1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "TargetInfo.h"
16 #include "ABIInfo.h"
17 #include "CGCXXABI.h"
18 #include "CGValue.h"
19 #include "CodeGenFunction.h"
20 #include "clang/AST/RecordLayout.h"
21 #include "clang/CodeGen/CGFunctionInfo.h"
22 #include "clang/Frontend/CodeGenOptions.h"
23 #include "llvm/ADT/StringExtras.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/Type.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include <algorithm>    // std::sort
29 
30 using namespace clang;
31 using namespace CodeGen;
32 
33 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
34                                llvm::Value *Array,
35                                llvm::Value *Value,
36                                unsigned FirstIndex,
37                                unsigned LastIndex) {
38   // Alternatively, we could emit this as a loop in the source.
39   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
40     llvm::Value *Cell =
41         Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I);
42     Builder.CreateAlignedStore(Value, Cell, CharUnits::One());
43   }
44 }
45 
46 static bool isAggregateTypeForABI(QualType T) {
47   return !CodeGenFunction::hasScalarEvaluationKind(T) ||
48          T->isMemberFunctionPointerType();
49 }
50 
51 ABIArgInfo
52 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign,
53                                  llvm::Type *Padding) const {
54   return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty),
55                                  ByRef, Realign, Padding);
56 }
57 
58 ABIArgInfo
59 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const {
60   return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty),
61                                       /*ByRef*/ false, Realign);
62 }
63 
64 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
65                              QualType Ty) const {
66   return Address::invalid();
67 }
68 
69 ABIInfo::~ABIInfo() {}
70 
71 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
72                                               CGCXXABI &CXXABI) {
73   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
74   if (!RD)
75     return CGCXXABI::RAA_Default;
76   return CXXABI.getRecordArgABI(RD);
77 }
78 
79 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
80                                               CGCXXABI &CXXABI) {
81   const RecordType *RT = T->getAs<RecordType>();
82   if (!RT)
83     return CGCXXABI::RAA_Default;
84   return getRecordArgABI(RT, CXXABI);
85 }
86 
87 /// Pass transparent unions as if they were the type of the first element. Sema
88 /// should ensure that all elements of the union have the same "machine type".
89 static QualType useFirstFieldIfTransparentUnion(QualType Ty) {
90   if (const RecordType *UT = Ty->getAsUnionType()) {
91     const RecordDecl *UD = UT->getDecl();
92     if (UD->hasAttr<TransparentUnionAttr>()) {
93       assert(!UD->field_empty() && "sema created an empty transparent union");
94       return UD->field_begin()->getType();
95     }
96   }
97   return Ty;
98 }
99 
100 CGCXXABI &ABIInfo::getCXXABI() const {
101   return CGT.getCXXABI();
102 }
103 
104 ASTContext &ABIInfo::getContext() const {
105   return CGT.getContext();
106 }
107 
108 llvm::LLVMContext &ABIInfo::getVMContext() const {
109   return CGT.getLLVMContext();
110 }
111 
112 const llvm::DataLayout &ABIInfo::getDataLayout() const {
113   return CGT.getDataLayout();
114 }
115 
116 const TargetInfo &ABIInfo::getTarget() const {
117   return CGT.getTarget();
118 }
119 
120 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
121   return false;
122 }
123 
124 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
125                                                 uint64_t Members) const {
126   return false;
127 }
128 
129 bool ABIInfo::shouldSignExtUnsignedType(QualType Ty) const {
130   return false;
131 }
132 
133 void ABIArgInfo::dump() const {
134   raw_ostream &OS = llvm::errs();
135   OS << "(ABIArgInfo Kind=";
136   switch (TheKind) {
137   case Direct:
138     OS << "Direct Type=";
139     if (llvm::Type *Ty = getCoerceToType())
140       Ty->print(OS);
141     else
142       OS << "null";
143     break;
144   case Extend:
145     OS << "Extend";
146     break;
147   case Ignore:
148     OS << "Ignore";
149     break;
150   case InAlloca:
151     OS << "InAlloca Offset=" << getInAllocaFieldIndex();
152     break;
153   case Indirect:
154     OS << "Indirect Align=" << getIndirectAlign().getQuantity()
155        << " ByVal=" << getIndirectByVal()
156        << " Realign=" << getIndirectRealign();
157     break;
158   case Expand:
159     OS << "Expand";
160     break;
161   }
162   OS << ")\n";
163 }
164 
165 // Dynamically round a pointer up to a multiple of the given alignment.
166 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF,
167                                                   llvm::Value *Ptr,
168                                                   CharUnits Align) {
169   llvm::Value *PtrAsInt = Ptr;
170   // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align;
171   PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy);
172   PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt,
173         llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1));
174   PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt,
175            llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity()));
176   PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt,
177                                         Ptr->getType(),
178                                         Ptr->getName() + ".aligned");
179   return PtrAsInt;
180 }
181 
182 /// Emit va_arg for a platform using the common void* representation,
183 /// where arguments are simply emitted in an array of slots on the stack.
184 ///
185 /// This version implements the core direct-value passing rules.
186 ///
187 /// \param SlotSize - The size and alignment of a stack slot.
188 ///   Each argument will be allocated to a multiple of this number of
189 ///   slots, and all the slots will be aligned to this value.
190 /// \param AllowHigherAlign - The slot alignment is not a cap;
191 ///   an argument type with an alignment greater than the slot size
192 ///   will be emitted on a higher-alignment address, potentially
193 ///   leaving one or more empty slots behind as padding.  If this
194 ///   is false, the returned address might be less-aligned than
195 ///   DirectAlign.
196 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF,
197                                       Address VAListAddr,
198                                       llvm::Type *DirectTy,
199                                       CharUnits DirectSize,
200                                       CharUnits DirectAlign,
201                                       CharUnits SlotSize,
202                                       bool AllowHigherAlign) {
203   // Cast the element type to i8* if necessary.  Some platforms define
204   // va_list as a struct containing an i8* instead of just an i8*.
205   if (VAListAddr.getElementType() != CGF.Int8PtrTy)
206     VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy);
207 
208   llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur");
209 
210   // If the CC aligns values higher than the slot size, do so if needed.
211   Address Addr = Address::invalid();
212   if (AllowHigherAlign && DirectAlign > SlotSize) {
213     Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign),
214                                                  DirectAlign);
215   } else {
216     Addr = Address(Ptr, SlotSize);
217   }
218 
219   // Advance the pointer past the argument, then store that back.
220   CharUnits FullDirectSize = DirectSize.alignTo(SlotSize);
221   llvm::Value *NextPtr =
222     CGF.Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), FullDirectSize,
223                                            "argp.next");
224   CGF.Builder.CreateStore(NextPtr, VAListAddr);
225 
226   // If the argument is smaller than a slot, and this is a big-endian
227   // target, the argument will be right-adjusted in its slot.
228   if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian()) {
229     Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize);
230   }
231 
232   Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy);
233   return Addr;
234 }
235 
236 /// Emit va_arg for a platform using the common void* representation,
237 /// where arguments are simply emitted in an array of slots on the stack.
238 ///
239 /// \param IsIndirect - Values of this type are passed indirectly.
240 /// \param ValueInfo - The size and alignment of this type, generally
241 ///   computed with getContext().getTypeInfoInChars(ValueTy).
242 /// \param SlotSizeAndAlign - The size and alignment of a stack slot.
243 ///   Each argument will be allocated to a multiple of this number of
244 ///   slots, and all the slots will be aligned to this value.
245 /// \param AllowHigherAlign - The slot alignment is not a cap;
246 ///   an argument type with an alignment greater than the slot size
247 ///   will be emitted on a higher-alignment address, potentially
248 ///   leaving one or more empty slots behind as padding.
249 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr,
250                                 QualType ValueTy, bool IsIndirect,
251                                 std::pair<CharUnits, CharUnits> ValueInfo,
252                                 CharUnits SlotSizeAndAlign,
253                                 bool AllowHigherAlign) {
254   // The size and alignment of the value that was passed directly.
255   CharUnits DirectSize, DirectAlign;
256   if (IsIndirect) {
257     DirectSize = CGF.getPointerSize();
258     DirectAlign = CGF.getPointerAlign();
259   } else {
260     DirectSize = ValueInfo.first;
261     DirectAlign = ValueInfo.second;
262   }
263 
264   // Cast the address we've calculated to the right type.
265   llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy);
266   if (IsIndirect)
267     DirectTy = DirectTy->getPointerTo(0);
268 
269   Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy,
270                                         DirectSize, DirectAlign,
271                                         SlotSizeAndAlign,
272                                         AllowHigherAlign);
273 
274   if (IsIndirect) {
275     Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second);
276   }
277 
278   return Addr;
279 
280 }
281 
282 static Address emitMergePHI(CodeGenFunction &CGF,
283                             Address Addr1, llvm::BasicBlock *Block1,
284                             Address Addr2, llvm::BasicBlock *Block2,
285                             const llvm::Twine &Name = "") {
286   assert(Addr1.getType() == Addr2.getType());
287   llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name);
288   PHI->addIncoming(Addr1.getPointer(), Block1);
289   PHI->addIncoming(Addr2.getPointer(), Block2);
290   CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment());
291   return Address(PHI, Align);
292 }
293 
294 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
295 
296 // If someone can figure out a general rule for this, that would be great.
297 // It's probably just doomed to be platform-dependent, though.
298 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
299   // Verified for:
300   //   x86-64     FreeBSD, Linux, Darwin
301   //   x86-32     FreeBSD, Linux, Darwin
302   //   PowerPC    Linux, Darwin
303   //   ARM        Darwin (*not* EABI)
304   //   AArch64    Linux
305   return 32;
306 }
307 
308 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
309                                      const FunctionNoProtoType *fnType) const {
310   // The following conventions are known to require this to be false:
311   //   x86_stdcall
312   //   MIPS
313   // For everything else, we just prefer false unless we opt out.
314   return false;
315 }
316 
317 void
318 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
319                                              llvm::SmallString<24> &Opt) const {
320   // This assumes the user is passing a library name like "rt" instead of a
321   // filename like "librt.a/so", and that they don't care whether it's static or
322   // dynamic.
323   Opt = "-l";
324   Opt += Lib;
325 }
326 
327 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
328 
329 /// isEmptyField - Return true iff a the field is "empty", that is it
330 /// is an unnamed bit-field or an (array of) empty record(s).
331 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
332                          bool AllowArrays) {
333   if (FD->isUnnamedBitfield())
334     return true;
335 
336   QualType FT = FD->getType();
337 
338   // Constant arrays of empty records count as empty, strip them off.
339   // Constant arrays of zero length always count as empty.
340   if (AllowArrays)
341     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
342       if (AT->getSize() == 0)
343         return true;
344       FT = AT->getElementType();
345     }
346 
347   const RecordType *RT = FT->getAs<RecordType>();
348   if (!RT)
349     return false;
350 
351   // C++ record fields are never empty, at least in the Itanium ABI.
352   //
353   // FIXME: We should use a predicate for whether this behavior is true in the
354   // current ABI.
355   if (isa<CXXRecordDecl>(RT->getDecl()))
356     return false;
357 
358   return isEmptyRecord(Context, FT, AllowArrays);
359 }
360 
361 /// isEmptyRecord - Return true iff a structure contains only empty
362 /// fields. Note that a structure with a flexible array member is not
363 /// considered empty.
364 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
365   const RecordType *RT = T->getAs<RecordType>();
366   if (!RT)
367     return 0;
368   const RecordDecl *RD = RT->getDecl();
369   if (RD->hasFlexibleArrayMember())
370     return false;
371 
372   // If this is a C++ record, check the bases first.
373   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
374     for (const auto &I : CXXRD->bases())
375       if (!isEmptyRecord(Context, I.getType(), true))
376         return false;
377 
378   for (const auto *I : RD->fields())
379     if (!isEmptyField(Context, I, AllowArrays))
380       return false;
381   return true;
382 }
383 
384 /// isSingleElementStruct - Determine if a structure is a "single
385 /// element struct", i.e. it has exactly one non-empty field or
386 /// exactly one field which is itself a single element
387 /// struct. Structures with flexible array members are never
388 /// considered single element structs.
389 ///
390 /// \return The field declaration for the single non-empty field, if
391 /// it exists.
392 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
393   const RecordType *RT = T->getAs<RecordType>();
394   if (!RT)
395     return nullptr;
396 
397   const RecordDecl *RD = RT->getDecl();
398   if (RD->hasFlexibleArrayMember())
399     return nullptr;
400 
401   const Type *Found = nullptr;
402 
403   // If this is a C++ record, check the bases first.
404   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
405     for (const auto &I : CXXRD->bases()) {
406       // Ignore empty records.
407       if (isEmptyRecord(Context, I.getType(), true))
408         continue;
409 
410       // If we already found an element then this isn't a single-element struct.
411       if (Found)
412         return nullptr;
413 
414       // If this is non-empty and not a single element struct, the composite
415       // cannot be a single element struct.
416       Found = isSingleElementStruct(I.getType(), Context);
417       if (!Found)
418         return nullptr;
419     }
420   }
421 
422   // Check for single element.
423   for (const auto *FD : RD->fields()) {
424     QualType FT = FD->getType();
425 
426     // Ignore empty fields.
427     if (isEmptyField(Context, FD, true))
428       continue;
429 
430     // If we already found an element then this isn't a single-element
431     // struct.
432     if (Found)
433       return nullptr;
434 
435     // Treat single element arrays as the element.
436     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
437       if (AT->getSize().getZExtValue() != 1)
438         break;
439       FT = AT->getElementType();
440     }
441 
442     if (!isAggregateTypeForABI(FT)) {
443       Found = FT.getTypePtr();
444     } else {
445       Found = isSingleElementStruct(FT, Context);
446       if (!Found)
447         return nullptr;
448     }
449   }
450 
451   // We don't consider a struct a single-element struct if it has
452   // padding beyond the element type.
453   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
454     return nullptr;
455 
456   return Found;
457 }
458 
459 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
460   // Treat complex types as the element type.
461   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
462     Ty = CTy->getElementType();
463 
464   // Check for a type which we know has a simple scalar argument-passing
465   // convention without any padding.  (We're specifically looking for 32
466   // and 64-bit integer and integer-equivalents, float, and double.)
467   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
468       !Ty->isEnumeralType() && !Ty->isBlockPointerType())
469     return false;
470 
471   uint64_t Size = Context.getTypeSize(Ty);
472   return Size == 32 || Size == 64;
473 }
474 
475 /// canExpandIndirectArgument - Test whether an argument type which is to be
476 /// passed indirectly (on the stack) would have the equivalent layout if it was
477 /// expanded into separate arguments. If so, we prefer to do the latter to avoid
478 /// inhibiting optimizations.
479 ///
480 // FIXME: This predicate is missing many cases, currently it just follows
481 // llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
482 // should probably make this smarter, or better yet make the LLVM backend
483 // capable of handling it.
484 static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
485   // We can only expand structure types.
486   const RecordType *RT = Ty->getAs<RecordType>();
487   if (!RT)
488     return false;
489 
490   // We can only expand (C) structures.
491   //
492   // FIXME: This needs to be generalized to handle classes as well.
493   const RecordDecl *RD = RT->getDecl();
494   if (!RD->isStruct())
495     return false;
496 
497   // We try to expand CLike CXXRecordDecl.
498   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
499     if (!CXXRD->isCLike())
500       return false;
501   }
502 
503   uint64_t Size = 0;
504 
505   for (const auto *FD : RD->fields()) {
506     if (!is32Or64BitBasicType(FD->getType(), Context))
507       return false;
508 
509     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
510     // how to expand them yet, and the predicate for telling if a bitfield still
511     // counts as "basic" is more complicated than what we were doing previously.
512     if (FD->isBitField())
513       return false;
514 
515     Size += Context.getTypeSize(FD->getType());
516   }
517 
518   // Make sure there are not any holes in the struct.
519   if (Size != Context.getTypeSize(Ty))
520     return false;
521 
522   return true;
523 }
524 
525 namespace {
526 /// DefaultABIInfo - The default implementation for ABI specific
527 /// details. This implementation provides information which results in
528 /// self-consistent and sensible LLVM IR generation, but does not
529 /// conform to any particular ABI.
530 class DefaultABIInfo : public ABIInfo {
531 public:
532   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
533 
534   ABIArgInfo classifyReturnType(QualType RetTy) const;
535   ABIArgInfo classifyArgumentType(QualType RetTy) const;
536 
537   void computeInfo(CGFunctionInfo &FI) const override {
538     if (!getCXXABI().classifyReturnType(FI))
539       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
540     for (auto &I : FI.arguments())
541       I.info = classifyArgumentType(I.type);
542   }
543 
544   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
545                     QualType Ty) const override;
546 };
547 
548 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
549 public:
550   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
551     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
552 };
553 
554 Address DefaultABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
555                                   QualType Ty) const {
556   return Address::invalid();
557 }
558 
559 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
560   Ty = useFirstFieldIfTransparentUnion(Ty);
561 
562   if (isAggregateTypeForABI(Ty)) {
563     // Records with non-trivial destructors/copy-constructors should not be
564     // passed by value.
565     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
566       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
567 
568     return getNaturalAlignIndirect(Ty);
569   }
570 
571   // Treat an enum type as its underlying type.
572   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
573     Ty = EnumTy->getDecl()->getIntegerType();
574 
575   return (Ty->isPromotableIntegerType() ?
576           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
577 }
578 
579 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
580   if (RetTy->isVoidType())
581     return ABIArgInfo::getIgnore();
582 
583   if (isAggregateTypeForABI(RetTy))
584     return getNaturalAlignIndirect(RetTy);
585 
586   // Treat an enum type as its underlying type.
587   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
588     RetTy = EnumTy->getDecl()->getIntegerType();
589 
590   return (RetTy->isPromotableIntegerType() ?
591           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
592 }
593 
594 //===----------------------------------------------------------------------===//
595 // WebAssembly ABI Implementation
596 //
597 // This is a very simple ABI that relies a lot on DefaultABIInfo.
598 //===----------------------------------------------------------------------===//
599 
600 class WebAssemblyABIInfo final : public DefaultABIInfo {
601 public:
602   explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT)
603       : DefaultABIInfo(CGT) {}
604 
605 private:
606   ABIArgInfo classifyReturnType(QualType RetTy) const;
607   ABIArgInfo classifyArgumentType(QualType Ty) const;
608 
609   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
610   // non-virtual, but computeInfo is virtual, so we overload that.
611   void computeInfo(CGFunctionInfo &FI) const override {
612     if (!getCXXABI().classifyReturnType(FI))
613       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
614     for (auto &Arg : FI.arguments())
615       Arg.info = classifyArgumentType(Arg.type);
616   }
617 };
618 
619 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo {
620 public:
621   explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
622       : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT)) {}
623 };
624 
625 /// \brief Classify argument of given type \p Ty.
626 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const {
627   Ty = useFirstFieldIfTransparentUnion(Ty);
628 
629   if (isAggregateTypeForABI(Ty)) {
630     // Records with non-trivial destructors/copy-constructors should not be
631     // passed by value.
632     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
633       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
634     // Ignore empty structs/unions.
635     if (isEmptyRecord(getContext(), Ty, true))
636       return ABIArgInfo::getIgnore();
637     // Lower single-element structs to just pass a regular value. TODO: We
638     // could do reasonable-size multiple-element structs too, using getExpand(),
639     // though watch out for things like bitfields.
640     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
641       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
642   }
643 
644   // Otherwise just do the default thing.
645   return DefaultABIInfo::classifyArgumentType(Ty);
646 }
647 
648 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const {
649   if (isAggregateTypeForABI(RetTy)) {
650     // Records with non-trivial destructors/copy-constructors should not be
651     // returned by value.
652     if (!getRecordArgABI(RetTy, getCXXABI())) {
653       // Ignore empty structs/unions.
654       if (isEmptyRecord(getContext(), RetTy, true))
655         return ABIArgInfo::getIgnore();
656       // Lower single-element structs to just return a regular value. TODO: We
657       // could do reasonable-size multiple-element structs too, using
658       // ABIArgInfo::getDirect().
659       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
660         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
661     }
662   }
663 
664   // Otherwise just do the default thing.
665   return DefaultABIInfo::classifyReturnType(RetTy);
666 }
667 
668 //===----------------------------------------------------------------------===//
669 // le32/PNaCl bitcode ABI Implementation
670 //
671 // This is a simplified version of the x86_32 ABI.  Arguments and return values
672 // are always passed on the stack.
673 //===----------------------------------------------------------------------===//
674 
675 class PNaClABIInfo : public ABIInfo {
676  public:
677   PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
678 
679   ABIArgInfo classifyReturnType(QualType RetTy) const;
680   ABIArgInfo classifyArgumentType(QualType RetTy) const;
681 
682   void computeInfo(CGFunctionInfo &FI) const override;
683   Address EmitVAArg(CodeGenFunction &CGF,
684                     Address VAListAddr, QualType Ty) const override;
685 };
686 
687 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
688  public:
689   PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
690     : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
691 };
692 
693 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
694   if (!getCXXABI().classifyReturnType(FI))
695     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
696 
697   for (auto &I : FI.arguments())
698     I.info = classifyArgumentType(I.type);
699 }
700 
701 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
702                                 QualType Ty) const {
703   return Address::invalid();
704 }
705 
706 /// \brief Classify argument of given type \p Ty.
707 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
708   if (isAggregateTypeForABI(Ty)) {
709     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
710       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
711     return getNaturalAlignIndirect(Ty);
712   } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
713     // Treat an enum type as its underlying type.
714     Ty = EnumTy->getDecl()->getIntegerType();
715   } else if (Ty->isFloatingType()) {
716     // Floating-point types don't go inreg.
717     return ABIArgInfo::getDirect();
718   }
719 
720   return (Ty->isPromotableIntegerType() ?
721           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
722 }
723 
724 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
725   if (RetTy->isVoidType())
726     return ABIArgInfo::getIgnore();
727 
728   // In the PNaCl ABI we always return records/structures on the stack.
729   if (isAggregateTypeForABI(RetTy))
730     return getNaturalAlignIndirect(RetTy);
731 
732   // Treat an enum type as its underlying type.
733   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
734     RetTy = EnumTy->getDecl()->getIntegerType();
735 
736   return (RetTy->isPromotableIntegerType() ?
737           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
738 }
739 
740 /// IsX86_MMXType - Return true if this is an MMX type.
741 bool IsX86_MMXType(llvm::Type *IRType) {
742   // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
743   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
744     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
745     IRType->getScalarSizeInBits() != 64;
746 }
747 
748 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
749                                           StringRef Constraint,
750                                           llvm::Type* Ty) {
751   if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) {
752     if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) {
753       // Invalid MMX constraint
754       return nullptr;
755     }
756 
757     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
758   }
759 
760   // No operation needed
761   return Ty;
762 }
763 
764 /// Returns true if this type can be passed in SSE registers with the
765 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
766 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
767   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
768     if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half)
769       return true;
770   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
771     // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
772     // registers specially.
773     unsigned VecSize = Context.getTypeSize(VT);
774     if (VecSize == 128 || VecSize == 256 || VecSize == 512)
775       return true;
776   }
777   return false;
778 }
779 
780 /// Returns true if this aggregate is small enough to be passed in SSE registers
781 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
782 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
783   return NumMembers <= 4;
784 }
785 
786 //===----------------------------------------------------------------------===//
787 // X86-32 ABI Implementation
788 //===----------------------------------------------------------------------===//
789 
790 /// \brief Similar to llvm::CCState, but for Clang.
791 struct CCState {
792   CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {}
793 
794   unsigned CC;
795   unsigned FreeRegs;
796   unsigned FreeSSERegs;
797 };
798 
799 /// X86_32ABIInfo - The X86-32 ABI information.
800 class X86_32ABIInfo : public ABIInfo {
801   enum Class {
802     Integer,
803     Float
804   };
805 
806   static const unsigned MinABIStackAlignInBytes = 4;
807 
808   bool IsDarwinVectorABI;
809   bool IsRetSmallStructInRegABI;
810   bool IsWin32StructABI;
811   bool IsSoftFloatABI;
812   bool IsMCUABI;
813   unsigned DefaultNumRegisterParameters;
814 
815   static bool isRegisterSize(unsigned Size) {
816     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
817   }
818 
819   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
820     // FIXME: Assumes vectorcall is in use.
821     return isX86VectorTypeForVectorCall(getContext(), Ty);
822   }
823 
824   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
825                                          uint64_t NumMembers) const override {
826     // FIXME: Assumes vectorcall is in use.
827     return isX86VectorCallAggregateSmallEnough(NumMembers);
828   }
829 
830   bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
831 
832   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
833   /// such that the argument will be passed in memory.
834   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
835 
836   ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const;
837 
838   /// \brief Return the alignment to use for the given type on the stack.
839   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
840 
841   Class classify(QualType Ty) const;
842   ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
843   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
844   /// \brief Updates the number of available free registers, returns
845   /// true if any registers were allocated.
846   bool updateFreeRegs(QualType Ty, CCState &State) const;
847 
848   bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg,
849                                 bool &NeedsPadding) const;
850   bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const;
851 
852   /// \brief Rewrite the function info so that all memory arguments use
853   /// inalloca.
854   void rewriteWithInAlloca(CGFunctionInfo &FI) const;
855 
856   void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
857                            CharUnits &StackOffset, ABIArgInfo &Info,
858                            QualType Type) const;
859 
860 public:
861 
862   void computeInfo(CGFunctionInfo &FI) const override;
863   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
864                     QualType Ty) const override;
865 
866   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
867                 bool RetSmallStructInRegABI, bool Win32StructABI,
868                 unsigned NumRegisterParameters, bool SoftFloatABI)
869     : ABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI),
870       IsRetSmallStructInRegABI(RetSmallStructInRegABI),
871       IsWin32StructABI(Win32StructABI),
872       IsSoftFloatABI(SoftFloatABI),
873       IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()),
874       DefaultNumRegisterParameters(NumRegisterParameters) {}
875 };
876 
877 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
878 public:
879   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
880                           bool RetSmallStructInRegABI, bool Win32StructABI,
881                           unsigned NumRegisterParameters, bool SoftFloatABI)
882       : TargetCodeGenInfo(new X86_32ABIInfo(
883             CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
884             NumRegisterParameters, SoftFloatABI)) {}
885 
886   static bool isStructReturnInRegABI(
887       const llvm::Triple &Triple, const CodeGenOptions &Opts);
888 
889   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
890                            CodeGen::CodeGenModule &CGM) const override;
891 
892   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
893     // Darwin uses different dwarf register numbers for EH.
894     if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
895     return 4;
896   }
897 
898   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
899                                llvm::Value *Address) const override;
900 
901   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
902                                   StringRef Constraint,
903                                   llvm::Type* Ty) const override {
904     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
905   }
906 
907   void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
908                                 std::string &Constraints,
909                                 std::vector<llvm::Type *> &ResultRegTypes,
910                                 std::vector<llvm::Type *> &ResultTruncRegTypes,
911                                 std::vector<LValue> &ResultRegDests,
912                                 std::string &AsmString,
913                                 unsigned NumOutputs) const override;
914 
915   llvm::Constant *
916   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
917     unsigned Sig = (0xeb << 0) |  // jmp rel8
918                    (0x06 << 8) |  //           .+0x08
919                    ('F' << 16) |
920                    ('T' << 24);
921     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
922   }
923 };
924 
925 }
926 
927 /// Rewrite input constraint references after adding some output constraints.
928 /// In the case where there is one output and one input and we add one output,
929 /// we need to replace all operand references greater than or equal to 1:
930 ///     mov $0, $1
931 ///     mov eax, $1
932 /// The result will be:
933 ///     mov $0, $2
934 ///     mov eax, $2
935 static void rewriteInputConstraintReferences(unsigned FirstIn,
936                                              unsigned NumNewOuts,
937                                              std::string &AsmString) {
938   std::string Buf;
939   llvm::raw_string_ostream OS(Buf);
940   size_t Pos = 0;
941   while (Pos < AsmString.size()) {
942     size_t DollarStart = AsmString.find('$', Pos);
943     if (DollarStart == std::string::npos)
944       DollarStart = AsmString.size();
945     size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
946     if (DollarEnd == std::string::npos)
947       DollarEnd = AsmString.size();
948     OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
949     Pos = DollarEnd;
950     size_t NumDollars = DollarEnd - DollarStart;
951     if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
952       // We have an operand reference.
953       size_t DigitStart = Pos;
954       size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
955       if (DigitEnd == std::string::npos)
956         DigitEnd = AsmString.size();
957       StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
958       unsigned OperandIndex;
959       if (!OperandStr.getAsInteger(10, OperandIndex)) {
960         if (OperandIndex >= FirstIn)
961           OperandIndex += NumNewOuts;
962         OS << OperandIndex;
963       } else {
964         OS << OperandStr;
965       }
966       Pos = DigitEnd;
967     }
968   }
969   AsmString = std::move(OS.str());
970 }
971 
972 /// Add output constraints for EAX:EDX because they are return registers.
973 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
974     CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
975     std::vector<llvm::Type *> &ResultRegTypes,
976     std::vector<llvm::Type *> &ResultTruncRegTypes,
977     std::vector<LValue> &ResultRegDests, std::string &AsmString,
978     unsigned NumOutputs) const {
979   uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
980 
981   // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
982   // larger.
983   if (!Constraints.empty())
984     Constraints += ',';
985   if (RetWidth <= 32) {
986     Constraints += "={eax}";
987     ResultRegTypes.push_back(CGF.Int32Ty);
988   } else {
989     // Use the 'A' constraint for EAX:EDX.
990     Constraints += "=A";
991     ResultRegTypes.push_back(CGF.Int64Ty);
992   }
993 
994   // Truncate EAX or EAX:EDX to an integer of the appropriate size.
995   llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
996   ResultTruncRegTypes.push_back(CoerceTy);
997 
998   // Coerce the integer by bitcasting the return slot pointer.
999   ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(),
1000                                                   CoerceTy->getPointerTo()));
1001   ResultRegDests.push_back(ReturnSlot);
1002 
1003   rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
1004 }
1005 
1006 /// shouldReturnTypeInRegister - Determine if the given type should be
1007 /// returned in a register (for the Darwin and MCU ABI).
1008 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
1009                                                ASTContext &Context) const {
1010   uint64_t Size = Context.getTypeSize(Ty);
1011 
1012   // For i386, type must be register sized.
1013   // For the MCU ABI, it only needs to be <= 8-byte
1014   if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size)))
1015    return false;
1016 
1017   if (Ty->isVectorType()) {
1018     // 64- and 128- bit vectors inside structures are not returned in
1019     // registers.
1020     if (Size == 64 || Size == 128)
1021       return false;
1022 
1023     return true;
1024   }
1025 
1026   // If this is a builtin, pointer, enum, complex type, member pointer, or
1027   // member function pointer it is ok.
1028   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
1029       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
1030       Ty->isBlockPointerType() || Ty->isMemberPointerType())
1031     return true;
1032 
1033   // Arrays are treated like records.
1034   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
1035     return shouldReturnTypeInRegister(AT->getElementType(), Context);
1036 
1037   // Otherwise, it must be a record type.
