1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These classes wrap the information about a call or function
10 // definition used to handle ABI compliancy.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "TargetInfo.h"
15 #include "ABIInfo.h"
16 #include "CGBlocks.h"
17 #include "CGCXXABI.h"
18 #include "CGValue.h"
19 #include "CodeGenFunction.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/RecordLayout.h"
22 #include "clang/Basic/CodeGenOptions.h"
23 #include "clang/Basic/DiagnosticFrontend.h"
24 #include "clang/CodeGen/CGFunctionInfo.h"
25 #include "clang/CodeGen/SwiftCallingConv.h"
26 #include "llvm/ADT/SmallBitVector.h"
27 #include "llvm/ADT/StringExtras.h"
28 #include "llvm/ADT/StringSwitch.h"
29 #include "llvm/ADT/Triple.h"
30 #include "llvm/ADT/Twine.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/IntrinsicsNVPTX.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include <algorithm> // std::sort
36 
37 using namespace clang;
38 using namespace CodeGen;
39 
40 // Helper for coercing an aggregate argument or return value into an integer
41 // array of the same size (including padding) and alignment.  This alternate
42 // coercion happens only for the RenderScript ABI and can be removed after
43 // runtimes that rely on it are no longer supported.
44 //
45 // RenderScript assumes that the size of the argument / return value in the IR
46 // is the same as the size of the corresponding qualified type. This helper
47 // coerces the aggregate type into an array of the same size (including
48 // padding).  This coercion is used in lieu of expansion of struct members or
49 // other canonical coercions that return a coerced-type of larger size.
50 //
51 // Ty          - The argument / return value type
52 // Context     - The associated ASTContext
53 // LLVMContext - The associated LLVMContext
54 static ABIArgInfo coerceToIntArray(QualType Ty,
55                                    ASTContext &Context,
56                                    llvm::LLVMContext &LLVMContext) {
57   // Alignment and Size are measured in bits.
58   const uint64_t Size = Context.getTypeSize(Ty);
59   const uint64_t Alignment = Context.getTypeAlign(Ty);
60   llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment);
61   const uint64_t NumElements = (Size + Alignment - 1) / Alignment;
62   return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
63 }
64 
65 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
66                                llvm::Value *Array,
67                                llvm::Value *Value,
68                                unsigned FirstIndex,
69                                unsigned LastIndex) {
70   // Alternatively, we could emit this as a loop in the source.
71   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
72     llvm::Value *Cell =
73         Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I);
74     Builder.CreateAlignedStore(Value, Cell, CharUnits::One());
75   }
76 }
77 
78 static bool isAggregateTypeForABI(QualType T) {
79   return !CodeGenFunction::hasScalarEvaluationKind(T) ||
80          T->isMemberFunctionPointerType();
81 }
82 
83 ABIArgInfo ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByVal,
84                                             bool Realign,
85                                             llvm::Type *Padding) const {
86   return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), ByVal,
87                                  Realign, Padding);
88 }
89 
90 ABIArgInfo
91 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const {
92   return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty),
93                                       /*ByVal*/ false, Realign);
94 }
95 
96 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
97                              QualType Ty) const {
98   return Address::invalid();
99 }
100 
101 bool ABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const {
102   if (Ty->isPromotableIntegerType())
103     return true;
104 
105   if (const auto *EIT = Ty->getAs<ExtIntType>())
106     if (EIT->getNumBits() < getContext().getTypeSize(getContext().IntTy))
107       return true;
108 
109   return false;
110 }
111 
112 ABIInfo::~ABIInfo() {}
113 
114 /// Does the given lowering require more than the given number of
115 /// registers when expanded?
116 ///
117 /// This is intended to be the basis of a reasonable basic implementation
118 /// of should{Pass,Return}IndirectlyForSwift.
119 ///
120 /// For most targets, a limit of four total registers is reasonable; this
121 /// limits the amount of code required in order to move around the value
122 /// in case it wasn't produced immediately prior to the call by the caller
123 /// (or wasn't produced in exactly the right registers) or isn't used
124 /// immediately within the callee.  But some targets may need to further
125 /// limit the register count due to an inability to support that many
126 /// return registers.
127 static bool occupiesMoreThan(CodeGenTypes &cgt,
128                              ArrayRef<llvm::Type*> scalarTypes,
129                              unsigned maxAllRegisters) {
130   unsigned intCount = 0, fpCount = 0;
131   for (llvm::Type *type : scalarTypes) {
132     if (type->isPointerTy()) {
133       intCount++;
134     } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) {
135       auto ptrWidth = cgt.getTarget().getPointerWidth(0);
136       intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth;
137     } else {
138       assert(type->isVectorTy() || type->isFloatingPointTy());
139       fpCount++;
140     }
141   }
142 
143   return (intCount + fpCount > maxAllRegisters);
144 }
145 
146 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
147                                              llvm::Type *eltTy,
148                                              unsigned numElts) const {
149   // The default implementation of this assumes that the target guarantees
150   // 128-bit SIMD support but nothing more.
151   return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16);
152 }
153 
154 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
155                                               CGCXXABI &CXXABI) {
156   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
157   if (!RD) {
158     if (!RT->getDecl()->canPassInRegisters())
159       return CGCXXABI::RAA_Indirect;
160     return CGCXXABI::RAA_Default;
161   }
162   return CXXABI.getRecordArgABI(RD);
163 }
164 
165 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
166                                               CGCXXABI &CXXABI) {
167   const RecordType *RT = T->getAs<RecordType>();
168   if (!RT)
169     return CGCXXABI::RAA_Default;
170   return getRecordArgABI(RT, CXXABI);
171 }
172 
173 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI,
174                                const ABIInfo &Info) {
175   QualType Ty = FI.getReturnType();
176 
177   if (const auto *RT = Ty->getAs<RecordType>())
178     if (!isa<CXXRecordDecl>(RT->getDecl()) &&
179         !RT->getDecl()->canPassInRegisters()) {
180       FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty);
181       return true;
182     }
183 
184   return CXXABI.classifyReturnType(FI);
185 }
186 
187 /// Pass transparent unions as if they were the type of the first element. Sema
188 /// should ensure that all elements of the union have the same "machine type".
189 static QualType useFirstFieldIfTransparentUnion(QualType Ty) {
190   if (const RecordType *UT = Ty->getAsUnionType()) {
191     const RecordDecl *UD = UT->getDecl();
192     if (UD->hasAttr<TransparentUnionAttr>()) {
193       assert(!UD->field_empty() && "sema created an empty transparent union");
194       return UD->field_begin()->getType();
195     }
196   }
197   return Ty;
198 }
199 
200 CGCXXABI &ABIInfo::getCXXABI() const {
201   return CGT.getCXXABI();
202 }
203 
204 ASTContext &ABIInfo::getContext() const {
205   return CGT.getContext();
206 }
207 
208 llvm::LLVMContext &ABIInfo::getVMContext() const {
209   return CGT.getLLVMContext();
210 }
211 
212 const llvm::DataLayout &ABIInfo::getDataLayout() const {
213   return CGT.getDataLayout();
214 }
215 
216 const TargetInfo &ABIInfo::getTarget() const {
217   return CGT.getTarget();
218 }
219 
220 const CodeGenOptions &ABIInfo::getCodeGenOpts() const {
221   return CGT.getCodeGenOpts();
222 }
223 
224 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); }
225 
226 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
227   return false;
228 }
229 
230 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
231                                                 uint64_t Members) const {
232   return false;
233 }
234 
235 LLVM_DUMP_METHOD void ABIArgInfo::dump() const {
236   raw_ostream &OS = llvm::errs();
237   OS << "(ABIArgInfo Kind=";
238   switch (TheKind) {
239   case Direct:
240     OS << "Direct Type=";
241     if (llvm::Type *Ty = getCoerceToType())
242       Ty->print(OS);
243     else
244       OS << "null";
245     break;
246   case Extend:
247     OS << "Extend";
248     break;
249   case Ignore:
250     OS << "Ignore";
251     break;
252   case InAlloca:
253     OS << "InAlloca Offset=" << getInAllocaFieldIndex();
254     break;
255   case Indirect:
256     OS << "Indirect Align=" << getIndirectAlign().getQuantity()
257        << " ByVal=" << getIndirectByVal()
258        << " Realign=" << getIndirectRealign();
259     break;
260   case IndirectAliased:
261     OS << "Indirect Align=" << getIndirectAlign().getQuantity()
262        << " AadrSpace=" << getIndirectAddrSpace()
263        << " Realign=" << getIndirectRealign();
264     break;
265   case Expand:
266     OS << "Expand";
267     break;
268   case CoerceAndExpand:
269     OS << "CoerceAndExpand Type=";
270     getCoerceAndExpandType()->print(OS);
271     break;
272   }
273   OS << ")\n";
274 }
275 
276 // Dynamically round a pointer up to a multiple of the given alignment.
277 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF,
278                                                   llvm::Value *Ptr,
279                                                   CharUnits Align) {
280   llvm::Value *PtrAsInt = Ptr;
281   // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align;
282   PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy);
283   PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt,
284         llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1));
285   PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt,
286            llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity()));
287   PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt,
288                                         Ptr->getType(),
289                                         Ptr->getName() + ".aligned");
290   return PtrAsInt;
291 }
292 
293 /// Emit va_arg for a platform using the common void* representation,
294 /// where arguments are simply emitted in an array of slots on the stack.
295 ///
296 /// This version implements the core direct-value passing rules.
297 ///
298 /// \param SlotSize - The size and alignment of a stack slot.
299 ///   Each argument will be allocated to a multiple of this number of
300 ///   slots, and all the slots will be aligned to this value.
301 /// \param AllowHigherAlign - The slot alignment is not a cap;
302 ///   an argument type with an alignment greater than the slot size
303 ///   will be emitted on a higher-alignment address, potentially
304 ///   leaving one or more empty slots behind as padding.  If this
305 ///   is false, the returned address might be less-aligned than
306 ///   DirectAlign.
307 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF,
308                                       Address VAListAddr,
309                                       llvm::Type *DirectTy,
310                                       CharUnits DirectSize,
311                                       CharUnits DirectAlign,
312                                       CharUnits SlotSize,
313                                       bool AllowHigherAlign) {
314   // Cast the element type to i8* if necessary.  Some platforms define
315   // va_list as a struct containing an i8* instead of just an i8*.
316   if (VAListAddr.getElementType() != CGF.Int8PtrTy)
317     VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy);
318 
319   llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur");
320 
321   // If the CC aligns values higher than the slot size, do so if needed.
322   Address Addr = Address::invalid();
323   if (AllowHigherAlign && DirectAlign > SlotSize) {
324     Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign),
325                                                  DirectAlign);
326   } else {
327     Addr = Address(Ptr, SlotSize);
328   }
329 
330   // Advance the pointer past the argument, then store that back.
331   CharUnits FullDirectSize = DirectSize.alignTo(SlotSize);
332   Address NextPtr =
333       CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next");
334   CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr);
335 
336   // If the argument is smaller than a slot, and this is a big-endian
337   // target, the argument will be right-adjusted in its slot.
338   if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() &&
339       !DirectTy->isStructTy()) {
340     Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize);
341   }
342 
343   Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy);
344   return Addr;
345 }
346 
347 /// Emit va_arg for a platform using the common void* representation,
348 /// where arguments are simply emitted in an array of slots on the stack.
349 ///
350 /// \param IsIndirect - Values of this type are passed indirectly.
351 /// \param ValueInfo - The size and alignment of this type, generally
352 ///   computed with getContext().getTypeInfoInChars(ValueTy).
353 /// \param SlotSizeAndAlign - The size and alignment of a stack slot.
354 ///   Each argument will be allocated to a multiple of this number of
355 ///   slots, and all the slots will be aligned to this value.
356 /// \param AllowHigherAlign - The slot alignment is not a cap;
357 ///   an argument type with an alignment greater than the slot size
358 ///   will be emitted on a higher-alignment address, potentially
359 ///   leaving one or more empty slots behind as padding.
360 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr,
361                                 QualType ValueTy, bool IsIndirect,
362                                 TypeInfoChars ValueInfo,
363                                 CharUnits SlotSizeAndAlign,
364                                 bool AllowHigherAlign) {
365   // The size and alignment of the value that was passed directly.
366   CharUnits DirectSize, DirectAlign;
367   if (IsIndirect) {
368     DirectSize = CGF.getPointerSize();
369     DirectAlign = CGF.getPointerAlign();
370   } else {
371     DirectSize = ValueInfo.Width;
372     DirectAlign = ValueInfo.Align;
373   }
374 
375   // Cast the address we've calculated to the right type.
376   llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy);
377   if (IsIndirect)
378     DirectTy = DirectTy->getPointerTo(0);
379 
380   Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy,
381                                         DirectSize, DirectAlign,
382                                         SlotSizeAndAlign,
383                                         AllowHigherAlign);
384 
385   if (IsIndirect) {
386     Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.Align);
387   }
388 
389   return Addr;
390 
391 }
392 
393 static Address emitMergePHI(CodeGenFunction &CGF,
394                             Address Addr1, llvm::BasicBlock *Block1,
395                             Address Addr2, llvm::BasicBlock *Block2,
396                             const llvm::Twine &Name = "") {
397   assert(Addr1.getType() == Addr2.getType());
398   llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name);
399   PHI->addIncoming(Addr1.getPointer(), Block1);
400   PHI->addIncoming(Addr2.getPointer(), Block2);
401   CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment());
402   return Address(PHI, Align);
403 }
404 
405 TargetCodeGenInfo::~TargetCodeGenInfo() = default;
406 
407 // If someone can figure out a general rule for this, that would be great.
408 // It's probably just doomed to be platform-dependent, though.
409 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
410   // Verified for:
411   //   x86-64     FreeBSD, Linux, Darwin
412   //   x86-32     FreeBSD, Linux, Darwin
413   //   PowerPC    Linux, Darwin
414   //   ARM        Darwin (*not* EABI)
415   //   AArch64    Linux
416   return 32;
417 }
418 
419 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
420                                      const FunctionNoProtoType *fnType) const {
421   // The following conventions are known to require this to be false:
422   //   x86_stdcall
423   //   MIPS
424   // For everything else, we just prefer false unless we opt out.
425   return false;
426 }
427 
428 void
429 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
430                                              llvm::SmallString<24> &Opt) const {
431   // This assumes the user is passing a library name like "rt" instead of a
432   // filename like "librt.a/so", and that they don't care whether it's static or
433   // dynamic.
434   Opt = "-l";
435   Opt += Lib;
436 }
437 
438 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const {
439   // OpenCL kernels are called via an explicit runtime API with arguments
440   // set with clSetKernelArg(), not as normal sub-functions.
441   // Return SPIR_KERNEL by default as the kernel calling convention to
442   // ensure the fingerprint is fixed such way that each OpenCL argument
443   // gets one matching argument in the produced kernel function argument
444   // list to enable feasible implementation of clSetKernelArg() with
445   // aggregates etc. In case we would use the default C calling conv here,
446   // clSetKernelArg() might break depending on the target-specific
447   // conventions; different targets might split structs passed as values
448   // to multiple function arguments etc.
449   return llvm::CallingConv::SPIR_KERNEL;
450 }
451 
452 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM,
453     llvm::PointerType *T, QualType QT) const {
454   return llvm::ConstantPointerNull::get(T);
455 }
456 
457 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
458                                                    const VarDecl *D) const {
459   assert(!CGM.getLangOpts().OpenCL &&
460          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
461          "Address space agnostic languages only");
462   return D ? D->getType().getAddressSpace() : LangAS::Default;
463 }
464 
465 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast(
466     CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr,
467     LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const {
468   // Since target may map different address spaces in AST to the same address
469   // space, an address space conversion may end up as a bitcast.
470   if (auto *C = dyn_cast<llvm::Constant>(Src))
471     return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy);
472   // Try to preserve the source's name to make IR more readable.
473   return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
474       Src, DestTy, Src->hasName() ? Src->getName() + ".ascast" : "");
475 }
476 
477 llvm::Constant *
478 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src,
479                                         LangAS SrcAddr, LangAS DestAddr,
480                                         llvm::Type *DestTy) const {
481   // Since target may map different address spaces in AST to the same address
482   // space, an address space conversion may end up as a bitcast.
483   return llvm::ConstantExpr::getPointerCast(Src, DestTy);
484 }
485 
486 llvm::SyncScope::ID
487 TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts,
488                                       SyncScope Scope,
489                                       llvm::AtomicOrdering Ordering,
490                                       llvm::LLVMContext &Ctx) const {
491   return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */
492 }
493 
494 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
495 
496 /// isEmptyField - Return true iff a the field is "empty", that is it
497 /// is an unnamed bit-field or an (array of) empty record(s).
498 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
499                          bool AllowArrays) {
500   if (FD->isUnnamedBitfield())
501     return true;
502 
503   QualType FT = FD->getType();
504 
505   // Constant arrays of empty records count as empty, strip them off.
506   // Constant arrays of zero length always count as empty.
507   bool WasArray = false;
508   if (AllowArrays)
509     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
510       if (AT->getSize() == 0)
511         return true;
512       FT = AT->getElementType();
513       // The [[no_unique_address]] special case below does not apply to
514       // arrays of C++ empty records, so we need to remember this fact.
515       WasArray = true;
516     }
517 
518   const RecordType *RT = FT->getAs<RecordType>();
519   if (!RT)
520     return false;
521 
522   // C++ record fields are never empty, at least in the Itanium ABI.
523   //
524   // FIXME: We should use a predicate for whether this behavior is true in the
525   // current ABI.
526   //
527   // The exception to the above rule are fields marked with the
528   // [[no_unique_address]] attribute (since C++20).  Those do count as empty
529   // according to the Itanium ABI.  The exception applies only to records,
530   // not arrays of records, so we must also check whether we stripped off an
531   // array type above.
532   if (isa<CXXRecordDecl>(RT->getDecl()) &&
533       (WasArray || !FD->hasAttr<NoUniqueAddressAttr>()))
534     return false;
535 
536   return isEmptyRecord(Context, FT, AllowArrays);
537 }
538 
539 /// isEmptyRecord - Return true iff a structure contains only empty
540 /// fields. Note that a structure with a flexible array member is not
541 /// considered empty.
542 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
543   const RecordType *RT = T->getAs<RecordType>();
544   if (!RT)
545     return false;
546   const RecordDecl *RD = RT->getDecl();
547   if (RD->hasFlexibleArrayMember())
548     return false;
549 
550   // If this is a C++ record, check the bases first.
