1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes wrap the information about a call or function 10 // definition used to handle ABI compliancy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "TargetInfo.h" 15 #include "ABIInfo.h" 16 #include "CGBlocks.h" 17 #include "CGCXXABI.h" 18 #include "CGValue.h" 19 #include "CodeGenFunction.h" 20 #include "clang/AST/Attr.h" 21 #include "clang/AST/RecordLayout.h" 22 #include "clang/Basic/CodeGenOptions.h" 23 #include "clang/Basic/DiagnosticFrontend.h" 24 #include "clang/CodeGen/CGFunctionInfo.h" 25 #include "clang/CodeGen/SwiftCallingConv.h" 26 #include "llvm/ADT/SmallBitVector.h" 27 #include "llvm/ADT/StringExtras.h" 28 #include "llvm/ADT/StringSwitch.h" 29 #include "llvm/ADT/Triple.h" 30 #include "llvm/ADT/Twine.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/IntrinsicsNVPTX.h" 33 #include "llvm/IR/Type.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include <algorithm> // std::sort 36 37 using namespace clang; 38 using namespace CodeGen; 39 40 // Helper for coercing an aggregate argument or return value into an integer 41 // array of the same size (including padding) and alignment. This alternate 42 // coercion happens only for the RenderScript ABI and can be removed after 43 // runtimes that rely on it are no longer supported. 44 // 45 // RenderScript assumes that the size of the argument / return value in the IR 46 // is the same as the size of the corresponding qualified type. This helper 47 // coerces the aggregate type into an array of the same size (including 48 // padding). This coercion is used in lieu of expansion of struct members or 49 // other canonical coercions that return a coerced-type of larger size. 50 // 51 // Ty - The argument / return value type 52 // Context - The associated ASTContext 53 // LLVMContext - The associated LLVMContext 54 static ABIArgInfo coerceToIntArray(QualType Ty, 55 ASTContext &Context, 56 llvm::LLVMContext &LLVMContext) { 57 // Alignment and Size are measured in bits. 58 const uint64_t Size = Context.getTypeSize(Ty); 59 const uint64_t Alignment = Context.getTypeAlign(Ty); 60 llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment); 61 const uint64_t NumElements = (Size + Alignment - 1) / Alignment; 62 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 63 } 64 65 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 66 llvm::Value *Array, 67 llvm::Value *Value, 68 unsigned FirstIndex, 69 unsigned LastIndex) { 70 // Alternatively, we could emit this as a loop in the source. 71 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 72 llvm::Value *Cell = 73 Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); 74 Builder.CreateAlignedStore(Value, Cell, CharUnits::One()); 75 } 76 } 77 78 static bool isAggregateTypeForABI(QualType T) { 79 return !CodeGenFunction::hasScalarEvaluationKind(T) || 80 T->isMemberFunctionPointerType(); 81 } 82 83 ABIArgInfo ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByVal, 84 bool Realign, 85 llvm::Type *Padding) const { 86 return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), ByVal, 87 Realign, Padding); 88 } 89 90 ABIArgInfo 91 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const { 92 return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty), 93 /*ByVal*/ false, Realign); 94 } 95 96 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 97 QualType Ty) const { 98 return Address::invalid(); 99 } 100 101 bool ABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const { 102 if (Ty->isPromotableIntegerType()) 103 return true; 104 105 if (const auto *EIT = Ty->getAs<ExtIntType>()) 106 if (EIT->getNumBits() < getContext().getTypeSize(getContext().IntTy)) 107 return true; 108 109 return false; 110 } 111 112 ABIInfo::~ABIInfo() {} 113 114 /// Does the given lowering require more than the given number of 115 /// registers when expanded? 116 /// 117 /// This is intended to be the basis of a reasonable basic implementation 118 /// of should{Pass,Return}IndirectlyForSwift. 119 /// 120 /// For most targets, a limit of four total registers is reasonable; this 121 /// limits the amount of code required in order to move around the value 122 /// in case it wasn't produced immediately prior to the call by the caller 123 /// (or wasn't produced in exactly the right registers) or isn't used 124 /// immediately within the callee. But some targets may need to further 125 /// limit the register count due to an inability to support that many 126 /// return registers. 127 static bool occupiesMoreThan(CodeGenTypes &cgt, 128 ArrayRef<llvm::Type*> scalarTypes, 129 unsigned maxAllRegisters) { 130 unsigned intCount = 0, fpCount = 0; 131 for (llvm::Type *type : scalarTypes) { 132 if (type->isPointerTy()) { 133 intCount++; 134 } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) { 135 auto ptrWidth = cgt.getTarget().getPointerWidth(0); 136 intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth; 137 } else { 138 assert(type->isVectorTy() || type->isFloatingPointTy()); 139 fpCount++; 140 } 141 } 142 143 return (intCount + fpCount > maxAllRegisters); 144 } 145 146 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 147 llvm::Type *eltTy, 148 unsigned numElts) const { 149 // The default implementation of this assumes that the target guarantees 150 // 128-bit SIMD support but nothing more. 151 return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16); 152 } 153 154 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 155 CGCXXABI &CXXABI) { 156 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 157 if (!RD) { 158 if (!RT->getDecl()->canPassInRegisters()) 159 return CGCXXABI::RAA_Indirect; 160 return CGCXXABI::RAA_Default; 161 } 162 return CXXABI.getRecordArgABI(RD); 163 } 164 165 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 166 CGCXXABI &CXXABI) { 167 const RecordType *RT = T->getAs<RecordType>(); 168 if (!RT) 169 return CGCXXABI::RAA_Default; 170 return getRecordArgABI(RT, CXXABI); 171 } 172 173 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI, 174 const ABIInfo &Info) { 175 QualType Ty = FI.getReturnType(); 176 177 if (const auto *RT = Ty->getAs<RecordType>()) 178 if (!isa<CXXRecordDecl>(RT->getDecl()) && 179 !RT->getDecl()->canPassInRegisters()) { 180 FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty); 181 return true; 182 } 183 184 return CXXABI.classifyReturnType(FI); 185 } 186 187 /// Pass transparent unions as if they were the type of the first element. Sema 188 /// should ensure that all elements of the union have the same "machine type". 189 static QualType useFirstFieldIfTransparentUnion(QualType Ty) { 190 if (const RecordType *UT = Ty->getAsUnionType()) { 191 const RecordDecl *UD = UT->getDecl(); 192 if (UD->hasAttr<TransparentUnionAttr>()) { 193 assert(!UD->field_empty() && "sema created an empty transparent union"); 194 return UD->field_begin()->getType(); 195 } 196 } 197 return Ty; 198 } 199 200 CGCXXABI &ABIInfo::getCXXABI() const { 201 return CGT.getCXXABI(); 202 } 203 204 ASTContext &ABIInfo::getContext() const { 205 return CGT.getContext(); 206 } 207 208 llvm::LLVMContext &ABIInfo::getVMContext() const { 209 return CGT.getLLVMContext(); 210 } 211 212 const llvm::DataLayout &ABIInfo::getDataLayout() const { 213 return CGT.getDataLayout(); 214 } 215 216 const TargetInfo &ABIInfo::getTarget() const { 217 return CGT.getTarget(); 218 } 219 220 const CodeGenOptions &ABIInfo::getCodeGenOpts() const { 221 return CGT.getCodeGenOpts(); 222 } 223 224 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); } 225 226 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 227 return false; 228 } 229 230 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 231 uint64_t Members) const { 232 return false; 233 } 234 235 LLVM_DUMP_METHOD void ABIArgInfo::dump() const { 236 raw_ostream &OS = llvm::errs(); 237 OS << "(ABIArgInfo Kind="; 238 switch (TheKind) { 239 case Direct: 240 OS << "Direct Type="; 241 if (llvm::Type *Ty = getCoerceToType()) 242 Ty->print(OS); 243 else 244 OS << "null"; 245 break; 246 case Extend: 247 OS << "Extend"; 248 break; 249 case Ignore: 250 OS << "Ignore"; 251 break; 252 case InAlloca: 253 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 254 break; 255 case Indirect: 256 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 257 << " ByVal=" << getIndirectByVal() 258 << " Realign=" << getIndirectRealign(); 259 break; 260 case IndirectAliased: 261 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 262 << " AadrSpace=" << getIndirectAddrSpace() 263 << " Realign=" << getIndirectRealign(); 264 break; 265 case Expand: 266 OS << "Expand"; 267 break; 268 case CoerceAndExpand: 269 OS << "CoerceAndExpand Type="; 270 getCoerceAndExpandType()->print(OS); 271 break; 272 } 273 OS << ")\n"; 274 } 275 276 // Dynamically round a pointer up to a multiple of the given alignment. 277 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF, 278 llvm::Value *Ptr, 279 CharUnits Align) { 280 llvm::Value *PtrAsInt = Ptr; 281 // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align; 282 PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy); 283 PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt, 284 llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1)); 285 PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt, 286 llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity())); 287 PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt, 288 Ptr->getType(), 289 Ptr->getName() + ".aligned"); 290 return PtrAsInt; 291 } 292 293 /// Emit va_arg for a platform using the common void* representation, 294 /// where arguments are simply emitted in an array of slots on the stack. 295 /// 296 /// This version implements the core direct-value passing rules. 297 /// 298 /// \param SlotSize - The size and alignment of a stack slot. 299 /// Each argument will be allocated to a multiple of this number of 300 /// slots, and all the slots will be aligned to this value. 301 /// \param AllowHigherAlign - The slot alignment is not a cap; 302 /// an argument type with an alignment greater than the slot size 303 /// will be emitted on a higher-alignment address, potentially 304 /// leaving one or more empty slots behind as padding. If this 305 /// is false, the returned address might be less-aligned than 306 /// DirectAlign. 307 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF, 308 Address VAListAddr, 309 llvm::Type *DirectTy, 310 CharUnits DirectSize, 311 CharUnits DirectAlign, 312 CharUnits SlotSize, 313 bool AllowHigherAlign) { 314 // Cast the element type to i8* if necessary. Some platforms define 315 // va_list as a struct containing an i8* instead of just an i8*. 316 if (VAListAddr.getElementType() != CGF.Int8PtrTy) 317 VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy); 318 319 llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur"); 320 321 // If the CC aligns values higher than the slot size, do so if needed. 322 Address Addr = Address::invalid(); 323 if (AllowHigherAlign && DirectAlign > SlotSize) { 324 Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign), 325 DirectAlign); 326 } else { 327 Addr = Address(Ptr, SlotSize); 328 } 329 330 // Advance the pointer past the argument, then store that back. 331 CharUnits FullDirectSize = DirectSize.alignTo(SlotSize); 332 Address NextPtr = 333 CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next"); 334 CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 335 336 // If the argument is smaller than a slot, and this is a big-endian 337 // target, the argument will be right-adjusted in its slot. 338 if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() && 339 !DirectTy->isStructTy()) { 340 Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize); 341 } 342 343 Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy); 344 return Addr; 345 } 346 347 /// Emit va_arg for a platform using the common void* representation, 348 /// where arguments are simply emitted in an array of slots on the stack. 349 /// 350 /// \param IsIndirect - Values of this type are passed indirectly. 351 /// \param ValueInfo - The size and alignment of this type, generally 352 /// computed with getContext().getTypeInfoInChars(ValueTy). 353 /// \param SlotSizeAndAlign - The size and alignment of a stack slot. 354 /// Each argument will be allocated to a multiple of this number of 355 /// slots, and all the slots will be aligned to this value. 356 /// \param AllowHigherAlign - The slot alignment is not a cap; 357 /// an argument type with an alignment greater than the slot size 358 /// will be emitted on a higher-alignment address, potentially 359 /// leaving one or more empty slots behind as padding. 360 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr, 361 QualType ValueTy, bool IsIndirect, 362 TypeInfoChars ValueInfo, 363 CharUnits SlotSizeAndAlign, 364 bool AllowHigherAlign) { 365 // The size and alignment of the value that was passed directly. 366 CharUnits DirectSize, DirectAlign; 367 if (IsIndirect) { 368 DirectSize = CGF.getPointerSize(); 369 DirectAlign = CGF.getPointerAlign(); 370 } else { 371 DirectSize = ValueInfo.Width; 372 DirectAlign = ValueInfo.Align; 373 } 374 375 // Cast the address we've calculated to the right type. 376 llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy); 377 if (IsIndirect) 378 DirectTy = DirectTy->getPointerTo(0); 379 380 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy, 381 DirectSize, DirectAlign, 382 SlotSizeAndAlign, 383 AllowHigherAlign); 384 385 if (IsIndirect) { 386 Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.Align); 387 } 388 389 return Addr; 390 391 } 392 393 static Address emitMergePHI(CodeGenFunction &CGF, 394 Address Addr1, llvm::BasicBlock *Block1, 395 Address Addr2, llvm::BasicBlock *Block2, 396 const llvm::Twine &Name = "") { 397 assert(Addr1.getType() == Addr2.getType()); 398 llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name); 399 PHI->addIncoming(Addr1.getPointer(), Block1); 400 PHI->addIncoming(Addr2.getPointer(), Block2); 401 CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment()); 402 return Address(PHI, Align); 403 } 404 405 TargetCodeGenInfo::~TargetCodeGenInfo() = default; 406 407 // If someone can figure out a general rule for this, that would be great. 408 // It's probably just doomed to be platform-dependent, though. 409 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 410 // Verified for: 411 // x86-64 FreeBSD, Linux, Darwin 412 // x86-32 FreeBSD, Linux, Darwin 413 // PowerPC Linux, Darwin 414 // ARM Darwin (*not* EABI) 415 // AArch64 Linux 416 return 32; 417 } 418 419 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 420 const FunctionNoProtoType *fnType) const { 421 // The following conventions are known to require this to be false: 422 // x86_stdcall 423 // MIPS 424 // For everything else, we just prefer false unless we opt out. 425 return false; 426 } 427 428 void 429 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 430 llvm::SmallString<24> &Opt) const { 431 // This assumes the user is passing a library name like "rt" instead of a 432 // filename like "librt.a/so", and that they don't care whether it's static or 433 // dynamic. 434 Opt = "-l"; 435 Opt += Lib; 436 } 437 438 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const { 439 // OpenCL kernels are called via an explicit runtime API with arguments 440 // set with clSetKernelArg(), not as normal sub-functions. 441 // Return SPIR_KERNEL by default as the kernel calling convention to 442 // ensure the fingerprint is fixed such way that each OpenCL argument 443 // gets one matching argument in the produced kernel function argument 444 // list to enable feasible implementation of clSetKernelArg() with 445 // aggregates etc. In case we would use the default C calling conv here, 446 // clSetKernelArg() might break depending on the target-specific 447 // conventions; different targets might split structs passed as values 448 // to multiple function arguments etc. 449 return llvm::CallingConv::SPIR_KERNEL; 450 } 451 452 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM, 453 llvm::PointerType *T, QualType QT) const { 454 return llvm::ConstantPointerNull::get(T); 455 } 456 457 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 458 const VarDecl *D) const { 459 assert(!CGM.getLangOpts().OpenCL && 460 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 461 "Address space agnostic languages only"); 462 return D ? D->getType().getAddressSpace() : LangAS::Default; 463 } 464 465 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast( 466 CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr, 467 LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const { 468 // Since target may map different address spaces in AST to the same address 469 // space, an address space conversion may end up as a bitcast. 470 if (auto *C = dyn_cast<llvm::Constant>(Src)) 471 return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy); 472 // Try to preserve the source's name to make IR more readable. 473 return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 474 Src, DestTy, Src->hasName() ? Src->getName() + ".ascast" : ""); 475 } 476 477 llvm::Constant * 478 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src, 479 LangAS SrcAddr, LangAS DestAddr, 480 llvm::Type *DestTy) const { 481 // Since target may map different address spaces in AST to the same address 482 // space, an address space conversion may end up as a bitcast. 483 return llvm::ConstantExpr::getPointerCast(Src, DestTy); 484 } 485 486 llvm::SyncScope::ID 487 TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 488 SyncScope Scope, 489 llvm::AtomicOrdering Ordering, 490 llvm::LLVMContext &Ctx) const { 491 return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */ 492 } 493 494 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 495 496 /// isEmptyField - Return true iff a the field is "empty", that is it 497 /// is an unnamed bit-field or an (array of) empty record(s). 498 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 499 bool AllowArrays) { 500 if (FD->isUnnamedBitfield()) 501 return true; 502 503 QualType FT = FD->getType(); 504 505 // Constant arrays of empty records count as empty, strip them off. 506 // Constant arrays of zero length always count as empty. 507 bool WasArray = false; 508 if (AllowArrays) 509 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 510 if (AT->getSize() == 0) 511 return true; 512 FT = AT->getElementType(); 513 // The [[no_unique_address]] special case below does not apply to 514 // arrays of C++ empty records, so we need to remember this fact. 515 WasArray = true; 516 } 517 518 const RecordType *RT = FT->getAs<RecordType>(); 519 if (!RT) 520 return false; 521 522 // C++ record fields are never empty, at least in the Itanium ABI. 523 // 524 // FIXME: We should use a predicate for whether this behavior is true in the 525 // current ABI. 526 // 527 // The exception to the above rule are fields marked with the 528 // [[no_unique_address]] attribute (since C++20). Those do count as empty 529 // according to the Itanium ABI. The exception applies only to records, 530 // not arrays of records, so we must also check whether we stripped off an 531 // array type above. 532 if (isa<CXXRecordDecl>(RT->getDecl()) && 533 (WasArray || !FD->hasAttr<NoUniqueAddressAttr>())) 534 return false; 535 536 return isEmptyRecord(Context, FT, AllowArrays); 537 } 538 539 /// isEmptyRecord - Return true iff a structure contains only empty 540 /// fields. Note that a structure with a flexible array member is not 541 /// considered empty. 542 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 543 const RecordType *RT = T->getAs<RecordType>(); 544 if (!RT) 545 return false; 546 const RecordDecl *RD = RT->getDecl(); 547 if (RD->hasFlexibleArrayMember()) 548 return false; 549 550 // If this is a C++ record, check the bases first. 551 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 552 for (const auto &I : CXXRD->bases()) 553 if (!isEmptyRecord(Context, I.getType(), true)) 554 return false; 555 556 for (const auto *I : RD->fields()) 557 if (!isEmptyField(Context, I, AllowArrays)) 558 return false; 559 return true; 560 } 561 562 /// isSingleElementStruct - Determine if a structure is a "single 563 /// element struct", i.e. it has exactly one non-empty field or 564 /// exactly one field which is itself a single element 565 /// struct. Structures with flexible array members are never 566 /// considered single element structs. 567 /// 568 /// \return The field declaration for the single non-empty field, if 569 /// it exists. 570 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 571 const RecordType *RT = T->getAs<RecordType>(); 572 if (!RT) 573 return nullptr; 574 575 const RecordDecl *RD = RT->getDecl(); 576 if (RD->hasFlexibleArrayMember()) 577 return nullptr; 578 579 const Type *Found = nullptr; 580 581 // If this is a C++ record, check the bases first. 582 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 583 for (const auto &I : CXXRD->bases()) { 584 // Ignore empty records. 585 if (isEmptyRecord(Context, I.getType(), true)) 586 continue; 587 588 // If we already found an element then this isn't a single-element struct. 589 if (Found) 590 return nullptr; 591 592 // If this is non-empty and not a single element struct, the composite 593 // cannot be a single element struct. 594 Found = isSingleElementStruct(I.getType(), Context); 595 if (!Found) 596 return nullptr; 597 } 598 } 599 600 // Check for single element. 601 for (const auto *FD : RD->fields()) { 602 QualType FT = FD->getType(); 603 604 // Ignore empty fields. 605 if (isEmptyField(Context, FD, true)) 606 continue; 607 608 // If we already found an element then this isn't a single-element 609 // struct. 610 if (Found) 611 return nullptr; 612 613 // Treat single element arrays as the element. 614 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 615 if (AT->getSize().getZExtValue() != 1) 616 break; 617 FT = AT->getElementType(); 618 } 619 620 if (!isAggregateTypeForABI(FT)) { 621 Found = FT.getTypePtr(); 622 } else { 623 Found = isSingleElementStruct(FT, Context); 624 if (!Found) 625 return nullptr; 626 } 627 } 628 629 // We don't consider a struct a single-element struct if it has 630 // padding beyond the element type. 631 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 632 return nullptr; 633 634 return Found; 635 } 636 637 namespace { 638 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, 639 const ABIArgInfo &AI) { 640 // This default implementation defers to the llvm backend's va_arg 641 // instruction. It can handle only passing arguments directly 642 // (typically only handled in the backend for primitive types), or 643 // aggregates passed indirectly by pointer (NOTE: if the "byval" 644 // flag has ABI impact in the callee, this implementation cannot 645 // work.) 646 647 // Only a few cases are covered here at the moment -- those needed 648 // by the default abi. 649 llvm::Value *Val; 650 651 if (AI.isIndirect()) { 652 assert(!AI.getPaddingType() && 653 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 654 assert( 655 !AI.getIndirectRealign() && 656 "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!"); 657 658 auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty); 659 CharUnits TyAlignForABI = TyInfo.Align; 660 661 llvm::Type *BaseTy = 662 llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 663 llvm::Value *Addr = 664 CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy); 665 return Address(Addr, TyAlignForABI); 666 } else { 667 assert((AI.isDirect() || AI.isExtend()) && 668 "Unexpected ArgInfo Kind in generic VAArg emitter!"); 669 670 assert(!AI.getInReg() && 671 "Unexpected InReg seen in arginfo in generic VAArg emitter!"); 672 assert(!AI.getPaddingType() && 673 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 674 assert(!AI.getDirectOffset() && 675 "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!"); 676 assert(!AI.getCoerceToType() && 677 "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!"); 678 679 Address Temp = CGF.CreateMemTemp(Ty, "varet"); 680 Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty)); 681 CGF.Builder.CreateStore(Val, Temp); 682 return Temp; 683 } 684 } 685 686 /// DefaultABIInfo - The default implementation for ABI specific 687 /// details. This implementation provides information which results in 688 /// self-consistent and sensible LLVM IR generation, but does not 689 /// conform to any particular ABI. 690 class DefaultABIInfo : public ABIInfo { 691 public: 692 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 693 694 ABIArgInfo classifyReturnType(QualType RetTy) const; 695 ABIArgInfo classifyArgumentType(QualType RetTy) const; 696 697 void computeInfo(CGFunctionInfo &FI) const override { 698 if (!getCXXABI().classifyReturnType(FI)) 699 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 700 for (auto &I : FI.arguments()) 701 I.info = classifyArgumentType(I.type); 702 } 703 704 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 705 QualType Ty) const override { 706 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 707 } 708 }; 709 710 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 711 public: 712 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 713 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 714 }; 715 716 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 717 Ty = useFirstFieldIfTransparentUnion(Ty); 718 719 if (isAggregateTypeForABI(Ty)) { 720 // Records with non-trivial destructors/copy-constructors should not be 721 // passed by value. 722 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 723 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 724 725 return getNaturalAlignIndirect(Ty); 726 } 727 728 // Treat an enum type as its underlying type. 729 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 730 Ty = EnumTy->getDecl()->getIntegerType(); 731 732 ASTContext &Context = getContext(); 733 if (const auto *EIT = Ty->getAs<ExtIntType>()) 734 if (EIT->getNumBits() > 735 Context.getTypeSize(Context.getTargetInfo().hasInt128Type() 736 ? Context.Int128Ty 737 : Context.LongLongTy)) 738 return getNaturalAlignIndirect(Ty); 739 740 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 741 : ABIArgInfo::getDirect()); 742 } 743 744 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 745 if (RetTy->isVoidType()) 746 return ABIArgInfo::getIgnore(); 747 748 if (isAggregateTypeForABI(RetTy)) 749 return getNaturalAlignIndirect(RetTy); 750 751 // Treat an enum type as its underlying type. 752 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 753 RetTy = EnumTy->getDecl()->getIntegerType(); 754 755 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 756 if (EIT->getNumBits() > 757 getContext().getTypeSize(getContext().getTargetInfo().hasInt128Type() 758 ? getContext().Int128Ty 759 : getContext().LongLongTy)) 760 return getNaturalAlignIndirect(RetTy); 761 762 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 763 : ABIArgInfo::getDirect()); 764 } 765 766 //===----------------------------------------------------------------------===// 767 // WebAssembly ABI Implementation 768 // 769 // This is a very simple ABI that relies a lot on DefaultABIInfo. 770 //===----------------------------------------------------------------------===// 771 772 class WebAssemblyABIInfo final : public SwiftABIInfo { 773 public: 774 enum ABIKind { 775 MVP = 0, 776 ExperimentalMV = 1, 777 }; 778 779 private: 780 DefaultABIInfo defaultInfo; 781 ABIKind Kind; 782 783 public: 784 explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind) 785 : SwiftABIInfo(CGT), defaultInfo(CGT), Kind(Kind) {} 786 787 private: 788 ABIArgInfo classifyReturnType(QualType RetTy) const; 789 ABIArgInfo classifyArgumentType(QualType Ty) const; 790 791 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 792 // non-virtual, but computeInfo and EmitVAArg are virtual, so we 793 // overload them. 794 void computeInfo(CGFunctionInfo &FI) const override { 795 if (!getCXXABI().classifyReturnType(FI)) 796 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 797 for (auto &Arg : FI.arguments()) 798 Arg.info = classifyArgumentType(Arg.type); 799 } 800 801 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 802 QualType Ty) const override; 803 804 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 805 bool asReturnValue) const override { 806 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 807 } 808 809 bool isSwiftErrorInRegister() const override { 810 return false; 811 } 812 }; 813 814 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo { 815 public: 816 explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 817 WebAssemblyABIInfo::ABIKind K) 818 : TargetCodeGenInfo(std::make_unique<WebAssemblyABIInfo>(CGT, K)) {} 819 820 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 821 CodeGen::CodeGenModule &CGM) const override { 822 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 823 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 824 if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) { 825 llvm::Function *Fn = cast<llvm::Function>(GV); 826 llvm::AttrBuilder B; 827 B.addAttribute("wasm-import-module", Attr->getImportModule()); 828 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 829 } 830 if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) { 831 llvm::Function *Fn = cast<llvm::Function>(GV); 832 llvm::AttrBuilder B; 833 B.addAttribute("wasm-import-name", Attr->getImportName()); 834 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 835 } 836 if (const auto *Attr = FD->getAttr<WebAssemblyExportNameAttr>()) { 837 llvm::Function *Fn = cast<llvm::Function>(GV); 838 llvm::AttrBuilder B; 839 B.addAttribute("wasm-export-name", Attr->getExportName()); 840 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 841 } 842 } 843 844 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 845 llvm::Function *Fn = cast<llvm::Function>(GV); 846 if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype()) 847 Fn->addFnAttr("no-prototype"); 848 } 849 } 850 }; 851 852 /// Classify argument of given type \p Ty. 853 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const { 854 Ty = useFirstFieldIfTransparentUnion(Ty); 855 856 if (isAggregateTypeForABI(Ty)) { 857 // Records with non-trivial destructors/copy-constructors should not be 858 // passed by value. 859 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 860 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 861 // Ignore empty structs/unions. 862 if (isEmptyRecord(getContext(), Ty, true)) 863 return ABIArgInfo::getIgnore(); 864 // Lower single-element structs to just pass a regular value. TODO: We 865 // could do reasonable-size multiple-element structs too, using getExpand(), 866 // though watch out for things like bitfields. 867 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 868 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 869 // For the experimental multivalue ABI, fully expand all other aggregates 870 if (Kind == ABIKind::ExperimentalMV) { 871 const RecordType *RT = Ty->getAs<RecordType>(); 872 assert(RT); 873 bool HasBitField = false; 874 for (auto *Field : RT->getDecl()->fields()) { 875 if (Field->isBitField()) { 876 HasBitField = true; 877 break; 878 } 879 } 880 if (!HasBitField) 881 return ABIArgInfo::getExpand(); 882 } 883 } 884 885 // Otherwise just do the default thing. 886 return defaultInfo.classifyArgumentType(Ty); 887 } 888 889 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const { 890 if (isAggregateTypeForABI(RetTy)) { 891 // Records with non-trivial destructors/copy-constructors should not be 892 // returned by value. 893 if (!getRecordArgABI(RetTy, getCXXABI())) { 894 // Ignore empty structs/unions. 895 if (isEmptyRecord(getContext(), RetTy, true)) 896 return ABIArgInfo::getIgnore(); 897 // Lower single-element structs to just return a regular value. TODO: We 898 // could do reasonable-size multiple-element structs too, using 899 // ABIArgInfo::getDirect(). 900 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 901 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 902 // For the experimental multivalue ABI, return all other aggregates 903 if (Kind == ABIKind::ExperimentalMV) 904 return ABIArgInfo::getDirect(); 905 } 906 } 907 908 // Otherwise just do the default thing. 909 return defaultInfo.classifyReturnType(RetTy); 910 } 911 912 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 913 QualType Ty) const { 914 bool IsIndirect = isAggregateTypeForABI(Ty) && 915 !isEmptyRecord(getContext(), Ty, true) && 916 !isSingleElementStruct(Ty, getContext()); 917 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 918 getContext().getTypeInfoInChars(Ty), 919 CharUnits::fromQuantity(4), 920 /*AllowHigherAlign=*/true); 921 } 922 923 //===----------------------------------------------------------------------===// 924 // le32/PNaCl bitcode ABI Implementation 925 // 926 // This is a simplified version of the x86_32 ABI. Arguments and return values 927 // are always passed on the stack. 928 //===----------------------------------------------------------------------===// 929 930 class PNaClABIInfo : public ABIInfo { 931 public: 932 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 933 934 ABIArgInfo classifyReturnType(QualType RetTy) const; 935 ABIArgInfo classifyArgumentType(QualType RetTy) const; 936 937 void computeInfo(CGFunctionInfo &FI) const override; 938 Address EmitVAArg(CodeGenFunction &CGF, 939 Address VAListAddr, QualType Ty) const override; 940 }; 941 942 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 943 public: 944 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 945 : TargetCodeGenInfo(std::make_unique<PNaClABIInfo>(CGT)) {} 946 }; 947 948 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 949 if (!getCXXABI().classifyReturnType(FI)) 950 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 951 952 for (auto &I : FI.arguments()) 953 I.info = classifyArgumentType(I.type); 954 } 955 956 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 957 QualType Ty) const { 958 // The PNaCL ABI is a bit odd, in that varargs don't use normal 959 // function classification. Structs get passed directly for varargs 960 // functions, through a rewriting transform in 961 // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows 962 // this target to actually support a va_arg instructions with an 963 // aggregate type, unlike other targets. 964 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 965 } 966 967 /// Classify argument of given type \p Ty. 968 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 969 if (isAggregateTypeForABI(Ty)) { 970 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 971 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 972 return getNaturalAlignIndirect(Ty); 973 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 974 // Treat an enum type as its underlying type. 975 Ty = EnumTy->getDecl()->getIntegerType(); 976 } else if (Ty->isFloatingType()) { 977 // Floating-point types don't go inreg. 978 return ABIArgInfo::getDirect(); 979 } else if (const auto *EIT = Ty->getAs<ExtIntType>()) { 980 // Treat extended integers as integers if <=64, otherwise pass indirectly. 981 if (EIT->getNumBits() > 64) 982 return getNaturalAlignIndirect(Ty); 983 return ABIArgInfo::getDirect(); 984 } 985 986 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 987 : ABIArgInfo::getDirect()); 988 } 989 990 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 991 if (RetTy->isVoidType()) 992 return ABIArgInfo::getIgnore(); 993 994 // In the PNaCl ABI we always return records/structures on the stack. 995 if (isAggregateTypeForABI(RetTy)) 996 return getNaturalAlignIndirect(RetTy); 997 998 // Treat extended integers as integers if <=64, otherwise pass indirectly. 999 if (const auto *EIT = RetTy->getAs<ExtIntType>()) { 1000 if (EIT->getNumBits() > 64) 1001 return getNaturalAlignIndirect(RetTy); 1002 return ABIArgInfo::getDirect(); 1003 } 1004 1005 // Treat an enum type as its underlying type. 1006 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1007 RetTy = EnumTy->getDecl()->getIntegerType(); 1008 1009 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 1010 : ABIArgInfo::getDirect()); 1011 } 1012 1013 /// IsX86_MMXType - Return true if this is an MMX type. 1014 bool IsX86_MMXType(llvm::Type *IRType) { 1015 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 1016 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 1017 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 1018 IRType->getScalarSizeInBits() != 64; 1019 } 1020 1021 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1022 StringRef Constraint, 1023 llvm::Type* Ty) { 1024 bool IsMMXCons = llvm::StringSwitch<bool>(Constraint) 1025 .Cases("y", "&y", "^Ym", true) 1026 .Default(false); 1027 if (IsMMXCons && Ty->isVectorTy()) { 1028 if (cast<llvm::VectorType>(Ty)->getPrimitiveSizeInBits().getFixedSize() != 1029 64) { 1030 // Invalid MMX constraint 1031 return nullptr; 1032 } 1033 1034 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 1035 } 1036 1037 // No operation needed 1038 return Ty; 1039 } 1040 1041 /// Returns true if this type can be passed in SSE registers with the 1042 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 1043 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 1044 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 1045 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) { 1046 if (BT->getKind() == BuiltinType::LongDouble) { 1047 if (&Context.getTargetInfo().getLongDoubleFormat() == 1048 &llvm::APFloat::x87DoubleExtended()) 1049 return false; 1050 } 1051 return true; 1052 } 1053 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 1054 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 1055 // registers specially. 1056 unsigned VecSize = Context.getTypeSize(VT); 1057 if (VecSize == 128 || VecSize == 256 || VecSize == 512) 1058 return true; 1059 } 1060 return false; 1061 } 1062 1063 /// Returns true if this aggregate is small enough to be passed in SSE registers 1064 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 1065 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 1066 return NumMembers <= 4; 1067 } 1068 1069 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86. 1070 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) { 1071 auto AI = ABIArgInfo::getDirect(T); 1072 AI.setInReg(true); 1073 AI.setCanBeFlattened(false); 1074 return AI; 1075 } 1076 1077 //===----------------------------------------------------------------------===// 1078 // X86-32 ABI Implementation 1079 //===----------------------------------------------------------------------===// 1080 1081 /// Similar to llvm::CCState, but for Clang. 1082 struct CCState { 1083 CCState(CGFunctionInfo &FI) 1084 : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()) {} 1085 1086 llvm::SmallBitVector IsPreassigned; 1087 unsigned CC = CallingConv::CC_C; 1088 unsigned FreeRegs = 0; 1089 unsigned FreeSSERegs = 0; 1090 }; 1091 1092 enum { 1093 // Vectorcall only allows the first 6 parameters to be passed in registers. 1094 VectorcallMaxParamNumAsReg = 6 1095 }; 1096 1097 /// X86_32ABIInfo - The X86-32 ABI information. 1098 class X86_32ABIInfo : public SwiftABIInfo { 1099 enum Class { 1100 Integer, 1101 Float 1102 }; 1103 1104 static const unsigned MinABIStackAlignInBytes = 4; 1105 1106 bool IsDarwinVectorABI; 1107 bool IsRetSmallStructInRegABI; 1108 bool IsWin32StructABI; 1109 bool IsSoftFloatABI; 1110 bool IsMCUABI; 1111 unsigned DefaultNumRegisterParameters; 1112 1113 static bool isRegisterSize(unsigned Size) { 1114 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 1115 } 1116 1117 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 1118 // FIXME: Assumes vectorcall is in use. 1119 return isX86VectorTypeForVectorCall(getContext(), Ty); 1120 } 1121 1122 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 1123 uint64_t NumMembers) const override { 1124 // FIXME: Assumes vectorcall is in use. 1125 return isX86VectorCallAggregateSmallEnough(NumMembers); 1126 } 1127 1128 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 1129 1130 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1131 /// such that the argument will be passed in memory. 1132 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 1133 1134 ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; 1135 1136 /// Return the alignment to use for the given type on the stack. 1137 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 1138 1139 Class classify(QualType Ty) const; 1140 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 1141 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 1142 1143 /// Updates the number of available free registers, returns 1144 /// true if any registers were allocated. 1145 bool updateFreeRegs(QualType Ty, CCState &State) const; 1146 1147 bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, 1148 bool &NeedsPadding) const; 1149 bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; 1150 1151 bool canExpandIndirectArgument(QualType Ty) const; 1152 1153 /// Rewrite the function info so that all memory arguments use 1154 /// inalloca. 1155 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 1156 1157 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1158 CharUnits &StackOffset, ABIArgInfo &Info, 1159 QualType Type) const; 1160 void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const; 1161 1162 public: 1163 1164 void computeInfo(CGFunctionInfo &FI) const override; 1165 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 1166 QualType Ty) const override; 1167 1168 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1169 bool RetSmallStructInRegABI, bool Win32StructABI, 1170 unsigned NumRegisterParameters, bool SoftFloatABI) 1171 : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), 1172 IsRetSmallStructInRegABI(RetSmallStructInRegABI), 1173 IsWin32StructABI(Win32StructABI), 1174 IsSoftFloatABI(SoftFloatABI), 1175 IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), 1176 DefaultNumRegisterParameters(NumRegisterParameters) {} 1177 1178 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 1179 bool asReturnValue) const override { 1180 // LLVM's x86-32 lowering currently only assigns up to three 1181 // integer registers and three fp registers. Oddly, it'll use up to 1182 // four vector registers for vectors, but those can overlap with the 1183 // scalar registers. 1184 return occupiesMoreThan(CGT, scalars, /*total*/ 3); 1185 } 1186 1187 bool isSwiftErrorInRegister() const override { 1188 // x86-32 lowering does not support passing swifterror in a register. 1189 return false; 1190 } 1191 }; 1192 1193 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 1194 public: 1195 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1196 bool RetSmallStructInRegABI, bool Win32StructABI, 1197 unsigned NumRegisterParameters, bool SoftFloatABI) 1198 : TargetCodeGenInfo(std::make_unique<X86_32ABIInfo>( 1199 CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, 1200 NumRegisterParameters, SoftFloatABI)) {} 1201 1202 static bool isStructReturnInRegABI( 1203 const llvm::Triple &Triple, const CodeGenOptions &Opts); 1204 1205 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1206 CodeGen::CodeGenModule &CGM) const override; 1207 1208 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1209 // Darwin uses different dwarf register numbers for EH. 1210 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 1211 return 4; 1212 } 1213 1214 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1215 llvm::Value *Address) const override; 1216 1217 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1218 StringRef Constraint, 1219 llvm::Type* Ty) const override { 1220 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1221 } 1222 1223 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 1224 std::string &Constraints, 1225 std::vector<llvm::Type *> &ResultRegTypes, 1226 std::vector<llvm::Type *> &ResultTruncRegTypes, 1227 std::vector<LValue> &ResultRegDests, 1228 std::string &AsmString, 1229 unsigned NumOutputs) const override; 1230 1231 llvm::Constant * 1232 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1233 unsigned Sig = (0xeb << 0) | // jmp rel8 1234 (0x06 << 8) | // .+0x08 1235 ('v' << 16) | 1236 ('2' << 24); 1237 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1238 } 1239 1240 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 1241 return "movl\t%ebp, %ebp" 1242 "\t\t// marker for objc_retainAutoreleaseReturnValue"; 1243 } 1244 }; 1245 1246 } 1247 1248 /// Rewrite input constraint references after adding some output constraints. 1249 /// In the case where there is one output and one input and we add one output, 1250 /// we need to replace all operand references greater than or equal to 1: 1251 /// mov $0, $1 1252 /// mov eax, $1 1253 /// The result will be: 1254 /// mov $0, $2 1255 /// mov eax, $2 1256 static void rewriteInputConstraintReferences(unsigned FirstIn, 1257 unsigned NumNewOuts, 1258 std::string &AsmString) { 1259 std::string Buf; 1260 llvm::raw_string_ostream OS(Buf); 1261 size_t Pos = 0; 1262 while (Pos < AsmString.size()) { 1263 size_t DollarStart = AsmString.find('$', Pos); 1264 if (DollarStart == std::string::npos) 1265 DollarStart = AsmString.size(); 1266 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 1267 if (DollarEnd == std::string::npos) 1268 DollarEnd = AsmString.size(); 1269 OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 1270 Pos = DollarEnd; 1271 size_t NumDollars = DollarEnd - DollarStart; 1272 if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 1273 // We have an operand reference. 1274 size_t DigitStart = Pos; 1275 if (AsmString[DigitStart] == '{') { 1276 OS << '{'; 1277 ++DigitStart; 1278 } 1279 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 1280 if (DigitEnd == std::string::npos) 1281 DigitEnd = AsmString.size(); 1282 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 1283 unsigned OperandIndex; 1284 if (!OperandStr.getAsInteger(10, OperandIndex)) { 1285 if (OperandIndex >= FirstIn) 1286 OperandIndex += NumNewOuts; 1287 OS << OperandIndex; 1288 } else { 1289 OS << OperandStr; 1290 } 1291 Pos = DigitEnd; 1292 } 1293 } 1294 AsmString = std::move(OS.str()); 1295 } 1296 1297 /// Add output constraints for EAX:EDX because they are return registers. 1298 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 1299 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 1300 std::vector<llvm::Type *> &ResultRegTypes, 1301 std::vector<llvm::Type *> &ResultTruncRegTypes, 1302 std::vector<LValue> &ResultRegDests, std::string &AsmString, 1303 unsigned NumOutputs) const { 1304 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 1305 1306 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 1307 // larger. 1308 if (!Constraints.empty()) 1309 Constraints += ','; 1310 if (RetWidth <= 32) { 1311 Constraints += "={eax}"; 1312 ResultRegTypes.push_back(CGF.Int32Ty); 1313 } else { 1314 // Use the 'A' constraint for EAX:EDX. 1315 Constraints += "=A"; 1316 ResultRegTypes.push_back(CGF.Int64Ty); 1317 } 1318 1319 // Truncate EAX or EAX:EDX to an integer of the appropriate size. 1320 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 1321 ResultTruncRegTypes.push_back(CoerceTy); 1322 1323 // Coerce the integer by bitcasting the return slot pointer. 1324 ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(CGF), 1325 CoerceTy->getPointerTo())); 1326 ResultRegDests.push_back(ReturnSlot); 1327 1328 rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 1329 } 1330 1331 /// shouldReturnTypeInRegister - Determine if the given type should be 1332 /// returned in a register (for the Darwin and MCU ABI). 1333 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 1334 ASTContext &Context) const { 1335 uint64_t Size = Context.getTypeSize(Ty); 1336 1337 // For i386, type must be register sized. 1338 // For the MCU ABI, it only needs to be <= 8-byte 1339 if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) 1340 return false; 1341 1342 if (Ty->isVectorType()) { 1343 // 64- and 128- bit vectors inside structures are not returned in 1344 // registers. 1345 if (Size == 64 || Size == 128) 1346 return false; 1347 1348 return true; 1349 } 1350 1351 // If this is a builtin, pointer, enum, complex type, member pointer, or 1352 // member function pointer it is ok. 1353 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 1354 Ty->isAnyComplexType() || Ty->isEnumeralType() || 1355 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 1356 return true; 1357 1358 // Arrays are treated like records. 1359 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 1360 return shouldReturnTypeInRegister(AT->getElementType(), Context); 1361 1362 // Otherwise, it must be a record type. 1363 const RecordType *RT = Ty->getAs<RecordType>(); 1364 if (!RT) return false; 1365 1366 // FIXME: Traverse bases here too. 1367 1368 // Structure types are passed in register if all fields would be 1369 // passed in a register. 1370 for (const auto *FD : RT->getDecl()->fields()) { 1371 // Empty fields are ignored. 1372 if (isEmptyField(Context, FD, true)) 1373 continue; 1374 1375 // Check fields recursively. 1376 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 1377 return false; 1378 } 1379 return true; 1380 } 1381 1382 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 1383 // Treat complex types as the element type. 1384 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 1385 Ty = CTy->getElementType(); 1386 1387 // Check for a type which we know has a simple scalar argument-passing 1388 // convention without any padding. (We're specifically looking for 32 1389 // and 64-bit integer and integer-equivalents, float, and double.) 1390 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 1391 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 1392 return false; 1393 1394 uint64_t Size = Context.getTypeSize(Ty); 1395 return Size == 32 || Size == 64; 1396 } 1397 1398 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD, 1399 uint64_t &Size) { 1400 for (const auto *FD : RD->fields()) { 1401 // Scalar arguments on the stack get 4 byte alignment on x86. If the 1402 // argument is smaller than 32-bits, expanding the struct will create 1403 // alignment padding. 1404 if (!is32Or64BitBasicType(FD->getType(), Context)) 1405 return false; 1406 1407 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 1408 // how to expand them yet, and the predicate for telling if a bitfield still 1409 // counts as "basic" is more complicated than what we were doing previously. 