1038   const RecordType *RT = Ty->getAs<RecordType>();
1039   if (!RT) return false;
1040 
1041   // FIXME: Traverse bases here too.
1042 
1043   // Structure types are passed in register if all fields would be
1044   // passed in a register.
1045   for (const auto *FD : RT->getDecl()->fields()) {
1046     // Empty fields are ignored.
1047     if (isEmptyField(Context, FD, true))
1048       continue;
1049 
1050     // Check fields recursively.
1051     if (!shouldReturnTypeInRegister(FD->getType(), Context))
1052       return false;
1053   }
1054   return true;
1055 }
1056 
1057 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const {
1058   // If the return value is indirect, then the hidden argument is consuming one
1059   // integer register.
1060   if (State.FreeRegs) {
1061     --State.FreeRegs;
1062     if (!IsMCUABI)
1063       return getNaturalAlignIndirectInReg(RetTy);
1064   }
1065   return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
1066 }
1067 
1068 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
1069                                              CCState &State) const {
1070   if (RetTy->isVoidType())
1071     return ABIArgInfo::getIgnore();
1072 
1073   const Type *Base = nullptr;
1074   uint64_t NumElts = 0;
1075   if (State.CC == llvm::CallingConv::X86_VectorCall &&
1076       isHomogeneousAggregate(RetTy, Base, NumElts)) {
1077     // The LLVM struct type for such an aggregate should lower properly.
1078     return ABIArgInfo::getDirect();
1079   }
1080 
1081   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
1082     // On Darwin, some vectors are returned in registers.
1083     if (IsDarwinVectorABI) {
1084       uint64_t Size = getContext().getTypeSize(RetTy);
1085 
1086       // 128-bit vectors are a special case; they are returned in
1087       // registers and we need to make sure to pick a type the LLVM
1088       // backend will like.
1089       if (Size == 128)
1090         return ABIArgInfo::getDirect(llvm::VectorType::get(
1091                   llvm::Type::getInt64Ty(getVMContext()), 2));
1092 
1093       // Always return in register if it fits in a general purpose
1094       // register, or if it is 64 bits and has a single element.
1095       if ((Size == 8 || Size == 16 || Size == 32) ||
1096           (Size == 64 && VT->getNumElements() == 1))
1097         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1098                                                             Size));
1099 
1100       return getIndirectReturnResult(RetTy, State);
1101     }
1102 
1103     return ABIArgInfo::getDirect();
1104   }
1105 
1106   if (isAggregateTypeForABI(RetTy)) {
1107     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
1108       // Structures with flexible arrays are always indirect.
1109       if (RT->getDecl()->hasFlexibleArrayMember())
1110         return getIndirectReturnResult(RetTy, State);
1111     }
1112 
1113     // If specified, structs and unions are always indirect.
1114     if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType())
1115       return getIndirectReturnResult(RetTy, State);
1116 
1117     // Small structures which are register sized are generally returned
1118     // in a register.
1119     if (shouldReturnTypeInRegister(RetTy, getContext())) {
1120       uint64_t Size = getContext().getTypeSize(RetTy);
1121 
1122       // As a special-case, if the struct is a "single-element" struct, and
1123       // the field is of type "float" or "double", return it in a
1124       // floating-point register. (MSVC does not apply this special case.)
1125       // We apply a similar transformation for pointer types to improve the
1126       // quality of the generated IR.
1127       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
1128         if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
1129             || SeltTy->hasPointerRepresentation())
1130           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
1131 
1132       // FIXME: We should be able to narrow this integer in cases with dead
1133       // padding.
1134       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
1135     }
1136 
1137     return getIndirectReturnResult(RetTy, State);
1138   }
1139 
1140   // Treat an enum type as its underlying type.
1141   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1142     RetTy = EnumTy->getDecl()->getIntegerType();
1143 
1144   return (RetTy->isPromotableIntegerType() ?
1145           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1146 }
1147 
1148 static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
1149   return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
1150 }
1151 
1152 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
1153   const RecordType *RT = Ty->getAs<RecordType>();
1154   if (!RT)
1155     return 0;
1156   const RecordDecl *RD = RT->getDecl();
1157 
1158   // If this is a C++ record, check the bases first.
1159   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1160     for (const auto &I : CXXRD->bases())
1161       if (!isRecordWithSSEVectorType(Context, I.getType()))
1162         return false;
1163 
1164   for (const auto *i : RD->fields()) {
1165     QualType FT = i->getType();
1166 
1167     if (isSSEVectorType(Context, FT))
1168       return true;
1169 
1170     if (isRecordWithSSEVectorType(Context, FT))
1171       return true;
1172   }
1173 
1174   return false;
1175 }
1176 
1177 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
1178                                                  unsigned Align) const {
1179   // Otherwise, if the alignment is less than or equal to the minimum ABI
1180   // alignment, just use the default; the backend will handle this.
1181   if (Align <= MinABIStackAlignInBytes)
1182     return 0; // Use default alignment.
1183 
1184   // On non-Darwin, the stack type alignment is always 4.
1185   if (!IsDarwinVectorABI) {
1186     // Set explicit alignment, since we may need to realign the top.
1187     return MinABIStackAlignInBytes;
1188   }
1189 
1190   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
1191   if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
1192                       isRecordWithSSEVectorType(getContext(), Ty)))
1193     return 16;
1194 
1195   return MinABIStackAlignInBytes;
1196 }
1197 
1198 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
1199                                             CCState &State) const {
1200   if (!ByVal) {
1201     if (State.FreeRegs) {
1202       --State.FreeRegs; // Non-byval indirects just use one pointer.
1203       if (!IsMCUABI)
1204         return getNaturalAlignIndirectInReg(Ty);
1205     }
1206     return getNaturalAlignIndirect(Ty, false);
1207   }
1208 
1209   // Compute the byval alignment.
1210   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
1211   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
1212   if (StackAlign == 0)
1213     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true);
1214 
1215   // If the stack alignment is less than the type alignment, realign the
1216   // argument.
1217   bool Realign = TypeAlign > StackAlign;
1218   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign),
1219                                  /*ByVal=*/true, Realign);
1220 }
1221 
1222 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
1223   const Type *T = isSingleElementStruct(Ty, getContext());
1224   if (!T)
1225     T = Ty.getTypePtr();
1226 
1227   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
1228     BuiltinType::Kind K = BT->getKind();
1229     if (K == BuiltinType::Float || K == BuiltinType::Double)
1230       return Float;
1231   }
1232   return Integer;
1233 }
1234 
1235 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const {
1236   if (!IsSoftFloatABI) {
1237     Class C = classify(Ty);
1238     if (C == Float)
1239       return false;
1240   }
1241 
1242   unsigned Size = getContext().getTypeSize(Ty);
1243   unsigned SizeInRegs = (Size + 31) / 32;
1244 
1245   if (SizeInRegs == 0)
1246     return false;
1247 
1248   if (!IsMCUABI) {
1249     if (SizeInRegs > State.FreeRegs) {
1250       State.FreeRegs = 0;
1251       return false;
1252     }
1253   } else {
1254     // The MCU psABI allows passing parameters in-reg even if there are
1255     // earlier parameters that are passed on the stack. Also,
1256     // it does not allow passing >8-byte structs in-register,
1257     // even if there are 3 free registers available.
1258     if (SizeInRegs > State.FreeRegs || SizeInRegs > 2)
1259       return false;
1260   }
1261 
1262   State.FreeRegs -= SizeInRegs;
1263   return true;
1264 }
1265 
1266 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State,
1267                                              bool &InReg,
1268                                              bool &NeedsPadding) const {
1269   NeedsPadding = false;
1270   InReg = !IsMCUABI;
1271 
1272   if (!updateFreeRegs(Ty, State))
1273     return false;
1274 
1275   if (IsMCUABI)
1276     return true;
1277 
1278   if (State.CC == llvm::CallingConv::X86_FastCall ||
1279       State.CC == llvm::CallingConv::X86_VectorCall) {
1280     if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs)
1281       NeedsPadding = true;
1282 
1283     return false;
1284   }
1285 
1286   return true;
1287 }
1288 
1289 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const {
1290   if (!updateFreeRegs(Ty, State))
1291     return false;
1292 
1293   if (IsMCUABI)
1294     return false;
1295 
1296   if (State.CC == llvm::CallingConv::X86_FastCall ||
1297       State.CC == llvm::CallingConv::X86_VectorCall) {
1298     if (getContext().getTypeSize(Ty) > 32)
1299       return false;
1300 
1301     return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() ||
1302         Ty->isReferenceType());
1303   }
1304 
1305   return true;
1306 }
1307 
1308 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
1309                                                CCState &State) const {
1310   // FIXME: Set alignment on indirect arguments.
1311 
1312   Ty = useFirstFieldIfTransparentUnion(Ty);
1313 
1314   // Check with the C++ ABI first.
1315   const RecordType *RT = Ty->getAs<RecordType>();
1316   if (RT) {
1317     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
1318     if (RAA == CGCXXABI::RAA_Indirect) {
1319       return getIndirectResult(Ty, false, State);
1320     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
1321       // The field index doesn't matter, we'll fix it up later.
1322       return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
1323     }
1324   }
1325 
1326   // vectorcall adds the concept of a homogenous vector aggregate, similar
1327   // to other targets.
1328   const Type *Base = nullptr;
1329   uint64_t NumElts = 0;
1330   if (State.CC == llvm::CallingConv::X86_VectorCall &&
1331       isHomogeneousAggregate(Ty, Base, NumElts)) {
1332     if (State.FreeSSERegs >= NumElts) {
1333       State.FreeSSERegs -= NumElts;
1334       if (Ty->isBuiltinType() || Ty->isVectorType())
1335         return ABIArgInfo::getDirect();
1336       return ABIArgInfo::getExpand();
1337     }
1338     return getIndirectResult(Ty, /*ByVal=*/false, State);
1339   }
1340 
1341   if (isAggregateTypeForABI(Ty)) {
1342     if (RT) {
1343       // Structs are always byval on win32, regardless of what they contain.
1344       if (IsWin32StructABI)
1345         return getIndirectResult(Ty, true, State);
1346 
1347       // Structures with flexible arrays are always indirect.
1348       if (RT->getDecl()->hasFlexibleArrayMember())
1349         return getIndirectResult(Ty, true, State);
1350     }
1351 
1352     // Ignore empty structs/unions.
1353     if (isEmptyRecord(getContext(), Ty, true))
1354       return ABIArgInfo::getIgnore();
1355 
1356     llvm::LLVMContext &LLVMContext = getVMContext();
1357     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
1358     bool NeedsPadding, InReg;
1359     if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) {
1360       unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
1361       SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
1362       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
1363       if (InReg)
1364         return ABIArgInfo::getDirectInReg(Result);
1365       else
1366         return ABIArgInfo::getDirect(Result);
1367     }
1368     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
1369 
1370     // Expand small (<= 128-bit) record types when we know that the stack layout
1371     // of those arguments will match the struct. This is important because the
1372     // LLVM backend isn't smart enough to remove byval, which inhibits many
1373     // optimizations.
1374     // Don't do this for the MCU if there are still free integer registers
1375     // (see X86_64 ABI for full explanation).
1376     if (getContext().getTypeSize(Ty) <= 4*32 &&
1377         canExpandIndirectArgument(Ty, getContext()) &&
1378         (!IsMCUABI || State.FreeRegs == 0))
1379       return ABIArgInfo::getExpandWithPadding(
1380           State.CC == llvm::CallingConv::X86_FastCall ||
1381               State.CC == llvm::CallingConv::X86_VectorCall,
1382           PaddingType);
1383 
1384     return getIndirectResult(Ty, true, State);
1385   }
1386 
1387   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1388     // On Darwin, some vectors are passed in memory, we handle this by passing
1389     // it as an i8/i16/i32/i64.
1390     if (IsDarwinVectorABI) {
1391       uint64_t Size = getContext().getTypeSize(Ty);
1392       if ((Size == 8 || Size == 16 || Size == 32) ||
1393           (Size == 64 && VT->getNumElements() == 1))
1394         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1395                                                             Size));
1396     }
1397 
1398     if (IsX86_MMXType(CGT.ConvertType(Ty)))
1399       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
1400 
1401     return ABIArgInfo::getDirect();
1402   }
1403 
1404 
1405   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1406     Ty = EnumTy->getDecl()->getIntegerType();
1407 
1408   bool InReg = shouldPrimitiveUseInReg(Ty, State);
1409 
1410   if (Ty->isPromotableIntegerType()) {
1411     if (InReg)
1412       return ABIArgInfo::getExtendInReg();
1413     return ABIArgInfo::getExtend();
1414   }
1415 
1416   if (InReg)
1417     return ABIArgInfo::getDirectInReg();
1418   return ABIArgInfo::getDirect();
1419 }
1420 
1421 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1422   CCState State(FI.getCallingConvention());
1423   if (IsMCUABI)
1424     State.FreeRegs = 3;
1425   else if (State.CC == llvm::CallingConv::X86_FastCall)
1426     State.FreeRegs = 2;
1427   else if (State.CC == llvm::CallingConv::X86_VectorCall) {
1428     State.FreeRegs = 2;
1429     State.FreeSSERegs = 6;
1430   } else if (FI.getHasRegParm())
1431     State.FreeRegs = FI.getRegParm();
1432   else
1433     State.FreeRegs = DefaultNumRegisterParameters;
1434 
1435   if (!getCXXABI().classifyReturnType(FI)) {
1436     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
1437   } else if (FI.getReturnInfo().isIndirect()) {
1438     // The C++ ABI is not aware of register usage, so we have to check if the
1439     // return value was sret and put it in a register ourselves if appropriate.
1440     if (State.FreeRegs) {
1441       --State.FreeRegs;  // The sret parameter consumes a register.
1442       if (!IsMCUABI)
1443         FI.getReturnInfo().setInReg(true);
1444     }
1445   }
1446 
1447   // The chain argument effectively gives us another free register.
1448   if (FI.isChainCall())
1449     ++State.FreeRegs;
1450 
1451   bool UsedInAlloca = false;
1452   for (auto &I : FI.arguments()) {
1453     I.info = classifyArgumentType(I.type, State);
1454     UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1455   }
1456 
1457   // If we needed to use inalloca for any argument, do a second pass and rewrite
1458   // all the memory arguments to use inalloca.
1459   if (UsedInAlloca)
1460     rewriteWithInAlloca(FI);
1461 }
1462 
1463 void
1464 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1465                                    CharUnits &StackOffset, ABIArgInfo &Info,
1466                                    QualType Type) const {
1467   // Arguments are always 4-byte-aligned.
1468   CharUnits FieldAlign = CharUnits::fromQuantity(4);
1469 
1470   assert(StackOffset.isMultipleOf(FieldAlign) && "unaligned inalloca struct");
1471   Info = ABIArgInfo::getInAlloca(FrameFields.size());
1472   FrameFields.push_back(CGT.ConvertTypeForMem(Type));
1473   StackOffset += getContext().getTypeSizeInChars(Type);
1474 
1475   // Insert padding bytes to respect alignment.
1476   CharUnits FieldEnd = StackOffset;
1477   StackOffset = FieldEnd.alignTo(FieldAlign);
1478   if (StackOffset != FieldEnd) {
1479     CharUnits NumBytes = StackOffset - FieldEnd;
1480     llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
1481     Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity());
1482     FrameFields.push_back(Ty);
1483   }
1484 }
1485 
1486 static bool isArgInAlloca(const ABIArgInfo &Info) {
1487   // Leave ignored and inreg arguments alone.
1488   switch (Info.getKind()) {
1489   case ABIArgInfo::InAlloca:
1490     return true;
1491   case ABIArgInfo::Indirect:
1492     assert(Info.getIndirectByVal());
1493     return true;
1494   case ABIArgInfo::Ignore:
1495     return false;
1496   case ABIArgInfo::Direct:
1497   case ABIArgInfo::Extend:
1498   case ABIArgInfo::Expand:
1499     if (Info.getInReg())
1500       return false;
1501     return true;
1502   }
1503   llvm_unreachable("invalid enum");
1504 }
1505 
1506 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
1507   assert(IsWin32StructABI && "inalloca only supported on win32");
1508 
1509   // Build a packed struct type for all of the arguments in memory.
1510   SmallVector<llvm::Type *, 6> FrameFields;
1511 
1512   // The stack alignment is always 4.
1513   CharUnits StackAlign = CharUnits::fromQuantity(4);
1514 
1515   CharUnits StackOffset;
1516   CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
1517 
1518   // Put 'this' into the struct before 'sret', if necessary.
1519   bool IsThisCall =
1520       FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
1521   ABIArgInfo &Ret = FI.getReturnInfo();
1522   if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
1523       isArgInAlloca(I->info)) {
1524     addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1525     ++I;
1526   }
1527 
1528   // Put the sret parameter into the inalloca struct if it's in memory.
1529   if (Ret.isIndirect() && !Ret.getInReg()) {
1530     CanQualType PtrTy = getContext().getPointerType(FI.getReturnType());
1531     addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy);
1532     // On Windows, the hidden sret parameter is always returned in eax.
1533     Ret.setInAllocaSRet(IsWin32StructABI);
1534   }
1535 
1536   // Skip the 'this' parameter in ecx.
1537   if (IsThisCall)
1538     ++I;
1539 
1540   // Put arguments passed in memory into the struct.
1541   for (; I != E; ++I) {
1542     if (isArgInAlloca(I->info))
1543       addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1544   }
1545 
1546   FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
1547                                         /*isPacked=*/true),
1548                   StackAlign);
1549 }
1550 
1551 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF,
1552                                  Address VAListAddr, QualType Ty) const {
1553 
1554   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
1555 
1556   // x86-32 changes the alignment of certain arguments on the stack.
1557   //
1558   // Just messing with TypeInfo like this works because we never pass
1559   // anything indirectly.
1560   TypeInfo.second = CharUnits::fromQuantity(
1561                 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity()));
1562 
1563   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
1564                           TypeInfo, CharUnits::fromQuantity(4),
1565                           /*AllowHigherAlign*/ true);
1566 }
1567 
1568 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
1569     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
1570   assert(Triple.getArch() == llvm::Triple::x86);
1571 
1572   switch (Opts.getStructReturnConvention()) {
1573   case CodeGenOptions::SRCK_Default:
1574     break;
1575   case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
1576     return false;
1577   case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
1578     return true;
1579   }
1580 
1581   if (Triple.isOSDarwin() || Triple.isOSIAMCU())
1582     return true;
1583 
1584   switch (Triple.getOS()) {
1585   case llvm::Triple::DragonFly:
1586   case llvm::Triple::FreeBSD:
1587   case llvm::Triple::OpenBSD:
1588   case llvm::Triple::Bitrig:
1589   case llvm::Triple::Win32:
1590     return true;
1591   default:
1592     return false;
1593   }
1594 }
1595 
1596 void X86_32TargetCodeGenInfo::setTargetAttributes(const Decl *D,
1597                                                   llvm::GlobalValue *GV,
1598                                             CodeGen::CodeGenModule &CGM) const {
1599   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
1600     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1601       // Get the LLVM function.
1602       llvm::Function *Fn = cast<llvm::Function>(GV);
1603 
1604       // Now add the 'alignstack' attribute with a value of 16.
1605       llvm::AttrBuilder B;
1606       B.addStackAlignmentAttr(16);
1607       Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
1608                       llvm::AttributeSet::get(CGM.getLLVMContext(),
1609                                               llvm::AttributeSet::FunctionIndex,
1610                                               B));
1611     }
1612     if (FD->hasAttr<AnyX86InterruptAttr>()) {
1613       llvm::Function *Fn = cast<llvm::Function>(GV);
1614       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
1615     }
1616   }
1617 }
1618 
1619 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
1620                                                CodeGen::CodeGenFunction &CGF,
1621                                                llvm::Value *Address) const {
1622   CodeGen::CGBuilderTy &Builder = CGF.Builder;
1623 
1624   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
1625 
1626   // 0-7 are the eight integer registers;  the order is different
1627   //   on Darwin (for EH), but the range is the same.
1628   // 8 is %eip.
1629   AssignToArrayRange(Builder, Address, Four8, 0, 8);
1630 
1631   if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
1632     // 12-16 are st(0..4).  Not sure why we stop at 4.
1633     // These have size 16, which is sizeof(long double) on
1634     // platforms with 8-byte alignment for that type.
1635     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
1636     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
1637 
1638   } else {
1639     // 9 is %eflags, which doesn't get a size on Darwin for some
1640     // reason.
1641     Builder.CreateAlignedStore(
1642         Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9),
1643                                CharUnits::One());
1644 
1645     // 11-16 are st(0..5).  Not sure why we stop at 5.
1646     // These have size 12, which is sizeof(long double) on
1647     // platforms with 4-byte alignment for that type.
1648     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
1649     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
1650   }
1651 
1652   return false;
1653 }
1654 
1655 //===----------------------------------------------------------------------===//
1656 // X86-64 ABI Implementation
1657 //===----------------------------------------------------------------------===//
1658 
1659 
1660 namespace {
1661 /// The AVX ABI level for X86 targets.
1662 enum class X86AVXABILevel {
1663   None,
1664   AVX,
1665   AVX512
1666 };
1667 
1668 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
1669 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
1670   switch (AVXLevel) {
1671   case X86AVXABILevel::AVX512:
1672     return 512;
1673   case X86AVXABILevel::AVX:
1674     return 256;
1675   case X86AVXABILevel::None:
1676     return 128;
1677   }
1678   llvm_unreachable("Unknown AVXLevel");
1679 }
1680 
1681 /// X86_64ABIInfo - The X86_64 ABI information.
1682 class X86_64ABIInfo : public ABIInfo {
1683   enum Class {
1684     Integer = 0,
1685     SSE,
1686     SSEUp,
1687     X87,
1688     X87Up,
1689     ComplexX87,
1690     NoClass,
1691     Memory
1692   };
1693 
1694   /// merge - Implement the X86_64 ABI merging algorithm.
1695   ///
1696   /// Merge an accumulating classification \arg Accum with a field
1697   /// classification \arg Field.
1698   ///
1699   /// \param Accum - The accumulating classification. This should
1700   /// always be either NoClass or the result of a previous merge
1701   /// call. In addition, this should never be Memory (the caller
1702   /// should just return Memory for the aggregate).
1703   static Class merge(Class Accum, Class Field);
1704 
1705   /// postMerge - Implement the X86_64 ABI post merging algorithm.
1706   ///
1707   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
1708   /// final MEMORY or SSE classes when necessary.
1709   ///
1710   /// \param AggregateSize - The size of the current aggregate in
1711   /// the classification process.
1712   ///
1713   /// \param Lo - The classification for the parts of the type
1714   /// residing in the low word of the containing object.
1715   ///
1716   /// \param Hi - The classification for the parts of the type
1717   /// residing in the higher words of the containing object.
1718   ///
1719   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
1720 
1721   /// classify - Determine the x86_64 register classes in which the
1722   /// given type T should be passed.
1723   ///
1724   /// \param Lo - The classification for the parts of the type
1725   /// residing in the low word of the containing object.
1726   ///
1727   /// \param Hi - The classification for the parts of the type
1728   /// residing in the high word of the containing object.
1729   ///
1730   /// \param OffsetBase - The bit offset of this type in the
1731   /// containing object.  Some parameters are classified different
1732   /// depending on whether they straddle an eightbyte boundary.
1733   ///
1734   /// \param isNamedArg - Whether the argument in question is a "named"
1735   /// argument, as used in AMD64-ABI 3.5.7.
1736   ///
1737   /// If a word is unused its result will be NoClass; if a type should
1738   /// be passed in Memory then at least the classification of \arg Lo
1739   /// will be Memory.
1740   ///
1741   /// The \arg Lo class will be NoClass iff the argument is ignored.
1742   ///
1743   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
1744   /// also be ComplexX87.
1745   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
1746                 bool isNamedArg) const;
1747 
1748   llvm::Type *GetByteVectorType(QualType Ty) const;
1749   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
1750                                  unsigned IROffset, QualType SourceTy,
1751                                  unsigned SourceOffset) const;
1752   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
1753                                      unsigned IROffset, QualType SourceTy,
1754                                      unsigned SourceOffset) const;
1755 
1756   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1757   /// such that the argument will be returned in memory.
1758   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
1759 
1760   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1761   /// such that the argument will be passed in memory.
1762   ///
1763   /// \param freeIntRegs - The number of free integer registers remaining
1764   /// available.
1765   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
1766 
1767   ABIArgInfo classifyReturnType(QualType RetTy) const;
1768 
1769   ABIArgInfo classifyArgumentType(QualType Ty,
1770                                   unsigned freeIntRegs,
1771                                   unsigned &neededInt,
1772                                   unsigned &neededSSE,
1773                                   bool isNamedArg) const;
1774 
1775   bool IsIllegalVectorType(QualType Ty) const;
1776 
1777   /// The 0.98 ABI revision clarified a lot of ambiguities,
1778   /// unfortunately in ways that were not always consistent with
1779   /// certain previous compilers.  In particular, platforms which
1780   /// required strict binary compatibility with older versions of GCC
1781   /// may need to exempt themselves.
1782   bool honorsRevision0_98() const {
1783     return !getTarget().getTriple().isOSDarwin();
1784   }
1785 
1786   X86AVXABILevel AVXLevel;
1787   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
1788   // 64-bit hardware.
1789   bool Has64BitPointers;
1790 
1791 public:
1792   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) :
1793       ABIInfo(CGT), AVXLevel(AVXLevel),
1794       Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
1795   }
1796 
1797   bool isPassedUsingAVXType(QualType type) const {
1798     unsigned neededInt, neededSSE;
1799     // The freeIntRegs argument doesn't matter here.
1800     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
1801                                            /*isNamedArg*/true);
1802     if (info.isDirect()) {
1803       llvm::Type *ty = info.getCoerceToType();
1804       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
1805         return (vectorTy->getBitWidth() > 128);
1806     }
1807     return false;
1808   }
1809 
1810   void computeInfo(CGFunctionInfo &FI) const override;
1811 
1812   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1813                     QualType Ty) const override;
1814   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
1815                       QualType Ty) const override;
1816 
1817   bool has64BitPointers() const {
1818     return Has64BitPointers;
1819   }
1820 };
1821 
1822 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
1823 class WinX86_64ABIInfo : public ABIInfo {
1824 public:
1825   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT)
1826       : ABIInfo(CGT),
1827         IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {}
1828 
1829   void computeInfo(CGFunctionInfo &FI) const override;
1830 
1831   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1832                     QualType Ty) const override;
1833 
1834   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
1835     // FIXME: Assumes vectorcall is in use.
1836     return isX86VectorTypeForVectorCall(getContext(), Ty);
1837   }
1838 
1839   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
1840                                          uint64_t NumMembers) const override {
1841     // FIXME: Assumes vectorcall is in use.
1842     return isX86VectorCallAggregateSmallEnough(NumMembers);
1843   }
1844 
1845 private:
1846   ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs,
1847                       bool IsReturnType) const;
1848 
1849   bool IsMingw64;
1850 };
1851 
1852 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1853 public:
1854   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
1855       : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {}
1856 
1857   const X86_64ABIInfo &getABIInfo() const {
1858     return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
1859   }
1860 
1861   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1862     return 7;
1863   }
1864 
1865   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1866                                llvm::Value *Address) const override {
1867     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1868 
1869     // 0-15 are the 16 integer registers.
1870     // 16 is %rip.
1871     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1872     return false;
1873   }
1874 
1875   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1876                                   StringRef Constraint,
1877                                   llvm::Type* Ty) const override {
1878     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1879   }
1880 
1881   bool isNoProtoCallVariadic(const CallArgList &args,
1882                              const FunctionNoProtoType *fnType) const override {
1883     // The default CC on x86-64 sets %al to the number of SSA
1884     // registers used, and GCC sets this when calling an unprototyped
1885     // function, so we override the default behavior.  However, don't do
1886     // that when AVX types are involved: the ABI explicitly states it is
1887     // undefined, and it doesn't work in practice because of how the ABI
1888     // defines varargs anyway.
1889     if (fnType->getCallConv() == CC_C) {
1890       bool HasAVXType = false;
1891       for (CallArgList::const_iterator
1892              it = args.begin(), ie = args.end(); it != ie; ++it) {
1893         if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
1894           HasAVXType = true;
1895           break;
1896         }
1897       }
1898 
1899       if (!HasAVXType)
1900         return true;
1901     }
1902 
1903     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
1904   }
1905 
1906   llvm::Constant *
1907   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
1908     unsigned Sig;
1909     if (getABIInfo().has64BitPointers())
1910       Sig = (0xeb << 0) |  // jmp rel8
1911             (0x0a << 8) |  //           .+0x0c
1912             ('F' << 16) |
1913             ('T' << 24);
1914     else
1915       Sig = (0xeb << 0) |  // jmp rel8
1916             (0x06 << 8) |  //           .+0x08
1917             ('F' << 16) |
1918             ('T' << 24);
1919     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
1920   }
1921 
1922   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1923                            CodeGen::CodeGenModule &CGM) const override {
1924     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
1925       if (FD->hasAttr<AnyX86InterruptAttr>()) {
1926         llvm::Function *Fn = cast<llvm::Function>(GV);
1927         Fn->setCallingConv(llvm::CallingConv::X86_INTR);
1928       }
1929     }
1930   }
1931 };
1932 
1933 class PS4TargetCodeGenInfo : public X86_64TargetCodeGenInfo {
1934 public:
1935   PS4TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
1936     : X86_64TargetCodeGenInfo(CGT, AVXLevel) {}
1937 
1938   void getDependentLibraryOption(llvm::StringRef Lib,
1939                                  llvm::SmallString<24> &Opt) const override {
1940     Opt = "\01";
1941     // If the argument contains a space, enclose it in quotes.
1942     if (Lib.find(" ") != StringRef::npos)
1943       Opt += "\"" + Lib.str() + "\"";
1944     else
1945       Opt += Lib;
1946   }
1947 };
1948 
1949 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
1950   // If the argument does not end in .lib, automatically add the suffix.
1951   // If the argument contains a space, enclose it in quotes.
1952   // This matches the behavior of MSVC.
