1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes wrap the information about a call or function 11 // definition used to handle ABI compliancy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "TargetInfo.h" 16 #include "ABIInfo.h" 17 #include "CGCXXABI.h" 18 #include "CGValue.h" 19 #include "CodeGenFunction.h" 20 #include "clang/AST/RecordLayout.h" 21 #include "clang/CodeGen/CGFunctionInfo.h" 22 #include "clang/Frontend/CodeGenOptions.h" 23 #include "llvm/ADT/StringExtras.h" 24 #include "llvm/ADT/Triple.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/Type.h" 27 #include "llvm/Support/raw_ostream.h" 28 #include <algorithm> // std::sort 29 30 using namespace clang; 31 using namespace CodeGen; 32 33 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 34 llvm::Value *Array, 35 llvm::Value *Value, 36 unsigned FirstIndex, 37 unsigned LastIndex) { 38 // Alternatively, we could emit this as a loop in the source. 39 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 40 llvm::Value *Cell = 41 Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); 42 Builder.CreateAlignedStore(Value, Cell, CharUnits::One()); 43 } 44 } 45 46 static bool isAggregateTypeForABI(QualType T) { 47 return !CodeGenFunction::hasScalarEvaluationKind(T) || 48 T->isMemberFunctionPointerType(); 49 } 50 51 ABIArgInfo 52 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign, 53 llvm::Type *Padding) const { 54 return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), 55 ByRef, Realign, Padding); 56 } 57 58 ABIArgInfo 59 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const { 60 return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty), 61 /*ByRef*/ false, Realign); 62 } 63 64 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 65 QualType Ty) const { 66 return Address::invalid(); 67 } 68 69 ABIInfo::~ABIInfo() {} 70 71 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 72 CGCXXABI &CXXABI) { 73 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 74 if (!RD) 75 return CGCXXABI::RAA_Default; 76 return CXXABI.getRecordArgABI(RD); 77 } 78 79 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 80 CGCXXABI &CXXABI) { 81 const RecordType *RT = T->getAs<RecordType>(); 82 if (!RT) 83 return CGCXXABI::RAA_Default; 84 return getRecordArgABI(RT, CXXABI); 85 } 86 87 /// Pass transparent unions as if they were the type of the first element. Sema 88 /// should ensure that all elements of the union have the same "machine type". 89 static QualType useFirstFieldIfTransparentUnion(QualType Ty) { 90 if (const RecordType *UT = Ty->getAsUnionType()) { 91 const RecordDecl *UD = UT->getDecl(); 92 if (UD->hasAttr<TransparentUnionAttr>()) { 93 assert(!UD->field_empty() && "sema created an empty transparent union"); 94 return UD->field_begin()->getType(); 95 } 96 } 97 return Ty; 98 } 99 100 CGCXXABI &ABIInfo::getCXXABI() const { 101 return CGT.getCXXABI(); 102 } 103 104 ASTContext &ABIInfo::getContext() const { 105 return CGT.getContext(); 106 } 107 108 llvm::LLVMContext &ABIInfo::getVMContext() const { 109 return CGT.getLLVMContext(); 110 } 111 112 const llvm::DataLayout &ABIInfo::getDataLayout() const { 113 return CGT.getDataLayout(); 114 } 115 116 const TargetInfo &ABIInfo::getTarget() const { 117 return CGT.getTarget(); 118 } 119 120 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 121 return false; 122 } 123 124 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 125 uint64_t Members) const { 126 return false; 127 } 128 129 bool ABIInfo::shouldSignExtUnsignedType(QualType Ty) const { 130 return false; 131 } 132 133 void ABIArgInfo::dump() const { 134 raw_ostream &OS = llvm::errs(); 135 OS << "(ABIArgInfo Kind="; 136 switch (TheKind) { 137 case Direct: 138 OS << "Direct Type="; 139 if (llvm::Type *Ty = getCoerceToType()) 140 Ty->print(OS); 141 else 142 OS << "null"; 143 break; 144 case Extend: 145 OS << "Extend"; 146 break; 147 case Ignore: 148 OS << "Ignore"; 149 break; 150 case InAlloca: 151 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 152 break; 153 case Indirect: 154 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 155 << " ByVal=" << getIndirectByVal() 156 << " Realign=" << getIndirectRealign(); 157 break; 158 case Expand: 159 OS << "Expand"; 160 break; 161 } 162 OS << ")\n"; 163 } 164 165 // Dynamically round a pointer up to a multiple of the given alignment. 166 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF, 167 llvm::Value *Ptr, 168 CharUnits Align) { 169 llvm::Value *PtrAsInt = Ptr; 170 // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align; 171 PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy); 172 PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt, 173 llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1)); 174 PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt, 175 llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity())); 176 PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt, 177 Ptr->getType(), 178 Ptr->getName() + ".aligned"); 179 return PtrAsInt; 180 } 181 182 /// Emit va_arg for a platform using the common void* representation, 183 /// where arguments are simply emitted in an array of slots on the stack. 184 /// 185 /// This version implements the core direct-value passing rules. 186 /// 187 /// \param SlotSize - The size and alignment of a stack slot. 188 /// Each argument will be allocated to a multiple of this number of 189 /// slots, and all the slots will be aligned to this value. 190 /// \param AllowHigherAlign - The slot alignment is not a cap; 191 /// an argument type with an alignment greater than the slot size 192 /// will be emitted on a higher-alignment address, potentially 193 /// leaving one or more empty slots behind as padding. If this 194 /// is false, the returned address might be less-aligned than 195 /// DirectAlign. 196 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF, 197 Address VAListAddr, 198 llvm::Type *DirectTy, 199 CharUnits DirectSize, 200 CharUnits DirectAlign, 201 CharUnits SlotSize, 202 bool AllowHigherAlign) { 203 // Cast the element type to i8* if necessary. Some platforms define 204 // va_list as a struct containing an i8* instead of just an i8*. 205 if (VAListAddr.getElementType() != CGF.Int8PtrTy) 206 VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy); 207 208 llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur"); 209 210 // If the CC aligns values higher than the slot size, do so if needed. 211 Address Addr = Address::invalid(); 212 if (AllowHigherAlign && DirectAlign > SlotSize) { 213 Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign), 214 DirectAlign); 215 } else { 216 Addr = Address(Ptr, SlotSize); 217 } 218 219 // Advance the pointer past the argument, then store that back. 220 CharUnits FullDirectSize = DirectSize.alignTo(SlotSize); 221 llvm::Value *NextPtr = 222 CGF.Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), FullDirectSize, 223 "argp.next"); 224 CGF.Builder.CreateStore(NextPtr, VAListAddr); 225 226 // If the argument is smaller than a slot, and this is a big-endian 227 // target, the argument will be right-adjusted in its slot. 228 if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian()) { 229 Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize); 230 } 231 232 Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy); 233 return Addr; 234 } 235 236 /// Emit va_arg for a platform using the common void* representation, 237 /// where arguments are simply emitted in an array of slots on the stack. 238 /// 239 /// \param IsIndirect - Values of this type are passed indirectly. 240 /// \param ValueInfo - The size and alignment of this type, generally 241 /// computed with getContext().getTypeInfoInChars(ValueTy). 242 /// \param SlotSizeAndAlign - The size and alignment of a stack slot. 243 /// Each argument will be allocated to a multiple of this number of 244 /// slots, and all the slots will be aligned to this value. 245 /// \param AllowHigherAlign - The slot alignment is not a cap; 246 /// an argument type with an alignment greater than the slot size 247 /// will be emitted on a higher-alignment address, potentially 248 /// leaving one or more empty slots behind as padding. 249 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr, 250 QualType ValueTy, bool IsIndirect, 251 std::pair<CharUnits, CharUnits> ValueInfo, 252 CharUnits SlotSizeAndAlign, 253 bool AllowHigherAlign) { 254 // The size and alignment of the value that was passed directly. 255 CharUnits DirectSize, DirectAlign; 256 if (IsIndirect) { 257 DirectSize = CGF.getPointerSize(); 258 DirectAlign = CGF.getPointerAlign(); 259 } else { 260 DirectSize = ValueInfo.first; 261 DirectAlign = ValueInfo.second; 262 } 263 264 // Cast the address we've calculated to the right type. 265 llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy); 266 if (IsIndirect) 267 DirectTy = DirectTy->getPointerTo(0); 268 269 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy, 270 DirectSize, DirectAlign, 271 SlotSizeAndAlign, 272 AllowHigherAlign); 273 274 if (IsIndirect) { 275 Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second); 276 } 277 278 return Addr; 279 280 } 281 282 static Address emitMergePHI(CodeGenFunction &CGF, 283 Address Addr1, llvm::BasicBlock *Block1, 284 Address Addr2, llvm::BasicBlock *Block2, 285 const llvm::Twine &Name = "") { 286 assert(Addr1.getType() == Addr2.getType()); 287 llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name); 288 PHI->addIncoming(Addr1.getPointer(), Block1); 289 PHI->addIncoming(Addr2.getPointer(), Block2); 290 CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment()); 291 return Address(PHI, Align); 292 } 293 294 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; } 295 296 // If someone can figure out a general rule for this, that would be great. 297 // It's probably just doomed to be platform-dependent, though. 298 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 299 // Verified for: 300 // x86-64 FreeBSD, Linux, Darwin 301 // x86-32 FreeBSD, Linux, Darwin 302 // PowerPC Linux, Darwin 303 // ARM Darwin (*not* EABI) 304 // AArch64 Linux 305 return 32; 306 } 307 308 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 309 const FunctionNoProtoType *fnType) const { 310 // The following conventions are known to require this to be false: 311 // x86_stdcall 312 // MIPS 313 // For everything else, we just prefer false unless we opt out. 314 return false; 315 } 316 317 void 318 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 319 llvm::SmallString<24> &Opt) const { 320 // This assumes the user is passing a library name like "rt" instead of a 321 // filename like "librt.a/so", and that they don't care whether it's static or 322 // dynamic. 323 Opt = "-l"; 324 Opt += Lib; 325 } 326 327 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 328 329 /// isEmptyField - Return true iff a the field is "empty", that is it 330 /// is an unnamed bit-field or an (array of) empty record(s). 331 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 332 bool AllowArrays) { 333 if (FD->isUnnamedBitfield()) 334 return true; 335 336 QualType FT = FD->getType(); 337 338 // Constant arrays of empty records count as empty, strip them off. 339 // Constant arrays of zero length always count as empty. 340 if (AllowArrays) 341 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 342 if (AT->getSize() == 0) 343 return true; 344 FT = AT->getElementType(); 345 } 346 347 const RecordType *RT = FT->getAs<RecordType>(); 348 if (!RT) 349 return false; 350 351 // C++ record fields are never empty, at least in the Itanium ABI. 352 // 353 // FIXME: We should use a predicate for whether this behavior is true in the 354 // current ABI. 355 if (isa<CXXRecordDecl>(RT->getDecl())) 356 return false; 357 358 return isEmptyRecord(Context, FT, AllowArrays); 359 } 360 361 /// isEmptyRecord - Return true iff a structure contains only empty 362 /// fields. Note that a structure with a flexible array member is not 363 /// considered empty. 364 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 365 const RecordType *RT = T->getAs<RecordType>(); 366 if (!RT) 367 return 0; 368 const RecordDecl *RD = RT->getDecl(); 369 if (RD->hasFlexibleArrayMember()) 370 return false; 371 372 // If this is a C++ record, check the bases first. 373 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 374 for (const auto &I : CXXRD->bases()) 375 if (!isEmptyRecord(Context, I.getType(), true)) 376 return false; 377 378 for (const auto *I : RD->fields()) 379 if (!isEmptyField(Context, I, AllowArrays)) 380 return false; 381 return true; 382 } 383 384 /// isSingleElementStruct - Determine if a structure is a "single 385 /// element struct", i.e. it has exactly one non-empty field or 386 /// exactly one field which is itself a single element 387 /// struct. Structures with flexible array members are never 388 /// considered single element structs. 389 /// 390 /// \return The field declaration for the single non-empty field, if 391 /// it exists. 392 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 393 const RecordType *RT = T->getAs<RecordType>(); 394 if (!RT) 395 return nullptr; 396 397 const RecordDecl *RD = RT->getDecl(); 398 if (RD->hasFlexibleArrayMember()) 399 return nullptr; 400 401 const Type *Found = nullptr; 402 403 // If this is a C++ record, check the bases first. 404 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 405 for (const auto &I : CXXRD->bases()) { 406 // Ignore empty records. 407 if (isEmptyRecord(Context, I.getType(), true)) 408 continue; 409 410 // If we already found an element then this isn't a single-element struct. 411 if (Found) 412 return nullptr; 413 414 // If this is non-empty and not a single element struct, the composite 415 // cannot be a single element struct. 416 Found = isSingleElementStruct(I.getType(), Context); 417 if (!Found) 418 return nullptr; 419 } 420 } 421 422 // Check for single element. 423 for (const auto *FD : RD->fields()) { 424 QualType FT = FD->getType(); 425 426 // Ignore empty fields. 427 if (isEmptyField(Context, FD, true)) 428 continue; 429 430 // If we already found an element then this isn't a single-element 431 // struct. 432 if (Found) 433 return nullptr; 434 435 // Treat single element arrays as the element. 436 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 437 if (AT->getSize().getZExtValue() != 1) 438 break; 439 FT = AT->getElementType(); 440 } 441 442 if (!isAggregateTypeForABI(FT)) { 443 Found = FT.getTypePtr(); 444 } else { 445 Found = isSingleElementStruct(FT, Context); 446 if (!Found) 447 return nullptr; 448 } 449 } 450 451 // We don't consider a struct a single-element struct if it has 452 // padding beyond the element type. 453 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 454 return nullptr; 455 456 return Found; 457 } 458 459 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 460 // Treat complex types as the element type. 461 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 462 Ty = CTy->getElementType(); 463 464 // Check for a type which we know has a simple scalar argument-passing 465 // convention without any padding. (We're specifically looking for 32 466 // and 64-bit integer and integer-equivalents, float, and double.) 467 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 468 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 469 return false; 470 471 uint64_t Size = Context.getTypeSize(Ty); 472 return Size == 32 || Size == 64; 473 } 474 475 /// canExpandIndirectArgument - Test whether an argument type which is to be 476 /// passed indirectly (on the stack) would have the equivalent layout if it was 477 /// expanded into separate arguments. If so, we prefer to do the latter to avoid 478 /// inhibiting optimizations. 479 /// 480 // FIXME: This predicate is missing many cases, currently it just follows 481 // llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We 482 // should probably make this smarter, or better yet make the LLVM backend 483 // capable of handling it. 484 static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) { 485 // We can only expand structure types. 486 const RecordType *RT = Ty->getAs<RecordType>(); 487 if (!RT) 488 return false; 489 490 // We can only expand (C) structures. 491 // 492 // FIXME: This needs to be generalized to handle classes as well. 493 const RecordDecl *RD = RT->getDecl(); 494 if (!RD->isStruct()) 495 return false; 496 497 // We try to expand CLike CXXRecordDecl. 498 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 499 if (!CXXRD->isCLike()) 500 return false; 501 } 502 503 uint64_t Size = 0; 504 505 for (const auto *FD : RD->fields()) { 506 if (!is32Or64BitBasicType(FD->getType(), Context)) 507 return false; 508 509 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 510 // how to expand them yet, and the predicate for telling if a bitfield still 511 // counts as "basic" is more complicated than what we were doing previously. 512 if (FD->isBitField()) 513 return false; 514 515 Size += Context.getTypeSize(FD->getType()); 516 } 517 518 // Make sure there are not any holes in the struct. 519 if (Size != Context.getTypeSize(Ty)) 520 return false; 521 522 return true; 523 } 524 525 namespace { 526 /// DefaultABIInfo - The default implementation for ABI specific 527 /// details. This implementation provides information which results in 528 /// self-consistent and sensible LLVM IR generation, but does not 529 /// conform to any particular ABI. 530 class DefaultABIInfo : public ABIInfo { 531 public: 532 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 533 534 ABIArgInfo classifyReturnType(QualType RetTy) const; 535 ABIArgInfo classifyArgumentType(QualType RetTy) const; 536 537 void computeInfo(CGFunctionInfo &FI) const override { 538 if (!getCXXABI().classifyReturnType(FI)) 539 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 540 for (auto &I : FI.arguments()) 541 I.info = classifyArgumentType(I.type); 542 } 543 544 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 545 QualType Ty) const override; 546 }; 547 548 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 549 public: 550 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 551 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 552 }; 553 554 Address DefaultABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 555 QualType Ty) const { 556 return Address::invalid(); 557 } 558 559 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 560 Ty = useFirstFieldIfTransparentUnion(Ty); 561 562 if (isAggregateTypeForABI(Ty)) { 563 // Records with non-trivial destructors/copy-constructors should not be 564 // passed by value. 565 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 566 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 567 568 return getNaturalAlignIndirect(Ty); 569 } 570 571 // Treat an enum type as its underlying type. 572 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 573 Ty = EnumTy->getDecl()->getIntegerType(); 574 575 return (Ty->isPromotableIntegerType() ? 576 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 577 } 578 579 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 580 if (RetTy->isVoidType()) 581 return ABIArgInfo::getIgnore(); 582 583 if (isAggregateTypeForABI(RetTy)) 584 return getNaturalAlignIndirect(RetTy); 585 586 // Treat an enum type as its underlying type. 587 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 588 RetTy = EnumTy->getDecl()->getIntegerType(); 589 590 return (RetTy->isPromotableIntegerType() ? 591 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 592 } 593 594 //===----------------------------------------------------------------------===// 595 // WebAssembly ABI Implementation 596 // 597 // This is a very simple ABI that relies a lot on DefaultABIInfo. 598 //===----------------------------------------------------------------------===// 599 600 class WebAssemblyABIInfo final : public DefaultABIInfo { 601 public: 602 explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT) 603 : DefaultABIInfo(CGT) {} 604 605 private: 606 ABIArgInfo classifyReturnType(QualType RetTy) const; 607 ABIArgInfo classifyArgumentType(QualType Ty) const; 608 609 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 610 // non-virtual, but computeInfo is virtual, so we overload that. 611 void computeInfo(CGFunctionInfo &FI) const override { 612 if (!getCXXABI().classifyReturnType(FI)) 613 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 614 for (auto &Arg : FI.arguments()) 615 Arg.info = classifyArgumentType(Arg.type); 616 } 617 }; 618 619 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo { 620 public: 621 explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 622 : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT)) {} 623 }; 624 625 /// \brief Classify argument of given type \p Ty. 626 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const { 627 Ty = useFirstFieldIfTransparentUnion(Ty); 628 629 if (isAggregateTypeForABI(Ty)) { 630 // Records with non-trivial destructors/copy-constructors should not be 631 // passed by value. 632 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 633 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 634 // Ignore empty structs/unions. 635 if (isEmptyRecord(getContext(), Ty, true)) 636 return ABIArgInfo::getIgnore(); 637 // Lower single-element structs to just pass a regular value. TODO: We 638 // could do reasonable-size multiple-element structs too, using getExpand(), 639 // though watch out for things like bitfields. 640 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 641 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 642 } 643 644 // Otherwise just do the default thing. 645 return DefaultABIInfo::classifyArgumentType(Ty); 646 } 647 648 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const { 649 if (isAggregateTypeForABI(RetTy)) { 650 // Records with non-trivial destructors/copy-constructors should not be 651 // returned by value. 652 if (!getRecordArgABI(RetTy, getCXXABI())) { 653 // Ignore empty structs/unions. 654 if (isEmptyRecord(getContext(), RetTy, true)) 655 return ABIArgInfo::getIgnore(); 656 // Lower single-element structs to just return a regular value. TODO: We 657 // could do reasonable-size multiple-element structs too, using 658 // ABIArgInfo::getDirect(). 659 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 660 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 661 } 662 } 663 664 // Otherwise just do the default thing. 665 return DefaultABIInfo::classifyReturnType(RetTy); 666 } 667 668 //===----------------------------------------------------------------------===// 669 // le32/PNaCl bitcode ABI Implementation 670 // 671 // This is a simplified version of the x86_32 ABI. Arguments and return values 672 // are always passed on the stack. 673 //===----------------------------------------------------------------------===// 674 675 class PNaClABIInfo : public ABIInfo { 676 public: 677 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 678 679 ABIArgInfo classifyReturnType(QualType RetTy) const; 680 ABIArgInfo classifyArgumentType(QualType RetTy) const; 681 682 void computeInfo(CGFunctionInfo &FI) const override; 683 Address EmitVAArg(CodeGenFunction &CGF, 684 Address VAListAddr, QualType Ty) const override; 685 }; 686 687 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 688 public: 689 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 690 : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {} 691 }; 692 693 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 694 if (!getCXXABI().classifyReturnType(FI)) 695 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 696 697 for (auto &I : FI.arguments()) 698 I.info = classifyArgumentType(I.type); 699 } 700 701 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 702 QualType Ty) const { 703 return Address::invalid(); 704 } 705 706 /// \brief Classify argument of given type \p Ty. 707 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 708 if (isAggregateTypeForABI(Ty)) { 709 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 710 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 711 return getNaturalAlignIndirect(Ty); 712 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 713 // Treat an enum type as its underlying type. 714 Ty = EnumTy->getDecl()->getIntegerType(); 715 } else if (Ty->isFloatingType()) { 716 // Floating-point types don't go inreg. 717 return ABIArgInfo::getDirect(); 718 } 719 720 return (Ty->isPromotableIntegerType() ? 721 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 722 } 723 724 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 725 if (RetTy->isVoidType()) 726 return ABIArgInfo::getIgnore(); 727 728 // In the PNaCl ABI we always return records/structures on the stack. 729 if (isAggregateTypeForABI(RetTy)) 730 return getNaturalAlignIndirect(RetTy); 731 732 // Treat an enum type as its underlying type. 733 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 734 RetTy = EnumTy->getDecl()->getIntegerType(); 735 736 return (RetTy->isPromotableIntegerType() ? 737 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 738 } 739 740 /// IsX86_MMXType - Return true if this is an MMX type. 741 bool IsX86_MMXType(llvm::Type *IRType) { 742 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 743 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 744 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 745 IRType->getScalarSizeInBits() != 64; 746 } 747 748 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 749 StringRef Constraint, 750 llvm::Type* Ty) { 751 if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) { 752 if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) { 753 // Invalid MMX constraint 754 return nullptr; 755 } 756 757 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 758 } 759 760 // No operation needed 761 return Ty; 762 } 763 764 /// Returns true if this type can be passed in SSE registers with the 765 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 766 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 767 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 768 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) 769 return true; 770 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 771 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 772 // registers specially. 773 unsigned VecSize = Context.getTypeSize(VT); 774 if (VecSize == 128 || VecSize == 256 || VecSize == 512) 775 return true; 776 } 777 return false; 778 } 779 780 /// Returns true if this aggregate is small enough to be passed in SSE registers 781 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 782 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 783 return NumMembers <= 4; 784 } 785 786 //===----------------------------------------------------------------------===// 787 // X86-32 ABI Implementation 788 //===----------------------------------------------------------------------===// 789 790 /// \brief Similar to llvm::CCState, but for Clang. 791 struct CCState { 792 CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {} 793 794 unsigned CC; 795 unsigned FreeRegs; 796 unsigned FreeSSERegs; 797 }; 798 799 /// X86_32ABIInfo - The X86-32 ABI information. 800 class X86_32ABIInfo : public ABIInfo { 801 enum Class { 802 Integer, 803 Float 804 }; 805 806 static const unsigned MinABIStackAlignInBytes = 4; 807 808 bool IsDarwinVectorABI; 809 bool IsRetSmallStructInRegABI; 810 bool IsWin32StructABI; 811 bool IsSoftFloatABI; 812 bool IsMCUABI; 813 unsigned DefaultNumRegisterParameters; 814 815 static bool isRegisterSize(unsigned Size) { 816 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 817 } 818 819 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 820 // FIXME: Assumes vectorcall is in use. 821 return isX86VectorTypeForVectorCall(getContext(), Ty); 822 } 823 824 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 825 uint64_t NumMembers) const override { 826 // FIXME: Assumes vectorcall is in use. 827 return isX86VectorCallAggregateSmallEnough(NumMembers); 828 } 829 830 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 831 832 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 833 /// such that the argument will be passed in memory. 834 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 835 836 ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; 837 838 /// \brief Return the alignment to use for the given type on the stack. 839 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 840 841 Class classify(QualType Ty) const; 842 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 843 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 844 /// \brief Updates the number of available free registers, returns 845 /// true if any registers were allocated. 846 bool updateFreeRegs(QualType Ty, CCState &State) const; 847 848 bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, 849 bool &NeedsPadding) const; 850 bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; 851 852 /// \brief Rewrite the function info so that all memory arguments use 853 /// inalloca. 854 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 855 856 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 857 CharUnits &StackOffset, ABIArgInfo &Info, 858 QualType Type) const; 859 860 public: 861 862 void computeInfo(CGFunctionInfo &FI) const override; 863 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 864 QualType Ty) const override; 865 866 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 867 bool RetSmallStructInRegABI, bool Win32StructABI, 868 unsigned NumRegisterParameters, bool SoftFloatABI) 869 : ABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), 870 IsRetSmallStructInRegABI(RetSmallStructInRegABI), 871 IsWin32StructABI(Win32StructABI), 872 IsSoftFloatABI(SoftFloatABI), 873 IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), 874 DefaultNumRegisterParameters(NumRegisterParameters) {} 875 }; 876 877 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 878 public: 879 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 880 bool RetSmallStructInRegABI, bool Win32StructABI, 881 unsigned NumRegisterParameters, bool SoftFloatABI) 882 : TargetCodeGenInfo(new X86_32ABIInfo( 883 CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, 884 NumRegisterParameters, SoftFloatABI)) {} 885 886 static bool isStructReturnInRegABI( 887 const llvm::Triple &Triple, const CodeGenOptions &Opts); 888 889 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 890 CodeGen::CodeGenModule &CGM) const override; 891 892 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 893 // Darwin uses different dwarf register numbers for EH. 894 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 895 return 4; 896 } 897 898 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 899 llvm::Value *Address) const override; 900 901 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 902 StringRef Constraint, 903 llvm::Type* Ty) const override { 904 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 905 } 906 907 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 908 std::string &Constraints, 909 std::vector<llvm::Type *> &ResultRegTypes, 910 std::vector<llvm::Type *> &ResultTruncRegTypes, 911 std::vector<LValue> &ResultRegDests, 912 std::string &AsmString, 913 unsigned NumOutputs) const override; 914 915 llvm::Constant * 916 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 917 unsigned Sig = (0xeb << 0) | // jmp rel8 918 (0x06 << 8) | // .+0x08 919 ('F' << 16) | 920 ('T' << 24); 921 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 922 } 923 }; 924 925 } 926 927 /// Rewrite input constraint references after adding some output constraints. 928 /// In the case where there is one output and one input and we add one output, 929 /// we need to replace all operand references greater than or equal to 1: 930 /// mov $0, $1 931 /// mov eax, $1 932 /// The result will be: 933 /// mov $0, $2 934 /// mov eax, $2 935 static void rewriteInputConstraintReferences(unsigned FirstIn, 936 unsigned NumNewOuts, 937 std::string &AsmString) { 938 std::string Buf; 939 llvm::raw_string_ostream OS(Buf); 940 size_t Pos = 0; 941 while (Pos < AsmString.size()) { 942 size_t DollarStart = AsmString.find('$', Pos); 943 if (DollarStart == std::string::npos) 944 DollarStart = AsmString.size(); 945 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 946 if (DollarEnd == std::string::npos) 947 DollarEnd = AsmString.size(); 948 OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 949 Pos = DollarEnd; 950 size_t NumDollars = DollarEnd - DollarStart; 951 if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 952 // We have an operand reference. 953 size_t DigitStart = Pos; 954 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 955 if (DigitEnd == std::string::npos) 956 DigitEnd = AsmString.size(); 957 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 958 unsigned OperandIndex; 959 if (!OperandStr.getAsInteger(10, OperandIndex)) { 960 if (OperandIndex >= FirstIn) 961 OperandIndex += NumNewOuts; 962 OS << OperandIndex; 963 } else { 964 OS << OperandStr; 965 } 966 Pos = DigitEnd; 967 } 968 } 969 AsmString = std::move(OS.str()); 970 } 971 972 /// Add output constraints for EAX:EDX because they are return registers. 973 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 974 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 975 std::vector<llvm::Type *> &ResultRegTypes, 976 std::vector<llvm::Type *> &ResultTruncRegTypes, 977 std::vector<LValue> &ResultRegDests, std::string &AsmString, 978 unsigned NumOutputs) const { 979 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 980 981 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 982 // larger. 