551   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
552     for (const auto &I : CXXRD->bases())
553       if (!isEmptyRecord(Context, I.getType(), true))
554         return false;
555 
556   for (const auto *I : RD->fields())
557     if (!isEmptyField(Context, I, AllowArrays))
558       return false;
559   return true;
560 }
561 
562 /// isSingleElementStruct - Determine if a structure is a "single
563 /// element struct", i.e. it has exactly one non-empty field or
564 /// exactly one field which is itself a single element
565 /// struct. Structures with flexible array members are never
566 /// considered single element structs.
567 ///
568 /// \return The field declaration for the single non-empty field, if
569 /// it exists.
570 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
571   const RecordType *RT = T->getAs<RecordType>();
572   if (!RT)
573     return nullptr;
574 
575   const RecordDecl *RD = RT->getDecl();
576   if (RD->hasFlexibleArrayMember())
577     return nullptr;
578 
579   const Type *Found = nullptr;
580 
581   // If this is a C++ record, check the bases first.
582   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
583     for (const auto &I : CXXRD->bases()) {
584       // Ignore empty records.
585       if (isEmptyRecord(Context, I.getType(), true))
586         continue;
587 
588       // If we already found an element then this isn't a single-element struct.
589       if (Found)
590         return nullptr;
591 
592       // If this is non-empty and not a single element struct, the composite
593       // cannot be a single element struct.
594       Found = isSingleElementStruct(I.getType(), Context);
595       if (!Found)
596         return nullptr;
597     }
598   }
599 
600   // Check for single element.
601   for (const auto *FD : RD->fields()) {
602     QualType FT = FD->getType();
603 
604     // Ignore empty fields.
605     if (isEmptyField(Context, FD, true))
606       continue;
607 
608     // If we already found an element then this isn't a single-element
609     // struct.
610     if (Found)
611       return nullptr;
612 
613     // Treat single element arrays as the element.
614     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
615       if (AT->getSize().getZExtValue() != 1)
616         break;
617       FT = AT->getElementType();
618     }
619 
620     if (!isAggregateTypeForABI(FT)) {
621       Found = FT.getTypePtr();
622     } else {
623       Found = isSingleElementStruct(FT, Context);
624       if (!Found)
625         return nullptr;
626     }
627   }
628 
629   // We don't consider a struct a single-element struct if it has
630   // padding beyond the element type.
631   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
632     return nullptr;
633 
634   return Found;
635 }
636 
637 namespace {
638 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
639                        const ABIArgInfo &AI) {
640   // This default implementation defers to the llvm backend's va_arg
641   // instruction. It can handle only passing arguments directly
642   // (typically only handled in the backend for primitive types), or
643   // aggregates passed indirectly by pointer (NOTE: if the "byval"
644   // flag has ABI impact in the callee, this implementation cannot
645   // work.)
646 
647   // Only a few cases are covered here at the moment -- those needed
648   // by the default abi.
649   llvm::Value *Val;
650 
651   if (AI.isIndirect()) {
652     assert(!AI.getPaddingType() &&
653            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
654     assert(
655         !AI.getIndirectRealign() &&
656         "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!");
657 
658     auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty);
659     CharUnits TyAlignForABI = TyInfo.Align;
660 
661     llvm::Type *BaseTy =
662         llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
663     llvm::Value *Addr =
664         CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy);
665     return Address(Addr, TyAlignForABI);
666   } else {
667     assert((AI.isDirect() || AI.isExtend()) &&
668            "Unexpected ArgInfo Kind in generic VAArg emitter!");
669 
670     assert(!AI.getInReg() &&
671            "Unexpected InReg seen in arginfo in generic VAArg emitter!");
672     assert(!AI.getPaddingType() &&
673            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
674     assert(!AI.getDirectOffset() &&
675            "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!");
676     assert(!AI.getCoerceToType() &&
677            "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!");
678 
679     Address Temp = CGF.CreateMemTemp(Ty, "varet");
680     Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty));
681     CGF.Builder.CreateStore(Val, Temp);
682     return Temp;
683   }
684 }
685 
686 /// DefaultABIInfo - The default implementation for ABI specific
687 /// details. This implementation provides information which results in
688 /// self-consistent and sensible LLVM IR generation, but does not
689 /// conform to any particular ABI.
690 class DefaultABIInfo : public ABIInfo {
691 public:
692   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
693 
694   ABIArgInfo classifyReturnType(QualType RetTy) const;
695   ABIArgInfo classifyArgumentType(QualType RetTy) const;
696 
697   void computeInfo(CGFunctionInfo &FI) const override {
698     if (!getCXXABI().classifyReturnType(FI))
699       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
700     for (auto &I : FI.arguments())
701       I.info = classifyArgumentType(I.type);
702   }
703 
704   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
705                     QualType Ty) const override {
706     return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty));
707   }
708 };
709 
710 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
711 public:
712   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
713       : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {}
714 };
715 
716 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
717   Ty = useFirstFieldIfTransparentUnion(Ty);
718 
719   if (isAggregateTypeForABI(Ty)) {
720     // Records with non-trivial destructors/copy-constructors should not be
721     // passed by value.
722     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
723       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
724 
725     return getNaturalAlignIndirect(Ty);
726   }
727 
728   // Treat an enum type as its underlying type.
729   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
730     Ty = EnumTy->getDecl()->getIntegerType();
731 
732   ASTContext &Context = getContext();
733   if (const auto *EIT = Ty->getAs<ExtIntType>())
734     if (EIT->getNumBits() >
735         Context.getTypeSize(Context.getTargetInfo().hasInt128Type()
736                                 ? Context.Int128Ty
737                                 : Context.LongLongTy))
738       return getNaturalAlignIndirect(Ty);
739 
740   return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
741                                             : ABIArgInfo::getDirect());
742 }
743 
744 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
745   if (RetTy->isVoidType())
746     return ABIArgInfo::getIgnore();
747 
748   if (isAggregateTypeForABI(RetTy))
749     return getNaturalAlignIndirect(RetTy);
750 
751   // Treat an enum type as its underlying type.
752   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
753     RetTy = EnumTy->getDecl()->getIntegerType();
754 
755   if (const auto *EIT = RetTy->getAs<ExtIntType>())
756     if (EIT->getNumBits() >
757         getContext().getTypeSize(getContext().getTargetInfo().hasInt128Type()
758                                      ? getContext().Int128Ty
759                                      : getContext().LongLongTy))
760       return getNaturalAlignIndirect(RetTy);
761 
762   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
763                                                : ABIArgInfo::getDirect());
764 }
765 
766 //===----------------------------------------------------------------------===//
767 // WebAssembly ABI Implementation
768 //
769 // This is a very simple ABI that relies a lot on DefaultABIInfo.
770 //===----------------------------------------------------------------------===//
771 
772 class WebAssemblyABIInfo final : public SwiftABIInfo {
773 public:
774   enum ABIKind {
775     MVP = 0,
776     ExperimentalMV = 1,
777   };
778 
779 private:
780   DefaultABIInfo defaultInfo;
781   ABIKind Kind;
782 
783 public:
784   explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind)
785       : SwiftABIInfo(CGT), defaultInfo(CGT), Kind(Kind) {}
786 
787 private:
788   ABIArgInfo classifyReturnType(QualType RetTy) const;
789   ABIArgInfo classifyArgumentType(QualType Ty) const;
790 
791   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
792   // non-virtual, but computeInfo and EmitVAArg are virtual, so we
793   // overload them.
794   void computeInfo(CGFunctionInfo &FI) const override {
795     if (!getCXXABI().classifyReturnType(FI))
796       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
797     for (auto &Arg : FI.arguments())
798       Arg.info = classifyArgumentType(Arg.type);
799   }
800 
801   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
802                     QualType Ty) const override;
803 
804   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
805                                     bool asReturnValue) const override {
806     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
807   }
808 
809   bool isSwiftErrorInRegister() const override {
810     return false;
811   }
812 };
813 
814 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo {
815 public:
816   explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
817                                         WebAssemblyABIInfo::ABIKind K)
818       : TargetCodeGenInfo(std::make_unique<WebAssemblyABIInfo>(CGT, K)) {}
819 
820   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
821                            CodeGen::CodeGenModule &CGM) const override {
822     TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
823     if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
824       if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) {
825         llvm::Function *Fn = cast<llvm::Function>(GV);
826         llvm::AttrBuilder B;
827         B.addAttribute("wasm-import-module", Attr->getImportModule());
828         Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
829       }
830       if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) {
831         llvm::Function *Fn = cast<llvm::Function>(GV);
832         llvm::AttrBuilder B;
833         B.addAttribute("wasm-import-name", Attr->getImportName());
834         Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
835       }
836       if (const auto *Attr = FD->getAttr<WebAssemblyExportNameAttr>()) {
837         llvm::Function *Fn = cast<llvm::Function>(GV);
838         llvm::AttrBuilder B;
839         B.addAttribute("wasm-export-name", Attr->getExportName());
840         Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
841       }
842     }
843 
844     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
845       llvm::Function *Fn = cast<llvm::Function>(GV);
846       if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype())
847         Fn->addFnAttr("no-prototype");
848     }
849   }
850 };
851 
852 /// Classify argument of given type \p Ty.
853 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const {
854   Ty = useFirstFieldIfTransparentUnion(Ty);
855 
856   if (isAggregateTypeForABI(Ty)) {
857     // Records with non-trivial destructors/copy-constructors should not be
858     // passed by value.
859     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
860       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
861     // Ignore empty structs/unions.
862     if (isEmptyRecord(getContext(), Ty, true))
863       return ABIArgInfo::getIgnore();
864     // Lower single-element structs to just pass a regular value. TODO: We
865     // could do reasonable-size multiple-element structs too, using getExpand(),
866     // though watch out for things like bitfields.
867     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
868       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
869     // For the experimental multivalue ABI, fully expand all other aggregates
870     if (Kind == ABIKind::ExperimentalMV) {
871       const RecordType *RT = Ty->getAs<RecordType>();
872       assert(RT);
873       bool HasBitField = false;
874       for (auto *Field : RT->getDecl()->fields()) {
875         if (Field->isBitField()) {
876           HasBitField = true;
877           break;
878         }
879       }
880       if (!HasBitField)
881         return ABIArgInfo::getExpand();
882     }
883   }
884 
885   // Otherwise just do the default thing.
886   return defaultInfo.classifyArgumentType(Ty);
887 }
888 
889 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const {
890   if (isAggregateTypeForABI(RetTy)) {
891     // Records with non-trivial destructors/copy-constructors should not be
892     // returned by value.
893     if (!getRecordArgABI(RetTy, getCXXABI())) {
894       // Ignore empty structs/unions.
895       if (isEmptyRecord(getContext(), RetTy, true))
896         return ABIArgInfo::getIgnore();
897       // Lower single-element structs to just return a regular value. TODO: We
898       // could do reasonable-size multiple-element structs too, using
899       // ABIArgInfo::getDirect().
900       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
901         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
902       // For the experimental multivalue ABI, return all other aggregates
903       if (Kind == ABIKind::ExperimentalMV)
904         return ABIArgInfo::getDirect();
905     }
906   }
907 
908   // Otherwise just do the default thing.
909   return defaultInfo.classifyReturnType(RetTy);
910 }
911 
912 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
913                                       QualType Ty) const {
914   bool IsIndirect = isAggregateTypeForABI(Ty) &&
915                     !isEmptyRecord(getContext(), Ty, true) &&
916                     !isSingleElementStruct(Ty, getContext());
917   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
918                           getContext().getTypeInfoInChars(Ty),
919                           CharUnits::fromQuantity(4),
920                           /*AllowHigherAlign=*/true);
921 }
922 
923 //===----------------------------------------------------------------------===//
924 // le32/PNaCl bitcode ABI Implementation
925 //
926 // This is a simplified version of the x86_32 ABI.  Arguments and return values
927 // are always passed on the stack.
928 //===----------------------------------------------------------------------===//
929 
930 class PNaClABIInfo : public ABIInfo {
931  public:
932   PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
933 
934   ABIArgInfo classifyReturnType(QualType RetTy) const;
935   ABIArgInfo classifyArgumentType(QualType RetTy) const;
936 
937   void computeInfo(CGFunctionInfo &FI) const override;
938   Address EmitVAArg(CodeGenFunction &CGF,
939                     Address VAListAddr, QualType Ty) const override;
940 };
941 
942 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
943  public:
944    PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
945        : TargetCodeGenInfo(std::make_unique<PNaClABIInfo>(CGT)) {}
946 };
947 
948 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
949   if (!getCXXABI().classifyReturnType(FI))
950     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
951 
952   for (auto &I : FI.arguments())
953     I.info = classifyArgumentType(I.type);
954 }
955 
956 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
957                                 QualType Ty) const {
958   // The PNaCL ABI is a bit odd, in that varargs don't use normal
959   // function classification. Structs get passed directly for varargs
960   // functions, through a rewriting transform in
961   // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows
962   // this target to actually support a va_arg instructions with an
963   // aggregate type, unlike other targets.
964   return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
965 }
966 
967 /// Classify argument of given type \p Ty.
968 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
969   if (isAggregateTypeForABI(Ty)) {
970     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
971       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
972     return getNaturalAlignIndirect(Ty);
973   } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
974     // Treat an enum type as its underlying type.
975     Ty = EnumTy->getDecl()->getIntegerType();
976   } else if (Ty->isFloatingType()) {
977     // Floating-point types don't go inreg.
978     return ABIArgInfo::getDirect();
979   } else if (const auto *EIT = Ty->getAs<ExtIntType>()) {
980     // Treat extended integers as integers if <=64, otherwise pass indirectly.
981     if (EIT->getNumBits() > 64)
982       return getNaturalAlignIndirect(Ty);
983     return ABIArgInfo::getDirect();
984   }
985 
986   return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
987                                             : ABIArgInfo::getDirect());
988 }
989 
990 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
991   if (RetTy->isVoidType())
992     return ABIArgInfo::getIgnore();
993 
994   // In the PNaCl ABI we always return records/structures on the stack.
995   if (isAggregateTypeForABI(RetTy))
996     return getNaturalAlignIndirect(RetTy);
997 
998   // Treat extended integers as integers if <=64, otherwise pass indirectly.
999   if (const auto *EIT = RetTy->getAs<ExtIntType>()) {
1000     if (EIT->getNumBits() > 64)
1001       return getNaturalAlignIndirect(RetTy);
1002     return ABIArgInfo::getDirect();
1003   }
1004 
1005   // Treat an enum type as its underlying type.
1006   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1007     RetTy = EnumTy->getDecl()->getIntegerType();
1008 
1009   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
1010                                                : ABIArgInfo::getDirect());
1011 }
1012 
1013 /// IsX86_MMXType - Return true if this is an MMX type.
1014 bool IsX86_MMXType(llvm::Type *IRType) {
1015   // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
1016   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
1017     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
1018     IRType->getScalarSizeInBits() != 64;
1019 }
1020 
1021 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1022                                           StringRef Constraint,
1023                                           llvm::Type* Ty) {
1024   bool IsMMXCons = llvm::StringSwitch<bool>(Constraint)
1025                      .Cases("y", "&y", "^Ym", true)
1026                      .Default(false);
1027   if (IsMMXCons && Ty->isVectorTy()) {
1028     if (cast<llvm::VectorType>(Ty)->getPrimitiveSizeInBits().getFixedSize() !=
1029         64) {
1030       // Invalid MMX constraint
1031       return nullptr;
1032     }
1033 
1034     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
1035   }
1036 
1037   // No operation needed
1038   return Ty;
1039 }
1040 
1041 /// Returns true if this type can be passed in SSE registers with the
1042 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
1043 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
1044   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
1045     if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) {
1046       if (BT->getKind() == BuiltinType::LongDouble) {
1047         if (&Context.getTargetInfo().getLongDoubleFormat() ==
1048             &llvm::APFloat::x87DoubleExtended())
1049           return false;
1050       }
1051       return true;
1052     }
1053   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
1054     // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
1055     // registers specially.
1056     unsigned VecSize = Context.getTypeSize(VT);
1057     if (VecSize == 128 || VecSize == 256 || VecSize == 512)
1058       return true;
1059   }
1060   return false;
1061 }
1062 
1063 /// Returns true if this aggregate is small enough to be passed in SSE registers
1064 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
1065 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
1066   return NumMembers <= 4;
1067 }
1068 
1069 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86.
1070 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) {
1071   auto AI = ABIArgInfo::getDirect(T);
1072   AI.setInReg(true);
1073   AI.setCanBeFlattened(false);
1074   return AI;
1075 }
1076 
1077 //===----------------------------------------------------------------------===//
1078 // X86-32 ABI Implementation
1079 //===----------------------------------------------------------------------===//
1080 
1081 /// Similar to llvm::CCState, but for Clang.
1082 struct CCState {
1083   CCState(CGFunctionInfo &FI)
1084       : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()) {}
1085 
1086   llvm::SmallBitVector IsPreassigned;
1087   unsigned CC = CallingConv::CC_C;
1088   unsigned FreeRegs = 0;
1089   unsigned FreeSSERegs = 0;
1090 };
1091 
1092 enum {
1093   // Vectorcall only allows the first 6 parameters to be passed in registers.
1094   VectorcallMaxParamNumAsReg = 6
1095 };
1096 
1097 /// X86_32ABIInfo - The X86-32 ABI information.
1098 class X86_32ABIInfo : public SwiftABIInfo {
1099   enum Class {
1100     Integer,
1101     Float
1102   };
1103 
1104   static const unsigned MinABIStackAlignInBytes = 4;
1105 
1106   bool IsDarwinVectorABI;
1107   bool IsRetSmallStructInRegABI;
1108   bool IsWin32StructABI;
1109   bool IsSoftFloatABI;
1110   bool IsMCUABI;
1111   unsigned DefaultNumRegisterParameters;
1112 
1113   static bool isRegisterSize(unsigned Size) {
1114     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
1115   }
1116 
1117   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
1118     // FIXME: Assumes vectorcall is in use.
1119     return isX86VectorTypeForVectorCall(getContext(), Ty);
1120   }
1121 
1122   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
1123                                          uint64_t NumMembers) const override {
1124     // FIXME: Assumes vectorcall is in use.
1125     return isX86VectorCallAggregateSmallEnough(NumMembers);
1126   }
1127 
1128   bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
1129 
1130   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1131   /// such that the argument will be passed in memory.