1953   bool Quote = (Lib.find(" ") != StringRef::npos);
1954   std::string ArgStr = Quote ? "\"" : "";
1955   ArgStr += Lib;
1956   if (!Lib.endswith_lower(".lib"))
1957     ArgStr += ".lib";
1958   ArgStr += Quote ? "\"" : "";
1959   return ArgStr;
1960 }
1961 
1962 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
1963 public:
1964   WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
1965         bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI,
1966         unsigned NumRegisterParameters)
1967     : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI,
1968         Win32StructABI, NumRegisterParameters, false) {}
1969 
1970   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1971                            CodeGen::CodeGenModule &CGM) const override;
1972 
1973   void getDependentLibraryOption(llvm::StringRef Lib,
1974                                  llvm::SmallString<24> &Opt) const override {
1975     Opt = "/DEFAULTLIB:";
1976     Opt += qualifyWindowsLibrary(Lib);
1977   }
1978 
1979   void getDetectMismatchOption(llvm::StringRef Name,
1980                                llvm::StringRef Value,
1981                                llvm::SmallString<32> &Opt) const override {
1982     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
1983   }
1984 };
1985 
1986 static void addStackProbeSizeTargetAttribute(const Decl *D,
1987                                              llvm::GlobalValue *GV,
1988                                              CodeGen::CodeGenModule &CGM) {
1989   if (D && isa<FunctionDecl>(D)) {
1990     if (CGM.getCodeGenOpts().StackProbeSize != 4096) {
1991       llvm::Function *Fn = cast<llvm::Function>(GV);
1992 
1993       Fn->addFnAttr("stack-probe-size",
1994                     llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
1995     }
1996   }
1997 }
1998 
1999 void WinX86_32TargetCodeGenInfo::setTargetAttributes(const Decl *D,
2000                                                      llvm::GlobalValue *GV,
2001                                             CodeGen::CodeGenModule &CGM) const {
2002   X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2003 
2004   addStackProbeSizeTargetAttribute(D, GV, CGM);
2005 }
2006 
2007 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2008 public:
2009   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2010                              X86AVXABILevel AVXLevel)
2011       : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
2012 
2013   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2014                            CodeGen::CodeGenModule &CGM) const override;
2015 
2016   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2017     return 7;
2018   }
2019 
2020   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2021                                llvm::Value *Address) const override {
2022     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2023 
2024     // 0-15 are the 16 integer registers.
2025     // 16 is %rip.
2026     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2027     return false;
2028   }
2029 
2030   void getDependentLibraryOption(llvm::StringRef Lib,
2031                                  llvm::SmallString<24> &Opt) const override {
2032     Opt = "/DEFAULTLIB:";
2033     Opt += qualifyWindowsLibrary(Lib);
2034   }
2035 
2036   void getDetectMismatchOption(llvm::StringRef Name,
2037                                llvm::StringRef Value,
2038                                llvm::SmallString<32> &Opt) const override {
2039     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2040   }
2041 };
2042 
2043 void WinX86_64TargetCodeGenInfo::setTargetAttributes(const Decl *D,
2044                                                      llvm::GlobalValue *GV,
2045                                             CodeGen::CodeGenModule &CGM) const {
2046   TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2047 
2048   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2049     if (FD->hasAttr<AnyX86InterruptAttr>()) {
2050       llvm::Function *Fn = cast<llvm::Function>(GV);
2051       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2052     }
2053   }
2054 
2055   addStackProbeSizeTargetAttribute(D, GV, CGM);
2056 }
2057 }
2058 
2059 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
2060                               Class &Hi) const {
2061   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
2062   //
2063   // (a) If one of the classes is Memory, the whole argument is passed in
2064   //     memory.
2065   //
2066   // (b) If X87UP is not preceded by X87, the whole argument is passed in
2067   //     memory.
2068   //
2069   // (c) If the size of the aggregate exceeds two eightbytes and the first
2070   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
2071   //     argument is passed in memory. NOTE: This is necessary to keep the
2072   //     ABI working for processors that don't support the __m256 type.
2073   //
2074   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
2075   //
2076   // Some of these are enforced by the merging logic.  Others can arise
2077   // only with unions; for example:
2078   //   union { _Complex double; unsigned; }
2079   //
2080   // Note that clauses (b) and (c) were added in 0.98.
2081   //
2082   if (Hi == Memory)
2083     Lo = Memory;
2084   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
2085     Lo = Memory;
2086   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
2087     Lo = Memory;
2088   if (Hi == SSEUp && Lo != SSE)
2089     Hi = SSE;
2090 }
2091 
2092 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
2093   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
2094   // classified recursively so that always two fields are
2095   // considered. The resulting class is calculated according to
2096   // the classes of the fields in the eightbyte:
2097   //
2098   // (a) If both classes are equal, this is the resulting class.
2099   //
2100   // (b) If one of the classes is NO_CLASS, the resulting class is
2101   // the other class.
2102   //
2103   // (c) If one of the classes is MEMORY, the result is the MEMORY
2104   // class.
2105   //
2106   // (d) If one of the classes is INTEGER, the result is the
2107   // INTEGER.
2108   //
2109   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
2110   // MEMORY is used as class.
2111   //
2112   // (f) Otherwise class SSE is used.
2113 
2114   // Accum should never be memory (we should have returned) or
2115   // ComplexX87 (because this cannot be passed in a structure).
2116   assert((Accum != Memory && Accum != ComplexX87) &&
2117          "Invalid accumulated classification during merge.");
2118   if (Accum == Field || Field == NoClass)
2119     return Accum;
2120   if (Field == Memory)
2121     return Memory;
2122   if (Accum == NoClass)
2123     return Field;
2124   if (Accum == Integer || Field == Integer)
2125     return Integer;
2126   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
2127       Accum == X87 || Accum == X87Up)
2128     return Memory;
2129   return SSE;
2130 }
2131 
2132 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
2133                              Class &Lo, Class &Hi, bool isNamedArg) const {
2134   // FIXME: This code can be simplified by introducing a simple value class for
2135   // Class pairs with appropriate constructor methods for the various
2136   // situations.
2137 
2138   // FIXME: Some of the split computations are wrong; unaligned vectors
2139   // shouldn't be passed in registers for example, so there is no chance they
2140   // can straddle an eightbyte. Verify & simplify.
2141 
2142   Lo = Hi = NoClass;
2143 
2144   Class &Current = OffsetBase < 64 ? Lo : Hi;
2145   Current = Memory;
2146 
2147   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
2148     BuiltinType::Kind k = BT->getKind();
2149 
2150     if (k == BuiltinType::Void) {
2151       Current = NoClass;
2152     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
2153       Lo = Integer;
2154       Hi = Integer;
2155     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
2156       Current = Integer;
2157     } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
2158       Current = SSE;
2159     } else if (k == BuiltinType::LongDouble) {
2160       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2161       if (LDF == &llvm::APFloat::IEEEquad) {
2162         Lo = SSE;
2163         Hi = SSEUp;
2164       } else if (LDF == &llvm::APFloat::x87DoubleExtended) {
2165         Lo = X87;
2166         Hi = X87Up;
2167       } else if (LDF == &llvm::APFloat::IEEEdouble) {
2168         Current = SSE;
2169       } else
2170         llvm_unreachable("unexpected long double representation!");
2171     }
2172     // FIXME: _Decimal32 and _Decimal64 are SSE.
2173     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
2174     return;
2175   }
2176 
2177   if (const EnumType *ET = Ty->getAs<EnumType>()) {
2178     // Classify the underlying integer type.
2179     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
2180     return;
2181   }
2182 
2183   if (Ty->hasPointerRepresentation()) {
2184     Current = Integer;
2185     return;
2186   }
2187 
2188   if (Ty->isMemberPointerType()) {
2189     if (Ty->isMemberFunctionPointerType()) {
2190       if (Has64BitPointers) {
2191         // If Has64BitPointers, this is an {i64, i64}, so classify both
2192         // Lo and Hi now.
2193         Lo = Hi = Integer;
2194       } else {
2195         // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
2196         // straddles an eightbyte boundary, Hi should be classified as well.
2197         uint64_t EB_FuncPtr = (OffsetBase) / 64;
2198         uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
2199         if (EB_FuncPtr != EB_ThisAdj) {
2200           Lo = Hi = Integer;
2201         } else {
2202           Current = Integer;
2203         }
2204       }
2205     } else {
2206       Current = Integer;
2207     }
2208     return;
2209   }
2210 
2211   if (const VectorType *VT = Ty->getAs<VectorType>()) {
2212     uint64_t Size = getContext().getTypeSize(VT);
2213     if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
2214       // gcc passes the following as integer:
2215       // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
2216       // 2 bytes - <2 x char>, <1 x short>
2217       // 1 byte  - <1 x char>
2218       Current = Integer;
2219 
2220       // If this type crosses an eightbyte boundary, it should be
2221       // split.
2222       uint64_t EB_Lo = (OffsetBase) / 64;
2223       uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
2224       if (EB_Lo != EB_Hi)
2225         Hi = Lo;
2226     } else if (Size == 64) {
2227       // gcc passes <1 x double> in memory. :(
2228       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
2229         return;
2230 
2231       // gcc passes <1 x long long> as INTEGER.
2232       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) ||
2233           VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) ||
2234           VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) ||
2235           VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong))
2236         Current = Integer;
2237       else
2238         Current = SSE;
2239 
2240       // If this type crosses an eightbyte boundary, it should be
2241       // split.
2242       if (OffsetBase && OffsetBase != 64)
2243         Hi = Lo;
2244     } else if (Size == 128 ||
2245                (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
2246       // Arguments of 256-bits are split into four eightbyte chunks. The
2247       // least significant one belongs to class SSE and all the others to class
2248       // SSEUP. The original Lo and Hi design considers that types can't be
2249       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
2250       // This design isn't correct for 256-bits, but since there're no cases
2251       // where the upper parts would need to be inspected, avoid adding
2252       // complexity and just consider Hi to match the 64-256 part.
2253       //
2254       // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
2255       // registers if they are "named", i.e. not part of the "..." of a
2256       // variadic function.
2257       //
2258       // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
2259       // split into eight eightbyte chunks, one SSE and seven SSEUP.
2260       Lo = SSE;
2261       Hi = SSEUp;
2262     }
2263     return;
2264   }
2265 
2266   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
2267     QualType ET = getContext().getCanonicalType(CT->getElementType());
2268 
2269     uint64_t Size = getContext().getTypeSize(Ty);
2270     if (ET->isIntegralOrEnumerationType()) {
2271       if (Size <= 64)
2272         Current = Integer;
2273       else if (Size <= 128)
2274         Lo = Hi = Integer;
2275     } else if (ET == getContext().FloatTy) {
2276       Current = SSE;
2277     } else if (ET == getContext().DoubleTy) {
2278       Lo = Hi = SSE;
2279     } else if (ET == getContext().LongDoubleTy) {
2280       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2281       if (LDF == &llvm::APFloat::IEEEquad)
2282         Current = Memory;
2283       else if (LDF == &llvm::APFloat::x87DoubleExtended)
2284         Current = ComplexX87;
2285       else if (LDF == &llvm::APFloat::IEEEdouble)
2286         Lo = Hi = SSE;
2287       else
2288         llvm_unreachable("unexpected long double representation!");
2289     }
2290 
2291     // If this complex type crosses an eightbyte boundary then it
2292     // should be split.
2293     uint64_t EB_Real = (OffsetBase) / 64;
2294     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
2295     if (Hi == NoClass && EB_Real != EB_Imag)
2296       Hi = Lo;
2297 
2298     return;
2299   }
2300 
2301   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
2302     // Arrays are treated like structures.
2303 
2304     uint64_t Size = getContext().getTypeSize(Ty);
2305 
2306     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2307     // than four eightbytes, ..., it has class MEMORY.
2308     if (Size > 256)
2309       return;
2310 
2311     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
2312     // fields, it has class MEMORY.
2313     //
2314     // Only need to check alignment of array base.
2315     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
2316       return;
2317 
2318     // Otherwise implement simplified merge. We could be smarter about
2319     // this, but it isn't worth it and would be harder to verify.
2320     Current = NoClass;
2321     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
2322     uint64_t ArraySize = AT->getSize().getZExtValue();
2323 
2324     // The only case a 256-bit wide vector could be used is when the array
2325     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2326     // to work for sizes wider than 128, early check and fallback to memory.
2327     if (Size > 128 && EltSize != 256)
2328       return;
2329 
2330     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
2331       Class FieldLo, FieldHi;
2332       classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
2333       Lo = merge(Lo, FieldLo);
2334       Hi = merge(Hi, FieldHi);
2335       if (Lo == Memory || Hi == Memory)
2336         break;
2337     }
2338 
2339     postMerge(Size, Lo, Hi);
2340     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
2341     return;
2342   }
2343 
2344   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2345     uint64_t Size = getContext().getTypeSize(Ty);
2346 
2347     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2348     // than four eightbytes, ..., it has class MEMORY.
2349     if (Size > 256)
2350       return;
2351 
2352     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
2353     // copy constructor or a non-trivial destructor, it is passed by invisible
2354     // reference.
2355     if (getRecordArgABI(RT, getCXXABI()))
2356       return;
2357 
2358     const RecordDecl *RD = RT->getDecl();
2359 
2360     // Assume variable sized types are passed in memory.
2361     if (RD->hasFlexibleArrayMember())
2362       return;
2363 
2364     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2365 
2366     // Reset Lo class, this will be recomputed.
2367     Current = NoClass;
2368 
2369     // If this is a C++ record, classify the bases first.
2370     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2371       for (const auto &I : CXXRD->bases()) {
2372         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2373                "Unexpected base class!");
2374         const CXXRecordDecl *Base =
2375           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2376 
2377         // Classify this field.
2378         //
2379         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
2380         // single eightbyte, each is classified separately. Each eightbyte gets
2381         // initialized to class NO_CLASS.
2382         Class FieldLo, FieldHi;
2383         uint64_t Offset =
2384           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
2385         classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
2386         Lo = merge(Lo, FieldLo);
2387         Hi = merge(Hi, FieldHi);
2388         if (Lo == Memory || Hi == Memory) {
2389           postMerge(Size, Lo, Hi);
2390           return;
2391         }
2392       }
2393     }
2394 
2395     // Classify the fields one at a time, merging the results.
2396     unsigned idx = 0;
2397     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2398            i != e; ++i, ++idx) {
2399       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2400       bool BitField = i->isBitField();
2401 
2402       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
2403       // four eightbytes, or it contains unaligned fields, it has class MEMORY.
2404       //
2405       // The only case a 256-bit wide vector could be used is when the struct
2406       // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2407       // to work for sizes wider than 128, early check and fallback to memory.
2408       //
2409       if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) {
2410         Lo = Memory;
2411         postMerge(Size, Lo, Hi);
2412         return;
2413       }
2414       // Note, skip this test for bit-fields, see below.
2415       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
2416         Lo = Memory;
2417         postMerge(Size, Lo, Hi);
2418         return;
2419       }
2420 
2421       // Classify this field.
2422       //
2423       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
2424       // exceeds a single eightbyte, each is classified
2425       // separately. Each eightbyte gets initialized to class
2426       // NO_CLASS.
2427       Class FieldLo, FieldHi;
2428 
2429       // Bit-fields require special handling, they do not force the
2430       // structure to be passed in memory even if unaligned, and
2431       // therefore they can straddle an eightbyte.
2432       if (BitField) {
2433         // Ignore padding bit-fields.
2434         if (i->isUnnamedBitfield())
2435           continue;
2436 
2437         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2438         uint64_t Size = i->getBitWidthValue(getContext());
2439 
2440         uint64_t EB_Lo = Offset / 64;
2441         uint64_t EB_Hi = (Offset + Size - 1) / 64;
2442 
2443         if (EB_Lo) {
2444           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
2445           FieldLo = NoClass;
2446           FieldHi = Integer;
2447         } else {
2448           FieldLo = Integer;
2449           FieldHi = EB_Hi ? Integer : NoClass;
2450         }
2451       } else
2452         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
2453       Lo = merge(Lo, FieldLo);
2454       Hi = merge(Hi, FieldHi);
2455       if (Lo == Memory || Hi == Memory)
2456         break;
2457     }
2458 
2459     postMerge(Size, Lo, Hi);
2460   }
2461 }
2462 
2463 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
2464   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2465   // place naturally.
2466   if (!isAggregateTypeForABI(Ty)) {
2467     // Treat an enum type as its underlying type.
2468     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2469       Ty = EnumTy->getDecl()->getIntegerType();
2470 
2471     return (Ty->isPromotableIntegerType() ?
2472             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2473   }
2474 
2475   return getNaturalAlignIndirect(Ty);
2476 }
2477 
2478 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
2479   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
2480     uint64_t Size = getContext().getTypeSize(VecTy);
2481     unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
2482     if (Size <= 64 || Size > LargestVector)
2483       return true;
2484   }
2485 
2486   return false;
2487 }
2488 
2489 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
2490                                             unsigned freeIntRegs) const {
2491   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2492   // place naturally.
2493   //
2494   // This assumption is optimistic, as there could be free registers available
2495   // when we need to pass this argument in memory, and LLVM could try to pass
2496   // the argument in the free register. This does not seem to happen currently,
2497   // but this code would be much safer if we could mark the argument with
2498   // 'onstack'. See PR12193.
2499   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
2500     // Treat an enum type as its underlying type.
2501     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2502       Ty = EnumTy->getDecl()->getIntegerType();
2503 
2504     return (Ty->isPromotableIntegerType() ?
2505             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2506   }
2507 
2508   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
2509     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
2510 
2511   // Compute the byval alignment. We specify the alignment of the byval in all
2512   // cases so that the mid-level optimizer knows the alignment of the byval.
2513   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
2514 
2515   // Attempt to avoid passing indirect results using byval when possible. This
2516   // is important for good codegen.
2517   //
2518   // We do this by coercing the value into a scalar type which the backend can
2519   // handle naturally (i.e., without using byval).
2520   //
2521   // For simplicity, we currently only do this when we have exhausted all of the
2522   // free integer registers. Doing this when there are free integer registers
2523   // would require more care, as we would have to ensure that the coerced value
2524   // did not claim the unused register. That would require either reording the
2525   // arguments to the function (so that any subsequent inreg values came first),
2526   // or only doing this optimization when there were no following arguments that
2527   // might be inreg.
2528   //
2529   // We currently expect it to be rare (particularly in well written code) for
2530   // arguments to be passed on the stack when there are still free integer
2531   // registers available (this would typically imply large structs being passed
2532   // by value), so this seems like a fair tradeoff for now.
2533   //
2534   // We can revisit this if the backend grows support for 'onstack' parameter
2535   // attributes. See PR12193.
2536   if (freeIntRegs == 0) {
2537     uint64_t Size = getContext().getTypeSize(Ty);
2538 
2539     // If this type fits in an eightbyte, coerce it into the matching integral
2540     // type, which will end up on the stack (with alignment 8).
2541     if (Align == 8 && Size <= 64)
2542       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2543                                                           Size));
2544   }
2545 
2546   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align));
2547 }
2548 
2549 /// The ABI specifies that a value should be passed in a full vector XMM/YMM
2550 /// register. Pick an LLVM IR type that will be passed as a vector register.
2551 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
2552   // Wrapper structs/arrays that only contain vectors are passed just like
2553   // vectors; strip them off if present.
2554   if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
2555     Ty = QualType(InnerTy, 0);
2556 
2557   llvm::Type *IRType = CGT.ConvertType(Ty);
2558   if (isa<llvm::VectorType>(IRType) ||
2559       IRType->getTypeID() == llvm::Type::FP128TyID)
2560     return IRType;
2561 
2562   // We couldn't find the preferred IR vector type for 'Ty'.
2563   uint64_t Size = getContext().getTypeSize(Ty);
2564   assert((Size == 128 || Size == 256) && "Invalid type found!");
2565 
2566   // Return a LLVM IR vector type based on the size of 'Ty'.
2567   return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()),
2568                                Size / 64);
2569 }
2570 
2571 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
2572 /// is known to either be off the end of the specified type or being in
2573 /// alignment padding.  The user type specified is known to be at most 128 bits
2574 /// in size, and have passed through X86_64ABIInfo::classify with a successful
2575 /// classification that put one of the two halves in the INTEGER class.
2576 ///
2577 /// It is conservatively correct to return false.
2578 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
2579                                   unsigned EndBit, ASTContext &Context) {
2580   // If the bytes being queried are off the end of the type, there is no user
2581   // data hiding here.  This handles analysis of builtins, vectors and other
2582   // types that don't contain interesting padding.
2583   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
2584   if (TySize <= StartBit)
2585     return true;
2586 
2587   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
2588     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
2589     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
2590 
2591     // Check each element to see if the element overlaps with the queried range.
2592     for (unsigned i = 0; i != NumElts; ++i) {
2593       // If the element is after the span we care about, then we're done..
2594       unsigned EltOffset = i*EltSize;
2595       if (EltOffset >= EndBit) break;
2596 
2597       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
2598       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
2599                                  EndBit-EltOffset, Context))
2600         return false;
2601     }
2602     // If it overlaps no elements, then it is safe to process as padding.
2603     return true;
2604   }
2605 
2606   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2607     const RecordDecl *RD = RT->getDecl();
2608     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
2609 
2610     // If this is a C++ record, check the bases first.
2611     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2612       for (const auto &I : CXXRD->bases()) {
2613         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2614                "Unexpected base class!");
2615         const CXXRecordDecl *Base =
2616           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2617 
2618         // If the base is after the span we care about, ignore it.
2619         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
2620         if (BaseOffset >= EndBit) continue;
2621 
2622         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
2623         if (!BitsContainNoUserData(I.getType(), BaseStart,
2624                                    EndBit-BaseOffset, Context))
2625           return false;
2626       }
2627     }
2628 
2629     // Verify that no field has data that overlaps the region of interest.  Yes
2630     // this could be sped up a lot by being smarter about queried fields,
2631     // however we're only looking at structs up to 16 bytes, so we don't care
2632     // much.
2633     unsigned idx = 0;
2634     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2635          i != e; ++i, ++idx) {
2636       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
2637 
2638       // If we found a field after the region we care about, then we're done.
2639       if (FieldOffset >= EndBit) break;
2640 
2641       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
2642       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
2643                                  Context))
2644         return false;
2645     }
2646 
2647     // If nothing in this record overlapped the area of interest, then we're
2648     // clean.
2649     return true;
2650   }
2651 
2652   return false;
2653 }
2654 
2655 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
2656 /// float member at the specified offset.  For example, {int,{float}} has a
2657 /// float at offset 4.  It is conservatively correct for this routine to return
2658 /// false.
2659 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
2660                                   const llvm::DataLayout &TD) {
2661   // Base case if we find a float.
2662   if (IROffset == 0 && IRType->isFloatTy())
2663     return true;
2664 
2665   // If this is a struct, recurse into the field at the specified offset.
2666   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2667     const llvm::StructLayout *SL = TD.getStructLayout(STy);
2668     unsigned Elt = SL->getElementContainingOffset(IROffset);
2669     IROffset -= SL->getElementOffset(Elt);
2670     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
2671   }
2672 
2673   // If this is an array, recurse into the field at the specified offset.
2674   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2675     llvm::Type *EltTy = ATy->getElementType();
2676     unsigned EltSize = TD.getTypeAllocSize(EltTy);
2677     IROffset -= IROffset/EltSize*EltSize;
2678     return ContainsFloatAtOffset(EltTy, IROffset, TD);
2679   }
2680 
2681   return false;
2682 }
2683 
2684 
2685 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
2686 /// low 8 bytes of an XMM register, corresponding to the SSE class.
2687 llvm::Type *X86_64ABIInfo::
2688 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2689                    QualType SourceTy, unsigned SourceOffset) const {
2690   // The only three choices we have are either double, <2 x float>, or float. We
2691   // pass as float if the last 4 bytes is just padding.  This happens for
2692   // structs that contain 3 floats.
2693   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
2694                             SourceOffset*8+64, getContext()))
2695     return llvm::Type::getFloatTy(getVMContext());
2696 
2697   // We want to pass as <2 x float> if the LLVM IR type contains a float at
2698   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
2699   // case.
2700   if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
2701       ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
2702     return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
2703 
2704   return llvm::Type::getDoubleTy(getVMContext());
2705 }
2706 
2707 
2708 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
2709 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
2710 /// about the high or low part of an up-to-16-byte struct.  This routine picks
2711 /// the best LLVM IR type to represent this, which may be i64 or may be anything
2712 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
2713 /// etc).
2714 ///
2715 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
2716 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
2717 /// the 8-byte value references.  PrefType may be null.
2718 ///
2719 /// SourceTy is the source-level type for the entire argument.  SourceOffset is
2720 /// an offset into this that we're processing (which is always either 0 or 8).
2721 ///
2722 llvm::Type *X86_64ABIInfo::
2723 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2724                        QualType SourceTy, unsigned SourceOffset) const {
2725   // If we're dealing with an un-offset LLVM IR type, then it means that we're
2726   // returning an 8-byte unit starting with it.  See if we can safely use it.
2727   if (IROffset == 0) {
2728     // Pointers and int64's always fill the 8-byte unit.
2729     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
2730         IRType->isIntegerTy(64))
2731       return IRType;
2732 
2733     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
2734     // goodness in the source type is just tail padding.  This is allowed to
2735     // kick in for struct {double,int} on the int, but not on
2736     // struct{double,int,int} because we wouldn't return the second int.  We
2737     // have to do this analysis on the source type because we can't depend on
2738     // unions being lowered a specific way etc.
2739     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
2740         IRType->isIntegerTy(32) ||
2741         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
2742       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
2743           cast<llvm::IntegerType>(IRType)->getBitWidth();
2744 
2745       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
2746                                 SourceOffset*8+64, getContext()))
2747         return IRType;
2748     }
2749   }
2750 
2751   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2752     // If this is a struct, recurse into the field at the specified offset.
2753     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
2754     if (IROffset < SL->getSizeInBytes()) {
2755       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
2756       IROffset -= SL->getElementOffset(FieldIdx);
2757 
2758       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
2759                                     SourceTy, SourceOffset);
2760     }
2761   }
2762 
2763   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2764     llvm::Type *EltTy = ATy->getElementType();
2765     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
2766     unsigned EltOffset = IROffset/EltSize*EltSize;
2767     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
2768                                   SourceOffset);
2769   }
2770 
2771   // Okay, we don't have any better idea of what to pass, so we pass this in an
2772   // integer register that isn't too big to fit the rest of the struct.
2773   unsigned TySizeInBytes =
2774     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
2775 
2776   assert(TySizeInBytes != SourceOffset && "Empty field?");
2777 
2778   // It is always safe to classify this as an integer type up to i64 that
2779   // isn't larger than the structure.
2780   return llvm::IntegerType::get(getVMContext(),
2781                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
2782 }
2783 
2784 
2785 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
2786 /// be used as elements of a two register pair to pass or return, return a
2787 /// first class aggregate to represent them.  For example, if the low part of
2788 /// a by-value argument should be passed as i32* and the high part as float,
2789 /// return {i32*, float}.
2790 static llvm::Type *
2791 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
2792                            const llvm::DataLayout &TD) {
2793   // In order to correctly satisfy the ABI, we need to the high part to start
2794   // at offset 8.  If the high and low parts we inferred are both 4-byte types
2795   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
2796   // the second element at offset 8.  Check for this:
2797   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
2798   unsigned HiAlign = TD.getABITypeAlignment(Hi);
2799   unsigned HiStart = llvm::alignTo(LoSize, HiAlign);
2800   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
2801 
2802   // To handle this, we have to increase the size of the low part so that the
2803   // second element will start at an 8 byte offset.  We can't increase the size
2804   // of the second element because it might make us access off the end of the
2805   // struct.
2806   if (HiStart != 8) {
2807     // There are usually two sorts of types the ABI generation code can produce
2808     // for the low part of a pair that aren't 8 bytes in size: float or
2809     // i8/i16/i32.  This can also include pointers when they are 32-bit (X32 and
2810     // NaCl).
2811     // Promote these to a larger type.
2812     if (Lo->isFloatTy())
2813       Lo = llvm::Type::getDoubleTy(Lo->getContext());
2814     else {
2815       assert((Lo->isIntegerTy() || Lo->isPointerTy())
2816              && "Invalid/unknown lo type");
2817       Lo = llvm::Type::getInt64Ty(Lo->getContext());
2818     }
2819   }
2820 
2821   llvm::StructType *Result = llvm::StructType::get(Lo, Hi, nullptr);
2822 
2823 
2824   // Verify that the second element is at an 8-byte offset.
2825   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
2826          "Invalid x86-64 argument pair!");
2827   return Result;
2828 }
2829 
2830 ABIArgInfo X86_64ABIInfo::
2831 classifyReturnType(QualType RetTy) const {
2832   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
2833   // classification algorithm.
2834   X86_64ABIInfo::Class Lo, Hi;
2835   classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
2836 
2837   // Check some invariants.
2838   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2839   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2840 
2841   llvm::Type *ResType = nullptr;
2842   switch (Lo) {
2843   case NoClass:
2844     if (Hi == NoClass)
2845       return ABIArgInfo::getIgnore();
2846     // If the low part is just padding, it takes no register, leave ResType
2847     // null.
2848     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2849            "Unknown missing lo part");
2850     break;
2851 
2852   case SSEUp:
2853   case X87Up:
2854     llvm_unreachable("Invalid classification for lo word.");
2855 
2856     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
2857     // hidden argument.
2858   case Memory:
2859     return getIndirectReturnResult(RetTy);
2860 
2861     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
2862     // available register of the sequence %rax, %rdx is used.
2863   case Integer:
2864     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2865 
2866     // If we have a sign or zero extended integer, make sure to return Extend
2867     // so that the parameter gets the right LLVM IR attributes.
2868     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2869       // Treat an enum type as its underlying type.
2870       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2871         RetTy = EnumTy->getDecl()->getIntegerType();
2872 
2873       if (RetTy->isIntegralOrEnumerationType() &&
2874           RetTy->isPromotableIntegerType())
2875         return ABIArgInfo::getExtend();
2876     }
2877     break;
2878 
2879     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
2880     // available SSE register of the sequence %xmm0, %xmm1 is used.
2881   case SSE:
2882     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2883     break;
2884 
2885     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
2886     // returned on the X87 stack in %st0 as 80-bit x87 number.
2887   case X87:
2888     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
2889     break;
2890 
2891     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
2892     // part of the value is returned in %st0 and the imaginary part in
2893     // %st1.
2894   case ComplexX87:
2895     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
2896     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
2897                                     llvm::Type::getX86_FP80Ty(getVMContext()),
2898                                     nullptr);
2899     break;
2900   }
2901 
2902   llvm::Type *HighPart = nullptr;
2903   switch (Hi) {
2904     // Memory was handled previously and X87 should
2905     // never occur as a hi class.
2906   case Memory:
2907   case X87:
2908     llvm_unreachable("Invalid classification for hi word.");
2909 
2910   case ComplexX87: // Previously handled.
2911   case NoClass:
2912     break;
2913 
2914   case Integer:
2915     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2916     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2917       return ABIArgInfo::getDirect(HighPart, 8);
2918     break;
2919   case SSE:
2920     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2921     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2922       return ABIArgInfo::getDirect(HighPart, 8);
2923     break;
2924 
2925     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
2926     // is passed in the next available eightbyte chunk if the last used
2927     // vector register.
2928     //
2929     // SSEUP should always be preceded by SSE, just widen.
2930   case SSEUp:
2931     assert(Lo == SSE && "Unexpected SSEUp classification.");
2932     ResType = GetByteVectorType(RetTy);
2933     break;
2934 
2935     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
2936     // returned together with the previous X87 value in %st0.
2937   case X87Up:
2938     // If X87Up is preceded by X87, we don't need to do
2939     // anything. However, in some cases with unions it may not be
2940     // preceded by X87. In such situations we follow gcc and pass the
2941     // extra bits in an SSE reg.