983 if (!Constraints.empty()) 984 Constraints += ','; 985 if (RetWidth <= 32) { 986 Constraints += "={eax}"; 987 ResultRegTypes.push_back(CGF.Int32Ty); 988 } else { 989 // Use the 'A' constraint for EAX:EDX. 990 Constraints += "=A"; 991 ResultRegTypes.push_back(CGF.Int64Ty); 992 } 993 994 // Truncate EAX or EAX:EDX to an integer of the appropriate size. 995 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 996 ResultTruncRegTypes.push_back(CoerceTy); 997 998 // Coerce the integer by bitcasting the return slot pointer. 999 ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(), 1000 CoerceTy->getPointerTo())); 1001 ResultRegDests.push_back(ReturnSlot); 1002 1003 rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 1004 } 1005 1006 /// shouldReturnTypeInRegister - Determine if the given type should be 1007 /// returned in a register (for the Darwin and MCU ABI). 1008 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 1009 ASTContext &Context) const { 1010 uint64_t Size = Context.getTypeSize(Ty); 1011 1012 // For i386, type must be register sized. 1013 // For the MCU ABI, it only needs to be <= 8-byte 1014 if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) 1015 return false; 1016 1017 if (Ty->isVectorType()) { 1018 // 64- and 128- bit vectors inside structures are not returned in 1019 // registers. 1020 if (Size == 64 || Size == 128) 1021 return false; 1022 1023 return true; 1024 } 1025 1026 // If this is a builtin, pointer, enum, complex type, member pointer, or 1027 // member function pointer it is ok. 1028 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 1029 Ty->isAnyComplexType() || Ty->isEnumeralType() || 1030 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 1031 return true; 1032 1033 // Arrays are treated like records. 1034 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 1035 return shouldReturnTypeInRegister(AT->getElementType(), Context); 1036 1037 // Otherwise, it must be a record type. 1038 const RecordType *RT = Ty->getAs<RecordType>(); 1039 if (!RT) return false; 1040 1041 // FIXME: Traverse bases here too. 1042 1043 // Structure types are passed in register if all fields would be 1044 // passed in a register. 1045 for (const auto *FD : RT->getDecl()->fields()) { 1046 // Empty fields are ignored. 1047 if (isEmptyField(Context, FD, true)) 1048 continue; 1049 1050 // Check fields recursively. 1051 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 1052 return false; 1053 } 1054 return true; 1055 } 1056 1057 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { 1058 // If the return value is indirect, then the hidden argument is consuming one 1059 // integer register. 1060 if (State.FreeRegs) { 1061 --State.FreeRegs; 1062 if (!IsMCUABI) 1063 return getNaturalAlignIndirectInReg(RetTy); 1064 } 1065 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 1066 } 1067 1068 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 1069 CCState &State) const { 1070 if (RetTy->isVoidType()) 1071 return ABIArgInfo::getIgnore(); 1072 1073 const Type *Base = nullptr; 1074 uint64_t NumElts = 0; 1075 if (State.CC == llvm::CallingConv::X86_VectorCall && 1076 isHomogeneousAggregate(RetTy, Base, NumElts)) { 1077 // The LLVM struct type for such an aggregate should lower properly. 1078 return ABIArgInfo::getDirect(); 1079 } 1080 1081 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 1082 // On Darwin, some vectors are returned in registers. 1083 if (IsDarwinVectorABI) { 1084 uint64_t Size = getContext().getTypeSize(RetTy); 1085 1086 // 128-bit vectors are a special case; they are returned in 1087 // registers and we need to make sure to pick a type the LLVM 1088 // backend will like. 1089 if (Size == 128) 1090 return ABIArgInfo::getDirect(llvm::VectorType::get( 1091 llvm::Type::getInt64Ty(getVMContext()), 2)); 1092 1093 // Always return in register if it fits in a general purpose 1094 // register, or if it is 64 bits and has a single element. 1095 if ((Size == 8 || Size == 16 || Size == 32) || 1096 (Size == 64 && VT->getNumElements() == 1)) 1097 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1098 Size)); 1099 1100 return getIndirectReturnResult(RetTy, State); 1101 } 1102 1103 return ABIArgInfo::getDirect(); 1104 } 1105 1106 if (isAggregateTypeForABI(RetTy)) { 1107 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 1108 // Structures with flexible arrays are always indirect. 1109 if (RT->getDecl()->hasFlexibleArrayMember()) 1110 return getIndirectReturnResult(RetTy, State); 1111 } 1112 1113 // If specified, structs and unions are always indirect. 1114 if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) 1115 return getIndirectReturnResult(RetTy, State); 1116 1117 // Small structures which are register sized are generally returned 1118 // in a register. 1119 if (shouldReturnTypeInRegister(RetTy, getContext())) { 1120 uint64_t Size = getContext().getTypeSize(RetTy); 1121 1122 // As a special-case, if the struct is a "single-element" struct, and 1123 // the field is of type "float" or "double", return it in a 1124 // floating-point register. (MSVC does not apply this special case.) 1125 // We apply a similar transformation for pointer types to improve the 1126 // quality of the generated IR. 1127 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 1128 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 1129 || SeltTy->hasPointerRepresentation()) 1130 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 1131 1132 // FIXME: We should be able to narrow this integer in cases with dead 1133 // padding. 1134 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 1135 } 1136 1137 return getIndirectReturnResult(RetTy, State); 1138 } 1139 1140 // Treat an enum type as its underlying type. 1141 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1142 RetTy = EnumTy->getDecl()->getIntegerType(); 1143 1144 return (RetTy->isPromotableIntegerType() ? 1145 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 1146 } 1147 1148 static bool isSSEVectorType(ASTContext &Context, QualType Ty) { 1149 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 1150 } 1151 1152 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) { 1153 const RecordType *RT = Ty->getAs<RecordType>(); 1154 if (!RT) 1155 return 0; 1156 const RecordDecl *RD = RT->getDecl(); 1157 1158 // If this is a C++ record, check the bases first. 1159 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1160 for (const auto &I : CXXRD->bases()) 1161 if (!isRecordWithSSEVectorType(Context, I.getType())) 1162 return false; 1163 1164 for (const auto *i : RD->fields()) { 1165 QualType FT = i->getType(); 1166 1167 if (isSSEVectorType(Context, FT)) 1168 return true; 1169 1170 if (isRecordWithSSEVectorType(Context, FT)) 1171 return true; 1172 } 1173 1174 return false; 1175 } 1176 1177 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 1178 unsigned Align) const { 1179 // Otherwise, if the alignment is less than or equal to the minimum ABI 1180 // alignment, just use the default; the backend will handle this. 1181 if (Align <= MinABIStackAlignInBytes) 1182 return 0; // Use default alignment. 1183 1184 // On non-Darwin, the stack type alignment is always 4. 1185 if (!IsDarwinVectorABI) { 1186 // Set explicit alignment, since we may need to realign the top. 1187 return MinABIStackAlignInBytes; 1188 } 1189 1190 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 1191 if (Align >= 16 && (isSSEVectorType(getContext(), Ty) || 1192 isRecordWithSSEVectorType(getContext(), Ty))) 1193 return 16; 1194 1195 return MinABIStackAlignInBytes; 1196 } 1197 1198 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 1199 CCState &State) const { 1200 if (!ByVal) { 1201 if (State.FreeRegs) { 1202 --State.FreeRegs; // Non-byval indirects just use one pointer. 1203 if (!IsMCUABI) 1204 return getNaturalAlignIndirectInReg(Ty); 1205 } 1206 return getNaturalAlignIndirect(Ty, false); 1207 } 1208 1209 // Compute the byval alignment. 1210 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 1211 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 1212 if (StackAlign == 0) 1213 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); 1214 1215 // If the stack alignment is less than the type alignment, realign the 1216 // argument. 1217 bool Realign = TypeAlign > StackAlign; 1218 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), 1219 /*ByVal=*/true, Realign); 1220 } 1221 1222 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 1223 const Type *T = isSingleElementStruct(Ty, getContext()); 1224 if (!T) 1225 T = Ty.getTypePtr(); 1226 1227 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 1228 BuiltinType::Kind K = BT->getKind(); 1229 if (K == BuiltinType::Float || K == BuiltinType::Double) 1230 return Float; 1231 } 1232 return Integer; 1233 } 1234 1235 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { 1236 if (!IsSoftFloatABI) { 1237 Class C = classify(Ty); 1238 if (C == Float) 1239 return false; 1240 } 1241 1242 unsigned Size = getContext().getTypeSize(Ty); 1243 unsigned SizeInRegs = (Size + 31) / 32; 1244 1245 if (SizeInRegs == 0) 1246 return false; 1247 1248 if (!IsMCUABI) { 1249 if (SizeInRegs > State.FreeRegs) { 1250 State.FreeRegs = 0; 1251 return false; 1252 } 1253 } else { 1254 // The MCU psABI allows passing parameters in-reg even if there are 1255 // earlier parameters that are passed on the stack. Also, 1256 // it does not allow passing >8-byte structs in-register, 1257 // even if there are 3 free registers available. 1258 if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) 1259 return false; 1260 } 1261 1262 State.FreeRegs -= SizeInRegs; 1263 return true; 1264 } 1265 1266 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, 1267 bool &InReg, 1268 bool &NeedsPadding) const { 1269 NeedsPadding = false; 1270 InReg = !IsMCUABI; 1271 1272 if (!updateFreeRegs(Ty, State)) 1273 return false; 1274 1275 if (IsMCUABI) 1276 return true; 1277 1278 if (State.CC == llvm::CallingConv::X86_FastCall || 1279 State.CC == llvm::CallingConv::X86_VectorCall) { 1280 if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) 1281 NeedsPadding = true; 1282 1283 return false; 1284 } 1285 1286 return true; 1287 } 1288 1289 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { 1290 if (!updateFreeRegs(Ty, State)) 1291 return false; 1292 1293 if (IsMCUABI) 1294 return false; 1295 1296 if (State.CC == llvm::CallingConv::X86_FastCall || 1297 State.CC == llvm::CallingConv::X86_VectorCall) { 1298 if (getContext().getTypeSize(Ty) > 32) 1299 return false; 1300 1301 return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || 1302 Ty->isReferenceType()); 1303 } 1304 1305 return true; 1306 } 1307 1308 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 1309 CCState &State) const { 1310 // FIXME: Set alignment on indirect arguments. 1311 1312 Ty = useFirstFieldIfTransparentUnion(Ty); 1313 1314 // Check with the C++ ABI first. 1315 const RecordType *RT = Ty->getAs<RecordType>(); 1316 if (RT) { 1317 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 1318 if (RAA == CGCXXABI::RAA_Indirect) { 1319 return getIndirectResult(Ty, false, State); 1320 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 1321 // The field index doesn't matter, we'll fix it up later. 1322 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 1323 } 1324 } 1325 1326 // vectorcall adds the concept of a homogenous vector aggregate, similar 1327 // to other targets. 1328 const Type *Base = nullptr; 1329 uint64_t NumElts = 0; 1330 if (State.CC == llvm::CallingConv::X86_VectorCall && 1331 isHomogeneousAggregate(Ty, Base, NumElts)) { 1332 if (State.FreeSSERegs >= NumElts) { 1333 State.FreeSSERegs -= NumElts; 1334 if (Ty->isBuiltinType() || Ty->isVectorType()) 1335 return ABIArgInfo::getDirect(); 1336 return ABIArgInfo::getExpand(); 1337 } 1338 return getIndirectResult(Ty, /*ByVal=*/false, State); 1339 } 1340 1341 if (isAggregateTypeForABI(Ty)) { 1342 if (RT) { 1343 // Structs are always byval on win32, regardless of what they contain. 1344 if (IsWin32StructABI) 1345 return getIndirectResult(Ty, true, State); 1346 1347 // Structures with flexible arrays are always indirect. 1348 if (RT->getDecl()->hasFlexibleArrayMember()) 1349 return getIndirectResult(Ty, true, State); 1350 } 1351 1352 // Ignore empty structs/unions. 1353 if (isEmptyRecord(getContext(), Ty, true)) 1354 return ABIArgInfo::getIgnore(); 1355 1356 llvm::LLVMContext &LLVMContext = getVMContext(); 1357 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 1358 bool NeedsPadding, InReg; 1359 if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { 1360 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 1361 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 1362 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 1363 if (InReg) 1364 return ABIArgInfo::getDirectInReg(Result); 1365 else 1366 return ABIArgInfo::getDirect(Result); 1367 } 1368 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 1369 1370 // Expand small (<= 128-bit) record types when we know that the stack layout 1371 // of those arguments will match the struct. This is important because the 1372 // LLVM backend isn't smart enough to remove byval, which inhibits many 1373 // optimizations. 1374 // Don't do this for the MCU if there are still free integer registers 1375 // (see X86_64 ABI for full explanation). 1376 if (getContext().getTypeSize(Ty) <= 4*32 && 1377 canExpandIndirectArgument(Ty, getContext()) && 1378 (!IsMCUABI || State.FreeRegs == 0)) 1379 return ABIArgInfo::getExpandWithPadding( 1380 State.CC == llvm::CallingConv::X86_FastCall || 1381 State.CC == llvm::CallingConv::X86_VectorCall, 1382 PaddingType); 1383 1384 return getIndirectResult(Ty, true, State); 1385 } 1386 1387 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1388 // On Darwin, some vectors are passed in memory, we handle this by passing 1389 // it as an i8/i16/i32/i64. 1390 if (IsDarwinVectorABI) { 1391 uint64_t Size = getContext().getTypeSize(Ty); 1392 if ((Size == 8 || Size == 16 || Size == 32) || 1393 (Size == 64 && VT->getNumElements() == 1)) 1394 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1395 Size)); 1396 } 1397 1398 if (IsX86_MMXType(CGT.ConvertType(Ty))) 1399 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 1400 1401 return ABIArgInfo::getDirect(); 1402 } 1403 1404 1405 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1406 Ty = EnumTy->getDecl()->getIntegerType(); 1407 1408 bool InReg = shouldPrimitiveUseInReg(Ty, State); 1409 1410 if (Ty->isPromotableIntegerType()) { 1411 if (InReg) 1412 return ABIArgInfo::getExtendInReg(); 1413 return ABIArgInfo::getExtend(); 1414 } 1415 1416 if (InReg) 1417 return ABIArgInfo::getDirectInReg(); 1418 return ABIArgInfo::getDirect(); 1419 } 1420 1421 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 1422 CCState State(FI.getCallingConvention()); 1423 if (IsMCUABI) 1424 State.FreeRegs = 3; 1425 else if (State.CC == llvm::CallingConv::X86_FastCall) 1426 State.FreeRegs = 2; 1427 else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1428 State.FreeRegs = 2; 1429 State.FreeSSERegs = 6; 1430 } else if (FI.getHasRegParm()) 1431 State.FreeRegs = FI.getRegParm(); 1432 else 1433 State.FreeRegs = DefaultNumRegisterParameters; 1434 1435 if (!getCXXABI().classifyReturnType(FI)) { 1436 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 1437 } else if (FI.getReturnInfo().isIndirect()) { 1438 // The C++ ABI is not aware of register usage, so we have to check if the 1439 // return value was sret and put it in a register ourselves if appropriate. 1440 if (State.FreeRegs) { 1441 --State.FreeRegs; // The sret parameter consumes a register. 1442 if (!IsMCUABI) 1443 FI.getReturnInfo().setInReg(true); 1444 } 1445 } 1446 1447 // The chain argument effectively gives us another free register. 1448 if (FI.isChainCall()) 1449 ++State.FreeRegs; 1450 1451 bool UsedInAlloca = false; 1452 for (auto &I : FI.arguments()) { 1453 I.info = classifyArgumentType(I.type, State); 1454 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1455 } 1456 1457 // If we needed to use inalloca for any argument, do a second pass and rewrite 1458 // all the memory arguments to use inalloca. 1459 if (UsedInAlloca) 1460 rewriteWithInAlloca(FI); 1461 } 1462 1463 void 1464 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1465 CharUnits &StackOffset, ABIArgInfo &Info, 1466 QualType Type) const { 1467 // Arguments are always 4-byte-aligned. 1468 CharUnits FieldAlign = CharUnits::fromQuantity(4); 1469 1470 assert(StackOffset.isMultipleOf(FieldAlign) && "unaligned inalloca struct"); 1471 Info = ABIArgInfo::getInAlloca(FrameFields.size()); 1472 FrameFields.push_back(CGT.ConvertTypeForMem(Type)); 1473 StackOffset += getContext().getTypeSizeInChars(Type); 1474 1475 // Insert padding bytes to respect alignment. 1476 CharUnits FieldEnd = StackOffset; 1477 StackOffset = FieldEnd.alignTo(FieldAlign); 1478 if (StackOffset != FieldEnd) { 1479 CharUnits NumBytes = StackOffset - FieldEnd; 1480 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 1481 Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); 1482 FrameFields.push_back(Ty); 1483 } 1484 } 1485 1486 static bool isArgInAlloca(const ABIArgInfo &Info) { 1487 // Leave ignored and inreg arguments alone. 1488 switch (Info.getKind()) { 1489 case ABIArgInfo::InAlloca: 1490 return true; 1491 case ABIArgInfo::Indirect: 1492 assert(Info.getIndirectByVal()); 1493 return true; 1494 case ABIArgInfo::Ignore: 1495 return false; 1496 case ABIArgInfo::Direct: 1497 case ABIArgInfo::Extend: 1498 case ABIArgInfo::Expand: 1499 if (Info.getInReg()) 1500 return false; 1501 return true; 1502 } 1503 llvm_unreachable("invalid enum"); 1504 } 1505 1506 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 1507 assert(IsWin32StructABI && "inalloca only supported on win32"); 1508 1509 // Build a packed struct type for all of the arguments in memory. 1510 SmallVector<llvm::Type *, 6> FrameFields; 1511 1512 // The stack alignment is always 4. 1513 CharUnits StackAlign = CharUnits::fromQuantity(4); 1514 1515 CharUnits StackOffset; 1516 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 1517 1518 // Put 'this' into the struct before 'sret', if necessary. 1519 bool IsThisCall = 1520 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 1521 ABIArgInfo &Ret = FI.getReturnInfo(); 1522 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 1523 isArgInAlloca(I->info)) { 1524 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1525 ++I; 1526 } 1527 1528 // Put the sret parameter into the inalloca struct if it's in memory. 1529 if (Ret.isIndirect() && !Ret.getInReg()) { 1530 CanQualType PtrTy = getContext().getPointerType(FI.getReturnType()); 1531 addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy); 1532 // On Windows, the hidden sret parameter is always returned in eax. 1533 Ret.setInAllocaSRet(IsWin32StructABI); 1534 } 1535 1536 // Skip the 'this' parameter in ecx. 1537 if (IsThisCall) 1538 ++I; 1539 1540 // Put arguments passed in memory into the struct. 1541 for (; I != E; ++I) { 1542 if (isArgInAlloca(I->info)) 1543 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1544 } 1545 1546 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 1547 /*isPacked=*/true), 1548 StackAlign); 1549 } 1550 1551 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, 1552 Address VAListAddr, QualType Ty) const { 1553 1554 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 1555 1556 // x86-32 changes the alignment of certain arguments on the stack. 1557 // 1558 // Just messing with TypeInfo like this works because we never pass 1559 // anything indirectly. 1560 TypeInfo.second = CharUnits::fromQuantity( 1561 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity())); 1562 1563 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 1564 TypeInfo, CharUnits::fromQuantity(4), 1565 /*AllowHigherAlign*/ true); 1566 } 1567 1568 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 1569 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 1570 assert(Triple.getArch() == llvm::Triple::x86); 1571 1572 switch (Opts.getStructReturnConvention()) { 1573 case CodeGenOptions::SRCK_Default: 1574 break; 1575 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 1576 return false; 1577 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 1578 return true; 1579 } 1580 1581 if (Triple.isOSDarwin() || Triple.isOSIAMCU()) 1582 return true; 1583 1584 switch (Triple.getOS()) { 1585 case llvm::Triple::DragonFly: 1586 case llvm::Triple::FreeBSD: 1587 case llvm::Triple::OpenBSD: 1588 case llvm::Triple::Bitrig: 1589 case llvm::Triple::Win32: 1590 return true; 1591 default: 1592 return false; 1593 } 1594 } 1595 1596 void X86_32TargetCodeGenInfo::setTargetAttributes(const Decl *D, 1597 llvm::GlobalValue *GV, 1598 CodeGen::CodeGenModule &CGM) const { 1599 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 1600 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 1601 // Get the LLVM function. 1602 llvm::Function *Fn = cast<llvm::Function>(GV); 1603 1604 // Now add the 'alignstack' attribute with a value of 16. 1605 llvm::AttrBuilder B; 1606 B.addStackAlignmentAttr(16); 1607 Fn->addAttributes(llvm::AttributeSet::FunctionIndex, 1608 llvm::AttributeSet::get(CGM.getLLVMContext(), 1609 llvm::AttributeSet::FunctionIndex, 1610 B)); 1611 } 1612 if (FD->hasAttr<AnyX86InterruptAttr>()) { 1613 llvm::Function *Fn = cast<llvm::Function>(GV); 1614 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 1615 } 1616 } 1617 } 1618 1619 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 1620 CodeGen::CodeGenFunction &CGF, 1621 llvm::Value *Address) const { 1622 CodeGen::CGBuilderTy &Builder = CGF.Builder; 1623 1624 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 1625 1626 // 0-7 are the eight integer registers; the order is different 1627 // on Darwin (for EH), but the range is the same. 1628 // 8 is %eip. 1629 AssignToArrayRange(Builder, Address, Four8, 0, 8); 1630 1631 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 1632 // 12-16 are st(0..4). Not sure why we stop at 4. 1633 // These have size 16, which is sizeof(long double) on 1634 // platforms with 8-byte alignment for that type. 1635 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 1636 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 1637 1638 } else { 1639 // 9 is %eflags, which doesn't get a size on Darwin for some 1640 // reason. 1641 Builder.CreateAlignedStore( 1642 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), 1643 CharUnits::One()); 1644 1645 // 11-16 are st(0..5). Not sure why we stop at 5. 1646 // These have size 12, which is sizeof(long double) on 1647 // platforms with 4-byte alignment for that type. 1648 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 1649 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 1650 } 1651 1652 return false; 1653 } 1654 1655 //===----------------------------------------------------------------------===// 1656 // X86-64 ABI Implementation 1657 //===----------------------------------------------------------------------===// 1658 1659 1660 namespace { 1661 /// The AVX ABI level for X86 targets. 1662 enum class X86AVXABILevel { 1663 None, 1664 AVX, 1665 AVX512 1666 }; 1667 1668 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. 1669 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { 1670 switch (AVXLevel) { 1671 case X86AVXABILevel::AVX512: 1672 return 512; 1673 case X86AVXABILevel::AVX: 1674 return 256; 1675 case X86AVXABILevel::None: 1676 return 128; 1677 } 1678 llvm_unreachable("Unknown AVXLevel"); 1679 } 1680 1681 /// X86_64ABIInfo - The X86_64 ABI information. 1682 class X86_64ABIInfo : public ABIInfo { 1683 enum Class { 1684 Integer = 0, 1685 SSE, 1686 SSEUp, 1687 X87, 1688 X87Up, 1689 ComplexX87, 1690 NoClass, 1691 Memory 1692 }; 1693 1694 /// merge - Implement the X86_64 ABI merging algorithm. 1695 /// 1696 /// Merge an accumulating classification \arg Accum with a field 1697 /// classification \arg Field. 1698 /// 1699 /// \param Accum - The accumulating classification. This should 1700 /// always be either NoClass or the result of a previous merge 1701 /// call. In addition, this should never be Memory (the caller 1702 /// should just return Memory for the aggregate). 1703 static Class merge(Class Accum, Class Field); 1704 1705 /// postMerge - Implement the X86_64 ABI post merging algorithm. 1706 /// 1707 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 1708 /// final MEMORY or SSE classes when necessary. 1709 /// 1710 /// \param AggregateSize - The size of the current aggregate in 1711 /// the classification process. 1712 /// 1713 /// \param Lo - The classification for the parts of the type 1714 /// residing in the low word of the containing object. 1715 /// 1716 /// \param Hi - The classification for the parts of the type 1717 /// residing in the higher words of the containing object. 1718 /// 1719 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 1720 1721 /// classify - Determine the x86_64 register classes in which the 1722 /// given type T should be passed. 1723 /// 1724 /// \param Lo - The classification for the parts of the type 1725 /// residing in the low word of the containing object. 1726 /// 1727 /// \param Hi - The classification for the parts of the type 1728 /// residing in the high word of the containing object. 1729 /// 1730 /// \param OffsetBase - The bit offset of this type in the 1731 /// containing object. Some parameters are classified different 1732 /// depending on whether they straddle an eightbyte boundary. 1733 /// 1734 /// \param isNamedArg - Whether the argument in question is a "named" 1735 /// argument, as used in AMD64-ABI 3.5.7. 1736 /// 1737 /// If a word is unused its result will be NoClass; if a type should 1738 /// be passed in Memory then at least the classification of \arg Lo 1739 /// will be Memory. 1740 /// 1741 /// The \arg Lo class will be NoClass iff the argument is ignored. 1742 /// 1743 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 1744 /// also be ComplexX87. 1745 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 1746 bool isNamedArg) const; 1747 1748 llvm::Type *GetByteVectorType(QualType Ty) const; 1749 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 1750 unsigned IROffset, QualType SourceTy, 1751 unsigned SourceOffset) const; 1752 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 1753 unsigned IROffset, QualType SourceTy, 1754 unsigned SourceOffset) const; 1755 1756 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1757 /// such that the argument will be returned in memory. 1758 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 1759 1760 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1761 /// such that the argument will be passed in memory. 1762 /// 1763 /// \param freeIntRegs - The number of free integer registers remaining 1764 /// available. 1765 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 1766 1767 ABIArgInfo classifyReturnType(QualType RetTy) const; 1768 1769 ABIArgInfo classifyArgumentType(QualType Ty, 1770 unsigned freeIntRegs, 1771 unsigned &neededInt, 1772 unsigned &neededSSE, 1773 bool isNamedArg) const; 1774 1775 bool IsIllegalVectorType(QualType Ty) const; 1776 1777 /// The 0.98 ABI revision clarified a lot of ambiguities, 1778 /// unfortunately in ways that were not always consistent with 1779 /// certain previous compilers. In particular, platforms which 1780 /// required strict binary compatibility with older versions of GCC 1781 /// may need to exempt themselves. 1782 bool honorsRevision0_98() const { 1783 return !getTarget().getTriple().isOSDarwin(); 1784 } 1785 1786 X86AVXABILevel AVXLevel; 1787 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 1788 // 64-bit hardware. 1789 bool Has64BitPointers; 1790 1791 public: 1792 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : 1793 ABIInfo(CGT), AVXLevel(AVXLevel), 1794 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 1795 } 1796 1797 bool isPassedUsingAVXType(QualType type) const { 1798 unsigned neededInt, neededSSE; 1799 // The freeIntRegs argument doesn't matter here. 1800 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 1801 /*isNamedArg*/true); 1802 if (info.isDirect()) { 1803 llvm::Type *ty = info.getCoerceToType(); 1804 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 1805 return (vectorTy->getBitWidth() > 128); 1806 } 1807 return false; 1808 } 1809 1810 void computeInfo(CGFunctionInfo &FI) const override; 1811 1812 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 1813 QualType Ty) const override; 1814 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 1815 QualType Ty) const override; 1816 1817 bool has64BitPointers() const { 1818 return Has64BitPointers; 1819 } 1820 }; 1821 1822 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 1823 class WinX86_64ABIInfo : public ABIInfo { 1824 public: 1825 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) 1826 : ABIInfo(CGT), 1827 IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} 1828 1829 void computeInfo(CGFunctionInfo &FI) const override; 1830 1831 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 1832 QualType Ty) const override; 1833 1834 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 1835 // FIXME: Assumes vectorcall is in use. 1836 return isX86VectorTypeForVectorCall(getContext(), Ty); 1837 } 1838 1839 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 1840 uint64_t NumMembers) const override { 1841 // FIXME: Assumes vectorcall is in use. 1842 return isX86VectorCallAggregateSmallEnough(NumMembers); 1843 } 1844 1845 private: 1846 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, 1847 bool IsReturnType) const; 1848 1849 bool IsMingw64; 1850 }; 1851 1852 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 1853 public: 1854 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 1855 : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {} 1856 1857 const X86_64ABIInfo &getABIInfo() const { 1858 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 1859 } 1860 1861 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1862 return 7; 1863 } 1864 1865 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1866 llvm::Value *Address) const override { 1867 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 1868 1869 // 0-15 are the 16 integer registers. 1870 // 16 is %rip. 1871 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 1872 return false; 1873 } 1874 1875 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1876 StringRef Constraint, 1877 llvm::Type* Ty) const override { 1878 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1879 } 1880 1881 bool isNoProtoCallVariadic(const CallArgList &args, 1882 const FunctionNoProtoType *fnType) const override { 1883 // The default CC on x86-64 sets %al to the number of SSA 1884 // registers used, and GCC sets this when calling an unprototyped 1885 // function, so we override the default behavior. However, don't do 1886 // that when AVX types are involved: the ABI explicitly states it is 1887 // undefined, and it doesn't work in practice because of how the ABI 1888 // defines varargs anyway. 1889 if (fnType->getCallConv() == CC_C) { 1890 bool HasAVXType = false; 1891 for (CallArgList::const_iterator 1892 it = args.begin(), ie = args.end(); it != ie; ++it) { 1893 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 1894 HasAVXType = true; 1895 break; 1896 } 1897 } 1898 1899 if (!HasAVXType) 1900 return true; 1901 } 1902 1903 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 1904 } 1905 1906 llvm::Constant * 1907 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1908 unsigned Sig; 1909 if (getABIInfo().has64BitPointers()) 1910 Sig = (0xeb << 0) | // jmp rel8 1911 (0x0a << 8) | // .+0x0c 1912 ('F' << 16) | 1913 ('T' << 24); 1914 else 1915 Sig = (0xeb << 0) | // jmp rel8 1916 (0x06 << 8) | // .+0x08 1917 ('F' << 16) | 1918 ('T' << 24); 1919 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1920 } 1921 1922 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1923 CodeGen::CodeGenModule &CGM) const override { 1924 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 1925 if (FD->hasAttr<AnyX86InterruptAttr>()) { 1926 llvm::Function *Fn = cast<llvm::Function>(GV); 1927 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 1928 } 1929 } 1930 } 1931 }; 1932 1933 class PS4TargetCodeGenInfo : public X86_64TargetCodeGenInfo { 1934 public: 1935 PS4TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 1936 : X86_64TargetCodeGenInfo(CGT, AVXLevel) {} 1937 1938 void getDependentLibraryOption(llvm::StringRef Lib, 1939 llvm::SmallString<24> &Opt) const override { 1940 Opt = "\01"; 1941 // If the argument contains a space, enclose it in quotes. 1942 if (Lib.find(" ") != StringRef::npos) 1943 Opt += "\"" + Lib.str() + "\""; 1944 else 1945 Opt += Lib; 1946 } 1947 }; 1948 1949 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 1950 // If the argument does not end in .lib, automatically add the suffix. 1951 // If the argument contains a space, enclose it in quotes. 