 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 5276 return getNaturalAlignIndirect(RetTy); 5277 5278 if (!isAggregateTypeForABI(RetTy)) { 5279 // Treat an enum type as its underlying type. 5280 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5281 RetTy = EnumTy->getDecl()->getIntegerType(); 5282 5283 return (RetTy->isPromotableIntegerType() && isDarwinPCS() 5284 ? ABIArgInfo::getExtend(RetTy) 5285 : ABIArgInfo::getDirect()); 5286 } 5287 5288 uint64_t Size = getContext().getTypeSize(RetTy); 5289 if (isEmptyRecord(getContext(), RetTy, true) || Size == 0) 5290 return ABIArgInfo::getIgnore(); 5291 5292 const Type *Base = nullptr; 5293 uint64_t Members = 0; 5294 if (isHomogeneousAggregate(RetTy, Base, Members) && 5295 !(getTarget().getTriple().getArch() == llvm::Triple::aarch64_32 && 5296 IsVariadic)) 5297 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 5298 return ABIArgInfo::getDirect(); 5299 5300 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 5301 if (Size <= 128) { 5302 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5303 // same size and alignment. 5304 if (getTarget().isRenderScriptTarget()) { 5305 return coerceToIntArray(RetTy, getContext(), getVMContext()); 5306 } 5307 unsigned Alignment = getContext().getTypeAlign(RetTy); 5308 Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes 5309 5310 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5311 // For aggregates with 16-byte alignment, we use i128. 5312 if (Alignment < 128 && Size == 128) { 5313 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 5314 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 5315 } 5316 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 5317 } 5318 5319 return getNaturalAlignIndirect(RetTy); 5320 } 5321 5322 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 5323 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 5324 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5325 // Check whether VT is legal. 5326 unsigned NumElements = VT->getNumElements(); 5327 uint64_t Size = getContext().getTypeSize(VT); 5328 // NumElements should be power of 2. 5329 if (!llvm::isPowerOf2_32(NumElements)) 5330 return true; 5331 5332 // arm64_32 has to be compatible with the ARM logic here, which allows huge 5333 // vectors for some reason. 5334 llvm::Triple Triple = getTarget().getTriple(); 5335 if (Triple.getArch() == llvm::Triple::aarch64_32 && 5336 Triple.isOSBinFormatMachO()) 5337 return Size <= 32; 5338 5339 return Size != 64 && (Size != 128 || NumElements == 1); 5340 } 5341 return false; 5342 } 5343 5344 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize, 5345 llvm::Type *eltTy, 5346 unsigned elts) const { 5347 if (!llvm::isPowerOf2_32(elts)) 5348 return false; 5349 if (totalSize.getQuantity() != 8 && 5350 (totalSize.getQuantity() != 16 || elts == 1)) 5351 return false; 5352 return true; 5353 } 5354 5355 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5356 // Homogeneous aggregates for AAPCS64 must have base types of a floating 5357 // point type or a short-vector type. This is the same as the 32-bit ABI, 5358 // but with the difference that any floating-point type is allowed, 5359 // including __fp16. 5360 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5361 if (BT->isFloatingPoint()) 5362 return true; 5363 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 5364 unsigned VecSize = getContext().getTypeSize(VT); 5365 if (VecSize == 64 || VecSize == 128) 5366 return true; 5367 } 5368 return false; 5369 } 5370 5371 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 5372 uint64_t Members) const { 5373 return Members <= 4; 5374 } 5375 5376 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, 5377 QualType Ty, 5378 CodeGenFunction &CGF) const { 5379 ABIArgInfo AI = classifyArgumentType(Ty); 5380 bool IsIndirect = AI.isIndirect(); 5381 5382 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5383 if (IsIndirect) 5384 BaseTy = llvm::PointerType::getUnqual(BaseTy); 5385 else if (AI.getCoerceToType()) 5386 BaseTy = AI.getCoerceToType(); 5387 5388 unsigned NumRegs = 1; 5389 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { 5390 BaseTy = ArrTy->getElementType(); 5391 NumRegs = ArrTy->getNumElements(); 5392 } 5393 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); 5394 5395 // The AArch64 va_list type and handling is specified in the Procedure Call 5396 // Standard, section B.4: 5397 // 5398 // struct { 5399 // void *__stack; 5400 // void *__gr_top; 5401 // void *__vr_top; 5402 // int __gr_offs; 5403 // int __vr_offs; 5404 // }; 5405 5406 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 5407 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 5408 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 5409 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 5410 5411 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 5412 CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty); 5413 5414 Address reg_offs_p = Address::invalid(); 5415 llvm::Value *reg_offs = nullptr; 5416 int reg_top_index; 5417 int RegSize = IsIndirect ? 8 : TySize.getQuantity(); 5418 if (!IsFPR) { 5419 // 3 is the field number of __gr_offs 5420 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p"); 5421 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 5422 reg_top_index = 1; // field number for __gr_top 5423 RegSize = llvm::alignTo(RegSize, 8); 5424 } else { 5425 // 4 is the field number of __vr_offs. 5426 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p"); 5427 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 5428 reg_top_index = 2; // field number for __vr_top 5429 RegSize = 16 * NumRegs; 5430 } 5431 5432 //======================================= 5433 // Find out where argument was passed 5434 //======================================= 5435 5436 // If reg_offs >= 0 we're already using the stack for this type of 5437 // argument. We don't want to keep updating reg_offs (in case it overflows, 5438 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 5439 // whatever they get). 5440 llvm::Value *UsingStack = nullptr; 5441 UsingStack = CGF.Builder.CreateICmpSGE( 5442 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 5443 5444 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 5445 5446 // Otherwise, at least some kind of argument could go in these registers, the 5447 // question is whether this particular type is too big. 5448 CGF.EmitBlock(MaybeRegBlock); 5449 5450 // Integer arguments may need to correct register alignment (for example a 5451 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 5452 // align __gr_offs to calculate the potential address. 5453 if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) { 5454 int Align = TyAlign.getQuantity(); 5455 5456 reg_offs = CGF.Builder.CreateAdd( 5457 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 5458 "align_regoffs"); 5459 reg_offs = CGF.Builder.CreateAnd( 5460 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 5461 "aligned_regoffs"); 5462 } 5463 5464 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 5465 // The fact that this is done unconditionally reflects the fact that 5466 // allocating an argument to the stack also uses up all the remaining 5467 // registers of the appropriate kind. 5468 llvm::Value *NewOffset = nullptr; 5469 NewOffset = CGF.Builder.CreateAdd( 5470 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 5471 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 5472 5473 // Now we're in a position to decide whether this argument really was in 5474 // registers or not. 5475 llvm::Value *InRegs = nullptr; 5476 InRegs = CGF.Builder.CreateICmpSLE( 5477 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 5478 5479 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 5480 5481 //======================================= 5482 // Argument was in registers 5483 //======================================= 5484 5485 // Now we emit the code for if the argument was originally passed in 5486 // registers. First start the appropriate block: 5487 CGF.EmitBlock(InRegBlock); 5488 5489 llvm::Value *reg_top = nullptr; 5490 Address reg_top_p = 5491 CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p"); 5492 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 5493 Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs), 5494 CharUnits::fromQuantity(IsFPR ? 16 : 8)); 5495 Address RegAddr = Address::invalid(); 5496 llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty); 5497 5498 if (IsIndirect) { 5499 // If it's been passed indirectly (actually a struct), whatever we find from 5500 // stored registers or on the stack will actually be a struct **. 5501 MemTy = llvm::PointerType::getUnqual(MemTy); 5502 } 5503 5504 const Type *Base = nullptr; 5505 uint64_t NumMembers = 0; 5506 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); 5507 if (IsHFA && NumMembers > 1) { 5508 // Homogeneous aggregates passed in registers will have their elements split 5509 // and stored 16-bytes apart regardless of size (they're notionally in qN, 5510 // qN+1, ...). We reload and store into a temporary local variable 5511 // contiguously. 5512 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 5513 auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0)); 5514 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 5515 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 5516 Address Tmp = CGF.CreateTempAlloca(HFATy, 5517 std::max(TyAlign, BaseTyInfo.second)); 5518 5519 // On big-endian platforms, the value will be right-aligned in its slot. 5520 int Offset = 0; 5521 if (CGF.CGM.getDataLayout().isBigEndian() && 5522 BaseTyInfo.first.getQuantity() < 16) 5523 Offset = 16 - BaseTyInfo.first.getQuantity(); 5524 5525 for (unsigned i = 0; i < NumMembers; ++i) { 5526 CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset); 5527 Address LoadAddr = 5528 CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset); 5529 LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy); 5530 5531 Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i); 5532 5533 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 5534 CGF.Builder.CreateStore(Elem, StoreAddr); 5535 } 5536 5537 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy); 5538 } else { 5539 // Otherwise the object is contiguous in memory. 5540 5541 // It might be right-aligned in its slot. 5542 CharUnits SlotSize = BaseAddr.getAlignment(); 5543 if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect && 5544 (IsHFA || !isAggregateTypeForABI(Ty)) && 5545 TySize < SlotSize) { 5546 CharUnits Offset = SlotSize - TySize; 5547 BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset); 5548 } 5549 5550 RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy); 5551 } 5552 5553 CGF.EmitBranch(ContBlock); 5554 5555 //======================================= 5556 // Argument was on the stack 5557 //======================================= 5558 CGF.EmitBlock(OnStackBlock); 5559 5560 Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p"); 5561 llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack"); 5562 5563 // Again, stack arguments may need realignment. In this case both integer and 5564 // floating-point ones might be affected. 5565 if (!IsIndirect && TyAlign.getQuantity() > 8) { 5566 int Align = TyAlign.getQuantity(); 5567 5568 OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty); 5569 5570 OnStackPtr = CGF.Builder.CreateAdd( 5571 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 5572 "align_stack"); 5573 OnStackPtr = CGF.Builder.CreateAnd( 5574 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 5575 "align_stack"); 5576 5577 OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy); 5578 } 5579 Address OnStackAddr(OnStackPtr, 5580 std::max(CharUnits::fromQuantity(8), TyAlign)); 5581 5582 // All stack slots are multiples of 8 bytes. 5583 CharUnits StackSlotSize = CharUnits::fromQuantity(8); 5584 CharUnits StackSize; 5585 if (IsIndirect) 5586 StackSize = StackSlotSize; 5587 else 5588 StackSize = TySize.alignTo(StackSlotSize); 5589 5590 llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize); 5591 llvm::Value *NewStack = 5592 CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack"); 5593 5594 // Write the new value of __stack for the next call to va_arg 5595 CGF.Builder.CreateStore(NewStack, stack_p); 5596 5597 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 5598 TySize < StackSlotSize) { 5599 CharUnits Offset = StackSlotSize - TySize; 5600 OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset); 5601 } 5602 5603 OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy); 5604 5605 CGF.EmitBranch(ContBlock); 5606 5607 //======================================= 5608 // Tidy up 5609 //======================================= 5610 CGF.EmitBlock(ContBlock); 5611 5612 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 5613 OnStackAddr, OnStackBlock, "vaargs.addr"); 5614 5615 if (IsIndirect) 5616 return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), 5617 TyAlign); 5618 5619 return ResAddr; 5620 } 5621 5622 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty, 5623 CodeGenFunction &CGF) const { 5624 // The backend's lowering doesn't support va_arg for aggregates or 5625 // illegal vector types. Lower VAArg here for these cases and use 5626 // the LLVM va_arg instruction for everything else. 5627 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 5628 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 5629 5630 uint64_t PointerSize = getTarget().getPointerWidth(0) / 8; 5631 CharUnits SlotSize = CharUnits::fromQuantity(PointerSize); 5632 5633 // Empty records are ignored for parameter passing purposes. 5634 if (isEmptyRecord(getContext(), Ty, true)) { 5635 Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 5636 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 5637 return Addr; 5638 } 5639 5640 // The size of the actual thing passed, which might end up just 5641 // being a pointer for indirect types. 5642 auto TyInfo = getContext().getTypeInfoInChars(Ty); 5643 5644 // Arguments bigger than 16 bytes which aren't homogeneous 5645 // aggregates should be passed indirectly. 5646 bool IsIndirect = false; 5647 if (TyInfo.first.getQuantity() > 16) { 5648 const Type *Base = nullptr; 5649 uint64_t Members = 0; 5650 IsIndirect = !isHomogeneousAggregate(Ty, Base, Members); 5651 } 5652 5653 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 5654 TyInfo, SlotSize, /*AllowHigherAlign*/ true); 5655 } 5656 5657 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 5658 QualType Ty) const { 5659 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 5660 CGF.getContext().getTypeInfoInChars(Ty), 5661 CharUnits::fromQuantity(8), 5662 /*allowHigherAlign*/ false); 5663 } 5664 5665 //===----------------------------------------------------------------------===// 5666 // ARM ABI Implementation 5667 //===----------------------------------------------------------------------===// 5668 5669 namespace { 5670 5671 class ARMABIInfo : public SwiftABIInfo { 5672 public: 5673 enum ABIKind { 5674 APCS = 0, 5675 AAPCS = 1, 5676 AAPCS_VFP = 2, 5677 AAPCS16_VFP = 3, 5678 }; 5679 5680 private: 5681 ABIKind Kind; 5682 5683 public: 5684 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) 5685 : SwiftABIInfo(CGT), Kind(_Kind) { 5686 setCCs(); 5687 } 5688 5689 bool isEABI() const { 5690 switch (getTarget().getTriple().getEnvironment()) { 5691 case llvm::Triple::Android: 5692 case llvm::Triple::EABI: 5693 case llvm::Triple::EABIHF: 5694 case llvm::Triple::GNUEABI: 5695 case llvm::Triple::GNUEABIHF: 5696 case llvm::Triple::MuslEABI: 5697 case llvm::Triple::MuslEABIHF: 5698 return true; 5699 default: 5700 return false; 5701 } 5702 } 5703 5704 bool isEABIHF() const { 5705 switch (getTarget().getTriple().getEnvironment()) { 5706 case llvm::Triple::EABIHF: 5707 case llvm::Triple::GNUEABIHF: 5708 case llvm::Triple::MuslEABIHF: 5709 return true; 5710 default: 5711 return false; 5712 } 5713 } 5714 5715 ABIKind getABIKind() const { return Kind; } 5716 5717 private: 5718 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic, 5719 unsigned functionCallConv) const; 5720 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic, 5721 unsigned functionCallConv) const; 5722 ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base, 5723 uint64_t Members) const; 5724 ABIArgInfo coerceIllegalVector(QualType Ty) const; 5725 bool isIllegalVectorType(QualType Ty) const; 5726 bool containsAnyFP16Vectors(QualType Ty) const; 5727 5728 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 5729 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 5730 uint64_t Members) const override; 5731 5732 bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const; 5733 5734 void computeInfo(CGFunctionInfo &FI) const override; 5735 5736 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5737 QualType Ty) const override; 5738 5739 llvm::CallingConv::ID getLLVMDefaultCC() const; 5740 llvm::CallingConv::ID getABIDefaultCC() const; 5741 void setCCs(); 5742 5743 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 5744 bool asReturnValue) const override { 5745 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5746 } 5747 bool isSwiftErrorInRegister() const override { 5748 return true; 5749 } 5750 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 5751 unsigned elts) const override; 5752 }; 5753 5754 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 5755 public: 5756 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 5757 :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {} 5758 5759 const ARMABIInfo &getABIInfo() const { 5760 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 5761 } 5762 5763 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5764 return 13; 5765 } 5766 5767 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 5768 return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue"; 5769 } 5770 5771 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5772 llvm::Value *Address) const override { 5773 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 5774 5775 // 0-15 are the 16 integer registers. 5776 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 5777 return false; 5778 } 5779 5780 unsigned getSizeOfUnwindException() const override { 5781 if (getABIInfo().isEABI()) return 88; 5782 return TargetCodeGenInfo::getSizeOfUnwindException(); 5783 } 5784 5785 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5786 CodeGen::CodeGenModule &CGM) const override { 5787 if (GV->isDeclaration()) 5788 return; 5789 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5790 if (!FD) 5791 return; 5792 5793 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 5794 if (!Attr) 5795 return; 5796 5797 const char *Kind; 5798 switch (Attr->getInterrupt()) { 5799 case ARMInterruptAttr::Generic: Kind = ""; break; 5800 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 5801 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 5802 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 5803 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 5804 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 5805 } 5806 5807 llvm::Function *Fn = cast<llvm::Function>(GV); 5808 5809 Fn->addFnAttr("interrupt", Kind); 5810 5811 ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind(); 5812 if (ABI == ARMABIInfo::APCS) 5813 return; 5814 5815 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 5816 // however this is not necessarily true on taking any interrupt. Instruct 5817 // the backend to perform a realignment as part of the function prologue. 5818 llvm::AttrBuilder B; 5819 B.addStackAlignmentAttr(8); 5820 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 5821 } 5822 }; 5823 5824 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { 5825 public: 5826 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 5827 : ARMTargetCodeGenInfo(CGT, K) {} 5828 5829 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5830 CodeGen::CodeGenModule &CGM) const override; 5831 5832 void getDependentLibraryOption(llvm::StringRef Lib, 5833 llvm::SmallString<24> &Opt) const override { 5834 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5835 } 5836 5837 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5838 llvm::SmallString<32> &Opt) const override { 5839 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5840 } 5841 }; 5842 5843 void WindowsARMTargetCodeGenInfo::setTargetAttributes( 5844 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 5845 ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 5846 if (GV->isDeclaration()) 5847 return; 5848 addStackProbeTargetAttributes(D, GV, CGM); 5849 } 5850 } 5851 5852 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 5853 if (!::classifyReturnType(getCXXABI(), FI, *this)) 5854 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(), 5855 FI.getCallingConvention()); 5856 5857 for (auto &I : FI.arguments()) 5858 I.info = classifyArgumentType(I.type, FI.isVariadic(), 5859 FI.getCallingConvention()); 5860 5861 5862 // Always honor user-specified calling convention. 5863 if (FI.getCallingConvention() != llvm::CallingConv::C) 5864 return; 5865 5866 llvm::CallingConv::ID cc = getRuntimeCC(); 5867 if (cc != llvm::CallingConv::C) 5868 FI.setEffectiveCallingConvention(cc); 5869 } 5870 5871 /// Return the default calling convention that LLVM will use. 5872 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 5873 // The default calling convention that LLVM will infer. 5874 if (isEABIHF() || getTarget().getTriple().isWatchABI()) 5875 return llvm::CallingConv::ARM_AAPCS_VFP; 5876 else if (isEABI()) 5877 return llvm::CallingConv::ARM_AAPCS; 5878 else 5879 return llvm::CallingConv::ARM_APCS; 5880 } 5881 5882 /// Return the calling convention that our ABI would like us to use 5883 /// as the C calling convention. 5884 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 5885 switch (getABIKind()) { 5886 case APCS: return llvm::CallingConv::ARM_APCS; 5887 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 5888 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 5889 case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 5890 } 5891 llvm_unreachable("bad ABI kind"); 5892 } 5893 5894 void ARMABIInfo::setCCs() { 5895 assert(getRuntimeCC() == llvm::CallingConv::C); 5896 5897 // Don't muddy up the IR with a ton of explicit annotations if 5898 // they'd just match what LLVM will infer from the triple. 5899 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 5900 if (abiCC != getLLVMDefaultCC()) 5901 RuntimeCC = abiCC; 5902 } 5903 5904 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const { 5905 uint64_t Size = getContext().getTypeSize(Ty); 5906 if (Size <= 32) { 5907 llvm::Type *ResType = 5908 llvm::Type::getInt32Ty(getVMContext()); 5909 return ABIArgInfo::getDirect(ResType); 5910 } 5911 if (Size == 64 || Size == 128) { 5912 llvm::Type *ResType = llvm::VectorType::get( 5913 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 5914 return ABIArgInfo::getDirect(ResType); 5915 } 5916 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5917 } 5918 5919 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty, 5920 const Type *Base, 5921 uint64_t Members) const { 5922 assert(Base && "Base class should be set for homogeneous aggregate"); 5923 // Base can be a floating-point or a vector. 