1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These classes wrap the information about a call or function
10 // definition used to handle ABI compliancy.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "TargetInfo.h"
15 #include "ABIInfo.h"
16 #include "CGBlocks.h"
17 #include "CGCXXABI.h"
18 #include "CGValue.h"
19 #include "CodeGenFunction.h"
20 #include "clang/AST/RecordLayout.h"
21 #include "clang/Basic/CodeGenOptions.h"
22 #include "clang/CodeGen/CGFunctionInfo.h"
23 #include "clang/CodeGen/SwiftCallingConv.h"
24 #include "llvm/ADT/StringExtras.h"
25 #include "llvm/ADT/StringSwitch.h"
26 #include "llvm/ADT/Triple.h"
27 #include "llvm/ADT/Twine.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Type.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include <algorithm>    // std::sort
32 
33 using namespace clang;
34 using namespace CodeGen;
35 
36 // Helper for coercing an aggregate argument or return value into an integer
37 // array of the same size (including padding) and alignment.  This alternate
38 // coercion happens only for the RenderScript ABI and can be removed after
39 // runtimes that rely on it are no longer supported.
40 //
41 // RenderScript assumes that the size of the argument / return value in the IR
42 // is the same as the size of the corresponding qualified type. This helper
43 // coerces the aggregate type into an array of the same size (including
44 // padding).  This coercion is used in lieu of expansion of struct members or
45 // other canonical coercions that return a coerced-type of larger size.
46 //
47 // Ty          - The argument / return value type
48 // Context     - The associated ASTContext
49 // LLVMContext - The associated LLVMContext
50 static ABIArgInfo coerceToIntArray(QualType Ty,
51                                    ASTContext &Context,
52                                    llvm::LLVMContext &LLVMContext) {
53   // Alignment and Size are measured in bits.
54   const uint64_t Size = Context.getTypeSize(Ty);
55   const uint64_t Alignment = Context.getTypeAlign(Ty);
56   llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment);
57   const uint64_t NumElements = (Size + Alignment - 1) / Alignment;
58   return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
59 }
60 
61 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
62                                llvm::Value *Array,
63                                llvm::Value *Value,
64                                unsigned FirstIndex,
65                                unsigned LastIndex) {
66   // Alternatively, we could emit this as a loop in the source.
67   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
68     llvm::Value *Cell =
69         Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I);
70     Builder.CreateAlignedStore(Value, Cell, CharUnits::One());
71   }
72 }
73 
74 static bool isAggregateTypeForABI(QualType T) {
75   return !CodeGenFunction::hasScalarEvaluationKind(T) ||
76          T->isMemberFunctionPointerType();
77 }
78 
79 ABIArgInfo
80 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign,
81                                  llvm::Type *Padding) const {
82   return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty),
83                                  ByRef, Realign, Padding);
84 }
85 
86 ABIArgInfo
87 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const {
88   return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty),
89                                       /*ByRef*/ false, Realign);
90 }
91 
92 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
93                              QualType Ty) const {
94   return Address::invalid();
95 }
96 
97 ABIInfo::~ABIInfo() {}
98 
99 /// Does the given lowering require more than the given number of
100 /// registers when expanded?
101 ///
102 /// This is intended to be the basis of a reasonable basic implementation
103 /// of should{Pass,Return}IndirectlyForSwift.
104 ///
105 /// For most targets, a limit of four total registers is reasonable; this
106 /// limits the amount of code required in order to move around the value
107 /// in case it wasn't produced immediately prior to the call by the caller
108 /// (or wasn't produced in exactly the right registers) or isn't used
109 /// immediately within the callee.  But some targets may need to further
110 /// limit the register count due to an inability to support that many
111 /// return registers.
112 static bool occupiesMoreThan(CodeGenTypes &cgt,
113                              ArrayRef<llvm::Type*> scalarTypes,
114                              unsigned maxAllRegisters) {
115   unsigned intCount = 0, fpCount = 0;
116   for (llvm::Type *type : scalarTypes) {
117     if (type->isPointerTy()) {
118       intCount++;
119     } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) {
120       auto ptrWidth = cgt.getTarget().getPointerWidth(0);
121       intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth;
122     } else {
123       assert(type->isVectorTy() || type->isFloatingPointTy());
124       fpCount++;
125     }
126   }
127 
128   return (intCount + fpCount > maxAllRegisters);
129 }
130 
131 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
132                                              llvm::Type *eltTy,
133                                              unsigned numElts) const {
134   // The default implementation of this assumes that the target guarantees
135   // 128-bit SIMD support but nothing more.
136   return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16);
137 }
138 
139 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
140                                               CGCXXABI &CXXABI) {
141   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
142   if (!RD) {
143     if (!RT->getDecl()->canPassInRegisters())
144       return CGCXXABI::RAA_Indirect;
145     return CGCXXABI::RAA_Default;
146   }
147   return CXXABI.getRecordArgABI(RD);
148 }
149 
150 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
151                                               CGCXXABI &CXXABI) {
152   const RecordType *RT = T->getAs<RecordType>();
153   if (!RT)
154     return CGCXXABI::RAA_Default;
155   return getRecordArgABI(RT, CXXABI);
156 }
157 
158 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI,
159                                const ABIInfo &Info) {
160   QualType Ty = FI.getReturnType();
161 
162   if (const auto *RT = Ty->getAs<RecordType>())
163     if (!isa<CXXRecordDecl>(RT->getDecl()) &&
164         !RT->getDecl()->canPassInRegisters()) {
165       FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty);
166       return true;
167     }
168 
169   return CXXABI.classifyReturnType(FI);
170 }
171 
172 /// Pass transparent unions as if they were the type of the first element. Sema
173 /// should ensure that all elements of the union have the same "machine type".
174 static QualType useFirstFieldIfTransparentUnion(QualType Ty) {
175   if (const RecordType *UT = Ty->getAsUnionType()) {
176     const RecordDecl *UD = UT->getDecl();
177     if (UD->hasAttr<TransparentUnionAttr>()) {
178       assert(!UD->field_empty() && "sema created an empty transparent union");
179       return UD->field_begin()->getType();
180     }
181   }
182   return Ty;
183 }
184 
185 CGCXXABI &ABIInfo::getCXXABI() const {
186   return CGT.getCXXABI();
187 }
188 
189 ASTContext &ABIInfo::getContext() const {
190   return CGT.getContext();
191 }
192 
193 llvm::LLVMContext &ABIInfo::getVMContext() const {
194   return CGT.getLLVMContext();
195 }
196 
197 const llvm::DataLayout &ABIInfo::getDataLayout() const {
198   return CGT.getDataLayout();
199 }
200 
201 const TargetInfo &ABIInfo::getTarget() const {
202   return CGT.getTarget();
203 }
204 
205 const CodeGenOptions &ABIInfo::getCodeGenOpts() const {
206   return CGT.getCodeGenOpts();
207 }
208 
209 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); }
210 
211 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
212   return false;
213 }
214 
215 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
216                                                 uint64_t Members) const {
217   return false;
218 }
219 
220 LLVM_DUMP_METHOD void ABIArgInfo::dump() const {
221   raw_ostream &OS = llvm::errs();
222   OS << "(ABIArgInfo Kind=";
223   switch (TheKind) {
224   case Direct:
225     OS << "Direct Type=";
226     if (llvm::Type *Ty = getCoerceToType())
227       Ty->print(OS);
228     else
229       OS << "null";
230     break;
231   case Extend:
232     OS << "Extend";
233     break;
234   case Ignore:
235     OS << "Ignore";
236     break;
237   case InAlloca:
238     OS << "InAlloca Offset=" << getInAllocaFieldIndex();
239     break;
240   case Indirect:
241     OS << "Indirect Align=" << getIndirectAlign().getQuantity()
242        << " ByVal=" << getIndirectByVal()
243        << " Realign=" << getIndirectRealign();
244     break;
245   case Expand:
246     OS << "Expand";
247     break;
248   case CoerceAndExpand:
249     OS << "CoerceAndExpand Type=";
250     getCoerceAndExpandType()->print(OS);
251     break;
252   }
253   OS << ")\n";
254 }
255 
256 // Dynamically round a pointer up to a multiple of the given alignment.
257 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF,
258                                                   llvm::Value *Ptr,
259                                                   CharUnits Align) {
260   llvm::Value *PtrAsInt = Ptr;
261   // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align;
262   PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy);
263   PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt,
264         llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1));
265   PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt,
266            llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity()));
267   PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt,
268                                         Ptr->getType(),
269                                         Ptr->getName() + ".aligned");
270   return PtrAsInt;
271 }
272 
273 /// Emit va_arg for a platform using the common void* representation,
274 /// where arguments are simply emitted in an array of slots on the stack.
275 ///
276 /// This version implements the core direct-value passing rules.
277 ///
278 /// \param SlotSize - The size and alignment of a stack slot.
279 ///   Each argument will be allocated to a multiple of this number of
280 ///   slots, and all the slots will be aligned to this value.
281 /// \param AllowHigherAlign - The slot alignment is not a cap;
282 ///   an argument type with an alignment greater than the slot size
283 ///   will be emitted on a higher-alignment address, potentially
284 ///   leaving one or more empty slots behind as padding.  If this
285 ///   is false, the returned address might be less-aligned than
286 ///   DirectAlign.
287 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF,
288                                       Address VAListAddr,
289                                       llvm::Type *DirectTy,
290                                       CharUnits DirectSize,
291                                       CharUnits DirectAlign,
292                                       CharUnits SlotSize,
293                                       bool AllowHigherAlign) {
294   // Cast the element type to i8* if necessary.  Some platforms define
295   // va_list as a struct containing an i8* instead of just an i8*.
296   if (VAListAddr.getElementType() != CGF.Int8PtrTy)
297     VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy);
298 
299   llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur");
300 
301   // If the CC aligns values higher than the slot size, do so if needed.
302   Address Addr = Address::invalid();
303   if (AllowHigherAlign && DirectAlign > SlotSize) {
304     Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign),
305                                                  DirectAlign);
306   } else {
307     Addr = Address(Ptr, SlotSize);
308   }
309 
310   // Advance the pointer past the argument, then store that back.
311   CharUnits FullDirectSize = DirectSize.alignTo(SlotSize);
312   Address NextPtr =
313       CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next");
314   CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr);
315 
316   // If the argument is smaller than a slot, and this is a big-endian
317   // target, the argument will be right-adjusted in its slot.
318   if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() &&
319       !DirectTy->isStructTy()) {
320     Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize);
321   }
322 
323   Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy);
324   return Addr;
325 }
326 
327 /// Emit va_arg for a platform using the common void* representation,
328 /// where arguments are simply emitted in an array of slots on the stack.
329 ///
330 /// \param IsIndirect - Values of this type are passed indirectly.
331 /// \param ValueInfo - The size and alignment of this type, generally
332 ///   computed with getContext().getTypeInfoInChars(ValueTy).
333 /// \param SlotSizeAndAlign - The size and alignment of a stack slot.
334 ///   Each argument will be allocated to a multiple of this number of
335 ///   slots, and all the slots will be aligned to this value.
336 /// \param AllowHigherAlign - The slot alignment is not a cap;
337 ///   an argument type with an alignment greater than the slot size
338 ///   will be emitted on a higher-alignment address, potentially
339 ///   leaving one or more empty slots behind as padding.
340 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr,
341                                 QualType ValueTy, bool IsIndirect,
342                                 std::pair<CharUnits, CharUnits> ValueInfo,
343                                 CharUnits SlotSizeAndAlign,
344                                 bool AllowHigherAlign) {
345   // The size and alignment of the value that was passed directly.
346   CharUnits DirectSize, DirectAlign;
347   if (IsIndirect) {
348     DirectSize = CGF.getPointerSize();
349     DirectAlign = CGF.getPointerAlign();
350   } else {
351     DirectSize = ValueInfo.first;
352     DirectAlign = ValueInfo.second;
353   }
354 
355   // Cast the address we've calculated to the right type.
356   llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy);
357   if (IsIndirect)
358     DirectTy = DirectTy->getPointerTo(0);
359 
360   Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy,
361                                         DirectSize, DirectAlign,
362                                         SlotSizeAndAlign,
363                                         AllowHigherAlign);
364 
365   if (IsIndirect) {
366     Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second);
367   }
368 
369   return Addr;
370 
371 }
372 
373 static Address emitMergePHI(CodeGenFunction &CGF,
374                             Address Addr1, llvm::BasicBlock *Block1,
375                             Address Addr2, llvm::BasicBlock *Block2,
376                             const llvm::Twine &Name = "") {
377   assert(Addr1.getType() == Addr2.getType());
378   llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name);
379   PHI->addIncoming(Addr1.getPointer(), Block1);
380   PHI->addIncoming(Addr2.getPointer(), Block2);
381   CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment());
382   return Address(PHI, Align);
383 }
384 
385 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
386 
387 // If someone can figure out a general rule for this, that would be great.
388 // It's probably just doomed to be platform-dependent, though.
389 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
390   // Verified for:
391   //   x86-64     FreeBSD, Linux, Darwin
392   //   x86-32     FreeBSD, Linux, Darwin
393   //   PowerPC    Linux, Darwin
394   //   ARM        Darwin (*not* EABI)
395   //   AArch64    Linux
396   return 32;
397 }
398 
399 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
400                                      const FunctionNoProtoType *fnType) const {
401   // The following conventions are known to require this to be false:
402   //   x86_stdcall
403   //   MIPS
404   // For everything else, we just prefer false unless we opt out.
405   return false;
406 }
407 
408 void
409 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
410                                              llvm::SmallString<24> &Opt) const {
411   // This assumes the user is passing a library name like "rt" instead of a
412   // filename like "librt.a/so", and that they don't care whether it's static or
413   // dynamic.
414   Opt = "-l";
415   Opt += Lib;
416 }
417 
418 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const {
419   // OpenCL kernels are called via an explicit runtime API with arguments
420   // set with clSetKernelArg(), not as normal sub-functions.
421   // Return SPIR_KERNEL by default as the kernel calling convention to
422   // ensure the fingerprint is fixed such way that each OpenCL argument
423   // gets one matching argument in the produced kernel function argument
424   // list to enable feasible implementation of clSetKernelArg() with
425   // aggregates etc. In case we would use the default C calling conv here,
426   // clSetKernelArg() might break depending on the target-specific
427   // conventions; different targets might split structs passed as values
428   // to multiple function arguments etc.
429   return llvm::CallingConv::SPIR_KERNEL;
430 }
431 
432 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM,
433     llvm::PointerType *T, QualType QT) const {
434   return llvm::ConstantPointerNull::get(T);
435 }
436 
437 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
438                                                    const VarDecl *D) const {
439   assert(!CGM.getLangOpts().OpenCL &&
440          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
441          "Address space agnostic languages only");
442   return D ? D->getType().getAddressSpace() : LangAS::Default;
443 }
444 
445 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast(
446     CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr,
447     LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const {
448   // Since target may map different address spaces in AST to the same address
449   // space, an address space conversion may end up as a bitcast.
450   if (auto *C = dyn_cast<llvm::Constant>(Src))
451     return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy);
452   return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DestTy);
453 }
454 
455 llvm::Constant *
456 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src,
457                                         LangAS SrcAddr, LangAS DestAddr,
458                                         llvm::Type *DestTy) const {
459   // Since target may map different address spaces in AST to the same address
460   // space, an address space conversion may end up as a bitcast.
461   return llvm::ConstantExpr::getPointerCast(Src, DestTy);
462 }
463 
464 llvm::SyncScope::ID
465 TargetCodeGenInfo::getLLVMSyncScopeID(SyncScope S, llvm::LLVMContext &C) const {
466   return C.getOrInsertSyncScopeID(""); /* default sync scope */
467 }
468 
469 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
470 
471 /// isEmptyField - Return true iff a the field is "empty", that is it
472 /// is an unnamed bit-field or an (array of) empty record(s).
473 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
474                          bool AllowArrays) {
475   if (FD->isUnnamedBitfield())
476     return true;
477 
478   QualType FT = FD->getType();
479 
480   // Constant arrays of empty records count as empty, strip them off.
481   // Constant arrays of zero length always count as empty.
482   if (AllowArrays)
483     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
484       if (AT->getSize() == 0)
485         return true;
486       FT = AT->getElementType();
487     }
488 
489   const RecordType *RT = FT->getAs<RecordType>();
490   if (!RT)
491     return false;
492 
493   // C++ record fields are never empty, at least in the Itanium ABI.
494   //
495   // FIXME: We should use a predicate for whether this behavior is true in the
496   // current ABI.
497   if (isa<CXXRecordDecl>(RT->getDecl()))
498     return false;
499 
500   return isEmptyRecord(Context, FT, AllowArrays);
501 }
502 
503 /// isEmptyRecord - Return true iff a structure contains only empty
504 /// fields. Note that a structure with a flexible array member is not
505 /// considered empty.
506 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
507   const RecordType *RT = T->getAs<RecordType>();
508   if (!RT)
509     return false;
510   const RecordDecl *RD = RT->getDecl();
511   if (RD->hasFlexibleArrayMember())
512     return false;
513 
514   // If this is a C++ record, check the bases first.
515   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
516     for (const auto &I : CXXRD->bases())
517       if (!isEmptyRecord(Context, I.getType(), true))
518         return false;
519 
520   for (const auto *I : RD->fields())
521     if (!isEmptyField(Context, I, AllowArrays))
522       return false;
523   return true;
524 }
525 
526 /// isSingleElementStruct - Determine if a structure is a "single
527 /// element struct", i.e. it has exactly one non-empty field or
528 /// exactly one field which is itself a single element
529 /// struct. Structures with flexible array members are never
530 /// considered single element structs.
531 ///
532 /// \return The field declaration for the single non-empty field, if
533 /// it exists.
534 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
535   const RecordType *RT = T->getAs<RecordType>();
536   if (!RT)
537     return nullptr;
538 
539   const RecordDecl *RD = RT->getDecl();
540   if (RD->hasFlexibleArrayMember())
541     return nullptr;
542 
543   const Type *Found = nullptr;
544 
545   // If this is a C++ record, check the bases first.
546   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
547     for (const auto &I : CXXRD->bases()) {
548       // Ignore empty records.
549       if (isEmptyRecord(Context, I.getType(), true))
550         continue;
551 
552       // If we already found an element then this isn't a single-element struct.
553       if (Found)
554         return nullptr;
555 
556       // If this is non-empty and not a single element struct, the composite
557       // cannot be a single element struct.
558       Found = isSingleElementStruct(I.getType(), Context);
559       if (!Found)
560         return nullptr;
561     }
562   }
563 
564   // Check for single element.
565   for (const auto *FD : RD->fields()) {
566     QualType FT = FD->getType();
567 
568     // Ignore empty fields.
569     if (isEmptyField(Context, FD, true))
570       continue;
571 
572     // If we already found an element then this isn't a single-element
573     // struct.
574     if (Found)
575       return nullptr;
576 
577     // Treat single element arrays as the element.
578     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
579       if (AT->getSize().getZExtValue() != 1)
580         break;
581       FT = AT->getElementType();
582     }
583 
584     if (!isAggregateTypeForABI(FT)) {
585       Found = FT.getTypePtr();
586     } else {
587       Found = isSingleElementStruct(FT, Context);
588       if (!Found)
589         return nullptr;
590     }
591   }
592 
593   // We don't consider a struct a single-element struct if it has
594   // padding beyond the element type.
595   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
596     return nullptr;
597 
598   return Found;
599 }
600 
601 namespace {
602 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
603                        const ABIArgInfo &AI) {
604   // This default implementation defers to the llvm backend's va_arg
605   // instruction. It can handle only passing arguments directly
606   // (typically only handled in the backend for primitive types), or
607   // aggregates passed indirectly by pointer (NOTE: if the "byval"
608   // flag has ABI impact in the callee, this implementation cannot
609   // work.)
610 
611   // Only a few cases are covered here at the moment -- those needed
612   // by the default abi.
613   llvm::Value *Val;
614 
615   if (AI.isIndirect()) {
616     assert(!AI.getPaddingType() &&
617            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
618     assert(
619         !AI.getIndirectRealign() &&
620         "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!");
621 
622     auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty);
623     CharUnits TyAlignForABI = TyInfo.second;
624 
625     llvm::Type *BaseTy =
626         llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
627     llvm::Value *Addr =
628         CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy);
629     return Address(Addr, TyAlignForABI);
630   } else {
631     assert((AI.isDirect() || AI.isExtend()) &&
632            "Unexpected ArgInfo Kind in generic VAArg emitter!");
633 
634     assert(!AI.getInReg() &&
635            "Unexpected InReg seen in arginfo in generic VAArg emitter!");
636     assert(!AI.getPaddingType() &&
637            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
638     assert(!AI.getDirectOffset() &&
639            "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!");
640     assert(!AI.getCoerceToType() &&
641            "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!");
642 
643     Address Temp = CGF.CreateMemTemp(Ty, "varet");
644     Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty));
645     CGF.Builder.CreateStore(Val, Temp);
646     return Temp;
647   }
648 }
649 
650 /// DefaultABIInfo - The default implementation for ABI specific
651 /// details. This implementation provides information which results in
652 /// self-consistent and sensible LLVM IR generation, but does not
653 /// conform to any particular ABI.
654 class DefaultABIInfo : public ABIInfo {
655 public:
656   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
657 
658   ABIArgInfo classifyReturnType(QualType RetTy) const;
659   ABIArgInfo classifyArgumentType(QualType RetTy) const;
660 
661   void computeInfo(CGFunctionInfo &FI) const override {
662     if (!getCXXABI().classifyReturnType(FI))
663       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
664     for (auto &I : FI.arguments())
665       I.info = classifyArgumentType(I.type);
666   }
667 
668   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
669                     QualType Ty) const override {
670     return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty));
671   }
672 };
673 
674 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
675 public:
676   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
677     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
678 };
679 
680 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
681   Ty = useFirstFieldIfTransparentUnion(Ty);
682 
683   if (isAggregateTypeForABI(Ty)) {
684     // Records with non-trivial destructors/copy-constructors should not be
685     // passed by value.
686     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
687       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
688 
689     return getNaturalAlignIndirect(Ty);
690   }
691 
692   // Treat an enum type as its underlying type.
693   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
694     Ty = EnumTy->getDecl()->getIntegerType();
695 
696   return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
697                                         : ABIArgInfo::getDirect());
698 }
699 
700 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
701   if (RetTy->isVoidType())
702     return ABIArgInfo::getIgnore();
703 
704   if (isAggregateTypeForABI(RetTy))
705     return getNaturalAlignIndirect(RetTy);
706 
707   // Treat an enum type as its underlying type.
708   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
709     RetTy = EnumTy->getDecl()->getIntegerType();
710 
711   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
712                                            : ABIArgInfo::getDirect());
713 }
714 
715 //===----------------------------------------------------------------------===//
716 // WebAssembly ABI Implementation
717 //
718 // This is a very simple ABI that relies a lot on DefaultABIInfo.
719 //===----------------------------------------------------------------------===//
720 
721 class WebAssemblyABIInfo final : public SwiftABIInfo {
722   DefaultABIInfo defaultInfo;
723 
724 public:
725   explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT)
726       : SwiftABIInfo(CGT), defaultInfo(CGT) {}
727 
728 private:
729   ABIArgInfo classifyReturnType(QualType RetTy) const;
730   ABIArgInfo classifyArgumentType(QualType Ty) const;
731 
732   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
733   // non-virtual, but computeInfo and EmitVAArg are virtual, so we
734   // overload them.
735   void computeInfo(CGFunctionInfo &FI) const override {
736     if (!getCXXABI().classifyReturnType(FI))
737       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
738     for (auto &Arg : FI.arguments())
739       Arg.info = classifyArgumentType(Arg.type);
740   }
741 
742   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
743                     QualType Ty) const override;
744 
745   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
746                                     bool asReturnValue) const override {
747     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
748   }
749 
750   bool isSwiftErrorInRegister() const override {
751     return false;
752   }
753 };
754 
755 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo {
756 public:
757   explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
758       : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT)) {}
759 
760   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
761                            CodeGen::CodeGenModule &CGM) const override {
762     TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
763     if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
764       if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) {
765         llvm::Function *Fn = cast<llvm::Function>(GV);
766         llvm::AttrBuilder B;
767         B.addAttribute("wasm-import-module", Attr->getImportModule());
768         Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
769       }
770       if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) {
771         llvm::Function *Fn = cast<llvm::Function>(GV);
772         llvm::AttrBuilder B;
773         B.addAttribute("wasm-import-name", Attr->getImportName());
774         Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
775       }
776     }
777 
778     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
779       llvm::Function *Fn = cast<llvm::Function>(GV);
780       if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype())
781         Fn->addFnAttr("no-prototype");
782     }
783   }
784 };
785 
786 /// Classify argument of given type \p Ty.
787 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const {
788   Ty = useFirstFieldIfTransparentUnion(Ty);
789 
790   if (isAggregateTypeForABI(Ty)) {
791     // Records with non-trivial destructors/copy-constructors should not be
792     // passed by value.
793     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
794       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
795     // Ignore empty structs/unions.
796     if (isEmptyRecord(getContext(), Ty, true))
797       return ABIArgInfo::getIgnore();
798     // Lower single-element structs to just pass a regular value. TODO: We
799     // could do reasonable-size multiple-element structs too, using getExpand(),
800     // though watch out for things like bitfields.
801     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
802       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
803   }
804 
805   // Otherwise just do the default thing.
806   return defaultInfo.classifyArgumentType(Ty);
807 }
808 
809 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const {
810   if (isAggregateTypeForABI(RetTy)) {
811     // Records with non-trivial destructors/copy-constructors should not be
812     // returned by value.
813     if (!getRecordArgABI(RetTy, getCXXABI())) {
814       // Ignore empty structs/unions.
815       if (isEmptyRecord(getContext(), RetTy, true))
816         return ABIArgInfo::getIgnore();
817       // Lower single-element structs to just return a regular value. TODO: We
818       // could do reasonable-size multiple-element structs too, using
819       // ABIArgInfo::getDirect().
820       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
821         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
822     }
823   }
824 
825   // Otherwise just do the default thing.
826   return defaultInfo.classifyReturnType(RetTy);
827 }
828 
829 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
830                                       QualType Ty) const {
831   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect=*/ false,
832                           getContext().getTypeInfoInChars(Ty),
833                           CharUnits::fromQuantity(4),
834                           /*AllowHigherAlign=*/ true);
835 }
836 
837 //===----------------------------------------------------------------------===//
838 // le32/PNaCl bitcode ABI Implementation
839 //
840 // This is a simplified version of the x86_32 ABI.  Arguments and return values
841 // are always passed on the stack.
842 //===----------------------------------------------------------------------===//
843 
844 class PNaClABIInfo : public ABIInfo {
845  public:
846   PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
847 
848   ABIArgInfo classifyReturnType(QualType RetTy) const;
849   ABIArgInfo classifyArgumentType(QualType RetTy) const;
850 
851   void computeInfo(CGFunctionInfo &FI) const override;
852   Address EmitVAArg(CodeGenFunction &CGF,
853                     Address VAListAddr, QualType Ty) const override;
854 };
855 
856 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
857  public:
858   PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
859     : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
860 };
861 
862 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
863   if (!getCXXABI().classifyReturnType(FI))
864     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
865 
866   for (auto &I : FI.arguments())
867     I.info = classifyArgumentType(I.type);
868 }
869 
870 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
871                                 QualType Ty) const {
872   // The PNaCL ABI is a bit odd, in that varargs don't use normal
873   // function classification. Structs get passed directly for varargs
874   // functions, through a rewriting transform in
875   // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows
876   // this target to actually support a va_arg instructions with an
877   // aggregate type, unlike other targets.
878   return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
879 }
880 
881 /// Classify argument of given type \p Ty.
882 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
883   if (isAggregateTypeForABI(Ty)) {
884     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
885       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
886     return getNaturalAlignIndirect(Ty);
887   } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
888     // Treat an enum type as its underlying type.
889     Ty = EnumTy->getDecl()->getIntegerType();
890   } else if (Ty->isFloatingType()) {
891     // Floating-point types don't go inreg.
892     return ABIArgInfo::getDirect();
893   }
894 
895   return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
896                                         : ABIArgInfo::getDirect());
897 }
898 
899 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
900   if (RetTy->isVoidType())
901     return ABIArgInfo::getIgnore();
902 
903   // In the PNaCl ABI we always return records/structures on the stack.
904   if (isAggregateTypeForABI(RetTy))
905     return getNaturalAlignIndirect(RetTy);
906 
907   // Treat an enum type as its underlying type.
908   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
909     RetTy = EnumTy->getDecl()->getIntegerType();
910 
911   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
912                                            : ABIArgInfo::getDirect());
913 }
914 
915 /// IsX86_MMXType - Return true if this is an MMX type.
916 bool IsX86_MMXType(llvm::Type *IRType) {
917   // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
918   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
919     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
920     IRType->getScalarSizeInBits() != 64;
921 }
922 
923 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
924                                           StringRef Constraint,
925                                           llvm::Type* Ty) {
926   bool IsMMXCons = llvm::StringSwitch<bool>(Constraint)
927                      .Cases("y", "&y", "^Ym", true)
928                      .Default(false);
929   if (IsMMXCons && Ty->isVectorTy()) {
930     if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) {
931       // Invalid MMX constraint
932       return nullptr;
933     }
934 
935     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
936   }
937 
938   // No operation needed
939   return Ty;
940 }
941 
942 /// Returns true if this type can be passed in SSE registers with the
943 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
944 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
945   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
946     if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) {
947       if (BT->getKind() == BuiltinType::LongDouble) {
948         if (&Context.getTargetInfo().getLongDoubleFormat() ==
949             &llvm::APFloat::x87DoubleExtended())
950           return false;
951       }
952       return true;
953     }
954   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
955     // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
956     // registers specially.
957     unsigned VecSize = Context.getTypeSize(VT);
958     if (VecSize == 128 || VecSize == 256 || VecSize == 512)
959       return true;
960   }
961   return false;
962 }
963 
964 /// Returns true if this aggregate is small enough to be passed in SSE registers
965 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
966 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
967   return NumMembers <= 4;
968 }
969 
970 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86.
971 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) {
972   auto AI = ABIArgInfo::getDirect(T);
973   AI.setInReg(true);
974   AI.setCanBeFlattened(false);
975   return AI;
976 }
977 
978 //===----------------------------------------------------------------------===//
979 // X86-32 ABI Implementation
980 //===----------------------------------------------------------------------===//
981 
982 /// Similar to llvm::CCState, but for Clang.
983 struct CCState {
984   CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {}
985 
986   unsigned CC;
987   unsigned FreeRegs;
988   unsigned FreeSSERegs;
989 };
990 
991 enum {
992   // Vectorcall only allows the first 6 parameters to be passed in registers.
993   VectorcallMaxParamNumAsReg = 6
994 };
995 
996 /// X86_32ABIInfo - The X86-32 ABI information.
997 class X86_32ABIInfo : public SwiftABIInfo {
998   enum Class {
999     Integer,
1000     Float
1001   };
1002 
1003   static const unsigned MinABIStackAlignInBytes = 4;
1004 
1005   bool IsDarwinVectorABI;
1006   bool IsRetSmallStructInRegABI;
1007   bool IsWin32StructABI;
1008   bool IsSoftFloatABI;
1009   bool IsMCUABI;
1010   unsigned DefaultNumRegisterParameters;
1011 
1012   static bool isRegisterSize(unsigned Size) {
1013     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
1014   }
1015 
1016   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
1017     // FIXME: Assumes vectorcall is in use.
1018     return isX86VectorTypeForVectorCall(getContext(), Ty);
1019   }
1020 
1021   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
1022                                          uint64_t NumMembers) const override {
1023     // FIXME: Assumes vectorcall is in use.
1024     return isX86VectorCallAggregateSmallEnough(NumMembers);
1025   }
1026 
1027   bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
1028 
1029   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1030   /// such that the argument will be passed in memory.
1031   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
1032 
1033   ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const;
1034 
1035   /// Return the alignment to use for the given type on the stack.
1036   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
1037 
1038   Class classify(QualType Ty) const;
1039   ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
1040   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
1041 
1042   /// Updates the number of available free registers, returns
1043   /// true if any registers were allocated.
1044   bool updateFreeRegs(QualType Ty, CCState &State) const;
1045 
1046   bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg,
1047                                 bool &NeedsPadding) const;
1048   bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const;
1049 
1050   bool canExpandIndirectArgument(QualType Ty) const;
1051 
1052   /// Rewrite the function info so that all memory arguments use
1053   /// inalloca.
1054   void rewriteWithInAlloca(CGFunctionInfo &FI) const;
1055 
1056   void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1057                            CharUnits &StackOffset, ABIArgInfo &Info,
1058                            QualType Type) const;
1059   void computeVectorCallArgs(CGFunctionInfo &FI, CCState &State,
1060                              bool &UsedInAlloca) const;
1061 
1062 public:
1063 
1064   void computeInfo(CGFunctionInfo &FI) const override;
1065   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1066                     QualType Ty) const override;
1067 
1068   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1069                 bool RetSmallStructInRegABI, bool Win32StructABI,
1070                 unsigned NumRegisterParameters, bool SoftFloatABI)
1071     : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI),
1072       IsRetSmallStructInRegABI(RetSmallStructInRegABI),
1073       IsWin32StructABI(Win32StructABI),
1074       IsSoftFloatABI(SoftFloatABI),
1075       IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()),
1076       DefaultNumRegisterParameters(NumRegisterParameters) {}
1077 
1078   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
1079                                     bool asReturnValue) const override {
1080     // LLVM's x86-32 lowering currently only assigns up to three
1081     // integer registers and three fp registers.  Oddly, it'll use up to
1082     // four vector registers for vectors, but those can overlap with the
1083     // scalar registers.
1084     return occupiesMoreThan(CGT, scalars, /*total*/ 3);
1085   }
1086 
1087   bool isSwiftErrorInRegister() const override {
1088     // x86-32 lowering does not support passing swifterror in a register.
1089     return false;
1090   }
1091 };
1092 
1093 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
1094 public:
1095   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1096                           bool RetSmallStructInRegABI, bool Win32StructABI,
1097                           unsigned NumRegisterParameters, bool SoftFloatABI)
1098       : TargetCodeGenInfo(new X86_32ABIInfo(
1099             CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
1100             NumRegisterParameters, SoftFloatABI)) {}
1101 
1102   static bool isStructReturnInRegABI(
1103       const llvm::Triple &Triple, const CodeGenOptions &Opts);
1104 
1105   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1106                            CodeGen::CodeGenModule &CGM) const override;
1107 
1108   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1109     // Darwin uses different dwarf register numbers for EH.
1110     if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
1111     return 4;
1112   }
1113 
1114   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1115                                llvm::Value *Address) const override;
1116 
1117   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1118                                   StringRef Constraint,
1119                                   llvm::Type* Ty) const override {
1120     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1121   }
1122 
1123   void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
1124                                 std::string &Constraints,
1125                                 std::vector<llvm::Type *> &ResultRegTypes,
1126                                 std::vector<llvm::Type *> &ResultTruncRegTypes,
1127                                 std::vector<LValue> &ResultRegDests,
1128                                 std::string &AsmString,
1129                                 unsigned NumOutputs) const override;
1130 
1131   llvm::Constant *
1132   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
1133     unsigned Sig = (0xeb << 0) |  // jmp rel8
1134                    (0x06 << 8) |  //           .+0x08
1135                    ('v' << 16) |
1136                    ('2' << 24);
1137     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
1138   }
1139 
1140   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
1141     return "movl\t%ebp, %ebp"
1142            "\t\t// marker for objc_retainAutoreleaseReturnValue";
1143   }
1144 };
1145 
1146 }
1147 
1148 /// Rewrite input constraint references after adding some output constraints.
1149 /// In the case where there is one output and one input and we add one output,
1150 /// we need to replace all operand references greater than or equal to 1:
1151 ///     mov $0, $1
1152 ///     mov eax, $1
1153 /// The result will be:
1154 ///     mov $0, $2
1155 ///     mov eax, $2
1156 static void rewriteInputConstraintReferences(unsigned FirstIn,
1157                                              unsigned NumNewOuts,
1158                                              std::string &AsmString) {
1159   std::string Buf;
1160   llvm::raw_string_ostream OS(Buf);
1161   size_t Pos = 0;
1162   while (Pos < AsmString.size()) {
1163     size_t DollarStart = AsmString.find('$', Pos);
1164     if (DollarStart == std::string::npos)
1165       DollarStart = AsmString.size();
1166     size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
1167     if (DollarEnd == std::string::npos)
1168       DollarEnd = AsmString.size();
1169     OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
1170     Pos = DollarEnd;
1171     size_t NumDollars = DollarEnd - DollarStart;
1172     if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
1173       // We have an operand reference.
1174       size_t DigitStart = Pos;
1175       size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
1176       if (DigitEnd == std::string::npos)
1177         DigitEnd = AsmString.size();
1178       StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
1179       unsigned OperandIndex;
1180       if (!OperandStr.getAsInteger(10, OperandIndex)) {
1181         if (OperandIndex >= FirstIn)
1182           OperandIndex += NumNewOuts;
1183         OS << OperandIndex;
1184       } else {
1185         OS << OperandStr;
1186       }
1187       Pos = DigitEnd;
1188     }
1189   }
1190   AsmString = std::move(OS.str());
1191 }
1192 
1193 /// Add output constraints for EAX:EDX because they are return registers.
1194 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
1195     CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
1196     std::vector<llvm::Type *> &ResultRegTypes,
1197     std::vector<llvm::Type *> &ResultTruncRegTypes,
1198     std::vector<LValue> &ResultRegDests, std::string &AsmString,
1199     unsigned NumOutputs) const {
1200   uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
1201 
1202   // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
1203   // larger.
1204   if (!Constraints.empty())
1205     Constraints += ',';
1206   if (RetWidth <= 32) {
1207     Constraints += "={eax}";
1208     ResultRegTypes.push_back(CGF.Int32Ty);
1209   } else {
1210     // Use the 'A' constraint for EAX:EDX.
1211     Constraints += "=A";
1212     ResultRegTypes.push_back(CGF.Int64Ty);
1213   }
1214 
1215   // Truncate EAX or EAX:EDX to an integer of the appropriate size.
1216   llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
1217   ResultTruncRegTypes.push_back(CoerceTy);
1218 
1219   // Coerce the integer by bitcasting the return slot pointer.
1220   ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(),
1221                                                   CoerceTy->getPointerTo()));
1222   ResultRegDests.push_back(ReturnSlot);
1223 
1224   rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
1225 }
1226 
1227 /// shouldReturnTypeInRegister - Determine if the given type should be
1228 /// returned in a register (for the Darwin and MCU ABI).
1229 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
1230                                                ASTContext &Context) const {
1231   uint64_t Size = Context.getTypeSize(Ty);
1232 
1233   // For i386, type must be register sized.
1234   // For the MCU ABI, it only needs to be <= 8-byte
1235   if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size)))
1236    return false;
1237 
1238   if (Ty->isVectorType()) {
1239     // 64- and 128- bit vectors inside structures are not returned in
1240     // registers.