1952 // This matches the behavior of MSVC. 1953 bool Quote = (Lib.find(" ") != StringRef::npos); 1954 std::string ArgStr = Quote ? "\"" : ""; 1955 ArgStr += Lib; 1956 if (!Lib.endswith_lower(".lib")) 1957 ArgStr += ".lib"; 1958 ArgStr += Quote ? "\"" : ""; 1959 return ArgStr; 1960 } 1961 1962 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 1963 public: 1964 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 1965 bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, 1966 unsigned NumRegisterParameters) 1967 : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, 1968 Win32StructABI, NumRegisterParameters, false) {} 1969 1970 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1971 CodeGen::CodeGenModule &CGM) const override; 1972 1973 void getDependentLibraryOption(llvm::StringRef Lib, 1974 llvm::SmallString<24> &Opt) const override { 1975 Opt = "/DEFAULTLIB:"; 1976 Opt += qualifyWindowsLibrary(Lib); 1977 } 1978 1979 void getDetectMismatchOption(llvm::StringRef Name, 1980 llvm::StringRef Value, 1981 llvm::SmallString<32> &Opt) const override { 1982 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 1983 } 1984 }; 1985 1986 static void addStackProbeSizeTargetAttribute(const Decl *D, 1987 llvm::GlobalValue *GV, 1988 CodeGen::CodeGenModule &CGM) { 1989 if (D && isa<FunctionDecl>(D)) { 1990 if (CGM.getCodeGenOpts().StackProbeSize != 4096) { 1991 llvm::Function *Fn = cast<llvm::Function>(GV); 1992 1993 Fn->addFnAttr("stack-probe-size", 1994 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 1995 } 1996 } 1997 } 1998 1999 void WinX86_32TargetCodeGenInfo::setTargetAttributes(const Decl *D, 2000 llvm::GlobalValue *GV, 2001 CodeGen::CodeGenModule &CGM) const { 2002 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2003 2004 addStackProbeSizeTargetAttribute(D, GV, CGM); 2005 } 2006 2007 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2008 public: 2009 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2010 X86AVXABILevel AVXLevel) 2011 : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {} 2012 2013 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2014 CodeGen::CodeGenModule &CGM) const override; 2015 2016 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2017 return 7; 2018 } 2019 2020 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2021 llvm::Value *Address) const override { 2022 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2023 2024 // 0-15 are the 16 integer registers. 2025 // 16 is %rip. 2026 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2027 return false; 2028 } 2029 2030 void getDependentLibraryOption(llvm::StringRef Lib, 2031 llvm::SmallString<24> &Opt) const override { 2032 Opt = "/DEFAULTLIB:"; 2033 Opt += qualifyWindowsLibrary(Lib); 2034 } 2035 2036 void getDetectMismatchOption(llvm::StringRef Name, 2037 llvm::StringRef Value, 2038 llvm::SmallString<32> &Opt) const override { 2039 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2040 } 2041 }; 2042 2043 void WinX86_64TargetCodeGenInfo::setTargetAttributes(const Decl *D, 2044 llvm::GlobalValue *GV, 2045 CodeGen::CodeGenModule &CGM) const { 2046 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2047 2048 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2049 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2050 llvm::Function *Fn = cast<llvm::Function>(GV); 2051 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2052 } 2053 } 2054 2055 addStackProbeSizeTargetAttribute(D, GV, CGM); 2056 } 2057 } 2058 2059 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 2060 Class &Hi) const { 2061 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 2062 // 2063 // (a) If one of the classes is Memory, the whole argument is passed in 2064 // memory. 2065 // 2066 // (b) If X87UP is not preceded by X87, the whole argument is passed in 2067 // memory. 2068 // 2069 // (c) If the size of the aggregate exceeds two eightbytes and the first 2070 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 2071 // argument is passed in memory. NOTE: This is necessary to keep the 2072 // ABI working for processors that don't support the __m256 type. 2073 // 2074 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 2075 // 2076 // Some of these are enforced by the merging logic. Others can arise 2077 // only with unions; for example: 2078 // union { _Complex double; unsigned; } 2079 // 2080 // Note that clauses (b) and (c) were added in 0.98. 2081 // 2082 if (Hi == Memory) 2083 Lo = Memory; 2084 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 2085 Lo = Memory; 2086 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 2087 Lo = Memory; 2088 if (Hi == SSEUp && Lo != SSE) 2089 Hi = SSE; 2090 } 2091 2092 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 2093 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 2094 // classified recursively so that always two fields are 2095 // considered. The resulting class is calculated according to 2096 // the classes of the fields in the eightbyte: 2097 // 2098 // (a) If both classes are equal, this is the resulting class. 2099 // 2100 // (b) If one of the classes is NO_CLASS, the resulting class is 2101 // the other class. 2102 // 2103 // (c) If one of the classes is MEMORY, the result is the MEMORY 2104 // class. 2105 // 2106 // (d) If one of the classes is INTEGER, the result is the 2107 // INTEGER. 2108 // 2109 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 2110 // MEMORY is used as class. 2111 // 2112 // (f) Otherwise class SSE is used. 2113 2114 // Accum should never be memory (we should have returned) or 2115 // ComplexX87 (because this cannot be passed in a structure). 2116 assert((Accum != Memory && Accum != ComplexX87) && 2117 "Invalid accumulated classification during merge."); 2118 if (Accum == Field || Field == NoClass) 2119 return Accum; 2120 if (Field == Memory) 2121 return Memory; 2122 if (Accum == NoClass) 2123 return Field; 2124 if (Accum == Integer || Field == Integer) 2125 return Integer; 2126 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 2127 Accum == X87 || Accum == X87Up) 2128 return Memory; 2129 return SSE; 2130 } 2131 2132 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 2133 Class &Lo, Class &Hi, bool isNamedArg) const { 2134 // FIXME: This code can be simplified by introducing a simple value class for 2135 // Class pairs with appropriate constructor methods for the various 2136 // situations. 2137 2138 // FIXME: Some of the split computations are wrong; unaligned vectors 2139 // shouldn't be passed in registers for example, so there is no chance they 2140 // can straddle an eightbyte. Verify & simplify. 2141 2142 Lo = Hi = NoClass; 2143 2144 Class &Current = OffsetBase < 64 ? Lo : Hi; 2145 Current = Memory; 2146 2147 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 2148 BuiltinType::Kind k = BT->getKind(); 2149 2150 if (k == BuiltinType::Void) { 2151 Current = NoClass; 2152 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 2153 Lo = Integer; 2154 Hi = Integer; 2155 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 2156 Current = Integer; 2157 } else if (k == BuiltinType::Float || k == BuiltinType::Double) { 2158 Current = SSE; 2159 } else if (k == BuiltinType::LongDouble) { 2160 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2161 if (LDF == &llvm::APFloat::IEEEquad) { 2162 Lo = SSE; 2163 Hi = SSEUp; 2164 } else if (LDF == &llvm::APFloat::x87DoubleExtended) { 2165 Lo = X87; 2166 Hi = X87Up; 2167 } else if (LDF == &llvm::APFloat::IEEEdouble) { 2168 Current = SSE; 2169 } else 2170 llvm_unreachable("unexpected long double representation!"); 2171 } 2172 // FIXME: _Decimal32 and _Decimal64 are SSE. 2173 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 2174 return; 2175 } 2176 2177 if (const EnumType *ET = Ty->getAs<EnumType>()) { 2178 // Classify the underlying integer type. 2179 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 2180 return; 2181 } 2182 2183 if (Ty->hasPointerRepresentation()) { 2184 Current = Integer; 2185 return; 2186 } 2187 2188 if (Ty->isMemberPointerType()) { 2189 if (Ty->isMemberFunctionPointerType()) { 2190 if (Has64BitPointers) { 2191 // If Has64BitPointers, this is an {i64, i64}, so classify both 2192 // Lo and Hi now. 2193 Lo = Hi = Integer; 2194 } else { 2195 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 2196 // straddles an eightbyte boundary, Hi should be classified as well. 2197 uint64_t EB_FuncPtr = (OffsetBase) / 64; 2198 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 2199 if (EB_FuncPtr != EB_ThisAdj) { 2200 Lo = Hi = Integer; 2201 } else { 2202 Current = Integer; 2203 } 2204 } 2205 } else { 2206 Current = Integer; 2207 } 2208 return; 2209 } 2210 2211 if (const VectorType *VT = Ty->getAs<VectorType>()) { 2212 uint64_t Size = getContext().getTypeSize(VT); 2213 if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { 2214 // gcc passes the following as integer: 2215 // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> 2216 // 2 bytes - <2 x char>, <1 x short> 2217 // 1 byte - <1 x char> 2218 Current = Integer; 2219 2220 // If this type crosses an eightbyte boundary, it should be 2221 // split. 2222 uint64_t EB_Lo = (OffsetBase) / 64; 2223 uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; 2224 if (EB_Lo != EB_Hi) 2225 Hi = Lo; 2226 } else if (Size == 64) { 2227 // gcc passes <1 x double> in memory. :( 2228 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) 2229 return; 2230 2231 // gcc passes <1 x long long> as INTEGER. 2232 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) || 2233 VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) || 2234 VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) || 2235 VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong)) 2236 Current = Integer; 2237 else 2238 Current = SSE; 2239 2240 // If this type crosses an eightbyte boundary, it should be 2241 // split. 2242 if (OffsetBase && OffsetBase != 64) 2243 Hi = Lo; 2244 } else if (Size == 128 || 2245 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { 2246 // Arguments of 256-bits are split into four eightbyte chunks. The 2247 // least significant one belongs to class SSE and all the others to class 2248 // SSEUP. The original Lo and Hi design considers that types can't be 2249 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 2250 // This design isn't correct for 256-bits, but since there're no cases 2251 // where the upper parts would need to be inspected, avoid adding 2252 // complexity and just consider Hi to match the 64-256 part. 2253 // 2254 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 2255 // registers if they are "named", i.e. not part of the "..." of a 2256 // variadic function. 2257 // 2258 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are 2259 // split into eight eightbyte chunks, one SSE and seven SSEUP. 2260 Lo = SSE; 2261 Hi = SSEUp; 2262 } 2263 return; 2264 } 2265 2266 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 2267 QualType ET = getContext().getCanonicalType(CT->getElementType()); 2268 2269 uint64_t Size = getContext().getTypeSize(Ty); 2270 if (ET->isIntegralOrEnumerationType()) { 2271 if (Size <= 64) 2272 Current = Integer; 2273 else if (Size <= 128) 2274 Lo = Hi = Integer; 2275 } else if (ET == getContext().FloatTy) { 2276 Current = SSE; 2277 } else if (ET == getContext().DoubleTy) { 2278 Lo = Hi = SSE; 2279 } else if (ET == getContext().LongDoubleTy) { 2280 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2281 if (LDF == &llvm::APFloat::IEEEquad) 2282 Current = Memory; 2283 else if (LDF == &llvm::APFloat::x87DoubleExtended) 2284 Current = ComplexX87; 2285 else if (LDF == &llvm::APFloat::IEEEdouble) 2286 Lo = Hi = SSE; 2287 else 2288 llvm_unreachable("unexpected long double representation!"); 2289 } 2290 2291 // If this complex type crosses an eightbyte boundary then it 2292 // should be split. 2293 uint64_t EB_Real = (OffsetBase) / 64; 2294 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 2295 if (Hi == NoClass && EB_Real != EB_Imag) 2296 Hi = Lo; 2297 2298 return; 2299 } 2300 2301 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 2302 // Arrays are treated like structures. 2303 2304 uint64_t Size = getContext().getTypeSize(Ty); 2305 2306 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2307 // than four eightbytes, ..., it has class MEMORY. 2308 if (Size > 256) 2309 return; 2310 2311 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 2312 // fields, it has class MEMORY. 2313 // 2314 // Only need to check alignment of array base. 2315 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 2316 return; 2317 2318 // Otherwise implement simplified merge. We could be smarter about 2319 // this, but it isn't worth it and would be harder to verify. 2320 Current = NoClass; 2321 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 2322 uint64_t ArraySize = AT->getSize().getZExtValue(); 2323 2324 // The only case a 256-bit wide vector could be used is when the array 2325 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2326 // to work for sizes wider than 128, early check and fallback to memory. 2327 if (Size > 128 && EltSize != 256) 2328 return; 2329 2330 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 2331 Class FieldLo, FieldHi; 2332 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 2333 Lo = merge(Lo, FieldLo); 2334 Hi = merge(Hi, FieldHi); 2335 if (Lo == Memory || Hi == Memory) 2336 break; 2337 } 2338 2339 postMerge(Size, Lo, Hi); 2340 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 2341 return; 2342 } 2343 2344 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2345 uint64_t Size = getContext().getTypeSize(Ty); 2346 2347 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2348 // than four eightbytes, ..., it has class MEMORY. 2349 if (Size > 256) 2350 return; 2351 2352 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 2353 // copy constructor or a non-trivial destructor, it is passed by invisible 2354 // reference. 2355 if (getRecordArgABI(RT, getCXXABI())) 2356 return; 2357 2358 const RecordDecl *RD = RT->getDecl(); 2359 2360 // Assume variable sized types are passed in memory. 2361 if (RD->hasFlexibleArrayMember()) 2362 return; 2363 2364 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2365 2366 // Reset Lo class, this will be recomputed. 2367 Current = NoClass; 2368 2369 // If this is a C++ record, classify the bases first. 2370 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2371 for (const auto &I : CXXRD->bases()) { 2372 assert(!I.isVirtual() && !I.getType()->isDependentType() && 2373 "Unexpected base class!"); 2374 const CXXRecordDecl *Base = 2375 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2376 2377 // Classify this field. 2378 // 2379 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 2380 // single eightbyte, each is classified separately. Each eightbyte gets 2381 // initialized to class NO_CLASS. 2382 Class FieldLo, FieldHi; 2383 uint64_t Offset = 2384 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 2385 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 2386 Lo = merge(Lo, FieldLo); 2387 Hi = merge(Hi, FieldHi); 2388 if (Lo == Memory || Hi == Memory) { 2389 postMerge(Size, Lo, Hi); 2390 return; 2391 } 2392 } 2393 } 2394 2395 // Classify the fields one at a time, merging the results. 2396 unsigned idx = 0; 2397 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2398 i != e; ++i, ++idx) { 2399 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2400 bool BitField = i->isBitField(); 2401 2402 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 2403 // four eightbytes, or it contains unaligned fields, it has class MEMORY. 2404 // 2405 // The only case a 256-bit wide vector could be used is when the struct 2406 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2407 // to work for sizes wider than 128, early check and fallback to memory. 2408 // 2409 if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) { 2410 Lo = Memory; 2411 postMerge(Size, Lo, Hi); 2412 return; 2413 } 2414 // Note, skip this test for bit-fields, see below. 2415 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 2416 Lo = Memory; 2417 postMerge(Size, Lo, Hi); 2418 return; 2419 } 2420 2421 // Classify this field. 2422 // 2423 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 2424 // exceeds a single eightbyte, each is classified 2425 // separately. Each eightbyte gets initialized to class 2426 // NO_CLASS. 2427 Class FieldLo, FieldHi; 2428 2429 // Bit-fields require special handling, they do not force the 2430 // structure to be passed in memory even if unaligned, and 2431 // therefore they can straddle an eightbyte. 2432 if (BitField) { 2433 // Ignore padding bit-fields. 2434 if (i->isUnnamedBitfield()) 2435 continue; 2436 2437 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2438 uint64_t Size = i->getBitWidthValue(getContext()); 2439 2440 uint64_t EB_Lo = Offset / 64; 2441 uint64_t EB_Hi = (Offset + Size - 1) / 64; 2442 2443 if (EB_Lo) { 2444 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 2445 FieldLo = NoClass; 2446 FieldHi = Integer; 2447 } else { 2448 FieldLo = Integer; 2449 FieldHi = EB_Hi ? Integer : NoClass; 2450 } 2451 } else 2452 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 2453 Lo = merge(Lo, FieldLo); 2454 Hi = merge(Hi, FieldHi); 2455 if (Lo == Memory || Hi == Memory) 2456 break; 2457 } 2458 2459 postMerge(Size, Lo, Hi); 2460 } 2461 } 2462 2463 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 2464 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2465 // place naturally. 2466 if (!isAggregateTypeForABI(Ty)) { 2467 // Treat an enum type as its underlying type. 2468 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2469 Ty = EnumTy->getDecl()->getIntegerType(); 2470 2471 return (Ty->isPromotableIntegerType() ? 2472 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 2473 } 2474 2475 return getNaturalAlignIndirect(Ty); 2476 } 2477 2478 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 2479 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 2480 uint64_t Size = getContext().getTypeSize(VecTy); 2481 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); 2482 if (Size <= 64 || Size > LargestVector) 2483 return true; 2484 } 2485 2486 return false; 2487 } 2488 2489 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 2490 unsigned freeIntRegs) const { 2491 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2492 // place naturally. 2493 // 2494 // This assumption is optimistic, as there could be free registers available 2495 // when we need to pass this argument in memory, and LLVM could try to pass 2496 // the argument in the free register. This does not seem to happen currently, 2497 // but this code would be much safer if we could mark the argument with 2498 // 'onstack'. See PR12193. 2499 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) { 2500 // Treat an enum type as its underlying type. 2501 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2502 Ty = EnumTy->getDecl()->getIntegerType(); 2503 2504 return (Ty->isPromotableIntegerType() ? 2505 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 2506 } 2507 2508 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 2509 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 2510 2511 // Compute the byval alignment. We specify the alignment of the byval in all 2512 // cases so that the mid-level optimizer knows the alignment of the byval. 2513 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 2514 2515 // Attempt to avoid passing indirect results using byval when possible. This 2516 // is important for good codegen. 2517 // 2518 // We do this by coercing the value into a scalar type which the backend can 2519 // handle naturally (i.e., without using byval). 2520 // 2521 // For simplicity, we currently only do this when we have exhausted all of the 2522 // free integer registers. Doing this when there are free integer registers 2523 // would require more care, as we would have to ensure that the coerced value 2524 // did not claim the unused register. That would require either reording the 2525 // arguments to the function (so that any subsequent inreg values came first), 2526 // or only doing this optimization when there were no following arguments that 2527 // might be inreg. 2528 // 2529 // We currently expect it to be rare (particularly in well written code) for 2530 // arguments to be passed on the stack when there are still free integer 2531 // registers available (this would typically imply large structs being passed 2532 // by value), so this seems like a fair tradeoff for now. 2533 // 2534 // We can revisit this if the backend grows support for 'onstack' parameter 2535 // attributes. See PR12193. 2536 if (freeIntRegs == 0) { 2537 uint64_t Size = getContext().getTypeSize(Ty); 2538 2539 // If this type fits in an eightbyte, coerce it into the matching integral 2540 // type, which will end up on the stack (with alignment 8). 2541 if (Align == 8 && Size <= 64) 2542 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 2543 Size)); 2544 } 2545 2546 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); 2547 } 2548 2549 /// The ABI specifies that a value should be passed in a full vector XMM/YMM 2550 /// register. Pick an LLVM IR type that will be passed as a vector register. 2551 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 2552 // Wrapper structs/arrays that only contain vectors are passed just like 2553 // vectors; strip them off if present. 2554 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) 2555 Ty = QualType(InnerTy, 0); 2556 2557 llvm::Type *IRType = CGT.ConvertType(Ty); 2558 if (isa<llvm::VectorType>(IRType) || 2559 IRType->getTypeID() == llvm::Type::FP128TyID) 2560 return IRType; 2561 2562 // We couldn't find the preferred IR vector type for 'Ty'. 2563 uint64_t Size = getContext().getTypeSize(Ty); 2564 assert((Size == 128 || Size == 256) && "Invalid type found!"); 2565 2566 // Return a LLVM IR vector type based on the size of 'Ty'. 2567 return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2568 Size / 64); 2569 } 2570 2571 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 2572 /// is known to either be off the end of the specified type or being in 2573 /// alignment padding. The user type specified is known to be at most 128 bits 2574 /// in size, and have passed through X86_64ABIInfo::classify with a successful 2575 /// classification that put one of the two halves in the INTEGER class. 2576 /// 2577 /// It is conservatively correct to return false. 2578 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 2579 unsigned EndBit, ASTContext &Context) { 2580 // If the bytes being queried are off the end of the type, there is no user 2581 // data hiding here. This handles analysis of builtins, vectors and other 2582 // types that don't contain interesting padding. 2583 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 2584 if (TySize <= StartBit) 2585 return true; 2586 2587 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 2588 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 2589 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 2590 2591 // Check each element to see if the element overlaps with the queried range. 2592 for (unsigned i = 0; i != NumElts; ++i) { 2593 // If the element is after the span we care about, then we're done.. 2594 unsigned EltOffset = i*EltSize; 2595 if (EltOffset >= EndBit) break; 2596 2597 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 2598 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 2599 EndBit-EltOffset, Context)) 2600 return false; 2601 } 2602 // If it overlaps no elements, then it is safe to process as padding. 2603 return true; 2604 } 2605 2606 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2607 const RecordDecl *RD = RT->getDecl(); 2608 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 2609 2610 // If this is a C++ record, check the bases first. 2611 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2612 for (const auto &I : CXXRD->bases()) { 2613 assert(!I.isVirtual() && !I.getType()->isDependentType() && 2614 "Unexpected base class!"); 2615 const CXXRecordDecl *Base = 2616 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2617 2618 // If the base is after the span we care about, ignore it. 2619 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 2620 if (BaseOffset >= EndBit) continue; 2621 2622 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 2623 if (!BitsContainNoUserData(I.getType(), BaseStart, 2624 EndBit-BaseOffset, Context)) 2625 return false; 2626 } 2627 } 2628 2629 // Verify that no field has data that overlaps the region of interest. Yes 2630 // this could be sped up a lot by being smarter about queried fields, 2631 // however we're only looking at structs up to 16 bytes, so we don't care 2632 // much. 2633 unsigned idx = 0; 2634 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2635 i != e; ++i, ++idx) { 2636 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 2637 2638 // If we found a field after the region we care about, then we're done. 2639 if (FieldOffset >= EndBit) break; 2640 2641 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 2642 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 2643 Context)) 2644 return false; 2645 } 2646 2647 // If nothing in this record overlapped the area of interest, then we're 2648 // clean. 2649 return true; 2650 } 2651 2652 return false; 2653 } 2654 2655 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a 2656 /// float member at the specified offset. For example, {int,{float}} has a 2657 /// float at offset 4. It is conservatively correct for this routine to return 2658 /// false. 2659 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, 2660 const llvm::DataLayout &TD) { 2661 // Base case if we find a float. 2662 if (IROffset == 0 && IRType->isFloatTy()) 2663 return true; 2664 2665 // If this is a struct, recurse into the field at the specified offset. 2666 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 2667 const llvm::StructLayout *SL = TD.getStructLayout(STy); 2668 unsigned Elt = SL->getElementContainingOffset(IROffset); 2669 IROffset -= SL->getElementOffset(Elt); 2670 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); 2671 } 2672 2673 // If this is an array, recurse into the field at the specified offset. 2674 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 2675 llvm::Type *EltTy = ATy->getElementType(); 2676 unsigned EltSize = TD.getTypeAllocSize(EltTy); 2677 IROffset -= IROffset/EltSize*EltSize; 2678 return ContainsFloatAtOffset(EltTy, IROffset, TD); 2679 } 2680 2681 return false; 2682 } 2683 2684 2685 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 2686 /// low 8 bytes of an XMM register, corresponding to the SSE class. 2687 llvm::Type *X86_64ABIInfo:: 2688 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 2689 QualType SourceTy, unsigned SourceOffset) const { 2690 // The only three choices we have are either double, <2 x float>, or float. We 2691 // pass as float if the last 4 bytes is just padding. This happens for 2692 // structs that contain 3 floats. 2693 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, 2694 SourceOffset*8+64, getContext())) 2695 return llvm::Type::getFloatTy(getVMContext()); 2696 2697 // We want to pass as <2 x float> if the LLVM IR type contains a float at 2698 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the 2699 // case. 2700 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && 2701 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) 2702 return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2); 2703 2704 return llvm::Type::getDoubleTy(getVMContext()); 2705 } 2706 2707 2708 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 2709 /// an 8-byte GPR. This means that we either have a scalar or we are talking 2710 /// about the high or low part of an up-to-16-byte struct. This routine picks 2711 /// the best LLVM IR type to represent this, which may be i64 or may be anything 2712 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 2713 /// etc). 2714 /// 2715 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 2716 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 2717 /// the 8-byte value references. PrefType may be null. 2718 /// 2719 /// SourceTy is the source-level type for the entire argument. SourceOffset is 2720 /// an offset into this that we're processing (which is always either 0 or 8). 2721 /// 2722 llvm::Type *X86_64ABIInfo:: 2723 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 2724 QualType SourceTy, unsigned SourceOffset) const { 2725 // If we're dealing with an un-offset LLVM IR type, then it means that we're 2726 // returning an 8-byte unit starting with it. See if we can safely use it. 2727 if (IROffset == 0) { 2728 // Pointers and int64's always fill the 8-byte unit. 2729 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 2730 IRType->isIntegerTy(64)) 2731 return IRType; 2732 2733 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 2734 // goodness in the source type is just tail padding. This is allowed to 2735 // kick in for struct {double,int} on the int, but not on 2736 // struct{double,int,int} because we wouldn't return the second int. We 2737 // have to do this analysis on the source type because we can't depend on 2738 // unions being lowered a specific way etc. 2739 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 2740 IRType->isIntegerTy(32) || 2741 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 2742 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 2743 cast<llvm::IntegerType>(IRType)->getBitWidth(); 2744 2745 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 2746 SourceOffset*8+64, getContext())) 2747 return IRType; 2748 } 2749 } 2750 2751 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 2752 // If this is a struct, recurse into the field at the specified offset. 2753 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 2754 if (IROffset < SL->getSizeInBytes()) { 2755 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 2756 IROffset -= SL->getElementOffset(FieldIdx); 2757 2758 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 2759 SourceTy, SourceOffset); 2760 } 2761 } 2762 2763 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 2764 llvm::Type *EltTy = ATy->getElementType(); 2765 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 2766 unsigned EltOffset = IROffset/EltSize*EltSize; 2767 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 2768 SourceOffset); 2769 } 2770 2771 // Okay, we don't have any better idea of what to pass, so we pass this in an 2772 // integer register that isn't too big to fit the rest of the struct. 2773 unsigned TySizeInBytes = 2774 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 2775 2776 assert(TySizeInBytes != SourceOffset && "Empty field?"); 2777 2778 // It is always safe to classify this as an integer type up to i64 that 2779 // isn't larger than the structure. 2780 return llvm::IntegerType::get(getVMContext(), 2781 std::min(TySizeInBytes-SourceOffset, 8U)*8); 2782 } 2783 2784 2785 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 2786 /// be used as elements of a two register pair to pass or return, return a 2787 /// first class aggregate to represent them. For example, if the low part of 2788 /// a by-value argument should be passed as i32* and the high part as float, 2789 /// return {i32*, float}. 2790 static llvm::Type * 2791 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 2792 const llvm::DataLayout &TD) { 2793 // In order to correctly satisfy the ABI, we need to the high part to start 2794 // at offset 8. If the high and low parts we inferred are both 4-byte types 2795 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 2796 // the second element at offset 8. Check for this: 2797 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 2798 unsigned HiAlign = TD.getABITypeAlignment(Hi); 2799 unsigned HiStart = llvm::alignTo(LoSize, HiAlign); 2800 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 2801 2802 // To handle this, we have to increase the size of the low part so that the 2803 // second element will start at an 8 byte offset. We can't increase the size 2804 // of the second element because it might make us access off the end of the 2805 // struct. 2806 if (HiStart != 8) { 2807 // There are usually two sorts of types the ABI generation code can produce 2808 // for the low part of a pair that aren't 8 bytes in size: float or 2809 // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and 2810 // NaCl). 2811 // Promote these to a larger type. 2812 if (Lo->isFloatTy()) 2813 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 2814 else { 2815 assert((Lo->isIntegerTy() || Lo->isPointerTy()) 2816 && "Invalid/unknown lo type"); 2817 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 2818 } 2819 } 2820 2821 llvm::StructType *Result = llvm::StructType::get(Lo, Hi, nullptr); 2822 2823 2824 // Verify that the second element is at an 8-byte offset. 2825 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 2826 "Invalid x86-64 argument pair!"); 2827 return Result; 2828 } 2829 2830 ABIArgInfo X86_64ABIInfo:: 2831 classifyReturnType(QualType RetTy) const { 2832 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 2833 // classification algorithm. 2834 X86_64ABIInfo::Class Lo, Hi; 2835 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 2836 2837 // Check some invariants. 2838 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 2839 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 2840 2841 llvm::Type *ResType = nullptr; 2842 switch (Lo) { 2843 case NoClass: 2844 if (Hi == NoClass) 2845 return ABIArgInfo::getIgnore(); 2846 // If the low part is just padding, it takes no register, leave ResType 2847 // null. 2848 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 2849 "Unknown missing lo part"); 2850 break; 2851 2852 case SSEUp: 2853 case X87Up: 2854 llvm_unreachable("Invalid classification for lo word."); 2855 2856 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 2857 // hidden argument. 2858 case Memory: 2859 return getIndirectReturnResult(RetTy); 2860 2861 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 2862 // available register of the sequence %rax, %rdx is used. 2863 case Integer: 2864 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 2865 2866 // If we have a sign or zero extended integer, make sure to return Extend 2867 // so that the parameter gets the right LLVM IR attributes. 2868 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 2869 // Treat an enum type as its underlying type. 2870 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 2871 RetTy = EnumTy->getDecl()->getIntegerType(); 2872 2873 if (RetTy->isIntegralOrEnumerationType() && 2874 RetTy->isPromotableIntegerType()) 2875 return ABIArgInfo::getExtend(); 2876 } 2877 break; 2878 2879 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 2880 // available SSE register of the sequence %xmm0, %xmm1 is used. 2881 case SSE: 2882 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 2883 break; 2884 2885 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 2886 // returned on the X87 stack in %st0 as 80-bit x87 number. 