1410 if (FD->isBitField()) 1411 return false; 1412 1413 Size += Context.getTypeSize(FD->getType()); 1414 } 1415 return true; 1416 } 1417 1418 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD, 1419 uint64_t &Size) { 1420 // Don't do this if there are any non-empty bases. 1421 for (const CXXBaseSpecifier &Base : RD->bases()) { 1422 if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(), 1423 Size)) 1424 return false; 1425 } 1426 if (!addFieldSizes(Context, RD, Size)) 1427 return false; 1428 return true; 1429 } 1430 1431 /// Test whether an argument type which is to be passed indirectly (on the 1432 /// stack) would have the equivalent layout if it was expanded into separate 1433 /// arguments. If so, we prefer to do the latter to avoid inhibiting 1434 /// optimizations. 1435 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const { 1436 // We can only expand structure types. 1437 const RecordType *RT = Ty->getAs<RecordType>(); 1438 if (!RT) 1439 return false; 1440 const RecordDecl *RD = RT->getDecl(); 1441 uint64_t Size = 0; 1442 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1443 if (!IsWin32StructABI) { 1444 // On non-Windows, we have to conservatively match our old bitcode 1445 // prototypes in order to be ABI-compatible at the bitcode level. 1446 if (!CXXRD->isCLike()) 1447 return false; 1448 } else { 1449 // Don't do this for dynamic classes. 1450 if (CXXRD->isDynamicClass()) 1451 return false; 1452 } 1453 if (!addBaseAndFieldSizes(getContext(), CXXRD, Size)) 1454 return false; 1455 } else { 1456 if (!addFieldSizes(getContext(), RD, Size)) 1457 return false; 1458 } 1459 1460 // We can do this if there was no alignment padding. 1461 return Size == getContext().getTypeSize(Ty); 1462 } 1463 1464 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { 1465 // If the return value is indirect, then the hidden argument is consuming one 1466 // integer register. 1467 if (State.FreeRegs) { 1468 --State.FreeRegs; 1469 if (!IsMCUABI) 1470 return getNaturalAlignIndirectInReg(RetTy); 1471 } 1472 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 1473 } 1474 1475 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 1476 CCState &State) const { 1477 if (RetTy->isVoidType()) 1478 return ABIArgInfo::getIgnore(); 1479 1480 const Type *Base = nullptr; 1481 uint64_t NumElts = 0; 1482 if ((State.CC == llvm::CallingConv::X86_VectorCall || 1483 State.CC == llvm::CallingConv::X86_RegCall) && 1484 isHomogeneousAggregate(RetTy, Base, NumElts)) { 1485 // The LLVM struct type for such an aggregate should lower properly. 1486 return ABIArgInfo::getDirect(); 1487 } 1488 1489 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 1490 // On Darwin, some vectors are returned in registers. 1491 if (IsDarwinVectorABI) { 1492 uint64_t Size = getContext().getTypeSize(RetTy); 1493 1494 // 128-bit vectors are a special case; they are returned in 1495 // registers and we need to make sure to pick a type the LLVM 1496 // backend will like. 1497 if (Size == 128) 1498 return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 1499 llvm::Type::getInt64Ty(getVMContext()), 2)); 1500 1501 // Always return in register if it fits in a general purpose 1502 // register, or if it is 64 bits and has a single element. 1503 if ((Size == 8 || Size == 16 || Size == 32) || 1504 (Size == 64 && VT->getNumElements() == 1)) 1505 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1506 Size)); 1507 1508 return getIndirectReturnResult(RetTy, State); 1509 } 1510 1511 return ABIArgInfo::getDirect(); 1512 } 1513 1514 if (isAggregateTypeForABI(RetTy)) { 1515 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 1516 // Structures with flexible arrays are always indirect. 1517 if (RT->getDecl()->hasFlexibleArrayMember()) 1518 return getIndirectReturnResult(RetTy, State); 1519 } 1520 1521 // If specified, structs and unions are always indirect. 1522 if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) 1523 return getIndirectReturnResult(RetTy, State); 1524 1525 // Ignore empty structs/unions. 1526 if (isEmptyRecord(getContext(), RetTy, true)) 1527 return ABIArgInfo::getIgnore(); 1528 1529 // Small structures which are register sized are generally returned 1530 // in a register. 1531 if (shouldReturnTypeInRegister(RetTy, getContext())) { 1532 uint64_t Size = getContext().getTypeSize(RetTy); 1533 1534 // As a special-case, if the struct is a "single-element" struct, and 1535 // the field is of type "float" or "double", return it in a 1536 // floating-point register. (MSVC does not apply this special case.) 1537 // We apply a similar transformation for pointer types to improve the 1538 // quality of the generated IR. 1539 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 1540 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 1541 || SeltTy->hasPointerRepresentation()) 1542 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 1543 1544 // FIXME: We should be able to narrow this integer in cases with dead 1545 // padding. 1546 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 1547 } 1548 1549 return getIndirectReturnResult(RetTy, State); 1550 } 1551 1552 // Treat an enum type as its underlying type. 1553 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1554 RetTy = EnumTy->getDecl()->getIntegerType(); 1555 1556 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 1557 if (EIT->getNumBits() > 64) 1558 return getIndirectReturnResult(RetTy, State); 1559 1560 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 1561 : ABIArgInfo::getDirect()); 1562 } 1563 1564 static bool isSIMDVectorType(ASTContext &Context, QualType Ty) { 1565 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 1566 } 1567 1568 static bool isRecordWithSIMDVectorType(ASTContext &Context, QualType Ty) { 1569 const RecordType *RT = Ty->getAs<RecordType>(); 1570 if (!RT) 1571 return 0; 1572 const RecordDecl *RD = RT->getDecl(); 1573 1574 // If this is a C++ record, check the bases first. 1575 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1576 for (const auto &I : CXXRD->bases()) 1577 if (!isRecordWithSIMDVectorType(Context, I.getType())) 1578 return false; 1579 1580 for (const auto *i : RD->fields()) { 1581 QualType FT = i->getType(); 1582 1583 if (isSIMDVectorType(Context, FT)) 1584 return true; 1585 1586 if (isRecordWithSIMDVectorType(Context, FT)) 1587 return true; 1588 } 1589 1590 return false; 1591 } 1592 1593 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 1594 unsigned Align) const { 1595 // Otherwise, if the alignment is less than or equal to the minimum ABI 1596 // alignment, just use the default; the backend will handle this. 1597 if (Align <= MinABIStackAlignInBytes) 1598 return 0; // Use default alignment. 1599 1600 // On non-Darwin, the stack type alignment is always 4. 1601 if (!IsDarwinVectorABI) { 1602 // Set explicit alignment, since we may need to realign the top. 1603 return MinABIStackAlignInBytes; 1604 } 1605 1606 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 1607 if (Align >= 16 && (isSIMDVectorType(getContext(), Ty) || 1608 isRecordWithSIMDVectorType(getContext(), Ty))) 1609 return 16; 1610 1611 return MinABIStackAlignInBytes; 1612 } 1613 1614 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 1615 CCState &State) const { 1616 if (!ByVal) { 1617 if (State.FreeRegs) { 1618 --State.FreeRegs; // Non-byval indirects just use one pointer. 1619 if (!IsMCUABI) 1620 return getNaturalAlignIndirectInReg(Ty); 1621 } 1622 return getNaturalAlignIndirect(Ty, false); 1623 } 1624 1625 // Compute the byval alignment. 1626 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 1627 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 1628 if (StackAlign == 0) 1629 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); 1630 1631 // If the stack alignment is less than the type alignment, realign the 1632 // argument. 1633 bool Realign = TypeAlign > StackAlign; 1634 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), 1635 /*ByVal=*/true, Realign); 1636 } 1637 1638 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 1639 const Type *T = isSingleElementStruct(Ty, getContext()); 1640 if (!T) 1641 T = Ty.getTypePtr(); 1642 1643 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 1644 BuiltinType::Kind K = BT->getKind(); 1645 if (K == BuiltinType::Float || K == BuiltinType::Double) 1646 return Float; 1647 } 1648 return Integer; 1649 } 1650 1651 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { 1652 if (!IsSoftFloatABI) { 1653 Class C = classify(Ty); 1654 if (C == Float) 1655 return false; 1656 } 1657 1658 unsigned Size = getContext().getTypeSize(Ty); 1659 unsigned SizeInRegs = (Size + 31) / 32; 1660 1661 if (SizeInRegs == 0) 1662 return false; 1663 1664 if (!IsMCUABI) { 1665 if (SizeInRegs > State.FreeRegs) { 1666 State.FreeRegs = 0; 1667 return false; 1668 } 1669 } else { 1670 // The MCU psABI allows passing parameters in-reg even if there are 1671 // earlier parameters that are passed on the stack. Also, 1672 // it does not allow passing >8-byte structs in-register, 1673 // even if there are 3 free registers available. 1674 if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) 1675 return false; 1676 } 1677 1678 State.FreeRegs -= SizeInRegs; 1679 return true; 1680 } 1681 1682 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, 1683 bool &InReg, 1684 bool &NeedsPadding) const { 1685 // On Windows, aggregates other than HFAs are never passed in registers, and 1686 // they do not consume register slots. Homogenous floating-point aggregates 1687 // (HFAs) have already been dealt with at this point. 1688 if (IsWin32StructABI && isAggregateTypeForABI(Ty)) 1689 return false; 1690 1691 NeedsPadding = false; 1692 InReg = !IsMCUABI; 1693 1694 if (!updateFreeRegs(Ty, State)) 1695 return false; 1696 1697 if (IsMCUABI) 1698 return true; 1699 1700 if (State.CC == llvm::CallingConv::X86_FastCall || 1701 State.CC == llvm::CallingConv::X86_VectorCall || 1702 State.CC == llvm::CallingConv::X86_RegCall) { 1703 if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) 1704 NeedsPadding = true; 1705 1706 return false; 1707 } 1708 1709 return true; 1710 } 1711 1712 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { 1713 if (!updateFreeRegs(Ty, State)) 1714 return false; 1715 1716 if (IsMCUABI) 1717 return false; 1718 1719 if (State.CC == llvm::CallingConv::X86_FastCall || 1720 State.CC == llvm::CallingConv::X86_VectorCall || 1721 State.CC == llvm::CallingConv::X86_RegCall) { 1722 if (getContext().getTypeSize(Ty) > 32) 1723 return false; 1724 1725 return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || 1726 Ty->isReferenceType()); 1727 } 1728 1729 return true; 1730 } 1731 1732 void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const { 1733 // Vectorcall x86 works subtly different than in x64, so the format is 1734 // a bit different than the x64 version. First, all vector types (not HVAs) 1735 // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers. 1736 // This differs from the x64 implementation, where the first 6 by INDEX get 1737 // registers. 1738 // In the second pass over the arguments, HVAs are passed in the remaining 1739 // vector registers if possible, or indirectly by address. The address will be 1740 // passed in ECX/EDX if available. Any other arguments are passed according to 1741 // the usual fastcall rules. 1742 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); 1743 for (int I = 0, E = Args.size(); I < E; ++I) { 1744 const Type *Base = nullptr; 1745 uint64_t NumElts = 0; 1746 const QualType &Ty = Args[I].type; 1747 if ((Ty->isVectorType() || Ty->isBuiltinType()) && 1748 isHomogeneousAggregate(Ty, Base, NumElts)) { 1749 if (State.FreeSSERegs >= NumElts) { 1750 State.FreeSSERegs -= NumElts; 1751 Args[I].info = ABIArgInfo::getDirectInReg(); 1752 State.IsPreassigned.set(I); 1753 } 1754 } 1755 } 1756 } 1757 1758 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 1759 CCState &State) const { 1760 // FIXME: Set alignment on indirect arguments. 1761 bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall; 1762 bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall; 1763 bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall; 1764 1765 Ty = useFirstFieldIfTransparentUnion(Ty); 1766 TypeInfo TI = getContext().getTypeInfo(Ty); 1767 1768 // Check with the C++ ABI first. 1769 const RecordType *RT = Ty->getAs<RecordType>(); 1770 if (RT) { 1771 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 1772 if (RAA == CGCXXABI::RAA_Indirect) { 1773 return getIndirectResult(Ty, false, State); 1774 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 1775 // The field index doesn't matter, we'll fix it up later. 1776 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 1777 } 1778 } 1779 1780 // Regcall uses the concept of a homogenous vector aggregate, similar 1781 // to other targets. 1782 const Type *Base = nullptr; 1783 uint64_t NumElts = 0; 1784 if ((IsRegCall || IsVectorCall) && 1785 isHomogeneousAggregate(Ty, Base, NumElts)) { 1786 if (State.FreeSSERegs >= NumElts) { 1787 State.FreeSSERegs -= NumElts; 1788 1789 // Vectorcall passes HVAs directly and does not flatten them, but regcall 1790 // does. 1791 if (IsVectorCall) 1792 return getDirectX86Hva(); 1793 1794 if (Ty->isBuiltinType() || Ty->isVectorType()) 1795 return ABIArgInfo::getDirect(); 1796 return ABIArgInfo::getExpand(); 1797 } 1798 return getIndirectResult(Ty, /*ByVal=*/false, State); 1799 } 1800 1801 if (isAggregateTypeForABI(Ty)) { 1802 // Structures with flexible arrays are always indirect. 1803 // FIXME: This should not be byval! 1804 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 1805 return getIndirectResult(Ty, true, State); 1806 1807 // Ignore empty structs/unions on non-Windows. 1808 if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true)) 1809 return ABIArgInfo::getIgnore(); 1810 1811 llvm::LLVMContext &LLVMContext = getVMContext(); 1812 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 1813 bool NeedsPadding = false; 1814 bool InReg; 1815 if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { 1816 unsigned SizeInRegs = (TI.Width + 31) / 32; 1817 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 1818 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 1819 if (InReg) 1820 return ABIArgInfo::getDirectInReg(Result); 1821 else 1822 return ABIArgInfo::getDirect(Result); 1823 } 1824 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 1825 1826 // Pass over-aligned aggregates on Windows indirectly. This behavior was 1827 // added in MSVC 2015. 1828 if (IsWin32StructABI && TI.AlignIsRequired && TI.Align > 32) 1829 return getIndirectResult(Ty, /*ByVal=*/false, State); 1830 1831 // Expand small (<= 128-bit) record types when we know that the stack layout 1832 // of those arguments will match the struct. This is important because the 1833 // LLVM backend isn't smart enough to remove byval, which inhibits many 1834 // optimizations. 1835 // Don't do this for the MCU if there are still free integer registers 1836 // (see X86_64 ABI for full explanation). 1837 if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) && 1838 canExpandIndirectArgument(Ty)) 1839 return ABIArgInfo::getExpandWithPadding( 1840 IsFastCall || IsVectorCall || IsRegCall, PaddingType); 1841 1842 return getIndirectResult(Ty, true, State); 1843 } 1844 1845 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1846 // On Windows, vectors are passed directly if registers are available, or 1847 // indirectly if not. This avoids the need to align argument memory. Pass 1848 // user-defined vector types larger than 512 bits indirectly for simplicity. 1849 if (IsWin32StructABI) { 1850 if (TI.Width <= 512 && State.FreeSSERegs > 0) { 1851 --State.FreeSSERegs; 1852 return ABIArgInfo::getDirectInReg(); 1853 } 1854 return getIndirectResult(Ty, /*ByVal=*/false, State); 1855 } 1856 1857 // On Darwin, some vectors are passed in memory, we handle this by passing 1858 // it as an i8/i16/i32/i64. 1859 if (IsDarwinVectorABI) { 1860 if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) || 1861 (TI.Width == 64 && VT->getNumElements() == 1)) 1862 return ABIArgInfo::getDirect( 1863 llvm::IntegerType::get(getVMContext(), TI.Width)); 1864 } 1865 1866 if (IsX86_MMXType(CGT.ConvertType(Ty))) 1867 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 1868 1869 return ABIArgInfo::getDirect(); 1870 } 1871 1872 1873 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1874 Ty = EnumTy->getDecl()->getIntegerType(); 1875 1876 bool InReg = shouldPrimitiveUseInReg(Ty, State); 1877 1878 if (isPromotableIntegerTypeForABI(Ty)) { 1879 if (InReg) 1880 return ABIArgInfo::getExtendInReg(Ty); 1881 return ABIArgInfo::getExtend(Ty); 1882 } 1883 1884 if (const auto * EIT = Ty->getAs<ExtIntType>()) { 1885 if (EIT->getNumBits() <= 64) { 1886 if (InReg) 1887 return ABIArgInfo::getDirectInReg(); 1888 return ABIArgInfo::getDirect(); 1889 } 1890 return getIndirectResult(Ty, /*ByVal=*/false, State); 1891 } 1892 1893 if (InReg) 1894 return ABIArgInfo::getDirectInReg(); 1895 return ABIArgInfo::getDirect(); 1896 } 1897 1898 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 1899 CCState State(FI); 1900 if (IsMCUABI) 1901 State.FreeRegs = 3; 1902 else if (State.CC == llvm::CallingConv::X86_FastCall) { 1903 State.FreeRegs = 2; 1904 State.FreeSSERegs = 3; 1905 } else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1906 State.FreeRegs = 2; 1907 State.FreeSSERegs = 6; 1908 } else if (FI.getHasRegParm()) 1909 State.FreeRegs = FI.getRegParm(); 1910 else if (State.CC == llvm::CallingConv::X86_RegCall) { 1911 State.FreeRegs = 5; 1912 State.FreeSSERegs = 8; 1913 } else if (IsWin32StructABI) { 1914 // Since MSVC 2015, the first three SSE vectors have been passed in 1915 // registers. The rest are passed indirectly. 1916 State.FreeRegs = DefaultNumRegisterParameters; 1917 State.FreeSSERegs = 3; 1918 } else 1919 State.FreeRegs = DefaultNumRegisterParameters; 1920 1921 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 1922 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 1923 } else if (FI.getReturnInfo().isIndirect()) { 1924 // The C++ ABI is not aware of register usage, so we have to check if the 1925 // return value was sret and put it in a register ourselves if appropriate. 1926 if (State.FreeRegs) { 1927 --State.FreeRegs; // The sret parameter consumes a register. 1928 if (!IsMCUABI) 1929 FI.getReturnInfo().setInReg(true); 1930 } 1931 } 1932 1933 // The chain argument effectively gives us another free register. 1934 if (FI.isChainCall()) 1935 ++State.FreeRegs; 1936 1937 // For vectorcall, do a first pass over the arguments, assigning FP and vector 1938 // arguments to XMM registers as available. 1939 if (State.CC == llvm::CallingConv::X86_VectorCall) 1940 runVectorCallFirstPass(FI, State); 1941 1942 bool UsedInAlloca = false; 1943 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); 1944 for (int I = 0, E = Args.size(); I < E; ++I) { 1945 // Skip arguments that have already been assigned. 1946 if (State.IsPreassigned.test(I)) 1947 continue; 1948 1949 Args[I].info = classifyArgumentType(Args[I].type, State); 1950 UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca); 1951 } 1952 1953 // If we needed to use inalloca for any argument, do a second pass and rewrite 1954 // all the memory arguments to use inalloca. 1955 if (UsedInAlloca) 1956 rewriteWithInAlloca(FI); 1957 } 1958 1959 void 1960 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1961 CharUnits &StackOffset, ABIArgInfo &Info, 1962 QualType Type) const { 1963 // Arguments are always 4-byte-aligned. 1964 CharUnits WordSize = CharUnits::fromQuantity(4); 1965 assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct"); 1966 1967 // sret pointers and indirect things will require an extra pointer 1968 // indirection, unless they are byval. Most things are byval, and will not 1969 // require this indirection. 1970 bool IsIndirect = false; 1971 if (Info.isIndirect() && !Info.getIndirectByVal()) 1972 IsIndirect = true; 1973 Info = ABIArgInfo::getInAlloca(FrameFields.size(), IsIndirect); 1974 llvm::Type *LLTy = CGT.ConvertTypeForMem(Type); 1975 if (IsIndirect) 1976 LLTy = LLTy->getPointerTo(0); 1977 FrameFields.push_back(LLTy); 1978 StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(Type); 1979 1980 // Insert padding bytes to respect alignment. 1981 CharUnits FieldEnd = StackOffset; 1982 StackOffset = FieldEnd.alignTo(WordSize); 1983 if (StackOffset != FieldEnd) { 1984 CharUnits NumBytes = StackOffset - FieldEnd; 1985 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 1986 Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); 1987 FrameFields.push_back(Ty); 1988 } 1989 } 1990 1991 static bool isArgInAlloca(const ABIArgInfo &Info) { 1992 // Leave ignored and inreg arguments alone. 1993 switch (Info.getKind()) { 1994 case ABIArgInfo::InAlloca: 1995 return true; 1996 case ABIArgInfo::Ignore: 1997 case ABIArgInfo::IndirectAliased: 1998 return false; 1999 case ABIArgInfo::Indirect: 2000 case ABIArgInfo::Direct: 2001 case ABIArgInfo::Extend: 2002 return !Info.getInReg(); 2003 case ABIArgInfo::Expand: 2004 case ABIArgInfo::CoerceAndExpand: 2005 // These are aggregate types which are never passed in registers when 2006 // inalloca is involved. 2007 return true; 2008 } 2009 llvm_unreachable("invalid enum"); 2010 } 2011 2012 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 2013 assert(IsWin32StructABI && "inalloca only supported on win32"); 2014 2015 // Build a packed struct type for all of the arguments in memory. 2016 SmallVector<llvm::Type *, 6> FrameFields; 2017 2018 // The stack alignment is always 4. 2019 CharUnits StackAlign = CharUnits::fromQuantity(4); 2020 2021 CharUnits StackOffset; 2022 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 2023 2024 // Put 'this' into the struct before 'sret', if necessary. 2025 bool IsThisCall = 2026 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 2027 ABIArgInfo &Ret = FI.getReturnInfo(); 2028 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 2029 isArgInAlloca(I->info)) { 2030 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 2031 ++I; 2032 } 2033 2034 // Put the sret parameter into the inalloca struct if it's in memory. 2035 if (Ret.isIndirect() && !Ret.getInReg()) { 2036 addFieldToArgStruct(FrameFields, StackOffset, Ret, FI.getReturnType()); 2037 // On Windows, the hidden sret parameter is always returned in eax. 2038 Ret.setInAllocaSRet(IsWin32StructABI); 2039 } 2040 2041 // Skip the 'this' parameter in ecx. 2042 if (IsThisCall) 2043 ++I; 2044 2045 // Put arguments passed in memory into the struct. 2046 for (; I != E; ++I) { 2047 if (isArgInAlloca(I->info)) 2048 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 2049 } 2050 2051 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 2052 /*isPacked=*/true), 2053 StackAlign); 2054 } 2055 2056 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, 2057 Address VAListAddr, QualType Ty) const { 2058 2059 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 2060 2061 // x86-32 changes the alignment of certain arguments on the stack. 2062 // 2063 // Just messing with TypeInfo like this works because we never pass 2064 // anything indirectly. 2065 TypeInfo.Align = CharUnits::fromQuantity( 2066 getTypeStackAlignInBytes(Ty, TypeInfo.Align.getQuantity())); 2067 2068 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 2069 TypeInfo, CharUnits::fromQuantity(4), 2070 /*AllowHigherAlign*/ true); 2071 } 2072 2073 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 2074 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 2075 assert(Triple.getArch() == llvm::Triple::x86); 2076 2077 switch (Opts.getStructReturnConvention()) { 2078 case CodeGenOptions::SRCK_Default: 2079 break; 2080 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 2081 return false; 2082 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 2083 return true; 2084 } 2085 2086 if (Triple.isOSDarwin() || Triple.isOSIAMCU()) 2087 return true; 2088 2089 switch (Triple.getOS()) { 2090 case llvm::Triple::DragonFly: 2091 case llvm::Triple::FreeBSD: 2092 case llvm::Triple::OpenBSD: 2093 case llvm::Triple::Win32: 2094 return true; 2095 default: 2096 return false; 2097 } 2098 } 2099 2100 void X86_32TargetCodeGenInfo::setTargetAttributes( 2101 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2102 if (GV->isDeclaration()) 2103 return; 2104 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2105 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2106 llvm::Function *Fn = cast<llvm::Function>(GV); 2107 Fn->addFnAttr("stackrealign"); 2108 } 2109 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2110 llvm::Function *Fn = cast<llvm::Function>(GV); 2111 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2112 } 2113 } 2114 } 2115 2116 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 2117 CodeGen::CodeGenFunction &CGF, 2118 llvm::Value *Address) const { 2119 CodeGen::CGBuilderTy &Builder = CGF.Builder; 2120 2121 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 2122 2123 // 0-7 are the eight integer registers; the order is different 2124 // on Darwin (for EH), but the range is the same. 2125 // 8 is %eip. 2126 AssignToArrayRange(Builder, Address, Four8, 0, 8); 2127 2128 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 2129 // 12-16 are st(0..4). Not sure why we stop at 4. 2130 // These have size 16, which is sizeof(long double) on 2131 // platforms with 8-byte alignment for that type. 2132 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 2133 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 2134 2135 } else { 2136 // 9 is %eflags, which doesn't get a size on Darwin for some 2137 // reason. 2138 Builder.CreateAlignedStore( 2139 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), 2140 CharUnits::One()); 2141 2142 // 11-16 are st(0..5). Not sure why we stop at 5. 2143 // These have size 12, which is sizeof(long double) on 2144 // platforms with 4-byte alignment for that type. 2145 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 2146 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 2147 } 2148 2149 return false; 2150 } 2151 2152 //===----------------------------------------------------------------------===// 2153 // X86-64 ABI Implementation 2154 //===----------------------------------------------------------------------===// 2155 2156 2157 namespace { 2158 /// The AVX ABI level for X86 targets. 2159 enum class X86AVXABILevel { 2160 None, 2161 AVX, 2162 AVX512 2163 }; 2164 2165 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. 2166 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { 2167 switch (AVXLevel) { 2168 case X86AVXABILevel::AVX512: 2169 return 512; 2170 case X86AVXABILevel::AVX: 2171 return 256; 2172 case X86AVXABILevel::None: 2173 return 128; 2174 } 2175 llvm_unreachable("Unknown AVXLevel"); 2176 } 2177 2178 /// X86_64ABIInfo - The X86_64 ABI information. 2179 class X86_64ABIInfo : public SwiftABIInfo { 2180 enum Class { 2181 Integer = 0, 2182 SSE, 2183 SSEUp, 2184 X87, 2185 X87Up, 2186 ComplexX87, 2187 NoClass, 2188 Memory 2189 }; 2190 2191 /// merge - Implement the X86_64 ABI merging algorithm. 2192 /// 2193 /// Merge an accumulating classification \arg Accum with a field 2194 /// classification \arg Field. 2195 /// 2196 /// \param Accum - The accumulating classification. This should 2197 /// always be either NoClass or the result of a previous merge 2198 /// call. In addition, this should never be Memory (the caller 2199 /// should just return Memory for the aggregate). 2200 static Class merge(Class Accum, Class Field); 2201 2202 /// postMerge - Implement the X86_64 ABI post merging algorithm. 2203 /// 2204 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 2205 /// final MEMORY or SSE classes when necessary. 2206 /// 2207 /// \param AggregateSize - The size of the current aggregate in 2208 /// the classification process. 2209 /// 2210 /// \param Lo - The classification for the parts of the type 2211 /// residing in the low word of the containing object. 2212 /// 2213 /// \param Hi - The classification for the parts of the type 2214 /// residing in the higher words of the containing object. 2215 /// 2216 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 2217 2218 /// classify - Determine the x86_64 register classes in which the 2219 /// given type T should be passed. 2220 /// 2221 /// \param Lo - The classification for the parts of the type 2222 /// residing in the low word of the containing object. 2223 /// 2224 /// \param Hi - The classification for the parts of the type 2225 /// residing in the high word of the containing object. 2226 /// 2227 /// \param OffsetBase - The bit offset of this type in the 2228 /// containing object. Some parameters are classified different 2229 /// depending on whether they straddle an eightbyte boundary. 2230 /// 2231 /// \param isNamedArg - Whether the argument in question is a "named" 2232 /// argument, as used in AMD64-ABI 3.5.7. 2233 /// 2234 /// If a word is unused its result will be NoClass; if a type should 2235 /// be passed in Memory then at least the classification of \arg Lo 2236 /// will be Memory. 2237 /// 2238 /// The \arg Lo class will be NoClass iff the argument is ignored. 2239 /// 2240 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 2241 /// also be ComplexX87. 2242 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 2243 bool isNamedArg) const; 2244 2245 llvm::Type *GetByteVectorType(QualType Ty) const; 2246 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 2247 unsigned IROffset, QualType SourceTy, 2248 unsigned SourceOffset) const; 2249 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 2250 unsigned IROffset, QualType SourceTy, 2251 unsigned SourceOffset) const; 2252 2253 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2254 /// such that the argument will be returned in memory. 2255 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 2256 2257 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2258 /// such that the argument will be passed in memory. 2259 /// 2260 /// \param freeIntRegs - The number of free integer registers remaining 2261 /// available. 2262 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 2263 2264 ABIArgInfo classifyReturnType(QualType RetTy) const; 2265 2266 ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs, 2267 unsigned &neededInt, unsigned &neededSSE, 2268 bool isNamedArg) const; 2269 2270 ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt, 2271 unsigned &NeededSSE) const; 2272 2273 ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 2274 unsigned &NeededSSE) const; 2275 2276 bool IsIllegalVectorType(QualType Ty) const; 2277 2278 /// The 0.98 ABI revision clarified a lot of ambiguities, 2279 /// unfortunately in ways that were not always consistent with 2280 /// certain previous compilers. In particular, platforms which 2281 /// required strict binary compatibility with older versions of GCC 2282 /// may need to exempt themselves. 2283 bool honorsRevision0_98() const { 2284 return !getTarget().getTriple().isOSDarwin(); 2285 } 2286 2287 /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to 2288 /// classify it as INTEGER (for compatibility with older clang compilers). 2289 bool classifyIntegerMMXAsSSE() const { 2290 // Clang <= 3.8 did not do this. 2291 if (getContext().getLangOpts().getClangABICompat() <= 2292 LangOptions::ClangABI::Ver3_8) 2293 return false; 2294 2295 const llvm::Triple &Triple = getTarget().getTriple(); 2296 if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4) 2297 return false; 2298 if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10) 2299 return false; 2300 return true; 2301 } 2302 2303 // GCC classifies vectors of __int128 as memory. 2304 bool passInt128VectorsInMem() const { 2305 // Clang <= 9.0 did not do this. 2306 if (getContext().getLangOpts().getClangABICompat() <= 2307 LangOptions::ClangABI::Ver9) 2308 return false; 2309 2310 const llvm::Triple &T = getTarget().getTriple(); 2311 return T.isOSLinux() || T.isOSNetBSD(); 2312 } 2313 2314 X86AVXABILevel AVXLevel; 2315 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 2316 // 64-bit hardware. 2317 bool Has64BitPointers; 2318 2319 public: 2320 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : 2321 SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2322 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 2323 } 2324 2325 bool isPassedUsingAVXType(QualType type) const { 2326 unsigned neededInt, neededSSE; 2327 // The freeIntRegs argument doesn't matter here. 2328 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 2329 /*isNamedArg*/true); 2330 if (info.isDirect()) { 2331 llvm::Type *ty = info.getCoerceToType(); 2332 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 2333 return vectorTy->getPrimitiveSizeInBits().getFixedSize() > 128; 2334 } 2335 return false; 2336 } 2337 2338 void computeInfo(CGFunctionInfo &FI) const override; 2339 2340 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2341 QualType Ty) const override; 2342 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 2343 QualType Ty) const override; 2344 2345 bool has64BitPointers() const { 2346 return Has64BitPointers; 2347 } 2348 2349 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 2350 bool asReturnValue) const override { 2351 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2352 } 2353 bool isSwiftErrorInRegister() const override { 2354 return true; 2355 } 2356 }; 2357 2358 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 2359 class WinX86_64ABIInfo : public SwiftABIInfo { 2360 public: 2361 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2362 : SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2363 IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} 2364 2365 void computeInfo(CGFunctionInfo &FI) const override; 2366 2367 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2368 QualType Ty) const override; 2369 2370 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 2371 // FIXME: Assumes vectorcall is in use. 2372 return isX86VectorTypeForVectorCall(getContext(), Ty); 2373 } 2374 2375 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 2376 uint64_t NumMembers) const override { 2377 // FIXME: Assumes vectorcall is in use. 2378 return isX86VectorCallAggregateSmallEnough(NumMembers); 2379 } 2380 2381 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars, 2382 bool asReturnValue) const override { 2383 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2384 } 2385 2386 bool isSwiftErrorInRegister() const override { 2387 return true; 2388 } 2389 2390 private: 2391 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType, 2392 bool IsVectorCall, bool IsRegCall) const; 2393 ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 2394 const ABIArgInfo ¤t) const; 2395 void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs, 2396 bool IsVectorCall, bool IsRegCall) const; 2397 2398 X86AVXABILevel AVXLevel; 2399 2400 bool IsMingw64; 2401 }; 2402 2403 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2404 public: 2405 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2406 : TargetCodeGenInfo(std::make_unique<X86_64ABIInfo>(CGT, AVXLevel)) {} 2407 2408 const X86_64ABIInfo &getABIInfo() const { 2409 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 2410 } 2411 2412 /// Disable tail call on x86-64. The epilogue code before the tail jump blocks 2413 /// autoreleaseRV/retainRV and autoreleaseRV/unsafeClaimRV optimizations. 2414 bool markARCOptimizedReturnCallsAsNoTail() const override { return true; } 2415 2416 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2417 return 7; 2418 } 2419 2420 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2421 llvm::Value *Address) const override { 2422 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2423 2424 // 0-15 are the 16 integer registers. 2425 // 16 is %rip. 2426 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2427 return false; 2428 } 2429 2430 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 2431 StringRef Constraint, 2432 llvm::Type* Ty) const override { 2433 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 2434 } 2435 2436 bool isNoProtoCallVariadic(const CallArgList &args, 2437 const FunctionNoProtoType *fnType) const override { 2438 // The default CC on x86-64 sets %al to the number of SSA 2439 // registers used, and GCC sets this when calling an unprototyped 2440 // function, so we override the default behavior. However, don't do 2441 // that when AVX types are involved: the ABI explicitly states it is 2442 // undefined, and it doesn't work in practice because of how the ABI 2443 // defines varargs anyway. 2444 if (fnType->getCallConv() == CC_C) { 2445 bool HasAVXType = false; 2446 for (CallArgList::const_iterator 2447 it = args.begin(), ie = args.end(); it != ie; ++it) { 2448 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 2449 HasAVXType = true; 2450 break; 2451 } 2452 } 2453 2454 if (!HasAVXType) 2455 return true; 2456 } 2457 2458 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 2459 } 2460 2461 llvm::Constant * 2462 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 2463 unsigned Sig = (0xeb << 0) | // jmp rel8 2464 (0x06 << 8) | // .+0x08 2465 ('v' << 16) | 2466 ('2' << 24); 2467 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 2468 } 2469 2470 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2471 CodeGen::CodeGenModule &CGM) const override { 2472 if (GV->isDeclaration()) 2473 return; 2474 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2475 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2476 llvm::Function *Fn = cast<llvm::Function>(GV); 2477 Fn->addFnAttr("stackrealign"); 2478 } 2479 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2480 llvm::Function *Fn = cast<llvm::Function>(GV); 2481 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2482 } 2483 } 2484 } 2485 2486 void checkFunctionCallABI(CodeGenModule &CGM, SourceLocation CallLoc, 2487 const FunctionDecl *Caller, 2488 const FunctionDecl *Callee, 2489 const CallArgList &Args) const override; 2490 }; 2491 2492 static void initFeatureMaps(const ASTContext &Ctx, 2493 llvm::StringMap<bool> &CallerMap, 2494 const FunctionDecl *Caller, 2495 llvm::StringMap<bool> &CalleeMap, 2496 const FunctionDecl *Callee) { 2497 if (CalleeMap.empty() && CallerMap.empty()) { 2498 // The caller is potentially nullptr in the case where the call isn't in a 2499 // function. In this case, the getFunctionFeatureMap ensures we just get 2500 // the TU level setting (since it cannot be modified by 'target'.. 2501 Ctx.getFunctionFeatureMap(CallerMap, Caller); 2502 Ctx.getFunctionFeatureMap(CalleeMap, Callee); 2503 } 2504 } 2505 2506 static bool checkAVXParamFeature(DiagnosticsEngine &Diag, 2507 SourceLocation CallLoc, 2508 const llvm::StringMap<bool> &CallerMap, 2509 const llvm::StringMap<bool> &CalleeMap, 2510 QualType Ty, StringRef Feature, 2511 bool IsArgument) { 2512 bool CallerHasFeat = CallerMap.lookup(Feature); 2513 bool CalleeHasFeat = CalleeMap.lookup(Feature); 2514 if (!CallerHasFeat && !CalleeHasFeat) 2515 return Diag.Report(CallLoc, diag::warn_avx_calling_convention) 2516 << IsArgument << Ty << Feature; 2517 2518 // Mixing calling conventions here is very clearly an error. 2519 if (!CallerHasFeat || !CalleeHasFeat) 2520 return Diag.Report(CallLoc, diag::err_avx_calling_convention) 2521 << IsArgument << Ty << Feature; 2522 2523 // Else, both caller and callee have the required feature, so there is no need 2524 // to diagnose. 2525 return false; 2526 } 2527 2528 static bool checkAVXParam(DiagnosticsEngine &Diag, ASTContext &Ctx, 2529 SourceLocation CallLoc, 2530 const llvm::StringMap<bool> &CallerMap, 2531 const llvm::StringMap<bool> &CalleeMap, QualType Ty, 2532 bool IsArgument) { 2533 uint64_t Size = Ctx.getTypeSize(Ty); 2534 if (Size > 256) 2535 return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, 2536 "avx512f", IsArgument); 2537 2538 if (Size > 128) 2539 return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, "avx", 2540 IsArgument); 2541 2542 return false; 2543 } 2544 2545 void X86_64TargetCodeGenInfo::checkFunctionCallABI( 2546 CodeGenModule &CGM, SourceLocation CallLoc, const FunctionDecl *Caller, 2547 const FunctionDecl *Callee, const CallArgList &Args) const { 2548 llvm::StringMap<bool> CallerMap; 2549 llvm::StringMap<bool> CalleeMap; 2550 unsigned ArgIndex = 0; 2551 2552 // We need to loop through the actual call arguments rather than the the 2553 // function's parameters, in case this variadic. 2554 for (const CallArg &Arg : Args) { 2555 // The "avx" feature changes how vectors >128 in size are passed. "avx512f" 2556 // additionally changes how vectors >256 in size are passed. Like GCC, we 2557 // warn when a function is called with an argument where this will change. 2558 // Unlike GCC, we also error when it is an obvious ABI mismatch, that is, 2559 // the caller and callee features are mismatched. 2560 // Unfortunately, we cannot do this diagnostic in SEMA, since the callee can 2561 // change its ABI with attribute-target after this call. 2562 if (Arg.getType()->isVectorType() && 2563 CGM.getContext().getTypeSize(Arg.getType()) > 128) { 2564 initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee); 2565 QualType Ty = Arg.getType(); 2566 // The CallArg seems to have desugared the type already, so for clearer 2567 // diagnostics, replace it with the type in the FunctionDecl if possible. 2568 if (ArgIndex < Callee->getNumParams()) 2569 Ty = Callee->getParamDecl(ArgIndex)->getType(); 2570 2571 if (checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap, 2572 CalleeMap, Ty, /*IsArgument*/ true)) 2573 return; 2574 } 2575 ++ArgIndex; 2576 } 2577 2578 // Check return always, as we don't have a good way of knowing in codegen 2579 // whether this value is used, tail-called, etc. 2580 if (Callee->getReturnType()->isVectorType() && 2581 CGM.getContext().getTypeSize(Callee->getReturnType()) > 128) { 2582 initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee); 2583 checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap, 2584 CalleeMap, Callee->getReturnType(), 2585 /*IsArgument*/ false); 2586 } 2587 } 2588 2589 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 2590 // If the argument does not end in .lib, automatically add the suffix. 2591 // If the argument contains a space, enclose it in quotes. 2592 // This matches the behavior of MSVC. 2593 bool Quote = (Lib.find(" ") != StringRef::npos); 2594 std::string ArgStr = Quote ? "\"" : ""; 2595 ArgStr += Lib; 2596 if (!Lib.endswith_lower(".lib") && !Lib.endswith_lower(".a")) 2597 ArgStr += ".lib"; 2598 ArgStr += Quote ? "\"" : ""; 2599 return ArgStr; 2600 } 2601 2602 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 2603 public: 2604 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2605 bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, 2606 unsigned NumRegisterParameters) 2607 : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, 2608 Win32StructABI, NumRegisterParameters, false) {} 2609 2610 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2611 CodeGen::CodeGenModule &CGM) const override; 2612 2613 void getDependentLibraryOption(llvm::StringRef Lib, 2614 llvm::SmallString<24> &Opt) const override { 2615 Opt = "/DEFAULTLIB:"; 2616 Opt += qualifyWindowsLibrary(Lib); 2617 } 2618 2619 void getDetectMismatchOption(llvm::StringRef Name, 2620 llvm::StringRef Value, 2621 llvm::SmallString<32> &Opt) const override { 2622 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2623 } 2624 }; 2625 2626 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2627 CodeGen::CodeGenModule &CGM) { 2628 if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) { 2629 2630 if (CGM.getCodeGenOpts().StackProbeSize != 4096) 2631 Fn->addFnAttr("stack-probe-size", 2632 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 2633 if (CGM.getCodeGenOpts().NoStackArgProbe) 2634 Fn->addFnAttr("no-stack-arg-probe"); 2635 } 2636 } 2637 2638 void WinX86_32TargetCodeGenInfo::setTargetAttributes( 2639 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2640 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2641 if (GV->isDeclaration()) 2642 return; 2643 addStackProbeTargetAttributes(D, GV, CGM); 2644 } 2645 2646 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2647 public: 2648 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2649 X86AVXABILevel AVXLevel) 2650 : TargetCodeGenInfo(std::make_unique<WinX86_64ABIInfo>(CGT, AVXLevel)) {} 2651 2652 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2653 CodeGen::CodeGenModule &CGM) const override; 2654 2655 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2656 return 7; 2657 } 2658 2659 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2660 llvm::Value *Address) const override { 2661 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2662 2663 // 0-15 are the 16 integer registers. 2664 // 16 is %rip. 2665 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2666 return false; 2667 } 2668 2669 void getDependentLibraryOption(llvm::StringRef Lib, 2670 llvm::SmallString<24> &Opt) const override { 2671 Opt = "/DEFAULTLIB:"; 2672 Opt += qualifyWindowsLibrary(Lib); 2673 } 2674 2675 void getDetectMismatchOption(llvm::StringRef Name, 2676 llvm::StringRef Value, 2677 llvm::SmallString<32> &Opt) const override { 2678 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2679 } 2680 }; 2681 2682 void WinX86_64TargetCodeGenInfo::setTargetAttributes( 2683 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2684 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2685 if (GV->isDeclaration()) 2686 return; 2687 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2688 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2689 llvm::Function *Fn = cast<llvm::Function>(GV); 2690 Fn->addFnAttr("stackrealign"); 2691 } 2692 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2693 llvm::Function *Fn = cast<llvm::Function>(GV); 2694 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2695 } 2696 } 2697 2698 addStackProbeTargetAttributes(D, GV, CGM); 2699 } 2700 } 2701 2702 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 2703 Class &Hi) const { 2704 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 2705 // 2706 // (a) If one of the classes is Memory, the whole argument is passed in 2707 // memory. 2708 // 2709 // (b) If X87UP is not preceded by X87, the whole argument is passed in 2710 // memory. 2711 // 2712 // (c) If the size of the aggregate exceeds two eightbytes and the first 2713 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 2714 // argument is passed in memory. NOTE: This is necessary to keep the 2715 // ABI working for processors that don't support the __m256 type. 2716 // 2717 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 2718 // 2719 // Some of these are enforced by the merging logic. Others can arise 2720 // only with unions; for example: 2721 // union { _Complex double; unsigned; } 2722 // 2723 // Note that clauses (b) and (c) were added in 0.98. 2724 // 2725 if (Hi == Memory) 2726 Lo = Memory; 2727 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 2728 Lo = Memory; 2729 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 2730 Lo = Memory; 2731 if (Hi == SSEUp && Lo != SSE) 2732 Hi = SSE; 2733 } 2734 2735 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 2736 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 2737 // classified recursively so that always two fields are 2738 // considered. The resulting class is calculated according to 2739 // the classes of the fields in the eightbyte: 2740 // 2741 // (a) If both classes are equal, this is the resulting class. 2742 // 2743 // (b) If one of the classes is NO_CLASS, the resulting class is 2744 // the other class. 2745 // 2746 // (c) If one of the classes is MEMORY, the result is the MEMORY 2747 // class. 2748 // 2749 // (d) If one of the classes is INTEGER, the result is the 2750 // INTEGER. 2751 // 2752 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 2753 // MEMORY is used as class. 2754 // 2755 // (f) Otherwise class SSE is used. 2756 2757 // Accum should never be memory (we should have returned) or 2758 // ComplexX87 (because this cannot be passed in a structure). 2759 assert((Accum != Memory && Accum != ComplexX87) && 2760 "Invalid accumulated classification during merge."); 2761 if (Accum == Field || Field == NoClass) 2762 return Accum; 2763 if (Field == Memory) 2764 return Memory; 2765 if (Accum == NoClass) 2766 return Field; 2767 if (Accum == Integer || Field == Integer) 2768 return Integer; 2769 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 2770 Accum == X87 || Accum == X87Up) 2771 return Memory; 2772 return SSE; 2773 } 2774 2775 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 2776 Class &Lo, Class &Hi, bool isNamedArg) const { 2777 // FIXME: This code can be simplified by introducing a simple value class for 2778 // Class pairs with appropriate constructor methods for the various 2779 // situations. 2780 2781 // FIXME: Some of the split computations are wrong; unaligned vectors 2782 // shouldn't be passed in registers for example, so there is no chance they 2783 // can straddle an eightbyte. Verify & simplify. 2784 2785 Lo = Hi = NoClass; 2786 2787 Class &Current = OffsetBase < 64 ? Lo : Hi; 2788 Current = Memory; 2789 2790 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 2791 BuiltinType::Kind k = BT->getKind(); 2792 2793 if (k == BuiltinType::Void) { 2794 Current = NoClass; 2795 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 2796 Lo = Integer; 2797 Hi = Integer; 2798 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 2799 Current = Integer; 2800 } else if (k == BuiltinType::Float || k == BuiltinType::Double) { 2801 Current = SSE; 2802 } else if (k == BuiltinType::LongDouble) { 2803 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2804 if (LDF == &llvm::APFloat::IEEEquad()) { 2805 Lo = SSE; 2806 Hi = SSEUp; 2807 } else if (LDF == &llvm::APFloat::x87DoubleExtended()) { 2808 Lo = X87; 2809 Hi = X87Up; 2810 } else if (LDF == &llvm::APFloat::IEEEdouble()) { 2811 Current = SSE; 2812 } else 2813 llvm_unreachable("unexpected long double representation!"); 2814 } 2815 // FIXME: _Decimal32 and _Decimal64 are SSE. 2816 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 2817 return; 2818 } 2819 2820 if (const EnumType *ET = Ty->getAs<EnumType>()) { 2821 // Classify the underlying integer type. 2822 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 2823 return; 2824 } 2825 2826 if (Ty->hasPointerRepresentation()) { 2827 Current = Integer; 2828 return; 2829 } 2830 2831 if (Ty->isMemberPointerType()) { 2832 if (Ty->isMemberFunctionPointerType()) { 2833 if (Has64BitPointers) { 2834 // If Has64BitPointers, this is an {i64, i64}, so classify both 2835 // Lo and Hi now. 2836 Lo = Hi = Integer; 2837 } else { 2838 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 2839 // straddles an eightbyte boundary, Hi should be classified as well. 2840 uint64_t EB_FuncPtr = (OffsetBase) / 64; 2841 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 2842 if (EB_FuncPtr != EB_ThisAdj) { 2843 Lo = Hi = Integer; 2844 } else { 2845 Current = Integer; 2846 } 2847 } 2848 } else { 2849 Current = Integer; 2850 } 2851 return; 2852 } 2853 2854 if (const VectorType *VT = Ty->getAs<VectorType>()) { 2855 uint64_t Size = getContext().getTypeSize(VT); 2856 if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { 2857 // gcc passes the following as integer: 2858 // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> 2859 // 2 bytes - <2 x char>, <1 x short> 2860 // 1 byte - <1 x char> 2861 Current = Integer; 2862 2863 // If this type crosses an eightbyte boundary, it should be 2864 // split. 