5924 if (const VectorType *VT = Base->getAs<VectorType>()) { 5925 // FP16 vectors should be converted to integer vectors 5926 if (!getTarget().hasLegalHalfType() && containsAnyFP16Vectors(Ty)) { 5927 uint64_t Size = getContext().getTypeSize(VT); 5928 llvm::Type *NewVecTy = llvm::VectorType::get( 5929 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 5930 llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members); 5931 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 5932 } 5933 } 5934 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 5935 } 5936 5937 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic, 5938 unsigned functionCallConv) const { 5939 // 6.1.2.1 The following argument types are VFP CPRCs: 5940 // A single-precision floating-point type (including promoted 5941 // half-precision types); A double-precision floating-point type; 5942 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 5943 // with a Base Type of a single- or double-precision floating-point type, 5944 // 64-bit containerized vectors or 128-bit containerized vectors with one 5945 // to four Elements. 5946 // Variadic functions should always marshal to the base standard. 5947 bool IsAAPCS_VFP = 5948 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false); 5949 5950 Ty = useFirstFieldIfTransparentUnion(Ty); 5951 5952 // Handle illegal vector types here. 5953 if (isIllegalVectorType(Ty)) 5954 return coerceIllegalVector(Ty); 5955 5956 // _Float16 and __fp16 get passed as if it were an int or float, but with 5957 // the top 16 bits unspecified. This is not done for OpenCL as it handles the 5958 // half type natively, and does not need to interwork with AAPCS code. 5959 if ((Ty->isFloat16Type() || Ty->isHalfType()) && 5960 !getContext().getLangOpts().NativeHalfArgsAndReturns) { 5961 llvm::Type *ResType = IsAAPCS_VFP ? 5962 llvm::Type::getFloatTy(getVMContext()) : 5963 llvm::Type::getInt32Ty(getVMContext()); 5964 return ABIArgInfo::getDirect(ResType); 5965 } 5966 5967 if (!isAggregateTypeForABI(Ty)) { 5968 // Treat an enum type as its underlying type. 5969 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 5970 Ty = EnumTy->getDecl()->getIntegerType(); 5971 } 5972 5973 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 5974 : ABIArgInfo::getDirect()); 5975 } 5976 5977 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5978 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 5979 } 5980 5981 // Ignore empty records. 5982 if (isEmptyRecord(getContext(), Ty, true)) 5983 return ABIArgInfo::getIgnore(); 5984 5985 if (IsAAPCS_VFP) { 5986 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 5987 // into VFP registers. 5988 const Type *Base = nullptr; 5989 uint64_t Members = 0; 5990 if (isHomogeneousAggregate(Ty, Base, Members)) 5991 return classifyHomogeneousAggregate(Ty, Base, Members); 5992 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 5993 // WatchOS does have homogeneous aggregates. Note that we intentionally use 5994 // this convention even for a variadic function: the backend will use GPRs 5995 // if needed. 5996 const Type *Base = nullptr; 5997 uint64_t Members = 0; 5998 if (isHomogeneousAggregate(Ty, Base, Members)) { 5999 assert(Base && Members <= 4 && "unexpected homogeneous aggregate"); 6000 llvm::Type *Ty = 6001 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members); 6002 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 6003 } 6004 } 6005 6006 if (getABIKind() == ARMABIInfo::AAPCS16_VFP && 6007 getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) { 6008 // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're 6009 // bigger than 128-bits, they get placed in space allocated by the caller, 6010 // and a pointer is passed. 6011 return ABIArgInfo::getIndirect( 6012 CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false); 6013 } 6014 6015 // Support byval for ARM. 6016 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 6017 // most 8-byte. We realign the indirect argument if type alignment is bigger 6018 // than ABI alignment. 6019 uint64_t ABIAlign = 4; 6020 uint64_t TyAlign; 6021 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6022 getABIKind() == ARMABIInfo::AAPCS) { 6023 TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); 6024 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 6025 } else { 6026 TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 6027 } 6028 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 6029 assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval"); 6030 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 6031 /*ByVal=*/true, 6032 /*Realign=*/TyAlign > ABIAlign); 6033 } 6034 6035 // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of 6036 // same size and alignment. 6037 if (getTarget().isRenderScriptTarget()) { 6038 return coerceToIntArray(Ty, getContext(), getVMContext()); 6039 } 6040 6041 // Otherwise, pass by coercing to a structure of the appropriate size. 6042 llvm::Type* ElemTy; 6043 unsigned SizeRegs; 6044 // FIXME: Try to match the types of the arguments more accurately where 6045 // we can. 6046 if (TyAlign <= 4) { 6047 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 6048 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 6049 } else { 6050 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 6051 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 6052 } 6053 6054 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); 6055 } 6056 6057 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 6058 llvm::LLVMContext &VMContext) { 6059 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 6060 // is called integer-like if its size is less than or equal to one word, and 6061 // the offset of each of its addressable sub-fields is zero. 6062 6063 uint64_t Size = Context.getTypeSize(Ty); 6064 6065 // Check that the type fits in a word. 6066 if (Size > 32) 6067 return false; 6068 6069 // FIXME: Handle vector types! 6070 if (Ty->isVectorType()) 6071 return false; 6072 6073 // Float types are never treated as "integer like". 6074 if (Ty->isRealFloatingType()) 6075 return false; 6076 6077 // If this is a builtin or pointer type then it is ok. 6078 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 6079 return true; 6080 6081 // Small complex integer types are "integer like". 6082 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 6083 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 6084 6085 // Single element and zero sized arrays should be allowed, by the definition 6086 // above, but they are not. 6087 6088 // Otherwise, it must be a record type. 6089 const RecordType *RT = Ty->getAs<RecordType>(); 6090 if (!RT) return false; 6091 6092 // Ignore records with flexible arrays. 6093 const RecordDecl *RD = RT->getDecl(); 6094 if (RD->hasFlexibleArrayMember()) 6095 return false; 6096 6097 // Check that all sub-fields are at offset 0, and are themselves "integer 6098 // like". 6099 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 6100 6101 bool HadField = false; 6102 unsigned idx = 0; 6103 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 6104 i != e; ++i, ++idx) { 6105 const FieldDecl *FD = *i; 6106 6107 // Bit-fields are not addressable, we only need to verify they are "integer 6108 // like". We still have to disallow a subsequent non-bitfield, for example: 6109 // struct { int : 0; int x } 6110 // is non-integer like according to gcc. 6111 if (FD->isBitField()) { 6112 if (!RD->isUnion()) 6113 HadField = true; 6114 6115 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6116 return false; 6117 6118 continue; 6119 } 6120 6121 // Check if this field is at offset 0. 6122 if (Layout.getFieldOffset(idx) != 0) 6123 return false; 6124 6125 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6126 return false; 6127 6128 // Only allow at most one field in a structure. This doesn't match the 6129 // wording above, but follows gcc in situations with a field following an 6130 // empty structure. 6131 if (!RD->isUnion()) { 6132 if (HadField) 6133 return false; 6134 6135 HadField = true; 6136 } 6137 } 6138 6139 return true; 6140 } 6141 6142 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic, 6143 unsigned functionCallConv) const { 6144 6145 // Variadic functions should always marshal to the base standard. 6146 bool IsAAPCS_VFP = 6147 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true); 6148 6149 if (RetTy->isVoidType()) 6150 return ABIArgInfo::getIgnore(); 6151 6152 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 6153 // Large vector types should be returned via memory. 6154 if (getContext().getTypeSize(RetTy) > 128) 6155 return getNaturalAlignIndirect(RetTy); 6156 // FP16 vectors should be converted to integer vectors 6157 if (!getTarget().hasLegalHalfType() && 6158 (VT->getElementType()->isFloat16Type() || 6159 VT->getElementType()->isHalfType())) 6160 return coerceIllegalVector(RetTy); 6161 } 6162 6163 // _Float16 and __fp16 get returned as if it were an int or float, but with 6164 // the top 16 bits unspecified. This is not done for OpenCL as it handles the 6165 // half type natively, and does not need to interwork with AAPCS code. 6166 if ((RetTy->isFloat16Type() || RetTy->isHalfType()) && 6167 !getContext().getLangOpts().NativeHalfArgsAndReturns) { 6168 llvm::Type *ResType = IsAAPCS_VFP ? 6169 llvm::Type::getFloatTy(getVMContext()) : 6170 llvm::Type::getInt32Ty(getVMContext()); 6171 return ABIArgInfo::getDirect(ResType); 6172 } 6173 6174 if (!isAggregateTypeForABI(RetTy)) { 6175 // Treat an enum type as its underlying type. 6176 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6177 RetTy = EnumTy->getDecl()->getIntegerType(); 6178 6179 return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 6180 : ABIArgInfo::getDirect(); 6181 } 6182 6183 // Are we following APCS? 6184 if (getABIKind() == APCS) { 6185 if (isEmptyRecord(getContext(), RetTy, false)) 6186 return ABIArgInfo::getIgnore(); 6187 6188 // Complex types are all returned as packed integers. 6189 // 6190 // FIXME: Consider using 2 x vector types if the back end handles them 6191 // correctly. 6192 if (RetTy->isAnyComplexType()) 6193 return ABIArgInfo::getDirect(llvm::IntegerType::get( 6194 getVMContext(), getContext().getTypeSize(RetTy))); 6195 6196 // Integer like structures are returned in r0. 6197 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 6198 // Return in the smallest viable integer type. 6199 uint64_t Size = getContext().getTypeSize(RetTy); 6200 if (Size <= 8) 6201 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6202 if (Size <= 16) 6203 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6204 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6205 } 6206 6207 // Otherwise return in memory. 6208 return getNaturalAlignIndirect(RetTy); 6209 } 6210 6211 // Otherwise this is an AAPCS variant. 6212 6213 if (isEmptyRecord(getContext(), RetTy, true)) 6214 return ABIArgInfo::getIgnore(); 6215 6216 // Check for homogeneous aggregates with AAPCS-VFP. 6217 if (IsAAPCS_VFP) { 6218 const Type *Base = nullptr; 6219 uint64_t Members = 0; 6220 if (isHomogeneousAggregate(RetTy, Base, Members)) 6221 return classifyHomogeneousAggregate(RetTy, Base, Members); 6222 } 6223 6224 // Aggregates <= 4 bytes are returned in r0; other aggregates 6225 // are returned indirectly. 6226 uint64_t Size = getContext().getTypeSize(RetTy); 6227 if (Size <= 32) { 6228 // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of 6229 // same size and alignment. 6230 if (getTarget().isRenderScriptTarget()) { 6231 return coerceToIntArray(RetTy, getContext(), getVMContext()); 6232 } 6233 if (getDataLayout().isBigEndian()) 6234 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 6235 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6236 6237 // Return in the smallest viable integer type. 6238 if (Size <= 8) 6239 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6240 if (Size <= 16) 6241 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6242 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6243 } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) { 6244 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext()); 6245 llvm::Type *CoerceTy = 6246 llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32); 6247 return ABIArgInfo::getDirect(CoerceTy); 6248 } 6249 6250 return getNaturalAlignIndirect(RetTy); 6251 } 6252 6253 /// isIllegalVector - check whether Ty is an illegal vector type. 6254 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 6255 if (const VectorType *VT = Ty->getAs<VectorType> ()) { 6256 // On targets that don't support FP16, FP16 is expanded into float, and we 6257 // don't want the ABI to depend on whether or not FP16 is supported in 6258 // hardware. Thus return false to coerce FP16 vectors into integer vectors. 6259 if (!getTarget().hasLegalHalfType() && 6260 (VT->getElementType()->isFloat16Type() || 6261 VT->getElementType()->isHalfType())) 6262 return true; 6263 if (isAndroid()) { 6264 // Android shipped using Clang 3.1, which supported a slightly different 6265 // vector ABI. The primary differences were that 3-element vector types 6266 // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path 6267 // accepts that legacy behavior for Android only. 6268 // Check whether VT is legal. 6269 unsigned NumElements = VT->getNumElements(); 6270 // NumElements should be power of 2 or equal to 3. 6271 if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3) 6272 return true; 6273 } else { 6274 // Check whether VT is legal. 6275 unsigned NumElements = VT->getNumElements(); 6276 uint64_t Size = getContext().getTypeSize(VT); 6277 // NumElements should be power of 2. 6278 if (!llvm::isPowerOf2_32(NumElements)) 6279 return true; 6280 // Size should be greater than 32 bits. 6281 return Size <= 32; 6282 } 6283 } 6284 return false; 6285 } 6286 6287 /// Return true if a type contains any 16-bit floating point vectors 6288 bool ARMABIInfo::containsAnyFP16Vectors(QualType Ty) const { 6289 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 6290 uint64_t NElements = AT->getSize().getZExtValue(); 6291 if (NElements == 0) 6292 return false; 6293 return containsAnyFP16Vectors(AT->getElementType()); 6294 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 6295 const RecordDecl *RD = RT->getDecl(); 6296 6297 // If this is a C++ record, check the bases first. 6298 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6299 if (llvm::any_of(CXXRD->bases(), [this](const CXXBaseSpecifier &B) { 6300 return containsAnyFP16Vectors(B.getType()); 6301 })) 6302 return true; 6303 6304 if (llvm::any_of(RD->fields(), [this](FieldDecl *FD) { 6305 return FD && containsAnyFP16Vectors(FD->getType()); 6306 })) 6307 return true; 6308 6309 return false; 6310 } else { 6311 if (const VectorType *VT = Ty->getAs<VectorType>()) 6312 return (VT->getElementType()->isFloat16Type() || 6313 VT->getElementType()->isHalfType()); 6314 return false; 6315 } 6316 } 6317 6318 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 6319 llvm::Type *eltTy, 6320 unsigned numElts) const { 6321 if (!llvm::isPowerOf2_32(numElts)) 6322 return false; 6323 unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy); 6324 if (size > 64) 6325 return false; 6326 if (vectorSize.getQuantity() != 8 && 6327 (vectorSize.getQuantity() != 16 || numElts == 1)) 6328 return false; 6329 return true; 6330 } 6331 6332 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 6333 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 6334 // double, or 64-bit or 128-bit vectors. 6335 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 6336 if (BT->getKind() == BuiltinType::Float || 6337 BT->getKind() == BuiltinType::Double || 6338 BT->getKind() == BuiltinType::LongDouble) 6339 return true; 6340 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 6341 unsigned VecSize = getContext().getTypeSize(VT); 6342 if (VecSize == 64 || VecSize == 128) 6343 return true; 6344 } 6345 return false; 6346 } 6347 6348 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 6349 uint64_t Members) const { 6350 return Members <= 4; 6351 } 6352 6353 bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention, 6354 bool acceptHalf) const { 6355 // Give precedence to user-specified calling conventions. 6356 if (callConvention != llvm::CallingConv::C) 6357 return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP); 6358 else 6359 return (getABIKind() == AAPCS_VFP) || 6360 (acceptHalf && (getABIKind() == AAPCS16_VFP)); 6361 } 6362 6363 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6364 QualType Ty) const { 6365 CharUnits SlotSize = CharUnits::fromQuantity(4); 6366 6367 // Empty records are ignored for parameter passing purposes. 6368 if (isEmptyRecord(getContext(), Ty, true)) { 6369 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 6370 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 6371 return Addr; 6372 } 6373 6374 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 6375 CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty); 6376 6377 // Use indirect if size of the illegal vector is bigger than 16 bytes. 6378 bool IsIndirect = false; 6379 const Type *Base = nullptr; 6380 uint64_t Members = 0; 6381 if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) { 6382 IsIndirect = true; 6383 6384 // ARMv7k passes structs bigger than 16 bytes indirectly, in space 6385 // allocated by the caller. 6386 } else if (TySize > CharUnits::fromQuantity(16) && 6387 getABIKind() == ARMABIInfo::AAPCS16_VFP && 6388 !isHomogeneousAggregate(Ty, Base, Members)) { 6389 IsIndirect = true; 6390 6391 // Otherwise, bound the type's ABI alignment. 6392 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 6393 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 6394 // Our callers should be prepared to handle an under-aligned address. 6395 } else if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6396 getABIKind() == ARMABIInfo::AAPCS) { 6397 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6398 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8)); 6399 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6400 // ARMv7k allows type alignment up to 16 bytes. 6401 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6402 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16)); 6403 } else { 6404 TyAlignForABI = CharUnits::fromQuantity(4); 6405 } 6406 6407 std::pair<CharUnits, CharUnits> TyInfo = { TySize, TyAlignForABI }; 6408 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo, 6409 SlotSize, /*AllowHigherAlign*/ true); 6410 } 6411 6412 //===----------------------------------------------------------------------===// 6413 // NVPTX ABI Implementation 6414 //===----------------------------------------------------------------------===// 6415 6416 namespace { 6417 6418 class NVPTXTargetCodeGenInfo; 6419 6420 class NVPTXABIInfo : public ABIInfo { 6421 NVPTXTargetCodeGenInfo &CGInfo; 6422 6423 public: 6424 NVPTXABIInfo(CodeGenTypes &CGT, NVPTXTargetCodeGenInfo &Info) 6425 : ABIInfo(CGT), CGInfo(Info) {} 6426 6427 ABIArgInfo classifyReturnType(QualType RetTy) const; 6428 ABIArgInfo classifyArgumentType(QualType Ty) const; 6429 6430 void computeInfo(CGFunctionInfo &FI) const override; 6431 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6432 QualType Ty) const override; 6433 }; 6434 6435 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 6436 public: 6437 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 6438 : TargetCodeGenInfo(new NVPTXABIInfo(CGT, *this)) {} 6439 6440 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6441 CodeGen::CodeGenModule &M) const override; 6442 bool shouldEmitStaticExternCAliases() const override; 6443 6444 llvm::Type *getCUDADeviceBuiltinSurfaceDeviceType() const override { 6445 // On the device side, surface reference is represented as an object handle 6446 // in 64-bit integer. 6447 return llvm::Type::getInt64Ty(getABIInfo().getVMContext()); 6448 } 6449 6450 llvm::Type *getCUDADeviceBuiltinTextureDeviceType() const override { 6451 // On the device side, texture reference is represented as an object handle 6452 // in 64-bit integer. 6453 return llvm::Type::getInt64Ty(getABIInfo().getVMContext()); 6454 } 6455 6456 bool emitCUDADeviceBuiltinSurfaceDeviceCopy(CodeGenFunction &CGF, LValue Dst, 6457 LValue Src) const override { 6458 emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src); 6459 return true; 6460 } 6461 6462 bool emitCUDADeviceBuiltinTextureDeviceCopy(CodeGenFunction &CGF, LValue Dst, 6463 LValue Src) const override { 6464 emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src); 6465 return true; 6466 } 6467 6468 private: 6469 // Adds a NamedMDNode with GV, Name, and Operand as operands, and adds the 6470 // resulting MDNode to the nvvm.annotations MDNode. 6471 static void addNVVMMetadata(llvm::GlobalValue *GV, StringRef Name, 6472 int Operand); 6473 6474 static void emitBuiltinSurfTexDeviceCopy(CodeGenFunction &CGF, LValue Dst, 6475 LValue Src) { 6476 llvm::Value *Handle = nullptr; 6477 llvm::Constant *C = 6478 llvm::dyn_cast<llvm::Constant>(Src.getAddress(CGF).getPointer()); 6479 // Lookup `addrspacecast` through the constant pointer if any. 6480 if (auto *ASC = llvm::dyn_cast_or_null<llvm::AddrSpaceCastOperator>(C)) 6481 C = llvm::cast<llvm::Constant>(ASC->getPointerOperand()); 6482 if (auto *GV = llvm::dyn_cast_or_null<llvm::GlobalVariable>(C)) { 6483 // Load the handle from the specific global variable using 6484 // `nvvm.texsurf.handle.internal` intrinsic. 6485 Handle = CGF.EmitRuntimeCall( 6486 CGF.CGM.getIntrinsic(llvm::Intrinsic::nvvm_texsurf_handle_internal, 6487 {GV->getType()}), 6488 {GV}, "texsurf_handle"); 6489 } else 6490 Handle = CGF.EmitLoadOfScalar(Src, SourceLocation()); 6491 CGF.EmitStoreOfScalar(Handle, Dst); 6492 } 6493 }; 6494 6495 /// Checks if the type is unsupported directly by the current target. 6496 static bool isUnsupportedType(ASTContext &Context, QualType T) { 6497 if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type()) 6498 return true; 6499 if (!Context.getTargetInfo().hasFloat128Type() && 6500 (T->isFloat128Type() || 6501 (T->isRealFloatingType() && Context.getTypeSize(T) == 128))) 6502 return true; 6503 if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() && 6504 Context.getTypeSize(T) > 64) 6505 return true; 6506 if (const auto *AT = T->getAsArrayTypeUnsafe()) 6507 return isUnsupportedType(Context, AT->getElementType()); 6508 const auto *RT = T->getAs<RecordType>(); 6509 if (!RT) 6510 return false; 6511 const RecordDecl *RD = RT->getDecl(); 6512 6513 // If this is a C++ record, check the bases first. 6514 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6515 for (const CXXBaseSpecifier &I : CXXRD->bases()) 6516 if (isUnsupportedType(Context, I.getType())) 6517 return true; 6518 6519 for (const FieldDecl *I : RD->fields()) 6520 if (isUnsupportedType(Context, I->getType())) 6521 return true; 6522 return false; 6523 } 6524 6525 /// Coerce the given type into an array with maximum allowed size of elements. 6526 static ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, ASTContext &Context, 6527 llvm::LLVMContext &LLVMContext, 6528 unsigned MaxSize) { 6529 // Alignment and Size are measured in bits. 6530 const uint64_t Size = Context.getTypeSize(Ty); 6531 const uint64_t Alignment = Context.getTypeAlign(Ty); 6532 const unsigned Div = std::min<unsigned>(MaxSize, Alignment); 6533 llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Div); 6534 const uint64_t NumElements = (Size + Div - 1) / Div; 6535 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 6536 } 6537 6538 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 6539 if (RetTy->isVoidType()) 6540 return ABIArgInfo::getIgnore(); 6541 6542 if (getContext().getLangOpts().OpenMP && 6543 getContext().getLangOpts().OpenMPIsDevice && 6544 isUnsupportedType(getContext(), RetTy)) 6545 return coerceToIntArrayWithLimit(RetTy, getContext(), getVMContext(), 64); 6546 6547 // note: this is different from default ABI 6548 if (!RetTy->isScalarType()) 6549 return ABIArgInfo::getDirect(); 6550 6551 // Treat an enum type as its underlying type. 6552 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6553 RetTy = EnumTy->getDecl()->getIntegerType(); 6554 6555 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 6556 : ABIArgInfo::getDirect()); 6557 } 6558 6559 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 6560 // Treat an enum type as its underlying type. 6561 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6562 Ty = EnumTy->getDecl()->getIntegerType(); 6563 6564 // Return aggregates type as indirect by value 6565 if (isAggregateTypeForABI(Ty)) { 6566 // Under CUDA device compilation, tex/surf builtin types are replaced with 6567 // object types and passed directly. 