1132   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
1133 
1134   ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const;
1135 
1136   /// Return the alignment to use for the given type on the stack.
1137   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
1138 
1139   Class classify(QualType Ty) const;
1140   ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
1141   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
1142 
1143   /// Updates the number of available free registers, returns
1144   /// true if any registers were allocated.
1145   bool updateFreeRegs(QualType Ty, CCState &State) const;
1146 
1147   bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg,
1148                                 bool &NeedsPadding) const;
1149   bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const;
1150 
1151   bool canExpandIndirectArgument(QualType Ty) const;
1152 
1153   /// Rewrite the function info so that all memory arguments use
1154   /// inalloca.
1155   void rewriteWithInAlloca(CGFunctionInfo &FI) const;
1156 
1157   void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1158                            CharUnits &StackOffset, ABIArgInfo &Info,
1159                            QualType Type) const;
1160   void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const;
1161 
1162 public:
1163 
1164   void computeInfo(CGFunctionInfo &FI) const override;
1165   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1166                     QualType Ty) const override;
1167 
1168   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1169                 bool RetSmallStructInRegABI, bool Win32StructABI,
1170                 unsigned NumRegisterParameters, bool SoftFloatABI)
1171     : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI),
1172       IsRetSmallStructInRegABI(RetSmallStructInRegABI),
1173       IsWin32StructABI(Win32StructABI),
1174       IsSoftFloatABI(SoftFloatABI),
1175       IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()),
1176       DefaultNumRegisterParameters(NumRegisterParameters) {}
1177 
1178   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
1179                                     bool asReturnValue) const override {
1180     // LLVM's x86-32 lowering currently only assigns up to three
1181     // integer registers and three fp registers.  Oddly, it'll use up to
1182     // four vector registers for vectors, but those can overlap with the
1183     // scalar registers.
1184     return occupiesMoreThan(CGT, scalars, /*total*/ 3);
1185   }
1186 
1187   bool isSwiftErrorInRegister() const override {
1188     // x86-32 lowering does not support passing swifterror in a register.
1189     return false;
1190   }
1191 };
1192 
1193 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
1194 public:
1195   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1196                           bool RetSmallStructInRegABI, bool Win32StructABI,
1197                           unsigned NumRegisterParameters, bool SoftFloatABI)
1198       : TargetCodeGenInfo(std::make_unique<X86_32ABIInfo>(
1199             CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
1200             NumRegisterParameters, SoftFloatABI)) {}
1201 
1202   static bool isStructReturnInRegABI(
1203       const llvm::Triple &Triple, const CodeGenOptions &Opts);
1204 
1205   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1206                            CodeGen::CodeGenModule &CGM) const override;
1207 
1208   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1209     // Darwin uses different dwarf register numbers for EH.
1210     if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
1211     return 4;
1212   }
1213 
1214   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1215                                llvm::Value *Address) const override;
1216 
1217   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1218                                   StringRef Constraint,
1219                                   llvm::Type* Ty) const override {
1220     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1221   }
1222 
1223   void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
1224                                 std::string &Constraints,
1225                                 std::vector<llvm::Type *> &ResultRegTypes,
1226                                 std::vector<llvm::Type *> &ResultTruncRegTypes,
1227                                 std::vector<LValue> &ResultRegDests,
1228                                 std::string &AsmString,
1229                                 unsigned NumOutputs) const override;
1230 
1231   llvm::Constant *
1232   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
1233     unsigned Sig = (0xeb << 0) |  // jmp rel8
1234                    (0x06 << 8) |  //           .+0x08
1235                    ('v' << 16) |
1236                    ('2' << 24);
1237     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
1238   }
1239 
1240   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
1241     return "movl\t%ebp, %ebp"
1242            "\t\t// marker for objc_retainAutoreleaseReturnValue";
1243   }
1244 };
1245 
1246 }
1247 
1248 /// Rewrite input constraint references after adding some output constraints.
1249 /// In the case where there is one output and one input and we add one output,
1250 /// we need to replace all operand references greater than or equal to 1:
1251 ///     mov $0, $1
1252 ///     mov eax, $1
1253 /// The result will be:
1254 ///     mov $0, $2
1255 ///     mov eax, $2
1256 static void rewriteInputConstraintReferences(unsigned FirstIn,
1257                                              unsigned NumNewOuts,
1258                                              std::string &AsmString) {
1259   std::string Buf;
1260   llvm::raw_string_ostream OS(Buf);
1261   size_t Pos = 0;
1262   while (Pos < AsmString.size()) {
1263     size_t DollarStart = AsmString.find('$', Pos);
1264     if (DollarStart == std::string::npos)
1265       DollarStart = AsmString.size();
1266     size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
1267     if (DollarEnd == std::string::npos)
1268       DollarEnd = AsmString.size();
1269     OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
1270     Pos = DollarEnd;
1271     size_t NumDollars = DollarEnd - DollarStart;
1272     if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
1273       // We have an operand reference.
1274       size_t DigitStart = Pos;
1275       if (AsmString[DigitStart] == '{') {
1276         OS << '{';
1277         ++DigitStart;
1278       }
1279       size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
1280       if (DigitEnd == std::string::npos)
1281         DigitEnd = AsmString.size();
1282       StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
1283       unsigned OperandIndex;
1284       if (!OperandStr.getAsInteger(10, OperandIndex)) {
1285         if (OperandIndex >= FirstIn)
1286           OperandIndex += NumNewOuts;
1287         OS << OperandIndex;
1288       } else {
1289         OS << OperandStr;
1290       }
1291       Pos = DigitEnd;
1292     }
1293   }
1294   AsmString = std::move(OS.str());
1295 }
1296 
1297 /// Add output constraints for EAX:EDX because they are return registers.
1298 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
1299     CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
1300     std::vector<llvm::Type *> &ResultRegTypes,
1301     std::vector<llvm::Type *> &ResultTruncRegTypes,
1302     std::vector<LValue> &ResultRegDests, std::string &AsmString,
1303     unsigned NumOutputs) const {
1304   uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
1305 
1306   // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
1307   // larger.
1308   if (!Constraints.empty())
1309     Constraints += ',';
1310   if (RetWidth <= 32) {
1311     Constraints += "={eax}";
1312     ResultRegTypes.push_back(CGF.Int32Ty);
1313   } else {
1314     // Use the 'A' constraint for EAX:EDX.
1315     Constraints += "=A";
1316     ResultRegTypes.push_back(CGF.Int64Ty);
1317   }
1318 
1319   // Truncate EAX or EAX:EDX to an integer of the appropriate size.
1320   llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
1321   ResultTruncRegTypes.push_back(CoerceTy);
1322 
1323   // Coerce the integer by bitcasting the return slot pointer.
1324   ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(CGF),
1325                                                   CoerceTy->getPointerTo()));
1326   ResultRegDests.push_back(ReturnSlot);
1327 
1328   rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
1329 }
1330 
1331 /// shouldReturnTypeInRegister - Determine if the given type should be
1332 /// returned in a register (for the Darwin and MCU ABI).
1333 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
1334                                                ASTContext &Context) const {
1335   uint64_t Size = Context.getTypeSize(Ty);
1336 
1337   // For i386, type must be register sized.
1338   // For the MCU ABI, it only needs to be <= 8-byte
1339   if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size)))
1340    return false;
1341 
1342   if (Ty->isVectorType()) {
1343     // 64- and 128- bit vectors inside structures are not returned in
1344     // registers.
1345     if (Size == 64 || Size == 128)
1346       return false;
1347 
1348     return true;
1349   }
1350 
1351   // If this is a builtin, pointer, enum, complex type, member pointer, or
1352   // member function pointer it is ok.
1353   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
1354       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
1355       Ty->isBlockPointerType() || Ty->isMemberPointerType())
1356     return true;
1357 
1358   // Arrays are treated like records.
1359   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
1360     return shouldReturnTypeInRegister(AT->getElementType(), Context);
1361 
1362   // Otherwise, it must be a record type.
1363   const RecordType *RT = Ty->getAs<RecordType>();
1364   if (!RT) return false;
1365 
1366   // FIXME: Traverse bases here too.
1367 
1368   // Structure types are passed in register if all fields would be
1369   // passed in a register.
1370   for (const auto *FD : RT->getDecl()->fields()) {
1371     // Empty fields are ignored.
1372     if (isEmptyField(Context, FD, true))
1373       continue;
1374 
1375     // Check fields recursively.
1376     if (!shouldReturnTypeInRegister(FD->getType(), Context))
1377       return false;
1378   }
1379   return true;
1380 }
1381 
1382 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
1383   // Treat complex types as the element type.
1384   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
1385     Ty = CTy->getElementType();
1386 
1387   // Check for a type which we know has a simple scalar argument-passing
1388   // convention without any padding.  (We're specifically looking for 32
1389   // and 64-bit integer and integer-equivalents, float, and double.)
1390   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
1391       !Ty->isEnumeralType() && !Ty->isBlockPointerType())
1392     return false;
1393 
1394   uint64_t Size = Context.getTypeSize(Ty);
1395   return Size == 32 || Size == 64;
1396 }
1397 
1398 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD,
1399                           uint64_t &Size) {
1400   for (const auto *FD : RD->fields()) {
1401     // Scalar arguments on the stack get 4 byte alignment on x86. If the
1402     // argument is smaller than 32-bits, expanding the struct will create
1403     // alignment padding.
1404     if (!is32Or64BitBasicType(FD->getType(), Context))
1405       return false;
1406 
1407     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
1408     // how to expand them yet, and the predicate for telling if a bitfield still
1409     // counts as "basic" is more complicated than what we were doing previously.
1410     if (FD->isBitField())
1411       return false;
1412 
1413     Size += Context.getTypeSize(FD->getType());
1414   }
1415   return true;
1416 }
1417 
1418 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD,
1419                                  uint64_t &Size) {
1420   // Don't do this if there are any non-empty bases.
1421   for (const CXXBaseSpecifier &Base : RD->bases()) {
1422     if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(),
1423                               Size))
1424       return false;
1425   }
1426   if (!addFieldSizes(Context, RD, Size))
1427     return false;
1428   return true;
1429 }
1430 
1431 /// Test whether an argument type which is to be passed indirectly (on the
1432 /// stack) would have the equivalent layout if it was expanded into separate
1433 /// arguments. If so, we prefer to do the latter to avoid inhibiting
1434 /// optimizations.
1435 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const {
1436   // We can only expand structure types.
1437   const RecordType *RT = Ty->getAs<RecordType>();
1438   if (!RT)
1439     return false;
1440   const RecordDecl *RD = RT->getDecl();
1441   uint64_t Size = 0;
1442   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1443     if (!IsWin32StructABI) {
1444       // On non-Windows, we have to conservatively match our old bitcode
1445       // prototypes in order to be ABI-compatible at the bitcode level.
1446       if (!CXXRD->isCLike())
1447         return false;
1448     } else {
1449       // Don't do this for dynamic classes.
1450       if (CXXRD->isDynamicClass())
1451         return false;
1452     }
1453     if (!addBaseAndFieldSizes(getContext(), CXXRD, Size))
1454       return false;
1455   } else {
1456     if (!addFieldSizes(getContext(), RD, Size))
1457       return false;
1458   }
1459 
1460   // We can do this if there was no alignment padding.
1461   return Size == getContext().getTypeSize(Ty);
1462 }
1463 
1464 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const {
1465   // If the return value is indirect, then the hidden argument is consuming one
1466   // integer register.
1467   if (State.FreeRegs) {
1468     --State.FreeRegs;
1469     if (!IsMCUABI)
1470       return getNaturalAlignIndirectInReg(RetTy);
1471   }
1472   return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
1473 }
1474 
1475 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
1476                                              CCState &State) const {
1477   if (RetTy->isVoidType())
1478     return ABIArgInfo::getIgnore();
1479 
1480   const Type *Base = nullptr;
1481   uint64_t NumElts = 0;
1482   if ((State.CC == llvm::CallingConv::X86_VectorCall ||
1483        State.CC == llvm::CallingConv::X86_RegCall) &&
1484       isHomogeneousAggregate(RetTy, Base, NumElts)) {
1485     // The LLVM struct type for such an aggregate should lower properly.
1486     return ABIArgInfo::getDirect();
1487   }
1488 
1489   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
1490     // On Darwin, some vectors are returned in registers.
1491     if (IsDarwinVectorABI) {
1492       uint64_t Size = getContext().getTypeSize(RetTy);
1493 
1494       // 128-bit vectors are a special case; they are returned in
1495       // registers and we need to make sure to pick a type the LLVM
1496       // backend will like.
1497       if (Size == 128)
1498         return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
1499             llvm::Type::getInt64Ty(getVMContext()), 2));
1500 
1501       // Always return in register if it fits in a general purpose
1502       // register, or if it is 64 bits and has a single element.
1503       if ((Size == 8 || Size == 16 || Size == 32) ||
1504           (Size == 64 && VT->getNumElements() == 1))
1505         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1506                                                             Size));
1507 
1508       return getIndirectReturnResult(RetTy, State);
1509     }
1510 
1511     return ABIArgInfo::getDirect();
1512   }
1513 
1514   if (isAggregateTypeForABI(RetTy)) {
1515     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
1516       // Structures with flexible arrays are always indirect.
1517       if (RT->getDecl()->hasFlexibleArrayMember())
1518         return getIndirectReturnResult(RetTy, State);
1519     }
1520 
1521     // If specified, structs and unions are always indirect.
1522     if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType())
1523       return getIndirectReturnResult(RetTy, State);
1524 
1525     // Ignore empty structs/unions.
1526     if (isEmptyRecord(getContext(), RetTy, true))
1527       return ABIArgInfo::getIgnore();
1528 
1529     // Small structures which are register sized are generally returned
1530     // in a register.
1531     if (shouldReturnTypeInRegister(RetTy, getContext())) {
1532       uint64_t Size = getContext().getTypeSize(RetTy);
1533 
1534       // As a special-case, if the struct is a "single-element" struct, and
1535       // the field is of type "float" or "double", return it in a
1536       // floating-point register. (MSVC does not apply this special case.)
1537       // We apply a similar transformation for pointer types to improve the
1538       // quality of the generated IR.
1539       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
1540         if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
1541             || SeltTy->hasPointerRepresentation())
1542           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
1543 
1544       // FIXME: We should be able to narrow this integer in cases with dead
1545       // padding.
1546       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
1547     }
1548 
1549     return getIndirectReturnResult(RetTy, State);
1550   }
1551 
1552   // Treat an enum type as its underlying type.
1553   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1554     RetTy = EnumTy->getDecl()->getIntegerType();
1555 
1556   if (const auto *EIT = RetTy->getAs<ExtIntType>())
1557     if (EIT->getNumBits() > 64)
1558       return getIndirectReturnResult(RetTy, State);
1559 
1560   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
1561                                                : ABIArgInfo::getDirect());
1562 }
1563 
1564 static bool isSIMDVectorType(ASTContext &Context, QualType Ty) {
1565   return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
1566 }
1567 
1568 static bool isRecordWithSIMDVectorType(ASTContext &Context, QualType Ty) {
1569   const RecordType *RT = Ty->getAs<RecordType>();
1570   if (!RT)
1571     return 0;
1572   const RecordDecl *RD = RT->getDecl();
1573 
1574   // If this is a C++ record, check the bases first.
1575   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1576     for (const auto &I : CXXRD->bases())
1577       if (!isRecordWithSIMDVectorType(Context, I.getType()))
1578         return false;
1579 
1580   for (const auto *i : RD->fields()) {
1581     QualType FT = i->getType();
1582 
1583     if (isSIMDVectorType(Context, FT))
1584       return true;
1585 
1586     if (isRecordWithSIMDVectorType(Context, FT))
1587       return true;
1588   }
1589 
1590   return false;
1591 }
1592 
1593 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
1594                                                  unsigned Align) const {
1595   // Otherwise, if the alignment is less than or equal to the minimum ABI
1596   // alignment, just use the default; the backend will handle this.
1597   if (Align <= MinABIStackAlignInBytes)
1598     return 0; // Use default alignment.
1599 
1600   // On non-Darwin, the stack type alignment is always 4.
1601   if (!IsDarwinVectorABI) {
1602     // Set explicit alignment, since we may need to realign the top.
1603     return MinABIStackAlignInBytes;
1604   }
1605 
1606   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
1607   if (Align >= 16 && (isSIMDVectorType(getContext(), Ty) ||
1608                       isRecordWithSIMDVectorType(getContext(), Ty)))
1609     return 16;
1610 
1611   return MinABIStackAlignInBytes;
1612 }
1613 
1614 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
1615                                             CCState &State) const {
1616   if (!ByVal) {
1617     if (State.FreeRegs) {
1618       --State.FreeRegs; // Non-byval indirects just use one pointer.
1619       if (!IsMCUABI)
1620         return getNaturalAlignIndirectInReg(Ty);
1621     }
1622     return getNaturalAlignIndirect(Ty, false);
1623   }
1624 
1625   // Compute the byval alignment.
1626   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
1627   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
1628   if (StackAlign == 0)
1629     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true);
1630 
1631   // If the stack alignment is less than the type alignment, realign the
1632   // argument.
1633   bool Realign = TypeAlign > StackAlign;
1634   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign),
1635                                  /*ByVal=*/true, Realign);
1636 }
1637 
1638 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
1639   const Type *T = isSingleElementStruct(Ty, getContext());
1640   if (!T)
1641     T = Ty.getTypePtr();
1642 
1643   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
1644     BuiltinType::Kind K = BT->getKind();
1645     if (K == BuiltinType::Float || K == BuiltinType::Double)
1646       return Float;
1647   }
1648   return Integer;
1649 }
1650 
1651 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const {
1652   if (!IsSoftFloatABI) {
1653     Class C = classify(Ty);
1654     if (C == Float)
1655       return false;
1656   }
1657 
1658   unsigned Size = getContext().getTypeSize(Ty);
1659   unsigned SizeInRegs = (Size + 31) / 32;
1660 
1661   if (SizeInRegs == 0)
1662     return false;
1663 
1664   if (!IsMCUABI) {
1665     if (SizeInRegs > State.FreeRegs) {
1666       State.FreeRegs = 0;
1667       return false;
1668     }
1669   } else {
1670     // The MCU psABI allows passing parameters in-reg even if there are
1671     // earlier parameters that are passed on the stack. Also,
1672     // it does not allow passing >8-byte structs in-register,
1673     // even if there are 3 free registers available.