2865 uint64_t EB_Lo = (OffsetBase) / 64; 2866 uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; 2867 if (EB_Lo != EB_Hi) 2868 Hi = Lo; 2869 } else if (Size == 64) { 2870 QualType ElementType = VT->getElementType(); 2871 2872 // gcc passes <1 x double> in memory. :( 2873 if (ElementType->isSpecificBuiltinType(BuiltinType::Double)) 2874 return; 2875 2876 // gcc passes <1 x long long> as SSE but clang used to unconditionally 2877 // pass them as integer. For platforms where clang is the de facto 2878 // platform compiler, we must continue to use integer. 2879 if (!classifyIntegerMMXAsSSE() && 2880 (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) || 2881 ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) || 2882 ElementType->isSpecificBuiltinType(BuiltinType::Long) || 2883 ElementType->isSpecificBuiltinType(BuiltinType::ULong))) 2884 Current = Integer; 2885 else 2886 Current = SSE; 2887 2888 // If this type crosses an eightbyte boundary, it should be 2889 // split. 2890 if (OffsetBase && OffsetBase != 64) 2891 Hi = Lo; 2892 } else if (Size == 128 || 2893 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { 2894 QualType ElementType = VT->getElementType(); 2895 2896 // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :( 2897 if (passInt128VectorsInMem() && Size != 128 && 2898 (ElementType->isSpecificBuiltinType(BuiltinType::Int128) || 2899 ElementType->isSpecificBuiltinType(BuiltinType::UInt128))) 2900 return; 2901 2902 // Arguments of 256-bits are split into four eightbyte chunks. The 2903 // least significant one belongs to class SSE and all the others to class 2904 // SSEUP. The original Lo and Hi design considers that types can't be 2905 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 2906 // This design isn't correct for 256-bits, but since there're no cases 2907 // where the upper parts would need to be inspected, avoid adding 2908 // complexity and just consider Hi to match the 64-256 part. 2909 // 2910 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 2911 // registers if they are "named", i.e. not part of the "..." of a 2912 // variadic function. 2913 // 2914 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are 2915 // split into eight eightbyte chunks, one SSE and seven SSEUP. 2916 Lo = SSE; 2917 Hi = SSEUp; 2918 } 2919 return; 2920 } 2921 2922 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 2923 QualType ET = getContext().getCanonicalType(CT->getElementType()); 2924 2925 uint64_t Size = getContext().getTypeSize(Ty); 2926 if (ET->isIntegralOrEnumerationType()) { 2927 if (Size <= 64) 2928 Current = Integer; 2929 else if (Size <= 128) 2930 Lo = Hi = Integer; 2931 } else if (ET == getContext().FloatTy) { 2932 Current = SSE; 2933 } else if (ET == getContext().DoubleTy) { 2934 Lo = Hi = SSE; 2935 } else if (ET == getContext().LongDoubleTy) { 2936 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2937 if (LDF == &llvm::APFloat::IEEEquad()) 2938 Current = Memory; 2939 else if (LDF == &llvm::APFloat::x87DoubleExtended()) 2940 Current = ComplexX87; 2941 else if (LDF == &llvm::APFloat::IEEEdouble()) 2942 Lo = Hi = SSE; 2943 else 2944 llvm_unreachable("unexpected long double representation!"); 2945 } 2946 2947 // If this complex type crosses an eightbyte boundary then it 2948 // should be split. 2949 uint64_t EB_Real = (OffsetBase) / 64; 2950 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 2951 if (Hi == NoClass && EB_Real != EB_Imag) 2952 Hi = Lo; 2953 2954 return; 2955 } 2956 2957 if (const auto *EITy = Ty->getAs<ExtIntType>()) { 2958 if (EITy->getNumBits() <= 64) 2959 Current = Integer; 2960 else if (EITy->getNumBits() <= 128) 2961 Lo = Hi = Integer; 2962 // Larger values need to get passed in memory. 2963 return; 2964 } 2965 2966 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 2967 // Arrays are treated like structures. 2968 2969 uint64_t Size = getContext().getTypeSize(Ty); 2970 2971 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2972 // than eight eightbytes, ..., it has class MEMORY. 2973 if (Size > 512) 2974 return; 2975 2976 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 2977 // fields, it has class MEMORY. 2978 // 2979 // Only need to check alignment of array base. 2980 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 2981 return; 2982 2983 // Otherwise implement simplified merge. We could be smarter about 2984 // this, but it isn't worth it and would be harder to verify. 2985 Current = NoClass; 2986 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 2987 uint64_t ArraySize = AT->getSize().getZExtValue(); 2988 2989 // The only case a 256-bit wide vector could be used is when the array 2990 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2991 // to work for sizes wider than 128, early check and fallback to memory. 2992 // 2993 if (Size > 128 && 2994 (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel))) 2995 return; 2996 2997 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 2998 Class FieldLo, FieldHi; 2999 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 3000 Lo = merge(Lo, FieldLo); 3001 Hi = merge(Hi, FieldHi); 3002 if (Lo == Memory || Hi == Memory) 3003 break; 3004 } 3005 3006 postMerge(Size, Lo, Hi); 3007 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 3008 return; 3009 } 3010 3011 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3012 uint64_t Size = getContext().getTypeSize(Ty); 3013 3014 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 3015 // than eight eightbytes, ..., it has class MEMORY. 3016 if (Size > 512) 3017 return; 3018 3019 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 3020 // copy constructor or a non-trivial destructor, it is passed by invisible 3021 // reference. 3022 if (getRecordArgABI(RT, getCXXABI())) 3023 return; 3024 3025 const RecordDecl *RD = RT->getDecl(); 3026 3027 // Assume variable sized types are passed in memory. 3028 if (RD->hasFlexibleArrayMember()) 3029 return; 3030 3031 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 3032 3033 // Reset Lo class, this will be recomputed. 3034 Current = NoClass; 3035 3036 // If this is a C++ record, classify the bases first. 3037 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3038 for (const auto &I : CXXRD->bases()) { 3039 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3040 "Unexpected base class!"); 3041 const auto *Base = 3042 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 3043 3044 // Classify this field. 3045 // 3046 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 3047 // single eightbyte, each is classified separately. Each eightbyte gets 3048 // initialized to class NO_CLASS. 3049 Class FieldLo, FieldHi; 3050 uint64_t Offset = 3051 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 3052 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 3053 Lo = merge(Lo, FieldLo); 3054 Hi = merge(Hi, FieldHi); 3055 if (Lo == Memory || Hi == Memory) { 3056 postMerge(Size, Lo, Hi); 3057 return; 3058 } 3059 } 3060 } 3061 3062 // Classify the fields one at a time, merging the results. 3063 unsigned idx = 0; 3064 bool IsUnion = RT->isUnionType(); 3065 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3066 i != e; ++i, ++idx) { 3067 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 3068 bool BitField = i->isBitField(); 3069 3070 // Ignore padding bit-fields. 3071 if (BitField && i->isUnnamedBitfield()) 3072 continue; 3073 3074 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 3075 // eight eightbytes, or it contains unaligned fields, it has class MEMORY. 3076 // 3077 // The only case a 256-bit or a 512-bit wide vector could be used is when 3078 // the struct contains a single 256-bit or 512-bit element. Early check 3079 // and fallback to memory. 3080 // 3081 // FIXME: Extended the Lo and Hi logic properly to work for size wider 3082 // than 128. 3083 if (Size > 128 && 3084 ((!IsUnion && Size != getContext().getTypeSize(i->getType())) || 3085 Size > getNativeVectorSizeForAVXABI(AVXLevel))) { 3086 Lo = Memory; 3087 postMerge(Size, Lo, Hi); 3088 return; 3089 } 3090 // Note, skip this test for bit-fields, see below. 3091 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 3092 Lo = Memory; 3093 postMerge(Size, Lo, Hi); 3094 return; 3095 } 3096 3097 // Classify this field. 3098 // 3099 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 3100 // exceeds a single eightbyte, each is classified 3101 // separately. Each eightbyte gets initialized to class 3102 // NO_CLASS. 3103 Class FieldLo, FieldHi; 3104 3105 // Bit-fields require special handling, they do not force the 3106 // structure to be passed in memory even if unaligned, and 3107 // therefore they can straddle an eightbyte. 3108 if (BitField) { 3109 assert(!i->isUnnamedBitfield()); 3110 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 3111 uint64_t Size = i->getBitWidthValue(getContext()); 3112 3113 uint64_t EB_Lo = Offset / 64; 3114 uint64_t EB_Hi = (Offset + Size - 1) / 64; 3115 3116 if (EB_Lo) { 3117 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 3118 FieldLo = NoClass; 3119 FieldHi = Integer; 3120 } else { 3121 FieldLo = Integer; 3122 FieldHi = EB_Hi ? Integer : NoClass; 3123 } 3124 } else 3125 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 3126 Lo = merge(Lo, FieldLo); 3127 Hi = merge(Hi, FieldHi); 3128 if (Lo == Memory || Hi == Memory) 3129 break; 3130 } 3131 3132 postMerge(Size, Lo, Hi); 3133 } 3134 } 3135 3136 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 3137 // If this is a scalar LLVM value then assume LLVM will pass it in the right 3138 // place naturally. 3139 if (!isAggregateTypeForABI(Ty)) { 3140 // Treat an enum type as its underlying type. 3141 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3142 Ty = EnumTy->getDecl()->getIntegerType(); 3143 3144 if (Ty->isExtIntType()) 3145 return getNaturalAlignIndirect(Ty); 3146 3147 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 3148 : ABIArgInfo::getDirect()); 3149 } 3150 3151 return getNaturalAlignIndirect(Ty); 3152 } 3153 3154 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 3155 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 3156 uint64_t Size = getContext().getTypeSize(VecTy); 3157 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); 3158 if (Size <= 64 || Size > LargestVector) 3159 return true; 3160 QualType EltTy = VecTy->getElementType(); 3161 if (passInt128VectorsInMem() && 3162 (EltTy->isSpecificBuiltinType(BuiltinType::Int128) || 3163 EltTy->isSpecificBuiltinType(BuiltinType::UInt128))) 3164 return true; 3165 } 3166 3167 return false; 3168 } 3169 3170 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 3171 unsigned freeIntRegs) const { 3172 // If this is a scalar LLVM value then assume LLVM will pass it in the right 3173 // place naturally. 3174 // 3175 // This assumption is optimistic, as there could be free registers available 3176 // when we need to pass this argument in memory, and LLVM could try to pass 3177 // the argument in the free register. This does not seem to happen currently, 3178 // but this code would be much safer if we could mark the argument with 3179 // 'onstack'. See PR12193. 3180 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty) && 3181 !Ty->isExtIntType()) { 3182 // Treat an enum type as its underlying type. 3183 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3184 Ty = EnumTy->getDecl()->getIntegerType(); 3185 3186 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 3187 : ABIArgInfo::getDirect()); 3188 } 3189 3190 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 3191 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 3192 3193 // Compute the byval alignment. We specify the alignment of the byval in all 3194 // cases so that the mid-level optimizer knows the alignment of the byval. 3195 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 3196 3197 // Attempt to avoid passing indirect results using byval when possible. This 3198 // is important for good codegen. 3199 // 3200 // We do this by coercing the value into a scalar type which the backend can 3201 // handle naturally (i.e., without using byval). 3202 // 3203 // For simplicity, we currently only do this when we have exhausted all of the 3204 // free integer registers. Doing this when there are free integer registers 3205 // would require more care, as we would have to ensure that the coerced value 3206 // did not claim the unused register. That would require either reording the 3207 // arguments to the function (so that any subsequent inreg values came first), 3208 // or only doing this optimization when there were no following arguments that 3209 // might be inreg. 3210 // 3211 // We currently expect it to be rare (particularly in well written code) for 3212 // arguments to be passed on the stack when there are still free integer 3213 // registers available (this would typically imply large structs being passed 3214 // by value), so this seems like a fair tradeoff for now. 3215 // 3216 // We can revisit this if the backend grows support for 'onstack' parameter 3217 // attributes. See PR12193. 3218 if (freeIntRegs == 0) { 3219 uint64_t Size = getContext().getTypeSize(Ty); 3220 3221 // If this type fits in an eightbyte, coerce it into the matching integral 3222 // type, which will end up on the stack (with alignment 8). 3223 if (Align == 8 && Size <= 64) 3224 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 3225 Size)); 3226 } 3227 3228 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); 3229 } 3230 3231 /// The ABI specifies that a value should be passed in a full vector XMM/YMM 3232 /// register. Pick an LLVM IR type that will be passed as a vector register. 3233 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 3234 // Wrapper structs/arrays that only contain vectors are passed just like 3235 // vectors; strip them off if present. 3236 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) 3237 Ty = QualType(InnerTy, 0); 3238 3239 llvm::Type *IRType = CGT.ConvertType(Ty); 3240 if (isa<llvm::VectorType>(IRType)) { 3241 // Don't pass vXi128 vectors in their native type, the backend can't 3242 // legalize them. 3243 if (passInt128VectorsInMem() && 3244 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy(128)) { 3245 // Use a vXi64 vector. 3246 uint64_t Size = getContext().getTypeSize(Ty); 3247 return llvm::FixedVectorType::get(llvm::Type::getInt64Ty(getVMContext()), 3248 Size / 64); 3249 } 3250 3251 return IRType; 3252 } 3253 3254 if (IRType->getTypeID() == llvm::Type::FP128TyID) 3255 return IRType; 3256 3257 // We couldn't find the preferred IR vector type for 'Ty'. 3258 uint64_t Size = getContext().getTypeSize(Ty); 3259 assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!"); 3260 3261 3262 // Return a LLVM IR vector type based on the size of 'Ty'. 3263 return llvm::FixedVectorType::get(llvm::Type::getDoubleTy(getVMContext()), 3264 Size / 64); 3265 } 3266 3267 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 3268 /// is known to either be off the end of the specified type or being in 3269 /// alignment padding. The user type specified is known to be at most 128 bits 3270 /// in size, and have passed through X86_64ABIInfo::classify with a successful 3271 /// classification that put one of the two halves in the INTEGER class. 3272 /// 3273 /// It is conservatively correct to return false. 3274 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 3275 unsigned EndBit, ASTContext &Context) { 3276 // If the bytes being queried are off the end of the type, there is no user 3277 // data hiding here. This handles analysis of builtins, vectors and other 3278 // types that don't contain interesting padding. 3279 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 3280 if (TySize <= StartBit) 3281 return true; 3282 3283 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 3284 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 3285 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 3286 3287 // Check each element to see if the element overlaps with the queried range. 3288 for (unsigned i = 0; i != NumElts; ++i) { 3289 // If the element is after the span we care about, then we're done.. 3290 unsigned EltOffset = i*EltSize; 3291 if (EltOffset >= EndBit) break; 3292 3293 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 3294 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 3295 EndBit-EltOffset, Context)) 3296 return false; 3297 } 3298 // If it overlaps no elements, then it is safe to process as padding. 3299 return true; 3300 } 3301 3302 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3303 const RecordDecl *RD = RT->getDecl(); 3304 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3305 3306 // If this is a C++ record, check the bases first. 3307 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3308 for (const auto &I : CXXRD->bases()) { 3309 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3310 "Unexpected base class!"); 3311 const auto *Base = 3312 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 3313 3314 // If the base is after the span we care about, ignore it. 3315 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 3316 if (BaseOffset >= EndBit) continue; 3317 3318 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 3319 if (!BitsContainNoUserData(I.getType(), BaseStart, 3320 EndBit-BaseOffset, Context)) 3321 return false; 3322 } 3323 } 3324 3325 // Verify that no field has data that overlaps the region of interest. Yes 3326 // this could be sped up a lot by being smarter about queried fields, 3327 // however we're only looking at structs up to 16 bytes, so we don't care 3328 // much. 3329 unsigned idx = 0; 3330 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3331 i != e; ++i, ++idx) { 3332 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 3333 3334 // If we found a field after the region we care about, then we're done. 3335 if (FieldOffset >= EndBit) break; 3336 3337 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 3338 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 3339 Context)) 3340 return false; 3341 } 3342 3343 // If nothing in this record overlapped the area of interest, then we're 3344 // clean. 3345 return true; 3346 } 3347 3348 return false; 3349 } 3350 3351 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a 3352 /// float member at the specified offset. For example, {int,{float}} has a 3353 /// float at offset 4. It is conservatively correct for this routine to return 3354 /// false. 3355 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, 3356 const llvm::DataLayout &TD) { 3357 // Base case if we find a float. 3358 if (IROffset == 0 && IRType->isFloatTy()) 3359 return true; 3360 3361 // If this is a struct, recurse into the field at the specified offset. 3362 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3363 const llvm::StructLayout *SL = TD.getStructLayout(STy); 3364 unsigned Elt = SL->getElementContainingOffset(IROffset); 3365 IROffset -= SL->getElementOffset(Elt); 3366 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); 3367 } 3368 3369 // If this is an array, recurse into the field at the specified offset. 3370 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3371 llvm::Type *EltTy = ATy->getElementType(); 3372 unsigned EltSize = TD.getTypeAllocSize(EltTy); 3373 IROffset -= IROffset/EltSize*EltSize; 3374 return ContainsFloatAtOffset(EltTy, IROffset, TD); 3375 } 3376 3377 return false; 3378 } 3379 3380 3381 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 3382 /// low 8 bytes of an XMM register, corresponding to the SSE class. 3383 llvm::Type *X86_64ABIInfo:: 3384 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3385 QualType SourceTy, unsigned SourceOffset) const { 3386 // The only three choices we have are either double, <2 x float>, or float. We 3387 // pass as float if the last 4 bytes is just padding. This happens for 3388 // structs that contain 3 floats. 3389 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, 3390 SourceOffset*8+64, getContext())) 3391 return llvm::Type::getFloatTy(getVMContext()); 3392 3393 // We want to pass as <2 x float> if the LLVM IR type contains a float at 3394 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the 3395 // case. 3396 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && 3397 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) 3398 return llvm::FixedVectorType::get(llvm::Type::getFloatTy(getVMContext()), 3399 2); 3400 3401 return llvm::Type::getDoubleTy(getVMContext()); 3402 } 3403 3404 3405 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 3406 /// an 8-byte GPR. This means that we either have a scalar or we are talking 3407 /// about the high or low part of an up-to-16-byte struct. This routine picks 3408 /// the best LLVM IR type to represent this, which may be i64 or may be anything 3409 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 3410 /// etc). 3411 /// 3412 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 3413 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 3414 /// the 8-byte value references. PrefType may be null. 3415 /// 3416 /// SourceTy is the source-level type for the entire argument. SourceOffset is 3417 /// an offset into this that we're processing (which is always either 0 or 8). 3418 /// 3419 llvm::Type *X86_64ABIInfo:: 3420 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3421 QualType SourceTy, unsigned SourceOffset) const { 3422 // If we're dealing with an un-offset LLVM IR type, then it means that we're 3423 // returning an 8-byte unit starting with it. See if we can safely use it. 3424 if (IROffset == 0) { 3425 // Pointers and int64's always fill the 8-byte unit. 3426 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 3427 IRType->isIntegerTy(64)) 3428 return IRType; 3429 3430 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 3431 // goodness in the source type is just tail padding. This is allowed to 3432 // kick in for struct {double,int} on the int, but not on 3433 // struct{double,int,int} because we wouldn't return the second int. We 3434 // have to do this analysis on the source type because we can't depend on 3435 // unions being lowered a specific way etc. 3436 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 3437 IRType->isIntegerTy(32) || 3438 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 3439 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 3440 cast<llvm::IntegerType>(IRType)->getBitWidth(); 3441 3442 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 3443 SourceOffset*8+64, getContext())) 3444 return IRType; 3445 } 3446 } 3447 3448 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3449 // If this is a struct, recurse into the field at the specified offset. 3450 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 3451 if (IROffset < SL->getSizeInBytes()) { 3452 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 3453 IROffset -= SL->getElementOffset(FieldIdx); 3454 3455 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 3456 SourceTy, SourceOffset); 3457 } 3458 } 3459 3460 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3461 llvm::Type *EltTy = ATy->getElementType(); 3462 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 3463 unsigned EltOffset = IROffset/EltSize*EltSize; 3464 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 3465 SourceOffset); 3466 } 3467 3468 // Okay, we don't have any better idea of what to pass, so we pass this in an 3469 // integer register that isn't too big to fit the rest of the struct. 3470 unsigned TySizeInBytes = 3471 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 3472 3473 assert(TySizeInBytes != SourceOffset && "Empty field?"); 3474 3475 // It is always safe to classify this as an integer type up to i64 that 3476 // isn't larger than the structure. 3477 return llvm::IntegerType::get(getVMContext(), 3478 std::min(TySizeInBytes-SourceOffset, 8U)*8); 3479 } 3480 3481 3482 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 3483 /// be used as elements of a two register pair to pass or return, return a 3484 /// first class aggregate to represent them. For example, if the low part of 3485 /// a by-value argument should be passed as i32* and the high part as float, 3486 /// return {i32*, float}. 3487 static llvm::Type * 3488 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 3489 const llvm::DataLayout &TD) { 3490 // In order to correctly satisfy the ABI, we need to the high part to start 3491 // at offset 8. If the high and low parts we inferred are both 4-byte types 3492 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 3493 // the second element at offset 8. Check for this: 3494 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 3495 unsigned HiAlign = TD.getABITypeAlignment(Hi); 3496 unsigned HiStart = llvm::alignTo(LoSize, HiAlign); 3497 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 3498 3499 // To handle this, we have to increase the size of the low part so that the 3500 // second element will start at an 8 byte offset. We can't increase the size 3501 // of the second element because it might make us access off the end of the 3502 // struct. 3503 if (HiStart != 8) { 3504 // There are usually two sorts of types the ABI generation code can produce 3505 // for the low part of a pair that aren't 8 bytes in size: float or 3506 // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and 3507 // NaCl). 3508 // Promote these to a larger type. 3509 if (Lo->isFloatTy()) 3510 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 3511 else { 3512 assert((Lo->isIntegerTy() || Lo->isPointerTy()) 3513 && "Invalid/unknown lo type"); 3514 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 3515 } 3516 } 3517 3518 llvm::StructType *Result = llvm::StructType::get(Lo, Hi); 3519 3520 // Verify that the second element is at an 8-byte offset. 3521 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 3522 "Invalid x86-64 argument pair!"); 3523 return Result; 3524 } 3525 3526 ABIArgInfo X86_64ABIInfo:: 3527 classifyReturnType(QualType RetTy) const { 3528 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 3529 // classification algorithm. 3530 X86_64ABIInfo::Class Lo, Hi; 3531 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 3532 3533 // Check some invariants. 3534 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3535 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3536 3537 llvm::Type *ResType = nullptr; 3538 switch (Lo) { 3539 case NoClass: 3540 if (Hi == NoClass) 3541 return ABIArgInfo::getIgnore(); 3542 // If the low part is just padding, it takes no register, leave ResType 3543 // null. 3544 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3545 "Unknown missing lo part"); 3546 break; 3547 3548 case SSEUp: 3549 case X87Up: 3550 llvm_unreachable("Invalid classification for lo word."); 3551 3552 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 3553 // hidden argument. 3554 case Memory: 3555 return getIndirectReturnResult(RetTy); 3556 3557 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 3558 // available register of the sequence %rax, %rdx is used. 3559 case Integer: 3560 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3561 3562 // If we have a sign or zero extended integer, make sure to return Extend 3563 // so that the parameter gets the right LLVM IR attributes. 3564 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3565 // Treat an enum type as its underlying type. 3566 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3567 RetTy = EnumTy->getDecl()->getIntegerType(); 3568 3569 if (RetTy->isIntegralOrEnumerationType() && 3570 isPromotableIntegerTypeForABI(RetTy)) 3571 return ABIArgInfo::getExtend(RetTy); 3572 } 3573 break; 3574 3575 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 3576 // available SSE register of the sequence %xmm0, %xmm1 is used. 3577 case SSE: 3578 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3579 break; 3580 3581 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 3582 // returned on the X87 stack in %st0 as 80-bit x87 number. 3583 case X87: 3584 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 3585 break; 3586 3587 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 3588 // part of the value is returned in %st0 and the imaginary part in 3589 // %st1. 3590 case ComplexX87: 3591 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 3592 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 3593 llvm::Type::getX86_FP80Ty(getVMContext())); 3594 break; 3595 } 3596 3597 llvm::Type *HighPart = nullptr; 3598 switch (Hi) { 3599 // Memory was handled previously and X87 should 3600 // never occur as a hi class. 3601 case Memory: 3602 case X87: 3603 llvm_unreachable("Invalid classification for hi word."); 3604 3605 case ComplexX87: // Previously handled. 3606 case NoClass: 3607 break; 3608 3609 case Integer: 3610 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3611 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3612 return ABIArgInfo::getDirect(HighPart, 8); 3613 break; 3614 case SSE: 3615 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3616 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3617 return ABIArgInfo::getDirect(HighPart, 8); 3618 break; 3619 3620 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 3621 // is passed in the next available eightbyte chunk if the last used 3622 // vector register. 3623 // 3624 // SSEUP should always be preceded by SSE, just widen. 3625 case SSEUp: 3626 assert(Lo == SSE && "Unexpected SSEUp classification."); 3627 ResType = GetByteVectorType(RetTy); 3628 break; 3629 3630 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 3631 // returned together with the previous X87 value in %st0. 3632 case X87Up: 3633 // If X87Up is preceded by X87, we don't need to do 3634 // anything. However, in some cases with unions it may not be 3635 // preceded by X87. In such situations we follow gcc and pass the 3636 // extra bits in an SSE reg. 3637 if (Lo != X87) { 3638 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3639 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3640 return ABIArgInfo::getDirect(HighPart, 8); 3641 } 3642 break; 3643 } 3644 3645 // If a high part was specified, merge it together with the low part. It is 3646 // known to pass in the high eightbyte of the result. We do this by forming a 3647 // first class struct aggregate with the high and low part: {low, high} 3648 if (HighPart) 3649 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3650 3651 return ABIArgInfo::getDirect(ResType); 3652 } 3653 3654 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 3655 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 3656 bool isNamedArg) 3657 const 3658 { 3659 Ty = useFirstFieldIfTransparentUnion(Ty); 3660 3661 X86_64ABIInfo::Class Lo, Hi; 3662 classify(Ty, 0, Lo, Hi, isNamedArg); 3663 3664 // Check some invariants. 3665 // FIXME: Enforce these by construction. 3666 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3667 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3668 3669 neededInt = 0; 3670 neededSSE = 0; 3671 llvm::Type *ResType = nullptr; 3672 switch (Lo) { 3673 case NoClass: 3674 if (Hi == NoClass) 3675 return ABIArgInfo::getIgnore(); 3676 // If the low part is just padding, it takes no register, leave ResType 3677 // null. 3678 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3679 "Unknown missing lo part"); 3680 break; 3681 3682 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 3683 // on the stack. 3684 case Memory: 3685 3686 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 3687 // COMPLEX_X87, it is passed in memory. 3688 case X87: 3689 case ComplexX87: 3690 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 3691 ++neededInt; 3692 return getIndirectResult(Ty, freeIntRegs); 3693 3694 case SSEUp: 3695 case X87Up: 3696 llvm_unreachable("Invalid classification for lo word."); 3697 3698 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 3699 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 3700 // and %r9 is used. 3701 case Integer: 3702 ++neededInt; 3703 3704 // Pick an 8-byte type based on the preferred type. 3705 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 3706 3707 // If we have a sign or zero extended integer, make sure to return Extend 3708 // so that the parameter gets the right LLVM IR attributes. 3709 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3710 // Treat an enum type as its underlying type. 3711 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3712 Ty = EnumTy->getDecl()->getIntegerType(); 3713 3714 if (Ty->isIntegralOrEnumerationType() && 3715 isPromotableIntegerTypeForABI(Ty)) 3716 return ABIArgInfo::getExtend(Ty); 3717 } 3718 3719 break; 3720 3721 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 3722 // available SSE register is used, the registers are taken in the 3723 // order from %xmm0 to %xmm7. 3724 case SSE: { 3725 llvm::Type *IRType = CGT.ConvertType(Ty); 3726 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 3727 ++neededSSE; 3728 break; 3729 } 3730 } 3731 3732 llvm::Type *HighPart = nullptr; 3733 switch (Hi) { 3734 // Memory was handled previously, ComplexX87 and X87 should 3735 // never occur as hi classes, and X87Up must be preceded by X87, 3736 // which is passed in memory. 3737 case Memory: 3738 case X87: 3739 case ComplexX87: 3740 llvm_unreachable("Invalid classification for hi word."); 3741 3742 case NoClass: break; 3743 3744 case Integer: 3745 ++neededInt; 3746 // Pick an 8-byte type based on the preferred type. 3747 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3748 3749 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3750 return ABIArgInfo::getDirect(HighPart, 8); 3751 break; 3752 3753 // X87Up generally doesn't occur here (long double is passed in 3754 // memory), except in situations involving unions. 3755 case X87Up: 3756 case SSE: 3757 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3758 3759 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3760 return ABIArgInfo::getDirect(HighPart, 8); 3761 3762 ++neededSSE; 3763 break; 3764 3765 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 3766 // eightbyte is passed in the upper half of the last used SSE 3767 // register. This only happens when 128-bit vectors are passed. 3768 case SSEUp: 3769 assert(Lo == SSE && "Unexpected SSEUp classification"); 3770 ResType = GetByteVectorType(Ty); 3771 break; 3772 } 3773 3774 // If a high part was specified, merge it together with the low part. It is 3775 // known to pass in the high eightbyte of the result. We do this by forming a 3776 // first class struct aggregate with the high and low part: {low, high} 3777 if (HighPart) 3778 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3779 3780 return ABIArgInfo::getDirect(ResType); 3781 } 3782 3783 ABIArgInfo 3784 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 3785 unsigned &NeededSSE) const { 3786 auto RT = Ty->getAs<RecordType>(); 3787 assert(RT && "classifyRegCallStructType only valid with struct types"); 3788 3789 if (RT->getDecl()->hasFlexibleArrayMember()) 3790 return getIndirectReturnResult(Ty); 3791 3792 // Sum up bases 3793 if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 3794 if (CXXRD->isDynamicClass()) { 3795 NeededInt = NeededSSE = 0; 3796 return getIndirectReturnResult(Ty); 3797 } 3798 3799 for (const auto &I : CXXRD->bases()) 3800 if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE) 3801 .isIndirect()) { 3802 NeededInt = NeededSSE = 0; 3803 return getIndirectReturnResult(Ty); 3804 } 3805 } 3806 3807 // Sum up members 3808 for (const auto *FD : RT->getDecl()->fields()) { 3809 if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) { 3810 if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE) 3811 .isIndirect()) { 3812 NeededInt = NeededSSE = 0; 3813 return getIndirectReturnResult(Ty); 3814 } 3815 } else { 3816 unsigned LocalNeededInt, LocalNeededSSE; 3817 if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt, 3818 LocalNeededSSE, true) 3819 .isIndirect()) { 3820 NeededInt = NeededSSE = 0; 3821 return getIndirectReturnResult(Ty); 3822 } 3823 NeededInt += LocalNeededInt; 3824 NeededSSE += LocalNeededSSE; 3825 } 3826 } 3827 3828 return ABIArgInfo::getDirect(); 3829 } 3830 3831 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty, 3832 unsigned &NeededInt, 3833 unsigned &NeededSSE) const { 3834 3835 NeededInt = 0; 3836 NeededSSE = 0; 3837 3838 return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE); 3839 } 3840 3841 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3842 3843 const unsigned CallingConv = FI.getCallingConvention(); 3844 // It is possible to force Win64 calling convention on any x86_64 target by 3845 // using __attribute__((ms_abi)). In such case to correctly emit Win64 3846 // compatible code delegate this call to WinX86_64ABIInfo::computeInfo. 3847 if (CallingConv == llvm::CallingConv::Win64) { 3848 WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel); 3849 Win64ABIInfo.computeInfo(FI); 3850 return; 3851 } 3852 3853 bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall; 3854 3855 // Keep track of the number of assigned registers. 3856 unsigned FreeIntRegs = IsRegCall ? 11 : 6; 3857 unsigned FreeSSERegs = IsRegCall ? 16 : 8; 3858 unsigned NeededInt, NeededSSE; 3859 3860 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 3861 if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() && 3862 !FI.getReturnType()->getTypePtr()->isUnionType()) { 3863 FI.getReturnInfo() = 3864 classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE); 3865 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3866 FreeIntRegs -= NeededInt; 3867 FreeSSERegs -= NeededSSE; 3868 } else { 3869 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3870 } 3871 } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>() && 3872 getContext().getCanonicalType(FI.getReturnType() 3873 ->getAs<ComplexType>() 3874 ->getElementType()) == 3875 getContext().LongDoubleTy) 3876 // Complex Long Double Type is passed in Memory when Regcall 3877 // calling convention is used. 3878 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3879 else 3880 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3881 } 3882 3883 // If the return value is indirect, then the hidden argument is consuming one 3884 // integer register. 3885 if (FI.getReturnInfo().isIndirect()) 3886 --FreeIntRegs; 3887 3888 // The chain argument effectively gives us another free register. 3889 if (FI.isChainCall()) 3890 ++FreeIntRegs; 3891 3892 unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 3893 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 3894 // get assigned (in left-to-right order) for passing as follows... 3895 unsigned ArgNo = 0; 3896 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3897 it != ie; ++it, ++ArgNo) { 3898 bool IsNamedArg = ArgNo < NumRequiredArgs; 3899 3900 if (IsRegCall && it->type->isStructureOrClassType()) 3901 it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE); 3902 else 3903 it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt, 3904 NeededSSE, IsNamedArg); 3905 3906 // AMD64-ABI 3.2.3p3: If there are no registers available for any 3907 // eightbyte of an argument, the whole argument is passed on the 3908 // stack. If registers have already been assigned for some 3909 // eightbytes of such an argument, the assignments get reverted. 3910 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3911 FreeIntRegs -= NeededInt; 3912 FreeSSERegs -= NeededSSE; 3913 } else { 3914 it->info = getIndirectResult(it->type, FreeIntRegs); 3915 } 3916 } 3917 } 3918 3919 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, 3920 Address VAListAddr, QualType Ty) { 3921 Address overflow_arg_area_p = 3922 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); 3923 llvm::Value *overflow_arg_area = 3924 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 3925 3926 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 3927 // byte boundary if alignment needed by type exceeds 8 byte boundary. 3928 // It isn't stated explicitly in the standard, but in practice we use 3929 // alignment greater than 16 where necessary. 3930 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 3931 if (Align > CharUnits::fromQuantity(8)) { 3932 overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, 3933 Align); 3934 } 3935 3936 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 3937 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3938 llvm::Value *Res = 3939 CGF.Builder.CreateBitCast(overflow_arg_area, 3940 llvm::PointerType::getUnqual(LTy)); 3941 3942 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 3943 // l->overflow_arg_area + sizeof(type). 3944 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 3945 // an 8 byte boundary. 3946 3947 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 3948 llvm::Value *Offset = 3949 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 3950 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 3951 "overflow_arg_area.next"); 3952 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 3953 3954 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 3955 return Address(Res, Align); 3956 } 3957 3958 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3959 QualType Ty) const { 3960 // Assume that va_list type is correct; should be pointer to LLVM type: 3961 // struct { 3962 // i32 gp_offset; 3963 // i32 fp_offset; 3964 // i8* overflow_arg_area; 3965 // i8* reg_save_area; 3966 // }; 3967 unsigned neededInt, neededSSE; 3968 3969 Ty = getContext().getCanonicalType(Ty); 3970 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 3971 /*isNamedArg*/false); 3972 3973 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 3974 // in the registers. If not go to step 7. 3975 if (!neededInt && !neededSSE) 3976 return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3977 3978 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 3979 // general purpose registers needed to pass type and num_fp to hold 3980 // the number of floating point registers needed. 3981 3982 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 3983 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 3984 // l->fp_offset > 304 - num_fp * 16 go to step 7. 3985 // 3986 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 3987 // register save space). 3988 3989 llvm::Value *InRegs = nullptr; 3990 Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); 3991 llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; 3992 if (neededInt) { 3993 gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); 3994 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 3995 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 3996 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 3997 } 3998 3999 if (neededSSE) { 4000 fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); 4001 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 4002 llvm::Value *FitsInFP = 4003 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 4004 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 4005 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 4006 } 4007 4008 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 4009 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 4010 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 4011 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 4012 4013 // Emit code to load the value if it was passed in registers. 4014 4015 CGF.EmitBlock(InRegBlock); 4016 4017 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 4018 // an offset of l->gp_offset and/or l->fp_offset. This may require 4019 // copying to a temporary location in case the parameter is passed 4020 // in different register classes or requires an alignment greater 4021 // than 8 for general purpose registers and 16 for XMM registers. 4022 // 4023 // FIXME: This really results in shameful code when we end up needing to 4024 // collect arguments from different places; often what should result in a 4025 // simple assembling of a structure from scattered addresses has many more 4026 // loads than necessary. Can we clean this up? 4027 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 4028 llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( 4029 CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area"); 4030 4031 Address RegAddr = Address::invalid(); 4032 if (neededInt && neededSSE) { 4033 // FIXME: Cleanup. 4034 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 4035 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 4036 Address Tmp = CGF.CreateMemTemp(Ty); 4037 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 4038 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 4039 llvm::Type *TyLo = ST->getElementType(0); 4040 llvm::Type *TyHi = ST->getElementType(1); 4041 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 4042 "Unexpected ABI info for mixed regs"); 4043 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 4044 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 4045 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset); 4046 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset); 4047 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 4048 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 4049 4050 // Copy the first element. 4051 // FIXME: Our choice of alignment here and below is probably pessimistic. 4052 llvm::Value *V = CGF.Builder.CreateAlignedLoad( 4053 TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo), 4054 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo))); 4055 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 4056 4057 // Copy the second element. 4058 V = CGF.Builder.CreateAlignedLoad( 4059 TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi), 4060 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi))); 4061 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 4062 4063 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 4064 } else if (neededInt) { 4065 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset), 4066 CharUnits::fromQuantity(8)); 4067 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 4068 4069 // Copy to a temporary if necessary to ensure the appropriate alignment. 4070 auto TInfo = getContext().getTypeInfoInChars(Ty); 4071 uint64_t TySize = TInfo.Width.getQuantity(); 4072 CharUnits TyAlign = TInfo.Align; 4073 4074 // Copy into a temporary if the type is more aligned than the 4075 // register save area. 4076 if (TyAlign.getQuantity() > 8) { 4077 Address Tmp = CGF.CreateMemTemp(Ty); 4078 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); 4079 RegAddr = Tmp; 4080 } 4081 4082 } else if (neededSSE == 1) { 4083 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 4084 CharUnits::fromQuantity(16)); 4085 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 4086 } else { 4087 assert(neededSSE == 2 && "Invalid number of needed registers!"); 4088 // SSE registers are spaced 16 bytes apart in the register save 4089 // area, we need to collect the two eightbytes together. 4090 // The ABI isn't explicit about this, but it seems reasonable 4091 // to assume that the slots are 16-byte aligned, since the stack is 4092 // naturally 16-byte aligned and the prologue is expected to store 4093 // all the SSE registers to the RSA. 4094 Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 4095 CharUnits::fromQuantity(16)); 4096 Address RegAddrHi = 4097 CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, 4098 CharUnits::fromQuantity(16)); 4099 llvm::Type *ST = AI.canHaveCoerceToType() 4100 ? AI.getCoerceToType() 4101 : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy); 4102 llvm::Value *V; 4103 Address Tmp = CGF.CreateMemTemp(Ty); 4104 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 4105 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 4106 RegAddrLo, ST->getStructElementType(0))); 4107 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 4108 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 4109 RegAddrHi, ST->getStructElementType(1))); 4110 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 4111 4112 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 4113 } 4114 4115 // AMD64-ABI 3.5.7p5: Step 5. Set: 4116 // l->gp_offset = l->gp_offset + num_gp * 8 4117 // l->fp_offset = l->fp_offset + num_fp * 16. 4118 if (neededInt) { 4119 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 4120 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 4121 gp_offset_p); 4122 } 4123 if (neededSSE) { 4124 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 4125 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 4126 fp_offset_p); 4127 } 4128 CGF.EmitBranch(ContBlock); 4129 4130 // Emit code to load the value if it was passed in memory. 4131 4132 CGF.EmitBlock(InMemBlock); 4133 Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 4134 4135 // Return the appropriate result. 4136 4137 CGF.EmitBlock(ContBlock); 4138 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, 4139 "vaarg.addr"); 4140 return ResAddr; 4141 } 4142 4143 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 4144 QualType Ty) const { 4145 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 4146 CGF.getContext().getTypeInfoInChars(Ty), 4147 CharUnits::fromQuantity(8), 4148 /*allowHigherAlign*/ false); 4149 } 4150 4151 ABIArgInfo 4152 WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 4153 const ABIArgInfo ¤t) const { 4154 // Assumes vectorCall calling convention. 