2887 case X87: 2888 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 2889 break; 2890 2891 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 2892 // part of the value is returned in %st0 and the imaginary part in 2893 // %st1. 2894 case ComplexX87: 2895 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 2896 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 2897 llvm::Type::getX86_FP80Ty(getVMContext()), 2898 nullptr); 2899 break; 2900 } 2901 2902 llvm::Type *HighPart = nullptr; 2903 switch (Hi) { 2904 // Memory was handled previously and X87 should 2905 // never occur as a hi class. 2906 case Memory: 2907 case X87: 2908 llvm_unreachable("Invalid classification for hi word."); 2909 2910 case ComplexX87: // Previously handled. 2911 case NoClass: 2912 break; 2913 2914 case Integer: 2915 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 2916 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 2917 return ABIArgInfo::getDirect(HighPart, 8); 2918 break; 2919 case SSE: 2920 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 2921 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 2922 return ABIArgInfo::getDirect(HighPart, 8); 2923 break; 2924 2925 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 2926 // is passed in the next available eightbyte chunk if the last used 2927 // vector register. 2928 // 2929 // SSEUP should always be preceded by SSE, just widen. 2930 case SSEUp: 2931 assert(Lo == SSE && "Unexpected SSEUp classification."); 2932 ResType = GetByteVectorType(RetTy); 2933 break; 2934 2935 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 2936 // returned together with the previous X87 value in %st0. 2937 case X87Up: 2938 // If X87Up is preceded by X87, we don't need to do 2939 // anything. However, in some cases with unions it may not be 2940 // preceded by X87. In such situations we follow gcc and pass the 2941 // extra bits in an SSE reg. 2942 if (Lo != X87) { 2943 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 2944 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 2945 return ABIArgInfo::getDirect(HighPart, 8); 2946 } 2947 break; 2948 } 2949 2950 // If a high part was specified, merge it together with the low part. It is 2951 // known to pass in the high eightbyte of the result. We do this by forming a 2952 // first class struct aggregate with the high and low part: {low, high} 2953 if (HighPart) 2954 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 2955 2956 return ABIArgInfo::getDirect(ResType); 2957 } 2958 2959 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 2960 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 2961 bool isNamedArg) 2962 const 2963 { 2964 Ty = useFirstFieldIfTransparentUnion(Ty); 2965 2966 X86_64ABIInfo::Class Lo, Hi; 2967 classify(Ty, 0, Lo, Hi, isNamedArg); 2968 2969 // Check some invariants. 2970 // FIXME: Enforce these by construction. 2971 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 2972 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 2973 2974 neededInt = 0; 2975 neededSSE = 0; 2976 llvm::Type *ResType = nullptr; 2977 switch (Lo) { 2978 case NoClass: 2979 if (Hi == NoClass) 2980 return ABIArgInfo::getIgnore(); 2981 // If the low part is just padding, it takes no register, leave ResType 2982 // null. 2983 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 2984 "Unknown missing lo part"); 2985 break; 2986 2987 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 2988 // on the stack. 2989 case Memory: 2990 2991 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 2992 // COMPLEX_X87, it is passed in memory. 2993 case X87: 2994 case ComplexX87: 2995 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 2996 ++neededInt; 2997 return getIndirectResult(Ty, freeIntRegs); 2998 2999 case SSEUp: 3000 case X87Up: 3001 llvm_unreachable("Invalid classification for lo word."); 3002 3003 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 3004 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 3005 // and %r9 is used. 3006 case Integer: 3007 ++neededInt; 3008 3009 // Pick an 8-byte type based on the preferred type. 3010 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 3011 3012 // If we have a sign or zero extended integer, make sure to return Extend 3013 // so that the parameter gets the right LLVM IR attributes. 3014 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3015 // Treat an enum type as its underlying type. 3016 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3017 Ty = EnumTy->getDecl()->getIntegerType(); 3018 3019 if (Ty->isIntegralOrEnumerationType() && 3020 Ty->isPromotableIntegerType()) 3021 return ABIArgInfo::getExtend(); 3022 } 3023 3024 break; 3025 3026 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 3027 // available SSE register is used, the registers are taken in the 3028 // order from %xmm0 to %xmm7. 3029 case SSE: { 3030 llvm::Type *IRType = CGT.ConvertType(Ty); 3031 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 3032 ++neededSSE; 3033 break; 3034 } 3035 } 3036 3037 llvm::Type *HighPart = nullptr; 3038 switch (Hi) { 3039 // Memory was handled previously, ComplexX87 and X87 should 3040 // never occur as hi classes, and X87Up must be preceded by X87, 3041 // which is passed in memory. 3042 case Memory: 3043 case X87: 3044 case ComplexX87: 3045 llvm_unreachable("Invalid classification for hi word."); 3046 3047 case NoClass: break; 3048 3049 case Integer: 3050 ++neededInt; 3051 // Pick an 8-byte type based on the preferred type. 3052 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3053 3054 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3055 return ABIArgInfo::getDirect(HighPart, 8); 3056 break; 3057 3058 // X87Up generally doesn't occur here (long double is passed in 3059 // memory), except in situations involving unions. 3060 case X87Up: 3061 case SSE: 3062 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3063 3064 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3065 return ABIArgInfo::getDirect(HighPart, 8); 3066 3067 ++neededSSE; 3068 break; 3069 3070 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 3071 // eightbyte is passed in the upper half of the last used SSE 3072 // register. This only happens when 128-bit vectors are passed. 3073 case SSEUp: 3074 assert(Lo == SSE && "Unexpected SSEUp classification"); 3075 ResType = GetByteVectorType(Ty); 3076 break; 3077 } 3078 3079 // If a high part was specified, merge it together with the low part. It is 3080 // known to pass in the high eightbyte of the result. We do this by forming a 3081 // first class struct aggregate with the high and low part: {low, high} 3082 if (HighPart) 3083 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3084 3085 return ABIArgInfo::getDirect(ResType); 3086 } 3087 3088 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3089 3090 if (!getCXXABI().classifyReturnType(FI)) 3091 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3092 3093 // Keep track of the number of assigned registers. 3094 unsigned freeIntRegs = 6, freeSSERegs = 8; 3095 3096 // If the return value is indirect, then the hidden argument is consuming one 3097 // integer register. 3098 if (FI.getReturnInfo().isIndirect()) 3099 --freeIntRegs; 3100 3101 // The chain argument effectively gives us another free register. 3102 if (FI.isChainCall()) 3103 ++freeIntRegs; 3104 3105 unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 3106 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 3107 // get assigned (in left-to-right order) for passing as follows... 3108 unsigned ArgNo = 0; 3109 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3110 it != ie; ++it, ++ArgNo) { 3111 bool IsNamedArg = ArgNo < NumRequiredArgs; 3112 3113 unsigned neededInt, neededSSE; 3114 it->info = classifyArgumentType(it->type, freeIntRegs, neededInt, 3115 neededSSE, IsNamedArg); 3116 3117 // AMD64-ABI 3.2.3p3: If there are no registers available for any 3118 // eightbyte of an argument, the whole argument is passed on the 3119 // stack. If registers have already been assigned for some 3120 // eightbytes of such an argument, the assignments get reverted. 3121 if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) { 3122 freeIntRegs -= neededInt; 3123 freeSSERegs -= neededSSE; 3124 } else { 3125 it->info = getIndirectResult(it->type, freeIntRegs); 3126 } 3127 } 3128 } 3129 3130 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, 3131 Address VAListAddr, QualType Ty) { 3132 Address overflow_arg_area_p = CGF.Builder.CreateStructGEP( 3133 VAListAddr, 2, CharUnits::fromQuantity(8), "overflow_arg_area_p"); 3134 llvm::Value *overflow_arg_area = 3135 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 3136 3137 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 3138 // byte boundary if alignment needed by type exceeds 8 byte boundary. 3139 // It isn't stated explicitly in the standard, but in practice we use 3140 // alignment greater than 16 where necessary. 3141 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 3142 if (Align > CharUnits::fromQuantity(8)) { 3143 overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, 3144 Align); 3145 } 3146 3147 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 3148 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3149 llvm::Value *Res = 3150 CGF.Builder.CreateBitCast(overflow_arg_area, 3151 llvm::PointerType::getUnqual(LTy)); 3152 3153 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 3154 // l->overflow_arg_area + sizeof(type). 3155 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 3156 // an 8 byte boundary. 3157 3158 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 3159 llvm::Value *Offset = 3160 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 3161 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 3162 "overflow_arg_area.next"); 3163 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 3164 3165 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 3166 return Address(Res, Align); 3167 } 3168 3169 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3170 QualType Ty) const { 3171 // Assume that va_list type is correct; should be pointer to LLVM type: 3172 // struct { 3173 // i32 gp_offset; 3174 // i32 fp_offset; 3175 // i8* overflow_arg_area; 3176 // i8* reg_save_area; 3177 // }; 3178 unsigned neededInt, neededSSE; 3179 3180 Ty = getContext().getCanonicalType(Ty); 3181 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 3182 /*isNamedArg*/false); 3183 3184 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 3185 // in the registers. If not go to step 7. 3186 if (!neededInt && !neededSSE) 3187 return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3188 3189 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 3190 // general purpose registers needed to pass type and num_fp to hold 3191 // the number of floating point registers needed. 3192 3193 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 3194 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 3195 // l->fp_offset > 304 - num_fp * 16 go to step 7. 3196 // 3197 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 3198 // register save space). 3199 3200 llvm::Value *InRegs = nullptr; 3201 Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); 3202 llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; 3203 if (neededInt) { 3204 gp_offset_p = 3205 CGF.Builder.CreateStructGEP(VAListAddr, 0, CharUnits::Zero(), 3206 "gp_offset_p"); 3207 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 3208 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 3209 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 3210 } 3211 3212 if (neededSSE) { 3213 fp_offset_p = 3214 CGF.Builder.CreateStructGEP(VAListAddr, 1, CharUnits::fromQuantity(4), 3215 "fp_offset_p"); 3216 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 3217 llvm::Value *FitsInFP = 3218 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 3219 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 3220 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 3221 } 3222 3223 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 3224 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 3225 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 3226 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 3227 3228 // Emit code to load the value if it was passed in registers. 3229 3230 CGF.EmitBlock(InRegBlock); 3231 3232 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 3233 // an offset of l->gp_offset and/or l->fp_offset. This may require 3234 // copying to a temporary location in case the parameter is passed 3235 // in different register classes or requires an alignment greater 3236 // than 8 for general purpose registers and 16 for XMM registers. 3237 // 3238 // FIXME: This really results in shameful code when we end up needing to 3239 // collect arguments from different places; often what should result in a 3240 // simple assembling of a structure from scattered addresses has many more 3241 // loads than necessary. Can we clean this up? 3242 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3243 llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( 3244 CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(16)), 3245 "reg_save_area"); 3246 3247 Address RegAddr = Address::invalid(); 3248 if (neededInt && neededSSE) { 3249 // FIXME: Cleanup. 3250 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 3251 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 3252 Address Tmp = CGF.CreateMemTemp(Ty); 3253 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3254 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 3255 llvm::Type *TyLo = ST->getElementType(0); 3256 llvm::Type *TyHi = ST->getElementType(1); 3257 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 3258 "Unexpected ABI info for mixed regs"); 3259 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 3260 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 3261 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset); 3262 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset); 3263 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 3264 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 3265 3266 // Copy the first element. 3267 llvm::Value *V = 3268 CGF.Builder.CreateDefaultAlignedLoad( 3269 CGF.Builder.CreateBitCast(RegLoAddr, PTyLo)); 3270 CGF.Builder.CreateStore(V, 3271 CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero())); 3272 3273 // Copy the second element. 3274 V = CGF.Builder.CreateDefaultAlignedLoad( 3275 CGF.Builder.CreateBitCast(RegHiAddr, PTyHi)); 3276 CharUnits Offset = CharUnits::fromQuantity( 3277 getDataLayout().getStructLayout(ST)->getElementOffset(1)); 3278 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1, Offset)); 3279 3280 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3281 } else if (neededInt) { 3282 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset), 3283 CharUnits::fromQuantity(8)); 3284 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3285 3286 // Copy to a temporary if necessary to ensure the appropriate alignment. 3287 std::pair<CharUnits, CharUnits> SizeAlign = 3288 getContext().getTypeInfoInChars(Ty); 3289 uint64_t TySize = SizeAlign.first.getQuantity(); 3290 CharUnits TyAlign = SizeAlign.second; 3291 3292 // Copy into a temporary if the type is more aligned than the 3293 // register save area. 3294 if (TyAlign.getQuantity() > 8) { 3295 Address Tmp = CGF.CreateMemTemp(Ty); 3296 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); 3297 RegAddr = Tmp; 3298 } 3299 3300 } else if (neededSSE == 1) { 3301 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3302 CharUnits::fromQuantity(16)); 3303 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3304 } else { 3305 assert(neededSSE == 2 && "Invalid number of needed registers!"); 3306 // SSE registers are spaced 16 bytes apart in the register save 3307 // area, we need to collect the two eightbytes together. 3308 // The ABI isn't explicit about this, but it seems reasonable 3309 // to assume that the slots are 16-byte aligned, since the stack is 3310 // naturally 16-byte aligned and the prologue is expected to store 3311 // all the SSE registers to the RSA. 3312 Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3313 CharUnits::fromQuantity(16)); 3314 Address RegAddrHi = 3315 CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, 3316 CharUnits::fromQuantity(16)); 3317 llvm::Type *DoubleTy = CGF.DoubleTy; 3318 llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, nullptr); 3319 llvm::Value *V; 3320 Address Tmp = CGF.CreateMemTemp(Ty); 3321 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3322 V = CGF.Builder.CreateLoad( 3323 CGF.Builder.CreateElementBitCast(RegAddrLo, DoubleTy)); 3324 CGF.Builder.CreateStore(V, 3325 CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero())); 3326 V = CGF.Builder.CreateLoad( 3327 CGF.Builder.CreateElementBitCast(RegAddrHi, DoubleTy)); 3328 CGF.Builder.CreateStore(V, 3329 CGF.Builder.CreateStructGEP(Tmp, 1, CharUnits::fromQuantity(8))); 3330 3331 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3332 } 3333 3334 // AMD64-ABI 3.5.7p5: Step 5. Set: 3335 // l->gp_offset = l->gp_offset + num_gp * 8 3336 // l->fp_offset = l->fp_offset + num_fp * 16. 3337 if (neededInt) { 3338 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 3339 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 3340 gp_offset_p); 3341 } 3342 if (neededSSE) { 3343 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 3344 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 3345 fp_offset_p); 3346 } 3347 CGF.EmitBranch(ContBlock); 3348 3349 // Emit code to load the value if it was passed in memory. 3350 3351 CGF.EmitBlock(InMemBlock); 3352 Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3353 3354 // Return the appropriate result. 3355 3356 CGF.EmitBlock(ContBlock); 3357 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, 3358 "vaarg.addr"); 3359 return ResAddr; 3360 } 3361 3362 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 3363 QualType Ty) const { 3364 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 3365 CGF.getContext().getTypeInfoInChars(Ty), 3366 CharUnits::fromQuantity(8), 3367 /*allowHigherAlign*/ false); 3368 } 3369 3370 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 3371 bool IsReturnType) const { 3372 3373 if (Ty->isVoidType()) 3374 return ABIArgInfo::getIgnore(); 3375 3376 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3377 Ty = EnumTy->getDecl()->getIntegerType(); 3378 3379 TypeInfo Info = getContext().getTypeInfo(Ty); 3380 uint64_t Width = Info.Width; 3381 CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); 3382 3383 const RecordType *RT = Ty->getAs<RecordType>(); 3384 if (RT) { 3385 if (!IsReturnType) { 3386 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 3387 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 3388 } 3389 3390 if (RT->getDecl()->hasFlexibleArrayMember()) 3391 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 3392 3393 } 3394 3395 // vectorcall adds the concept of a homogenous vector aggregate, similar to 3396 // other targets. 3397 const Type *Base = nullptr; 3398 uint64_t NumElts = 0; 3399 if (FreeSSERegs && isHomogeneousAggregate(Ty, Base, NumElts)) { 3400 if (FreeSSERegs >= NumElts) { 3401 FreeSSERegs -= NumElts; 3402 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 3403 return ABIArgInfo::getDirect(); 3404 return ABIArgInfo::getExpand(); 3405 } 3406 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3407 } 3408 3409 3410 if (Ty->isMemberPointerType()) { 3411 // If the member pointer is represented by an LLVM int or ptr, pass it 3412 // directly. 3413 llvm::Type *LLTy = CGT.ConvertType(Ty); 3414 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 3415 return ABIArgInfo::getDirect(); 3416 } 3417 3418 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { 3419 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 3420 // not 1, 2, 4, or 8 bytes, must be passed by reference." 3421 if (Width > 64 || !llvm::isPowerOf2_64(Width)) 3422 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 3423 3424 // Otherwise, coerce it to a small integer. 3425 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 3426 } 3427 3428 // Bool type is always extended to the ABI, other builtin types are not 3429 // extended. 3430 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 3431 if (BT && BT->getKind() == BuiltinType::Bool) 3432 return ABIArgInfo::getExtend(); 3433 3434 // Mingw64 GCC uses the old 80 bit extended precision floating point unit. It 3435 // passes them indirectly through memory. 3436 if (IsMingw64 && BT && BT->getKind() == BuiltinType::LongDouble) { 3437 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 3438 if (LDF == &llvm::APFloat::x87DoubleExtended) 3439 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3440 } 3441 3442 return ABIArgInfo::getDirect(); 3443 } 3444 3445 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3446 bool IsVectorCall = 3447 FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall; 3448 3449 // We can use up to 4 SSE return registers with vectorcall. 3450 unsigned FreeSSERegs = IsVectorCall ? 4 : 0; 3451 if (!getCXXABI().classifyReturnType(FI)) 3452 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true); 3453 3454 // We can use up to 6 SSE register parameters with vectorcall. 3455 FreeSSERegs = IsVectorCall ? 6 : 0; 3456 for (auto &I : FI.arguments()) 3457 I.info = classify(I.type, FreeSSERegs, false); 3458 } 3459 3460 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3461 QualType Ty) const { 3462 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 3463 CGF.getContext().getTypeInfoInChars(Ty), 3464 CharUnits::fromQuantity(8), 3465 /*allowHigherAlign*/ false); 3466 } 3467 3468 // PowerPC-32 3469 namespace { 3470 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. 3471 class PPC32_SVR4_ABIInfo : public DefaultABIInfo { 3472 bool IsSoftFloatABI; 3473 public: 3474 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI) 3475 : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI) {} 3476 3477 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3478 QualType Ty) const override; 3479 }; 3480 3481 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { 3482 public: 3483 PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI) 3484 : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT, SoftFloatABI)) {} 3485 3486 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 3487 // This is recovered from gcc output. 3488 return 1; // r1 is the dedicated stack pointer 3489 } 3490 3491 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3492 llvm::Value *Address) const override; 3493 }; 3494 3495 } 3496 3497 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList, 3498 QualType Ty) const { 3499 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 3500 // TODO: Implement this. For now ignore. 3501 (void)CTy; 3502 return Address::invalid(); 3503 } 3504 3505 // struct __va_list_tag { 3506 // unsigned char gpr; 3507 // unsigned char fpr; 3508 // unsigned short reserved; 3509 // void *overflow_arg_area; 3510 // void *reg_save_area; 3511 // }; 3512 3513 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; 3514 bool isInt = 3515 Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType(); 3516 bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64; 3517 3518 // All aggregates are passed indirectly? That doesn't seem consistent 3519 // with the argument-lowering code. 3520 bool isIndirect = Ty->isAggregateType(); 3521 3522 CGBuilderTy &Builder = CGF.Builder; 3523 3524 // The calling convention either uses 1-2 GPRs or 1 FPR. 3525 Address NumRegsAddr = Address::invalid(); 3526 if (isInt || IsSoftFloatABI) { 3527 NumRegsAddr = Builder.CreateStructGEP(VAList, 0, CharUnits::Zero(), "gpr"); 3528 } else { 3529 NumRegsAddr = Builder.CreateStructGEP(VAList, 1, CharUnits::One(), "fpr"); 3530 } 3531 3532 llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs"); 3533 3534 // "Align" the register count when TY is i64. 3535 if (isI64 || (isF64 && IsSoftFloatABI)) { 3536 NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1)); 3537 NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U)); 3538 } 3539 3540 llvm::Value *CC = 3541 Builder.CreateICmpULT(NumRegs, Builder.getInt8(8), "cond"); 3542 3543 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); 3544 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); 3545 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 3546 3547 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); 3548 3549 llvm::Type *DirectTy = CGF.ConvertType(Ty); 3550 if (isIndirect) DirectTy = DirectTy->getPointerTo(0); 3551 3552 // Case 1: consume registers. 3553 Address RegAddr = Address::invalid(); 3554 { 3555 CGF.EmitBlock(UsingRegs); 3556 3557 Address RegSaveAreaPtr = 3558 Builder.CreateStructGEP(VAList, 4, CharUnits::fromQuantity(8)); 3559 RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr), 3560 CharUnits::fromQuantity(8)); 3561 assert(RegAddr.getElementType() == CGF.Int8Ty); 3562 3563 // Floating-point registers start after the general-purpose registers. 3564 if (!(isInt || IsSoftFloatABI)) { 3565 RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr, 3566 CharUnits::fromQuantity(32)); 3567 } 3568 3569 // Get the address of the saved value by scaling the number of 3570 // registers we've used by the number of 3571 CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8); 3572 llvm::Value *RegOffset = 3573 Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity())); 3574 RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty, 3575 RegAddr.getPointer(), RegOffset), 3576 RegAddr.getAlignment().alignmentOfArrayElement(RegSize)); 3577 RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy); 3578 3579 // Increase the used-register count. 3580 NumRegs = 3581 Builder.CreateAdd(NumRegs, 3582 Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1)); 3583 Builder.CreateStore(NumRegs, NumRegsAddr); 3584 3585 CGF.EmitBranch(Cont); 3586 } 3587 3588 // Case 2: consume space in the overflow area. 3589 Address MemAddr = Address::invalid(); 3590 { 3591 CGF.EmitBlock(UsingOverflow); 3592 3593 // Everything in the overflow area is rounded up to a size of at least 4. 3594 CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4); 3595 3596 CharUnits Size; 3597 if (!isIndirect) { 3598 auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty); 3599 Size = TypeInfo.first.alignTo(OverflowAreaAlign); 3600 } else { 3601 Size = CGF.getPointerSize(); 3602 } 3603 3604 Address OverflowAreaAddr = 3605 Builder.CreateStructGEP(VAList, 3, CharUnits::fromQuantity(4)); 3606 Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), 3607 OverflowAreaAlign); 3608 // Round up address of argument to alignment 3609 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 3610 if (Align > OverflowAreaAlign) { 3611 llvm::Value *Ptr = OverflowArea.getPointer(); 3612 OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align), 3613 Align); 3614 } 3615 3616 MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy); 3617 3618 // Increase the overflow area. 3619 OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size); 3620 Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr); 3621 CGF.EmitBranch(Cont); 3622 } 3623 3624 CGF.EmitBlock(Cont); 3625 3626 // Merge the cases with a phi. 3627 Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow, 3628 "vaarg.addr"); 3629 3630 // Load the pointer if the argument was passed indirectly. 3631 if (isIndirect) { 3632 Result = Address(Builder.CreateLoad(Result, "aggr"), 3633 getContext().getTypeAlignInChars(Ty)); 3634 } 3635 3636 return Result; 3637 } 3638 3639 bool 3640 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3641 llvm::Value *Address) const { 3642 // This is calculated from the LLVM and GCC tables and verified 3643 // against gcc output. AFAIK all ABIs use the same encoding. 3644 3645 CodeGen::CGBuilderTy &Builder = CGF.Builder; 3646 3647 llvm::IntegerType *i8 = CGF.Int8Ty; 3648 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 3649 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 3650 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 3651 3652 // 0-31: r0-31, the 4-byte general-purpose registers 3653 AssignToArrayRange(Builder, Address, Four8, 0, 31); 3654 3655 // 32-63: fp0-31, the 8-byte floating-point registers 3656 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 3657 3658 // 64-76 are various 4-byte special-purpose registers: 3659 // 64: mq 3660 // 65: lr 3661 // 66: ctr 3662 // 67: ap 3663 // 68-75 cr0-7 3664 // 76: xer 3665 AssignToArrayRange(Builder, Address, Four8, 64, 76); 3666 3667 // 77-108: v0-31, the 16-byte vector registers 3668 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 3669 3670 // 109: vrsave 3671 // 110: vscr 3672 // 111: spe_acc 3673 // 112: spefscr 3674 // 113: sfp 3675 AssignToArrayRange(Builder, Address, Four8, 109, 113); 3676 3677 return false; 3678 } 3679 3680 // PowerPC-64 3681 3682 namespace { 3683 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 3684 class PPC64_SVR4_ABIInfo : public DefaultABIInfo { 3685 public: 3686 enum ABIKind { 3687 ELFv1 = 0, 3688 ELFv2 3689 }; 3690 3691 private: 3692 static const unsigned GPRBits = 64; 3693 ABIKind Kind; 3694 bool HasQPX; 3695 3696 // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and 3697 // will be passed in a QPX register. 3698 bool IsQPXVectorTy(const Type *Ty) const { 3699 if (!HasQPX) 3700 return false; 3701 3702 if (const VectorType *VT = Ty->getAs<VectorType>()) { 3703 unsigned NumElements = VT->getNumElements(); 3704 if (NumElements == 1) 3705 return false; 3706 3707 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) { 3708 if (getContext().getTypeSize(Ty) <= 256) 3709 return true; 3710 } else if (VT->getElementType()-> 3711 isSpecificBuiltinType(BuiltinType::Float)) { 3712 if (getContext().getTypeSize(Ty) <= 128) 3713 return true; 3714 } 3715 } 3716 3717 return false; 3718 } 3719 3720 bool IsQPXVectorTy(QualType Ty) const { 3721 return IsQPXVectorTy(Ty.getTypePtr()); 3722 } 3723 3724 public: 3725 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX) 3726 : DefaultABIInfo(CGT), Kind(Kind), HasQPX(HasQPX) {} 3727 3728 bool isPromotableTypeForABI(QualType Ty) const; 3729 CharUnits getParamTypeAlignment(QualType Ty) const; 3730 3731 ABIArgInfo classifyReturnType(QualType RetTy) const; 3732 ABIArgInfo classifyArgumentType(QualType Ty) const; 3733 3734 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 3735 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 3736 uint64_t Members) const override; 3737 3738 // TODO: We can add more logic to computeInfo to improve performance. 3739 // Example: For aggregate arguments that fit in a register, we could 3740 // use getDirectInReg (as is done below for structs containing a single 3741 // floating-point value) to avoid pushing them to memory on function 3742 // entry. This would require changing the logic in PPCISelLowering 3743 // when lowering the parameters in the caller and args in the callee. 3744 void computeInfo(CGFunctionInfo &FI) const override { 3745 if (!getCXXABI().classifyReturnType(FI)) 3746 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3747 for (auto &I : FI.arguments()) { 3748 // We rely on the default argument classification for the most part. 3749 // One exception: An aggregate containing a single floating-point 3750 // or vector item must be passed in a register if one is available. 3751 const Type *T = isSingleElementStruct(I.type, getContext()); 3752 if (T) { 3753 const BuiltinType *BT = T->getAs<BuiltinType>(); 3754 if (IsQPXVectorTy(T) || 3755 (T->isVectorType() && getContext().getTypeSize(T) == 128) || 3756 (BT && BT->isFloatingPoint())) { 3757 QualType QT(T, 0); 3758 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 3759 continue; 3760 } 3761 } 3762 I.info = classifyArgumentType(I.type); 3763 } 3764 } 3765 3766 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3767 QualType Ty) const override; 3768 }; 3769 3770 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 3771 3772 public: 3773 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 3774 PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX) 3775 : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX)) {} 3776 3777 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 3778 // This is recovered from gcc output. 3779 return 1; // r1 is the dedicated stack pointer 3780 } 3781 3782 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3783 llvm::Value *Address) const override; 3784 }; 3785 3786 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 3787 public: 3788 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 3789 3790 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 3791 // This is recovered from gcc output. 3792 return 1; // r1 is the dedicated stack pointer 3793 } 3794 3795 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3796 llvm::Value *Address) const override; 3797 }; 3798 3799 } 3800 3801 // Return true if the ABI requires Ty to be passed sign- or zero- 3802 // extended to 64 bits. 3803 bool 3804 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 3805 // Treat an enum type as its underlying type. 3806 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3807 Ty = EnumTy->getDecl()->getIntegerType(); 3808 3809 // Promotable integer types are required to be promoted by the ABI. 3810 if (Ty->isPromotableIntegerType()) 3811 return true; 3812 3813 // In addition to the usual promotable integer types, we also need to 3814 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 3815 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 3816 switch (BT->getKind()) { 3817 case BuiltinType::Int: 3818 case BuiltinType::UInt: 3819 return true; 3820 default: 3821 break; 3822 } 3823 3824 return false; 3825 } 3826 3827 /// isAlignedParamType - Determine whether a type requires 16-byte or 3828 /// higher alignment in the parameter area. Always returns at least 8. 