1241     if (Size == 64 || Size == 128)
1242       return false;
1243 
1244     return true;
1245   }
1246 
1247   // If this is a builtin, pointer, enum, complex type, member pointer, or
1248   // member function pointer it is ok.
1249   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
1250       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
1251       Ty->isBlockPointerType() || Ty->isMemberPointerType())
1252     return true;
1253 
1254   // Arrays are treated like records.
1255   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
1256     return shouldReturnTypeInRegister(AT->getElementType(), Context);
1257 
1258   // Otherwise, it must be a record type.
1259   const RecordType *RT = Ty->getAs<RecordType>();
1260   if (!RT) return false;
1261 
1262   // FIXME: Traverse bases here too.
1263 
1264   // Structure types are passed in register if all fields would be
1265   // passed in a register.
1266   for (const auto *FD : RT->getDecl()->fields()) {
1267     // Empty fields are ignored.
1268     if (isEmptyField(Context, FD, true))
1269       continue;
1270 
1271     // Check fields recursively.
1272     if (!shouldReturnTypeInRegister(FD->getType(), Context))
1273       return false;
1274   }
1275   return true;
1276 }
1277 
1278 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
1279   // Treat complex types as the element type.
1280   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
1281     Ty = CTy->getElementType();
1282 
1283   // Check for a type which we know has a simple scalar argument-passing
1284   // convention without any padding.  (We're specifically looking for 32
1285   // and 64-bit integer and integer-equivalents, float, and double.)
1286   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
1287       !Ty->isEnumeralType() && !Ty->isBlockPointerType())
1288     return false;
1289 
1290   uint64_t Size = Context.getTypeSize(Ty);
1291   return Size == 32 || Size == 64;
1292 }
1293 
1294 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD,
1295                           uint64_t &Size) {
1296   for (const auto *FD : RD->fields()) {
1297     // Scalar arguments on the stack get 4 byte alignment on x86. If the
1298     // argument is smaller than 32-bits, expanding the struct will create
1299     // alignment padding.
1300     if (!is32Or64BitBasicType(FD->getType(), Context))
1301       return false;
1302 
1303     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
1304     // how to expand them yet, and the predicate for telling if a bitfield still
1305     // counts as "basic" is more complicated than what we were doing previously.
1306     if (FD->isBitField())
1307       return false;
1308 
1309     Size += Context.getTypeSize(FD->getType());
1310   }
1311   return true;
1312 }
1313 
1314 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD,
1315                                  uint64_t &Size) {
1316   // Don't do this if there are any non-empty bases.
1317   for (const CXXBaseSpecifier &Base : RD->bases()) {
1318     if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(),
1319                               Size))
1320       return false;
1321   }
1322   if (!addFieldSizes(Context, RD, Size))
1323     return false;
1324   return true;
1325 }
1326 
1327 /// Test whether an argument type which is to be passed indirectly (on the
1328 /// stack) would have the equivalent layout if it was expanded into separate
1329 /// arguments. If so, we prefer to do the latter to avoid inhibiting
1330 /// optimizations.
1331 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const {
1332   // We can only expand structure types.
1333   const RecordType *RT = Ty->getAs<RecordType>();
1334   if (!RT)
1335     return false;
1336   const RecordDecl *RD = RT->getDecl();
1337   uint64_t Size = 0;
1338   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1339     if (!IsWin32StructABI) {
1340       // On non-Windows, we have to conservatively match our old bitcode
1341       // prototypes in order to be ABI-compatible at the bitcode level.
1342       if (!CXXRD->isCLike())
1343         return false;
1344     } else {
1345       // Don't do this for dynamic classes.
1346       if (CXXRD->isDynamicClass())
1347         return false;
1348     }
1349     if (!addBaseAndFieldSizes(getContext(), CXXRD, Size))
1350       return false;
1351   } else {
1352     if (!addFieldSizes(getContext(), RD, Size))
1353       return false;
1354   }
1355 
1356   // We can do this if there was no alignment padding.
1357   return Size == getContext().getTypeSize(Ty);
1358 }
1359 
1360 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const {
1361   // If the return value is indirect, then the hidden argument is consuming one
1362   // integer register.
1363   if (State.FreeRegs) {
1364     --State.FreeRegs;
1365     if (!IsMCUABI)
1366       return getNaturalAlignIndirectInReg(RetTy);
1367   }
1368   return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
1369 }
1370 
1371 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
1372                                              CCState &State) const {
1373   if (RetTy->isVoidType())
1374     return ABIArgInfo::getIgnore();
1375 
1376   const Type *Base = nullptr;
1377   uint64_t NumElts = 0;
1378   if ((State.CC == llvm::CallingConv::X86_VectorCall ||
1379        State.CC == llvm::CallingConv::X86_RegCall) &&
1380       isHomogeneousAggregate(RetTy, Base, NumElts)) {
1381     // The LLVM struct type for such an aggregate should lower properly.
1382     return ABIArgInfo::getDirect();
1383   }
1384 
1385   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
1386     // On Darwin, some vectors are returned in registers.
1387     if (IsDarwinVectorABI) {
1388       uint64_t Size = getContext().getTypeSize(RetTy);
1389 
1390       // 128-bit vectors are a special case; they are returned in
1391       // registers and we need to make sure to pick a type the LLVM
1392       // backend will like.
1393       if (Size == 128)
1394         return ABIArgInfo::getDirect(llvm::VectorType::get(
1395                   llvm::Type::getInt64Ty(getVMContext()), 2));
1396 
1397       // Always return in register if it fits in a general purpose
1398       // register, or if it is 64 bits and has a single element.
1399       if ((Size == 8 || Size == 16 || Size == 32) ||
1400           (Size == 64 && VT->getNumElements() == 1))
1401         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1402                                                             Size));
1403 
1404       return getIndirectReturnResult(RetTy, State);
1405     }
1406 
1407     return ABIArgInfo::getDirect();
1408   }
1409 
1410   if (isAggregateTypeForABI(RetTy)) {
1411     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
1412       // Structures with flexible arrays are always indirect.
1413       if (RT->getDecl()->hasFlexibleArrayMember())
1414         return getIndirectReturnResult(RetTy, State);
1415     }
1416 
1417     // If specified, structs and unions are always indirect.
1418     if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType())
1419       return getIndirectReturnResult(RetTy, State);
1420 
1421     // Ignore empty structs/unions.
1422     if (isEmptyRecord(getContext(), RetTy, true))
1423       return ABIArgInfo::getIgnore();
1424 
1425     // Small structures which are register sized are generally returned
1426     // in a register.
1427     if (shouldReturnTypeInRegister(RetTy, getContext())) {
1428       uint64_t Size = getContext().getTypeSize(RetTy);
1429 
1430       // As a special-case, if the struct is a "single-element" struct, and
1431       // the field is of type "float" or "double", return it in a
1432       // floating-point register. (MSVC does not apply this special case.)
1433       // We apply a similar transformation for pointer types to improve the
1434       // quality of the generated IR.
1435       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
1436         if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
1437             || SeltTy->hasPointerRepresentation())
1438           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
1439 
1440       // FIXME: We should be able to narrow this integer in cases with dead
1441       // padding.
1442       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
1443     }
1444 
1445     return getIndirectReturnResult(RetTy, State);
1446   }
1447 
1448   // Treat an enum type as its underlying type.
1449   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1450     RetTy = EnumTy->getDecl()->getIntegerType();
1451 
1452   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
1453                                            : ABIArgInfo::getDirect());
1454 }
1455 
1456 static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
1457   return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
1458 }
1459 
1460 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
1461   const RecordType *RT = Ty->getAs<RecordType>();
1462   if (!RT)
1463     return 0;
1464   const RecordDecl *RD = RT->getDecl();
1465 
1466   // If this is a C++ record, check the bases first.
1467   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1468     for (const auto &I : CXXRD->bases())
1469       if (!isRecordWithSSEVectorType(Context, I.getType()))
1470         return false;
1471 
1472   for (const auto *i : RD->fields()) {
1473     QualType FT = i->getType();
1474 
1475     if (isSSEVectorType(Context, FT))
1476       return true;
1477 
1478     if (isRecordWithSSEVectorType(Context, FT))
1479       return true;
1480   }
1481 
1482   return false;
1483 }
1484 
1485 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
1486                                                  unsigned Align) const {
1487   // Otherwise, if the alignment is less than or equal to the minimum ABI
1488   // alignment, just use the default; the backend will handle this.
1489   if (Align <= MinABIStackAlignInBytes)
1490     return 0; // Use default alignment.
1491 
1492   // On non-Darwin, the stack type alignment is always 4.
1493   if (!IsDarwinVectorABI) {
1494     // Set explicit alignment, since we may need to realign the top.
1495     return MinABIStackAlignInBytes;
1496   }
1497 
1498   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
1499   if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
1500                       isRecordWithSSEVectorType(getContext(), Ty)))
1501     return 16;
1502 
1503   return MinABIStackAlignInBytes;
1504 }
1505 
1506 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
1507                                             CCState &State) const {
1508   if (!ByVal) {
1509     if (State.FreeRegs) {
1510       --State.FreeRegs; // Non-byval indirects just use one pointer.
1511       if (!IsMCUABI)
1512         return getNaturalAlignIndirectInReg(Ty);
1513     }
1514     return getNaturalAlignIndirect(Ty, false);
1515   }
1516 
1517   // Compute the byval alignment.
1518   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
1519   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
1520   if (StackAlign == 0)
1521     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true);
1522 
1523   // If the stack alignment is less than the type alignment, realign the
1524   // argument.
1525   bool Realign = TypeAlign > StackAlign;
1526   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign),
1527                                  /*ByVal=*/true, Realign);
1528 }
1529 
1530 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
1531   const Type *T = isSingleElementStruct(Ty, getContext());
1532   if (!T)
1533     T = Ty.getTypePtr();
1534 
1535   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
1536     BuiltinType::Kind K = BT->getKind();
1537     if (K == BuiltinType::Float || K == BuiltinType::Double)
1538       return Float;
1539   }
1540   return Integer;
1541 }
1542 
1543 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const {
1544   if (!IsSoftFloatABI) {
1545     Class C = classify(Ty);
1546     if (C == Float)
1547       return false;
1548   }
1549 
1550   unsigned Size = getContext().getTypeSize(Ty);
1551   unsigned SizeInRegs = (Size + 31) / 32;
1552 
1553   if (SizeInRegs == 0)
1554     return false;
1555 
1556   if (!IsMCUABI) {
1557     if (SizeInRegs > State.FreeRegs) {
1558       State.FreeRegs = 0;
1559       return false;
1560     }
1561   } else {
1562     // The MCU psABI allows passing parameters in-reg even if there are
1563     // earlier parameters that are passed on the stack. Also,
1564     // it does not allow passing >8-byte structs in-register,
1565     // even if there are 3 free registers available.
1566     if (SizeInRegs > State.FreeRegs || SizeInRegs > 2)
1567       return false;
1568   }
1569 
1570   State.FreeRegs -= SizeInRegs;
1571   return true;
1572 }
1573 
1574 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State,
1575                                              bool &InReg,
1576                                              bool &NeedsPadding) const {
1577   // On Windows, aggregates other than HFAs are never passed in registers, and
1578   // they do not consume register slots. Homogenous floating-point aggregates
1579   // (HFAs) have already been dealt with at this point.
1580   if (IsWin32StructABI && isAggregateTypeForABI(Ty))
1581     return false;
1582 
1583   NeedsPadding = false;
1584   InReg = !IsMCUABI;
1585 
1586   if (!updateFreeRegs(Ty, State))
1587     return false;
1588 
1589   if (IsMCUABI)
1590     return true;
1591 
1592   if (State.CC == llvm::CallingConv::X86_FastCall ||
1593       State.CC == llvm::CallingConv::X86_VectorCall ||
1594       State.CC == llvm::CallingConv::X86_RegCall) {
1595     if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs)
1596       NeedsPadding = true;
1597 
1598     return false;
1599   }
1600 
1601   return true;
1602 }
1603 
1604 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const {
1605   if (!updateFreeRegs(Ty, State))
1606     return false;
1607 
1608   if (IsMCUABI)
1609     return false;
1610 
1611   if (State.CC == llvm::CallingConv::X86_FastCall ||
1612       State.CC == llvm::CallingConv::X86_VectorCall ||
1613       State.CC == llvm::CallingConv::X86_RegCall) {
1614     if (getContext().getTypeSize(Ty) > 32)
1615       return false;
1616 
1617     return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() ||
1618         Ty->isReferenceType());
1619   }
1620 
1621   return true;
1622 }
1623 
1624 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
1625                                                CCState &State) const {
1626   // FIXME: Set alignment on indirect arguments.
1627 
1628   Ty = useFirstFieldIfTransparentUnion(Ty);
1629 
1630   // Check with the C++ ABI first.
1631   const RecordType *RT = Ty->getAs<RecordType>();
1632   if (RT) {
1633     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
1634     if (RAA == CGCXXABI::RAA_Indirect) {
1635       return getIndirectResult(Ty, false, State);
1636     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
1637       // The field index doesn't matter, we'll fix it up later.
1638       return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
1639     }
1640   }
1641 
1642   // Regcall uses the concept of a homogenous vector aggregate, similar
1643   // to other targets.
1644   const Type *Base = nullptr;
1645   uint64_t NumElts = 0;
1646   if (State.CC == llvm::CallingConv::X86_RegCall &&
1647       isHomogeneousAggregate(Ty, Base, NumElts)) {
1648 
1649     if (State.FreeSSERegs >= NumElts) {
1650       State.FreeSSERegs -= NumElts;
1651       if (Ty->isBuiltinType() || Ty->isVectorType())
1652         return ABIArgInfo::getDirect();
1653       return ABIArgInfo::getExpand();
1654     }
1655     return getIndirectResult(Ty, /*ByVal=*/false, State);
1656   }
1657 
1658   if (isAggregateTypeForABI(Ty)) {
1659     // Structures with flexible arrays are always indirect.
1660     // FIXME: This should not be byval!
1661     if (RT && RT->getDecl()->hasFlexibleArrayMember())
1662       return getIndirectResult(Ty, true, State);
1663 
1664     // Ignore empty structs/unions on non-Windows.
1665     if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true))
1666       return ABIArgInfo::getIgnore();
1667 
1668     llvm::LLVMContext &LLVMContext = getVMContext();
1669     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
1670     bool NeedsPadding = false;
1671     bool InReg;
1672     if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) {
1673       unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
1674       SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
1675       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
1676       if (InReg)
1677         return ABIArgInfo::getDirectInReg(Result);
1678       else
1679         return ABIArgInfo::getDirect(Result);
1680     }
1681     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
1682 
1683     // Expand small (<= 128-bit) record types when we know that the stack layout
1684     // of those arguments will match the struct. This is important because the
1685     // LLVM backend isn't smart enough to remove byval, which inhibits many
1686     // optimizations.
1687     // Don't do this for the MCU if there are still free integer registers
1688     // (see X86_64 ABI for full explanation).
1689     if (getContext().getTypeSize(Ty) <= 4 * 32 &&
1690         (!IsMCUABI || State.FreeRegs == 0) && canExpandIndirectArgument(Ty))
1691       return ABIArgInfo::getExpandWithPadding(
1692           State.CC == llvm::CallingConv::X86_FastCall ||
1693               State.CC == llvm::CallingConv::X86_VectorCall ||
1694               State.CC == llvm::CallingConv::X86_RegCall,
1695           PaddingType);
1696 
1697     return getIndirectResult(Ty, true, State);
1698   }
1699 
1700   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1701     // On Darwin, some vectors are passed in memory, we handle this by passing
1702     // it as an i8/i16/i32/i64.
1703     if (IsDarwinVectorABI) {
1704       uint64_t Size = getContext().getTypeSize(Ty);
1705       if ((Size == 8 || Size == 16 || Size == 32) ||
1706           (Size == 64 && VT->getNumElements() == 1))
1707         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1708                                                             Size));
1709     }
1710 
1711     if (IsX86_MMXType(CGT.ConvertType(Ty)))
1712       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
1713 
1714     return ABIArgInfo::getDirect();
1715   }
1716 
1717 
1718   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1719     Ty = EnumTy->getDecl()->getIntegerType();
1720 
1721   bool InReg = shouldPrimitiveUseInReg(Ty, State);
1722 
1723   if (Ty->isPromotableIntegerType()) {
1724     if (InReg)
1725       return ABIArgInfo::getExtendInReg(Ty);
1726     return ABIArgInfo::getExtend(Ty);
1727   }
1728 
1729   if (InReg)
1730     return ABIArgInfo::getDirectInReg();
1731   return ABIArgInfo::getDirect();
1732 }
1733 
1734 void X86_32ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, CCState &State,
1735                                           bool &UsedInAlloca) const {
1736   // Vectorcall x86 works subtly different than in x64, so the format is
1737   // a bit different than the x64 version.  First, all vector types (not HVAs)
1738   // are assigned, with the first 6 ending up in the YMM0-5 or XMM0-5 registers.
1739   // This differs from the x64 implementation, where the first 6 by INDEX get
1740   // registers.
1741   // After that, integers AND HVAs are assigned Left to Right in the same pass.
1742   // Integers are passed as ECX/EDX if one is available (in order).  HVAs will
1743   // first take up the remaining YMM/XMM registers. If insufficient registers
1744   // remain but an integer register (ECX/EDX) is available, it will be passed
1745   // in that, else, on the stack.
1746   for (auto &I : FI.arguments()) {
1747     // First pass do all the vector types.
1748     const Type *Base = nullptr;
1749     uint64_t NumElts = 0;
1750     const QualType& Ty = I.type;
1751     if ((Ty->isVectorType() || Ty->isBuiltinType()) &&
1752         isHomogeneousAggregate(Ty, Base, NumElts)) {
1753       if (State.FreeSSERegs >= NumElts) {
1754         State.FreeSSERegs -= NumElts;
1755         I.info = ABIArgInfo::getDirect();
1756       } else {
1757         I.info = classifyArgumentType(Ty, State);
1758       }
1759       UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1760     }
1761   }
1762 
1763   for (auto &I : FI.arguments()) {
1764     // Second pass, do the rest!
1765     const Type *Base = nullptr;
1766     uint64_t NumElts = 0;
1767     const QualType& Ty = I.type;
1768     bool IsHva = isHomogeneousAggregate(Ty, Base, NumElts);
1769 
1770     if (IsHva && !Ty->isVectorType() && !Ty->isBuiltinType()) {
1771       // Assign true HVAs (non vector/native FP types).
1772       if (State.FreeSSERegs >= NumElts) {
1773         State.FreeSSERegs -= NumElts;
1774         I.info = getDirectX86Hva();
1775       } else {
1776         I.info = getIndirectResult(Ty, /*ByVal=*/false, State);
1777       }
1778     } else if (!IsHva) {
1779       // Assign all Non-HVAs, so this will exclude Vector/FP args.
1780       I.info = classifyArgumentType(Ty, State);
1781       UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1782     }
1783   }
1784 }
1785 
1786 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1787   CCState State(FI.getCallingConvention());
1788   if (IsMCUABI)
1789     State.FreeRegs = 3;
1790   else if (State.CC == llvm::CallingConv::X86_FastCall)
1791     State.FreeRegs = 2;
1792   else if (State.CC == llvm::CallingConv::X86_VectorCall) {
1793     State.FreeRegs = 2;
1794     State.FreeSSERegs = 6;
1795   } else if (FI.getHasRegParm())
1796     State.FreeRegs = FI.getRegParm();
1797   else if (State.CC == llvm::CallingConv::X86_RegCall) {
1798     State.FreeRegs = 5;
1799     State.FreeSSERegs = 8;
1800   } else
1801     State.FreeRegs = DefaultNumRegisterParameters;
1802 
1803   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
1804     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
1805   } else if (FI.getReturnInfo().isIndirect()) {
1806     // The C++ ABI is not aware of register usage, so we have to check if the
1807     // return value was sret and put it in a register ourselves if appropriate.
1808     if (State.FreeRegs) {
1809       --State.FreeRegs;  // The sret parameter consumes a register.
1810       if (!IsMCUABI)
1811         FI.getReturnInfo().setInReg(true);
1812     }
1813   }
1814 
1815   // The chain argument effectively gives us another free register.
1816   if (FI.isChainCall())
1817     ++State.FreeRegs;
1818 
1819   bool UsedInAlloca = false;
1820   if (State.CC == llvm::CallingConv::X86_VectorCall) {
1821     computeVectorCallArgs(FI, State, UsedInAlloca);
1822   } else {
1823     // If not vectorcall, revert to normal behavior.
1824     for (auto &I : FI.arguments()) {
1825       I.info = classifyArgumentType(I.type, State);
1826       UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1827     }
1828   }
1829 
1830   // If we needed to use inalloca for any argument, do a second pass and rewrite
1831   // all the memory arguments to use inalloca.
1832   if (UsedInAlloca)
1833     rewriteWithInAlloca(FI);
1834 }
1835 
1836 void
1837 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1838                                    CharUnits &StackOffset, ABIArgInfo &Info,
1839                                    QualType Type) const {
1840   // Arguments are always 4-byte-aligned.
1841   CharUnits FieldAlign = CharUnits::fromQuantity(4);
1842 
1843   assert(StackOffset.isMultipleOf(FieldAlign) && "unaligned inalloca struct");
1844   Info = ABIArgInfo::getInAlloca(FrameFields.size());
1845   FrameFields.push_back(CGT.ConvertTypeForMem(Type));
1846   StackOffset += getContext().getTypeSizeInChars(Type);
1847 
1848   // Insert padding bytes to respect alignment.
1849   CharUnits FieldEnd = StackOffset;
1850   StackOffset = FieldEnd.alignTo(FieldAlign);
1851   if (StackOffset != FieldEnd) {
1852     CharUnits NumBytes = StackOffset - FieldEnd;
1853     llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
1854     Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity());
1855     FrameFields.push_back(Ty);
1856   }
1857 }
1858 
1859 static bool isArgInAlloca(const ABIArgInfo &Info) {
1860   // Leave ignored and inreg arguments alone.
1861   switch (Info.getKind()) {
1862   case ABIArgInfo::InAlloca:
1863     return true;
1864   case ABIArgInfo::Indirect:
1865     assert(Info.getIndirectByVal());
1866     return true;
1867   case ABIArgInfo::Ignore:
1868     return false;
1869   case ABIArgInfo::Direct:
1870   case ABIArgInfo::Extend:
1871     if (Info.getInReg())
1872       return false;
1873     return true;
1874   case ABIArgInfo::Expand:
1875   case ABIArgInfo::CoerceAndExpand:
1876     // These are aggregate types which are never passed in registers when
1877     // inalloca is involved.
1878     return true;
1879   }
1880   llvm_unreachable("invalid enum");
1881 }
1882 
1883 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
1884   assert(IsWin32StructABI && "inalloca only supported on win32");
1885 
1886   // Build a packed struct type for all of the arguments in memory.
1887   SmallVector<llvm::Type *, 6> FrameFields;
1888 
1889   // The stack alignment is always 4.
1890   CharUnits StackAlign = CharUnits::fromQuantity(4);
1891 
1892   CharUnits StackOffset;
1893   CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
1894 
1895   // Put 'this' into the struct before 'sret', if necessary.
1896   bool IsThisCall =
1897       FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
1898   ABIArgInfo &Ret = FI.getReturnInfo();
1899   if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
1900       isArgInAlloca(I->info)) {
1901     addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1902     ++I;
1903   }
1904 
1905   // Put the sret parameter into the inalloca struct if it's in memory.
1906   if (Ret.isIndirect() && !Ret.getInReg()) {
1907     CanQualType PtrTy = getContext().getPointerType(FI.getReturnType());
1908     addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy);
1909     // On Windows, the hidden sret parameter is always returned in eax.
1910     Ret.setInAllocaSRet(IsWin32StructABI);
1911   }
1912 
1913   // Skip the 'this' parameter in ecx.
1914   if (IsThisCall)
1915     ++I;
1916 
1917   // Put arguments passed in memory into the struct.
1918   for (; I != E; ++I) {
1919     if (isArgInAlloca(I->info))
1920       addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1921   }
1922 
1923   FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
1924                                         /*isPacked=*/true),
1925                   StackAlign);
1926 }
1927 
1928 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF,
1929                                  Address VAListAddr, QualType Ty) const {
1930 
1931   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
1932 
1933   // x86-32 changes the alignment of certain arguments on the stack.
1934   //
1935   // Just messing with TypeInfo like this works because we never pass
1936   // anything indirectly.
1937   TypeInfo.second = CharUnits::fromQuantity(
1938                 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity()));
1939 
1940   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
1941                           TypeInfo, CharUnits::fromQuantity(4),
1942                           /*AllowHigherAlign*/ true);
1943 }
1944 
1945 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
1946     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
1947   assert(Triple.getArch() == llvm::Triple::x86);
1948 
1949   switch (Opts.getStructReturnConvention()) {
1950   case CodeGenOptions::SRCK_Default:
1951     break;
1952   case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
1953     return false;
1954   case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
1955     return true;
1956   }
1957 
1958   if (Triple.isOSDarwin() || Triple.isOSIAMCU())
1959     return true;
1960 
1961   switch (Triple.getOS()) {
1962   case llvm::Triple::DragonFly:
1963   case llvm::Triple::FreeBSD:
1964   case llvm::Triple::OpenBSD:
1965   case llvm::Triple::Win32:
1966     return true;
1967   default:
1968     return false;
1969   }
1970 }
1971 
1972 void X86_32TargetCodeGenInfo::setTargetAttributes(
1973     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
1974   if (GV->isDeclaration())
1975     return;
1976   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
1977     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1978       llvm::Function *Fn = cast<llvm::Function>(GV);
1979       Fn->addFnAttr("stackrealign");
1980     }
1981     if (FD->hasAttr<AnyX86InterruptAttr>()) {
1982       llvm::Function *Fn = cast<llvm::Function>(GV);
1983       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
1984     }
1985   }
1986 }
1987 
1988 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
1989                                                CodeGen::CodeGenFunction &CGF,
1990                                                llvm::Value *Address) const {
1991   CodeGen::CGBuilderTy &Builder = CGF.Builder;
1992 
1993   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
1994 
1995   // 0-7 are the eight integer registers;  the order is different
1996   //   on Darwin (for EH), but the range is the same.
1997   // 8 is %eip.
1998   AssignToArrayRange(Builder, Address, Four8, 0, 8);
1999 
2000   if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
2001     // 12-16 are st(0..4).  Not sure why we stop at 4.
2002     // These have size 16, which is sizeof(long double) on
2003     // platforms with 8-byte alignment for that type.
2004     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
2005     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
2006 
2007   } else {
2008     // 9 is %eflags, which doesn't get a size on Darwin for some
2009     // reason.
2010     Builder.CreateAlignedStore(
2011         Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9),
2012                                CharUnits::One());
2013 
2014     // 11-16 are st(0..5).  Not sure why we stop at 5.
2015     // These have size 12, which is sizeof(long double) on
2016     // platforms with 4-byte alignment for that type.
2017     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
2018     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
2019   }
2020 
2021   return false;
2022 }
2023 
2024 //===----------------------------------------------------------------------===//
2025 // X86-64 ABI Implementation
2026 //===----------------------------------------------------------------------===//
2027 
2028 
2029 namespace {
2030 /// The AVX ABI level for X86 targets.
2031 enum class X86AVXABILevel {
2032   None,
2033   AVX,
2034   AVX512
2035 };
2036 
2037 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
2038 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
2039   switch (AVXLevel) {
2040   case X86AVXABILevel::AVX512:
2041     return 512;
2042   case X86AVXABILevel::AVX:
2043     return 256;
2044   case X86AVXABILevel::None:
2045     return 128;
2046   }
2047   llvm_unreachable("Unknown AVXLevel");
2048 }
2049 
2050 /// X86_64ABIInfo - The X86_64 ABI information.
2051 class X86_64ABIInfo : public SwiftABIInfo {
2052   enum Class {
2053     Integer = 0,
2054     SSE,
2055     SSEUp,
2056     X87,
2057     X87Up,
2058     ComplexX87,
2059     NoClass,
2060     Memory
2061   };
2062 
2063   /// merge - Implement the X86_64 ABI merging algorithm.
2064   ///
2065   /// Merge an accumulating classification \arg Accum with a field
2066   /// classification \arg Field.
2067   ///
2068   /// \param Accum - The accumulating classification. This should
2069   /// always be either NoClass or the result of a previous merge
2070   /// call. In addition, this should never be Memory (the caller
2071   /// should just return Memory for the aggregate).
2072   static Class merge(Class Accum, Class Field);
2073 
2074   /// postMerge - Implement the X86_64 ABI post merging algorithm.
2075   ///
2076   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
2077   /// final MEMORY or SSE classes when necessary.
2078   ///
2079   /// \param AggregateSize - The size of the current aggregate in
2080   /// the classification process.
2081   ///
2082   /// \param Lo - The classification for the parts of the type
2083   /// residing in the low word of the containing object.
2084   ///
2085   /// \param Hi - The classification for the parts of the type
2086   /// residing in the higher words of the containing object.
2087   ///
2088   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
2089 
2090   /// classify - Determine the x86_64 register classes in which the
2091   /// given type T should be passed.
2092   ///
2093   /// \param Lo - The classification for the parts of the type
2094   /// residing in the low word of the containing object.
2095   ///
2096   /// \param Hi - The classification for the parts of the type
2097   /// residing in the high word of the containing object.
2098   ///
2099   /// \param OffsetBase - The bit offset of this type in the
2100   /// containing object.  Some parameters are classified different
2101   /// depending on whether they straddle an eightbyte boundary.
2102   ///
2103   /// \param isNamedArg - Whether the argument in question is a "named"
2104   /// argument, as used in AMD64-ABI 3.5.7.
2105   ///
2106   /// If a word is unused its result will be NoClass; if a type should
2107   /// be passed in Memory then at least the classification of \arg Lo
2108   /// will be Memory.
2109   ///
2110   /// The \arg Lo class will be NoClass iff the argument is ignored.
2111   ///
2112   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
2113   /// also be ComplexX87.
2114   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
2115                 bool isNamedArg) const;
2116 
2117   llvm::Type *GetByteVectorType(QualType Ty) const;
2118   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
2119                                  unsigned IROffset, QualType SourceTy,
2120                                  unsigned SourceOffset) const;
2121   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
2122                                      unsigned IROffset, QualType SourceTy,
2123                                      unsigned SourceOffset) const;
2124 
2125   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2126   /// such that the argument will be returned in memory.
2127   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
2128 
2129   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2130   /// such that the argument will be passed in memory.
2131   ///
2132   /// \param freeIntRegs - The number of free integer registers remaining
2133   /// available.
2134   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
2135 
2136   ABIArgInfo classifyReturnType(QualType RetTy) const;
2137 
2138   ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs,
2139                                   unsigned &neededInt, unsigned &neededSSE,
2140                                   bool isNamedArg) const;
2141 
2142   ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt,
2143                                        unsigned &NeededSSE) const;
2144 
2145   ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
2146                                            unsigned &NeededSSE) const;
2147 
2148   bool IsIllegalVectorType(QualType Ty) const;
2149 
2150   /// The 0.98 ABI revision clarified a lot of ambiguities,
2151   /// unfortunately in ways that were not always consistent with
2152   /// certain previous compilers.  In particular, platforms which
2153   /// required strict binary compatibility with older versions of GCC
2154   /// may need to exempt themselves.
2155   bool honorsRevision0_98() const {
2156     return !getTarget().getTriple().isOSDarwin();
2157   }
2158 
2159   /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to
2160   /// classify it as INTEGER (for compatibility with older clang compilers).
2161   bool classifyIntegerMMXAsSSE() const {
2162     // Clang <= 3.8 did not do this.
2163     if (getContext().getLangOpts().getClangABICompat() <=
2164         LangOptions::ClangABI::Ver3_8)
2165       return false;
2166 
2167     const llvm::Triple &Triple = getTarget().getTriple();
2168     if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4)
2169       return false;
2170     if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10)
2171       return false;
2172     return true;
2173   }
2174 
2175   X86AVXABILevel AVXLevel;
2176   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
2177   // 64-bit hardware.
2178   bool Has64BitPointers;
2179 
2180 public:
2181   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) :
2182       SwiftABIInfo(CGT), AVXLevel(AVXLevel),
2183       Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
2184   }
2185 
2186   bool isPassedUsingAVXType(QualType type) const {
2187     unsigned neededInt, neededSSE;
2188     // The freeIntRegs argument doesn't matter here.
2189     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
2190                                            /*isNamedArg*/true);
2191     if (info.isDirect()) {
2192       llvm::Type *ty = info.getCoerceToType();
2193       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
2194         return (vectorTy->getBitWidth() > 128);
2195     }
2196     return false;
2197   }
2198 
2199   void computeInfo(CGFunctionInfo &FI) const override;
2200 
2201   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2202                     QualType Ty) const override;
2203   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
2204                       QualType Ty) const override;
2205 
2206   bool has64BitPointers() const {
2207     return Has64BitPointers;
2208   }
2209 
2210   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
2211                                     bool asReturnValue) const override {
2212     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2213   }
2214   bool isSwiftErrorInRegister() const override {
2215     return true;
2216   }
2217 };
2218 
2219 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
2220 class WinX86_64ABIInfo : public SwiftABIInfo {
2221 public:
2222   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT)
2223       : SwiftABIInfo(CGT),
2224         IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {}
2225 
2226   void computeInfo(CGFunctionInfo &FI) const override;
2227 
2228   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2229                     QualType Ty) const override;
2230 
2231   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
2232     // FIXME: Assumes vectorcall is in use.
2233     return isX86VectorTypeForVectorCall(getContext(), Ty);
2234   }
2235 
2236   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
2237                                          uint64_t NumMembers) const override {
2238     // FIXME: Assumes vectorcall is in use.
2239     return isX86VectorCallAggregateSmallEnough(NumMembers);
2240   }
2241 
2242   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars,
2243                                     bool asReturnValue) const override {
2244     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2245   }
2246 
2247   bool isSwiftErrorInRegister() const override {
2248     return true;
2249   }
2250 
2251 private:
2252   ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType,
2253                       bool IsVectorCall, bool IsRegCall) const;
2254   ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs,
2255                                       const ABIArgInfo &current) const;
2256   void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs,
2257                              bool IsVectorCall, bool IsRegCall) const;
2258 
2259     bool IsMingw64;
2260 };
2261 
2262 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2263 public:
2264   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2265       : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {}
2266 
2267   const X86_64ABIInfo &getABIInfo() const {
2268     return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
2269   }
2270 
2271   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2272     return 7;
2273   }
2274 
2275   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2276                                llvm::Value *Address) const override {
2277     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2278 
2279     // 0-15 are the 16 integer registers.
2280     // 16 is %rip.
2281     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2282     return false;
2283   }
2284 
2285   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
2286                                   StringRef Constraint,
2287                                   llvm::Type* Ty) const override {
2288     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
2289   }
2290 
2291   bool isNoProtoCallVariadic(const CallArgList &args,
2292                              const FunctionNoProtoType *fnType) const override {
2293     // The default CC on x86-64 sets %al to the number of SSA
2294     // registers used, and GCC sets this when calling an unprototyped
2295     // function, so we override the default behavior.  However, don't do
2296     // that when AVX types are involved: the ABI explicitly states it is
2297     // undefined, and it doesn't work in practice because of how the ABI
2298     // defines varargs anyway.
2299     if (fnType->getCallConv() == CC_C) {
2300       bool HasAVXType = false;
2301       for (CallArgList::const_iterator
2302              it = args.begin(), ie = args.end(); it != ie; ++it) {
2303         if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
2304           HasAVXType = true;
2305           break;
2306         }
2307       }
2308 
2309       if (!HasAVXType)
2310         return true;
2311     }
2312 
2313     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
2314   }
2315 
2316   llvm::Constant *
2317   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
2318     unsigned Sig = (0xeb << 0) | // jmp rel8
2319                    (0x06 << 8) | //           .+0x08
2320                    ('v' << 16) |
2321                    ('2' << 24);
2322     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
2323   }
2324 
2325   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2326                            CodeGen::CodeGenModule &CGM) const override {
2327     if (GV->isDeclaration())
2328       return;
2329     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2330       if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2331         llvm::Function *Fn = cast<llvm::Function>(GV);
2332         Fn->addFnAttr("stackrealign");
2333       }
2334       if (FD->hasAttr<AnyX86InterruptAttr>()) {
2335         llvm::Function *Fn = cast<llvm::Function>(GV);
2336         Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2337       }
2338     }
2339   }
2340 };
2341 
2342 class PS4TargetCodeGenInfo : public X86_64TargetCodeGenInfo {
2343 public:
2344   PS4TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2345     : X86_64TargetCodeGenInfo(CGT, AVXLevel) {}
2346 
2347   void getDependentLibraryOption(llvm::StringRef Lib,
2348                                  llvm::SmallString<24> &Opt) const override {
2349     Opt = "\01";
2350     // If the argument contains a space, enclose it in quotes.
2351     if (Lib.find(" ") != StringRef::npos)
2352       Opt += "\"" + Lib.str() + "\"";
2353     else
2354       Opt += Lib;
2355   }
2356 };
2357 
2358 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
2359   // If the argument does not end in .lib, automatically add the suffix.
2360   // If the argument contains a space, enclose it in quotes.
2361   // This matches the behavior of MSVC.
2362   bool Quote = (Lib.find(" ") != StringRef::npos);
2363   std::string ArgStr = Quote ? "\"" : "";
2364   ArgStr += Lib;
2365   if (!Lib.endswith_lower(".lib") && !Lib.endswith_lower(".a"))
2366     ArgStr += ".lib";
2367   ArgStr += Quote ? "\"" : "";
2368   return ArgStr;
2369 }
2370 
2371 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
2372 public:
2373   WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2374         bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI,
2375         unsigned NumRegisterParameters)
2376     : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI,
2377         Win32StructABI, NumRegisterParameters, false) {}
2378 
2379   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2380                            CodeGen::CodeGenModule &CGM) const override;
2381 
2382   void getDependentLibraryOption(llvm::StringRef Lib,
2383                                  llvm::SmallString<24> &Opt) const override {
2384     Opt = "/DEFAULTLIB:";
2385     Opt += qualifyWindowsLibrary(Lib);
2386   }
2387 
2388   void getDetectMismatchOption(llvm::StringRef Name,
2389                                llvm::StringRef Value,
2390                                llvm::SmallString<32> &Opt) const override {
2391     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2392   }
2393 };
2394 
2395 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2396                                           CodeGen::CodeGenModule &CGM) {
2397   if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) {
2398 
2399     if (CGM.getCodeGenOpts().StackProbeSize != 4096)
2400       Fn->addFnAttr("stack-probe-size",
2401                     llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
2402     if (CGM.getCodeGenOpts().NoStackArgProbe)
2403       Fn->addFnAttr("no-stack-arg-probe");
2404   }
2405 }
2406 
2407 void WinX86_32TargetCodeGenInfo::setTargetAttributes(
2408     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2409   X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2410   if (GV->isDeclaration())
2411     return;
2412   addStackProbeTargetAttributes(D, GV, CGM);
2413 }
2414 
2415 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2416 public:
2417   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2418                              X86AVXABILevel AVXLevel)
2419       : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
2420 
2421   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2422                            CodeGen::CodeGenModule &CGM) const override;
2423 
2424   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2425     return 7;
2426   }
2427 
2428   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2429                                llvm::Value *Address) const override {
2430     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2431 
2432     // 0-15 are the 16 integer registers.