4155 const Type *Base = nullptr; 4156 uint64_t NumElts = 0; 4157 4158 if (!Ty->isBuiltinType() && !Ty->isVectorType() && 4159 isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) { 4160 FreeSSERegs -= NumElts; 4161 return getDirectX86Hva(); 4162 } 4163 return current; 4164 } 4165 4166 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 4167 bool IsReturnType, bool IsVectorCall, 4168 bool IsRegCall) const { 4169 4170 if (Ty->isVoidType()) 4171 return ABIArgInfo::getIgnore(); 4172 4173 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4174 Ty = EnumTy->getDecl()->getIntegerType(); 4175 4176 TypeInfo Info = getContext().getTypeInfo(Ty); 4177 uint64_t Width = Info.Width; 4178 CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); 4179 4180 const RecordType *RT = Ty->getAs<RecordType>(); 4181 if (RT) { 4182 if (!IsReturnType) { 4183 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 4184 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4185 } 4186 4187 if (RT->getDecl()->hasFlexibleArrayMember()) 4188 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4189 4190 } 4191 4192 const Type *Base = nullptr; 4193 uint64_t NumElts = 0; 4194 // vectorcall adds the concept of a homogenous vector aggregate, similar to 4195 // other targets. 4196 if ((IsVectorCall || IsRegCall) && 4197 isHomogeneousAggregate(Ty, Base, NumElts)) { 4198 if (IsRegCall) { 4199 if (FreeSSERegs >= NumElts) { 4200 FreeSSERegs -= NumElts; 4201 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 4202 return ABIArgInfo::getDirect(); 4203 return ABIArgInfo::getExpand(); 4204 } 4205 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4206 } else if (IsVectorCall) { 4207 if (FreeSSERegs >= NumElts && 4208 (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) { 4209 FreeSSERegs -= NumElts; 4210 return ABIArgInfo::getDirect(); 4211 } else if (IsReturnType) { 4212 return ABIArgInfo::getExpand(); 4213 } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) { 4214 // HVAs are delayed and reclassified in the 2nd step. 4215 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4216 } 4217 } 4218 } 4219 4220 if (Ty->isMemberPointerType()) { 4221 // If the member pointer is represented by an LLVM int or ptr, pass it 4222 // directly. 4223 llvm::Type *LLTy = CGT.ConvertType(Ty); 4224 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 4225 return ABIArgInfo::getDirect(); 4226 } 4227 4228 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { 4229 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4230 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4231 if (Width > 64 || !llvm::isPowerOf2_64(Width)) 4232 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4233 4234 // Otherwise, coerce it to a small integer. 4235 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 4236 } 4237 4238 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4239 switch (BT->getKind()) { 4240 case BuiltinType::Bool: 4241 // Bool type is always extended to the ABI, other builtin types are not 4242 // extended. 4243 return ABIArgInfo::getExtend(Ty); 4244 4245 case BuiltinType::LongDouble: 4246 // Mingw64 GCC uses the old 80 bit extended precision floating point 4247 // unit. It passes them indirectly through memory. 4248 if (IsMingw64) { 4249 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 4250 if (LDF == &llvm::APFloat::x87DoubleExtended()) 4251 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4252 } 4253 break; 4254 4255 case BuiltinType::Int128: 4256 case BuiltinType::UInt128: 4257 // If it's a parameter type, the normal ABI rule is that arguments larger 4258 // than 8 bytes are passed indirectly. GCC follows it. We follow it too, 4259 // even though it isn't particularly efficient. 4260 if (!IsReturnType) 4261 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4262 4263 // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that. 4264 // Clang matches them for compatibility. 4265 return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 4266 llvm::Type::getInt64Ty(getVMContext()), 2)); 4267 4268 default: 4269 break; 4270 } 4271 } 4272 4273 if (Ty->isExtIntType()) { 4274 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4275 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4276 // However, non-power-of-two _ExtInts will be passed as 1,2,4 or 8 bytes 4277 // anyway as long is it fits in them, so we don't have to check the power of 4278 // 2. 4279 if (Width <= 64) 4280 return ABIArgInfo::getDirect(); 4281 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4282 } 4283 4284 return ABIArgInfo::getDirect(); 4285 } 4286 4287 void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, 4288 unsigned FreeSSERegs, 4289 bool IsVectorCall, 4290 bool IsRegCall) const { 4291 unsigned Count = 0; 4292 for (auto &I : FI.arguments()) { 4293 // Vectorcall in x64 only permits the first 6 arguments to be passed 4294 // as XMM/YMM registers. 4295 if (Count < VectorcallMaxParamNumAsReg) 4296 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 4297 else { 4298 // Since these cannot be passed in registers, pretend no registers 4299 // are left. 4300 unsigned ZeroSSERegsAvail = 0; 4301 I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false, 4302 IsVectorCall, IsRegCall); 4303 } 4304 ++Count; 4305 } 4306 4307 for (auto &I : FI.arguments()) { 4308 I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info); 4309 } 4310 } 4311 4312 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 4313 const unsigned CC = FI.getCallingConvention(); 4314 bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall; 4315 bool IsRegCall = CC == llvm::CallingConv::X86_RegCall; 4316 4317 // If __attribute__((sysv_abi)) is in use, use the SysV argument 4318 // classification rules. 4319 if (CC == llvm::CallingConv::X86_64_SysV) { 4320 X86_64ABIInfo SysVABIInfo(CGT, AVXLevel); 4321 SysVABIInfo.computeInfo(FI); 4322 return; 4323 } 4324 4325 unsigned FreeSSERegs = 0; 4326 if (IsVectorCall) { 4327 // We can use up to 4 SSE return registers with vectorcall. 4328 FreeSSERegs = 4; 4329 } else if (IsRegCall) { 4330 // RegCall gives us 16 SSE registers. 4331 FreeSSERegs = 16; 4332 } 4333 4334 if (!getCXXABI().classifyReturnType(FI)) 4335 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true, 4336 IsVectorCall, IsRegCall); 4337 4338 if (IsVectorCall) { 4339 // We can use up to 6 SSE register parameters with vectorcall. 4340 FreeSSERegs = 6; 4341 } else if (IsRegCall) { 4342 // RegCall gives us 16 SSE registers, we can reuse the return registers. 4343 FreeSSERegs = 16; 4344 } 4345 4346 if (IsVectorCall) { 4347 computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall); 4348 } else { 4349 for (auto &I : FI.arguments()) 4350 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 4351 } 4352 4353 } 4354 4355 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4356 QualType Ty) const { 4357 4358 bool IsIndirect = false; 4359 4360 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4361 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4362 if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) { 4363 uint64_t Width = getContext().getTypeSize(Ty); 4364 IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 4365 } 4366 4367 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 4368 CGF.getContext().getTypeInfoInChars(Ty), 4369 CharUnits::fromQuantity(8), 4370 /*allowHigherAlign*/ false); 4371 } 4372 4373 static bool PPC_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4374 llvm::Value *Address, bool Is64Bit, 4375 bool IsAIX) { 4376 // This is calculated from the LLVM and GCC tables and verified 4377 // against gcc output. AFAIK all PPC ABIs use the same encoding. 4378 4379 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4380 4381 llvm::IntegerType *i8 = CGF.Int8Ty; 4382 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4383 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4384 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4385 4386 // 0-31: r0-31, the 4-byte or 8-byte general-purpose registers 4387 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 0, 31); 4388 4389 // 32-63: fp0-31, the 8-byte floating-point registers 4390 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4391 4392 // 64-67 are various 4-byte or 8-byte special-purpose registers: 4393 // 64: mq 4394 // 65: lr 4395 // 66: ctr 4396 // 67: ap 4397 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 64, 67); 4398 4399 // 68-76 are various 4-byte special-purpose registers: 4400 // 68-75 cr0-7 4401 // 76: xer 4402 AssignToArrayRange(Builder, Address, Four8, 68, 76); 4403 4404 // 77-108: v0-31, the 16-byte vector registers 4405 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4406 4407 // 109: vrsave 4408 // 110: vscr 4409 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 109, 110); 4410 4411 // AIX does not utilize the rest of the registers. 4412 if (IsAIX) 4413 return false; 4414 4415 // 111: spe_acc 4416 // 112: spefscr 4417 // 113: sfp 4418 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 111, 113); 4419 4420 if (!Is64Bit) 4421 return false; 4422 4423 // TODO: Need to verify if these registers are used on 64 bit AIX with Power8 4424 // or above CPU. 4425 // 64-bit only registers: 4426 // 114: tfhar 4427 // 115: tfiar 4428 // 116: texasr 4429 AssignToArrayRange(Builder, Address, Eight8, 114, 116); 4430 4431 return false; 4432 } 4433 4434 // AIX 4435 namespace { 4436 /// AIXABIInfo - The AIX XCOFF ABI information. 4437 class AIXABIInfo : public ABIInfo { 4438 const bool Is64Bit; 4439 const unsigned PtrByteSize; 4440 CharUnits getParamTypeAlignment(QualType Ty) const; 4441 4442 public: 4443 AIXABIInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit) 4444 : ABIInfo(CGT), Is64Bit(Is64Bit), PtrByteSize(Is64Bit ? 8 : 4) {} 4445 4446 bool isPromotableTypeForABI(QualType Ty) const; 4447 4448 ABIArgInfo classifyReturnType(QualType RetTy) const; 4449 ABIArgInfo classifyArgumentType(QualType Ty) const; 4450 4451 void computeInfo(CGFunctionInfo &FI) const override { 4452 if (!getCXXABI().classifyReturnType(FI)) 4453 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4454 4455 for (auto &I : FI.arguments()) 4456 I.info = classifyArgumentType(I.type); 4457 } 4458 4459 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4460 QualType Ty) const override; 4461 }; 4462 4463 class AIXTargetCodeGenInfo : public TargetCodeGenInfo { 4464 const bool Is64Bit; 4465 4466 public: 4467 AIXTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit) 4468 : TargetCodeGenInfo(std::make_unique<AIXABIInfo>(CGT, Is64Bit)), 4469 Is64Bit(Is64Bit) {} 4470 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4471 return 1; // r1 is the dedicated stack pointer 4472 } 4473 4474 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4475 llvm::Value *Address) const override; 4476 }; 4477 } // namespace 4478 4479 // Return true if the ABI requires Ty to be passed sign- or zero- 4480 // extended to 32/64 bits. 4481 bool AIXABIInfo::isPromotableTypeForABI(QualType Ty) const { 4482 // Treat an enum type as its underlying type. 4483 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4484 Ty = EnumTy->getDecl()->getIntegerType(); 4485 4486 // Promotable integer types are required to be promoted by the ABI. 4487 if (Ty->isPromotableIntegerType()) 4488 return true; 4489 4490 if (!Is64Bit) 4491 return false; 4492 4493 // For 64 bit mode, in addition to the usual promotable integer types, we also 4494 // need to extend all 32-bit types, since the ABI requires promotion to 64 4495 // bits. 4496 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4497 switch (BT->getKind()) { 4498 case BuiltinType::Int: 4499 case BuiltinType::UInt: 4500 return true; 4501 default: 4502 break; 4503 } 4504 4505 return false; 4506 } 4507 4508 ABIArgInfo AIXABIInfo::classifyReturnType(QualType RetTy) const { 4509 if (RetTy->isAnyComplexType()) 4510 return ABIArgInfo::getDirect(); 4511 4512 if (RetTy->isVectorType()) 4513 llvm::report_fatal_error("vector type is not supported on AIX yet"); 4514 4515 if (RetTy->isVoidType()) 4516 return ABIArgInfo::getIgnore(); 4517 4518 if (isAggregateTypeForABI(RetTy)) 4519 return getNaturalAlignIndirect(RetTy); 4520 4521 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 4522 : ABIArgInfo::getDirect()); 4523 } 4524 4525 ABIArgInfo AIXABIInfo::classifyArgumentType(QualType Ty) const { 4526 Ty = useFirstFieldIfTransparentUnion(Ty); 4527 4528 if (Ty->isAnyComplexType()) 4529 return ABIArgInfo::getDirect(); 4530 4531 if (Ty->isVectorType()) 4532 llvm::report_fatal_error("vector type is not supported on AIX yet"); 4533 4534 if (isAggregateTypeForABI(Ty)) { 4535 // Records with non-trivial destructors/copy-constructors should not be 4536 // passed by value. 4537 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 4538 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4539 4540 CharUnits CCAlign = getParamTypeAlignment(Ty); 4541 CharUnits TyAlign = getContext().getTypeAlignInChars(Ty); 4542 4543 return ABIArgInfo::getIndirect(CCAlign, /*ByVal*/ true, 4544 /*Realign*/ TyAlign > CCAlign); 4545 } 4546 4547 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 4548 : ABIArgInfo::getDirect()); 4549 } 4550 4551 CharUnits AIXABIInfo::getParamTypeAlignment(QualType Ty) const { 4552 // Complex types are passed just like their elements. 4553 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4554 Ty = CTy->getElementType(); 4555 4556 if (Ty->isVectorType()) 4557 llvm::report_fatal_error("vector type is not supported on AIX yet"); 4558 4559 // If the structure contains a vector type, the alignment is 16. 4560 if (isRecordWithSIMDVectorType(getContext(), Ty)) 4561 return CharUnits::fromQuantity(16); 4562 4563 return CharUnits::fromQuantity(PtrByteSize); 4564 } 4565 4566 Address AIXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4567 QualType Ty) const { 4568 if (Ty->isAnyComplexType()) 4569 llvm::report_fatal_error("complex type is not supported on AIX yet"); 4570 4571 if (Ty->isVectorType()) 4572 llvm::report_fatal_error("vector type is not supported on AIX yet"); 4573 4574 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 4575 TypeInfo.Align = getParamTypeAlignment(Ty); 4576 4577 CharUnits SlotSize = CharUnits::fromQuantity(PtrByteSize); 4578 4579 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, TypeInfo, 4580 SlotSize, /*AllowHigher*/ true); 4581 } 4582 4583 bool AIXTargetCodeGenInfo::initDwarfEHRegSizeTable( 4584 CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const { 4585 return PPC_initDwarfEHRegSizeTable(CGF, Address, Is64Bit, /*IsAIX*/ true); 4586 } 4587 4588 // PowerPC-32 4589 namespace { 4590 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. 4591 class PPC32_SVR4_ABIInfo : public DefaultABIInfo { 4592 bool IsSoftFloatABI; 4593 bool IsRetSmallStructInRegABI; 4594 4595 CharUnits getParamTypeAlignment(QualType Ty) const; 4596 4597 public: 4598 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI, 4599 bool RetSmallStructInRegABI) 4600 : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI), 4601 IsRetSmallStructInRegABI(RetSmallStructInRegABI) {} 4602 4603 ABIArgInfo classifyReturnType(QualType RetTy) const; 4604 4605 void computeInfo(CGFunctionInfo &FI) const override { 4606 if (!getCXXABI().classifyReturnType(FI)) 4607 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4608 for (auto &I : FI.arguments()) 4609 I.info = classifyArgumentType(I.type); 4610 } 4611 4612 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4613 QualType Ty) const override; 4614 }; 4615 4616 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { 4617 public: 4618 PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI, 4619 bool RetSmallStructInRegABI) 4620 : TargetCodeGenInfo(std::make_unique<PPC32_SVR4_ABIInfo>( 4621 CGT, SoftFloatABI, RetSmallStructInRegABI)) {} 4622 4623 static bool isStructReturnInRegABI(const llvm::Triple &Triple, 4624 const CodeGenOptions &Opts); 4625 4626 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4627 // This is recovered from gcc output. 4628 return 1; // r1 is the dedicated stack pointer 4629 } 4630 4631 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4632 llvm::Value *Address) const override; 4633 }; 4634 } 4635 4636 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4637 // Complex types are passed just like their elements. 4638 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4639 Ty = CTy->getElementType(); 4640 4641 if (Ty->isVectorType()) 4642 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 4643 : 4); 4644 4645 // For single-element float/vector structs, we consider the whole type 4646 // to have the same alignment requirements as its single element. 4647 const Type *AlignTy = nullptr; 4648 if (const Type *EltType = isSingleElementStruct(Ty, getContext())) { 4649 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4650 if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || 4651 (BT && BT->isFloatingPoint())) 4652 AlignTy = EltType; 4653 } 4654 4655 if (AlignTy) 4656 return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4); 4657 return CharUnits::fromQuantity(4); 4658 } 4659 4660 ABIArgInfo PPC32_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 4661 uint64_t Size; 4662 4663 // -msvr4-struct-return puts small aggregates in GPR3 and GPR4. 4664 if (isAggregateTypeForABI(RetTy) && IsRetSmallStructInRegABI && 4665 (Size = getContext().getTypeSize(RetTy)) <= 64) { 4666 // System V ABI (1995), page 3-22, specified: 4667 // > A structure or union whose size is less than or equal to 8 bytes 4668 // > shall be returned in r3 and r4, as if it were first stored in the 4669 // > 8-byte aligned memory area and then the low addressed word were 4670 // > loaded into r3 and the high-addressed word into r4. Bits beyond 4671 // > the last member of the structure or union are not defined. 4672 // 4673 // GCC for big-endian PPC32 inserts the pad before the first member, 4674 // not "beyond the last member" of the struct. To stay compatible 4675 // with GCC, we coerce the struct to an integer of the same size. 4676 // LLVM will extend it and return i32 in r3, or i64 in r3:r4. 4677 if (Size == 0) 4678 return ABIArgInfo::getIgnore(); 4679 else { 4680 llvm::Type *CoerceTy = llvm::Type::getIntNTy(getVMContext(), Size); 4681 return ABIArgInfo::getDirect(CoerceTy); 4682 } 4683 } 4684 4685 return DefaultABIInfo::classifyReturnType(RetTy); 4686 } 4687 4688 // TODO: this implementation is now likely redundant with 4689 // DefaultABIInfo::EmitVAArg. 4690 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList, 4691 QualType Ty) const { 4692 if (getTarget().getTriple().isOSDarwin()) { 4693 auto TI = getContext().getTypeInfoInChars(Ty); 4694 TI.Align = getParamTypeAlignment(Ty); 4695 4696 CharUnits SlotSize = CharUnits::fromQuantity(4); 4697 return emitVoidPtrVAArg(CGF, VAList, Ty, 4698 classifyArgumentType(Ty).isIndirect(), TI, SlotSize, 4699 /*AllowHigherAlign=*/true); 4700 } 4701 4702 const unsigned OverflowLimit = 8; 4703 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4704 // TODO: Implement this. For now ignore. 4705 (void)CTy; 4706 return Address::invalid(); // FIXME? 4707 } 4708 4709 // struct __va_list_tag { 4710 // unsigned char gpr; 4711 // unsigned char fpr; 4712 // unsigned short reserved; 4713 // void *overflow_arg_area; 4714 // void *reg_save_area; 4715 // }; 4716 4717 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; 4718 bool isInt = 4719 Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType(); 4720 bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64; 4721 4722 // All aggregates are passed indirectly? That doesn't seem consistent 4723 // with the argument-lowering code. 4724 bool isIndirect = Ty->isAggregateType(); 4725 4726 CGBuilderTy &Builder = CGF.Builder; 4727 4728 // The calling convention either uses 1-2 GPRs or 1 FPR. 4729 Address NumRegsAddr = Address::invalid(); 4730 if (isInt || IsSoftFloatABI) { 4731 NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr"); 4732 } else { 4733 NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr"); 4734 } 4735 4736 llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs"); 4737 4738 // "Align" the register count when TY is i64. 4739 if (isI64 || (isF64 && IsSoftFloatABI)) { 4740 NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1)); 4741 NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U)); 4742 } 4743 4744 llvm::Value *CC = 4745 Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond"); 4746 4747 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); 4748 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); 4749 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 4750 4751 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); 4752 4753 llvm::Type *DirectTy = CGF.ConvertType(Ty); 4754 if (isIndirect) DirectTy = DirectTy->getPointerTo(0); 4755 4756 // Case 1: consume registers. 4757 Address RegAddr = Address::invalid(); 4758 { 4759 CGF.EmitBlock(UsingRegs); 4760 4761 Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4); 4762 RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr), 4763 CharUnits::fromQuantity(8)); 4764 assert(RegAddr.getElementType() == CGF.Int8Ty); 4765 4766 // Floating-point registers start after the general-purpose registers. 4767 if (!(isInt || IsSoftFloatABI)) { 4768 RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr, 4769 CharUnits::fromQuantity(32)); 4770 } 4771 4772 // Get the address of the saved value by scaling the number of 4773 // registers we've used by the number of 4774 CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8); 4775 llvm::Value *RegOffset = 4776 Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity())); 4777 RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty, 4778 RegAddr.getPointer(), RegOffset), 4779 RegAddr.getAlignment().alignmentOfArrayElement(RegSize)); 4780 RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy); 4781 4782 // Increase the used-register count. 4783 NumRegs = 4784 Builder.CreateAdd(NumRegs, 4785 Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1)); 4786 Builder.CreateStore(NumRegs, NumRegsAddr); 4787 4788 CGF.EmitBranch(Cont); 4789 } 4790 4791 // Case 2: consume space in the overflow area. 4792 Address MemAddr = Address::invalid(); 4793 { 4794 CGF.EmitBlock(UsingOverflow); 4795 4796 Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr); 4797 4798 // Everything in the overflow area is rounded up to a size of at least 4. 4799 CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4); 4800 4801 CharUnits Size; 4802 if (!isIndirect) { 4803 auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty); 4804 Size = TypeInfo.Width.alignTo(OverflowAreaAlign); 4805 } else { 4806 Size = CGF.getPointerSize(); 4807 } 4808 4809 Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3); 4810 Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), 4811 OverflowAreaAlign); 4812 // Round up address of argument to alignment 4813 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 4814 if (Align > OverflowAreaAlign) { 4815 llvm::Value *Ptr = OverflowArea.getPointer(); 4816 OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align), 4817 Align); 4818 } 4819 4820 MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy); 4821 4822 // Increase the overflow area. 4823 OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size); 4824 Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr); 4825 CGF.EmitBranch(Cont); 4826 } 4827 4828 CGF.EmitBlock(Cont); 4829 4830 // Merge the cases with a phi. 4831 Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow, 4832 "vaarg.addr"); 4833 4834 // Load the pointer if the argument was passed indirectly. 4835 if (isIndirect) { 4836 Result = Address(Builder.CreateLoad(Result, "aggr"), 4837 getContext().getTypeAlignInChars(Ty)); 4838 } 4839 4840 return Result; 4841 } 4842 4843 bool PPC32TargetCodeGenInfo::isStructReturnInRegABI( 4844 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 4845 assert(Triple.getArch() == llvm::Triple::ppc); 4846 4847 switch (Opts.getStructReturnConvention()) { 4848 case CodeGenOptions::SRCK_Default: 4849 break; 4850 case CodeGenOptions::SRCK_OnStack: // -maix-struct-return 4851 return false; 4852 case CodeGenOptions::SRCK_InRegs: // -msvr4-struct-return 4853 return true; 4854 } 4855 4856 if (Triple.isOSBinFormatELF() && !Triple.isOSLinux()) 4857 return true; 4858 4859 return false; 4860 } 4861 4862 bool 4863 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4864 llvm::Value *Address) const { 4865 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ false, 4866 /*IsAIX*/ false); 4867 } 4868 4869 // PowerPC-64 4870 4871 namespace { 4872 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 4873 class PPC64_SVR4_ABIInfo : public SwiftABIInfo { 4874 public: 4875 enum ABIKind { 4876 ELFv1 = 0, 4877 ELFv2 4878 }; 4879 4880 private: 4881 static const unsigned GPRBits = 64; 4882 ABIKind Kind; 4883 bool HasQPX; 4884 bool IsSoftFloatABI; 4885 4886 // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and 4887 // will be passed in a QPX register. 4888 bool IsQPXVectorTy(const Type *Ty) const { 4889 if (!HasQPX) 4890 return false; 4891 4892 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4893 unsigned NumElements = VT->getNumElements(); 4894 if (NumElements == 1) 4895 return false; 4896 4897 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) { 4898 if (getContext().getTypeSize(Ty) <= 256) 4899 return true; 4900 } else if (VT->getElementType()-> 4901 isSpecificBuiltinType(BuiltinType::Float)) { 4902 if (getContext().getTypeSize(Ty) <= 128) 4903 return true; 4904 } 4905 } 4906 4907 return false; 4908 } 4909 4910 bool IsQPXVectorTy(QualType Ty) const { 4911 return IsQPXVectorTy(Ty.getTypePtr()); 4912 } 4913 4914 public: 4915 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX, 4916 bool SoftFloatABI) 4917 : SwiftABIInfo(CGT), Kind(Kind), HasQPX(HasQPX), 4918 IsSoftFloatABI(SoftFloatABI) {} 4919 4920 bool isPromotableTypeForABI(QualType Ty) const; 4921 CharUnits getParamTypeAlignment(QualType Ty) const; 4922 4923 ABIArgInfo classifyReturnType(QualType RetTy) const; 4924 ABIArgInfo classifyArgumentType(QualType Ty) const; 4925 4926 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4927 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4928 uint64_t Members) const override; 4929 4930 // TODO: We can add more logic to computeInfo to improve performance. 4931 // Example: For aggregate arguments that fit in a register, we could 4932 // use getDirectInReg (as is done below for structs containing a single 4933 // floating-point value) to avoid pushing them to memory on function 4934 // entry. This would require changing the logic in PPCISelLowering 4935 // when lowering the parameters in the caller and args in the callee. 4936 void computeInfo(CGFunctionInfo &FI) const override { 4937 if (!getCXXABI().classifyReturnType(FI)) 4938 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4939 for (auto &I : FI.arguments()) { 4940 // We rely on the default argument classification for the most part. 4941 // One exception: An aggregate containing a single floating-point 4942 // or vector item must be passed in a register if one is available. 4943 const Type *T = isSingleElementStruct(I.type, getContext()); 4944 if (T) { 4945 const BuiltinType *BT = T->getAs<BuiltinType>(); 4946 if (IsQPXVectorTy(T) || 4947 (T->isVectorType() && getContext().getTypeSize(T) == 128) || 4948 (BT && BT->isFloatingPoint())) { 4949 QualType QT(T, 0); 4950 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 4951 continue; 4952 } 4953 } 4954 I.info = classifyArgumentType(I.type); 4955 } 4956 } 4957 4958 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4959 QualType Ty) const override; 4960 4961 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 4962 bool asReturnValue) const override { 4963 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 4964 } 4965 4966 bool isSwiftErrorInRegister() const override { 4967 return false; 4968 } 4969 }; 4970 4971 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 4972 4973 public: 4974 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 4975 PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX, 4976 bool SoftFloatABI) 4977 : TargetCodeGenInfo(std::make_unique<PPC64_SVR4_ABIInfo>( 4978 CGT, Kind, HasQPX, SoftFloatABI)) {} 4979 4980 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4981 // This is recovered from gcc output. 4982 return 1; // r1 is the dedicated stack pointer 4983 } 4984 4985 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4986 llvm::Value *Address) const override; 4987 }; 4988 4989 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 4990 public: 4991 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 4992 4993 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4994 // This is recovered from gcc output. 4995 return 1; // r1 is the dedicated stack pointer 4996 } 4997 4998 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4999 llvm::Value *Address) const override; 5000 }; 5001 5002 } 5003 5004 // Return true if the ABI requires Ty to be passed sign- or zero- 5005 // extended to 64 bits. 5006 bool 5007 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 5008 // Treat an enum type as its underlying type. 5009 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5010 Ty = EnumTy->getDecl()->getIntegerType(); 5011 5012 // Promotable integer types are required to be promoted by the ABI. 5013 if (isPromotableIntegerTypeForABI(Ty)) 5014 return true; 5015 5016 // In addition to the usual promotable integer types, we also need to 5017 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 5018 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 5019 switch (BT->getKind()) { 5020 case BuiltinType::Int: 5021 case BuiltinType::UInt: 5022 return true; 5023 default: 5024 break; 5025 } 5026 5027 if (const auto *EIT = Ty->getAs<ExtIntType>()) 5028 if (EIT->getNumBits() < 64) 5029 return true; 5030 5031 return false; 5032 } 5033 5034 /// isAlignedParamType - Determine whether a type requires 16-byte or 5035 /// higher alignment in the parameter area. Always returns at least 8. 5036 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 5037 // Complex types are passed just like their elements. 5038 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 5039 Ty = CTy->getElementType(); 5040 5041 // Only vector types of size 16 bytes need alignment (larger types are 5042 // passed via reference, smaller types are not aligned). 5043 if (IsQPXVectorTy(Ty)) { 5044 if (getContext().getTypeSize(Ty) > 128) 5045 return CharUnits::fromQuantity(32); 5046 5047 return CharUnits::fromQuantity(16); 5048 } else if (Ty->isVectorType()) { 5049 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8); 5050 } 5051 5052 // For single-element float/vector structs, we consider the whole type 5053 // to have the same alignment requirements as its single element. 5054 const Type *AlignAsType = nullptr; 5055 const Type *EltType = isSingleElementStruct(Ty, getContext()); 5056 if (EltType) { 5057 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 5058 if (IsQPXVectorTy(EltType) || (EltType->isVectorType() && 5059 getContext().getTypeSize(EltType) == 128) || 5060 (BT && BT->isFloatingPoint())) 5061 AlignAsType = EltType; 5062 } 5063 5064 // Likewise for ELFv2 homogeneous aggregates. 5065 const Type *Base = nullptr; 5066 uint64_t Members = 0; 5067 if (!AlignAsType && Kind == ELFv2 && 5068 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 5069 AlignAsType = Base; 5070 5071 // With special case aggregates, only vector base types need alignment. 5072 if (AlignAsType && IsQPXVectorTy(AlignAsType)) { 5073 if (getContext().getTypeSize(AlignAsType) > 128) 5074 return CharUnits::fromQuantity(32); 5075 5076 return CharUnits::fromQuantity(16); 5077 } else if (AlignAsType) { 5078 return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8); 5079 } 5080 5081 // Otherwise, we only need alignment for any aggregate type that 5082 // has an alignment requirement of >= 16 bytes. 5083 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { 5084 if (HasQPX && getContext().getTypeAlign(Ty) >= 256) 5085 return CharUnits::fromQuantity(32); 5086 return CharUnits::fromQuantity(16); 5087 } 5088 5089 return CharUnits::fromQuantity(8); 5090 } 5091 5092 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 5093 /// aggregate. Base is set to the base element type, and Members is set 5094 /// to the number of base elements. 5095 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 5096 uint64_t &Members) const { 5097 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 5098 uint64_t NElements = AT->getSize().getZExtValue(); 5099 if (NElements == 0) 5100 return false; 5101 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 5102 return false; 5103 Members *= NElements; 5104 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 5105 const RecordDecl *RD = RT->getDecl(); 5106 if (RD->hasFlexibleArrayMember()) 5107 return false; 5108 5109 Members = 0; 5110 5111 // If this is a C++ record, check the bases first. 5112 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 5113 for (const auto &I : CXXRD->bases()) { 5114 // Ignore empty records. 5115 if (isEmptyRecord(getContext(), I.getType(), true)) 5116 continue; 5117 5118 uint64_t FldMembers; 5119 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) 5120 return false; 5121 5122 Members += FldMembers; 5123 } 5124 } 5125 5126 for (const auto *FD : RD->fields()) { 5127 // Ignore (non-zero arrays of) empty records. 5128 QualType FT = FD->getType(); 5129 while (const ConstantArrayType *AT = 5130 getContext().getAsConstantArrayType(FT)) { 5131 if (AT->getSize().getZExtValue() == 0) 5132 return false; 5133 FT = AT->getElementType(); 5134 } 5135 if (isEmptyRecord(getContext(), FT, true)) 5136 continue; 5137 5138 // For compatibility with GCC, ignore empty bitfields in C++ mode. 5139 if (getContext().getLangOpts().CPlusPlus && 5140 FD->isZeroLengthBitField(getContext())) 5141 continue; 5142 5143 uint64_t FldMembers; 5144 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 5145 return false; 5146 5147 Members = (RD->isUnion() ? 5148 std::max(Members, FldMembers) : Members + FldMembers); 5149 } 5150 5151 if (!Base) 5152 return false; 5153 5154 // Ensure there is no padding. 5155 if (getContext().getTypeSize(Base) * Members != 5156 getContext().getTypeSize(Ty)) 5157 return false; 5158 } else { 5159 Members = 1; 5160 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 5161 Members = 2; 5162 Ty = CT->getElementType(); 5163 } 5164 5165 // Most ABIs only support float, double, and some vector type widths. 5166 if (!isHomogeneousAggregateBaseType(Ty)) 5167 return false; 5168 5169 // The base type must be the same for all members. Types that 5170 // agree in both total size and mode (float vs. vector) are 5171 // treated as being equivalent here. 5172 const Type *TyPtr = Ty.getTypePtr(); 5173 if (!Base) { 5174 Base = TyPtr; 5175 // If it's a non-power-of-2 vector, its size is already a power-of-2, 5176 // so make sure to widen it explicitly. 5177 if (const VectorType *VT = Base->getAs<VectorType>()) { 5178 QualType EltTy = VT->getElementType(); 5179 unsigned NumElements = 5180 getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy); 5181 Base = getContext() 5182 .getVectorType(EltTy, NumElements, VT->getVectorKind()) 5183 .getTypePtr(); 5184 } 5185 } 5186 5187 if (Base->isVectorType() != TyPtr->isVectorType() || 5188 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 5189 return false; 5190 } 5191 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); 5192 } 5193 5194 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5195 // Homogeneous aggregates for ELFv2 must have base types of float, 5196 // double, long double, or 128-bit vectors. 5197 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5198 if (BT->getKind() == BuiltinType::Float || 5199 BT->getKind() == BuiltinType::Double || 5200 BT->getKind() == BuiltinType::LongDouble || 5201 (getContext().getTargetInfo().hasFloat128Type() && 5202 (BT->getKind() == BuiltinType::Float128))) { 5203 if (IsSoftFloatABI) 5204 return false; 5205 return true; 5206 } 5207 } 5208 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5209 if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty)) 5210 return true; 5211 } 5212 return false; 5213 } 5214 5215 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( 5216 const Type *Base, uint64_t Members) const { 5217 // Vector and fp128 types require one register, other floating point types 5218 // require one or two registers depending on their size. 5219 uint32_t NumRegs = 5220 ((getContext().getTargetInfo().hasFloat128Type() && 5221 Base->isFloat128Type()) || 5222 Base->isVectorType()) ? 1 5223 : (getContext().getTypeSize(Base) + 63) / 64; 5224 5225 // Homogeneous Aggregates may occupy at most 8 registers. 5226 return Members * NumRegs <= 8; 5227 } 5228 5229 ABIArgInfo 5230 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 5231 Ty = useFirstFieldIfTransparentUnion(Ty); 5232 5233 if (Ty->isAnyComplexType()) 5234 return ABIArgInfo::getDirect(); 5235 5236 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 5237 // or via reference (larger than 16 bytes). 5238 if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) { 5239 uint64_t Size = getContext().getTypeSize(Ty); 5240 if (Size > 128) 5241 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5242 else if (Size < 128) { 5243 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 5244 return ABIArgInfo::getDirect(CoerceTy); 5245 } 5246 } 5247 5248 if (const auto *EIT = Ty->getAs<ExtIntType>()) 5249 if (EIT->getNumBits() > 128) 5250 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 5251 5252 if (isAggregateTypeForABI(Ty)) { 5253 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 5254 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 5255 5256 uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity(); 5257 uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 5258 5259 // ELFv2 homogeneous aggregates are passed as array types. 5260 const Type *Base = nullptr; 5261 uint64_t Members = 0; 5262 if (Kind == ELFv2 && 5263 isHomogeneousAggregate(Ty, Base, Members)) { 5264 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 5265 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 5266 return ABIArgInfo::getDirect(CoerceTy); 5267 } 5268 5269 // If an aggregate may end up fully in registers, we do not 5270 // use the ByVal method, but pass the aggregate as array. 5271 // This is usually beneficial since we avoid forcing the 5272 // back-end to store the argument to memory. 5273 uint64_t Bits = getContext().getTypeSize(Ty); 5274 if (Bits > 0 && Bits <= 8 * GPRBits) { 5275 llvm::Type *CoerceTy; 5276 5277 // Types up to 8 bytes are passed as integer type (which will be 5278 // properly aligned in the argument save area doubleword). 5279 if (Bits <= GPRBits) 5280 CoerceTy = 5281 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 5282 // Larger types are passed as arrays, with the base type selected 5283 // according to the required alignment in the save area. 5284 else { 5285 uint64_t RegBits = ABIAlign * 8; 5286 uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits; 5287 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 5288 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 5289 } 5290 5291 return ABIArgInfo::getDirect(CoerceTy); 5292 } 5293 5294 // All other aggregates are passed ByVal. 5295 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 5296 /*ByVal=*/true, 5297 /*Realign=*/TyAlign > ABIAlign); 5298 } 5299 5300 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 5301 : ABIArgInfo::getDirect()); 5302 } 5303 5304 ABIArgInfo 5305 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 5306 if (RetTy->isVoidType()) 5307 return ABIArgInfo::getIgnore(); 5308 5309 if (RetTy->isAnyComplexType()) 5310 return ABIArgInfo::getDirect(); 5311 5312 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 5313 // or via reference (larger than 16 bytes). 5314 if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) { 5315 uint64_t Size = getContext().getTypeSize(RetTy); 5316 if (Size > 128) 5317 return getNaturalAlignIndirect(RetTy); 5318 else if (Size < 128) { 5319 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 5320 return ABIArgInfo::getDirect(CoerceTy); 5321 } 5322 } 5323 5324 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 5325 if (EIT->getNumBits() > 128) 5326 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 5327 5328 if (isAggregateTypeForABI(RetTy)) { 5329 // ELFv2 homogeneous aggregates are returned as array types. 5330 const Type *Base = nullptr; 5331 uint64_t Members = 0; 5332 if (Kind == ELFv2 && 5333 isHomogeneousAggregate(RetTy, Base, Members)) { 5334 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 5335 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 5336 return ABIArgInfo::getDirect(CoerceTy); 5337 } 5338 5339 // ELFv2 small aggregates are returned in up to two registers. 5340 uint64_t Bits = getContext().getTypeSize(RetTy); 5341 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 5342 if (Bits == 0) 5343 return ABIArgInfo::getIgnore(); 5344 5345 llvm::Type *CoerceTy; 5346 if (Bits > GPRBits) { 5347 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 5348 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy); 5349 } else 5350 CoerceTy = 5351 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 5352 return ABIArgInfo::getDirect(CoerceTy); 5353 } 5354 5355 // All other aggregates are returned indirectly. 5356 return getNaturalAlignIndirect(RetTy); 5357 } 5358 5359 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 5360 : ABIArgInfo::getDirect()); 5361 } 5362 5363 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 5364 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5365 QualType Ty) const { 5366 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 5367 TypeInfo.Align = getParamTypeAlignment(Ty); 5368 5369 CharUnits SlotSize = CharUnits::fromQuantity(8); 5370 5371 // If we have a complex type and the base type is smaller than 8 bytes, 5372 // the ABI calls for the real and imaginary parts to be right-adjusted 5373 // in separate doublewords. However, Clang expects us to produce a 5374 // pointer to a structure with the two parts packed tightly. So generate 5375 // loads of the real and imaginary parts relative to the va_list pointer, 5376 // and store them to a temporary structure. 5377 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 5378 CharUnits EltSize = TypeInfo.Width / 2; 5379 if (EltSize < SlotSize) { 5380 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, 5381 SlotSize * 2, SlotSize, 5382 SlotSize, /*AllowHigher*/ true); 5383 5384 Address RealAddr = Addr; 5385 Address ImagAddr = RealAddr; 5386 if (CGF.CGM.getDataLayout().isBigEndian()) { 5387 RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, 5388 SlotSize - EltSize); 5389 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr, 5390 2 * SlotSize - EltSize); 5391 } else { 5392 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize); 5393 } 5394 5395 llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType()); 5396 RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy); 5397 ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy); 5398 llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal"); 5399 llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag"); 5400 5401 Address Temp = CGF.CreateMemTemp(Ty, "vacplx"); 5402 CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty), 5403 /*init*/ true); 5404 return Temp; 5405 } 5406 } 5407 5408 // Otherwise, just use the general rule. 5409 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 5410 TypeInfo, SlotSize, /*AllowHigher*/ true); 5411 } 5412 5413 bool 5414 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 5415 CodeGen::CodeGenFunction &CGF, 5416 llvm::Value *Address) const { 5417 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true, 5418 /*IsAIX*/ false); 5419 } 5420 5421 bool 5422 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5423 llvm::Value *Address) const { 5424 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true, 5425 /*IsAIX*/ false); 5426 } 5427 5428 //===----------------------------------------------------------------------===// 5429 // AArch64 ABI Implementation 5430 //===----------------------------------------------------------------------===// 5431 5432 namespace { 5433 5434 class AArch64ABIInfo : public SwiftABIInfo { 5435 public: 5436 enum ABIKind { 5437 AAPCS = 0, 5438 DarwinPCS, 5439 Win64 5440 }; 5441 5442 private: 5443 ABIKind Kind; 5444 5445 public: 5446 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) 5447 : SwiftABIInfo(CGT), Kind(Kind) {} 5448 5449 private: 5450 ABIKind getABIKind() const { return Kind; } 5451 bool isDarwinPCS() const { return Kind == DarwinPCS; } 5452 5453 ABIArgInfo classifyReturnType(QualType RetTy, bool IsVariadic) const; 5454 ABIArgInfo classifyArgumentType(QualType RetTy) const; 5455 ABIArgInfo coerceIllegalVector(QualType Ty) const; 5456 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 5457 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 5458 uint64_t Members) const override; 5459 5460 bool isIllegalVectorType(QualType Ty) const; 5461 5462 void computeInfo(CGFunctionInfo &FI) const override { 5463 if (!::classifyReturnType(getCXXABI(), FI, *this)) 5464 FI.getReturnInfo() = 5465 classifyReturnType(FI.getReturnType(), FI.isVariadic()); 5466 5467 for (auto &it : FI.arguments()) 5468 it.info = classifyArgumentType(it.type); 5469 } 5470 5471 Address EmitDarwinVAArg(Address VAListAddr, QualType Ty, 5472 CodeGenFunction &CGF) const; 5473 5474 Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 5475 CodeGenFunction &CGF) const; 5476 5477 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5478 QualType Ty) const override { 5479 return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty) 5480 : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 5481 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 5482 } 5483 5484 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 5485 QualType Ty) const override; 5486 5487 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 5488 bool asReturnValue) const override { 5489 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5490 } 5491 bool isSwiftErrorInRegister() const override { 5492 return true; 5493 } 5494 5495 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 5496 unsigned elts) const override; 5497 5498 bool allowBFloatArgsAndRet() const override { 5499 return getTarget().hasBFloat16Type(); 5500 } 5501 }; 5502 5503 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 5504 public: 5505 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 5506 : TargetCodeGenInfo(std::make_unique<AArch64ABIInfo>(CGT, Kind)) {} 5507 5508 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 5509 return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue"; 5510 } 5511 5512 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5513 return 31; 5514 } 5515 5516 bool doesReturnSlotInterfereWithArgs() const override { return false; } 5517 5518 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5519 CodeGen::CodeGenModule &CGM) const override { 5520 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5521 if (!FD) 5522 return; 5523 5524 const auto *TA = FD->getAttr<TargetAttr>(); 5525 if (TA == nullptr) 5526 return; 5527 5528 ParsedTargetAttr Attr = TA->parse(); 5529 if (Attr.BranchProtection.empty()) 5530 return; 5531 5532 TargetInfo::BranchProtectionInfo BPI; 5533 StringRef Error; 5534 (void)CGM.getTarget().validateBranchProtection(Attr.BranchProtection, 5535 BPI, Error); 5536 assert(Error.empty()); 5537 5538 auto *Fn = cast<llvm::Function>(GV); 5539 static const char *SignReturnAddrStr[] = {"none", "non-leaf", "all"}; 5540 Fn->addFnAttr("sign-return-address", SignReturnAddrStr[static_cast<int>(BPI.SignReturnAddr)]); 5541 5542 if (BPI.SignReturnAddr != LangOptions::SignReturnAddressScopeKind::None) { 5543 Fn->addFnAttr("sign-return-address-key", 5544 BPI.SignKey == LangOptions::SignReturnAddressKeyKind::AKey 5545 ? "a_key" 5546 : "b_key"); 5547 } 5548 5549 Fn->addFnAttr("branch-target-enforcement", 5550 BPI.BranchTargetEnforcement ? "true" : "false"); 5551 } 5552 }; 5553 5554 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo { 5555 public: 5556 WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K) 5557 : AArch64TargetCodeGenInfo(CGT, K) {} 5558 5559 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5560 CodeGen::CodeGenModule &CGM) const override; 5561 5562 void getDependentLibraryOption(llvm::StringRef Lib, 5563 llvm::SmallString<24> &Opt) const override { 5564 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5565 } 5566 5567 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5568 llvm::SmallString<32> &Opt) const override { 5569 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5570 } 5571 }; 5572 5573 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes( 5574 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 5575 AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 5576 if (GV->isDeclaration()) 5577 return; 5578 addStackProbeTargetAttributes(D, GV, CGM); 5579 } 5580 } 5581 5582 ABIArgInfo AArch64ABIInfo::coerceIllegalVector(QualType Ty) const { 5583 assert(Ty->isVectorType() && "expected vector type!"); 5584 5585 const auto *VT = Ty->castAs<VectorType>(); 5586 if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) { 5587 assert(VT->getElementType()->isBuiltinType() && "expected builtin type!"); 5588 assert(VT->getElementType()->castAs<BuiltinType>()->getKind() == 5589 BuiltinType::UChar && 5590 "unexpected builtin type for SVE predicate!"); 5591 return ABIArgInfo::getDirect(llvm::ScalableVectorType::get( 5592 llvm::Type::getInt1Ty(getVMContext()), 16)); 5593 } 5594 5595 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector) { 5596 assert(VT->getElementType()->isBuiltinType() && "expected builtin type!"); 5597 5598 const auto *BT = VT->getElementType()->castAs<BuiltinType>(); 5599 llvm::ScalableVectorType *ResType = nullptr; 5600 switch (BT->getKind()) { 5601 default: 5602 llvm_unreachable("unexpected builtin type for SVE vector!"); 5603 case BuiltinType::SChar: 5604 case BuiltinType::UChar: 5605 ResType = llvm::ScalableVectorType::get( 5606 llvm::Type::getInt8Ty(getVMContext()), 16); 5607 break; 5608 case BuiltinType::Short: 5609 case BuiltinType::UShort: 5610 ResType = llvm::ScalableVectorType::get( 5611 llvm::Type::getInt16Ty(getVMContext()), 8); 5612 break; 5613 case BuiltinType::Int: 5614 case BuiltinType::UInt: 5615 ResType = llvm::ScalableVectorType::get( 5616 llvm::Type::getInt32Ty(getVMContext()), 4); 5617 break; 5618 case BuiltinType::Long: 5619 case BuiltinType::ULong: 5620 ResType = llvm::ScalableVectorType::get( 5621 llvm::Type::getInt64Ty(getVMContext()), 2); 5622 break; 5623 case BuiltinType::Half: 5624 ResType = llvm::ScalableVectorType::get( 5625 llvm::Type::getHalfTy(getVMContext()), 8); 5626 break; 5627 case BuiltinType::Float: 5628 ResType = llvm::ScalableVectorType::get( 5629 llvm::Type::getFloatTy(getVMContext()), 4); 5630 break; 5631 case BuiltinType::Double: 5632 ResType = llvm::ScalableVectorType::get( 5633 llvm::Type::getDoubleTy(getVMContext()), 2); 5634 break; 5635 case BuiltinType::BFloat16: 5636 ResType = llvm::ScalableVectorType::get( 5637 llvm::Type::getBFloatTy(getVMContext()), 8); 5638 break; 5639 } 5640 return ABIArgInfo::getDirect(ResType); 5641 } 5642 5643 uint64_t Size = getContext().getTypeSize(Ty); 5644 // Android promotes <2 x i8> to i16, not i32 5645 if (isAndroid() && (Size <= 16)) { 5646 llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext()); 5647 return ABIArgInfo::getDirect(ResType); 5648 } 5649 if (Size <= 32) { 5650 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 5651 return ABIArgInfo::getDirect(ResType); 5652 } 5653 if (Size == 64) { 5654 auto *ResType = 5655 llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 5656 return ABIArgInfo::getDirect(ResType); 5657 } 5658 if (Size == 128) { 5659 auto *ResType = 5660 llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 5661 return ABIArgInfo::getDirect(ResType); 5662 } 5663 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5664 } 5665 5666 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const { 5667 Ty = useFirstFieldIfTransparentUnion(Ty); 5668 5669 // Handle illegal vector types here. 5670 if (isIllegalVectorType(Ty)) 5671 return coerceIllegalVector(Ty); 5672 5673 if (!isAggregateTypeForABI(Ty)) { 5674 // Treat an enum type as its underlying type. 5675 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5676 Ty = EnumTy->getDecl()->getIntegerType(); 5677 5678 if (const auto *EIT = Ty->getAs<ExtIntType>()) 5679 if (EIT->getNumBits() > 128) 5680 return getNaturalAlignIndirect(Ty); 5681 5682 return (isPromotableIntegerTypeForABI(Ty) && isDarwinPCS() 5683 ? ABIArgInfo::getExtend(Ty) 5684 : ABIArgInfo::getDirect()); 5685 } 5686 5687 // Structures with either a non-trivial destructor or a non-trivial 5688 // copy constructor are always indirect. 