2942     if (Lo != X87) {
2943       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2944       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2945         return ABIArgInfo::getDirect(HighPart, 8);
2946     }
2947     break;
2948   }
2949 
2950   // If a high part was specified, merge it together with the low part.  It is
2951   // known to pass in the high eightbyte of the result.  We do this by forming a
2952   // first class struct aggregate with the high and low part: {low, high}
2953   if (HighPart)
2954     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2955 
2956   return ABIArgInfo::getDirect(ResType);
2957 }
2958 
2959 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
2960   QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
2961   bool isNamedArg)
2962   const
2963 {
2964   Ty = useFirstFieldIfTransparentUnion(Ty);
2965 
2966   X86_64ABIInfo::Class Lo, Hi;
2967   classify(Ty, 0, Lo, Hi, isNamedArg);
2968 
2969   // Check some invariants.
2970   // FIXME: Enforce these by construction.
2971   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2972   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2973 
2974   neededInt = 0;
2975   neededSSE = 0;
2976   llvm::Type *ResType = nullptr;
2977   switch (Lo) {
2978   case NoClass:
2979     if (Hi == NoClass)
2980       return ABIArgInfo::getIgnore();
2981     // If the low part is just padding, it takes no register, leave ResType
2982     // null.
2983     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2984            "Unknown missing lo part");
2985     break;
2986 
2987     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
2988     // on the stack.
2989   case Memory:
2990 
2991     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
2992     // COMPLEX_X87, it is passed in memory.
2993   case X87:
2994   case ComplexX87:
2995     if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
2996       ++neededInt;
2997     return getIndirectResult(Ty, freeIntRegs);
2998 
2999   case SSEUp:
3000   case X87Up:
3001     llvm_unreachable("Invalid classification for lo word.");
3002 
3003     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
3004     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
3005     // and %r9 is used.
3006   case Integer:
3007     ++neededInt;
3008 
3009     // Pick an 8-byte type based on the preferred type.
3010     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
3011 
3012     // If we have a sign or zero extended integer, make sure to return Extend
3013     // so that the parameter gets the right LLVM IR attributes.
3014     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3015       // Treat an enum type as its underlying type.
3016       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3017         Ty = EnumTy->getDecl()->getIntegerType();
3018 
3019       if (Ty->isIntegralOrEnumerationType() &&
3020           Ty->isPromotableIntegerType())
3021         return ABIArgInfo::getExtend();
3022     }
3023 
3024     break;
3025 
3026     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
3027     // available SSE register is used, the registers are taken in the
3028     // order from %xmm0 to %xmm7.
3029   case SSE: {
3030     llvm::Type *IRType = CGT.ConvertType(Ty);
3031     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
3032     ++neededSSE;
3033     break;
3034   }
3035   }
3036 
3037   llvm::Type *HighPart = nullptr;
3038   switch (Hi) {
3039     // Memory was handled previously, ComplexX87 and X87 should
3040     // never occur as hi classes, and X87Up must be preceded by X87,
3041     // which is passed in memory.
3042   case Memory:
3043   case X87:
3044   case ComplexX87:
3045     llvm_unreachable("Invalid classification for hi word.");
3046 
3047   case NoClass: break;
3048 
3049   case Integer:
3050     ++neededInt;
3051     // Pick an 8-byte type based on the preferred type.
3052     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3053 
3054     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3055       return ABIArgInfo::getDirect(HighPart, 8);
3056     break;
3057 
3058     // X87Up generally doesn't occur here (long double is passed in
3059     // memory), except in situations involving unions.
3060   case X87Up:
3061   case SSE:
3062     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3063 
3064     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3065       return ABIArgInfo::getDirect(HighPart, 8);
3066 
3067     ++neededSSE;
3068     break;
3069 
3070     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
3071     // eightbyte is passed in the upper half of the last used SSE
3072     // register.  This only happens when 128-bit vectors are passed.
3073   case SSEUp:
3074     assert(Lo == SSE && "Unexpected SSEUp classification");
3075     ResType = GetByteVectorType(Ty);
3076     break;
3077   }
3078 
3079   // If a high part was specified, merge it together with the low part.  It is
3080   // known to pass in the high eightbyte of the result.  We do this by forming a
3081   // first class struct aggregate with the high and low part: {low, high}
3082   if (HighPart)
3083     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3084 
3085   return ABIArgInfo::getDirect(ResType);
3086 }
3087 
3088 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3089 
3090   if (!getCXXABI().classifyReturnType(FI))
3091     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3092 
3093   // Keep track of the number of assigned registers.
3094   unsigned freeIntRegs = 6, freeSSERegs = 8;
3095 
3096   // If the return value is indirect, then the hidden argument is consuming one
3097   // integer register.
3098   if (FI.getReturnInfo().isIndirect())
3099     --freeIntRegs;
3100 
3101   // The chain argument effectively gives us another free register.
3102   if (FI.isChainCall())
3103     ++freeIntRegs;
3104 
3105   unsigned NumRequiredArgs = FI.getNumRequiredArgs();
3106   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
3107   // get assigned (in left-to-right order) for passing as follows...
3108   unsigned ArgNo = 0;
3109   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3110        it != ie; ++it, ++ArgNo) {
3111     bool IsNamedArg = ArgNo < NumRequiredArgs;
3112 
3113     unsigned neededInt, neededSSE;
3114     it->info = classifyArgumentType(it->type, freeIntRegs, neededInt,
3115                                     neededSSE, IsNamedArg);
3116 
3117     // AMD64-ABI 3.2.3p3: If there are no registers available for any
3118     // eightbyte of an argument, the whole argument is passed on the
3119     // stack. If registers have already been assigned for some
3120     // eightbytes of such an argument, the assignments get reverted.
3121     if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
3122       freeIntRegs -= neededInt;
3123       freeSSERegs -= neededSSE;
3124     } else {
3125       it->info = getIndirectResult(it->type, freeIntRegs);
3126     }
3127   }
3128 }
3129 
3130 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF,
3131                                          Address VAListAddr, QualType Ty) {
3132   Address overflow_arg_area_p = CGF.Builder.CreateStructGEP(
3133       VAListAddr, 2, CharUnits::fromQuantity(8), "overflow_arg_area_p");
3134   llvm::Value *overflow_arg_area =
3135     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
3136 
3137   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
3138   // byte boundary if alignment needed by type exceeds 8 byte boundary.
3139   // It isn't stated explicitly in the standard, but in practice we use
3140   // alignment greater than 16 where necessary.
3141   CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
3142   if (Align > CharUnits::fromQuantity(8)) {
3143     overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area,
3144                                                       Align);
3145   }
3146 
3147   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
3148   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3149   llvm::Value *Res =
3150     CGF.Builder.CreateBitCast(overflow_arg_area,
3151                               llvm::PointerType::getUnqual(LTy));
3152 
3153   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
3154   // l->overflow_arg_area + sizeof(type).
3155   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
3156   // an 8 byte boundary.
3157 
3158   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
3159   llvm::Value *Offset =
3160       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
3161   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
3162                                             "overflow_arg_area.next");
3163   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
3164 
3165   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
3166   return Address(Res, Align);
3167 }
3168 
3169 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3170                                  QualType Ty) const {
3171   // Assume that va_list type is correct; should be pointer to LLVM type:
3172   // struct {
3173   //   i32 gp_offset;
3174   //   i32 fp_offset;
3175   //   i8* overflow_arg_area;
3176   //   i8* reg_save_area;
3177   // };
3178   unsigned neededInt, neededSSE;
3179 
3180   Ty = getContext().getCanonicalType(Ty);
3181   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
3182                                        /*isNamedArg*/false);
3183 
3184   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
3185   // in the registers. If not go to step 7.
3186   if (!neededInt && !neededSSE)
3187     return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3188 
3189   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
3190   // general purpose registers needed to pass type and num_fp to hold
3191   // the number of floating point registers needed.
3192 
3193   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
3194   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
3195   // l->fp_offset > 304 - num_fp * 16 go to step 7.
3196   //
3197   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
3198   // register save space).
3199 
3200   llvm::Value *InRegs = nullptr;
3201   Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid();
3202   llvm::Value *gp_offset = nullptr, *fp_offset = nullptr;
3203   if (neededInt) {
3204     gp_offset_p =
3205         CGF.Builder.CreateStructGEP(VAListAddr, 0, CharUnits::Zero(),
3206                                     "gp_offset_p");
3207     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
3208     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
3209     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
3210   }
3211 
3212   if (neededSSE) {
3213     fp_offset_p =
3214         CGF.Builder.CreateStructGEP(VAListAddr, 1, CharUnits::fromQuantity(4),
3215                                     "fp_offset_p");
3216     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
3217     llvm::Value *FitsInFP =
3218       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
3219     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
3220     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
3221   }
3222 
3223   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
3224   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
3225   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
3226   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
3227 
3228   // Emit code to load the value if it was passed in registers.
3229 
3230   CGF.EmitBlock(InRegBlock);
3231 
3232   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
3233   // an offset of l->gp_offset and/or l->fp_offset. This may require
3234   // copying to a temporary location in case the parameter is passed
3235   // in different register classes or requires an alignment greater
3236   // than 8 for general purpose registers and 16 for XMM registers.
3237   //
3238   // FIXME: This really results in shameful code when we end up needing to
3239   // collect arguments from different places; often what should result in a
3240   // simple assembling of a structure from scattered addresses has many more
3241   // loads than necessary. Can we clean this up?
3242   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3243   llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(
3244       CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(16)),
3245                                   "reg_save_area");
3246 
3247   Address RegAddr = Address::invalid();
3248   if (neededInt && neededSSE) {
3249     // FIXME: Cleanup.
3250     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
3251     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
3252     Address Tmp = CGF.CreateMemTemp(Ty);
3253     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
3254     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
3255     llvm::Type *TyLo = ST->getElementType(0);
3256     llvm::Type *TyHi = ST->getElementType(1);
3257     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
3258            "Unexpected ABI info for mixed regs");
3259     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
3260     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
3261     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset);
3262     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset);
3263     llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
3264     llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
3265 
3266     // Copy the first element.
3267     llvm::Value *V =
3268       CGF.Builder.CreateDefaultAlignedLoad(
3269                                CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
3270     CGF.Builder.CreateStore(V,
3271                     CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero()));
3272 
3273     // Copy the second element.
3274     V = CGF.Builder.CreateDefaultAlignedLoad(
3275                                CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
3276     CharUnits Offset = CharUnits::fromQuantity(
3277                    getDataLayout().getStructLayout(ST)->getElementOffset(1));
3278     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1, Offset));
3279 
3280     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
3281   } else if (neededInt) {
3282     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset),
3283                       CharUnits::fromQuantity(8));
3284     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
3285 
3286     // Copy to a temporary if necessary to ensure the appropriate alignment.
3287     std::pair<CharUnits, CharUnits> SizeAlign =
3288         getContext().getTypeInfoInChars(Ty);
3289     uint64_t TySize = SizeAlign.first.getQuantity();
3290     CharUnits TyAlign = SizeAlign.second;
3291 
3292     // Copy into a temporary if the type is more aligned than the
3293     // register save area.
3294     if (TyAlign.getQuantity() > 8) {
3295       Address Tmp = CGF.CreateMemTemp(Ty);
3296       CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false);
3297       RegAddr = Tmp;
3298     }
3299 
3300   } else if (neededSSE == 1) {
3301     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
3302                       CharUnits::fromQuantity(16));
3303     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
3304   } else {
3305     assert(neededSSE == 2 && "Invalid number of needed registers!");
3306     // SSE registers are spaced 16 bytes apart in the register save
3307     // area, we need to collect the two eightbytes together.
3308     // The ABI isn't explicit about this, but it seems reasonable
3309     // to assume that the slots are 16-byte aligned, since the stack is
3310     // naturally 16-byte aligned and the prologue is expected to store
3311     // all the SSE registers to the RSA.
3312     Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
3313                                 CharUnits::fromQuantity(16));
3314     Address RegAddrHi =
3315       CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo,
3316                                              CharUnits::fromQuantity(16));
3317     llvm::Type *DoubleTy = CGF.DoubleTy;
3318     llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, nullptr);
3319     llvm::Value *V;
3320     Address Tmp = CGF.CreateMemTemp(Ty);
3321     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
3322     V = CGF.Builder.CreateLoad(
3323                    CGF.Builder.CreateElementBitCast(RegAddrLo, DoubleTy));
3324     CGF.Builder.CreateStore(V,
3325                    CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero()));
3326     V = CGF.Builder.CreateLoad(
3327                    CGF.Builder.CreateElementBitCast(RegAddrHi, DoubleTy));
3328     CGF.Builder.CreateStore(V,
3329           CGF.Builder.CreateStructGEP(Tmp, 1, CharUnits::fromQuantity(8)));
3330 
3331     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
3332   }
3333 
3334   // AMD64-ABI 3.5.7p5: Step 5. Set:
3335   // l->gp_offset = l->gp_offset + num_gp * 8
3336   // l->fp_offset = l->fp_offset + num_fp * 16.
3337   if (neededInt) {
3338     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
3339     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
3340                             gp_offset_p);
3341   }
3342   if (neededSSE) {
3343     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
3344     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
3345                             fp_offset_p);
3346   }
3347   CGF.EmitBranch(ContBlock);
3348 
3349   // Emit code to load the value if it was passed in memory.
3350 
3351   CGF.EmitBlock(InMemBlock);
3352   Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3353 
3354   // Return the appropriate result.
3355 
3356   CGF.EmitBlock(ContBlock);
3357   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
3358                                  "vaarg.addr");
3359   return ResAddr;
3360 }
3361 
3362 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
3363                                    QualType Ty) const {
3364   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
3365                           CGF.getContext().getTypeInfoInChars(Ty),
3366                           CharUnits::fromQuantity(8),
3367                           /*allowHigherAlign*/ false);
3368 }
3369 
3370 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
3371                                       bool IsReturnType) const {
3372 
3373   if (Ty->isVoidType())
3374     return ABIArgInfo::getIgnore();
3375 
3376   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3377     Ty = EnumTy->getDecl()->getIntegerType();
3378 
3379   TypeInfo Info = getContext().getTypeInfo(Ty);
3380   uint64_t Width = Info.Width;
3381   CharUnits Align = getContext().toCharUnitsFromBits(Info.Align);
3382 
3383   const RecordType *RT = Ty->getAs<RecordType>();
3384   if (RT) {
3385     if (!IsReturnType) {
3386       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
3387         return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
3388     }
3389 
3390     if (RT->getDecl()->hasFlexibleArrayMember())
3391       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3392 
3393   }
3394 
3395   // vectorcall adds the concept of a homogenous vector aggregate, similar to
3396   // other targets.
3397   const Type *Base = nullptr;
3398   uint64_t NumElts = 0;
3399   if (FreeSSERegs && isHomogeneousAggregate(Ty, Base, NumElts)) {
3400     if (FreeSSERegs >= NumElts) {
3401       FreeSSERegs -= NumElts;
3402       if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
3403         return ABIArgInfo::getDirect();
3404       return ABIArgInfo::getExpand();
3405     }
3406     return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3407   }
3408 
3409 
3410   if (Ty->isMemberPointerType()) {
3411     // If the member pointer is represented by an LLVM int or ptr, pass it
3412     // directly.
3413     llvm::Type *LLTy = CGT.ConvertType(Ty);
3414     if (LLTy->isPointerTy() || LLTy->isIntegerTy())
3415       return ABIArgInfo::getDirect();
3416   }
3417 
3418   if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
3419     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
3420     // not 1, 2, 4, or 8 bytes, must be passed by reference."
3421     if (Width > 64 || !llvm::isPowerOf2_64(Width))
3422       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3423 
3424     // Otherwise, coerce it to a small integer.
3425     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
3426   }
3427 
3428   // Bool type is always extended to the ABI, other builtin types are not
3429   // extended.
3430   const BuiltinType *BT = Ty->getAs<BuiltinType>();
3431   if (BT && BT->getKind() == BuiltinType::Bool)
3432     return ABIArgInfo::getExtend();
3433 
3434   // Mingw64 GCC uses the old 80 bit extended precision floating point unit. It
3435   // passes them indirectly through memory.
3436   if (IsMingw64 && BT && BT->getKind() == BuiltinType::LongDouble) {
3437     const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
3438     if (LDF == &llvm::APFloat::x87DoubleExtended)
3439       return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3440   }
3441 
3442   return ABIArgInfo::getDirect();
3443 }
3444 
3445 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3446   bool IsVectorCall =
3447       FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall;
3448 
3449   // We can use up to 4 SSE return registers with vectorcall.
3450   unsigned FreeSSERegs = IsVectorCall ? 4 : 0;
3451   if (!getCXXABI().classifyReturnType(FI))
3452     FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true);
3453 
3454   // We can use up to 6 SSE register parameters with vectorcall.
3455   FreeSSERegs = IsVectorCall ? 6 : 0;
3456   for (auto &I : FI.arguments())
3457     I.info = classify(I.type, FreeSSERegs, false);
3458 }
3459 
3460 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3461                                     QualType Ty) const {
3462   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
3463                           CGF.getContext().getTypeInfoInChars(Ty),
3464                           CharUnits::fromQuantity(8),
3465                           /*allowHigherAlign*/ false);
3466 }
3467 
3468 // PowerPC-32
3469 namespace {
3470 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
3471 class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
3472 bool IsSoftFloatABI;
3473 public:
3474   PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI)
3475       : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI) {}
3476 
3477   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3478                     QualType Ty) const override;
3479 };
3480 
3481 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
3482 public:
3483   PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI)
3484       : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT, SoftFloatABI)) {}
3485 
3486   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3487     // This is recovered from gcc output.
3488     return 1; // r1 is the dedicated stack pointer
3489   }
3490 
3491   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3492                                llvm::Value *Address) const override;
3493 };
3494 
3495 }
3496 
3497 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList,
3498                                       QualType Ty) const {
3499   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
3500     // TODO: Implement this. For now ignore.
3501     (void)CTy;
3502     return Address::invalid();
3503   }
3504 
3505   // struct __va_list_tag {
3506   //   unsigned char gpr;
3507   //   unsigned char fpr;
3508   //   unsigned short reserved;
3509   //   void *overflow_arg_area;
3510   //   void *reg_save_area;
3511   // };
3512 
3513   bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
3514   bool isInt =
3515       Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType();
3516   bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64;
3517 
3518   // All aggregates are passed indirectly?  That doesn't seem consistent
3519   // with the argument-lowering code.
3520   bool isIndirect = Ty->isAggregateType();
3521 
3522   CGBuilderTy &Builder = CGF.Builder;
3523 
3524   // The calling convention either uses 1-2 GPRs or 1 FPR.
3525   Address NumRegsAddr = Address::invalid();
3526   if (isInt || IsSoftFloatABI) {
3527     NumRegsAddr = Builder.CreateStructGEP(VAList, 0, CharUnits::Zero(), "gpr");
3528   } else {
3529     NumRegsAddr = Builder.CreateStructGEP(VAList, 1, CharUnits::One(), "fpr");
3530   }
3531 
3532   llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs");
3533 
3534   // "Align" the register count when TY is i64.
3535   if (isI64 || (isF64 && IsSoftFloatABI)) {
3536     NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1));
3537     NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U));
3538   }
3539 
3540   llvm::Value *CC =
3541       Builder.CreateICmpULT(NumRegs, Builder.getInt8(8), "cond");
3542 
3543   llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
3544   llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
3545   llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
3546 
3547   Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
3548 
3549   llvm::Type *DirectTy = CGF.ConvertType(Ty);
3550   if (isIndirect) DirectTy = DirectTy->getPointerTo(0);
3551 
3552   // Case 1: consume registers.
3553   Address RegAddr = Address::invalid();
3554   {
3555     CGF.EmitBlock(UsingRegs);
3556 
3557     Address RegSaveAreaPtr =
3558       Builder.CreateStructGEP(VAList, 4, CharUnits::fromQuantity(8));
3559     RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr),
3560                       CharUnits::fromQuantity(8));
3561     assert(RegAddr.getElementType() == CGF.Int8Ty);
3562 
3563     // Floating-point registers start after the general-purpose registers.
3564     if (!(isInt || IsSoftFloatABI)) {
3565       RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr,
3566                                                    CharUnits::fromQuantity(32));
3567     }
3568 
3569     // Get the address of the saved value by scaling the number of
3570     // registers we've used by the number of
3571     CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8);
3572     llvm::Value *RegOffset =
3573       Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity()));
3574     RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty,
3575                                             RegAddr.getPointer(), RegOffset),
3576                       RegAddr.getAlignment().alignmentOfArrayElement(RegSize));
3577     RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy);
3578 
3579     // Increase the used-register count.
3580     NumRegs =
3581       Builder.CreateAdd(NumRegs,
3582                         Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1));
3583     Builder.CreateStore(NumRegs, NumRegsAddr);
3584 
3585     CGF.EmitBranch(Cont);
3586   }
3587 
3588   // Case 2: consume space in the overflow area.
3589   Address MemAddr = Address::invalid();
3590   {
3591     CGF.EmitBlock(UsingOverflow);
3592 
3593     // Everything in the overflow area is rounded up to a size of at least 4.
3594     CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4);
3595 
3596     CharUnits Size;
3597     if (!isIndirect) {
3598       auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty);
3599       Size = TypeInfo.first.alignTo(OverflowAreaAlign);
3600     } else {
3601       Size = CGF.getPointerSize();
3602     }
3603 
3604     Address OverflowAreaAddr =
3605       Builder.CreateStructGEP(VAList, 3, CharUnits::fromQuantity(4));
3606     Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"),
3607                          OverflowAreaAlign);
3608     // Round up address of argument to alignment
3609     CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
3610     if (Align > OverflowAreaAlign) {
3611       llvm::Value *Ptr = OverflowArea.getPointer();
3612       OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align),
3613                                                            Align);
3614     }
3615 
3616     MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy);
3617 
3618     // Increase the overflow area.
3619     OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size);
3620     Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr);
3621     CGF.EmitBranch(Cont);
3622   }
3623 
3624   CGF.EmitBlock(Cont);
3625 
3626   // Merge the cases with a phi.
3627   Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow,
3628                                 "vaarg.addr");
3629 
3630   // Load the pointer if the argument was passed indirectly.
3631   if (isIndirect) {
3632     Result = Address(Builder.CreateLoad(Result, "aggr"),
3633                      getContext().getTypeAlignInChars(Ty));
3634   }
3635 
3636   return Result;
3637 }
3638 
3639 bool
3640 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3641                                                 llvm::Value *Address) const {
3642   // This is calculated from the LLVM and GCC tables and verified
3643   // against gcc output.  AFAIK all ABIs use the same encoding.
3644 
3645   CodeGen::CGBuilderTy &Builder = CGF.Builder;
3646 
3647   llvm::IntegerType *i8 = CGF.Int8Ty;
3648   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
3649   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
3650   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
3651 
3652   // 0-31: r0-31, the 4-byte general-purpose registers
3653   AssignToArrayRange(Builder, Address, Four8, 0, 31);
3654 
3655   // 32-63: fp0-31, the 8-byte floating-point registers
3656   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
3657 
3658   // 64-76 are various 4-byte special-purpose registers:
3659   // 64: mq
3660   // 65: lr
3661   // 66: ctr
3662   // 67: ap
3663   // 68-75 cr0-7
3664   // 76: xer
3665   AssignToArrayRange(Builder, Address, Four8, 64, 76);
3666 
3667   // 77-108: v0-31, the 16-byte vector registers
3668   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
3669 
3670   // 109: vrsave
3671   // 110: vscr
3672   // 111: spe_acc
3673   // 112: spefscr
3674   // 113: sfp
3675   AssignToArrayRange(Builder, Address, Four8, 109, 113);
3676 
3677   return false;
3678 }
3679 
3680 // PowerPC-64
3681 
3682 namespace {
3683 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
3684 class PPC64_SVR4_ABIInfo : public DefaultABIInfo {
3685 public:
3686   enum ABIKind {
3687     ELFv1 = 0,
3688     ELFv2
3689   };
3690 
3691 private:
3692   static const unsigned GPRBits = 64;
3693   ABIKind Kind;
3694   bool HasQPX;
3695 
3696   // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and
3697   // will be passed in a QPX register.
3698   bool IsQPXVectorTy(const Type *Ty) const {
3699     if (!HasQPX)
3700       return false;
3701 
3702     if (const VectorType *VT = Ty->getAs<VectorType>()) {
3703       unsigned NumElements = VT->getNumElements();
3704       if (NumElements == 1)
3705         return false;
3706 
3707       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) {
3708         if (getContext().getTypeSize(Ty) <= 256)
3709           return true;
3710       } else if (VT->getElementType()->
3711                    isSpecificBuiltinType(BuiltinType::Float)) {
3712         if (getContext().getTypeSize(Ty) <= 128)
3713           return true;
3714       }
3715     }
3716 
3717     return false;
3718   }
3719 
3720   bool IsQPXVectorTy(QualType Ty) const {
3721     return IsQPXVectorTy(Ty.getTypePtr());
3722   }
3723 
3724 public:
3725   PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX)
3726     : DefaultABIInfo(CGT), Kind(Kind), HasQPX(HasQPX) {}
3727 
3728   bool isPromotableTypeForABI(QualType Ty) const;
3729   CharUnits getParamTypeAlignment(QualType Ty) const;
3730 
3731   ABIArgInfo classifyReturnType(QualType RetTy) const;
3732   ABIArgInfo classifyArgumentType(QualType Ty) const;
3733 
3734   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
3735   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
3736                                          uint64_t Members) const override;
3737 
3738   // TODO: We can add more logic to computeInfo to improve performance.
3739   // Example: For aggregate arguments that fit in a register, we could
3740   // use getDirectInReg (as is done below for structs containing a single
3741   // floating-point value) to avoid pushing them to memory on function
3742   // entry.  This would require changing the logic in PPCISelLowering
3743   // when lowering the parameters in the caller and args in the callee.
3744   void computeInfo(CGFunctionInfo &FI) const override {
3745     if (!getCXXABI().classifyReturnType(FI))
3746       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3747     for (auto &I : FI.arguments()) {
3748       // We rely on the default argument classification for the most part.
3749       // One exception:  An aggregate containing a single floating-point
3750       // or vector item must be passed in a register if one is available.
3751       const Type *T = isSingleElementStruct(I.type, getContext());
3752       if (T) {
3753         const BuiltinType *BT = T->getAs<BuiltinType>();
3754         if (IsQPXVectorTy(T) ||
3755             (T->isVectorType() && getContext().getTypeSize(T) == 128) ||
3756             (BT && BT->isFloatingPoint())) {
3757           QualType QT(T, 0);
3758           I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
3759           continue;
3760         }
3761       }
3762       I.info = classifyArgumentType(I.type);
3763     }
3764   }
3765 
3766   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3767                     QualType Ty) const override;
3768 };
3769 
3770 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
3771 
3772 public:
3773   PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT,
3774                                PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX)
3775       : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX)) {}
3776 
3777   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3778     // This is recovered from gcc output.
3779     return 1; // r1 is the dedicated stack pointer
3780   }
3781 
3782   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3783                                llvm::Value *Address) const override;
3784 };
3785 
3786 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
3787 public:
3788   PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
3789 
3790   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3791     // This is recovered from gcc output.
3792     return 1; // r1 is the dedicated stack pointer
3793   }
3794 
3795   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3796                                llvm::Value *Address) const override;
3797 };
3798 
3799 }
3800 
3801 // Return true if the ABI requires Ty to be passed sign- or zero-
3802 // extended to 64 bits.
3803 bool
3804 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
3805   // Treat an enum type as its underlying type.
3806   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3807     Ty = EnumTy->getDecl()->getIntegerType();
3808 
3809   // Promotable integer types are required to be promoted by the ABI.
3810   if (Ty->isPromotableIntegerType())
3811     return true;
3812 
3813   // In addition to the usual promotable integer types, we also need to
3814   // extend all 32-bit types, since the ABI requires promotion to 64 bits.
3815   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
3816     switch (BT->getKind()) {
3817     case BuiltinType::Int:
3818     case BuiltinType::UInt:
3819       return true;
3820     default:
3821       break;
3822     }
3823 
3824   return false;
3825 }
3826 
3827 /// isAlignedParamType - Determine whether a type requires 16-byte or
3828 /// higher alignment in the parameter area.  Always returns at least 8.
3829 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
3830   // Complex types are passed just like their elements.
3831   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
3832     Ty = CTy->getElementType();
3833 
3834   // Only vector types of size 16 bytes need alignment (larger types are
3835   // passed via reference, smaller types are not aligned).
3836   if (IsQPXVectorTy(Ty)) {
3837     if (getContext().getTypeSize(Ty) > 128)
3838       return CharUnits::fromQuantity(32);
3839 
3840     return CharUnits::fromQuantity(16);
3841   } else if (Ty->isVectorType()) {
3842     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8);
3843   }
3844 
3845   // For single-element float/vector structs, we consider the whole type
3846   // to have the same alignment requirements as its single element.
3847   const Type *AlignAsType = nullptr;
3848   const Type *EltType = isSingleElementStruct(Ty, getContext());
3849   if (EltType) {
3850     const BuiltinType *BT = EltType->getAs<BuiltinType>();
3851     if (IsQPXVectorTy(EltType) || (EltType->isVectorType() &&
3852          getContext().getTypeSize(EltType) == 128) ||
3853         (BT && BT->isFloatingPoint()))
3854       AlignAsType = EltType;
3855   }
3856 
3857   // Likewise for ELFv2 homogeneous aggregates.
3858   const Type *Base = nullptr;
3859   uint64_t Members = 0;
3860   if (!AlignAsType && Kind == ELFv2 &&
3861       isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
3862     AlignAsType = Base;
3863 
3864   // With special case aggregates, only vector base types need alignment.
3865   if (AlignAsType && IsQPXVectorTy(AlignAsType)) {
3866     if (getContext().getTypeSize(AlignAsType) > 128)
3867       return CharUnits::fromQuantity(32);
3868 
3869     return CharUnits::fromQuantity(16);
3870   } else if (AlignAsType) {
3871     return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8);
3872   }
3873 
3874   // Otherwise, we only need alignment for any aggregate type that
3875   // has an alignment requirement of >= 16 bytes.
3876   if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) {
3877     if (HasQPX && getContext().getTypeAlign(Ty) >= 256)
3878       return CharUnits::fromQuantity(32);
3879     return CharUnits::fromQuantity(16);
3880   }
3881 
3882   return CharUnits::fromQuantity(8);
3883 }
3884 
3885 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
3886 /// aggregate.  Base is set to the base element type, and Members is set
3887 /// to the number of base elements.
3888 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
3889                                      uint64_t &Members) const {
3890   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
3891     uint64_t NElements = AT->getSize().getZExtValue();
3892     if (NElements == 0)
3893       return false;
3894     if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
3895       return false;
3896     Members *= NElements;
3897   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
3898     const RecordDecl *RD = RT->getDecl();
3899     if (RD->hasFlexibleArrayMember())
3900       return false;
3901 
3902     Members = 0;
3903 
3904     // If this is a C++ record, check the bases first.
3905     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3906       for (const auto &I : CXXRD->bases()) {
3907         // Ignore empty records.
3908         if (isEmptyRecord(getContext(), I.getType(), true))
3909           continue;
3910 
3911         uint64_t FldMembers;
3912         if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
3913           return false;
3914 
3915         Members += FldMembers;
3916       }
3917     }
3918 
3919     for (const auto *FD : RD->fields()) {
3920       // Ignore (non-zero arrays of) empty records.