1674     if (SizeInRegs > State.FreeRegs || SizeInRegs > 2)
1675       return false;
1676   }
1677 
1678   State.FreeRegs -= SizeInRegs;
1679   return true;
1680 }
1681 
1682 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State,
1683                                              bool &InReg,
1684                                              bool &NeedsPadding) const {
1685   // On Windows, aggregates other than HFAs are never passed in registers, and
1686   // they do not consume register slots. Homogenous floating-point aggregates
1687   // (HFAs) have already been dealt with at this point.
1688   if (IsWin32StructABI && isAggregateTypeForABI(Ty))
1689     return false;
1690 
1691   NeedsPadding = false;
1692   InReg = !IsMCUABI;
1693 
1694   if (!updateFreeRegs(Ty, State))
1695     return false;
1696 
1697   if (IsMCUABI)
1698     return true;
1699 
1700   if (State.CC == llvm::CallingConv::X86_FastCall ||
1701       State.CC == llvm::CallingConv::X86_VectorCall ||
1702       State.CC == llvm::CallingConv::X86_RegCall) {
1703     if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs)
1704       NeedsPadding = true;
1705 
1706     return false;
1707   }
1708 
1709   return true;
1710 }
1711 
1712 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const {
1713   if (!updateFreeRegs(Ty, State))
1714     return false;
1715 
1716   if (IsMCUABI)
1717     return false;
1718 
1719   if (State.CC == llvm::CallingConv::X86_FastCall ||
1720       State.CC == llvm::CallingConv::X86_VectorCall ||
1721       State.CC == llvm::CallingConv::X86_RegCall) {
1722     if (getContext().getTypeSize(Ty) > 32)
1723       return false;
1724 
1725     return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() ||
1726         Ty->isReferenceType());
1727   }
1728 
1729   return true;
1730 }
1731 
1732 void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const {
1733   // Vectorcall x86 works subtly different than in x64, so the format is
1734   // a bit different than the x64 version.  First, all vector types (not HVAs)
1735   // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers.
1736   // This differs from the x64 implementation, where the first 6 by INDEX get
1737   // registers.
1738   // In the second pass over the arguments, HVAs are passed in the remaining
1739   // vector registers if possible, or indirectly by address. The address will be
1740   // passed in ECX/EDX if available. Any other arguments are passed according to
1741   // the usual fastcall rules.
1742   MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments();
1743   for (int I = 0, E = Args.size(); I < E; ++I) {
1744     const Type *Base = nullptr;
1745     uint64_t NumElts = 0;
1746     const QualType &Ty = Args[I].type;
1747     if ((Ty->isVectorType() || Ty->isBuiltinType()) &&
1748         isHomogeneousAggregate(Ty, Base, NumElts)) {
1749       if (State.FreeSSERegs >= NumElts) {
1750         State.FreeSSERegs -= NumElts;
1751         Args[I].info = ABIArgInfo::getDirectInReg();
1752         State.IsPreassigned.set(I);
1753       }
1754     }
1755   }
1756 }
1757 
1758 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
1759                                                CCState &State) const {
1760   // FIXME: Set alignment on indirect arguments.
1761   bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall;
1762   bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall;
1763   bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall;
1764 
1765   Ty = useFirstFieldIfTransparentUnion(Ty);
1766   TypeInfo TI = getContext().getTypeInfo(Ty);
1767 
1768   // Check with the C++ ABI first.
1769   const RecordType *RT = Ty->getAs<RecordType>();
1770   if (RT) {
1771     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
1772     if (RAA == CGCXXABI::RAA_Indirect) {
1773       return getIndirectResult(Ty, false, State);
1774     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
1775       // The field index doesn't matter, we'll fix it up later.
1776       return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
1777     }
1778   }
1779 
1780   // Regcall uses the concept of a homogenous vector aggregate, similar
1781   // to other targets.
1782   const Type *Base = nullptr;
1783   uint64_t NumElts = 0;
1784   if ((IsRegCall || IsVectorCall) &&
1785       isHomogeneousAggregate(Ty, Base, NumElts)) {
1786     if (State.FreeSSERegs >= NumElts) {
1787       State.FreeSSERegs -= NumElts;
1788 
1789       // Vectorcall passes HVAs directly and does not flatten them, but regcall
1790       // does.
1791       if (IsVectorCall)
1792         return getDirectX86Hva();
1793 
1794       if (Ty->isBuiltinType() || Ty->isVectorType())
1795         return ABIArgInfo::getDirect();
1796       return ABIArgInfo::getExpand();
1797     }
1798     return getIndirectResult(Ty, /*ByVal=*/false, State);
1799   }
1800 
1801   if (isAggregateTypeForABI(Ty)) {
1802     // Structures with flexible arrays are always indirect.
1803     // FIXME: This should not be byval!
1804     if (RT && RT->getDecl()->hasFlexibleArrayMember())
1805       return getIndirectResult(Ty, true, State);
1806 
1807     // Ignore empty structs/unions on non-Windows.
1808     if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true))
1809       return ABIArgInfo::getIgnore();
1810 
1811     llvm::LLVMContext &LLVMContext = getVMContext();
1812     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
1813     bool NeedsPadding = false;
1814     bool InReg;
1815     if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) {
1816       unsigned SizeInRegs = (TI.Width + 31) / 32;
1817       SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
1818       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
1819       if (InReg)
1820         return ABIArgInfo::getDirectInReg(Result);
1821       else
1822         return ABIArgInfo::getDirect(Result);
1823     }
1824     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
1825 
1826     // Pass over-aligned aggregates on Windows indirectly. This behavior was
1827     // added in MSVC 2015.
1828     if (IsWin32StructABI && TI.AlignIsRequired && TI.Align > 32)
1829       return getIndirectResult(Ty, /*ByVal=*/false, State);
1830 
1831     // Expand small (<= 128-bit) record types when we know that the stack layout
1832     // of those arguments will match the struct. This is important because the
1833     // LLVM backend isn't smart enough to remove byval, which inhibits many
1834     // optimizations.
1835     // Don't do this for the MCU if there are still free integer registers
1836     // (see X86_64 ABI for full explanation).
1837     if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) &&
1838         canExpandIndirectArgument(Ty))
1839       return ABIArgInfo::getExpandWithPadding(
1840           IsFastCall || IsVectorCall || IsRegCall, PaddingType);
1841 
1842     return getIndirectResult(Ty, true, State);
1843   }
1844 
1845   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1846     // On Windows, vectors are passed directly if registers are available, or
1847     // indirectly if not. This avoids the need to align argument memory. Pass
1848     // user-defined vector types larger than 512 bits indirectly for simplicity.
1849     if (IsWin32StructABI) {
1850       if (TI.Width <= 512 && State.FreeSSERegs > 0) {
1851         --State.FreeSSERegs;
1852         return ABIArgInfo::getDirectInReg();
1853       }
1854       return getIndirectResult(Ty, /*ByVal=*/false, State);
1855     }
1856 
1857     // On Darwin, some vectors are passed in memory, we handle this by passing
1858     // it as an i8/i16/i32/i64.
1859     if (IsDarwinVectorABI) {
1860       if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) ||
1861           (TI.Width == 64 && VT->getNumElements() == 1))
1862         return ABIArgInfo::getDirect(
1863             llvm::IntegerType::get(getVMContext(), TI.Width));
1864     }
1865 
1866     if (IsX86_MMXType(CGT.ConvertType(Ty)))
1867       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
1868 
1869     return ABIArgInfo::getDirect();
1870   }
1871 
1872 
1873   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1874     Ty = EnumTy->getDecl()->getIntegerType();
1875 
1876   bool InReg = shouldPrimitiveUseInReg(Ty, State);
1877 
1878   if (isPromotableIntegerTypeForABI(Ty)) {
1879     if (InReg)
1880       return ABIArgInfo::getExtendInReg(Ty);
1881     return ABIArgInfo::getExtend(Ty);
1882   }
1883 
1884   if (const auto * EIT = Ty->getAs<ExtIntType>()) {
1885     if (EIT->getNumBits() <= 64) {
1886       if (InReg)
1887         return ABIArgInfo::getDirectInReg();
1888       return ABIArgInfo::getDirect();
1889     }
1890     return getIndirectResult(Ty, /*ByVal=*/false, State);
1891   }
1892 
1893   if (InReg)
1894     return ABIArgInfo::getDirectInReg();
1895   return ABIArgInfo::getDirect();
1896 }
1897 
1898 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1899   CCState State(FI);
1900   if (IsMCUABI)
1901     State.FreeRegs = 3;
1902   else if (State.CC == llvm::CallingConv::X86_FastCall) {
1903     State.FreeRegs = 2;
1904     State.FreeSSERegs = 3;
1905   } else if (State.CC == llvm::CallingConv::X86_VectorCall) {
1906     State.FreeRegs = 2;
1907     State.FreeSSERegs = 6;
1908   } else if (FI.getHasRegParm())
1909     State.FreeRegs = FI.getRegParm();
1910   else if (State.CC == llvm::CallingConv::X86_RegCall) {
1911     State.FreeRegs = 5;
1912     State.FreeSSERegs = 8;
1913   } else if (IsWin32StructABI) {
1914     // Since MSVC 2015, the first three SSE vectors have been passed in
1915     // registers. The rest are passed indirectly.
1916     State.FreeRegs = DefaultNumRegisterParameters;
1917     State.FreeSSERegs = 3;
1918   } else
1919     State.FreeRegs = DefaultNumRegisterParameters;
1920 
1921   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
1922     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
1923   } else if (FI.getReturnInfo().isIndirect()) {
1924     // The C++ ABI is not aware of register usage, so we have to check if the
1925     // return value was sret and put it in a register ourselves if appropriate.
1926     if (State.FreeRegs) {
1927       --State.FreeRegs;  // The sret parameter consumes a register.
1928       if (!IsMCUABI)
1929         FI.getReturnInfo().setInReg(true);
1930     }
1931   }
1932 
1933   // The chain argument effectively gives us another free register.
1934   if (FI.isChainCall())
1935     ++State.FreeRegs;
1936 
1937   // For vectorcall, do a first pass over the arguments, assigning FP and vector
1938   // arguments to XMM registers as available.
1939   if (State.CC == llvm::CallingConv::X86_VectorCall)
1940     runVectorCallFirstPass(FI, State);
1941 
1942   bool UsedInAlloca = false;
1943   MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments();
1944   for (int I = 0, E = Args.size(); I < E; ++I) {
1945     // Skip arguments that have already been assigned.
1946     if (State.IsPreassigned.test(I))
1947       continue;
1948 
1949     Args[I].info = classifyArgumentType(Args[I].type, State);
1950     UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca);
1951   }
1952 
1953   // If we needed to use inalloca for any argument, do a second pass and rewrite
1954   // all the memory arguments to use inalloca.
1955   if (UsedInAlloca)
1956     rewriteWithInAlloca(FI);
1957 }
1958 
1959 void
1960 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1961                                    CharUnits &StackOffset, ABIArgInfo &Info,
1962                                    QualType Type) const {
1963   // Arguments are always 4-byte-aligned.
1964   CharUnits WordSize = CharUnits::fromQuantity(4);
1965   assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct");
1966 
1967   // sret pointers and indirect things will require an extra pointer
1968   // indirection, unless they are byval. Most things are byval, and will not
1969   // require this indirection.
1970   bool IsIndirect = false;
1971   if (Info.isIndirect() && !Info.getIndirectByVal())
1972     IsIndirect = true;
1973   Info = ABIArgInfo::getInAlloca(FrameFields.size(), IsIndirect);
1974   llvm::Type *LLTy = CGT.ConvertTypeForMem(Type);
1975   if (IsIndirect)
1976     LLTy = LLTy->getPointerTo(0);
1977   FrameFields.push_back(LLTy);
1978   StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(Type);
1979 
1980   // Insert padding bytes to respect alignment.
1981   CharUnits FieldEnd = StackOffset;
1982   StackOffset = FieldEnd.alignTo(WordSize);
1983   if (StackOffset != FieldEnd) {
1984     CharUnits NumBytes = StackOffset - FieldEnd;
1985     llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
1986     Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity());
1987     FrameFields.push_back(Ty);
1988   }
1989 }
1990 
1991 static bool isArgInAlloca(const ABIArgInfo &Info) {
1992   // Leave ignored and inreg arguments alone.
1993   switch (Info.getKind()) {
1994   case ABIArgInfo::InAlloca:
1995     return true;
1996   case ABIArgInfo::Ignore:
1997   case ABIArgInfo::IndirectAliased:
1998     return false;
1999   case ABIArgInfo::Indirect:
2000   case ABIArgInfo::Direct:
2001   case ABIArgInfo::Extend:
2002     return !Info.getInReg();
2003   case ABIArgInfo::Expand:
2004   case ABIArgInfo::CoerceAndExpand:
2005     // These are aggregate types which are never passed in registers when
2006     // inalloca is involved.
2007     return true;
2008   }
2009   llvm_unreachable("invalid enum");
2010 }
2011 
2012 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
2013   assert(IsWin32StructABI && "inalloca only supported on win32");
2014 
2015   // Build a packed struct type for all of the arguments in memory.
2016   SmallVector<llvm::Type *, 6> FrameFields;
2017 
2018   // The stack alignment is always 4.
2019   CharUnits StackAlign = CharUnits::fromQuantity(4);
2020 
2021   CharUnits StackOffset;
2022   CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
2023 
2024   // Put 'this' into the struct before 'sret', if necessary.
2025   bool IsThisCall =
2026       FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
2027   ABIArgInfo &Ret = FI.getReturnInfo();
2028   if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
2029       isArgInAlloca(I->info)) {
2030     addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
2031     ++I;
2032   }
2033 
2034   // Put the sret parameter into the inalloca struct if it's in memory.
2035   if (Ret.isIndirect() && !Ret.getInReg()) {
2036     addFieldToArgStruct(FrameFields, StackOffset, Ret, FI.getReturnType());
2037     // On Windows, the hidden sret parameter is always returned in eax.
2038     Ret.setInAllocaSRet(IsWin32StructABI);
2039   }
2040 
2041   // Skip the 'this' parameter in ecx.
2042   if (IsThisCall)
2043     ++I;
2044 
2045   // Put arguments passed in memory into the struct.
2046   for (; I != E; ++I) {
2047     if (isArgInAlloca(I->info))
2048       addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
2049   }
2050 
2051   FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
2052                                         /*isPacked=*/true),
2053                   StackAlign);
2054 }
2055 
2056 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF,
2057                                  Address VAListAddr, QualType Ty) const {
2058 
2059   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
2060 
2061   // x86-32 changes the alignment of certain arguments on the stack.
2062   //
2063   // Just messing with TypeInfo like this works because we never pass
2064   // anything indirectly.
2065   TypeInfo.Align = CharUnits::fromQuantity(
2066                 getTypeStackAlignInBytes(Ty, TypeInfo.Align.getQuantity()));
2067 
2068   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
2069                           TypeInfo, CharUnits::fromQuantity(4),
2070                           /*AllowHigherAlign*/ true);
2071 }
2072 
2073 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
2074     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
2075   assert(Triple.getArch() == llvm::Triple::x86);
2076 
2077   switch (Opts.getStructReturnConvention()) {
2078   case CodeGenOptions::SRCK_Default:
2079     break;
2080   case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
2081     return false;
2082   case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
2083     return true;
2084   }
2085 
2086   if (Triple.isOSDarwin() || Triple.isOSIAMCU())
2087     return true;
2088 
2089   switch (Triple.getOS()) {
2090   case llvm::Triple::DragonFly:
2091   case llvm::Triple::FreeBSD:
2092   case llvm::Triple::OpenBSD:
2093   case llvm::Triple::Win32:
2094     return true;
2095   default:
2096     return false;
2097   }
2098 }
2099 
2100 void X86_32TargetCodeGenInfo::setTargetAttributes(
2101     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2102   if (GV->isDeclaration())
2103     return;
2104   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2105     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2106       llvm::Function *Fn = cast<llvm::Function>(GV);
2107       Fn->addFnAttr("stackrealign");
2108     }
2109     if (FD->hasAttr<AnyX86InterruptAttr>()) {
2110       llvm::Function *Fn = cast<llvm::Function>(GV);
2111       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2112     }
2113   }
2114 }
2115 
2116 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
2117                                                CodeGen::CodeGenFunction &CGF,
2118                                                llvm::Value *Address) const {
2119   CodeGen::CGBuilderTy &Builder = CGF.Builder;
2120 
2121   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
2122 
2123   // 0-7 are the eight integer registers;  the order is different
2124   //   on Darwin (for EH), but the range is the same.
2125   // 8 is %eip.
2126   AssignToArrayRange(Builder, Address, Four8, 0, 8);
2127 
2128   if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
2129     // 12-16 are st(0..4).  Not sure why we stop at 4.
2130     // These have size 16, which is sizeof(long double) on
2131     // platforms with 8-byte alignment for that type.
2132     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
2133     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
2134 
2135   } else {
2136     // 9 is %eflags, which doesn't get a size on Darwin for some
2137     // reason.
2138     Builder.CreateAlignedStore(
2139         Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9),
2140                                CharUnits::One());
2141 
2142     // 11-16 are st(0..5).  Not sure why we stop at 5.
2143     // These have size 12, which is sizeof(long double) on
2144     // platforms with 4-byte alignment for that type.
2145     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
2146     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
2147   }
2148 
2149   return false;
2150 }
2151 
2152 //===----------------------------------------------------------------------===//
2153 // X86-64 ABI Implementation
2154 //===----------------------------------------------------------------------===//
2155 
2156 
2157 namespace {
2158 /// The AVX ABI level for X86 targets.
2159 enum class X86AVXABILevel {
2160   None,
2161   AVX,
2162   AVX512
2163 };
2164 
2165 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
2166 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
2167   switch (AVXLevel) {
2168   case X86AVXABILevel::AVX512:
2169     return 512;
2170   case X86AVXABILevel::AVX:
2171     return 256;
2172   case X86AVXABILevel::None:
2173     return 128;
2174   }
2175   llvm_unreachable("Unknown AVXLevel");
2176 }
2177 
2178 /// X86_64ABIInfo - The X86_64 ABI information.
2179 class X86_64ABIInfo : public SwiftABIInfo {
2180   enum Class {
2181     Integer = 0,
2182     SSE,
2183     SSEUp,
2184     X87,
2185     X87Up,
2186     ComplexX87,
2187     NoClass,
2188     Memory
2189   };
2190 
2191   /// merge - Implement the X86_64 ABI merging algorithm.