2433     // 16 is %rip.
2434     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2435     return false;
2436   }
2437 
2438   void getDependentLibraryOption(llvm::StringRef Lib,
2439                                  llvm::SmallString<24> &Opt) const override {
2440     Opt = "/DEFAULTLIB:";
2441     Opt += qualifyWindowsLibrary(Lib);
2442   }
2443 
2444   void getDetectMismatchOption(llvm::StringRef Name,
2445                                llvm::StringRef Value,
2446                                llvm::SmallString<32> &Opt) const override {
2447     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2448   }
2449 };
2450 
2451 void WinX86_64TargetCodeGenInfo::setTargetAttributes(
2452     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2453   TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2454   if (GV->isDeclaration())
2455     return;
2456   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2457     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2458       llvm::Function *Fn = cast<llvm::Function>(GV);
2459       Fn->addFnAttr("stackrealign");
2460     }
2461     if (FD->hasAttr<AnyX86InterruptAttr>()) {
2462       llvm::Function *Fn = cast<llvm::Function>(GV);
2463       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2464     }
2465   }
2466 
2467   addStackProbeTargetAttributes(D, GV, CGM);
2468 }
2469 }
2470 
2471 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
2472                               Class &Hi) const {
2473   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
2474   //
2475   // (a) If one of the classes is Memory, the whole argument is passed in
2476   //     memory.
2477   //
2478   // (b) If X87UP is not preceded by X87, the whole argument is passed in
2479   //     memory.
2480   //
2481   // (c) If the size of the aggregate exceeds two eightbytes and the first
2482   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
2483   //     argument is passed in memory. NOTE: This is necessary to keep the
2484   //     ABI working for processors that don't support the __m256 type.
2485   //
2486   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
2487   //
2488   // Some of these are enforced by the merging logic.  Others can arise
2489   // only with unions; for example:
2490   //   union { _Complex double; unsigned; }
2491   //
2492   // Note that clauses (b) and (c) were added in 0.98.
2493   //
2494   if (Hi == Memory)
2495     Lo = Memory;
2496   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
2497     Lo = Memory;
2498   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
2499     Lo = Memory;
2500   if (Hi == SSEUp && Lo != SSE)
2501     Hi = SSE;
2502 }
2503 
2504 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
2505   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
2506   // classified recursively so that always two fields are
2507   // considered. The resulting class is calculated according to
2508   // the classes of the fields in the eightbyte:
2509   //
2510   // (a) If both classes are equal, this is the resulting class.
2511   //
2512   // (b) If one of the classes is NO_CLASS, the resulting class is
2513   // the other class.
2514   //
2515   // (c) If one of the classes is MEMORY, the result is the MEMORY
2516   // class.
2517   //
2518   // (d) If one of the classes is INTEGER, the result is the
2519   // INTEGER.
2520   //
2521   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
2522   // MEMORY is used as class.
2523   //
2524   // (f) Otherwise class SSE is used.
2525 
2526   // Accum should never be memory (we should have returned) or
2527   // ComplexX87 (because this cannot be passed in a structure).
2528   assert((Accum != Memory && Accum != ComplexX87) &&
2529          "Invalid accumulated classification during merge.");
2530   if (Accum == Field || Field == NoClass)
2531     return Accum;
2532   if (Field == Memory)
2533     return Memory;
2534   if (Accum == NoClass)
2535     return Field;
2536   if (Accum == Integer || Field == Integer)
2537     return Integer;
2538   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
2539       Accum == X87 || Accum == X87Up)
2540     return Memory;
2541   return SSE;
2542 }
2543 
2544 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
2545                              Class &Lo, Class &Hi, bool isNamedArg) const {
2546   // FIXME: This code can be simplified by introducing a simple value class for
2547   // Class pairs with appropriate constructor methods for the various
2548   // situations.
2549 
2550   // FIXME: Some of the split computations are wrong; unaligned vectors
2551   // shouldn't be passed in registers for example, so there is no chance they
2552   // can straddle an eightbyte. Verify & simplify.
2553 
2554   Lo = Hi = NoClass;
2555 
2556   Class &Current = OffsetBase < 64 ? Lo : Hi;
2557   Current = Memory;
2558 
2559   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
2560     BuiltinType::Kind k = BT->getKind();
2561 
2562     if (k == BuiltinType::Void) {
2563       Current = NoClass;
2564     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
2565       Lo = Integer;
2566       Hi = Integer;
2567     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
2568       Current = Integer;
2569     } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
2570       Current = SSE;
2571     } else if (k == BuiltinType::LongDouble) {
2572       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2573       if (LDF == &llvm::APFloat::IEEEquad()) {
2574         Lo = SSE;
2575         Hi = SSEUp;
2576       } else if (LDF == &llvm::APFloat::x87DoubleExtended()) {
2577         Lo = X87;
2578         Hi = X87Up;
2579       } else if (LDF == &llvm::APFloat::IEEEdouble()) {
2580         Current = SSE;
2581       } else
2582         llvm_unreachable("unexpected long double representation!");
2583     }
2584     // FIXME: _Decimal32 and _Decimal64 are SSE.
2585     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
2586     return;
2587   }
2588 
2589   if (const EnumType *ET = Ty->getAs<EnumType>()) {
2590     // Classify the underlying integer type.
2591     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
2592     return;
2593   }
2594 
2595   if (Ty->hasPointerRepresentation()) {
2596     Current = Integer;
2597     return;
2598   }
2599 
2600   if (Ty->isMemberPointerType()) {
2601     if (Ty->isMemberFunctionPointerType()) {
2602       if (Has64BitPointers) {
2603         // If Has64BitPointers, this is an {i64, i64}, so classify both
2604         // Lo and Hi now.
2605         Lo = Hi = Integer;
2606       } else {
2607         // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
2608         // straddles an eightbyte boundary, Hi should be classified as well.
2609         uint64_t EB_FuncPtr = (OffsetBase) / 64;
2610         uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
2611         if (EB_FuncPtr != EB_ThisAdj) {
2612           Lo = Hi = Integer;
2613         } else {
2614           Current = Integer;
2615         }
2616       }
2617     } else {
2618       Current = Integer;
2619     }
2620     return;
2621   }
2622 
2623   if (const VectorType *VT = Ty->getAs<VectorType>()) {
2624     uint64_t Size = getContext().getTypeSize(VT);
2625     if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
2626       // gcc passes the following as integer:
2627       // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
2628       // 2 bytes - <2 x char>, <1 x short>
2629       // 1 byte  - <1 x char>
2630       Current = Integer;
2631 
2632       // If this type crosses an eightbyte boundary, it should be
2633       // split.
2634       uint64_t EB_Lo = (OffsetBase) / 64;
2635       uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
2636       if (EB_Lo != EB_Hi)
2637         Hi = Lo;
2638     } else if (Size == 64) {
2639       QualType ElementType = VT->getElementType();
2640 
2641       // gcc passes <1 x double> in memory. :(
2642       if (ElementType->isSpecificBuiltinType(BuiltinType::Double))
2643         return;
2644 
2645       // gcc passes <1 x long long> as SSE but clang used to unconditionally
2646       // pass them as integer.  For platforms where clang is the de facto
2647       // platform compiler, we must continue to use integer.
2648       if (!classifyIntegerMMXAsSSE() &&
2649           (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) ||
2650            ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
2651            ElementType->isSpecificBuiltinType(BuiltinType::Long) ||
2652            ElementType->isSpecificBuiltinType(BuiltinType::ULong)))
2653         Current = Integer;
2654       else
2655         Current = SSE;
2656 
2657       // If this type crosses an eightbyte boundary, it should be
2658       // split.
2659       if (OffsetBase && OffsetBase != 64)
2660         Hi = Lo;
2661     } else if (Size == 128 ||
2662                (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
2663       // Arguments of 256-bits are split into four eightbyte chunks. The
2664       // least significant one belongs to class SSE and all the others to class
2665       // SSEUP. The original Lo and Hi design considers that types can't be
2666       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
2667       // This design isn't correct for 256-bits, but since there're no cases
2668       // where the upper parts would need to be inspected, avoid adding
2669       // complexity and just consider Hi to match the 64-256 part.
2670       //
2671       // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
2672       // registers if they are "named", i.e. not part of the "..." of a
2673       // variadic function.
2674       //
2675       // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
2676       // split into eight eightbyte chunks, one SSE and seven SSEUP.
2677       Lo = SSE;
2678       Hi = SSEUp;
2679     }
2680     return;
2681   }
2682 
2683   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
2684     QualType ET = getContext().getCanonicalType(CT->getElementType());
2685 
2686     uint64_t Size = getContext().getTypeSize(Ty);
2687     if (ET->isIntegralOrEnumerationType()) {
2688       if (Size <= 64)
2689         Current = Integer;
2690       else if (Size <= 128)
2691         Lo = Hi = Integer;
2692     } else if (ET == getContext().FloatTy) {
2693       Current = SSE;
2694     } else if (ET == getContext().DoubleTy) {
2695       Lo = Hi = SSE;
2696     } else if (ET == getContext().LongDoubleTy) {
2697       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2698       if (LDF == &llvm::APFloat::IEEEquad())
2699         Current = Memory;
2700       else if (LDF == &llvm::APFloat::x87DoubleExtended())
2701         Current = ComplexX87;
2702       else if (LDF == &llvm::APFloat::IEEEdouble())
2703         Lo = Hi = SSE;
2704       else
2705         llvm_unreachable("unexpected long double representation!");
2706     }
2707 
2708     // If this complex type crosses an eightbyte boundary then it
2709     // should be split.
2710     uint64_t EB_Real = (OffsetBase) / 64;
2711     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
2712     if (Hi == NoClass && EB_Real != EB_Imag)
2713       Hi = Lo;
2714 
2715     return;
2716   }
2717 
2718   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
2719     // Arrays are treated like structures.
2720 
2721     uint64_t Size = getContext().getTypeSize(Ty);
2722 
2723     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2724     // than eight eightbytes, ..., it has class MEMORY.
2725     if (Size > 512)
2726       return;
2727 
2728     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
2729     // fields, it has class MEMORY.
2730     //
2731     // Only need to check alignment of array base.
2732     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
2733       return;
2734 
2735     // Otherwise implement simplified merge. We could be smarter about
2736     // this, but it isn't worth it and would be harder to verify.
2737     Current = NoClass;
2738     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
2739     uint64_t ArraySize = AT->getSize().getZExtValue();
2740 
2741     // The only case a 256-bit wide vector could be used is when the array
2742     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2743     // to work for sizes wider than 128, early check and fallback to memory.
2744     //
2745     if (Size > 128 &&
2746         (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel)))
2747       return;
2748 
2749     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
2750       Class FieldLo, FieldHi;
2751       classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
2752       Lo = merge(Lo, FieldLo);
2753       Hi = merge(Hi, FieldHi);
2754       if (Lo == Memory || Hi == Memory)
2755         break;
2756     }
2757 
2758     postMerge(Size, Lo, Hi);
2759     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
2760     return;
2761   }
2762 
2763   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2764     uint64_t Size = getContext().getTypeSize(Ty);
2765 
2766     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2767     // than eight eightbytes, ..., it has class MEMORY.
2768     if (Size > 512)
2769       return;
2770 
2771     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
2772     // copy constructor or a non-trivial destructor, it is passed by invisible
2773     // reference.
2774     if (getRecordArgABI(RT, getCXXABI()))
2775       return;
2776 
2777     const RecordDecl *RD = RT->getDecl();
2778 
2779     // Assume variable sized types are passed in memory.
2780     if (RD->hasFlexibleArrayMember())
2781       return;
2782 
2783     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2784 
2785     // Reset Lo class, this will be recomputed.
2786     Current = NoClass;
2787 
2788     // If this is a C++ record, classify the bases first.
2789     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2790       for (const auto &I : CXXRD->bases()) {
2791         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2792                "Unexpected base class!");
2793         const CXXRecordDecl *Base =
2794           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2795 
2796         // Classify this field.
2797         //
2798         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
2799         // single eightbyte, each is classified separately. Each eightbyte gets
2800         // initialized to class NO_CLASS.
2801         Class FieldLo, FieldHi;
2802         uint64_t Offset =
2803           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
2804         classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
2805         Lo = merge(Lo, FieldLo);
2806         Hi = merge(Hi, FieldHi);
2807         if (Lo == Memory || Hi == Memory) {
2808           postMerge(Size, Lo, Hi);
2809           return;
2810         }
2811       }
2812     }
2813 
2814     // Classify the fields one at a time, merging the results.
2815     unsigned idx = 0;
2816     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2817            i != e; ++i, ++idx) {
2818       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2819       bool BitField = i->isBitField();
2820 
2821       // Ignore padding bit-fields.
2822       if (BitField && i->isUnnamedBitfield())
2823         continue;
2824 
2825       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
2826       // four eightbytes, or it contains unaligned fields, it has class MEMORY.
2827       //
2828       // The only case a 256-bit wide vector could be used is when the struct
2829       // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2830       // to work for sizes wider than 128, early check and fallback to memory.
2831       //
2832       if (Size > 128 && (Size != getContext().getTypeSize(i->getType()) ||
2833                          Size > getNativeVectorSizeForAVXABI(AVXLevel))) {
2834         Lo = Memory;
2835         postMerge(Size, Lo, Hi);
2836         return;
2837       }
2838       // Note, skip this test for bit-fields, see below.
2839       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
2840         Lo = Memory;
2841         postMerge(Size, Lo, Hi);
2842         return;
2843       }
2844 
2845       // Classify this field.
2846       //
2847       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
2848       // exceeds a single eightbyte, each is classified
2849       // separately. Each eightbyte gets initialized to class
2850       // NO_CLASS.
2851       Class FieldLo, FieldHi;
2852 
2853       // Bit-fields require special handling, they do not force the
2854       // structure to be passed in memory even if unaligned, and
2855       // therefore they can straddle an eightbyte.
2856       if (BitField) {
2857         assert(!i->isUnnamedBitfield());
2858         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2859         uint64_t Size = i->getBitWidthValue(getContext());
2860 
2861         uint64_t EB_Lo = Offset / 64;
2862         uint64_t EB_Hi = (Offset + Size - 1) / 64;
2863 
2864         if (EB_Lo) {
2865           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
2866           FieldLo = NoClass;
2867           FieldHi = Integer;
2868         } else {
2869           FieldLo = Integer;
2870           FieldHi = EB_Hi ? Integer : NoClass;
2871         }
2872       } else
2873         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
2874       Lo = merge(Lo, FieldLo);
2875       Hi = merge(Hi, FieldHi);
2876       if (Lo == Memory || Hi == Memory)
2877         break;
2878     }
2879 
2880     postMerge(Size, Lo, Hi);
2881   }
2882 }
2883 
2884 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
2885   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2886   // place naturally.
2887   if (!isAggregateTypeForABI(Ty)) {
2888     // Treat an enum type as its underlying type.
2889     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2890       Ty = EnumTy->getDecl()->getIntegerType();
2891 
2892     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
2893                                           : ABIArgInfo::getDirect());
2894   }
2895 
2896   return getNaturalAlignIndirect(Ty);
2897 }
2898 
2899 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
2900   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
2901     uint64_t Size = getContext().getTypeSize(VecTy);
2902     unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
2903     if (Size <= 64 || Size > LargestVector)
2904       return true;
2905   }
2906 
2907   return false;
2908 }
2909 
2910 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
2911                                             unsigned freeIntRegs) const {
2912   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2913   // place naturally.
2914   //
2915   // This assumption is optimistic, as there could be free registers available
2916   // when we need to pass this argument in memory, and LLVM could try to pass
2917   // the argument in the free register. This does not seem to happen currently,
2918   // but this code would be much safer if we could mark the argument with
2919   // 'onstack'. See PR12193.
2920   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
2921     // Treat an enum type as its underlying type.
2922     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2923       Ty = EnumTy->getDecl()->getIntegerType();
2924 
2925     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
2926                                           : ABIArgInfo::getDirect());
2927   }
2928 
2929   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
2930     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
2931 
2932   // Compute the byval alignment. We specify the alignment of the byval in all
2933   // cases so that the mid-level optimizer knows the alignment of the byval.
2934   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
2935 
2936   // Attempt to avoid passing indirect results using byval when possible. This
2937   // is important for good codegen.
2938   //
2939   // We do this by coercing the value into a scalar type which the backend can
2940   // handle naturally (i.e., without using byval).
2941   //
2942   // For simplicity, we currently only do this when we have exhausted all of the
2943   // free integer registers. Doing this when there are free integer registers
2944   // would require more care, as we would have to ensure that the coerced value
2945   // did not claim the unused register. That would require either reording the
2946   // arguments to the function (so that any subsequent inreg values came first),
2947   // or only doing this optimization when there were no following arguments that
2948   // might be inreg.
2949   //
2950   // We currently expect it to be rare (particularly in well written code) for
2951   // arguments to be passed on the stack when there are still free integer
2952   // registers available (this would typically imply large structs being passed
2953   // by value), so this seems like a fair tradeoff for now.
2954   //
2955   // We can revisit this if the backend grows support for 'onstack' parameter
2956   // attributes. See PR12193.
2957   if (freeIntRegs == 0) {
2958     uint64_t Size = getContext().getTypeSize(Ty);
2959 
2960     // If this type fits in an eightbyte, coerce it into the matching integral
2961     // type, which will end up on the stack (with alignment 8).
2962     if (Align == 8 && Size <= 64)
2963       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2964                                                           Size));
2965   }
2966 
2967   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align));
2968 }
2969 
2970 /// The ABI specifies that a value should be passed in a full vector XMM/YMM
2971 /// register. Pick an LLVM IR type that will be passed as a vector register.
2972 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
2973   // Wrapper structs/arrays that only contain vectors are passed just like
2974   // vectors; strip them off if present.
2975   if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
2976     Ty = QualType(InnerTy, 0);
2977 
2978   llvm::Type *IRType = CGT.ConvertType(Ty);
2979   if (isa<llvm::VectorType>(IRType) ||
2980       IRType->getTypeID() == llvm::Type::FP128TyID)
2981     return IRType;
2982 
2983   // We couldn't find the preferred IR vector type for 'Ty'.
2984   uint64_t Size = getContext().getTypeSize(Ty);
2985   assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!");
2986 
2987   // Return a LLVM IR vector type based on the size of 'Ty'.
2988   return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()),
2989                                Size / 64);
2990 }
2991 
2992 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
2993 /// is known to either be off the end of the specified type or being in
2994 /// alignment padding.  The user type specified is known to be at most 128 bits
2995 /// in size, and have passed through X86_64ABIInfo::classify with a successful
2996 /// classification that put one of the two halves in the INTEGER class.
2997 ///
2998 /// It is conservatively correct to return false.
2999 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
3000                                   unsigned EndBit, ASTContext &Context) {
3001   // If the bytes being queried are off the end of the type, there is no user
3002   // data hiding here.  This handles analysis of builtins, vectors and other
3003   // types that don't contain interesting padding.
3004   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
3005   if (TySize <= StartBit)
3006     return true;
3007 
3008   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
3009     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
3010     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
3011 
3012     // Check each element to see if the element overlaps with the queried range.
3013     for (unsigned i = 0; i != NumElts; ++i) {
3014       // If the element is after the span we care about, then we're done..
3015       unsigned EltOffset = i*EltSize;
3016       if (EltOffset >= EndBit) break;
3017 
3018       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
3019       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
3020                                  EndBit-EltOffset, Context))
3021         return false;
3022     }
3023     // If it overlaps no elements, then it is safe to process as padding.
3024     return true;
3025   }
3026 
3027   if (const RecordType *RT = Ty->getAs<RecordType>()) {
3028     const RecordDecl *RD = RT->getDecl();
3029     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3030 
3031     // If this is a C++ record, check the bases first.
3032     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3033       for (const auto &I : CXXRD->bases()) {
3034         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
3035                "Unexpected base class!");
3036         const CXXRecordDecl *Base =
3037           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
3038 
3039         // If the base is after the span we care about, ignore it.
3040         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
3041         if (BaseOffset >= EndBit) continue;
3042 
3043         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
3044         if (!BitsContainNoUserData(I.getType(), BaseStart,
3045                                    EndBit-BaseOffset, Context))
3046           return false;
3047       }
3048     }
3049 
3050     // Verify that no field has data that overlaps the region of interest.  Yes
3051     // this could be sped up a lot by being smarter about queried fields,
3052     // however we're only looking at structs up to 16 bytes, so we don't care
3053     // much.
3054     unsigned idx = 0;
3055     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3056          i != e; ++i, ++idx) {
3057       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
3058 
3059       // If we found a field after the region we care about, then we're done.
3060       if (FieldOffset >= EndBit) break;
3061 
3062       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
3063       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
3064                                  Context))
3065         return false;
3066     }
3067 
3068     // If nothing in this record overlapped the area of interest, then we're
3069     // clean.
3070     return true;
3071   }
3072 
3073   return false;
3074 }
3075 
3076 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
3077 /// float member at the specified offset.  For example, {int,{float}} has a
3078 /// float at offset 4.  It is conservatively correct for this routine to return
3079 /// false.
3080 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
3081                                   const llvm::DataLayout &TD) {
3082   // Base case if we find a float.
3083   if (IROffset == 0 && IRType->isFloatTy())
3084     return true;
3085 
3086   // If this is a struct, recurse into the field at the specified offset.
3087   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3088     const llvm::StructLayout *SL = TD.getStructLayout(STy);
3089     unsigned Elt = SL->getElementContainingOffset(IROffset);
3090     IROffset -= SL->getElementOffset(Elt);
3091     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
3092   }
3093 
3094   // If this is an array, recurse into the field at the specified offset.
3095   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3096     llvm::Type *EltTy = ATy->getElementType();
3097     unsigned EltSize = TD.getTypeAllocSize(EltTy);
3098     IROffset -= IROffset/EltSize*EltSize;
3099     return ContainsFloatAtOffset(EltTy, IROffset, TD);
3100   }
3101 
3102   return false;
3103 }
3104 
3105 
3106 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
3107 /// low 8 bytes of an XMM register, corresponding to the SSE class.
3108 llvm::Type *X86_64ABIInfo::
3109 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3110                    QualType SourceTy, unsigned SourceOffset) const {
3111   // The only three choices we have are either double, <2 x float>, or float. We
3112   // pass as float if the last 4 bytes is just padding.  This happens for
3113   // structs that contain 3 floats.
3114   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
3115                             SourceOffset*8+64, getContext()))
3116     return llvm::Type::getFloatTy(getVMContext());
3117 
3118   // We want to pass as <2 x float> if the LLVM IR type contains a float at
3119   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
3120   // case.
3121   if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
3122       ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
3123     return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
3124 
3125   return llvm::Type::getDoubleTy(getVMContext());
3126 }
3127 
3128 
3129 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
3130 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
3131 /// about the high or low part of an up-to-16-byte struct.  This routine picks
3132 /// the best LLVM IR type to represent this, which may be i64 or may be anything
3133 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
3134 /// etc).
3135 ///
3136 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
3137 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
3138 /// the 8-byte value references.  PrefType may be null.
3139 ///
3140 /// SourceTy is the source-level type for the entire argument.  SourceOffset is
3141 /// an offset into this that we're processing (which is always either 0 or 8).
3142 ///
3143 llvm::Type *X86_64ABIInfo::
3144 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3145                        QualType SourceTy, unsigned SourceOffset) const {
3146   // If we're dealing with an un-offset LLVM IR type, then it means that we're
3147   // returning an 8-byte unit starting with it.  See if we can safely use it.
3148   if (IROffset == 0) {
3149     // Pointers and int64's always fill the 8-byte unit.
3150     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
3151         IRType->isIntegerTy(64))
3152       return IRType;
3153 
3154     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
3155     // goodness in the source type is just tail padding.  This is allowed to
3156     // kick in for struct {double,int} on the int, but not on
3157     // struct{double,int,int} because we wouldn't return the second int.  We
3158     // have to do this analysis on the source type because we can't depend on
3159     // unions being lowered a specific way etc.
3160     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
3161         IRType->isIntegerTy(32) ||
3162         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
3163       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
3164           cast<llvm::IntegerType>(IRType)->getBitWidth();
3165 
3166       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
3167                                 SourceOffset*8+64, getContext()))
3168         return IRType;
3169     }
3170   }
3171 
3172   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3173     // If this is a struct, recurse into the field at the specified offset.
3174     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
3175     if (IROffset < SL->getSizeInBytes()) {
3176       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
3177       IROffset -= SL->getElementOffset(FieldIdx);
3178 
3179       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
3180                                     SourceTy, SourceOffset);
3181     }
3182   }
3183 
3184   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3185     llvm::Type *EltTy = ATy->getElementType();
3186     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
3187     unsigned EltOffset = IROffset/EltSize*EltSize;
3188     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
3189                                   SourceOffset);
3190   }
3191 
3192   // Okay, we don't have any better idea of what to pass, so we pass this in an
3193   // integer register that isn't too big to fit the rest of the struct.
3194   unsigned TySizeInBytes =
3195     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
3196 
3197   assert(TySizeInBytes != SourceOffset && "Empty field?");
3198 
3199   // It is always safe to classify this as an integer type up to i64 that
3200   // isn't larger than the structure.
3201   return llvm::IntegerType::get(getVMContext(),
3202                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
3203 }
3204 
3205 
3206 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
3207 /// be used as elements of a two register pair to pass or return, return a
3208 /// first class aggregate to represent them.  For example, if the low part of
3209 /// a by-value argument should be passed as i32* and the high part as float,
3210 /// return {i32*, float}.
3211 static llvm::Type *
3212 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
3213                            const llvm::DataLayout &TD) {
3214   // In order to correctly satisfy the ABI, we need to the high part to start
3215   // at offset 8.  If the high and low parts we inferred are both 4-byte types
3216   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
3217   // the second element at offset 8.  Check for this:
3218   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
3219   unsigned HiAlign = TD.getABITypeAlignment(Hi);
3220   unsigned HiStart = llvm::alignTo(LoSize, HiAlign);
3221   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
3222 
3223   // To handle this, we have to increase the size of the low part so that the
3224   // second element will start at an 8 byte offset.  We can't increase the size
3225   // of the second element because it might make us access off the end of the
3226   // struct.
3227   if (HiStart != 8) {
3228     // There are usually two sorts of types the ABI generation code can produce
3229     // for the low part of a pair that aren't 8 bytes in size: float or
3230     // i8/i16/i32.  This can also include pointers when they are 32-bit (X32 and
3231     // NaCl).
3232     // Promote these to a larger type.
3233     if (Lo->isFloatTy())
3234       Lo = llvm::Type::getDoubleTy(Lo->getContext());
3235     else {
3236       assert((Lo->isIntegerTy() || Lo->isPointerTy())
3237              && "Invalid/unknown lo type");
3238       Lo = llvm::Type::getInt64Ty(Lo->getContext());
3239     }
3240   }
3241 
3242   llvm::StructType *Result = llvm::StructType::get(Lo, Hi);
3243 
3244   // Verify that the second element is at an 8-byte offset.
3245   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
3246          "Invalid x86-64 argument pair!");
3247   return Result;
3248 }
3249 
3250 ABIArgInfo X86_64ABIInfo::
3251 classifyReturnType(QualType RetTy) const {
3252   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
3253   // classification algorithm.
3254   X86_64ABIInfo::Class Lo, Hi;
3255   classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
3256 
3257   // Check some invariants.
3258   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3259   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3260 
3261   llvm::Type *ResType = nullptr;
3262   switch (Lo) {
3263   case NoClass:
3264     if (Hi == NoClass)
3265       return ABIArgInfo::getIgnore();
3266     // If the low part is just padding, it takes no register, leave ResType
3267     // null.
3268     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3269            "Unknown missing lo part");
3270     break;
3271 
3272   case SSEUp:
3273   case X87Up:
3274     llvm_unreachable("Invalid classification for lo word.");
3275 
3276     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
3277     // hidden argument.
3278   case Memory:
3279     return getIndirectReturnResult(RetTy);
3280 
3281     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
3282     // available register of the sequence %rax, %rdx is used.
3283   case Integer:
3284     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3285 
3286     // If we have a sign or zero extended integer, make sure to return Extend
3287     // so that the parameter gets the right LLVM IR attributes.
3288     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3289       // Treat an enum type as its underlying type.
3290       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3291         RetTy = EnumTy->getDecl()->getIntegerType();
3292 
3293       if (RetTy->isIntegralOrEnumerationType() &&
3294           RetTy->isPromotableIntegerType())
3295         return ABIArgInfo::getExtend(RetTy);
3296     }
3297     break;
3298 
3299     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
3300     // available SSE register of the sequence %xmm0, %xmm1 is used.
3301   case SSE:
3302     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3303     break;
3304 
3305     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
3306     // returned on the X87 stack in %st0 as 80-bit x87 number.
3307   case X87:
3308     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
3309     break;
3310 
3311     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
3312     // part of the value is returned in %st0 and the imaginary part in
3313     // %st1.
3314   case ComplexX87:
3315     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
3316     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
3317                                     llvm::Type::getX86_FP80Ty(getVMContext()));
3318     break;
3319   }
3320 
3321   llvm::Type *HighPart = nullptr;
3322   switch (Hi) {
3323     // Memory was handled previously and X87 should
3324     // never occur as a hi class.
3325   case Memory:
3326   case X87:
3327     llvm_unreachable("Invalid classification for hi word.");
3328 
3329   case ComplexX87: // Previously handled.
3330   case NoClass:
3331     break;
3332 
3333   case Integer:
3334     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3335     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3336       return ABIArgInfo::getDirect(HighPart, 8);
3337     break;
3338   case SSE:
3339     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3340     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3341       return ABIArgInfo::getDirect(HighPart, 8);
3342     break;
3343 
3344     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
3345     // is passed in the next available eightbyte chunk if the last used
3346     // vector register.
3347     //
3348     // SSEUP should always be preceded by SSE, just widen.
3349   case SSEUp:
3350     assert(Lo == SSE && "Unexpected SSEUp classification.");
3351     ResType = GetByteVectorType(RetTy);
3352     break;
3353 
3354     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
3355     // returned together with the previous X87 value in %st0.
3356   case X87Up:
3357     // If X87Up is preceded by X87, we don't need to do
3358     // anything. However, in some cases with unions it may not be
3359     // preceded by X87. In such situations we follow gcc and pass the
3360     // extra bits in an SSE reg.
3361     if (Lo != X87) {
3362       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3363       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3364         return ABIArgInfo::getDirect(HighPart, 8);
3365     }
3366     break;
3367   }
3368 
3369   // If a high part was specified, merge it together with the low part.  It is
3370   // known to pass in the high eightbyte of the result.  We do this by forming a
3371   // first class struct aggregate with the high and low part: {low, high}
3372   if (HighPart)
3373     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3374 
3375   return ABIArgInfo::getDirect(ResType);
3376 }
3377 
3378 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
3379   QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
3380   bool isNamedArg)
3381   const
3382 {
3383   Ty = useFirstFieldIfTransparentUnion(Ty);
3384 
3385   X86_64ABIInfo::Class Lo, Hi;
3386   classify(Ty, 0, Lo, Hi, isNamedArg);
3387 
3388   // Check some invariants.
3389   // FIXME: Enforce these by construction.
3390   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3391   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3392 
3393   neededInt = 0;
3394   neededSSE = 0;
3395   llvm::Type *ResType = nullptr;
3396   switch (Lo) {
3397   case NoClass:
3398     if (Hi == NoClass)
3399       return ABIArgInfo::getIgnore();
3400     // If the low part is just padding, it takes no register, leave ResType
3401     // null.
3402     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3403            "Unknown missing lo part");
3404     break;
3405 
3406     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
3407     // on the stack.
3408   case Memory:
3409 
3410     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
3411     // COMPLEX_X87, it is passed in memory.
3412   case X87:
3413   case ComplexX87:
3414     if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
3415       ++neededInt;
3416     return getIndirectResult(Ty, freeIntRegs);
3417 
3418   case SSEUp:
3419   case X87Up:
3420     llvm_unreachable("Invalid classification for lo word.");
3421 
3422     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
3423     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
3424     // and %r9 is used.
3425   case Integer:
3426     ++neededInt;
3427 
3428     // Pick an 8-byte type based on the preferred type.
3429     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
3430 
3431     // If we have a sign or zero extended integer, make sure to return Extend
3432     // so that the parameter gets the right LLVM IR attributes.
3433     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3434       // Treat an enum type as its underlying type.
3435       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3436         Ty = EnumTy->getDecl()->getIntegerType();
3437 
3438       if (Ty->isIntegralOrEnumerationType() &&
3439           Ty->isPromotableIntegerType())
3440         return ABIArgInfo::getExtend(Ty);
3441     }
3442 
3443     break;
3444 
3445     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
3446     // available SSE register is used, the registers are taken in the
3447     // order from %xmm0 to %xmm7.
3448   case SSE: {
3449     llvm::Type *IRType = CGT.ConvertType(Ty);
3450     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
3451     ++neededSSE;
3452     break;
3453   }
3454   }
3455 
3456   llvm::Type *HighPart = nullptr;
3457   switch (Hi) {
3458     // Memory was handled previously, ComplexX87 and X87 should
3459     // never occur as hi classes, and X87Up must be preceded by X87,
3460     // which is passed in memory.
3461   case Memory:
3462   case X87:
3463   case ComplexX87:
3464     llvm_unreachable("Invalid classification for hi word.");
3465 
3466   case NoClass: break;
3467 
3468   case Integer:
3469     ++neededInt;
3470     // Pick an 8-byte type based on the preferred type.
3471     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3472 
3473     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3474       return ABIArgInfo::getDirect(HighPart, 8);
3475     break;
3476 
3477     // X87Up generally doesn't occur here (long double is passed in
3478     // memory), except in situations involving unions.
3479   case X87Up:
3480   case SSE:
3481     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3482 
3483     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3484       return ABIArgInfo::getDirect(HighPart, 8);
3485 
3486     ++neededSSE;
3487     break;
3488 
3489     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
3490     // eightbyte is passed in the upper half of the last used SSE
3491     // register.  This only happens when 128-bit vectors are passed.
3492   case SSEUp:
3493     assert(Lo == SSE && "Unexpected SSEUp classification");
3494     ResType = GetByteVectorType(Ty);
3495     break;
3496   }
3497 
3498   // If a high part was specified, merge it together with the low part.  It is
3499   // known to pass in the high eightbyte of the result.  We do this by forming a
3500   // first class struct aggregate with the high and low part: {low, high}
3501   if (HighPart)
3502     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3503 
3504   return ABIArgInfo::getDirect(ResType);
3505 }
3506 
3507 ABIArgInfo
3508 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
3509                                              unsigned &NeededSSE) const {
3510   auto RT = Ty->getAs<RecordType>();
3511   assert(RT && "classifyRegCallStructType only valid with struct types");
3512 
3513   if (RT->getDecl()->hasFlexibleArrayMember())
3514     return getIndirectReturnResult(Ty);
3515 
3516   // Sum up bases
3517   if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
3518     if (CXXRD->isDynamicClass()) {
3519       NeededInt = NeededSSE = 0;
3520       return getIndirectReturnResult(Ty);
3521     }
3522 
3523     for (const auto &I : CXXRD->bases())
3524       if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE)
3525               .isIndirect()) {
3526         NeededInt = NeededSSE = 0;
3527         return getIndirectReturnResult(Ty);
3528       }
3529   }
3530 
3531   // Sum up members
3532   for (const auto *FD : RT->getDecl()->fields()) {
3533     if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) {
3534       if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE)
3535               .isIndirect()) {
3536         NeededInt = NeededSSE = 0;
3537         return getIndirectReturnResult(Ty);
3538       }
3539     } else {
3540       unsigned LocalNeededInt, LocalNeededSSE;
3541       if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt,
3542                                LocalNeededSSE, true)
3543               .isIndirect()) {
3544         NeededInt = NeededSSE = 0;
3545         return getIndirectReturnResult(Ty);
3546       }
3547       NeededInt += LocalNeededInt;
3548       NeededSSE += LocalNeededSSE;
3549     }
3550   }
3551 
3552   return ABIArgInfo::getDirect();
3553 }
3554 
3555 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty,
3556                                                     unsigned &NeededInt,
3557                                                     unsigned &NeededSSE) const {
3558 
3559   NeededInt = 0;
3560   NeededSSE = 0;
3561 
3562   return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE);
3563 }
3564 
3565 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3566 
3567   const unsigned CallingConv = FI.getCallingConvention();
3568   // It is possible to force Win64 calling convention on any x86_64 target by
3569   // using __attribute__((ms_abi)). In such case to correctly emit Win64
3570   // compatible code delegate this call to WinX86_64ABIInfo::computeInfo.
3571   if (CallingConv == llvm::CallingConv::Win64) {
3572     WinX86_64ABIInfo Win64ABIInfo(CGT);
3573     Win64ABIInfo.computeInfo(FI);
3574     return;
3575   }
3576 
3577   bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall;
3578 
3579   // Keep track of the number of assigned registers.
3580   unsigned FreeIntRegs = IsRegCall ? 11 : 6;
3581   unsigned FreeSSERegs = IsRegCall ? 16 : 8;
3582   unsigned NeededInt, NeededSSE;
3583 
3584   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
3585     if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() &&
3586         !FI.getReturnType()->getTypePtr()->isUnionType()) {
3587       FI.getReturnInfo() =
3588           classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE);
3589       if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3590         FreeIntRegs -= NeededInt;
3591         FreeSSERegs -= NeededSSE;
3592       } else {
3593         FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3594       }
3595     } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>()) {
3596       // Complex Long Double Type is passed in Memory when Regcall
3597       // calling convention is used.
3598       const ComplexType *CT = FI.getReturnType()->getAs<ComplexType>();
3599       if (getContext().getCanonicalType(CT->getElementType()) ==
3600           getContext().LongDoubleTy)
3601         FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3602     } else
3603       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3604   }
3605 
3606   // If the return value is indirect, then the hidden argument is consuming one
3607   // integer register.
3608   if (FI.getReturnInfo().isIndirect())
3609     --FreeIntRegs;
3610 
3611   // The chain argument effectively gives us another free register.
3612   if (FI.isChainCall())
3613     ++FreeIntRegs;
3614 
3615   unsigned NumRequiredArgs = FI.getNumRequiredArgs();
3616   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
3617   // get assigned (in left-to-right order) for passing as follows...
3618   unsigned ArgNo = 0;
3619   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3620        it != ie; ++it, ++ArgNo) {
3621     bool IsNamedArg = ArgNo < NumRequiredArgs;
3622 
3623     if (IsRegCall && it->type->isStructureOrClassType())
3624       it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE);
3625     else
3626       it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt,
3627                                       NeededSSE, IsNamedArg);
3628 
3629     // AMD64-ABI 3.2.3p3: If there are no registers available for any
3630     // eightbyte of an argument, the whole argument is passed on the
3631     // stack. If registers have already been assigned for some
3632     // eightbytes of such an argument, the assignments get reverted.