6568 if (getContext().getLangOpts().CUDAIsDevice) { 6569 if (Ty->isCUDADeviceBuiltinSurfaceType()) 6570 return ABIArgInfo::getDirect( 6571 CGInfo.getCUDADeviceBuiltinSurfaceDeviceType()); 6572 if (Ty->isCUDADeviceBuiltinTextureType()) 6573 return ABIArgInfo::getDirect( 6574 CGInfo.getCUDADeviceBuiltinTextureDeviceType()); 6575 } 6576 return getNaturalAlignIndirect(Ty, /* byval */ true); 6577 } 6578 6579 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 6580 : ABIArgInfo::getDirect()); 6581 } 6582 6583 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 6584 if (!getCXXABI().classifyReturnType(FI)) 6585 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6586 for (auto &I : FI.arguments()) 6587 I.info = classifyArgumentType(I.type); 6588 6589 // Always honor user-specified calling convention. 6590 if (FI.getCallingConvention() != llvm::CallingConv::C) 6591 return; 6592 6593 FI.setEffectiveCallingConvention(getRuntimeCC()); 6594 } 6595 6596 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6597 QualType Ty) const { 6598 llvm_unreachable("NVPTX does not support varargs"); 6599 } 6600 6601 void NVPTXTargetCodeGenInfo::setTargetAttributes( 6602 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 6603 if (GV->isDeclaration()) 6604 return; 6605 const VarDecl *VD = dyn_cast_or_null<VarDecl>(D); 6606 if (VD) { 6607 if (M.getLangOpts().CUDA) { 6608 if (VD->getType()->isCUDADeviceBuiltinSurfaceType()) 6609 addNVVMMetadata(GV, "surface", 1); 6610 else if (VD->getType()->isCUDADeviceBuiltinTextureType()) 6611 addNVVMMetadata(GV, "texture", 1); 6612 return; 6613 } 6614 } 6615 6616 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6617 if (!FD) return; 6618 6619 llvm::Function *F = cast<llvm::Function>(GV); 6620 6621 // Perform special handling in OpenCL mode 6622 if (M.getLangOpts().OpenCL) { 6623 // Use OpenCL function attributes to check for kernel functions 6624 // By default, all functions are device functions 6625 if (FD->hasAttr<OpenCLKernelAttr>()) { 6626 // OpenCL __kernel functions get kernel metadata 6627 // Create !{<func-ref>, metadata !"kernel", i32 1} node 6628 addNVVMMetadata(F, "kernel", 1); 6629 // And kernel functions are not subject to inlining 6630 F->addFnAttr(llvm::Attribute::NoInline); 6631 } 6632 } 6633 6634 // Perform special handling in CUDA mode. 6635 if (M.getLangOpts().CUDA) { 6636 // CUDA __global__ functions get a kernel metadata entry. Since 6637 // __global__ functions cannot be called from the device, we do not 6638 // need to set the noinline attribute. 6639 if (FD->hasAttr<CUDAGlobalAttr>()) { 6640 // Create !{<func-ref>, metadata !"kernel", i32 1} node 6641 addNVVMMetadata(F, "kernel", 1); 6642 } 6643 if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) { 6644 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 6645 llvm::APSInt MaxThreads(32); 6646 MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); 6647 if (MaxThreads > 0) 6648 addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); 6649 6650 // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was 6651 // not specified in __launch_bounds__ or if the user specified a 0 value, 6652 // we don't have to add a PTX directive. 6653 if (Attr->getMinBlocks()) { 6654 llvm::APSInt MinBlocks(32); 6655 MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); 6656 if (MinBlocks > 0) 6657 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 6658 addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); 6659 } 6660 } 6661 } 6662 } 6663 6664 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::GlobalValue *GV, 6665 StringRef Name, int Operand) { 6666 llvm::Module *M = GV->getParent(); 6667 llvm::LLVMContext &Ctx = M->getContext(); 6668 6669 // Get "nvvm.annotations" metadata node 6670 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 6671 6672 llvm::Metadata *MDVals[] = { 6673 llvm::ConstantAsMetadata::get(GV), llvm::MDString::get(Ctx, Name), 6674 llvm::ConstantAsMetadata::get( 6675 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; 6676 // Append metadata to nvvm.annotations 6677 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 6678 } 6679 6680 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 6681 return false; 6682 } 6683 } 6684 6685 //===----------------------------------------------------------------------===// 6686 // SystemZ ABI Implementation 6687 //===----------------------------------------------------------------------===// 6688 6689 namespace { 6690 6691 class SystemZABIInfo : public SwiftABIInfo { 6692 bool HasVector; 6693 bool IsSoftFloatABI; 6694 6695 public: 6696 SystemZABIInfo(CodeGenTypes &CGT, bool HV, bool SF) 6697 : SwiftABIInfo(CGT), HasVector(HV), IsSoftFloatABI(SF) {} 6698 6699 bool isPromotableIntegerType(QualType Ty) const; 6700 bool isCompoundType(QualType Ty) const; 6701 bool isVectorArgumentType(QualType Ty) const; 6702 bool isFPArgumentType(QualType Ty) const; 6703 QualType GetSingleElementType(QualType Ty) const; 6704 6705 ABIArgInfo classifyReturnType(QualType RetTy) const; 6706 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 6707 6708 void computeInfo(CGFunctionInfo &FI) const override { 6709 if (!getCXXABI().classifyReturnType(FI)) 6710 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6711 for (auto &I : FI.arguments()) 6712 I.info = classifyArgumentType(I.type); 6713 } 6714 6715 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6716 QualType Ty) const override; 6717 6718 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 6719 bool asReturnValue) const override { 6720 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 6721 } 6722 bool isSwiftErrorInRegister() const override { 6723 return false; 6724 } 6725 }; 6726 6727 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 6728 public: 6729 SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector, bool SoftFloatABI) 6730 : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector, SoftFloatABI)) {} 6731 }; 6732 6733 } 6734 6735 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const { 6736 // Treat an enum type as its underlying type. 6737 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6738 Ty = EnumTy->getDecl()->getIntegerType(); 6739 6740 // Promotable integer types are required to be promoted by the ABI. 6741 if (Ty->isPromotableIntegerType()) 6742 return true; 6743 6744 // 32-bit values must also be promoted. 6745 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 6746 switch (BT->getKind()) { 6747 case BuiltinType::Int: 6748 case BuiltinType::UInt: 6749 return true; 6750 default: 6751 return false; 6752 } 6753 return false; 6754 } 6755 6756 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 6757 return (Ty->isAnyComplexType() || 6758 Ty->isVectorType() || 6759 isAggregateTypeForABI(Ty)); 6760 } 6761 6762 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { 6763 return (HasVector && 6764 Ty->isVectorType() && 6765 getContext().getTypeSize(Ty) <= 128); 6766 } 6767 6768 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 6769 if (IsSoftFloatABI) 6770 return false; 6771 6772 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 6773 switch (BT->getKind()) { 6774 case BuiltinType::Float: 6775 case BuiltinType::Double: 6776 return true; 6777 default: 6778 return false; 6779 } 6780 6781 return false; 6782 } 6783 6784 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { 6785 if (const RecordType *RT = Ty->getAsStructureType()) { 6786 const RecordDecl *RD = RT->getDecl(); 6787 QualType Found; 6788 6789 // If this is a C++ record, check the bases first. 6790 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6791 for (const auto &I : CXXRD->bases()) { 6792 QualType Base = I.getType(); 6793 6794 // Empty bases don't affect things either way. 6795 if (isEmptyRecord(getContext(), Base, true)) 6796 continue; 6797 6798 if (!Found.isNull()) 6799 return Ty; 6800 Found = GetSingleElementType(Base); 6801 } 6802 6803 // Check the fields. 6804 for (const auto *FD : RD->fields()) { 6805 // For compatibility with GCC, ignore empty bitfields in C++ mode. 6806 // Unlike isSingleElementStruct(), empty structure and array fields 6807 // do count. So do anonymous bitfields that aren't zero-sized. 6808 if (getContext().getLangOpts().CPlusPlus && 6809 FD->isZeroLengthBitField(getContext())) 6810 continue; 6811 6812 // Unlike isSingleElementStruct(), arrays do not count. 6813 // Nested structures still do though. 6814 if (!Found.isNull()) 6815 return Ty; 6816 Found = GetSingleElementType(FD->getType()); 6817 } 6818 6819 // Unlike isSingleElementStruct(), trailing padding is allowed. 6820 // An 8-byte aligned struct s { float f; } is passed as a double. 6821 if (!Found.isNull()) 6822 return Found; 6823 } 6824 6825 return Ty; 6826 } 6827 6828 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6829 QualType Ty) const { 6830 // Assume that va_list type is correct; should be pointer to LLVM type: 6831 // struct { 6832 // i64 __gpr; 6833 // i64 __fpr; 6834 // i8 *__overflow_arg_area; 6835 // i8 *__reg_save_area; 6836 // }; 6837 6838 // Every non-vector argument occupies 8 bytes and is passed by preference 6839 // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are 6840 // always passed on the stack. 6841 Ty = getContext().getCanonicalType(Ty); 6842 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6843 llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); 6844 llvm::Type *DirectTy = ArgTy; 6845 ABIArgInfo AI = classifyArgumentType(Ty); 6846 bool IsIndirect = AI.isIndirect(); 6847 bool InFPRs = false; 6848 bool IsVector = false; 6849 CharUnits UnpaddedSize; 6850 CharUnits DirectAlign; 6851 if (IsIndirect) { 6852 DirectTy = llvm::PointerType::getUnqual(DirectTy); 6853 UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8); 6854 } else { 6855 if (AI.getCoerceToType()) 6856 ArgTy = AI.getCoerceToType(); 6857 InFPRs = (!IsSoftFloatABI && (ArgTy->isFloatTy() || ArgTy->isDoubleTy())); 6858 IsVector = ArgTy->isVectorTy(); 6859 UnpaddedSize = TyInfo.first; 6860 DirectAlign = TyInfo.second; 6861 } 6862 CharUnits PaddedSize = CharUnits::fromQuantity(8); 6863 if (IsVector && UnpaddedSize > PaddedSize) 6864 PaddedSize = CharUnits::fromQuantity(16); 6865 assert((UnpaddedSize <= PaddedSize) && "Invalid argument size."); 6866 6867 CharUnits Padding = (PaddedSize - UnpaddedSize); 6868 6869 llvm::Type *IndexTy = CGF.Int64Ty; 6870 llvm::Value *PaddedSizeV = 6871 llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity()); 6872 6873 if (IsVector) { 6874 // Work out the address of a vector argument on the stack. 6875 // Vector arguments are always passed in the high bits of a 6876 // single (8 byte) or double (16 byte) stack slot. 6877 Address OverflowArgAreaPtr = 6878 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 6879 Address OverflowArgArea = 6880 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 6881 TyInfo.second); 6882 Address MemAddr = 6883 CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr"); 6884 6885 // Update overflow_arg_area_ptr pointer 6886 llvm::Value *NewOverflowArgArea = 6887 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 6888 "overflow_arg_area"); 6889 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 6890 6891 return MemAddr; 6892 } 6893 6894 assert(PaddedSize.getQuantity() == 8); 6895 6896 unsigned MaxRegs, RegCountField, RegSaveIndex; 6897 CharUnits RegPadding; 6898 if (InFPRs) { 6899 MaxRegs = 4; // Maximum of 4 FPR arguments 6900 RegCountField = 1; // __fpr 6901 RegSaveIndex = 16; // save offset for f0 6902 RegPadding = CharUnits(); // floats are passed in the high bits of an FPR 6903 } else { 6904 MaxRegs = 5; // Maximum of 5 GPR arguments 6905 RegCountField = 0; // __gpr 6906 RegSaveIndex = 2; // save offset for r2 6907 RegPadding = Padding; // values are passed in the low bits of a GPR 6908 } 6909 6910 Address RegCountPtr = 6911 CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr"); 6912 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 6913 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 6914 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 6915 "fits_in_regs"); 6916 6917 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 6918 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 6919 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 6920 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 6921 6922 // Emit code to load the value if it was passed in registers. 6923 CGF.EmitBlock(InRegBlock); 6924 6925 // Work out the address of an argument register. 6926 llvm::Value *ScaledRegCount = 6927 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 6928 llvm::Value *RegBase = 6929 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity() 6930 + RegPadding.getQuantity()); 6931 llvm::Value *RegOffset = 6932 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 6933 Address RegSaveAreaPtr = 6934 CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr"); 6935 llvm::Value *RegSaveArea = 6936 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 6937 Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset, 6938 "raw_reg_addr"), 6939 PaddedSize); 6940 Address RegAddr = 6941 CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr"); 6942 6943 // Update the register count 6944 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 6945 llvm::Value *NewRegCount = 6946 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 6947 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 6948 CGF.EmitBranch(ContBlock); 6949 6950 // Emit code to load the value if it was passed in memory. 6951 CGF.EmitBlock(InMemBlock); 6952 6953 // Work out the address of a stack argument. 6954 Address OverflowArgAreaPtr = 6955 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 6956 Address OverflowArgArea = 6957 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 6958 PaddedSize); 6959 Address RawMemAddr = 6960 CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr"); 6961 Address MemAddr = 6962 CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr"); 6963 6964 // Update overflow_arg_area_ptr pointer 6965 llvm::Value *NewOverflowArgArea = 6966 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 6967 "overflow_arg_area"); 6968 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 6969 CGF.EmitBranch(ContBlock); 6970 6971 // Return the appropriate result. 6972 CGF.EmitBlock(ContBlock); 6973 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 6974 MemAddr, InMemBlock, "va_arg.addr"); 6975 6976 if (IsIndirect) 6977 ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), 6978 TyInfo.second); 6979 6980 return ResAddr; 6981 } 6982 6983 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 6984 if (RetTy->isVoidType()) 6985 return ABIArgInfo::getIgnore(); 6986 if (isVectorArgumentType(RetTy)) 6987 return ABIArgInfo::getDirect(); 6988 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 6989 return getNaturalAlignIndirect(RetTy); 6990 return (isPromotableIntegerType(RetTy) ? ABIArgInfo::getExtend(RetTy) 6991 : ABIArgInfo::getDirect()); 6992 } 6993 6994 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 6995 // Handle the generic C++ ABI. 6996 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 6997 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6998 6999 // Integers and enums are extended to full register width. 7000 if (isPromotableIntegerType(Ty)) 7001 return ABIArgInfo::getExtend(Ty); 7002 7003 // Handle vector types and vector-like structure types. Note that 7004 // as opposed to float-like structure types, we do not allow any 7005 // padding for vector-like structures, so verify the sizes match. 7006 uint64_t Size = getContext().getTypeSize(Ty); 7007 QualType SingleElementTy = GetSingleElementType(Ty); 7008 if (isVectorArgumentType(SingleElementTy) && 7009 getContext().getTypeSize(SingleElementTy) == Size) 7010 return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); 7011 7012 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 7013 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 7014 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7015 7016 // Handle small structures. 7017 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7018 // Structures with flexible arrays have variable length, so really 7019 // fail the size test above. 7020 const RecordDecl *RD = RT->getDecl(); 7021 if (RD->hasFlexibleArrayMember()) 7022 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7023 7024 // The structure is passed as an unextended integer, a float, or a double. 7025 llvm::Type *PassTy; 7026 if (isFPArgumentType(SingleElementTy)) { 7027 assert(Size == 32 || Size == 64); 7028 if (Size == 32) 7029 PassTy = llvm::Type::getFloatTy(getVMContext()); 7030 else 7031 PassTy = llvm::Type::getDoubleTy(getVMContext()); 7032 } else 7033 PassTy = llvm::IntegerType::get(getVMContext(), Size); 7034 return ABIArgInfo::getDirect(PassTy); 7035 } 7036 7037 // Non-structure compounds are passed indirectly. 7038 if (isCompoundType(Ty)) 7039 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7040 7041 return ABIArgInfo::getDirect(nullptr); 7042 } 7043 7044 //===----------------------------------------------------------------------===// 7045 // MSP430 ABI Implementation 7046 //===----------------------------------------------------------------------===// 7047 7048 namespace { 7049 7050 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 7051 public: 7052 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 7053 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 7054 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7055 CodeGen::CodeGenModule &M) const override; 7056 }; 7057 7058 } 7059 7060 void MSP430TargetCodeGenInfo::setTargetAttributes( 7061 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7062 if (GV->isDeclaration()) 7063 return; 7064 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 7065 const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>(); 7066 if (!InterruptAttr) 7067 return; 7068 7069 // Handle 'interrupt' attribute: 7070 llvm::Function *F = cast<llvm::Function>(GV); 7071 7072 // Step 1: Set ISR calling convention. 7073 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 7074 7075 // Step 2: Add attributes goodness. 7076 F->addFnAttr(llvm::Attribute::NoInline); 7077 F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber())); 7078 } 7079 } 7080 7081 //===----------------------------------------------------------------------===// 7082 // MIPS ABI Implementation. This works for both little-endian and 7083 // big-endian variants. 7084 //===----------------------------------------------------------------------===// 7085 7086 namespace { 7087 class MipsABIInfo : public ABIInfo { 7088 bool IsO32; 7089 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 7090 void CoerceToIntArgs(uint64_t TySize, 7091 SmallVectorImpl<llvm::Type *> &ArgList) const; 7092 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 7093 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 7094 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 7095 public: 7096 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 7097 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 7098 StackAlignInBytes(IsO32 ? 8 : 16) {} 7099 7100 ABIArgInfo classifyReturnType(QualType RetTy) const; 7101 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 7102 void computeInfo(CGFunctionInfo &FI) const override; 7103 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7104 QualType Ty) const override; 7105 ABIArgInfo extendType(QualType Ty) const; 7106 }; 7107 7108 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 7109 unsigned SizeOfUnwindException; 7110 public: 7111 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 7112 : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)), 7113 SizeOfUnwindException(IsO32 ? 24 : 32) {} 7114 7115 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 7116 return 29; 7117 } 7118 7119 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7120 CodeGen::CodeGenModule &CGM) const override { 7121 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7122 if (!FD) return; 7123 llvm::Function *Fn = cast<llvm::Function>(GV); 7124 7125 if (FD->hasAttr<MipsLongCallAttr>()) 7126 Fn->addFnAttr("long-call"); 7127 else if (FD->hasAttr<MipsShortCallAttr>()) 7128 Fn->addFnAttr("short-call"); 7129 7130 // Other attributes do not have a meaning for declarations. 7131 if (GV->isDeclaration()) 7132 return; 7133 7134 if (FD->hasAttr<Mips16Attr>()) { 7135 Fn->addFnAttr("mips16"); 7136 } 7137 else if (FD->hasAttr<NoMips16Attr>()) { 7138 Fn->addFnAttr("nomips16"); 7139 } 7140 7141 if (FD->hasAttr<MicroMipsAttr>()) 7142 Fn->addFnAttr("micromips"); 7143 else if (FD->hasAttr<NoMicroMipsAttr>()) 7144 Fn->addFnAttr("nomicromips"); 7145 7146 const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>(); 7147 if (!Attr) 7148 return; 7149 7150 const char *Kind; 7151 switch (Attr->getInterrupt()) { 7152 case MipsInterruptAttr::eic: Kind = "eic"; break; 7153 case MipsInterruptAttr::sw0: Kind = "sw0"; break; 7154 case MipsInterruptAttr::sw1: Kind = "sw1"; break; 7155 case MipsInterruptAttr::hw0: Kind = "hw0"; break; 7156 case MipsInterruptAttr::hw1: Kind = "hw1"; break; 7157 case MipsInterruptAttr::hw2: Kind = "hw2"; break; 7158 case MipsInterruptAttr::hw3: Kind = "hw3"; break; 7159 case MipsInterruptAttr::hw4: Kind = "hw4"; break; 7160 case MipsInterruptAttr::hw5: Kind = "hw5"; break; 7161 } 7162 7163 Fn->addFnAttr("interrupt", Kind); 7164 7165 } 7166 7167 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7168 llvm::Value *Address) const override; 7169 7170 unsigned getSizeOfUnwindException() const override { 7171 return SizeOfUnwindException; 7172 } 7173 }; 7174 } 7175 7176 void MipsABIInfo::CoerceToIntArgs( 7177 uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const { 7178 llvm::IntegerType *IntTy = 7179 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 7180 7181 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 7182 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 7183 ArgList.push_back(IntTy); 7184 7185 // If necessary, add one more integer type to ArgList. 7186 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 7187 7188 if (R) 7189 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 7190 } 7191 7192 // In N32/64, an aligned double precision floating point field is passed in 7193 // a register. 7194 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 7195 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 7196 7197 if (IsO32) { 7198 CoerceToIntArgs(TySize, ArgList); 7199 return llvm::StructType::get(getVMContext(), ArgList); 7200 } 7201 7202 if (Ty->isComplexType()) 7203 return CGT.ConvertType(Ty); 7204 7205 const RecordType *RT = Ty->getAs<RecordType>(); 7206 7207 // Unions/vectors are passed in integer registers. 7208 if (!RT || !RT->isStructureOrClassType()) { 7209 CoerceToIntArgs(TySize, ArgList); 7210 return llvm::StructType::get(getVMContext(), ArgList); 7211 } 7212 7213 const RecordDecl *RD = RT->getDecl(); 7214 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 7215 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 7216 7217 uint64_t LastOffset = 0; 7218 unsigned idx = 0; 7219 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 7220 7221 // Iterate over fields in the struct/class and check if there are any aligned 7222 // double fields. 