2192   ///
2193   /// Merge an accumulating classification \arg Accum with a field
2194   /// classification \arg Field.
2195   ///
2196   /// \param Accum - The accumulating classification. This should
2197   /// always be either NoClass or the result of a previous merge
2198   /// call. In addition, this should never be Memory (the caller
2199   /// should just return Memory for the aggregate).
2200   static Class merge(Class Accum, Class Field);
2201 
2202   /// postMerge - Implement the X86_64 ABI post merging algorithm.
2203   ///
2204   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
2205   /// final MEMORY or SSE classes when necessary.
2206   ///
2207   /// \param AggregateSize - The size of the current aggregate in
2208   /// the classification process.
2209   ///
2210   /// \param Lo - The classification for the parts of the type
2211   /// residing in the low word of the containing object.
2212   ///
2213   /// \param Hi - The classification for the parts of the type
2214   /// residing in the higher words of the containing object.
2215   ///
2216   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
2217 
2218   /// classify - Determine the x86_64 register classes in which the
2219   /// given type T should be passed.
2220   ///
2221   /// \param Lo - The classification for the parts of the type
2222   /// residing in the low word of the containing object.
2223   ///
2224   /// \param Hi - The classification for the parts of the type
2225   /// residing in the high word of the containing object.
2226   ///
2227   /// \param OffsetBase - The bit offset of this type in the
2228   /// containing object.  Some parameters are classified different
2229   /// depending on whether they straddle an eightbyte boundary.
2230   ///
2231   /// \param isNamedArg - Whether the argument in question is a "named"
2232   /// argument, as used in AMD64-ABI 3.5.7.
2233   ///
2234   /// If a word is unused its result will be NoClass; if a type should
2235   /// be passed in Memory then at least the classification of \arg Lo
2236   /// will be Memory.
2237   ///
2238   /// The \arg Lo class will be NoClass iff the argument is ignored.
2239   ///
2240   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
2241   /// also be ComplexX87.
2242   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
2243                 bool isNamedArg) const;
2244 
2245   llvm::Type *GetByteVectorType(QualType Ty) const;
2246   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
2247                                  unsigned IROffset, QualType SourceTy,
2248                                  unsigned SourceOffset) const;
2249   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
2250                                      unsigned IROffset, QualType SourceTy,
2251                                      unsigned SourceOffset) const;
2252 
2253   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2254   /// such that the argument will be returned in memory.
2255   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
2256 
2257   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2258   /// such that the argument will be passed in memory.
2259   ///
2260   /// \param freeIntRegs - The number of free integer registers remaining
2261   /// available.
2262   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
2263 
2264   ABIArgInfo classifyReturnType(QualType RetTy) const;
2265 
2266   ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs,
2267                                   unsigned &neededInt, unsigned &neededSSE,
2268                                   bool isNamedArg) const;
2269 
2270   ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt,
2271                                        unsigned &NeededSSE) const;
2272 
2273   ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
2274                                            unsigned &NeededSSE) const;
2275 
2276   bool IsIllegalVectorType(QualType Ty) const;
2277 
2278   /// The 0.98 ABI revision clarified a lot of ambiguities,
2279   /// unfortunately in ways that were not always consistent with
2280   /// certain previous compilers.  In particular, platforms which
2281   /// required strict binary compatibility with older versions of GCC
2282   /// may need to exempt themselves.
2283   bool honorsRevision0_98() const {
2284     return !getTarget().getTriple().isOSDarwin();
2285   }
2286 
2287   /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to
2288   /// classify it as INTEGER (for compatibility with older clang compilers).
2289   bool classifyIntegerMMXAsSSE() const {
2290     // Clang <= 3.8 did not do this.
2291     if (getContext().getLangOpts().getClangABICompat() <=
2292         LangOptions::ClangABI::Ver3_8)
2293       return false;
2294 
2295     const llvm::Triple &Triple = getTarget().getTriple();
2296     if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4)
2297       return false;
2298     if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10)
2299       return false;
2300     return true;
2301   }
2302 
2303   // GCC classifies vectors of __int128 as memory.
2304   bool passInt128VectorsInMem() const {
2305     // Clang <= 9.0 did not do this.
2306     if (getContext().getLangOpts().getClangABICompat() <=
2307         LangOptions::ClangABI::Ver9)
2308       return false;
2309 
2310     const llvm::Triple &T = getTarget().getTriple();
2311     return T.isOSLinux() || T.isOSNetBSD();
2312   }
2313 
2314   X86AVXABILevel AVXLevel;
2315   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
2316   // 64-bit hardware.
2317   bool Has64BitPointers;
2318 
2319 public:
2320   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) :
2321       SwiftABIInfo(CGT), AVXLevel(AVXLevel),
2322       Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
2323   }
2324 
2325   bool isPassedUsingAVXType(QualType type) const {
2326     unsigned neededInt, neededSSE;
2327     // The freeIntRegs argument doesn't matter here.
2328     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
2329                                            /*isNamedArg*/true);
2330     if (info.isDirect()) {
2331       llvm::Type *ty = info.getCoerceToType();
2332       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
2333         return vectorTy->getPrimitiveSizeInBits().getFixedSize() > 128;
2334     }
2335     return false;
2336   }
2337 
2338   void computeInfo(CGFunctionInfo &FI) const override;
2339 
2340   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2341                     QualType Ty) const override;
2342   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
2343                       QualType Ty) const override;
2344 
2345   bool has64BitPointers() const {
2346     return Has64BitPointers;
2347   }
2348 
2349   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
2350                                     bool asReturnValue) const override {
2351     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2352   }
2353   bool isSwiftErrorInRegister() const override {
2354     return true;
2355   }
2356 };
2357 
2358 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
2359 class WinX86_64ABIInfo : public SwiftABIInfo {
2360 public:
2361   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2362       : SwiftABIInfo(CGT), AVXLevel(AVXLevel),
2363         IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {}
2364 
2365   void computeInfo(CGFunctionInfo &FI) const override;
2366 
2367   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2368                     QualType Ty) const override;
2369 
2370   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
2371     // FIXME: Assumes vectorcall is in use.
2372     return isX86VectorTypeForVectorCall(getContext(), Ty);
2373   }
2374 
2375   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
2376                                          uint64_t NumMembers) const override {
2377     // FIXME: Assumes vectorcall is in use.
2378     return isX86VectorCallAggregateSmallEnough(NumMembers);
2379   }
2380 
2381   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars,
2382                                     bool asReturnValue) const override {
2383     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2384   }
2385 
2386   bool isSwiftErrorInRegister() const override {
2387     return true;
2388   }
2389 
2390 private:
2391   ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType,
2392                       bool IsVectorCall, bool IsRegCall) const;
2393   ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs,
2394                                       const ABIArgInfo &current) const;
2395   void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs,
2396                              bool IsVectorCall, bool IsRegCall) const;
2397 
2398   X86AVXABILevel AVXLevel;
2399 
2400   bool IsMingw64;
2401 };
2402 
2403 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2404 public:
2405   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2406       : TargetCodeGenInfo(std::make_unique<X86_64ABIInfo>(CGT, AVXLevel)) {}
2407 
2408   const X86_64ABIInfo &getABIInfo() const {
2409     return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
2410   }
2411 
2412   /// Disable tail call on x86-64. The epilogue code before the tail jump blocks
2413   /// autoreleaseRV/retainRV and autoreleaseRV/unsafeClaimRV optimizations.
2414   bool markARCOptimizedReturnCallsAsNoTail() const override { return true; }
2415 
2416   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2417     return 7;
2418   }
2419 
2420   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2421                                llvm::Value *Address) const override {
2422     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2423 
2424     // 0-15 are the 16 integer registers.
2425     // 16 is %rip.
2426     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2427     return false;
2428   }
2429 
2430   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
2431                                   StringRef Constraint,
2432                                   llvm::Type* Ty) const override {
2433     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
2434   }
2435 
2436   bool isNoProtoCallVariadic(const CallArgList &args,
2437                              const FunctionNoProtoType *fnType) const override {
2438     // The default CC on x86-64 sets %al to the number of SSA
2439     // registers used, and GCC sets this when calling an unprototyped
2440     // function, so we override the default behavior.  However, don't do
2441     // that when AVX types are involved: the ABI explicitly states it is
2442     // undefined, and it doesn't work in practice because of how the ABI
2443     // defines varargs anyway.
2444     if (fnType->getCallConv() == CC_C) {
2445       bool HasAVXType = false;
2446       for (CallArgList::const_iterator
2447              it = args.begin(), ie = args.end(); it != ie; ++it) {
2448         if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
2449           HasAVXType = true;
2450           break;
2451         }
2452       }
2453 
2454       if (!HasAVXType)
2455         return true;
2456     }
2457 
2458     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
2459   }
2460 
2461   llvm::Constant *
2462   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
2463     unsigned Sig = (0xeb << 0) | // jmp rel8
2464                    (0x06 << 8) | //           .+0x08
2465                    ('v' << 16) |
2466                    ('2' << 24);
2467     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
2468   }
2469 
2470   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2471                            CodeGen::CodeGenModule &CGM) const override {
2472     if (GV->isDeclaration())
2473       return;
2474     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2475       if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2476         llvm::Function *Fn = cast<llvm::Function>(GV);
2477         Fn->addFnAttr("stackrealign");
2478       }
2479       if (FD->hasAttr<AnyX86InterruptAttr>()) {
2480         llvm::Function *Fn = cast<llvm::Function>(GV);
2481         Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2482       }
2483     }
2484   }
2485 
2486   void checkFunctionCallABI(CodeGenModule &CGM, SourceLocation CallLoc,
2487                             const FunctionDecl *Caller,
2488                             const FunctionDecl *Callee,
2489                             const CallArgList &Args) const override;
2490 };
2491 
2492 static void initFeatureMaps(const ASTContext &Ctx,
2493                             llvm::StringMap<bool> &CallerMap,
2494                             const FunctionDecl *Caller,
2495                             llvm::StringMap<bool> &CalleeMap,
2496                             const FunctionDecl *Callee) {
2497   if (CalleeMap.empty() && CallerMap.empty()) {
2498     // The caller is potentially nullptr in the case where the call isn't in a
2499     // function.  In this case, the getFunctionFeatureMap ensures we just get
2500     // the TU level setting (since it cannot be modified by 'target'..
2501     Ctx.getFunctionFeatureMap(CallerMap, Caller);
2502     Ctx.getFunctionFeatureMap(CalleeMap, Callee);
2503   }
2504 }
2505 
2506 static bool checkAVXParamFeature(DiagnosticsEngine &Diag,
2507                                  SourceLocation CallLoc,
2508                                  const llvm::StringMap<bool> &CallerMap,
2509                                  const llvm::StringMap<bool> &CalleeMap,
2510                                  QualType Ty, StringRef Feature,
2511                                  bool IsArgument) {
2512   bool CallerHasFeat = CallerMap.lookup(Feature);
2513   bool CalleeHasFeat = CalleeMap.lookup(Feature);
2514   if (!CallerHasFeat && !CalleeHasFeat)
2515     return Diag.Report(CallLoc, diag::warn_avx_calling_convention)
2516            << IsArgument << Ty << Feature;
2517 
2518   // Mixing calling conventions here is very clearly an error.
2519   if (!CallerHasFeat || !CalleeHasFeat)
2520     return Diag.Report(CallLoc, diag::err_avx_calling_convention)
2521            << IsArgument << Ty << Feature;
2522 
2523   // Else, both caller and callee have the required feature, so there is no need
2524   // to diagnose.
2525   return false;
2526 }
2527 
2528 static bool checkAVXParam(DiagnosticsEngine &Diag, ASTContext &Ctx,
2529                           SourceLocation CallLoc,
2530                           const llvm::StringMap<bool> &CallerMap,
2531                           const llvm::StringMap<bool> &CalleeMap, QualType Ty,
2532                           bool IsArgument) {
2533   uint64_t Size = Ctx.getTypeSize(Ty);
2534   if (Size > 256)
2535     return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty,
2536                                 "avx512f", IsArgument);
2537 
2538   if (Size > 128)
2539     return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, "avx",
2540                                 IsArgument);
2541 
2542   return false;
2543 }
2544 
2545 void X86_64TargetCodeGenInfo::checkFunctionCallABI(
2546     CodeGenModule &CGM, SourceLocation CallLoc, const FunctionDecl *Caller,
2547     const FunctionDecl *Callee, const CallArgList &Args) const {
2548   llvm::StringMap<bool> CallerMap;
2549   llvm::StringMap<bool> CalleeMap;
2550   unsigned ArgIndex = 0;
2551 
2552   // We need to loop through the actual call arguments rather than the the
2553   // function's parameters, in case this variadic.
2554   for (const CallArg &Arg : Args) {
2555     // The "avx" feature changes how vectors >128 in size are passed. "avx512f"
2556     // additionally changes how vectors >256 in size are passed. Like GCC, we
2557     // warn when a function is called with an argument where this will change.
2558     // Unlike GCC, we also error when it is an obvious ABI mismatch, that is,
2559     // the caller and callee features are mismatched.
2560     // Unfortunately, we cannot do this diagnostic in SEMA, since the callee can
2561     // change its ABI with attribute-target after this call.
2562     if (Arg.getType()->isVectorType() &&
2563         CGM.getContext().getTypeSize(Arg.getType()) > 128) {
2564       initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee);
2565       QualType Ty = Arg.getType();
2566       // The CallArg seems to have desugared the type already, so for clearer
2567       // diagnostics, replace it with the type in the FunctionDecl if possible.
2568       if (ArgIndex < Callee->getNumParams())
2569         Ty = Callee->getParamDecl(ArgIndex)->getType();
2570 
2571       if (checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap,
2572                         CalleeMap, Ty, /*IsArgument*/ true))
2573         return;
2574     }
2575     ++ArgIndex;
2576   }
2577 
2578   // Check return always, as we don't have a good way of knowing in codegen
2579   // whether this value is used, tail-called, etc.
2580   if (Callee->getReturnType()->isVectorType() &&
2581       CGM.getContext().getTypeSize(Callee->getReturnType()) > 128) {
2582     initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee);
2583     checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap,
2584                   CalleeMap, Callee->getReturnType(),
2585                   /*IsArgument*/ false);
2586   }
2587 }
2588 
2589 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
2590   // If the argument does not end in .lib, automatically add the suffix.
2591   // If the argument contains a space, enclose it in quotes.
2592   // This matches the behavior of MSVC.
2593   bool Quote = (Lib.find(" ") != StringRef::npos);
2594   std::string ArgStr = Quote ? "\"" : "";
2595   ArgStr += Lib;
2596   if (!Lib.endswith_lower(".lib") && !Lib.endswith_lower(".a"))
2597     ArgStr += ".lib";
2598   ArgStr += Quote ? "\"" : "";
2599   return ArgStr;
2600 }
2601 
2602 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
2603 public:
2604   WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2605         bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI,
2606         unsigned NumRegisterParameters)
2607     : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI,
2608         Win32StructABI, NumRegisterParameters, false) {}
2609 
2610   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2611                            CodeGen::CodeGenModule &CGM) const override;
2612 
2613   void getDependentLibraryOption(llvm::StringRef Lib,
2614                                  llvm::SmallString<24> &Opt) const override {
2615     Opt = "/DEFAULTLIB:";
2616     Opt += qualifyWindowsLibrary(Lib);
2617   }
2618 
2619   void getDetectMismatchOption(llvm::StringRef Name,
2620                                llvm::StringRef Value,
2621                                llvm::SmallString<32> &Opt) const override {
2622     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2623   }
2624 };
2625 
2626 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2627                                           CodeGen::CodeGenModule &CGM) {
2628   if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) {
2629 
2630     if (CGM.getCodeGenOpts().StackProbeSize != 4096)
2631       Fn->addFnAttr("stack-probe-size",
2632                     llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
2633     if (CGM.getCodeGenOpts().NoStackArgProbe)
2634       Fn->addFnAttr("no-stack-arg-probe");
2635   }
2636 }
2637 
2638 void WinX86_32TargetCodeGenInfo::setTargetAttributes(
2639     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2640   X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2641   if (GV->isDeclaration())
2642     return;
2643   addStackProbeTargetAttributes(D, GV, CGM);
2644 }
2645 
2646 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2647 public:
2648   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2649                              X86AVXABILevel AVXLevel)
2650       : TargetCodeGenInfo(std::make_unique<WinX86_64ABIInfo>(CGT, AVXLevel)) {}
2651 
2652   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2653                            CodeGen::CodeGenModule &CGM) const override;
2654 
2655   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2656     return 7;
2657   }
2658 
2659   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2660                                llvm::Value *Address) const override {
2661     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2662 
2663     // 0-15 are the 16 integer registers.
2664     // 16 is %rip.
2665     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2666     return false;
2667   }
2668 
2669   void getDependentLibraryOption(llvm::StringRef Lib,
2670                                  llvm::SmallString<24> &Opt) const override {
2671     Opt = "/DEFAULTLIB:";
2672     Opt += qualifyWindowsLibrary(Lib);
2673   }
2674 
2675   void getDetectMismatchOption(llvm::StringRef Name,
2676                                llvm::StringRef Value,
2677                                llvm::SmallString<32> &Opt) const override {
2678     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2679   }
2680 };
2681 
2682 void WinX86_64TargetCodeGenInfo::setTargetAttributes(
2683     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2684   TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2685   if (GV->isDeclaration())
2686     return;
2687   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2688     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2689       llvm::Function *Fn = cast<llvm::Function>(GV);
2690       Fn->addFnAttr("stackrealign");
2691     }
2692     if (FD->hasAttr<AnyX86InterruptAttr>()) {
2693       llvm::Function *Fn = cast<llvm::Function>(GV);
2694       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2695     }
2696   }
2697 
2698   addStackProbeTargetAttributes(D, GV, CGM);
2699 }
2700 }
2701 
2702 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
2703                               Class &Hi) const {
2704   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
2705   //
2706   // (a) If one of the classes is Memory, the whole argument is passed in
2707   //     memory.
2708   //
2709   // (b) If X87UP is not preceded by X87, the whole argument is passed in
2710   //     memory.
2711   //
2712   // (c) If the size of the aggregate exceeds two eightbytes and the first
2713   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
2714   //     argument is passed in memory. NOTE: This is necessary to keep the
2715   //     ABI working for processors that don't support the __m256 type.