3633     if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3634       FreeIntRegs -= NeededInt;
3635       FreeSSERegs -= NeededSSE;
3636     } else {
3637       it->info = getIndirectResult(it->type, FreeIntRegs);
3638     }
3639   }
3640 }
3641 
3642 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF,
3643                                          Address VAListAddr, QualType Ty) {
3644   Address overflow_arg_area_p =
3645       CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
3646   llvm::Value *overflow_arg_area =
3647     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
3648 
3649   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
3650   // byte boundary if alignment needed by type exceeds 8 byte boundary.
3651   // It isn't stated explicitly in the standard, but in practice we use
3652   // alignment greater than 16 where necessary.
3653   CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
3654   if (Align > CharUnits::fromQuantity(8)) {
3655     overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area,
3656                                                       Align);
3657   }
3658 
3659   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
3660   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3661   llvm::Value *Res =
3662     CGF.Builder.CreateBitCast(overflow_arg_area,
3663                               llvm::PointerType::getUnqual(LTy));
3664 
3665   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
3666   // l->overflow_arg_area + sizeof(type).
3667   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
3668   // an 8 byte boundary.
3669 
3670   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
3671   llvm::Value *Offset =
3672       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
3673   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
3674                                             "overflow_arg_area.next");
3675   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
3676 
3677   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
3678   return Address(Res, Align);
3679 }
3680 
3681 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3682                                  QualType Ty) const {
3683   // Assume that va_list type is correct; should be pointer to LLVM type:
3684   // struct {
3685   //   i32 gp_offset;
3686   //   i32 fp_offset;
3687   //   i8* overflow_arg_area;
3688   //   i8* reg_save_area;
3689   // };
3690   unsigned neededInt, neededSSE;
3691 
3692   Ty = getContext().getCanonicalType(Ty);
3693   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
3694                                        /*isNamedArg*/false);
3695 
3696   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
3697   // in the registers. If not go to step 7.
3698   if (!neededInt && !neededSSE)
3699     return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3700 
3701   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
3702   // general purpose registers needed to pass type and num_fp to hold
3703   // the number of floating point registers needed.
3704 
3705   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
3706   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
3707   // l->fp_offset > 304 - num_fp * 16 go to step 7.
3708   //
3709   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
3710   // register save space).
3711 
3712   llvm::Value *InRegs = nullptr;
3713   Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid();
3714   llvm::Value *gp_offset = nullptr, *fp_offset = nullptr;
3715   if (neededInt) {
3716     gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
3717     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
3718     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
3719     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
3720   }
3721 
3722   if (neededSSE) {
3723     fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
3724     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
3725     llvm::Value *FitsInFP =
3726       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
3727     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
3728     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
3729   }
3730 
3731   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
3732   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
3733   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
3734   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
3735 
3736   // Emit code to load the value if it was passed in registers.
3737 
3738   CGF.EmitBlock(InRegBlock);
3739 
3740   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
3741   // an offset of l->gp_offset and/or l->fp_offset. This may require
3742   // copying to a temporary location in case the parameter is passed
3743   // in different register classes or requires an alignment greater
3744   // than 8 for general purpose registers and 16 for XMM registers.
3745   //
3746   // FIXME: This really results in shameful code when we end up needing to
3747   // collect arguments from different places; often what should result in a
3748   // simple assembling of a structure from scattered addresses has many more
3749   // loads than necessary. Can we clean this up?
3750   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3751   llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(
3752       CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area");
3753 
3754   Address RegAddr = Address::invalid();
3755   if (neededInt && neededSSE) {
3756     // FIXME: Cleanup.
3757     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
3758     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
3759     Address Tmp = CGF.CreateMemTemp(Ty);
3760     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
3761     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
3762     llvm::Type *TyLo = ST->getElementType(0);
3763     llvm::Type *TyHi = ST->getElementType(1);
3764     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
3765            "Unexpected ABI info for mixed regs");
3766     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
3767     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
3768     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset);
3769     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset);
3770     llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
3771     llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
3772 
3773     // Copy the first element.
3774     // FIXME: Our choice of alignment here and below is probably pessimistic.
3775     llvm::Value *V = CGF.Builder.CreateAlignedLoad(
3776         TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo),
3777         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo)));
3778     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
3779 
3780     // Copy the second element.
3781     V = CGF.Builder.CreateAlignedLoad(
3782         TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi),
3783         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi)));
3784     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
3785 
3786     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
3787   } else if (neededInt) {
3788     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset),
3789                       CharUnits::fromQuantity(8));
3790     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
3791 
3792     // Copy to a temporary if necessary to ensure the appropriate alignment.
3793     std::pair<CharUnits, CharUnits> SizeAlign =
3794         getContext().getTypeInfoInChars(Ty);
3795     uint64_t TySize = SizeAlign.first.getQuantity();
3796     CharUnits TyAlign = SizeAlign.second;
3797 
3798     // Copy into a temporary if the type is more aligned than the
3799     // register save area.
3800     if (TyAlign.getQuantity() > 8) {
3801       Address Tmp = CGF.CreateMemTemp(Ty);
3802       CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false);
3803       RegAddr = Tmp;
3804     }
3805 
3806   } else if (neededSSE == 1) {
3807     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
3808                       CharUnits::fromQuantity(16));
3809     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
3810   } else {
3811     assert(neededSSE == 2 && "Invalid number of needed registers!");
3812     // SSE registers are spaced 16 bytes apart in the register save
3813     // area, we need to collect the two eightbytes together.
3814     // The ABI isn't explicit about this, but it seems reasonable
3815     // to assume that the slots are 16-byte aligned, since the stack is
3816     // naturally 16-byte aligned and the prologue is expected to store
3817     // all the SSE registers to the RSA.
3818     Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
3819                                 CharUnits::fromQuantity(16));
3820     Address RegAddrHi =
3821       CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo,
3822                                              CharUnits::fromQuantity(16));
3823     llvm::Type *ST = AI.canHaveCoerceToType()
3824                          ? AI.getCoerceToType()
3825                          : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy);
3826     llvm::Value *V;
3827     Address Tmp = CGF.CreateMemTemp(Ty);
3828     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
3829     V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
3830         RegAddrLo, ST->getStructElementType(0)));
3831     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
3832     V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
3833         RegAddrHi, ST->getStructElementType(1)));
3834     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
3835 
3836     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
3837   }
3838 
3839   // AMD64-ABI 3.5.7p5: Step 5. Set:
3840   // l->gp_offset = l->gp_offset + num_gp * 8
3841   // l->fp_offset = l->fp_offset + num_fp * 16.
3842   if (neededInt) {
3843     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
3844     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
3845                             gp_offset_p);
3846   }
3847   if (neededSSE) {
3848     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
3849     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
3850                             fp_offset_p);
3851   }
3852   CGF.EmitBranch(ContBlock);
3853 
3854   // Emit code to load the value if it was passed in memory.
3855 
3856   CGF.EmitBlock(InMemBlock);
3857   Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3858 
3859   // Return the appropriate result.
3860 
3861   CGF.EmitBlock(ContBlock);
3862   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
3863                                  "vaarg.addr");
3864   return ResAddr;
3865 }
3866 
3867 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
3868                                    QualType Ty) const {
3869   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
3870                           CGF.getContext().getTypeInfoInChars(Ty),
3871                           CharUnits::fromQuantity(8),
3872                           /*allowHigherAlign*/ false);
3873 }
3874 
3875 ABIArgInfo
3876 WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs,
3877                                     const ABIArgInfo &current) const {
3878   // Assumes vectorCall calling convention.
3879   const Type *Base = nullptr;
3880   uint64_t NumElts = 0;
3881 
3882   if (!Ty->isBuiltinType() && !Ty->isVectorType() &&
3883       isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) {
3884     FreeSSERegs -= NumElts;
3885     return getDirectX86Hva();
3886   }
3887   return current;
3888 }
3889 
3890 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
3891                                       bool IsReturnType, bool IsVectorCall,
3892                                       bool IsRegCall) const {
3893 
3894   if (Ty->isVoidType())
3895     return ABIArgInfo::getIgnore();
3896 
3897   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3898     Ty = EnumTy->getDecl()->getIntegerType();
3899 
3900   TypeInfo Info = getContext().getTypeInfo(Ty);
3901   uint64_t Width = Info.Width;
3902   CharUnits Align = getContext().toCharUnitsFromBits(Info.Align);
3903 
3904   const RecordType *RT = Ty->getAs<RecordType>();
3905   if (RT) {
3906     if (!IsReturnType) {
3907       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
3908         return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
3909     }
3910 
3911     if (RT->getDecl()->hasFlexibleArrayMember())
3912       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3913 
3914   }
3915 
3916   const Type *Base = nullptr;
3917   uint64_t NumElts = 0;
3918   // vectorcall adds the concept of a homogenous vector aggregate, similar to
3919   // other targets.
3920   if ((IsVectorCall || IsRegCall) &&
3921       isHomogeneousAggregate(Ty, Base, NumElts)) {
3922     if (IsRegCall) {
3923       if (FreeSSERegs >= NumElts) {
3924         FreeSSERegs -= NumElts;
3925         if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
3926           return ABIArgInfo::getDirect();
3927         return ABIArgInfo::getExpand();
3928       }
3929       return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3930     } else if (IsVectorCall) {
3931       if (FreeSSERegs >= NumElts &&
3932           (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) {
3933         FreeSSERegs -= NumElts;
3934         return ABIArgInfo::getDirect();
3935       } else if (IsReturnType) {
3936         return ABIArgInfo::getExpand();
3937       } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) {
3938         // HVAs are delayed and reclassified in the 2nd step.
3939         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3940       }
3941     }
3942   }
3943 
3944   if (Ty->isMemberPointerType()) {
3945     // If the member pointer is represented by an LLVM int or ptr, pass it
3946     // directly.
3947     llvm::Type *LLTy = CGT.ConvertType(Ty);
3948     if (LLTy->isPointerTy() || LLTy->isIntegerTy())
3949       return ABIArgInfo::getDirect();
3950   }
3951 
3952   if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
3953     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
3954     // not 1, 2, 4, or 8 bytes, must be passed by reference."
3955     if (Width > 64 || !llvm::isPowerOf2_64(Width))
3956       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3957 
3958     // Otherwise, coerce it to a small integer.
3959     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
3960   }
3961 
3962   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
3963     switch (BT->getKind()) {
3964     case BuiltinType::Bool:
3965       // Bool type is always extended to the ABI, other builtin types are not
3966       // extended.
3967       return ABIArgInfo::getExtend(Ty);
3968 
3969     case BuiltinType::LongDouble:
3970       // Mingw64 GCC uses the old 80 bit extended precision floating point
3971       // unit. It passes them indirectly through memory.
3972       if (IsMingw64) {
3973         const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
3974         if (LDF == &llvm::APFloat::x87DoubleExtended())
3975           return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3976       }
3977       break;
3978 
3979     case BuiltinType::Int128:
3980     case BuiltinType::UInt128:
3981       // If it's a parameter type, the normal ABI rule is that arguments larger
3982       // than 8 bytes are passed indirectly. GCC follows it. We follow it too,
3983       // even though it isn't particularly efficient.
3984       if (!IsReturnType)
3985         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3986 
3987       // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that.
3988       // Clang matches them for compatibility.
3989       return ABIArgInfo::getDirect(
3990           llvm::VectorType::get(llvm::Type::getInt64Ty(getVMContext()), 2));
3991 
3992     default:
3993       break;
3994     }
3995   }
3996 
3997   return ABIArgInfo::getDirect();
3998 }
3999 
4000 void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI,
4001                                              unsigned FreeSSERegs,
4002                                              bool IsVectorCall,
4003                                              bool IsRegCall) const {
4004   unsigned Count = 0;
4005   for (auto &I : FI.arguments()) {
4006     // Vectorcall in x64 only permits the first 6 arguments to be passed
4007     // as XMM/YMM registers.
4008     if (Count < VectorcallMaxParamNumAsReg)
4009       I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall);
4010     else {
4011       // Since these cannot be passed in registers, pretend no registers
4012       // are left.
4013       unsigned ZeroSSERegsAvail = 0;
4014       I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false,
4015                         IsVectorCall, IsRegCall);
4016     }
4017     ++Count;
4018   }
4019 
4020   for (auto &I : FI.arguments()) {
4021     I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info);
4022   }
4023 }
4024 
4025 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
4026   bool IsVectorCall =
4027       FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall;
4028   bool IsRegCall = FI.getCallingConvention() == llvm::CallingConv::X86_RegCall;
4029 
4030   unsigned FreeSSERegs = 0;
4031   if (IsVectorCall) {
4032     // We can use up to 4 SSE return registers with vectorcall.
4033     FreeSSERegs = 4;
4034   } else if (IsRegCall) {
4035     // RegCall gives us 16 SSE registers.
4036     FreeSSERegs = 16;
4037   }
4038 
4039   if (!getCXXABI().classifyReturnType(FI))
4040     FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true,
4041                                   IsVectorCall, IsRegCall);
4042 
4043   if (IsVectorCall) {
4044     // We can use up to 6 SSE register parameters with vectorcall.
4045     FreeSSERegs = 6;
4046   } else if (IsRegCall) {
4047     // RegCall gives us 16 SSE registers, we can reuse the return registers.
4048     FreeSSERegs = 16;
4049   }
4050 
4051   if (IsVectorCall) {
4052     computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall);
4053   } else {
4054     for (auto &I : FI.arguments())
4055       I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall);
4056   }
4057 
4058 }
4059 
4060 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4061                                     QualType Ty) const {
4062 
4063   bool IsIndirect = false;
4064 
4065   // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4066   // not 1, 2, 4, or 8 bytes, must be passed by reference."
4067   if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) {
4068     uint64_t Width = getContext().getTypeSize(Ty);
4069     IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
4070   }
4071 
4072   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
4073                           CGF.getContext().getTypeInfoInChars(Ty),
4074                           CharUnits::fromQuantity(8),
4075                           /*allowHigherAlign*/ false);
4076 }
4077 
4078 // PowerPC-32
4079 namespace {
4080 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
4081 class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
4082   bool IsSoftFloatABI;
4083 
4084   CharUnits getParamTypeAlignment(QualType Ty) const;
4085 
4086 public:
4087   PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI)
4088       : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI) {}
4089 
4090   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4091                     QualType Ty) const override;
4092 };
4093 
4094 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
4095 public:
4096   PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI)
4097       : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT, SoftFloatABI)) {}
4098 
4099   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4100     // This is recovered from gcc output.
4101     return 1; // r1 is the dedicated stack pointer
4102   }
4103 
4104   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4105                                llvm::Value *Address) const override;
4106 };
4107 }
4108 
4109 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
4110   // Complex types are passed just like their elements
4111   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4112     Ty = CTy->getElementType();
4113 
4114   if (Ty->isVectorType())
4115     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16
4116                                                                        : 4);
4117 
4118   // For single-element float/vector structs, we consider the whole type
4119   // to have the same alignment requirements as its single element.
4120   const Type *AlignTy = nullptr;
4121   if (const Type *EltType = isSingleElementStruct(Ty, getContext())) {
4122     const BuiltinType *BT = EltType->getAs<BuiltinType>();
4123     if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) ||
4124         (BT && BT->isFloatingPoint()))
4125       AlignTy = EltType;
4126   }
4127 
4128   if (AlignTy)
4129     return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4);
4130   return CharUnits::fromQuantity(4);
4131 }
4132 
4133 // TODO: this implementation is now likely redundant with
4134 // DefaultABIInfo::EmitVAArg.
4135 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList,
4136                                       QualType Ty) const {
4137   if (getTarget().getTriple().isOSDarwin()) {
4138     auto TI = getContext().getTypeInfoInChars(Ty);
4139     TI.second = getParamTypeAlignment(Ty);
4140 
4141     CharUnits SlotSize = CharUnits::fromQuantity(4);
4142     return emitVoidPtrVAArg(CGF, VAList, Ty,
4143                             classifyArgumentType(Ty).isIndirect(), TI, SlotSize,
4144                             /*AllowHigherAlign=*/true);
4145   }
4146 
4147   const unsigned OverflowLimit = 8;
4148   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4149     // TODO: Implement this. For now ignore.
4150     (void)CTy;
4151     return Address::invalid(); // FIXME?
4152   }
4153 
4154   // struct __va_list_tag {
4155   //   unsigned char gpr;
4156   //   unsigned char fpr;
4157   //   unsigned short reserved;
4158   //   void *overflow_arg_area;
4159   //   void *reg_save_area;
4160   // };
4161 
4162   bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
4163   bool isInt =
4164       Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType();
4165   bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64;
4166 
4167   // All aggregates are passed indirectly?  That doesn't seem consistent
4168   // with the argument-lowering code.
4169   bool isIndirect = Ty->isAggregateType();
4170 
4171   CGBuilderTy &Builder = CGF.Builder;
4172 
4173   // The calling convention either uses 1-2 GPRs or 1 FPR.
4174   Address NumRegsAddr = Address::invalid();
4175   if (isInt || IsSoftFloatABI) {
4176     NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr");
4177   } else {
4178     NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr");
4179   }
4180 
4181   llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs");
4182 
4183   // "Align" the register count when TY is i64.
4184   if (isI64 || (isF64 && IsSoftFloatABI)) {
4185     NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1));
4186     NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U));
4187   }
4188 
4189   llvm::Value *CC =
4190       Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond");
4191 
4192   llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
4193   llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
4194   llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
4195 
4196   Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
4197 
4198   llvm::Type *DirectTy = CGF.ConvertType(Ty);
4199   if (isIndirect) DirectTy = DirectTy->getPointerTo(0);
4200 
4201   // Case 1: consume registers.
4202   Address RegAddr = Address::invalid();
4203   {
4204     CGF.EmitBlock(UsingRegs);
4205 
4206     Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4);
4207     RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr),
4208                       CharUnits::fromQuantity(8));
4209     assert(RegAddr.getElementType() == CGF.Int8Ty);
4210 
4211     // Floating-point registers start after the general-purpose registers.
4212     if (!(isInt || IsSoftFloatABI)) {
4213       RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr,
4214                                                    CharUnits::fromQuantity(32));
4215     }
4216 
4217     // Get the address of the saved value by scaling the number of
4218     // registers we've used by the number of
4219     CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8);
4220     llvm::Value *RegOffset =
4221       Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity()));
4222     RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty,
4223                                             RegAddr.getPointer(), RegOffset),
4224                       RegAddr.getAlignment().alignmentOfArrayElement(RegSize));
4225     RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy);
4226 
4227     // Increase the used-register count.
4228     NumRegs =
4229       Builder.CreateAdd(NumRegs,
4230                         Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1));
4231     Builder.CreateStore(NumRegs, NumRegsAddr);
4232 
4233     CGF.EmitBranch(Cont);
4234   }
4235 
4236   // Case 2: consume space in the overflow area.
4237   Address MemAddr = Address::invalid();
4238   {
4239     CGF.EmitBlock(UsingOverflow);
4240 
4241     Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr);
4242 
4243     // Everything in the overflow area is rounded up to a size of at least 4.
4244     CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4);
4245 
4246     CharUnits Size;
4247     if (!isIndirect) {
4248       auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty);
4249       Size = TypeInfo.first.alignTo(OverflowAreaAlign);
4250     } else {
4251       Size = CGF.getPointerSize();
4252     }
4253 
4254     Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3);
4255     Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"),
4256                          OverflowAreaAlign);
4257     // Round up address of argument to alignment
4258     CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
4259     if (Align > OverflowAreaAlign) {
4260       llvm::Value *Ptr = OverflowArea.getPointer();
4261       OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align),
4262                                                            Align);
4263     }
4264 
4265     MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy);
4266 
4267     // Increase the overflow area.
4268     OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size);
4269     Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr);
4270     CGF.EmitBranch(Cont);
4271   }
4272 
4273   CGF.EmitBlock(Cont);
4274 
4275   // Merge the cases with a phi.
4276   Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow,
4277                                 "vaarg.addr");
4278 
4279   // Load the pointer if the argument was passed indirectly.
4280   if (isIndirect) {
4281     Result = Address(Builder.CreateLoad(Result, "aggr"),
4282                      getContext().getTypeAlignInChars(Ty));
4283   }
4284 
4285   return Result;
4286 }
4287 
4288 bool
4289 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4290                                                 llvm::Value *Address) const {
4291   // This is calculated from the LLVM and GCC tables and verified
4292   // against gcc output.  AFAIK all ABIs use the same encoding.
4293 
4294   CodeGen::CGBuilderTy &Builder = CGF.Builder;
4295 
4296   llvm::IntegerType *i8 = CGF.Int8Ty;
4297   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
4298   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
4299   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
4300 
4301   // 0-31: r0-31, the 4-byte general-purpose registers
4302   AssignToArrayRange(Builder, Address, Four8, 0, 31);
4303 
4304   // 32-63: fp0-31, the 8-byte floating-point registers
4305   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
4306 
4307   // 64-76 are various 4-byte special-purpose registers:
4308   // 64: mq
4309   // 65: lr
4310   // 66: ctr
4311   // 67: ap
4312   // 68-75 cr0-7
4313   // 76: xer
4314   AssignToArrayRange(Builder, Address, Four8, 64, 76);
4315 
4316   // 77-108: v0-31, the 16-byte vector registers
4317   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
4318 
4319   // 109: vrsave
4320   // 110: vscr
4321   // 111: spe_acc
4322   // 112: spefscr
4323   // 113: sfp
4324   AssignToArrayRange(Builder, Address, Four8, 109, 113);
4325 
4326   return false;
4327 }
4328 
4329 // PowerPC-64
4330 
4331 namespace {
4332 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
4333 class PPC64_SVR4_ABIInfo : public SwiftABIInfo {
4334 public:
4335   enum ABIKind {
4336     ELFv1 = 0,
4337     ELFv2
4338   };
4339 
4340 private:
4341   static const unsigned GPRBits = 64;
4342   ABIKind Kind;
4343   bool HasQPX;
4344   bool IsSoftFloatABI;
4345 
4346   // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and
4347   // will be passed in a QPX register.
4348   bool IsQPXVectorTy(const Type *Ty) const {
4349     if (!HasQPX)
4350       return false;
4351 
4352     if (const VectorType *VT = Ty->getAs<VectorType>()) {
4353       unsigned NumElements = VT->getNumElements();
4354       if (NumElements == 1)
4355         return false;
4356 
4357       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) {
4358         if (getContext().getTypeSize(Ty) <= 256)
4359           return true;
4360       } else if (VT->getElementType()->
4361                    isSpecificBuiltinType(BuiltinType::Float)) {
4362         if (getContext().getTypeSize(Ty) <= 128)
4363           return true;
4364       }
4365     }
4366 
4367     return false;
4368   }
4369 
4370   bool IsQPXVectorTy(QualType Ty) const {
4371     return IsQPXVectorTy(Ty.getTypePtr());
4372   }
4373 
4374 public:
4375   PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX,
4376                      bool SoftFloatABI)
4377       : SwiftABIInfo(CGT), Kind(Kind), HasQPX(HasQPX),
4378         IsSoftFloatABI(SoftFloatABI) {}
4379 
4380   bool isPromotableTypeForABI(QualType Ty) const;
4381   CharUnits getParamTypeAlignment(QualType Ty) const;
4382 
4383   ABIArgInfo classifyReturnType(QualType RetTy) const;
4384   ABIArgInfo classifyArgumentType(QualType Ty) const;
4385 
4386   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4387   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4388                                          uint64_t Members) const override;
4389 
4390   // TODO: We can add more logic to computeInfo to improve performance.
4391   // Example: For aggregate arguments that fit in a register, we could
4392   // use getDirectInReg (as is done below for structs containing a single
4393   // floating-point value) to avoid pushing them to memory on function
4394   // entry.  This would require changing the logic in PPCISelLowering
4395   // when lowering the parameters in the caller and args in the callee.
4396   void computeInfo(CGFunctionInfo &FI) const override {
4397     if (!getCXXABI().classifyReturnType(FI))
4398       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4399     for (auto &I : FI.arguments()) {
4400       // We rely on the default argument classification for the most part.
4401       // One exception:  An aggregate containing a single floating-point
4402       // or vector item must be passed in a register if one is available.
4403       const Type *T = isSingleElementStruct(I.type, getContext());
4404       if (T) {
4405         const BuiltinType *BT = T->getAs<BuiltinType>();
4406         if (IsQPXVectorTy(T) ||
4407             (T->isVectorType() && getContext().getTypeSize(T) == 128) ||
4408             (BT && BT->isFloatingPoint())) {
4409           QualType QT(T, 0);
4410           I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
4411           continue;
4412         }
4413       }
4414       I.info = classifyArgumentType(I.type);
4415     }
4416   }
4417 
4418   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4419                     QualType Ty) const override;
4420 
4421   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
4422                                     bool asReturnValue) const override {
4423     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
4424   }
4425 
4426   bool isSwiftErrorInRegister() const override {
4427     return false;
4428   }
4429 };
4430 
4431 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
4432 
4433 public:
4434   PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT,
4435                                PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX,
4436                                bool SoftFloatABI)
4437       : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX,
4438                                                  SoftFloatABI)) {}
4439 
4440   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4441     // This is recovered from gcc output.
4442     return 1; // r1 is the dedicated stack pointer
4443   }
4444 
4445   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4446                                llvm::Value *Address) const override;
4447 };
4448 
4449 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
4450 public:
4451   PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
4452 
4453   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4454     // This is recovered from gcc output.
4455     return 1; // r1 is the dedicated stack pointer
4456   }
4457 
4458   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4459                                llvm::Value *Address) const override;
4460 };
4461 
4462 }
4463 
4464 // Return true if the ABI requires Ty to be passed sign- or zero-
4465 // extended to 64 bits.
4466 bool
4467 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
4468   // Treat an enum type as its underlying type.
4469   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4470     Ty = EnumTy->getDecl()->getIntegerType();
4471 
4472   // Promotable integer types are required to be promoted by the ABI.
4473   if (Ty->isPromotableIntegerType())
4474     return true;
4475 
4476   // In addition to the usual promotable integer types, we also need to
4477   // extend all 32-bit types, since the ABI requires promotion to 64 bits.
4478   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4479     switch (BT->getKind()) {
4480     case BuiltinType::Int:
4481     case BuiltinType::UInt:
4482       return true;
4483     default:
4484       break;
4485     }
4486 
4487   return false;
4488 }
4489 
4490 /// isAlignedParamType - Determine whether a type requires 16-byte or
4491 /// higher alignment in the parameter area.  Always returns at least 8.
4492 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
4493   // Complex types are passed just like their elements.
4494   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4495     Ty = CTy->getElementType();
4496 
4497   // Only vector types of size 16 bytes need alignment (larger types are
4498   // passed via reference, smaller types are not aligned).
4499   if (IsQPXVectorTy(Ty)) {
4500     if (getContext().getTypeSize(Ty) > 128)
4501       return CharUnits::fromQuantity(32);
4502 
4503     return CharUnits::fromQuantity(16);
4504   } else if (Ty->isVectorType()) {
4505     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8);
4506   }
4507 
4508   // For single-element float/vector structs, we consider the whole type
4509   // to have the same alignment requirements as its single element.
4510   const Type *AlignAsType = nullptr;
4511   const Type *EltType = isSingleElementStruct(Ty, getContext());
4512   if (EltType) {
4513     const BuiltinType *BT = EltType->getAs<BuiltinType>();
4514     if (IsQPXVectorTy(EltType) || (EltType->isVectorType() &&
4515          getContext().getTypeSize(EltType) == 128) ||
4516         (BT && BT->isFloatingPoint()))
4517       AlignAsType = EltType;
4518   }
4519 
4520   // Likewise for ELFv2 homogeneous aggregates.
4521   const Type *Base = nullptr;
4522   uint64_t Members = 0;
4523   if (!AlignAsType && Kind == ELFv2 &&
4524       isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
4525     AlignAsType = Base;
4526 
4527   // With special case aggregates, only vector base types need alignment.
4528   if (AlignAsType && IsQPXVectorTy(AlignAsType)) {
4529     if (getContext().getTypeSize(AlignAsType) > 128)
4530       return CharUnits::fromQuantity(32);
4531 
4532     return CharUnits::fromQuantity(16);
4533   } else if (AlignAsType) {
4534     return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8);
4535   }
4536 
4537   // Otherwise, we only need alignment for any aggregate type that
4538   // has an alignment requirement of >= 16 bytes.
4539   if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) {
4540     if (HasQPX && getContext().getTypeAlign(Ty) >= 256)
4541       return CharUnits::fromQuantity(32);
4542     return CharUnits::fromQuantity(16);
4543   }
4544 
4545   return CharUnits::fromQuantity(8);
4546 }
4547 
4548 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
4549 /// aggregate.  Base is set to the base element type, and Members is set
4550 /// to the number of base elements.
4551 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
4552                                      uint64_t &Members) const {
4553   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
4554     uint64_t NElements = AT->getSize().getZExtValue();
4555     if (NElements == 0)
4556       return false;
4557     if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
4558       return false;
4559     Members *= NElements;
4560   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
4561     const RecordDecl *RD = RT->getDecl();
4562     if (RD->hasFlexibleArrayMember())
4563       return false;
4564 
4565     Members = 0;
4566 
4567     // If this is a C++ record, check the bases first.
4568     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
4569       for (const auto &I : CXXRD->bases()) {
4570         // Ignore empty records.
4571         if (isEmptyRecord(getContext(), I.getType(), true))
4572           continue;
4573 
4574         uint64_t FldMembers;
4575         if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
4576           return false;
4577 
4578         Members += FldMembers;
4579       }
4580     }
4581 
4582     for (const auto *FD : RD->fields()) {
4583       // Ignore (non-zero arrays of) empty records.
4584       QualType FT = FD->getType();
4585       while (const ConstantArrayType *AT =
4586              getContext().getAsConstantArrayType(FT)) {
4587         if (AT->getSize().getZExtValue() == 0)
4588           return false;
4589         FT = AT->getElementType();
4590       }
4591       if (isEmptyRecord(getContext(), FT, true))
4592         continue;
4593 
4594       // For compatibility with GCC, ignore empty bitfields in C++ mode.
4595       if (getContext().getLangOpts().CPlusPlus &&
4596           FD->isZeroLengthBitField(getContext()))
4597         continue;
4598 
4599       uint64_t FldMembers;
4600       if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
4601         return false;
4602 
4603       Members = (RD->isUnion() ?
4604                  std::max(Members, FldMembers) : Members + FldMembers);
4605     }
4606 
4607     if (!Base)
4608       return false;
4609 
4610     // Ensure there is no padding.
4611     if (getContext().getTypeSize(Base) * Members !=
4612         getContext().getTypeSize(Ty))
4613       return false;
4614   } else {
4615     Members = 1;
4616     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
4617       Members = 2;
4618       Ty = CT->getElementType();
4619     }
4620 
4621     // Most ABIs only support float, double, and some vector type widths.
4622     if (!isHomogeneousAggregateBaseType(Ty))
4623       return false;
4624 
4625     // The base type must be the same for all members.  Types that
4626     // agree in both total size and mode (float vs. vector) are
4627     // treated as being equivalent here.
4628     const Type *TyPtr = Ty.getTypePtr();
4629     if (!Base) {
4630       Base = TyPtr;
4631       // If it's a non-power-of-2 vector, its size is already a power-of-2,
4632       // so make sure to widen it explicitly.
4633       if (const VectorType *VT = Base->getAs<VectorType>()) {
4634         QualType EltTy = VT->getElementType();
4635         unsigned NumElements =
4636             getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy);
4637         Base = getContext()
4638                    .getVectorType(EltTy, NumElements, VT->getVectorKind())
4639                    .getTypePtr();
4640       }
4641     }
4642 
4643     if (Base->isVectorType() != TyPtr->isVectorType() ||
4644         getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
4645       return false;
4646   }
4647   return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
4648 }
4649 
4650 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
4651   // Homogeneous aggregates for ELFv2 must have base types of float,
4652   // double, long double, or 128-bit vectors.
4653   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4654     if (BT->getKind() == BuiltinType::Float ||
4655         BT->getKind() == BuiltinType::Double ||
4656         BT->getKind() == BuiltinType::LongDouble ||
4657         (getContext().getTargetInfo().hasFloat128Type() &&
4658           (BT->getKind() == BuiltinType::Float128))) {
4659       if (IsSoftFloatABI)
4660         return false;
4661       return true;
4662     }
4663   }
4664   if (const VectorType *VT = Ty->getAs<VectorType>()) {
4665     if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty))
4666       return true;
4667   }
4668   return false;
4669 }
4670 
4671 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough(
4672     const Type *Base, uint64_t Members) const {
4673   // Vector and fp128 types require one register, other floating point types
4674   // require one or two registers depending on their size.
4675   uint32_t NumRegs =
4676       ((getContext().getTargetInfo().hasFloat128Type() &&
4677           Base->isFloat128Type()) ||
4678         Base->isVectorType()) ? 1
4679                               : (getContext().getTypeSize(Base) + 63) / 64;
4680 
4681   // Homogeneous Aggregates may occupy at most 8 registers.
4682   return Members * NumRegs <= 8;
4683 }
4684 
4685 ABIArgInfo
4686 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
4687   Ty = useFirstFieldIfTransparentUnion(Ty);
4688 
4689   if (Ty->isAnyComplexType())
4690     return ABIArgInfo::getDirect();
4691 
4692   // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
4693   // or via reference (larger than 16 bytes).
4694   if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) {
4695     uint64_t Size = getContext().getTypeSize(Ty);
4696     if (Size > 128)
4697       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4698     else if (Size < 128) {
4699       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
4700       return ABIArgInfo::getDirect(CoerceTy);
4701     }
4702   }
4703 
4704   if (isAggregateTypeForABI(Ty)) {
4705     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
4706       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
4707 
4708     uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity();
4709     uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
4710 
4711     // ELFv2 homogeneous aggregates are passed as array types.
4712     const Type *Base = nullptr;
4713     uint64_t Members = 0;
4714     if (Kind == ELFv2 &&
4715         isHomogeneousAggregate(Ty, Base, Members)) {
4716       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
4717       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
4718       return ABIArgInfo::getDirect(CoerceTy);
4719     }
4720 
4721     // If an aggregate may end up fully in registers, we do not
4722     // use the ByVal method, but pass the aggregate as array.
4723     // This is usually beneficial since we avoid forcing the
4724     // back-end to store the argument to memory.
4725     uint64_t Bits = getContext().getTypeSize(Ty);
4726     if (Bits > 0 && Bits <= 8 * GPRBits) {
4727       llvm::Type *CoerceTy;
4728 
4729       // Types up to 8 bytes are passed as integer type (which will be
4730       // properly aligned in the argument save area doubleword).
4731       if (Bits <= GPRBits)
4732         CoerceTy =
4733             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
4734       // Larger types are passed as arrays, with the base type selected
4735       // according to the required alignment in the save area.
4736       else {
4737         uint64_t RegBits = ABIAlign * 8;
4738         uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits;
4739         llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
4740         CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
4741       }
4742 
4743       return ABIArgInfo::getDirect(CoerceTy);
4744     }
4745 
4746     // All other aggregates are passed ByVal.
4747     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
4748                                    /*ByVal=*/true,
4749                                    /*Realign=*/TyAlign > ABIAlign);
4750   }
4751 
4752   return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
4753                                      : ABIArgInfo::getDirect());
4754 }
4755 
4756 ABIArgInfo
4757 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
4758   if (RetTy->isVoidType())
4759     return ABIArgInfo::getIgnore();
4760 
4761   if (RetTy->isAnyComplexType())
4762     return ABIArgInfo::getDirect();
4763 
4764   // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
4765   // or via reference (larger than 16 bytes).
4766   if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) {
4767     uint64_t Size = getContext().getTypeSize(RetTy);
4768     if (Size > 128)
4769       return getNaturalAlignIndirect(RetTy);
4770     else if (Size < 128) {
4771       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
4772       return ABIArgInfo::getDirect(CoerceTy);
4773     }
4774   }
4775 
4776   if (isAggregateTypeForABI(RetTy)) {
4777     // ELFv2 homogeneous aggregates are returned as array types.
4778     const Type *Base = nullptr;
4779     uint64_t Members = 0;
4780     if (Kind == ELFv2 &&
4781         isHomogeneousAggregate(RetTy, Base, Members)) {
4782       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
4783       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
4784       return ABIArgInfo::getDirect(CoerceTy);
4785     }
4786 
4787     // ELFv2 small aggregates are returned in up to two registers.
4788     uint64_t Bits = getContext().getTypeSize(RetTy);
4789     if (Kind == ELFv2 && Bits <= 2 * GPRBits) {
4790       if (Bits == 0)
4791         return ABIArgInfo::getIgnore();
4792 
4793       llvm::Type *CoerceTy;
4794       if (Bits > GPRBits) {
4795         CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
4796         CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy);
4797       } else
4798         CoerceTy =
4799             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
4800       return ABIArgInfo::getDirect(CoerceTy);
4801     }
4802 
4803     // All other aggregates are returned indirectly.
4804     return getNaturalAlignIndirect(RetTy);
4805   }
4806 
4807   return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
4808                                         : ABIArgInfo::getDirect());
4809 }
4810 
4811 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
4812 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4813                                       QualType Ty) const {
4814   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
4815   TypeInfo.second = getParamTypeAlignment(Ty);
4816 
4817   CharUnits SlotSize = CharUnits::fromQuantity(8);
4818 
4819   // If we have a complex type and the base type is smaller than 8 bytes,
4820   // the ABI calls for the real and imaginary parts to be right-adjusted
4821   // in separate doublewords.  However, Clang expects us to produce a
4822   // pointer to a structure with the two parts packed tightly.  So generate
4823   // loads of the real and imaginary parts relative to the va_list pointer,
4824   // and store them to a temporary structure.
4825   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4826     CharUnits EltSize = TypeInfo.first / 2;
4827     if (EltSize < SlotSize) {
4828       Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty,
4829                                             SlotSize * 2, SlotSize,
4830                                             SlotSize, /*AllowHigher*/ true);
4831 
4832       Address RealAddr = Addr;
4833       Address ImagAddr = RealAddr;
4834       if (CGF.CGM.getDataLayout().isBigEndian()) {
4835         RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr,
4836                                                           SlotSize - EltSize);
4837         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr,
4838                                                       2 * SlotSize - EltSize);
4839       } else {
4840         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize);
4841       }
4842 
4843       llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType());
4844       RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy);
4845       ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy);
4846       llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal");
4847       llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag");
4848 
4849       Address Temp = CGF.CreateMemTemp(Ty, "vacplx");
4850       CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty),
4851                              /*init*/ true);
4852       return Temp;
4853     }
4854   }
4855 
4856   // Otherwise, just use the general rule.
4857   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
4858                           TypeInfo, SlotSize, /*AllowHigher*/ true);
4859 }
4860 
4861 static bool
4862 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4863                               llvm::Value *Address) {
4864   // This is calculated from the LLVM and GCC tables and verified
4865   // against gcc output.  AFAIK all ABIs use the same encoding.