5689 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5690 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 5691 CGCXXABI::RAA_DirectInMemory); 5692 } 5693 5694 // Empty records are always ignored on Darwin, but actually passed in C++ mode 5695 // elsewhere for GNU compatibility. 5696 uint64_t Size = getContext().getTypeSize(Ty); 5697 bool IsEmpty = isEmptyRecord(getContext(), Ty, true); 5698 if (IsEmpty || Size == 0) { 5699 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 5700 return ABIArgInfo::getIgnore(); 5701 5702 // GNU C mode. The only argument that gets ignored is an empty one with size 5703 // 0. 5704 if (IsEmpty && Size == 0) 5705 return ABIArgInfo::getIgnore(); 5706 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5707 } 5708 5709 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 5710 const Type *Base = nullptr; 5711 uint64_t Members = 0; 5712 if (isHomogeneousAggregate(Ty, Base, Members)) { 5713 return ABIArgInfo::getDirect( 5714 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); 5715 } 5716 5717 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 5718 if (Size <= 128) { 5719 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5720 // same size and alignment. 5721 if (getTarget().isRenderScriptTarget()) { 5722 return coerceToIntArray(Ty, getContext(), getVMContext()); 5723 } 5724 unsigned Alignment; 5725 if (Kind == AArch64ABIInfo::AAPCS) { 5726 Alignment = getContext().getTypeUnadjustedAlign(Ty); 5727 Alignment = Alignment < 128 ? 64 : 128; 5728 } else { 5729 Alignment = std::max(getContext().getTypeAlign(Ty), 5730 (unsigned)getTarget().getPointerWidth(0)); 5731 } 5732 Size = llvm::alignTo(Size, Alignment); 5733 5734 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5735 // For aggregates with 16-byte alignment, we use i128. 5736 llvm::Type *BaseTy = llvm::Type::getIntNTy(getVMContext(), Alignment); 5737 return ABIArgInfo::getDirect( 5738 Size == Alignment ? BaseTy 5739 : llvm::ArrayType::get(BaseTy, Size / Alignment)); 5740 } 5741 5742 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5743 } 5744 5745 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy, 5746 bool IsVariadic) const { 5747 if (RetTy->isVoidType()) 5748 return ABIArgInfo::getIgnore(); 5749 5750 if (const auto *VT = RetTy->getAs<VectorType>()) { 5751 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector || 5752 VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) 5753 return coerceIllegalVector(RetTy); 5754 } 5755 5756 // Large vector types should be returned via memory. 5757 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 5758 return getNaturalAlignIndirect(RetTy); 5759 5760 if (!isAggregateTypeForABI(RetTy)) { 5761 // Treat an enum type as its underlying type. 5762 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5763 RetTy = EnumTy->getDecl()->getIntegerType(); 5764 5765 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 5766 if (EIT->getNumBits() > 128) 5767 return getNaturalAlignIndirect(RetTy); 5768 5769 return (isPromotableIntegerTypeForABI(RetTy) && isDarwinPCS() 5770 ? ABIArgInfo::getExtend(RetTy) 5771 : ABIArgInfo::getDirect()); 5772 } 5773 5774 uint64_t Size = getContext().getTypeSize(RetTy); 5775 if (isEmptyRecord(getContext(), RetTy, true) || Size == 0) 5776 return ABIArgInfo::getIgnore(); 5777 5778 const Type *Base = nullptr; 5779 uint64_t Members = 0; 5780 if (isHomogeneousAggregate(RetTy, Base, Members) && 5781 !(getTarget().getTriple().getArch() == llvm::Triple::aarch64_32 && 5782 IsVariadic)) 5783 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 5784 return ABIArgInfo::getDirect(); 5785 5786 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 5787 if (Size <= 128) { 5788 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5789 // same size and alignment. 5790 if (getTarget().isRenderScriptTarget()) { 5791 return coerceToIntArray(RetTy, getContext(), getVMContext()); 5792 } 5793 unsigned Alignment = getContext().getTypeAlign(RetTy); 5794 Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes 5795 5796 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5797 // For aggregates with 16-byte alignment, we use i128. 5798 if (Alignment < 128 && Size == 128) { 5799 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 5800 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 5801 } 5802 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 5803 } 5804 5805 return getNaturalAlignIndirect(RetTy); 5806 } 5807 5808 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 5809 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 5810 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5811 // Check whether VT is a fixed-length SVE vector. These types are 5812 // represented as scalable vectors in function args/return and must be 5813 // coerced from fixed vectors. 5814 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector || 5815 VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) 5816 return true; 5817 5818 // Check whether VT is legal. 5819 unsigned NumElements = VT->getNumElements(); 5820 uint64_t Size = getContext().getTypeSize(VT); 5821 // NumElements should be power of 2. 5822 if (!llvm::isPowerOf2_32(NumElements)) 5823 return true; 5824 5825 // arm64_32 has to be compatible with the ARM logic here, which allows huge 5826 // vectors for some reason. 5827 llvm::Triple Triple = getTarget().getTriple(); 5828 if (Triple.getArch() == llvm::Triple::aarch64_32 && 5829 Triple.isOSBinFormatMachO()) 5830 return Size <= 32; 5831 5832 return Size != 64 && (Size != 128 || NumElements == 1); 5833 } 5834 return false; 5835 } 5836 5837 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize, 5838 llvm::Type *eltTy, 5839 unsigned elts) const { 5840 if (!llvm::isPowerOf2_32(elts)) 5841 return false; 5842 if (totalSize.getQuantity() != 8 && 5843 (totalSize.getQuantity() != 16 || elts == 1)) 5844 return false; 5845 return true; 5846 } 5847 5848 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5849 // Homogeneous aggregates for AAPCS64 must have base types of a floating 5850 // point type or a short-vector type. This is the same as the 32-bit ABI, 5851 // but with the difference that any floating-point type is allowed, 5852 // including __fp16. 5853 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5854 if (BT->isFloatingPoint()) 5855 return true; 5856 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 5857 unsigned VecSize = getContext().getTypeSize(VT); 5858 if (VecSize == 64 || VecSize == 128) 5859 return true; 5860 } 5861 return false; 5862 } 5863 5864 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 5865 uint64_t Members) const { 5866 return Members <= 4; 5867 } 5868 5869 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, 5870 QualType Ty, 5871 CodeGenFunction &CGF) const { 5872 ABIArgInfo AI = classifyArgumentType(Ty); 5873 bool IsIndirect = AI.isIndirect(); 5874 5875 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5876 if (IsIndirect) 5877 BaseTy = llvm::PointerType::getUnqual(BaseTy); 5878 else if (AI.getCoerceToType()) 5879 BaseTy = AI.getCoerceToType(); 5880 5881 unsigned NumRegs = 1; 5882 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { 5883 BaseTy = ArrTy->getElementType(); 5884 NumRegs = ArrTy->getNumElements(); 5885 } 5886 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); 5887 5888 // The AArch64 va_list type and handling is specified in the Procedure Call 5889 // Standard, section B.4: 5890 // 5891 // struct { 5892 // void *__stack; 5893 // void *__gr_top; 5894 // void *__vr_top; 5895 // int __gr_offs; 5896 // int __vr_offs; 5897 // }; 5898 5899 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 5900 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 5901 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 5902 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 5903 5904 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 5905 CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty); 5906 5907 Address reg_offs_p = Address::invalid(); 5908 llvm::Value *reg_offs = nullptr; 5909 int reg_top_index; 5910 int RegSize = IsIndirect ? 8 : TySize.getQuantity(); 5911 if (!IsFPR) { 5912 // 3 is the field number of __gr_offs 5913 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p"); 5914 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 5915 reg_top_index = 1; // field number for __gr_top 5916 RegSize = llvm::alignTo(RegSize, 8); 5917 } else { 5918 // 4 is the field number of __vr_offs. 5919 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p"); 5920 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 5921 reg_top_index = 2; // field number for __vr_top 5922 RegSize = 16 * NumRegs; 5923 } 5924 5925 //======================================= 5926 // Find out where argument was passed 5927 //======================================= 5928 5929 // If reg_offs >= 0 we're already using the stack for this type of 5930 // argument. We don't want to keep updating reg_offs (in case it overflows, 5931 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 5932 // whatever they get). 5933 llvm::Value *UsingStack = nullptr; 5934 UsingStack = CGF.Builder.CreateICmpSGE( 5935 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 5936 5937 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 5938 5939 // Otherwise, at least some kind of argument could go in these registers, the 5940 // question is whether this particular type is too big. 5941 CGF.EmitBlock(MaybeRegBlock); 5942 5943 // Integer arguments may need to correct register alignment (for example a 5944 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 5945 // align __gr_offs to calculate the potential address. 5946 if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) { 5947 int Align = TyAlign.getQuantity(); 5948 5949 reg_offs = CGF.Builder.CreateAdd( 5950 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 5951 "align_regoffs"); 5952 reg_offs = CGF.Builder.CreateAnd( 5953 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 5954 "aligned_regoffs"); 5955 } 5956 5957 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 5958 // The fact that this is done unconditionally reflects the fact that 5959 // allocating an argument to the stack also uses up all the remaining 5960 // registers of the appropriate kind. 5961 llvm::Value *NewOffset = nullptr; 5962 NewOffset = CGF.Builder.CreateAdd( 5963 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 5964 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 5965 5966 // Now we're in a position to decide whether this argument really was in 5967 // registers or not. 5968 llvm::Value *InRegs = nullptr; 5969 InRegs = CGF.Builder.CreateICmpSLE( 5970 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 5971 5972 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 5973 5974 //======================================= 5975 // Argument was in registers 5976 //======================================= 5977 5978 // Now we emit the code for if the argument was originally passed in 5979 // registers. First start the appropriate block: 5980 CGF.EmitBlock(InRegBlock); 5981 5982 llvm::Value *reg_top = nullptr; 5983 Address reg_top_p = 5984 CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p"); 5985 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 5986 Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs), 5987 CharUnits::fromQuantity(IsFPR ? 16 : 8)); 5988 Address RegAddr = Address::invalid(); 5989 llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty); 5990 5991 if (IsIndirect) { 5992 // If it's been passed indirectly (actually a struct), whatever we find from 5993 // stored registers or on the stack will actually be a struct **. 5994 MemTy = llvm::PointerType::getUnqual(MemTy); 5995 } 5996 5997 const Type *Base = nullptr; 5998 uint64_t NumMembers = 0; 5999 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); 6000 if (IsHFA && NumMembers > 1) { 6001 // Homogeneous aggregates passed in registers will have their elements split 6002 // and stored 16-bytes apart regardless of size (they're notionally in qN, 6003 // qN+1, ...). We reload and store into a temporary local variable 6004 // contiguously. 6005 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 6006 auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0)); 6007 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 6008 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 6009 Address Tmp = CGF.CreateTempAlloca(HFATy, 6010 std::max(TyAlign, BaseTyInfo.Align)); 6011 6012 // On big-endian platforms, the value will be right-aligned in its slot. 6013 int Offset = 0; 6014 if (CGF.CGM.getDataLayout().isBigEndian() && 6015 BaseTyInfo.Width.getQuantity() < 16) 6016 Offset = 16 - BaseTyInfo.Width.getQuantity(); 6017 6018 for (unsigned i = 0; i < NumMembers; ++i) { 6019 CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset); 6020 Address LoadAddr = 6021 CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset); 6022 LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy); 6023 6024 Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i); 6025 6026 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 6027 CGF.Builder.CreateStore(Elem, StoreAddr); 6028 } 6029 6030 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy); 6031 } else { 6032 // Otherwise the object is contiguous in memory. 6033 6034 // It might be right-aligned in its slot. 6035 CharUnits SlotSize = BaseAddr.getAlignment(); 6036 if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect && 6037 (IsHFA || !isAggregateTypeForABI(Ty)) && 6038 TySize < SlotSize) { 6039 CharUnits Offset = SlotSize - TySize; 6040 BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset); 6041 } 6042 6043 RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy); 6044 } 6045 6046 CGF.EmitBranch(ContBlock); 6047 6048 //======================================= 6049 // Argument was on the stack 6050 //======================================= 6051 CGF.EmitBlock(OnStackBlock); 6052 6053 Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p"); 6054 llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack"); 6055 6056 // Again, stack arguments may need realignment. In this case both integer and 6057 // floating-point ones might be affected. 6058 if (!IsIndirect && TyAlign.getQuantity() > 8) { 6059 int Align = TyAlign.getQuantity(); 6060 6061 OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty); 6062 6063 OnStackPtr = CGF.Builder.CreateAdd( 6064 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 6065 "align_stack"); 6066 OnStackPtr = CGF.Builder.CreateAnd( 6067 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 6068 "align_stack"); 6069 6070 OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy); 6071 } 6072 Address OnStackAddr(OnStackPtr, 6073 std::max(CharUnits::fromQuantity(8), TyAlign)); 6074 6075 // All stack slots are multiples of 8 bytes. 6076 CharUnits StackSlotSize = CharUnits::fromQuantity(8); 6077 CharUnits StackSize; 6078 if (IsIndirect) 6079 StackSize = StackSlotSize; 6080 else 6081 StackSize = TySize.alignTo(StackSlotSize); 6082 6083 llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize); 6084 llvm::Value *NewStack = 6085 CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack"); 6086 6087 // Write the new value of __stack for the next call to va_arg 6088 CGF.Builder.CreateStore(NewStack, stack_p); 6089 6090 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 6091 TySize < StackSlotSize) { 6092 CharUnits Offset = StackSlotSize - TySize; 6093 OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset); 6094 } 6095 6096 OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy); 6097 6098 CGF.EmitBranch(ContBlock); 6099 6100 //======================================= 6101 // Tidy up 6102 //======================================= 6103 CGF.EmitBlock(ContBlock); 6104 6105 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 6106 OnStackAddr, OnStackBlock, "vaargs.addr"); 6107 6108 if (IsIndirect) 6109 return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), 6110 TyAlign); 6111 6112 return ResAddr; 6113 } 6114 6115 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty, 6116 CodeGenFunction &CGF) const { 6117 // The backend's lowering doesn't support va_arg for aggregates or 6118 // illegal vector types. Lower VAArg here for these cases and use 6119 // the LLVM va_arg instruction for everything else. 6120 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 6121 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 6122 6123 uint64_t PointerSize = getTarget().getPointerWidth(0) / 8; 6124 CharUnits SlotSize = CharUnits::fromQuantity(PointerSize); 6125 6126 // Empty records are ignored for parameter passing purposes. 6127 if (isEmptyRecord(getContext(), Ty, true)) { 6128 Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 6129 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 6130 return Addr; 6131 } 6132 6133 // The size of the actual thing passed, which might end up just 6134 // being a pointer for indirect types. 6135 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6136 6137 // Arguments bigger than 16 bytes which aren't homogeneous 6138 // aggregates should be passed indirectly. 6139 bool IsIndirect = false; 6140 if (TyInfo.Width.getQuantity() > 16) { 6141 const Type *Base = nullptr; 6142 uint64_t Members = 0; 6143 IsIndirect = !isHomogeneousAggregate(Ty, Base, Members); 6144 } 6145 6146 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 6147 TyInfo, SlotSize, /*AllowHigherAlign*/ true); 6148 } 6149 6150 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 6151 QualType Ty) const { 6152 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 6153 CGF.getContext().getTypeInfoInChars(Ty), 6154 CharUnits::fromQuantity(8), 6155 /*allowHigherAlign*/ false); 6156 } 6157 6158 //===----------------------------------------------------------------------===// 6159 // ARM ABI Implementation 6160 //===----------------------------------------------------------------------===// 6161 6162 namespace { 6163 6164 class ARMABIInfo : public SwiftABIInfo { 6165 public: 6166 enum ABIKind { 6167 APCS = 0, 6168 AAPCS = 1, 6169 AAPCS_VFP = 2, 6170 AAPCS16_VFP = 3, 6171 }; 6172 6173 private: 6174 ABIKind Kind; 6175 bool IsFloatABISoftFP; 6176 6177 public: 6178 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) 6179 : SwiftABIInfo(CGT), Kind(_Kind) { 6180 setCCs(); 6181 IsFloatABISoftFP = CGT.getCodeGenOpts().FloatABI == "softfp" || 6182 CGT.getCodeGenOpts().FloatABI == ""; // default 6183 } 6184 6185 bool isEABI() const { 6186 switch (getTarget().getTriple().getEnvironment()) { 6187 case llvm::Triple::Android: 6188 case llvm::Triple::EABI: 6189 case llvm::Triple::EABIHF: 6190 case llvm::Triple::GNUEABI: 6191 case llvm::Triple::GNUEABIHF: 6192 case llvm::Triple::MuslEABI: 6193 case llvm::Triple::MuslEABIHF: 6194 return true; 6195 default: 6196 return false; 6197 } 6198 } 6199 6200 bool isEABIHF() const { 6201 switch (getTarget().getTriple().getEnvironment()) { 6202 case llvm::Triple::EABIHF: 6203 case llvm::Triple::GNUEABIHF: 6204 case llvm::Triple::MuslEABIHF: 6205 return true; 6206 default: 6207 return false; 6208 } 6209 } 6210 6211 ABIKind getABIKind() const { return Kind; } 6212 6213 bool allowBFloatArgsAndRet() const override { 6214 return !IsFloatABISoftFP && getTarget().hasBFloat16Type(); 6215 } 6216 6217 private: 6218 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic, 6219 unsigned functionCallConv) const; 6220 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic, 6221 unsigned functionCallConv) const; 6222 ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base, 6223 uint64_t Members) const; 6224 ABIArgInfo coerceIllegalVector(QualType Ty) const; 6225 bool isIllegalVectorType(QualType Ty) const; 6226 bool containsAnyFP16Vectors(QualType Ty) const; 6227 6228 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 6229 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 6230 uint64_t Members) const override; 6231 6232 bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const; 6233 6234 void computeInfo(CGFunctionInfo &FI) const override; 6235 6236 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6237 QualType Ty) const override; 6238 6239 llvm::CallingConv::ID getLLVMDefaultCC() const; 6240 llvm::CallingConv::ID getABIDefaultCC() const; 6241 void setCCs(); 6242 6243 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 6244 bool asReturnValue) const override { 6245 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 6246 } 6247 bool isSwiftErrorInRegister() const override { 6248 return true; 6249 } 6250 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 6251 unsigned elts) const override; 6252 }; 6253 6254 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 6255 public: 6256 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 6257 : TargetCodeGenInfo(std::make_unique<ARMABIInfo>(CGT, K)) {} 6258 6259 const ARMABIInfo &getABIInfo() const { 6260 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 6261 } 6262 6263 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 6264 return 13; 6265 } 6266 6267 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 6268 return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue"; 6269 } 6270 6271 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6272 llvm::Value *Address) const override { 6273 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 6274 6275 // 0-15 are the 16 integer registers. 6276 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 6277 return false; 6278 } 6279 6280 unsigned getSizeOfUnwindException() const override { 6281 if (getABIInfo().isEABI()) return 88; 6282 return TargetCodeGenInfo::getSizeOfUnwindException(); 6283 } 6284 6285 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6286 CodeGen::CodeGenModule &CGM) const override { 6287 if (GV->isDeclaration()) 6288 return; 6289 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6290 if (!FD) 6291 return; 6292 6293 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 6294 if (!Attr) 6295 return; 6296 6297 const char *Kind; 6298 switch (Attr->getInterrupt()) { 6299 case ARMInterruptAttr::Generic: Kind = ""; break; 6300 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 6301 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 6302 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 6303 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 6304 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 6305 } 6306 6307 llvm::Function *Fn = cast<llvm::Function>(GV); 6308 6309 Fn->addFnAttr("interrupt", Kind); 6310 6311 ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind(); 6312 if (ABI == ARMABIInfo::APCS) 6313 return; 6314 6315 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 6316 // however this is not necessarily true on taking any interrupt. Instruct 6317 // the backend to perform a realignment as part of the function prologue. 6318 llvm::AttrBuilder B; 6319 B.addStackAlignmentAttr(8); 6320 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 6321 } 6322 }; 6323 6324 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { 6325 public: 6326 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 6327 : ARMTargetCodeGenInfo(CGT, K) {} 6328 6329 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6330 CodeGen::CodeGenModule &CGM) const override; 6331 6332 void getDependentLibraryOption(llvm::StringRef Lib, 6333 llvm::SmallString<24> &Opt) const override { 6334 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 6335 } 6336 6337 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 6338 llvm::SmallString<32> &Opt) const override { 6339 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 6340 } 6341 }; 6342 6343 void WindowsARMTargetCodeGenInfo::setTargetAttributes( 6344 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 6345 ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 6346 if (GV->isDeclaration()) 6347 return; 6348 addStackProbeTargetAttributes(D, GV, CGM); 6349 } 6350 } 6351 6352 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 6353 if (!::classifyReturnType(getCXXABI(), FI, *this)) 6354 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(), 6355 FI.getCallingConvention()); 6356 6357 for (auto &I : FI.arguments()) 6358 I.info = classifyArgumentType(I.type, FI.isVariadic(), 6359 FI.getCallingConvention()); 6360 6361 6362 // Always honor user-specified calling convention. 6363 if (FI.getCallingConvention() != llvm::CallingConv::C) 6364 return; 6365 6366 llvm::CallingConv::ID cc = getRuntimeCC(); 6367 if (cc != llvm::CallingConv::C) 6368 FI.setEffectiveCallingConvention(cc); 6369 } 6370 6371 /// Return the default calling convention that LLVM will use. 6372 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 6373 // The default calling convention that LLVM will infer. 6374 if (isEABIHF() || getTarget().getTriple().isWatchABI()) 6375 return llvm::CallingConv::ARM_AAPCS_VFP; 6376 else if (isEABI()) 6377 return llvm::CallingConv::ARM_AAPCS; 6378 else 6379 return llvm::CallingConv::ARM_APCS; 6380 } 6381 6382 /// Return the calling convention that our ABI would like us to use 6383 /// as the C calling convention. 6384 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 6385 switch (getABIKind()) { 6386 case APCS: return llvm::CallingConv::ARM_APCS; 6387 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 6388 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 6389 case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 6390 } 6391 llvm_unreachable("bad ABI kind"); 6392 } 6393 6394 void ARMABIInfo::setCCs() { 6395 assert(getRuntimeCC() == llvm::CallingConv::C); 6396 6397 // Don't muddy up the IR with a ton of explicit annotations if 6398 // they'd just match what LLVM will infer from the triple. 6399 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 6400 if (abiCC != getLLVMDefaultCC()) 6401 RuntimeCC = abiCC; 6402 } 6403 6404 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const { 6405 uint64_t Size = getContext().getTypeSize(Ty); 6406 if (Size <= 32) { 6407 llvm::Type *ResType = 6408 llvm::Type::getInt32Ty(getVMContext()); 6409 return ABIArgInfo::getDirect(ResType); 6410 } 6411 if (Size == 64 || Size == 128) { 6412 auto *ResType = llvm::FixedVectorType::get( 6413 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 6414 return ABIArgInfo::getDirect(ResType); 6415 } 6416 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6417 } 6418 6419 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty, 6420 const Type *Base, 6421 uint64_t Members) const { 6422 assert(Base && "Base class should be set for homogeneous aggregate"); 6423 // Base can be a floating-point or a vector. 6424 if (const VectorType *VT = Base->getAs<VectorType>()) { 6425 // FP16 vectors should be converted to integer vectors 6426 if (!getTarget().hasLegalHalfType() && containsAnyFP16Vectors(Ty)) { 6427 uint64_t Size = getContext().getTypeSize(VT); 6428 auto *NewVecTy = llvm::FixedVectorType::get( 6429 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 6430 llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members); 6431 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 6432 } 6433 } 6434 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 6435 } 6436 6437 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic, 6438 unsigned functionCallConv) const { 6439 // 6.1.2.1 The following argument types are VFP CPRCs: 6440 // A single-precision floating-point type (including promoted 6441 // half-precision types); A double-precision floating-point type; 6442 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 6443 // with a Base Type of a single- or double-precision floating-point type, 6444 // 64-bit containerized vectors or 128-bit containerized vectors with one 6445 // to four Elements. 6446 // Variadic functions should always marshal to the base standard. 6447 bool IsAAPCS_VFP = 6448 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false); 6449 6450 Ty = useFirstFieldIfTransparentUnion(Ty); 6451 6452 // Handle illegal vector types here. 6453 if (isIllegalVectorType(Ty)) 6454 return coerceIllegalVector(Ty); 6455 6456 if (!isAggregateTypeForABI(Ty)) { 6457 // Treat an enum type as its underlying type. 6458 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 6459 Ty = EnumTy->getDecl()->getIntegerType(); 6460 } 6461 6462 if (const auto *EIT = Ty->getAs<ExtIntType>()) 6463 if (EIT->getNumBits() > 64) 6464 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 6465 6466 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 6467 : ABIArgInfo::getDirect()); 6468 } 6469 6470 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 6471 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6472 } 6473 6474 // Ignore empty records. 6475 if (isEmptyRecord(getContext(), Ty, true)) 6476 return ABIArgInfo::getIgnore(); 6477 6478 if (IsAAPCS_VFP) { 6479 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 6480 // into VFP registers. 6481 const Type *Base = nullptr; 6482 uint64_t Members = 0; 6483 if (isHomogeneousAggregate(Ty, Base, Members)) 6484 return classifyHomogeneousAggregate(Ty, Base, Members); 6485 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6486 // WatchOS does have homogeneous aggregates. Note that we intentionally use 6487 // this convention even for a variadic function: the backend will use GPRs 6488 // if needed. 6489 const Type *Base = nullptr; 6490 uint64_t Members = 0; 6491 if (isHomogeneousAggregate(Ty, Base, Members)) { 6492 assert(Base && Members <= 4 && "unexpected homogeneous aggregate"); 6493 llvm::Type *Ty = 6494 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members); 6495 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 6496 } 6497 } 6498 6499 if (getABIKind() == ARMABIInfo::AAPCS16_VFP && 6500 getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) { 6501 // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're 6502 // bigger than 128-bits, they get placed in space allocated by the caller, 6503 // and a pointer is passed. 6504 return ABIArgInfo::getIndirect( 6505 CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false); 6506 } 6507 6508 // Support byval for ARM. 6509 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 6510 // most 8-byte. We realign the indirect argument if type alignment is bigger 6511 // than ABI alignment. 6512 uint64_t ABIAlign = 4; 6513 uint64_t TyAlign; 6514 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6515 getABIKind() == ARMABIInfo::AAPCS) { 6516 TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); 6517 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 6518 } else { 6519 TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 6520 } 6521 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 6522 assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval"); 6523 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 6524 /*ByVal=*/true, 6525 /*Realign=*/TyAlign > ABIAlign); 6526 } 6527 6528 // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of 6529 // same size and alignment. 6530 if (getTarget().isRenderScriptTarget()) { 6531 return coerceToIntArray(Ty, getContext(), getVMContext()); 6532 } 6533 6534 // Otherwise, pass by coercing to a structure of the appropriate size. 6535 llvm::Type* ElemTy; 6536 unsigned SizeRegs; 6537 // FIXME: Try to match the types of the arguments more accurately where 6538 // we can. 6539 if (TyAlign <= 4) { 6540 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 6541 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 6542 } else { 6543 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 6544 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 6545 } 6546 6547 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); 6548 } 6549 6550 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 6551 llvm::LLVMContext &VMContext) { 6552 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 6553 // is called integer-like if its size is less than or equal to one word, and 6554 // the offset of each of its addressable sub-fields is zero. 6555 6556 uint64_t Size = Context.getTypeSize(Ty); 6557 6558 // Check that the type fits in a word. 6559 if (Size > 32) 6560 return false; 6561 6562 // FIXME: Handle vector types! 6563 if (Ty->isVectorType()) 6564 return false; 6565 6566 // Float types are never treated as "integer like". 6567 if (Ty->isRealFloatingType()) 6568 return false; 6569 6570 // If this is a builtin or pointer type then it is ok. 6571 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 6572 return true; 6573 6574 // Small complex integer types are "integer like". 6575 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 6576 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 6577 6578 // Single element and zero sized arrays should be allowed, by the definition 6579 // above, but they are not. 6580 6581 // Otherwise, it must be a record type. 6582 const RecordType *RT = Ty->getAs<RecordType>(); 6583 if (!RT) return false; 6584 6585 // Ignore records with flexible arrays. 6586 const RecordDecl *RD = RT->getDecl(); 6587 if (RD->hasFlexibleArrayMember()) 6588 return false; 6589 6590 // Check that all sub-fields are at offset 0, and are themselves "integer 6591 // like". 6592 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 6593 6594 bool HadField = false; 6595 unsigned idx = 0; 6596 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 6597 i != e; ++i, ++idx) { 6598 const FieldDecl *FD = *i; 6599 6600 // Bit-fields are not addressable, we only need to verify they are "integer 6601 // like". We still have to disallow a subsequent non-bitfield, for example: 6602 // struct { int : 0; int x } 6603 // is non-integer like according to gcc. 6604 if (FD->isBitField()) { 6605 if (!RD->isUnion()) 6606 HadField = true; 6607 6608 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6609 return false; 6610 6611 continue; 6612 } 6613 6614 // Check if this field is at offset 0. 6615 if (Layout.getFieldOffset(idx) != 0) 6616 return false; 6617 6618 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6619 return false; 6620 6621 // Only allow at most one field in a structure. This doesn't match the 6622 // wording above, but follows gcc in situations with a field following an 6623 // empty structure. 6624 if (!RD->isUnion()) { 6625 if (HadField) 6626 return false; 6627 6628 HadField = true; 6629 } 6630 } 6631 6632 return true; 6633 } 6634 6635 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic, 6636 unsigned functionCallConv) const { 6637 6638 // Variadic functions should always marshal to the base standard. 6639 bool IsAAPCS_VFP = 6640 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true); 6641 6642 if (RetTy->isVoidType()) 6643 return ABIArgInfo::getIgnore(); 6644 6645 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 6646 // Large vector types should be returned via memory. 6647 if (getContext().getTypeSize(RetTy) > 128) 6648 return getNaturalAlignIndirect(RetTy); 6649 // TODO: FP16/BF16 vectors should be converted to integer vectors 6650 // This check is similar to isIllegalVectorType - refactor? 6651 if ((!getTarget().hasLegalHalfType() && 6652 (VT->getElementType()->isFloat16Type() || 6653 VT->getElementType()->isHalfType())) || 6654 (IsFloatABISoftFP && 6655 VT->getElementType()->isBFloat16Type())) 6656 return coerceIllegalVector(RetTy); 6657 } 6658 6659 if (!isAggregateTypeForABI(RetTy)) { 6660 // Treat an enum type as its underlying type. 6661 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6662 RetTy = EnumTy->getDecl()->getIntegerType(); 6663 6664 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 6665 if (EIT->getNumBits() > 64) 6666 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 6667 6668 return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 6669 : ABIArgInfo::getDirect(); 6670 } 6671 6672 // Are we following APCS? 6673 if (getABIKind() == APCS) { 6674 if (isEmptyRecord(getContext(), RetTy, false)) 6675 return ABIArgInfo::getIgnore(); 6676 6677 // Complex types are all returned as packed integers. 6678 // 6679 // FIXME: Consider using 2 x vector types if the back end handles them 6680 // correctly. 6681 if (RetTy->isAnyComplexType()) 6682 return ABIArgInfo::getDirect(llvm::IntegerType::get( 6683 getVMContext(), getContext().getTypeSize(RetTy))); 6684 6685 // Integer like structures are returned in r0. 6686 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 6687 // Return in the smallest viable integer type. 6688 uint64_t Size = getContext().getTypeSize(RetTy); 6689 if (Size <= 8) 6690 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6691 if (Size <= 16) 6692 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6693 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6694 } 6695 6696 // Otherwise return in memory. 6697 return getNaturalAlignIndirect(RetTy); 6698 } 6699 6700 // Otherwise this is an AAPCS variant. 6701 6702 if (isEmptyRecord(getContext(), RetTy, true)) 6703 return ABIArgInfo::getIgnore(); 6704 6705 // Check for homogeneous aggregates with AAPCS-VFP. 6706 if (IsAAPCS_VFP) { 6707 const Type *Base = nullptr; 6708 uint64_t Members = 0; 6709 if (isHomogeneousAggregate(RetTy, Base, Members)) 6710 return classifyHomogeneousAggregate(RetTy, Base, Members); 6711 } 6712 6713 // Aggregates <= 4 bytes are returned in r0; other aggregates 6714 // are returned indirectly. 6715 uint64_t Size = getContext().getTypeSize(RetTy); 6716 if (Size <= 32) { 6717 // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of 6718 // same size and alignment. 6719 if (getTarget().isRenderScriptTarget()) { 6720 return coerceToIntArray(RetTy, getContext(), getVMContext()); 6721 } 6722 if (getDataLayout().isBigEndian()) 6723 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 6724 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6725 6726 // Return in the smallest viable integer type. 6727 if (Size <= 8) 6728 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6729 if (Size <= 16) 6730 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6731 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6732 } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) { 6733 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext()); 6734 llvm::Type *CoerceTy = 6735 llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32); 6736 return ABIArgInfo::getDirect(CoerceTy); 6737 } 6738 6739 return getNaturalAlignIndirect(RetTy); 6740 } 6741 6742 /// isIllegalVector - check whether Ty is an illegal vector type. 6743 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 6744 if (const VectorType *VT = Ty->getAs<VectorType> ()) { 6745 // On targets that don't support half, fp16 or bfloat, they are expanded 6746 // into float, and we don't want the ABI to depend on whether or not they 6747 // are supported in hardware. Thus return false to coerce vectors of these 6748 // types into integer vectors. 6749 // We do not depend on hasLegalHalfType for bfloat as it is a 6750 // separate IR type. 6751 if ((!getTarget().hasLegalHalfType() && 6752 (VT->getElementType()->isFloat16Type() || 6753 VT->getElementType()->isHalfType())) || 6754 (IsFloatABISoftFP && 6755 VT->getElementType()->isBFloat16Type())) 6756 return true; 6757 if (isAndroid()) { 6758 // Android shipped using Clang 3.1, which supported a slightly different 6759 // vector ABI. The primary differences were that 3-element vector types 6760 // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path 6761 // accepts that legacy behavior for Android only. 6762 // Check whether VT is legal. 6763 unsigned NumElements = VT->getNumElements(); 6764 // NumElements should be power of 2 or equal to 3. 6765 if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3) 6766 return true; 6767 } else { 6768 // Check whether VT is legal. 6769 unsigned NumElements = VT->getNumElements(); 6770 uint64_t Size = getContext().getTypeSize(VT); 6771 // NumElements should be power of 2. 6772 if (!llvm::isPowerOf2_32(NumElements)) 6773 return true; 6774 // Size should be greater than 32 bits. 6775 return Size <= 32; 6776 } 6777 } 6778 return false; 6779 } 6780 6781 /// Return true if a type contains any 16-bit floating point vectors 6782 bool ARMABIInfo::containsAnyFP16Vectors(QualType Ty) const { 6783 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 6784 uint64_t NElements = AT->getSize().getZExtValue(); 6785 if (NElements == 0) 6786 return false; 6787 return containsAnyFP16Vectors(AT->getElementType()); 6788 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 6789 const RecordDecl *RD = RT->getDecl(); 6790 6791 // If this is a C++ record, check the bases first. 6792 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6793 if (llvm::any_of(CXXRD->bases(), [this](const CXXBaseSpecifier &B) { 6794 return containsAnyFP16Vectors(B.getType()); 6795 })) 6796 return true; 6797 6798 if (llvm::any_of(RD->fields(), [this](FieldDecl *FD) { 6799 return FD && containsAnyFP16Vectors(FD->getType()); 6800 })) 6801 return true; 6802 6803 return false; 6804 } else { 6805 if (const VectorType *VT = Ty->getAs<VectorType>()) 6806 return (VT->getElementType()->isFloat16Type() || 6807 VT->getElementType()->isBFloat16Type() || 6808 VT->getElementType()->isHalfType()); 6809 return false; 6810 } 6811 } 6812 6813 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 6814 llvm::Type *eltTy, 6815 unsigned numElts) const { 6816 if (!llvm::isPowerOf2_32(numElts)) 6817 return false; 6818 unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy); 6819 if (size > 64) 6820 return false; 6821 if (vectorSize.getQuantity() != 8 && 6822 (vectorSize.getQuantity() != 16 || numElts == 1)) 6823 return false; 6824 return true; 6825 } 6826 6827 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 6828 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 6829 // double, or 64-bit or 128-bit vectors. 6830 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 6831 if (BT->getKind() == BuiltinType::Float || 6832 BT->getKind() == BuiltinType::Double || 6833 BT->getKind() == BuiltinType::LongDouble) 6834 return true; 6835 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 6836 unsigned VecSize = getContext().getTypeSize(VT); 6837 if (VecSize == 64 || VecSize == 128) 6838 return true; 6839 } 6840 return false; 6841 } 6842 6843 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 6844 uint64_t Members) const { 6845 return Members <= 4; 6846 } 6847 6848 bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention, 6849 bool acceptHalf) const { 6850 // Give precedence to user-specified calling conventions. 6851 if (callConvention != llvm::CallingConv::C) 6852 return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP); 6853 else 6854 return (getABIKind() == AAPCS_VFP) || 6855 (acceptHalf && (getABIKind() == AAPCS16_VFP)); 6856 } 6857 6858 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6859 QualType Ty) const { 6860 CharUnits SlotSize = CharUnits::fromQuantity(4); 6861 6862 // Empty records are ignored for parameter passing purposes. 6863 if (isEmptyRecord(getContext(), Ty, true)) { 6864 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 6865 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 6866 return Addr; 6867 } 6868 6869 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 6870 CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty); 6871 6872 // Use indirect if size of the illegal vector is bigger than 16 bytes. 6873 bool IsIndirect = false; 6874 const Type *Base = nullptr; 6875 uint64_t Members = 0; 6876 if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) { 6877 IsIndirect = true; 6878 6879 // ARMv7k passes structs bigger than 16 bytes indirectly, in space 6880 // allocated by the caller. 6881 } else if (TySize > CharUnits::fromQuantity(16) && 6882 getABIKind() == ARMABIInfo::AAPCS16_VFP && 6883 !isHomogeneousAggregate(Ty, Base, Members)) { 6884 IsIndirect = true; 6885 6886 // Otherwise, bound the type's ABI alignment. 6887 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 6888 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 6889 // Our callers should be prepared to handle an under-aligned address. 6890 } else if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6891 getABIKind() == ARMABIInfo::AAPCS) { 6892 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6893 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8)); 6894 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6895 // ARMv7k allows type alignment up to 16 bytes. 6896 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6897 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16)); 6898 } else { 6899 TyAlignForABI = CharUnits::fromQuantity(4); 6900 } 6901 6902 TypeInfoChars TyInfo(TySize, TyAlignForABI, false); 6903 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo, 6904 SlotSize, /*AllowHigherAlign*/ true); 6905 } 6906 6907 //===----------------------------------------------------------------------===// 6908 // NVPTX ABI Implementation 6909 //===----------------------------------------------------------------------===// 6910 6911 namespace { 6912 6913 class NVPTXTargetCodeGenInfo; 6914 6915 class NVPTXABIInfo : public ABIInfo { 6916 NVPTXTargetCodeGenInfo &CGInfo; 6917 6918 public: 6919 NVPTXABIInfo(CodeGenTypes &CGT, NVPTXTargetCodeGenInfo &Info) 6920 : ABIInfo(CGT), CGInfo(Info) {} 6921 6922 ABIArgInfo classifyReturnType(QualType RetTy) const; 6923 ABIArgInfo classifyArgumentType(QualType Ty) const; 6924 6925 void computeInfo(CGFunctionInfo &FI) const override; 6926 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6927 QualType Ty) const override; 6928 bool isUnsupportedType(QualType T) const; 6929 ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, unsigned MaxSize) const; 6930 }; 6931 6932 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 6933 public: 6934 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 6935 : TargetCodeGenInfo(std::make_unique<NVPTXABIInfo>(CGT, *this)) {} 6936 6937 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6938 CodeGen::CodeGenModule &M) const override; 6939 bool shouldEmitStaticExternCAliases() const override; 6940 6941 llvm::Type *getCUDADeviceBuiltinSurfaceDeviceType() const override { 6942 // On the device side, surface reference is represented as an object handle 6943 // in 64-bit integer. 6944 return llvm::Type::getInt64Ty(getABIInfo().getVMContext()); 6945 } 6946 6947 llvm::Type *getCUDADeviceBuiltinTextureDeviceType() const override { 6948 // On the device side, texture reference is represented as an object handle 6949 // in 64-bit integer. 6950 return llvm::Type::getInt64Ty(getABIInfo().getVMContext()); 6951 } 6952 6953 bool emitCUDADeviceBuiltinSurfaceDeviceCopy(CodeGenFunction &CGF, LValue Dst, 6954 LValue Src) const override { 6955 emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src); 6956 return true; 6957 } 6958 6959 bool emitCUDADeviceBuiltinTextureDeviceCopy(CodeGenFunction &CGF, LValue Dst, 6960 LValue Src) const override { 6961 emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src); 6962 return true; 6963 } 6964 6965 private: 6966 // Adds a NamedMDNode with GV, Name, and Operand as operands, and adds the 6967 // resulting MDNode to the nvvm.annotations MDNode. 6968 static void addNVVMMetadata(llvm::GlobalValue *GV, StringRef Name, 6969 int Operand); 6970 6971 static void emitBuiltinSurfTexDeviceCopy(CodeGenFunction &CGF, LValue Dst, 6972 LValue Src) { 6973 llvm::Value *Handle = nullptr; 6974 llvm::Constant *C = 6975 llvm::dyn_cast<llvm::Constant>(Src.getAddress(CGF).getPointer()); 6976 // Lookup `addrspacecast` through the constant pointer if any. 6977 if (auto *ASC = llvm::dyn_cast_or_null<llvm::AddrSpaceCastOperator>(C)) 6978 C = llvm::cast<llvm::Constant>(ASC->getPointerOperand()); 6979 if (auto *GV = llvm::dyn_cast_or_null<llvm::GlobalVariable>(C)) { 6980 // Load the handle from the specific global variable using 6981 // `nvvm.texsurf.handle.internal` intrinsic. 6982 Handle = CGF.EmitRuntimeCall( 6983 CGF.CGM.getIntrinsic(llvm::Intrinsic::nvvm_texsurf_handle_internal, 6984 {GV->getType()}), 6985 {GV}, "texsurf_handle"); 6986 } else 6987 Handle = CGF.EmitLoadOfScalar(Src, SourceLocation()); 6988 CGF.EmitStoreOfScalar(Handle, Dst); 6989 } 6990 }; 6991 6992 /// Checks if the type is unsupported directly by the current target. 6993 bool NVPTXABIInfo::isUnsupportedType(QualType T) const { 6994 ASTContext &Context = getContext(); 6995 if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type()) 6996 return true; 6997 if (!Context.getTargetInfo().hasFloat128Type() && 6998 (T->isFloat128Type() || 6999 (T->isRealFloatingType() && Context.getTypeSize(T) == 128))) 7000 return true; 7001 if (const auto *EIT = T->getAs<ExtIntType>()) 7002 return EIT->getNumBits() > 7003 (Context.getTargetInfo().hasInt128Type() ? 