3921       QualType FT = FD->getType();
3922       while (const ConstantArrayType *AT =
3923              getContext().getAsConstantArrayType(FT)) {
3924         if (AT->getSize().getZExtValue() == 0)
3925           return false;
3926         FT = AT->getElementType();
3927       }
3928       if (isEmptyRecord(getContext(), FT, true))
3929         continue;
3930 
3931       // For compatibility with GCC, ignore empty bitfields in C++ mode.
3932       if (getContext().getLangOpts().CPlusPlus &&
3933           FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
3934         continue;
3935 
3936       uint64_t FldMembers;
3937       if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
3938         return false;
3939 
3940       Members = (RD->isUnion() ?
3941                  std::max(Members, FldMembers) : Members + FldMembers);
3942     }
3943 
3944     if (!Base)
3945       return false;
3946 
3947     // Ensure there is no padding.
3948     if (getContext().getTypeSize(Base) * Members !=
3949         getContext().getTypeSize(Ty))
3950       return false;
3951   } else {
3952     Members = 1;
3953     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
3954       Members = 2;
3955       Ty = CT->getElementType();
3956     }
3957 
3958     // Most ABIs only support float, double, and some vector type widths.
3959     if (!isHomogeneousAggregateBaseType(Ty))
3960       return false;
3961 
3962     // The base type must be the same for all members.  Types that
3963     // agree in both total size and mode (float vs. vector) are
3964     // treated as being equivalent here.
3965     const Type *TyPtr = Ty.getTypePtr();
3966     if (!Base)
3967       Base = TyPtr;
3968 
3969     if (Base->isVectorType() != TyPtr->isVectorType() ||
3970         getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
3971       return false;
3972   }
3973   return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
3974 }
3975 
3976 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
3977   // Homogeneous aggregates for ELFv2 must have base types of float,
3978   // double, long double, or 128-bit vectors.
3979   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
3980     if (BT->getKind() == BuiltinType::Float ||
3981         BT->getKind() == BuiltinType::Double ||
3982         BT->getKind() == BuiltinType::LongDouble)
3983       return true;
3984   }
3985   if (const VectorType *VT = Ty->getAs<VectorType>()) {
3986     if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty))
3987       return true;
3988   }
3989   return false;
3990 }
3991 
3992 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough(
3993     const Type *Base, uint64_t Members) const {
3994   // Vector types require one register, floating point types require one
3995   // or two registers depending on their size.
3996   uint32_t NumRegs =
3997       Base->isVectorType() ? 1 : (getContext().getTypeSize(Base) + 63) / 64;
3998 
3999   // Homogeneous Aggregates may occupy at most 8 registers.
4000   return Members * NumRegs <= 8;
4001 }
4002 
4003 ABIArgInfo
4004 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
4005   Ty = useFirstFieldIfTransparentUnion(Ty);
4006 
4007   if (Ty->isAnyComplexType())
4008     return ABIArgInfo::getDirect();
4009 
4010   // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
4011   // or via reference (larger than 16 bytes).
4012   if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) {
4013     uint64_t Size = getContext().getTypeSize(Ty);
4014     if (Size > 128)
4015       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4016     else if (Size < 128) {
4017       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
4018       return ABIArgInfo::getDirect(CoerceTy);
4019     }
4020   }
4021 
4022   if (isAggregateTypeForABI(Ty)) {
4023     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
4024       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
4025 
4026     uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity();
4027     uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
4028 
4029     // ELFv2 homogeneous aggregates are passed as array types.
4030     const Type *Base = nullptr;
4031     uint64_t Members = 0;
4032     if (Kind == ELFv2 &&
4033         isHomogeneousAggregate(Ty, Base, Members)) {
4034       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
4035       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
4036       return ABIArgInfo::getDirect(CoerceTy);
4037     }
4038 
4039     // If an aggregate may end up fully in registers, we do not
4040     // use the ByVal method, but pass the aggregate as array.
4041     // This is usually beneficial since we avoid forcing the
4042     // back-end to store the argument to memory.
4043     uint64_t Bits = getContext().getTypeSize(Ty);
4044     if (Bits > 0 && Bits <= 8 * GPRBits) {
4045       llvm::Type *CoerceTy;
4046 
4047       // Types up to 8 bytes are passed as integer type (which will be
4048       // properly aligned in the argument save area doubleword).
4049       if (Bits <= GPRBits)
4050         CoerceTy =
4051             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
4052       // Larger types are passed as arrays, with the base type selected
4053       // according to the required alignment in the save area.
4054       else {
4055         uint64_t RegBits = ABIAlign * 8;
4056         uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits;
4057         llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
4058         CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
4059       }
4060 
4061       return ABIArgInfo::getDirect(CoerceTy);
4062     }
4063 
4064     // All other aggregates are passed ByVal.
4065     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
4066                                    /*ByVal=*/true,
4067                                    /*Realign=*/TyAlign > ABIAlign);
4068   }
4069 
4070   return (isPromotableTypeForABI(Ty) ?
4071           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4072 }
4073 
4074 ABIArgInfo
4075 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
4076   if (RetTy->isVoidType())
4077     return ABIArgInfo::getIgnore();
4078 
4079   if (RetTy->isAnyComplexType())
4080     return ABIArgInfo::getDirect();
4081 
4082   // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
4083   // or via reference (larger than 16 bytes).
4084   if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) {
4085     uint64_t Size = getContext().getTypeSize(RetTy);
4086     if (Size > 128)
4087       return getNaturalAlignIndirect(RetTy);
4088     else if (Size < 128) {
4089       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
4090       return ABIArgInfo::getDirect(CoerceTy);
4091     }
4092   }
4093 
4094   if (isAggregateTypeForABI(RetTy)) {
4095     // ELFv2 homogeneous aggregates are returned as array types.
4096     const Type *Base = nullptr;
4097     uint64_t Members = 0;
4098     if (Kind == ELFv2 &&
4099         isHomogeneousAggregate(RetTy, Base, Members)) {
4100       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
4101       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
4102       return ABIArgInfo::getDirect(CoerceTy);
4103     }
4104 
4105     // ELFv2 small aggregates are returned in up to two registers.
4106     uint64_t Bits = getContext().getTypeSize(RetTy);
4107     if (Kind == ELFv2 && Bits <= 2 * GPRBits) {
4108       if (Bits == 0)
4109         return ABIArgInfo::getIgnore();
4110 
4111       llvm::Type *CoerceTy;
4112       if (Bits > GPRBits) {
4113         CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
4114         CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy, nullptr);
4115       } else
4116         CoerceTy =
4117             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
4118       return ABIArgInfo::getDirect(CoerceTy);
4119     }
4120 
4121     // All other aggregates are returned indirectly.
4122     return getNaturalAlignIndirect(RetTy);
4123   }
4124 
4125   return (isPromotableTypeForABI(RetTy) ?
4126           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4127 }
4128 
4129 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
4130 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4131                                       QualType Ty) const {
4132   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
4133   TypeInfo.second = getParamTypeAlignment(Ty);
4134 
4135   CharUnits SlotSize = CharUnits::fromQuantity(8);
4136 
4137   // If we have a complex type and the base type is smaller than 8 bytes,
4138   // the ABI calls for the real and imaginary parts to be right-adjusted
4139   // in separate doublewords.  However, Clang expects us to produce a
4140   // pointer to a structure with the two parts packed tightly.  So generate
4141   // loads of the real and imaginary parts relative to the va_list pointer,
4142   // and store them to a temporary structure.
4143   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4144     CharUnits EltSize = TypeInfo.first / 2;
4145     if (EltSize < SlotSize) {
4146       Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty,
4147                                             SlotSize * 2, SlotSize,
4148                                             SlotSize, /*AllowHigher*/ true);
4149 
4150       Address RealAddr = Addr;
4151       Address ImagAddr = RealAddr;
4152       if (CGF.CGM.getDataLayout().isBigEndian()) {
4153         RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr,
4154                                                           SlotSize - EltSize);
4155         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr,
4156                                                       2 * SlotSize - EltSize);
4157       } else {
4158         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize);
4159       }
4160 
4161       llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType());
4162       RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy);
4163       ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy);
4164       llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal");
4165       llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag");
4166 
4167       Address Temp = CGF.CreateMemTemp(Ty, "vacplx");
4168       CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty),
4169                              /*init*/ true);
4170       return Temp;
4171     }
4172   }
4173 
4174   // Otherwise, just use the general rule.
4175   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
4176                           TypeInfo, SlotSize, /*AllowHigher*/ true);
4177 }
4178 
4179 static bool
4180 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4181                               llvm::Value *Address) {
4182   // This is calculated from the LLVM and GCC tables and verified
4183   // against gcc output.  AFAIK all ABIs use the same encoding.
4184 
4185   CodeGen::CGBuilderTy &Builder = CGF.Builder;
4186 
4187   llvm::IntegerType *i8 = CGF.Int8Ty;
4188   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
4189   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
4190   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
4191 
4192   // 0-31: r0-31, the 8-byte general-purpose registers
4193   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
4194 
4195   // 32-63: fp0-31, the 8-byte floating-point registers
4196   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
4197 
4198   // 64-76 are various 4-byte special-purpose registers:
4199   // 64: mq
4200   // 65: lr
4201   // 66: ctr
4202   // 67: ap
4203   // 68-75 cr0-7
4204   // 76: xer
4205   AssignToArrayRange(Builder, Address, Four8, 64, 76);
4206 
4207   // 77-108: v0-31, the 16-byte vector registers
4208   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
4209 
4210   // 109: vrsave
4211   // 110: vscr
4212   // 111: spe_acc
4213   // 112: spefscr
4214   // 113: sfp
4215   AssignToArrayRange(Builder, Address, Four8, 109, 113);
4216 
4217   return false;
4218 }
4219 
4220 bool
4221 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
4222   CodeGen::CodeGenFunction &CGF,
4223   llvm::Value *Address) const {
4224 
4225   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
4226 }
4227 
4228 bool
4229 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4230                                                 llvm::Value *Address) const {
4231 
4232   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
4233 }
4234 
4235 //===----------------------------------------------------------------------===//
4236 // AArch64 ABI Implementation
4237 //===----------------------------------------------------------------------===//
4238 
4239 namespace {
4240 
4241 class AArch64ABIInfo : public ABIInfo {
4242 public:
4243   enum ABIKind {
4244     AAPCS = 0,
4245     DarwinPCS
4246   };
4247 
4248 private:
4249   ABIKind Kind;
4250 
4251 public:
4252   AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) : ABIInfo(CGT), Kind(Kind) {}
4253 
4254 private:
4255   ABIKind getABIKind() const { return Kind; }
4256   bool isDarwinPCS() const { return Kind == DarwinPCS; }
4257 
4258   ABIArgInfo classifyReturnType(QualType RetTy) const;
4259   ABIArgInfo classifyArgumentType(QualType RetTy) const;
4260   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4261   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4262                                          uint64_t Members) const override;
4263 
4264   bool isIllegalVectorType(QualType Ty) const;
4265 
4266   void computeInfo(CGFunctionInfo &FI) const override {
4267     if (!getCXXABI().classifyReturnType(FI))
4268       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4269 
4270     for (auto &it : FI.arguments())
4271       it.info = classifyArgumentType(it.type);
4272   }
4273 
4274   Address EmitDarwinVAArg(Address VAListAddr, QualType Ty,
4275                           CodeGenFunction &CGF) const;
4276 
4277   Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
4278                          CodeGenFunction &CGF) const;
4279 
4280   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4281                     QualType Ty) const override {
4282     return isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
4283                          : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
4284   }
4285 };
4286 
4287 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
4288 public:
4289   AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
4290       : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {}
4291 
4292   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
4293     return "mov\tfp, fp\t\t; marker for objc_retainAutoreleaseReturnValue";
4294   }
4295 
4296   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4297     return 31;
4298   }
4299 
4300   bool doesReturnSlotInterfereWithArgs() const override { return false; }
4301 };
4302 }
4303 
4304 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const {
4305   Ty = useFirstFieldIfTransparentUnion(Ty);
4306 
4307   // Handle illegal vector types here.
4308   if (isIllegalVectorType(Ty)) {
4309     uint64_t Size = getContext().getTypeSize(Ty);
4310     if (Size <= 32) {
4311       llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
4312       return ABIArgInfo::getDirect(ResType);
4313     }
4314     if (Size == 64) {
4315       llvm::Type *ResType =
4316           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
4317       return ABIArgInfo::getDirect(ResType);
4318     }
4319     if (Size == 128) {
4320       llvm::Type *ResType =
4321           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
4322       return ABIArgInfo::getDirect(ResType);
4323     }
4324     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4325   }
4326 
4327   if (!isAggregateTypeForABI(Ty)) {
4328     // Treat an enum type as its underlying type.
4329     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4330       Ty = EnumTy->getDecl()->getIntegerType();
4331 
4332     return (Ty->isPromotableIntegerType() && isDarwinPCS()
4333                 ? ABIArgInfo::getExtend()
4334                 : ABIArgInfo::getDirect());
4335   }
4336 
4337   // Structures with either a non-trivial destructor or a non-trivial
4338   // copy constructor are always indirect.
4339   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
4340     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
4341                                      CGCXXABI::RAA_DirectInMemory);
4342   }
4343 
4344   // Empty records are always ignored on Darwin, but actually passed in C++ mode
4345   // elsewhere for GNU compatibility.
4346   if (isEmptyRecord(getContext(), Ty, true)) {
4347     if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
4348       return ABIArgInfo::getIgnore();
4349 
4350     return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
4351   }
4352 
4353   // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
4354   const Type *Base = nullptr;
4355   uint64_t Members = 0;
4356   if (isHomogeneousAggregate(Ty, Base, Members)) {
4357     return ABIArgInfo::getDirect(
4358         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
4359   }
4360 
4361   // Aggregates <= 16 bytes are passed directly in registers or on the stack.
4362   uint64_t Size = getContext().getTypeSize(Ty);
4363   if (Size <= 128) {
4364     unsigned Alignment = getContext().getTypeAlign(Ty);
4365     Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes
4366 
4367     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
4368     // For aggregates with 16-byte alignment, we use i128.
4369     if (Alignment < 128 && Size == 128) {
4370       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
4371       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
4372     }
4373     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
4374   }
4375 
4376   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4377 }
4378 
4379 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const {
4380   if (RetTy->isVoidType())
4381     return ABIArgInfo::getIgnore();
4382 
4383   // Large vector types should be returned via memory.
4384   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
4385     return getNaturalAlignIndirect(RetTy);
4386 
4387   if (!isAggregateTypeForABI(RetTy)) {
4388     // Treat an enum type as its underlying type.
4389     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
4390       RetTy = EnumTy->getDecl()->getIntegerType();
4391 
4392     return (RetTy->isPromotableIntegerType() && isDarwinPCS()
4393                 ? ABIArgInfo::getExtend()
4394                 : ABIArgInfo::getDirect());
4395   }
4396 
4397   if (isEmptyRecord(getContext(), RetTy, true))
4398     return ABIArgInfo::getIgnore();
4399 
4400   const Type *Base = nullptr;
4401   uint64_t Members = 0;
4402   if (isHomogeneousAggregate(RetTy, Base, Members))
4403     // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
4404     return ABIArgInfo::getDirect();
4405 
4406   // Aggregates <= 16 bytes are returned directly in registers or on the stack.
4407   uint64_t Size = getContext().getTypeSize(RetTy);
4408   if (Size <= 128) {
4409     unsigned Alignment = getContext().getTypeAlign(RetTy);
4410     Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes
4411 
4412     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
4413     // For aggregates with 16-byte alignment, we use i128.
4414     if (Alignment < 128 && Size == 128) {
4415       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
4416       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
4417     }
4418     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
4419   }
4420 
4421   return getNaturalAlignIndirect(RetTy);
4422 }
4423 
4424 /// isIllegalVectorType - check whether the vector type is legal for AArch64.
4425 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
4426   if (const VectorType *VT = Ty->getAs<VectorType>()) {
4427     // Check whether VT is legal.
4428     unsigned NumElements = VT->getNumElements();
4429     uint64_t Size = getContext().getTypeSize(VT);
4430     // NumElements should be power of 2 between 1 and 16.
4431     if ((NumElements & (NumElements - 1)) != 0 || NumElements > 16)
4432       return true;
4433     return Size != 64 && (Size != 128 || NumElements == 1);
4434   }
4435   return false;
4436 }
4437 
4438 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
4439   // Homogeneous aggregates for AAPCS64 must have base types of a floating
4440   // point type or a short-vector type. This is the same as the 32-bit ABI,
4441   // but with the difference that any floating-point type is allowed,
4442   // including __fp16.
4443   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4444     if (BT->isFloatingPoint())
4445       return true;
4446   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
4447     unsigned VecSize = getContext().getTypeSize(VT);
4448     if (VecSize == 64 || VecSize == 128)
4449       return true;
4450   }
4451   return false;
4452 }
4453 
4454 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
4455                                                        uint64_t Members) const {
4456   return Members <= 4;
4457 }
4458 
4459 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr,
4460                                             QualType Ty,
4461                                             CodeGenFunction &CGF) const {
4462   ABIArgInfo AI = classifyArgumentType(Ty);
4463   bool IsIndirect = AI.isIndirect();
4464 
4465   llvm::Type *BaseTy = CGF.ConvertType(Ty);
4466   if (IsIndirect)
4467     BaseTy = llvm::PointerType::getUnqual(BaseTy);
4468   else if (AI.getCoerceToType())
4469     BaseTy = AI.getCoerceToType();
4470 
4471   unsigned NumRegs = 1;
4472   if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
4473     BaseTy = ArrTy->getElementType();
4474     NumRegs = ArrTy->getNumElements();
4475   }
4476   bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy();
4477 
4478   // The AArch64 va_list type and handling is specified in the Procedure Call
4479   // Standard, section B.4:
4480   //
4481   // struct {
4482   //   void *__stack;
4483   //   void *__gr_top;
4484   //   void *__vr_top;
4485   //   int __gr_offs;
4486   //   int __vr_offs;
4487   // };
4488 
4489   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
4490   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
4491   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
4492   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
4493 
4494   auto TyInfo = getContext().getTypeInfoInChars(Ty);
4495   CharUnits TyAlign = TyInfo.second;
4496 
4497   Address reg_offs_p = Address::invalid();
4498   llvm::Value *reg_offs = nullptr;
4499   int reg_top_index;
4500   CharUnits reg_top_offset;
4501   int RegSize = IsIndirect ? 8 : TyInfo.first.getQuantity();
4502   if (!IsFPR) {
4503     // 3 is the field number of __gr_offs
4504     reg_offs_p =
4505         CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24),
4506                                     "gr_offs_p");
4507     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
4508     reg_top_index = 1; // field number for __gr_top
4509     reg_top_offset = CharUnits::fromQuantity(8);
4510     RegSize = llvm::alignTo(RegSize, 8);
4511   } else {
4512     // 4 is the field number of __vr_offs.
4513     reg_offs_p =
4514         CGF.Builder.CreateStructGEP(VAListAddr, 4, CharUnits::fromQuantity(28),
4515                                     "vr_offs_p");
4516     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
4517     reg_top_index = 2; // field number for __vr_top
4518     reg_top_offset = CharUnits::fromQuantity(16);
4519     RegSize = 16 * NumRegs;
4520   }
4521 
4522   //=======================================
4523   // Find out where argument was passed
4524   //=======================================
4525 
4526   // If reg_offs >= 0 we're already using the stack for this type of
4527   // argument. We don't want to keep updating reg_offs (in case it overflows,
4528   // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
4529   // whatever they get).
4530   llvm::Value *UsingStack = nullptr;
4531   UsingStack = CGF.Builder.CreateICmpSGE(
4532       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
4533 
4534   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
4535 
4536   // Otherwise, at least some kind of argument could go in these registers, the
4537   // question is whether this particular type is too big.
4538   CGF.EmitBlock(MaybeRegBlock);
4539 
4540   // Integer arguments may need to correct register alignment (for example a
4541   // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
4542   // align __gr_offs to calculate the potential address.
4543   if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) {
4544     int Align = TyAlign.getQuantity();
4545 
4546     reg_offs = CGF.Builder.CreateAdd(
4547         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
4548         "align_regoffs");
4549     reg_offs = CGF.Builder.CreateAnd(
4550         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
4551         "aligned_regoffs");
4552   }
4553 
4554   // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
4555   // The fact that this is done unconditionally reflects the fact that
4556   // allocating an argument to the stack also uses up all the remaining
4557   // registers of the appropriate kind.
4558   llvm::Value *NewOffset = nullptr;
4559   NewOffset = CGF.Builder.CreateAdd(
4560       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
4561   CGF.Builder.CreateStore(NewOffset, reg_offs_p);
4562 
4563   // Now we're in a position to decide whether this argument really was in
4564   // registers or not.
4565   llvm::Value *InRegs = nullptr;
4566   InRegs = CGF.Builder.CreateICmpSLE(
4567       NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
4568 
4569   CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
4570 
4571   //=======================================
4572   // Argument was in registers
4573   //=======================================
4574 
4575   // Now we emit the code for if the argument was originally passed in
4576   // registers. First start the appropriate block:
4577   CGF.EmitBlock(InRegBlock);
4578 
4579   llvm::Value *reg_top = nullptr;
4580   Address reg_top_p = CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index,
4581                                                   reg_top_offset, "reg_top_p");
4582   reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
4583   Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs),
4584                    CharUnits::fromQuantity(IsFPR ? 16 : 8));
4585   Address RegAddr = Address::invalid();
4586   llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty);
4587 
4588   if (IsIndirect) {
4589     // If it's been passed indirectly (actually a struct), whatever we find from
4590     // stored registers or on the stack will actually be a struct **.
4591     MemTy = llvm::PointerType::getUnqual(MemTy);
4592   }
4593 
4594   const Type *Base = nullptr;
4595   uint64_t NumMembers = 0;
4596   bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
4597   if (IsHFA && NumMembers > 1) {
4598     // Homogeneous aggregates passed in registers will have their elements split
4599     // and stored 16-bytes apart regardless of size (they're notionally in qN,
4600     // qN+1, ...). We reload and store into a temporary local variable
4601     // contiguously.
4602     assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
4603     auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0));
4604     llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
4605     llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
4606     Address Tmp = CGF.CreateTempAlloca(HFATy,
4607                                        std::max(TyAlign, BaseTyInfo.second));
4608 
4609     // On big-endian platforms, the value will be right-aligned in its slot.
4610     int Offset = 0;
4611     if (CGF.CGM.getDataLayout().isBigEndian() &&
4612         BaseTyInfo.first.getQuantity() < 16)
4613       Offset = 16 - BaseTyInfo.first.getQuantity();
4614 
4615     for (unsigned i = 0; i < NumMembers; ++i) {
4616       CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset);
4617       Address LoadAddr =
4618         CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset);
4619       LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy);
4620 
4621       Address StoreAddr =
4622         CGF.Builder.CreateConstArrayGEP(Tmp, i, BaseTyInfo.first);
4623 
4624       llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
4625       CGF.Builder.CreateStore(Elem, StoreAddr);
4626     }
4627 
4628     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy);
4629   } else {
4630     // Otherwise the object is contiguous in memory.
4631 
4632     // It might be right-aligned in its slot.
4633     CharUnits SlotSize = BaseAddr.getAlignment();
4634     if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect &&
4635         (IsHFA || !isAggregateTypeForABI(Ty)) &&
4636         TyInfo.first < SlotSize) {
4637       CharUnits Offset = SlotSize - TyInfo.first;
4638       BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset);
4639     }
4640 
4641     RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy);
4642   }
4643 
4644   CGF.EmitBranch(ContBlock);
4645 
4646   //=======================================
4647   // Argument was on the stack
4648   //=======================================
4649   CGF.EmitBlock(OnStackBlock);
4650 
4651   Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0,
4652                                                 CharUnits::Zero(), "stack_p");
4653   llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack");
4654 
4655   // Again, stack arguments may need realignment. In this case both integer and
4656   // floating-point ones might be affected.
4657   if (!IsIndirect && TyAlign.getQuantity() > 8) {
4658     int Align = TyAlign.getQuantity();
4659 
4660     OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty);
4661 
4662     OnStackPtr = CGF.Builder.CreateAdd(
4663         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
4664         "align_stack");
4665     OnStackPtr = CGF.Builder.CreateAnd(
4666         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
4667         "align_stack");
4668 
4669     OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy);
4670   }
4671   Address OnStackAddr(OnStackPtr,
4672                       std::max(CharUnits::fromQuantity(8), TyAlign));
4673 
4674   // All stack slots are multiples of 8 bytes.
4675   CharUnits StackSlotSize = CharUnits::fromQuantity(8);
4676   CharUnits StackSize;
4677   if (IsIndirect)
4678     StackSize = StackSlotSize;
4679   else
4680     StackSize = TyInfo.first.alignTo(StackSlotSize);
4681 
4682   llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize);
4683   llvm::Value *NewStack =
4684       CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack");
4685 
4686   // Write the new value of __stack for the next call to va_arg
4687   CGF.Builder.CreateStore(NewStack, stack_p);
4688 
4689   if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
4690       TyInfo.first < StackSlotSize) {
4691     CharUnits Offset = StackSlotSize - TyInfo.first;
4692     OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset);
4693   }
4694 
4695   OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy);
4696 
4697   CGF.EmitBranch(ContBlock);
4698 
4699   //=======================================
4700   // Tidy up
4701   //=======================================
4702   CGF.EmitBlock(ContBlock);
4703 
4704   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
4705                                  OnStackAddr, OnStackBlock, "vaargs.addr");
4706 
4707   if (IsIndirect)
4708     return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"),
4709                    TyInfo.second);
4710 
4711   return ResAddr;
4712 }
4713 
4714 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty,
4715                                         CodeGenFunction &CGF) const {
4716   // The backend's lowering doesn't support va_arg for aggregates or
4717   // illegal vector types.  Lower VAArg here for these cases and use
4718   // the LLVM va_arg instruction for everything else.
4719   if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
4720     return Address::invalid();
4721 
4722   CharUnits SlotSize = CharUnits::fromQuantity(8);
4723 
4724   // Empty records are ignored for parameter passing purposes.
4725   if (isEmptyRecord(getContext(), Ty, true)) {
4726     Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
4727     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
4728     return Addr;
4729   }
4730 
4731   // The size of the actual thing passed, which might end up just
4732   // being a pointer for indirect types.
4733   auto TyInfo = getContext().getTypeInfoInChars(Ty);
4734 
4735   // Arguments bigger than 16 bytes which aren't homogeneous
4736   // aggregates should be passed indirectly.
4737   bool IsIndirect = false;
4738   if (TyInfo.first.getQuantity() > 16) {
4739     const Type *Base = nullptr;
4740     uint64_t Members = 0;
4741     IsIndirect = !isHomogeneousAggregate(Ty, Base, Members);
4742   }
4743 
4744   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
4745                           TyInfo, SlotSize, /*AllowHigherAlign*/ true);
4746 }
4747 
4748 //===----------------------------------------------------------------------===//
4749 // ARM ABI Implementation
4750 //===----------------------------------------------------------------------===//
4751 
4752 namespace {
4753 
4754 class ARMABIInfo : public ABIInfo {
4755 public:
4756   enum ABIKind {
4757     APCS = 0,
4758     AAPCS = 1,
4759     AAPCS_VFP = 2,
4760     AAPCS16_VFP = 3,
4761   };
4762 
4763 private:
4764   ABIKind Kind;
4765 
4766 public:
4767   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) {
4768     setCCs();
4769   }
4770 
4771   bool isEABI() const {
4772     switch (getTarget().getTriple().getEnvironment()) {
4773     case llvm::Triple::Android:
4774     case llvm::Triple::EABI:
4775     case llvm::Triple::EABIHF:
4776     case llvm::Triple::GNUEABI:
4777     case llvm::Triple::GNUEABIHF:
4778       return true;
4779     default:
4780       return false;
4781     }
4782   }
4783 
4784   bool isEABIHF() const {
4785     switch (getTarget().getTriple().getEnvironment()) {
4786     case llvm::Triple::EABIHF:
4787     case llvm::Triple::GNUEABIHF:
4788       return true;
4789     default:
4790       return false;
4791     }
4792   }
4793 
4794   bool isAndroid() const {
4795     return (getTarget().getTriple().getEnvironment() ==
4796             llvm::Triple::Android);
4797   }
4798 
4799   ABIKind getABIKind() const { return Kind; }
4800 
4801 private:
4802   ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const;
4803   ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic) const;
4804   bool isIllegalVectorType(QualType Ty) const;
4805 
4806   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4807   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4808                                          uint64_t Members) const override;
4809 
4810   void computeInfo(CGFunctionInfo &FI) const override;
4811 
4812   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4813                     QualType Ty) const override;
4814 
4815   llvm::CallingConv::ID getLLVMDefaultCC() const;
4816   llvm::CallingConv::ID getABIDefaultCC() const;
4817   void setCCs();
4818 };
4819 
4820 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
4821 public:
4822   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
4823     :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
4824 
4825   const ARMABIInfo &getABIInfo() const {
4826     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
4827   }
4828 
4829   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4830     return 13;
4831   }
4832 
4833   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
4834     return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue";
4835   }
4836 
4837   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4838                                llvm::Value *Address) const override {
4839     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
4840 
4841     // 0-15 are the 16 integer registers.
4842     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
4843     return false;
4844   }
4845 
4846   unsigned getSizeOfUnwindException() const override {
4847     if (getABIInfo().isEABI()) return 88;
4848     return TargetCodeGenInfo::getSizeOfUnwindException();
4849   }
4850 
4851   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4852                            CodeGen::CodeGenModule &CGM) const override {
4853     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
4854     if (!FD)
4855       return;
4856 
4857     const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
4858     if (!Attr)
4859       return;
4860 
4861     const char *Kind;
4862     switch (Attr->getInterrupt()) {
4863     case ARMInterruptAttr::Generic: Kind = ""; break;
4864     case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break;
4865     case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break;
4866     case ARMInterruptAttr::SWI:     Kind = "SWI"; break;
4867     case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break;
4868     case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break;
4869     }
4870 
4871     llvm::Function *Fn = cast<llvm::Function>(GV);
4872 
4873     Fn->addFnAttr("interrupt", Kind);
4874 
4875     ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind();
4876     if (ABI == ARMABIInfo::APCS)
4877       return;
4878 
4879     // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
4880     // however this is not necessarily true on taking any interrupt. Instruct
4881     // the backend to perform a realignment as part of the function prologue.