7223 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 7224 i != e; ++i, ++idx) { 7225 const QualType Ty = i->getType(); 7226 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 7227 7228 if (!BT || BT->getKind() != BuiltinType::Double) 7229 continue; 7230 7231 uint64_t Offset = Layout.getFieldOffset(idx); 7232 if (Offset % 64) // Ignore doubles that are not aligned. 7233 continue; 7234 7235 // Add ((Offset - LastOffset) / 64) args of type i64. 7236 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 7237 ArgList.push_back(I64); 7238 7239 // Add double type. 7240 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 7241 LastOffset = Offset + 64; 7242 } 7243 7244 CoerceToIntArgs(TySize - LastOffset, IntArgList); 7245 ArgList.append(IntArgList.begin(), IntArgList.end()); 7246 7247 return llvm::StructType::get(getVMContext(), ArgList); 7248 } 7249 7250 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 7251 uint64_t Offset) const { 7252 if (OrigOffset + MinABIStackAlignInBytes > Offset) 7253 return nullptr; 7254 7255 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 7256 } 7257 7258 ABIArgInfo 7259 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 7260 Ty = useFirstFieldIfTransparentUnion(Ty); 7261 7262 uint64_t OrigOffset = Offset; 7263 uint64_t TySize = getContext().getTypeSize(Ty); 7264 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 7265 7266 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 7267 (uint64_t)StackAlignInBytes); 7268 unsigned CurrOffset = llvm::alignTo(Offset, Align); 7269 Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8; 7270 7271 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 7272 // Ignore empty aggregates. 7273 if (TySize == 0) 7274 return ABIArgInfo::getIgnore(); 7275 7276 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 7277 Offset = OrigOffset + MinABIStackAlignInBytes; 7278 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7279 } 7280 7281 // If we have reached here, aggregates are passed directly by coercing to 7282 // another structure type. Padding is inserted if the offset of the 7283 // aggregate is unaligned. 7284 ABIArgInfo ArgInfo = 7285 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 7286 getPaddingType(OrigOffset, CurrOffset)); 7287 ArgInfo.setInReg(true); 7288 return ArgInfo; 7289 } 7290 7291 // Treat an enum type as its underlying type. 7292 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7293 Ty = EnumTy->getDecl()->getIntegerType(); 7294 7295 // All integral types are promoted to the GPR width. 7296 if (Ty->isIntegralOrEnumerationType()) 7297 return extendType(Ty); 7298 7299 return ABIArgInfo::getDirect( 7300 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 7301 } 7302 7303 llvm::Type* 7304 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 7305 const RecordType *RT = RetTy->getAs<RecordType>(); 7306 SmallVector<llvm::Type*, 8> RTList; 7307 7308 if (RT && RT->isStructureOrClassType()) { 7309 const RecordDecl *RD = RT->getDecl(); 7310 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 7311 unsigned FieldCnt = Layout.getFieldCount(); 7312 7313 // N32/64 returns struct/classes in floating point registers if the 7314 // following conditions are met: 7315 // 1. The size of the struct/class is no larger than 128-bit. 7316 // 2. The struct/class has one or two fields all of which are floating 7317 // point types. 7318 // 3. The offset of the first field is zero (this follows what gcc does). 7319 // 7320 // Any other composite results are returned in integer registers. 7321 // 7322 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 7323 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 7324 for (; b != e; ++b) { 7325 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 7326 7327 if (!BT || !BT->isFloatingPoint()) 7328 break; 7329 7330 RTList.push_back(CGT.ConvertType(b->getType())); 7331 } 7332 7333 if (b == e) 7334 return llvm::StructType::get(getVMContext(), RTList, 7335 RD->hasAttr<PackedAttr>()); 7336 7337 RTList.clear(); 7338 } 7339 } 7340 7341 CoerceToIntArgs(Size, RTList); 7342 return llvm::StructType::get(getVMContext(), RTList); 7343 } 7344 7345 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 7346 uint64_t Size = getContext().getTypeSize(RetTy); 7347 7348 if (RetTy->isVoidType()) 7349 return ABIArgInfo::getIgnore(); 7350 7351 // O32 doesn't treat zero-sized structs differently from other structs. 7352 // However, N32/N64 ignores zero sized return values. 7353 if (!IsO32 && Size == 0) 7354 return ABIArgInfo::getIgnore(); 7355 7356 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 7357 if (Size <= 128) { 7358 if (RetTy->isAnyComplexType()) 7359 return ABIArgInfo::getDirect(); 7360 7361 // O32 returns integer vectors in registers and N32/N64 returns all small 7362 // aggregates in registers. 7363 if (!IsO32 || 7364 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { 7365 ABIArgInfo ArgInfo = 7366 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 7367 ArgInfo.setInReg(true); 7368 return ArgInfo; 7369 } 7370 } 7371 7372 return getNaturalAlignIndirect(RetTy); 7373 } 7374 7375 // Treat an enum type as its underlying type. 7376 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7377 RetTy = EnumTy->getDecl()->getIntegerType(); 7378 7379 if (RetTy->isPromotableIntegerType()) 7380 return ABIArgInfo::getExtend(RetTy); 7381 7382 if ((RetTy->isUnsignedIntegerOrEnumerationType() || 7383 RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32) 7384 return ABIArgInfo::getSignExtend(RetTy); 7385 7386 return ABIArgInfo::getDirect(); 7387 } 7388 7389 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 7390 ABIArgInfo &RetInfo = FI.getReturnInfo(); 7391 if (!getCXXABI().classifyReturnType(FI)) 7392 RetInfo = classifyReturnType(FI.getReturnType()); 7393 7394 // Check if a pointer to an aggregate is passed as a hidden argument. 7395 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 7396 7397 for (auto &I : FI.arguments()) 7398 I.info = classifyArgumentType(I.type, Offset); 7399 } 7400 7401 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7402 QualType OrigTy) const { 7403 QualType Ty = OrigTy; 7404 7405 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. 7406 // Pointers are also promoted in the same way but this only matters for N32. 7407 unsigned SlotSizeInBits = IsO32 ? 32 : 64; 7408 unsigned PtrWidth = getTarget().getPointerWidth(0); 7409 bool DidPromote = false; 7410 if ((Ty->isIntegerType() && 7411 getContext().getIntWidth(Ty) < SlotSizeInBits) || 7412 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { 7413 DidPromote = true; 7414 Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits, 7415 Ty->isSignedIntegerType()); 7416 } 7417 7418 auto TyInfo = getContext().getTypeInfoInChars(Ty); 7419 7420 // The alignment of things in the argument area is never larger than 7421 // StackAlignInBytes. 7422 TyInfo.second = 7423 std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes)); 7424 7425 // MinABIStackAlignInBytes is the size of argument slots on the stack. 7426 CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes); 7427 7428 Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 7429 TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true); 7430 7431 7432 // If there was a promotion, "unpromote" into a temporary. 7433 // TODO: can we just use a pointer into a subset of the original slot? 7434 if (DidPromote) { 7435 Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp"); 7436 llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr); 7437 7438 // Truncate down to the right width. 7439 llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType() 7440 : CGF.IntPtrTy); 7441 llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy); 7442 if (OrigTy->isPointerType()) 7443 V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType()); 7444 7445 CGF.Builder.CreateStore(V, Temp); 7446 Addr = Temp; 7447 } 7448 7449 return Addr; 7450 } 7451 7452 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const { 7453 int TySize = getContext().getTypeSize(Ty); 7454 7455 // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. 7456 if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 7457 return ABIArgInfo::getSignExtend(Ty); 7458 7459 return ABIArgInfo::getExtend(Ty); 7460 } 7461 7462 bool 7463 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7464 llvm::Value *Address) const { 7465 // This information comes from gcc's implementation, which seems to 7466 // as canonical as it gets. 7467 7468 // Everything on MIPS is 4 bytes. Double-precision FP registers 7469 // are aliased to pairs of single-precision FP registers. 7470 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 7471 7472 // 0-31 are the general purpose registers, $0 - $31. 7473 // 32-63 are the floating-point registers, $f0 - $f31. 7474 // 64 and 65 are the multiply/divide registers, $hi and $lo. 7475 // 66 is the (notional, I think) register for signal-handler return. 7476 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 7477 7478 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 7479 // They are one bit wide and ignored here. 7480 7481 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 7482 // (coprocessor 1 is the FP unit) 7483 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 7484 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 7485 // 176-181 are the DSP accumulator registers. 7486 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 7487 return false; 7488 } 7489 7490 //===----------------------------------------------------------------------===// 7491 // AVR ABI Implementation. 7492 //===----------------------------------------------------------------------===// 7493 7494 namespace { 7495 class AVRTargetCodeGenInfo : public TargetCodeGenInfo { 7496 public: 7497 AVRTargetCodeGenInfo(CodeGenTypes &CGT) 7498 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) { } 7499 7500 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7501 CodeGen::CodeGenModule &CGM) const override { 7502 if (GV->isDeclaration()) 7503 return; 7504 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 7505 if (!FD) return; 7506 auto *Fn = cast<llvm::Function>(GV); 7507 7508 if (FD->getAttr<AVRInterruptAttr>()) 7509 Fn->addFnAttr("interrupt"); 7510 7511 if (FD->getAttr<AVRSignalAttr>()) 7512 Fn->addFnAttr("signal"); 7513 } 7514 }; 7515 } 7516 7517 //===----------------------------------------------------------------------===// 7518 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 7519 // Currently subclassed only to implement custom OpenCL C function attribute 7520 // handling. 7521 //===----------------------------------------------------------------------===// 7522 7523 namespace { 7524 7525 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 7526 public: 7527 TCETargetCodeGenInfo(CodeGenTypes &CGT) 7528 : DefaultTargetCodeGenInfo(CGT) {} 7529 7530 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7531 CodeGen::CodeGenModule &M) const override; 7532 }; 7533 7534 void TCETargetCodeGenInfo::setTargetAttributes( 7535 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7536 if (GV->isDeclaration()) 7537 return; 7538 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7539 if (!FD) return; 7540 7541 llvm::Function *F = cast<llvm::Function>(GV); 7542 7543 if (M.getLangOpts().OpenCL) { 7544 if (FD->hasAttr<OpenCLKernelAttr>()) { 7545 // OpenCL C Kernel functions are not subject to inlining 7546 F->addFnAttr(llvm::Attribute::NoInline); 7547 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 7548 if (Attr) { 7549 // Convert the reqd_work_group_size() attributes to metadata. 7550 llvm::LLVMContext &Context = F->getContext(); 7551 llvm::NamedMDNode *OpenCLMetadata = 7552 M.getModule().getOrInsertNamedMetadata( 7553 "opencl.kernel_wg_size_info"); 7554 7555 SmallVector<llvm::Metadata *, 5> Operands; 7556 Operands.push_back(llvm::ConstantAsMetadata::get(F)); 7557 7558 Operands.push_back( 7559 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7560 M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); 7561 Operands.push_back( 7562 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7563 M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); 7564 Operands.push_back( 7565 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7566 M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); 7567 7568 // Add a boolean constant operand for "required" (true) or "hint" 7569 // (false) for implementing the work_group_size_hint attr later. 7570 // Currently always true as the hint is not yet implemented. 7571 Operands.push_back( 7572 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); 7573 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 7574 } 7575 } 7576 } 7577 } 7578 7579 } 7580 7581 //===----------------------------------------------------------------------===// 7582 // Hexagon ABI Implementation 7583 //===----------------------------------------------------------------------===// 7584 7585 namespace { 7586 7587 class HexagonABIInfo : public DefaultABIInfo { 7588 public: 7589 HexagonABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7590 7591 private: 7592 ABIArgInfo classifyReturnType(QualType RetTy) const; 7593 ABIArgInfo classifyArgumentType(QualType RetTy) const; 7594 ABIArgInfo classifyArgumentType(QualType RetTy, unsigned *RegsLeft) const; 7595 7596 void computeInfo(CGFunctionInfo &FI) const override; 7597 7598 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7599 QualType Ty) const override; 7600 Address EmitVAArgFromMemory(CodeGenFunction &CFG, Address VAListAddr, 7601 QualType Ty) const; 7602 Address EmitVAArgForHexagon(CodeGenFunction &CFG, Address VAListAddr, 7603 QualType Ty) const; 7604 Address EmitVAArgForHexagonLinux(CodeGenFunction &CFG, Address VAListAddr, 7605 QualType Ty) const; 7606 }; 7607 7608 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 7609 public: 7610 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 7611 : TargetCodeGenInfo(new HexagonABIInfo(CGT)) {} 7612 7613 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 7614 return 29; 7615 } 7616 7617 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7618 CodeGen::CodeGenModule &GCM) const override { 7619 if (GV->isDeclaration()) 7620 return; 7621 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7622 if (!FD) 7623 return; 7624 } 7625 }; 7626 7627 } // namespace 7628 7629 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 7630 unsigned RegsLeft = 6; 7631 if (!getCXXABI().classifyReturnType(FI)) 7632 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7633 for (auto &I : FI.arguments()) 7634 I.info = classifyArgumentType(I.type, &RegsLeft); 7635 } 7636 7637 static bool HexagonAdjustRegsLeft(uint64_t Size, unsigned *RegsLeft) { 7638 assert(Size <= 64 && "Not expecting to pass arguments larger than 64 bits" 7639 " through registers"); 7640 7641 if (*RegsLeft == 0) 7642 return false; 7643 7644 if (Size <= 32) { 7645 (*RegsLeft)--; 7646 return true; 7647 } 7648 7649 if (2 <= (*RegsLeft & (~1U))) { 7650 *RegsLeft = (*RegsLeft & (~1U)) - 2; 7651 return true; 7652 } 7653 7654 // Next available register was r5 but candidate was greater than 32-bits so it 7655 // has to go on the stack. However we still consume r5 7656 if (*RegsLeft == 1) 7657 *RegsLeft = 0; 7658 7659 return false; 7660 } 7661 7662 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty, 7663 unsigned *RegsLeft) const { 7664 if (!isAggregateTypeForABI(Ty)) { 7665 // Treat an enum type as its underlying type. 7666 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7667 Ty = EnumTy->getDecl()->getIntegerType(); 7668 7669 uint64_t Size = getContext().getTypeSize(Ty); 7670 if (Size <= 64) 7671 HexagonAdjustRegsLeft(Size, RegsLeft); 7672 7673 return Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 7674 : ABIArgInfo::getDirect(); 7675 } 7676 7677 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 7678 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7679 7680 // Ignore empty records. 7681 if (isEmptyRecord(getContext(), Ty, true)) 7682 return ABIArgInfo::getIgnore(); 7683 7684 uint64_t Size = getContext().getTypeSize(Ty); 7685 unsigned Align = getContext().getTypeAlign(Ty); 7686 7687 if (Size > 64) 7688 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 7689 7690 if (HexagonAdjustRegsLeft(Size, RegsLeft)) 7691 Align = Size <= 32 ? 32 : 64; 7692 if (Size <= Align) { 7693 // Pass in the smallest viable integer type. 7694 if (!llvm::isPowerOf2_64(Size)) 7695 Size = llvm::NextPowerOf2(Size); 7696 return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size)); 7697 } 7698 return DefaultABIInfo::classifyArgumentType(Ty); 7699 } 7700 7701 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 7702 if (RetTy->isVoidType()) 7703 return ABIArgInfo::getIgnore(); 7704 7705 const TargetInfo &T = CGT.getTarget(); 7706 uint64_t Size = getContext().getTypeSize(RetTy); 7707 7708 if (RetTy->getAs<VectorType>()) { 7709 // HVX vectors are returned in vector registers or register pairs. 7710 if (T.hasFeature("hvx")) { 7711 assert(T.hasFeature("hvx-length64b") || T.hasFeature("hvx-length128b")); 7712 uint64_t VecSize = T.hasFeature("hvx-length64b") ? 64*8 : 128*8; 7713 if (Size == VecSize || Size == 2*VecSize) 7714 return ABIArgInfo::getDirectInReg(); 7715 } 7716 // Large vector types should be returned via memory. 7717 if (Size > 64) 7718 return getNaturalAlignIndirect(RetTy); 7719 } 7720 7721 if (!isAggregateTypeForABI(RetTy)) { 7722 // Treat an enum type as its underlying type. 7723 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7724 RetTy = EnumTy->getDecl()->getIntegerType(); 7725 7726 return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 7727 : ABIArgInfo::getDirect(); 7728 } 7729 7730 if (isEmptyRecord(getContext(), RetTy, true)) 7731 return ABIArgInfo::getIgnore(); 7732 7733 // Aggregates <= 8 bytes are returned in registers, other aggregates 7734 // are returned indirectly. 7735 if (Size <= 64) { 7736 // Return in the smallest viable integer type. 7737 if (!llvm::isPowerOf2_64(Size)) 7738 Size = llvm::NextPowerOf2(Size); 7739 return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size)); 7740 } 7741 return getNaturalAlignIndirect(RetTy, /*ByVal=*/true); 7742 } 7743 7744 Address HexagonABIInfo::EmitVAArgFromMemory(CodeGenFunction &CGF, 7745 Address VAListAddr, 7746 QualType Ty) const { 7747 // Load the overflow area pointer. 7748 Address __overflow_area_pointer_p = 7749 CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p"); 7750 llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad( 7751 __overflow_area_pointer_p, "__overflow_area_pointer"); 7752 7753 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; 7754 if (Align > 4) { 7755 // Alignment should be a power of 2. 7756 assert((Align & (Align - 1)) == 0 && "Alignment is not power of 2!"); 7757 7758 // overflow_arg_area = (overflow_arg_area + align - 1) & -align; 7759 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int64Ty, Align - 1); 7760 7761 // Add offset to the current pointer to access the argument. 7762 __overflow_area_pointer = 7763 CGF.Builder.CreateGEP(__overflow_area_pointer, Offset); 7764 llvm::Value *AsInt = 7765 CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty); 7766 7767 // Create a mask which should be "AND"ed 7768 // with (overflow_arg_area + align - 1) 7769 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -(int)Align); 7770 __overflow_area_pointer = CGF.Builder.CreateIntToPtr( 7771 CGF.Builder.CreateAnd(AsInt, Mask), __overflow_area_pointer->getType(), 7772 "__overflow_area_pointer.align"); 7773 } 7774 7775 // Get the type of the argument from memory and bitcast 7776 // overflow area pointer to the argument type. 7777 llvm::Type *PTy = CGF.ConvertTypeForMem(Ty); 7778 Address AddrTyped = CGF.Builder.CreateBitCast( 7779 Address(__overflow_area_pointer, CharUnits::fromQuantity(Align)), 7780 llvm::PointerType::getUnqual(PTy)); 7781 7782 // Round up to the minimum stack alignment for varargs which is 4 bytes. 7783 uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4); 7784 7785 __overflow_area_pointer = CGF.Builder.CreateGEP( 7786 __overflow_area_pointer, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 7787 "__overflow_area_pointer.next"); 7788 CGF.Builder.CreateStore(__overflow_area_pointer, __overflow_area_pointer_p); 7789 7790 return AddrTyped; 7791 } 7792 7793 Address HexagonABIInfo::EmitVAArgForHexagon(CodeGenFunction &CGF, 7794 Address VAListAddr, 7795 QualType Ty) const { 7796 // FIXME: Need to handle alignment 7797 llvm::Type *BP = CGF.Int8PtrTy; 7798 llvm::Type *BPP = CGF.Int8PtrPtrTy; 7799 CGBuilderTy &Builder = CGF.Builder; 7800 Address VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 7801 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 7802 // Handle address alignment for type alignment > 32 bits 7803 uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8; 7804 if (TyAlign > 4) { 7805 assert((TyAlign & (TyAlign - 1)) == 0 && "Alignment is not power of 2!"); 7806 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty); 7807 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1)); 7808 AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1))); 7809 Addr = Builder.CreateIntToPtr(AddrAsInt, BP); 7810 } 7811 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 7812 Address AddrTyped = Builder.CreateBitCast( 7813 Address(Addr, CharUnits::fromQuantity(TyAlign)), PTy); 7814 7815 uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4); 7816 llvm::Value *NextAddr = Builder.CreateGEP( 7817 Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next"); 7818 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 7819 7820 return AddrTyped; 7821 } 7822 7823 Address HexagonABIInfo::EmitVAArgForHexagonLinux(CodeGenFunction &CGF, 7824 Address VAListAddr, 7825 QualType Ty) const { 7826 int ArgSize = CGF.getContext().getTypeSize(Ty) / 8; 7827 7828 if (ArgSize > 8) 7829 return EmitVAArgFromMemory(CGF, VAListAddr, Ty); 7830 7831 // Here we have check if the argument is in register area or 7832 // in overflow area. 7833 // If the saved register area pointer + argsize rounded up to alignment > 7834 // saved register area end pointer, argument is in overflow area. 7835 unsigned RegsLeft = 6; 7836 Ty = CGF.getContext().getCanonicalType(Ty); 7837 (void)classifyArgumentType(Ty, &RegsLeft); 7838 7839 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 7840 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 7841 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 7842 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 7843 7844 // Get rounded size of the argument.GCC does not allow vararg of 7845 // size < 4 bytes. We follow the same logic here. 7846 ArgSize = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8; 7847 int ArgAlign = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8; 7848 7849 // Argument may be in saved register area 7850 CGF.EmitBlock(MaybeRegBlock); 7851 7852 // Load the current saved register area pointer. 7853 Address __current_saved_reg_area_pointer_p = CGF.Builder.CreateStructGEP( 7854 VAListAddr, 0, "__current_saved_reg_area_pointer_p"); 7855 llvm::Value *__current_saved_reg_area_pointer = CGF.Builder.CreateLoad( 7856 __current_saved_reg_area_pointer_p, "__current_saved_reg_area_pointer"); 7857 7858 // Load the saved register area end pointer. 