2716   //
2717   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
2718   //
2719   // Some of these are enforced by the merging logic.  Others can arise
2720   // only with unions; for example:
2721   //   union { _Complex double; unsigned; }
2722   //
2723   // Note that clauses (b) and (c) were added in 0.98.
2724   //
2725   if (Hi == Memory)
2726     Lo = Memory;
2727   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
2728     Lo = Memory;
2729   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
2730     Lo = Memory;
2731   if (Hi == SSEUp && Lo != SSE)
2732     Hi = SSE;
2733 }
2734 
2735 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
2736   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
2737   // classified recursively so that always two fields are
2738   // considered. The resulting class is calculated according to
2739   // the classes of the fields in the eightbyte:
2740   //
2741   // (a) If both classes are equal, this is the resulting class.
2742   //
2743   // (b) If one of the classes is NO_CLASS, the resulting class is
2744   // the other class.
2745   //
2746   // (c) If one of the classes is MEMORY, the result is the MEMORY
2747   // class.
2748   //
2749   // (d) If one of the classes is INTEGER, the result is the
2750   // INTEGER.
2751   //
2752   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
2753   // MEMORY is used as class.
2754   //
2755   // (f) Otherwise class SSE is used.
2756 
2757   // Accum should never be memory (we should have returned) or
2758   // ComplexX87 (because this cannot be passed in a structure).
2759   assert((Accum != Memory && Accum != ComplexX87) &&
2760          "Invalid accumulated classification during merge.");
2761   if (Accum == Field || Field == NoClass)
2762     return Accum;
2763   if (Field == Memory)
2764     return Memory;
2765   if (Accum == NoClass)
2766     return Field;
2767   if (Accum == Integer || Field == Integer)
2768     return Integer;
2769   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
2770       Accum == X87 || Accum == X87Up)
2771     return Memory;
2772   return SSE;
2773 }
2774 
2775 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
2776                              Class &Lo, Class &Hi, bool isNamedArg) const {
2777   // FIXME: This code can be simplified by introducing a simple value class for
2778   // Class pairs with appropriate constructor methods for the various
2779   // situations.
2780 
2781   // FIXME: Some of the split computations are wrong; unaligned vectors
2782   // shouldn't be passed in registers for example, so there is no chance they
2783   // can straddle an eightbyte. Verify & simplify.
2784 
2785   Lo = Hi = NoClass;
2786 
2787   Class &Current = OffsetBase < 64 ? Lo : Hi;
2788   Current = Memory;
2789 
2790   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
2791     BuiltinType::Kind k = BT->getKind();
2792 
2793     if (k == BuiltinType::Void) {
2794       Current = NoClass;
2795     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
2796       Lo = Integer;
2797       Hi = Integer;
2798     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
2799       Current = Integer;
2800     } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
2801       Current = SSE;
2802     } else if (k == BuiltinType::LongDouble) {
2803       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2804       if (LDF == &llvm::APFloat::IEEEquad()) {
2805         Lo = SSE;
2806         Hi = SSEUp;
2807       } else if (LDF == &llvm::APFloat::x87DoubleExtended()) {
2808         Lo = X87;
2809         Hi = X87Up;
2810       } else if (LDF == &llvm::APFloat::IEEEdouble()) {
2811         Current = SSE;
2812       } else
2813         llvm_unreachable("unexpected long double representation!");
2814     }
2815     // FIXME: _Decimal32 and _Decimal64 are SSE.
2816     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
2817     return;
2818   }
2819 
2820   if (const EnumType *ET = Ty->getAs<EnumType>()) {
2821     // Classify the underlying integer type.
2822     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
2823     return;
2824   }
2825 
2826   if (Ty->hasPointerRepresentation()) {
2827     Current = Integer;
2828     return;
2829   }
2830 
2831   if (Ty->isMemberPointerType()) {
2832     if (Ty->isMemberFunctionPointerType()) {
2833       if (Has64BitPointers) {
2834         // If Has64BitPointers, this is an {i64, i64}, so classify both
2835         // Lo and Hi now.
2836         Lo = Hi = Integer;
2837       } else {
2838         // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
2839         // straddles an eightbyte boundary, Hi should be classified as well.
2840         uint64_t EB_FuncPtr = (OffsetBase) / 64;
2841         uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
2842         if (EB_FuncPtr != EB_ThisAdj) {
2843           Lo = Hi = Integer;
2844         } else {
2845           Current = Integer;
2846         }
2847       }
2848     } else {
2849       Current = Integer;
2850     }
2851     return;
2852   }
2853 
2854   if (const VectorType *VT = Ty->getAs<VectorType>()) {
2855     uint64_t Size = getContext().getTypeSize(VT);
2856     if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
2857       // gcc passes the following as integer:
2858       // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
2859       // 2 bytes - <2 x char>, <1 x short>
2860       // 1 byte  - <1 x char>
2861       Current = Integer;
2862 
2863       // If this type crosses an eightbyte boundary, it should be
2864       // split.
2865       uint64_t EB_Lo = (OffsetBase) / 64;
2866       uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
2867       if (EB_Lo != EB_Hi)
2868         Hi = Lo;
2869     } else if (Size == 64) {
2870       QualType ElementType = VT->getElementType();
2871 
2872       // gcc passes <1 x double> in memory. :(
2873       if (ElementType->isSpecificBuiltinType(BuiltinType::Double))
2874         return;
2875 
2876       // gcc passes <1 x long long> as SSE but clang used to unconditionally
2877       // pass them as integer.  For platforms where clang is the de facto
2878       // platform compiler, we must continue to use integer.
2879       if (!classifyIntegerMMXAsSSE() &&
2880           (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) ||
2881            ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
2882            ElementType->isSpecificBuiltinType(BuiltinType::Long) ||
2883            ElementType->isSpecificBuiltinType(BuiltinType::ULong)))
2884         Current = Integer;
2885       else
2886         Current = SSE;
2887 
2888       // If this type crosses an eightbyte boundary, it should be
2889       // split.
2890       if (OffsetBase && OffsetBase != 64)
2891         Hi = Lo;
2892     } else if (Size == 128 ||
2893                (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
2894       QualType ElementType = VT->getElementType();
2895 
2896       // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :(
2897       if (passInt128VectorsInMem() && Size != 128 &&
2898           (ElementType->isSpecificBuiltinType(BuiltinType::Int128) ||
2899            ElementType->isSpecificBuiltinType(BuiltinType::UInt128)))
2900         return;
2901 
2902       // Arguments of 256-bits are split into four eightbyte chunks. The
2903       // least significant one belongs to class SSE and all the others to class
2904       // SSEUP. The original Lo and Hi design considers that types can't be
2905       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
2906       // This design isn't correct for 256-bits, but since there're no cases
2907       // where the upper parts would need to be inspected, avoid adding
2908       // complexity and just consider Hi to match the 64-256 part.
2909       //
2910       // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
2911       // registers if they are "named", i.e. not part of the "..." of a
2912       // variadic function.
2913       //
2914       // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
2915       // split into eight eightbyte chunks, one SSE and seven SSEUP.
2916       Lo = SSE;
2917       Hi = SSEUp;
2918     }
2919     return;
2920   }
2921 
2922   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
2923     QualType ET = getContext().getCanonicalType(CT->getElementType());
2924 
2925     uint64_t Size = getContext().getTypeSize(Ty);
2926     if (ET->isIntegralOrEnumerationType()) {
2927       if (Size <= 64)
2928         Current = Integer;
2929       else if (Size <= 128)
2930         Lo = Hi = Integer;
2931     } else if (ET == getContext().FloatTy) {
2932       Current = SSE;
2933     } else if (ET == getContext().DoubleTy) {
2934       Lo = Hi = SSE;
2935     } else if (ET == getContext().LongDoubleTy) {
2936       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2937       if (LDF == &llvm::APFloat::IEEEquad())
2938         Current = Memory;
2939       else if (LDF == &llvm::APFloat::x87DoubleExtended())
2940         Current = ComplexX87;
2941       else if (LDF == &llvm::APFloat::IEEEdouble())
2942         Lo = Hi = SSE;
2943       else
2944         llvm_unreachable("unexpected long double representation!");
2945     }
2946 
2947     // If this complex type crosses an eightbyte boundary then it
2948     // should be split.
2949     uint64_t EB_Real = (OffsetBase) / 64;
2950     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
2951     if (Hi == NoClass && EB_Real != EB_Imag)
2952       Hi = Lo;
2953 
2954     return;
2955   }
2956 
2957   if (const auto *EITy = Ty->getAs<ExtIntType>()) {
2958     if (EITy->getNumBits() <= 64)
2959       Current = Integer;
2960     else if (EITy->getNumBits() <= 128)
2961       Lo = Hi = Integer;
2962     // Larger values need to get passed in memory.
2963     return;
2964   }
2965 
2966   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
2967     // Arrays are treated like structures.
2968 
2969     uint64_t Size = getContext().getTypeSize(Ty);
2970 
2971     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2972     // than eight eightbytes, ..., it has class MEMORY.
2973     if (Size > 512)
2974       return;
2975 
2976     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
2977     // fields, it has class MEMORY.
2978     //
2979     // Only need to check alignment of array base.
2980     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
2981       return;
2982 
2983     // Otherwise implement simplified merge. We could be smarter about
2984     // this, but it isn't worth it and would be harder to verify.
2985     Current = NoClass;
2986     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
2987     uint64_t ArraySize = AT->getSize().getZExtValue();
2988 
2989     // The only case a 256-bit wide vector could be used is when the array
2990     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2991     // to work for sizes wider than 128, early check and fallback to memory.
2992     //
2993     if (Size > 128 &&
2994         (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel)))
2995       return;
2996 
2997     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
2998       Class FieldLo, FieldHi;
2999       classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
3000       Lo = merge(Lo, FieldLo);
3001       Hi = merge(Hi, FieldHi);
3002       if (Lo == Memory || Hi == Memory)
3003         break;
3004     }
3005 
3006     postMerge(Size, Lo, Hi);
3007     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
3008     return;
3009   }
3010 
3011   if (const RecordType *RT = Ty->getAs<RecordType>()) {
3012     uint64_t Size = getContext().getTypeSize(Ty);
3013 
3014     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
3015     // than eight eightbytes, ..., it has class MEMORY.
3016     if (Size > 512)
3017       return;
3018 
3019     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
3020     // copy constructor or a non-trivial destructor, it is passed by invisible
3021     // reference.
3022     if (getRecordArgABI(RT, getCXXABI()))
3023       return;
3024 
3025     const RecordDecl *RD = RT->getDecl();
3026 
3027     // Assume variable sized types are passed in memory.
3028     if (RD->hasFlexibleArrayMember())
3029       return;
3030 
3031     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
3032 
3033     // Reset Lo class, this will be recomputed.
3034     Current = NoClass;
3035 
3036     // If this is a C++ record, classify the bases first.
3037     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3038       for (const auto &I : CXXRD->bases()) {
3039         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
3040                "Unexpected base class!");
3041         const auto *Base =
3042             cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
3043 
3044         // Classify this field.
3045         //
3046         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
3047         // single eightbyte, each is classified separately. Each eightbyte gets
3048         // initialized to class NO_CLASS.
3049         Class FieldLo, FieldHi;
3050         uint64_t Offset =
3051           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
3052         classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
3053         Lo = merge(Lo, FieldLo);
3054         Hi = merge(Hi, FieldHi);
3055         if (Lo == Memory || Hi == Memory) {
3056           postMerge(Size, Lo, Hi);
3057           return;
3058         }
3059       }
3060     }
3061 
3062     // Classify the fields one at a time, merging the results.
3063     unsigned idx = 0;
3064     bool UseClang11Compat = getContext().getLangOpts().getClangABICompat() <=
3065                                 LangOptions::ClangABI::Ver11 ||
3066                             getContext().getTargetInfo().getTriple().isPS4();
3067     bool IsUnion = RT->isUnionType() && !UseClang11Compat;
3068 
3069     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3070            i != e; ++i, ++idx) {
3071       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
3072       bool BitField = i->isBitField();
3073 
3074       // Ignore padding bit-fields.
3075       if (BitField && i->isUnnamedBitfield())
3076         continue;
3077 
3078       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
3079       // eight eightbytes, or it contains unaligned fields, it has class MEMORY.
3080       //
3081       // The only case a 256-bit or a 512-bit wide vector could be used is when
3082       // the struct contains a single 256-bit or 512-bit element. Early check
3083       // and fallback to memory.
3084       //
3085       // FIXME: Extended the Lo and Hi logic properly to work for size wider
3086       // than 128.
3087       if (Size > 128 &&
3088           ((!IsUnion && Size != getContext().getTypeSize(i->getType())) ||
3089            Size > getNativeVectorSizeForAVXABI(AVXLevel))) {
3090         Lo = Memory;
3091         postMerge(Size, Lo, Hi);
3092         return;
3093       }
3094       // Note, skip this test for bit-fields, see below.
3095       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
3096         Lo = Memory;
3097         postMerge(Size, Lo, Hi);
3098         return;
3099       }
3100 
3101       // Classify this field.
3102       //
3103       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
3104       // exceeds a single eightbyte, each is classified
3105       // separately. Each eightbyte gets initialized to class
3106       // NO_CLASS.
3107       Class FieldLo, FieldHi;
3108 
3109       // Bit-fields require special handling, they do not force the
3110       // structure to be passed in memory even if unaligned, and
3111       // therefore they can straddle an eightbyte.
3112       if (BitField) {
3113         assert(!i->isUnnamedBitfield());
3114         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
3115         uint64_t Size = i->getBitWidthValue(getContext());
3116 
3117         uint64_t EB_Lo = Offset / 64;
3118         uint64_t EB_Hi = (Offset + Size - 1) / 64;
3119 
3120         if (EB_Lo) {
3121           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
3122           FieldLo = NoClass;
3123           FieldHi = Integer;
3124         } else {
3125           FieldLo = Integer;
3126           FieldHi = EB_Hi ? Integer : NoClass;
3127         }
3128       } else
3129         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
3130       Lo = merge(Lo, FieldLo);
3131       Hi = merge(Hi, FieldHi);
3132       if (Lo == Memory || Hi == Memory)
3133         break;
3134     }
3135 
3136     postMerge(Size, Lo, Hi);
3137   }
3138 }
3139 
3140 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
3141   // If this is a scalar LLVM value then assume LLVM will pass it in the right
3142   // place naturally.
3143   if (!isAggregateTypeForABI(Ty)) {
3144     // Treat an enum type as its underlying type.
3145     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3146       Ty = EnumTy->getDecl()->getIntegerType();
3147 
3148     if (Ty->isExtIntType())
3149       return getNaturalAlignIndirect(Ty);
3150 
3151     return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
3152                                               : ABIArgInfo::getDirect());
3153   }
3154 
3155   return getNaturalAlignIndirect(Ty);
3156 }
3157 
3158 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
3159   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
3160     uint64_t Size = getContext().getTypeSize(VecTy);
3161     unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
3162     if (Size <= 64 || Size > LargestVector)
3163       return true;
3164     QualType EltTy = VecTy->getElementType();
3165     if (passInt128VectorsInMem() &&
3166         (EltTy->isSpecificBuiltinType(BuiltinType::Int128) ||
3167          EltTy->isSpecificBuiltinType(BuiltinType::UInt128)))
3168       return true;
3169   }
3170 
3171   return false;
3172 }
3173 
3174 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
3175                                             unsigned freeIntRegs) const {
3176   // If this is a scalar LLVM value then assume LLVM will pass it in the right
3177   // place naturally.
3178   //
3179   // This assumption is optimistic, as there could be free registers available
3180   // when we need to pass this argument in memory, and LLVM could try to pass
3181   // the argument in the free register. This does not seem to happen currently,
3182   // but this code would be much safer if we could mark the argument with
3183   // 'onstack'. See PR12193.
3184   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty) &&
3185       !Ty->isExtIntType()) {
3186     // Treat an enum type as its underlying type.
3187     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3188       Ty = EnumTy->getDecl()->getIntegerType();
3189 
3190     return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
3191                                               : ABIArgInfo::getDirect());
3192   }
3193 
3194   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
3195     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
3196 
3197   // Compute the byval alignment. We specify the alignment of the byval in all
3198   // cases so that the mid-level optimizer knows the alignment of the byval.
3199   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
3200 
3201   // Attempt to avoid passing indirect results using byval when possible. This
3202   // is important for good codegen.
3203   //
3204   // We do this by coercing the value into a scalar type which the backend can
3205   // handle naturally (i.e., without using byval).
3206   //
3207   // For simplicity, we currently only do this when we have exhausted all of the
3208   // free integer registers. Doing this when there are free integer registers
3209   // would require more care, as we would have to ensure that the coerced value
3210   // did not claim the unused register. That would require either reording the
3211   // arguments to the function (so that any subsequent inreg values came first),
3212   // or only doing this optimization when there were no following arguments that
3213   // might be inreg.
3214   //
3215   // We currently expect it to be rare (particularly in well written code) for
3216   // arguments to be passed on the stack when there are still free integer
3217   // registers available (this would typically imply large structs being passed
3218   // by value), so this seems like a fair tradeoff for now.
3219   //
3220   // We can revisit this if the backend grows support for 'onstack' parameter
3221   // attributes. See PR12193.
3222   if (freeIntRegs == 0) {
3223     uint64_t Size = getContext().getTypeSize(Ty);
3224 
3225     // If this type fits in an eightbyte, coerce it into the matching integral
3226     // type, which will end up on the stack (with alignment 8).
3227     if (Align == 8 && Size <= 64)
3228       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
3229                                                           Size));
3230   }
3231 
3232   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align));
3233 }
3234 
3235 /// The ABI specifies that a value should be passed in a full vector XMM/YMM
3236 /// register. Pick an LLVM IR type that will be passed as a vector register.
3237 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
3238   // Wrapper structs/arrays that only contain vectors are passed just like
3239   // vectors; strip them off if present.
3240   if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
3241     Ty = QualType(InnerTy, 0);
3242 
3243   llvm::Type *IRType = CGT.ConvertType(Ty);
3244   if (isa<llvm::VectorType>(IRType)) {
3245     // Don't pass vXi128 vectors in their native type, the backend can't
3246     // legalize them.
3247     if (passInt128VectorsInMem() &&
3248         cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy(128)) {
3249       // Use a vXi64 vector.
3250       uint64_t Size = getContext().getTypeSize(Ty);
3251       return llvm::FixedVectorType::get(llvm::Type::getInt64Ty(getVMContext()),
3252                                         Size / 64);
3253     }
3254 
3255     return IRType;
3256   }
3257 
3258   if (IRType->getTypeID() == llvm::Type::FP128TyID)
3259     return IRType;
3260 
3261   // We couldn't find the preferred IR vector type for 'Ty'.