4882     llvm::AttrBuilder B;
4883     B.addStackAlignmentAttr(8);
4884     Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
4885                       llvm::AttributeSet::get(CGM.getLLVMContext(),
4886                                               llvm::AttributeSet::FunctionIndex,
4887                                               B));
4888   }
4889 };
4890 
4891 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo {
4892   void addStackProbeSizeTargetAttribute(const Decl *D, llvm::GlobalValue *GV,
4893                                         CodeGen::CodeGenModule &CGM) const;
4894 
4895 public:
4896   WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
4897       : ARMTargetCodeGenInfo(CGT, K) {}
4898 
4899   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4900                            CodeGen::CodeGenModule &CGM) const override;
4901 };
4902 
4903 void WindowsARMTargetCodeGenInfo::addStackProbeSizeTargetAttribute(
4904     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
4905   if (!isa<FunctionDecl>(D))
4906     return;
4907   if (CGM.getCodeGenOpts().StackProbeSize == 4096)
4908     return;
4909 
4910   llvm::Function *F = cast<llvm::Function>(GV);
4911   F->addFnAttr("stack-probe-size",
4912                llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
4913 }
4914 
4915 void WindowsARMTargetCodeGenInfo::setTargetAttributes(
4916     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
4917   ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
4918   addStackProbeSizeTargetAttribute(D, GV, CGM);
4919 }
4920 }
4921 
4922 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
4923   if (!getCXXABI().classifyReturnType(FI))
4924     FI.getReturnInfo() =
4925         classifyReturnType(FI.getReturnType(), FI.isVariadic());
4926 
4927   for (auto &I : FI.arguments())
4928     I.info = classifyArgumentType(I.type, FI.isVariadic());
4929 
4930   // Always honor user-specified calling convention.
4931   if (FI.getCallingConvention() != llvm::CallingConv::C)
4932     return;
4933 
4934   llvm::CallingConv::ID cc = getRuntimeCC();
4935   if (cc != llvm::CallingConv::C)
4936     FI.setEffectiveCallingConvention(cc);
4937 }
4938 
4939 /// Return the default calling convention that LLVM will use.
4940 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
4941   // The default calling convention that LLVM will infer.
4942   if (isEABIHF() || getTarget().getTriple().isWatchOS())
4943     return llvm::CallingConv::ARM_AAPCS_VFP;
4944   else if (isEABI())
4945     return llvm::CallingConv::ARM_AAPCS;
4946   else
4947     return llvm::CallingConv::ARM_APCS;
4948 }
4949 
4950 /// Return the calling convention that our ABI would like us to use
4951 /// as the C calling convention.
4952 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
4953   switch (getABIKind()) {
4954   case APCS: return llvm::CallingConv::ARM_APCS;
4955   case AAPCS: return llvm::CallingConv::ARM_AAPCS;
4956   case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
4957   case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
4958   }
4959   llvm_unreachable("bad ABI kind");
4960 }
4961 
4962 void ARMABIInfo::setCCs() {
4963   assert(getRuntimeCC() == llvm::CallingConv::C);
4964 
4965   // Don't muddy up the IR with a ton of explicit annotations if
4966   // they'd just match what LLVM will infer from the triple.
4967   llvm::CallingConv::ID abiCC = getABIDefaultCC();
4968   if (abiCC != getLLVMDefaultCC())
4969     RuntimeCC = abiCC;
4970 
4971   // AAPCS apparently requires runtime support functions to be soft-float, but
4972   // that's almost certainly for historic reasons (Thumb1 not supporting VFP
4973   // most likely). It's more convenient for AAPCS16_VFP to be hard-float.
4974   switch (getABIKind()) {
4975   case APCS:
4976   case AAPCS16_VFP:
4977     if (abiCC != getLLVMDefaultCC())
4978       BuiltinCC = abiCC;
4979     break;
4980   case AAPCS:
4981   case AAPCS_VFP:
4982     BuiltinCC = llvm::CallingConv::ARM_AAPCS;
4983     break;
4984   }
4985 }
4986 
4987 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty,
4988                                             bool isVariadic) const {
4989   // 6.1.2.1 The following argument types are VFP CPRCs:
4990   //   A single-precision floating-point type (including promoted
4991   //   half-precision types); A double-precision floating-point type;
4992   //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
4993   //   with a Base Type of a single- or double-precision floating-point type,
4994   //   64-bit containerized vectors or 128-bit containerized vectors with one
4995   //   to four Elements.
4996   bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic;
4997 
4998   Ty = useFirstFieldIfTransparentUnion(Ty);
4999 
5000   // Handle illegal vector types here.
5001   if (isIllegalVectorType(Ty)) {
5002     uint64_t Size = getContext().getTypeSize(Ty);
5003     if (Size <= 32) {
5004       llvm::Type *ResType =
5005           llvm::Type::getInt32Ty(getVMContext());
5006       return ABIArgInfo::getDirect(ResType);
5007     }
5008     if (Size == 64) {
5009       llvm::Type *ResType = llvm::VectorType::get(
5010           llvm::Type::getInt32Ty(getVMContext()), 2);
5011       return ABIArgInfo::getDirect(ResType);
5012     }
5013     if (Size == 128) {
5014       llvm::Type *ResType = llvm::VectorType::get(
5015           llvm::Type::getInt32Ty(getVMContext()), 4);
5016       return ABIArgInfo::getDirect(ResType);
5017     }
5018     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5019   }
5020 
5021   // __fp16 gets passed as if it were an int or float, but with the top 16 bits
5022   // unspecified. This is not done for OpenCL as it handles the half type
5023   // natively, and does not need to interwork with AAPCS code.
5024   if (Ty->isHalfType() && !getContext().getLangOpts().OpenCL) {
5025     llvm::Type *ResType = IsEffectivelyAAPCS_VFP ?
5026       llvm::Type::getFloatTy(getVMContext()) :
5027       llvm::Type::getInt32Ty(getVMContext());
5028     return ABIArgInfo::getDirect(ResType);
5029   }
5030 
5031   if (!isAggregateTypeForABI(Ty)) {
5032     // Treat an enum type as its underlying type.
5033     if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
5034       Ty = EnumTy->getDecl()->getIntegerType();
5035     }
5036 
5037     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend()
5038                                           : ABIArgInfo::getDirect());
5039   }
5040 
5041   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5042     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
5043   }
5044 
5045   // Ignore empty records.
5046   if (isEmptyRecord(getContext(), Ty, true))
5047     return ABIArgInfo::getIgnore();
5048 
5049   if (IsEffectivelyAAPCS_VFP) {
5050     // Homogeneous Aggregates need to be expanded when we can fit the aggregate
5051     // into VFP registers.
5052     const Type *Base = nullptr;
5053     uint64_t Members = 0;
5054     if (isHomogeneousAggregate(Ty, Base, Members)) {
5055       assert(Base && "Base class should be set for homogeneous aggregate");
5056       // Base can be a floating-point or a vector.
5057       return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
5058     }
5059   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
5060     // WatchOS does have homogeneous aggregates. Note that we intentionally use
5061     // this convention even for a variadic function: the backend will use GPRs
5062     // if needed.
5063     const Type *Base = nullptr;
5064     uint64_t Members = 0;
5065     if (isHomogeneousAggregate(Ty, Base, Members)) {
5066       assert(Base && Members <= 4 && "unexpected homogeneous aggregate");
5067       llvm::Type *Ty =
5068         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members);
5069       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
5070     }
5071   }
5072 
5073   if (getABIKind() == ARMABIInfo::AAPCS16_VFP &&
5074       getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) {
5075     // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're
5076     // bigger than 128-bits, they get placed in space allocated by the caller,
5077     // and a pointer is passed.
5078     return ABIArgInfo::getIndirect(
5079         CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false);
5080   }
5081 
5082   // Support byval for ARM.
5083   // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
5084   // most 8-byte. We realign the indirect argument if type alignment is bigger
5085   // than ABI alignment.
5086   uint64_t ABIAlign = 4;
5087   uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8;
5088   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
5089        getABIKind() == ARMABIInfo::AAPCS)
5090     ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
5091 
5092   if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
5093     assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval");
5094     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
5095                                    /*ByVal=*/true,
5096                                    /*Realign=*/TyAlign > ABIAlign);
5097   }
5098 
5099   // Otherwise, pass by coercing to a structure of the appropriate size.
5100   llvm::Type* ElemTy;
5101   unsigned SizeRegs;
5102   // FIXME: Try to match the types of the arguments more accurately where
5103   // we can.
5104   if (getContext().getTypeAlign(Ty) <= 32) {
5105     ElemTy = llvm::Type::getInt32Ty(getVMContext());
5106     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
5107   } else {
5108     ElemTy = llvm::Type::getInt64Ty(getVMContext());
5109     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
5110   }
5111 
5112   return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
5113 }
5114 
5115 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
5116                               llvm::LLVMContext &VMContext) {
5117   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
5118   // is called integer-like if its size is less than or equal to one word, and
5119   // the offset of each of its addressable sub-fields is zero.
5120 
5121   uint64_t Size = Context.getTypeSize(Ty);
5122 
5123   // Check that the type fits in a word.
5124   if (Size > 32)
5125     return false;
5126 
5127   // FIXME: Handle vector types!
5128   if (Ty->isVectorType())
5129     return false;
5130 
5131   // Float types are never treated as "integer like".
5132   if (Ty->isRealFloatingType())
5133     return false;
5134 
5135   // If this is a builtin or pointer type then it is ok.
5136   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
5137     return true;
5138 
5139   // Small complex integer types are "integer like".
5140   if (const ComplexType *CT = Ty->getAs<ComplexType>())
5141     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
5142 
5143   // Single element and zero sized arrays should be allowed, by the definition
5144   // above, but they are not.
5145 
5146   // Otherwise, it must be a record type.
5147   const RecordType *RT = Ty->getAs<RecordType>();
5148   if (!RT) return false;
5149 
5150   // Ignore records with flexible arrays.
5151   const RecordDecl *RD = RT->getDecl();
5152   if (RD->hasFlexibleArrayMember())
5153     return false;
5154 
5155   // Check that all sub-fields are at offset 0, and are themselves "integer
5156   // like".
5157   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
5158 
5159   bool HadField = false;
5160   unsigned idx = 0;
5161   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
5162        i != e; ++i, ++idx) {
5163     const FieldDecl *FD = *i;
5164 
5165     // Bit-fields are not addressable, we only need to verify they are "integer
5166     // like". We still have to disallow a subsequent non-bitfield, for example:
5167     //   struct { int : 0; int x }
5168     // is non-integer like according to gcc.
5169     if (FD->isBitField()) {
5170       if (!RD->isUnion())
5171         HadField = true;
5172 
5173       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
5174         return false;
5175 
5176       continue;
5177     }
5178 
5179     // Check if this field is at offset 0.
5180     if (Layout.getFieldOffset(idx) != 0)
5181       return false;
5182 
5183     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
5184       return false;
5185 
5186     // Only allow at most one field in a structure. This doesn't match the
5187     // wording above, but follows gcc in situations with a field following an
5188     // empty structure.
5189     if (!RD->isUnion()) {
5190       if (HadField)
5191         return false;
5192 
5193       HadField = true;
5194     }
5195   }
5196 
5197   return true;
5198 }
5199 
5200 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy,
5201                                           bool isVariadic) const {
5202   bool IsEffectivelyAAPCS_VFP =
5203       (getABIKind() == AAPCS_VFP || getABIKind() == AAPCS16_VFP) && !isVariadic;
5204 
5205   if (RetTy->isVoidType())
5206     return ABIArgInfo::getIgnore();
5207 
5208   // Large vector types should be returned via memory.
5209   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) {
5210     return getNaturalAlignIndirect(RetTy);
5211   }
5212 
5213   // __fp16 gets returned as if it were an int or float, but with the top 16
5214   // bits unspecified. This is not done for OpenCL as it handles the half type
5215   // natively, and does not need to interwork with AAPCS code.
5216   if (RetTy->isHalfType() && !getContext().getLangOpts().OpenCL) {
5217     llvm::Type *ResType = IsEffectivelyAAPCS_VFP ?
5218       llvm::Type::getFloatTy(getVMContext()) :
5219       llvm::Type::getInt32Ty(getVMContext());
5220     return ABIArgInfo::getDirect(ResType);
5221   }
5222 
5223   if (!isAggregateTypeForABI(RetTy)) {
5224     // Treat an enum type as its underlying type.
5225     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5226       RetTy = EnumTy->getDecl()->getIntegerType();
5227 
5228     return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend()
5229                                             : ABIArgInfo::getDirect();
5230   }
5231 
5232   // Are we following APCS?
5233   if (getABIKind() == APCS) {
5234     if (isEmptyRecord(getContext(), RetTy, false))
5235       return ABIArgInfo::getIgnore();
5236 
5237     // Complex types are all returned as packed integers.
5238     //
5239     // FIXME: Consider using 2 x vector types if the back end handles them
5240     // correctly.
5241     if (RetTy->isAnyComplexType())
5242       return ABIArgInfo::getDirect(llvm::IntegerType::get(
5243           getVMContext(), getContext().getTypeSize(RetTy)));
5244 
5245     // Integer like structures are returned in r0.
5246     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
5247       // Return in the smallest viable integer type.
5248       uint64_t Size = getContext().getTypeSize(RetTy);
5249       if (Size <= 8)
5250         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5251       if (Size <= 16)
5252         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
5253       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5254     }
5255 
5256     // Otherwise return in memory.
5257     return getNaturalAlignIndirect(RetTy);
5258   }
5259 
5260   // Otherwise this is an AAPCS variant.
5261 
5262   if (isEmptyRecord(getContext(), RetTy, true))
5263     return ABIArgInfo::getIgnore();
5264 
5265   // Check for homogeneous aggregates with AAPCS-VFP.
5266   if (IsEffectivelyAAPCS_VFP) {
5267     const Type *Base = nullptr;
5268     uint64_t Members = 0;
5269     if (isHomogeneousAggregate(RetTy, Base, Members)) {
5270       assert(Base && "Base class should be set for homogeneous aggregate");
5271       // Homogeneous Aggregates are returned directly.
5272       return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
5273     }
5274   }
5275 
5276   // Aggregates <= 4 bytes are returned in r0; other aggregates
5277   // are returned indirectly.
5278   uint64_t Size = getContext().getTypeSize(RetTy);
5279   if (Size <= 32) {
5280     if (getDataLayout().isBigEndian())
5281       // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
5282       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5283 
5284     // Return in the smallest viable integer type.
5285     if (Size <= 8)
5286       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5287     if (Size <= 16)
5288       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
5289     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5290   } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) {
5291     llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext());
5292     llvm::Type *CoerceTy =
5293         llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32);
5294     return ABIArgInfo::getDirect(CoerceTy);
5295   }
5296 
5297   return getNaturalAlignIndirect(RetTy);
5298 }
5299 
5300 /// isIllegalVector - check whether Ty is an illegal vector type.
5301 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
5302   if (const VectorType *VT = Ty->getAs<VectorType> ()) {
5303     if (isAndroid()) {
5304       // Android shipped using Clang 3.1, which supported a slightly different
5305       // vector ABI. The primary differences were that 3-element vector types
5306       // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path
5307       // accepts that legacy behavior for Android only.
5308       // Check whether VT is legal.
5309       unsigned NumElements = VT->getNumElements();
5310       // NumElements should be power of 2 or equal to 3.
5311       if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3)
5312         return true;
5313     } else {
5314       // Check whether VT is legal.
5315       unsigned NumElements = VT->getNumElements();
5316       uint64_t Size = getContext().getTypeSize(VT);
5317       // NumElements should be power of 2.
5318       if (!llvm::isPowerOf2_32(NumElements))
5319         return true;
5320       // Size should be greater than 32 bits.
5321       return Size <= 32;
5322     }
5323   }
5324   return false;
5325 }
5326 
5327 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
5328   // Homogeneous aggregates for AAPCS-VFP must have base types of float,
5329   // double, or 64-bit or 128-bit vectors.
5330   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
5331     if (BT->getKind() == BuiltinType::Float ||
5332         BT->getKind() == BuiltinType::Double ||
5333         BT->getKind() == BuiltinType::LongDouble)
5334       return true;
5335   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
5336     unsigned VecSize = getContext().getTypeSize(VT);
5337     if (VecSize == 64 || VecSize == 128)
5338       return true;
5339   }
5340   return false;
5341 }
5342 
5343 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
5344                                                    uint64_t Members) const {
5345   return Members <= 4;
5346 }
5347 
5348 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5349                               QualType Ty) const {
5350   CharUnits SlotSize = CharUnits::fromQuantity(4);
5351 
5352   // Empty records are ignored for parameter passing purposes.
5353   if (isEmptyRecord(getContext(), Ty, true)) {
5354     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
5355     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
5356     return Addr;
5357   }
5358 
5359   auto TyInfo = getContext().getTypeInfoInChars(Ty);
5360   CharUnits TyAlignForABI = TyInfo.second;
5361 
5362   // Use indirect if size of the illegal vector is bigger than 16 bytes.
5363   bool IsIndirect = false;
5364   const Type *Base = nullptr;
5365   uint64_t Members = 0;
5366   if (TyInfo.first > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) {
5367     IsIndirect = true;
5368 
5369   // ARMv7k passes structs bigger than 16 bytes indirectly, in space
5370   // allocated by the caller.
5371   } else if (TyInfo.first > CharUnits::fromQuantity(16) &&
5372              getABIKind() == ARMABIInfo::AAPCS16_VFP &&
5373              !isHomogeneousAggregate(Ty, Base, Members)) {
5374     IsIndirect = true;
5375 
5376   // Otherwise, bound the type's ABI alignment.
5377   // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
5378   // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
5379   // Our callers should be prepared to handle an under-aligned address.
5380   } else if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
5381              getABIKind() == ARMABIInfo::AAPCS) {
5382     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
5383     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8));
5384   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
5385     // ARMv7k allows type alignment up to 16 bytes.
5386     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
5387     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16));
5388   } else {
5389     TyAlignForABI = CharUnits::fromQuantity(4);
5390   }
5391   TyInfo.second = TyAlignForABI;
5392 
5393   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo,
5394                           SlotSize, /*AllowHigherAlign*/ true);
5395 }
5396 
5397 //===----------------------------------------------------------------------===//
5398 // NVPTX ABI Implementation
5399 //===----------------------------------------------------------------------===//
5400 
5401 namespace {
5402 
5403 class NVPTXABIInfo : public ABIInfo {
5404 public:
5405   NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
5406 
5407   ABIArgInfo classifyReturnType(QualType RetTy) const;
5408   ABIArgInfo classifyArgumentType(QualType Ty) const;
5409 
5410   void computeInfo(CGFunctionInfo &FI) const override;
5411   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5412                     QualType Ty) const override;
5413 };
5414 
5415 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
5416 public:
5417   NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
5418     : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
5419 
5420   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5421                            CodeGen::CodeGenModule &M) const override;
5422 private:
5423   // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the
5424   // resulting MDNode to the nvvm.annotations MDNode.
5425   static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand);
5426 };
5427 
5428 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
5429   if (RetTy->isVoidType())
5430     return ABIArgInfo::getIgnore();
5431 
5432   // note: this is different from default ABI
5433   if (!RetTy->isScalarType())
5434     return ABIArgInfo::getDirect();
5435 
5436   // Treat an enum type as its underlying type.
5437   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5438     RetTy = EnumTy->getDecl()->getIntegerType();
5439 
5440   return (RetTy->isPromotableIntegerType() ?
5441           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5442 }
5443 
5444 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
5445   // Treat an enum type as its underlying type.
5446   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5447     Ty = EnumTy->getDecl()->getIntegerType();
5448 
5449   // Return aggregates type as indirect by value
5450   if (isAggregateTypeForABI(Ty))
5451     return getNaturalAlignIndirect(Ty, /* byval */ true);
5452 
5453   return (Ty->isPromotableIntegerType() ?
5454           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5455 }
5456 
5457 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
5458   if (!getCXXABI().classifyReturnType(FI))
5459     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
5460   for (auto &I : FI.arguments())
5461     I.info = classifyArgumentType(I.type);
5462 
5463   // Always honor user-specified calling convention.
5464   if (FI.getCallingConvention() != llvm::CallingConv::C)
5465     return;
5466 
5467   FI.setEffectiveCallingConvention(getRuntimeCC());
5468 }
5469 
5470 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5471                                 QualType Ty) const {
5472   llvm_unreachable("NVPTX does not support varargs");
5473 }
5474 
5475 void NVPTXTargetCodeGenInfo::
5476 setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5477                     CodeGen::CodeGenModule &M) const{
5478   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5479   if (!FD) return;
5480 
5481   llvm::Function *F = cast<llvm::Function>(GV);
5482 
5483   // Perform special handling in OpenCL mode
5484   if (M.getLangOpts().OpenCL) {
5485     // Use OpenCL function attributes to check for kernel functions
5486     // By default, all functions are device functions
5487     if (FD->hasAttr<OpenCLKernelAttr>()) {
5488       // OpenCL __kernel functions get kernel metadata
5489       // Create !{<func-ref>, metadata !"kernel", i32 1} node
5490       addNVVMMetadata(F, "kernel", 1);
5491       // And kernel functions are not subject to inlining
5492       F->addFnAttr(llvm::Attribute::NoInline);
5493     }
5494   }
5495 
5496   // Perform special handling in CUDA mode.
5497   if (M.getLangOpts().CUDA) {
5498     // CUDA __global__ functions get a kernel metadata entry.  Since
5499     // __global__ functions cannot be called from the device, we do not
5500     // need to set the noinline attribute.
5501     if (FD->hasAttr<CUDAGlobalAttr>()) {
5502       // Create !{<func-ref>, metadata !"kernel", i32 1} node
5503       addNVVMMetadata(F, "kernel", 1);
5504     }
5505     if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) {
5506       // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
5507       llvm::APSInt MaxThreads(32);
5508       MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext());
5509       if (MaxThreads > 0)
5510         addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue());
5511 
5512       // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was
5513       // not specified in __launch_bounds__ or if the user specified a 0 value,
5514       // we don't have to add a PTX directive.
5515       if (Attr->getMinBlocks()) {
5516         llvm::APSInt MinBlocks(32);
5517         MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext());
5518         if (MinBlocks > 0)
5519           // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
5520           addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue());
5521       }
5522     }
5523   }
5524 }
5525 
5526 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name,
5527                                              int Operand) {
5528   llvm::Module *M = F->getParent();
5529   llvm::LLVMContext &Ctx = M->getContext();
5530 
5531   // Get "nvvm.annotations" metadata node
5532   llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
5533 
5534   llvm::Metadata *MDVals[] = {
5535       llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name),
5536       llvm::ConstantAsMetadata::get(
5537           llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
5538   // Append metadata to nvvm.annotations
5539   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
5540 }
5541 }
5542 
5543 //===----------------------------------------------------------------------===//
5544 // SystemZ ABI Implementation
5545 //===----------------------------------------------------------------------===//
5546 
5547 namespace {
5548 
5549 class SystemZABIInfo : public ABIInfo {
5550   bool HasVector;
5551 
5552 public:
5553   SystemZABIInfo(CodeGenTypes &CGT, bool HV)
5554     : ABIInfo(CGT), HasVector(HV) {}
5555 
5556   bool isPromotableIntegerType(QualType Ty) const;
5557   bool isCompoundType(QualType Ty) const;
5558   bool isVectorArgumentType(QualType Ty) const;
5559   bool isFPArgumentType(QualType Ty) const;
5560   QualType GetSingleElementType(QualType Ty) const;
5561 
5562   ABIArgInfo classifyReturnType(QualType RetTy) const;
5563   ABIArgInfo classifyArgumentType(QualType ArgTy) const;
5564 
5565   void computeInfo(CGFunctionInfo &FI) const override {
5566     if (!getCXXABI().classifyReturnType(FI))
5567       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
5568     for (auto &I : FI.arguments())
5569       I.info = classifyArgumentType(I.type);
5570   }
5571 
5572   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5573                     QualType Ty) const override;
5574 };
5575 
5576 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
5577 public:
5578   SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector)
5579     : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {}
5580 };
5581 
5582 }
5583 
5584 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
5585   // Treat an enum type as its underlying type.
5586   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5587     Ty = EnumTy->getDecl()->getIntegerType();
5588 
5589   // Promotable integer types are required to be promoted by the ABI.
5590   if (Ty->isPromotableIntegerType())
5591     return true;
5592 
5593   // 32-bit values must also be promoted.
5594   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
5595     switch (BT->getKind()) {
5596     case BuiltinType::Int:
5597     case BuiltinType::UInt:
5598       return true;
5599     default:
5600       return false;
5601     }
5602   return false;
5603 }
5604 
5605 bool SystemZABIInfo::isCompoundType(QualType Ty) const {
5606   return (Ty->isAnyComplexType() ||
5607           Ty->isVectorType() ||
5608           isAggregateTypeForABI(Ty));
5609 }
5610 
5611 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const {
5612   return (HasVector &&
5613           Ty->isVectorType() &&
5614           getContext().getTypeSize(Ty) <= 128);
5615 }
5616 
5617 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
5618   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
5619     switch (BT->getKind()) {
5620     case BuiltinType::Float:
5621     case BuiltinType::Double:
5622       return true;
5623     default:
5624       return false;
5625     }
5626 
5627   return false;
5628 }
5629 
5630 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const {
5631   if (const RecordType *RT = Ty->getAsStructureType()) {
5632     const RecordDecl *RD = RT->getDecl();
5633     QualType Found;
5634 
5635     // If this is a C++ record, check the bases first.
5636     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
5637       for (const auto &I : CXXRD->bases()) {
5638         QualType Base = I.getType();
5639 
5640         // Empty bases don't affect things either way.
5641         if (isEmptyRecord(getContext(), Base, true))
5642           continue;
5643 
5644         if (!Found.isNull())
5645           return Ty;
5646         Found = GetSingleElementType(Base);
5647       }
5648 
5649     // Check the fields.
5650     for (const auto *FD : RD->fields()) {
5651       // For compatibility with GCC, ignore empty bitfields in C++ mode.
5652       // Unlike isSingleElementStruct(), empty structure and array fields
5653       // do count.  So do anonymous bitfields that aren't zero-sized.
5654       if (getContext().getLangOpts().CPlusPlus &&
5655           FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
5656         continue;
5657 
5658       // Unlike isSingleElementStruct(), arrays do not count.
5659       // Nested structures still do though.
5660       if (!Found.isNull())
5661         return Ty;
5662       Found = GetSingleElementType(FD->getType());
5663     }
5664 
5665     // Unlike isSingleElementStruct(), trailing padding is allowed.
5666     // An 8-byte aligned struct s { float f; } is passed as a double.
5667     if (!Found.isNull())
5668       return Found;
5669   }
5670 
5671   return Ty;
5672 }
5673 
5674 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5675                                   QualType Ty) const {
5676   // Assume that va_list type is correct; should be pointer to LLVM type:
5677   // struct {
5678   //   i64 __gpr;
5679   //   i64 __fpr;
5680   //   i8 *__overflow_arg_area;
5681   //   i8 *__reg_save_area;
5682   // };
5683 
5684   // Every non-vector argument occupies 8 bytes and is passed by preference
5685   // in either GPRs or FPRs.  Vector arguments occupy 8 or 16 bytes and are
5686   // always passed on the stack.
5687   Ty = getContext().getCanonicalType(Ty);
5688   auto TyInfo = getContext().getTypeInfoInChars(Ty);
5689   llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty);
5690   llvm::Type *DirectTy = ArgTy;
5691   ABIArgInfo AI = classifyArgumentType(Ty);
5692   bool IsIndirect = AI.isIndirect();
5693   bool InFPRs = false;
5694   bool IsVector = false;
5695   CharUnits UnpaddedSize;
5696   CharUnits DirectAlign;
5697   if (IsIndirect) {
5698     DirectTy = llvm::PointerType::getUnqual(DirectTy);
5699     UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8);
5700   } else {
5701     if (AI.getCoerceToType())
5702       ArgTy = AI.getCoerceToType();
5703     InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy();
5704     IsVector = ArgTy->isVectorTy();
5705     UnpaddedSize = TyInfo.first;
5706     DirectAlign = TyInfo.second;
5707   }
5708   CharUnits PaddedSize = CharUnits::fromQuantity(8);
5709   if (IsVector && UnpaddedSize > PaddedSize)
5710     PaddedSize = CharUnits::fromQuantity(16);
5711   assert((UnpaddedSize <= PaddedSize) && "Invalid argument size.");
5712 
5713   CharUnits Padding = (PaddedSize - UnpaddedSize);
5714 
5715   llvm::Type *IndexTy = CGF.Int64Ty;
5716   llvm::Value *PaddedSizeV =
5717     llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity());
5718 
5719   if (IsVector) {
5720     // Work out the address of a vector argument on the stack.
5721     // Vector arguments are always passed in the high bits of a
5722     // single (8 byte) or double (16 byte) stack slot.
5723     Address OverflowArgAreaPtr =
5724       CGF.Builder.CreateStructGEP(VAListAddr, 2, CharUnits::fromQuantity(16),
5725                                   "overflow_arg_area_ptr");
5726     Address OverflowArgArea =
5727       Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
5728               TyInfo.second);
5729     Address MemAddr =
5730       CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr");
5731 
5732     // Update overflow_arg_area_ptr pointer
5733     llvm::Value *NewOverflowArgArea =
5734       CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
5735                             "overflow_arg_area");
5736     CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
5737 
5738     return MemAddr;
5739   }
5740 
5741   assert(PaddedSize.getQuantity() == 8);
5742 
5743   unsigned MaxRegs, RegCountField, RegSaveIndex;
5744   CharUnits RegPadding;
5745   if (InFPRs) {
5746     MaxRegs = 4; // Maximum of 4 FPR arguments
5747     RegCountField = 1; // __fpr
5748     RegSaveIndex = 16; // save offset for f0
5749     RegPadding = CharUnits(); // floats are passed in the high bits of an FPR
5750   } else {
5751     MaxRegs = 5; // Maximum of 5 GPR arguments
5752     RegCountField = 0; // __gpr
5753     RegSaveIndex = 2; // save offset for r2
5754     RegPadding = Padding; // values are passed in the low bits of a GPR
5755   }
5756 
5757   Address RegCountPtr = CGF.Builder.CreateStructGEP(
5758       VAListAddr, RegCountField, RegCountField * CharUnits::fromQuantity(8),
5759       "reg_count_ptr");
5760   llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
5761   llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
5762   llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
5763                                                  "fits_in_regs");
5764 
5765   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
5766   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
5767   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
5768   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
5769 
5770   // Emit code to load the value if it was passed in registers.
5771   CGF.EmitBlock(InRegBlock);
5772 
5773   // Work out the address of an argument register.
5774   llvm::Value *ScaledRegCount =
5775     CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
5776   llvm::Value *RegBase =
5777     llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity()
5778                                       + RegPadding.getQuantity());
5779   llvm::Value *RegOffset =
5780     CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
5781   Address RegSaveAreaPtr =
5782       CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24),
5783                                   "reg_save_area_ptr");
5784   llvm::Value *RegSaveArea =
5785     CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
5786   Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset,
5787                                            "raw_reg_addr"),
5788                      PaddedSize);
5789   Address RegAddr =
5790     CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr");
5791 
5792   // Update the register count
5793   llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
5794   llvm::Value *NewRegCount =
5795     CGF.Builder.CreateAdd(RegCount, One, "reg_count");
5796   CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
5797   CGF.EmitBranch(ContBlock);
5798 
5799   // Emit code to load the value if it was passed in memory.
5800   CGF.EmitBlock(InMemBlock);
5801 
5802   // Work out the address of a stack argument.