7859 Address __saved_reg_area_end_pointer_p = CGF.Builder.CreateStructGEP( 7860 VAListAddr, 1, "__saved_reg_area_end_pointer_p"); 7861 llvm::Value *__saved_reg_area_end_pointer = CGF.Builder.CreateLoad( 7862 __saved_reg_area_end_pointer_p, "__saved_reg_area_end_pointer"); 7863 7864 // If the size of argument is > 4 bytes, check if the stack 7865 // location is aligned to 8 bytes 7866 if (ArgAlign > 4) { 7867 7868 llvm::Value *__current_saved_reg_area_pointer_int = 7869 CGF.Builder.CreatePtrToInt(__current_saved_reg_area_pointer, 7870 CGF.Int32Ty); 7871 7872 __current_saved_reg_area_pointer_int = CGF.Builder.CreateAdd( 7873 __current_saved_reg_area_pointer_int, 7874 llvm::ConstantInt::get(CGF.Int32Ty, (ArgAlign - 1)), 7875 "align_current_saved_reg_area_pointer"); 7876 7877 __current_saved_reg_area_pointer_int = 7878 CGF.Builder.CreateAnd(__current_saved_reg_area_pointer_int, 7879 llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign), 7880 "align_current_saved_reg_area_pointer"); 7881 7882 __current_saved_reg_area_pointer = 7883 CGF.Builder.CreateIntToPtr(__current_saved_reg_area_pointer_int, 7884 __current_saved_reg_area_pointer->getType(), 7885 "align_current_saved_reg_area_pointer"); 7886 } 7887 7888 llvm::Value *__new_saved_reg_area_pointer = 7889 CGF.Builder.CreateGEP(__current_saved_reg_area_pointer, 7890 llvm::ConstantInt::get(CGF.Int32Ty, ArgSize), 7891 "__new_saved_reg_area_pointer"); 7892 7893 llvm::Value *UsingStack = 0; 7894 UsingStack = CGF.Builder.CreateICmpSGT(__new_saved_reg_area_pointer, 7895 __saved_reg_area_end_pointer); 7896 7897 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, InRegBlock); 7898 7899 // Argument in saved register area 7900 // Implement the block where argument is in register saved area 7901 CGF.EmitBlock(InRegBlock); 7902 7903 llvm::Type *PTy = CGF.ConvertType(Ty); 7904 llvm::Value *__saved_reg_area_p = CGF.Builder.CreateBitCast( 7905 __current_saved_reg_area_pointer, llvm::PointerType::getUnqual(PTy)); 7906 7907 CGF.Builder.CreateStore(__new_saved_reg_area_pointer, 7908 __current_saved_reg_area_pointer_p); 7909 7910 CGF.EmitBranch(ContBlock); 7911 7912 // Argument in overflow area 7913 // Implement the block where the argument is in overflow area. 7914 CGF.EmitBlock(OnStackBlock); 7915 7916 // Load the overflow area pointer 7917 Address __overflow_area_pointer_p = 7918 CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p"); 7919 llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad( 7920 __overflow_area_pointer_p, "__overflow_area_pointer"); 7921 7922 // Align the overflow area pointer according to the alignment of the argument 7923 if (ArgAlign > 4) { 7924 llvm::Value *__overflow_area_pointer_int = 7925 CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty); 7926 7927 __overflow_area_pointer_int = 7928 CGF.Builder.CreateAdd(__overflow_area_pointer_int, 7929 llvm::ConstantInt::get(CGF.Int32Ty, ArgAlign - 1), 7930 "align_overflow_area_pointer"); 7931 7932 __overflow_area_pointer_int = 7933 CGF.Builder.CreateAnd(__overflow_area_pointer_int, 7934 llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign), 7935 "align_overflow_area_pointer"); 7936 7937 __overflow_area_pointer = CGF.Builder.CreateIntToPtr( 7938 __overflow_area_pointer_int, __overflow_area_pointer->getType(), 7939 "align_overflow_area_pointer"); 7940 } 7941 7942 // Get the pointer for next argument in overflow area and store it 7943 // to overflow area pointer. 7944 llvm::Value *__new_overflow_area_pointer = CGF.Builder.CreateGEP( 7945 __overflow_area_pointer, llvm::ConstantInt::get(CGF.Int32Ty, ArgSize), 7946 "__overflow_area_pointer.next"); 7947 7948 CGF.Builder.CreateStore(__new_overflow_area_pointer, 7949 __overflow_area_pointer_p); 7950 7951 CGF.Builder.CreateStore(__new_overflow_area_pointer, 7952 __current_saved_reg_area_pointer_p); 7953 7954 // Bitcast the overflow area pointer to the type of argument. 7955 llvm::Type *OverflowPTy = CGF.ConvertTypeForMem(Ty); 7956 llvm::Value *__overflow_area_p = CGF.Builder.CreateBitCast( 7957 __overflow_area_pointer, llvm::PointerType::getUnqual(OverflowPTy)); 7958 7959 CGF.EmitBranch(ContBlock); 7960 7961 // Get the correct pointer to load the variable argument 7962 // Implement the ContBlock 7963 CGF.EmitBlock(ContBlock); 7964 7965 llvm::Type *MemPTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 7966 llvm::PHINode *ArgAddr = CGF.Builder.CreatePHI(MemPTy, 2, "vaarg.addr"); 7967 ArgAddr->addIncoming(__saved_reg_area_p, InRegBlock); 7968 ArgAddr->addIncoming(__overflow_area_p, OnStackBlock); 7969 7970 return Address(ArgAddr, CharUnits::fromQuantity(ArgAlign)); 7971 } 7972 7973 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7974 QualType Ty) const { 7975 7976 if (getTarget().getTriple().isMusl()) 7977 return EmitVAArgForHexagonLinux(CGF, VAListAddr, Ty); 7978 7979 return EmitVAArgForHexagon(CGF, VAListAddr, Ty); 7980 } 7981 7982 //===----------------------------------------------------------------------===// 7983 // Lanai ABI Implementation 7984 //===----------------------------------------------------------------------===// 7985 7986 namespace { 7987 class LanaiABIInfo : public DefaultABIInfo { 7988 public: 7989 LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7990 7991 bool shouldUseInReg(QualType Ty, CCState &State) const; 7992 7993 void computeInfo(CGFunctionInfo &FI) const override { 7994 CCState State(FI); 7995 // Lanai uses 4 registers to pass arguments unless the function has the 7996 // regparm attribute set. 7997 if (FI.getHasRegParm()) { 7998 State.FreeRegs = FI.getRegParm(); 7999 } else { 8000 State.FreeRegs = 4; 8001 } 8002 8003 if (!getCXXABI().classifyReturnType(FI)) 8004 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8005 for (auto &I : FI.arguments()) 8006 I.info = classifyArgumentType(I.type, State); 8007 } 8008 8009 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 8010 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 8011 }; 8012 } // end anonymous namespace 8013 8014 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const { 8015 unsigned Size = getContext().getTypeSize(Ty); 8016 unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U; 8017 8018 if (SizeInRegs == 0) 8019 return false; 8020 8021 if (SizeInRegs > State.FreeRegs) { 8022 State.FreeRegs = 0; 8023 return false; 8024 } 8025 8026 State.FreeRegs -= SizeInRegs; 8027 8028 return true; 8029 } 8030 8031 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal, 8032 CCState &State) const { 8033 if (!ByVal) { 8034 if (State.FreeRegs) { 8035 --State.FreeRegs; // Non-byval indirects just use one pointer. 8036 return getNaturalAlignIndirectInReg(Ty); 8037 } 8038 return getNaturalAlignIndirect(Ty, false); 8039 } 8040 8041 // Compute the byval alignment. 8042 const unsigned MinABIStackAlignInBytes = 4; 8043 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 8044 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 8045 /*Realign=*/TypeAlign > 8046 MinABIStackAlignInBytes); 8047 } 8048 8049 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty, 8050 CCState &State) const { 8051 // Check with the C++ ABI first. 8052 const RecordType *RT = Ty->getAs<RecordType>(); 8053 if (RT) { 8054 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 8055 if (RAA == CGCXXABI::RAA_Indirect) { 8056 return getIndirectResult(Ty, /*ByVal=*/false, State); 8057 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 8058 return getNaturalAlignIndirect(Ty, /*ByRef=*/true); 8059 } 8060 } 8061 8062 if (isAggregateTypeForABI(Ty)) { 8063 // Structures with flexible arrays are always indirect. 8064 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 8065 return getIndirectResult(Ty, /*ByVal=*/true, State); 8066 8067 // Ignore empty structs/unions. 8068 if (isEmptyRecord(getContext(), Ty, true)) 8069 return ABIArgInfo::getIgnore(); 8070 8071 llvm::LLVMContext &LLVMContext = getVMContext(); 8072 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 8073 if (SizeInRegs <= State.FreeRegs) { 8074 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 8075 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 8076 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 8077 State.FreeRegs -= SizeInRegs; 8078 return ABIArgInfo::getDirectInReg(Result); 8079 } else { 8080 State.FreeRegs = 0; 8081 } 8082 return getIndirectResult(Ty, true, State); 8083 } 8084 8085 // Treat an enum type as its underlying type. 8086 if (const auto *EnumTy = Ty->getAs<EnumType>()) 8087 Ty = EnumTy->getDecl()->getIntegerType(); 8088 8089 bool InReg = shouldUseInReg(Ty, State); 8090 if (Ty->isPromotableIntegerType()) { 8091 if (InReg) 8092 return ABIArgInfo::getDirectInReg(); 8093 return ABIArgInfo::getExtend(Ty); 8094 } 8095 if (InReg) 8096 return ABIArgInfo::getDirectInReg(); 8097 return ABIArgInfo::getDirect(); 8098 } 8099 8100 namespace { 8101 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo { 8102 public: 8103 LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 8104 : TargetCodeGenInfo(new LanaiABIInfo(CGT)) {} 8105 }; 8106 } 8107 8108 //===----------------------------------------------------------------------===// 8109 // AMDGPU ABI Implementation 8110 //===----------------------------------------------------------------------===// 8111 8112 namespace { 8113 8114 class AMDGPUABIInfo final : public DefaultABIInfo { 8115 private: 8116 static const unsigned MaxNumRegsForArgsRet = 16; 8117 8118 unsigned numRegsForType(QualType Ty) const; 8119 8120 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 8121 bool isHomogeneousAggregateSmallEnough(const Type *Base, 8122 uint64_t Members) const override; 8123 8124 // Coerce HIP pointer arguments from generic pointers to global ones. 8125 llvm::Type *coerceKernelArgumentType(llvm::Type *Ty, unsigned FromAS, 8126 unsigned ToAS) const { 8127 // Structure types. 8128 if (auto STy = dyn_cast<llvm::StructType>(Ty)) { 8129 SmallVector<llvm::Type *, 8> EltTys; 8130 bool Changed = false; 8131 for (auto T : STy->elements()) { 8132 auto NT = coerceKernelArgumentType(T, FromAS, ToAS); 8133 EltTys.push_back(NT); 8134 Changed |= (NT != T); 8135 } 8136 // Skip if there is no change in element types. 8137 if (!Changed) 8138 return STy; 8139 if (STy->hasName()) 8140 return llvm::StructType::create( 8141 EltTys, (STy->getName() + ".coerce").str(), STy->isPacked()); 8142 return llvm::StructType::get(getVMContext(), EltTys, STy->isPacked()); 8143 } 8144 // Arrary types. 8145 if (auto ATy = dyn_cast<llvm::ArrayType>(Ty)) { 8146 auto T = ATy->getElementType(); 8147 auto NT = coerceKernelArgumentType(T, FromAS, ToAS); 8148 // Skip if there is no change in that element type. 8149 if (NT == T) 8150 return ATy; 8151 return llvm::ArrayType::get(NT, ATy->getNumElements()); 8152 } 8153 // Single value types. 8154 if (Ty->isPointerTy() && Ty->getPointerAddressSpace() == FromAS) 8155 return llvm::PointerType::get( 8156 cast<llvm::PointerType>(Ty)->getElementType(), ToAS); 8157 return Ty; 8158 } 8159 8160 public: 8161 explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) : 8162 DefaultABIInfo(CGT) {} 8163 8164 ABIArgInfo classifyReturnType(QualType RetTy) const; 8165 ABIArgInfo classifyKernelArgumentType(QualType Ty) const; 8166 ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const; 8167 8168 void computeInfo(CGFunctionInfo &FI) const override; 8169 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8170 QualType Ty) const override; 8171 }; 8172 8173 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 8174 return true; 8175 } 8176 8177 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough( 8178 const Type *Base, uint64_t Members) const { 8179 uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32; 8180 8181 // Homogeneous Aggregates may occupy at most 16 registers. 8182 return Members * NumRegs <= MaxNumRegsForArgsRet; 8183 } 8184 8185 /// Estimate number of registers the type will use when passed in registers. 8186 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const { 8187 unsigned NumRegs = 0; 8188 8189 if (const VectorType *VT = Ty->getAs<VectorType>()) { 8190 // Compute from the number of elements. The reported size is based on the 8191 // in-memory size, which includes the padding 4th element for 3-vectors. 8192 QualType EltTy = VT->getElementType(); 8193 unsigned EltSize = getContext().getTypeSize(EltTy); 8194 8195 // 16-bit element vectors should be passed as packed. 8196 if (EltSize == 16) 8197 return (VT->getNumElements() + 1) / 2; 8198 8199 unsigned EltNumRegs = (EltSize + 31) / 32; 8200 return EltNumRegs * VT->getNumElements(); 8201 } 8202 8203 if (const RecordType *RT = Ty->getAs<RecordType>()) { 8204 const RecordDecl *RD = RT->getDecl(); 8205 assert(!RD->hasFlexibleArrayMember()); 8206 8207 for (const FieldDecl *Field : RD->fields()) { 8208 QualType FieldTy = Field->getType(); 8209 NumRegs += numRegsForType(FieldTy); 8210 } 8211 8212 return NumRegs; 8213 } 8214 8215 return (getContext().getTypeSize(Ty) + 31) / 32; 8216 } 8217 8218 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const { 8219 llvm::CallingConv::ID CC = FI.getCallingConvention(); 8220 8221 if (!getCXXABI().classifyReturnType(FI)) 8222 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8223 8224 unsigned NumRegsLeft = MaxNumRegsForArgsRet; 8225 for (auto &Arg : FI.arguments()) { 8226 if (CC == llvm::CallingConv::AMDGPU_KERNEL) { 8227 Arg.info = classifyKernelArgumentType(Arg.type); 8228 } else { 8229 Arg.info = classifyArgumentType(Arg.type, NumRegsLeft); 8230 } 8231 } 8232 } 8233 8234 Address AMDGPUABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8235 QualType Ty) const { 8236 llvm_unreachable("AMDGPU does not support varargs"); 8237 } 8238 8239 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const { 8240 if (isAggregateTypeForABI(RetTy)) { 8241 // Records with non-trivial destructors/copy-constructors should not be 8242 // returned by value. 8243 if (!getRecordArgABI(RetTy, getCXXABI())) { 8244 // Ignore empty structs/unions. 8245 if (isEmptyRecord(getContext(), RetTy, true)) 8246 return ABIArgInfo::getIgnore(); 8247 8248 // Lower single-element structs to just return a regular value. 8249 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 8250 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 8251 8252 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 8253 const RecordDecl *RD = RT->getDecl(); 8254 if (RD->hasFlexibleArrayMember()) 8255 return DefaultABIInfo::classifyReturnType(RetTy); 8256 } 8257 8258 // Pack aggregates <= 4 bytes into single VGPR or pair. 8259 uint64_t Size = getContext().getTypeSize(RetTy); 8260 if (Size <= 16) 8261 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 8262 8263 if (Size <= 32) 8264 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 8265 8266 if (Size <= 64) { 8267 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 8268 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 8269 } 8270 8271 if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet) 8272 return ABIArgInfo::getDirect(); 8273 } 8274 } 8275 8276 // Otherwise just do the default thing. 8277 return DefaultABIInfo::classifyReturnType(RetTy); 8278 } 8279 8280 /// For kernels all parameters are really passed in a special buffer. It doesn't 8281 /// make sense to pass anything byval, so everything must be direct. 8282 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const { 8283 Ty = useFirstFieldIfTransparentUnion(Ty); 8284 8285 // TODO: Can we omit empty structs? 8286 8287 llvm::Type *LTy = nullptr; 8288 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 8289 LTy = CGT.ConvertType(QualType(SeltTy, 0)); 8290 8291 if (getContext().getLangOpts().HIP) { 8292 if (!LTy) 8293 LTy = CGT.ConvertType(Ty); 8294 LTy = coerceKernelArgumentType( 8295 LTy, /*FromAS=*/getContext().getTargetAddressSpace(LangAS::Default), 8296 /*ToAS=*/getContext().getTargetAddressSpace(LangAS::cuda_device)); 8297 } 8298 8299 // If we set CanBeFlattened to true, CodeGen will expand the struct to its 8300 // individual elements, which confuses the Clover OpenCL backend; therefore we 8301 // have to set it to false here. Other args of getDirect() are just defaults. 8302 return ABIArgInfo::getDirect(LTy, 0, nullptr, false); 8303 } 8304 8305 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty, 8306 unsigned &NumRegsLeft) const { 8307 assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow"); 8308 8309 Ty = useFirstFieldIfTransparentUnion(Ty); 8310 8311 if (isAggregateTypeForABI(Ty)) { 8312 // Records with non-trivial destructors/copy-constructors should not be 8313 // passed by value. 8314 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 8315 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 8316 8317 // Ignore empty structs/unions. 8318 if (isEmptyRecord(getContext(), Ty, true)) 8319 return ABIArgInfo::getIgnore(); 8320 8321 // Lower single-element structs to just pass a regular value. TODO: We 8322 // could do reasonable-size multiple-element structs too, using getExpand(), 8323 // though watch out for things like bitfields. 8324 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 8325 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 8326 8327 if (const RecordType *RT = Ty->getAs<RecordType>()) { 8328 const RecordDecl *RD = RT->getDecl(); 8329 if (RD->hasFlexibleArrayMember()) 8330 return DefaultABIInfo::classifyArgumentType(Ty); 8331 } 8332 8333 // Pack aggregates <= 8 bytes into single VGPR or pair. 8334 uint64_t Size = getContext().getTypeSize(Ty); 8335 if (Size <= 64) { 8336 unsigned NumRegs = (Size + 31) / 32; 8337 NumRegsLeft -= std::min(NumRegsLeft, NumRegs); 8338 8339 if (Size <= 16) 8340 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 8341 8342 if (Size <= 32) 8343 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 8344 8345 // XXX: Should this be i64 instead, and should the limit increase? 8346 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 8347 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 8348 } 8349 8350 if (NumRegsLeft > 0) { 8351 unsigned NumRegs = numRegsForType(Ty); 8352 if (NumRegsLeft >= NumRegs) { 8353 NumRegsLeft -= NumRegs; 8354 return ABIArgInfo::getDirect(); 8355 } 8356 } 8357 } 8358 8359 // Otherwise just do the default thing. 8360 ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty); 8361 if (!ArgInfo.isIndirect()) { 8362 unsigned NumRegs = numRegsForType(Ty); 8363 NumRegsLeft -= std::min(NumRegs, NumRegsLeft); 8364 } 8365 8366 return ArgInfo; 8367 } 8368 8369 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { 8370 public: 8371 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) 8372 : TargetCodeGenInfo(new AMDGPUABIInfo(CGT)) {} 8373 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8374 CodeGen::CodeGenModule &M) const override; 8375 unsigned getOpenCLKernelCallingConv() const override; 8376 8377 llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM, 8378 llvm::PointerType *T, QualType QT) const override; 8379 8380 LangAS getASTAllocaAddressSpace() const override { 8381 return getLangASFromTargetAS( 8382 getABIInfo().getDataLayout().getAllocaAddrSpace()); 8383 } 8384 LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, 8385 const VarDecl *D) const override; 8386 llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts, 8387 SyncScope Scope, 8388 llvm::AtomicOrdering Ordering, 8389 llvm::LLVMContext &Ctx) const override; 8390 llvm::Function * 8391 createEnqueuedBlockKernel(CodeGenFunction &CGF, 8392 llvm::Function *BlockInvokeFunc, 8393 llvm::Value *BlockLiteral) const override; 8394 bool shouldEmitStaticExternCAliases() const override; 8395 void setCUDAKernelCallingConvention(const FunctionType *&FT) const override; 8396 }; 8397 } 8398 8399 static bool requiresAMDGPUProtectedVisibility(const Decl *D, 8400 llvm::GlobalValue *GV) { 8401 if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility) 8402 return false; 8403 8404 return D->hasAttr<OpenCLKernelAttr>() || 8405 (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) || 8406 (isa<VarDecl>(D) && 8407 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 8408 D->hasAttr<HIPPinnedShadowAttr>())); 8409 } 8410 8411 static bool requiresAMDGPUDefaultVisibility(const Decl *D, 8412 llvm::GlobalValue *GV) { 8413 if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility) 8414 return false; 8415 8416 return isa<VarDecl>(D) && D->hasAttr<HIPPinnedShadowAttr>(); 8417 } 8418 8419 void AMDGPUTargetCodeGenInfo::setTargetAttributes( 8420 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 8421 if (requiresAMDGPUDefaultVisibility(D, GV)) { 8422 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 8423 GV->setDSOLocal(false); 8424 } else if (requiresAMDGPUProtectedVisibility(D, GV)) { 8425 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 8426 GV->setDSOLocal(true); 8427 } 8428 8429 if (GV->isDeclaration()) 8430 return; 8431 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 8432 if (!FD) 8433 return; 8434 8435 llvm::Function *F = cast<llvm::Function>(GV); 8436 8437 const auto *ReqdWGS = M.getLangOpts().OpenCL ? 8438 FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr; 8439 8440 8441 const bool IsOpenCLKernel = M.getLangOpts().OpenCL && 8442 FD->hasAttr<OpenCLKernelAttr>(); 8443 const bool IsHIPKernel = M.getLangOpts().HIP && 8444 FD->hasAttr<CUDAGlobalAttr>(); 8445 if ((IsOpenCLKernel || IsHIPKernel) && 8446 (M.getTriple().getOS() == llvm::Triple::AMDHSA)) 8447 F->addFnAttr("amdgpu-implicitarg-num-bytes", "56"); 8448 8449 if (IsHIPKernel) 8450 F->addFnAttr("uniform-work-group-size", "true"); 8451 8452 8453 const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>(); 8454 if (ReqdWGS || FlatWGS) { 8455 unsigned Min = 0; 8456 unsigned Max = 0; 8457 if (FlatWGS) { 8458 Min = FlatWGS->getMin() 8459 ->EvaluateKnownConstInt(M.getContext()) 8460 .getExtValue(); 8461 Max = FlatWGS->getMax() 8462 ->EvaluateKnownConstInt(M.getContext()) 8463 .getExtValue(); 8464 } 8465 if (ReqdWGS && Min == 0 && Max == 0) 8466 Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim(); 8467 8468 if (Min != 0) { 8469 assert(Min <= Max && "Min must be less than or equal Max"); 8470 8471 std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max); 8472 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 8473 } else 8474 assert(Max == 0 && "Max must be zero"); 8475 } else if (IsOpenCLKernel || IsHIPKernel) { 8476 // By default, restrict the maximum size to a value specified by 8477 // --gpu-max-threads-per-block=n or its default value. 8478 std::string AttrVal = 8479 std::string("1,") + llvm::utostr(M.getLangOpts().GPUMaxThreadsPerBlock); 8480 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 8481 } 8482 8483 if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) { 8484 unsigned Min = 8485 Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue(); 8486 unsigned Max = Attr->getMax() ? Attr->getMax() 8487 ->EvaluateKnownConstInt(M.getContext()) 8488 .getExtValue() 8489 : 0; 8490 8491 if (Min != 0) { 8492 assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max"); 8493 8494 std::string AttrVal = llvm::utostr(Min); 8495 if (Max != 0) 8496 AttrVal = AttrVal + "," + llvm::utostr(Max); 8497 F->addFnAttr("amdgpu-waves-per-eu", AttrVal); 8498 } else 8499 assert(Max == 0 && "Max must be zero"); 8500 } 8501 8502 if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { 8503 unsigned NumSGPR = Attr->getNumSGPR(); 8504 8505 if (NumSGPR != 0) 8506 F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR)); 8507 } 8508 8509 if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { 8510 uint32_t NumVGPR = Attr->getNumVGPR(); 8511 8512 if (NumVGPR != 0) 8513 F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR)); 8514 } 8515 } 8516 8517 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 8518 return llvm::CallingConv::AMDGPU_KERNEL; 8519 } 8520 8521 // Currently LLVM assumes null pointers always have value 0, 8522 // which results in incorrectly transformed IR. Therefore, instead of 8523 // emitting null pointers in private and local address spaces, a null 8524 // pointer in generic address space is emitted which is casted to a 8525 // pointer in local or private address space. 