128U : 64U); 7004 if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() && 7005 Context.getTypeSize(T) > 64U) 7006 return true; 7007 if (const auto *AT = T->getAsArrayTypeUnsafe()) 7008 return isUnsupportedType(AT->getElementType()); 7009 const auto *RT = T->getAs<RecordType>(); 7010 if (!RT) 7011 return false; 7012 const RecordDecl *RD = RT->getDecl(); 7013 7014 // If this is a C++ record, check the bases first. 7015 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 7016 for (const CXXBaseSpecifier &I : CXXRD->bases()) 7017 if (isUnsupportedType(I.getType())) 7018 return true; 7019 7020 for (const FieldDecl *I : RD->fields()) 7021 if (isUnsupportedType(I->getType())) 7022 return true; 7023 return false; 7024 } 7025 7026 /// Coerce the given type into an array with maximum allowed size of elements. 7027 ABIArgInfo NVPTXABIInfo::coerceToIntArrayWithLimit(QualType Ty, 7028 unsigned MaxSize) const { 7029 // Alignment and Size are measured in bits. 7030 const uint64_t Size = getContext().getTypeSize(Ty); 7031 const uint64_t Alignment = getContext().getTypeAlign(Ty); 7032 const unsigned Div = std::min<unsigned>(MaxSize, Alignment); 7033 llvm::Type *IntType = llvm::Type::getIntNTy(getVMContext(), Div); 7034 const uint64_t NumElements = (Size + Div - 1) / Div; 7035 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 7036 } 7037 7038 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 7039 if (RetTy->isVoidType()) 7040 return ABIArgInfo::getIgnore(); 7041 7042 if (getContext().getLangOpts().OpenMP && 7043 getContext().getLangOpts().OpenMPIsDevice && isUnsupportedType(RetTy)) 7044 return coerceToIntArrayWithLimit(RetTy, 64); 7045 7046 // note: this is different from default ABI 7047 if (!RetTy->isScalarType()) 7048 return ABIArgInfo::getDirect(); 7049 7050 // Treat an enum type as its underlying type. 7051 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7052 RetTy = EnumTy->getDecl()->getIntegerType(); 7053 7054 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 7055 : ABIArgInfo::getDirect()); 7056 } 7057 7058 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 7059 // Treat an enum type as its underlying type. 7060 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7061 Ty = EnumTy->getDecl()->getIntegerType(); 7062 7063 // Return aggregates type as indirect by value 7064 if (isAggregateTypeForABI(Ty)) { 7065 // Under CUDA device compilation, tex/surf builtin types are replaced with 7066 // object types and passed directly. 7067 if (getContext().getLangOpts().CUDAIsDevice) { 7068 if (Ty->isCUDADeviceBuiltinSurfaceType()) 7069 return ABIArgInfo::getDirect( 7070 CGInfo.getCUDADeviceBuiltinSurfaceDeviceType()); 7071 if (Ty->isCUDADeviceBuiltinTextureType()) 7072 return ABIArgInfo::getDirect( 7073 CGInfo.getCUDADeviceBuiltinTextureDeviceType()); 7074 } 7075 return getNaturalAlignIndirect(Ty, /* byval */ true); 7076 } 7077 7078 if (const auto *EIT = Ty->getAs<ExtIntType>()) { 7079 if ((EIT->getNumBits() > 128) || 7080 (!getContext().getTargetInfo().hasInt128Type() && 7081 EIT->getNumBits() > 64)) 7082 return getNaturalAlignIndirect(Ty, /* byval */ true); 7083 } 7084 7085 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 7086 : ABIArgInfo::getDirect()); 7087 } 7088 7089 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 7090 if (!getCXXABI().classifyReturnType(FI)) 7091 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7092 for (auto &I : FI.arguments()) 7093 I.info = classifyArgumentType(I.type); 7094 7095 // Always honor user-specified calling convention. 7096 if (FI.getCallingConvention() != llvm::CallingConv::C) 7097 return; 7098 7099 FI.setEffectiveCallingConvention(getRuntimeCC()); 7100 } 7101 7102 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7103 QualType Ty) const { 7104 llvm_unreachable("NVPTX does not support varargs"); 7105 } 7106 7107 void NVPTXTargetCodeGenInfo::setTargetAttributes( 7108 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7109 if (GV->isDeclaration()) 7110 return; 7111 const VarDecl *VD = dyn_cast_or_null<VarDecl>(D); 7112 if (VD) { 7113 if (M.getLangOpts().CUDA) { 7114 if (VD->getType()->isCUDADeviceBuiltinSurfaceType()) 7115 addNVVMMetadata(GV, "surface", 1); 7116 else if (VD->getType()->isCUDADeviceBuiltinTextureType()) 7117 addNVVMMetadata(GV, "texture", 1); 7118 return; 7119 } 7120 } 7121 7122 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7123 if (!FD) return; 7124 7125 llvm::Function *F = cast<llvm::Function>(GV); 7126 7127 // Perform special handling in OpenCL mode 7128 if (M.getLangOpts().OpenCL) { 7129 // Use OpenCL function attributes to check for kernel functions 7130 // By default, all functions are device functions 7131 if (FD->hasAttr<OpenCLKernelAttr>()) { 7132 // OpenCL __kernel functions get kernel metadata 7133 // Create !{<func-ref>, metadata !"kernel", i32 1} node 7134 addNVVMMetadata(F, "kernel", 1); 7135 // And kernel functions are not subject to inlining 7136 F->addFnAttr(llvm::Attribute::NoInline); 7137 } 7138 } 7139 7140 // Perform special handling in CUDA mode. 7141 if (M.getLangOpts().CUDA) { 7142 // CUDA __global__ functions get a kernel metadata entry. Since 7143 // __global__ functions cannot be called from the device, we do not 7144 // need to set the noinline attribute. 7145 if (FD->hasAttr<CUDAGlobalAttr>()) { 7146 // Create !{<func-ref>, metadata !"kernel", i32 1} node 7147 addNVVMMetadata(F, "kernel", 1); 7148 } 7149 if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) { 7150 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 7151 llvm::APSInt MaxThreads(32); 7152 MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); 7153 if (MaxThreads > 0) 7154 addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); 7155 7156 // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was 7157 // not specified in __launch_bounds__ or if the user specified a 0 value, 7158 // we don't have to add a PTX directive. 7159 if (Attr->getMinBlocks()) { 7160 llvm::APSInt MinBlocks(32); 7161 MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); 7162 if (MinBlocks > 0) 7163 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 7164 addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); 7165 } 7166 } 7167 } 7168 } 7169 7170 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::GlobalValue *GV, 7171 StringRef Name, int Operand) { 7172 llvm::Module *M = GV->getParent(); 7173 llvm::LLVMContext &Ctx = M->getContext(); 7174 7175 // Get "nvvm.annotations" metadata node 7176 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 7177 7178 llvm::Metadata *MDVals[] = { 7179 llvm::ConstantAsMetadata::get(GV), llvm::MDString::get(Ctx, Name), 7180 llvm::ConstantAsMetadata::get( 7181 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; 7182 // Append metadata to nvvm.annotations 7183 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 7184 } 7185 7186 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 7187 return false; 7188 } 7189 } 7190 7191 //===----------------------------------------------------------------------===// 7192 // SystemZ ABI Implementation 7193 //===----------------------------------------------------------------------===// 7194 7195 namespace { 7196 7197 class SystemZABIInfo : public SwiftABIInfo { 7198 bool HasVector; 7199 bool IsSoftFloatABI; 7200 7201 public: 7202 SystemZABIInfo(CodeGenTypes &CGT, bool HV, bool SF) 7203 : SwiftABIInfo(CGT), HasVector(HV), IsSoftFloatABI(SF) {} 7204 7205 bool isPromotableIntegerTypeForABI(QualType Ty) const; 7206 bool isCompoundType(QualType Ty) const; 7207 bool isVectorArgumentType(QualType Ty) const; 7208 bool isFPArgumentType(QualType Ty) const; 7209 QualType GetSingleElementType(QualType Ty) const; 7210 7211 ABIArgInfo classifyReturnType(QualType RetTy) const; 7212 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 7213 7214 void computeInfo(CGFunctionInfo &FI) const override { 7215 if (!getCXXABI().classifyReturnType(FI)) 7216 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7217 for (auto &I : FI.arguments()) 7218 I.info = classifyArgumentType(I.type); 7219 } 7220 7221 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7222 QualType Ty) const override; 7223 7224 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 7225 bool asReturnValue) const override { 7226 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 7227 } 7228 bool isSwiftErrorInRegister() const override { 7229 return false; 7230 } 7231 }; 7232 7233 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 7234 public: 7235 SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector, bool SoftFloatABI) 7236 : TargetCodeGenInfo( 7237 std::make_unique<SystemZABIInfo>(CGT, HasVector, SoftFloatABI)) {} 7238 }; 7239 7240 } 7241 7242 bool SystemZABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const { 7243 // Treat an enum type as its underlying type. 7244 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7245 Ty = EnumTy->getDecl()->getIntegerType(); 7246 7247 // Promotable integer types are required to be promoted by the ABI. 7248 if (ABIInfo::isPromotableIntegerTypeForABI(Ty)) 7249 return true; 7250 7251 if (const auto *EIT = Ty->getAs<ExtIntType>()) 7252 if (EIT->getNumBits() < 64) 7253 return true; 7254 7255 // 32-bit values must also be promoted. 7256 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 7257 switch (BT->getKind()) { 7258 case BuiltinType::Int: 7259 case BuiltinType::UInt: 7260 return true; 7261 default: 7262 return false; 7263 } 7264 return false; 7265 } 7266 7267 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 7268 return (Ty->isAnyComplexType() || 7269 Ty->isVectorType() || 7270 isAggregateTypeForABI(Ty)); 7271 } 7272 7273 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { 7274 return (HasVector && 7275 Ty->isVectorType() && 7276 getContext().getTypeSize(Ty) <= 128); 7277 } 7278 7279 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 7280 if (IsSoftFloatABI) 7281 return false; 7282 7283 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 7284 switch (BT->getKind()) { 7285 case BuiltinType::Float: 7286 case BuiltinType::Double: 7287 return true; 7288 default: 7289 return false; 7290 } 7291 7292 return false; 7293 } 7294 7295 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { 7296 const RecordType *RT = Ty->getAs<RecordType>(); 7297 7298 if (RT && RT->isStructureOrClassType()) { 7299 const RecordDecl *RD = RT->getDecl(); 7300 QualType Found; 7301 7302 // If this is a C++ record, check the bases first. 7303 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 7304 for (const auto &I : CXXRD->bases()) { 7305 QualType Base = I.getType(); 7306 7307 // Empty bases don't affect things either way. 7308 if (isEmptyRecord(getContext(), Base, true)) 7309 continue; 7310 7311 if (!Found.isNull()) 7312 return Ty; 7313 Found = GetSingleElementType(Base); 7314 } 7315 7316 // Check the fields. 7317 for (const auto *FD : RD->fields()) { 7318 // For compatibility with GCC, ignore empty bitfields in C++ mode. 7319 // Unlike isSingleElementStruct(), empty structure and array fields 7320 // do count. So do anonymous bitfields that aren't zero-sized. 7321 if (getContext().getLangOpts().CPlusPlus && 7322 FD->isZeroLengthBitField(getContext())) 7323 continue; 7324 // Like isSingleElementStruct(), ignore C++20 empty data members. 7325 if (FD->hasAttr<NoUniqueAddressAttr>() && 7326 isEmptyRecord(getContext(), FD->getType(), true)) 7327 continue; 7328 7329 // Unlike isSingleElementStruct(), arrays do not count. 7330 // Nested structures still do though. 7331 if (!Found.isNull()) 7332 return Ty; 7333 Found = GetSingleElementType(FD->getType()); 7334 } 7335 7336 // Unlike isSingleElementStruct(), trailing padding is allowed. 7337 // An 8-byte aligned struct s { float f; } is passed as a double. 7338 if (!Found.isNull()) 7339 return Found; 7340 } 7341 7342 return Ty; 7343 } 7344 7345 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7346 QualType Ty) const { 7347 // Assume that va_list type is correct; should be pointer to LLVM type: 7348 // struct { 7349 // i64 __gpr; 7350 // i64 __fpr; 7351 // i8 *__overflow_arg_area; 7352 // i8 *__reg_save_area; 7353 // }; 7354 7355 // Every non-vector argument occupies 8 bytes and is passed by preference 7356 // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are 7357 // always passed on the stack. 7358 Ty = getContext().getCanonicalType(Ty); 7359 auto TyInfo = getContext().getTypeInfoInChars(Ty); 7360 llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); 7361 llvm::Type *DirectTy = ArgTy; 7362 ABIArgInfo AI = classifyArgumentType(Ty); 7363 bool IsIndirect = AI.isIndirect(); 7364 bool InFPRs = false; 7365 bool IsVector = false; 7366 CharUnits UnpaddedSize; 7367 CharUnits DirectAlign; 7368 if (IsIndirect) { 7369 DirectTy = llvm::PointerType::getUnqual(DirectTy); 7370 UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8); 7371 } else { 7372 if (AI.getCoerceToType()) 7373 ArgTy = AI.getCoerceToType(); 7374 InFPRs = (!IsSoftFloatABI && (ArgTy->isFloatTy() || ArgTy->isDoubleTy())); 7375 IsVector = ArgTy->isVectorTy(); 7376 UnpaddedSize = TyInfo.Width; 7377 DirectAlign = TyInfo.Align; 7378 } 7379 CharUnits PaddedSize = CharUnits::fromQuantity(8); 7380 if (IsVector && UnpaddedSize > PaddedSize) 7381 PaddedSize = CharUnits::fromQuantity(16); 7382 assert((UnpaddedSize <= PaddedSize) && "Invalid argument size."); 7383 7384 CharUnits Padding = (PaddedSize - UnpaddedSize); 7385 7386 llvm::Type *IndexTy = CGF.Int64Ty; 7387 llvm::Value *PaddedSizeV = 7388 llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity()); 7389 7390 if (IsVector) { 7391 // Work out the address of a vector argument on the stack. 7392 // Vector arguments are always passed in the high bits of a 7393 // single (8 byte) or double (16 byte) stack slot. 7394 Address OverflowArgAreaPtr = 7395 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 7396 Address OverflowArgArea = 7397 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 7398 TyInfo.Align); 7399 Address MemAddr = 7400 CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr"); 7401 7402 // Update overflow_arg_area_ptr pointer 7403 llvm::Value *NewOverflowArgArea = 7404 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 7405 "overflow_arg_area"); 7406 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 7407 7408 return MemAddr; 7409 } 7410 7411 assert(PaddedSize.getQuantity() == 8); 7412 7413 unsigned MaxRegs, RegCountField, RegSaveIndex; 7414 CharUnits RegPadding; 7415 if (InFPRs) { 7416 MaxRegs = 4; // Maximum of 4 FPR arguments 7417 RegCountField = 1; // __fpr 7418 RegSaveIndex = 16; // save offset for f0 7419 RegPadding = CharUnits(); // floats are passed in the high bits of an FPR 7420 } else { 7421 MaxRegs = 5; // Maximum of 5 GPR arguments 7422 RegCountField = 0; // __gpr 7423 RegSaveIndex = 2; // save offset for r2 7424 RegPadding = Padding; // values are passed in the low bits of a GPR 7425 } 7426 7427 Address RegCountPtr = 7428 CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr"); 7429 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 7430 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 7431 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 7432 "fits_in_regs"); 7433 7434 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 7435 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 7436 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 7437 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 7438 7439 // Emit code to load the value if it was passed in registers. 7440 CGF.EmitBlock(InRegBlock); 7441 7442 // Work out the address of an argument register. 7443 llvm::Value *ScaledRegCount = 7444 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 7445 llvm::Value *RegBase = 7446 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity() 7447 + RegPadding.getQuantity()); 7448 llvm::Value *RegOffset = 7449 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 7450 Address RegSaveAreaPtr = 7451 CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr"); 7452 llvm::Value *RegSaveArea = 7453 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 7454 Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset, 7455 "raw_reg_addr"), 7456 PaddedSize); 7457 Address RegAddr = 7458 CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr"); 7459 7460 // Update the register count 7461 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 7462 llvm::Value *NewRegCount = 7463 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 7464 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 7465 CGF.EmitBranch(ContBlock); 7466 7467 // Emit code to load the value if it was passed in memory. 7468 CGF.EmitBlock(InMemBlock); 7469 7470 // Work out the address of a stack argument. 7471 Address OverflowArgAreaPtr = 7472 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 7473 Address OverflowArgArea = 7474 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 7475 PaddedSize); 7476 Address RawMemAddr = 7477 CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr"); 7478 Address MemAddr = 7479 CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr"); 7480 7481 // Update overflow_arg_area_ptr pointer 7482 llvm::Value *NewOverflowArgArea = 7483 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 7484 "overflow_arg_area"); 7485 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 7486 CGF.EmitBranch(ContBlock); 7487 7488 // Return the appropriate result. 7489 CGF.EmitBlock(ContBlock); 7490 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 7491 MemAddr, InMemBlock, "va_arg.addr"); 7492 7493 if (IsIndirect) 7494 ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), 7495 TyInfo.Align); 7496 7497 return ResAddr; 7498 } 7499 7500 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 7501 if (RetTy->isVoidType()) 7502 return ABIArgInfo::getIgnore(); 7503 if (isVectorArgumentType(RetTy)) 7504 return ABIArgInfo::getDirect(); 7505 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 7506 return getNaturalAlignIndirect(RetTy); 7507 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 7508 : ABIArgInfo::getDirect()); 7509 } 7510 7511 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 7512 // Handle the generic C++ ABI. 7513 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 7514 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7515 7516 // Integers and enums are extended to full register width. 7517 if (isPromotableIntegerTypeForABI(Ty)) 7518 return ABIArgInfo::getExtend(Ty); 7519 7520 // Handle vector types and vector-like structure types. Note that 7521 // as opposed to float-like structure types, we do not allow any 7522 // padding for vector-like structures, so verify the sizes match. 7523 uint64_t Size = getContext().getTypeSize(Ty); 7524 QualType SingleElementTy = GetSingleElementType(Ty); 7525 if (isVectorArgumentType(SingleElementTy) && 7526 getContext().getTypeSize(SingleElementTy) == Size) 7527 return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); 7528 7529 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 7530 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 7531 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7532 7533 // Handle small structures. 7534 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7535 // Structures with flexible arrays have variable length, so really 7536 // fail the size test above. 7537 const RecordDecl *RD = RT->getDecl(); 7538 if (RD->hasFlexibleArrayMember()) 7539 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7540 7541 // The structure is passed as an unextended integer, a float, or a double. 7542 llvm::Type *PassTy; 7543 if (isFPArgumentType(SingleElementTy)) { 7544 assert(Size == 32 || Size == 64); 7545 if (Size == 32) 7546 PassTy = llvm::Type::getFloatTy(getVMContext()); 7547 else 7548 PassTy = llvm::Type::getDoubleTy(getVMContext()); 7549 } else 7550 PassTy = llvm::IntegerType::get(getVMContext(), Size); 7551 return ABIArgInfo::getDirect(PassTy); 7552 } 7553 7554 // Non-structure compounds are passed indirectly. 7555 if (isCompoundType(Ty)) 7556 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7557 7558 return ABIArgInfo::getDirect(nullptr); 7559 } 7560 7561 //===----------------------------------------------------------------------===// 7562 // MSP430 ABI Implementation 7563 //===----------------------------------------------------------------------===// 7564 7565 namespace { 7566 7567 class MSP430ABIInfo : public DefaultABIInfo { 7568 static ABIArgInfo complexArgInfo() { 7569 ABIArgInfo Info = ABIArgInfo::getDirect(); 7570 Info.setCanBeFlattened(false); 7571 return Info; 7572 } 7573 7574 public: 7575 MSP430ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7576 7577 ABIArgInfo classifyReturnType(QualType RetTy) const { 7578 if (RetTy->isAnyComplexType()) 7579 return complexArgInfo(); 7580 7581 return DefaultABIInfo::classifyReturnType(RetTy); 7582 } 7583 7584 ABIArgInfo classifyArgumentType(QualType RetTy) const { 7585 if (RetTy->isAnyComplexType()) 7586 return complexArgInfo(); 7587 7588 return DefaultABIInfo::classifyArgumentType(RetTy); 7589 } 7590 7591 // Just copy the original implementations because 7592 // DefaultABIInfo::classify{Return,Argument}Type() are not virtual 7593 void computeInfo(CGFunctionInfo &FI) const override { 7594 if (!getCXXABI().classifyReturnType(FI)) 7595 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7596 for (auto &I : FI.arguments()) 7597 I.info = classifyArgumentType(I.type); 7598 } 7599 7600 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7601 QualType Ty) const override { 7602 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 7603 } 7604 }; 7605 7606 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 7607 public: 7608 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 7609 : TargetCodeGenInfo(std::make_unique<MSP430ABIInfo>(CGT)) {} 7610 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7611 CodeGen::CodeGenModule &M) const override; 7612 }; 7613 7614 } 7615 7616 void MSP430TargetCodeGenInfo::setTargetAttributes( 7617 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7618 if (GV->isDeclaration()) 7619 return; 7620 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 7621 const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>(); 7622 if (!InterruptAttr) 7623 return; 7624 7625 // Handle 'interrupt' attribute: 7626 llvm::Function *F = cast<llvm::Function>(GV); 7627 7628 // Step 1: Set ISR calling convention. 7629 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 7630 7631 // Step 2: Add attributes goodness. 7632 F->addFnAttr(llvm::Attribute::NoInline); 7633 F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber())); 7634 } 7635 } 7636 7637 //===----------------------------------------------------------------------===// 7638 // MIPS ABI Implementation. This works for both little-endian and 7639 // big-endian variants. 7640 //===----------------------------------------------------------------------===// 7641 7642 namespace { 7643 class MipsABIInfo : public ABIInfo { 7644 bool IsO32; 7645 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 7646 void CoerceToIntArgs(uint64_t TySize, 7647 SmallVectorImpl<llvm::Type *> &ArgList) const; 7648 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 7649 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 7650 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 7651 public: 7652 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 7653 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 7654 StackAlignInBytes(IsO32 ? 8 : 16) {} 7655 7656 ABIArgInfo classifyReturnType(QualType RetTy) const; 7657 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 7658 void computeInfo(CGFunctionInfo &FI) const override; 7659 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7660 QualType Ty) const override; 7661 ABIArgInfo extendType(QualType Ty) const; 7662 }; 7663 7664 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 7665 unsigned SizeOfUnwindException; 7666 public: 7667 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 7668 : TargetCodeGenInfo(std::make_unique<MipsABIInfo>(CGT, IsO32)), 7669 SizeOfUnwindException(IsO32 ? 24 : 32) {} 7670 7671 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 7672 return 29; 7673 } 7674 7675 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7676 CodeGen::CodeGenModule &CGM) const override { 7677 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7678 if (!FD) return; 7679 llvm::Function *Fn = cast<llvm::Function>(GV); 7680 7681 if (FD->hasAttr<MipsLongCallAttr>()) 7682 Fn->addFnAttr("long-call"); 7683 else if (FD->hasAttr<MipsShortCallAttr>()) 7684 Fn->addFnAttr("short-call"); 7685 7686 // Other attributes do not have a meaning for declarations. 7687 if (GV->isDeclaration()) 7688 return; 7689 7690 if (FD->hasAttr<Mips16Attr>()) { 7691 Fn->addFnAttr("mips16"); 7692 } 7693 else if (FD->hasAttr<NoMips16Attr>()) { 7694 Fn->addFnAttr("nomips16"); 7695 } 7696 7697 if (FD->hasAttr<MicroMipsAttr>()) 7698 Fn->addFnAttr("micromips"); 7699 else if (FD->hasAttr<NoMicroMipsAttr>()) 7700 Fn->addFnAttr("nomicromips"); 7701 7702 const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>(); 7703 if (!Attr) 7704 return; 7705 7706 const char *Kind; 7707 switch (Attr->getInterrupt()) { 7708 case MipsInterruptAttr::eic: Kind = "eic"; break; 7709 case MipsInterruptAttr::sw0: Kind = "sw0"; break; 7710 case MipsInterruptAttr::sw1: Kind = "sw1"; break; 7711 case MipsInterruptAttr::hw0: Kind = "hw0"; break; 7712 case MipsInterruptAttr::hw1: Kind = "hw1"; break; 7713 case MipsInterruptAttr::hw2: Kind = "hw2"; break; 7714 case MipsInterruptAttr::hw3: Kind = "hw3"; break; 7715 case MipsInterruptAttr::hw4: Kind = "hw4"; break; 7716 case MipsInterruptAttr::hw5: Kind = "hw5"; break; 7717 } 7718 7719 Fn->addFnAttr("interrupt", Kind); 7720 7721 } 7722 7723 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7724 llvm::Value *Address) const override; 7725 7726 unsigned getSizeOfUnwindException() const override { 7727 return SizeOfUnwindException; 7728 } 7729 }; 7730 } 7731 7732 void MipsABIInfo::CoerceToIntArgs( 7733 uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const { 7734 llvm::IntegerType *IntTy = 7735 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 7736 7737 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 7738 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 7739 ArgList.push_back(IntTy); 7740 7741 // If necessary, add one more integer type to ArgList. 7742 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 7743 7744 if (R) 7745 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 7746 } 7747 7748 // In N32/64, an aligned double precision floating point field is passed in 7749 // a register. 7750 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 7751 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 7752 7753 if (IsO32) { 7754 CoerceToIntArgs(TySize, ArgList); 7755 return llvm::StructType::get(getVMContext(), ArgList); 7756 } 7757 7758 if (Ty->isComplexType()) 7759 return CGT.ConvertType(Ty); 7760 7761 const RecordType *RT = Ty->getAs<RecordType>(); 7762 7763 // Unions/vectors are passed in integer registers. 7764 if (!RT || !RT->isStructureOrClassType()) { 7765 CoerceToIntArgs(TySize, ArgList); 7766 return llvm::StructType::get(getVMContext(), ArgList); 7767 } 7768 7769 const RecordDecl *RD = RT->getDecl(); 7770 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 7771 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 7772 7773 uint64_t LastOffset = 0; 7774 unsigned idx = 0; 7775 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 7776 7777 // Iterate over fields in the struct/class and check if there are any aligned 7778 // double fields. 7779 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 7780 i != e; ++i, ++idx) { 7781 const QualType Ty = i->getType(); 7782 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 7783 7784 if (!BT || BT->getKind() != BuiltinType::Double) 7785 continue; 7786 7787 uint64_t Offset = Layout.getFieldOffset(idx); 7788 if (Offset % 64) // Ignore doubles that are not aligned. 7789 continue; 7790 7791 // Add ((Offset - LastOffset) / 64) args of type i64. 7792 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 7793 ArgList.push_back(I64); 7794 7795 // Add double type. 7796 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 7797 LastOffset = Offset + 64; 7798 } 7799 7800 CoerceToIntArgs(TySize - LastOffset, IntArgList); 7801 ArgList.append(IntArgList.begin(), IntArgList.end()); 7802 7803 return llvm::StructType::get(getVMContext(), ArgList); 7804 } 7805 7806 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 7807 uint64_t Offset) const { 7808 if (OrigOffset + MinABIStackAlignInBytes > Offset) 7809 return nullptr; 7810 7811 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 7812 } 7813 7814 ABIArgInfo 7815 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 7816 Ty = useFirstFieldIfTransparentUnion(Ty); 7817 7818 uint64_t OrigOffset = Offset; 7819 uint64_t TySize = getContext().getTypeSize(Ty); 7820 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 7821 7822 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 7823 (uint64_t)StackAlignInBytes); 7824 unsigned CurrOffset = llvm::alignTo(Offset, Align); 7825 Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8; 7826 7827 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 7828 // Ignore empty aggregates. 7829 if (TySize == 0) 7830 return ABIArgInfo::getIgnore(); 7831 7832 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 7833 Offset = OrigOffset + MinABIStackAlignInBytes; 7834 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7835 } 7836 7837 // If we have reached here, aggregates are passed directly by coercing to 7838 // another structure type. Padding is inserted if the offset of the 7839 // aggregate is unaligned. 7840 ABIArgInfo ArgInfo = 7841 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 7842 getPaddingType(OrigOffset, CurrOffset)); 7843 ArgInfo.setInReg(true); 7844 return ArgInfo; 7845 } 7846 7847 // Treat an enum type as its underlying type. 7848 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7849 Ty = EnumTy->getDecl()->getIntegerType(); 7850 7851 // Make sure we pass indirectly things that are too large. 7852 if (const auto *EIT = Ty->getAs<ExtIntType>()) 7853 if (EIT->getNumBits() > 128 || 7854 (EIT->getNumBits() > 64 && 7855 !getContext().getTargetInfo().hasInt128Type())) 7856 return getNaturalAlignIndirect(Ty); 7857 7858 // All integral types are promoted to the GPR width. 7859 if (Ty->isIntegralOrEnumerationType()) 7860 return extendType(Ty); 7861 7862 return ABIArgInfo::getDirect( 7863 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 7864 } 7865 7866 llvm::Type* 7867 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 7868 const RecordType *RT = RetTy->getAs<RecordType>(); 7869 SmallVector<llvm::Type*, 8> RTList; 7870 7871 if (RT && RT->isStructureOrClassType()) { 7872 const RecordDecl *RD = RT->getDecl(); 7873 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 7874 unsigned FieldCnt = Layout.getFieldCount(); 7875 7876 // N32/64 returns struct/classes in floating point registers if the 7877 // following conditions are met: 7878 // 1. The size of the struct/class is no larger than 128-bit. 7879 // 2. The struct/class has one or two fields all of which are floating 7880 // point types. 7881 // 3. The offset of the first field is zero (this follows what gcc does). 7882 // 7883 // Any other composite results are returned in integer registers. 7884 // 7885 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 7886 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 7887 for (; b != e; ++b) { 7888 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 7889 7890 if (!BT || !BT->isFloatingPoint()) 7891 break; 7892 7893 RTList.push_back(CGT.ConvertType(b->getType())); 7894 } 7895 7896 if (b == e) 7897 return llvm::StructType::get(getVMContext(), RTList, 7898 RD->hasAttr<PackedAttr>()); 7899 7900 RTList.clear(); 7901 } 7902 } 7903 7904 CoerceToIntArgs(Size, RTList); 7905 return llvm::StructType::get(getVMContext(), RTList); 7906 } 7907 7908 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 7909 uint64_t Size = getContext().getTypeSize(RetTy); 7910 7911 if (RetTy->isVoidType()) 7912 return ABIArgInfo::getIgnore(); 7913 7914 // O32 doesn't treat zero-sized structs differently from other structs. 7915 // However, N32/N64 ignores zero sized return values. 7916 if (!IsO32 && Size == 0) 7917 return ABIArgInfo::getIgnore(); 7918 7919 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 7920 if (Size <= 128) { 7921 if (RetTy->isAnyComplexType()) 7922 return ABIArgInfo::getDirect(); 7923 7924 // O32 returns integer vectors in registers and N32/N64 returns all small 7925 // aggregates in registers. 7926 if (!IsO32 || 7927 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { 7928 ABIArgInfo ArgInfo = 7929 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 7930 ArgInfo.setInReg(true); 7931 return ArgInfo; 7932 } 7933 } 7934 7935 return getNaturalAlignIndirect(RetTy); 7936 } 7937 7938 // Treat an enum type as its underlying type. 7939 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7940 RetTy = EnumTy->getDecl()->getIntegerType(); 7941 7942 // Make sure we pass indirectly things that are too large. 7943 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 7944 if (EIT->getNumBits() > 128 || 7945 (EIT->getNumBits() > 64 && 7946 !getContext().getTargetInfo().hasInt128Type())) 7947 return getNaturalAlignIndirect(RetTy); 7948 7949 if (isPromotableIntegerTypeForABI(RetTy)) 7950 return ABIArgInfo::getExtend(RetTy); 7951 7952 if ((RetTy->isUnsignedIntegerOrEnumerationType() || 7953 RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32) 7954 return ABIArgInfo::getSignExtend(RetTy); 7955 7956 return ABIArgInfo::getDirect(); 7957 } 7958 7959 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 7960 ABIArgInfo &RetInfo = FI.getReturnInfo(); 7961 if (!getCXXABI().classifyReturnType(FI)) 7962 RetInfo = classifyReturnType(FI.getReturnType()); 7963 7964 // Check if a pointer to an aggregate is passed as a hidden argument. 7965 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 7966 7967 for (auto &I : FI.arguments()) 7968 I.info = classifyArgumentType(I.type, Offset); 7969 } 7970 7971 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7972 QualType OrigTy) const { 7973 QualType Ty = OrigTy; 7974 7975 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. 7976 // Pointers are also promoted in the same way but this only matters for N32. 7977 unsigned SlotSizeInBits = IsO32 ? 32 : 64; 7978 unsigned PtrWidth = getTarget().getPointerWidth(0); 7979 bool DidPromote = false; 7980 if ((Ty->isIntegerType() && 7981 getContext().getIntWidth(Ty) < SlotSizeInBits) || 7982 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { 7983 DidPromote = true; 7984 Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits, 7985 Ty->isSignedIntegerType()); 7986 } 7987 7988 auto TyInfo = getContext().getTypeInfoInChars(Ty); 7989 7990 // The alignment of things in the argument area is never larger than 7991 // StackAlignInBytes. 7992 TyInfo.Align = 7993 std::min(TyInfo.Align, CharUnits::fromQuantity(StackAlignInBytes)); 7994 7995 // MinABIStackAlignInBytes is the size of argument slots on the stack. 7996 CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes); 7997 7998 Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 7999 TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true); 8000 8001 8002 // If there was a promotion, "unpromote" into a temporary. 8003 // TODO: can we just use a pointer into a subset of the original slot? 8004 if (DidPromote) { 8005 Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp"); 8006 llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr); 8007 8008 // Truncate down to the right width. 8009 llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType() 8010 : CGF.IntPtrTy); 8011 llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy); 8012 if (OrigTy->isPointerType()) 8013 V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType()); 8014 8015 CGF.Builder.CreateStore(V, Temp); 8016 Addr = Temp; 8017 } 8018 8019 return Addr; 8020 } 8021 8022 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const { 8023 int TySize = getContext().getTypeSize(Ty); 8024 8025 // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. 8026 if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 8027 return ABIArgInfo::getSignExtend(Ty); 8028 8029 return ABIArgInfo::getExtend(Ty); 8030 } 8031 8032 bool 8033 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 8034 llvm::Value *Address) const { 8035 // This information comes from gcc's implementation, which seems to 8036 // as canonical as it gets. 8037 8038 // Everything on MIPS is 4 bytes. Double-precision FP registers 8039 // are aliased to pairs of single-precision FP registers. 8040 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 8041 8042 // 0-31 are the general purpose registers, $0 - $31. 8043 // 32-63 are the floating-point registers, $f0 - $f31. 8044 // 64 and 65 are the multiply/divide registers, $hi and $lo. 8045 // 66 is the (notional, I think) register for signal-handler return. 8046 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 8047 8048 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 8049 // They are one bit wide and ignored here. 8050 8051 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 8052 // (coprocessor 1 is the FP unit) 8053 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 8054 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 8055 // 176-181 are the DSP accumulator registers. 8056 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 8057 return false; 8058 } 8059 8060 //===----------------------------------------------------------------------===// 8061 // AVR ABI Implementation. 8062 //===----------------------------------------------------------------------===// 8063 8064 namespace { 8065 class AVRTargetCodeGenInfo : public TargetCodeGenInfo { 8066 public: 8067 AVRTargetCodeGenInfo(CodeGenTypes &CGT) 8068 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 8069 8070 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8071 CodeGen::CodeGenModule &CGM) const override { 8072 if (GV->isDeclaration()) 8073 return; 8074 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 8075 if (!FD) return; 8076 auto *Fn = cast<llvm::Function>(GV); 8077 8078 if (FD->getAttr<AVRInterruptAttr>()) 8079 Fn->addFnAttr("interrupt"); 8080 8081 if (FD->getAttr<AVRSignalAttr>()) 8082 Fn->addFnAttr("signal"); 8083 } 8084 }; 8085 } 8086 8087 //===----------------------------------------------------------------------===// 8088 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 8089 // Currently subclassed only to implement custom OpenCL C function attribute 8090 // handling. 8091 //===----------------------------------------------------------------------===// 8092 8093 namespace { 8094 8095 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 8096 public: 8097 TCETargetCodeGenInfo(CodeGenTypes &CGT) 8098 : DefaultTargetCodeGenInfo(CGT) {} 8099 8100 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8101 CodeGen::CodeGenModule &M) const override; 8102 }; 8103 8104 void TCETargetCodeGenInfo::setTargetAttributes( 8105 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 8106 if (GV->isDeclaration()) 8107 return; 8108 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 8109 if (!FD) return; 8110 8111 llvm::Function *F = cast<llvm::Function>(GV); 8112 8113 if (M.getLangOpts().OpenCL) { 8114 if (FD->hasAttr<OpenCLKernelAttr>()) { 8115 // OpenCL C Kernel functions are not subject to inlining 8116 F->addFnAttr(llvm::Attribute::NoInline); 8117 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 8118 if (Attr) { 8119 // Convert the reqd_work_group_size() attributes to metadata. 8120 llvm::LLVMContext &Context = F->getContext(); 8121 llvm::NamedMDNode *OpenCLMetadata = 8122 M.getModule().getOrInsertNamedMetadata( 8123 "opencl.kernel_wg_size_info"); 8124 8125 SmallVector<llvm::Metadata *, 5> Operands; 8126 Operands.push_back(llvm::ConstantAsMetadata::get(F)); 8127 8128 Operands.push_back( 8129 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8130 M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); 8131 Operands.push_back( 8132 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8133 M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); 8134 Operands.push_back( 8135 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8136 M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); 8137 8138 // Add a boolean constant operand for "required" (true) or "hint" 8139 // (false) for implementing the work_group_size_hint attr later. 8140 // Currently always true as the hint is not yet implemented. 8141 Operands.push_back( 8142 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); 8143 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 8144 } 8145 } 8146 } 8147 } 8148 8149 } 8150 8151 //===----------------------------------------------------------------------===// 8152 // Hexagon ABI Implementation 8153 //===----------------------------------------------------------------------===// 8154 8155 namespace { 8156 8157 class HexagonABIInfo : public DefaultABIInfo { 8158 public: 8159 HexagonABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8160 8161 private: 8162 ABIArgInfo classifyReturnType(QualType RetTy) const; 8163 ABIArgInfo classifyArgumentType(QualType RetTy) const; 8164 ABIArgInfo classifyArgumentType(QualType RetTy, unsigned *RegsLeft) const; 8165 8166 void computeInfo(CGFunctionInfo &FI) const override; 8167 8168 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8169 QualType Ty) const override; 8170 Address EmitVAArgFromMemory(CodeGenFunction &CFG, Address VAListAddr, 8171 QualType Ty) const; 8172 Address EmitVAArgForHexagon(CodeGenFunction &CFG, Address VAListAddr, 8173 QualType Ty) const; 8174 Address EmitVAArgForHexagonLinux(CodeGenFunction &CFG, Address VAListAddr, 8175 QualType Ty) const; 8176 }; 8177 8178 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 8179 public: 8180 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 8181 : TargetCodeGenInfo(std::make_unique<HexagonABIInfo>(CGT)) {} 8182 8183 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 8184 return 29; 8185 } 8186 8187 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8188 CodeGen::CodeGenModule &GCM) const override { 8189 if (GV->isDeclaration()) 8190 return; 8191 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 8192 if (!FD) 8193 return; 8194 } 8195 }; 8196 8197 } // namespace 8198 8199 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 8200 unsigned RegsLeft = 6; 8201 if (!getCXXABI().classifyReturnType(FI)) 8202 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8203 for (auto &I : FI.arguments()) 8204 I.info = classifyArgumentType(I.type, &RegsLeft); 8205 } 8206 8207 static bool HexagonAdjustRegsLeft(uint64_t Size, unsigned *RegsLeft) { 8208 assert(Size <= 64 && "Not expecting to pass arguments larger than 64 bits" 8209 " through registers"); 8210 8211 if (*RegsLeft == 0) 8212 return false; 8213 8214 if (Size <= 32) { 8215 (*RegsLeft)--; 8216 return true; 8217 } 8218 8219 if (2 <= (*RegsLeft & (~1U))) { 8220 *RegsLeft = (*RegsLeft & (~1U)) - 2; 8221 return true; 8222 } 8223 8224 // Next available register was r5 but candidate was greater than 32-bits so it 8225 // has to go on the stack. However we still consume r5 8226 if (*RegsLeft == 1) 8227 *RegsLeft = 0; 8228 8229 return false; 8230 } 8231 8232 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty, 8233 unsigned *RegsLeft) const { 8234 if (!isAggregateTypeForABI(Ty)) { 8235 // Treat an enum type as its underlying type. 8236 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 8237 Ty = EnumTy->getDecl()->getIntegerType(); 8238 8239 uint64_t Size = getContext().getTypeSize(Ty); 8240 if (Size <= 64) 8241 HexagonAdjustRegsLeft(Size, RegsLeft); 8242 8243 if (Size > 64 && Ty->isExtIntType()) 8244 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8245 8246 return isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 8247 : ABIArgInfo::getDirect(); 8248 } 8249 8250 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 8251 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 8252 8253 // Ignore empty records. 8254 if (isEmptyRecord(getContext(), Ty, true)) 8255 return ABIArgInfo::getIgnore(); 8256 8257 uint64_t Size = getContext().getTypeSize(Ty); 8258 unsigned Align = getContext().getTypeAlign(Ty); 8259 8260 if (Size > 64) 8261 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8262 8263 if (HexagonAdjustRegsLeft(Size, RegsLeft)) 8264 Align = Size <= 32 ? 32 : 64; 8265 if (Size <= Align) { 8266 // Pass in the smallest viable integer type. 8267 if (!llvm::isPowerOf2_64(Size)) 8268 Size = llvm::NextPowerOf2(Size); 8269 return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size)); 8270 } 8271 return DefaultABIInfo::classifyArgumentType(Ty); 8272 } 8273 8274 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 8275 if (RetTy->isVoidType()) 8276 return ABIArgInfo::getIgnore(); 8277 8278 const TargetInfo &T = CGT.getTarget(); 8279 uint64_t Size = getContext().getTypeSize(RetTy); 8280 8281 if (RetTy->getAs<VectorType>()) { 8282 // HVX vectors are returned in vector registers or register pairs. 8283 if (T.hasFeature("hvx")) { 8284 assert(T.hasFeature("hvx-length64b") || T.hasFeature("hvx-length128b")); 8285 uint64_t VecSize = T.hasFeature("hvx-length64b") ? 64*8 : 128*8; 8286 if (Size == VecSize || Size == 2*VecSize) 8287 return ABIArgInfo::getDirectInReg(); 8288 } 8289 // Large vector types should be returned via memory. 8290 if (Size > 64) 8291 return getNaturalAlignIndirect(RetTy); 8292 } 8293 8294 if (!isAggregateTypeForABI(RetTy)) { 8295 // Treat an enum type as its underlying type. 8296 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 8297 RetTy = EnumTy->getDecl()->getIntegerType(); 8298 8299 if (Size > 64 && RetTy->isExtIntType()) 8300 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 8301 8302 return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 8303 : ABIArgInfo::getDirect(); 8304 } 8305 8306 if (isEmptyRecord(getContext(), RetTy, true)) 8307 return ABIArgInfo::getIgnore(); 8308 8309 // Aggregates <= 8 bytes are returned in registers, other aggregates 8310 // are returned indirectly. 8311 if (Size <= 64) { 8312 // Return in the smallest viable integer type. 8313 if (!llvm::isPowerOf2_64(Size)) 8314 Size = llvm::NextPowerOf2(Size); 8315 return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size)); 8316 } 8317 return getNaturalAlignIndirect(RetTy, /*ByVal=*/true); 8318 } 8319 8320 Address HexagonABIInfo::EmitVAArgFromMemory(CodeGenFunction &CGF, 8321 Address VAListAddr, 8322 QualType Ty) const { 8323 // Load the overflow area pointer. 8324 Address __overflow_area_pointer_p = 8325 CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p"); 8326 llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad( 8327 __overflow_area_pointer_p, "__overflow_area_pointer"); 8328 8329 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; 8330 if (Align > 4) { 8331 // Alignment should be a power of 2. 8332 assert((Align & (Align - 1)) == 0 && "Alignment is not power of 2!"); 8333 8334 // overflow_arg_area = (overflow_arg_area + align - 1) & -align; 8335 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int64Ty, Align - 1); 8336 8337 // Add offset to the current pointer to access the argument. 8338 __overflow_area_pointer = 8339 CGF.Builder.CreateGEP(__overflow_area_pointer, Offset); 8340 llvm::Value *AsInt = 8341 CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty); 8342 8343 // Create a mask which should be "AND"ed 8344 // with (overflow_arg_area + align - 1) 8345 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -(int)Align); 8346 __overflow_area_pointer = CGF.Builder.CreateIntToPtr( 8347 CGF.Builder.CreateAnd(AsInt, Mask), __overflow_area_pointer->getType(), 8348 "__overflow_area_pointer.align"); 8349 } 8350 8351 // Get the type of the argument from memory and bitcast 8352 // overflow area pointer to the argument type. 8353 llvm::Type *PTy = CGF.ConvertTypeForMem(Ty); 8354 Address AddrTyped = CGF.Builder.CreateBitCast( 8355 Address(__overflow_area_pointer, CharUnits::fromQuantity(Align)), 8356 llvm::PointerType::getUnqual(PTy)); 8357 8358 // Round up to the minimum stack alignment for varargs which is 4 bytes. 8359 uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4); 8360 8361 __overflow_area_pointer = CGF.Builder.CreateGEP( 8362 __overflow_area_pointer, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 8363 "__overflow_area_pointer.next"); 8364 CGF.Builder.CreateStore(__overflow_area_pointer, __overflow_area_pointer_p); 8365 8366 return AddrTyped; 8367 } 8368 8369 Address HexagonABIInfo::EmitVAArgForHexagon(CodeGenFunction &CGF, 8370 Address VAListAddr, 8371 QualType Ty) const { 8372 // FIXME: Need to handle alignment 8373 llvm::Type *BP = CGF.Int8PtrTy; 8374 llvm::Type *BPP = CGF.Int8PtrPtrTy; 8375 CGBuilderTy &Builder = CGF.Builder; 8376 Address VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 8377 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 8378 // Handle address alignment for type alignment > 32 bits 8379 uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8; 8380 if (TyAlign > 4) { 8381 assert((TyAlign & (TyAlign - 1)) == 0 && "Alignment is not power of 2!"); 8382 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty); 8383 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1)); 8384 AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1))); 8385 Addr = Builder.CreateIntToPtr(AddrAsInt, BP); 8386 } 8387 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 8388 Address AddrTyped = Builder.CreateBitCast( 8389 Address(Addr, CharUnits::fromQuantity(TyAlign)), PTy); 8390 8391 uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4); 8392 llvm::Value *NextAddr = Builder.CreateGEP( 8393 Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next"); 8394 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 8395 8396 return AddrTyped; 8397 } 8398 8399 Address HexagonABIInfo::EmitVAArgForHexagonLinux(CodeGenFunction &CGF, 8400 Address VAListAddr, 8401 QualType Ty) const { 8402 int ArgSize = CGF.getContext().getTypeSize(Ty) / 8; 8403 8404 if (ArgSize > 8) 8405 return EmitVAArgFromMemory(CGF, VAListAddr, Ty); 8406 8407 // Here we have check if the argument is in register area or 8408 // in overflow area. 8409 // If the saved register area pointer + argsize rounded up to alignment > 8410 // saved register area end pointer, argument is in overflow area. 8411 unsigned RegsLeft = 6; 8412 Ty = CGF.getContext().getCanonicalType(Ty); 8413 (void)classifyArgumentType(Ty, &RegsLeft); 8414 8415 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 8416 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 8417 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 8418 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 8419 8420 // Get rounded size of the argument.GCC does not allow vararg of 8421 // size < 4 bytes. We follow the same logic here. 8422 ArgSize = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8; 8423 int ArgAlign = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8; 8424 8425 // Argument may be in saved register area 8426 CGF.EmitBlock(MaybeRegBlock); 8427 8428 // Load the current saved register area pointer. 