5803   Address OverflowArgAreaPtr = CGF.Builder.CreateStructGEP(
5804       VAListAddr, 2, CharUnits::fromQuantity(16), "overflow_arg_area_ptr");
5805   Address OverflowArgArea =
5806     Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
5807             PaddedSize);
5808   Address RawMemAddr =
5809     CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr");
5810   Address MemAddr =
5811     CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr");
5812 
5813   // Update overflow_arg_area_ptr pointer
5814   llvm::Value *NewOverflowArgArea =
5815     CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
5816                           "overflow_arg_area");
5817   CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
5818   CGF.EmitBranch(ContBlock);
5819 
5820   // Return the appropriate result.
5821   CGF.EmitBlock(ContBlock);
5822   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
5823                                  MemAddr, InMemBlock, "va_arg.addr");
5824 
5825   if (IsIndirect)
5826     ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"),
5827                       TyInfo.second);
5828 
5829   return ResAddr;
5830 }
5831 
5832 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
5833   if (RetTy->isVoidType())
5834     return ABIArgInfo::getIgnore();
5835   if (isVectorArgumentType(RetTy))
5836     return ABIArgInfo::getDirect();
5837   if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
5838     return getNaturalAlignIndirect(RetTy);
5839   return (isPromotableIntegerType(RetTy) ?
5840           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5841 }
5842 
5843 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
5844   // Handle the generic C++ ABI.
5845   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
5846     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
5847 
5848   // Integers and enums are extended to full register width.
5849   if (isPromotableIntegerType(Ty))
5850     return ABIArgInfo::getExtend();
5851 
5852   // Handle vector types and vector-like structure types.  Note that
5853   // as opposed to float-like structure types, we do not allow any
5854   // padding for vector-like structures, so verify the sizes match.
5855   uint64_t Size = getContext().getTypeSize(Ty);
5856   QualType SingleElementTy = GetSingleElementType(Ty);
5857   if (isVectorArgumentType(SingleElementTy) &&
5858       getContext().getTypeSize(SingleElementTy) == Size)
5859     return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy));
5860 
5861   // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
5862   if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
5863     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5864 
5865   // Handle small structures.
5866   if (const RecordType *RT = Ty->getAs<RecordType>()) {
5867     // Structures with flexible arrays have variable length, so really
5868     // fail the size test above.
5869     const RecordDecl *RD = RT->getDecl();
5870     if (RD->hasFlexibleArrayMember())
5871       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5872 
5873     // The structure is passed as an unextended integer, a float, or a double.
5874     llvm::Type *PassTy;
5875     if (isFPArgumentType(SingleElementTy)) {
5876       assert(Size == 32 || Size == 64);
5877       if (Size == 32)
5878         PassTy = llvm::Type::getFloatTy(getVMContext());
5879       else
5880         PassTy = llvm::Type::getDoubleTy(getVMContext());
5881     } else
5882       PassTy = llvm::IntegerType::get(getVMContext(), Size);
5883     return ABIArgInfo::getDirect(PassTy);
5884   }
5885 
5886   // Non-structure compounds are passed indirectly.
5887   if (isCompoundType(Ty))
5888     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5889 
5890   return ABIArgInfo::getDirect(nullptr);
5891 }
5892 
5893 //===----------------------------------------------------------------------===//
5894 // MSP430 ABI Implementation
5895 //===----------------------------------------------------------------------===//
5896 
5897 namespace {
5898 
5899 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
5900 public:
5901   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
5902     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
5903   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5904                            CodeGen::CodeGenModule &M) const override;
5905 };
5906 
5907 }
5908 
5909 void MSP430TargetCodeGenInfo::setTargetAttributes(const Decl *D,
5910                                                   llvm::GlobalValue *GV,
5911                                              CodeGen::CodeGenModule &M) const {
5912   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
5913     if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
5914       // Handle 'interrupt' attribute:
5915       llvm::Function *F = cast<llvm::Function>(GV);
5916 
5917       // Step 1: Set ISR calling convention.
5918       F->setCallingConv(llvm::CallingConv::MSP430_INTR);
5919 
5920       // Step 2: Add attributes goodness.
5921       F->addFnAttr(llvm::Attribute::NoInline);
5922 
5923       // Step 3: Emit ISR vector alias.
5924       unsigned Num = attr->getNumber() / 2;
5925       llvm::GlobalAlias::create(llvm::Function::ExternalLinkage,
5926                                 "__isr_" + Twine(Num), F);
5927     }
5928   }
5929 }
5930 
5931 //===----------------------------------------------------------------------===//
5932 // MIPS ABI Implementation.  This works for both little-endian and
5933 // big-endian variants.
5934 //===----------------------------------------------------------------------===//
5935 
5936 namespace {
5937 class MipsABIInfo : public ABIInfo {
5938   bool IsO32;
5939   unsigned MinABIStackAlignInBytes, StackAlignInBytes;
5940   void CoerceToIntArgs(uint64_t TySize,
5941                        SmallVectorImpl<llvm::Type *> &ArgList) const;
5942   llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
5943   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
5944   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
5945 public:
5946   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
5947     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
5948     StackAlignInBytes(IsO32 ? 8 : 16) {}
5949 
5950   ABIArgInfo classifyReturnType(QualType RetTy) const;
5951   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
5952   void computeInfo(CGFunctionInfo &FI) const override;
5953   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5954                     QualType Ty) const override;
5955   bool shouldSignExtUnsignedType(QualType Ty) const override;
5956 };
5957 
5958 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
5959   unsigned SizeOfUnwindException;
5960 public:
5961   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
5962     : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
5963       SizeOfUnwindException(IsO32 ? 24 : 32) {}
5964 
5965   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
5966     return 29;
5967   }
5968 
5969   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5970                            CodeGen::CodeGenModule &CGM) const override {
5971     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5972     if (!FD) return;
5973     llvm::Function *Fn = cast<llvm::Function>(GV);
5974     if (FD->hasAttr<Mips16Attr>()) {
5975       Fn->addFnAttr("mips16");
5976     }
5977     else if (FD->hasAttr<NoMips16Attr>()) {
5978       Fn->addFnAttr("nomips16");
5979     }
5980 
5981     const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>();
5982     if (!Attr)
5983       return;
5984 
5985     const char *Kind;
5986     switch (Attr->getInterrupt()) {
5987     case MipsInterruptAttr::eic:     Kind = "eic"; break;
5988     case MipsInterruptAttr::sw0:     Kind = "sw0"; break;
5989     case MipsInterruptAttr::sw1:     Kind = "sw1"; break;
5990     case MipsInterruptAttr::hw0:     Kind = "hw0"; break;
5991     case MipsInterruptAttr::hw1:     Kind = "hw1"; break;
5992     case MipsInterruptAttr::hw2:     Kind = "hw2"; break;
5993     case MipsInterruptAttr::hw3:     Kind = "hw3"; break;
5994     case MipsInterruptAttr::hw4:     Kind = "hw4"; break;
5995     case MipsInterruptAttr::hw5:     Kind = "hw5"; break;
5996     }
5997 
5998     Fn->addFnAttr("interrupt", Kind);
5999 
6000   }
6001 
6002   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6003                                llvm::Value *Address) const override;
6004 
6005   unsigned getSizeOfUnwindException() const override {
6006     return SizeOfUnwindException;
6007   }
6008 };
6009 }
6010 
6011 void MipsABIInfo::CoerceToIntArgs(
6012     uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const {
6013   llvm::IntegerType *IntTy =
6014     llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
6015 
6016   // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
6017   for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
6018     ArgList.push_back(IntTy);
6019 
6020   // If necessary, add one more integer type to ArgList.
6021   unsigned R = TySize % (MinABIStackAlignInBytes * 8);
6022 
6023   if (R)
6024     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
6025 }
6026 
6027 // In N32/64, an aligned double precision floating point field is passed in
6028 // a register.
6029 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
6030   SmallVector<llvm::Type*, 8> ArgList, IntArgList;
6031 
6032   if (IsO32) {
6033     CoerceToIntArgs(TySize, ArgList);
6034     return llvm::StructType::get(getVMContext(), ArgList);
6035   }
6036 
6037   if (Ty->isComplexType())
6038     return CGT.ConvertType(Ty);
6039 
6040   const RecordType *RT = Ty->getAs<RecordType>();
6041 
6042   // Unions/vectors are passed in integer registers.
6043   if (!RT || !RT->isStructureOrClassType()) {
6044     CoerceToIntArgs(TySize, ArgList);
6045     return llvm::StructType::get(getVMContext(), ArgList);
6046   }
6047 
6048   const RecordDecl *RD = RT->getDecl();
6049   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
6050   assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
6051 
6052   uint64_t LastOffset = 0;
6053   unsigned idx = 0;
6054   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
6055 
6056   // Iterate over fields in the struct/class and check if there are any aligned
6057   // double fields.
6058   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
6059        i != e; ++i, ++idx) {
6060     const QualType Ty = i->getType();
6061     const BuiltinType *BT = Ty->getAs<BuiltinType>();
6062 
6063     if (!BT || BT->getKind() != BuiltinType::Double)
6064       continue;
6065 
6066     uint64_t Offset = Layout.getFieldOffset(idx);
6067     if (Offset % 64) // Ignore doubles that are not aligned.
6068       continue;
6069 
6070     // Add ((Offset - LastOffset) / 64) args of type i64.
6071     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
6072       ArgList.push_back(I64);
6073 
6074     // Add double type.
6075     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
6076     LastOffset = Offset + 64;
6077   }
6078 
6079   CoerceToIntArgs(TySize - LastOffset, IntArgList);
6080   ArgList.append(IntArgList.begin(), IntArgList.end());
6081 
6082   return llvm::StructType::get(getVMContext(), ArgList);
6083 }
6084 
6085 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
6086                                         uint64_t Offset) const {
6087   if (OrigOffset + MinABIStackAlignInBytes > Offset)
6088     return nullptr;
6089 
6090   return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
6091 }
6092 
6093 ABIArgInfo
6094 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
6095   Ty = useFirstFieldIfTransparentUnion(Ty);
6096 
6097   uint64_t OrigOffset = Offset;
6098   uint64_t TySize = getContext().getTypeSize(Ty);
6099   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
6100 
6101   Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
6102                    (uint64_t)StackAlignInBytes);
6103   unsigned CurrOffset = llvm::alignTo(Offset, Align);
6104   Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8;
6105 
6106   if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
6107     // Ignore empty aggregates.
6108     if (TySize == 0)
6109       return ABIArgInfo::getIgnore();
6110 
6111     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
6112       Offset = OrigOffset + MinABIStackAlignInBytes;
6113       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6114     }
6115 
6116     // If we have reached here, aggregates are passed directly by coercing to
6117     // another structure type. Padding is inserted if the offset of the
6118     // aggregate is unaligned.
6119     ABIArgInfo ArgInfo =
6120         ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
6121                               getPaddingType(OrigOffset, CurrOffset));
6122     ArgInfo.setInReg(true);
6123     return ArgInfo;
6124   }
6125 
6126   // Treat an enum type as its underlying type.
6127   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6128     Ty = EnumTy->getDecl()->getIntegerType();
6129 
6130   // All integral types are promoted to the GPR width.
6131   if (Ty->isIntegralOrEnumerationType())
6132     return ABIArgInfo::getExtend();
6133 
6134   return ABIArgInfo::getDirect(
6135       nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
6136 }
6137 
6138 llvm::Type*
6139 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
6140   const RecordType *RT = RetTy->getAs<RecordType>();
6141   SmallVector<llvm::Type*, 8> RTList;
6142 
6143   if (RT && RT->isStructureOrClassType()) {
6144     const RecordDecl *RD = RT->getDecl();
6145     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
6146     unsigned FieldCnt = Layout.getFieldCount();
6147 
6148     // N32/64 returns struct/classes in floating point registers if the
6149     // following conditions are met:
6150     // 1. The size of the struct/class is no larger than 128-bit.
6151     // 2. The struct/class has one or two fields all of which are floating
6152     //    point types.
6153     // 3. The offset of the first field is zero (this follows what gcc does).
6154     //
6155     // Any other composite results are returned in integer registers.
6156     //
6157     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
6158       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
6159       for (; b != e; ++b) {
6160         const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
6161 
6162         if (!BT || !BT->isFloatingPoint())
6163           break;
6164 
6165         RTList.push_back(CGT.ConvertType(b->getType()));
6166       }
6167 
6168       if (b == e)
6169         return llvm::StructType::get(getVMContext(), RTList,
6170                                      RD->hasAttr<PackedAttr>());
6171 
6172       RTList.clear();
6173     }
6174   }
6175 
6176   CoerceToIntArgs(Size, RTList);
6177   return llvm::StructType::get(getVMContext(), RTList);
6178 }
6179 
6180 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
6181   uint64_t Size = getContext().getTypeSize(RetTy);
6182 
6183   if (RetTy->isVoidType())
6184     return ABIArgInfo::getIgnore();
6185 
6186   // O32 doesn't treat zero-sized structs differently from other structs.
6187   // However, N32/N64 ignores zero sized return values.
6188   if (!IsO32 && Size == 0)
6189     return ABIArgInfo::getIgnore();
6190 
6191   if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
6192     if (Size <= 128) {
6193       if (RetTy->isAnyComplexType())
6194         return ABIArgInfo::getDirect();
6195 
6196       // O32 returns integer vectors in registers and N32/N64 returns all small
6197       // aggregates in registers.
6198       if (!IsO32 ||
6199           (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
6200         ABIArgInfo ArgInfo =
6201             ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
6202         ArgInfo.setInReg(true);
6203         return ArgInfo;
6204       }
6205     }
6206 
6207     return getNaturalAlignIndirect(RetTy);
6208   }
6209 
6210   // Treat an enum type as its underlying type.
6211   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6212     RetTy = EnumTy->getDecl()->getIntegerType();
6213 
6214   return (RetTy->isPromotableIntegerType() ?
6215           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
6216 }
6217 
6218 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
6219   ABIArgInfo &RetInfo = FI.getReturnInfo();
6220   if (!getCXXABI().classifyReturnType(FI))
6221     RetInfo = classifyReturnType(FI.getReturnType());
6222 
6223   // Check if a pointer to an aggregate is passed as a hidden argument.
6224   uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
6225 
6226   for (auto &I : FI.arguments())
6227     I.info = classifyArgumentType(I.type, Offset);
6228 }
6229 
6230 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6231                                QualType OrigTy) const {
6232   QualType Ty = OrigTy;
6233 
6234   // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64.
6235   // Pointers are also promoted in the same way but this only matters for N32.
6236   unsigned SlotSizeInBits = IsO32 ? 32 : 64;
6237   unsigned PtrWidth = getTarget().getPointerWidth(0);
6238   bool DidPromote = false;
6239   if ((Ty->isIntegerType() &&
6240           getContext().getIntWidth(Ty) < SlotSizeInBits) ||
6241       (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) {
6242     DidPromote = true;
6243     Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits,
6244                                             Ty->isSignedIntegerType());
6245   }
6246 
6247   auto TyInfo = getContext().getTypeInfoInChars(Ty);
6248 
6249   // The alignment of things in the argument area is never larger than
6250   // StackAlignInBytes.
6251   TyInfo.second =
6252     std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes));
6253 
6254   // MinABIStackAlignInBytes is the size of argument slots on the stack.
6255   CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes);
6256 
6257   Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
6258                           TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true);
6259 
6260 
6261   // If there was a promotion, "unpromote" into a temporary.
6262   // TODO: can we just use a pointer into a subset of the original slot?
6263   if (DidPromote) {
6264     Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp");
6265     llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr);
6266 
6267     // Truncate down to the right width.
6268     llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType()
6269                                                  : CGF.IntPtrTy);
6270     llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy);
6271     if (OrigTy->isPointerType())
6272       V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType());
6273 
6274     CGF.Builder.CreateStore(V, Temp);
6275     Addr = Temp;
6276   }
6277 
6278   return Addr;
6279 }
6280 
6281 bool MipsABIInfo::shouldSignExtUnsignedType(QualType Ty) const {
6282   int TySize = getContext().getTypeSize(Ty);
6283 
6284   // MIPS64 ABI requires unsigned 32 bit integers to be sign extended.
6285   if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
6286     return true;
6287 
6288   return false;
6289 }
6290 
6291 bool
6292 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6293                                                llvm::Value *Address) const {
6294   // This information comes from gcc's implementation, which seems to
6295   // as canonical as it gets.
6296 
6297   // Everything on MIPS is 4 bytes.  Double-precision FP registers
6298   // are aliased to pairs of single-precision FP registers.
6299   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
6300 
6301   // 0-31 are the general purpose registers, $0 - $31.
6302   // 32-63 are the floating-point registers, $f0 - $f31.
6303   // 64 and 65 are the multiply/divide registers, $hi and $lo.
6304   // 66 is the (notional, I think) register for signal-handler return.
6305   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
6306 
6307   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
6308   // They are one bit wide and ignored here.
6309 
6310   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
6311   // (coprocessor 1 is the FP unit)
6312   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
6313   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
6314   // 176-181 are the DSP accumulator registers.
6315   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
6316   return false;
6317 }
6318 
6319 //===----------------------------------------------------------------------===//
6320 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
6321 // Currently subclassed only to implement custom OpenCL C function attribute
6322 // handling.
6323 //===----------------------------------------------------------------------===//
6324 
6325 namespace {
6326 
6327 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
6328 public:
6329   TCETargetCodeGenInfo(CodeGenTypes &CGT)
6330     : DefaultTargetCodeGenInfo(CGT) {}
6331 
6332   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6333                            CodeGen::CodeGenModule &M) const override;
6334 };
6335 
6336 void TCETargetCodeGenInfo::setTargetAttributes(
6337     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
6338   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6339   if (!FD) return;
6340 
6341   llvm::Function *F = cast<llvm::Function>(GV);
6342 
6343   if (M.getLangOpts().OpenCL) {
6344     if (FD->hasAttr<OpenCLKernelAttr>()) {
6345       // OpenCL C Kernel functions are not subject to inlining
6346       F->addFnAttr(llvm::Attribute::NoInline);
6347       const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
6348       if (Attr) {
6349         // Convert the reqd_work_group_size() attributes to metadata.
6350         llvm::LLVMContext &Context = F->getContext();
6351         llvm::NamedMDNode *OpenCLMetadata =
6352             M.getModule().getOrInsertNamedMetadata(
6353                 "opencl.kernel_wg_size_info");
6354 
6355         SmallVector<llvm::Metadata *, 5> Operands;
6356         Operands.push_back(llvm::ConstantAsMetadata::get(F));
6357 
6358         Operands.push_back(
6359             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
6360                 M.Int32Ty, llvm::APInt(32, Attr->getXDim()))));
6361         Operands.push_back(
6362             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
6363                 M.Int32Ty, llvm::APInt(32, Attr->getYDim()))));
6364         Operands.push_back(
6365             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
6366                 M.Int32Ty, llvm::APInt(32, Attr->getZDim()))));
6367 
6368         // Add a boolean constant operand for "required" (true) or "hint"
6369         // (false) for implementing the work_group_size_hint attr later.
6370         // Currently always true as the hint is not yet implemented.
6371         Operands.push_back(
6372             llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context)));
6373         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
6374       }
6375     }
6376   }
6377 }
6378 
6379 }
6380 
6381 //===----------------------------------------------------------------------===//
6382 // Hexagon ABI Implementation
6383 //===----------------------------------------------------------------------===//
6384 
6385 namespace {
6386 
6387 class HexagonABIInfo : public ABIInfo {
6388 
6389 
6390 public:
6391   HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
6392 
6393 private:
6394 
6395   ABIArgInfo classifyReturnType(QualType RetTy) const;
6396   ABIArgInfo classifyArgumentType(QualType RetTy) const;
6397 
6398   void computeInfo(CGFunctionInfo &FI) const override;
6399 
6400   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6401                     QualType Ty) const override;
6402 };
6403 
6404 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
6405 public:
6406   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
6407     :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
6408 
6409   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
6410     return 29;
6411   }
6412 };
6413 
6414 }
6415 
6416 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
6417   if (!getCXXABI().classifyReturnType(FI))
6418     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
6419   for (auto &I : FI.arguments())
6420     I.info = classifyArgumentType(I.type);
6421 }
6422 
6423 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
6424   if (!isAggregateTypeForABI(Ty)) {
6425     // Treat an enum type as its underlying type.
6426     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6427       Ty = EnumTy->getDecl()->getIntegerType();
6428 
6429     return (Ty->isPromotableIntegerType() ?
6430             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
6431   }
6432 
6433   // Ignore empty records.
6434   if (isEmptyRecord(getContext(), Ty, true))
6435     return ABIArgInfo::getIgnore();
6436 
6437   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
6438     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6439 
6440   uint64_t Size = getContext().getTypeSize(Ty);
6441   if (Size > 64)
6442     return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
6443     // Pass in the smallest viable integer type.
6444   else if (Size > 32)
6445       return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
6446   else if (Size > 16)
6447       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6448   else if (Size > 8)
6449       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6450   else
6451       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6452 }
6453 
6454 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
6455   if (RetTy->isVoidType())
6456     return ABIArgInfo::getIgnore();
6457 
6458   // Large vector types should be returned via memory.
6459   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
6460     return getNaturalAlignIndirect(RetTy);
6461 
6462   if (!isAggregateTypeForABI(RetTy)) {
6463     // Treat an enum type as its underlying type.
6464     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6465       RetTy = EnumTy->getDecl()->getIntegerType();
6466 
6467     return (RetTy->isPromotableIntegerType() ?
6468             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
6469   }
6470 
6471   if (isEmptyRecord(getContext(), RetTy, true))
6472     return ABIArgInfo::getIgnore();
6473 
6474   // Aggregates <= 8 bytes are returned in r0; other aggregates
6475   // are returned indirectly.
6476   uint64_t Size = getContext().getTypeSize(RetTy);
6477   if (Size <= 64) {
6478     // Return in the smallest viable integer type.
6479     if (Size <= 8)
6480       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6481     if (Size <= 16)
6482       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6483     if (Size <= 32)
6484       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6485     return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
6486   }
6487 
6488   return getNaturalAlignIndirect(RetTy, /*ByVal=*/true);
6489 }
6490 
6491 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6492                                   QualType Ty) const {
6493   // FIXME: Someone needs to audit that this handle alignment correctly.
6494   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
6495                           getContext().getTypeInfoInChars(Ty),
6496                           CharUnits::fromQuantity(4),
6497                           /*AllowHigherAlign*/ true);
6498 }
6499 
6500 //===----------------------------------------------------------------------===//
6501 // AMDGPU ABI Implementation
6502 //===----------------------------------------------------------------------===//
6503 
6504 namespace {
6505 
6506 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
6507 public:
6508   AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
6509     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
6510   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6511                            CodeGen::CodeGenModule &M) const override;
6512 };
6513 
6514 }
6515 
6516 void AMDGPUTargetCodeGenInfo::setTargetAttributes(
6517   const Decl *D,
6518   llvm::GlobalValue *GV,
6519   CodeGen::CodeGenModule &M) const {
6520   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6521   if (!FD)
6522     return;
6523 
6524   if (const auto Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
6525     llvm::Function *F = cast<llvm::Function>(GV);
6526     uint32_t NumVGPR = Attr->getNumVGPR();
6527     if (NumVGPR != 0)
6528       F->addFnAttr("amdgpu_num_vgpr", llvm::utostr(NumVGPR));
6529   }
6530 
6531   if (const auto Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
6532     llvm::Function *F = cast<llvm::Function>(GV);
6533     unsigned NumSGPR = Attr->getNumSGPR();
6534     if (NumSGPR != 0)
6535       F->addFnAttr("amdgpu_num_sgpr", llvm::utostr(NumSGPR));
6536   }
6537 }
6538 
6539 
6540 //===----------------------------------------------------------------------===//
6541 // SPARC v9 ABI Implementation.
6542 // Based on the SPARC Compliance Definition version 2.4.1.
6543 //
6544 // Function arguments a mapped to a nominal "parameter array" and promoted to
6545 // registers depending on their type. Each argument occupies 8 or 16 bytes in
6546 // the array, structs larger than 16 bytes are passed indirectly.
6547 //
6548 // One case requires special care:
6549 //
6550 //   struct mixed {
6551 //     int i;
6552 //     float f;
6553 //   };
6554 //
6555 // When a struct mixed is passed by value, it only occupies 8 bytes in the
6556 // parameter array, but the int is passed in an integer register, and the float
6557 // is passed in a floating point register. This is represented as two arguments
6558 // with the LLVM IR inreg attribute:
6559 //
6560 //   declare void f(i32 inreg %i, float inreg %f)
6561 //
6562 // The code generator will only allocate 4 bytes from the parameter array for
6563 // the inreg arguments. All other arguments are allocated a multiple of 8
6564 // bytes.
6565 //
6566 namespace {
6567 class SparcV9ABIInfo : public ABIInfo {
6568 public:
6569   SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
6570 
6571 private:
6572   ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
6573   void computeInfo(CGFunctionInfo &FI) const override;
6574   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6575                     QualType Ty) const override;
6576 
6577   // Coercion type builder for structs passed in registers. The coercion type
6578   // serves two purposes:
6579   //
6580   // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
6581   //    in registers.
6582   // 2. Expose aligned floating point elements as first-level elements, so the
6583   //    code generator knows to pass them in floating point registers.
6584   //
6585   // We also compute the InReg flag which indicates that the struct contains
6586   // aligned 32-bit floats.
6587   //
6588   struct CoerceBuilder {
6589     llvm::LLVMContext &Context;
6590     const llvm::DataLayout &DL;
6591     SmallVector<llvm::Type*, 8> Elems;
6592     uint64_t Size;
6593     bool InReg;
6594 
6595     CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
6596       : Context(c), DL(dl), Size(0), InReg(false) {}
6597 
6598     // Pad Elems with integers until Size is ToSize.
6599     void pad(uint64_t ToSize) {
6600       assert(ToSize >= Size && "Cannot remove elements");
6601       if (ToSize == Size)
6602         return;
6603 
6604       // Finish the current 64-bit word.
6605       uint64_t Aligned = llvm::alignTo(Size, 64);
6606       if (Aligned > Size && Aligned <= ToSize) {
6607         Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
6608         Size = Aligned;
6609       }
6610 
6611       // Add whole 64-bit words.
6612       while (Size + 64 <= ToSize) {
6613         Elems.push_back(llvm::Type::getInt64Ty(Context));
6614         Size += 64;
6615       }
6616 
6617       // Final in-word padding.
6618       if (Size < ToSize) {
6619         Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
6620         Size = ToSize;
6621       }
6622     }
6623 
6624     // Add a floating point element at Offset.
6625     void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
6626       // Unaligned floats are treated as integers.
6627       if (Offset % Bits)
6628         return;
6629       // The InReg flag is only required if there are any floats < 64 bits.
6630       if (Bits < 64)
6631         InReg = true;
6632       pad(Offset);
6633       Elems.push_back(Ty);
6634       Size = Offset + Bits;
6635     }
6636 
6637     // Add a struct type to the coercion type, starting at Offset (in bits).
6638     void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
6639       const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
6640       for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
6641         llvm::Type *ElemTy = StrTy->getElementType(i);
6642         uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
6643         switch (ElemTy->getTypeID()) {
6644         case llvm::Type::StructTyID:
6645           addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
6646           break;
6647         case llvm::Type::FloatTyID:
6648           addFloat(ElemOffset, ElemTy, 32);
6649           break;
6650         case llvm::Type::DoubleTyID:
6651           addFloat(ElemOffset, ElemTy, 64);
6652           break;
6653         case llvm::Type::FP128TyID:
6654           addFloat(ElemOffset, ElemTy, 128);
6655           break;
6656         case llvm::Type::PointerTyID:
6657           if (ElemOffset % 64 == 0) {
6658             pad(ElemOffset);
6659             Elems.push_back(ElemTy);
6660             Size += 64;
6661           }
6662           break;
6663         default:
6664           break;
6665         }
6666       }
6667     }
6668 
6669     // Check if Ty is a usable substitute for the coercion type.
6670     bool isUsableType(llvm::StructType *Ty) const {
6671       return llvm::makeArrayRef(Elems) == Ty->elements();
6672     }
6673 
6674     // Get the coercion type as a literal struct type.
6675     llvm::Type *getType() const {
6676       if (Elems.size() == 1)
6677         return Elems.front();
6678       else
6679         return llvm::StructType::get(Context, Elems);
6680     }
6681   };
6682 };
6683 } // end anonymous namespace
6684 
6685 ABIArgInfo
6686 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
6687   if (Ty->isVoidType())
6688     return ABIArgInfo::getIgnore();
6689 
6690   uint64_t Size = getContext().getTypeSize(Ty);
6691 
6692   // Anything too big to fit in registers is passed with an explicit indirect
6693   // pointer / sret pointer.
6694   if (Size > SizeLimit)
6695     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6696 
6697   // Treat an enum type as its underlying type.
6698   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6699     Ty = EnumTy->getDecl()->getIntegerType();
6700 
6701   // Integer types smaller than a register are extended.
6702   if (Size < 64 && Ty->isIntegerType())
6703     return ABIArgInfo::getExtend();
6704 
6705   // Other non-aggregates go in registers.
6706   if (!isAggregateTypeForABI(Ty))
6707     return ABIArgInfo::getDirect();
6708 
6709   // If a C++ object has either a non-trivial copy constructor or a non-trivial
6710   // destructor, it is passed with an explicit indirect pointer / sret pointer.
6711   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
6712     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6713 
6714   // This is a small aggregate type that should be passed in registers.
6715   // Build a coercion type from the LLVM struct type.
6716   llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
6717   if (!StrTy)
6718     return ABIArgInfo::getDirect();
6719 
6720   CoerceBuilder CB(getVMContext(), getDataLayout());
6721   CB.addStruct(0, StrTy);
6722   CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64));
6723 
6724   // Try to use the original type for coercion.
6725   llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
6726 
6727   if (CB.InReg)
6728     return ABIArgInfo::getDirectInReg(CoerceTy);
6729   else
6730     return ABIArgInfo::getDirect(CoerceTy);
6731 }
6732 
6733 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6734                                   QualType Ty) const {
6735   ABIArgInfo AI = classifyType(Ty, 16 * 8);
6736   llvm::Type *ArgTy = CGT.ConvertType(Ty);
6737   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
6738     AI.setCoerceToType(ArgTy);
6739 
6740   CharUnits SlotSize = CharUnits::fromQuantity(8);
6741 
6742   CGBuilderTy &Builder = CGF.Builder;
6743   Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
6744   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
6745 
6746   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
6747 
6748   Address ArgAddr = Address::invalid();
6749   CharUnits Stride;
6750   switch (AI.getKind()) {
6751   case ABIArgInfo::Expand:
6752   case ABIArgInfo::InAlloca:
6753     llvm_unreachable("Unsupported ABI kind for va_arg");
6754 
6755   case ABIArgInfo::Extend: {
6756     Stride = SlotSize;
6757     CharUnits Offset = SlotSize - TypeInfo.first;
6758     ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend");
6759     break;
6760   }
6761 
6762   case ABIArgInfo::Direct: {
6763     auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
6764     Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize);
6765     ArgAddr = Addr;
6766     break;
6767   }
6768 
6769   case ABIArgInfo::Indirect:
6770     Stride = SlotSize;
6771     ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect");
6772     ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"),
6773                       TypeInfo.second);
6774     break;
6775 
6776   case ABIArgInfo::Ignore:
6777     return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second);
6778   }
6779 
6780   // Update VAList.