4866 
4867   CodeGen::CGBuilderTy &Builder = CGF.Builder;
4868 
4869   llvm::IntegerType *i8 = CGF.Int8Ty;
4870   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
4871   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
4872   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
4873 
4874   // 0-31: r0-31, the 8-byte general-purpose registers
4875   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
4876 
4877   // 32-63: fp0-31, the 8-byte floating-point registers
4878   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
4879 
4880   // 64-67 are various 8-byte special-purpose registers:
4881   // 64: mq
4882   // 65: lr
4883   // 66: ctr
4884   // 67: ap
4885   AssignToArrayRange(Builder, Address, Eight8, 64, 67);
4886 
4887   // 68-76 are various 4-byte special-purpose registers:
4888   // 68-75 cr0-7
4889   // 76: xer
4890   AssignToArrayRange(Builder, Address, Four8, 68, 76);
4891 
4892   // 77-108: v0-31, the 16-byte vector registers
4893   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
4894 
4895   // 109: vrsave
4896   // 110: vscr
4897   // 111: spe_acc
4898   // 112: spefscr
4899   // 113: sfp
4900   // 114: tfhar
4901   // 115: tfiar
4902   // 116: texasr
4903   AssignToArrayRange(Builder, Address, Eight8, 109, 116);
4904 
4905   return false;
4906 }
4907 
4908 bool
4909 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
4910   CodeGen::CodeGenFunction &CGF,
4911   llvm::Value *Address) const {
4912 
4913   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
4914 }
4915 
4916 bool
4917 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4918                                                 llvm::Value *Address) const {
4919 
4920   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
4921 }
4922 
4923 //===----------------------------------------------------------------------===//
4924 // AArch64 ABI Implementation
4925 //===----------------------------------------------------------------------===//
4926 
4927 namespace {
4928 
4929 class AArch64ABIInfo : public SwiftABIInfo {
4930 public:
4931   enum ABIKind {
4932     AAPCS = 0,
4933     DarwinPCS,
4934     Win64
4935   };
4936 
4937 private:
4938   ABIKind Kind;
4939 
4940 public:
4941   AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind)
4942     : SwiftABIInfo(CGT), Kind(Kind) {}
4943 
4944 private:
4945   ABIKind getABIKind() const { return Kind; }
4946   bool isDarwinPCS() const { return Kind == DarwinPCS; }
4947 
4948   ABIArgInfo classifyReturnType(QualType RetTy) const;
4949   ABIArgInfo classifyArgumentType(QualType RetTy) const;
4950   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4951   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4952                                          uint64_t Members) const override;
4953 
4954   bool isIllegalVectorType(QualType Ty) const;
4955 
4956   void computeInfo(CGFunctionInfo &FI) const override {
4957     if (!::classifyReturnType(getCXXABI(), FI, *this))
4958       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4959 
4960     for (auto &it : FI.arguments())
4961       it.info = classifyArgumentType(it.type);
4962   }
4963 
4964   Address EmitDarwinVAArg(Address VAListAddr, QualType Ty,
4965                           CodeGenFunction &CGF) const;
4966 
4967   Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
4968                          CodeGenFunction &CGF) const;
4969 
4970   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4971                     QualType Ty) const override {
4972     return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty)
4973                          : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
4974                                          : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
4975   }
4976 
4977   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
4978                       QualType Ty) const override;
4979 
4980   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
4981                                     bool asReturnValue) const override {
4982     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
4983   }
4984   bool isSwiftErrorInRegister() const override {
4985     return true;
4986   }
4987 
4988   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
4989                                  unsigned elts) const override;
4990 };
4991 
4992 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
4993 public:
4994   AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
4995       : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {}
4996 
4997   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
4998     return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue";
4999   }
5000 
5001   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5002     return 31;
5003   }
5004 
5005   bool doesReturnSlotInterfereWithArgs() const override { return false; }
5006 
5007   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5008                            CodeGen::CodeGenModule &CGM) const override {
5009     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5010     if (!FD)
5011       return;
5012     llvm::Function *Fn = cast<llvm::Function>(GV);
5013 
5014     auto Kind = CGM.getCodeGenOpts().getSignReturnAddress();
5015     if (Kind != CodeGenOptions::SignReturnAddressScope::None) {
5016       Fn->addFnAttr("sign-return-address",
5017                     Kind == CodeGenOptions::SignReturnAddressScope::All
5018                         ? "all"
5019                         : "non-leaf");
5020 
5021       auto Key = CGM.getCodeGenOpts().getSignReturnAddressKey();
5022       Fn->addFnAttr("sign-return-address-key",
5023                     Key == CodeGenOptions::SignReturnAddressKeyValue::AKey
5024                         ? "a_key"
5025                         : "b_key");
5026     }
5027 
5028     if (CGM.getCodeGenOpts().BranchTargetEnforcement)
5029       Fn->addFnAttr("branch-target-enforcement");
5030   }
5031 };
5032 
5033 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo {
5034 public:
5035   WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K)
5036       : AArch64TargetCodeGenInfo(CGT, K) {}
5037 
5038   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5039                            CodeGen::CodeGenModule &CGM) const override;
5040 
5041   void getDependentLibraryOption(llvm::StringRef Lib,
5042                                  llvm::SmallString<24> &Opt) const override {
5043     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
5044   }
5045 
5046   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
5047                                llvm::SmallString<32> &Opt) const override {
5048     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
5049   }
5050 };
5051 
5052 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes(
5053     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
5054   AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
5055   if (GV->isDeclaration())
5056     return;
5057   addStackProbeTargetAttributes(D, GV, CGM);
5058 }
5059 }
5060 
5061 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const {
5062   Ty = useFirstFieldIfTransparentUnion(Ty);
5063 
5064   // Handle illegal vector types here.
5065   if (isIllegalVectorType(Ty)) {
5066     uint64_t Size = getContext().getTypeSize(Ty);
5067     // Android promotes <2 x i8> to i16, not i32
5068     if (isAndroid() && (Size <= 16)) {
5069       llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext());
5070       return ABIArgInfo::getDirect(ResType);
5071     }
5072     if (Size <= 32) {
5073       llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
5074       return ABIArgInfo::getDirect(ResType);
5075     }
5076     if (Size == 64) {
5077       llvm::Type *ResType =
5078           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
5079       return ABIArgInfo::getDirect(ResType);
5080     }
5081     if (Size == 128) {
5082       llvm::Type *ResType =
5083           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
5084       return ABIArgInfo::getDirect(ResType);
5085     }
5086     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5087   }
5088 
5089   if (!isAggregateTypeForABI(Ty)) {
5090     // Treat an enum type as its underlying type.
5091     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5092       Ty = EnumTy->getDecl()->getIntegerType();
5093 
5094     return (Ty->isPromotableIntegerType() && isDarwinPCS()
5095                 ? ABIArgInfo::getExtend(Ty)
5096                 : ABIArgInfo::getDirect());
5097   }
5098 
5099   // Structures with either a non-trivial destructor or a non-trivial
5100   // copy constructor are always indirect.
5101   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5102     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
5103                                      CGCXXABI::RAA_DirectInMemory);
5104   }
5105 
5106   // Empty records are always ignored on Darwin, but actually passed in C++ mode
5107   // elsewhere for GNU compatibility.
5108   uint64_t Size = getContext().getTypeSize(Ty);
5109   bool IsEmpty = isEmptyRecord(getContext(), Ty, true);
5110   if (IsEmpty || Size == 0) {
5111     if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
5112       return ABIArgInfo::getIgnore();
5113 
5114     // GNU C mode. The only argument that gets ignored is an empty one with size
5115     // 0.
5116     if (IsEmpty && Size == 0)
5117       return ABIArgInfo::getIgnore();
5118     return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5119   }
5120 
5121   // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
5122   const Type *Base = nullptr;
5123   uint64_t Members = 0;
5124   if (isHomogeneousAggregate(Ty, Base, Members)) {
5125     return ABIArgInfo::getDirect(
5126         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
5127   }
5128 
5129   // Aggregates <= 16 bytes are passed directly in registers or on the stack.
5130   if (Size <= 128) {
5131     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5132     // same size and alignment.
5133     if (getTarget().isRenderScriptTarget()) {
5134       return coerceToIntArray(Ty, getContext(), getVMContext());
5135     }
5136     unsigned Alignment;
5137     if (Kind == AArch64ABIInfo::AAPCS) {
5138       Alignment = getContext().getTypeUnadjustedAlign(Ty);
5139       Alignment = Alignment < 128 ? 64 : 128;
5140     } else {
5141       Alignment = getContext().getTypeAlign(Ty);
5142     }
5143     Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes
5144 
5145     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5146     // For aggregates with 16-byte alignment, we use i128.
5147     if (Alignment < 128 && Size == 128) {
5148       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
5149       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
5150     }
5151     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
5152   }
5153 
5154   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5155 }
5156 
5157 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const {
5158   if (RetTy->isVoidType())
5159     return ABIArgInfo::getIgnore();
5160 
5161   // Large vector types should be returned via memory.
5162   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
5163     return getNaturalAlignIndirect(RetTy);
5164 
5165   if (!isAggregateTypeForABI(RetTy)) {
5166     // Treat an enum type as its underlying type.
5167     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5168       RetTy = EnumTy->getDecl()->getIntegerType();
5169 
5170     return (RetTy->isPromotableIntegerType() && isDarwinPCS()
5171                 ? ABIArgInfo::getExtend(RetTy)
5172                 : ABIArgInfo::getDirect());
5173   }
5174 
5175   uint64_t Size = getContext().getTypeSize(RetTy);
5176   if (isEmptyRecord(getContext(), RetTy, true) || Size == 0)
5177     return ABIArgInfo::getIgnore();
5178 
5179   const Type *Base = nullptr;
5180   uint64_t Members = 0;
5181   if (isHomogeneousAggregate(RetTy, Base, Members))
5182     // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
5183     return ABIArgInfo::getDirect();
5184 
5185   // Aggregates <= 16 bytes are returned directly in registers or on the stack.
5186   if (Size <= 128) {
5187     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5188     // same size and alignment.
5189     if (getTarget().isRenderScriptTarget()) {
5190       return coerceToIntArray(RetTy, getContext(), getVMContext());
5191     }
5192     unsigned Alignment = getContext().getTypeAlign(RetTy);
5193     Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes
5194 
5195     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5196     // For aggregates with 16-byte alignment, we use i128.
5197     if (Alignment < 128 && Size == 128) {
5198       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
5199       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
5200     }
5201     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
5202   }
5203 
5204   return getNaturalAlignIndirect(RetTy);
5205 }
5206 
5207 /// isIllegalVectorType - check whether the vector type is legal for AArch64.
5208 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
5209   if (const VectorType *VT = Ty->getAs<VectorType>()) {
5210     // Check whether VT is legal.
5211     unsigned NumElements = VT->getNumElements();
5212     uint64_t Size = getContext().getTypeSize(VT);
5213     // NumElements should be power of 2.
5214     if (!llvm::isPowerOf2_32(NumElements))
5215       return true;
5216     return Size != 64 && (Size != 128 || NumElements == 1);
5217   }
5218   return false;
5219 }
5220 
5221 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize,
5222                                                llvm::Type *eltTy,
5223                                                unsigned elts) const {
5224   if (!llvm::isPowerOf2_32(elts))
5225     return false;
5226   if (totalSize.getQuantity() != 8 &&
5227       (totalSize.getQuantity() != 16 || elts == 1))
5228     return false;
5229   return true;
5230 }
5231 
5232 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
5233   // Homogeneous aggregates for AAPCS64 must have base types of a floating
5234   // point type or a short-vector type. This is the same as the 32-bit ABI,
5235   // but with the difference that any floating-point type is allowed,
5236   // including __fp16.
5237   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
5238     if (BT->isFloatingPoint())
5239       return true;
5240   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
5241     unsigned VecSize = getContext().getTypeSize(VT);
5242     if (VecSize == 64 || VecSize == 128)
5243       return true;
5244   }
5245   return false;
5246 }
5247 
5248 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
5249                                                        uint64_t Members) const {
5250   return Members <= 4;
5251 }
5252 
5253 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr,
5254                                             QualType Ty,
5255                                             CodeGenFunction &CGF) const {
5256   ABIArgInfo AI = classifyArgumentType(Ty);
5257   bool IsIndirect = AI.isIndirect();
5258 
5259   llvm::Type *BaseTy = CGF.ConvertType(Ty);
5260   if (IsIndirect)
5261     BaseTy = llvm::PointerType::getUnqual(BaseTy);
5262   else if (AI.getCoerceToType())
5263     BaseTy = AI.getCoerceToType();
5264 
5265   unsigned NumRegs = 1;
5266   if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
5267     BaseTy = ArrTy->getElementType();
5268     NumRegs = ArrTy->getNumElements();
5269   }
5270   bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy();
5271 
5272   // The AArch64 va_list type and handling is specified in the Procedure Call
5273   // Standard, section B.4:
5274   //
5275   // struct {
5276   //   void *__stack;
5277   //   void *__gr_top;
5278   //   void *__vr_top;
5279   //   int __gr_offs;
5280   //   int __vr_offs;
5281   // };
5282 
5283   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
5284   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
5285   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
5286   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
5287 
5288   auto TyInfo = getContext().getTypeInfoInChars(Ty);
5289   CharUnits TyAlign = TyInfo.second;
5290 
5291   Address reg_offs_p = Address::invalid();
5292   llvm::Value *reg_offs = nullptr;
5293   int reg_top_index;
5294   int RegSize = IsIndirect ? 8 : TyInfo.first.getQuantity();
5295   if (!IsFPR) {
5296     // 3 is the field number of __gr_offs
5297     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p");
5298     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
5299     reg_top_index = 1; // field number for __gr_top
5300     RegSize = llvm::alignTo(RegSize, 8);
5301   } else {
5302     // 4 is the field number of __vr_offs.
5303     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p");
5304     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
5305     reg_top_index = 2; // field number for __vr_top
5306     RegSize = 16 * NumRegs;
5307   }
5308 
5309   //=======================================
5310   // Find out where argument was passed
5311   //=======================================
5312 
5313   // If reg_offs >= 0 we're already using the stack for this type of
5314   // argument. We don't want to keep updating reg_offs (in case it overflows,
5315   // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
5316   // whatever they get).
5317   llvm::Value *UsingStack = nullptr;
5318   UsingStack = CGF.Builder.CreateICmpSGE(
5319       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
5320 
5321   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
5322 
5323   // Otherwise, at least some kind of argument could go in these registers, the
5324   // question is whether this particular type is too big.
5325   CGF.EmitBlock(MaybeRegBlock);
5326 
5327   // Integer arguments may need to correct register alignment (for example a
5328   // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
5329   // align __gr_offs to calculate the potential address.
5330   if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) {
5331     int Align = TyAlign.getQuantity();
5332 
5333     reg_offs = CGF.Builder.CreateAdd(
5334         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
5335         "align_regoffs");
5336     reg_offs = CGF.Builder.CreateAnd(
5337         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
5338         "aligned_regoffs");
5339   }
5340 
5341   // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
5342   // The fact that this is done unconditionally reflects the fact that
5343   // allocating an argument to the stack also uses up all the remaining
5344   // registers of the appropriate kind.
5345   llvm::Value *NewOffset = nullptr;
5346   NewOffset = CGF.Builder.CreateAdd(
5347       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
5348   CGF.Builder.CreateStore(NewOffset, reg_offs_p);
5349 
5350   // Now we're in a position to decide whether this argument really was in
5351   // registers or not.
5352   llvm::Value *InRegs = nullptr;
5353   InRegs = CGF.Builder.CreateICmpSLE(
5354       NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
5355 
5356   CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
5357 
5358   //=======================================
5359   // Argument was in registers
5360   //=======================================
5361 
5362   // Now we emit the code for if the argument was originally passed in
5363   // registers. First start the appropriate block:
5364   CGF.EmitBlock(InRegBlock);
5365 
5366   llvm::Value *reg_top = nullptr;
5367   Address reg_top_p =
5368       CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p");
5369   reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
5370   Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs),
5371                    CharUnits::fromQuantity(IsFPR ? 16 : 8));
5372   Address RegAddr = Address::invalid();
5373   llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty);
5374 
5375   if (IsIndirect) {
5376     // If it's been passed indirectly (actually a struct), whatever we find from
5377     // stored registers or on the stack will actually be a struct **.
5378     MemTy = llvm::PointerType::getUnqual(MemTy);
5379   }
5380 
5381   const Type *Base = nullptr;
5382   uint64_t NumMembers = 0;
5383   bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
5384   if (IsHFA && NumMembers > 1) {
5385     // Homogeneous aggregates passed in registers will have their elements split
5386     // and stored 16-bytes apart regardless of size (they're notionally in qN,
5387     // qN+1, ...). We reload and store into a temporary local variable
5388     // contiguously.
5389     assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
5390     auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0));
5391     llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
5392     llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
5393     Address Tmp = CGF.CreateTempAlloca(HFATy,
5394                                        std::max(TyAlign, BaseTyInfo.second));
5395 
5396     // On big-endian platforms, the value will be right-aligned in its slot.
5397     int Offset = 0;
5398     if (CGF.CGM.getDataLayout().isBigEndian() &&
5399         BaseTyInfo.first.getQuantity() < 16)
5400       Offset = 16 - BaseTyInfo.first.getQuantity();
5401 
5402     for (unsigned i = 0; i < NumMembers; ++i) {
5403       CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset);
5404       Address LoadAddr =
5405         CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset);
5406       LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy);
5407 
5408       Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i);
5409 
5410       llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
5411       CGF.Builder.CreateStore(Elem, StoreAddr);
5412     }
5413 
5414     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy);
5415   } else {
5416     // Otherwise the object is contiguous in memory.
5417 
5418     // It might be right-aligned in its slot.
5419     CharUnits SlotSize = BaseAddr.getAlignment();
5420     if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect &&
5421         (IsHFA || !isAggregateTypeForABI(Ty)) &&
5422         TyInfo.first < SlotSize) {
5423       CharUnits Offset = SlotSize - TyInfo.first;
5424       BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset);
5425     }
5426 
5427     RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy);
5428   }
5429 
5430   CGF.EmitBranch(ContBlock);
5431 
5432   //=======================================
5433   // Argument was on the stack
5434   //=======================================
5435   CGF.EmitBlock(OnStackBlock);
5436 
5437   Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p");
5438   llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack");
5439 
5440   // Again, stack arguments may need realignment. In this case both integer and
5441   // floating-point ones might be affected.
5442   if (!IsIndirect && TyAlign.getQuantity() > 8) {
5443     int Align = TyAlign.getQuantity();
5444 
5445     OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty);
5446 
5447     OnStackPtr = CGF.Builder.CreateAdd(
5448         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
5449         "align_stack");
5450     OnStackPtr = CGF.Builder.CreateAnd(
5451         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
5452         "align_stack");
5453 
5454     OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy);
5455   }
5456   Address OnStackAddr(OnStackPtr,
5457                       std::max(CharUnits::fromQuantity(8), TyAlign));
5458 
5459   // All stack slots are multiples of 8 bytes.
5460   CharUnits StackSlotSize = CharUnits::fromQuantity(8);
5461   CharUnits StackSize;
5462   if (IsIndirect)
5463     StackSize = StackSlotSize;
5464   else
5465     StackSize = TyInfo.first.alignTo(StackSlotSize);
5466 
5467   llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize);
5468   llvm::Value *NewStack =
5469       CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack");
5470 
5471   // Write the new value of __stack for the next call to va_arg
5472   CGF.Builder.CreateStore(NewStack, stack_p);
5473 
5474   if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
5475       TyInfo.first < StackSlotSize) {
5476     CharUnits Offset = StackSlotSize - TyInfo.first;
5477     OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset);
5478   }
5479 
5480   OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy);
5481 
5482   CGF.EmitBranch(ContBlock);
5483 
5484   //=======================================
5485   // Tidy up
5486   //=======================================
5487   CGF.EmitBlock(ContBlock);
5488 
5489   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
5490                                  OnStackAddr, OnStackBlock, "vaargs.addr");
5491 
5492   if (IsIndirect)
5493     return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"),
5494                    TyInfo.second);
5495 
5496   return ResAddr;
5497 }
5498 
5499 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty,
5500                                         CodeGenFunction &CGF) const {
5501   // The backend's lowering doesn't support va_arg for aggregates or
5502   // illegal vector types.  Lower VAArg here for these cases and use
5503   // the LLVM va_arg instruction for everything else.
5504   if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
5505     return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
5506 
5507   CharUnits SlotSize = CharUnits::fromQuantity(8);
5508 
5509   // Empty records are ignored for parameter passing purposes.
5510   if (isEmptyRecord(getContext(), Ty, true)) {
5511     Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
5512     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
5513     return Addr;
5514   }
5515 
5516   // The size of the actual thing passed, which might end up just
5517   // being a pointer for indirect types.
5518   auto TyInfo = getContext().getTypeInfoInChars(Ty);
5519 
5520   // Arguments bigger than 16 bytes which aren't homogeneous
5521   // aggregates should be passed indirectly.
5522   bool IsIndirect = false;
5523   if (TyInfo.first.getQuantity() > 16) {
5524     const Type *Base = nullptr;
5525     uint64_t Members = 0;
5526     IsIndirect = !isHomogeneousAggregate(Ty, Base, Members);
5527   }
5528 
5529   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
5530                           TyInfo, SlotSize, /*AllowHigherAlign*/ true);
5531 }
5532 
5533 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
5534                                     QualType Ty) const {
5535   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
5536                           CGF.getContext().getTypeInfoInChars(Ty),
5537                           CharUnits::fromQuantity(8),
5538                           /*allowHigherAlign*/ false);
5539 }
5540 
5541 //===----------------------------------------------------------------------===//
5542 // ARM ABI Implementation
5543 //===----------------------------------------------------------------------===//
5544 
5545 namespace {
5546 
5547 class ARMABIInfo : public SwiftABIInfo {
5548 public:
5549   enum ABIKind {
5550     APCS = 0,
5551     AAPCS = 1,
5552     AAPCS_VFP = 2,
5553     AAPCS16_VFP = 3,
5554   };
5555 
5556 private:
5557   ABIKind Kind;
5558 
5559 public:
5560   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind)
5561       : SwiftABIInfo(CGT), Kind(_Kind) {
5562     setCCs();
5563   }
5564 
5565   bool isEABI() const {
5566     switch (getTarget().getTriple().getEnvironment()) {
5567     case llvm::Triple::Android:
5568     case llvm::Triple::EABI:
5569     case llvm::Triple::EABIHF:
5570     case llvm::Triple::GNUEABI:
5571     case llvm::Triple::GNUEABIHF:
5572     case llvm::Triple::MuslEABI:
5573     case llvm::Triple::MuslEABIHF:
5574       return true;
5575     default:
5576       return false;
5577     }
5578   }
5579 
5580   bool isEABIHF() const {
5581     switch (getTarget().getTriple().getEnvironment()) {
5582     case llvm::Triple::EABIHF:
5583     case llvm::Triple::GNUEABIHF:
5584     case llvm::Triple::MuslEABIHF:
5585       return true;
5586     default:
5587       return false;
5588     }
5589   }
5590 
5591   ABIKind getABIKind() const { return Kind; }
5592 
5593 private:
5594   ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const;
5595   ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic) const;
5596   ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base,
5597                                           uint64_t Members) const;
5598   ABIArgInfo coerceIllegalVector(QualType Ty) const;
5599   bool isIllegalVectorType(QualType Ty) const;
5600 
5601   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
5602   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
5603                                          uint64_t Members) const override;
5604 
5605   void computeInfo(CGFunctionInfo &FI) const override;
5606 
5607   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5608                     QualType Ty) const override;
5609 
5610   llvm::CallingConv::ID getLLVMDefaultCC() const;
5611   llvm::CallingConv::ID getABIDefaultCC() const;
5612   void setCCs();
5613 
5614   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
5615                                     bool asReturnValue) const override {
5616     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
5617   }
5618   bool isSwiftErrorInRegister() const override {
5619     return true;
5620   }
5621   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
5622                                  unsigned elts) const override;
5623 };
5624 
5625 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
5626 public:
5627   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
5628     :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
5629 
5630   const ARMABIInfo &getABIInfo() const {
5631     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
5632   }
5633 
5634   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5635     return 13;
5636   }
5637 
5638   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
5639     return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue";
5640   }
5641 
5642   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5643                                llvm::Value *Address) const override {
5644     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
5645 
5646     // 0-15 are the 16 integer registers.
5647     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
5648     return false;
5649   }
5650 
5651   unsigned getSizeOfUnwindException() const override {
5652     if (getABIInfo().isEABI()) return 88;
5653     return TargetCodeGenInfo::getSizeOfUnwindException();
5654   }
5655 
5656   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5657                            CodeGen::CodeGenModule &CGM) const override {
5658     if (GV->isDeclaration())
5659       return;
5660     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5661     if (!FD)
5662       return;
5663 
5664     const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
5665     if (!Attr)
5666       return;
5667 
5668     const char *Kind;
5669     switch (Attr->getInterrupt()) {
5670     case ARMInterruptAttr::Generic: Kind = ""; break;
5671     case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break;
5672     case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break;
5673     case ARMInterruptAttr::SWI:     Kind = "SWI"; break;
5674     case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break;
5675     case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break;
5676     }
5677 
5678     llvm::Function *Fn = cast<llvm::Function>(GV);
5679 
5680     Fn->addFnAttr("interrupt", Kind);
5681 
5682     ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind();
5683     if (ABI == ARMABIInfo::APCS)
5684       return;
5685 
5686     // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
5687     // however this is not necessarily true on taking any interrupt. Instruct
5688     // the backend to perform a realignment as part of the function prologue.
5689     llvm::AttrBuilder B;
5690     B.addStackAlignmentAttr(8);
5691     Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
5692   }
5693 };
5694 
5695 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo {
5696 public:
5697   WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
5698       : ARMTargetCodeGenInfo(CGT, K) {}
5699 
5700   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5701                            CodeGen::CodeGenModule &CGM) const override;
5702 
5703   void getDependentLibraryOption(llvm::StringRef Lib,
5704                                  llvm::SmallString<24> &Opt) const override {
5705     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
5706   }
5707 
5708   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
5709                                llvm::SmallString<32> &Opt) const override {
5710     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
5711   }
5712 };
5713 
5714 void WindowsARMTargetCodeGenInfo::setTargetAttributes(
5715     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
5716   ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
5717   if (GV->isDeclaration())
5718     return;
5719   addStackProbeTargetAttributes(D, GV, CGM);
5720 }
5721 }
5722 
5723 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
5724   if (!::classifyReturnType(getCXXABI(), FI, *this))
5725     FI.getReturnInfo() =
5726         classifyReturnType(FI.getReturnType(), FI.isVariadic());
5727 
5728   for (auto &I : FI.arguments())
5729     I.info = classifyArgumentType(I.type, FI.isVariadic());
5730 
5731   // Always honor user-specified calling convention.
5732   if (FI.getCallingConvention() != llvm::CallingConv::C)
5733     return;
5734 
5735   llvm::CallingConv::ID cc = getRuntimeCC();
5736   if (cc != llvm::CallingConv::C)
5737     FI.setEffectiveCallingConvention(cc);
5738 }
5739 
5740 /// Return the default calling convention that LLVM will use.
5741 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
5742   // The default calling convention that LLVM will infer.
5743   if (isEABIHF() || getTarget().getTriple().isWatchABI())
5744     return llvm::CallingConv::ARM_AAPCS_VFP;
5745   else if (isEABI())
5746     return llvm::CallingConv::ARM_AAPCS;
5747   else
5748     return llvm::CallingConv::ARM_APCS;
5749 }
5750 
5751 /// Return the calling convention that our ABI would like us to use
5752 /// as the C calling convention.
5753 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
5754   switch (getABIKind()) {
5755   case APCS: return llvm::CallingConv::ARM_APCS;
5756   case AAPCS: return llvm::CallingConv::ARM_AAPCS;
5757   case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
5758   case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
5759   }
5760   llvm_unreachable("bad ABI kind");
5761 }
5762 
5763 void ARMABIInfo::setCCs() {
5764   assert(getRuntimeCC() == llvm::CallingConv::C);
5765 
5766   // Don't muddy up the IR with a ton of explicit annotations if
5767   // they'd just match what LLVM will infer from the triple.
5768   llvm::CallingConv::ID abiCC = getABIDefaultCC();
5769   if (abiCC != getLLVMDefaultCC())
5770     RuntimeCC = abiCC;
5771 }
5772 
5773 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const {
5774   uint64_t Size = getContext().getTypeSize(Ty);
5775   if (Size <= 32) {
5776     llvm::Type *ResType =
5777         llvm::Type::getInt32Ty(getVMContext());
5778     return ABIArgInfo::getDirect(ResType);
5779   }
5780   if (Size == 64 || Size == 128) {
5781     llvm::Type *ResType = llvm::VectorType::get(
5782         llvm::Type::getInt32Ty(getVMContext()), Size / 32);
5783     return ABIArgInfo::getDirect(ResType);
5784   }
5785   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5786 }
5787 
5788 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty,
5789                                                     const Type *Base,
5790                                                     uint64_t Members) const {
5791   assert(Base && "Base class should be set for homogeneous aggregate");
5792   // Base can be a floating-point or a vector.
5793   if (const VectorType *VT = Base->getAs<VectorType>()) {
5794     // FP16 vectors should be converted to integer vectors
5795     if (!getTarget().hasLegalHalfType() &&
5796         (VT->getElementType()->isFloat16Type() ||
5797           VT->getElementType()->isHalfType())) {
5798       uint64_t Size = getContext().getTypeSize(VT);
5799       llvm::Type *NewVecTy = llvm::VectorType::get(
5800           llvm::Type::getInt32Ty(getVMContext()), Size / 32);
5801       llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members);
5802       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
5803     }
5804   }
5805   return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
5806 }
5807 
5808 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty,
5809                                             bool isVariadic) const {
5810   // 6.1.2.1 The following argument types are VFP CPRCs:
5811   //   A single-precision floating-point type (including promoted
5812   //   half-precision types); A double-precision floating-point type;
5813   //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
5814   //   with a Base Type of a single- or double-precision floating-point type,
5815   //   64-bit containerized vectors or 128-bit containerized vectors with one
5816   //   to four Elements.
5817   bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic;
5818 
5819   Ty = useFirstFieldIfTransparentUnion(Ty);
5820 
5821   // Handle illegal vector types here.
5822   if (isIllegalVectorType(Ty))
5823     return coerceIllegalVector(Ty);
5824 
5825   // _Float16 and __fp16 get passed as if it were an int or float, but with
5826   // the top 16 bits unspecified. This is not done for OpenCL as it handles the
5827   // half type natively, and does not need to interwork with AAPCS code.
5828   if ((Ty->isFloat16Type() || Ty->isHalfType()) &&
5829       !getContext().getLangOpts().NativeHalfArgsAndReturns) {
5830     llvm::Type *ResType = IsEffectivelyAAPCS_VFP ?
5831       llvm::Type::getFloatTy(getVMContext()) :
5832       llvm::Type::getInt32Ty(getVMContext());
5833     return ABIArgInfo::getDirect(ResType);
5834   }
5835 
5836   if (!isAggregateTypeForABI(Ty)) {
5837     // Treat an enum type as its underlying type.
5838     if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
5839       Ty = EnumTy->getDecl()->getIntegerType();
5840     }
5841 
5842     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
5843                                           : ABIArgInfo::getDirect());
5844   }
5845 
5846   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5847     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
5848   }
5849 
5850   // Ignore empty records.
5851   if (isEmptyRecord(getContext(), Ty, true))
5852     return ABIArgInfo::getIgnore();
5853 
5854   if (IsEffectivelyAAPCS_VFP) {
5855     // Homogeneous Aggregates need to be expanded when we can fit the aggregate
5856     // into VFP registers.
5857     const Type *Base = nullptr;
5858     uint64_t Members = 0;
5859     if (isHomogeneousAggregate(Ty, Base, Members))
5860       return classifyHomogeneousAggregate(Ty, Base, Members);
5861   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
5862     // WatchOS does have homogeneous aggregates. Note that we intentionally use
5863     // this convention even for a variadic function: the backend will use GPRs
5864     // if needed.
5865     const Type *Base = nullptr;
5866     uint64_t Members = 0;
5867     if (isHomogeneousAggregate(Ty, Base, Members)) {
5868       assert(Base && Members <= 4 && "unexpected homogeneous aggregate");
5869       llvm::Type *Ty =
5870         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members);
5871       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
5872     }
5873   }
5874 
5875   if (getABIKind() == ARMABIInfo::AAPCS16_VFP &&
5876       getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) {
5877     // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're
5878     // bigger than 128-bits, they get placed in space allocated by the caller,
5879     // and a pointer is passed.
5880     return ABIArgInfo::getIndirect(
5881         CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false);
5882   }
5883 
5884   // Support byval for ARM.
5885   // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
5886   // most 8-byte. We realign the indirect argument if type alignment is bigger
5887   // than ABI alignment.
5888   uint64_t ABIAlign = 4;
5889   uint64_t TyAlign;
5890   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
5891       getABIKind() == ARMABIInfo::AAPCS) {
5892     TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity();
5893     ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
5894   } else {
5895     TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
5896   }
5897   if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
5898     assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval");
5899     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
5900                                    /*ByVal=*/true,
5901                                    /*Realign=*/TyAlign > ABIAlign);
5902   }
5903 
5904   // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of
5905   // same size and alignment.
5906   if (getTarget().isRenderScriptTarget()) {
5907     return coerceToIntArray(Ty, getContext(), getVMContext());
5908   }
5909 
5910   // Otherwise, pass by coercing to a structure of the appropriate size.
5911   llvm::Type* ElemTy;
5912   unsigned SizeRegs;
5913   // FIXME: Try to match the types of the arguments more accurately where
5914   // we can.
5915   if (TyAlign <= 4) {
5916     ElemTy = llvm::Type::getInt32Ty(getVMContext());
5917     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
5918   } else {
5919     ElemTy = llvm::Type::getInt64Ty(getVMContext());
5920     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
5921   }
5922 
5923   return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
5924 }
5925 
5926 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
5927                               llvm::LLVMContext &VMContext) {
5928   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
5929   // is called integer-like if its size is less than or equal to one word, and
5930   // the offset of each of its addressable sub-fields is zero.
5931 
5932   uint64_t Size = Context.getTypeSize(Ty);
5933 
5934   // Check that the type fits in a word.
5935   if (Size > 32)
5936     return false;
5937 
5938   // FIXME: Handle vector types!
5939   if (Ty->isVectorType())
5940     return false;
5941 
5942   // Float types are never treated as "integer like".
5943   if (Ty->isRealFloatingType())
5944     return false;
5945 
5946   // If this is a builtin or pointer type then it is ok.
5947   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
5948     return true;
5949 
5950   // Small complex integer types are "integer like".
5951   if (const ComplexType *CT = Ty->getAs<ComplexType>())
5952     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
5953 
5954   // Single element and zero sized arrays should be allowed, by the definition
5955   // above, but they are not.
5956 
5957   // Otherwise, it must be a record type.
5958   const RecordType *RT = Ty->getAs<RecordType>();
5959   if (!RT) return false;
5960 
5961   // Ignore records with flexible arrays.
5962   const RecordDecl *RD = RT->getDecl();
5963   if (RD->hasFlexibleArrayMember())
5964     return false;
5965 
5966   // Check that all sub-fields are at offset 0, and are themselves "integer
5967   // like".
5968   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
5969 
5970   bool HadField = false;
5971   unsigned idx = 0;
5972   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
5973        i != e; ++i, ++idx) {
5974     const FieldDecl *FD = *i;
5975 
5976     // Bit-fields are not addressable, we only need to verify they are "integer
5977     // like". We still have to disallow a subsequent non-bitfield, for example:
5978     //   struct { int : 0; int x }
5979     // is non-integer like according to gcc.
5980     if (FD->isBitField()) {
5981       if (!RD->isUnion())
5982         HadField = true;
5983 
5984       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
5985         return false;
5986 
5987       continue;
5988     }
5989 
5990     // Check if this field is at offset 0.
5991     if (Layout.getFieldOffset(idx) != 0)
5992       return false;
5993 
5994     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
5995       return false;
5996 
5997     // Only allow at most one field in a structure. This doesn't match the
5998     // wording above, but follows gcc in situations with a field following an
5999     // empty structure.
6000     if (!RD->isUnion()) {
6001       if (HadField)
6002         return false;
6003 
6004       HadField = true;
6005     }
6006   }
6007 
6008   return true;
6009 }
6010 
6011 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy,
6012                                           bool isVariadic) const {
6013   bool IsEffectivelyAAPCS_VFP =
6014       (getABIKind() == AAPCS_VFP || getABIKind() == AAPCS16_VFP) && !isVariadic;
6015 
6016   if (RetTy->isVoidType())
6017     return ABIArgInfo::getIgnore();
6018 
6019   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
6020     // Large vector types should be returned via memory.
6021     if (getContext().getTypeSize(RetTy) > 128)
6022       return getNaturalAlignIndirect(RetTy);
6023     // FP16 vectors should be converted to integer vectors
6024     if (!getTarget().hasLegalHalfType() &&
6025         (VT->getElementType()->isFloat16Type() ||
6026          VT->getElementType()->isHalfType()))
6027       return coerceIllegalVector(RetTy);
6028   }
6029 
6030   // _Float16 and __fp16 get returned as if it were an int or float, but with
6031   // the top 16 bits unspecified. This is not done for OpenCL as it handles the
6032   // half type natively, and does not need to interwork with AAPCS code.
6033   if ((RetTy->isFloat16Type() || RetTy->isHalfType()) &&
6034       !getContext().getLangOpts().NativeHalfArgsAndReturns) {
6035     llvm::Type *ResType = IsEffectivelyAAPCS_VFP ?
6036       llvm::Type::getFloatTy(getVMContext()) :
6037       llvm::Type::getInt32Ty(getVMContext());
6038     return ABIArgInfo::getDirect(ResType);
6039   }
6040 
6041   if (!isAggregateTypeForABI(RetTy)) {
6042     // Treat an enum type as its underlying type.
6043     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6044       RetTy = EnumTy->getDecl()->getIntegerType();
6045 
6046     return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
6047                                             : ABIArgInfo::getDirect();
6048   }
6049 
6050   // Are we following APCS?
6051   if (getABIKind() == APCS) {
6052     if (isEmptyRecord(getContext(), RetTy, false))
6053       return ABIArgInfo::getIgnore();
6054 
6055     // Complex types are all returned as packed integers.
6056     //
6057     // FIXME: Consider using 2 x vector types if the back end handles them
6058     // correctly.
6059     if (RetTy->isAnyComplexType())
6060       return ABIArgInfo::getDirect(llvm::IntegerType::get(
6061           getVMContext(), getContext().getTypeSize(RetTy)));
6062 
6063     // Integer like structures are returned in r0.
6064     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
6065       // Return in the smallest viable integer type.
6066       uint64_t Size = getContext().getTypeSize(RetTy);
6067       if (Size <= 8)
6068         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6069       if (Size <= 16)
6070         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6071       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6072     }
6073 
6074     // Otherwise return in memory.
6075     return getNaturalAlignIndirect(RetTy);
6076   }
6077 
6078   // Otherwise this is an AAPCS variant.
6079 
6080   if (isEmptyRecord(getContext(), RetTy, true))
6081     return ABIArgInfo::getIgnore();
6082 
6083   // Check for homogeneous aggregates with AAPCS-VFP.