8429 Address __current_saved_reg_area_pointer_p = CGF.Builder.CreateStructGEP( 8430 VAListAddr, 0, "__current_saved_reg_area_pointer_p"); 8431 llvm::Value *__current_saved_reg_area_pointer = CGF.Builder.CreateLoad( 8432 __current_saved_reg_area_pointer_p, "__current_saved_reg_area_pointer"); 8433 8434 // Load the saved register area end pointer. 8435 Address __saved_reg_area_end_pointer_p = CGF.Builder.CreateStructGEP( 8436 VAListAddr, 1, "__saved_reg_area_end_pointer_p"); 8437 llvm::Value *__saved_reg_area_end_pointer = CGF.Builder.CreateLoad( 8438 __saved_reg_area_end_pointer_p, "__saved_reg_area_end_pointer"); 8439 8440 // If the size of argument is > 4 bytes, check if the stack 8441 // location is aligned to 8 bytes 8442 if (ArgAlign > 4) { 8443 8444 llvm::Value *__current_saved_reg_area_pointer_int = 8445 CGF.Builder.CreatePtrToInt(__current_saved_reg_area_pointer, 8446 CGF.Int32Ty); 8447 8448 __current_saved_reg_area_pointer_int = CGF.Builder.CreateAdd( 8449 __current_saved_reg_area_pointer_int, 8450 llvm::ConstantInt::get(CGF.Int32Ty, (ArgAlign - 1)), 8451 "align_current_saved_reg_area_pointer"); 8452 8453 __current_saved_reg_area_pointer_int = 8454 CGF.Builder.CreateAnd(__current_saved_reg_area_pointer_int, 8455 llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign), 8456 "align_current_saved_reg_area_pointer"); 8457 8458 __current_saved_reg_area_pointer = 8459 CGF.Builder.CreateIntToPtr(__current_saved_reg_area_pointer_int, 8460 __current_saved_reg_area_pointer->getType(), 8461 "align_current_saved_reg_area_pointer"); 8462 } 8463 8464 llvm::Value *__new_saved_reg_area_pointer = 8465 CGF.Builder.CreateGEP(__current_saved_reg_area_pointer, 8466 llvm::ConstantInt::get(CGF.Int32Ty, ArgSize), 8467 "__new_saved_reg_area_pointer"); 8468 8469 llvm::Value *UsingStack = 0; 8470 UsingStack = CGF.Builder.CreateICmpSGT(__new_saved_reg_area_pointer, 8471 __saved_reg_area_end_pointer); 8472 8473 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, InRegBlock); 8474 8475 // Argument in saved register area 8476 // Implement the block where argument is in register saved area 8477 CGF.EmitBlock(InRegBlock); 8478 8479 llvm::Type *PTy = CGF.ConvertType(Ty); 8480 llvm::Value *__saved_reg_area_p = CGF.Builder.CreateBitCast( 8481 __current_saved_reg_area_pointer, llvm::PointerType::getUnqual(PTy)); 8482 8483 CGF.Builder.CreateStore(__new_saved_reg_area_pointer, 8484 __current_saved_reg_area_pointer_p); 8485 8486 CGF.EmitBranch(ContBlock); 8487 8488 // Argument in overflow area 8489 // Implement the block where the argument is in overflow area. 8490 CGF.EmitBlock(OnStackBlock); 8491 8492 // Load the overflow area pointer 8493 Address __overflow_area_pointer_p = 8494 CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p"); 8495 llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad( 8496 __overflow_area_pointer_p, "__overflow_area_pointer"); 8497 8498 // Align the overflow area pointer according to the alignment of the argument 8499 if (ArgAlign > 4) { 8500 llvm::Value *__overflow_area_pointer_int = 8501 CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty); 8502 8503 __overflow_area_pointer_int = 8504 CGF.Builder.CreateAdd(__overflow_area_pointer_int, 8505 llvm::ConstantInt::get(CGF.Int32Ty, ArgAlign - 1), 8506 "align_overflow_area_pointer"); 8507 8508 __overflow_area_pointer_int = 8509 CGF.Builder.CreateAnd(__overflow_area_pointer_int, 8510 llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign), 8511 "align_overflow_area_pointer"); 8512 8513 __overflow_area_pointer = CGF.Builder.CreateIntToPtr( 8514 __overflow_area_pointer_int, __overflow_area_pointer->getType(), 8515 "align_overflow_area_pointer"); 8516 } 8517 8518 // Get the pointer for next argument in overflow area and store it 8519 // to overflow area pointer. 8520 llvm::Value *__new_overflow_area_pointer = CGF.Builder.CreateGEP( 8521 __overflow_area_pointer, llvm::ConstantInt::get(CGF.Int32Ty, ArgSize), 8522 "__overflow_area_pointer.next"); 8523 8524 CGF.Builder.CreateStore(__new_overflow_area_pointer, 8525 __overflow_area_pointer_p); 8526 8527 CGF.Builder.CreateStore(__new_overflow_area_pointer, 8528 __current_saved_reg_area_pointer_p); 8529 8530 // Bitcast the overflow area pointer to the type of argument. 8531 llvm::Type *OverflowPTy = CGF.ConvertTypeForMem(Ty); 8532 llvm::Value *__overflow_area_p = CGF.Builder.CreateBitCast( 8533 __overflow_area_pointer, llvm::PointerType::getUnqual(OverflowPTy)); 8534 8535 CGF.EmitBranch(ContBlock); 8536 8537 // Get the correct pointer to load the variable argument 8538 // Implement the ContBlock 8539 CGF.EmitBlock(ContBlock); 8540 8541 llvm::Type *MemPTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 8542 llvm::PHINode *ArgAddr = CGF.Builder.CreatePHI(MemPTy, 2, "vaarg.addr"); 8543 ArgAddr->addIncoming(__saved_reg_area_p, InRegBlock); 8544 ArgAddr->addIncoming(__overflow_area_p, OnStackBlock); 8545 8546 return Address(ArgAddr, CharUnits::fromQuantity(ArgAlign)); 8547 } 8548 8549 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8550 QualType Ty) const { 8551 8552 if (getTarget().getTriple().isMusl()) 8553 return EmitVAArgForHexagonLinux(CGF, VAListAddr, Ty); 8554 8555 return EmitVAArgForHexagon(CGF, VAListAddr, Ty); 8556 } 8557 8558 //===----------------------------------------------------------------------===// 8559 // Lanai ABI Implementation 8560 //===----------------------------------------------------------------------===// 8561 8562 namespace { 8563 class LanaiABIInfo : public DefaultABIInfo { 8564 public: 8565 LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8566 8567 bool shouldUseInReg(QualType Ty, CCState &State) const; 8568 8569 void computeInfo(CGFunctionInfo &FI) const override { 8570 CCState State(FI); 8571 // Lanai uses 4 registers to pass arguments unless the function has the 8572 // regparm attribute set. 8573 if (FI.getHasRegParm()) { 8574 State.FreeRegs = FI.getRegParm(); 8575 } else { 8576 State.FreeRegs = 4; 8577 } 8578 8579 if (!getCXXABI().classifyReturnType(FI)) 8580 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8581 for (auto &I : FI.arguments()) 8582 I.info = classifyArgumentType(I.type, State); 8583 } 8584 8585 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 8586 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 8587 }; 8588 } // end anonymous namespace 8589 8590 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const { 8591 unsigned Size = getContext().getTypeSize(Ty); 8592 unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U; 8593 8594 if (SizeInRegs == 0) 8595 return false; 8596 8597 if (SizeInRegs > State.FreeRegs) { 8598 State.FreeRegs = 0; 8599 return false; 8600 } 8601 8602 State.FreeRegs -= SizeInRegs; 8603 8604 return true; 8605 } 8606 8607 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal, 8608 CCState &State) const { 8609 if (!ByVal) { 8610 if (State.FreeRegs) { 8611 --State.FreeRegs; // Non-byval indirects just use one pointer. 8612 return getNaturalAlignIndirectInReg(Ty); 8613 } 8614 return getNaturalAlignIndirect(Ty, false); 8615 } 8616 8617 // Compute the byval alignment. 8618 const unsigned MinABIStackAlignInBytes = 4; 8619 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 8620 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 8621 /*Realign=*/TypeAlign > 8622 MinABIStackAlignInBytes); 8623 } 8624 8625 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty, 8626 CCState &State) const { 8627 // Check with the C++ ABI first. 8628 const RecordType *RT = Ty->getAs<RecordType>(); 8629 if (RT) { 8630 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 8631 if (RAA == CGCXXABI::RAA_Indirect) { 8632 return getIndirectResult(Ty, /*ByVal=*/false, State); 8633 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 8634 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8635 } 8636 } 8637 8638 if (isAggregateTypeForABI(Ty)) { 8639 // Structures with flexible arrays are always indirect. 8640 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 8641 return getIndirectResult(Ty, /*ByVal=*/true, State); 8642 8643 // Ignore empty structs/unions. 8644 if (isEmptyRecord(getContext(), Ty, true)) 8645 return ABIArgInfo::getIgnore(); 8646 8647 llvm::LLVMContext &LLVMContext = getVMContext(); 8648 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 8649 if (SizeInRegs <= State.FreeRegs) { 8650 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 8651 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 8652 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 8653 State.FreeRegs -= SizeInRegs; 8654 return ABIArgInfo::getDirectInReg(Result); 8655 } else { 8656 State.FreeRegs = 0; 8657 } 8658 return getIndirectResult(Ty, true, State); 8659 } 8660 8661 // Treat an enum type as its underlying type. 8662 if (const auto *EnumTy = Ty->getAs<EnumType>()) 8663 Ty = EnumTy->getDecl()->getIntegerType(); 8664 8665 bool InReg = shouldUseInReg(Ty, State); 8666 8667 // Don't pass >64 bit integers in registers. 8668 if (const auto *EIT = Ty->getAs<ExtIntType>()) 8669 if (EIT->getNumBits() > 64) 8670 return getIndirectResult(Ty, /*ByVal=*/true, State); 8671 8672 if (isPromotableIntegerTypeForABI(Ty)) { 8673 if (InReg) 8674 return ABIArgInfo::getDirectInReg(); 8675 return ABIArgInfo::getExtend(Ty); 8676 } 8677 if (InReg) 8678 return ABIArgInfo::getDirectInReg(); 8679 return ABIArgInfo::getDirect(); 8680 } 8681 8682 namespace { 8683 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo { 8684 public: 8685 LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 8686 : TargetCodeGenInfo(std::make_unique<LanaiABIInfo>(CGT)) {} 8687 }; 8688 } 8689 8690 //===----------------------------------------------------------------------===// 8691 // AMDGPU ABI Implementation 8692 //===----------------------------------------------------------------------===// 8693 8694 namespace { 8695 8696 class AMDGPUABIInfo final : public DefaultABIInfo { 8697 private: 8698 static const unsigned MaxNumRegsForArgsRet = 16; 8699 8700 unsigned numRegsForType(QualType Ty) const; 8701 8702 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 8703 bool isHomogeneousAggregateSmallEnough(const Type *Base, 8704 uint64_t Members) const override; 8705 8706 // Coerce HIP pointer arguments from generic pointers to global ones. 8707 llvm::Type *coerceKernelArgumentType(llvm::Type *Ty, unsigned FromAS, 8708 unsigned ToAS) const { 8709 // Structure types. 8710 if (auto STy = dyn_cast<llvm::StructType>(Ty)) { 8711 SmallVector<llvm::Type *, 8> EltTys; 8712 bool Changed = false; 8713 for (auto T : STy->elements()) { 8714 auto NT = coerceKernelArgumentType(T, FromAS, ToAS); 8715 EltTys.push_back(NT); 8716 Changed |= (NT != T); 8717 } 8718 // Skip if there is no change in element types. 8719 if (!Changed) 8720 return STy; 8721 if (STy->hasName()) 8722 return llvm::StructType::create( 8723 EltTys, (STy->getName() + ".coerce").str(), STy->isPacked()); 8724 return llvm::StructType::get(getVMContext(), EltTys, STy->isPacked()); 8725 } 8726 // Array types. 8727 if (auto ATy = dyn_cast<llvm::ArrayType>(Ty)) { 8728 auto T = ATy->getElementType(); 8729 auto NT = coerceKernelArgumentType(T, FromAS, ToAS); 8730 // Skip if there is no change in that element type. 8731 if (NT == T) 8732 return ATy; 8733 return llvm::ArrayType::get(NT, ATy->getNumElements()); 8734 } 8735 // Single value types. 8736 if (Ty->isPointerTy() && Ty->getPointerAddressSpace() == FromAS) 8737 return llvm::PointerType::get( 8738 cast<llvm::PointerType>(Ty)->getElementType(), ToAS); 8739 return Ty; 8740 } 8741 8742 public: 8743 explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) : 8744 DefaultABIInfo(CGT) {} 8745 8746 ABIArgInfo classifyReturnType(QualType RetTy) const; 8747 ABIArgInfo classifyKernelArgumentType(QualType Ty) const; 8748 ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const; 8749 8750 void computeInfo(CGFunctionInfo &FI) const override; 8751 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8752 QualType Ty) const override; 8753 }; 8754 8755 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 8756 return true; 8757 } 8758 8759 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough( 8760 const Type *Base, uint64_t Members) const { 8761 uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32; 8762 8763 // Homogeneous Aggregates may occupy at most 16 registers. 8764 return Members * NumRegs <= MaxNumRegsForArgsRet; 8765 } 8766 8767 /// Estimate number of registers the type will use when passed in registers. 8768 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const { 8769 unsigned NumRegs = 0; 8770 8771 if (const VectorType *VT = Ty->getAs<VectorType>()) { 8772 // Compute from the number of elements. The reported size is based on the 8773 // in-memory size, which includes the padding 4th element for 3-vectors. 8774 QualType EltTy = VT->getElementType(); 8775 unsigned EltSize = getContext().getTypeSize(EltTy); 8776 8777 // 16-bit element vectors should be passed as packed. 8778 if (EltSize == 16) 8779 return (VT->getNumElements() + 1) / 2; 8780 8781 unsigned EltNumRegs = (EltSize + 31) / 32; 8782 return EltNumRegs * VT->getNumElements(); 8783 } 8784 8785 if (const RecordType *RT = Ty->getAs<RecordType>()) { 8786 const RecordDecl *RD = RT->getDecl(); 8787 assert(!RD->hasFlexibleArrayMember()); 8788 8789 for (const FieldDecl *Field : RD->fields()) { 8790 QualType FieldTy = Field->getType(); 8791 NumRegs += numRegsForType(FieldTy); 8792 } 8793 8794 return NumRegs; 8795 } 8796 8797 return (getContext().getTypeSize(Ty) + 31) / 32; 8798 } 8799 8800 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const { 8801 llvm::CallingConv::ID CC = FI.getCallingConvention(); 8802 8803 if (!getCXXABI().classifyReturnType(FI)) 8804 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8805 8806 unsigned NumRegsLeft = MaxNumRegsForArgsRet; 8807 for (auto &Arg : FI.arguments()) { 8808 if (CC == llvm::CallingConv::AMDGPU_KERNEL) { 8809 Arg.info = classifyKernelArgumentType(Arg.type); 8810 } else { 8811 Arg.info = classifyArgumentType(Arg.type, NumRegsLeft); 8812 } 8813 } 8814 } 8815 8816 Address AMDGPUABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8817 QualType Ty) const { 8818 llvm_unreachable("AMDGPU does not support varargs"); 8819 } 8820 8821 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const { 8822 if (isAggregateTypeForABI(RetTy)) { 8823 // Records with non-trivial destructors/copy-constructors should not be 8824 // returned by value. 8825 if (!getRecordArgABI(RetTy, getCXXABI())) { 8826 // Ignore empty structs/unions. 8827 if (isEmptyRecord(getContext(), RetTy, true)) 8828 return ABIArgInfo::getIgnore(); 8829 8830 // Lower single-element structs to just return a regular value. 8831 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 8832 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 8833 8834 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 8835 const RecordDecl *RD = RT->getDecl(); 8836 if (RD->hasFlexibleArrayMember()) 8837 return DefaultABIInfo::classifyReturnType(RetTy); 8838 } 8839 8840 // Pack aggregates <= 4 bytes into single VGPR or pair. 8841 uint64_t Size = getContext().getTypeSize(RetTy); 8842 if (Size <= 16) 8843 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 8844 8845 if (Size <= 32) 8846 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 8847 8848 if (Size <= 64) { 8849 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 8850 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 8851 } 8852 8853 if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet) 8854 return ABIArgInfo::getDirect(); 8855 } 8856 } 8857 8858 // Otherwise just do the default thing. 8859 return DefaultABIInfo::classifyReturnType(RetTy); 8860 } 8861 8862 /// For kernels all parameters are really passed in a special buffer. It doesn't 8863 /// make sense to pass anything byval, so everything must be direct. 8864 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const { 8865 Ty = useFirstFieldIfTransparentUnion(Ty); 8866 8867 // TODO: Can we omit empty structs? 8868 8869 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 8870 Ty = QualType(SeltTy, 0); 8871 8872 llvm::Type *OrigLTy = CGT.ConvertType(Ty); 8873 llvm::Type *LTy = OrigLTy; 8874 if (getContext().getLangOpts().HIP) { 8875 LTy = coerceKernelArgumentType( 8876 OrigLTy, /*FromAS=*/getContext().getTargetAddressSpace(LangAS::Default), 8877 /*ToAS=*/getContext().getTargetAddressSpace(LangAS::cuda_device)); 8878 } 8879 8880 // FIXME: Should also use this for OpenCL, but it requires addressing the 8881 // problem of kernels being called. 8882 // 8883 // FIXME: This doesn't apply the optimization of coercing pointers in structs 8884 // to global address space when using byref. This would require implementing a 8885 // new kind of coercion of the in-memory type when for indirect arguments. 8886 if (!getContext().getLangOpts().OpenCL && LTy == OrigLTy && 8887 isAggregateTypeForABI(Ty)) { 8888 return ABIArgInfo::getIndirectAliased( 8889 getContext().getTypeAlignInChars(Ty), 8890 getContext().getTargetAddressSpace(LangAS::opencl_constant), 8891 false /*Realign*/, nullptr /*Padding*/); 8892 } 8893 8894 // If we set CanBeFlattened to true, CodeGen will expand the struct to its 8895 // individual elements, which confuses the Clover OpenCL backend; therefore we 8896 // have to set it to false here. Other args of getDirect() are just defaults. 8897 return ABIArgInfo::getDirect(LTy, 0, nullptr, false); 8898 } 8899 8900 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty, 8901 unsigned &NumRegsLeft) const { 8902 assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow"); 8903 8904 Ty = useFirstFieldIfTransparentUnion(Ty); 8905 8906 if (isAggregateTypeForABI(Ty)) { 8907 // Records with non-trivial destructors/copy-constructors should not be 8908 // passed by value. 8909 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 8910 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 8911 8912 // Ignore empty structs/unions. 8913 if (isEmptyRecord(getContext(), Ty, true)) 8914 return ABIArgInfo::getIgnore(); 8915 8916 // Lower single-element structs to just pass a regular value. TODO: We 8917 // could do reasonable-size multiple-element structs too, using getExpand(), 8918 // though watch out for things like bitfields. 8919 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 8920 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 8921 8922 if (const RecordType *RT = Ty->getAs<RecordType>()) { 8923 const RecordDecl *RD = RT->getDecl(); 8924 if (RD->hasFlexibleArrayMember()) 8925 return DefaultABIInfo::classifyArgumentType(Ty); 8926 } 8927 8928 // Pack aggregates <= 8 bytes into single VGPR or pair. 8929 uint64_t Size = getContext().getTypeSize(Ty); 8930 if (Size <= 64) { 8931 unsigned NumRegs = (Size + 31) / 32; 8932 NumRegsLeft -= std::min(NumRegsLeft, NumRegs); 8933 8934 if (Size <= 16) 8935 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 8936 8937 if (Size <= 32) 8938 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 8939 8940 // XXX: Should this be i64 instead, and should the limit increase? 8941 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 8942 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 8943 } 8944 8945 if (NumRegsLeft > 0) { 8946 unsigned NumRegs = numRegsForType(Ty); 8947 if (NumRegsLeft >= NumRegs) { 8948 NumRegsLeft -= NumRegs; 8949 return ABIArgInfo::getDirect(); 8950 } 8951 } 8952 } 8953 8954 // Otherwise just do the default thing. 8955 ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty); 8956 if (!ArgInfo.isIndirect()) { 8957 unsigned NumRegs = numRegsForType(Ty); 8958 NumRegsLeft -= std::min(NumRegs, NumRegsLeft); 8959 } 8960 8961 return ArgInfo; 8962 } 8963 8964 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { 8965 public: 8966 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) 8967 : TargetCodeGenInfo(std::make_unique<AMDGPUABIInfo>(CGT)) {} 8968 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8969 CodeGen::CodeGenModule &M) const override; 8970 unsigned getOpenCLKernelCallingConv() const override; 8971 8972 llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM, 8973 llvm::PointerType *T, QualType QT) const override; 8974 8975 LangAS getASTAllocaAddressSpace() const override { 8976 return getLangASFromTargetAS( 8977 getABIInfo().getDataLayout().getAllocaAddrSpace()); 8978 } 8979 LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, 8980 const VarDecl *D) const override; 8981 llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts, 8982 SyncScope Scope, 8983 llvm::AtomicOrdering Ordering, 8984 llvm::LLVMContext &Ctx) const override; 8985 llvm::Function * 8986 createEnqueuedBlockKernel(CodeGenFunction &CGF, 8987 llvm::Function *BlockInvokeFunc, 8988 llvm::Value *BlockLiteral) const override; 8989 bool shouldEmitStaticExternCAliases() const override; 8990 void setCUDAKernelCallingConvention(const FunctionType *&FT) const override; 8991 }; 8992 } 8993 8994 static bool requiresAMDGPUProtectedVisibility(const Decl *D, 8995 llvm::GlobalValue *GV) { 8996 if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility) 8997 return false; 8998 8999 return D->hasAttr<OpenCLKernelAttr>() || 9000 (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) || 9001 (isa<VarDecl>(D) && 9002 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 9003 cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinSurfaceType() || 9004 cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinTextureType())); 9005 } 9006 9007 void AMDGPUTargetCodeGenInfo::setTargetAttributes( 9008 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 9009 if (requiresAMDGPUProtectedVisibility(D, GV)) { 9010 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 9011 GV->setDSOLocal(true); 9012 } 9013 9014 if (GV->isDeclaration()) 9015 return; 9016 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 9017 if (!FD) 9018 return; 9019 9020 llvm::Function *F = cast<llvm::Function>(GV); 9021 9022 const auto *ReqdWGS = M.getLangOpts().OpenCL ? 9023 FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr; 9024 9025 9026 const bool IsOpenCLKernel = M.getLangOpts().OpenCL && 9027 FD->hasAttr<OpenCLKernelAttr>(); 9028 const bool IsHIPKernel = M.getLangOpts().HIP && 9029 FD->hasAttr<CUDAGlobalAttr>(); 9030 if ((IsOpenCLKernel || IsHIPKernel) && 9031 (M.getTriple().getOS() == llvm::Triple::AMDHSA)) 9032 F->addFnAttr("amdgpu-implicitarg-num-bytes", "56"); 9033 9034 if (IsHIPKernel) 9035 F->addFnAttr("uniform-work-group-size", "true"); 9036 9037 9038 const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>(); 9039 if (ReqdWGS || FlatWGS) { 9040 unsigned Min = 0; 9041 unsigned Max = 0; 9042 if (FlatWGS) { 9043 Min = FlatWGS->getMin() 9044 ->EvaluateKnownConstInt(M.getContext()) 9045 .getExtValue(); 9046 Max = FlatWGS->getMax() 9047 ->EvaluateKnownConstInt(M.getContext()) 9048 .getExtValue(); 9049 } 9050 if (ReqdWGS && Min == 0 && Max == 0) 9051 Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim(); 9052 9053 if (Min != 0) { 9054 assert(Min <= Max && "Min must be less than or equal Max"); 9055 9056 std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max); 9057 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 9058 } else 9059 assert(Max == 0 && "Max must be zero"); 9060 } else if (IsOpenCLKernel || IsHIPKernel) { 9061 // By default, restrict the maximum size to a value specified by 9062 // --gpu-max-threads-per-block=n or its default value. 9063 std::string AttrVal = 9064 std::string("1,") + llvm::utostr(M.getLangOpts().GPUMaxThreadsPerBlock); 9065 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 9066 } 9067 9068 if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) { 9069 unsigned Min = 9070 Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue(); 9071 unsigned Max = Attr->getMax() ? Attr->getMax() 9072 ->EvaluateKnownConstInt(M.getContext()) 9073 .getExtValue() 9074 : 0; 9075 9076 if (Min != 0) { 9077 assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max"); 9078 9079 std::string AttrVal = llvm::utostr(Min); 9080 if (Max != 0) 9081 AttrVal = AttrVal + "," + llvm::utostr(Max); 9082 F->addFnAttr("amdgpu-waves-per-eu", AttrVal); 9083 } else 9084 assert(Max == 0 && "Max must be zero"); 9085 } 9086 9087 if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { 9088 unsigned NumSGPR = Attr->getNumSGPR(); 9089 9090 if (NumSGPR != 0) 9091 F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR)); 9092 } 9093 9094 if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { 9095 uint32_t NumVGPR = Attr->getNumVGPR(); 9096 9097 if (NumVGPR != 0) 9098 F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR)); 9099 } 9100 } 9101 9102 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 9103 return llvm::CallingConv::AMDGPU_KERNEL; 9104 } 9105 9106 // Currently LLVM assumes null pointers always have value 0, 9107 // which results in incorrectly transformed IR. Therefore, instead of 9108 // emitting null pointers in private and local address spaces, a null 9109 // pointer in generic address space is emitted which is casted to a 9110 // pointer in local or private address space. 9111 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer( 9112 const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT, 9113 QualType QT) const { 9114 if (CGM.getContext().getTargetNullPointerValue(QT) == 0) 9115 return llvm::ConstantPointerNull::get(PT); 9116 9117 auto &Ctx = CGM.getContext(); 9118 auto NPT = llvm::PointerType::get(PT->getElementType(), 9119 Ctx.getTargetAddressSpace(LangAS::opencl_generic)); 9120 return llvm::ConstantExpr::getAddrSpaceCast( 9121 llvm::ConstantPointerNull::get(NPT), PT); 9122 } 9123 9124 LangAS 9125 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 9126 const VarDecl *D) const { 9127 assert(!CGM.getLangOpts().OpenCL && 9128 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 9129 "Address space agnostic languages only"); 9130 LangAS DefaultGlobalAS = getLangASFromTargetAS( 9131 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global)); 9132 if (!D) 9133 return DefaultGlobalAS; 9134 9135 LangAS AddrSpace = D->getType().getAddressSpace(); 9136 assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace)); 9137 if (AddrSpace != LangAS::Default) 9138 return AddrSpace; 9139 9140 if (CGM.isTypeConstant(D->getType(), false)) { 9141 if (auto ConstAS = CGM.getTarget().getConstantAddressSpace()) 9142 return ConstAS.getValue(); 9143 } 9144 return DefaultGlobalAS; 9145 } 9146 9147 llvm::SyncScope::ID 9148 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 9149 SyncScope Scope, 9150 llvm::AtomicOrdering Ordering, 9151 llvm::LLVMContext &Ctx) const { 9152 std::string Name; 9153 switch (Scope) { 9154 case SyncScope::OpenCLWorkGroup: 9155 Name = "workgroup"; 9156 break; 9157 case SyncScope::OpenCLDevice: 9158 Name = "agent"; 9159 break; 9160 case SyncScope::OpenCLAllSVMDevices: 9161 Name = ""; 9162 break; 9163 case SyncScope::OpenCLSubGroup: 9164 Name = "wavefront"; 9165 } 9166 9167 if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) { 9168 if (!Name.empty()) 9169 Name = Twine(Twine(Name) + Twine("-")).str(); 9170 9171 Name = Twine(Twine(Name) + Twine("one-as")).str(); 9172 } 9173 9174 return Ctx.getOrInsertSyncScopeID(Name); 9175 } 9176 9177 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 9178 return false; 9179 } 9180 9181 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention( 9182 const FunctionType *&FT) const { 9183 FT = getABIInfo().getContext().adjustFunctionType( 9184 FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel)); 9185 } 9186 9187 //===----------------------------------------------------------------------===// 9188 // SPARC v8 ABI Implementation. 9189 // Based on the SPARC Compliance Definition version 2.4.1. 9190 // 9191 // Ensures that complex values are passed in registers. 9192 // 9193 namespace { 9194 class SparcV8ABIInfo : public DefaultABIInfo { 9195 public: 9196 SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 9197 9198 private: 9199 ABIArgInfo classifyReturnType(QualType RetTy) const; 9200 void computeInfo(CGFunctionInfo &FI) const override; 9201 }; 9202 } // end anonymous namespace 9203 9204 9205 ABIArgInfo 9206 SparcV8ABIInfo::classifyReturnType(QualType Ty) const { 9207 if (Ty->isAnyComplexType()) { 9208 return ABIArgInfo::getDirect(); 9209 } 9210 else { 9211 return DefaultABIInfo::classifyReturnType(Ty); 9212 } 9213 } 9214 9215 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const { 9216 9217 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 9218 for (auto &Arg : FI.arguments()) 9219 Arg.info = classifyArgumentType(Arg.type); 9220 } 9221 9222 namespace { 9223 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo { 9224 public: 9225 SparcV8TargetCodeGenInfo(CodeGenTypes &CGT) 9226 : TargetCodeGenInfo(std::make_unique<SparcV8ABIInfo>(CGT)) {} 9227 }; 9228 } // end anonymous namespace 9229 9230 //===----------------------------------------------------------------------===// 9231 // SPARC v9 ABI Implementation. 9232 // Based on the SPARC Compliance Definition version 2.4.1. 9233 // 9234 // Function arguments a mapped to a nominal "parameter array" and promoted to 9235 // registers depending on their type. Each argument occupies 8 or 16 bytes in 9236 // the array, structs larger than 16 bytes are passed indirectly. 9237 // 9238 // One case requires special care: 9239 // 9240 // struct mixed { 9241 // int i; 9242 // float f; 9243 // }; 9244 // 9245 // When a struct mixed is passed by value, it only occupies 8 bytes in the 9246 // parameter array, but the int is passed in an integer register, and the float 9247 // is passed in a floating point register. This is represented as two arguments 9248 // with the LLVM IR inreg attribute: 9249 // 9250 // declare void f(i32 inreg %i, float inreg %f) 9251 // 9252 // The code generator will only allocate 4 bytes from the parameter array for 9253 // the inreg arguments. All other arguments are allocated a multiple of 8 9254 // bytes. 9255 // 9256 namespace { 9257 class SparcV9ABIInfo : public ABIInfo { 9258 public: 9259 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 9260 9261 private: 9262 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 9263 void computeInfo(CGFunctionInfo &FI) const override; 9264 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9265 QualType Ty) const override; 9266 9267 // Coercion type builder for structs passed in registers. The coercion type 9268 // serves two purposes: 9269 // 9270 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 9271 // in registers. 9272 // 2. Expose aligned floating point elements as first-level elements, so the 9273 // code generator knows to pass them in floating point registers. 9274 // 9275 // We also compute the InReg flag which indicates that the struct contains 9276 // aligned 32-bit floats. 9277 // 9278 struct CoerceBuilder { 9279 llvm::LLVMContext &Context; 9280 const llvm::DataLayout &DL; 9281 SmallVector<llvm::Type*, 8> Elems; 9282 uint64_t Size; 9283 bool InReg; 9284 9285 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 9286 : Context(c), DL(dl), Size(0), InReg(false) {} 9287 9288 // Pad Elems with integers until Size is ToSize. 9289 void pad(uint64_t ToSize) { 9290 assert(ToSize >= Size && "Cannot remove elements"); 9291 if (ToSize == Size) 9292 return; 9293 9294 // Finish the current 64-bit word. 9295 uint64_t Aligned = llvm::alignTo(Size, 64); 9296 if (Aligned > Size && Aligned <= ToSize) { 9297 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 9298 Size = Aligned; 9299 } 9300 9301 // Add whole 64-bit words. 9302 while (Size + 64 <= ToSize) { 9303 Elems.push_back(llvm::Type::getInt64Ty(Context)); 9304 Size += 64; 9305 } 9306 9307 // Final in-word padding. 9308 if (Size < ToSize) { 9309 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 9310 Size = ToSize; 9311 } 9312 } 9313 9314 // Add a floating point element at Offset. 9315 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 9316 // Unaligned floats are treated as integers. 9317 if (Offset % Bits) 9318 return; 9319 // The InReg flag is only required if there are any floats < 64 bits. 9320 if (Bits < 64) 9321 InReg = true; 9322 pad(Offset); 9323 Elems.push_back(Ty); 9324 Size = Offset + Bits; 9325 } 9326 9327 // Add a struct type to the coercion type, starting at Offset (in bits). 9328 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 9329 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 9330 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 9331 llvm::Type *ElemTy = StrTy->getElementType(i); 9332 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 9333 switch (ElemTy->getTypeID()) { 9334 case llvm::Type::StructTyID: 9335 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 9336 break; 9337 case llvm::Type::FloatTyID: 9338 addFloat(ElemOffset, ElemTy, 32); 9339 break; 9340 case llvm::Type::DoubleTyID: 9341 addFloat(ElemOffset, ElemTy, 64); 9342 break; 9343 case llvm::Type::FP128TyID: 9344 addFloat(ElemOffset, ElemTy, 128); 9345 break; 9346 case llvm::Type::PointerTyID: 9347 if (ElemOffset % 64 == 0) { 9348 pad(ElemOffset); 9349 Elems.push_back(ElemTy); 9350 Size += 64; 9351 } 9352 break; 9353 default: 9354 break; 9355 } 9356 } 9357 } 9358 9359 // Check if Ty is a usable substitute for the coercion type. 9360 bool isUsableType(llvm::StructType *Ty) const { 9361 return llvm::makeArrayRef(Elems) == Ty->elements(); 9362 } 9363 9364 // Get the coercion type as a literal struct type. 9365 llvm::Type *getType() const { 9366 if (Elems.size() == 1) 9367 return Elems.front(); 9368 else 9369 return llvm::StructType::get(Context, Elems); 9370 } 9371 }; 9372 }; 9373 } // end anonymous namespace 9374 9375 ABIArgInfo 9376 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 9377 if (Ty->isVoidType()) 9378 return ABIArgInfo::getIgnore(); 9379 9380 uint64_t Size = getContext().getTypeSize(Ty); 9381 9382 // Anything too big to fit in registers is passed with an explicit indirect 9383 // pointer / sret pointer. 9384 if (Size > SizeLimit) 9385 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 9386 9387 // Treat an enum type as its underlying type. 9388 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 9389 Ty = EnumTy->getDecl()->getIntegerType(); 9390 9391 // Integer types smaller than a register are extended. 9392 if (Size < 64 && Ty->isIntegerType()) 9393 return ABIArgInfo::getExtend(Ty); 9394 9395 if (const auto *EIT = Ty->getAs<ExtIntType>()) 9396 if (EIT->getNumBits() < 64) 9397 return ABIArgInfo::getExtend(Ty); 9398 9399 // Other non-aggregates go in registers. 9400 if (!isAggregateTypeForABI(Ty)) 9401 return ABIArgInfo::getDirect(); 9402 9403 // If a C++ object has either a non-trivial copy constructor or a non-trivial 9404 // destructor, it is passed with an explicit indirect pointer / sret pointer. 9405 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 9406 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 9407 9408 // This is a small aggregate type that should be passed in registers. 9409 // Build a coercion type from the LLVM struct type. 9410 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 9411 if (!StrTy) 9412 return ABIArgInfo::getDirect(); 9413 9414 CoerceBuilder CB(getVMContext(), getDataLayout()); 9415 CB.addStruct(0, StrTy); 9416 CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64)); 9417 9418 // Try to use the original type for coercion. 9419 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 9420 9421 if (CB.InReg) 9422 return ABIArgInfo::getDirectInReg(CoerceTy); 9423 else 9424 return ABIArgInfo::getDirect(CoerceTy); 9425 } 9426 9427 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9428 QualType Ty) const { 9429 ABIArgInfo AI = classifyType(Ty, 16 * 8); 9430 llvm::Type *ArgTy = CGT.ConvertType(Ty); 9431 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 9432 AI.setCoerceToType(ArgTy); 9433 9434 CharUnits SlotSize = CharUnits::fromQuantity(8); 9435 9436 CGBuilderTy &Builder = CGF.Builder; 9437 Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 9438 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 9439 9440 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 9441 9442 Address ArgAddr = Address::invalid(); 9443 CharUnits Stride; 9444 switch (AI.getKind()) { 9445 case ABIArgInfo::Expand: 9446 case ABIArgInfo::CoerceAndExpand: 9447 case ABIArgInfo::InAlloca: 9448 llvm_unreachable("Unsupported ABI kind for va_arg"); 9449 9450 case ABIArgInfo::Extend: { 9451 Stride = SlotSize; 9452 CharUnits Offset = SlotSize - TypeInfo.Width; 9453 ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend"); 9454 break; 9455 } 9456 9457 case ABIArgInfo::Direct: { 9458 auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 9459 Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize); 9460 ArgAddr = Addr; 9461 break; 9462 } 9463 9464 case ABIArgInfo::Indirect: 9465 case ABIArgInfo::IndirectAliased: 9466 Stride = SlotSize; 9467 ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect"); 9468 ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), 9469 TypeInfo.Align); 9470 break; 9471 9472 case ABIArgInfo::Ignore: 9473 return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.Align); 9474 } 9475 9476 // Update VAList. 9477 Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next"); 9478 Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 9479 9480 return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr"); 9481 } 9482 9483 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 9484 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 9485 for (auto &I : FI.arguments()) 9486 I.info = classifyType(I.type, 16 * 8); 9487 } 9488 9489 namespace { 9490 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 9491 public: 9492 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 9493 : TargetCodeGenInfo(std::make_unique<SparcV9ABIInfo>(CGT)) {} 9494 9495 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 9496 return 14; 9497 } 9498 9499 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 9500 llvm::Value *Address) const override; 9501 }; 9502 } // end anonymous namespace 9503 9504 bool 9505 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 9506 llvm::Value *Address) const { 9507 // This is calculated from the LLVM and GCC tables and verified 9508 // against gcc output. AFAIK all ABIs use the same encoding. 9509 9510 CodeGen::CGBuilderTy &Builder = CGF.Builder; 9511 9512 llvm::IntegerType *i8 = CGF.Int8Ty; 9513 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 9514 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 9515 9516 // 0-31: the 8-byte general-purpose registers 9517 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 9518 9519 // 32-63: f0-31, the 4-byte floating-point registers 9520 AssignToArrayRange(Builder, Address, Four8, 32, 63); 9521 9522 // Y = 64 9523 // PSR = 65 9524 // WIM = 66 9525 // TBR = 67 9526 // PC = 68 9527 // NPC = 69 9528 // FSR = 70 9529 // CSR = 71 9530 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 9531 9532 // 72-87: d0-15, the 8-byte floating-point registers 9533 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 9534 9535 return false; 9536 } 9537 9538 // ARC ABI implementation. 9539 namespace { 9540 9541 class ARCABIInfo : public DefaultABIInfo { 9542 public: 9543 using DefaultABIInfo::DefaultABIInfo; 9544 9545 private: 9546 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9547 QualType Ty) const override; 9548 9549 void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const { 9550 if (!State.FreeRegs) 9551 return; 9552 if (Info.isIndirect() && Info.getInReg()) 9553 State.FreeRegs--; 9554 else if (Info.isDirect() && Info.getInReg()) { 9555 unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32; 9556 if (sz < State.FreeRegs) 9557 State.FreeRegs -= sz; 9558 else 9559 State.FreeRegs = 0; 9560 } 9561 } 9562 9563 void computeInfo(CGFunctionInfo &FI) const override { 9564 CCState State(FI); 9565 // ARC uses 8 registers to pass arguments. 9566 State.FreeRegs = 8; 9567 9568 if (!getCXXABI().classifyReturnType(FI)) 9569 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 9570 updateState(FI.getReturnInfo(), FI.getReturnType(), State); 9571 for (auto &I : FI.arguments()) { 9572 I.info = classifyArgumentType(I.type, State.FreeRegs); 9573 updateState(I.info, I.type, State); 9574 } 9575 } 9576 9577 ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const; 9578 ABIArgInfo getIndirectByValue(QualType Ty) const; 9579 ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const; 9580 ABIArgInfo classifyReturnType(QualType RetTy) const; 9581 }; 9582 9583 class ARCTargetCodeGenInfo : public TargetCodeGenInfo { 9584 public: 9585 ARCTargetCodeGenInfo(CodeGenTypes &CGT) 9586 : TargetCodeGenInfo(std::make_unique<ARCABIInfo>(CGT)) {} 9587 }; 9588 9589 9590 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const { 9591 return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) : 9592 getNaturalAlignIndirect(Ty, false); 9593 } 9594 9595 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const { 9596 // Compute the byval alignment. 9597 const unsigned MinABIStackAlignInBytes = 4; 9598 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 9599 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 9600 TypeAlign > MinABIStackAlignInBytes); 9601 } 9602 9603 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9604 QualType Ty) const { 9605 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 9606 getContext().getTypeInfoInChars(Ty), 9607 CharUnits::fromQuantity(4), true); 9608 } 9609 9610 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty, 9611 uint8_t FreeRegs) const { 9612 // Handle the generic C++ ABI. 9613 const RecordType *RT = Ty->getAs<RecordType>(); 9614 if (RT) { 9615 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 9616 if (RAA == CGCXXABI::RAA_Indirect) 9617 return getIndirectByRef(Ty, FreeRegs > 0); 9618 9619 if (RAA == CGCXXABI::RAA_DirectInMemory) 9620 return getIndirectByValue(Ty); 9621 } 9622 9623 // Treat an enum type as its underlying type. 9624 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 9625 Ty = EnumTy->getDecl()->getIntegerType(); 9626 9627 auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32; 9628 9629 if (isAggregateTypeForABI(Ty)) { 9630 // Structures with flexible arrays are always indirect. 9631 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 9632 return getIndirectByValue(Ty); 9633 9634 // Ignore empty structs/unions. 9635 if (isEmptyRecord(getContext(), Ty, true)) 9636 return ABIArgInfo::getIgnore(); 9637 9638 llvm::LLVMContext &LLVMContext = getVMContext(); 9639 9640 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 9641 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 9642 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 9643 9644 return FreeRegs >= SizeInRegs ? 9645 ABIArgInfo::getDirectInReg(Result) : 9646 ABIArgInfo::getDirect(Result, 0, nullptr, false); 9647 } 9648 9649 if (const auto *EIT = Ty->getAs<ExtIntType>()) 9650 if (EIT->getNumBits() > 64) 9651 return getIndirectByValue(Ty); 9652 9653 return isPromotableIntegerTypeForABI(Ty) 9654 ? (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty) 9655 : ABIArgInfo::getExtend(Ty)) 9656 : (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg() 9657 : ABIArgInfo::getDirect()); 9658 } 9659 9660 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const { 9661 if (RetTy->isAnyComplexType()) 9662 return ABIArgInfo::getDirectInReg(); 9663 9664 // Arguments of size > 4 registers are indirect. 9665 auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32; 9666 if (RetSize > 4) 9667 return getIndirectByRef(RetTy, /*HasFreeRegs*/ true); 9668 9669 return DefaultABIInfo::classifyReturnType(RetTy); 9670 } 9671 9672 } // End anonymous namespace. 9673 9674 //===----------------------------------------------------------------------===// 9675 // XCore ABI Implementation 9676 //===----------------------------------------------------------------------===// 9677 9678 namespace { 9679 9680 /// A SmallStringEnc instance is used to build up the TypeString by passing 9681 /// it by reference between functions that append to it. 9682 typedef llvm::SmallString<128> SmallStringEnc; 9683 9684 /// TypeStringCache caches the meta encodings of Types. 9685 /// 9686 /// The reason for caching TypeStrings is two fold: 9687 /// 1. To cache a type's encoding for later uses; 9688 /// 2. As a means to break recursive member type inclusion. 9689 /// 9690 /// A cache Entry can have a Status of: 9691 /// NonRecursive: The type encoding is not recursive; 9692 /// Recursive: The type encoding is recursive; 9693 /// Incomplete: An incomplete TypeString; 9694 /// IncompleteUsed: An incomplete TypeString that has been used in a 9695 /// Recursive type encoding. 9696 /// 9697 /// A NonRecursive entry will have all of its sub-members expanded as fully 9698 /// as possible. Whilst it may contain types which are recursive, the type 9699 /// itself is not recursive and thus its encoding may be safely used whenever 9700 /// the type is encountered. 9701 /// 9702 /// A Recursive entry will have all of its sub-members expanded as fully as 9703 /// possible. The type itself is recursive and it may contain other types which 9704 /// are recursive. The Recursive encoding must not be used during the expansion 9705 /// of a recursive type's recursive branch. For simplicity the code uses 9706 /// IncompleteCount to reject all usage of Recursive encodings for member types. 9707 /// 9708 /// An Incomplete entry is always a RecordType and only encodes its 9709 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 9710 /// are placed into the cache during type expansion as a means to identify and 9711 /// handle recursive inclusion of types as sub-members. If there is recursion 9712 /// the entry becomes IncompleteUsed. 9713 /// 9714 /// During the expansion of a RecordType's members: 9715 /// 9716 /// If the cache contains a NonRecursive encoding for the member type, the 9717 /// cached encoding is used; 9718 /// 9719 /// If the cache contains a Recursive encoding for the member type, the 9720 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 9721 /// 9722 /// If the member is a RecordType, an Incomplete encoding is placed into the 9723 /// cache to break potential recursive inclusion of itself as a sub-member; 9724 /// 9725 /// Once a member RecordType has been expanded, its temporary incomplete 9726 /// entry is removed from the cache. If a Recursive encoding was swapped out 9727 /// it is swapped back in; 9728 /// 9729 /// If an incomplete entry is used to expand a sub-member, the incomplete 9730 /// entry is marked as IncompleteUsed. The cache keeps count of how many 9731 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 9732 /// 9733 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 9734 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 9735 /// Else the member is part of a recursive type and thus the recursion has 9736 /// been exited too soon for the encoding to be correct for the member. 9737 /// 9738 class TypeStringCache { 9739 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 9740 struct Entry { 9741 std::string Str; // The encoded TypeString for the type. 9742 enum Status State; // Information about the encoding in 'Str'. 9743 std::string Swapped; // A temporary place holder for a Recursive encoding 9744 // during the expansion of RecordType's members. 9745 }; 9746 std::map<const IdentifierInfo *, struct Entry> Map; 9747 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 9748 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 9749 public: 9750 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {} 9751 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 9752 bool removeIncomplete(const IdentifierInfo *ID); 9753 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 9754 bool IsRecursive); 9755 StringRef lookupStr(const IdentifierInfo *ID); 9756 }; 9757 9758 /// TypeString encodings for enum & union fields must be order. 9759 /// FieldEncoding is a helper for this ordering process. 9760 class FieldEncoding { 9761 bool HasName; 9762 std::string Enc; 9763 public: 9764 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {} 9765 StringRef str() { return Enc; } 9766 bool operator<(const FieldEncoding &rhs) const { 9767 if (HasName != rhs.HasName) return HasName; 9768 return Enc < rhs.Enc; 9769 } 9770 }; 9771 9772 class XCoreABIInfo : public DefaultABIInfo { 9773 public: 9774 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 9775 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9776 QualType Ty) const override; 9777 }; 9778 9779 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 9780 mutable TypeStringCache TSC; 9781 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 9782 const CodeGen::CodeGenModule &M) const; 9783 9784 public: 9785 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 9786 : TargetCodeGenInfo(std::make_unique<XCoreABIInfo>(CGT)) {} 9787 void emitTargetMetadata(CodeGen::CodeGenModule &CGM, 9788 const llvm::MapVector<GlobalDecl, StringRef> 9789 &MangledDeclNames) const override; 9790 }; 9791 9792 } // End anonymous namespace. 9793 9794 // TODO: this implementation is likely now redundant with the default 9795 // EmitVAArg. 9796 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9797 QualType Ty) const { 9798 CGBuilderTy &Builder = CGF.Builder; 9799 9800 // Get the VAList. 9801 CharUnits SlotSize = CharUnits::fromQuantity(4); 9802 Address AP(Builder.CreateLoad(VAListAddr), SlotSize); 9803 9804 // Handle the argument. 9805 ABIArgInfo AI = classifyArgumentType(Ty); 9806 CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty); 9807 llvm::Type *ArgTy = CGT.ConvertType(Ty); 9808 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 9809 AI.setCoerceToType(ArgTy); 9810 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 9811 9812 Address Val = Address::invalid(); 9813 CharUnits ArgSize = CharUnits::Zero(); 9814 switch (AI.getKind()) { 9815 case ABIArgInfo::Expand: 9816 case ABIArgInfo::CoerceAndExpand: 9817 case ABIArgInfo::InAlloca: 9818 llvm_unreachable("Unsupported ABI kind for va_arg"); 9819 case ABIArgInfo::Ignore: 9820 Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign); 9821 ArgSize = CharUnits::Zero(); 9822 break; 9823 case ABIArgInfo::Extend: 9824 case ABIArgInfo::Direct: 9825 Val = Builder.CreateBitCast(AP, ArgPtrTy); 9826 ArgSize = CharUnits::fromQuantity( 9827 getDataLayout().getTypeAllocSize(AI.getCoerceToType())); 9828 ArgSize = ArgSize.alignTo(SlotSize); 9829 break; 9830 case ABIArgInfo::Indirect: 9831 case ABIArgInfo::IndirectAliased: 9832 Val = Builder.CreateElementBitCast(AP, ArgPtrTy); 9833 Val = Address(Builder.CreateLoad(Val), TypeAlign); 9834 ArgSize = SlotSize; 9835 break; 9836 } 9837 9838 // Increment the VAList. 