8526 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer( 8527 const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT, 8528 QualType QT) const { 8529 if (CGM.getContext().getTargetNullPointerValue(QT) == 0) 8530 return llvm::ConstantPointerNull::get(PT); 8531 8532 auto &Ctx = CGM.getContext(); 8533 auto NPT = llvm::PointerType::get(PT->getElementType(), 8534 Ctx.getTargetAddressSpace(LangAS::opencl_generic)); 8535 return llvm::ConstantExpr::getAddrSpaceCast( 8536 llvm::ConstantPointerNull::get(NPT), PT); 8537 } 8538 8539 LangAS 8540 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 8541 const VarDecl *D) const { 8542 assert(!CGM.getLangOpts().OpenCL && 8543 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 8544 "Address space agnostic languages only"); 8545 LangAS DefaultGlobalAS = getLangASFromTargetAS( 8546 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global)); 8547 if (!D) 8548 return DefaultGlobalAS; 8549 8550 LangAS AddrSpace = D->getType().getAddressSpace(); 8551 assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace)); 8552 if (AddrSpace != LangAS::Default) 8553 return AddrSpace; 8554 8555 if (CGM.isTypeConstant(D->getType(), false)) { 8556 if (auto ConstAS = CGM.getTarget().getConstantAddressSpace()) 8557 return ConstAS.getValue(); 8558 } 8559 return DefaultGlobalAS; 8560 } 8561 8562 llvm::SyncScope::ID 8563 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 8564 SyncScope Scope, 8565 llvm::AtomicOrdering Ordering, 8566 llvm::LLVMContext &Ctx) const { 8567 std::string Name; 8568 switch (Scope) { 8569 case SyncScope::OpenCLWorkGroup: 8570 Name = "workgroup"; 8571 break; 8572 case SyncScope::OpenCLDevice: 8573 Name = "agent"; 8574 break; 8575 case SyncScope::OpenCLAllSVMDevices: 8576 Name = ""; 8577 break; 8578 case SyncScope::OpenCLSubGroup: 8579 Name = "wavefront"; 8580 } 8581 8582 if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) { 8583 if (!Name.empty()) 8584 Name = Twine(Twine(Name) + Twine("-")).str(); 8585 8586 Name = Twine(Twine(Name) + Twine("one-as")).str(); 8587 } 8588 8589 return Ctx.getOrInsertSyncScopeID(Name); 8590 } 8591 8592 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 8593 return false; 8594 } 8595 8596 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention( 8597 const FunctionType *&FT) const { 8598 FT = getABIInfo().getContext().adjustFunctionType( 8599 FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel)); 8600 } 8601 8602 //===----------------------------------------------------------------------===// 8603 // SPARC v8 ABI Implementation. 8604 // Based on the SPARC Compliance Definition version 2.4.1. 8605 // 8606 // Ensures that complex values are passed in registers. 8607 // 8608 namespace { 8609 class SparcV8ABIInfo : public DefaultABIInfo { 8610 public: 8611 SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8612 8613 private: 8614 ABIArgInfo classifyReturnType(QualType RetTy) const; 8615 void computeInfo(CGFunctionInfo &FI) const override; 8616 }; 8617 } // end anonymous namespace 8618 8619 8620 ABIArgInfo 8621 SparcV8ABIInfo::classifyReturnType(QualType Ty) const { 8622 if (Ty->isAnyComplexType()) { 8623 return ABIArgInfo::getDirect(); 8624 } 8625 else { 8626 return DefaultABIInfo::classifyReturnType(Ty); 8627 } 8628 } 8629 8630 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const { 8631 8632 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8633 for (auto &Arg : FI.arguments()) 8634 Arg.info = classifyArgumentType(Arg.type); 8635 } 8636 8637 namespace { 8638 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo { 8639 public: 8640 SparcV8TargetCodeGenInfo(CodeGenTypes &CGT) 8641 : TargetCodeGenInfo(new SparcV8ABIInfo(CGT)) {} 8642 }; 8643 } // end anonymous namespace 8644 8645 //===----------------------------------------------------------------------===// 8646 // SPARC v9 ABI Implementation. 8647 // Based on the SPARC Compliance Definition version 2.4.1. 8648 // 8649 // Function arguments a mapped to a nominal "parameter array" and promoted to 8650 // registers depending on their type. Each argument occupies 8 or 16 bytes in 8651 // the array, structs larger than 16 bytes are passed indirectly. 8652 // 8653 // One case requires special care: 8654 // 8655 // struct mixed { 8656 // int i; 8657 // float f; 8658 // }; 8659 // 8660 // When a struct mixed is passed by value, it only occupies 8 bytes in the 8661 // parameter array, but the int is passed in an integer register, and the float 8662 // is passed in a floating point register. This is represented as two arguments 8663 // with the LLVM IR inreg attribute: 8664 // 8665 // declare void f(i32 inreg %i, float inreg %f) 8666 // 8667 // The code generator will only allocate 4 bytes from the parameter array for 8668 // the inreg arguments. All other arguments are allocated a multiple of 8 8669 // bytes. 8670 // 8671 namespace { 8672 class SparcV9ABIInfo : public ABIInfo { 8673 public: 8674 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 8675 8676 private: 8677 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 8678 void computeInfo(CGFunctionInfo &FI) const override; 8679 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8680 QualType Ty) const override; 8681 8682 // Coercion type builder for structs passed in registers. The coercion type 8683 // serves two purposes: 8684 // 8685 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 8686 // in registers. 8687 // 2. Expose aligned floating point elements as first-level elements, so the 8688 // code generator knows to pass them in floating point registers. 8689 // 8690 // We also compute the InReg flag which indicates that the struct contains 8691 // aligned 32-bit floats. 8692 // 8693 struct CoerceBuilder { 8694 llvm::LLVMContext &Context; 8695 const llvm::DataLayout &DL; 8696 SmallVector<llvm::Type*, 8> Elems; 8697 uint64_t Size; 8698 bool InReg; 8699 8700 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 8701 : Context(c), DL(dl), Size(0), InReg(false) {} 8702 8703 // Pad Elems with integers until Size is ToSize. 8704 void pad(uint64_t ToSize) { 8705 assert(ToSize >= Size && "Cannot remove elements"); 8706 if (ToSize == Size) 8707 return; 8708 8709 // Finish the current 64-bit word. 8710 uint64_t Aligned = llvm::alignTo(Size, 64); 8711 if (Aligned > Size && Aligned <= ToSize) { 8712 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 8713 Size = Aligned; 8714 } 8715 8716 // Add whole 64-bit words. 8717 while (Size + 64 <= ToSize) { 8718 Elems.push_back(llvm::Type::getInt64Ty(Context)); 8719 Size += 64; 8720 } 8721 8722 // Final in-word padding. 8723 if (Size < ToSize) { 8724 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 8725 Size = ToSize; 8726 } 8727 } 8728 8729 // Add a floating point element at Offset. 8730 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 8731 // Unaligned floats are treated as integers. 8732 if (Offset % Bits) 8733 return; 8734 // The InReg flag is only required if there are any floats < 64 bits. 8735 if (Bits < 64) 8736 InReg = true; 8737 pad(Offset); 8738 Elems.push_back(Ty); 8739 Size = Offset + Bits; 8740 } 8741 8742 // Add a struct type to the coercion type, starting at Offset (in bits). 8743 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 8744 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 8745 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 8746 llvm::Type *ElemTy = StrTy->getElementType(i); 8747 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 8748 switch (ElemTy->getTypeID()) { 8749 case llvm::Type::StructTyID: 8750 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 8751 break; 8752 case llvm::Type::FloatTyID: 8753 addFloat(ElemOffset, ElemTy, 32); 8754 break; 8755 case llvm::Type::DoubleTyID: 8756 addFloat(ElemOffset, ElemTy, 64); 8757 break; 8758 case llvm::Type::FP128TyID: 8759 addFloat(ElemOffset, ElemTy, 128); 8760 break; 8761 case llvm::Type::PointerTyID: 8762 if (ElemOffset % 64 == 0) { 8763 pad(ElemOffset); 8764 Elems.push_back(ElemTy); 8765 Size += 64; 8766 } 8767 break; 8768 default: 8769 break; 8770 } 8771 } 8772 } 8773 8774 // Check if Ty is a usable substitute for the coercion type. 8775 bool isUsableType(llvm::StructType *Ty) const { 8776 return llvm::makeArrayRef(Elems) == Ty->elements(); 8777 } 8778 8779 // Get the coercion type as a literal struct type. 8780 llvm::Type *getType() const { 8781 if (Elems.size() == 1) 8782 return Elems.front(); 8783 else 8784 return llvm::StructType::get(Context, Elems); 8785 } 8786 }; 8787 }; 8788 } // end anonymous namespace 8789 8790 ABIArgInfo 8791 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 8792 if (Ty->isVoidType()) 8793 return ABIArgInfo::getIgnore(); 8794 8795 uint64_t Size = getContext().getTypeSize(Ty); 8796 8797 // Anything too big to fit in registers is passed with an explicit indirect 8798 // pointer / sret pointer. 8799 if (Size > SizeLimit) 8800 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 8801 8802 // Treat an enum type as its underlying type. 8803 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 8804 Ty = EnumTy->getDecl()->getIntegerType(); 8805 8806 // Integer types smaller than a register are extended. 8807 if (Size < 64 && Ty->isIntegerType()) 8808 return ABIArgInfo::getExtend(Ty); 8809 8810 // Other non-aggregates go in registers. 8811 if (!isAggregateTypeForABI(Ty)) 8812 return ABIArgInfo::getDirect(); 8813 8814 // If a C++ object has either a non-trivial copy constructor or a non-trivial 8815 // destructor, it is passed with an explicit indirect pointer / sret pointer. 8816 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 8817 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 8818 8819 // This is a small aggregate type that should be passed in registers. 8820 // Build a coercion type from the LLVM struct type. 8821 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 8822 if (!StrTy) 8823 return ABIArgInfo::getDirect(); 8824 8825 CoerceBuilder CB(getVMContext(), getDataLayout()); 8826 CB.addStruct(0, StrTy); 8827 CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64)); 8828 8829 // Try to use the original type for coercion. 8830 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 8831 8832 if (CB.InReg) 8833 return ABIArgInfo::getDirectInReg(CoerceTy); 8834 else 8835 return ABIArgInfo::getDirect(CoerceTy); 8836 } 8837 8838 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8839 QualType Ty) const { 8840 ABIArgInfo AI = classifyType(Ty, 16 * 8); 8841 llvm::Type *ArgTy = CGT.ConvertType(Ty); 8842 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 8843 AI.setCoerceToType(ArgTy); 8844 8845 CharUnits SlotSize = CharUnits::fromQuantity(8); 8846 8847 CGBuilderTy &Builder = CGF.Builder; 8848 Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 8849 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 8850 8851 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 8852 8853 Address ArgAddr = Address::invalid(); 8854 CharUnits Stride; 8855 switch (AI.getKind()) { 8856 case ABIArgInfo::Expand: 8857 case ABIArgInfo::CoerceAndExpand: 8858 case ABIArgInfo::InAlloca: 8859 llvm_unreachable("Unsupported ABI kind for va_arg"); 8860 8861 case ABIArgInfo::Extend: { 8862 Stride = SlotSize; 8863 CharUnits Offset = SlotSize - TypeInfo.first; 8864 ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend"); 8865 break; 8866 } 8867 8868 case ABIArgInfo::Direct: { 8869 auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 8870 Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize); 8871 ArgAddr = Addr; 8872 break; 8873 } 8874 8875 case ABIArgInfo::Indirect: 8876 Stride = SlotSize; 8877 ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect"); 8878 ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), 8879 TypeInfo.second); 8880 break; 8881 8882 case ABIArgInfo::Ignore: 8883 return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second); 8884 } 8885 8886 // Update VAList. 8887 Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next"); 8888 Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 8889 8890 return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr"); 8891 } 8892 8893 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 8894 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 8895 for (auto &I : FI.arguments()) 8896 I.info = classifyType(I.type, 16 * 8); 8897 } 8898 8899 namespace { 8900 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 8901 public: 8902 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 8903 : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {} 8904 8905 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 8906 return 14; 8907 } 8908 8909 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 8910 llvm::Value *Address) const override; 8911 }; 8912 } // end anonymous namespace 8913 8914 bool 8915 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 8916 llvm::Value *Address) const { 8917 // This is calculated from the LLVM and GCC tables and verified 8918 // against gcc output. AFAIK all ABIs use the same encoding. 8919 8920 CodeGen::CGBuilderTy &Builder = CGF.Builder; 8921 8922 llvm::IntegerType *i8 = CGF.Int8Ty; 8923 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 8924 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 8925 8926 // 0-31: the 8-byte general-purpose registers 8927 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 8928 8929 // 32-63: f0-31, the 4-byte floating-point registers 8930 AssignToArrayRange(Builder, Address, Four8, 32, 63); 8931 8932 // Y = 64 8933 // PSR = 65 8934 // WIM = 66 8935 // TBR = 67 8936 // PC = 68 8937 // NPC = 69 8938 // FSR = 70 8939 // CSR = 71 8940 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 8941 8942 // 72-87: d0-15, the 8-byte floating-point registers 8943 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 8944 8945 return false; 8946 } 8947 8948 // ARC ABI implementation. 8949 namespace { 8950 8951 class ARCABIInfo : public DefaultABIInfo { 8952 public: 8953 using DefaultABIInfo::DefaultABIInfo; 8954 8955 private: 8956 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8957 QualType Ty) const override; 8958 8959 void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const { 8960 if (!State.FreeRegs) 8961 return; 8962 if (Info.isIndirect() && Info.getInReg()) 8963 State.FreeRegs--; 8964 else if (Info.isDirect() && Info.getInReg()) { 8965 unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32; 8966 if (sz < State.FreeRegs) 8967 State.FreeRegs -= sz; 8968 else 8969 State.FreeRegs = 0; 8970 } 8971 } 8972 8973 void computeInfo(CGFunctionInfo &FI) const override { 8974 CCState State(FI); 8975 // ARC uses 8 registers to pass arguments. 8976 State.FreeRegs = 8; 8977 8978 if (!getCXXABI().classifyReturnType(FI)) 8979 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8980 updateState(FI.getReturnInfo(), FI.getReturnType(), State); 8981 for (auto &I : FI.arguments()) { 8982 I.info = classifyArgumentType(I.type, State.FreeRegs); 8983 updateState(I.info, I.type, State); 8984 } 8985 } 8986 8987 ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const; 8988 ABIArgInfo getIndirectByValue(QualType Ty) const; 8989 ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const; 8990 ABIArgInfo classifyReturnType(QualType RetTy) const; 8991 }; 8992 8993 class ARCTargetCodeGenInfo : public TargetCodeGenInfo { 8994 public: 8995 ARCTargetCodeGenInfo(CodeGenTypes &CGT) 8996 : TargetCodeGenInfo(new ARCABIInfo(CGT)) {} 8997 }; 8998 8999 9000 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const { 9001 return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) : 9002 getNaturalAlignIndirect(Ty, false); 9003 } 9004 9005 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const { 9006 // Compute the byval alignment. 9007 const unsigned MinABIStackAlignInBytes = 4; 9008 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 9009 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 9010 TypeAlign > MinABIStackAlignInBytes); 9011 } 9012 9013 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9014 QualType Ty) const { 9015 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 9016 getContext().getTypeInfoInChars(Ty), 9017 CharUnits::fromQuantity(4), true); 9018 } 9019 9020 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty, 9021 uint8_t FreeRegs) const { 9022 // Handle the generic C++ ABI. 9023 const RecordType *RT = Ty->getAs<RecordType>(); 9024 if (RT) { 9025 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 9026 if (RAA == CGCXXABI::RAA_Indirect) 9027 return getIndirectByRef(Ty, FreeRegs > 0); 9028 9029 if (RAA == CGCXXABI::RAA_DirectInMemory) 9030 return getIndirectByValue(Ty); 9031 } 9032 9033 // Treat an enum type as its underlying type. 9034 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 9035 Ty = EnumTy->getDecl()->getIntegerType(); 9036 9037 auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32; 9038 9039 if (isAggregateTypeForABI(Ty)) { 9040 // Structures with flexible arrays are always indirect. 9041 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 9042 return getIndirectByValue(Ty); 9043 9044 // Ignore empty structs/unions. 9045 if (isEmptyRecord(getContext(), Ty, true)) 9046 return ABIArgInfo::getIgnore(); 9047 9048 llvm::LLVMContext &LLVMContext = getVMContext(); 9049 9050 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 9051 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 9052 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 9053 9054 return FreeRegs >= SizeInRegs ? 9055 ABIArgInfo::getDirectInReg(Result) : 9056 ABIArgInfo::getDirect(Result, 0, nullptr, false); 9057 } 9058 9059 return Ty->isPromotableIntegerType() ? 9060 (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty) : 9061 ABIArgInfo::getExtend(Ty)) : 9062 (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg() : 9063 ABIArgInfo::getDirect()); 9064 } 9065 9066 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const { 9067 if (RetTy->isAnyComplexType()) 9068 return ABIArgInfo::getDirectInReg(); 9069 9070 // Arguments of size > 4 registers are indirect. 9071 auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32; 9072 if (RetSize > 4) 9073 return getIndirectByRef(RetTy, /*HasFreeRegs*/ true); 9074 9075 return DefaultABIInfo::classifyReturnType(RetTy); 9076 } 9077 9078 } // End anonymous namespace. 9079 9080 //===----------------------------------------------------------------------===// 9081 // XCore ABI Implementation 9082 //===----------------------------------------------------------------------===// 9083 9084 namespace { 9085 9086 /// A SmallStringEnc instance is used to build up the TypeString by passing 9087 /// it by reference between functions that append to it. 9088 typedef llvm::SmallString<128> SmallStringEnc; 9089 9090 /// TypeStringCache caches the meta encodings of Types. 9091 /// 9092 /// The reason for caching TypeStrings is two fold: 9093 /// 1. To cache a type's encoding for later uses; 9094 /// 2. As a means to break recursive member type inclusion. 9095 /// 9096 /// A cache Entry can have a Status of: 9097 /// NonRecursive: The type encoding is not recursive; 9098 /// Recursive: The type encoding is recursive; 9099 /// Incomplete: An incomplete TypeString; 9100 /// IncompleteUsed: An incomplete TypeString that has been used in a 9101 /// Recursive type encoding. 9102 /// 9103 /// A NonRecursive entry will have all of its sub-members expanded as fully 9104 /// as possible. Whilst it may contain types which are recursive, the type 9105 /// itself is not recursive and thus its encoding may be safely used whenever 9106 /// the type is encountered. 9107 /// 9108 /// A Recursive entry will have all of its sub-members expanded as fully as 9109 /// possible. The type itself is recursive and it may contain other types which 9110 /// are recursive. The Recursive encoding must not be used during the expansion 9111 /// of a recursive type's recursive branch. For simplicity the code uses 9112 /// IncompleteCount to reject all usage of Recursive encodings for member types. 9113 /// 9114 /// An Incomplete entry is always a RecordType and only encodes its 9115 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 9116 /// are placed into the cache during type expansion as a means to identify and 9117 /// handle recursive inclusion of types as sub-members. If there is recursion 9118 /// the entry becomes IncompleteUsed. 9119 /// 9120 /// During the expansion of a RecordType's members: 9121 /// 9122 /// If the cache contains a NonRecursive encoding for the member type, the 9123 /// cached encoding is used; 9124 /// 9125 /// If the cache contains a Recursive encoding for the member type, the 9126 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 9127 /// 9128 /// If the member is a RecordType, an Incomplete encoding is placed into the 9129 /// cache to break potential recursive inclusion of itself as a sub-member; 9130 /// 9131 /// Once a member RecordType has been expanded, its temporary incomplete 9132 /// entry is removed from the cache. If a Recursive encoding was swapped out 9133 /// it is swapped back in; 9134 /// 9135 /// If an incomplete entry is used to expand a sub-member, the incomplete 9136 /// entry is marked as IncompleteUsed. The cache keeps count of how many 9137 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 9138 /// 9139 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 9140 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 9141 /// Else the member is part of a recursive type and thus the recursion has 9142 /// been exited too soon for the encoding to be correct for the member. 9143 /// 9144 class TypeStringCache { 9145 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 9146 struct Entry { 9147 std::string Str; // The encoded TypeString for the type. 9148 enum Status State; // Information about the encoding in 'Str'. 9149 std::string Swapped; // A temporary place holder for a Recursive encoding 9150 // during the expansion of RecordType's members. 9151 }; 9152 std::map<const IdentifierInfo *, struct Entry> Map; 9153 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 9154 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 9155 public: 9156 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {} 9157 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 9158 bool removeIncomplete(const IdentifierInfo *ID); 9159 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 9160 bool IsRecursive); 9161 StringRef lookupStr(const IdentifierInfo *ID); 9162 }; 9163 9164 /// TypeString encodings for enum & union fields must be order. 9165 /// FieldEncoding is a helper for this ordering process. 9166 class FieldEncoding { 9167 bool HasName; 9168 std::string Enc; 9169 public: 9170 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {} 9171 StringRef str() { return Enc; } 9172 bool operator<(const FieldEncoding &rhs) const { 9173 if (HasName != rhs.HasName) return HasName; 9174 return Enc < rhs.Enc; 9175 } 9176 }; 9177 9178 class XCoreABIInfo : public DefaultABIInfo { 9179 public: 9180 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 9181 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9182 QualType Ty) const override; 9183 }; 9184 9185 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 9186 mutable TypeStringCache TSC; 9187 public: 9188 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 9189 :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {} 9190 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 9191 CodeGen::CodeGenModule &M) const override; 9192 }; 9193 9194 } // End anonymous namespace. 9195 9196 // TODO: this implementation is likely now redundant with the default 9197 // EmitVAArg. 9198 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9199 QualType Ty) const { 9200 CGBuilderTy &Builder = CGF.Builder; 9201 9202 // Get the VAList. 