6781   llvm::Value *NextPtr =
6782     Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), Stride, "ap.next");
6783   Builder.CreateStore(NextPtr, VAListAddr);
6784 
6785   return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr");
6786 }
6787 
6788 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
6789   FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
6790   for (auto &I : FI.arguments())
6791     I.info = classifyType(I.type, 16 * 8);
6792 }
6793 
6794 namespace {
6795 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
6796 public:
6797   SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
6798     : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {}
6799 
6800   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
6801     return 14;
6802   }
6803 
6804   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6805                                llvm::Value *Address) const override;
6806 };
6807 } // end anonymous namespace
6808 
6809 bool
6810 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6811                                                 llvm::Value *Address) const {
6812   // This is calculated from the LLVM and GCC tables and verified
6813   // against gcc output.  AFAIK all ABIs use the same encoding.
6814 
6815   CodeGen::CGBuilderTy &Builder = CGF.Builder;
6816 
6817   llvm::IntegerType *i8 = CGF.Int8Ty;
6818   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
6819   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
6820 
6821   // 0-31: the 8-byte general-purpose registers
6822   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
6823 
6824   // 32-63: f0-31, the 4-byte floating-point registers
6825   AssignToArrayRange(Builder, Address, Four8, 32, 63);
6826 
6827   //   Y   = 64
6828   //   PSR = 65
6829   //   WIM = 66
6830   //   TBR = 67
6831   //   PC  = 68
6832   //   NPC = 69
6833   //   FSR = 70
6834   //   CSR = 71
6835   AssignToArrayRange(Builder, Address, Eight8, 64, 71);
6836 
6837   // 72-87: d0-15, the 8-byte floating-point registers
6838   AssignToArrayRange(Builder, Address, Eight8, 72, 87);
6839 
6840   return false;
6841 }
6842 
6843 
6844 //===----------------------------------------------------------------------===//
6845 // XCore ABI Implementation
6846 //===----------------------------------------------------------------------===//
6847 
6848 namespace {
6849 
6850 /// A SmallStringEnc instance is used to build up the TypeString by passing
6851 /// it by reference between functions that append to it.
6852 typedef llvm::SmallString<128> SmallStringEnc;
6853 
6854 /// TypeStringCache caches the meta encodings of Types.
6855 ///
6856 /// The reason for caching TypeStrings is two fold:
6857 ///   1. To cache a type's encoding for later uses;
6858 ///   2. As a means to break recursive member type inclusion.
6859 ///
6860 /// A cache Entry can have a Status of:
6861 ///   NonRecursive:   The type encoding is not recursive;
6862 ///   Recursive:      The type encoding is recursive;
6863 ///   Incomplete:     An incomplete TypeString;
6864 ///   IncompleteUsed: An incomplete TypeString that has been used in a
6865 ///                   Recursive type encoding.
6866 ///
6867 /// A NonRecursive entry will have all of its sub-members expanded as fully
6868 /// as possible. Whilst it may contain types which are recursive, the type
6869 /// itself is not recursive and thus its encoding may be safely used whenever
6870 /// the type is encountered.
6871 ///
6872 /// A Recursive entry will have all of its sub-members expanded as fully as
6873 /// possible. The type itself is recursive and it may contain other types which
6874 /// are recursive. The Recursive encoding must not be used during the expansion
6875 /// of a recursive type's recursive branch. For simplicity the code uses
6876 /// IncompleteCount to reject all usage of Recursive encodings for member types.
6877 ///
6878 /// An Incomplete entry is always a RecordType and only encodes its
6879 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
6880 /// are placed into the cache during type expansion as a means to identify and
6881 /// handle recursive inclusion of types as sub-members. If there is recursion
6882 /// the entry becomes IncompleteUsed.
6883 ///
6884 /// During the expansion of a RecordType's members:
6885 ///
6886 ///   If the cache contains a NonRecursive encoding for the member type, the
6887 ///   cached encoding is used;
6888 ///
6889 ///   If the cache contains a Recursive encoding for the member type, the
6890 ///   cached encoding is 'Swapped' out, as it may be incorrect, and...
6891 ///
6892 ///   If the member is a RecordType, an Incomplete encoding is placed into the
6893 ///   cache to break potential recursive inclusion of itself as a sub-member;
6894 ///
6895 ///   Once a member RecordType has been expanded, its temporary incomplete
6896 ///   entry is removed from the cache. If a Recursive encoding was swapped out
6897 ///   it is swapped back in;
6898 ///
6899 ///   If an incomplete entry is used to expand a sub-member, the incomplete
6900 ///   entry is marked as IncompleteUsed. The cache keeps count of how many
6901 ///   IncompleteUsed entries it currently contains in IncompleteUsedCount;
6902 ///
6903 ///   If a member's encoding is found to be a NonRecursive or Recursive viz:
6904 ///   IncompleteUsedCount==0, the member's encoding is added to the cache.
6905 ///   Else the member is part of a recursive type and thus the recursion has
6906 ///   been exited too soon for the encoding to be correct for the member.
6907 ///
6908 class TypeStringCache {
6909   enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
6910   struct Entry {
6911     std::string Str;     // The encoded TypeString for the type.
6912     enum Status State;   // Information about the encoding in 'Str'.
6913     std::string Swapped; // A temporary place holder for a Recursive encoding
6914                          // during the expansion of RecordType's members.
6915   };
6916   std::map<const IdentifierInfo *, struct Entry> Map;
6917   unsigned IncompleteCount;     // Number of Incomplete entries in the Map.
6918   unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
6919 public:
6920   TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}
6921   void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
6922   bool removeIncomplete(const IdentifierInfo *ID);
6923   void addIfComplete(const IdentifierInfo *ID, StringRef Str,
6924                      bool IsRecursive);
6925   StringRef lookupStr(const IdentifierInfo *ID);
6926 };
6927 
6928 /// TypeString encodings for enum & union fields must be order.
6929 /// FieldEncoding is a helper for this ordering process.
6930 class FieldEncoding {
6931   bool HasName;
6932   std::string Enc;
6933 public:
6934   FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}
6935   StringRef str() {return Enc.c_str();}
6936   bool operator<(const FieldEncoding &rhs) const {
6937     if (HasName != rhs.HasName) return HasName;
6938     return Enc < rhs.Enc;
6939   }
6940 };
6941 
6942 class XCoreABIInfo : public DefaultABIInfo {
6943 public:
6944   XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
6945   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6946                     QualType Ty) const override;
6947 };
6948 
6949 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
6950   mutable TypeStringCache TSC;
6951 public:
6952   XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
6953     :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {}
6954   void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
6955                     CodeGen::CodeGenModule &M) const override;
6956 };
6957 
6958 } // End anonymous namespace.
6959 
6960 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6961                                 QualType Ty) const {
6962   CGBuilderTy &Builder = CGF.Builder;
6963 
6964   // Get the VAList.
6965   CharUnits SlotSize = CharUnits::fromQuantity(4);
6966   Address AP(Builder.CreateLoad(VAListAddr), SlotSize);
6967 
6968   // Handle the argument.
6969   ABIArgInfo AI = classifyArgumentType(Ty);
6970   CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty);
6971   llvm::Type *ArgTy = CGT.ConvertType(Ty);
6972   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
6973     AI.setCoerceToType(ArgTy);
6974   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
6975 
6976   Address Val = Address::invalid();
6977   CharUnits ArgSize = CharUnits::Zero();
6978   switch (AI.getKind()) {
6979   case ABIArgInfo::Expand:
6980   case ABIArgInfo::InAlloca:
6981     llvm_unreachable("Unsupported ABI kind for va_arg");
6982   case ABIArgInfo::Ignore:
6983     Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign);
6984     ArgSize = CharUnits::Zero();
6985     break;
6986   case ABIArgInfo::Extend:
6987   case ABIArgInfo::Direct:
6988     Val = Builder.CreateBitCast(AP, ArgPtrTy);
6989     ArgSize = CharUnits::fromQuantity(
6990                        getDataLayout().getTypeAllocSize(AI.getCoerceToType()));
6991     ArgSize = ArgSize.alignTo(SlotSize);
6992     break;
6993   case ABIArgInfo::Indirect:
6994     Val = Builder.CreateElementBitCast(AP, ArgPtrTy);
6995     Val = Address(Builder.CreateLoad(Val), TypeAlign);
6996     ArgSize = SlotSize;
6997     break;
6998   }
6999 
7000   // Increment the VAList.
7001   if (!ArgSize.isZero()) {
7002     llvm::Value *APN =
7003       Builder.CreateConstInBoundsByteGEP(AP.getPointer(), ArgSize);
7004     Builder.CreateStore(APN, VAListAddr);
7005   }
7006 
7007   return Val;
7008 }
7009 
7010 /// During the expansion of a RecordType, an incomplete TypeString is placed
7011 /// into the cache as a means to identify and break recursion.
7012 /// If there is a Recursive encoding in the cache, it is swapped out and will
7013 /// be reinserted by removeIncomplete().
7014 /// All other types of encoding should have been used rather than arriving here.
7015 void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
7016                                     std::string StubEnc) {
7017   if (!ID)
7018     return;
7019   Entry &E = Map[ID];
7020   assert( (E.Str.empty() || E.State == Recursive) &&
7021          "Incorrectly use of addIncomplete");
7022   assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
7023   E.Swapped.swap(E.Str); // swap out the Recursive
7024   E.Str.swap(StubEnc);
7025   E.State = Incomplete;
7026   ++IncompleteCount;
7027 }
7028 
7029 /// Once the RecordType has been expanded, the temporary incomplete TypeString
7030 /// must be removed from the cache.
7031 /// If a Recursive was swapped out by addIncomplete(), it will be replaced.
7032 /// Returns true if the RecordType was defined recursively.
7033 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
7034   if (!ID)
7035     return false;
7036   auto I = Map.find(ID);
7037   assert(I != Map.end() && "Entry not present");
7038   Entry &E = I->second;
7039   assert( (E.State == Incomplete ||
7040            E.State == IncompleteUsed) &&
7041          "Entry must be an incomplete type");
7042   bool IsRecursive = false;
7043   if (E.State == IncompleteUsed) {
7044     // We made use of our Incomplete encoding, thus we are recursive.
7045     IsRecursive = true;
7046     --IncompleteUsedCount;
7047   }
7048   if (E.Swapped.empty())
7049     Map.erase(I);
7050   else {
7051     // Swap the Recursive back.
7052     E.Swapped.swap(E.Str);
7053     E.Swapped.clear();
7054     E.State = Recursive;
7055   }
7056   --IncompleteCount;
7057   return IsRecursive;
7058 }
7059 
7060 /// Add the encoded TypeString to the cache only if it is NonRecursive or
7061 /// Recursive (viz: all sub-members were expanded as fully as possible).
7062 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
7063                                     bool IsRecursive) {
7064   if (!ID || IncompleteUsedCount)
7065     return; // No key or it is is an incomplete sub-type so don't add.
7066   Entry &E = Map[ID];
7067   if (IsRecursive && !E.Str.empty()) {
7068     assert(E.State==Recursive && E.Str.size() == Str.size() &&
7069            "This is not the same Recursive entry");
7070     // The parent container was not recursive after all, so we could have used
7071     // this Recursive sub-member entry after all, but we assumed the worse when
7072     // we started viz: IncompleteCount!=0.
7073     return;
7074   }
7075   assert(E.Str.empty() && "Entry already present");
7076   E.Str = Str.str();
7077   E.State = IsRecursive? Recursive : NonRecursive;
7078 }
7079 
7080 /// Return a cached TypeString encoding for the ID. If there isn't one, or we
7081 /// are recursively expanding a type (IncompleteCount != 0) and the cached
7082 /// encoding is Recursive, return an empty StringRef.
7083 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
7084   if (!ID)
7085     return StringRef();   // We have no key.
7086   auto I = Map.find(ID);
7087   if (I == Map.end())
7088     return StringRef();   // We have no encoding.
7089   Entry &E = I->second;
7090   if (E.State == Recursive && IncompleteCount)
7091     return StringRef();   // We don't use Recursive encodings for member types.
7092 
7093   if (E.State == Incomplete) {
7094     // The incomplete type is being used to break out of recursion.
7095     E.State = IncompleteUsed;
7096     ++IncompleteUsedCount;
7097   }
7098   return E.Str.c_str();
7099 }
7100 
7101 /// The XCore ABI includes a type information section that communicates symbol
7102 /// type information to the linker. The linker uses this information to verify
7103 /// safety/correctness of things such as array bound and pointers et al.
7104 /// The ABI only requires C (and XC) language modules to emit TypeStrings.
7105 /// This type information (TypeString) is emitted into meta data for all global
7106 /// symbols: definitions, declarations, functions & variables.
7107 ///
7108 /// The TypeString carries type, qualifier, name, size & value details.
7109 /// Please see 'Tools Development Guide' section 2.16.2 for format details:
7110 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf
7111 /// The output is tested by test/CodeGen/xcore-stringtype.c.
7112 ///
7113 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
7114                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC);
7115 
7116 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
7117 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
7118                                           CodeGen::CodeGenModule &CGM) const {
7119   SmallStringEnc Enc;
7120   if (getTypeString(Enc, D, CGM, TSC)) {
7121     llvm::LLVMContext &Ctx = CGM.getModule().getContext();
7122     llvm::SmallVector<llvm::Metadata *, 2> MDVals;
7123     MDVals.push_back(llvm::ConstantAsMetadata::get(GV));
7124     MDVals.push_back(llvm::MDString::get(Ctx, Enc.str()));
7125     llvm::NamedMDNode *MD =
7126       CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
7127     MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
7128   }
7129 }
7130 
7131 static bool appendType(SmallStringEnc &Enc, QualType QType,
7132                        const CodeGen::CodeGenModule &CGM,
7133                        TypeStringCache &TSC);
7134 
7135 /// Helper function for appendRecordType().
7136 /// Builds a SmallVector containing the encoded field types in declaration
7137 /// order.
7138 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
7139                              const RecordDecl *RD,
7140                              const CodeGen::CodeGenModule &CGM,
7141                              TypeStringCache &TSC) {
7142   for (const auto *Field : RD->fields()) {
7143     SmallStringEnc Enc;
7144     Enc += "m(";
7145     Enc += Field->getName();
7146     Enc += "){";
7147     if (Field->isBitField()) {
7148       Enc += "b(";
7149       llvm::raw_svector_ostream OS(Enc);
7150       OS << Field->getBitWidthValue(CGM.getContext());
7151       Enc += ':';
7152     }
7153     if (!appendType(Enc, Field->getType(), CGM, TSC))
7154       return false;
7155     if (Field->isBitField())
7156       Enc += ')';
7157     Enc += '}';
7158     FE.emplace_back(!Field->getName().empty(), Enc);
7159   }
7160   return true;
7161 }
7162 
7163 /// Appends structure and union types to Enc and adds encoding to cache.
7164 /// Recursively calls appendType (via extractFieldType) for each field.
7165 /// Union types have their fields ordered according to the ABI.
7166 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
7167                              const CodeGen::CodeGenModule &CGM,
7168                              TypeStringCache &TSC, const IdentifierInfo *ID) {
7169   // Append the cached TypeString if we have one.
7170   StringRef TypeString = TSC.lookupStr(ID);
7171   if (!TypeString.empty()) {
7172     Enc += TypeString;
7173     return true;
7174   }
7175 
7176   // Start to emit an incomplete TypeString.
7177   size_t Start = Enc.size();
7178   Enc += (RT->isUnionType()? 'u' : 's');
7179   Enc += '(';
7180   if (ID)
7181     Enc += ID->getName();
7182   Enc += "){";
7183 
7184   // We collect all encoded fields and order as necessary.
7185   bool IsRecursive = false;
7186   const RecordDecl *RD = RT->getDecl()->getDefinition();
7187   if (RD && !RD->field_empty()) {
7188     // An incomplete TypeString stub is placed in the cache for this RecordType
7189     // so that recursive calls to this RecordType will use it whilst building a
7190     // complete TypeString for this RecordType.
7191     SmallVector<FieldEncoding, 16> FE;
7192     std::string StubEnc(Enc.substr(Start).str());
7193     StubEnc += '}';  // StubEnc now holds a valid incomplete TypeString.
7194     TSC.addIncomplete(ID, std::move(StubEnc));
7195     if (!extractFieldType(FE, RD, CGM, TSC)) {
7196       (void) TSC.removeIncomplete(ID);
7197       return false;
7198     }
7199     IsRecursive = TSC.removeIncomplete(ID);
7200     // The ABI requires unions to be sorted but not structures.
7201     // See FieldEncoding::operator< for sort algorithm.
7202     if (RT->isUnionType())
7203       std::sort(FE.begin(), FE.end());
7204     // We can now complete the TypeString.
7205     unsigned E = FE.size();
7206     for (unsigned I = 0; I != E; ++I) {
7207       if (I)
7208         Enc += ',';
7209       Enc += FE[I].str();
7210     }
7211   }
7212   Enc += '}';
7213   TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
7214   return true;
7215 }
7216 
7217 /// Appends enum types to Enc and adds the encoding to the cache.
7218 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
7219                            TypeStringCache &TSC,
7220                            const IdentifierInfo *ID) {
7221   // Append the cached TypeString if we have one.
7222   StringRef TypeString = TSC.lookupStr(ID);
7223   if (!TypeString.empty()) {
7224     Enc += TypeString;
7225     return true;
7226   }
7227 
7228   size_t Start = Enc.size();
7229   Enc += "e(";
7230   if (ID)
7231     Enc += ID->getName();
7232   Enc += "){";
7233 
7234   // We collect all encoded enumerations and order them alphanumerically.
7235   if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
7236     SmallVector<FieldEncoding, 16> FE;
7237     for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
7238          ++I) {
7239       SmallStringEnc EnumEnc;
7240       EnumEnc += "m(";
7241       EnumEnc += I->getName();
7242       EnumEnc += "){";
7243       I->getInitVal().toString(EnumEnc);
7244       EnumEnc += '}';
7245       FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
7246     }
7247     std::sort(FE.begin(), FE.end());
7248     unsigned E = FE.size();
7249     for (unsigned I = 0; I != E; ++I) {
7250       if (I)
7251         Enc += ',';
7252       Enc += FE[I].str();
7253     }
7254   }
7255   Enc += '}';
7256   TSC.addIfComplete(ID, Enc.substr(Start), false);
7257   return true;
7258 }
7259 
7260 /// Appends type's qualifier to Enc.
7261 /// This is done prior to appending the type's encoding.
7262 static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
7263   // Qualifiers are emitted in alphabetical order.
7264   static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"};
7265   int Lookup = 0;
7266   if (QT.isConstQualified())
7267     Lookup += 1<<0;
7268   if (QT.isRestrictQualified())
7269     Lookup += 1<<1;
7270   if (QT.isVolatileQualified())
7271     Lookup += 1<<2;
7272   Enc += Table[Lookup];
7273 }
7274 
7275 /// Appends built-in types to Enc.
7276 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
7277   const char *EncType;
7278   switch (BT->getKind()) {
7279     case BuiltinType::Void:
7280       EncType = "0";
7281       break;
7282     case BuiltinType::Bool:
7283       EncType = "b";
7284       break;
7285     case BuiltinType::Char_U:
7286       EncType = "uc";
7287       break;
7288     case BuiltinType::UChar:
7289       EncType = "uc";
7290       break;
7291     case BuiltinType::SChar:
7292       EncType = "sc";
7293       break;
7294     case BuiltinType::UShort:
7295       EncType = "us";
7296       break;
7297     case BuiltinType::Short:
7298       EncType = "ss";
7299       break;
7300     case BuiltinType::UInt:
7301       EncType = "ui";
7302       break;
7303     case BuiltinType::Int:
7304       EncType = "si";
7305       break;
7306     case BuiltinType::ULong:
7307       EncType = "ul";
7308       break;
7309     case BuiltinType::Long:
7310       EncType = "sl";
7311       break;
7312     case BuiltinType::ULongLong:
7313       EncType = "ull";
7314       break;
7315     case BuiltinType::LongLong:
7316       EncType = "sll";
7317       break;
7318     case BuiltinType::Float:
7319       EncType = "ft";
7320       break;
7321     case BuiltinType::Double:
7322       EncType = "d";
7323       break;
7324     case BuiltinType::LongDouble:
7325       EncType = "ld";
7326       break;
7327     default:
7328       return false;
7329   }
7330   Enc += EncType;
7331   return true;
7332 }
7333 
7334 /// Appends a pointer encoding to Enc before calling appendType for the pointee.
7335 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
7336                               const CodeGen::CodeGenModule &CGM,
7337                               TypeStringCache &TSC) {
7338   Enc += "p(";
7339   if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
7340     return false;
7341   Enc += ')';
7342   return true;
7343 }
7344 
7345 /// Appends array encoding to Enc before calling appendType for the element.
7346 static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
7347                             const ArrayType *AT,
7348                             const CodeGen::CodeGenModule &CGM,
7349                             TypeStringCache &TSC, StringRef NoSizeEnc) {
7350   if (AT->getSizeModifier() != ArrayType::Normal)
7351     return false;
7352   Enc += "a(";
7353   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
7354     CAT->getSize().toStringUnsigned(Enc);
7355   else
7356     Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
7357   Enc += ':';
7358   // The Qualifiers should be attached to the type rather than the array.
7359   appendQualifier(Enc, QT);
7360   if (!appendType(Enc, AT->getElementType(), CGM, TSC))
7361     return false;
7362   Enc += ')';
7363   return true;
7364 }
7365 
7366 /// Appends a function encoding to Enc, calling appendType for the return type
7367 /// and the arguments.
7368 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
7369                              const CodeGen::CodeGenModule &CGM,
7370                              TypeStringCache &TSC) {
7371   Enc += "f{";
7372   if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
7373     return false;
7374   Enc += "}(";
7375   if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
7376     // N.B. we are only interested in the adjusted param types.
7377     auto I = FPT->param_type_begin();
7378     auto E = FPT->param_type_end();
7379     if (I != E) {
7380       do {
7381         if (!appendType(Enc, *I, CGM, TSC))
7382           return false;
7383         ++I;
7384         if (I != E)
7385           Enc += ',';
7386       } while (I != E);
7387       if (FPT->isVariadic())
7388         Enc += ",va";
7389     } else {
7390       if (FPT->isVariadic())
7391         Enc += "va";
7392       else
7393         Enc += '0';
7394     }
7395   }
7396   Enc += ')';
7397   return true;
7398 }
7399 
7400 /// Handles the type's qualifier before dispatching a call to handle specific
7401 /// type encodings.
7402 static bool appendType(SmallStringEnc &Enc, QualType QType,
7403                        const CodeGen::CodeGenModule &CGM,
7404                        TypeStringCache &TSC) {
7405 
7406   QualType QT = QType.getCanonicalType();
7407 
7408   if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
7409     // The Qualifiers should be attached to the type rather than the array.
7410     // Thus we don't call appendQualifier() here.
7411     return appendArrayType(Enc, QT, AT, CGM, TSC, "");
7412 
7413   appendQualifier(Enc, QT);
7414 
7415   if (const BuiltinType *BT = QT->getAs<BuiltinType>())
7416     return appendBuiltinType(Enc, BT);
7417 
7418   if (const PointerType *PT = QT->getAs<PointerType>())
7419     return appendPointerType(Enc, PT, CGM, TSC);
7420 
7421   if (const EnumType *ET = QT->getAs<EnumType>())
7422     return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
7423 
7424   if (const RecordType *RT = QT->getAsStructureType())
7425     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
7426 
7427   if (const RecordType *RT = QT->getAsUnionType())
7428     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
7429 
7430   if (const FunctionType *FT = QT->getAs<FunctionType>())
7431     return appendFunctionType(Enc, FT, CGM, TSC);
7432 
7433   return false;
7434 }
7435 
7436 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
7437                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) {
7438   if (!D)
7439     return false;
7440 
7441   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7442     if (FD->getLanguageLinkage() != CLanguageLinkage)
7443       return false;
7444     return appendType(Enc, FD->getType(), CGM, TSC);
7445   }
7446 
7447   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
7448     if (VD->getLanguageLinkage() != CLanguageLinkage)
7449       return false;
7450     QualType QT = VD->getType().getCanonicalType();
7451     if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
7452       // Global ArrayTypes are given a size of '*' if the size is unknown.
7453       // The Qualifiers should be attached to the type rather than the array.
7454       // Thus we don't call appendQualifier() here.
7455       return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
7456     }
7457     return appendType(Enc, QT, CGM, TSC);
7458   }
7459   return false;
7460 }
7461 
7462 
7463 //===----------------------------------------------------------------------===//
7464 // Driver code
7465 //===----------------------------------------------------------------------===//
7466 
7467 const llvm::Triple &CodeGenModule::getTriple() const {
7468   return getTarget().getTriple();
7469 }
7470 
7471 bool CodeGenModule::supportsCOMDAT() const {
7472   return !getTriple().isOSBinFormatMachO();
7473 }
7474 
7475 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
7476   if (TheTargetCodeGenInfo)
7477     return *TheTargetCodeGenInfo;
7478 
7479   const llvm::Triple &Triple = getTarget().getTriple();
7480   switch (Triple.getArch()) {
7481   default:
7482     return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types));
7483 
7484   case llvm::Triple::le32:
7485     return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types));
7486   case llvm::Triple::mips:
7487   case llvm::Triple::mipsel:
7488     if (Triple.getOS() == llvm::Triple::NaCl)
7489       return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types));
7490     return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true));
7491 
7492   case llvm::Triple::mips64:
7493   case llvm::Triple::mips64el:
7494     return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false));
7495 
7496   case llvm::Triple::aarch64:
7497   case llvm::Triple::aarch64_be: {
7498     AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
7499     if (getTarget().getABI() == "darwinpcs")
7500       Kind = AArch64ABIInfo::DarwinPCS;
7501 
7502     return *(TheTargetCodeGenInfo = new AArch64TargetCodeGenInfo(Types, Kind));
7503   }
7504 
7505   case llvm::Triple::wasm32:
7506   case llvm::Triple::wasm64:
7507     return *(TheTargetCodeGenInfo = new WebAssemblyTargetCodeGenInfo(Types));
7508 
7509   case llvm::Triple::arm:
7510   case llvm::Triple::armeb:
7511   case llvm::Triple::thumb:
7512   case llvm::Triple::thumbeb:
7513     {
7514       if (Triple.getOS() == llvm::Triple::Win32) {
7515         TheTargetCodeGenInfo =
7516             new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP);
7517         return *TheTargetCodeGenInfo;
7518       }
7519 
7520       ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
7521       StringRef ABIStr = getTarget().getABI();
7522       if (ABIStr == "apcs-gnu")
7523         Kind = ARMABIInfo::APCS;
7524       else if (ABIStr == "aapcs16")
7525         Kind = ARMABIInfo::AAPCS16_VFP;
7526       else if (CodeGenOpts.FloatABI == "hard" ||
7527                (CodeGenOpts.FloatABI != "soft" &&
7528                 Triple.getEnvironment() == llvm::Triple::GNUEABIHF))
7529         Kind = ARMABIInfo::AAPCS_VFP;
7530 
7531       return *(TheTargetCodeGenInfo = new ARMTargetCodeGenInfo(Types, Kind));
7532     }
7533 
7534   case llvm::Triple::ppc:
7535     return *(TheTargetCodeGenInfo =
7536              new PPC32TargetCodeGenInfo(Types, CodeGenOpts.FloatABI == "soft"));
7537   case llvm::Triple::ppc64:
7538     if (Triple.isOSBinFormatELF()) {
7539       PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1;
7540       if (getTarget().getABI() == "elfv2")
7541         Kind = PPC64_SVR4_ABIInfo::ELFv2;
7542       bool HasQPX = getTarget().getABI() == "elfv1-qpx";
7543 
7544       return *(TheTargetCodeGenInfo =
7545                new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX));
7546     } else
7547       return *(TheTargetCodeGenInfo = new PPC64TargetCodeGenInfo(Types));
7548   case llvm::Triple::ppc64le: {
7549     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
7550     PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2;
7551     if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx")
7552       Kind = PPC64_SVR4_ABIInfo::ELFv1;
7553     bool HasQPX = getTarget().getABI() == "elfv1-qpx";
7554 
7555     return *(TheTargetCodeGenInfo =
7556              new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX));
7557   }
7558 
7559   case llvm::Triple::nvptx:
7560   case llvm::Triple::nvptx64:
7561     return *(TheTargetCodeGenInfo = new NVPTXTargetCodeGenInfo(Types));
7562 
7563   case llvm::Triple::msp430:
7564     return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
7565 
7566   case llvm::Triple::systemz: {
7567     bool HasVector = getTarget().getABI() == "vector";
7568     return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types,
7569                                                                  HasVector));
7570   }
7571 
7572   case llvm::Triple::tce:
7573     return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types));
7574 
7575   case llvm::Triple::x86: {
7576     bool IsDarwinVectorABI = Triple.isOSDarwin();
7577     bool RetSmallStructInRegABI =
7578         X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
7579     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
7580 
7581     if (Triple.getOS() == llvm::Triple::Win32) {
7582       return *(TheTargetCodeGenInfo = new WinX86_32TargetCodeGenInfo(
7583                    Types, IsDarwinVectorABI, RetSmallStructInRegABI,
7584                    IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters));
7585     } else {
7586       return *(TheTargetCodeGenInfo = new X86_32TargetCodeGenInfo(
7587                    Types, IsDarwinVectorABI, RetSmallStructInRegABI,
7588                    IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters,
7589                    CodeGenOpts.FloatABI == "soft"));
7590     }
7591   }
7592 
7593   case llvm::Triple::x86_64: {
7594     StringRef ABI = getTarget().getABI();
7595     X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512 :
7596                                ABI == "avx" ? X86AVXABILevel::AVX :
7597                                X86AVXABILevel::None);
7598 
7599     switch (Triple.getOS()) {
7600     case llvm::Triple::Win32:
7601       return *(TheTargetCodeGenInfo =
7602                    new WinX86_64TargetCodeGenInfo(Types, AVXLevel));
7603     case llvm::Triple::PS4:
7604       return *(TheTargetCodeGenInfo =
7605                    new PS4TargetCodeGenInfo(Types, AVXLevel));
7606     default:
7607       return *(TheTargetCodeGenInfo =
7608                    new X86_64TargetCodeGenInfo(Types, AVXLevel));
7609     }
7610   }
7611   case llvm::Triple::hexagon:
7612     return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types));
7613   case llvm::Triple::r600:
7614     return *(TheTargetCodeGenInfo = new AMDGPUTargetCodeGenInfo(Types));
7615   case llvm::Triple::amdgcn:
7616     return *(TheTargetCodeGenInfo = new AMDGPUTargetCodeGenInfo(Types));
7617   case llvm::Triple::sparcv9:
7618     return *(TheTargetCodeGenInfo = new SparcV9TargetCodeGenInfo(Types));
7619   case llvm::Triple::xcore:
7620     return *(TheTargetCodeGenInfo = new XCoreTargetCodeGenInfo(Types));
7621   }
7622 }
7623