3829 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 3830 // Complex types are passed just like their elements. 3831 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 3832 Ty = CTy->getElementType(); 3833 3834 // Only vector types of size 16 bytes need alignment (larger types are 3835 // passed via reference, smaller types are not aligned). 3836 if (IsQPXVectorTy(Ty)) { 3837 if (getContext().getTypeSize(Ty) > 128) 3838 return CharUnits::fromQuantity(32); 3839 3840 return CharUnits::fromQuantity(16); 3841 } else if (Ty->isVectorType()) { 3842 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8); 3843 } 3844 3845 // For single-element float/vector structs, we consider the whole type 3846 // to have the same alignment requirements as its single element. 3847 const Type *AlignAsType = nullptr; 3848 const Type *EltType = isSingleElementStruct(Ty, getContext()); 3849 if (EltType) { 3850 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 3851 if (IsQPXVectorTy(EltType) || (EltType->isVectorType() && 3852 getContext().getTypeSize(EltType) == 128) || 3853 (BT && BT->isFloatingPoint())) 3854 AlignAsType = EltType; 3855 } 3856 3857 // Likewise for ELFv2 homogeneous aggregates. 3858 const Type *Base = nullptr; 3859 uint64_t Members = 0; 3860 if (!AlignAsType && Kind == ELFv2 && 3861 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 3862 AlignAsType = Base; 3863 3864 // With special case aggregates, only vector base types need alignment. 3865 if (AlignAsType && IsQPXVectorTy(AlignAsType)) { 3866 if (getContext().getTypeSize(AlignAsType) > 128) 3867 return CharUnits::fromQuantity(32); 3868 3869 return CharUnits::fromQuantity(16); 3870 } else if (AlignAsType) { 3871 return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8); 3872 } 3873 3874 // Otherwise, we only need alignment for any aggregate type that 3875 // has an alignment requirement of >= 16 bytes. 3876 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { 3877 if (HasQPX && getContext().getTypeAlign(Ty) >= 256) 3878 return CharUnits::fromQuantity(32); 3879 return CharUnits::fromQuantity(16); 3880 } 3881 3882 return CharUnits::fromQuantity(8); 3883 } 3884 3885 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 3886 /// aggregate. Base is set to the base element type, and Members is set 3887 /// to the number of base elements. 3888 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 3889 uint64_t &Members) const { 3890 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 3891 uint64_t NElements = AT->getSize().getZExtValue(); 3892 if (NElements == 0) 3893 return false; 3894 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 3895 return false; 3896 Members *= NElements; 3897 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 3898 const RecordDecl *RD = RT->getDecl(); 3899 if (RD->hasFlexibleArrayMember()) 3900 return false; 3901 3902 Members = 0; 3903 3904 // If this is a C++ record, check the bases first. 3905 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3906 for (const auto &I : CXXRD->bases()) { 3907 // Ignore empty records. 3908 if (isEmptyRecord(getContext(), I.getType(), true)) 3909 continue; 3910 3911 uint64_t FldMembers; 3912 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) 3913 return false; 3914 3915 Members += FldMembers; 3916 } 3917 } 3918 3919 for (const auto *FD : RD->fields()) { 3920 // Ignore (non-zero arrays of) empty records. 3921 QualType FT = FD->getType(); 3922 while (const ConstantArrayType *AT = 3923 getContext().getAsConstantArrayType(FT)) { 3924 if (AT->getSize().getZExtValue() == 0) 3925 return false; 3926 FT = AT->getElementType(); 3927 } 3928 if (isEmptyRecord(getContext(), FT, true)) 3929 continue; 3930 3931 // For compatibility with GCC, ignore empty bitfields in C++ mode. 3932 if (getContext().getLangOpts().CPlusPlus && 3933 FD->isBitField() && FD->getBitWidthValue(getContext()) == 0) 3934 continue; 3935 3936 uint64_t FldMembers; 3937 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 3938 return false; 3939 3940 Members = (RD->isUnion() ? 3941 std::max(Members, FldMembers) : Members + FldMembers); 3942 } 3943 3944 if (!Base) 3945 return false; 3946 3947 // Ensure there is no padding. 3948 if (getContext().getTypeSize(Base) * Members != 3949 getContext().getTypeSize(Ty)) 3950 return false; 3951 } else { 3952 Members = 1; 3953 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 3954 Members = 2; 3955 Ty = CT->getElementType(); 3956 } 3957 3958 // Most ABIs only support float, double, and some vector type widths. 3959 if (!isHomogeneousAggregateBaseType(Ty)) 3960 return false; 3961 3962 // The base type must be the same for all members. Types that 3963 // agree in both total size and mode (float vs. vector) are 3964 // treated as being equivalent here. 3965 const Type *TyPtr = Ty.getTypePtr(); 3966 if (!Base) 3967 Base = TyPtr; 3968 3969 if (Base->isVectorType() != TyPtr->isVectorType() || 3970 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 3971 return false; 3972 } 3973 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); 3974 } 3975 3976 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 3977 // Homogeneous aggregates for ELFv2 must have base types of float, 3978 // double, long double, or 128-bit vectors. 3979 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 3980 if (BT->getKind() == BuiltinType::Float || 3981 BT->getKind() == BuiltinType::Double || 3982 BT->getKind() == BuiltinType::LongDouble) 3983 return true; 3984 } 3985 if (const VectorType *VT = Ty->getAs<VectorType>()) { 3986 if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty)) 3987 return true; 3988 } 3989 return false; 3990 } 3991 3992 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( 3993 const Type *Base, uint64_t Members) const { 3994 // Vector types require one register, floating point types require one 3995 // or two registers depending on their size. 3996 uint32_t NumRegs = 3997 Base->isVectorType() ? 1 : (getContext().getTypeSize(Base) + 63) / 64; 3998 3999 // Homogeneous Aggregates may occupy at most 8 registers. 4000 return Members * NumRegs <= 8; 4001 } 4002 4003 ABIArgInfo 4004 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 4005 Ty = useFirstFieldIfTransparentUnion(Ty); 4006 4007 if (Ty->isAnyComplexType()) 4008 return ABIArgInfo::getDirect(); 4009 4010 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 4011 // or via reference (larger than 16 bytes). 4012 if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) { 4013 uint64_t Size = getContext().getTypeSize(Ty); 4014 if (Size > 128) 4015 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4016 else if (Size < 128) { 4017 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 4018 return ABIArgInfo::getDirect(CoerceTy); 4019 } 4020 } 4021 4022 if (isAggregateTypeForABI(Ty)) { 4023 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 4024 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4025 4026 uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity(); 4027 uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 4028 4029 // ELFv2 homogeneous aggregates are passed as array types. 4030 const Type *Base = nullptr; 4031 uint64_t Members = 0; 4032 if (Kind == ELFv2 && 4033 isHomogeneousAggregate(Ty, Base, Members)) { 4034 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 4035 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 4036 return ABIArgInfo::getDirect(CoerceTy); 4037 } 4038 4039 // If an aggregate may end up fully in registers, we do not 4040 // use the ByVal method, but pass the aggregate as array. 4041 // This is usually beneficial since we avoid forcing the 4042 // back-end to store the argument to memory. 4043 uint64_t Bits = getContext().getTypeSize(Ty); 4044 if (Bits > 0 && Bits <= 8 * GPRBits) { 4045 llvm::Type *CoerceTy; 4046 4047 // Types up to 8 bytes are passed as integer type (which will be 4048 // properly aligned in the argument save area doubleword). 4049 if (Bits <= GPRBits) 4050 CoerceTy = 4051 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 4052 // Larger types are passed as arrays, with the base type selected 4053 // according to the required alignment in the save area. 4054 else { 4055 uint64_t RegBits = ABIAlign * 8; 4056 uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits; 4057 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 4058 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 4059 } 4060 4061 return ABIArgInfo::getDirect(CoerceTy); 4062 } 4063 4064 // All other aggregates are passed ByVal. 4065 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 4066 /*ByVal=*/true, 4067 /*Realign=*/TyAlign > ABIAlign); 4068 } 4069 4070 return (isPromotableTypeForABI(Ty) ? 4071 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 4072 } 4073 4074 ABIArgInfo 4075 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 4076 if (RetTy->isVoidType()) 4077 return ABIArgInfo::getIgnore(); 4078 4079 if (RetTy->isAnyComplexType()) 4080 return ABIArgInfo::getDirect(); 4081 4082 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 4083 // or via reference (larger than 16 bytes). 4084 if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) { 4085 uint64_t Size = getContext().getTypeSize(RetTy); 4086 if (Size > 128) 4087 return getNaturalAlignIndirect(RetTy); 4088 else if (Size < 128) { 4089 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 4090 return ABIArgInfo::getDirect(CoerceTy); 4091 } 4092 } 4093 4094 if (isAggregateTypeForABI(RetTy)) { 4095 // ELFv2 homogeneous aggregates are returned as array types. 4096 const Type *Base = nullptr; 4097 uint64_t Members = 0; 4098 if (Kind == ELFv2 && 4099 isHomogeneousAggregate(RetTy, Base, Members)) { 4100 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 4101 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 4102 return ABIArgInfo::getDirect(CoerceTy); 4103 } 4104 4105 // ELFv2 small aggregates are returned in up to two registers. 4106 uint64_t Bits = getContext().getTypeSize(RetTy); 4107 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 4108 if (Bits == 0) 4109 return ABIArgInfo::getIgnore(); 4110 4111 llvm::Type *CoerceTy; 4112 if (Bits > GPRBits) { 4113 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 4114 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy, nullptr); 4115 } else 4116 CoerceTy = 4117 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 4118 return ABIArgInfo::getDirect(CoerceTy); 4119 } 4120 4121 // All other aggregates are returned indirectly. 4122 return getNaturalAlignIndirect(RetTy); 4123 } 4124 4125 return (isPromotableTypeForABI(RetTy) ? 4126 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 4127 } 4128 4129 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 4130 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4131 QualType Ty) const { 4132 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 4133 TypeInfo.second = getParamTypeAlignment(Ty); 4134 4135 CharUnits SlotSize = CharUnits::fromQuantity(8); 4136 4137 // If we have a complex type and the base type is smaller than 8 bytes, 4138 // the ABI calls for the real and imaginary parts to be right-adjusted 4139 // in separate doublewords. However, Clang expects us to produce a 4140 // pointer to a structure with the two parts packed tightly. So generate 4141 // loads of the real and imaginary parts relative to the va_list pointer, 4142 // and store them to a temporary structure. 4143 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4144 CharUnits EltSize = TypeInfo.first / 2; 4145 if (EltSize < SlotSize) { 4146 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, 4147 SlotSize * 2, SlotSize, 4148 SlotSize, /*AllowHigher*/ true); 4149 4150 Address RealAddr = Addr; 4151 Address ImagAddr = RealAddr; 4152 if (CGF.CGM.getDataLayout().isBigEndian()) { 4153 RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, 4154 SlotSize - EltSize); 4155 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr, 4156 2 * SlotSize - EltSize); 4157 } else { 4158 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize); 4159 } 4160 4161 llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType()); 4162 RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy); 4163 ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy); 4164 llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal"); 4165 llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag"); 4166 4167 Address Temp = CGF.CreateMemTemp(Ty, "vacplx"); 4168 CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty), 4169 /*init*/ true); 4170 return Temp; 4171 } 4172 } 4173 4174 // Otherwise, just use the general rule. 4175 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 4176 TypeInfo, SlotSize, /*AllowHigher*/ true); 4177 } 4178 4179 static bool 4180 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4181 llvm::Value *Address) { 4182 // This is calculated from the LLVM and GCC tables and verified 4183 // against gcc output. AFAIK all ABIs use the same encoding. 4184 4185 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4186 4187 llvm::IntegerType *i8 = CGF.Int8Ty; 4188 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4189 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4190 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4191 4192 // 0-31: r0-31, the 8-byte general-purpose registers 4193 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 4194 4195 // 32-63: fp0-31, the 8-byte floating-point registers 4196 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4197 4198 // 64-76 are various 4-byte special-purpose registers: 4199 // 64: mq 4200 // 65: lr 4201 // 66: ctr 4202 // 67: ap 4203 // 68-75 cr0-7 4204 // 76: xer 4205 AssignToArrayRange(Builder, Address, Four8, 64, 76); 4206 4207 // 77-108: v0-31, the 16-byte vector registers 4208 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4209 4210 // 109: vrsave 4211 // 110: vscr 4212 // 111: spe_acc 4213 // 112: spefscr 4214 // 113: sfp 4215 AssignToArrayRange(Builder, Address, Four8, 109, 113); 4216 4217 return false; 4218 } 4219 4220 bool 4221 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 4222 CodeGen::CodeGenFunction &CGF, 4223 llvm::Value *Address) const { 4224 4225 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 4226 } 4227 4228 bool 4229 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4230 llvm::Value *Address) const { 4231 4232 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 4233 } 4234 4235 //===----------------------------------------------------------------------===// 4236 // AArch64 ABI Implementation 4237 //===----------------------------------------------------------------------===// 4238 4239 namespace { 4240 4241 class AArch64ABIInfo : public ABIInfo { 4242 public: 4243 enum ABIKind { 4244 AAPCS = 0, 4245 DarwinPCS 4246 }; 4247 4248 private: 4249 ABIKind Kind; 4250 4251 public: 4252 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) : ABIInfo(CGT), Kind(Kind) {} 4253 4254 private: 4255 ABIKind getABIKind() const { return Kind; } 4256 bool isDarwinPCS() const { return Kind == DarwinPCS; } 4257 4258 ABIArgInfo classifyReturnType(QualType RetTy) const; 4259 ABIArgInfo classifyArgumentType(QualType RetTy) const; 4260 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4261 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4262 uint64_t Members) const override; 4263 4264 bool isIllegalVectorType(QualType Ty) const; 4265 4266 void computeInfo(CGFunctionInfo &FI) const override { 4267 if (!getCXXABI().classifyReturnType(FI)) 4268 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4269 4270 for (auto &it : FI.arguments()) 4271 it.info = classifyArgumentType(it.type); 4272 } 4273 4274 Address EmitDarwinVAArg(Address VAListAddr, QualType Ty, 4275 CodeGenFunction &CGF) const; 4276 4277 Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 4278 CodeGenFunction &CGF) const; 4279 4280 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4281 QualType Ty) const override { 4282 return isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 4283 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 4284 } 4285 }; 4286 4287 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 4288 public: 4289 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 4290 : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {} 4291 4292 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 4293 return "mov\tfp, fp\t\t; marker for objc_retainAutoreleaseReturnValue"; 4294 } 4295 4296 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4297 return 31; 4298 } 4299 4300 bool doesReturnSlotInterfereWithArgs() const override { return false; } 4301 }; 4302 } 4303 4304 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const { 4305 Ty = useFirstFieldIfTransparentUnion(Ty); 4306 4307 // Handle illegal vector types here. 4308 if (isIllegalVectorType(Ty)) { 4309 uint64_t Size = getContext().getTypeSize(Ty); 4310 if (Size <= 32) { 4311 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 4312 return ABIArgInfo::getDirect(ResType); 4313 } 4314 if (Size == 64) { 4315 llvm::Type *ResType = 4316 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 4317 return ABIArgInfo::getDirect(ResType); 4318 } 4319 if (Size == 128) { 4320 llvm::Type *ResType = 4321 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 4322 return ABIArgInfo::getDirect(ResType); 4323 } 4324 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4325 } 4326 4327 if (!isAggregateTypeForABI(Ty)) { 4328 // Treat an enum type as its underlying type. 4329 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4330 Ty = EnumTy->getDecl()->getIntegerType(); 4331 4332 return (Ty->isPromotableIntegerType() && isDarwinPCS() 4333 ? ABIArgInfo::getExtend() 4334 : ABIArgInfo::getDirect()); 4335 } 4336 4337 // Structures with either a non-trivial destructor or a non-trivial 4338 // copy constructor are always indirect. 4339 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 4340 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 4341 CGCXXABI::RAA_DirectInMemory); 4342 } 4343 4344 // Empty records are always ignored on Darwin, but actually passed in C++ mode 4345 // elsewhere for GNU compatibility. 4346 if (isEmptyRecord(getContext(), Ty, true)) { 4347 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 4348 return ABIArgInfo::getIgnore(); 4349 4350 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 4351 } 4352 4353 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 4354 const Type *Base = nullptr; 4355 uint64_t Members = 0; 4356 if (isHomogeneousAggregate(Ty, Base, Members)) { 4357 return ABIArgInfo::getDirect( 4358 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); 4359 } 4360 4361 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 4362 uint64_t Size = getContext().getTypeSize(Ty); 4363 if (Size <= 128) { 4364 unsigned Alignment = getContext().getTypeAlign(Ty); 4365 Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes 4366 4367 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 4368 // For aggregates with 16-byte alignment, we use i128. 4369 if (Alignment < 128 && Size == 128) { 4370 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 4371 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 4372 } 4373 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 4374 } 4375 4376 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4377 } 4378 4379 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const { 4380 if (RetTy->isVoidType()) 4381 return ABIArgInfo::getIgnore(); 4382 4383 // Large vector types should be returned via memory. 4384 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 4385 return getNaturalAlignIndirect(RetTy); 4386 4387 if (!isAggregateTypeForABI(RetTy)) { 4388 // Treat an enum type as its underlying type. 4389 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 4390 RetTy = EnumTy->getDecl()->getIntegerType(); 4391 4392 return (RetTy->isPromotableIntegerType() && isDarwinPCS() 4393 ? ABIArgInfo::getExtend() 4394 : ABIArgInfo::getDirect()); 4395 } 4396 4397 if (isEmptyRecord(getContext(), RetTy, true)) 4398 return ABIArgInfo::getIgnore(); 4399 4400 const Type *Base = nullptr; 4401 uint64_t Members = 0; 4402 if (isHomogeneousAggregate(RetTy, Base, Members)) 4403 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 4404 return ABIArgInfo::getDirect(); 4405 4406 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 4407 uint64_t Size = getContext().getTypeSize(RetTy); 4408 if (Size <= 128) { 4409 unsigned Alignment = getContext().getTypeAlign(RetTy); 4410 Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes 4411 4412 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 4413 // For aggregates with 16-byte alignment, we use i128. 4414 if (Alignment < 128 && Size == 128) { 4415 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 4416 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 4417 } 4418 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 4419 } 4420 4421 return getNaturalAlignIndirect(RetTy); 4422 } 4423 4424 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 4425 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 4426 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4427 // Check whether VT is legal. 4428 unsigned NumElements = VT->getNumElements(); 4429 uint64_t Size = getContext().getTypeSize(VT); 4430 // NumElements should be power of 2 between 1 and 16. 4431 if ((NumElements & (NumElements - 1)) != 0 || NumElements > 16) 4432 return true; 4433 return Size != 64 && (Size != 128 || NumElements == 1); 4434 } 4435 return false; 4436 } 4437 4438 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 4439 // Homogeneous aggregates for AAPCS64 must have base types of a floating 4440 // point type or a short-vector type. This is the same as the 32-bit ABI, 4441 // but with the difference that any floating-point type is allowed, 4442 // including __fp16. 4443 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4444 if (BT->isFloatingPoint()) 4445 return true; 4446 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 4447 unsigned VecSize = getContext().getTypeSize(VT); 4448 if (VecSize == 64 || VecSize == 128) 4449 return true; 4450 } 4451 return false; 4452 } 4453 4454 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 4455 uint64_t Members) const { 4456 return Members <= 4; 4457 } 4458 4459 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, 4460 QualType Ty, 4461 CodeGenFunction &CGF) const { 4462 ABIArgInfo AI = classifyArgumentType(Ty); 4463 bool IsIndirect = AI.isIndirect(); 4464 4465 llvm::Type *BaseTy = CGF.ConvertType(Ty); 4466 if (IsIndirect) 4467 BaseTy = llvm::PointerType::getUnqual(BaseTy); 4468 else if (AI.getCoerceToType()) 4469 BaseTy = AI.getCoerceToType(); 4470 4471 unsigned NumRegs = 1; 4472 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { 4473 BaseTy = ArrTy->getElementType(); 4474 NumRegs = ArrTy->getNumElements(); 4475 } 4476 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); 4477 4478 // The AArch64 va_list type and handling is specified in the Procedure Call 4479 // Standard, section B.4: 4480 // 4481 // struct { 4482 // void *__stack; 4483 // void *__gr_top; 4484 // void *__vr_top; 4485 // int __gr_offs; 4486 // int __vr_offs; 4487 // }; 4488 4489 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 4490 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 4491 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 4492 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 4493 4494 auto TyInfo = getContext().getTypeInfoInChars(Ty); 4495 CharUnits TyAlign = TyInfo.second; 4496 4497 Address reg_offs_p = Address::invalid(); 4498 llvm::Value *reg_offs = nullptr; 4499 int reg_top_index; 4500 CharUnits reg_top_offset; 4501 int RegSize = IsIndirect ? 8 : TyInfo.first.getQuantity(); 4502 if (!IsFPR) { 4503 // 3 is the field number of __gr_offs 4504 reg_offs_p = 4505 CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24), 4506 "gr_offs_p"); 4507 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 4508 reg_top_index = 1; // field number for __gr_top 4509 reg_top_offset = CharUnits::fromQuantity(8); 4510 RegSize = llvm::alignTo(RegSize, 8); 4511 } else { 4512 // 4 is the field number of __vr_offs. 4513 reg_offs_p = 4514 CGF.Builder.CreateStructGEP(VAListAddr, 4, CharUnits::fromQuantity(28), 4515 "vr_offs_p"); 4516 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 4517 reg_top_index = 2; // field number for __vr_top 4518 reg_top_offset = CharUnits::fromQuantity(16); 4519 RegSize = 16 * NumRegs; 4520 } 4521 4522 //======================================= 4523 // Find out where argument was passed 4524 //======================================= 4525 4526 // If reg_offs >= 0 we're already using the stack for this type of 4527 // argument. We don't want to keep updating reg_offs (in case it overflows, 4528 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 4529 // whatever they get). 4530 llvm::Value *UsingStack = nullptr; 4531 UsingStack = CGF.Builder.CreateICmpSGE( 4532 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 4533 4534 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 4535 4536 // Otherwise, at least some kind of argument could go in these registers, the 4537 // question is whether this particular type is too big. 4538 CGF.EmitBlock(MaybeRegBlock); 4539 4540 // Integer arguments may need to correct register alignment (for example a 4541 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 4542 // align __gr_offs to calculate the potential address. 4543 if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) { 4544 int Align = TyAlign.getQuantity(); 4545 4546 reg_offs = CGF.Builder.CreateAdd( 4547 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 4548 "align_regoffs"); 4549 reg_offs = CGF.Builder.CreateAnd( 4550 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 4551 "aligned_regoffs"); 4552 } 4553 4554 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 4555 // The fact that this is done unconditionally reflects the fact that 4556 // allocating an argument to the stack also uses up all the remaining 4557 // registers of the appropriate kind. 4558 llvm::Value *NewOffset = nullptr; 4559 NewOffset = CGF.Builder.CreateAdd( 4560 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 4561 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 4562 4563 // Now we're in a position to decide whether this argument really was in 4564 // registers or not. 4565 llvm::Value *InRegs = nullptr; 4566 InRegs = CGF.Builder.CreateICmpSLE( 4567 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 4568 4569 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 4570 4571 //======================================= 4572 // Argument was in registers 4573 //======================================= 4574 4575 // Now we emit the code for if the argument was originally passed in 4576 // registers. First start the appropriate block: 4577 CGF.EmitBlock(InRegBlock); 4578 4579 llvm::Value *reg_top = nullptr; 4580 Address reg_top_p = CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, 4581 reg_top_offset, "reg_top_p"); 4582 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 4583 Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs), 4584 CharUnits::fromQuantity(IsFPR ? 16 : 8)); 4585 Address RegAddr = Address::invalid(); 4586 llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty); 4587 4588 if (IsIndirect) { 4589 // If it's been passed indirectly (actually a struct), whatever we find from 4590 // stored registers or on the stack will actually be a struct **. 4591 MemTy = llvm::PointerType::getUnqual(MemTy); 4592 } 4593 4594 const Type *Base = nullptr; 4595 uint64_t NumMembers = 0; 4596 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); 4597 if (IsHFA && NumMembers > 1) { 4598 // Homogeneous aggregates passed in registers will have their elements split 4599 // and stored 16-bytes apart regardless of size (they're notionally in qN, 4600 // qN+1, ...). We reload and store into a temporary local variable 4601 // contiguously. 4602 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 4603 auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0)); 4604 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 4605 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 4606 Address Tmp = CGF.CreateTempAlloca(HFATy, 4607 std::max(TyAlign, BaseTyInfo.second)); 4608 4609 // On big-endian platforms, the value will be right-aligned in its slot. 4610 int Offset = 0; 4611 if (CGF.CGM.getDataLayout().isBigEndian() && 4612 BaseTyInfo.first.getQuantity() < 16) 4613 Offset = 16 - BaseTyInfo.first.getQuantity(); 4614 4615 for (unsigned i = 0; i < NumMembers; ++i) { 4616 CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset); 4617 Address LoadAddr = 4618 CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset); 4619 LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy); 4620 4621 Address StoreAddr = 4622 CGF.Builder.CreateConstArrayGEP(Tmp, i, BaseTyInfo.first); 4623 4624 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 4625 CGF.Builder.CreateStore(Elem, StoreAddr); 4626 } 4627 4628 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy); 4629 } else { 4630 // Otherwise the object is contiguous in memory. 4631 4632 // It might be right-aligned in its slot. 4633 CharUnits SlotSize = BaseAddr.getAlignment(); 4634 if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect && 4635 (IsHFA || !isAggregateTypeForABI(Ty)) && 4636 TyInfo.first < SlotSize) { 4637 CharUnits Offset = SlotSize - TyInfo.first; 4638 BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset); 4639 } 4640 4641 RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy); 4642 } 4643 4644 CGF.EmitBranch(ContBlock); 4645 4646 //======================================= 4647 // Argument was on the stack 4648 //======================================= 4649 CGF.EmitBlock(OnStackBlock); 4650 4651 Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, 4652 CharUnits::Zero(), "stack_p"); 4653 llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack"); 4654 4655 // Again, stack arguments may need realignment. In this case both integer and 4656 // floating-point ones might be affected. 4657 if (!IsIndirect && TyAlign.getQuantity() > 8) { 4658 int Align = TyAlign.getQuantity(); 4659 4660 OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty); 4661 4662 OnStackPtr = CGF.Builder.CreateAdd( 4663 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 4664 "align_stack"); 4665 OnStackPtr = CGF.Builder.CreateAnd( 4666 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 4667 "align_stack"); 4668 4669 OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy); 4670 } 4671 Address OnStackAddr(OnStackPtr, 4672 std::max(CharUnits::fromQuantity(8), TyAlign)); 4673 4674 // All stack slots are multiples of 8 bytes. 4675 CharUnits StackSlotSize = CharUnits::fromQuantity(8); 4676 CharUnits StackSize; 4677 if (IsIndirect) 4678 StackSize = StackSlotSize; 4679 else 4680 StackSize = TyInfo.first.alignTo(StackSlotSize); 4681 4682 llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize); 4683 llvm::Value *NewStack = 4684 CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack"); 4685 4686 // Write the new value of __stack for the next call to va_arg 4687 CGF.Builder.CreateStore(NewStack, stack_p); 4688 4689 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 4690 TyInfo.first < StackSlotSize) { 4691 CharUnits Offset = StackSlotSize - TyInfo.first; 4692 OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset); 4693 } 4694 4695 OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy); 4696 4697 CGF.EmitBranch(ContBlock); 4698 4699 //======================================= 4700 // Tidy up 4701 //======================================= 4702 CGF.EmitBlock(ContBlock); 4703 4704 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 4705 OnStackAddr, OnStackBlock, "vaargs.addr"); 4706 4707 if (IsIndirect) 4708 return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), 4709 TyInfo.second); 4710 4711 return ResAddr; 4712 } 4713 4714 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty, 4715 CodeGenFunction &CGF) const { 4716 // The backend's lowering doesn't support va_arg for aggregates or 4717 // illegal vector types. Lower VAArg here for these cases and use 4718 // the LLVM va_arg instruction for everything else. 4719 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 4720 return Address::invalid(); 4721 4722 CharUnits SlotSize = CharUnits::fromQuantity(8); 4723 4724 // Empty records are ignored for parameter passing purposes. 4725 if (isEmptyRecord(getContext(), Ty, true)) { 4726 Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 4727 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 4728 return Addr; 4729 } 4730 4731 // The size of the actual thing passed, which might end up just 4732 // being a pointer for indirect types. 4733 auto TyInfo = getContext().getTypeInfoInChars(Ty); 4734 4735 // Arguments bigger than 16 bytes which aren't homogeneous 4736 // aggregates should be passed indirectly. 