9203 CharUnits SlotSize = CharUnits::fromQuantity(4); 9204 Address AP(Builder.CreateLoad(VAListAddr), SlotSize); 9205 9206 // Handle the argument. 9207 ABIArgInfo AI = classifyArgumentType(Ty); 9208 CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty); 9209 llvm::Type *ArgTy = CGT.ConvertType(Ty); 9210 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 9211 AI.setCoerceToType(ArgTy); 9212 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 9213 9214 Address Val = Address::invalid(); 9215 CharUnits ArgSize = CharUnits::Zero(); 9216 switch (AI.getKind()) { 9217 case ABIArgInfo::Expand: 9218 case ABIArgInfo::CoerceAndExpand: 9219 case ABIArgInfo::InAlloca: 9220 llvm_unreachable("Unsupported ABI kind for va_arg"); 9221 case ABIArgInfo::Ignore: 9222 Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign); 9223 ArgSize = CharUnits::Zero(); 9224 break; 9225 case ABIArgInfo::Extend: 9226 case ABIArgInfo::Direct: 9227 Val = Builder.CreateBitCast(AP, ArgPtrTy); 9228 ArgSize = CharUnits::fromQuantity( 9229 getDataLayout().getTypeAllocSize(AI.getCoerceToType())); 9230 ArgSize = ArgSize.alignTo(SlotSize); 9231 break; 9232 case ABIArgInfo::Indirect: 9233 Val = Builder.CreateElementBitCast(AP, ArgPtrTy); 9234 Val = Address(Builder.CreateLoad(Val), TypeAlign); 9235 ArgSize = SlotSize; 9236 break; 9237 } 9238 9239 // Increment the VAList. 9240 if (!ArgSize.isZero()) { 9241 Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize); 9242 Builder.CreateStore(APN.getPointer(), VAListAddr); 9243 } 9244 9245 return Val; 9246 } 9247 9248 /// During the expansion of a RecordType, an incomplete TypeString is placed 9249 /// into the cache as a means to identify and break recursion. 9250 /// If there is a Recursive encoding in the cache, it is swapped out and will 9251 /// be reinserted by removeIncomplete(). 9252 /// All other types of encoding should have been used rather than arriving here. 9253 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 9254 std::string StubEnc) { 9255 if (!ID) 9256 return; 9257 Entry &E = Map[ID]; 9258 assert( (E.Str.empty() || E.State == Recursive) && 9259 "Incorrectly use of addIncomplete"); 9260 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 9261 E.Swapped.swap(E.Str); // swap out the Recursive 9262 E.Str.swap(StubEnc); 9263 E.State = Incomplete; 9264 ++IncompleteCount; 9265 } 9266 9267 /// Once the RecordType has been expanded, the temporary incomplete TypeString 9268 /// must be removed from the cache. 9269 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 9270 /// Returns true if the RecordType was defined recursively. 9271 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 9272 if (!ID) 9273 return false; 9274 auto I = Map.find(ID); 9275 assert(I != Map.end() && "Entry not present"); 9276 Entry &E = I->second; 9277 assert( (E.State == Incomplete || 9278 E.State == IncompleteUsed) && 9279 "Entry must be an incomplete type"); 9280 bool IsRecursive = false; 9281 if (E.State == IncompleteUsed) { 9282 // We made use of our Incomplete encoding, thus we are recursive. 9283 IsRecursive = true; 9284 --IncompleteUsedCount; 9285 } 9286 if (E.Swapped.empty()) 9287 Map.erase(I); 9288 else { 9289 // Swap the Recursive back. 9290 E.Swapped.swap(E.Str); 9291 E.Swapped.clear(); 9292 E.State = Recursive; 9293 } 9294 --IncompleteCount; 9295 return IsRecursive; 9296 } 9297 9298 /// Add the encoded TypeString to the cache only if it is NonRecursive or 9299 /// Recursive (viz: all sub-members were expanded as fully as possible). 9300 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 9301 bool IsRecursive) { 9302 if (!ID || IncompleteUsedCount) 9303 return; // No key or it is is an incomplete sub-type so don't add. 9304 Entry &E = Map[ID]; 9305 if (IsRecursive && !E.Str.empty()) { 9306 assert(E.State==Recursive && E.Str.size() == Str.size() && 9307 "This is not the same Recursive entry"); 9308 // The parent container was not recursive after all, so we could have used 9309 // this Recursive sub-member entry after all, but we assumed the worse when 9310 // we started viz: IncompleteCount!=0. 9311 return; 9312 } 9313 assert(E.Str.empty() && "Entry already present"); 9314 E.Str = Str.str(); 9315 E.State = IsRecursive? Recursive : NonRecursive; 9316 } 9317 9318 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 9319 /// are recursively expanding a type (IncompleteCount != 0) and the cached 9320 /// encoding is Recursive, return an empty StringRef. 9321 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 9322 if (!ID) 9323 return StringRef(); // We have no key. 9324 auto I = Map.find(ID); 9325 if (I == Map.end()) 9326 return StringRef(); // We have no encoding. 9327 Entry &E = I->second; 9328 if (E.State == Recursive && IncompleteCount) 9329 return StringRef(); // We don't use Recursive encodings for member types. 9330 9331 if (E.State == Incomplete) { 9332 // The incomplete type is being used to break out of recursion. 9333 E.State = IncompleteUsed; 9334 ++IncompleteUsedCount; 9335 } 9336 return E.Str; 9337 } 9338 9339 /// The XCore ABI includes a type information section that communicates symbol 9340 /// type information to the linker. The linker uses this information to verify 9341 /// safety/correctness of things such as array bound and pointers et al. 9342 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 9343 /// This type information (TypeString) is emitted into meta data for all global 9344 /// symbols: definitions, declarations, functions & variables. 9345 /// 9346 /// The TypeString carries type, qualifier, name, size & value details. 9347 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 9348 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf 9349 /// The output is tested by test/CodeGen/xcore-stringtype.c. 9350 /// 9351 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 9352 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC); 9353 9354 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 9355 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 9356 CodeGen::CodeGenModule &CGM) const { 9357 SmallStringEnc Enc; 9358 if (getTypeString(Enc, D, CGM, TSC)) { 9359 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 9360 llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV), 9361 llvm::MDString::get(Ctx, Enc.str())}; 9362 llvm::NamedMDNode *MD = 9363 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 9364 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 9365 } 9366 } 9367 9368 //===----------------------------------------------------------------------===// 9369 // SPIR ABI Implementation 9370 //===----------------------------------------------------------------------===// 9371 9372 namespace { 9373 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo { 9374 public: 9375 SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 9376 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 9377 unsigned getOpenCLKernelCallingConv() const override; 9378 }; 9379 9380 } // End anonymous namespace. 9381 9382 namespace clang { 9383 namespace CodeGen { 9384 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) { 9385 DefaultABIInfo SPIRABI(CGM.getTypes()); 9386 SPIRABI.computeInfo(FI); 9387 } 9388 } 9389 } 9390 9391 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 9392 return llvm::CallingConv::SPIR_KERNEL; 9393 } 9394 9395 static bool appendType(SmallStringEnc &Enc, QualType QType, 9396 const CodeGen::CodeGenModule &CGM, 9397 TypeStringCache &TSC); 9398 9399 /// Helper function for appendRecordType(). 9400 /// Builds a SmallVector containing the encoded field types in declaration 9401 /// order. 9402 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 9403 const RecordDecl *RD, 9404 const CodeGen::CodeGenModule &CGM, 9405 TypeStringCache &TSC) { 9406 for (const auto *Field : RD->fields()) { 9407 SmallStringEnc Enc; 9408 Enc += "m("; 9409 Enc += Field->getName(); 9410 Enc += "){"; 9411 if (Field->isBitField()) { 9412 Enc += "b("; 9413 llvm::raw_svector_ostream OS(Enc); 9414 OS << Field->getBitWidthValue(CGM.getContext()); 9415 Enc += ':'; 9416 } 9417 if (!appendType(Enc, Field->getType(), CGM, TSC)) 9418 return false; 9419 if (Field->isBitField()) 9420 Enc += ')'; 9421 Enc += '}'; 9422 FE.emplace_back(!Field->getName().empty(), Enc); 9423 } 9424 return true; 9425 } 9426 9427 /// Appends structure and union types to Enc and adds encoding to cache. 9428 /// Recursively calls appendType (via extractFieldType) for each field. 9429 /// Union types have their fields ordered according to the ABI. 9430 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 9431 const CodeGen::CodeGenModule &CGM, 9432 TypeStringCache &TSC, const IdentifierInfo *ID) { 9433 // Append the cached TypeString if we have one. 9434 StringRef TypeString = TSC.lookupStr(ID); 9435 if (!TypeString.empty()) { 9436 Enc += TypeString; 9437 return true; 9438 } 9439 9440 // Start to emit an incomplete TypeString. 9441 size_t Start = Enc.size(); 9442 Enc += (RT->isUnionType()? 'u' : 's'); 9443 Enc += '('; 9444 if (ID) 9445 Enc += ID->getName(); 9446 Enc += "){"; 9447 9448 // We collect all encoded fields and order as necessary. 9449 bool IsRecursive = false; 9450 const RecordDecl *RD = RT->getDecl()->getDefinition(); 9451 if (RD && !RD->field_empty()) { 9452 // An incomplete TypeString stub is placed in the cache for this RecordType 9453 // so that recursive calls to this RecordType will use it whilst building a 9454 // complete TypeString for this RecordType. 9455 SmallVector<FieldEncoding, 16> FE; 9456 std::string StubEnc(Enc.substr(Start).str()); 9457 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 9458 TSC.addIncomplete(ID, std::move(StubEnc)); 9459 if (!extractFieldType(FE, RD, CGM, TSC)) { 9460 (void) TSC.removeIncomplete(ID); 9461 return false; 9462 } 9463 IsRecursive = TSC.removeIncomplete(ID); 9464 // The ABI requires unions to be sorted but not structures. 9465 // See FieldEncoding::operator< for sort algorithm. 9466 if (RT->isUnionType()) 9467 llvm::sort(FE); 9468 // We can now complete the TypeString. 9469 unsigned E = FE.size(); 9470 for (unsigned I = 0; I != E; ++I) { 9471 if (I) 9472 Enc += ','; 9473 Enc += FE[I].str(); 9474 } 9475 } 9476 Enc += '}'; 9477 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 9478 return true; 9479 } 9480 9481 /// Appends enum types to Enc and adds the encoding to the cache. 9482 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 9483 TypeStringCache &TSC, 9484 const IdentifierInfo *ID) { 9485 // Append the cached TypeString if we have one. 9486 StringRef TypeString = TSC.lookupStr(ID); 9487 if (!TypeString.empty()) { 9488 Enc += TypeString; 9489 return true; 9490 } 9491 9492 size_t Start = Enc.size(); 9493 Enc += "e("; 9494 if (ID) 9495 Enc += ID->getName(); 9496 Enc += "){"; 9497 9498 // We collect all encoded enumerations and order them alphanumerically. 9499 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 9500 SmallVector<FieldEncoding, 16> FE; 9501 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 9502 ++I) { 9503 SmallStringEnc EnumEnc; 9504 EnumEnc += "m("; 9505 EnumEnc += I->getName(); 9506 EnumEnc += "){"; 9507 I->getInitVal().toString(EnumEnc); 9508 EnumEnc += '}'; 9509 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 9510 } 9511 llvm::sort(FE); 9512 unsigned E = FE.size(); 9513 for (unsigned I = 0; I != E; ++I) { 9514 if (I) 9515 Enc += ','; 9516 Enc += FE[I].str(); 9517 } 9518 } 9519 Enc += '}'; 9520 TSC.addIfComplete(ID, Enc.substr(Start), false); 9521 return true; 9522 } 9523 9524 /// Appends type's qualifier to Enc. 9525 /// This is done prior to appending the type's encoding. 9526 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 9527 // Qualifiers are emitted in alphabetical order. 9528 static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 9529 int Lookup = 0; 9530 if (QT.isConstQualified()) 9531 Lookup += 1<<0; 9532 if (QT.isRestrictQualified()) 9533 Lookup += 1<<1; 9534 if (QT.isVolatileQualified()) 9535 Lookup += 1<<2; 9536 Enc += Table[Lookup]; 9537 } 9538 9539 /// Appends built-in types to Enc. 9540 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 9541 const char *EncType; 9542 switch (BT->getKind()) { 9543 case BuiltinType::Void: 9544 EncType = "0"; 9545 break; 9546 case BuiltinType::Bool: 9547 EncType = "b"; 9548 break; 9549 case BuiltinType::Char_U: 9550 EncType = "uc"; 9551 break; 9552 case BuiltinType::UChar: 9553 EncType = "uc"; 9554 break; 9555 case BuiltinType::SChar: 9556 EncType = "sc"; 9557 break; 9558 case BuiltinType::UShort: 9559 EncType = "us"; 9560 break; 9561 case BuiltinType::Short: 9562 EncType = "ss"; 9563 break; 9564 case BuiltinType::UInt: 9565 EncType = "ui"; 9566 break; 9567 case BuiltinType::Int: 9568 EncType = "si"; 9569 break; 9570 case BuiltinType::ULong: 9571 EncType = "ul"; 9572 break; 9573 case BuiltinType::Long: 9574 EncType = "sl"; 9575 break; 9576 case BuiltinType::ULongLong: 9577 EncType = "ull"; 9578 break; 9579 case BuiltinType::LongLong: 9580 EncType = "sll"; 9581 break; 9582 case BuiltinType::Float: 9583 EncType = "ft"; 9584 break; 9585 case BuiltinType::Double: 9586 EncType = "d"; 9587 break; 9588 case BuiltinType::LongDouble: 9589 EncType = "ld"; 9590 break; 9591 default: 9592 return false; 9593 } 9594 Enc += EncType; 9595 return true; 9596 } 9597 9598 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 9599 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 9600 const CodeGen::CodeGenModule &CGM, 9601 TypeStringCache &TSC) { 9602 Enc += "p("; 9603 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 9604 return false; 9605 Enc += ')'; 9606 return true; 9607 } 9608 9609 /// Appends array encoding to Enc before calling appendType for the element. 9610 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 9611 const ArrayType *AT, 9612 const CodeGen::CodeGenModule &CGM, 9613 TypeStringCache &TSC, StringRef NoSizeEnc) { 9614 if (AT->getSizeModifier() != ArrayType::Normal) 9615 return false; 9616 Enc += "a("; 9617 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 9618 CAT->getSize().toStringUnsigned(Enc); 9619 else 9620 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 9621 Enc += ':'; 9622 // The Qualifiers should be attached to the type rather than the array. 9623 appendQualifier(Enc, QT); 9624 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 9625 return false; 9626 Enc += ')'; 9627 return true; 9628 } 9629 9630 /// Appends a function encoding to Enc, calling appendType for the return type 9631 /// and the arguments. 9632 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 9633 const CodeGen::CodeGenModule &CGM, 9634 TypeStringCache &TSC) { 9635 Enc += "f{"; 9636 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 9637 return false; 9638 Enc += "}("; 9639 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 9640 // N.B. we are only interested in the adjusted param types. 9641 auto I = FPT->param_type_begin(); 9642 auto E = FPT->param_type_end(); 9643 if (I != E) { 9644 do { 9645 if (!appendType(Enc, *I, CGM, TSC)) 9646 return false; 9647 ++I; 9648 if (I != E) 9649 Enc += ','; 9650 } while (I != E); 9651 if (FPT->isVariadic()) 9652 Enc += ",va"; 9653 } else { 9654 if (FPT->isVariadic()) 9655 Enc += "va"; 9656 else 9657 Enc += '0'; 9658 } 9659 } 9660 Enc += ')'; 9661 return true; 9662 } 9663 9664 /// Handles the type's qualifier before dispatching a call to handle specific 9665 /// type encodings. 9666 static bool appendType(SmallStringEnc &Enc, QualType QType, 9667 const CodeGen::CodeGenModule &CGM, 9668 TypeStringCache &TSC) { 9669 9670 QualType QT = QType.getCanonicalType(); 9671 9672 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 9673 // The Qualifiers should be attached to the type rather than the array. 9674 // Thus we don't call appendQualifier() here. 9675 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 9676 9677 appendQualifier(Enc, QT); 9678 9679 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 9680 return appendBuiltinType(Enc, BT); 9681 9682 if (const PointerType *PT = QT->getAs<PointerType>()) 9683 return appendPointerType(Enc, PT, CGM, TSC); 9684 9685 if (const EnumType *ET = QT->getAs<EnumType>()) 9686 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 9687 9688 if (const RecordType *RT = QT->getAsStructureType()) 9689 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 9690 9691 if (const RecordType *RT = QT->getAsUnionType()) 9692 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 9693 9694 if (const FunctionType *FT = QT->getAs<FunctionType>()) 9695 return appendFunctionType(Enc, FT, CGM, TSC); 9696 9697 return false; 9698 } 9699 9700 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 9701 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) { 9702 if (!D) 9703 return false; 9704 9705 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 9706 if (FD->getLanguageLinkage() != CLanguageLinkage) 9707 return false; 9708 return appendType(Enc, FD->getType(), CGM, TSC); 9709 } 9710 9711 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 9712 if (VD->getLanguageLinkage() != CLanguageLinkage) 9713 return false; 9714 QualType QT = VD->getType().getCanonicalType(); 9715 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 9716 // Global ArrayTypes are given a size of '*' if the size is unknown. 9717 // The Qualifiers should be attached to the type rather than the array. 9718 // Thus we don't call appendQualifier() here. 9719 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 9720 } 9721 return appendType(Enc, QT, CGM, TSC); 9722 } 9723 return false; 9724 } 9725 9726 //===----------------------------------------------------------------------===// 9727 // RISCV ABI Implementation 9728 //===----------------------------------------------------------------------===// 9729 9730 namespace { 9731 class RISCVABIInfo : public DefaultABIInfo { 9732 private: 9733 // Size of the integer ('x') registers in bits. 9734 unsigned XLen; 9735 // Size of the floating point ('f') registers in bits. Note that the target 9736 // ISA might have a wider FLen than the selected ABI (e.g. an RV32IF target 9737 // with soft float ABI has FLen==0). 9738 unsigned FLen; 9739 static const int NumArgGPRs = 8; 9740 static const int NumArgFPRs = 8; 9741 bool detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, 9742 llvm::Type *&Field1Ty, 9743 CharUnits &Field1Off, 9744 llvm::Type *&Field2Ty, 9745 CharUnits &Field2Off) const; 9746 9747 public: 9748 RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen) 9749 : DefaultABIInfo(CGT), XLen(XLen), FLen(FLen) {} 9750 9751 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 9752 // non-virtual, but computeInfo is virtual, so we overload it. 9753 void computeInfo(CGFunctionInfo &FI) const override; 9754 9755 ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &ArgGPRsLeft, 9756 int &ArgFPRsLeft) const; 9757 ABIArgInfo classifyReturnType(QualType RetTy) const; 9758 9759 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9760 QualType Ty) const override; 9761 9762 ABIArgInfo extendType(QualType Ty) const; 9763 9764 bool detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, 9765 CharUnits &Field1Off, llvm::Type *&Field2Ty, 9766 CharUnits &Field2Off, int &NeededArgGPRs, 9767 int &NeededArgFPRs) const; 9768 ABIArgInfo coerceAndExpandFPCCEligibleStruct(llvm::Type *Field1Ty, 9769 CharUnits Field1Off, 9770 llvm::Type *Field2Ty, 9771 CharUnits Field2Off) const; 9772 }; 9773 } // end anonymous namespace 9774 9775 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const { 9776 QualType RetTy = FI.getReturnType(); 9777 if (!getCXXABI().classifyReturnType(FI)) 9778 FI.getReturnInfo() = classifyReturnType(RetTy); 9779 9780 // IsRetIndirect is true if classifyArgumentType indicated the value should 9781 // be passed indirect, or if the type size is a scalar greater than 2*XLen 9782 // and not a complex type with elements <= FLen. e.g. fp128 is passed direct 9783 // in LLVM IR, relying on the backend lowering code to rewrite the argument 9784 // list and pass indirectly on RV32. 9785 bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect; 9786 if (!IsRetIndirect && RetTy->isScalarType() && 9787 getContext().getTypeSize(RetTy) > (2 * XLen)) { 9788 if (RetTy->isComplexType() && FLen) { 9789 QualType EltTy = RetTy->getAs<ComplexType>()->getElementType(); 9790 IsRetIndirect = getContext().getTypeSize(EltTy) > FLen; 9791 } else { 9792 // This is a normal scalar > 2*XLen, such as fp128 on RV32. 9793 IsRetIndirect = true; 9794 } 9795 } 9796 9797 // We must track the number of GPRs used in order to conform to the RISC-V 9798 // ABI, as integer scalars passed in registers should have signext/zeroext 9799 // when promoted, but are anyext if passed on the stack. As GPR usage is 9800 // different for variadic arguments, we must also track whether we are 9801 // examining a vararg or not. 9802 int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs; 9803 int ArgFPRsLeft = FLen ? NumArgFPRs : 0; 9804 int NumFixedArgs = FI.getNumRequiredArgs(); 9805 9806 int ArgNum = 0; 9807 for (auto &ArgInfo : FI.arguments()) { 9808 bool IsFixed = ArgNum < NumFixedArgs; 9809 ArgInfo.info = 9810 classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft, ArgFPRsLeft); 9811 ArgNum++; 9812 } 9813 } 9814 9815 // Returns true if the struct is a potential candidate for the floating point 9816 // calling convention. If this function returns true, the caller is 9817 // responsible for checking that if there is only a single field then that 9818 // field is a float. 9819 bool RISCVABIInfo::detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, 9820 llvm::Type *&Field1Ty, 9821 CharUnits &Field1Off, 9822 llvm::Type *&Field2Ty, 9823 CharUnits &Field2Off) const { 9824 bool IsInt = Ty->isIntegralOrEnumerationType(); 9825 bool IsFloat = Ty->isRealFloatingType(); 9826 9827 if (IsInt || IsFloat) { 9828 uint64_t Size = getContext().getTypeSize(Ty); 9829 if (IsInt && Size > XLen) 9830 return false; 9831 // Can't be eligible if larger than the FP registers. Half precision isn't 9832 // currently supported on RISC-V and the ABI hasn't been confirmed, so 9833 // default to the integer ABI in that case. 9834 if (IsFloat && (Size > FLen || Size < 32)) 9835 return false; 9836 // Can't be eligible if an integer type was already found (int+int pairs 9837 // are not eligible). 9838 if (IsInt && Field1Ty && Field1Ty->isIntegerTy()) 9839 return false; 9840 if (!Field1Ty) { 9841 Field1Ty = CGT.ConvertType(Ty); 9842 Field1Off = CurOff; 9843 return true; 9844 } 9845 if (!Field2Ty) { 9846 Field2Ty = CGT.ConvertType(Ty); 9847 Field2Off = CurOff; 9848 return true; 9849 } 9850 return false; 9851 } 9852 9853 if (auto CTy = Ty->getAs<ComplexType>()) { 9854 if (Field1Ty) 9855 return false; 9856 QualType EltTy = CTy->getElementType(); 9857 if (getContext().getTypeSize(EltTy) > FLen) 9858 return false; 9859 Field1Ty = CGT.ConvertType(EltTy); 9860 Field1Off = CurOff; 9861 assert(CurOff.isZero() && "Unexpected offset for first field"); 9862 Field2Ty = Field1Ty; 9863 Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy); 9864 return true; 9865 } 9866 9867 if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) { 9868 uint64_t ArraySize = ATy->getSize().getZExtValue(); 9869 QualType EltTy = ATy->getElementType(); 9870 CharUnits EltSize = getContext().getTypeSizeInChars(EltTy); 9871 for (uint64_t i = 0; i < ArraySize; ++i) { 9872 bool Ret = detectFPCCEligibleStructHelper(EltTy, CurOff, Field1Ty, 9873 Field1Off, Field2Ty, Field2Off); 9874 if (!Ret) 9875 return false; 9876 CurOff += EltSize; 9877 } 9878 return true; 9879 } 9880 9881 if (const auto *RTy = Ty->getAs<RecordType>()) { 9882 // Structures with either a non-trivial destructor or a non-trivial 9883 // copy constructor are not eligible for the FP calling convention. 