6084   if (IsEffectivelyAAPCS_VFP) {
6085     const Type *Base = nullptr;
6086     uint64_t Members = 0;
6087     if (isHomogeneousAggregate(RetTy, Base, Members))
6088       return classifyHomogeneousAggregate(RetTy, Base, Members);
6089   }
6090 
6091   // Aggregates <= 4 bytes are returned in r0; other aggregates
6092   // are returned indirectly.
6093   uint64_t Size = getContext().getTypeSize(RetTy);
6094   if (Size <= 32) {
6095     // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of
6096     // same size and alignment.
6097     if (getTarget().isRenderScriptTarget()) {
6098       return coerceToIntArray(RetTy, getContext(), getVMContext());
6099     }
6100     if (getDataLayout().isBigEndian())
6101       // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
6102       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6103 
6104     // Return in the smallest viable integer type.
6105     if (Size <= 8)
6106       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6107     if (Size <= 16)
6108       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6109     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6110   } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) {
6111     llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext());
6112     llvm::Type *CoerceTy =
6113         llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32);
6114     return ABIArgInfo::getDirect(CoerceTy);
6115   }
6116 
6117   return getNaturalAlignIndirect(RetTy);
6118 }
6119 
6120 /// isIllegalVector - check whether Ty is an illegal vector type.
6121 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
6122   if (const VectorType *VT = Ty->getAs<VectorType> ()) {
6123     // On targets that don't support FP16, FP16 is expanded into float, and we
6124     // don't want the ABI to depend on whether or not FP16 is supported in
6125     // hardware. Thus return false to coerce FP16 vectors into integer vectors.
6126     if (!getTarget().hasLegalHalfType() &&
6127         (VT->getElementType()->isFloat16Type() ||
6128          VT->getElementType()->isHalfType()))
6129       return true;
6130     if (isAndroid()) {
6131       // Android shipped using Clang 3.1, which supported a slightly different
6132       // vector ABI. The primary differences were that 3-element vector types
6133       // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path
6134       // accepts that legacy behavior for Android only.
6135       // Check whether VT is legal.
6136       unsigned NumElements = VT->getNumElements();
6137       // NumElements should be power of 2 or equal to 3.
6138       if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3)
6139         return true;
6140     } else {
6141       // Check whether VT is legal.
6142       unsigned NumElements = VT->getNumElements();
6143       uint64_t Size = getContext().getTypeSize(VT);
6144       // NumElements should be power of 2.
6145       if (!llvm::isPowerOf2_32(NumElements))
6146         return true;
6147       // Size should be greater than 32 bits.
6148       return Size <= 32;
6149     }
6150   }
6151   return false;
6152 }
6153 
6154 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
6155                                            llvm::Type *eltTy,
6156                                            unsigned numElts) const {
6157   if (!llvm::isPowerOf2_32(numElts))
6158     return false;
6159   unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy);
6160   if (size > 64)
6161     return false;
6162   if (vectorSize.getQuantity() != 8 &&
6163       (vectorSize.getQuantity() != 16 || numElts == 1))
6164     return false;
6165   return true;
6166 }
6167 
6168 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
6169   // Homogeneous aggregates for AAPCS-VFP must have base types of float,
6170   // double, or 64-bit or 128-bit vectors.
6171   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
6172     if (BT->getKind() == BuiltinType::Float ||
6173         BT->getKind() == BuiltinType::Double ||
6174         BT->getKind() == BuiltinType::LongDouble)
6175       return true;
6176   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
6177     unsigned VecSize = getContext().getTypeSize(VT);
6178     if (VecSize == 64 || VecSize == 128)
6179       return true;
6180   }
6181   return false;
6182 }
6183 
6184 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
6185                                                    uint64_t Members) const {
6186   return Members <= 4;
6187 }
6188 
6189 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6190                               QualType Ty) const {
6191   CharUnits SlotSize = CharUnits::fromQuantity(4);
6192 
6193   // Empty records are ignored for parameter passing purposes.
6194   if (isEmptyRecord(getContext(), Ty, true)) {
6195     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
6196     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
6197     return Addr;
6198   }
6199 
6200   auto TyInfo = getContext().getTypeInfoInChars(Ty);
6201   CharUnits TyAlignForABI = TyInfo.second;
6202 
6203   // Use indirect if size of the illegal vector is bigger than 16 bytes.
6204   bool IsIndirect = false;
6205   const Type *Base = nullptr;
6206   uint64_t Members = 0;
6207   if (TyInfo.first > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) {
6208     IsIndirect = true;
6209 
6210   // ARMv7k passes structs bigger than 16 bytes indirectly, in space
6211   // allocated by the caller.
6212   } else if (TyInfo.first > CharUnits::fromQuantity(16) &&
6213              getABIKind() == ARMABIInfo::AAPCS16_VFP &&
6214              !isHomogeneousAggregate(Ty, Base, Members)) {
6215     IsIndirect = true;
6216 
6217   // Otherwise, bound the type's ABI alignment.
6218   // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
6219   // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
6220   // Our callers should be prepared to handle an under-aligned address.
6221   } else if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
6222              getABIKind() == ARMABIInfo::AAPCS) {
6223     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6224     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8));
6225   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
6226     // ARMv7k allows type alignment up to 16 bytes.
6227     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6228     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16));
6229   } else {
6230     TyAlignForABI = CharUnits::fromQuantity(4);
6231   }
6232   TyInfo.second = TyAlignForABI;
6233 
6234   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo,
6235                           SlotSize, /*AllowHigherAlign*/ true);
6236 }
6237 
6238 //===----------------------------------------------------------------------===//
6239 // NVPTX ABI Implementation
6240 //===----------------------------------------------------------------------===//
6241 
6242 namespace {
6243 
6244 class NVPTXABIInfo : public ABIInfo {
6245 public:
6246   NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
6247 
6248   ABIArgInfo classifyReturnType(QualType RetTy) const;
6249   ABIArgInfo classifyArgumentType(QualType Ty) const;
6250 
6251   void computeInfo(CGFunctionInfo &FI) const override;
6252   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6253                     QualType Ty) const override;
6254 };
6255 
6256 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
6257 public:
6258   NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
6259     : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
6260 
6261   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6262                            CodeGen::CodeGenModule &M) const override;
6263   bool shouldEmitStaticExternCAliases() const override;
6264 
6265 private:
6266   // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the
6267   // resulting MDNode to the nvvm.annotations MDNode.
6268   static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand);
6269 };
6270 
6271 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
6272   if (RetTy->isVoidType())
6273     return ABIArgInfo::getIgnore();
6274 
6275   // note: this is different from default ABI
6276   if (!RetTy->isScalarType())
6277     return ABIArgInfo::getDirect();
6278 
6279   // Treat an enum type as its underlying type.
6280   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6281     RetTy = EnumTy->getDecl()->getIntegerType();
6282 
6283   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
6284                                            : ABIArgInfo::getDirect());
6285 }
6286 
6287 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
6288   // Treat an enum type as its underlying type.
6289   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6290     Ty = EnumTy->getDecl()->getIntegerType();
6291 
6292   // Return aggregates type as indirect by value
6293   if (isAggregateTypeForABI(Ty))
6294     return getNaturalAlignIndirect(Ty, /* byval */ true);
6295 
6296   return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
6297                                         : ABIArgInfo::getDirect());
6298 }
6299 
6300 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
6301   if (!getCXXABI().classifyReturnType(FI))
6302     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
6303   for (auto &I : FI.arguments())
6304     I.info = classifyArgumentType(I.type);
6305 
6306   // Always honor user-specified calling convention.
6307   if (FI.getCallingConvention() != llvm::CallingConv::C)
6308     return;
6309 
6310   FI.setEffectiveCallingConvention(getRuntimeCC());
6311 }
6312 
6313 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6314                                 QualType Ty) const {
6315   llvm_unreachable("NVPTX does not support varargs");
6316 }
6317 
6318 void NVPTXTargetCodeGenInfo::setTargetAttributes(
6319     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
6320   if (GV->isDeclaration())
6321     return;
6322   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6323   if (!FD) return;
6324 
6325   llvm::Function *F = cast<llvm::Function>(GV);
6326 
6327   // Perform special handling in OpenCL mode
6328   if (M.getLangOpts().OpenCL) {
6329     // Use OpenCL function attributes to check for kernel functions
6330     // By default, all functions are device functions
6331     if (FD->hasAttr<OpenCLKernelAttr>()) {
6332       // OpenCL __kernel functions get kernel metadata
6333       // Create !{<func-ref>, metadata !"kernel", i32 1} node
6334       addNVVMMetadata(F, "kernel", 1);
6335       // And kernel functions are not subject to inlining
6336       F->addFnAttr(llvm::Attribute::NoInline);
6337     }
6338   }
6339 
6340   // Perform special handling in CUDA mode.
6341   if (M.getLangOpts().CUDA) {
6342     // CUDA __global__ functions get a kernel metadata entry.  Since
6343     // __global__ functions cannot be called from the device, we do not
6344     // need to set the noinline attribute.
6345     if (FD->hasAttr<CUDAGlobalAttr>()) {
6346       // Create !{<func-ref>, metadata !"kernel", i32 1} node
6347       addNVVMMetadata(F, "kernel", 1);
6348     }
6349     if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) {
6350       // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
6351       llvm::APSInt MaxThreads(32);
6352       MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext());
6353       if (MaxThreads > 0)
6354         addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue());
6355 
6356       // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was
6357       // not specified in __launch_bounds__ or if the user specified a 0 value,
6358       // we don't have to add a PTX directive.
6359       if (Attr->getMinBlocks()) {
6360         llvm::APSInt MinBlocks(32);
6361         MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext());
6362         if (MinBlocks > 0)
6363           // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
6364           addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue());
6365       }
6366     }
6367   }
6368 }
6369 
6370 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name,
6371                                              int Operand) {
6372   llvm::Module *M = F->getParent();
6373   llvm::LLVMContext &Ctx = M->getContext();
6374 
6375   // Get "nvvm.annotations" metadata node
6376   llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
6377 
6378   llvm::Metadata *MDVals[] = {
6379       llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name),
6380       llvm::ConstantAsMetadata::get(
6381           llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
6382   // Append metadata to nvvm.annotations
6383   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
6384 }
6385 
6386 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
6387   return false;
6388 }
6389 }
6390 
6391 //===----------------------------------------------------------------------===//
6392 // SystemZ ABI Implementation
6393 //===----------------------------------------------------------------------===//
6394 
6395 namespace {
6396 
6397 class SystemZABIInfo : public SwiftABIInfo {
6398   bool HasVector;
6399 
6400 public:
6401   SystemZABIInfo(CodeGenTypes &CGT, bool HV)
6402     : SwiftABIInfo(CGT), HasVector(HV) {}
6403 
6404   bool isPromotableIntegerType(QualType Ty) const;
6405   bool isCompoundType(QualType Ty) const;
6406   bool isVectorArgumentType(QualType Ty) const;
6407   bool isFPArgumentType(QualType Ty) const;
6408   QualType GetSingleElementType(QualType Ty) const;
6409 
6410   ABIArgInfo classifyReturnType(QualType RetTy) const;
6411   ABIArgInfo classifyArgumentType(QualType ArgTy) const;
6412 
6413   void computeInfo(CGFunctionInfo &FI) const override {
6414     if (!getCXXABI().classifyReturnType(FI))
6415       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
6416     for (auto &I : FI.arguments())
6417       I.info = classifyArgumentType(I.type);
6418   }
6419 
6420   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6421                     QualType Ty) const override;
6422 
6423   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
6424                                     bool asReturnValue) const override {
6425     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
6426   }
6427   bool isSwiftErrorInRegister() const override {
6428     return false;
6429   }
6430 };
6431 
6432 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
6433 public:
6434   SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector)
6435     : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {}
6436 };
6437 
6438 }
6439 
6440 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
6441   // Treat an enum type as its underlying type.
6442   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6443     Ty = EnumTy->getDecl()->getIntegerType();
6444 
6445   // Promotable integer types are required to be promoted by the ABI.
6446   if (Ty->isPromotableIntegerType())
6447     return true;
6448 
6449   // 32-bit values must also be promoted.
6450   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
6451     switch (BT->getKind()) {
6452     case BuiltinType::Int:
6453     case BuiltinType::UInt:
6454       return true;
6455     default:
6456       return false;
6457     }
6458   return false;
6459 }
6460 
6461 bool SystemZABIInfo::isCompoundType(QualType Ty) const {
6462   return (Ty->isAnyComplexType() ||
6463           Ty->isVectorType() ||
6464           isAggregateTypeForABI(Ty));
6465 }
6466 
6467 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const {
6468   return (HasVector &&
6469           Ty->isVectorType() &&
6470           getContext().getTypeSize(Ty) <= 128);
6471 }
6472 
6473 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
6474   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
6475     switch (BT->getKind()) {
6476     case BuiltinType::Float:
6477     case BuiltinType::Double:
6478       return true;
6479     default:
6480       return false;
6481     }
6482 
6483   return false;
6484 }
6485 
6486 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const {
6487   if (const RecordType *RT = Ty->getAsStructureType()) {
6488     const RecordDecl *RD = RT->getDecl();
6489     QualType Found;
6490 
6491     // If this is a C++ record, check the bases first.
6492     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
6493       for (const auto &I : CXXRD->bases()) {
6494         QualType Base = I.getType();
6495 
6496         // Empty bases don't affect things either way.
6497         if (isEmptyRecord(getContext(), Base, true))
6498           continue;
6499 
6500         if (!Found.isNull())
6501           return Ty;
6502         Found = GetSingleElementType(Base);
6503       }
6504 
6505     // Check the fields.
6506     for (const auto *FD : RD->fields()) {
6507       // For compatibility with GCC, ignore empty bitfields in C++ mode.
6508       // Unlike isSingleElementStruct(), empty structure and array fields
6509       // do count.  So do anonymous bitfields that aren't zero-sized.
6510       if (getContext().getLangOpts().CPlusPlus &&
6511           FD->isZeroLengthBitField(getContext()))
6512         continue;
6513 
6514       // Unlike isSingleElementStruct(), arrays do not count.
6515       // Nested structures still do though.
6516       if (!Found.isNull())
6517         return Ty;
6518       Found = GetSingleElementType(FD->getType());
6519     }
6520 
6521     // Unlike isSingleElementStruct(), trailing padding is allowed.
6522     // An 8-byte aligned struct s { float f; } is passed as a double.
6523     if (!Found.isNull())
6524       return Found;
6525   }
6526 
6527   return Ty;
6528 }
6529 
6530 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6531                                   QualType Ty) const {
6532   // Assume that va_list type is correct; should be pointer to LLVM type:
6533   // struct {
6534   //   i64 __gpr;
6535   //   i64 __fpr;
6536   //   i8 *__overflow_arg_area;
6537   //   i8 *__reg_save_area;
6538   // };
6539 
6540   // Every non-vector argument occupies 8 bytes and is passed by preference
6541   // in either GPRs or FPRs.  Vector arguments occupy 8 or 16 bytes and are
6542   // always passed on the stack.
6543   Ty = getContext().getCanonicalType(Ty);
6544   auto TyInfo = getContext().getTypeInfoInChars(Ty);
6545   llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty);
6546   llvm::Type *DirectTy = ArgTy;
6547   ABIArgInfo AI = classifyArgumentType(Ty);
6548   bool IsIndirect = AI.isIndirect();
6549   bool InFPRs = false;
6550   bool IsVector = false;
6551   CharUnits UnpaddedSize;
6552   CharUnits DirectAlign;
6553   if (IsIndirect) {
6554     DirectTy = llvm::PointerType::getUnqual(DirectTy);
6555     UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8);
6556   } else {
6557     if (AI.getCoerceToType())
6558       ArgTy = AI.getCoerceToType();
6559     InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy();
6560     IsVector = ArgTy->isVectorTy();
6561     UnpaddedSize = TyInfo.first;
6562     DirectAlign = TyInfo.second;
6563   }
6564   CharUnits PaddedSize = CharUnits::fromQuantity(8);
6565   if (IsVector && UnpaddedSize > PaddedSize)
6566     PaddedSize = CharUnits::fromQuantity(16);
6567   assert((UnpaddedSize <= PaddedSize) && "Invalid argument size.");
6568 
6569   CharUnits Padding = (PaddedSize - UnpaddedSize);
6570 
6571   llvm::Type *IndexTy = CGF.Int64Ty;
6572   llvm::Value *PaddedSizeV =
6573     llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity());
6574 
6575   if (IsVector) {
6576     // Work out the address of a vector argument on the stack.
6577     // Vector arguments are always passed in the high bits of a
6578     // single (8 byte) or double (16 byte) stack slot.
6579     Address OverflowArgAreaPtr =
6580         CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
6581     Address OverflowArgArea =
6582       Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
6583               TyInfo.second);
6584     Address MemAddr =
6585       CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr");
6586 
6587     // Update overflow_arg_area_ptr pointer
6588     llvm::Value *NewOverflowArgArea =
6589       CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
6590                             "overflow_arg_area");
6591     CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
6592 
6593     return MemAddr;
6594   }
6595 
6596   assert(PaddedSize.getQuantity() == 8);
6597 
6598   unsigned MaxRegs, RegCountField, RegSaveIndex;
6599   CharUnits RegPadding;
6600   if (InFPRs) {
6601     MaxRegs = 4; // Maximum of 4 FPR arguments
6602     RegCountField = 1; // __fpr
6603     RegSaveIndex = 16; // save offset for f0
6604     RegPadding = CharUnits(); // floats are passed in the high bits of an FPR
6605   } else {
6606     MaxRegs = 5; // Maximum of 5 GPR arguments
6607     RegCountField = 0; // __gpr
6608     RegSaveIndex = 2; // save offset for r2
6609     RegPadding = Padding; // values are passed in the low bits of a GPR
6610   }
6611 
6612   Address RegCountPtr =
6613       CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr");
6614   llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
6615   llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
6616   llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
6617                                                  "fits_in_regs");
6618 
6619   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
6620   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
6621   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
6622   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
6623 
6624   // Emit code to load the value if it was passed in registers.
6625   CGF.EmitBlock(InRegBlock);
6626 
6627   // Work out the address of an argument register.
6628   llvm::Value *ScaledRegCount =
6629     CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
6630   llvm::Value *RegBase =
6631     llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity()
6632                                       + RegPadding.getQuantity());
6633   llvm::Value *RegOffset =
6634     CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
6635   Address RegSaveAreaPtr =
6636       CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr");
6637   llvm::Value *RegSaveArea =
6638     CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
6639   Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset,
6640                                            "raw_reg_addr"),
6641                      PaddedSize);
6642   Address RegAddr =
6643     CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr");
6644 
6645   // Update the register count
6646   llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
6647   llvm::Value *NewRegCount =
6648     CGF.Builder.CreateAdd(RegCount, One, "reg_count");
6649   CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
6650   CGF.EmitBranch(ContBlock);
6651 
6652   // Emit code to load the value if it was passed in memory.
6653   CGF.EmitBlock(InMemBlock);
6654 
6655   // Work out the address of a stack argument.
6656   Address OverflowArgAreaPtr =
6657       CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
6658   Address OverflowArgArea =
6659     Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
6660             PaddedSize);
6661   Address RawMemAddr =
6662     CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr");
6663   Address MemAddr =
6664     CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr");
6665 
6666   // Update overflow_arg_area_ptr pointer
6667   llvm::Value *NewOverflowArgArea =
6668     CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
6669                           "overflow_arg_area");
6670   CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
6671   CGF.EmitBranch(ContBlock);
6672 
6673   // Return the appropriate result.
6674   CGF.EmitBlock(ContBlock);
6675   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
6676                                  MemAddr, InMemBlock, "va_arg.addr");
6677 
6678   if (IsIndirect)
6679     ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"),
6680                       TyInfo.second);
6681 
6682   return ResAddr;
6683 }
6684 
6685 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
6686   if (RetTy->isVoidType())
6687     return ABIArgInfo::getIgnore();
6688   if (isVectorArgumentType(RetTy))
6689     return ABIArgInfo::getDirect();
6690   if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
6691     return getNaturalAlignIndirect(RetTy);
6692   return (isPromotableIntegerType(RetTy) ? ABIArgInfo::getExtend(RetTy)
6693                                          : ABIArgInfo::getDirect());
6694 }
6695 
6696 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
6697   // Handle the generic C++ ABI.
6698   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
6699     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6700 
6701   // Integers and enums are extended to full register width.
6702   if (isPromotableIntegerType(Ty))
6703     return ABIArgInfo::getExtend(Ty);
6704 
6705   // Handle vector types and vector-like structure types.  Note that
6706   // as opposed to float-like structure types, we do not allow any
6707   // padding for vector-like structures, so verify the sizes match.
6708   uint64_t Size = getContext().getTypeSize(Ty);
6709   QualType SingleElementTy = GetSingleElementType(Ty);
6710   if (isVectorArgumentType(SingleElementTy) &&
6711       getContext().getTypeSize(SingleElementTy) == Size)
6712     return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy));
6713 
6714   // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
6715   if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
6716     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6717 
6718   // Handle small structures.
6719   if (const RecordType *RT = Ty->getAs<RecordType>()) {
6720     // Structures with flexible arrays have variable length, so really
6721     // fail the size test above.
6722     const RecordDecl *RD = RT->getDecl();
6723     if (RD->hasFlexibleArrayMember())
6724       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6725 
6726     // The structure is passed as an unextended integer, a float, or a double.
6727     llvm::Type *PassTy;
6728     if (isFPArgumentType(SingleElementTy)) {
6729       assert(Size == 32 || Size == 64);
6730       if (Size == 32)
6731         PassTy = llvm::Type::getFloatTy(getVMContext());
6732       else
6733         PassTy = llvm::Type::getDoubleTy(getVMContext());
6734     } else
6735       PassTy = llvm::IntegerType::get(getVMContext(), Size);
6736     return ABIArgInfo::getDirect(PassTy);
6737   }
6738 
6739   // Non-structure compounds are passed indirectly.
6740   if (isCompoundType(Ty))
6741     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6742 
6743   return ABIArgInfo::getDirect(nullptr);
6744 }
6745 
6746 //===----------------------------------------------------------------------===//
6747 // MSP430 ABI Implementation
6748 //===----------------------------------------------------------------------===//
6749 
6750 namespace {
6751 
6752 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
6753 public:
6754   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
6755     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
6756   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6757                            CodeGen::CodeGenModule &M) const override;
6758 };
6759 
6760 }
6761 
6762 void MSP430TargetCodeGenInfo::setTargetAttributes(
6763     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
6764   if (GV->isDeclaration())
6765     return;
6766   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
6767     const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>();
6768     if (!InterruptAttr)
6769       return;
6770 
6771     // Handle 'interrupt' attribute:
6772     llvm::Function *F = cast<llvm::Function>(GV);
6773 
6774     // Step 1: Set ISR calling convention.
6775     F->setCallingConv(llvm::CallingConv::MSP430_INTR);
6776 
6777     // Step 2: Add attributes goodness.
6778     F->addFnAttr(llvm::Attribute::NoInline);
6779     F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber()));
6780   }
6781 }
6782 
6783 //===----------------------------------------------------------------------===//
6784 // MIPS ABI Implementation.  This works for both little-endian and
6785 // big-endian variants.
6786 //===----------------------------------------------------------------------===//
6787 
6788 namespace {
6789 class MipsABIInfo : public ABIInfo {
6790   bool IsO32;
6791   unsigned MinABIStackAlignInBytes, StackAlignInBytes;
6792   void CoerceToIntArgs(uint64_t TySize,
6793                        SmallVectorImpl<llvm::Type *> &ArgList) const;
6794   llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
6795   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
6796   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
6797 public:
6798   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
6799     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
6800     StackAlignInBytes(IsO32 ? 8 : 16) {}
6801 
6802   ABIArgInfo classifyReturnType(QualType RetTy) const;
6803   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
6804   void computeInfo(CGFunctionInfo &FI) const override;
6805   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6806                     QualType Ty) const override;
6807   ABIArgInfo extendType(QualType Ty) const;
6808 };
6809 
6810 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
6811   unsigned SizeOfUnwindException;
6812 public:
6813   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
6814     : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
6815       SizeOfUnwindException(IsO32 ? 24 : 32) {}
6816 
6817   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
6818     return 29;
6819   }
6820 
6821   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6822                            CodeGen::CodeGenModule &CGM) const override {
6823     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6824     if (!FD) return;
6825     llvm::Function *Fn = cast<llvm::Function>(GV);
6826 
6827     if (FD->hasAttr<MipsLongCallAttr>())
6828       Fn->addFnAttr("long-call");
6829     else if (FD->hasAttr<MipsShortCallAttr>())
6830       Fn->addFnAttr("short-call");
6831 
6832     // Other attributes do not have a meaning for declarations.
6833     if (GV->isDeclaration())
6834       return;
6835 
6836     if (FD->hasAttr<Mips16Attr>()) {
6837       Fn->addFnAttr("mips16");
6838     }
6839     else if (FD->hasAttr<NoMips16Attr>()) {
6840       Fn->addFnAttr("nomips16");
6841     }
6842 
6843     if (FD->hasAttr<MicroMipsAttr>())
6844       Fn->addFnAttr("micromips");
6845     else if (FD->hasAttr<NoMicroMipsAttr>())
6846       Fn->addFnAttr("nomicromips");
6847 
6848     const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>();
6849     if (!Attr)
6850       return;
6851 
6852     const char *Kind;
6853     switch (Attr->getInterrupt()) {
6854     case MipsInterruptAttr::eic:     Kind = "eic"; break;
6855     case MipsInterruptAttr::sw0:     Kind = "sw0"; break;
6856     case MipsInterruptAttr::sw1:     Kind = "sw1"; break;
6857     case MipsInterruptAttr::hw0:     Kind = "hw0"; break;
6858     case MipsInterruptAttr::hw1:     Kind = "hw1"; break;
6859     case MipsInterruptAttr::hw2:     Kind = "hw2"; break;
6860     case MipsInterruptAttr::hw3:     Kind = "hw3"; break;
6861     case MipsInterruptAttr::hw4:     Kind = "hw4"; break;
6862     case MipsInterruptAttr::hw5:     Kind = "hw5"; break;
6863     }
6864 
6865     Fn->addFnAttr("interrupt", Kind);
6866 
6867   }
6868 
6869   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6870                                llvm::Value *Address) const override;
6871 
6872   unsigned getSizeOfUnwindException() const override {
6873     return SizeOfUnwindException;
6874   }
6875 };
6876 }
6877 
6878 void MipsABIInfo::CoerceToIntArgs(
6879     uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const {
6880   llvm::IntegerType *IntTy =
6881     llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
6882 
6883   // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
6884   for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
6885     ArgList.push_back(IntTy);
6886 
6887   // If necessary, add one more integer type to ArgList.
6888   unsigned R = TySize % (MinABIStackAlignInBytes * 8);
6889 
6890   if (R)
6891     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
6892 }
6893 
6894 // In N32/64, an aligned double precision floating point field is passed in
6895 // a register.
6896 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
6897   SmallVector<llvm::Type*, 8> ArgList, IntArgList;
6898 
6899   if (IsO32) {
6900     CoerceToIntArgs(TySize, ArgList);
6901     return llvm::StructType::get(getVMContext(), ArgList);
6902   }
6903 
6904   if (Ty->isComplexType())
6905     return CGT.ConvertType(Ty);
6906 
6907   const RecordType *RT = Ty->getAs<RecordType>();
6908 
6909   // Unions/vectors are passed in integer registers.
6910   if (!RT || !RT->isStructureOrClassType()) {
6911     CoerceToIntArgs(TySize, ArgList);
6912     return llvm::StructType::get(getVMContext(), ArgList);
6913   }
6914 
6915   const RecordDecl *RD = RT->getDecl();
6916   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
6917   assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
6918 
6919   uint64_t LastOffset = 0;
6920   unsigned idx = 0;
6921   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
6922 
6923   // Iterate over fields in the struct/class and check if there are any aligned
6924   // double fields.
6925   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
6926        i != e; ++i, ++idx) {
6927     const QualType Ty = i->getType();
6928     const BuiltinType *BT = Ty->getAs<BuiltinType>();
6929 
6930     if (!BT || BT->getKind() != BuiltinType::Double)
6931       continue;
6932 
6933     uint64_t Offset = Layout.getFieldOffset(idx);
6934     if (Offset % 64) // Ignore doubles that are not aligned.
6935       continue;
6936 
6937     // Add ((Offset - LastOffset) / 64) args of type i64.
6938     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
6939       ArgList.push_back(I64);
6940 
6941     // Add double type.
6942     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
6943     LastOffset = Offset + 64;
6944   }
6945 
6946   CoerceToIntArgs(TySize - LastOffset, IntArgList);
6947   ArgList.append(IntArgList.begin(), IntArgList.end());
6948 
6949   return llvm::StructType::get(getVMContext(), ArgList);
6950 }
6951 
6952 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
6953                                         uint64_t Offset) const {
6954   if (OrigOffset + MinABIStackAlignInBytes > Offset)
6955     return nullptr;
6956 
6957   return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
6958 }
6959 
6960 ABIArgInfo
6961 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
6962   Ty = useFirstFieldIfTransparentUnion(Ty);
6963 
6964   uint64_t OrigOffset = Offset;
6965   uint64_t TySize = getContext().getTypeSize(Ty);
6966   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
6967 
6968   Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
6969                    (uint64_t)StackAlignInBytes);
6970   unsigned CurrOffset = llvm::alignTo(Offset, Align);
6971   Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8;
6972 
6973   if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
6974     // Ignore empty aggregates.
6975     if (TySize == 0)
6976       return ABIArgInfo::getIgnore();
6977 
6978     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
6979       Offset = OrigOffset + MinABIStackAlignInBytes;
6980       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6981     }
6982 
6983     // If we have reached here, aggregates are passed directly by coercing to
6984     // another structure type. Padding is inserted if the offset of the
6985     // aggregate is unaligned.
6986     ABIArgInfo ArgInfo =
6987         ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
6988                               getPaddingType(OrigOffset, CurrOffset));
6989     ArgInfo.setInReg(true);
6990     return ArgInfo;
6991   }
6992 
6993   // Treat an enum type as its underlying type.
6994   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6995     Ty = EnumTy->getDecl()->getIntegerType();
6996 
6997   // All integral types are promoted to the GPR width.
6998   if (Ty->isIntegralOrEnumerationType())
6999     return extendType(Ty);
7000 
7001   return ABIArgInfo::getDirect(
7002       nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
7003 }
7004 
7005 llvm::Type*
7006 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
7007   const RecordType *RT = RetTy->getAs<RecordType>();
7008   SmallVector<llvm::Type*, 8> RTList;
7009 
7010   if (RT && RT->isStructureOrClassType()) {
7011     const RecordDecl *RD = RT->getDecl();
7012     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
7013     unsigned FieldCnt = Layout.getFieldCount();
7014 
7015     // N32/64 returns struct/classes in floating point registers if the
7016     // following conditions are met:
7017     // 1. The size of the struct/class is no larger than 128-bit.
7018     // 2. The struct/class has one or two fields all of which are floating
7019     //    point types.
7020     // 3. The offset of the first field is zero (this follows what gcc does).
7021     //
7022     // Any other composite results are returned in integer registers.
7023     //
7024     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
7025       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
7026       for (; b != e; ++b) {
7027         const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
7028 
7029         if (!BT || !BT->isFloatingPoint())
7030           break;
7031 
7032         RTList.push_back(CGT.ConvertType(b->getType()));
7033       }
7034 
7035       if (b == e)
7036         return llvm::StructType::get(getVMContext(), RTList,
7037                                      RD->hasAttr<PackedAttr>());
7038 
7039       RTList.clear();
7040     }
7041   }
7042 
7043   CoerceToIntArgs(Size, RTList);
7044   return llvm::StructType::get(getVMContext(), RTList);
7045 }
7046 
7047 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
7048   uint64_t Size = getContext().getTypeSize(RetTy);
7049 
7050   if (RetTy->isVoidType())
7051     return ABIArgInfo::getIgnore();
7052 
7053   // O32 doesn't treat zero-sized structs differently from other structs.
7054   // However, N32/N64 ignores zero sized return values.
7055   if (!IsO32 && Size == 0)
7056     return ABIArgInfo::getIgnore();
7057 
7058   if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
7059     if (Size <= 128) {
7060       if (RetTy->isAnyComplexType())
7061         return ABIArgInfo::getDirect();
7062 
7063       // O32 returns integer vectors in registers and N32/N64 returns all small
7064       // aggregates in registers.
7065       if (!IsO32 ||
7066           (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
7067         ABIArgInfo ArgInfo =
7068             ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
7069         ArgInfo.setInReg(true);
7070         return ArgInfo;
7071       }
7072     }
7073 
7074     return getNaturalAlignIndirect(RetTy);
7075   }
7076 
7077   // Treat an enum type as its underlying type.
7078   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
7079     RetTy = EnumTy->getDecl()->getIntegerType();
7080 
7081   if (RetTy->isPromotableIntegerType())
7082     return ABIArgInfo::getExtend(RetTy);
7083 
7084   if ((RetTy->isUnsignedIntegerOrEnumerationType() ||
7085       RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32)
7086     return ABIArgInfo::getSignExtend(RetTy);
7087 
7088   return ABIArgInfo::getDirect();
7089 }
7090 
7091 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
7092   ABIArgInfo &RetInfo = FI.getReturnInfo();
7093   if (!getCXXABI().classifyReturnType(FI))
7094     RetInfo = classifyReturnType(FI.getReturnType());
7095 
7096   // Check if a pointer to an aggregate is passed as a hidden argument.
7097   uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
7098 
7099   for (auto &I : FI.arguments())
7100     I.info = classifyArgumentType(I.type, Offset);
7101 }
7102 
7103 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7104                                QualType OrigTy) const {
7105   QualType Ty = OrigTy;
7106 
7107   // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64.
7108   // Pointers are also promoted in the same way but this only matters for N32.
7109   unsigned SlotSizeInBits = IsO32 ? 32 : 64;
7110   unsigned PtrWidth = getTarget().getPointerWidth(0);
7111   bool DidPromote = false;
7112   if ((Ty->isIntegerType() &&
7113           getContext().getIntWidth(Ty) < SlotSizeInBits) ||
7114       (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) {
7115     DidPromote = true;
7116     Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits,
7117                                             Ty->isSignedIntegerType());
7118   }
7119 
7120   auto TyInfo = getContext().getTypeInfoInChars(Ty);
7121 
7122   // The alignment of things in the argument area is never larger than
7123   // StackAlignInBytes.
7124   TyInfo.second =
7125     std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes));
7126 
7127   // MinABIStackAlignInBytes is the size of argument slots on the stack.
7128   CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes);
7129 
7130   Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
7131                           TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true);
7132 
7133 
7134   // If there was a promotion, "unpromote" into a temporary.
7135   // TODO: can we just use a pointer into a subset of the original slot?
7136   if (DidPromote) {
7137     Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp");
7138     llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr);
7139 
7140     // Truncate down to the right width.
7141     llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType()
7142                                                  : CGF.IntPtrTy);
7143     llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy);
7144     if (OrigTy->isPointerType())
7145       V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType());
7146 
7147     CGF.Builder.CreateStore(V, Temp);
7148     Addr = Temp;
7149   }
7150 
7151   return Addr;
7152 }
7153 
7154 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const {
7155   int TySize = getContext().getTypeSize(Ty);
7156 
7157   // MIPS64 ABI requires unsigned 32 bit integers to be sign extended.
7158   if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
7159     return ABIArgInfo::getSignExtend(Ty);
7160 
7161   return ABIArgInfo::getExtend(Ty);
7162 }
7163 
7164 bool
7165 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
7166                                                llvm::Value *Address) const {
7167   // This information comes from gcc's implementation, which seems to
7168   // as canonical as it gets.
7169 
7170   // Everything on MIPS is 4 bytes.  Double-precision FP registers
7171   // are aliased to pairs of single-precision FP registers.
7172   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
7173 
7174   // 0-31 are the general purpose registers, $0 - $31.
7175   // 32-63 are the floating-point registers, $f0 - $f31.
7176   // 64 and 65 are the multiply/divide registers, $hi and $lo.
7177   // 66 is the (notional, I think) register for signal-handler return.
7178   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
7179 
7180   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
7181   // They are one bit wide and ignored here.
7182 
7183   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
7184   // (coprocessor 1 is the FP unit)
7185   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
7186   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
7187   // 176-181 are the DSP accumulator registers.
7188   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
7189   return false;
7190 }
7191 
7192 //===----------------------------------------------------------------------===//
7193 // AVR ABI Implementation.
7194 //===----------------------------------------------------------------------===//
7195 
7196 namespace {
7197 class AVRTargetCodeGenInfo : public TargetCodeGenInfo {
7198 public:
7199   AVRTargetCodeGenInfo(CodeGenTypes &CGT)
7200     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) { }
7201 
7202   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7203                            CodeGen::CodeGenModule &CGM) const override {
7204     if (GV->isDeclaration())
7205       return;
7206     const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
7207     if (!FD) return;
7208     auto *Fn = cast<llvm::Function>(GV);
7209 
7210     if (FD->getAttr<AVRInterruptAttr>())
7211       Fn->addFnAttr("interrupt");
7212 
7213     if (FD->getAttr<AVRSignalAttr>())
7214       Fn->addFnAttr("signal");
7215   }
7216 };
7217 }
7218 
7219 //===----------------------------------------------------------------------===//
7220 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
7221 // Currently subclassed only to implement custom OpenCL C function attribute
7222 // handling.
7223 //===----------------------------------------------------------------------===//
7224 
7225 namespace {
7226 
7227 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
7228 public:
7229   TCETargetCodeGenInfo(CodeGenTypes &CGT)
7230     : DefaultTargetCodeGenInfo(CGT) {}
7231 
7232   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7233                            CodeGen::CodeGenModule &M) const override;
7234 };
7235 
7236 void TCETargetCodeGenInfo::setTargetAttributes(
7237     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
7238   if (GV->isDeclaration())
7239     return;
7240   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7241   if (!FD) return;
7242 
7243   llvm::Function *F = cast<llvm::Function>(GV);
7244 
7245   if (M.getLangOpts().OpenCL) {
7246     if (FD->hasAttr<OpenCLKernelAttr>()) {
7247       // OpenCL C Kernel functions are not subject to inlining
7248       F->addFnAttr(llvm::Attribute::NoInline);
7249       const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
7250       if (Attr) {
7251         // Convert the reqd_work_group_size() attributes to metadata.
7252         llvm::LLVMContext &Context = F->getContext();
7253         llvm::NamedMDNode *OpenCLMetadata =
7254             M.getModule().getOrInsertNamedMetadata(
7255                 "opencl.kernel_wg_size_info");
7256 
7257         SmallVector<llvm::Metadata *, 5> Operands;
7258         Operands.push_back(llvm::ConstantAsMetadata::get(F));
7259 
7260         Operands.push_back(
7261             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
7262                 M.Int32Ty, llvm::APInt(32, Attr->getXDim()))));
7263         Operands.push_back(
7264             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
7265                 M.Int32Ty, llvm::APInt(32, Attr->getYDim()))));
7266         Operands.push_back(
7267             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
7268                 M.Int32Ty, llvm::APInt(32, Attr->getZDim()))));
7269 
7270         // Add a boolean constant operand for "required" (true) or "hint"
7271         // (false) for implementing the work_group_size_hint attr later.