9839 if (!ArgSize.isZero()) { 9840 Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize); 9841 Builder.CreateStore(APN.getPointer(), VAListAddr); 9842 } 9843 9844 return Val; 9845 } 9846 9847 /// During the expansion of a RecordType, an incomplete TypeString is placed 9848 /// into the cache as a means to identify and break recursion. 9849 /// If there is a Recursive encoding in the cache, it is swapped out and will 9850 /// be reinserted by removeIncomplete(). 9851 /// All other types of encoding should have been used rather than arriving here. 9852 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 9853 std::string StubEnc) { 9854 if (!ID) 9855 return; 9856 Entry &E = Map[ID]; 9857 assert( (E.Str.empty() || E.State == Recursive) && 9858 "Incorrectly use of addIncomplete"); 9859 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 9860 E.Swapped.swap(E.Str); // swap out the Recursive 9861 E.Str.swap(StubEnc); 9862 E.State = Incomplete; 9863 ++IncompleteCount; 9864 } 9865 9866 /// Once the RecordType has been expanded, the temporary incomplete TypeString 9867 /// must be removed from the cache. 9868 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 9869 /// Returns true if the RecordType was defined recursively. 9870 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 9871 if (!ID) 9872 return false; 9873 auto I = Map.find(ID); 9874 assert(I != Map.end() && "Entry not present"); 9875 Entry &E = I->second; 9876 assert( (E.State == Incomplete || 9877 E.State == IncompleteUsed) && 9878 "Entry must be an incomplete type"); 9879 bool IsRecursive = false; 9880 if (E.State == IncompleteUsed) { 9881 // We made use of our Incomplete encoding, thus we are recursive. 9882 IsRecursive = true; 9883 --IncompleteUsedCount; 9884 } 9885 if (E.Swapped.empty()) 9886 Map.erase(I); 9887 else { 9888 // Swap the Recursive back. 9889 E.Swapped.swap(E.Str); 9890 E.Swapped.clear(); 9891 E.State = Recursive; 9892 } 9893 --IncompleteCount; 9894 return IsRecursive; 9895 } 9896 9897 /// Add the encoded TypeString to the cache only if it is NonRecursive or 9898 /// Recursive (viz: all sub-members were expanded as fully as possible). 9899 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 9900 bool IsRecursive) { 9901 if (!ID || IncompleteUsedCount) 9902 return; // No key or it is is an incomplete sub-type so don't add. 9903 Entry &E = Map[ID]; 9904 if (IsRecursive && !E.Str.empty()) { 9905 assert(E.State==Recursive && E.Str.size() == Str.size() && 9906 "This is not the same Recursive entry"); 9907 // The parent container was not recursive after all, so we could have used 9908 // this Recursive sub-member entry after all, but we assumed the worse when 9909 // we started viz: IncompleteCount!=0. 9910 return; 9911 } 9912 assert(E.Str.empty() && "Entry already present"); 9913 E.Str = Str.str(); 9914 E.State = IsRecursive? Recursive : NonRecursive; 9915 } 9916 9917 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 9918 /// are recursively expanding a type (IncompleteCount != 0) and the cached 9919 /// encoding is Recursive, return an empty StringRef. 9920 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 9921 if (!ID) 9922 return StringRef(); // We have no key. 9923 auto I = Map.find(ID); 9924 if (I == Map.end()) 9925 return StringRef(); // We have no encoding. 9926 Entry &E = I->second; 9927 if (E.State == Recursive && IncompleteCount) 9928 return StringRef(); // We don't use Recursive encodings for member types. 9929 9930 if (E.State == Incomplete) { 9931 // The incomplete type is being used to break out of recursion. 9932 E.State = IncompleteUsed; 9933 ++IncompleteUsedCount; 9934 } 9935 return E.Str; 9936 } 9937 9938 /// The XCore ABI includes a type information section that communicates symbol 9939 /// type information to the linker. The linker uses this information to verify 9940 /// safety/correctness of things such as array bound and pointers et al. 9941 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 9942 /// This type information (TypeString) is emitted into meta data for all global 9943 /// symbols: definitions, declarations, functions & variables. 9944 /// 9945 /// The TypeString carries type, qualifier, name, size & value details. 9946 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 9947 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf 9948 /// The output is tested by test/CodeGen/xcore-stringtype.c. 9949 /// 9950 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 9951 const CodeGen::CodeGenModule &CGM, 9952 TypeStringCache &TSC); 9953 9954 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 9955 void XCoreTargetCodeGenInfo::emitTargetMD( 9956 const Decl *D, llvm::GlobalValue *GV, 9957 const CodeGen::CodeGenModule &CGM) const { 9958 SmallStringEnc Enc; 9959 if (getTypeString(Enc, D, CGM, TSC)) { 9960 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 9961 llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV), 9962 llvm::MDString::get(Ctx, Enc.str())}; 9963 llvm::NamedMDNode *MD = 9964 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 9965 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 9966 } 9967 } 9968 9969 void XCoreTargetCodeGenInfo::emitTargetMetadata( 9970 CodeGen::CodeGenModule &CGM, 9971 const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames) const { 9972 // Warning, new MangledDeclNames may be appended within this loop. 9973 // We rely on MapVector insertions adding new elements to the end 9974 // of the container. 9975 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 9976 auto Val = *(MangledDeclNames.begin() + I); 9977 llvm::GlobalValue *GV = CGM.GetGlobalValue(Val.second); 9978 if (GV) { 9979 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 9980 emitTargetMD(D, GV, CGM); 9981 } 9982 } 9983 } 9984 //===----------------------------------------------------------------------===// 9985 // SPIR ABI Implementation 9986 //===----------------------------------------------------------------------===// 9987 9988 namespace { 9989 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo { 9990 public: 9991 SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 9992 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 9993 unsigned getOpenCLKernelCallingConv() const override; 9994 }; 9995 9996 } // End anonymous namespace. 9997 9998 namespace clang { 9999 namespace CodeGen { 10000 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) { 10001 DefaultABIInfo SPIRABI(CGM.getTypes()); 10002 SPIRABI.computeInfo(FI); 10003 } 10004 } 10005 } 10006 10007 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 10008 return llvm::CallingConv::SPIR_KERNEL; 10009 } 10010 10011 static bool appendType(SmallStringEnc &Enc, QualType QType, 10012 const CodeGen::CodeGenModule &CGM, 10013 TypeStringCache &TSC); 10014 10015 /// Helper function for appendRecordType(). 10016 /// Builds a SmallVector containing the encoded field types in declaration 10017 /// order. 10018 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 10019 const RecordDecl *RD, 10020 const CodeGen::CodeGenModule &CGM, 10021 TypeStringCache &TSC) { 10022 for (const auto *Field : RD->fields()) { 10023 SmallStringEnc Enc; 10024 Enc += "m("; 10025 Enc += Field->getName(); 10026 Enc += "){"; 10027 if (Field->isBitField()) { 10028 Enc += "b("; 10029 llvm::raw_svector_ostream OS(Enc); 10030 OS << Field->getBitWidthValue(CGM.getContext()); 10031 Enc += ':'; 10032 } 10033 if (!appendType(Enc, Field->getType(), CGM, TSC)) 10034 return false; 10035 if (Field->isBitField()) 10036 Enc += ')'; 10037 Enc += '}'; 10038 FE.emplace_back(!Field->getName().empty(), Enc); 10039 } 10040 return true; 10041 } 10042 10043 /// Appends structure and union types to Enc and adds encoding to cache. 10044 /// Recursively calls appendType (via extractFieldType) for each field. 10045 /// Union types have their fields ordered according to the ABI. 10046 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 10047 const CodeGen::CodeGenModule &CGM, 10048 TypeStringCache &TSC, const IdentifierInfo *ID) { 10049 // Append the cached TypeString if we have one. 10050 StringRef TypeString = TSC.lookupStr(ID); 10051 if (!TypeString.empty()) { 10052 Enc += TypeString; 10053 return true; 10054 } 10055 10056 // Start to emit an incomplete TypeString. 10057 size_t Start = Enc.size(); 10058 Enc += (RT->isUnionType()? 'u' : 's'); 10059 Enc += '('; 10060 if (ID) 10061 Enc += ID->getName(); 10062 Enc += "){"; 10063 10064 // We collect all encoded fields and order as necessary. 10065 bool IsRecursive = false; 10066 const RecordDecl *RD = RT->getDecl()->getDefinition(); 10067 if (RD && !RD->field_empty()) { 10068 // An incomplete TypeString stub is placed in the cache for this RecordType 10069 // so that recursive calls to this RecordType will use it whilst building a 10070 // complete TypeString for this RecordType. 10071 SmallVector<FieldEncoding, 16> FE; 10072 std::string StubEnc(Enc.substr(Start).str()); 10073 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 10074 TSC.addIncomplete(ID, std::move(StubEnc)); 10075 if (!extractFieldType(FE, RD, CGM, TSC)) { 10076 (void) TSC.removeIncomplete(ID); 10077 return false; 10078 } 10079 IsRecursive = TSC.removeIncomplete(ID); 10080 // The ABI requires unions to be sorted but not structures. 10081 // See FieldEncoding::operator< for sort algorithm. 10082 if (RT->isUnionType()) 10083 llvm::sort(FE); 10084 // We can now complete the TypeString. 10085 unsigned E = FE.size(); 10086 for (unsigned I = 0; I != E; ++I) { 10087 if (I) 10088 Enc += ','; 10089 Enc += FE[I].str(); 10090 } 10091 } 10092 Enc += '}'; 10093 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 10094 return true; 10095 } 10096 10097 /// Appends enum types to Enc and adds the encoding to the cache. 10098 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 10099 TypeStringCache &TSC, 10100 const IdentifierInfo *ID) { 10101 // Append the cached TypeString if we have one. 10102 StringRef TypeString = TSC.lookupStr(ID); 10103 if (!TypeString.empty()) { 10104 Enc += TypeString; 10105 return true; 10106 } 10107 10108 size_t Start = Enc.size(); 10109 Enc += "e("; 10110 if (ID) 10111 Enc += ID->getName(); 10112 Enc += "){"; 10113 10114 // We collect all encoded enumerations and order them alphanumerically. 10115 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 10116 SmallVector<FieldEncoding, 16> FE; 10117 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 10118 ++I) { 10119 SmallStringEnc EnumEnc; 10120 EnumEnc += "m("; 10121 EnumEnc += I->getName(); 10122 EnumEnc += "){"; 10123 I->getInitVal().toString(EnumEnc); 10124 EnumEnc += '}'; 10125 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 10126 } 10127 llvm::sort(FE); 10128 unsigned E = FE.size(); 10129 for (unsigned I = 0; I != E; ++I) { 10130 if (I) 10131 Enc += ','; 10132 Enc += FE[I].str(); 10133 } 10134 } 10135 Enc += '}'; 10136 TSC.addIfComplete(ID, Enc.substr(Start), false); 10137 return true; 10138 } 10139 10140 /// Appends type's qualifier to Enc. 10141 /// This is done prior to appending the type's encoding. 10142 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 10143 // Qualifiers are emitted in alphabetical order. 10144 static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 10145 int Lookup = 0; 10146 if (QT.isConstQualified()) 10147 Lookup += 1<<0; 10148 if (QT.isRestrictQualified()) 10149 Lookup += 1<<1; 10150 if (QT.isVolatileQualified()) 10151 Lookup += 1<<2; 10152 Enc += Table[Lookup]; 10153 } 10154 10155 /// Appends built-in types to Enc. 10156 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 10157 const char *EncType; 10158 switch (BT->getKind()) { 10159 case BuiltinType::Void: 10160 EncType = "0"; 10161 break; 10162 case BuiltinType::Bool: 10163 EncType = "b"; 10164 break; 10165 case BuiltinType::Char_U: 10166 EncType = "uc"; 10167 break; 10168 case BuiltinType::UChar: 10169 EncType = "uc"; 10170 break; 10171 case BuiltinType::SChar: 10172 EncType = "sc"; 10173 break; 10174 case BuiltinType::UShort: 10175 EncType = "us"; 10176 break; 10177 case BuiltinType::Short: 10178 EncType = "ss"; 10179 break; 10180 case BuiltinType::UInt: 10181 EncType = "ui"; 10182 break; 10183 case BuiltinType::Int: 10184 EncType = "si"; 10185 break; 10186 case BuiltinType::ULong: 10187 EncType = "ul"; 10188 break; 10189 case BuiltinType::Long: 10190 EncType = "sl"; 10191 break; 10192 case BuiltinType::ULongLong: 10193 EncType = "ull"; 10194 break; 10195 case BuiltinType::LongLong: 10196 EncType = "sll"; 10197 break; 10198 case BuiltinType::Float: 10199 EncType = "ft"; 10200 break; 10201 case BuiltinType::Double: 10202 EncType = "d"; 10203 break; 10204 case BuiltinType::LongDouble: 10205 EncType = "ld"; 10206 break; 10207 default: 10208 return false; 10209 } 10210 Enc += EncType; 10211 return true; 10212 } 10213 10214 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 10215 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 10216 const CodeGen::CodeGenModule &CGM, 10217 TypeStringCache &TSC) { 10218 Enc += "p("; 10219 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 10220 return false; 10221 Enc += ')'; 10222 return true; 10223 } 10224 10225 /// Appends array encoding to Enc before calling appendType for the element. 10226 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 10227 const ArrayType *AT, 10228 const CodeGen::CodeGenModule &CGM, 10229 TypeStringCache &TSC, StringRef NoSizeEnc) { 10230 if (AT->getSizeModifier() != ArrayType::Normal) 10231 return false; 10232 Enc += "a("; 10233 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 10234 CAT->getSize().toStringUnsigned(Enc); 10235 else 10236 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 10237 Enc += ':'; 10238 // The Qualifiers should be attached to the type rather than the array. 10239 appendQualifier(Enc, QT); 10240 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 10241 return false; 10242 Enc += ')'; 10243 return true; 10244 } 10245 10246 /// Appends a function encoding to Enc, calling appendType for the return type 10247 /// and the arguments. 10248 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 10249 const CodeGen::CodeGenModule &CGM, 10250 TypeStringCache &TSC) { 10251 Enc += "f{"; 10252 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 10253 return false; 10254 Enc += "}("; 10255 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 10256 // N.B. we are only interested in the adjusted param types. 10257 auto I = FPT->param_type_begin(); 10258 auto E = FPT->param_type_end(); 10259 if (I != E) { 10260 do { 10261 if (!appendType(Enc, *I, CGM, TSC)) 10262 return false; 10263 ++I; 10264 if (I != E) 10265 Enc += ','; 10266 } while (I != E); 10267 if (FPT->isVariadic()) 10268 Enc += ",va"; 10269 } else { 10270 if (FPT->isVariadic()) 10271 Enc += "va"; 10272 else 10273 Enc += '0'; 10274 } 10275 } 10276 Enc += ')'; 10277 return true; 10278 } 10279 10280 /// Handles the type's qualifier before dispatching a call to handle specific 10281 /// type encodings. 10282 static bool appendType(SmallStringEnc &Enc, QualType QType, 10283 const CodeGen::CodeGenModule &CGM, 10284 TypeStringCache &TSC) { 10285 10286 QualType QT = QType.getCanonicalType(); 10287 10288 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 10289 // The Qualifiers should be attached to the type rather than the array. 10290 // Thus we don't call appendQualifier() here. 10291 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 10292 10293 appendQualifier(Enc, QT); 10294 10295 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 10296 return appendBuiltinType(Enc, BT); 10297 10298 if (const PointerType *PT = QT->getAs<PointerType>()) 10299 return appendPointerType(Enc, PT, CGM, TSC); 10300 10301 if (const EnumType *ET = QT->getAs<EnumType>()) 10302 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 10303 10304 if (const RecordType *RT = QT->getAsStructureType()) 10305 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 10306 10307 if (const RecordType *RT = QT->getAsUnionType()) 10308 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 10309 10310 if (const FunctionType *FT = QT->getAs<FunctionType>()) 10311 return appendFunctionType(Enc, FT, CGM, TSC); 10312 10313 return false; 10314 } 10315 10316 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 10317 const CodeGen::CodeGenModule &CGM, 10318 TypeStringCache &TSC) { 10319 if (!D) 10320 return false; 10321 10322 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 10323 if (FD->getLanguageLinkage() != CLanguageLinkage) 10324 return false; 10325 return appendType(Enc, FD->getType(), CGM, TSC); 10326 } 10327 10328 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 10329 if (VD->getLanguageLinkage() != CLanguageLinkage) 10330 return false; 10331 QualType QT = VD->getType().getCanonicalType(); 10332 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 10333 // Global ArrayTypes are given a size of '*' if the size is unknown. 10334 // The Qualifiers should be attached to the type rather than the array. 10335 // Thus we don't call appendQualifier() here. 10336 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 10337 } 10338 return appendType(Enc, QT, CGM, TSC); 10339 } 10340 return false; 10341 } 10342 10343 //===----------------------------------------------------------------------===// 10344 // RISCV ABI Implementation 10345 //===----------------------------------------------------------------------===// 10346 10347 namespace { 10348 class RISCVABIInfo : public DefaultABIInfo { 10349 private: 10350 // Size of the integer ('x') registers in bits. 10351 unsigned XLen; 10352 // Size of the floating point ('f') registers in bits. Note that the target 10353 // ISA might have a wider FLen than the selected ABI (e.g. an RV32IF target 10354 // with soft float ABI has FLen==0). 10355 unsigned FLen; 10356 static const int NumArgGPRs = 8; 10357 static const int NumArgFPRs = 8; 10358 bool detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, 10359 llvm::Type *&Field1Ty, 10360 CharUnits &Field1Off, 10361 llvm::Type *&Field2Ty, 10362 CharUnits &Field2Off) const; 10363 10364 public: 10365 RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen) 10366 : DefaultABIInfo(CGT), XLen(XLen), FLen(FLen) {} 10367 10368 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 10369 // non-virtual, but computeInfo is virtual, so we overload it. 10370 void computeInfo(CGFunctionInfo &FI) const override; 10371 10372 ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &ArgGPRsLeft, 10373 int &ArgFPRsLeft) const; 10374 ABIArgInfo classifyReturnType(QualType RetTy) const; 10375 10376 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 10377 QualType Ty) const override; 10378 10379 ABIArgInfo extendType(QualType Ty) const; 10380 10381 bool detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, 10382 CharUnits &Field1Off, llvm::Type *&Field2Ty, 10383 CharUnits &Field2Off, int &NeededArgGPRs, 10384 int &NeededArgFPRs) const; 10385 ABIArgInfo coerceAndExpandFPCCEligibleStruct(llvm::Type *Field1Ty, 10386 CharUnits Field1Off, 10387 llvm::Type *Field2Ty, 10388 CharUnits Field2Off) const; 10389 }; 10390 } // end anonymous namespace 10391 10392 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const { 10393 QualType RetTy = FI.getReturnType(); 10394 if (!getCXXABI().classifyReturnType(FI)) 10395 FI.getReturnInfo() = classifyReturnType(RetTy); 10396 10397 // IsRetIndirect is true if classifyArgumentType indicated the value should 10398 // be passed indirect, or if the type size is a scalar greater than 2*XLen 10399 // and not a complex type with elements <= FLen. e.g. fp128 is passed direct 10400 // in LLVM IR, relying on the backend lowering code to rewrite the argument 10401 // list and pass indirectly on RV32. 10402 bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect; 10403 if (!IsRetIndirect && RetTy->isScalarType() && 10404 getContext().getTypeSize(RetTy) > (2 * XLen)) { 10405 if (RetTy->isComplexType() && FLen) { 10406 QualType EltTy = RetTy->getAs<ComplexType>()->getElementType(); 10407 IsRetIndirect = getContext().getTypeSize(EltTy) > FLen; 10408 } else { 10409 // This is a normal scalar > 2*XLen, such as fp128 on RV32. 10410 IsRetIndirect = true; 10411 } 10412 } 10413 10414 // We must track the number of GPRs used in order to conform to the RISC-V 10415 // ABI, as integer scalars passed in registers should have signext/zeroext 10416 // when promoted, but are anyext if passed on the stack. As GPR usage is 10417 // different for variadic arguments, we must also track whether we are 10418 // examining a vararg or not. 10419 int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs; 10420 int ArgFPRsLeft = FLen ? NumArgFPRs : 0; 10421 int NumFixedArgs = FI.getNumRequiredArgs(); 10422 10423 int ArgNum = 0; 10424 for (auto &ArgInfo : FI.arguments()) { 10425 bool IsFixed = ArgNum < NumFixedArgs; 10426 ArgInfo.info = 10427 classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft, ArgFPRsLeft); 10428 ArgNum++; 10429 } 10430 } 10431 10432 // Returns true if the struct is a potential candidate for the floating point 10433 // calling convention. If this function returns true, the caller is 10434 // responsible for checking that if there is only a single field then that 10435 // field is a float. 10436 bool RISCVABIInfo::detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, 10437 llvm::Type *&Field1Ty, 10438 CharUnits &Field1Off, 10439 llvm::Type *&Field2Ty, 10440 CharUnits &Field2Off) const { 10441 bool IsInt = Ty->isIntegralOrEnumerationType(); 10442 bool IsFloat = Ty->isRealFloatingType(); 10443 10444 if (IsInt || IsFloat) { 10445 uint64_t Size = getContext().getTypeSize(Ty); 10446 if (IsInt && Size > XLen) 10447 return false; 10448 // Can't be eligible if larger than the FP registers. Half precision isn't 10449 // currently supported on RISC-V and the ABI hasn't been confirmed, so 10450 // default to the integer ABI in that case. 10451 if (IsFloat && (Size > FLen || Size < 32)) 10452 return false; 10453 // Can't be eligible if an integer type was already found (int+int pairs 10454 // are not eligible). 10455 if (IsInt && Field1Ty && Field1Ty->isIntegerTy()) 10456 return false; 10457 if (!Field1Ty) { 10458 Field1Ty = CGT.ConvertType(Ty); 10459 Field1Off = CurOff; 10460 return true; 10461 } 10462 if (!Field2Ty) { 10463 Field2Ty = CGT.ConvertType(Ty); 10464 Field2Off = CurOff; 10465 return true; 10466 } 10467 return false; 10468 } 10469 10470 if (auto CTy = Ty->getAs<ComplexType>()) { 10471 if (Field1Ty) 10472 return false; 10473 QualType EltTy = CTy->getElementType(); 10474 if (getContext().getTypeSize(EltTy) > FLen) 10475 return false; 10476 Field1Ty = CGT.ConvertType(EltTy); 10477 Field1Off = CurOff; 10478 assert(CurOff.isZero() && "Unexpected offset for first field"); 10479 Field2Ty = Field1Ty; 10480 Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy); 10481 return true; 10482 } 10483 10484 if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) { 10485 uint64_t ArraySize = ATy->getSize().getZExtValue(); 10486 QualType EltTy = ATy->getElementType(); 10487 CharUnits EltSize = getContext().getTypeSizeInChars(EltTy); 10488 for (uint64_t i = 0; i < ArraySize; ++i) { 10489 bool Ret = detectFPCCEligibleStructHelper(EltTy, CurOff, Field1Ty, 10490 Field1Off, Field2Ty, Field2Off); 10491 if (!Ret) 10492 return false; 10493 CurOff += EltSize; 10494 } 10495 return true; 10496 } 10497 10498 if (const auto *RTy = Ty->getAs<RecordType>()) { 10499 // Structures with either a non-trivial destructor or a non-trivial 10500 // copy constructor are not eligible for the FP calling convention. 10501 if (getRecordArgABI(Ty, CGT.getCXXABI())) 10502 return false; 10503 if (isEmptyRecord(getContext(), Ty, true)) 10504 return true; 10505 const RecordDecl *RD = RTy->getDecl(); 10506 // Unions aren't eligible unless they're empty (which is caught above). 10507 if (RD->isUnion()) 10508 return false; 10509 int ZeroWidthBitFieldCount = 0; 10510 for (const FieldDecl *FD : RD->fields()) { 10511 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 10512 uint64_t FieldOffInBits = Layout.getFieldOffset(FD->getFieldIndex()); 10513 QualType QTy = FD->getType(); 10514 if (FD->isBitField()) { 10515 unsigned BitWidth = FD->getBitWidthValue(getContext()); 10516 // Allow a bitfield with a type greater than XLen as long as the 10517 // bitwidth is XLen or less. 10518 if (getContext().getTypeSize(QTy) > XLen && BitWidth <= XLen) 10519 QTy = getContext().getIntTypeForBitwidth(XLen, false); 10520 if (BitWidth == 0) { 10521 ZeroWidthBitFieldCount++; 10522 continue; 10523 } 10524 } 10525 10526 bool Ret = detectFPCCEligibleStructHelper( 10527 QTy, CurOff + getContext().toCharUnitsFromBits(FieldOffInBits), 10528 Field1Ty, Field1Off, Field2Ty, Field2Off); 10529 if (!Ret) 10530 return false; 10531 10532 // As a quirk of the ABI, zero-width bitfields aren't ignored for fp+fp 10533 // or int+fp structs, but are ignored for a struct with an fp field and 10534 // any number of zero-width bitfields. 10535 if (Field2Ty && ZeroWidthBitFieldCount > 0) 10536 return false; 10537 } 10538 return Field1Ty != nullptr; 10539 } 10540 10541 return false; 10542 } 10543 10544 // Determine if a struct is eligible for passing according to the floating 10545 // point calling convention (i.e., when flattened it contains a single fp 10546 // value, fp+fp, or int+fp of appropriate size). If so, NeededArgFPRs and 10547 // NeededArgGPRs are incremented appropriately. 10548 bool RISCVABIInfo::detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, 10549 CharUnits &Field1Off, 10550 llvm::Type *&Field2Ty, 10551 CharUnits &Field2Off, 10552 int &NeededArgGPRs, 10553 int &NeededArgFPRs) const { 10554 Field1Ty = nullptr; 10555 Field2Ty = nullptr; 10556 NeededArgGPRs = 0; 10557 NeededArgFPRs = 0; 10558 bool IsCandidate = detectFPCCEligibleStructHelper( 10559 Ty, CharUnits::Zero(), Field1Ty, Field1Off, Field2Ty, Field2Off); 10560 // Not really a candidate if we have a single int but no float. 10561 if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy()) 10562 return false; 10563 if (!IsCandidate) 10564 return false; 10565 if (Field1Ty && Field1Ty->isFloatingPointTy()) 10566 NeededArgFPRs++; 10567 else if (Field1Ty) 10568 NeededArgGPRs++; 10569 if (Field2Ty && Field2Ty->isFloatingPointTy()) 10570 NeededArgFPRs++; 10571 else if (Field2Ty) 10572 NeededArgGPRs++; 10573 return IsCandidate; 10574 } 10575 10576 // Call getCoerceAndExpand for the two-element flattened struct described by 10577 // Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an 10578 // appropriate coerceToType and unpaddedCoerceToType. 10579 ABIArgInfo RISCVABIInfo::coerceAndExpandFPCCEligibleStruct( 10580 llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty, 10581 CharUnits Field2Off) const { 10582 SmallVector<llvm::Type *, 3> CoerceElts; 10583 SmallVector<llvm::Type *, 2> UnpaddedCoerceElts; 10584 if (!Field1Off.isZero()) 10585 CoerceElts.push_back(llvm::ArrayType::get( 10586 llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity())); 10587 10588 CoerceElts.push_back(Field1Ty); 10589 UnpaddedCoerceElts.push_back(Field1Ty); 10590 10591 if (!Field2Ty) { 10592 return ABIArgInfo::getCoerceAndExpand( 10593 llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()), 10594 UnpaddedCoerceElts[0]); 10595 } 10596 10597 CharUnits Field2Align = 10598 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(Field2Ty)); 10599 CharUnits Field1Size = 10600 CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty)); 10601 CharUnits Field2OffNoPadNoPack = Field1Size.alignTo(Field2Align); 10602 10603 CharUnits Padding = CharUnits::Zero(); 10604 if (Field2Off > Field2OffNoPadNoPack) 10605 Padding = Field2Off - Field2OffNoPadNoPack; 10606 else if (Field2Off != Field2Align && Field2Off > Field1Size) 10607 Padding = Field2Off - Field1Size; 10608 10609 bool IsPacked = !Field2Off.isMultipleOf(Field2Align); 10610 10611 if (!Padding.isZero()) 10612 CoerceElts.push_back(llvm::ArrayType::get( 10613 llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity())); 10614 10615 CoerceElts.push_back(Field2Ty); 10616 UnpaddedCoerceElts.push_back(Field2Ty); 10617 10618 auto CoerceToType = 10619 llvm::StructType::get(getVMContext(), CoerceElts, IsPacked); 10620 auto UnpaddedCoerceToType = 10621 llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked); 10622 10623 return ABIArgInfo::getCoerceAndExpand(CoerceToType, UnpaddedCoerceToType); 10624 } 10625 10626 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed, 10627 int &ArgGPRsLeft, 10628 int &ArgFPRsLeft) const { 10629 assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow"); 10630 Ty = useFirstFieldIfTransparentUnion(Ty); 10631 10632 // Structures with either a non-trivial destructor or a non-trivial 10633 // copy constructor are always passed indirectly. 10634 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 10635 if (ArgGPRsLeft) 10636 ArgGPRsLeft -= 1; 10637 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 10638 CGCXXABI::RAA_DirectInMemory); 10639 } 10640 10641 // Ignore empty structs/unions. 10642 if (isEmptyRecord(getContext(), Ty, true)) 10643 return ABIArgInfo::getIgnore(); 10644 10645 uint64_t Size = getContext().getTypeSize(Ty); 10646 10647 // Pass floating point values via FPRs if possible. 10648 if (IsFixed && Ty->isFloatingType() && !Ty->isComplexType() && 10649 FLen >= Size && ArgFPRsLeft) { 10650 ArgFPRsLeft--; 10651 return ABIArgInfo::getDirect(); 10652 } 10653 10654 // Complex types for the hard float ABI must be passed direct rather than 10655 // using CoerceAndExpand. 10656 if (IsFixed && Ty->isComplexType() && FLen && ArgFPRsLeft >= 2) { 10657 QualType EltTy = Ty->castAs<ComplexType>()->getElementType(); 10658 if (getContext().getTypeSize(EltTy) <= FLen) { 10659 ArgFPRsLeft -= 2; 10660 return ABIArgInfo::getDirect(); 10661 } 10662 } 10663 10664 if (IsFixed && FLen && Ty->isStructureOrClassType()) { 10665 llvm::Type *Field1Ty = nullptr; 10666 llvm::Type *Field2Ty = nullptr; 10667 CharUnits Field1Off = CharUnits::Zero(); 10668 CharUnits Field2Off = CharUnits::Zero(); 10669 int NeededArgGPRs; 10670 int NeededArgFPRs; 10671 bool IsCandidate = 10672 detectFPCCEligibleStruct(Ty, Field1Ty, Field1Off, Field2Ty, Field2Off, 10673 NeededArgGPRs, NeededArgFPRs); 10674 if (IsCandidate && NeededArgGPRs <= ArgGPRsLeft && 10675 NeededArgFPRs <= ArgFPRsLeft) { 10676 ArgGPRsLeft -= NeededArgGPRs; 10677 ArgFPRsLeft -= NeededArgFPRs; 10678 return coerceAndExpandFPCCEligibleStruct(Field1Ty, Field1Off, Field2Ty, 10679 Field2Off); 10680 } 10681 } 10682 10683 uint64_t NeededAlign = getContext().getTypeAlign(Ty); 10684 bool MustUseStack = false; 10685 // Determine the number of GPRs needed to pass the current argument 10686 // according to the ABI. 2*XLen-aligned varargs are passed in "aligned" 10687 // register pairs, so may consume 3 registers. 10688 int NeededArgGPRs = 1; 10689 if (!IsFixed && NeededAlign == 2 * XLen) 10690 NeededArgGPRs = 2 + (ArgGPRsLeft % 2); 10691 else if (Size > XLen && Size <= 2 * XLen) 10692 NeededArgGPRs = 2; 10693 10694 if (NeededArgGPRs > ArgGPRsLeft) { 10695 MustUseStack = true; 10696 NeededArgGPRs = ArgGPRsLeft; 10697 } 10698 10699 ArgGPRsLeft -= NeededArgGPRs; 10700 10701 if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) { 10702 // Treat an enum type as its underlying type. 10703 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 10704 Ty = EnumTy->getDecl()->getIntegerType(); 10705 10706 // All integral types are promoted to XLen width, unless passed on the 10707 // stack. 10708 if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) { 10709 return extendType(Ty); 10710 } 10711 10712 if (const auto *EIT = Ty->getAs<ExtIntType>()) { 10713 if (EIT->getNumBits() < XLen && !MustUseStack) 10714 return extendType(Ty); 10715 if (EIT->getNumBits() > 128 || 10716 (!getContext().getTargetInfo().hasInt128Type() && 10717 EIT->getNumBits() > 64)) 10718 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 10719 } 10720 10721 return ABIArgInfo::getDirect(); 10722 } 10723 10724 // Aggregates which are <= 2*XLen will be passed in registers if possible, 10725 // so coerce to integers. 10726 if (Size <= 2 * XLen) { 10727 unsigned Alignment = getContext().getTypeAlign(Ty); 10728 10729 // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is 10730 // required, and a 2-element XLen array if only XLen alignment is required. 10731 if (Size <= XLen) { 10732 return ABIArgInfo::getDirect( 10733 llvm::IntegerType::get(getVMContext(), XLen)); 10734 } else if (Alignment == 2 * XLen) { 10735 return ABIArgInfo::getDirect( 10736 llvm::IntegerType::get(getVMContext(), 2 * XLen)); 10737 } else { 10738 return ABIArgInfo::getDirect(llvm::ArrayType::get( 10739 llvm::IntegerType::get(getVMContext(), XLen), 2)); 10740 } 10741 } 10742 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 10743 } 10744 10745 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const { 10746 if (RetTy->isVoidType()) 10747 return ABIArgInfo::getIgnore(); 10748 10749 int ArgGPRsLeft = 2; 10750 int ArgFPRsLeft = FLen ? 2 : 0; 10751 10752 // The rules for return and argument types are the same, so defer to 10753 // classifyArgumentType. 10754 return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft, 10755 ArgFPRsLeft); 10756 } 10757 10758 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 10759 QualType Ty) const { 10760 CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8); 10761 10762 // Empty records are ignored for parameter passing purposes. 10763 if (isEmptyRecord(getContext(), Ty, true)) { 10764 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 10765 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 10766 return Addr; 10767 } 10768 10769 auto TInfo = getContext().getTypeInfoInChars(Ty); 10770 10771 // Arguments bigger than 2*Xlen bytes are passed indirectly. 10772 bool IsIndirect = TInfo.Width > 2 * SlotSize; 10773 10774 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TInfo, 10775 SlotSize, /*AllowHigherAlign=*/true); 10776 } 10777 10778 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const { 10779 int TySize = getContext().getTypeSize(Ty); 10780 // RV64 ABI requires unsigned 32 bit integers to be sign extended. 10781 if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 10782 return ABIArgInfo::getSignExtend(Ty); 10783 return ABIArgInfo::getExtend(Ty); 10784 } 10785 10786 namespace { 10787 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo { 10788 public: 10789 RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, 10790 unsigned FLen) 10791 : TargetCodeGenInfo(std::make_unique<RISCVABIInfo>(CGT, XLen, FLen)) {} 10792 10793 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 10794 CodeGen::CodeGenModule &CGM) const override { 10795 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 10796 if (!FD) return; 10797 10798 const auto *Attr = FD->getAttr<RISCVInterruptAttr>(); 10799 if (!Attr) 10800 return; 10801 10802 const char *Kind; 10803 switch (Attr->getInterrupt()) { 10804 case RISCVInterruptAttr::user: Kind = "user"; break; 10805 case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break; 10806 case RISCVInterruptAttr::machine: Kind = "machine"; break; 10807 } 10808 10809 auto *Fn = cast<llvm::Function>(GV); 10810 10811 Fn->addFnAttr("interrupt", Kind); 10812 } 10813 }; 10814 } // namespace 10815 10816 //===----------------------------------------------------------------------===// 10817 // VE ABI Implementation. 10818 // 10819 namespace { 10820 class VEABIInfo : public DefaultABIInfo { 10821 public: 10822 VEABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 10823 10824 private: 10825 ABIArgInfo classifyReturnType(QualType RetTy) const; 10826 ABIArgInfo classifyArgumentType(QualType RetTy) const; 10827 void computeInfo(CGFunctionInfo &FI) const override; 10828 }; 10829 } // end anonymous namespace 10830 10831 ABIArgInfo VEABIInfo::classifyReturnType(QualType Ty) const { 10832 if (Ty->isAnyComplexType()) 10833 return ABIArgInfo::getDirect(); 10834 uint64_t Size = getContext().getTypeSize(Ty); 10835 if (Size < 64 && Ty->isIntegerType()) 10836 return ABIArgInfo::getExtend(Ty); 10837 return DefaultABIInfo::classifyReturnType(Ty); 10838 } 10839 10840 ABIArgInfo VEABIInfo::classifyArgumentType(QualType Ty) const { 10841 if (Ty->isAnyComplexType()) 10842 return ABIArgInfo::getDirect(); 10843 uint64_t Size = getContext().getTypeSize(Ty); 10844 if (Size < 64 && Ty->isIntegerType()) 10845 return ABIArgInfo::getExtend(Ty); 10846 return DefaultABIInfo::classifyArgumentType(Ty); 10847 } 10848 10849 void VEABIInfo::computeInfo(CGFunctionInfo &FI) const { 10850 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 10851 for (auto &Arg : FI.arguments()) 10852 Arg.info = classifyArgumentType(Arg.type); 10853 } 10854 10855 namespace { 10856 class VETargetCodeGenInfo : public TargetCodeGenInfo { 10857 public: 10858 VETargetCodeGenInfo(CodeGenTypes &CGT) 10859 : TargetCodeGenInfo(std::make_unique<VEABIInfo>(CGT)) {} 10860 // VE ABI requires the arguments of variadic and prototype-less functions 10861 // are passed in both registers and memory. 10862 bool isNoProtoCallVariadic(const CallArgList &args, 10863 const FunctionNoProtoType *fnType) const override { 10864 return true; 10865 } 10866 }; 10867 } // end anonymous namespace 10868 10869 //===----------------------------------------------------------------------===// 10870 // Driver code 10871 //===----------------------------------------------------------------------===// 10872 10873 bool CodeGenModule::supportsCOMDAT() const { 10874 return getTriple().supportsCOMDAT(); 10875 } 10876 10877 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 10878 if (TheTargetCodeGenInfo) 10879 return *TheTargetCodeGenInfo; 10880 10881 // Helper to set the unique_ptr while still keeping the return value. 10882 auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & { 10883 this->TheTargetCodeGenInfo.reset(P); 10884 return *P; 10885 }; 10886 10887 const llvm::Triple &Triple = getTarget().getTriple(); 10888 switch (Triple.getArch()) { 10889 default: 10890 return SetCGInfo(new DefaultTargetCodeGenInfo(Types)); 10891 10892 case llvm::Triple::le32: 10893 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 10894 case llvm::Triple::mips: 10895 case llvm::Triple::mipsel: 10896 if (Triple.getOS() == llvm::Triple::NaCl) 10897 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 10898 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true)); 10899 10900 case llvm::Triple::mips64: 10901 case llvm::Triple::mips64el: 10902 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false)); 10903 10904 case llvm::Triple::avr: 10905 return SetCGInfo(new AVRTargetCodeGenInfo(Types)); 10906 10907 case llvm::Triple::aarch64: 10908 case llvm::Triple::aarch64_32: 10909 case llvm::Triple::aarch64_be: { 10910 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 10911 if (getTarget().getABI() == "darwinpcs") 10912 Kind = AArch64ABIInfo::DarwinPCS; 10913 else if (Triple.isOSWindows()) 10914 return SetCGInfo( 10915 new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64)); 10916 10917 return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind)); 10918 } 10919 10920 case llvm::Triple::wasm32: 10921 case llvm::Triple::wasm64: { 10922 WebAssemblyABIInfo::ABIKind Kind = WebAssemblyABIInfo::MVP; 10923 if (getTarget().getABI() == "experimental-mv") 10924 Kind = WebAssemblyABIInfo::ExperimentalMV; 10925 return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types, Kind)); 10926 } 10927 10928 case llvm::Triple::arm: 10929 case llvm::Triple::armeb: 10930 case llvm::Triple::thumb: 10931 case llvm::Triple::thumbeb: { 10932 if (Triple.getOS() == llvm::Triple::Win32) { 10933 return SetCGInfo( 10934 new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP)); 10935 } 10936 10937 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 10938 StringRef ABIStr = getTarget().getABI(); 10939 if (ABIStr == "apcs-gnu") 10940 Kind = ARMABIInfo::APCS; 10941 else if (ABIStr == "aapcs16") 10942 Kind = ARMABIInfo::AAPCS16_VFP; 10943 else if (CodeGenOpts.FloatABI == "hard" || 10944 (CodeGenOpts.FloatABI != "soft" && 10945 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 10946 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 10947 Triple.getEnvironment() == llvm::Triple::EABIHF))) 10948 Kind = ARMABIInfo::AAPCS_VFP; 10949 10950 return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind)); 10951 } 10952 10953 case llvm::Triple::ppc: { 10954 if (Triple.isOSAIX()) 10955 return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ false)); 10956 10957 bool IsSoftFloat = 10958 CodeGenOpts.FloatABI == "soft" || getTarget().hasFeature("spe"); 10959 bool RetSmallStructInRegABI = 10960 PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 10961 return SetCGInfo( 10962 new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI)); 10963 } 10964 case llvm::Triple::ppc64: 10965 if (Triple.isOSAIX()) 10966 return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ true)); 10967 10968 if (Triple.isOSBinFormatELF()) { 10969 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 10970 if (getTarget().getABI() == "elfv2") 10971 Kind = PPC64_SVR4_ABIInfo::ELFv2; 10972 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 10973 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 10974 10975 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 10976 IsSoftFloat)); 10977 } 10978 return SetCGInfo(new PPC64TargetCodeGenInfo(Types)); 10979 case llvm::Triple::ppc64le: { 10980 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 10981 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 10982 if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx") 10983 Kind = PPC64_SVR4_ABIInfo::ELFv1; 10984 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 10985 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 10986 10987 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 10988 IsSoftFloat)); 10989 } 10990 10991 case llvm::Triple::nvptx: 10992 case llvm::Triple::nvptx64: 10993 return SetCGInfo(new NVPTXTargetCodeGenInfo(Types)); 10994 10995 case llvm::Triple::msp430: 10996 return SetCGInfo(new MSP430TargetCodeGenInfo(Types)); 10997 10998 case llvm::Triple::riscv32: 10999 case llvm::Triple::riscv64: { 11000 StringRef ABIStr = getTarget().getABI(); 11001 unsigned XLen = getTarget().getPointerWidth(0); 11002 unsigned ABIFLen = 0; 11003 if (ABIStr.endswith("f")) 11004 ABIFLen = 32; 11005 else if (ABIStr.endswith("d")) 11006 ABIFLen = 64; 11007 return SetCGInfo(new RISCVTargetCodeGenInfo(Types, XLen, ABIFLen)); 11008 } 11009 11010 case llvm::Triple::systemz: { 11011 bool SoftFloat = CodeGenOpts.FloatABI == "soft"; 11012 bool HasVector = !SoftFloat && getTarget().getABI() == "vector"; 11013 return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector, SoftFloat)); 11014 } 11015 11016 case llvm::Triple::tce: 11017 case llvm::Triple::tcele: 11018 return SetCGInfo(new TCETargetCodeGenInfo(Types)); 11019 11020 case llvm::Triple::x86: { 11021 bool IsDarwinVectorABI = Triple.isOSDarwin(); 11022 bool RetSmallStructInRegABI = 11023 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 11024 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 11025 11026 if (Triple.getOS() == llvm::Triple::Win32) { 11027 return SetCGInfo(new WinX86_32TargetCodeGenInfo( 11028 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 11029 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); 11030 } else { 11031 return SetCGInfo(new X86_32TargetCodeGenInfo( 11032 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 11033 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters, 11034 CodeGenOpts.FloatABI == "soft")); 11035 } 11036 } 11037 11038 case llvm::Triple::x86_64: { 11039 StringRef ABI = getTarget().getABI(); 11040 X86AVXABILevel AVXLevel = 11041 (ABI == "avx512" 11042 ? X86AVXABILevel::AVX512 11043 : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None); 11044 11045 switch (Triple.getOS()) { 11046 case llvm::Triple::Win32: 11047 return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel)); 11048 default: 11049 return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel)); 11050 } 11051 } 11052 case llvm::Triple::hexagon: 11053 return SetCGInfo(new HexagonTargetCodeGenInfo(Types)); 11054 case llvm::Triple::lanai: 11055 return SetCGInfo(new LanaiTargetCodeGenInfo(Types)); 11056 case llvm::Triple::r600: 11057 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 11058 case llvm::Triple::amdgcn: 11059 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 11060 case llvm::Triple::sparc: 11061 return SetCGInfo(new SparcV8TargetCodeGenInfo(Types)); 11062 case llvm::Triple::sparcv9: 11063 return SetCGInfo(new SparcV9TargetCodeGenInfo(Types)); 11064 case llvm::Triple::xcore: 11065 return SetCGInfo(new XCoreTargetCodeGenInfo(Types)); 11066 case llvm::Triple::arc: 11067 return SetCGInfo(new ARCTargetCodeGenInfo(Types)); 11068 case llvm::Triple::spir: 11069 case llvm::Triple::spir64: 11070 return SetCGInfo(new SPIRTargetCodeGenInfo(Types)); 11071 case llvm::Triple::ve: 11072 return SetCGInfo(new VETargetCodeGenInfo(Types)); 11073 } 11074 } 11075 11076 /// Create an OpenCL kernel for an enqueued block. 11077 /// 11078 /// The kernel has the same function type as the block invoke function. Its 11079 /// name is the name of the block invoke function postfixed with "_kernel". 11080 /// It simply calls the block invoke function then returns. 11081 llvm::Function * 11082 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF, 11083 llvm::Function *Invoke, 11084 llvm::Value *BlockLiteral) const { 11085 auto *InvokeFT = Invoke->getFunctionType(); 11086 llvm::SmallVector<llvm::Type *, 2> ArgTys; 11087 for (auto &P : InvokeFT->params()) 11088 ArgTys.push_back(P); 11089 auto &C = CGF.getLLVMContext(); 11090 std::string Name = Invoke->getName().str() + "_kernel"; 11091 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 11092 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 11093 &CGF.CGM.getModule()); 11094 auto IP = CGF.Builder.saveIP(); 11095 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 11096 auto &Builder = CGF.Builder; 11097 Builder.SetInsertPoint(BB); 11098 llvm::SmallVector<llvm::Value *, 2> Args; 11099 for (auto &A : F->args()) 11100 Args.push_back(&A); 11101 Builder.CreateCall(Invoke, Args); 11102 Builder.CreateRetVoid(); 11103 Builder.restoreIP(IP); 11104 return F; 11105 } 11106 11107 /// Create an OpenCL kernel for an enqueued block. 11108 /// 11109 /// The type of the first argument (the block literal) is the struct type 11110 /// of the block literal instead of a pointer type. The first argument 11111 /// (block literal) is passed directly by value to the kernel. The kernel 11112 /// allocates the same type of struct on stack and stores the block literal 11113 /// to it and passes its pointer to the block invoke function. The kernel 11114 /// has "enqueued-block" function attribute and kernel argument metadata. 11115 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel( 11116 CodeGenFunction &CGF, llvm::Function *Invoke, 11117 llvm::Value *BlockLiteral) const { 11118 auto &Builder = CGF.Builder; 11119 auto &C = CGF.getLLVMContext(); 11120 11121 auto *BlockTy = BlockLiteral->getType()->getPointerElementType(); 11122 auto *InvokeFT = Invoke->getFunctionType(); 11123 llvm::SmallVector<llvm::Type *, 2> ArgTys; 11124 llvm::SmallVector<llvm::Metadata *, 8> AddressQuals; 11125 llvm::SmallVector<llvm::Metadata *, 8> AccessQuals; 11126 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames; 11127 llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames; 11128 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals; 11129 llvm::SmallVector<llvm::Metadata *, 8> ArgNames; 11130 11131 ArgTys.push_back(BlockTy); 11132 ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 11133 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0))); 11134 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 11135 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 11136 AccessQuals.push_back(llvm::MDString::get(C, "none")); 11137 ArgNames.push_back(llvm::MDString::get(C, "block_literal")); 11138 for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) { 11139 ArgTys.push_back(InvokeFT->getParamType(I)); 11140 ArgTypeNames.push_back(llvm::MDString::get(C, "void*")); 11141 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3))); 11142 AccessQuals.push_back(llvm::MDString::get(C, "none")); 11143 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*")); 11144 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 11145 ArgNames.push_back( 11146 llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str())); 11147 } 11148 std::string Name = Invoke->getName().str() + "_kernel"; 11149 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 11150 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 11151 &CGF.CGM.getModule()); 11152 F->addFnAttr("enqueued-block"); 11153 auto IP = CGF.Builder.saveIP(); 11154 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 11155 Builder.SetInsertPoint(BB); 11156 const auto BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(BlockTy); 11157 auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr); 11158 BlockPtr->setAlignment(BlockAlign); 11159 Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign); 11160 auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0)); 11161 llvm::SmallVector<llvm::Value *, 2> Args; 11162 Args.push_back(Cast); 11163 for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I) 11164 Args.push_back(I); 11165 Builder.CreateCall(Invoke, Args); 11166 Builder.CreateRetVoid(); 11167 Builder.restoreIP(IP); 11168 11169 F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals)); 11170 F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals)); 11171 F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames)); 11172 F->setMetadata("kernel_arg_base_type", 11173 llvm::MDNode::get(C, ArgBaseTypeNames)); 11174 F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals)); 11175 if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 11176 F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames)); 11177 11178 return F; 11179 } 11180