3262   uint64_t Size = getContext().getTypeSize(Ty);
3263   assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!");
3264 
3265 
3266   // Return a LLVM IR vector type based on the size of 'Ty'.
3267   return llvm::FixedVectorType::get(llvm::Type::getDoubleTy(getVMContext()),
3268                                     Size / 64);
3269 }
3270 
3271 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
3272 /// is known to either be off the end of the specified type or being in
3273 /// alignment padding.  The user type specified is known to be at most 128 bits
3274 /// in size, and have passed through X86_64ABIInfo::classify with a successful
3275 /// classification that put one of the two halves in the INTEGER class.
3276 ///
3277 /// It is conservatively correct to return false.
3278 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
3279                                   unsigned EndBit, ASTContext &Context) {
3280   // If the bytes being queried are off the end of the type, there is no user
3281   // data hiding here.  This handles analysis of builtins, vectors and other
3282   // types that don't contain interesting padding.
3283   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
3284   if (TySize <= StartBit)
3285     return true;
3286 
3287   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
3288     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
3289     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
3290 
3291     // Check each element to see if the element overlaps with the queried range.
3292     for (unsigned i = 0; i != NumElts; ++i) {
3293       // If the element is after the span we care about, then we're done..
3294       unsigned EltOffset = i*EltSize;
3295       if (EltOffset >= EndBit) break;
3296 
3297       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
3298       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
3299                                  EndBit-EltOffset, Context))
3300         return false;
3301     }
3302     // If it overlaps no elements, then it is safe to process as padding.
3303     return true;
3304   }
3305 
3306   if (const RecordType *RT = Ty->getAs<RecordType>()) {
3307     const RecordDecl *RD = RT->getDecl();
3308     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3309 
3310     // If this is a C++ record, check the bases first.
3311     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3312       for (const auto &I : CXXRD->bases()) {
3313         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
3314                "Unexpected base class!");
3315         const auto *Base =
3316             cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
3317 
3318         // If the base is after the span we care about, ignore it.
3319         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
3320         if (BaseOffset >= EndBit) continue;
3321 
3322         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
3323         if (!BitsContainNoUserData(I.getType(), BaseStart,
3324                                    EndBit-BaseOffset, Context))
3325           return false;
3326       }
3327     }
3328 
3329     // Verify that no field has data that overlaps the region of interest.  Yes
3330     // this could be sped up a lot by being smarter about queried fields,
3331     // however we're only looking at structs up to 16 bytes, so we don't care
3332     // much.
3333     unsigned idx = 0;
3334     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3335          i != e; ++i, ++idx) {
3336       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
3337 
3338       // If we found a field after the region we care about, then we're done.
3339       if (FieldOffset >= EndBit) break;
3340 
3341       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
3342       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
3343                                  Context))
3344         return false;
3345     }
3346 
3347     // If nothing in this record overlapped the area of interest, then we're
3348     // clean.
3349     return true;
3350   }
3351 
3352   return false;
3353 }
3354 
3355 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
3356 /// float member at the specified offset.  For example, {int,{float}} has a
3357 /// float at offset 4.  It is conservatively correct for this routine to return
3358 /// false.
3359 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
3360                                   const llvm::DataLayout &TD) {
3361   // Base case if we find a float.
3362   if (IROffset == 0 && IRType->isFloatTy())
3363     return true;
3364 
3365   // If this is a struct, recurse into the field at the specified offset.
3366   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3367     const llvm::StructLayout *SL = TD.getStructLayout(STy);
3368     unsigned Elt = SL->getElementContainingOffset(IROffset);
3369     IROffset -= SL->getElementOffset(Elt);
3370     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
3371   }
3372 
3373   // If this is an array, recurse into the field at the specified offset.
3374   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3375     llvm::Type *EltTy = ATy->getElementType();
3376     unsigned EltSize = TD.getTypeAllocSize(EltTy);
3377     IROffset -= IROffset/EltSize*EltSize;
3378     return ContainsFloatAtOffset(EltTy, IROffset, TD);
3379   }
3380 
3381   return false;
3382 }
3383 
3384 
3385 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
3386 /// low 8 bytes of an XMM register, corresponding to the SSE class.
3387 llvm::Type *X86_64ABIInfo::
3388 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3389                    QualType SourceTy, unsigned SourceOffset) const {
3390   // The only three choices we have are either double, <2 x float>, or float. We
3391   // pass as float if the last 4 bytes is just padding.  This happens for
3392   // structs that contain 3 floats.
3393   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
3394                             SourceOffset*8+64, getContext()))
3395     return llvm::Type::getFloatTy(getVMContext());
3396 
3397   // We want to pass as <2 x float> if the LLVM IR type contains a float at
3398   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
3399   // case.
3400   if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
3401       ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
3402     return llvm::FixedVectorType::get(llvm::Type::getFloatTy(getVMContext()),
3403                                       2);
3404 
3405   return llvm::Type::getDoubleTy(getVMContext());
3406 }
3407 
3408 
3409 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
3410 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
3411 /// about the high or low part of an up-to-16-byte struct.  This routine picks
3412 /// the best LLVM IR type to represent this, which may be i64 or may be anything
3413 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
3414 /// etc).
3415 ///
3416 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
3417 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
3418 /// the 8-byte value references.  PrefType may be null.
3419 ///
3420 /// SourceTy is the source-level type for the entire argument.  SourceOffset is
3421 /// an offset into this that we're processing (which is always either 0 or 8).
3422 ///
3423 llvm::Type *X86_64ABIInfo::
3424 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3425                        QualType SourceTy, unsigned SourceOffset) const {
3426   // If we're dealing with an un-offset LLVM IR type, then it means that we're
3427   // returning an 8-byte unit starting with it.  See if we can safely use it.
3428   if (IROffset == 0) {
3429     // Pointers and int64's always fill the 8-byte unit.
3430     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
3431         IRType->isIntegerTy(64))
3432       return IRType;
3433 
3434     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
3435     // goodness in the source type is just tail padding.  This is allowed to
3436     // kick in for struct {double,int} on the int, but not on
3437     // struct{double,int,int} because we wouldn't return the second int.  We
3438     // have to do this analysis on the source type because we can't depend on
3439     // unions being lowered a specific way etc.
3440     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
3441         IRType->isIntegerTy(32) ||
3442         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
3443       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
3444           cast<llvm::IntegerType>(IRType)->getBitWidth();
3445 
3446       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
3447                                 SourceOffset*8+64, getContext()))
3448         return IRType;
3449     }
3450   }
3451 
3452   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3453     // If this is a struct, recurse into the field at the specified offset.
3454     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
3455     if (IROffset < SL->getSizeInBytes()) {
3456       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
3457       IROffset -= SL->getElementOffset(FieldIdx);
3458 
3459       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
3460                                     SourceTy, SourceOffset);
3461     }
3462   }
3463 
3464   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3465     llvm::Type *EltTy = ATy->getElementType();
3466     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
3467     unsigned EltOffset = IROffset/EltSize*EltSize;
3468     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
3469                                   SourceOffset);
3470   }
3471 
3472   // Okay, we don't have any better idea of what to pass, so we pass this in an
3473   // integer register that isn't too big to fit the rest of the struct.
3474   unsigned TySizeInBytes =
3475     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
3476 
3477   assert(TySizeInBytes != SourceOffset && "Empty field?");
3478 
3479   // It is always safe to classify this as an integer type up to i64 that
3480   // isn't larger than the structure.
3481   return llvm::IntegerType::get(getVMContext(),
3482                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
3483 }
3484 
3485 
3486 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
3487 /// be used as elements of a two register pair to pass or return, return a
3488 /// first class aggregate to represent them.  For example, if the low part of
3489 /// a by-value argument should be passed as i32* and the high part as float,
3490 /// return {i32*, float}.
3491 static llvm::Type *
3492 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
3493                            const llvm::DataLayout &TD) {
3494   // In order to correctly satisfy the ABI, we need to the high part to start
3495   // at offset 8.  If the high and low parts we inferred are both 4-byte types
3496   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
3497   // the second element at offset 8.  Check for this:
3498   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
3499   unsigned HiAlign = TD.getABITypeAlignment(Hi);
3500   unsigned HiStart = llvm::alignTo(LoSize, HiAlign);
3501   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
3502 
3503   // To handle this, we have to increase the size of the low part so that the
3504   // second element will start at an 8 byte offset.  We can't increase the size
3505   // of the second element because it might make us access off the end of the
3506   // struct.
3507   if (HiStart != 8) {
3508     // There are usually two sorts of types the ABI generation code can produce
3509     // for the low part of a pair that aren't 8 bytes in size: float or
3510     // i8/i16/i32.  This can also include pointers when they are 32-bit (X32 and
3511     // NaCl).
3512     // Promote these to a larger type.
3513     if (Lo->isFloatTy())
3514       Lo = llvm::Type::getDoubleTy(Lo->getContext());
3515     else {
3516       assert((Lo->isIntegerTy() || Lo->isPointerTy())
3517              && "Invalid/unknown lo type");
3518       Lo = llvm::Type::getInt64Ty(Lo->getContext());
3519     }
3520   }
3521 
3522   llvm::StructType *Result = llvm::StructType::get(Lo, Hi);
3523 
3524   // Verify that the second element is at an 8-byte offset.
3525   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
3526          "Invalid x86-64 argument pair!");
3527   return Result;
3528 }
3529 
3530 ABIArgInfo X86_64ABIInfo::
3531 classifyReturnType(QualType RetTy) const {
3532   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
3533   // classification algorithm.
3534   X86_64ABIInfo::Class Lo, Hi;
3535   classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
3536 
3537   // Check some invariants.
3538   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3539   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3540 
3541   llvm::Type *ResType = nullptr;
3542   switch (Lo) {
3543   case NoClass:
3544     if (Hi == NoClass)
3545       return ABIArgInfo::getIgnore();
3546     // If the low part is just padding, it takes no register, leave ResType
3547     // null.
3548     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3549            "Unknown missing lo part");
3550     break;
3551 
3552   case SSEUp:
3553   case X87Up:
3554     llvm_unreachable("Invalid classification for lo word.");
3555 
3556     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
3557     // hidden argument.
3558   case Memory:
3559     return getIndirectReturnResult(RetTy);
3560 
3561     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
3562     // available register of the sequence %rax, %rdx is used.
3563   case Integer:
3564     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3565 
3566     // If we have a sign or zero extended integer, make sure to return Extend
3567     // so that the parameter gets the right LLVM IR attributes.
3568     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3569       // Treat an enum type as its underlying type.
3570       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3571         RetTy = EnumTy->getDecl()->getIntegerType();
3572 
3573       if (RetTy->isIntegralOrEnumerationType() &&
3574           isPromotableIntegerTypeForABI(RetTy))
3575         return ABIArgInfo::getExtend(RetTy);
3576     }
3577     break;
3578 
3579     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
3580     // available SSE register of the sequence %xmm0, %xmm1 is used.
3581   case SSE:
3582     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3583     break;
3584 
3585     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
3586     // returned on the X87 stack in %st0 as 80-bit x87 number.
3587   case X87:
3588     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
3589     break;
3590 
3591     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
3592     // part of the value is returned in %st0 and the imaginary part in
3593     // %st1.
3594   case ComplexX87:
3595     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
3596     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
3597                                     llvm::Type::getX86_FP80Ty(getVMContext()));
3598     break;
3599   }
3600 
3601   llvm::Type *HighPart = nullptr;
3602   switch (Hi) {
3603     // Memory was handled previously and X87 should
3604     // never occur as a hi class.
3605   case Memory:
3606   case X87:
3607     llvm_unreachable("Invalid classification for hi word.");
3608 
3609   case ComplexX87: // Previously handled.
3610   case NoClass:
3611     break;
3612 
3613   case Integer:
3614     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3615     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3616       return ABIArgInfo::getDirect(HighPart, 8);
3617     break;
3618   case SSE:
3619     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3620     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3621       return ABIArgInfo::getDirect(HighPart, 8);
3622     break;
3623 
3624     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
3625     // is passed in the next available eightbyte chunk if the last used
3626     // vector register.
3627     //
3628     // SSEUP should always be preceded by SSE, just widen.
3629   case SSEUp:
3630     assert(Lo == SSE && "Unexpected SSEUp classification.");
3631     ResType = GetByteVectorType(RetTy);
3632     break;
3633 
3634     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
3635     // returned together with the previous X87 value in %st0.
3636   case X87Up:
3637     // If X87Up is preceded by X87, we don't need to do
3638     // anything. However, in some cases with unions it may not be
3639     // preceded by X87. In such situations we follow gcc and pass the
3640     // extra bits in an SSE reg.
3641     if (Lo != X87) {
3642       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3643       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3644         return ABIArgInfo::getDirect(HighPart, 8);
3645     }
3646     break;
3647   }
3648 
3649   // If a high part was specified, merge it together with the low part.  It is
3650   // known to pass in the high eightbyte of the result.  We do this by forming a
3651   // first class struct aggregate with the high and low part: {low, high}
3652   if (HighPart)
3653     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3654 
3655   return ABIArgInfo::getDirect(ResType);
3656 }
3657 
3658 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
3659   QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
3660   bool isNamedArg)
3661   const
3662 {
3663   Ty = useFirstFieldIfTransparentUnion(Ty);
3664 
3665   X86_64ABIInfo::Class Lo, Hi;
3666   classify(Ty, 0, Lo, Hi, isNamedArg);
3667 
3668   // Check some invariants.
3669   // FIXME: Enforce these by construction.
3670   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3671   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3672 
3673   neededInt = 0;
3674   neededSSE = 0;
3675   llvm::Type *ResType = nullptr;
3676   switch (Lo) {
3677   case NoClass:
3678     if (Hi == NoClass)
3679       return ABIArgInfo::getIgnore();
3680     // If the low part is just padding, it takes no register, leave ResType
3681     // null.
3682     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3683            "Unknown missing lo part");
3684     break;
3685 
3686     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
3687     // on the stack.
3688   case Memory:
3689 
3690     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
3691     // COMPLEX_X87, it is passed in memory.
3692   case X87:
3693   case ComplexX87:
3694     if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
3695       ++neededInt;
3696     return getIndirectResult(Ty, freeIntRegs);
3697 
3698   case SSEUp:
3699   case X87Up:
3700     llvm_unreachable("Invalid classification for lo word.");
3701 
3702     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
3703     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
3704     // and %r9 is used.
3705   case Integer:
3706     ++neededInt;
3707 
3708     // Pick an 8-byte type based on the preferred type.
3709     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
3710 
3711     // If we have a sign or zero extended integer, make sure to return Extend
3712     // so that the parameter gets the right LLVM IR attributes.
3713     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3714       // Treat an enum type as its underlying type.
3715       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3716         Ty = EnumTy->getDecl()->getIntegerType();
3717 
3718       if (Ty->isIntegralOrEnumerationType() &&
3719           isPromotableIntegerTypeForABI(Ty))
3720         return ABIArgInfo::getExtend(Ty);
3721     }
3722 
3723     break;
3724 
3725     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
3726     // available SSE register is used, the registers are taken in the
3727     // order from %xmm0 to %xmm7.
3728   case SSE: {
3729     llvm::Type *IRType = CGT.ConvertType(Ty);
3730     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
3731     ++neededSSE;
3732     break;
3733   }
3734   }
3735 
3736   llvm::Type *HighPart = nullptr;
3737   switch (Hi) {
3738     // Memory was handled previously, ComplexX87 and X87 should
3739     // never occur as hi classes, and X87Up must be preceded by X87,
3740     // which is passed in memory.
3741   case Memory:
3742   case X87:
3743   case ComplexX87:
3744     llvm_unreachable("Invalid classification for hi word.");
3745 
3746   case NoClass: break;
3747 
3748   case Integer:
3749     ++neededInt;
3750     // Pick an 8-byte type based on the preferred type.
3751     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3752 
3753     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3754       return ABIArgInfo::getDirect(HighPart, 8);
3755     break;
3756 
3757     // X87Up generally doesn't occur here (long double is passed in
3758     // memory), except in situations involving unions.
3759   case X87Up:
3760   case SSE:
3761     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3762 
3763     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3764       return ABIArgInfo::getDirect(HighPart, 8);
3765 
3766     ++neededSSE;
3767     break;
3768 
3769     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
3770     // eightbyte is passed in the upper half of the last used SSE
3771     // register.  This only happens when 128-bit vectors are passed.
3772   case SSEUp:
3773     assert(Lo == SSE && "Unexpected SSEUp classification");
3774     ResType = GetByteVectorType(Ty);
3775     break;
3776   }
3777 
3778   // If a high part was specified, merge it together with the low part.  It is
3779   // known to pass in the high eightbyte of the result.  We do this by forming a
3780   // first class struct aggregate with the high and low part: {low, high}
3781   if (HighPart)
3782     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3783 
3784   return ABIArgInfo::getDirect(ResType);
3785 }
3786 
3787 ABIArgInfo
3788 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
3789                                              unsigned &NeededSSE) const {
3790   auto RT = Ty->getAs<RecordType>();
3791   assert(RT && "classifyRegCallStructType only valid with struct types");
3792 
3793   if (RT->getDecl()->hasFlexibleArrayMember())
3794     return getIndirectReturnResult(Ty);
3795 
3796   // Sum up bases
3797   if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
3798     if (CXXRD->isDynamicClass()) {
3799       NeededInt = NeededSSE = 0;
3800       return getIndirectReturnResult(Ty);
3801     }
3802 
3803     for (const auto &I : CXXRD->bases())
3804       if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE)
3805               .isIndirect()) {
3806         NeededInt = NeededSSE = 0;
3807         return getIndirectReturnResult(Ty);
3808       }
3809   }
3810 
3811   // Sum up members
3812   for (const auto *FD : RT->getDecl()->fields()) {
3813     if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) {
3814       if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE)
3815               .isIndirect()) {
3816         NeededInt = NeededSSE = 0;
3817         return getIndirectReturnResult(Ty);
3818       }
3819     } else {
3820       unsigned LocalNeededInt, LocalNeededSSE;
3821       if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt,
3822                                LocalNeededSSE, true)
3823               .isIndirect()) {
3824         NeededInt = NeededSSE = 0;
3825         return getIndirectReturnResult(Ty);
3826       }
3827       NeededInt += LocalNeededInt;
3828       NeededSSE += LocalNeededSSE;
3829     }
3830   }
3831 
3832   return ABIArgInfo::getDirect();
3833 }
3834 
3835 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty,
3836                                                     unsigned &NeededInt,
3837                                                     unsigned &NeededSSE) const {
3838 
3839   NeededInt = 0;
3840   NeededSSE = 0;
3841 
3842   return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE);
3843 }
3844 
3845 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3846 
3847   const unsigned CallingConv = FI.getCallingConvention();
3848   // It is possible to force Win64 calling convention on any x86_64 target by
3849   // using __attribute__((ms_abi)). In such case to correctly emit Win64
3850   // compatible code delegate this call to WinX86_64ABIInfo::computeInfo.