7272         // Currently always true as the hint is not yet implemented.
7273         Operands.push_back(
7274             llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context)));
7275         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
7276       }
7277     }
7278   }
7279 }
7280 
7281 }
7282 
7283 //===----------------------------------------------------------------------===//
7284 // Hexagon ABI Implementation
7285 //===----------------------------------------------------------------------===//
7286 
7287 namespace {
7288 
7289 class HexagonABIInfo : public ABIInfo {
7290 
7291 
7292 public:
7293   HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
7294 
7295 private:
7296 
7297   ABIArgInfo classifyReturnType(QualType RetTy) const;
7298   ABIArgInfo classifyArgumentType(QualType RetTy) const;
7299 
7300   void computeInfo(CGFunctionInfo &FI) const override;
7301 
7302   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7303                     QualType Ty) const override;
7304 };
7305 
7306 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
7307 public:
7308   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
7309     :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
7310 
7311   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
7312     return 29;
7313   }
7314 };
7315 
7316 }
7317 
7318 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
7319   if (!getCXXABI().classifyReturnType(FI))
7320     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7321   for (auto &I : FI.arguments())
7322     I.info = classifyArgumentType(I.type);
7323 }
7324 
7325 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
7326   if (!isAggregateTypeForABI(Ty)) {
7327     // Treat an enum type as its underlying type.
7328     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7329       Ty = EnumTy->getDecl()->getIntegerType();
7330 
7331     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
7332                                           : ABIArgInfo::getDirect());
7333   }
7334 
7335   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
7336     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7337 
7338   // Ignore empty records.
7339   if (isEmptyRecord(getContext(), Ty, true))
7340     return ABIArgInfo::getIgnore();
7341 
7342   uint64_t Size = getContext().getTypeSize(Ty);
7343   if (Size > 64)
7344     return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
7345     // Pass in the smallest viable integer type.
7346   else if (Size > 32)
7347       return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
7348   else if (Size > 16)
7349       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
7350   else if (Size > 8)
7351       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
7352   else
7353       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
7354 }
7355 
7356 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
7357   if (RetTy->isVoidType())
7358     return ABIArgInfo::getIgnore();
7359 
7360   // Large vector types should be returned via memory.
7361   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
7362     return getNaturalAlignIndirect(RetTy);
7363 
7364   if (!isAggregateTypeForABI(RetTy)) {
7365     // Treat an enum type as its underlying type.
7366     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
7367       RetTy = EnumTy->getDecl()->getIntegerType();
7368 
7369     return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
7370                                              : ABIArgInfo::getDirect());
7371   }
7372 
7373   if (isEmptyRecord(getContext(), RetTy, true))
7374     return ABIArgInfo::getIgnore();
7375 
7376   // Aggregates <= 8 bytes are returned in r0; other aggregates
7377   // are returned indirectly.
7378   uint64_t Size = getContext().getTypeSize(RetTy);
7379   if (Size <= 64) {
7380     // Return in the smallest viable integer type.
7381     if (Size <= 8)
7382       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
7383     if (Size <= 16)
7384       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
7385     if (Size <= 32)
7386       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
7387     return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
7388   }
7389 
7390   return getNaturalAlignIndirect(RetTy, /*ByVal=*/true);
7391 }
7392 
7393 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7394                                   QualType Ty) const {
7395   // FIXME: Someone needs to audit that this handle alignment correctly.
7396   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
7397                           getContext().getTypeInfoInChars(Ty),
7398                           CharUnits::fromQuantity(4),
7399                           /*AllowHigherAlign*/ true);
7400 }
7401 
7402 //===----------------------------------------------------------------------===//
7403 // Lanai ABI Implementation
7404 //===----------------------------------------------------------------------===//
7405 
7406 namespace {
7407 class LanaiABIInfo : public DefaultABIInfo {
7408 public:
7409   LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
7410 
7411   bool shouldUseInReg(QualType Ty, CCState &State) const;
7412 
7413   void computeInfo(CGFunctionInfo &FI) const override {
7414     CCState State(FI.getCallingConvention());
7415     // Lanai uses 4 registers to pass arguments unless the function has the
7416     // regparm attribute set.
7417     if (FI.getHasRegParm()) {
7418       State.FreeRegs = FI.getRegParm();
7419     } else {
7420       State.FreeRegs = 4;
7421     }
7422 
7423     if (!getCXXABI().classifyReturnType(FI))
7424       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7425     for (auto &I : FI.arguments())
7426       I.info = classifyArgumentType(I.type, State);
7427   }
7428 
7429   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
7430   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
7431 };
7432 } // end anonymous namespace
7433 
7434 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const {
7435   unsigned Size = getContext().getTypeSize(Ty);
7436   unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U;
7437 
7438   if (SizeInRegs == 0)
7439     return false;
7440 
7441   if (SizeInRegs > State.FreeRegs) {
7442     State.FreeRegs = 0;
7443     return false;
7444   }
7445 
7446   State.FreeRegs -= SizeInRegs;
7447 
7448   return true;
7449 }
7450 
7451 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal,
7452                                            CCState &State) const {
7453   if (!ByVal) {
7454     if (State.FreeRegs) {
7455       --State.FreeRegs; // Non-byval indirects just use one pointer.
7456       return getNaturalAlignIndirectInReg(Ty);
7457     }
7458     return getNaturalAlignIndirect(Ty, false);
7459   }
7460 
7461   // Compute the byval alignment.
7462   const unsigned MinABIStackAlignInBytes = 4;
7463   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
7464   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
7465                                  /*Realign=*/TypeAlign >
7466                                      MinABIStackAlignInBytes);
7467 }
7468 
7469 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty,
7470                                               CCState &State) const {
7471   // Check with the C++ ABI first.
7472   const RecordType *RT = Ty->getAs<RecordType>();
7473   if (RT) {
7474     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
7475     if (RAA == CGCXXABI::RAA_Indirect) {
7476       return getIndirectResult(Ty, /*ByVal=*/false, State);
7477     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
7478       return getNaturalAlignIndirect(Ty, /*ByRef=*/true);
7479     }
7480   }
7481 
7482   if (isAggregateTypeForABI(Ty)) {
7483     // Structures with flexible arrays are always indirect.
7484     if (RT && RT->getDecl()->hasFlexibleArrayMember())
7485       return getIndirectResult(Ty, /*ByVal=*/true, State);
7486 
7487     // Ignore empty structs/unions.
7488     if (isEmptyRecord(getContext(), Ty, true))
7489       return ABIArgInfo::getIgnore();
7490 
7491     llvm::LLVMContext &LLVMContext = getVMContext();
7492     unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
7493     if (SizeInRegs <= State.FreeRegs) {
7494       llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
7495       SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
7496       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
7497       State.FreeRegs -= SizeInRegs;
7498       return ABIArgInfo::getDirectInReg(Result);
7499     } else {
7500       State.FreeRegs = 0;
7501     }
7502     return getIndirectResult(Ty, true, State);
7503   }
7504 
7505   // Treat an enum type as its underlying type.
7506   if (const auto *EnumTy = Ty->getAs<EnumType>())
7507     Ty = EnumTy->getDecl()->getIntegerType();
7508 
7509   bool InReg = shouldUseInReg(Ty, State);
7510   if (Ty->isPromotableIntegerType()) {
7511     if (InReg)
7512       return ABIArgInfo::getDirectInReg();
7513     return ABIArgInfo::getExtend(Ty);
7514   }
7515   if (InReg)
7516     return ABIArgInfo::getDirectInReg();
7517   return ABIArgInfo::getDirect();
7518 }
7519 
7520 namespace {
7521 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo {
7522 public:
7523   LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
7524       : TargetCodeGenInfo(new LanaiABIInfo(CGT)) {}
7525 };
7526 }
7527 
7528 //===----------------------------------------------------------------------===//
7529 // AMDGPU ABI Implementation
7530 //===----------------------------------------------------------------------===//
7531 
7532 namespace {
7533 
7534 class AMDGPUABIInfo final : public DefaultABIInfo {
7535 private:
7536   static const unsigned MaxNumRegsForArgsRet = 16;
7537 
7538   unsigned numRegsForType(QualType Ty) const;
7539 
7540   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
7541   bool isHomogeneousAggregateSmallEnough(const Type *Base,
7542                                          uint64_t Members) const override;
7543 
7544 public:
7545   explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) :
7546     DefaultABIInfo(CGT) {}
7547 
7548   ABIArgInfo classifyReturnType(QualType RetTy) const;
7549   ABIArgInfo classifyKernelArgumentType(QualType Ty) const;
7550   ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const;
7551 
7552   void computeInfo(CGFunctionInfo &FI) const override;
7553 };
7554 
7555 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
7556   return true;
7557 }
7558 
7559 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough(
7560   const Type *Base, uint64_t Members) const {
7561   uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32;
7562 
7563   // Homogeneous Aggregates may occupy at most 16 registers.
7564   return Members * NumRegs <= MaxNumRegsForArgsRet;
7565 }
7566 
7567 /// Estimate number of registers the type will use when passed in registers.
7568 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const {
7569   unsigned NumRegs = 0;
7570 
7571   if (const VectorType *VT = Ty->getAs<VectorType>()) {
7572     // Compute from the number of elements. The reported size is based on the
7573     // in-memory size, which includes the padding 4th element for 3-vectors.
7574     QualType EltTy = VT->getElementType();
7575     unsigned EltSize = getContext().getTypeSize(EltTy);
7576 
7577     // 16-bit element vectors should be passed as packed.
7578     if (EltSize == 16)
7579       return (VT->getNumElements() + 1) / 2;
7580 
7581     unsigned EltNumRegs = (EltSize + 31) / 32;
7582     return EltNumRegs * VT->getNumElements();
7583   }
7584 
7585   if (const RecordType *RT = Ty->getAs<RecordType>()) {
7586     const RecordDecl *RD = RT->getDecl();
7587     assert(!RD->hasFlexibleArrayMember());
7588 
7589     for (const FieldDecl *Field : RD->fields()) {
7590       QualType FieldTy = Field->getType();
7591       NumRegs += numRegsForType(FieldTy);
7592     }
7593 
7594     return NumRegs;
7595   }
7596 
7597   return (getContext().getTypeSize(Ty) + 31) / 32;
7598 }
7599 
7600 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const {
7601   llvm::CallingConv::ID CC = FI.getCallingConvention();
7602 
7603   if (!getCXXABI().classifyReturnType(FI))
7604     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7605 
7606   unsigned NumRegsLeft = MaxNumRegsForArgsRet;
7607   for (auto &Arg : FI.arguments()) {
7608     if (CC == llvm::CallingConv::AMDGPU_KERNEL) {
7609       Arg.info = classifyKernelArgumentType(Arg.type);
7610     } else {
7611       Arg.info = classifyArgumentType(Arg.type, NumRegsLeft);
7612     }
7613   }
7614 }
7615 
7616 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const {
7617   if (isAggregateTypeForABI(RetTy)) {
7618     // Records with non-trivial destructors/copy-constructors should not be
7619     // returned by value.
7620     if (!getRecordArgABI(RetTy, getCXXABI())) {
7621       // Ignore empty structs/unions.
7622       if (isEmptyRecord(getContext(), RetTy, true))
7623         return ABIArgInfo::getIgnore();
7624 
7625       // Lower single-element structs to just return a regular value.
7626       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
7627         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
7628 
7629       if (const RecordType *RT = RetTy->getAs<RecordType>()) {
7630         const RecordDecl *RD = RT->getDecl();
7631         if (RD->hasFlexibleArrayMember())
7632           return DefaultABIInfo::classifyReturnType(RetTy);
7633       }
7634 
7635       // Pack aggregates <= 4 bytes into single VGPR or pair.
7636       uint64_t Size = getContext().getTypeSize(RetTy);
7637       if (Size <= 16)
7638         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
7639 
7640       if (Size <= 32)
7641         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
7642 
7643       if (Size <= 64) {
7644         llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
7645         return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
7646       }
7647 
7648       if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet)
7649         return ABIArgInfo::getDirect();
7650     }
7651   }
7652 
7653   // Otherwise just do the default thing.
7654   return DefaultABIInfo::classifyReturnType(RetTy);
7655 }
7656 
7657 /// For kernels all parameters are really passed in a special buffer. It doesn't
7658 /// make sense to pass anything byval, so everything must be direct.
7659 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const {
7660   Ty = useFirstFieldIfTransparentUnion(Ty);
7661 
7662   // TODO: Can we omit empty structs?
7663 
7664   // Coerce single element structs to its element.
7665   if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
7666     return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
7667 
7668   // If we set CanBeFlattened to true, CodeGen will expand the struct to its
7669   // individual elements, which confuses the Clover OpenCL backend; therefore we
7670   // have to set it to false here. Other args of getDirect() are just defaults.
7671   return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
7672 }
7673 
7674 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty,
7675                                                unsigned &NumRegsLeft) const {
7676   assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow");
7677 
7678   Ty = useFirstFieldIfTransparentUnion(Ty);
7679 
7680   if (isAggregateTypeForABI(Ty)) {
7681     // Records with non-trivial destructors/copy-constructors should not be
7682     // passed by value.
7683     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
7684       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7685 
7686     // Ignore empty structs/unions.
7687     if (isEmptyRecord(getContext(), Ty, true))
7688       return ABIArgInfo::getIgnore();
7689 
7690     // Lower single-element structs to just pass a regular value. TODO: We
7691     // could do reasonable-size multiple-element structs too, using getExpand(),
7692     // though watch out for things like bitfields.
7693     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
7694       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
7695 
7696     if (const RecordType *RT = Ty->getAs<RecordType>()) {
7697       const RecordDecl *RD = RT->getDecl();
7698       if (RD->hasFlexibleArrayMember())
7699         return DefaultABIInfo::classifyArgumentType(Ty);
7700     }
7701 
7702     // Pack aggregates <= 8 bytes into single VGPR or pair.
7703     uint64_t Size = getContext().getTypeSize(Ty);
7704     if (Size <= 64) {
7705       unsigned NumRegs = (Size + 31) / 32;
7706       NumRegsLeft -= std::min(NumRegsLeft, NumRegs);
7707 
7708       if (Size <= 16)
7709         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
7710 
7711       if (Size <= 32)
7712         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
7713 
7714       // XXX: Should this be i64 instead, and should the limit increase?
7715       llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
7716       return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
7717     }
7718 
7719     if (NumRegsLeft > 0) {
7720       unsigned NumRegs = numRegsForType(Ty);
7721       if (NumRegsLeft >= NumRegs) {
7722         NumRegsLeft -= NumRegs;
7723         return ABIArgInfo::getDirect();
7724       }
7725     }
7726   }
7727 
7728   // Otherwise just do the default thing.
7729   ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty);
7730   if (!ArgInfo.isIndirect()) {
7731     unsigned NumRegs = numRegsForType(Ty);
7732     NumRegsLeft -= std::min(NumRegs, NumRegsLeft);
7733   }
7734 
7735   return ArgInfo;
7736 }
7737 
7738 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
7739 public:
7740   AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
7741     : TargetCodeGenInfo(new AMDGPUABIInfo(CGT)) {}
7742   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7743                            CodeGen::CodeGenModule &M) const override;
7744   unsigned getOpenCLKernelCallingConv() const override;
7745 
7746   llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM,
7747       llvm::PointerType *T, QualType QT) const override;
7748 
7749   LangAS getASTAllocaAddressSpace() const override {
7750     return getLangASFromTargetAS(
7751         getABIInfo().getDataLayout().getAllocaAddrSpace());
7752   }
7753   LangAS getGlobalVarAddressSpace(CodeGenModule &CGM,
7754                                   const VarDecl *D) const override;
7755   llvm::SyncScope::ID getLLVMSyncScopeID(SyncScope S,
7756                                          llvm::LLVMContext &C) const override;
7757   llvm::Function *
7758   createEnqueuedBlockKernel(CodeGenFunction &CGF,
7759                             llvm::Function *BlockInvokeFunc,
7760                             llvm::Value *BlockLiteral) const override;
7761   bool shouldEmitStaticExternCAliases() const override;
7762   void setCUDAKernelCallingConvention(const FunctionType *&FT) const override;
7763 };
7764 }
7765 
7766 static bool requiresAMDGPUProtectedVisibility(const Decl *D,
7767                                               llvm::GlobalValue *GV) {
7768   if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility)
7769     return false;
7770 
7771   return D->hasAttr<OpenCLKernelAttr>() ||
7772          (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) ||
7773          (isa<VarDecl>(D) && D->hasAttr<CUDADeviceAttr>());
7774 }
7775 
7776 void AMDGPUTargetCodeGenInfo::setTargetAttributes(
7777     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
7778   if (requiresAMDGPUProtectedVisibility(D, GV)) {
7779     GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
7780     GV->setDSOLocal(true);
7781   }
7782 
7783   if (GV->isDeclaration())
7784     return;
7785   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7786   if (!FD)
7787     return;
7788 
7789   llvm::Function *F = cast<llvm::Function>(GV);
7790 
7791   const auto *ReqdWGS = M.getLangOpts().OpenCL ?
7792     FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr;
7793 
7794   if (M.getLangOpts().OpenCL && FD->hasAttr<OpenCLKernelAttr>() &&
7795       (M.getTriple().getOS() == llvm::Triple::AMDHSA))
7796     F->addFnAttr("amdgpu-implicitarg-num-bytes", "48");
7797 
7798   const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>();
7799   if (ReqdWGS || FlatWGS) {
7800     unsigned Min = FlatWGS ? FlatWGS->getMin() : 0;
7801     unsigned Max = FlatWGS ? FlatWGS->getMax() : 0;
7802     if (ReqdWGS && Min == 0 && Max == 0)
7803       Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim();
7804 
7805     if (Min != 0) {
7806       assert(Min <= Max && "Min must be less than or equal Max");
7807 
7808       std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max);
7809       F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
7810     } else
7811       assert(Max == 0 && "Max must be zero");
7812   }
7813 
7814   if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) {
7815     unsigned Min = Attr->getMin();
7816     unsigned Max = Attr->getMax();
7817 
7818     if (Min != 0) {
7819       assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max");
7820 
7821       std::string AttrVal = llvm::utostr(Min);
7822       if (Max != 0)
7823         AttrVal = AttrVal + "," + llvm::utostr(Max);
7824       F->addFnAttr("amdgpu-waves-per-eu", AttrVal);
7825     } else
7826       assert(Max == 0 && "Max must be zero");
7827   }
7828 
7829   if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
7830     unsigned NumSGPR = Attr->getNumSGPR();
7831 
7832     if (NumSGPR != 0)
7833       F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR));
7834   }
7835 
7836   if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
7837     uint32_t NumVGPR = Attr->getNumVGPR();
7838 
7839     if (NumVGPR != 0)
7840       F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR));
7841   }
7842 }
7843 
7844 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
7845   return llvm::CallingConv::AMDGPU_KERNEL;
7846 }
7847 
7848 // Currently LLVM assumes null pointers always have value 0,
7849 // which results in incorrectly transformed IR. Therefore, instead of
7850 // emitting null pointers in private and local address spaces, a null
7851 // pointer in generic address space is emitted which is casted to a
7852 // pointer in local or private address space.
7853 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer(
7854     const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT,
7855     QualType QT) const {
7856   if (CGM.getContext().getTargetNullPointerValue(QT) == 0)
7857     return llvm::ConstantPointerNull::get(PT);
7858 
7859   auto &Ctx = CGM.getContext();
7860   auto NPT = llvm::PointerType::get(PT->getElementType(),
7861       Ctx.getTargetAddressSpace(LangAS::opencl_generic));
7862   return llvm::ConstantExpr::getAddrSpaceCast(
7863       llvm::ConstantPointerNull::get(NPT), PT);
7864 }
7865 
7866 LangAS
7867 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
7868                                                   const VarDecl *D) const {
7869   assert(!CGM.getLangOpts().OpenCL &&
7870          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
7871          "Address space agnostic languages only");
7872   LangAS DefaultGlobalAS = getLangASFromTargetAS(
7873       CGM.getContext().getTargetAddressSpace(LangAS::opencl_global));
7874   if (!D)
7875     return DefaultGlobalAS;
7876 
7877   LangAS AddrSpace = D->getType().getAddressSpace();
7878   assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace));
7879   if (AddrSpace != LangAS::Default)
7880     return AddrSpace;
7881 
7882   if (CGM.isTypeConstant(D->getType(), false)) {
7883     if (auto ConstAS = CGM.getTarget().getConstantAddressSpace())
7884       return ConstAS.getValue();
7885   }
7886   return DefaultGlobalAS;
7887 }
7888 
7889 llvm::SyncScope::ID
7890 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(SyncScope S,
7891                                             llvm::LLVMContext &C) const {
7892   StringRef Name;
7893   switch (S) {
7894   case SyncScope::OpenCLWorkGroup:
7895     Name = "workgroup";
7896     break;
7897   case SyncScope::OpenCLDevice:
7898     Name = "agent";
7899     break;
7900   case SyncScope::OpenCLAllSVMDevices:
7901     Name = "";
7902     break;
7903   case SyncScope::OpenCLSubGroup:
7904     Name = "subgroup";
7905   }
7906   return C.getOrInsertSyncScopeID(Name);
7907 }
7908 
7909 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
7910   return false;
7911 }
7912 
7913 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention(
7914     const FunctionType *&FT) const {
7915   FT = getABIInfo().getContext().adjustFunctionType(
7916       FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel));
7917 }
7918 
7919 //===----------------------------------------------------------------------===//
7920 // SPARC v8 ABI Implementation.
7921 // Based on the SPARC Compliance Definition version 2.4.1.
7922 //
7923 // Ensures that complex values are passed in registers.
7924 //
7925 namespace {
7926 class SparcV8ABIInfo : public DefaultABIInfo {
7927 public:
7928   SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
7929 
7930 private:
7931   ABIArgInfo classifyReturnType(QualType RetTy) const;
7932   void computeInfo(CGFunctionInfo &FI) const override;
7933 };
7934 } // end anonymous namespace
7935 
7936 
7937 ABIArgInfo
7938 SparcV8ABIInfo::classifyReturnType(QualType Ty) const {
7939   if (Ty->isAnyComplexType()) {
7940     return ABIArgInfo::getDirect();
7941   }
7942   else {
7943     return DefaultABIInfo::classifyReturnType(Ty);
7944   }
7945 }
7946 
7947 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const {
7948 
7949   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7950   for (auto &Arg : FI.arguments())
7951     Arg.info = classifyArgumentType(Arg.type);
7952 }
7953 
7954 namespace {
7955 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo {
7956 public:
7957   SparcV8TargetCodeGenInfo(CodeGenTypes &CGT)
7958     : TargetCodeGenInfo(new SparcV8ABIInfo(CGT)) {}
7959 };
7960 } // end anonymous namespace
7961 
7962 //===----------------------------------------------------------------------===//
7963 // SPARC v9 ABI Implementation.
7964 // Based on the SPARC Compliance Definition version 2.4.1.
7965 //
7966 // Function arguments a mapped to a nominal "parameter array" and promoted to
7967 // registers depending on their type. Each argument occupies 8 or 16 bytes in
7968 // the array, structs larger than 16 bytes are passed indirectly.
7969 //
7970 // One case requires special care:
7971 //
7972 //   struct mixed {
7973 //     int i;
7974 //     float f;
7975 //   };
7976 //
7977 // When a struct mixed is passed by value, it only occupies 8 bytes in the
7978 // parameter array, but the int is passed in an integer register, and the float
7979 // is passed in a floating point register. This is represented as two arguments
7980 // with the LLVM IR inreg attribute:
7981 //
7982 //   declare void f(i32 inreg %i, float inreg %f)
7983 //
7984 // The code generator will only allocate 4 bytes from the parameter array for
7985 // the inreg arguments. All other arguments are allocated a multiple of 8
7986 // bytes.
7987 //
7988 namespace {
7989 class SparcV9ABIInfo : public ABIInfo {
7990 public:
7991   SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
7992 
7993 private:
7994   ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
7995   void computeInfo(CGFunctionInfo &FI) const override;
7996   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7997                     QualType Ty) const override;
7998 
7999   // Coercion type builder for structs passed in registers. The coercion type
8000   // serves two purposes:
8001   //
8002   // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
8003   //    in registers.
8004   // 2. Expose aligned floating point elements as first-level elements, so the
8005   //    code generator knows to pass them in floating point registers.
8006   //
8007   // We also compute the InReg flag which indicates that the struct contains
8008   // aligned 32-bit floats.
8009   //
8010   struct CoerceBuilder {
8011     llvm::LLVMContext &Context;
8012     const llvm::DataLayout &DL;
8013     SmallVector<llvm::Type*, 8> Elems;
8014     uint64_t Size;
8015     bool InReg;
8016 
8017     CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
8018       : Context(c), DL(dl), Size(0), InReg(false) {}
8019 
8020     // Pad Elems with integers until Size is ToSize.
8021     void pad(uint64_t ToSize) {
8022       assert(ToSize >= Size && "Cannot remove elements");
8023       if (ToSize == Size)
8024         return;
8025 
8026       // Finish the current 64-bit word.
8027       uint64_t Aligned = llvm::alignTo(Size, 64);
8028       if (Aligned > Size && Aligned <= ToSize) {
8029         Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
8030         Size = Aligned;
8031       }
8032 
8033       // Add whole 64-bit words.
8034       while (Size + 64 <= ToSize) {
8035         Elems.push_back(llvm::Type::getInt64Ty(Context));
8036         Size += 64;
8037       }
8038 
8039       // Final in-word padding.
8040       if (Size < ToSize) {
8041         Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
8042         Size = ToSize;
8043       }
8044     }
8045 
8046     // Add a floating point element at Offset.
8047     void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
8048       // Unaligned floats are treated as integers.
8049       if (Offset % Bits)
8050         return;
8051       // The InReg flag is only required if there are any floats < 64 bits.
8052       if (Bits < 64)
8053         InReg = true;
8054       pad(Offset);
8055       Elems.push_back(Ty);
8056       Size = Offset + Bits;
8057     }
8058 
8059     // Add a struct type to the coercion type, starting at Offset (in bits).
8060     void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
8061       const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
8062       for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
8063         llvm::Type *ElemTy = StrTy->getElementType(i);
8064         uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
8065         switch (ElemTy->getTypeID()) {
8066         case llvm::Type::StructTyID:
8067           addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
8068           break;
8069         case llvm::Type::FloatTyID:
8070           addFloat(ElemOffset, ElemTy, 32);
8071           break;
8072         case llvm::Type::DoubleTyID:
8073           addFloat(ElemOffset, ElemTy, 64);
8074           break;
8075         case llvm::Type::FP128TyID:
8076           addFloat(ElemOffset, ElemTy, 128);
8077           break;
8078         case llvm::Type::PointerTyID:
8079           if (ElemOffset % 64 == 0) {
8080             pad(ElemOffset);
8081             Elems.push_back(ElemTy);
8082             Size += 64;
8083           }
8084           break;
8085         default:
8086           break;
8087         }
8088       }
8089     }
8090 
8091     // Check if Ty is a usable substitute for the coercion type.
8092     bool isUsableType(llvm::StructType *Ty) const {
8093       return llvm::makeArrayRef(Elems) == Ty->elements();
8094     }
8095 
8096     // Get the coercion type as a literal struct type.
8097     llvm::Type *getType() const {
8098       if (Elems.size() == 1)
8099         return Elems.front();
8100       else
8101         return llvm::StructType::get(Context, Elems);
8102     }
8103   };
8104 };
8105 } // end anonymous namespace
8106 
8107 ABIArgInfo
8108 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
8109   if (Ty->isVoidType())
8110     return ABIArgInfo::getIgnore();
8111 
8112   uint64_t Size = getContext().getTypeSize(Ty);
8113 
8114   // Anything too big to fit in registers is passed with an explicit indirect
8115   // pointer / sret pointer.
8116   if (Size > SizeLimit)
8117     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
8118 
8119   // Treat an enum type as its underlying type.
8120   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
8121     Ty = EnumTy->getDecl()->getIntegerType();
8122 
8123   // Integer types smaller than a register are extended.
8124   if (Size < 64 && Ty->isIntegerType())
8125     return ABIArgInfo::getExtend(Ty);
8126 
8127   // Other non-aggregates go in registers.
8128   if (!isAggregateTypeForABI(Ty))
8129     return ABIArgInfo::getDirect();
8130 
8131   // If a C++ object has either a non-trivial copy constructor or a non-trivial
8132   // destructor, it is passed with an explicit indirect pointer / sret pointer.
8133   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
8134     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
8135 
8136   // This is a small aggregate type that should be passed in registers.
8137   // Build a coercion type from the LLVM struct type.
8138   llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
8139   if (!StrTy)
8140     return ABIArgInfo::getDirect();
8141 
8142   CoerceBuilder CB(getVMContext(), getDataLayout());
8143   CB.addStruct(0, StrTy);
8144   CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64));
8145 
8146   // Try to use the original type for coercion.
8147   llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
8148 
8149   if (CB.InReg)
8150     return ABIArgInfo::getDirectInReg(CoerceTy);
8151   else
8152     return ABIArgInfo::getDirect(CoerceTy);
8153 }
8154 
8155 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8156                                   QualType Ty) const {
8157   ABIArgInfo AI = classifyType(Ty, 16 * 8);
8158   llvm::Type *ArgTy = CGT.ConvertType(Ty);
8159   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
8160     AI.setCoerceToType(ArgTy);
8161 
8162   CharUnits SlotSize = CharUnits::fromQuantity(8);
8163 
8164   CGBuilderTy &Builder = CGF.Builder;
8165   Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
8166   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
8167 
8168   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
8169 
8170   Address ArgAddr = Address::invalid();
8171   CharUnits Stride;
8172   switch (AI.getKind()) {
8173   case ABIArgInfo::Expand:
8174   case ABIArgInfo::CoerceAndExpand:
8175   case ABIArgInfo::InAlloca:
8176     llvm_unreachable("Unsupported ABI kind for va_arg");
8177 
8178   case ABIArgInfo::Extend: {
8179     Stride = SlotSize;
8180     CharUnits Offset = SlotSize - TypeInfo.first;
8181     ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend");
8182     break;
8183   }
8184 
8185   case ABIArgInfo::Direct: {
8186     auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
8187     Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize);
8188     ArgAddr = Addr;
8189     break;
8190   }
8191 
8192   case ABIArgInfo::Indirect:
8193     Stride = SlotSize;
8194     ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect");
8195     ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"),
8196                       TypeInfo.second);
8197     break;
8198 
8199   case ABIArgInfo::Ignore:
8200     return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second);
8201   }
8202 
8203   // Update VAList.
8204   Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next");
8205   Builder.CreateStore(NextPtr.getPointer(), VAListAddr);
8206 
8207   return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr");
8208 }
8209 
8210 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
8211   FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
8212   for (auto &I : FI.arguments())
8213     I.info = classifyType(I.type, 16 * 8);
8214 }
8215 
8216 namespace {
8217 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
8218 public:
8219   SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
8220     : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {}
8221 
8222   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
8223     return 14;
8224   }
8225 
8226   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
8227                                llvm::Value *Address) const override;
8228 };
8229 } // end anonymous namespace
8230 
8231 bool
8232 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
8233                                                 llvm::Value *Address) const {
8234   // This is calculated from the LLVM and GCC tables and verified
8235   // against gcc output.  AFAIK all ABIs use the same encoding.
8236 
8237   CodeGen::CGBuilderTy &Builder = CGF.Builder;
8238 
8239   llvm::IntegerType *i8 = CGF.Int8Ty;
8240   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
8241   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
8242 
8243   // 0-31: the 8-byte general-purpose registers
8244   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
8245 
8246   // 32-63: f0-31, the 4-byte floating-point registers
8247   AssignToArrayRange(Builder, Address, Four8, 32, 63);
8248 
8249   //   Y   = 64
8250   //   PSR = 65
8251   //   WIM = 66
8252   //   TBR = 67
8253   //   PC  = 68
8254   //   NPC = 69
8255   //   FSR = 70
8256   //   CSR = 71
8257   AssignToArrayRange(Builder, Address, Eight8, 64, 71);
8258 
8259   // 72-87: d0-15, the 8-byte floating-point registers
8260   AssignToArrayRange(Builder, Address, Eight8, 72, 87);
8261 
8262   return false;
8263 }
8264 
8265 // ARC ABI implementation.
8266 namespace {
8267 
8268 class ARCABIInfo : public DefaultABIInfo {
8269 public:
8270   using DefaultABIInfo::DefaultABIInfo;
8271 
8272 private:
8273   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8274                     QualType Ty) const override;
8275 
8276   void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const {
8277     if (!State.FreeRegs)
8278       return;
8279     if (Info.isIndirect() && Info.getInReg())
8280       State.FreeRegs--;
8281     else if (Info.isDirect() && Info.getInReg()) {
8282       unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32;
8283       if (sz < State.FreeRegs)
8284         State.FreeRegs -= sz;
8285       else
8286         State.FreeRegs = 0;
8287     }
8288   }
8289 
8290   void computeInfo(CGFunctionInfo &FI) const override {
8291     CCState State(FI.getCallingConvention());
8292     // ARC uses 8 registers to pass arguments.
8293     State.FreeRegs = 8;
8294 
8295     if (!getCXXABI().classifyReturnType(FI))
8296       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8297     updateState(FI.getReturnInfo(), FI.getReturnType(), State);
8298     for (auto &I : FI.arguments()) {
8299       I.info = classifyArgumentType(I.type, State.FreeRegs);
8300       updateState(I.info, I.type, State);
8301     }
8302   }
8303 
8304   ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const;
8305   ABIArgInfo getIndirectByValue(QualType Ty) const;
8306   ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const;
8307   ABIArgInfo classifyReturnType(QualType RetTy) const;
8308 };
8309 
8310 class ARCTargetCodeGenInfo : public TargetCodeGenInfo {
8311 public:
8312   ARCTargetCodeGenInfo(CodeGenTypes &CGT)
8313       : TargetCodeGenInfo(new ARCABIInfo(CGT)) {}
8314 };
8315 
8316 
8317 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const {
8318   return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) :
8319                        getNaturalAlignIndirect(Ty, false);
8320 }
8321 
8322 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const {
8323   // Compute the byval alignment.
8324   const unsigned MinABIStackAlignInBytes = 4;
8325   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
8326   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
8327                                  TypeAlign > MinABIStackAlignInBytes);
8328 }
8329 
8330 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8331                               QualType Ty) const {
8332   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
8333                           getContext().getTypeInfoInChars(Ty),
8334                           CharUnits::fromQuantity(4), true);
8335 }
8336 
8337 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty,
8338                                             uint8_t FreeRegs) const {
8339   // Handle the generic C++ ABI.
8340   const RecordType *RT = Ty->getAs<RecordType>();
8341   if (RT) {
8342     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
8343     if (RAA == CGCXXABI::RAA_Indirect)
8344       return getIndirectByRef(Ty, FreeRegs > 0);
8345 
8346     if (RAA == CGCXXABI::RAA_DirectInMemory)
8347       return getIndirectByValue(Ty);
8348   }
8349 
8350   // Treat an enum type as its underlying type.
8351   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
8352     Ty = EnumTy->getDecl()->getIntegerType();
8353 
8354   auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32;
8355 
8356   if (isAggregateTypeForABI(Ty)) {
8357     // Structures with flexible arrays are always indirect.
8358     if (RT && RT->getDecl()->hasFlexibleArrayMember())
8359       return getIndirectByValue(Ty);
8360 
8361     // Ignore empty structs/unions.
8362     if (isEmptyRecord(getContext(), Ty, true))
8363       return ABIArgInfo::getIgnore();
8364 
8365     llvm::LLVMContext &LLVMContext = getVMContext();
8366 
8367     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
8368     SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
8369     llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
8370 
8371     return FreeRegs >= SizeInRegs ?
8372         ABIArgInfo::getDirectInReg(Result) :
8373         ABIArgInfo::getDirect(Result, 0, nullptr, false);
8374   }
8375 
8376   return Ty->isPromotableIntegerType() ?
8377       (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty) :
8378                                 ABIArgInfo::getExtend(Ty)) :
8379       (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg() :
8380                                 ABIArgInfo::getDirect());
8381 }
8382 
8383 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const {
8384   if (RetTy->isAnyComplexType())
8385     return ABIArgInfo::getDirectInReg();
8386 
8387   // Arguments of size > 4 registers are indirect.
8388   auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32;
8389   if (RetSize > 4)
8390     return getIndirectByRef(RetTy, /*HasFreeRegs*/ true);
8391 
8392   return DefaultABIInfo::classifyReturnType(RetTy);
8393 }
8394 
8395 } // End anonymous namespace.
8396 
8397 //===----------------------------------------------------------------------===//
8398 // XCore ABI Implementation
8399 //===----------------------------------------------------------------------===//
8400 
8401 namespace {
8402 
8403 /// A SmallStringEnc instance is used to build up the TypeString by passing
8404 /// it by reference between functions that append to it.
8405 typedef llvm::SmallString<128> SmallStringEnc;
8406 
8407 /// TypeStringCache caches the meta encodings of Types.
8408 ///
8409 /// The reason for caching TypeStrings is two fold:
8410 ///   1. To cache a type's encoding for later uses;
8411 ///   2. As a means to break recursive member type inclusion.
8412 ///
8413 /// A cache Entry can have a Status of:
8414 ///   NonRecursive:   The type encoding is not recursive;
8415 ///   Recursive:      The type encoding is recursive;
8416 ///   Incomplete:     An incomplete TypeString;
8417 ///   IncompleteUsed: An incomplete TypeString that has been used in a
8418 ///                   Recursive type encoding.
8419 ///
8420 /// A NonRecursive entry will have all of its sub-members expanded as fully
8421 /// as possible. Whilst it may contain types which are recursive, the type
8422 /// itself is not recursive and thus its encoding may be safely used whenever
8423 /// the type is encountered.
8424 ///
8425 /// A Recursive entry will have all of its sub-members expanded as fully as
8426 /// possible. The type itself is recursive and it may contain other types which
8427 /// are recursive. The Recursive encoding must not be used during the expansion
8428 /// of a recursive type's recursive branch. For simplicity the code uses
8429 /// IncompleteCount to reject all usage of Recursive encodings for member types.
8430 ///
8431 /// An Incomplete entry is always a RecordType and only encodes its
8432 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
8433 /// are placed into the cache during type expansion as a means to identify and
8434 /// handle recursive inclusion of types as sub-members. If there is recursion
8435 /// the entry becomes IncompleteUsed.
8436 ///
8437 /// During the expansion of a RecordType's members:
8438 ///
8439 ///   If the cache contains a NonRecursive encoding for the member type, the
8440 ///   cached encoding is used;
8441 ///
8442 ///   If the cache contains a Recursive encoding for the member type, the
8443 ///   cached encoding is 'Swapped' out, as it may be incorrect, and...