4737 bool IsIndirect = false; 4738 if (TyInfo.first.getQuantity() > 16) { 4739 const Type *Base = nullptr; 4740 uint64_t Members = 0; 4741 IsIndirect = !isHomogeneousAggregate(Ty, Base, Members); 4742 } 4743 4744 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 4745 TyInfo, SlotSize, /*AllowHigherAlign*/ true); 4746 } 4747 4748 //===----------------------------------------------------------------------===// 4749 // ARM ABI Implementation 4750 //===----------------------------------------------------------------------===// 4751 4752 namespace { 4753 4754 class ARMABIInfo : public ABIInfo { 4755 public: 4756 enum ABIKind { 4757 APCS = 0, 4758 AAPCS = 1, 4759 AAPCS_VFP = 2, 4760 AAPCS16_VFP = 3, 4761 }; 4762 4763 private: 4764 ABIKind Kind; 4765 4766 public: 4767 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) { 4768 setCCs(); 4769 } 4770 4771 bool isEABI() const { 4772 switch (getTarget().getTriple().getEnvironment()) { 4773 case llvm::Triple::Android: 4774 case llvm::Triple::EABI: 4775 case llvm::Triple::EABIHF: 4776 case llvm::Triple::GNUEABI: 4777 case llvm::Triple::GNUEABIHF: 4778 return true; 4779 default: 4780 return false; 4781 } 4782 } 4783 4784 bool isEABIHF() const { 4785 switch (getTarget().getTriple().getEnvironment()) { 4786 case llvm::Triple::EABIHF: 4787 case llvm::Triple::GNUEABIHF: 4788 return true; 4789 default: 4790 return false; 4791 } 4792 } 4793 4794 bool isAndroid() const { 4795 return (getTarget().getTriple().getEnvironment() == 4796 llvm::Triple::Android); 4797 } 4798 4799 ABIKind getABIKind() const { return Kind; } 4800 4801 private: 4802 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const; 4803 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic) const; 4804 bool isIllegalVectorType(QualType Ty) const; 4805 4806 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4807 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4808 uint64_t Members) const override; 4809 4810 void computeInfo(CGFunctionInfo &FI) const override; 4811 4812 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4813 QualType Ty) const override; 4814 4815 llvm::CallingConv::ID getLLVMDefaultCC() const; 4816 llvm::CallingConv::ID getABIDefaultCC() const; 4817 void setCCs(); 4818 }; 4819 4820 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 4821 public: 4822 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 4823 :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {} 4824 4825 const ARMABIInfo &getABIInfo() const { 4826 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 4827 } 4828 4829 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4830 return 13; 4831 } 4832 4833 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 4834 return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue"; 4835 } 4836 4837 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4838 llvm::Value *Address) const override { 4839 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 4840 4841 // 0-15 are the 16 integer registers. 4842 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 4843 return false; 4844 } 4845 4846 unsigned getSizeOfUnwindException() const override { 4847 if (getABIInfo().isEABI()) return 88; 4848 return TargetCodeGenInfo::getSizeOfUnwindException(); 4849 } 4850 4851 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 4852 CodeGen::CodeGenModule &CGM) const override { 4853 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 4854 if (!FD) 4855 return; 4856 4857 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 4858 if (!Attr) 4859 return; 4860 4861 const char *Kind; 4862 switch (Attr->getInterrupt()) { 4863 case ARMInterruptAttr::Generic: Kind = ""; break; 4864 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 4865 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 4866 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 4867 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 4868 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 4869 } 4870 4871 llvm::Function *Fn = cast<llvm::Function>(GV); 4872 4873 Fn->addFnAttr("interrupt", Kind); 4874 4875 ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind(); 4876 if (ABI == ARMABIInfo::APCS) 4877 return; 4878 4879 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 4880 // however this is not necessarily true on taking any interrupt. Instruct 4881 // the backend to perform a realignment as part of the function prologue. 4882 llvm::AttrBuilder B; 4883 B.addStackAlignmentAttr(8); 4884 Fn->addAttributes(llvm::AttributeSet::FunctionIndex, 4885 llvm::AttributeSet::get(CGM.getLLVMContext(), 4886 llvm::AttributeSet::FunctionIndex, 4887 B)); 4888 } 4889 }; 4890 4891 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { 4892 void addStackProbeSizeTargetAttribute(const Decl *D, llvm::GlobalValue *GV, 4893 CodeGen::CodeGenModule &CGM) const; 4894 4895 public: 4896 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 4897 : ARMTargetCodeGenInfo(CGT, K) {} 4898 4899 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 4900 CodeGen::CodeGenModule &CGM) const override; 4901 }; 4902 4903 void WindowsARMTargetCodeGenInfo::addStackProbeSizeTargetAttribute( 4904 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 4905 if (!isa<FunctionDecl>(D)) 4906 return; 4907 if (CGM.getCodeGenOpts().StackProbeSize == 4096) 4908 return; 4909 4910 llvm::Function *F = cast<llvm::Function>(GV); 4911 F->addFnAttr("stack-probe-size", 4912 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 4913 } 4914 4915 void WindowsARMTargetCodeGenInfo::setTargetAttributes( 4916 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 4917 ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 4918 addStackProbeSizeTargetAttribute(D, GV, CGM); 4919 } 4920 } 4921 4922 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 4923 if (!getCXXABI().classifyReturnType(FI)) 4924 FI.getReturnInfo() = 4925 classifyReturnType(FI.getReturnType(), FI.isVariadic()); 4926 4927 for (auto &I : FI.arguments()) 4928 I.info = classifyArgumentType(I.type, FI.isVariadic()); 4929 4930 // Always honor user-specified calling convention. 4931 if (FI.getCallingConvention() != llvm::CallingConv::C) 4932 return; 4933 4934 llvm::CallingConv::ID cc = getRuntimeCC(); 4935 if (cc != llvm::CallingConv::C) 4936 FI.setEffectiveCallingConvention(cc); 4937 } 4938 4939 /// Return the default calling convention that LLVM will use. 4940 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 4941 // The default calling convention that LLVM will infer. 4942 if (isEABIHF() || getTarget().getTriple().isWatchOS()) 4943 return llvm::CallingConv::ARM_AAPCS_VFP; 4944 else if (isEABI()) 4945 return llvm::CallingConv::ARM_AAPCS; 4946 else 4947 return llvm::CallingConv::ARM_APCS; 4948 } 4949 4950 /// Return the calling convention that our ABI would like us to use 4951 /// as the C calling convention. 4952 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 4953 switch (getABIKind()) { 4954 case APCS: return llvm::CallingConv::ARM_APCS; 4955 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 4956 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 4957 case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 4958 } 4959 llvm_unreachable("bad ABI kind"); 4960 } 4961 4962 void ARMABIInfo::setCCs() { 4963 assert(getRuntimeCC() == llvm::CallingConv::C); 4964 4965 // Don't muddy up the IR with a ton of explicit annotations if 4966 // they'd just match what LLVM will infer from the triple. 4967 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 4968 if (abiCC != getLLVMDefaultCC()) 4969 RuntimeCC = abiCC; 4970 4971 // AAPCS apparently requires runtime support functions to be soft-float, but 4972 // that's almost certainly for historic reasons (Thumb1 not supporting VFP 4973 // most likely). It's more convenient for AAPCS16_VFP to be hard-float. 4974 switch (getABIKind()) { 4975 case APCS: 4976 case AAPCS16_VFP: 4977 if (abiCC != getLLVMDefaultCC()) 4978 BuiltinCC = abiCC; 4979 break; 4980 case AAPCS: 4981 case AAPCS_VFP: 4982 BuiltinCC = llvm::CallingConv::ARM_AAPCS; 4983 break; 4984 } 4985 } 4986 4987 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, 4988 bool isVariadic) const { 4989 // 6.1.2.1 The following argument types are VFP CPRCs: 4990 // A single-precision floating-point type (including promoted 4991 // half-precision types); A double-precision floating-point type; 4992 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 4993 // with a Base Type of a single- or double-precision floating-point type, 4994 // 64-bit containerized vectors or 128-bit containerized vectors with one 4995 // to four Elements. 4996 bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic; 4997 4998 Ty = useFirstFieldIfTransparentUnion(Ty); 4999 5000 // Handle illegal vector types here. 5001 if (isIllegalVectorType(Ty)) { 5002 uint64_t Size = getContext().getTypeSize(Ty); 5003 if (Size <= 32) { 5004 llvm::Type *ResType = 5005 llvm::Type::getInt32Ty(getVMContext()); 5006 return ABIArgInfo::getDirect(ResType); 5007 } 5008 if (Size == 64) { 5009 llvm::Type *ResType = llvm::VectorType::get( 5010 llvm::Type::getInt32Ty(getVMContext()), 2); 5011 return ABIArgInfo::getDirect(ResType); 5012 } 5013 if (Size == 128) { 5014 llvm::Type *ResType = llvm::VectorType::get( 5015 llvm::Type::getInt32Ty(getVMContext()), 4); 5016 return ABIArgInfo::getDirect(ResType); 5017 } 5018 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5019 } 5020 5021 // __fp16 gets passed as if it were an int or float, but with the top 16 bits 5022 // unspecified. This is not done for OpenCL as it handles the half type 5023 // natively, and does not need to interwork with AAPCS code. 5024 if (Ty->isHalfType() && !getContext().getLangOpts().OpenCL) { 5025 llvm::Type *ResType = IsEffectivelyAAPCS_VFP ? 5026 llvm::Type::getFloatTy(getVMContext()) : 5027 llvm::Type::getInt32Ty(getVMContext()); 5028 return ABIArgInfo::getDirect(ResType); 5029 } 5030 5031 if (!isAggregateTypeForABI(Ty)) { 5032 // Treat an enum type as its underlying type. 5033 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 5034 Ty = EnumTy->getDecl()->getIntegerType(); 5035 } 5036 5037 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend() 5038 : ABIArgInfo::getDirect()); 5039 } 5040 5041 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5042 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 5043 } 5044 5045 // Ignore empty records. 5046 if (isEmptyRecord(getContext(), Ty, true)) 5047 return ABIArgInfo::getIgnore(); 5048 5049 if (IsEffectivelyAAPCS_VFP) { 5050 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 5051 // into VFP registers. 5052 const Type *Base = nullptr; 5053 uint64_t Members = 0; 5054 if (isHomogeneousAggregate(Ty, Base, Members)) { 5055 assert(Base && "Base class should be set for homogeneous aggregate"); 5056 // Base can be a floating-point or a vector. 5057 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 5058 } 5059 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 5060 // WatchOS does have homogeneous aggregates. Note that we intentionally use 5061 // this convention even for a variadic function: the backend will use GPRs 5062 // if needed. 5063 const Type *Base = nullptr; 5064 uint64_t Members = 0; 5065 if (isHomogeneousAggregate(Ty, Base, Members)) { 5066 assert(Base && Members <= 4 && "unexpected homogeneous aggregate"); 5067 llvm::Type *Ty = 5068 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members); 5069 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 5070 } 5071 } 5072 5073 if (getABIKind() == ARMABIInfo::AAPCS16_VFP && 5074 getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) { 5075 // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're 5076 // bigger than 128-bits, they get placed in space allocated by the caller, 5077 // and a pointer is passed. 5078 return ABIArgInfo::getIndirect( 5079 CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false); 5080 } 5081 5082 // Support byval for ARM. 5083 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 5084 // most 8-byte. We realign the indirect argument if type alignment is bigger 5085 // than ABI alignment. 5086 uint64_t ABIAlign = 4; 5087 uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8; 5088 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 5089 getABIKind() == ARMABIInfo::AAPCS) 5090 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 5091 5092 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 5093 assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval"); 5094 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 5095 /*ByVal=*/true, 5096 /*Realign=*/TyAlign > ABIAlign); 5097 } 5098 5099 // Otherwise, pass by coercing to a structure of the appropriate size. 5100 llvm::Type* ElemTy; 5101 unsigned SizeRegs; 5102 // FIXME: Try to match the types of the arguments more accurately where 5103 // we can. 5104 if (getContext().getTypeAlign(Ty) <= 32) { 5105 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 5106 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 5107 } else { 5108 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 5109 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 5110 } 5111 5112 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); 5113 } 5114 5115 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 5116 llvm::LLVMContext &VMContext) { 5117 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 5118 // is called integer-like if its size is less than or equal to one word, and 5119 // the offset of each of its addressable sub-fields is zero. 5120 5121 uint64_t Size = Context.getTypeSize(Ty); 5122 5123 // Check that the type fits in a word. 5124 if (Size > 32) 5125 return false; 5126 5127 // FIXME: Handle vector types! 5128 if (Ty->isVectorType()) 5129 return false; 5130 5131 // Float types are never treated as "integer like". 5132 if (Ty->isRealFloatingType()) 5133 return false; 5134 5135 // If this is a builtin or pointer type then it is ok. 5136 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 5137 return true; 5138 5139 // Small complex integer types are "integer like". 5140 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 5141 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 5142 5143 // Single element and zero sized arrays should be allowed, by the definition 5144 // above, but they are not. 5145 5146 // Otherwise, it must be a record type. 5147 const RecordType *RT = Ty->getAs<RecordType>(); 5148 if (!RT) return false; 5149 5150 // Ignore records with flexible arrays. 5151 const RecordDecl *RD = RT->getDecl(); 5152 if (RD->hasFlexibleArrayMember()) 5153 return false; 5154 5155 // Check that all sub-fields are at offset 0, and are themselves "integer 5156 // like". 5157 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 5158 5159 bool HadField = false; 5160 unsigned idx = 0; 5161 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 5162 i != e; ++i, ++idx) { 5163 const FieldDecl *FD = *i; 5164 5165 // Bit-fields are not addressable, we only need to verify they are "integer 5166 // like". We still have to disallow a subsequent non-bitfield, for example: 5167 // struct { int : 0; int x } 5168 // is non-integer like according to gcc. 5169 if (FD->isBitField()) { 5170 if (!RD->isUnion()) 5171 HadField = true; 5172 5173 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 5174 return false; 5175 5176 continue; 5177 } 5178 5179 // Check if this field is at offset 0. 5180 if (Layout.getFieldOffset(idx) != 0) 5181 return false; 5182 5183 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 5184 return false; 5185 5186 // Only allow at most one field in a structure. This doesn't match the 5187 // wording above, but follows gcc in situations with a field following an 5188 // empty structure. 5189 if (!RD->isUnion()) { 5190 if (HadField) 5191 return false; 5192 5193 HadField = true; 5194 } 5195 } 5196 5197 return true; 5198 } 5199 5200 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, 5201 bool isVariadic) const { 5202 bool IsEffectivelyAAPCS_VFP = 5203 (getABIKind() == AAPCS_VFP || getABIKind() == AAPCS16_VFP) && !isVariadic; 5204 5205 if (RetTy->isVoidType()) 5206 return ABIArgInfo::getIgnore(); 5207 5208 // Large vector types should be returned via memory. 5209 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) { 5210 return getNaturalAlignIndirect(RetTy); 5211 } 5212 5213 // __fp16 gets returned as if it were an int or float, but with the top 16 5214 // bits unspecified. This is not done for OpenCL as it handles the half type 5215 // natively, and does not need to interwork with AAPCS code. 5216 if (RetTy->isHalfType() && !getContext().getLangOpts().OpenCL) { 5217 llvm::Type *ResType = IsEffectivelyAAPCS_VFP ? 5218 llvm::Type::getFloatTy(getVMContext()) : 5219 llvm::Type::getInt32Ty(getVMContext()); 5220 return ABIArgInfo::getDirect(ResType); 5221 } 5222 5223 if (!isAggregateTypeForABI(RetTy)) { 5224 // Treat an enum type as its underlying type. 5225 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5226 RetTy = EnumTy->getDecl()->getIntegerType(); 5227 5228 return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend() 5229 : ABIArgInfo::getDirect(); 5230 } 5231 5232 // Are we following APCS? 5233 if (getABIKind() == APCS) { 5234 if (isEmptyRecord(getContext(), RetTy, false)) 5235 return ABIArgInfo::getIgnore(); 5236 5237 // Complex types are all returned as packed integers. 5238 // 5239 // FIXME: Consider using 2 x vector types if the back end handles them 5240 // correctly. 5241 if (RetTy->isAnyComplexType()) 5242 return ABIArgInfo::getDirect(llvm::IntegerType::get( 5243 getVMContext(), getContext().getTypeSize(RetTy))); 5244 5245 // Integer like structures are returned in r0. 5246 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 5247 // Return in the smallest viable integer type. 5248 uint64_t Size = getContext().getTypeSize(RetTy); 5249 if (Size <= 8) 5250 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5251 if (Size <= 16) 5252 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 5253 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 5254 } 5255 5256 // Otherwise return in memory. 5257 return getNaturalAlignIndirect(RetTy); 5258 } 5259 5260 // Otherwise this is an AAPCS variant. 5261 5262 if (isEmptyRecord(getContext(), RetTy, true)) 5263 return ABIArgInfo::getIgnore(); 5264 5265 // Check for homogeneous aggregates with AAPCS-VFP. 5266 if (IsEffectivelyAAPCS_VFP) { 5267 const Type *Base = nullptr; 5268 uint64_t Members = 0; 5269 if (isHomogeneousAggregate(RetTy, Base, Members)) { 5270 assert(Base && "Base class should be set for homogeneous aggregate"); 5271 // Homogeneous Aggregates are returned directly. 5272 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 5273 } 5274 } 5275 5276 // Aggregates <= 4 bytes are returned in r0; other aggregates 5277 // are returned indirectly. 5278 uint64_t Size = getContext().getTypeSize(RetTy); 5279 if (Size <= 32) { 5280 if (getDataLayout().isBigEndian()) 5281 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 5282 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 5283 5284 // Return in the smallest viable integer type. 5285 if (Size <= 8) 5286 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5287 if (Size <= 16) 5288 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 5289 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 5290 } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) { 5291 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext()); 5292 llvm::Type *CoerceTy = 5293 llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32); 5294 return ABIArgInfo::getDirect(CoerceTy); 5295 } 5296 5297 return getNaturalAlignIndirect(RetTy); 5298 } 5299 5300 /// isIllegalVector - check whether Ty is an illegal vector type. 5301 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 5302 if (const VectorType *VT = Ty->getAs<VectorType> ()) { 5303 if (isAndroid()) { 5304 // Android shipped using Clang 3.1, which supported a slightly different 5305 // vector ABI. The primary differences were that 3-element vector types 5306 // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path 5307 // accepts that legacy behavior for Android only. 5308 // Check whether VT is legal. 5309 unsigned NumElements = VT->getNumElements(); 5310 // NumElements should be power of 2 or equal to 3. 5311 if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3) 5312 return true; 5313 } else { 5314 // Check whether VT is legal. 5315 unsigned NumElements = VT->getNumElements(); 5316 uint64_t Size = getContext().getTypeSize(VT); 5317 // NumElements should be power of 2. 5318 if (!llvm::isPowerOf2_32(NumElements)) 5319 return true; 5320 // Size should be greater than 32 bits. 5321 return Size <= 32; 5322 } 5323 } 5324 return false; 5325 } 5326 5327 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5328 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 5329 // double, or 64-bit or 128-bit vectors. 5330 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5331 if (BT->getKind() == BuiltinType::Float || 5332 BT->getKind() == BuiltinType::Double || 5333 BT->getKind() == BuiltinType::LongDouble) 5334 return true; 5335 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 5336 unsigned VecSize = getContext().getTypeSize(VT); 5337 if (VecSize == 64 || VecSize == 128) 5338 return true; 5339 } 5340 return false; 5341 } 5342 5343 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 5344 uint64_t Members) const { 5345 return Members <= 4; 5346 } 5347 5348 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5349 QualType Ty) const { 5350 CharUnits SlotSize = CharUnits::fromQuantity(4); 5351 5352 // Empty records are ignored for parameter passing purposes. 5353 if (isEmptyRecord(getContext(), Ty, true)) { 5354 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 5355 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 5356 return Addr; 5357 } 5358 5359 auto TyInfo = getContext().getTypeInfoInChars(Ty); 5360 CharUnits TyAlignForABI = TyInfo.second; 5361 5362 // Use indirect if size of the illegal vector is bigger than 16 bytes. 5363 bool IsIndirect = false; 5364 const Type *Base = nullptr; 5365 uint64_t Members = 0; 5366 if (TyInfo.first > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) { 5367 IsIndirect = true; 5368 5369 // ARMv7k passes structs bigger than 16 bytes indirectly, in space 5370 // allocated by the caller. 5371 } else if (TyInfo.first > CharUnits::fromQuantity(16) && 5372 getABIKind() == ARMABIInfo::AAPCS16_VFP && 5373 !isHomogeneousAggregate(Ty, Base, Members)) { 5374 IsIndirect = true; 5375 5376 // Otherwise, bound the type's ABI alignment. 5377 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 5378 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 5379 // Our callers should be prepared to handle an under-aligned address. 5380 } else if (getABIKind() == ARMABIInfo::AAPCS_VFP || 5381 getABIKind() == ARMABIInfo::AAPCS) { 5382 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 5383 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8)); 5384 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 5385 // ARMv7k allows type alignment up to 16 bytes. 5386 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 5387 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16)); 5388 } else { 5389 TyAlignForABI = CharUnits::fromQuantity(4); 5390 } 5391 TyInfo.second = TyAlignForABI; 5392 5393 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo, 5394 SlotSize, /*AllowHigherAlign*/ true); 5395 } 5396 5397 //===----------------------------------------------------------------------===// 5398 // NVPTX ABI Implementation 5399 //===----------------------------------------------------------------------===// 5400 5401 namespace { 5402 5403 class NVPTXABIInfo : public ABIInfo { 5404 public: 5405 NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 5406 5407 ABIArgInfo classifyReturnType(QualType RetTy) const; 5408 ABIArgInfo classifyArgumentType(QualType Ty) const; 5409 5410 void computeInfo(CGFunctionInfo &FI) const override; 5411 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5412 QualType Ty) const override; 5413 }; 5414 5415 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 5416 public: 5417 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 5418 : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {} 5419 5420 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5421 CodeGen::CodeGenModule &M) const override; 5422 private: 5423 // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the 5424 // resulting MDNode to the nvvm.annotations MDNode. 5425 static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand); 5426 }; 5427 5428 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 5429 if (RetTy->isVoidType()) 5430 return ABIArgInfo::getIgnore(); 5431 5432 // note: this is different from default ABI 5433 if (!RetTy->isScalarType()) 5434 return ABIArgInfo::getDirect(); 5435 5436 // Treat an enum type as its underlying type. 5437 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5438 RetTy = EnumTy->getDecl()->getIntegerType(); 5439 5440 return (RetTy->isPromotableIntegerType() ? 5441 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5442 } 5443 5444 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 5445 // Treat an enum type as its underlying type. 5446 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5447 Ty = EnumTy->getDecl()->getIntegerType(); 5448 5449 // Return aggregates type as indirect by value 5450 if (isAggregateTypeForABI(Ty)) 5451 return getNaturalAlignIndirect(Ty, /* byval */ true); 5452 5453 return (Ty->isPromotableIntegerType() ? 5454 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5455 } 5456 5457 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 5458 if (!getCXXABI().classifyReturnType(FI)) 5459 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 5460 for (auto &I : FI.arguments()) 5461 I.info = classifyArgumentType(I.type); 5462 5463 // Always honor user-specified calling convention. 5464 if (FI.getCallingConvention() != llvm::CallingConv::C) 5465 return; 5466 5467 FI.setEffectiveCallingConvention(getRuntimeCC()); 5468 } 5469 5470 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5471 QualType Ty) const { 5472 llvm_unreachable("NVPTX does not support varargs"); 5473 } 5474 5475 void NVPTXTargetCodeGenInfo:: 5476 setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5477 CodeGen::CodeGenModule &M) const{ 5478 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5479 if (!FD) return; 5480 5481 llvm::Function *F = cast<llvm::Function>(GV); 5482 5483 // Perform special handling in OpenCL mode 5484 if (M.getLangOpts().OpenCL) { 5485 // Use OpenCL function attributes to check for kernel functions 5486 // By default, all functions are device functions 5487 if (FD->hasAttr<OpenCLKernelAttr>()) { 5488 // OpenCL __kernel functions get kernel metadata 5489 // Create !{<func-ref>, metadata !"kernel", i32 1} node 5490 addNVVMMetadata(F, "kernel", 1); 5491 // And kernel functions are not subject to inlining 5492 F->addFnAttr(llvm::Attribute::NoInline); 5493 } 5494 } 5495 5496 // Perform special handling in CUDA mode. 5497 if (M.getLangOpts().CUDA) { 5498 // CUDA __global__ functions get a kernel metadata entry. Since 5499 // __global__ functions cannot be called from the device, we do not 5500 // need to set the noinline attribute. 5501 if (FD->hasAttr<CUDAGlobalAttr>()) { 5502 // Create !{<func-ref>, metadata !"kernel", i32 1} node 5503 addNVVMMetadata(F, "kernel", 1); 5504 } 5505 if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) { 5506 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 5507 llvm::APSInt MaxThreads(32); 5508 MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); 5509 if (MaxThreads > 0) 5510 addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); 5511 5512 // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was 5513 // not specified in __launch_bounds__ or if the user specified a 0 value, 5514 // we don't have to add a PTX directive. 5515 if (Attr->getMinBlocks()) { 5516 llvm::APSInt MinBlocks(32); 5517 MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); 5518 if (MinBlocks > 0) 5519 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 5520 addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); 5521 } 5522 } 5523 } 5524 } 5525 5526 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name, 5527 int Operand) { 5528 llvm::Module *M = F->getParent(); 5529 llvm::LLVMContext &Ctx = M->getContext(); 5530 5531 // Get "nvvm.annotations" metadata node 5532 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 5533 5534 llvm::Metadata *MDVals[] = { 5535 llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name), 5536 llvm::ConstantAsMetadata::get( 5537 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; 5538 // Append metadata to nvvm.annotations 5539 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 5540 } 5541 } 5542 5543 //===----------------------------------------------------------------------===// 5544 // SystemZ ABI Implementation 5545 //===----------------------------------------------------------------------===// 5546 5547 namespace { 5548 5549 class SystemZABIInfo : public ABIInfo { 5550 bool HasVector; 5551 5552 public: 5553 SystemZABIInfo(CodeGenTypes &CGT, bool HV) 5554 : ABIInfo(CGT), HasVector(HV) {} 5555 5556 bool isPromotableIntegerType(QualType Ty) const; 5557 bool isCompoundType(QualType Ty) const; 5558 bool isVectorArgumentType(QualType Ty) const; 5559 bool isFPArgumentType(QualType Ty) const; 5560 QualType GetSingleElementType(QualType Ty) const; 5561 5562 ABIArgInfo classifyReturnType(QualType RetTy) const; 5563 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 5564 5565 void computeInfo(CGFunctionInfo &FI) const override { 5566 if (!getCXXABI().classifyReturnType(FI)) 5567 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 5568 for (auto &I : FI.arguments()) 5569 I.info = classifyArgumentType(I.type); 5570 } 5571 5572 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5573 QualType Ty) const override; 5574 }; 5575 5576 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 5577 public: 5578 SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector) 5579 : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {} 5580 }; 5581 5582 } 5583 5584 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const { 5585 // Treat an enum type as its underlying type. 5586 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5587 Ty = EnumTy->getDecl()->getIntegerType(); 5588 5589 // Promotable integer types are required to be promoted by the ABI. 5590 if (Ty->isPromotableIntegerType()) 5591 return true; 5592 5593 // 32-bit values must also be promoted. 5594 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 5595 switch (BT->getKind()) { 5596 case BuiltinType::Int: 5597 case BuiltinType::UInt: 5598 return true; 5599 default: 5600 return false; 5601 } 5602 return false; 5603 } 5604 5605 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 5606 return (Ty->isAnyComplexType() || 5607 Ty->isVectorType() || 5608 isAggregateTypeForABI(Ty)); 5609 } 5610 5611 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { 5612 return (HasVector && 5613 Ty->isVectorType() && 5614 getContext().getTypeSize(Ty) <= 128); 5615 } 5616 5617 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 5618 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 5619 switch (BT->getKind()) { 5620 case BuiltinType::Float: 5621 case BuiltinType::Double: 5622 return true; 5623 default: 5624 return false; 5625 } 5626 5627 return false; 5628 } 5629 5630 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { 5631 if (const RecordType *RT = Ty->getAsStructureType()) { 5632 const RecordDecl *RD = RT->getDecl(); 5633 QualType Found; 5634 5635 // If this is a C++ record, check the bases first. 5636 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 5637 for (const auto &I : CXXRD->bases()) { 5638 QualType Base = I.getType(); 5639 5640 // Empty bases don't affect things either way. 5641 if (isEmptyRecord(getContext(), Base, true)) 5642 continue; 5643 5644 if (!Found.isNull()) 5645 return Ty; 5646 Found = GetSingleElementType(Base); 5647 } 5648 5649 // Check the fields. 5650 for (const auto *FD : RD->fields()) { 5651 // For compatibility with GCC, ignore empty bitfields in C++ mode. 5652 // Unlike isSingleElementStruct(), empty structure and array fields 5653 // do count. So do anonymous bitfields that aren't zero-sized. 5654 if (getContext().getLangOpts().CPlusPlus && 5655 FD->isBitField() && FD->getBitWidthValue(getContext()) == 0) 5656 continue; 5657 5658 // Unlike isSingleElementStruct(), arrays do not count. 5659 // Nested structures still do though. 5660 if (!Found.isNull()) 5661 return Ty; 5662 Found = GetSingleElementType(FD->getType()); 5663 } 5664 5665 // Unlike isSingleElementStruct(), trailing padding is allowed. 5666 // An 8-byte aligned struct s { float f; } is passed as a double. 5667 if (!Found.isNull()) 5668 return Found; 5669 } 5670 5671 return Ty; 5672 } 5673 5674 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5675 QualType Ty) const { 5676 // Assume that va_list type is correct; should be pointer to LLVM type: 5677 // struct { 5678 // i64 __gpr; 5679 // i64 __fpr; 5680 // i8 *__overflow_arg_area; 5681 // i8 *__reg_save_area; 5682 // }; 5683 5684 // Every non-vector argument occupies 8 bytes and is passed by preference 5685 // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are 5686 // always passed on the stack. 5687 Ty = getContext().getCanonicalType(Ty); 5688 auto TyInfo = getContext().getTypeInfoInChars(Ty); 5689 llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); 5690 llvm::Type *DirectTy = ArgTy; 5691 ABIArgInfo AI = classifyArgumentType(Ty); 5692 bool IsIndirect = AI.isIndirect(); 5693 bool InFPRs = false; 5694 bool IsVector = false; 5695 CharUnits UnpaddedSize; 5696 CharUnits DirectAlign; 5697 if (IsIndirect) { 5698 DirectTy = llvm::PointerType::getUnqual(DirectTy); 5699 UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8); 5700 } else { 5701 if (AI.getCoerceToType()) 5702 ArgTy = AI.getCoerceToType(); 5703 InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy(); 5704 IsVector = ArgTy->isVectorTy(); 5705 UnpaddedSize = TyInfo.first; 5706 DirectAlign = TyInfo.second; 5707 } 5708 CharUnits PaddedSize = CharUnits::fromQuantity(8); 5709 if (IsVector && UnpaddedSize > PaddedSize) 5710 PaddedSize = CharUnits::fromQuantity(16); 5711 assert((UnpaddedSize <= PaddedSize) && "Invalid argument size."); 5712 5713 CharUnits Padding = (PaddedSize - UnpaddedSize); 5714 5715 llvm::Type *IndexTy = CGF.Int64Ty; 5716 llvm::Value *PaddedSizeV = 5717 llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity()); 5718 5719 if (IsVector) { 5720 // Work out the address of a vector argument on the stack. 