9884 if (getRecordArgABI(Ty, CGT.getCXXABI())) 9885 return false; 9886 if (isEmptyRecord(getContext(), Ty, true)) 9887 return true; 9888 const RecordDecl *RD = RTy->getDecl(); 9889 // Unions aren't eligible unless they're empty (which is caught above). 9890 if (RD->isUnion()) 9891 return false; 9892 int ZeroWidthBitFieldCount = 0; 9893 for (const FieldDecl *FD : RD->fields()) { 9894 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 9895 uint64_t FieldOffInBits = Layout.getFieldOffset(FD->getFieldIndex()); 9896 QualType QTy = FD->getType(); 9897 if (FD->isBitField()) { 9898 unsigned BitWidth = FD->getBitWidthValue(getContext()); 9899 // Allow a bitfield with a type greater than XLen as long as the 9900 // bitwidth is XLen or less. 9901 if (getContext().getTypeSize(QTy) > XLen && BitWidth <= XLen) 9902 QTy = getContext().getIntTypeForBitwidth(XLen, false); 9903 if (BitWidth == 0) { 9904 ZeroWidthBitFieldCount++; 9905 continue; 9906 } 9907 } 9908 9909 bool Ret = detectFPCCEligibleStructHelper( 9910 QTy, CurOff + getContext().toCharUnitsFromBits(FieldOffInBits), 9911 Field1Ty, Field1Off, Field2Ty, Field2Off); 9912 if (!Ret) 9913 return false; 9914 9915 // As a quirk of the ABI, zero-width bitfields aren't ignored for fp+fp 9916 // or int+fp structs, but are ignored for a struct with an fp field and 9917 // any number of zero-width bitfields. 9918 if (Field2Ty && ZeroWidthBitFieldCount > 0) 9919 return false; 9920 } 9921 return Field1Ty != nullptr; 9922 } 9923 9924 return false; 9925 } 9926 9927 // Determine if a struct is eligible for passing according to the floating 9928 // point calling convention (i.e., when flattened it contains a single fp 9929 // value, fp+fp, or int+fp of appropriate size). If so, NeededArgFPRs and 9930 // NeededArgGPRs are incremented appropriately. 9931 bool RISCVABIInfo::detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, 9932 CharUnits &Field1Off, 9933 llvm::Type *&Field2Ty, 9934 CharUnits &Field2Off, 9935 int &NeededArgGPRs, 9936 int &NeededArgFPRs) const { 9937 Field1Ty = nullptr; 9938 Field2Ty = nullptr; 9939 NeededArgGPRs = 0; 9940 NeededArgFPRs = 0; 9941 bool IsCandidate = detectFPCCEligibleStructHelper( 9942 Ty, CharUnits::Zero(), Field1Ty, Field1Off, Field2Ty, Field2Off); 9943 // Not really a candidate if we have a single int but no float. 9944 if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy()) 9945 return false; 9946 if (!IsCandidate) 9947 return false; 9948 if (Field1Ty && Field1Ty->isFloatingPointTy()) 9949 NeededArgFPRs++; 9950 else if (Field1Ty) 9951 NeededArgGPRs++; 9952 if (Field2Ty && Field2Ty->isFloatingPointTy()) 9953 NeededArgFPRs++; 9954 else if (Field2Ty) 9955 NeededArgGPRs++; 9956 return IsCandidate; 9957 } 9958 9959 // Call getCoerceAndExpand for the two-element flattened struct described by 9960 // Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an 9961 // appropriate coerceToType and unpaddedCoerceToType. 9962 ABIArgInfo RISCVABIInfo::coerceAndExpandFPCCEligibleStruct( 9963 llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty, 9964 CharUnits Field2Off) const { 9965 SmallVector<llvm::Type *, 3> CoerceElts; 9966 SmallVector<llvm::Type *, 2> UnpaddedCoerceElts; 9967 if (!Field1Off.isZero()) 9968 CoerceElts.push_back(llvm::ArrayType::get( 9969 llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity())); 9970 9971 CoerceElts.push_back(Field1Ty); 9972 UnpaddedCoerceElts.push_back(Field1Ty); 9973 9974 if (!Field2Ty) { 9975 return ABIArgInfo::getCoerceAndExpand( 9976 llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()), 9977 UnpaddedCoerceElts[0]); 9978 } 9979 9980 CharUnits Field2Align = 9981 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(Field2Ty)); 9982 CharUnits Field1Size = 9983 CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty)); 9984 CharUnits Field2OffNoPadNoPack = Field1Size.alignTo(Field2Align); 9985 9986 CharUnits Padding = CharUnits::Zero(); 9987 if (Field2Off > Field2OffNoPadNoPack) 9988 Padding = Field2Off - Field2OffNoPadNoPack; 9989 else if (Field2Off != Field2Align && Field2Off > Field1Size) 9990 Padding = Field2Off - Field1Size; 9991 9992 bool IsPacked = !Field2Off.isMultipleOf(Field2Align); 9993 9994 if (!Padding.isZero()) 9995 CoerceElts.push_back(llvm::ArrayType::get( 9996 llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity())); 9997 9998 CoerceElts.push_back(Field2Ty); 9999 UnpaddedCoerceElts.push_back(Field2Ty); 10000 10001 auto CoerceToType = 10002 llvm::StructType::get(getVMContext(), CoerceElts, IsPacked); 10003 auto UnpaddedCoerceToType = 10004 llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked); 10005 10006 return ABIArgInfo::getCoerceAndExpand(CoerceToType, UnpaddedCoerceToType); 10007 } 10008 10009 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed, 10010 int &ArgGPRsLeft, 10011 int &ArgFPRsLeft) const { 10012 assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow"); 10013 Ty = useFirstFieldIfTransparentUnion(Ty); 10014 10015 // Structures with either a non-trivial destructor or a non-trivial 10016 // copy constructor are always passed indirectly. 10017 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 10018 if (ArgGPRsLeft) 10019 ArgGPRsLeft -= 1; 10020 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 10021 CGCXXABI::RAA_DirectInMemory); 10022 } 10023 10024 // Ignore empty structs/unions. 10025 if (isEmptyRecord(getContext(), Ty, true)) 10026 return ABIArgInfo::getIgnore(); 10027 10028 uint64_t Size = getContext().getTypeSize(Ty); 10029 10030 // Pass floating point values via FPRs if possible. 10031 if (IsFixed && Ty->isFloatingType() && FLen >= Size && ArgFPRsLeft) { 10032 ArgFPRsLeft--; 10033 return ABIArgInfo::getDirect(); 10034 } 10035 10036 // Complex types for the hard float ABI must be passed direct rather than 10037 // using CoerceAndExpand. 10038 if (IsFixed && Ty->isComplexType() && FLen && ArgFPRsLeft >= 2) { 10039 QualType EltTy = Ty->castAs<ComplexType>()->getElementType(); 10040 if (getContext().getTypeSize(EltTy) <= FLen) { 10041 ArgFPRsLeft -= 2; 10042 return ABIArgInfo::getDirect(); 10043 } 10044 } 10045 10046 if (IsFixed && FLen && Ty->isStructureOrClassType()) { 10047 llvm::Type *Field1Ty = nullptr; 10048 llvm::Type *Field2Ty = nullptr; 10049 CharUnits Field1Off = CharUnits::Zero(); 10050 CharUnits Field2Off = CharUnits::Zero(); 10051 int NeededArgGPRs; 10052 int NeededArgFPRs; 10053 bool IsCandidate = 10054 detectFPCCEligibleStruct(Ty, Field1Ty, Field1Off, Field2Ty, Field2Off, 10055 NeededArgGPRs, NeededArgFPRs); 10056 if (IsCandidate && NeededArgGPRs <= ArgGPRsLeft && 10057 NeededArgFPRs <= ArgFPRsLeft) { 10058 ArgGPRsLeft -= NeededArgGPRs; 10059 ArgFPRsLeft -= NeededArgFPRs; 10060 return coerceAndExpandFPCCEligibleStruct(Field1Ty, Field1Off, Field2Ty, 10061 Field2Off); 10062 } 10063 } 10064 10065 uint64_t NeededAlign = getContext().getTypeAlign(Ty); 10066 bool MustUseStack = false; 10067 // Determine the number of GPRs needed to pass the current argument 10068 // according to the ABI. 2*XLen-aligned varargs are passed in "aligned" 10069 // register pairs, so may consume 3 registers. 10070 int NeededArgGPRs = 1; 10071 if (!IsFixed && NeededAlign == 2 * XLen) 10072 NeededArgGPRs = 2 + (ArgGPRsLeft % 2); 10073 else if (Size > XLen && Size <= 2 * XLen) 10074 NeededArgGPRs = 2; 10075 10076 if (NeededArgGPRs > ArgGPRsLeft) { 10077 MustUseStack = true; 10078 NeededArgGPRs = ArgGPRsLeft; 10079 } 10080 10081 ArgGPRsLeft -= NeededArgGPRs; 10082 10083 if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) { 10084 // Treat an enum type as its underlying type. 10085 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 10086 Ty = EnumTy->getDecl()->getIntegerType(); 10087 10088 // All integral types are promoted to XLen width, unless passed on the 10089 // stack. 10090 if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) { 10091 return extendType(Ty); 10092 } 10093 10094 return ABIArgInfo::getDirect(); 10095 } 10096 10097 // Aggregates which are <= 2*XLen will be passed in registers if possible, 10098 // so coerce to integers. 10099 if (Size <= 2 * XLen) { 10100 unsigned Alignment = getContext().getTypeAlign(Ty); 10101 10102 // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is 10103 // required, and a 2-element XLen array if only XLen alignment is required. 10104 if (Size <= XLen) { 10105 return ABIArgInfo::getDirect( 10106 llvm::IntegerType::get(getVMContext(), XLen)); 10107 } else if (Alignment == 2 * XLen) { 10108 return ABIArgInfo::getDirect( 10109 llvm::IntegerType::get(getVMContext(), 2 * XLen)); 10110 } else { 10111 return ABIArgInfo::getDirect(llvm::ArrayType::get( 10112 llvm::IntegerType::get(getVMContext(), XLen), 2)); 10113 } 10114 } 10115 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 10116 } 10117 10118 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const { 10119 if (RetTy->isVoidType()) 10120 return ABIArgInfo::getIgnore(); 10121 10122 int ArgGPRsLeft = 2; 10123 int ArgFPRsLeft = FLen ? 2 : 0; 10124 10125 // The rules for return and argument types are the same, so defer to 10126 // classifyArgumentType. 10127 return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft, 10128 ArgFPRsLeft); 10129 } 10130 10131 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 10132 QualType Ty) const { 10133 CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8); 10134 10135 // Empty records are ignored for parameter passing purposes. 10136 if (isEmptyRecord(getContext(), Ty, true)) { 10137 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 10138 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 10139 return Addr; 10140 } 10141 10142 std::pair<CharUnits, CharUnits> SizeAndAlign = 10143 getContext().getTypeInfoInChars(Ty); 10144 10145 // Arguments bigger than 2*Xlen bytes are passed indirectly. 10146 bool IsIndirect = SizeAndAlign.first > 2 * SlotSize; 10147 10148 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, SizeAndAlign, 10149 SlotSize, /*AllowHigherAlign=*/true); 10150 } 10151 10152 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const { 10153 int TySize = getContext().getTypeSize(Ty); 10154 // RV64 ABI requires unsigned 32 bit integers to be sign extended. 10155 if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 10156 return ABIArgInfo::getSignExtend(Ty); 10157 return ABIArgInfo::getExtend(Ty); 10158 } 10159 10160 namespace { 10161 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo { 10162 public: 10163 RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, 10164 unsigned FLen) 10165 : TargetCodeGenInfo(new RISCVABIInfo(CGT, XLen, FLen)) {} 10166 10167 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 10168 CodeGen::CodeGenModule &CGM) const override { 10169 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 10170 if (!FD) return; 10171 10172 const auto *Attr = FD->getAttr<RISCVInterruptAttr>(); 10173 if (!Attr) 10174 return; 10175 10176 const char *Kind; 10177 switch (Attr->getInterrupt()) { 10178 case RISCVInterruptAttr::user: Kind = "user"; break; 10179 case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break; 10180 case RISCVInterruptAttr::machine: Kind = "machine"; break; 10181 } 10182 10183 auto *Fn = cast<llvm::Function>(GV); 10184 10185 Fn->addFnAttr("interrupt", Kind); 10186 } 10187 }; 10188 } // namespace 10189 10190 //===----------------------------------------------------------------------===// 10191 // Driver code 10192 //===----------------------------------------------------------------------===// 10193 10194 bool CodeGenModule::supportsCOMDAT() const { 10195 return getTriple().supportsCOMDAT(); 10196 } 10197 10198 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 10199 if (TheTargetCodeGenInfo) 10200 return *TheTargetCodeGenInfo; 10201 10202 // Helper to set the unique_ptr while still keeping the return value. 10203 auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & { 10204 this->TheTargetCodeGenInfo.reset(P); 10205 return *P; 10206 }; 10207 10208 const llvm::Triple &Triple = getTarget().getTriple(); 10209 switch (Triple.getArch()) { 10210 default: 10211 return SetCGInfo(new DefaultTargetCodeGenInfo(Types)); 10212 10213 case llvm::Triple::le32: 10214 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 10215 case llvm::Triple::mips: 10216 case llvm::Triple::mipsel: 10217 if (Triple.getOS() == llvm::Triple::NaCl) 10218 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 10219 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true)); 10220 10221 case llvm::Triple::mips64: 10222 case llvm::Triple::mips64el: 10223 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false)); 10224 10225 case llvm::Triple::avr: 10226 return SetCGInfo(new AVRTargetCodeGenInfo(Types)); 10227 10228 case llvm::Triple::aarch64: 10229 case llvm::Triple::aarch64_32: 10230 case llvm::Triple::aarch64_be: { 10231 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 10232 if (getTarget().getABI() == "darwinpcs") 10233 Kind = AArch64ABIInfo::DarwinPCS; 10234 else if (Triple.isOSWindows()) 10235 return SetCGInfo( 10236 new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64)); 10237 10238 return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind)); 10239 } 10240 10241 case llvm::Triple::wasm32: 10242 case llvm::Triple::wasm64: { 10243 WebAssemblyABIInfo::ABIKind Kind = WebAssemblyABIInfo::MVP; 10244 if (getTarget().getABI() == "experimental-mv") 10245 Kind = WebAssemblyABIInfo::ExperimentalMV; 10246 return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types, Kind)); 10247 } 10248 10249 case llvm::Triple::arm: 10250 case llvm::Triple::armeb: 10251 case llvm::Triple::thumb: 10252 case llvm::Triple::thumbeb: { 10253 if (Triple.getOS() == llvm::Triple::Win32) { 10254 return SetCGInfo( 10255 new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP)); 10256 } 10257 10258 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 10259 StringRef ABIStr = getTarget().getABI(); 10260 if (ABIStr == "apcs-gnu") 10261 Kind = ARMABIInfo::APCS; 10262 else if (ABIStr == "aapcs16") 10263 Kind = ARMABIInfo::AAPCS16_VFP; 10264 else if (CodeGenOpts.FloatABI == "hard" || 10265 (CodeGenOpts.FloatABI != "soft" && 10266 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 10267 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 10268 Triple.getEnvironment() == llvm::Triple::EABIHF))) 10269 Kind = ARMABIInfo::AAPCS_VFP; 10270 10271 return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind)); 10272 } 10273 10274 case llvm::Triple::ppc: 10275 return SetCGInfo( 10276 new PPC32TargetCodeGenInfo(Types, CodeGenOpts.FloatABI == "soft" || 10277 getTarget().hasFeature("spe"))); 10278 case llvm::Triple::ppc64: 10279 if (Triple.isOSBinFormatELF()) { 10280 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 10281 if (getTarget().getABI() == "elfv2") 10282 Kind = PPC64_SVR4_ABIInfo::ELFv2; 10283 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 10284 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 10285 10286 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 10287 IsSoftFloat)); 10288 } else 10289 return SetCGInfo(new PPC64TargetCodeGenInfo(Types)); 10290 case llvm::Triple::ppc64le: { 10291 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 10292 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 10293 if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx") 10294 Kind = PPC64_SVR4_ABIInfo::ELFv1; 10295 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 10296 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 10297 10298 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 10299 IsSoftFloat)); 10300 } 10301 10302 case llvm::Triple::nvptx: 10303 case llvm::Triple::nvptx64: 10304 return SetCGInfo(new NVPTXTargetCodeGenInfo(Types)); 10305 10306 case llvm::Triple::msp430: 10307 return SetCGInfo(new MSP430TargetCodeGenInfo(Types)); 10308 10309 case llvm::Triple::riscv32: 10310 case llvm::Triple::riscv64: { 10311 StringRef ABIStr = getTarget().getABI(); 10312 unsigned XLen = getTarget().getPointerWidth(0); 10313 unsigned ABIFLen = 0; 10314 if (ABIStr.endswith("f")) 10315 ABIFLen = 32; 10316 else if (ABIStr.endswith("d")) 10317 ABIFLen = 64; 10318 return SetCGInfo(new RISCVTargetCodeGenInfo(Types, XLen, ABIFLen)); 10319 } 10320 10321 case llvm::Triple::systemz: { 10322 bool SoftFloat = CodeGenOpts.FloatABI == "soft"; 10323 bool HasVector = !SoftFloat && getTarget().getABI() == "vector"; 10324 return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector, SoftFloat)); 10325 } 10326 10327 case llvm::Triple::tce: 10328 case llvm::Triple::tcele: 10329 return SetCGInfo(new TCETargetCodeGenInfo(Types)); 10330 10331 case llvm::Triple::x86: { 10332 bool IsDarwinVectorABI = Triple.isOSDarwin(); 10333 bool RetSmallStructInRegABI = 10334 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 10335 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 10336 10337 if (Triple.getOS() == llvm::Triple::Win32) { 10338 return SetCGInfo(new WinX86_32TargetCodeGenInfo( 10339 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 10340 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); 10341 } else { 10342 return SetCGInfo(new X86_32TargetCodeGenInfo( 10343 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 10344 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters, 10345 CodeGenOpts.FloatABI == "soft")); 10346 } 10347 } 10348 10349 case llvm::Triple::x86_64: { 10350 StringRef ABI = getTarget().getABI(); 10351 X86AVXABILevel AVXLevel = 10352 (ABI == "avx512" 10353 ? X86AVXABILevel::AVX512 10354 : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None); 10355 10356 switch (Triple.getOS()) { 10357 case llvm::Triple::Win32: 10358 return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel)); 10359 default: 10360 return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel)); 10361 } 10362 } 10363 case llvm::Triple::hexagon: 10364 return SetCGInfo(new HexagonTargetCodeGenInfo(Types)); 10365 case llvm::Triple::lanai: 10366 return SetCGInfo(new LanaiTargetCodeGenInfo(Types)); 10367 case llvm::Triple::r600: 10368 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 10369 case llvm::Triple::amdgcn: 10370 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 10371 case llvm::Triple::sparc: 10372 return SetCGInfo(new SparcV8TargetCodeGenInfo(Types)); 10373 case llvm::Triple::sparcv9: 10374 return SetCGInfo(new SparcV9TargetCodeGenInfo(Types)); 10375 case llvm::Triple::xcore: 10376 return SetCGInfo(new XCoreTargetCodeGenInfo(Types)); 10377 case llvm::Triple::arc: 10378 return SetCGInfo(new ARCTargetCodeGenInfo(Types)); 10379 case llvm::Triple::spir: 10380 case llvm::Triple::spir64: 10381 return SetCGInfo(new SPIRTargetCodeGenInfo(Types)); 10382 } 10383 } 10384 10385 /// Create an OpenCL kernel for an enqueued block. 10386 /// 10387 /// The kernel has the same function type as the block invoke function. Its 10388 /// name is the name of the block invoke function postfixed with "_kernel". 10389 /// It simply calls the block invoke function then returns. 10390 llvm::Function * 10391 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF, 10392 llvm::Function *Invoke, 10393 llvm::Value *BlockLiteral) const { 10394 auto *InvokeFT = Invoke->getFunctionType(); 10395 llvm::SmallVector<llvm::Type *, 2> ArgTys; 10396 for (auto &P : InvokeFT->params()) 10397 ArgTys.push_back(P); 10398 auto &C = CGF.getLLVMContext(); 10399 std::string Name = Invoke->getName().str() + "_kernel"; 10400 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 10401 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 10402 &CGF.CGM.getModule()); 10403 auto IP = CGF.Builder.saveIP(); 10404 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 10405 auto &Builder = CGF.Builder; 10406 Builder.SetInsertPoint(BB); 10407 llvm::SmallVector<llvm::Value *, 2> Args; 10408 for (auto &A : F->args()) 10409 Args.push_back(&A); 10410 Builder.CreateCall(Invoke, Args); 10411 Builder.CreateRetVoid(); 10412 Builder.restoreIP(IP); 10413 return F; 10414 } 10415 10416 /// Create an OpenCL kernel for an enqueued block. 10417 /// 10418 /// The type of the first argument (the block literal) is the struct type 10419 /// of the block literal instead of a pointer type. The first argument 10420 /// (block literal) is passed directly by value to the kernel. The kernel 10421 /// allocates the same type of struct on stack and stores the block literal 10422 /// to it and passes its pointer to the block invoke function. The kernel 10423 /// has "enqueued-block" function attribute and kernel argument metadata. 10424 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel( 10425 CodeGenFunction &CGF, llvm::Function *Invoke, 10426 llvm::Value *BlockLiteral) const { 10427 auto &Builder = CGF.Builder; 10428 auto &C = CGF.getLLVMContext(); 10429 10430 auto *BlockTy = BlockLiteral->getType()->getPointerElementType(); 10431 auto *InvokeFT = Invoke->getFunctionType(); 10432 llvm::SmallVector<llvm::Type *, 2> ArgTys; 10433 llvm::SmallVector<llvm::Metadata *, 8> AddressQuals; 10434 llvm::SmallVector<llvm::Metadata *, 8> AccessQuals; 10435 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames; 10436 llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames; 10437 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals; 10438 llvm::SmallVector<llvm::Metadata *, 8> ArgNames; 10439 10440 ArgTys.push_back(BlockTy); 10441 ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 10442 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0))); 10443 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 10444 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 10445 AccessQuals.push_back(llvm::MDString::get(C, "none")); 10446 ArgNames.push_back(llvm::MDString::get(C, "block_literal")); 10447 for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) { 10448 ArgTys.push_back(InvokeFT->getParamType(I)); 10449 ArgTypeNames.push_back(llvm::MDString::get(C, "void*")); 10450 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3))); 10451 AccessQuals.push_back(llvm::MDString::get(C, "none")); 10452 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*")); 10453 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 10454 ArgNames.push_back( 10455 llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str())); 10456 } 10457 std::string Name = Invoke->getName().str() + "_kernel"; 10458 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 10459 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 10460 &CGF.CGM.getModule()); 10461 F->addFnAttr("enqueued-block"); 10462 auto IP = CGF.Builder.saveIP(); 10463 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 10464 Builder.SetInsertPoint(BB); 10465 const auto BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(BlockTy); 10466 auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr); 10467 BlockPtr->setAlignment(BlockAlign); 10468 Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign); 10469 auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0)); 10470 llvm::SmallVector<llvm::Value *, 2> Args; 10471 Args.push_back(Cast); 10472 for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I) 10473 Args.push_back(I); 10474 Builder.CreateCall(Invoke, Args); 10475 Builder.CreateRetVoid(); 10476 Builder.restoreIP(IP); 10477 10478 F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals)); 10479 F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals)); 10480 F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames)); 10481 F->setMetadata("kernel_arg_base_type", 10482 llvm::MDNode::get(C, ArgBaseTypeNames)); 10483 F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals)); 10484 if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 10485 F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames)); 10486 10487 return F; 10488 } 10489