8444 ///
8445 ///   If the member is a RecordType, an Incomplete encoding is placed into the
8446 ///   cache to break potential recursive inclusion of itself as a sub-member;
8447 ///
8448 ///   Once a member RecordType has been expanded, its temporary incomplete
8449 ///   entry is removed from the cache. If a Recursive encoding was swapped out
8450 ///   it is swapped back in;
8451 ///
8452 ///   If an incomplete entry is used to expand a sub-member, the incomplete
8453 ///   entry is marked as IncompleteUsed. The cache keeps count of how many
8454 ///   IncompleteUsed entries it currently contains in IncompleteUsedCount;
8455 ///
8456 ///   If a member's encoding is found to be a NonRecursive or Recursive viz:
8457 ///   IncompleteUsedCount==0, the member's encoding is added to the cache.
8458 ///   Else the member is part of a recursive type and thus the recursion has
8459 ///   been exited too soon for the encoding to be correct for the member.
8460 ///
8461 class TypeStringCache {
8462   enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
8463   struct Entry {
8464     std::string Str;     // The encoded TypeString for the type.
8465     enum Status State;   // Information about the encoding in 'Str'.
8466     std::string Swapped; // A temporary place holder for a Recursive encoding
8467                          // during the expansion of RecordType's members.
8468   };
8469   std::map<const IdentifierInfo *, struct Entry> Map;
8470   unsigned IncompleteCount;     // Number of Incomplete entries in the Map.
8471   unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
8472 public:
8473   TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}
8474   void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
8475   bool removeIncomplete(const IdentifierInfo *ID);
8476   void addIfComplete(const IdentifierInfo *ID, StringRef Str,
8477                      bool IsRecursive);
8478   StringRef lookupStr(const IdentifierInfo *ID);
8479 };
8480 
8481 /// TypeString encodings for enum & union fields must be order.
8482 /// FieldEncoding is a helper for this ordering process.
8483 class FieldEncoding {
8484   bool HasName;
8485   std::string Enc;
8486 public:
8487   FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}
8488   StringRef str() { return Enc; }
8489   bool operator<(const FieldEncoding &rhs) const {
8490     if (HasName != rhs.HasName) return HasName;
8491     return Enc < rhs.Enc;
8492   }
8493 };
8494 
8495 class XCoreABIInfo : public DefaultABIInfo {
8496 public:
8497   XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
8498   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8499                     QualType Ty) const override;
8500 };
8501 
8502 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
8503   mutable TypeStringCache TSC;
8504 public:
8505   XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
8506     :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {}
8507   void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
8508                     CodeGen::CodeGenModule &M) const override;
8509 };
8510 
8511 } // End anonymous namespace.
8512 
8513 // TODO: this implementation is likely now redundant with the default
8514 // EmitVAArg.
8515 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8516                                 QualType Ty) const {
8517   CGBuilderTy &Builder = CGF.Builder;
8518 
8519   // Get the VAList.
8520   CharUnits SlotSize = CharUnits::fromQuantity(4);
8521   Address AP(Builder.CreateLoad(VAListAddr), SlotSize);
8522 
8523   // Handle the argument.
8524   ABIArgInfo AI = classifyArgumentType(Ty);
8525   CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty);
8526   llvm::Type *ArgTy = CGT.ConvertType(Ty);
8527   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
8528     AI.setCoerceToType(ArgTy);
8529   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
8530 
8531   Address Val = Address::invalid();
8532   CharUnits ArgSize = CharUnits::Zero();
8533   switch (AI.getKind()) {
8534   case ABIArgInfo::Expand:
8535   case ABIArgInfo::CoerceAndExpand:
8536   case ABIArgInfo::InAlloca:
8537     llvm_unreachable("Unsupported ABI kind for va_arg");
8538   case ABIArgInfo::Ignore:
8539     Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign);
8540     ArgSize = CharUnits::Zero();
8541     break;
8542   case ABIArgInfo::Extend:
8543   case ABIArgInfo::Direct:
8544     Val = Builder.CreateBitCast(AP, ArgPtrTy);
8545     ArgSize = CharUnits::fromQuantity(
8546                        getDataLayout().getTypeAllocSize(AI.getCoerceToType()));
8547     ArgSize = ArgSize.alignTo(SlotSize);
8548     break;
8549   case ABIArgInfo::Indirect:
8550     Val = Builder.CreateElementBitCast(AP, ArgPtrTy);
8551     Val = Address(Builder.CreateLoad(Val), TypeAlign);
8552     ArgSize = SlotSize;
8553     break;
8554   }
8555 
8556   // Increment the VAList.
8557   if (!ArgSize.isZero()) {
8558     Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize);
8559     Builder.CreateStore(APN.getPointer(), VAListAddr);
8560   }
8561 
8562   return Val;
8563 }
8564 
8565 /// During the expansion of a RecordType, an incomplete TypeString is placed
8566 /// into the cache as a means to identify and break recursion.
8567 /// If there is a Recursive encoding in the cache, it is swapped out and will
8568 /// be reinserted by removeIncomplete().
8569 /// All other types of encoding should have been used rather than arriving here.
8570 void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
8571                                     std::string StubEnc) {
8572   if (!ID)
8573     return;
8574   Entry &E = Map[ID];
8575   assert( (E.Str.empty() || E.State == Recursive) &&
8576          "Incorrectly use of addIncomplete");
8577   assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
8578   E.Swapped.swap(E.Str); // swap out the Recursive
8579   E.Str.swap(StubEnc);
8580   E.State = Incomplete;
8581   ++IncompleteCount;
8582 }
8583 
8584 /// Once the RecordType has been expanded, the temporary incomplete TypeString
8585 /// must be removed from the cache.
8586 /// If a Recursive was swapped out by addIncomplete(), it will be replaced.
8587 /// Returns true if the RecordType was defined recursively.
8588 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
8589   if (!ID)
8590     return false;
8591   auto I = Map.find(ID);
8592   assert(I != Map.end() && "Entry not present");
8593   Entry &E = I->second;
8594   assert( (E.State == Incomplete ||
8595            E.State == IncompleteUsed) &&
8596          "Entry must be an incomplete type");
8597   bool IsRecursive = false;
8598   if (E.State == IncompleteUsed) {
8599     // We made use of our Incomplete encoding, thus we are recursive.
8600     IsRecursive = true;
8601     --IncompleteUsedCount;
8602   }
8603   if (E.Swapped.empty())
8604     Map.erase(I);
8605   else {
8606     // Swap the Recursive back.
8607     E.Swapped.swap(E.Str);
8608     E.Swapped.clear();
8609     E.State = Recursive;
8610   }
8611   --IncompleteCount;
8612   return IsRecursive;
8613 }
8614 
8615 /// Add the encoded TypeString to the cache only if it is NonRecursive or
8616 /// Recursive (viz: all sub-members were expanded as fully as possible).
8617 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
8618                                     bool IsRecursive) {
8619   if (!ID || IncompleteUsedCount)
8620     return; // No key or it is is an incomplete sub-type so don't add.
8621   Entry &E = Map[ID];
8622   if (IsRecursive && !E.Str.empty()) {
8623     assert(E.State==Recursive && E.Str.size() == Str.size() &&
8624            "This is not the same Recursive entry");
8625     // The parent container was not recursive after all, so we could have used
8626     // this Recursive sub-member entry after all, but we assumed the worse when
8627     // we started viz: IncompleteCount!=0.
8628     return;
8629   }
8630   assert(E.Str.empty() && "Entry already present");
8631   E.Str = Str.str();
8632   E.State = IsRecursive? Recursive : NonRecursive;
8633 }
8634 
8635 /// Return a cached TypeString encoding for the ID. If there isn't one, or we
8636 /// are recursively expanding a type (IncompleteCount != 0) and the cached
8637 /// encoding is Recursive, return an empty StringRef.
8638 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
8639   if (!ID)
8640     return StringRef();   // We have no key.
8641   auto I = Map.find(ID);
8642   if (I == Map.end())
8643     return StringRef();   // We have no encoding.
8644   Entry &E = I->second;
8645   if (E.State == Recursive && IncompleteCount)
8646     return StringRef();   // We don't use Recursive encodings for member types.
8647 
8648   if (E.State == Incomplete) {
8649     // The incomplete type is being used to break out of recursion.
8650     E.State = IncompleteUsed;
8651     ++IncompleteUsedCount;
8652   }
8653   return E.Str;
8654 }
8655 
8656 /// The XCore ABI includes a type information section that communicates symbol
8657 /// type information to the linker. The linker uses this information to verify
8658 /// safety/correctness of things such as array bound and pointers et al.
8659 /// The ABI only requires C (and XC) language modules to emit TypeStrings.
8660 /// This type information (TypeString) is emitted into meta data for all global
8661 /// symbols: definitions, declarations, functions & variables.
8662 ///
8663 /// The TypeString carries type, qualifier, name, size & value details.
8664 /// Please see 'Tools Development Guide' section 2.16.2 for format details:
8665 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf
8666 /// The output is tested by test/CodeGen/xcore-stringtype.c.
8667 ///
8668 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
8669                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC);
8670 
8671 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
8672 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
8673                                           CodeGen::CodeGenModule &CGM) const {
8674   SmallStringEnc Enc;
8675   if (getTypeString(Enc, D, CGM, TSC)) {
8676     llvm::LLVMContext &Ctx = CGM.getModule().getContext();
8677     llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV),
8678                                 llvm::MDString::get(Ctx, Enc.str())};
8679     llvm::NamedMDNode *MD =
8680       CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
8681     MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
8682   }
8683 }
8684 
8685 //===----------------------------------------------------------------------===//
8686 // SPIR ABI Implementation
8687 //===----------------------------------------------------------------------===//
8688 
8689 namespace {
8690 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo {
8691 public:
8692   SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
8693     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
8694   unsigned getOpenCLKernelCallingConv() const override;
8695 };
8696 
8697 } // End anonymous namespace.
8698 
8699 namespace clang {
8700 namespace CodeGen {
8701 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) {
8702   DefaultABIInfo SPIRABI(CGM.getTypes());
8703   SPIRABI.computeInfo(FI);
8704 }
8705 }
8706 }
8707 
8708 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
8709   return llvm::CallingConv::SPIR_KERNEL;
8710 }
8711 
8712 static bool appendType(SmallStringEnc &Enc, QualType QType,
8713                        const CodeGen::CodeGenModule &CGM,
8714                        TypeStringCache &TSC);
8715 
8716 /// Helper function for appendRecordType().
8717 /// Builds a SmallVector containing the encoded field types in declaration
8718 /// order.
8719 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
8720                              const RecordDecl *RD,
8721                              const CodeGen::CodeGenModule &CGM,
8722                              TypeStringCache &TSC) {
8723   for (const auto *Field : RD->fields()) {
8724     SmallStringEnc Enc;
8725     Enc += "m(";
8726     Enc += Field->getName();
8727     Enc += "){";
8728     if (Field->isBitField()) {
8729       Enc += "b(";
8730       llvm::raw_svector_ostream OS(Enc);
8731       OS << Field->getBitWidthValue(CGM.getContext());
8732       Enc += ':';
8733     }
8734     if (!appendType(Enc, Field->getType(), CGM, TSC))
8735       return false;
8736     if (Field->isBitField())
8737       Enc += ')';
8738     Enc += '}';
8739     FE.emplace_back(!Field->getName().empty(), Enc);
8740   }
8741   return true;
8742 }
8743 
8744 /// Appends structure and union types to Enc and adds encoding to cache.
8745 /// Recursively calls appendType (via extractFieldType) for each field.
8746 /// Union types have their fields ordered according to the ABI.
8747 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
8748                              const CodeGen::CodeGenModule &CGM,
8749                              TypeStringCache &TSC, const IdentifierInfo *ID) {
8750   // Append the cached TypeString if we have one.
8751   StringRef TypeString = TSC.lookupStr(ID);
8752   if (!TypeString.empty()) {
8753     Enc += TypeString;
8754     return true;
8755   }
8756 
8757   // Start to emit an incomplete TypeString.
8758   size_t Start = Enc.size();
8759   Enc += (RT->isUnionType()? 'u' : 's');
8760   Enc += '(';
8761   if (ID)
8762     Enc += ID->getName();
8763   Enc += "){";
8764 
8765   // We collect all encoded fields and order as necessary.
8766   bool IsRecursive = false;
8767   const RecordDecl *RD = RT->getDecl()->getDefinition();
8768   if (RD && !RD->field_empty()) {
8769     // An incomplete TypeString stub is placed in the cache for this RecordType
8770     // so that recursive calls to this RecordType will use it whilst building a
8771     // complete TypeString for this RecordType.
8772     SmallVector<FieldEncoding, 16> FE;
8773     std::string StubEnc(Enc.substr(Start).str());
8774     StubEnc += '}';  // StubEnc now holds a valid incomplete TypeString.
8775     TSC.addIncomplete(ID, std::move(StubEnc));
8776     if (!extractFieldType(FE, RD, CGM, TSC)) {
8777       (void) TSC.removeIncomplete(ID);
8778       return false;
8779     }
8780     IsRecursive = TSC.removeIncomplete(ID);
8781     // The ABI requires unions to be sorted but not structures.
8782     // See FieldEncoding::operator< for sort algorithm.
8783     if (RT->isUnionType())
8784       llvm::sort(FE);
8785     // We can now complete the TypeString.
8786     unsigned E = FE.size();
8787     for (unsigned I = 0; I != E; ++I) {
8788       if (I)
8789         Enc += ',';
8790       Enc += FE[I].str();
8791     }
8792   }
8793   Enc += '}';
8794   TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
8795   return true;
8796 }
8797 
8798 /// Appends enum types to Enc and adds the encoding to the cache.
8799 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
8800                            TypeStringCache &TSC,
8801                            const IdentifierInfo *ID) {
8802   // Append the cached TypeString if we have one.
8803   StringRef TypeString = TSC.lookupStr(ID);
8804   if (!TypeString.empty()) {
8805     Enc += TypeString;
8806     return true;
8807   }
8808 
8809   size_t Start = Enc.size();
8810   Enc += "e(";
8811   if (ID)
8812     Enc += ID->getName();
8813   Enc += "){";
8814 
8815   // We collect all encoded enumerations and order them alphanumerically.
8816   if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
8817     SmallVector<FieldEncoding, 16> FE;
8818     for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
8819          ++I) {
8820       SmallStringEnc EnumEnc;
8821       EnumEnc += "m(";
8822       EnumEnc += I->getName();
8823       EnumEnc += "){";
8824       I->getInitVal().toString(EnumEnc);
8825       EnumEnc += '}';
8826       FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
8827     }
8828     llvm::sort(FE);
8829     unsigned E = FE.size();
8830     for (unsigned I = 0; I != E; ++I) {
8831       if (I)
8832         Enc += ',';
8833       Enc += FE[I].str();
8834     }
8835   }
8836   Enc += '}';
8837   TSC.addIfComplete(ID, Enc.substr(Start), false);
8838   return true;
8839 }
8840 
8841 /// Appends type's qualifier to Enc.
8842 /// This is done prior to appending the type's encoding.
8843 static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
8844   // Qualifiers are emitted in alphabetical order.
8845   static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"};
8846   int Lookup = 0;
8847   if (QT.isConstQualified())
8848     Lookup += 1<<0;
8849   if (QT.isRestrictQualified())
8850     Lookup += 1<<1;
8851   if (QT.isVolatileQualified())
8852     Lookup += 1<<2;
8853   Enc += Table[Lookup];
8854 }
8855 
8856 /// Appends built-in types to Enc.
8857 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
8858   const char *EncType;
8859   switch (BT->getKind()) {
8860     case BuiltinType::Void:
8861       EncType = "0";
8862       break;
8863     case BuiltinType::Bool:
8864       EncType = "b";
8865       break;
8866     case BuiltinType::Char_U:
8867       EncType = "uc";
8868       break;
8869     case BuiltinType::UChar:
8870       EncType = "uc";
8871       break;
8872     case BuiltinType::SChar:
8873       EncType = "sc";
8874       break;
8875     case BuiltinType::UShort:
8876       EncType = "us";
8877       break;
8878     case BuiltinType::Short:
8879       EncType = "ss";
8880       break;
8881     case BuiltinType::UInt:
8882       EncType = "ui";
8883       break;
8884     case BuiltinType::Int:
8885       EncType = "si";
8886       break;
8887     case BuiltinType::ULong:
8888       EncType = "ul";
8889       break;
8890     case BuiltinType::Long:
8891       EncType = "sl";
8892       break;
8893     case BuiltinType::ULongLong:
8894       EncType = "ull";
8895       break;
8896     case BuiltinType::LongLong:
8897       EncType = "sll";
8898       break;
8899     case BuiltinType::Float:
8900       EncType = "ft";
8901       break;
8902     case BuiltinType::Double:
8903       EncType = "d";
8904       break;
8905     case BuiltinType::LongDouble:
8906       EncType = "ld";
8907       break;
8908     default:
8909       return false;
8910   }
8911   Enc += EncType;
8912   return true;
8913 }
8914 
8915 /// Appends a pointer encoding to Enc before calling appendType for the pointee.
8916 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
8917                               const CodeGen::CodeGenModule &CGM,
8918                               TypeStringCache &TSC) {
8919   Enc += "p(";
8920   if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
8921     return false;
8922   Enc += ')';
8923   return true;
8924 }
8925 
8926 /// Appends array encoding to Enc before calling appendType for the element.
8927 static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
8928                             const ArrayType *AT,
8929                             const CodeGen::CodeGenModule &CGM,
8930                             TypeStringCache &TSC, StringRef NoSizeEnc) {
8931   if (AT->getSizeModifier() != ArrayType::Normal)
8932     return false;
8933   Enc += "a(";
8934   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
8935     CAT->getSize().toStringUnsigned(Enc);
8936   else
8937     Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
8938   Enc += ':';
8939   // The Qualifiers should be attached to the type rather than the array.
8940   appendQualifier(Enc, QT);
8941   if (!appendType(Enc, AT->getElementType(), CGM, TSC))
8942     return false;
8943   Enc += ')';
8944   return true;
8945 }
8946 
8947 /// Appends a function encoding to Enc, calling appendType for the return type
8948 /// and the arguments.
8949 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
8950                              const CodeGen::CodeGenModule &CGM,
8951                              TypeStringCache &TSC) {
8952   Enc += "f{";
8953   if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
8954     return false;
8955   Enc += "}(";
8956   if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
8957     // N.B. we are only interested in the adjusted param types.
8958     auto I = FPT->param_type_begin();
8959     auto E = FPT->param_type_end();
8960     if (I != E) {
8961       do {
8962         if (!appendType(Enc, *I, CGM, TSC))
8963           return false;
8964         ++I;
8965         if (I != E)
8966           Enc += ',';
8967       } while (I != E);
8968       if (FPT->isVariadic())
8969         Enc += ",va";
8970     } else {
8971       if (FPT->isVariadic())
8972         Enc += "va";
8973       else
8974         Enc += '0';
8975     }
8976   }
8977   Enc += ')';
8978   return true;
8979 }
8980 
8981 /// Handles the type's qualifier before dispatching a call to handle specific
8982 /// type encodings.
8983 static bool appendType(SmallStringEnc &Enc, QualType QType,
8984                        const CodeGen::CodeGenModule &CGM,
8985                        TypeStringCache &TSC) {
8986 
8987   QualType QT = QType.getCanonicalType();
8988 
8989   if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
8990     // The Qualifiers should be attached to the type rather than the array.
8991     // Thus we don't call appendQualifier() here.
8992     return appendArrayType(Enc, QT, AT, CGM, TSC, "");
8993 
8994   appendQualifier(Enc, QT);
8995 
8996   if (const BuiltinType *BT = QT->getAs<BuiltinType>())
8997     return appendBuiltinType(Enc, BT);
8998 
8999   if (const PointerType *PT = QT->getAs<PointerType>())
9000     return appendPointerType(Enc, PT, CGM, TSC);
9001 
9002   if (const EnumType *ET = QT->getAs<EnumType>())
9003     return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
9004 
9005   if (const RecordType *RT = QT->getAsStructureType())
9006     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
9007 
9008   if (const RecordType *RT = QT->getAsUnionType())
9009     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
9010 
9011   if (const FunctionType *FT = QT->getAs<FunctionType>())
9012     return appendFunctionType(Enc, FT, CGM, TSC);
9013 
9014   return false;
9015 }
9016 
9017 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
9018                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) {
9019   if (!D)
9020     return false;
9021 
9022   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
9023     if (FD->getLanguageLinkage() != CLanguageLinkage)
9024       return false;
9025     return appendType(Enc, FD->getType(), CGM, TSC);
9026   }
9027 
9028   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
9029     if (VD->getLanguageLinkage() != CLanguageLinkage)
9030       return false;
9031     QualType QT = VD->getType().getCanonicalType();
9032     if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
9033       // Global ArrayTypes are given a size of '*' if the size is unknown.
9034       // The Qualifiers should be attached to the type rather than the array.
9035       // Thus we don't call appendQualifier() here.
9036       return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
9037     }
9038     return appendType(Enc, QT, CGM, TSC);
9039   }
9040   return false;
9041 }
9042 
9043 //===----------------------------------------------------------------------===//
9044 // RISCV ABI Implementation
9045 //===----------------------------------------------------------------------===//
9046 
9047 namespace {
9048 class RISCVABIInfo : public DefaultABIInfo {
9049 private:
9050   unsigned XLen; // Size of the integer ('x') registers in bits.
9051   static const int NumArgGPRs = 8;
9052 
9053 public:
9054   RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen)
9055       : DefaultABIInfo(CGT), XLen(XLen) {}
9056 
9057   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
9058   // non-virtual, but computeInfo is virtual, so we overload it.
9059   void computeInfo(CGFunctionInfo &FI) const override;
9060 
9061   ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed,
9062                                   int &ArgGPRsLeft) const;
9063   ABIArgInfo classifyReturnType(QualType RetTy) const;
9064 
9065   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9066                     QualType Ty) const override;
9067 
9068   ABIArgInfo extendType(QualType Ty) const;
9069 };
9070 } // end anonymous namespace
9071 
9072 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const {
9073   QualType RetTy = FI.getReturnType();
9074   if (!getCXXABI().classifyReturnType(FI))
9075     FI.getReturnInfo() = classifyReturnType(RetTy);
9076 
9077   // IsRetIndirect is true if classifyArgumentType indicated the value should
9078   // be passed indirect or if the type size is greater than 2*xlen. e.g. fp128
9079   // is passed direct in LLVM IR, relying on the backend lowering code to
9080   // rewrite the argument list and pass indirectly on RV32.
9081   bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect ||
9082                        getContext().getTypeSize(RetTy) > (2 * XLen);
9083 
9084   // We must track the number of GPRs used in order to conform to the RISC-V
9085   // ABI, as integer scalars passed in registers should have signext/zeroext
9086   // when promoted, but are anyext if passed on the stack. As GPR usage is
9087   // different for variadic arguments, we must also track whether we are
9088   // examining a vararg or not.
9089   int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs;
9090   int NumFixedArgs = FI.getNumRequiredArgs();
9091 
9092   int ArgNum = 0;
9093   for (auto &ArgInfo : FI.arguments()) {
9094     bool IsFixed = ArgNum < NumFixedArgs;
9095     ArgInfo.info = classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft);
9096     ArgNum++;
9097   }
9098 }
9099 
9100 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed,
9101                                               int &ArgGPRsLeft) const {
9102   assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow");
9103   Ty = useFirstFieldIfTransparentUnion(Ty);
9104 
9105   // Structures with either a non-trivial destructor or a non-trivial
9106   // copy constructor are always passed indirectly.
9107   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
9108     if (ArgGPRsLeft)
9109       ArgGPRsLeft -= 1;
9110     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
9111                                            CGCXXABI::RAA_DirectInMemory);
9112   }
9113 
9114   // Ignore empty structs/unions.
9115   if (isEmptyRecord(getContext(), Ty, true))
9116     return ABIArgInfo::getIgnore();
9117 
9118   uint64_t Size = getContext().getTypeSize(Ty);
9119   uint64_t NeededAlign = getContext().getTypeAlign(Ty);
9120   bool MustUseStack = false;
9121   // Determine the number of GPRs needed to pass the current argument
9122   // according to the ABI. 2*XLen-aligned varargs are passed in "aligned"
9123   // register pairs, so may consume 3 registers.
9124   int NeededArgGPRs = 1;
9125   if (!IsFixed && NeededAlign == 2 * XLen)
9126     NeededArgGPRs = 2 + (ArgGPRsLeft % 2);
9127   else if (Size > XLen && Size <= 2 * XLen)
9128     NeededArgGPRs = 2;
9129 
9130   if (NeededArgGPRs > ArgGPRsLeft) {
9131     MustUseStack = true;
9132     NeededArgGPRs = ArgGPRsLeft;
9133   }
9134 
9135   ArgGPRsLeft -= NeededArgGPRs;
9136 
9137   if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) {
9138     // Treat an enum type as its underlying type.
9139     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
9140       Ty = EnumTy->getDecl()->getIntegerType();
9141 
9142     // All integral types are promoted to XLen width, unless passed on the
9143     // stack.
9144     if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) {
9145       return extendType(Ty);
9146     }
9147 
9148     return ABIArgInfo::getDirect();
9149   }
9150 
9151   // Aggregates which are <= 2*XLen will be passed in registers if possible,
9152   // so coerce to integers.
9153   if (Size <= 2 * XLen) {
9154     unsigned Alignment = getContext().getTypeAlign(Ty);
9155 
9156     // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is
9157     // required, and a 2-element XLen array if only XLen alignment is required.
9158     if (Size <= XLen) {
9159       return ABIArgInfo::getDirect(
9160           llvm::IntegerType::get(getVMContext(), XLen));
9161     } else if (Alignment == 2 * XLen) {
9162       return ABIArgInfo::getDirect(
9163           llvm::IntegerType::get(getVMContext(), 2 * XLen));
9164     } else {
9165       return ABIArgInfo::getDirect(llvm::ArrayType::get(
9166           llvm::IntegerType::get(getVMContext(), XLen), 2));
9167     }
9168   }
9169   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
9170 }
9171 
9172 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const {
9173   if (RetTy->isVoidType())
9174     return ABIArgInfo::getIgnore();
9175 
9176   int ArgGPRsLeft = 2;
9177 
9178   // The rules for return and argument types are the same, so defer to
9179   // classifyArgumentType.
9180   return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft);
9181 }
9182 
9183 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9184                                 QualType Ty) const {
9185   CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8);
9186 
9187   // Empty records are ignored for parameter passing purposes.
9188   if (isEmptyRecord(getContext(), Ty, true)) {
9189     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
9190     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
9191     return Addr;
9192   }
9193 
9194   std::pair<CharUnits, CharUnits> SizeAndAlign =
9195       getContext().getTypeInfoInChars(Ty);
9196 
9197   // Arguments bigger than 2*Xlen bytes are passed indirectly.
9198   bool IsIndirect = SizeAndAlign.first > 2 * SlotSize;
9199 
9200   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, SizeAndAlign,
9201                           SlotSize, /*AllowHigherAlign=*/true);
9202 }
9203 
9204 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const {
9205   int TySize = getContext().getTypeSize(Ty);
9206   // RV64 ABI requires unsigned 32 bit integers to be sign extended.
9207   if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
9208     return ABIArgInfo::getSignExtend(Ty);
9209   return ABIArgInfo::getExtend(Ty);
9210 }
9211 
9212 namespace {
9213 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo {
9214 public:
9215   RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen)
9216       : TargetCodeGenInfo(new RISCVABIInfo(CGT, XLen)) {}
9217 
9218   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
9219                            CodeGen::CodeGenModule &CGM) const override {
9220     const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
9221     if (!FD) return;
9222 
9223     const auto *Attr = FD->getAttr<RISCVInterruptAttr>();
9224     if (!Attr)
9225       return;
9226 
9227     const char *Kind;
9228     switch (Attr->getInterrupt()) {
9229     case RISCVInterruptAttr::user: Kind = "user"; break;
9230     case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break;
9231     case RISCVInterruptAttr::machine: Kind = "machine"; break;
9232     }
9233 
9234     auto *Fn = cast<llvm::Function>(GV);
9235 
9236     Fn->addFnAttr("interrupt", Kind);
9237   }
9238 };
9239 } // namespace
9240 
9241 //===----------------------------------------------------------------------===//
9242 // Driver code
9243 //===----------------------------------------------------------------------===//
9244 
9245 bool CodeGenModule::supportsCOMDAT() const {
9246   return getTriple().supportsCOMDAT();
9247 }
9248 
9249 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
9250   if (TheTargetCodeGenInfo)
9251     return *TheTargetCodeGenInfo;
9252 
9253   // Helper to set the unique_ptr while still keeping the return value.
9254   auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & {
9255     this->TheTargetCodeGenInfo.reset(P);
9256     return *P;
9257   };
9258 
9259   const llvm::Triple &Triple = getTarget().getTriple();
9260   switch (Triple.getArch()) {
9261   default:
9262     return SetCGInfo(new DefaultTargetCodeGenInfo(Types));
9263 
9264   case llvm::Triple::le32:
9265     return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
9266   case llvm::Triple::mips:
9267   case llvm::Triple::mipsel:
9268     if (Triple.getOS() == llvm::Triple::NaCl)
9269       return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
9270     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true));
9271 
9272   case llvm::Triple::mips64:
9273   case llvm::Triple::mips64el:
9274     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false));
9275 
9276   case llvm::Triple::avr:
9277     return SetCGInfo(new AVRTargetCodeGenInfo(Types));
9278 
9279   case llvm::Triple::aarch64:
9280   case llvm::Triple::aarch64_be: {
9281     AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
9282     if (getTarget().getABI() == "darwinpcs")
9283       Kind = AArch64ABIInfo::DarwinPCS;
9284     else if (Triple.isOSWindows())
9285       return SetCGInfo(
9286           new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64));
9287 
9288     return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind));
9289   }
9290 
9291   case llvm::Triple::wasm32:
9292   case llvm::Triple::wasm64:
9293     return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types));
9294 
9295   case llvm::Triple::arm:
9296   case llvm::Triple::armeb:
9297   case llvm::Triple::thumb:
9298   case llvm::Triple::thumbeb: {
9299     if (Triple.getOS() == llvm::Triple::Win32) {
9300       return SetCGInfo(
9301           new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP));
9302     }
9303 
9304     ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
9305     StringRef ABIStr = getTarget().getABI();
9306     if (ABIStr == "apcs-gnu")
9307       Kind = ARMABIInfo::APCS;
9308     else if (ABIStr == "aapcs16")
9309       Kind = ARMABIInfo::AAPCS16_VFP;
9310     else if (CodeGenOpts.FloatABI == "hard" ||
9311              (CodeGenOpts.FloatABI != "soft" &&
9312               (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
9313                Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
9314                Triple.getEnvironment() == llvm::Triple::EABIHF)))
9315       Kind = ARMABIInfo::AAPCS_VFP;
9316 
9317     return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind));
9318   }
9319 
9320   case llvm::Triple::ppc:
9321     return SetCGInfo(
9322         new PPC32TargetCodeGenInfo(Types, CodeGenOpts.FloatABI == "soft"));
9323   case llvm::Triple::ppc64:
9324     if (Triple.isOSBinFormatELF()) {
9325       PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1;
9326       if (getTarget().getABI() == "elfv2")
9327         Kind = PPC64_SVR4_ABIInfo::ELFv2;
9328       bool HasQPX = getTarget().getABI() == "elfv1-qpx";
9329       bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
9330 
9331       return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX,
9332                                                         IsSoftFloat));
9333     } else
9334       return SetCGInfo(new PPC64TargetCodeGenInfo(Types));
9335   case llvm::Triple::ppc64le: {
9336     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
9337     PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2;
9338     if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx")
9339       Kind = PPC64_SVR4_ABIInfo::ELFv1;
9340     bool HasQPX = getTarget().getABI() == "elfv1-qpx";
9341     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
9342 
9343     return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX,
9344                                                       IsSoftFloat));
9345   }
9346 
9347   case llvm::Triple::nvptx:
9348   case llvm::Triple::nvptx64:
9349     return SetCGInfo(new NVPTXTargetCodeGenInfo(Types));
9350 
9351   case llvm::Triple::msp430:
9352     return SetCGInfo(new MSP430TargetCodeGenInfo(Types));
9353 
9354   case llvm::Triple::riscv32:
9355     return SetCGInfo(new RISCVTargetCodeGenInfo(Types, 32));
9356   case llvm::Triple::riscv64:
9357     return SetCGInfo(new RISCVTargetCodeGenInfo(Types, 64));
9358 
9359   case llvm::Triple::systemz: {
9360     bool HasVector = getTarget().getABI() == "vector";
9361     return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector));
9362   }
9363 
9364   case llvm::Triple::tce:
9365   case llvm::Triple::tcele:
9366     return SetCGInfo(new TCETargetCodeGenInfo(Types));
9367 
9368   case llvm::Triple::x86: {
9369     bool IsDarwinVectorABI = Triple.isOSDarwin();
9370     bool RetSmallStructInRegABI =
9371         X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
9372     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
9373 
9374     if (Triple.getOS() == llvm::Triple::Win32) {
9375       return SetCGInfo(new WinX86_32TargetCodeGenInfo(
9376           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
9377           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters));
9378     } else {
9379       return SetCGInfo(new X86_32TargetCodeGenInfo(
9380           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
9381           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters,
9382           CodeGenOpts.FloatABI == "soft"));
9383     }
9384   }
9385 
9386   case llvm::Triple::x86_64: {
9387     StringRef ABI = getTarget().getABI();
9388     X86AVXABILevel AVXLevel =
9389         (ABI == "avx512"
9390              ? X86AVXABILevel::AVX512
9391              : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None);
9392 
9393     switch (Triple.getOS()) {
9394     case llvm::Triple::Win32:
9395       return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel));
9396     case llvm::Triple::PS4:
9397       return SetCGInfo(new PS4TargetCodeGenInfo(Types, AVXLevel));
9398     default:
9399       return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel));
9400     }
9401   }
9402   case llvm::Triple::hexagon:
9403     return SetCGInfo(new HexagonTargetCodeGenInfo(Types));
9404   case llvm::Triple::lanai:
9405     return SetCGInfo(new LanaiTargetCodeGenInfo(Types));
9406   case llvm::Triple::r600:
9407     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
9408   case llvm::Triple::amdgcn:
9409     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
9410   case llvm::Triple::sparc:
9411     return SetCGInfo(new SparcV8TargetCodeGenInfo(Types));
9412   case llvm::Triple::sparcv9:
9413     return SetCGInfo(new SparcV9TargetCodeGenInfo(Types));
9414   case llvm::Triple::xcore:
9415     return SetCGInfo(new XCoreTargetCodeGenInfo(Types));
9416   case llvm::Triple::arc:
9417     return SetCGInfo(new ARCTargetCodeGenInfo(Types));
9418   case llvm::Triple::spir:
9419   case llvm::Triple::spir64:
9420     return SetCGInfo(new SPIRTargetCodeGenInfo(Types));
9421   }
9422 }
9423 
9424 /// Create an OpenCL kernel for an enqueued block.
9425 ///
9426 /// The kernel has the same function type as the block invoke function. Its
9427 /// name is the name of the block invoke function postfixed with "_kernel".
9428 /// It simply calls the block invoke function then returns.
9429 llvm::Function *
9430 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF,
9431                                              llvm::Function *Invoke,
9432                                              llvm::Value *BlockLiteral) const {
9433   auto *InvokeFT = Invoke->getFunctionType();
9434   llvm::SmallVector<llvm::Type *, 2> ArgTys;
9435   for (auto &P : InvokeFT->params())
9436     ArgTys.push_back(P);
9437   auto &C = CGF.getLLVMContext();
9438   std::string Name = Invoke->getName().str() + "_kernel";
9439   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
9440   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
9441                                    &CGF.CGM.getModule());
9442   auto IP = CGF.Builder.saveIP();
9443   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
9444   auto &Builder = CGF.Builder;
9445   Builder.SetInsertPoint(BB);
9446   llvm::SmallVector<llvm::Value *, 2> Args;
9447   for (auto &A : F->args())
9448     Args.push_back(&A);
9449   Builder.CreateCall(Invoke, Args);
9450   Builder.CreateRetVoid();
9451   Builder.restoreIP(IP);
9452   return F;
9453 }
9454 
9455 /// Create an OpenCL kernel for an enqueued block.
9456 ///
9457 /// The type of the first argument (the block literal) is the struct type
9458 /// of the block literal instead of a pointer type. The first argument
9459 /// (block literal) is passed directly by value to the kernel. The kernel
9460 /// allocates the same type of struct on stack and stores the block literal
9461 /// to it and passes its pointer to the block invoke function. The kernel
9462 /// has "enqueued-block" function attribute and kernel argument metadata.
9463 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel(
9464     CodeGenFunction &CGF, llvm::Function *Invoke,
9465     llvm::Value *BlockLiteral) const {
9466   auto &Builder = CGF.Builder;
9467   auto &C = CGF.getLLVMContext();
9468 
9469   auto *BlockTy = BlockLiteral->getType()->getPointerElementType();
9470   auto *InvokeFT = Invoke->getFunctionType();
9471   llvm::SmallVector<llvm::Type *, 2> ArgTys;
9472   llvm::SmallVector<llvm::Metadata *, 8> AddressQuals;
9473   llvm::SmallVector<llvm::Metadata *, 8> AccessQuals;
9474   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames;
9475   llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames;
9476   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals;
9477   llvm::SmallVector<llvm::Metadata *, 8> ArgNames;
9478 
9479   ArgTys.push_back(BlockTy);
9480   ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
9481   AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0)));
9482   ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
9483   ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
9484   AccessQuals.push_back(llvm::MDString::get(C, "none"));
9485   ArgNames.push_back(llvm::MDString::get(C, "block_literal"));
9486   for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) {
9487     ArgTys.push_back(InvokeFT->getParamType(I));
9488     ArgTypeNames.push_back(llvm::MDString::get(C, "void*"));
9489     AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3)));
9490     AccessQuals.push_back(llvm::MDString::get(C, "none"));
9491     ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*"));
9492     ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
9493     ArgNames.push_back(
9494         llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str()));
9495   }
9496   std::string Name = Invoke->getName().str() + "_kernel";
9497   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
9498   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
9499                                    &CGF.CGM.getModule());
9500   F->addFnAttr("enqueued-block");
9501   auto IP = CGF.Builder.saveIP();
9502   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
9503   Builder.SetInsertPoint(BB);
9504   unsigned BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(BlockTy);
9505   auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr);
9506   BlockPtr->setAlignment(BlockAlign);
9507   Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign);
9508   auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0));
9509   llvm::SmallVector<llvm::Value *, 2> Args;
9510   Args.push_back(Cast);
9511   for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I)
9512     Args.push_back(I);
9513   Builder.CreateCall(Invoke, Args);
9514   Builder.CreateRetVoid();
9515   Builder.restoreIP(IP);
9516 
9517   F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals));
9518   F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals));
9519   F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames));
9520   F->setMetadata("kernel_arg_base_type",
9521                  llvm::MDNode::get(C, ArgBaseTypeNames));
9522   F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals));
9523   if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
9524     F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames));
9525 
9526   return F;
9527 }
9528