5721 // Vector arguments are always passed in the high bits of a 5722 // single (8 byte) or double (16 byte) stack slot. 5723 Address OverflowArgAreaPtr = 5724 CGF.Builder.CreateStructGEP(VAListAddr, 2, CharUnits::fromQuantity(16), 5725 "overflow_arg_area_ptr"); 5726 Address OverflowArgArea = 5727 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 5728 TyInfo.second); 5729 Address MemAddr = 5730 CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr"); 5731 5732 // Update overflow_arg_area_ptr pointer 5733 llvm::Value *NewOverflowArgArea = 5734 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 5735 "overflow_arg_area"); 5736 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 5737 5738 return MemAddr; 5739 } 5740 5741 assert(PaddedSize.getQuantity() == 8); 5742 5743 unsigned MaxRegs, RegCountField, RegSaveIndex; 5744 CharUnits RegPadding; 5745 if (InFPRs) { 5746 MaxRegs = 4; // Maximum of 4 FPR arguments 5747 RegCountField = 1; // __fpr 5748 RegSaveIndex = 16; // save offset for f0 5749 RegPadding = CharUnits(); // floats are passed in the high bits of an FPR 5750 } else { 5751 MaxRegs = 5; // Maximum of 5 GPR arguments 5752 RegCountField = 0; // __gpr 5753 RegSaveIndex = 2; // save offset for r2 5754 RegPadding = Padding; // values are passed in the low bits of a GPR 5755 } 5756 5757 Address RegCountPtr = CGF.Builder.CreateStructGEP( 5758 VAListAddr, RegCountField, RegCountField * CharUnits::fromQuantity(8), 5759 "reg_count_ptr"); 5760 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 5761 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 5762 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 5763 "fits_in_regs"); 5764 5765 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 5766 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 5767 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 5768 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 5769 5770 // Emit code to load the value if it was passed in registers. 5771 CGF.EmitBlock(InRegBlock); 5772 5773 // Work out the address of an argument register. 5774 llvm::Value *ScaledRegCount = 5775 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 5776 llvm::Value *RegBase = 5777 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity() 5778 + RegPadding.getQuantity()); 5779 llvm::Value *RegOffset = 5780 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 5781 Address RegSaveAreaPtr = 5782 CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24), 5783 "reg_save_area_ptr"); 5784 llvm::Value *RegSaveArea = 5785 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 5786 Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset, 5787 "raw_reg_addr"), 5788 PaddedSize); 5789 Address RegAddr = 5790 CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr"); 5791 5792 // Update the register count 5793 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 5794 llvm::Value *NewRegCount = 5795 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 5796 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 5797 CGF.EmitBranch(ContBlock); 5798 5799 // Emit code to load the value if it was passed in memory. 5800 CGF.EmitBlock(InMemBlock); 5801 5802 // Work out the address of a stack argument. 5803 Address OverflowArgAreaPtr = CGF.Builder.CreateStructGEP( 5804 VAListAddr, 2, CharUnits::fromQuantity(16), "overflow_arg_area_ptr"); 5805 Address OverflowArgArea = 5806 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 5807 PaddedSize); 5808 Address RawMemAddr = 5809 CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr"); 5810 Address MemAddr = 5811 CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr"); 5812 5813 // Update overflow_arg_area_ptr pointer 5814 llvm::Value *NewOverflowArgArea = 5815 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 5816 "overflow_arg_area"); 5817 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 5818 CGF.EmitBranch(ContBlock); 5819 5820 // Return the appropriate result. 5821 CGF.EmitBlock(ContBlock); 5822 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 5823 MemAddr, InMemBlock, "va_arg.addr"); 5824 5825 if (IsIndirect) 5826 ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), 5827 TyInfo.second); 5828 5829 return ResAddr; 5830 } 5831 5832 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 5833 if (RetTy->isVoidType()) 5834 return ABIArgInfo::getIgnore(); 5835 if (isVectorArgumentType(RetTy)) 5836 return ABIArgInfo::getDirect(); 5837 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 5838 return getNaturalAlignIndirect(RetTy); 5839 return (isPromotableIntegerType(RetTy) ? 5840 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5841 } 5842 5843 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 5844 // Handle the generic C++ ABI. 5845 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 5846 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 5847 5848 // Integers and enums are extended to full register width. 5849 if (isPromotableIntegerType(Ty)) 5850 return ABIArgInfo::getExtend(); 5851 5852 // Handle vector types and vector-like structure types. Note that 5853 // as opposed to float-like structure types, we do not allow any 5854 // padding for vector-like structures, so verify the sizes match. 5855 uint64_t Size = getContext().getTypeSize(Ty); 5856 QualType SingleElementTy = GetSingleElementType(Ty); 5857 if (isVectorArgumentType(SingleElementTy) && 5858 getContext().getTypeSize(SingleElementTy) == Size) 5859 return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); 5860 5861 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 5862 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 5863 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5864 5865 // Handle small structures. 5866 if (const RecordType *RT = Ty->getAs<RecordType>()) { 5867 // Structures with flexible arrays have variable length, so really 5868 // fail the size test above. 5869 const RecordDecl *RD = RT->getDecl(); 5870 if (RD->hasFlexibleArrayMember()) 5871 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5872 5873 // The structure is passed as an unextended integer, a float, or a double. 5874 llvm::Type *PassTy; 5875 if (isFPArgumentType(SingleElementTy)) { 5876 assert(Size == 32 || Size == 64); 5877 if (Size == 32) 5878 PassTy = llvm::Type::getFloatTy(getVMContext()); 5879 else 5880 PassTy = llvm::Type::getDoubleTy(getVMContext()); 5881 } else 5882 PassTy = llvm::IntegerType::get(getVMContext(), Size); 5883 return ABIArgInfo::getDirect(PassTy); 5884 } 5885 5886 // Non-structure compounds are passed indirectly. 5887 if (isCompoundType(Ty)) 5888 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5889 5890 return ABIArgInfo::getDirect(nullptr); 5891 } 5892 5893 //===----------------------------------------------------------------------===// 5894 // MSP430 ABI Implementation 5895 //===----------------------------------------------------------------------===// 5896 5897 namespace { 5898 5899 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 5900 public: 5901 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 5902 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 5903 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5904 CodeGen::CodeGenModule &M) const override; 5905 }; 5906 5907 } 5908 5909 void MSP430TargetCodeGenInfo::setTargetAttributes(const Decl *D, 5910 llvm::GlobalValue *GV, 5911 CodeGen::CodeGenModule &M) const { 5912 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 5913 if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) { 5914 // Handle 'interrupt' attribute: 5915 llvm::Function *F = cast<llvm::Function>(GV); 5916 5917 // Step 1: Set ISR calling convention. 5918 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 5919 5920 // Step 2: Add attributes goodness. 5921 F->addFnAttr(llvm::Attribute::NoInline); 5922 5923 // Step 3: Emit ISR vector alias. 5924 unsigned Num = attr->getNumber() / 2; 5925 llvm::GlobalAlias::create(llvm::Function::ExternalLinkage, 5926 "__isr_" + Twine(Num), F); 5927 } 5928 } 5929 } 5930 5931 //===----------------------------------------------------------------------===// 5932 // MIPS ABI Implementation. This works for both little-endian and 5933 // big-endian variants. 5934 //===----------------------------------------------------------------------===// 5935 5936 namespace { 5937 class MipsABIInfo : public ABIInfo { 5938 bool IsO32; 5939 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 5940 void CoerceToIntArgs(uint64_t TySize, 5941 SmallVectorImpl<llvm::Type *> &ArgList) const; 5942 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 5943 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 5944 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 5945 public: 5946 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 5947 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 5948 StackAlignInBytes(IsO32 ? 8 : 16) {} 5949 5950 ABIArgInfo classifyReturnType(QualType RetTy) const; 5951 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 5952 void computeInfo(CGFunctionInfo &FI) const override; 5953 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5954 QualType Ty) const override; 5955 bool shouldSignExtUnsignedType(QualType Ty) const override; 5956 }; 5957 5958 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 5959 unsigned SizeOfUnwindException; 5960 public: 5961 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 5962 : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)), 5963 SizeOfUnwindException(IsO32 ? 24 : 32) {} 5964 5965 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 5966 return 29; 5967 } 5968 5969 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5970 CodeGen::CodeGenModule &CGM) const override { 5971 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5972 if (!FD) return; 5973 llvm::Function *Fn = cast<llvm::Function>(GV); 5974 if (FD->hasAttr<Mips16Attr>()) { 5975 Fn->addFnAttr("mips16"); 5976 } 5977 else if (FD->hasAttr<NoMips16Attr>()) { 5978 Fn->addFnAttr("nomips16"); 5979 } 5980 5981 const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>(); 5982 if (!Attr) 5983 return; 5984 5985 const char *Kind; 5986 switch (Attr->getInterrupt()) { 5987 case MipsInterruptAttr::eic: Kind = "eic"; break; 5988 case MipsInterruptAttr::sw0: Kind = "sw0"; break; 5989 case MipsInterruptAttr::sw1: Kind = "sw1"; break; 5990 case MipsInterruptAttr::hw0: Kind = "hw0"; break; 5991 case MipsInterruptAttr::hw1: Kind = "hw1"; break; 5992 case MipsInterruptAttr::hw2: Kind = "hw2"; break; 5993 case MipsInterruptAttr::hw3: Kind = "hw3"; break; 5994 case MipsInterruptAttr::hw4: Kind = "hw4"; break; 5995 case MipsInterruptAttr::hw5: Kind = "hw5"; break; 5996 } 5997 5998 Fn->addFnAttr("interrupt", Kind); 5999 6000 } 6001 6002 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6003 llvm::Value *Address) const override; 6004 6005 unsigned getSizeOfUnwindException() const override { 6006 return SizeOfUnwindException; 6007 } 6008 }; 6009 } 6010 6011 void MipsABIInfo::CoerceToIntArgs( 6012 uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const { 6013 llvm::IntegerType *IntTy = 6014 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 6015 6016 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 6017 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 6018 ArgList.push_back(IntTy); 6019 6020 // If necessary, add one more integer type to ArgList. 6021 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 6022 6023 if (R) 6024 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 6025 } 6026 6027 // In N32/64, an aligned double precision floating point field is passed in 6028 // a register. 6029 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 6030 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 6031 6032 if (IsO32) { 6033 CoerceToIntArgs(TySize, ArgList); 6034 return llvm::StructType::get(getVMContext(), ArgList); 6035 } 6036 6037 if (Ty->isComplexType()) 6038 return CGT.ConvertType(Ty); 6039 6040 const RecordType *RT = Ty->getAs<RecordType>(); 6041 6042 // Unions/vectors are passed in integer registers. 6043 if (!RT || !RT->isStructureOrClassType()) { 6044 CoerceToIntArgs(TySize, ArgList); 6045 return llvm::StructType::get(getVMContext(), ArgList); 6046 } 6047 6048 const RecordDecl *RD = RT->getDecl(); 6049 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 6050 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 6051 6052 uint64_t LastOffset = 0; 6053 unsigned idx = 0; 6054 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 6055 6056 // Iterate over fields in the struct/class and check if there are any aligned 6057 // double fields. 6058 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 6059 i != e; ++i, ++idx) { 6060 const QualType Ty = i->getType(); 6061 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 6062 6063 if (!BT || BT->getKind() != BuiltinType::Double) 6064 continue; 6065 6066 uint64_t Offset = Layout.getFieldOffset(idx); 6067 if (Offset % 64) // Ignore doubles that are not aligned. 6068 continue; 6069 6070 // Add ((Offset - LastOffset) / 64) args of type i64. 6071 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 6072 ArgList.push_back(I64); 6073 6074 // Add double type. 6075 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 6076 LastOffset = Offset + 64; 6077 } 6078 6079 CoerceToIntArgs(TySize - LastOffset, IntArgList); 6080 ArgList.append(IntArgList.begin(), IntArgList.end()); 6081 6082 return llvm::StructType::get(getVMContext(), ArgList); 6083 } 6084 6085 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 6086 uint64_t Offset) const { 6087 if (OrigOffset + MinABIStackAlignInBytes > Offset) 6088 return nullptr; 6089 6090 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 6091 } 6092 6093 ABIArgInfo 6094 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 6095 Ty = useFirstFieldIfTransparentUnion(Ty); 6096 6097 uint64_t OrigOffset = Offset; 6098 uint64_t TySize = getContext().getTypeSize(Ty); 6099 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 6100 6101 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 6102 (uint64_t)StackAlignInBytes); 6103 unsigned CurrOffset = llvm::alignTo(Offset, Align); 6104 Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8; 6105 6106 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 6107 // Ignore empty aggregates. 6108 if (TySize == 0) 6109 return ABIArgInfo::getIgnore(); 6110 6111 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 6112 Offset = OrigOffset + MinABIStackAlignInBytes; 6113 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6114 } 6115 6116 // If we have reached here, aggregates are passed directly by coercing to 6117 // another structure type. Padding is inserted if the offset of the 6118 // aggregate is unaligned. 6119 ABIArgInfo ArgInfo = 6120 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 6121 getPaddingType(OrigOffset, CurrOffset)); 6122 ArgInfo.setInReg(true); 6123 return ArgInfo; 6124 } 6125 6126 // Treat an enum type as its underlying type. 6127 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6128 Ty = EnumTy->getDecl()->getIntegerType(); 6129 6130 // All integral types are promoted to the GPR width. 6131 if (Ty->isIntegralOrEnumerationType()) 6132 return ABIArgInfo::getExtend(); 6133 6134 return ABIArgInfo::getDirect( 6135 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 6136 } 6137 6138 llvm::Type* 6139 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 6140 const RecordType *RT = RetTy->getAs<RecordType>(); 6141 SmallVector<llvm::Type*, 8> RTList; 6142 6143 if (RT && RT->isStructureOrClassType()) { 6144 const RecordDecl *RD = RT->getDecl(); 6145 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 6146 unsigned FieldCnt = Layout.getFieldCount(); 6147 6148 // N32/64 returns struct/classes in floating point registers if the 6149 // following conditions are met: 6150 // 1. The size of the struct/class is no larger than 128-bit. 6151 // 2. The struct/class has one or two fields all of which are floating 6152 // point types. 6153 // 3. The offset of the first field is zero (this follows what gcc does). 6154 // 6155 // Any other composite results are returned in integer registers. 6156 // 6157 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 6158 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 6159 for (; b != e; ++b) { 6160 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 6161 6162 if (!BT || !BT->isFloatingPoint()) 6163 break; 6164 6165 RTList.push_back(CGT.ConvertType(b->getType())); 6166 } 6167 6168 if (b == e) 6169 return llvm::StructType::get(getVMContext(), RTList, 6170 RD->hasAttr<PackedAttr>()); 6171 6172 RTList.clear(); 6173 } 6174 } 6175 6176 CoerceToIntArgs(Size, RTList); 6177 return llvm::StructType::get(getVMContext(), RTList); 6178 } 6179 6180 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 6181 uint64_t Size = getContext().getTypeSize(RetTy); 6182 6183 if (RetTy->isVoidType()) 6184 return ABIArgInfo::getIgnore(); 6185 6186 // O32 doesn't treat zero-sized structs differently from other structs. 6187 // However, N32/N64 ignores zero sized return values. 6188 if (!IsO32 && Size == 0) 6189 return ABIArgInfo::getIgnore(); 6190 6191 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 6192 if (Size <= 128) { 6193 if (RetTy->isAnyComplexType()) 6194 return ABIArgInfo::getDirect(); 6195 6196 // O32 returns integer vectors in registers and N32/N64 returns all small 6197 // aggregates in registers. 6198 if (!IsO32 || 6199 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { 6200 ABIArgInfo ArgInfo = 6201 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 6202 ArgInfo.setInReg(true); 6203 return ArgInfo; 6204 } 6205 } 6206 6207 return getNaturalAlignIndirect(RetTy); 6208 } 6209 6210 // Treat an enum type as its underlying type. 6211 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6212 RetTy = EnumTy->getDecl()->getIntegerType(); 6213 6214 return (RetTy->isPromotableIntegerType() ? 6215 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 6216 } 6217 6218 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 6219 ABIArgInfo &RetInfo = FI.getReturnInfo(); 6220 if (!getCXXABI().classifyReturnType(FI)) 6221 RetInfo = classifyReturnType(FI.getReturnType()); 6222 6223 // Check if a pointer to an aggregate is passed as a hidden argument. 6224 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 6225 6226 for (auto &I : FI.arguments()) 6227 I.info = classifyArgumentType(I.type, Offset); 6228 } 6229 6230 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6231 QualType OrigTy) const { 6232 QualType Ty = OrigTy; 6233 6234 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. 6235 // Pointers are also promoted in the same way but this only matters for N32. 6236 unsigned SlotSizeInBits = IsO32 ? 32 : 64; 6237 unsigned PtrWidth = getTarget().getPointerWidth(0); 6238 bool DidPromote = false; 6239 if ((Ty->isIntegerType() && 6240 getContext().getIntWidth(Ty) < SlotSizeInBits) || 6241 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { 6242 DidPromote = true; 6243 Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits, 6244 Ty->isSignedIntegerType()); 6245 } 6246 6247 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6248 6249 // The alignment of things in the argument area is never larger than 6250 // StackAlignInBytes. 6251 TyInfo.second = 6252 std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes)); 6253 6254 // MinABIStackAlignInBytes is the size of argument slots on the stack. 6255 CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes); 6256 6257 Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 6258 TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true); 6259 6260 6261 // If there was a promotion, "unpromote" into a temporary. 6262 // TODO: can we just use a pointer into a subset of the original slot? 6263 if (DidPromote) { 6264 Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp"); 6265 llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr); 6266 6267 // Truncate down to the right width. 6268 llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType() 6269 : CGF.IntPtrTy); 6270 llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy); 6271 if (OrigTy->isPointerType()) 6272 V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType()); 6273 6274 CGF.Builder.CreateStore(V, Temp); 6275 Addr = Temp; 6276 } 6277 6278 return Addr; 6279 } 6280 6281 bool MipsABIInfo::shouldSignExtUnsignedType(QualType Ty) const { 6282 int TySize = getContext().getTypeSize(Ty); 6283 6284 // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. 6285 if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 6286 return true; 6287 6288 return false; 6289 } 6290 6291 bool 6292 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6293 llvm::Value *Address) const { 6294 // This information comes from gcc's implementation, which seems to 6295 // as canonical as it gets. 6296 6297 // Everything on MIPS is 4 bytes. Double-precision FP registers 6298 // are aliased to pairs of single-precision FP registers. 6299 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 6300 6301 // 0-31 are the general purpose registers, $0 - $31. 6302 // 32-63 are the floating-point registers, $f0 - $f31. 6303 // 64 and 65 are the multiply/divide registers, $hi and $lo. 6304 // 66 is the (notional, I think) register for signal-handler return. 6305 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 6306 6307 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 6308 // They are one bit wide and ignored here. 6309 6310 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 6311 // (coprocessor 1 is the FP unit) 6312 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 6313 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 6314 // 176-181 are the DSP accumulator registers. 6315 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 6316 return false; 6317 } 6318 6319 //===----------------------------------------------------------------------===// 6320 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 6321 // Currently subclassed only to implement custom OpenCL C function attribute 6322 // handling. 6323 //===----------------------------------------------------------------------===// 6324 6325 namespace { 6326 6327 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 6328 public: 6329 TCETargetCodeGenInfo(CodeGenTypes &CGT) 6330 : DefaultTargetCodeGenInfo(CGT) {} 6331 6332 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6333 CodeGen::CodeGenModule &M) const override; 6334 }; 6335 6336 void TCETargetCodeGenInfo::setTargetAttributes( 6337 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 6338 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6339 if (!FD) return; 6340 6341 llvm::Function *F = cast<llvm::Function>(GV); 6342 6343 if (M.getLangOpts().OpenCL) { 6344 if (FD->hasAttr<OpenCLKernelAttr>()) { 6345 // OpenCL C Kernel functions are not subject to inlining 6346 F->addFnAttr(llvm::Attribute::NoInline); 6347 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 6348 if (Attr) { 6349 // Convert the reqd_work_group_size() attributes to metadata. 6350 llvm::LLVMContext &Context = F->getContext(); 6351 llvm::NamedMDNode *OpenCLMetadata = 6352 M.getModule().getOrInsertNamedMetadata( 6353 "opencl.kernel_wg_size_info"); 6354 6355 SmallVector<llvm::Metadata *, 5> Operands; 6356 Operands.push_back(llvm::ConstantAsMetadata::get(F)); 6357 6358 Operands.push_back( 6359 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 6360 M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); 6361 Operands.push_back( 6362 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 6363 M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); 6364 Operands.push_back( 6365 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 6366 M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); 6367 6368 // Add a boolean constant operand for "required" (true) or "hint" 6369 // (false) for implementing the work_group_size_hint attr later. 6370 // Currently always true as the hint is not yet implemented. 6371 Operands.push_back( 6372 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); 6373 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 6374 } 6375 } 6376 } 6377 } 6378 6379 } 6380 6381 //===----------------------------------------------------------------------===// 6382 // Hexagon ABI Implementation 6383 //===----------------------------------------------------------------------===// 6384 6385 namespace { 6386 6387 class HexagonABIInfo : public ABIInfo { 6388 6389 6390 public: 6391 HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 6392 6393 private: 6394 6395 ABIArgInfo classifyReturnType(QualType RetTy) const; 6396 ABIArgInfo classifyArgumentType(QualType RetTy) const; 6397 6398 void computeInfo(CGFunctionInfo &FI) const override; 6399 6400 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6401 QualType Ty) const override; 6402 }; 6403 6404 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 6405 public: 6406 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 6407 :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {} 6408 6409 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 6410 return 29; 6411 } 6412 }; 6413 6414 } 6415 6416 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 6417 if (!getCXXABI().classifyReturnType(FI)) 6418 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6419 for (auto &I : FI.arguments()) 6420 I.info = classifyArgumentType(I.type); 6421 } 6422 6423 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const { 6424 if (!isAggregateTypeForABI(Ty)) { 6425 // Treat an enum type as its underlying type. 6426 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6427 Ty = EnumTy->getDecl()->getIntegerType(); 6428 6429 return (Ty->isPromotableIntegerType() ? 6430 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 6431 } 6432 6433 // Ignore empty records. 6434 if (isEmptyRecord(getContext(), Ty, true)) 6435 return ABIArgInfo::getIgnore(); 6436 6437 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 6438 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6439 6440 uint64_t Size = getContext().getTypeSize(Ty); 6441 if (Size > 64) 6442 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 6443 // Pass in the smallest viable integer type. 6444 else if (Size > 32) 6445 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 6446 else if (Size > 16) 6447 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6448 else if (Size > 8) 6449 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6450 else 6451 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6452 } 6453 6454 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 6455 if (RetTy->isVoidType()) 6456 return ABIArgInfo::getIgnore(); 6457 6458 // Large vector types should be returned via memory. 6459 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64) 6460 return getNaturalAlignIndirect(RetTy); 6461 6462 if (!isAggregateTypeForABI(RetTy)) { 6463 // Treat an enum type as its underlying type. 6464 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6465 RetTy = EnumTy->getDecl()->getIntegerType(); 6466 6467 return (RetTy->isPromotableIntegerType() ? 6468 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 6469 } 6470 6471 if (isEmptyRecord(getContext(), RetTy, true)) 6472 return ABIArgInfo::getIgnore(); 6473 6474 // Aggregates <= 8 bytes are returned in r0; other aggregates 6475 // are returned indirectly. 6476 uint64_t Size = getContext().getTypeSize(RetTy); 6477 if (Size <= 64) { 6478 // Return in the smallest viable integer type. 6479 if (Size <= 8) 6480 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6481 if (Size <= 16) 6482 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6483 if (Size <= 32) 6484 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6485 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 6486 } 6487 6488 return getNaturalAlignIndirect(RetTy, /*ByVal=*/true); 6489 } 6490 6491 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6492 QualType Ty) const { 6493 // FIXME: Someone needs to audit that this handle alignment correctly. 6494 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 6495 getContext().getTypeInfoInChars(Ty), 6496 CharUnits::fromQuantity(4), 6497 /*AllowHigherAlign*/ true); 6498 } 6499 6500 //===----------------------------------------------------------------------===// 6501 // AMDGPU ABI Implementation 6502 //===----------------------------------------------------------------------===// 6503 6504 namespace { 6505 6506 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { 6507 public: 6508 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) 6509 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 6510 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6511 CodeGen::CodeGenModule &M) const override; 6512 }; 6513 6514 } 6515 6516 void AMDGPUTargetCodeGenInfo::setTargetAttributes( 6517 const Decl *D, 6518 llvm::GlobalValue *GV, 6519 CodeGen::CodeGenModule &M) const { 6520 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6521 if (!FD) 6522 return; 6523 6524 if (const auto Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { 6525 llvm::Function *F = cast<llvm::Function>(GV); 6526 uint32_t NumVGPR = Attr->getNumVGPR(); 6527 if (NumVGPR != 0) 6528 F->addFnAttr("amdgpu_num_vgpr", llvm::utostr(NumVGPR)); 6529 } 6530 6531 if (const auto Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { 6532 llvm::Function *F = cast<llvm::Function>(GV); 6533 unsigned NumSGPR = Attr->getNumSGPR(); 6534 if (NumSGPR != 0) 6535 F->addFnAttr("amdgpu_num_sgpr", llvm::utostr(NumSGPR)); 6536 } 6537 } 6538 6539 6540 //===----------------------------------------------------------------------===// 6541 // SPARC v9 ABI Implementation. 6542 // Based on the SPARC Compliance Definition version 2.4.1. 6543 // 6544 // Function arguments a mapped to a nominal "parameter array" and promoted to 6545 // registers depending on their type. Each argument occupies 8 or 16 bytes in 6546 // the array, structs larger than 16 bytes are passed indirectly. 6547 // 6548 // One case requires special care: 6549 // 6550 // struct mixed { 6551 // int i; 6552 // float f; 6553 // }; 6554 // 6555 // When a struct mixed is passed by value, it only occupies 8 bytes in the 6556 // parameter array, but the int is passed in an integer register, and the float 6557 // is passed in a floating point register. This is represented as two arguments 6558 // with the LLVM IR inreg attribute: 6559 // 6560 // declare void f(i32 inreg %i, float inreg %f) 6561 // 6562 // The code generator will only allocate 4 bytes from the parameter array for 6563 // the inreg arguments. All other arguments are allocated a multiple of 8 6564 // bytes. 6565 // 6566 namespace { 6567 class SparcV9ABIInfo : public ABIInfo { 6568 public: 6569 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 6570 6571 private: 6572 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 6573 void computeInfo(CGFunctionInfo &FI) const override; 6574 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6575 QualType Ty) const override; 6576 6577 // Coercion type builder for structs passed in registers. The coercion type 6578 // serves two purposes: 6579 // 6580 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 6581 // in registers. 6582 // 2. Expose aligned floating point elements as first-level elements, so the 6583 // code generator knows to pass them in floating point registers. 6584 // 6585 // We also compute the InReg flag which indicates that the struct contains 6586 // aligned 32-bit floats. 6587 // 6588 struct CoerceBuilder { 6589 llvm::LLVMContext &Context; 6590 const llvm::DataLayout &DL; 6591 SmallVector<llvm::Type*, 8> Elems; 6592 uint64_t Size; 6593 bool InReg; 6594 6595 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 6596 : Context(c), DL(dl), Size(0), InReg(false) {} 6597 6598 // Pad Elems with integers until Size is ToSize. 6599 void pad(uint64_t ToSize) { 6600 assert(ToSize >= Size && "Cannot remove elements"); 6601 if (ToSize == Size) 6602 return; 6603 6604 // Finish the current 64-bit word. 6605 uint64_t Aligned = llvm::alignTo(Size, 64); 6606 if (Aligned > Size && Aligned <= ToSize) { 6607 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 6608 Size = Aligned; 6609 } 6610 6611 // Add whole 64-bit words. 6612 while (Size + 64 <= ToSize) { 6613 Elems.push_back(llvm::Type::getInt64Ty(Context)); 6614 Size += 64; 6615 } 6616 6617 // Final in-word padding. 6618 if (Size < ToSize) { 6619 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 6620 Size = ToSize; 6621 } 6622 } 6623 6624 // Add a floating point element at Offset. 6625 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 6626 // Unaligned floats are treated as integers. 6627 if (Offset % Bits) 6628 return; 6629 // The InReg flag is only required if there are any floats < 64 bits. 6630 if (Bits < 64) 6631 InReg = true; 6632 pad(Offset); 6633 Elems.push_back(Ty); 6634 Size = Offset + Bits; 6635 } 6636 6637 // Add a struct type to the coercion type, starting at Offset (in bits). 6638 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 6639 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 6640 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 6641 llvm::Type *ElemTy = StrTy->getElementType(i); 6642 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 6643 switch (ElemTy->getTypeID()) { 6644 case llvm::Type::StructTyID: 6645 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 6646 break; 6647 case llvm::Type::FloatTyID: 6648 addFloat(ElemOffset, ElemTy, 32); 6649 break; 6650 case llvm::Type::DoubleTyID: 6651 addFloat(ElemOffset, ElemTy, 64); 6652 break; 6653 case llvm::Type::FP128TyID: 6654 addFloat(ElemOffset, ElemTy, 128); 6655 break; 6656 case llvm::Type::PointerTyID: 6657 if (ElemOffset % 64 == 0) { 6658 pad(ElemOffset); 6659 Elems.push_back(ElemTy); 6660 Size += 64; 6661 } 6662 break; 6663 default: 6664 break; 6665 } 6666 } 6667 } 6668 6669 // Check if Ty is a usable substitute for the coercion type. 6670 bool isUsableType(llvm::StructType *Ty) const { 6671 return llvm::makeArrayRef(Elems) == Ty->elements(); 6672 } 6673 6674 // Get the coercion type as a literal struct type. 6675 llvm::Type *getType() const { 6676 if (Elems.size() == 1) 6677 return Elems.front(); 6678 else 6679 return llvm::StructType::get(Context, Elems); 6680 } 6681 }; 6682 }; 6683 } // end anonymous namespace 6684 6685 ABIArgInfo 6686 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 6687 if (Ty->isVoidType()) 6688 return ABIArgInfo::getIgnore(); 6689 6690 uint64_t Size = getContext().getTypeSize(Ty); 6691 6692 // Anything too big to fit in registers is passed with an explicit indirect 6693 // pointer / sret pointer. 6694 if (Size > SizeLimit) 6695 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6696 6697 // Treat an enum type as its underlying type. 6698 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6699 Ty = EnumTy->getDecl()->getIntegerType(); 6700 6701 // Integer types smaller than a register are extended. 6702 if (Size < 64 && Ty->isIntegerType()) 6703 return ABIArgInfo::getExtend(); 6704 6705 // Other non-aggregates go in registers. 6706 if (!isAggregateTypeForABI(Ty)) 6707 return ABIArgInfo::getDirect(); 6708 6709 // If a C++ object has either a non-trivial copy constructor or a non-trivial 6710 // destructor, it is passed with an explicit indirect pointer / sret pointer. 6711 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 6712 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6713 6714 // This is a small aggregate type that should be passed in registers. 6715 // Build a coercion type from the LLVM struct type. 6716 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 6717 if (!StrTy) 6718 return ABIArgInfo::getDirect(); 6719 6720 CoerceBuilder CB(getVMContext(), getDataLayout()); 6721 CB.addStruct(0, StrTy); 6722 CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64)); 6723 6724 // Try to use the original type for coercion. 6725 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 6726 6727 if (CB.InReg) 6728 return ABIArgInfo::getDirectInReg(CoerceTy); 6729 else 6730 return ABIArgInfo::getDirect(CoerceTy); 6731 } 6732 6733 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6734 QualType Ty) const { 6735 ABIArgInfo AI = classifyType(Ty, 16 * 8); 6736 llvm::Type *ArgTy = CGT.ConvertType(Ty); 6737 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 6738 AI.setCoerceToType(ArgTy); 6739 6740 CharUnits SlotSize = CharUnits::fromQuantity(8); 6741 6742 CGBuilderTy &Builder = CGF.Builder; 6743 Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 6744 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 6745 6746 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 6747 6748 Address ArgAddr = Address::invalid(); 6749 CharUnits Stride; 6750 switch (AI.getKind()) { 6751 case ABIArgInfo::Expand: 6752 case ABIArgInfo::InAlloca: 6753 llvm_unreachable("Unsupported ABI kind for va_arg"); 6754 6755 case ABIArgInfo::Extend: { 6756 Stride = SlotSize; 6757 CharUnits Offset = SlotSize - TypeInfo.first; 6758 ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend"); 6759 break; 6760 } 6761 6762 case ABIArgInfo::Direct: { 6763 auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 6764 Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize); 6765 ArgAddr = Addr; 6766 break; 6767 } 6768 6769 case ABIArgInfo::Indirect: 6770 Stride = SlotSize; 6771 ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect"); 6772 ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), 6773 TypeInfo.second); 6774 break; 6775 6776 case ABIArgInfo::Ignore: 6777 return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second); 6778 } 6779 6780 // Update VAList. 6781 llvm::Value *NextPtr = 6782 Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), Stride, "ap.next"); 6783 Builder.CreateStore(NextPtr, VAListAddr); 6784 6785 return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr"); 6786 } 6787 6788 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 6789 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 6790 for (auto &I : FI.arguments()) 6791 I.info = classifyType(I.type, 16 * 8); 6792 } 6793 6794 namespace { 6795 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 6796 public: 6797 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 6798 : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {} 6799 6800 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 6801 return 14; 6802 } 6803 6804 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6805 llvm::Value *Address) const override; 6806 }; 6807 } // end anonymous namespace 6808 6809 bool 6810 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6811 llvm::Value *Address) const { 6812 // This is calculated from the LLVM and GCC tables and verified 6813 // against gcc output. AFAIK all ABIs use the same encoding. 6814 6815 CodeGen::CGBuilderTy &Builder = CGF.Builder; 6816 6817 llvm::IntegerType *i8 = CGF.Int8Ty; 6818 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 6819 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 6820 6821 // 0-31: the 8-byte general-purpose registers 6822 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 6823 6824 // 32-63: f0-31, the 4-byte floating-point registers 6825 AssignToArrayRange(Builder, Address, Four8, 32, 63); 6826 6827 // Y = 64 6828 // PSR = 65 6829 // WIM = 66 6830 // TBR = 67 6831 // PC = 68 6832 // NPC = 69 6833 // FSR = 70 6834 // CSR = 71 6835 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 6836 6837 // 72-87: d0-15, the 8-byte floating-point registers 6838 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 6839 6840 return false; 6841 } 6842 6843 6844 //===----------------------------------------------------------------------===// 6845 // XCore ABI Implementation 6846 //===----------------------------------------------------------------------===// 6847 6848 namespace { 6849 6850 /// A SmallStringEnc instance is used to build up the TypeString by passing 6851 /// it by reference between functions that append to it. 6852 typedef llvm::SmallString<128> SmallStringEnc; 6853 6854 /// TypeStringCache caches the meta encodings of Types. 6855 /// 6856 /// The reason for caching TypeStrings is two fold: 6857 /// 1. To cache a type's encoding for later uses; 6858 /// 2. As a means to break recursive member type inclusion. 6859 /// 6860 /// A cache Entry can have a Status of: 6861 /// NonRecursive: The type encoding is not recursive; 6862 /// Recursive: The type encoding is recursive; 6863 /// Incomplete: An incomplete TypeString; 6864 /// IncompleteUsed: An incomplete TypeString that has been used in a 6865 /// Recursive type encoding. 6866 /// 6867 /// A NonRecursive entry will have all of its sub-members expanded as fully 6868 /// as possible. Whilst it may contain types which are recursive, the type 6869 /// itself is not recursive and thus its encoding may be safely used whenever 6870 /// the type is encountered. 6871 /// 6872 /// A Recursive entry will have all of its sub-members expanded as fully as 6873 /// possible. The type itself is recursive and it may contain other types which 6874 /// are recursive. The Recursive encoding must not be used during the expansion 6875 /// of a recursive type's recursive branch. For simplicity the code uses 6876 /// IncompleteCount to reject all usage of Recursive encodings for member types. 6877 /// 6878 /// An Incomplete entry is always a RecordType and only encodes its 6879 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 6880 /// are placed into the cache during type expansion as a means to identify and 6881 /// handle recursive inclusion of types as sub-members. If there is recursion 6882 /// the entry becomes IncompleteUsed. 6883 /// 6884 /// During the expansion of a RecordType's members: 6885 /// 6886 /// If the cache contains a NonRecursive encoding for the member type, the 6887 /// cached encoding is used; 6888 /// 6889 /// If the cache contains a Recursive encoding for the member type, the 6890 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 6891 /// 6892 /// If the member is a RecordType, an Incomplete encoding is placed into the 6893 /// cache to break potential recursive inclusion of itself as a sub-member; 6894 /// 6895 /// Once a member RecordType has been expanded, its temporary incomplete 6896 /// entry is removed from the cache. If a Recursive encoding was swapped out 6897 /// it is swapped back in; 6898 /// 6899 /// If an incomplete entry is used to expand a sub-member, the incomplete 6900 /// entry is marked as IncompleteUsed. The cache keeps count of how many 6901 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 6902 /// 6903 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 6904 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 6905 /// Else the member is part of a recursive type and thus the recursion has 6906 /// been exited too soon for the encoding to be correct for the member. 6907 /// 6908 class TypeStringCache { 6909 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 6910 struct Entry { 6911 std::string Str; // The encoded TypeString for the type. 6912 enum Status State; // Information about the encoding in 'Str'. 6913 std::string Swapped; // A temporary place holder for a Recursive encoding 6914 // during the expansion of RecordType's members. 6915 }; 6916 std::map<const IdentifierInfo *, struct Entry> Map; 6917 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 6918 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 6919 public: 6920 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {} 6921 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 6922 bool removeIncomplete(const IdentifierInfo *ID); 6923 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 6924 bool IsRecursive); 6925 StringRef lookupStr(const IdentifierInfo *ID); 6926 }; 6927 6928 /// TypeString encodings for enum & union fields must be order. 6929 /// FieldEncoding is a helper for this ordering process. 6930 class FieldEncoding { 6931 bool HasName; 6932 std::string Enc; 6933 public: 6934 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {} 6935 StringRef str() {return Enc.c_str();} 6936 bool operator<(const FieldEncoding &rhs) const { 6937 if (HasName != rhs.HasName) return HasName; 6938 return Enc < rhs.Enc; 6939 } 6940 }; 6941 6942 class XCoreABIInfo : public DefaultABIInfo { 6943 public: 6944 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 6945 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6946 QualType Ty) const override; 6947 }; 6948 6949 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 6950 mutable TypeStringCache TSC; 6951 public: 6952 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 6953 :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {} 6954 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 6955 CodeGen::CodeGenModule &M) const override; 6956 }; 6957 6958 } // End anonymous namespace. 6959 6960 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6961 QualType Ty) const { 6962 CGBuilderTy &Builder = CGF.Builder; 6963 6964 // Get the VAList. 6965 CharUnits SlotSize = CharUnits::fromQuantity(4); 6966 Address AP(Builder.CreateLoad(VAListAddr), SlotSize); 6967 6968 // Handle the argument. 6969 ABIArgInfo AI = classifyArgumentType(Ty); 6970 CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty); 6971 llvm::Type *ArgTy = CGT.ConvertType(Ty); 6972 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 6973 AI.setCoerceToType(ArgTy); 6974 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 6975 6976 Address Val = Address::invalid(); 6977 CharUnits ArgSize = CharUnits::Zero(); 6978 switch (AI.getKind()) { 6979 case ABIArgInfo::Expand: 6980 case ABIArgInfo::InAlloca: 6981 llvm_unreachable("Unsupported ABI kind for va_arg"); 6982 case ABIArgInfo::Ignore: 6983 Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign); 6984 ArgSize = CharUnits::Zero(); 6985 break; 6986 case ABIArgInfo::Extend: 6987 case ABIArgInfo::Direct: 6988 Val = Builder.CreateBitCast(AP, ArgPtrTy); 6989 ArgSize = CharUnits::fromQuantity( 6990 getDataLayout().getTypeAllocSize(AI.getCoerceToType())); 6991 ArgSize = ArgSize.alignTo(SlotSize); 6992 break; 6993 case ABIArgInfo::Indirect: 6994 Val = Builder.CreateElementBitCast(AP, ArgPtrTy); 6995 Val = Address(Builder.CreateLoad(Val), TypeAlign); 6996 ArgSize = SlotSize; 6997 break; 6998 } 6999 7000 // Increment the VAList. 7001 if (!ArgSize.isZero()) { 7002 llvm::Value *APN = 7003 Builder.CreateConstInBoundsByteGEP(AP.getPointer(), ArgSize); 7004 Builder.CreateStore(APN, VAListAddr); 7005 } 7006 7007 return Val; 7008 } 7009 7010 /// During the expansion of a RecordType, an incomplete TypeString is placed 7011 /// into the cache as a means to identify and break recursion. 7012 /// If there is a Recursive encoding in the cache, it is swapped out and will 7013 /// be reinserted by removeIncomplete(). 7014 /// All other types of encoding should have been used rather than arriving here. 7015 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 7016 std::string StubEnc) { 7017 if (!ID) 7018 return; 7019 Entry &E = Map[ID]; 7020 assert( (E.Str.empty() || E.State == Recursive) && 7021 "Incorrectly use of addIncomplete"); 7022 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 7023 E.Swapped.swap(E.Str); // swap out the Recursive 7024 E.Str.swap(StubEnc); 7025 E.State = Incomplete; 7026 ++IncompleteCount; 7027 } 7028 7029 /// Once the RecordType has been expanded, the temporary incomplete TypeString 7030 /// must be removed from the cache. 7031 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 7032 /// Returns true if the RecordType was defined recursively. 7033 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 7034 if (!ID) 7035 return false; 7036 auto I = Map.find(ID); 7037 assert(I != Map.end() && "Entry not present"); 7038 Entry &E = I->second; 7039 assert( (E.State == Incomplete || 7040 E.State == IncompleteUsed) && 7041 "Entry must be an incomplete type"); 7042 bool IsRecursive = false; 7043 if (E.State == IncompleteUsed) { 7044 // We made use of our Incomplete encoding, thus we are recursive. 7045 IsRecursive = true; 7046 --IncompleteUsedCount; 7047 } 7048 if (E.Swapped.empty()) 7049 Map.erase(I); 7050 else { 7051 // Swap the Recursive back. 7052 E.Swapped.swap(E.Str); 7053 E.Swapped.clear(); 7054 E.State = Recursive; 7055 } 7056 --IncompleteCount; 7057 return IsRecursive; 7058 } 7059 7060 /// Add the encoded TypeString to the cache only if it is NonRecursive or 7061 /// Recursive (viz: all sub-members were expanded as fully as possible). 7062 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 7063 bool IsRecursive) { 7064 if (!ID || IncompleteUsedCount) 7065 return; // No key or it is is an incomplete sub-type so don't add. 7066 Entry &E = Map[ID]; 7067 if (IsRecursive && !E.Str.empty()) { 7068 assert(E.State==Recursive && E.Str.size() == Str.size() && 7069 "This is not the same Recursive entry"); 7070 // The parent container was not recursive after all, so we could have used 7071 // this Recursive sub-member entry after all, but we assumed the worse when 7072 // we started viz: IncompleteCount!=0. 7073 return; 7074 } 7075 assert(E.Str.empty() && "Entry already present"); 7076 E.Str = Str.str(); 7077 E.State = IsRecursive? Recursive : NonRecursive; 7078 } 7079 7080 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 7081 /// are recursively expanding a type (IncompleteCount != 0) and the cached 7082 /// encoding is Recursive, return an empty StringRef. 7083 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 7084 if (!ID) 7085 return StringRef(); // We have no key. 7086 auto I = Map.find(ID); 7087 if (I == Map.end()) 7088 return StringRef(); // We have no encoding. 7089 Entry &E = I->second; 7090 if (E.State == Recursive && IncompleteCount) 7091 return StringRef(); // We don't use Recursive encodings for member types. 7092 7093 if (E.State == Incomplete) { 7094 // The incomplete type is being used to break out of recursion. 7095 E.State = IncompleteUsed; 7096 ++IncompleteUsedCount; 7097 } 7098 return E.Str.c_str(); 7099 } 7100 7101 /// The XCore ABI includes a type information section that communicates symbol 7102 /// type information to the linker. The linker uses this information to verify 7103 /// safety/correctness of things such as array bound and pointers et al. 7104 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 7105 /// This type information (TypeString) is emitted into meta data for all global 7106 /// symbols: definitions, declarations, functions & variables. 7107 /// 7108 /// The TypeString carries type, qualifier, name, size & value details. 7109 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 7110 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf 7111 /// The output is tested by test/CodeGen/xcore-stringtype.c. 7112 /// 7113 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 7114 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC); 7115 7116 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 7117 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 7118 CodeGen::CodeGenModule &CGM) const { 7119 SmallStringEnc Enc; 7120 if (getTypeString(Enc, D, CGM, TSC)) { 7121 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 7122 llvm::SmallVector<llvm::Metadata *, 2> MDVals; 7123 MDVals.push_back(llvm::ConstantAsMetadata::get(GV)); 7124 MDVals.push_back(llvm::MDString::get(Ctx, Enc.str())); 7125 llvm::NamedMDNode *MD = 7126 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 7127 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 7128 } 7129 } 7130 7131 static bool appendType(SmallStringEnc &Enc, QualType QType, 7132 const CodeGen::CodeGenModule &CGM, 7133 TypeStringCache &TSC); 7134 7135 /// Helper function for appendRecordType(). 7136 /// Builds a SmallVector containing the encoded field types in declaration 7137 /// order. 7138 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 7139 const RecordDecl *RD, 7140 const CodeGen::CodeGenModule &CGM, 7141 TypeStringCache &TSC) { 7142 for (const auto *Field : RD->fields()) { 7143 SmallStringEnc Enc; 7144 Enc += "m("; 7145 Enc += Field->getName(); 7146 Enc += "){"; 7147 if (Field->isBitField()) { 7148 Enc += "b("; 7149 llvm::raw_svector_ostream OS(Enc); 7150 OS << Field->getBitWidthValue(CGM.getContext()); 7151 Enc += ':'; 7152 } 7153 if (!appendType(Enc, Field->getType(), CGM, TSC)) 7154 return false; 7155 if (Field->isBitField()) 7156 Enc += ')'; 7157 Enc += '}'; 7158 FE.emplace_back(!Field->getName().empty(), Enc); 7159 } 7160 return true; 7161 } 7162 7163 /// Appends structure and union types to Enc and adds encoding to cache. 7164 /// Recursively calls appendType (via extractFieldType) for each field. 7165 /// Union types have their fields ordered according to the ABI. 7166 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 7167 const CodeGen::CodeGenModule &CGM, 7168 TypeStringCache &TSC, const IdentifierInfo *ID) { 7169 // Append the cached TypeString if we have one. 7170 StringRef TypeString = TSC.lookupStr(ID); 7171 if (!TypeString.empty()) { 7172 Enc += TypeString; 7173 return true; 7174 } 7175 7176 // Start to emit an incomplete TypeString. 7177 size_t Start = Enc.size(); 7178 Enc += (RT->isUnionType()? 'u' : 's'); 7179 Enc += '('; 7180 if (ID) 7181 Enc += ID->getName(); 7182 Enc += "){"; 7183 7184 // We collect all encoded fields and order as necessary. 7185 bool IsRecursive = false; 7186 const RecordDecl *RD = RT->getDecl()->getDefinition(); 7187 if (RD && !RD->field_empty()) { 7188 // An incomplete TypeString stub is placed in the cache for this RecordType 7189 // so that recursive calls to this RecordType will use it whilst building a 7190 // complete TypeString for this RecordType. 7191 SmallVector<FieldEncoding, 16> FE; 7192 std::string StubEnc(Enc.substr(Start).str()); 7193 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 7194 TSC.addIncomplete(ID, std::move(StubEnc)); 7195 if (!extractFieldType(FE, RD, CGM, TSC)) { 7196 (void) TSC.removeIncomplete(ID); 7197 return false; 7198 } 7199 IsRecursive = TSC.removeIncomplete(ID); 7200 // The ABI requires unions to be sorted but not structures. 7201 // See FieldEncoding::operator< for sort algorithm. 7202 if (RT->isUnionType()) 7203 std::sort(FE.begin(), FE.end()); 7204 // We can now complete the TypeString. 7205 unsigned E = FE.size(); 7206 for (unsigned I = 0; I != E; ++I) { 7207 if (I) 7208 Enc += ','; 7209 Enc += FE[I].str(); 7210 } 7211 } 7212 Enc += '}'; 7213 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 7214 return true; 7215 } 7216 7217 /// Appends enum types to Enc and adds the encoding to the cache. 7218 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 7219 TypeStringCache &TSC, 7220 const IdentifierInfo *ID) { 7221 // Append the cached TypeString if we have one. 7222 StringRef TypeString = TSC.lookupStr(ID); 7223 if (!TypeString.empty()) { 7224 Enc += TypeString; 7225 return true; 7226 } 7227 7228 size_t Start = Enc.size(); 7229 Enc += "e("; 7230 if (ID) 7231 Enc += ID->getName(); 7232 Enc += "){"; 7233 7234 // We collect all encoded enumerations and order them alphanumerically. 7235 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 7236 SmallVector<FieldEncoding, 16> FE; 7237 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 7238 ++I) { 7239 SmallStringEnc EnumEnc; 7240 EnumEnc += "m("; 7241 EnumEnc += I->getName(); 7242 EnumEnc += "){"; 7243 I->getInitVal().toString(EnumEnc); 7244 EnumEnc += '}'; 7245 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 7246 } 7247 std::sort(FE.begin(), FE.end()); 7248 unsigned E = FE.size(); 7249 for (unsigned I = 0; I != E; ++I) { 7250 if (I) 7251 Enc += ','; 7252 Enc += FE[I].str(); 7253 } 7254 } 7255 Enc += '}'; 7256 TSC.addIfComplete(ID, Enc.substr(Start), false); 7257 return true; 7258 } 7259 7260 /// Appends type's qualifier to Enc. 7261 /// This is done prior to appending the type's encoding. 7262 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 7263 // Qualifiers are emitted in alphabetical order. 7264 static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 7265 int Lookup = 0; 7266 if (QT.isConstQualified()) 7267 Lookup += 1<<0; 7268 if (QT.isRestrictQualified()) 7269 Lookup += 1<<1; 7270 if (QT.isVolatileQualified()) 7271 Lookup += 1<<2; 7272 Enc += Table[Lookup]; 7273 } 7274 7275 /// Appends built-in types to Enc. 7276 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 7277 const char *EncType; 7278 switch (BT->getKind()) { 7279 case BuiltinType::Void: 7280 EncType = "0"; 7281 break; 7282 case BuiltinType::Bool: 7283 EncType = "b"; 7284 break; 7285 case BuiltinType::Char_U: 7286 EncType = "uc"; 7287 break; 7288 case BuiltinType::UChar: 7289 EncType = "uc"; 7290 break; 7291 case BuiltinType::SChar: 7292 EncType = "sc"; 7293 break; 7294 case BuiltinType::UShort: 7295 EncType = "us"; 7296 break; 7297 case BuiltinType::Short: 7298 EncType = "ss"; 7299 break; 7300 case BuiltinType::UInt: 7301 EncType = "ui"; 7302 break; 7303 case BuiltinType::Int: 7304 EncType = "si"; 7305 break; 7306 case BuiltinType::ULong: 7307 EncType = "ul"; 7308 break; 7309 case BuiltinType::Long: 7310 EncType = "sl"; 7311 break; 7312 case BuiltinType::ULongLong: 7313 EncType = "ull"; 7314 break; 7315 case BuiltinType::LongLong: 7316 EncType = "sll"; 7317 break; 7318 case BuiltinType::Float: 7319 EncType = "ft"; 7320 break; 7321 case BuiltinType::Double: 7322 EncType = "d"; 7323 break; 7324 case BuiltinType::LongDouble: 7325 EncType = "ld"; 7326 break; 7327 default: 7328 return false; 7329 } 7330 Enc += EncType; 7331 return true; 7332 } 7333 7334 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 7335 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 7336 const CodeGen::CodeGenModule &CGM, 7337 TypeStringCache &TSC) { 7338 Enc += "p("; 7339 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 7340 return false; 7341 Enc += ')'; 7342 return true; 7343 } 7344 7345 /// Appends array encoding to Enc before calling appendType for the element. 7346 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 7347 const ArrayType *AT, 7348 const CodeGen::CodeGenModule &CGM, 7349 TypeStringCache &TSC, StringRef NoSizeEnc) { 7350 if (AT->getSizeModifier() != ArrayType::Normal) 7351 return false; 7352 Enc += "a("; 7353 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 7354 CAT->getSize().toStringUnsigned(Enc); 7355 else 7356 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 7357 Enc += ':'; 7358 // The Qualifiers should be attached to the type rather than the array. 7359 appendQualifier(Enc, QT); 7360 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 7361 return false; 7362 Enc += ')'; 7363 return true; 7364 } 7365 7366 /// Appends a function encoding to Enc, calling appendType for the return type 7367 /// and the arguments. 7368 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 7369 const CodeGen::CodeGenModule &CGM, 7370 TypeStringCache &TSC) { 7371 Enc += "f{"; 7372 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 7373 return false; 7374 Enc += "}("; 7375 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 7376 // N.B. we are only interested in the adjusted param types. 7377 auto I = FPT->param_type_begin(); 7378 auto E = FPT->param_type_end(); 7379 if (I != E) { 7380 do { 7381 if (!appendType(Enc, *I, CGM, TSC)) 7382 return false; 7383 ++I; 7384 if (I != E) 7385 Enc += ','; 7386 } while (I != E); 7387 if (FPT->isVariadic()) 7388 Enc += ",va"; 7389 } else { 7390 if (FPT->isVariadic()) 7391 Enc += "va"; 7392 else 7393 Enc += '0'; 7394 } 7395 } 7396 Enc += ')'; 7397 return true; 7398 } 7399 7400 /// Handles the type's qualifier before dispatching a call to handle specific 7401 /// type encodings. 7402 static bool appendType(SmallStringEnc &Enc, QualType QType, 7403 const CodeGen::CodeGenModule &CGM, 7404 TypeStringCache &TSC) { 7405 7406 QualType QT = QType.getCanonicalType(); 7407 7408 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 7409 // The Qualifiers should be attached to the type rather than the array. 7410 // Thus we don't call appendQualifier() here. 7411 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 7412 7413 appendQualifier(Enc, QT); 7414 7415 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 7416 return appendBuiltinType(Enc, BT); 7417 7418 if (const PointerType *PT = QT->getAs<PointerType>()) 7419 return appendPointerType(Enc, PT, CGM, TSC); 7420 7421 if (const EnumType *ET = QT->getAs<EnumType>()) 7422 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 7423 7424 if (const RecordType *RT = QT->getAsStructureType()) 7425 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 7426 7427 if (const RecordType *RT = QT->getAsUnionType()) 7428 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 7429 7430 if (const FunctionType *FT = QT->getAs<FunctionType>()) 7431 return appendFunctionType(Enc, FT, CGM, TSC); 7432 7433 return false; 7434 } 7435 7436 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 7437 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) { 7438 if (!D) 7439 return false; 7440 7441 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 7442 if (FD->getLanguageLinkage() != CLanguageLinkage) 7443 return false; 7444 return appendType(Enc, FD->getType(), CGM, TSC); 7445 } 7446 7447 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 7448 if (VD->getLanguageLinkage() != CLanguageLinkage) 7449 return false; 7450 QualType QT = VD->getType().getCanonicalType(); 7451 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 7452 // Global ArrayTypes are given a size of '*' if the size is unknown. 7453 // The Qualifiers should be attached to the type rather than the array. 7454 // Thus we don't call appendQualifier() here. 7455 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 7456 } 7457 return appendType(Enc, QT, CGM, TSC); 7458 } 7459 return false; 7460 } 7461 7462 7463 //===----------------------------------------------------------------------===// 7464 // Driver code 7465 //===----------------------------------------------------------------------===// 7466 7467 const llvm::Triple &CodeGenModule::getTriple() const { 7468 return getTarget().getTriple(); 7469 } 7470 7471 bool CodeGenModule::supportsCOMDAT() const { 7472 return !getTriple().isOSBinFormatMachO(); 7473 } 7474 7475 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 7476 if (TheTargetCodeGenInfo) 7477 return *TheTargetCodeGenInfo; 7478 7479 const llvm::Triple &Triple = getTarget().getTriple(); 7480 switch (Triple.getArch()) { 7481 default: 7482 return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types)); 7483 7484 case llvm::Triple::le32: 7485 return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types)); 7486 case llvm::Triple::mips: 7487 case llvm::Triple::mipsel: 7488 if (Triple.getOS() == llvm::Triple::NaCl) 7489 return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types)); 7490 return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true)); 7491 7492 case llvm::Triple::mips64: 7493 case llvm::Triple::mips64el: 7494 return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false)); 7495 7496 case llvm::Triple::aarch64: 7497 case llvm::Triple::aarch64_be: { 7498 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 7499 if (getTarget().getABI() == "darwinpcs") 7500 Kind = AArch64ABIInfo::DarwinPCS; 7501 7502 return *(TheTargetCodeGenInfo = new AArch64TargetCodeGenInfo(Types, Kind)); 7503 } 7504 7505 case llvm::Triple::wasm32: 7506 case llvm::Triple::wasm64: 7507 return *(TheTargetCodeGenInfo = new WebAssemblyTargetCodeGenInfo(Types)); 7508 7509 case llvm::Triple::arm: 7510 case llvm::Triple::armeb: 7511 case llvm::Triple::thumb: 7512 case llvm::Triple::thumbeb: 7513 { 7514 if (Triple.getOS() == llvm::Triple::Win32) { 7515 TheTargetCodeGenInfo = 7516 new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP); 7517 return *TheTargetCodeGenInfo; 7518 } 7519 7520 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 7521 StringRef ABIStr = getTarget().getABI(); 7522 if (ABIStr == "apcs-gnu") 7523 Kind = ARMABIInfo::APCS; 7524 else if (ABIStr == "aapcs16") 7525 Kind = ARMABIInfo::AAPCS16_VFP; 7526 else if (CodeGenOpts.FloatABI == "hard" || 7527 (CodeGenOpts.FloatABI != "soft" && 7528 Triple.getEnvironment() == llvm::Triple::GNUEABIHF)) 7529 Kind = ARMABIInfo::AAPCS_VFP; 7530 7531 return *(TheTargetCodeGenInfo = new ARMTargetCodeGenInfo(Types, Kind)); 7532 } 7533 7534 case llvm::Triple::ppc: 7535 return *(TheTargetCodeGenInfo = 7536 new PPC32TargetCodeGenInfo(Types, CodeGenOpts.FloatABI == "soft")); 7537 case llvm::Triple::ppc64: 7538 if (Triple.isOSBinFormatELF()) { 7539 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 7540 if (getTarget().getABI() == "elfv2") 7541 Kind = PPC64_SVR4_ABIInfo::ELFv2; 7542 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 7543 7544 return *(TheTargetCodeGenInfo = 7545 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX)); 7546 } else 7547 return *(TheTargetCodeGenInfo = new PPC64TargetCodeGenInfo(Types)); 7548 case llvm::Triple::ppc64le: { 7549 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 7550 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 7551 if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx") 7552 Kind = PPC64_SVR4_ABIInfo::ELFv1; 7553 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 7554 7555 return *(TheTargetCodeGenInfo = 7556 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX)); 7557 } 7558 7559 case llvm::Triple::nvptx: 7560 case llvm::Triple::nvptx64: 7561 return *(TheTargetCodeGenInfo = new NVPTXTargetCodeGenInfo(Types)); 7562 7563 case llvm::Triple::msp430: 7564 return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types)); 7565 7566 case llvm::Triple::systemz: { 7567 bool HasVector = getTarget().getABI() == "vector"; 7568 return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types, 7569 HasVector)); 7570 } 7571 7572 case llvm::Triple::tce: 7573 return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types)); 7574 7575 case llvm::Triple::x86: { 7576 bool IsDarwinVectorABI = Triple.isOSDarwin(); 7577 bool RetSmallStructInRegABI = 7578 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 7579 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 7580 7581 if (Triple.getOS() == llvm::Triple::Win32) { 7582 return *(TheTargetCodeGenInfo = new WinX86_32TargetCodeGenInfo( 7583 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 7584 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); 7585 } else { 7586 return *(TheTargetCodeGenInfo = new X86_32TargetCodeGenInfo( 7587 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 7588 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters, 7589 CodeGenOpts.FloatABI == "soft")); 7590 } 7591 } 7592 7593 case llvm::Triple::x86_64: { 7594 StringRef ABI = getTarget().getABI(); 7595 X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512 : 7596 ABI == "avx" ? X86AVXABILevel::AVX : 7597 X86AVXABILevel::None); 7598 7599 switch (Triple.getOS()) { 7600 case llvm::Triple::Win32: 7601 return *(TheTargetCodeGenInfo = 7602 new WinX86_64TargetCodeGenInfo(Types, AVXLevel)); 7603 case llvm::Triple::PS4: 7604 return *(TheTargetCodeGenInfo = 7605 new PS4TargetCodeGenInfo(Types, AVXLevel)); 7606 default: 7607 return *(TheTargetCodeGenInfo = 7608 new X86_64TargetCodeGenInfo(Types, AVXLevel)); 7609 } 7610 } 7611 case llvm::Triple::hexagon: 7612 return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types)); 7613 case llvm::Triple::r600: 7614 return *(TheTargetCodeGenInfo = new AMDGPUTargetCodeGenInfo(Types)); 7615 case llvm::Triple::amdgcn: 7616 return *(TheTargetCodeGenInfo = new AMDGPUTargetCodeGenInfo(Types)); 7617 case llvm::Triple::sparcv9: 7618 return *(TheTargetCodeGenInfo = new SparcV9TargetCodeGenInfo(Types)); 7619 case llvm::Triple::xcore: 7620 return *(TheTargetCodeGenInfo = new XCoreTargetCodeGenInfo(Types)); 7621 } 7622 } 7623