3851   if (CallingConv == llvm::CallingConv::Win64) {
3852     WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel);
3853     Win64ABIInfo.computeInfo(FI);
3854     return;
3855   }
3856 
3857   bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall;
3858 
3859   // Keep track of the number of assigned registers.
3860   unsigned FreeIntRegs = IsRegCall ? 11 : 6;
3861   unsigned FreeSSERegs = IsRegCall ? 16 : 8;
3862   unsigned NeededInt, NeededSSE;
3863 
3864   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
3865     if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() &&
3866         !FI.getReturnType()->getTypePtr()->isUnionType()) {
3867       FI.getReturnInfo() =
3868           classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE);
3869       if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3870         FreeIntRegs -= NeededInt;
3871         FreeSSERegs -= NeededSSE;
3872       } else {
3873         FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3874       }
3875     } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>() &&
3876                getContext().getCanonicalType(FI.getReturnType()
3877                                                  ->getAs<ComplexType>()
3878                                                  ->getElementType()) ==
3879                    getContext().LongDoubleTy)
3880       // Complex Long Double Type is passed in Memory when Regcall
3881       // calling convention is used.
3882       FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3883     else
3884       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3885   }
3886 
3887   // If the return value is indirect, then the hidden argument is consuming one
3888   // integer register.
3889   if (FI.getReturnInfo().isIndirect())
3890     --FreeIntRegs;
3891 
3892   // The chain argument effectively gives us another free register.
3893   if (FI.isChainCall())
3894     ++FreeIntRegs;
3895 
3896   unsigned NumRequiredArgs = FI.getNumRequiredArgs();
3897   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
3898   // get assigned (in left-to-right order) for passing as follows...
3899   unsigned ArgNo = 0;
3900   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3901        it != ie; ++it, ++ArgNo) {
3902     bool IsNamedArg = ArgNo < NumRequiredArgs;
3903 
3904     if (IsRegCall && it->type->isStructureOrClassType())
3905       it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE);
3906     else
3907       it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt,
3908                                       NeededSSE, IsNamedArg);
3909 
3910     // AMD64-ABI 3.2.3p3: If there are no registers available for any
3911     // eightbyte of an argument, the whole argument is passed on the
3912     // stack. If registers have already been assigned for some
3913     // eightbytes of such an argument, the assignments get reverted.
3914     if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3915       FreeIntRegs -= NeededInt;
3916       FreeSSERegs -= NeededSSE;
3917     } else {
3918       it->info = getIndirectResult(it->type, FreeIntRegs);
3919     }
3920   }
3921 }
3922 
3923 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF,
3924                                          Address VAListAddr, QualType Ty) {
3925   Address overflow_arg_area_p =
3926       CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
3927   llvm::Value *overflow_arg_area =
3928     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
3929 
3930   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
3931   // byte boundary if alignment needed by type exceeds 8 byte boundary.
3932   // It isn't stated explicitly in the standard, but in practice we use
3933   // alignment greater than 16 where necessary.
3934   CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
3935   if (Align > CharUnits::fromQuantity(8)) {
3936     overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area,
3937                                                       Align);
3938   }
3939 
3940   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
3941   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3942   llvm::Value *Res =
3943     CGF.Builder.CreateBitCast(overflow_arg_area,
3944                               llvm::PointerType::getUnqual(LTy));
3945 
3946   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
3947   // l->overflow_arg_area + sizeof(type).
3948   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
3949   // an 8 byte boundary.
3950 
3951   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
3952   llvm::Value *Offset =
3953       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
3954   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
3955                                             "overflow_arg_area.next");
3956   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
3957 
3958   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
3959   return Address(Res, Align);
3960 }
3961 
3962 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3963                                  QualType Ty) const {
3964   // Assume that va_list type is correct; should be pointer to LLVM type:
3965   // struct {
3966   //   i32 gp_offset;
3967   //   i32 fp_offset;
3968   //   i8* overflow_arg_area;
3969   //   i8* reg_save_area;
3970   // };
3971   unsigned neededInt, neededSSE;
3972 
3973   Ty = getContext().getCanonicalType(Ty);
3974   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
3975                                        /*isNamedArg*/false);
3976 
3977   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
3978   // in the registers. If not go to step 7.
3979   if (!neededInt && !neededSSE)
3980     return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3981 
3982   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
3983   // general purpose registers needed to pass type and num_fp to hold
3984   // the number of floating point registers needed.
3985 
3986   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
3987   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
3988   // l->fp_offset > 304 - num_fp * 16 go to step 7.
3989   //
3990   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
3991   // register save space).
3992 
3993   llvm::Value *InRegs = nullptr;
3994   Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid();
3995   llvm::Value *gp_offset = nullptr, *fp_offset = nullptr;
3996   if (neededInt) {
3997     gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
3998     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
3999     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
4000     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
4001   }
4002 
4003   if (neededSSE) {
4004     fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
4005     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
4006     llvm::Value *FitsInFP =
4007       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
4008     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
4009     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
4010   }
4011 
4012   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
4013   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
4014   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
4015   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
4016 
4017   // Emit code to load the value if it was passed in registers.
4018 
4019   CGF.EmitBlock(InRegBlock);
4020 
4021   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
4022   // an offset of l->gp_offset and/or l->fp_offset. This may require
4023   // copying to a temporary location in case the parameter is passed
4024   // in different register classes or requires an alignment greater
4025   // than 8 for general purpose registers and 16 for XMM registers.
4026   //
4027   // FIXME: This really results in shameful code when we end up needing to
4028   // collect arguments from different places; often what should result in a
4029   // simple assembling of a structure from scattered addresses has many more
4030   // loads than necessary. Can we clean this up?
4031   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
4032   llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(
4033       CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area");
4034 
4035   Address RegAddr = Address::invalid();
4036   if (neededInt && neededSSE) {
4037     // FIXME: Cleanup.
4038     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
4039     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
4040     Address Tmp = CGF.CreateMemTemp(Ty);
4041     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
4042     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
4043     llvm::Type *TyLo = ST->getElementType(0);
4044     llvm::Type *TyHi = ST->getElementType(1);
4045     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
4046            "Unexpected ABI info for mixed regs");
4047     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
4048     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
4049     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset);
4050     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset);
4051     llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
4052     llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
4053 
4054     // Copy the first element.
4055     // FIXME: Our choice of alignment here and below is probably pessimistic.
4056     llvm::Value *V = CGF.Builder.CreateAlignedLoad(
4057         TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo),
4058         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo)));
4059     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
4060 
4061     // Copy the second element.
4062     V = CGF.Builder.CreateAlignedLoad(
4063         TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi),
4064         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi)));
4065     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
4066 
4067     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
4068   } else if (neededInt) {
4069     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset),
4070                       CharUnits::fromQuantity(8));
4071     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
4072 
4073     // Copy to a temporary if necessary to ensure the appropriate alignment.
4074     auto TInfo = getContext().getTypeInfoInChars(Ty);
4075     uint64_t TySize = TInfo.Width.getQuantity();
4076     CharUnits TyAlign = TInfo.Align;
4077 
4078     // Copy into a temporary if the type is more aligned than the
4079     // register save area.
4080     if (TyAlign.getQuantity() > 8) {
4081       Address Tmp = CGF.CreateMemTemp(Ty);
4082       CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false);
4083       RegAddr = Tmp;
4084     }
4085 
4086   } else if (neededSSE == 1) {
4087     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
4088                       CharUnits::fromQuantity(16));
4089     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
4090   } else {
4091     assert(neededSSE == 2 && "Invalid number of needed registers!");
4092     // SSE registers are spaced 16 bytes apart in the register save
4093     // area, we need to collect the two eightbytes together.
4094     // The ABI isn't explicit about this, but it seems reasonable
4095     // to assume that the slots are 16-byte aligned, since the stack is
4096     // naturally 16-byte aligned and the prologue is expected to store
4097     // all the SSE registers to the RSA.
4098     Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
4099                                 CharUnits::fromQuantity(16));
4100     Address RegAddrHi =
4101       CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo,
4102                                              CharUnits::fromQuantity(16));
4103     llvm::Type *ST = AI.canHaveCoerceToType()
4104                          ? AI.getCoerceToType()
4105                          : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy);
4106     llvm::Value *V;
4107     Address Tmp = CGF.CreateMemTemp(Ty);
4108     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
4109     V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
4110         RegAddrLo, ST->getStructElementType(0)));
4111     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
4112     V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
4113         RegAddrHi, ST->getStructElementType(1)));
4114     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
4115 
4116     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
4117   }
4118 
4119   // AMD64-ABI 3.5.7p5: Step 5. Set:
4120   // l->gp_offset = l->gp_offset + num_gp * 8
4121   // l->fp_offset = l->fp_offset + num_fp * 16.
4122   if (neededInt) {
4123     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
4124     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
4125                             gp_offset_p);
4126   }
4127   if (neededSSE) {
4128     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
4129     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
4130                             fp_offset_p);
4131   }
4132   CGF.EmitBranch(ContBlock);
4133 
4134   // Emit code to load the value if it was passed in memory.
4135 
4136   CGF.EmitBlock(InMemBlock);
4137   Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
4138 
4139   // Return the appropriate result.
4140 
4141   CGF.EmitBlock(ContBlock);
4142   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
4143                                  "vaarg.addr");
4144   return ResAddr;
4145 }
4146 
4147 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
4148                                    QualType Ty) const {
4149   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
4150                           CGF.getContext().getTypeInfoInChars(Ty),
4151                           CharUnits::fromQuantity(8),
4152                           /*allowHigherAlign*/ false);
4153 }
4154 
4155 ABIArgInfo
4156 WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs,
4157                                     const ABIArgInfo &current) const {
4158   // Assumes vectorCall calling convention.
4159   const Type *Base = nullptr;
4160   uint64_t NumElts = 0;
4161 
4162   if (!Ty->isBuiltinType() && !Ty->isVectorType() &&
4163       isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) {
4164     FreeSSERegs -= NumElts;
4165     return getDirectX86Hva();
4166   }
4167   return current;
4168 }
4169 
4170 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
4171                                       bool IsReturnType, bool IsVectorCall,
4172                                       bool IsRegCall) const {
4173 
4174   if (Ty->isVoidType())
4175     return ABIArgInfo::getIgnore();
4176 
4177   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4178     Ty = EnumTy->getDecl()->getIntegerType();
4179 
4180   TypeInfo Info = getContext().getTypeInfo(Ty);
4181   uint64_t Width = Info.Width;
4182   CharUnits Align = getContext().toCharUnitsFromBits(Info.Align);
4183 
4184   const RecordType *RT = Ty->getAs<RecordType>();
4185   if (RT) {
4186     if (!IsReturnType) {
4187       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
4188         return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
4189     }
4190 
4191     if (RT->getDecl()->hasFlexibleArrayMember())
4192       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4193 
4194   }
4195 
4196   const Type *Base = nullptr;
4197   uint64_t NumElts = 0;
4198   // vectorcall adds the concept of a homogenous vector aggregate, similar to
4199   // other targets.
4200   if ((IsVectorCall || IsRegCall) &&
4201       isHomogeneousAggregate(Ty, Base, NumElts)) {
4202     if (IsRegCall) {
4203       if (FreeSSERegs >= NumElts) {
4204         FreeSSERegs -= NumElts;
4205         if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
4206           return ABIArgInfo::getDirect();
4207         return ABIArgInfo::getExpand();
4208       }
4209       return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4210     } else if (IsVectorCall) {
4211       if (FreeSSERegs >= NumElts &&
4212           (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) {
4213         FreeSSERegs -= NumElts;
4214         return ABIArgInfo::getDirect();
4215       } else if (IsReturnType) {
4216         return ABIArgInfo::getExpand();
4217       } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) {
4218         // HVAs are delayed and reclassified in the 2nd step.
4219         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4220       }
4221     }
4222   }
4223 
4224   if (Ty->isMemberPointerType()) {
4225     // If the member pointer is represented by an LLVM int or ptr, pass it
4226     // directly.
4227     llvm::Type *LLTy = CGT.ConvertType(Ty);
4228     if (LLTy->isPointerTy() || LLTy->isIntegerTy())
4229       return ABIArgInfo::getDirect();
4230   }
4231 
4232   if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
4233     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4234     // not 1, 2, 4, or 8 bytes, must be passed by reference."
4235     if (Width > 64 || !llvm::isPowerOf2_64(Width))
4236       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4237 
4238     // Otherwise, coerce it to a small integer.
4239     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
4240   }
4241 
4242   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4243     switch (BT->getKind()) {
4244     case BuiltinType::Bool:
4245       // Bool type is always extended to the ABI, other builtin types are not
4246       // extended.
4247       return ABIArgInfo::getExtend(Ty);
4248 
4249     case BuiltinType::LongDouble:
4250       // Mingw64 GCC uses the old 80 bit extended precision floating point
4251       // unit. It passes them indirectly through memory.
4252       if (IsMingw64) {
4253         const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
4254         if (LDF == &llvm::APFloat::x87DoubleExtended())
4255           return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4256       }
4257       break;
4258 
4259     case BuiltinType::Int128:
4260     case BuiltinType::UInt128:
4261       // If it's a parameter type, the normal ABI rule is that arguments larger
4262       // than 8 bytes are passed indirectly. GCC follows it. We follow it too,
4263       // even though it isn't particularly efficient.
4264       if (!IsReturnType)
4265         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4266 
4267       // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that.
4268       // Clang matches them for compatibility.
4269       return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
4270           llvm::Type::getInt64Ty(getVMContext()), 2));
4271 
4272     default:
4273       break;
4274     }
4275   }
4276 
4277   if (Ty->isExtIntType()) {
4278     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4279     // not 1, 2, 4, or 8 bytes, must be passed by reference."
4280     // However, non-power-of-two _ExtInts will be passed as 1,2,4 or 8 bytes
4281     // anyway as long is it fits in them, so we don't have to check the power of
4282     // 2.
4283     if (Width <= 64)
4284       return ABIArgInfo::getDirect();
4285     return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4286   }
4287 
4288   return ABIArgInfo::getDirect();
4289 }
4290 
4291 void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI,
4292                                              unsigned FreeSSERegs,
4293                                              bool IsVectorCall,
4294                                              bool IsRegCall) const {
4295   unsigned Count = 0;
4296   for (auto &I : FI.arguments()) {
4297     // Vectorcall in x64 only permits the first 6 arguments to be passed
4298     // as XMM/YMM registers.
4299     if (Count < VectorcallMaxParamNumAsReg)
4300       I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall);
4301     else {
4302       // Since these cannot be passed in registers, pretend no registers
4303       // are left.
4304       unsigned ZeroSSERegsAvail = 0;
4305       I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false,
4306                         IsVectorCall, IsRegCall);
4307     }
4308     ++Count;
4309   }
4310 
4311   for (auto &I : FI.arguments()) {
4312     I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info);
4313   }
4314 }
4315 
4316 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
4317   const unsigned CC = FI.getCallingConvention();
4318   bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall;
4319   bool IsRegCall = CC == llvm::CallingConv::X86_RegCall;
4320 
4321   // If __attribute__((sysv_abi)) is in use, use the SysV argument
4322   // classification rules.
4323   if (CC == llvm::CallingConv::X86_64_SysV) {
4324     X86_64ABIInfo SysVABIInfo(CGT, AVXLevel);
4325     SysVABIInfo.computeInfo(FI);
4326     return;
4327   }
4328 
4329   unsigned FreeSSERegs = 0;
4330   if (IsVectorCall) {
4331     // We can use up to 4 SSE return registers with vectorcall.
4332     FreeSSERegs = 4;
4333   } else if (IsRegCall) {
4334     // RegCall gives us 16 SSE registers.
4335     FreeSSERegs = 16;
4336   }
4337 
4338   if (!getCXXABI().classifyReturnType(FI))
4339     FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true,
4340                                   IsVectorCall, IsRegCall);
4341 
4342   if (IsVectorCall) {
4343     // We can use up to 6 SSE register parameters with vectorcall.
4344     FreeSSERegs = 6;
4345   } else if (IsRegCall) {
4346     // RegCall gives us 16 SSE registers, we can reuse the return registers.
4347     FreeSSERegs = 16;
4348   }
4349 
4350   if (IsVectorCall) {
4351     computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall);
4352   } else {
4353     for (auto &I : FI.arguments())
4354       I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall);
4355   }
4356 
4357 }
4358 
4359 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4360                                     QualType Ty) const {
4361 
4362   bool IsIndirect = false;
4363 
4364   // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4365   // not 1, 2, 4, or 8 bytes, must be passed by reference."
4366   if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) {
4367     uint64_t Width = getContext().getTypeSize(Ty);
4368     IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
4369   }
4370 
4371   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
4372                           CGF.getContext().getTypeInfoInChars(Ty),
4373                           CharUnits::fromQuantity(8),
4374                           /*allowHigherAlign*/ false);
4375 }
4376 
4377 static bool PPC_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4378                                         llvm::Value *Address, bool Is64Bit,
4379                                         bool IsAIX) {
4380   // This is calculated from the LLVM and GCC tables and verified
4381   // against gcc output.  AFAIK all PPC ABIs use the same encoding.
4382 
4383   CodeGen::CGBuilderTy &Builder = CGF.Builder;
4384 
4385   llvm::IntegerType *i8 = CGF.Int8Ty;
4386   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
4387   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
4388   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
4389 
4390   // 0-31: r0-31, the 4-byte or 8-byte general-purpose registers
4391   AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 0, 31);
4392 
4393   // 32-63: fp0-31, the 8-byte floating-point registers
4394   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
4395 
4396   // 64-67 are various 4-byte or 8-byte special-purpose registers:
4397   // 64: mq
4398   // 65: lr
4399   // 66: ctr
4400   // 67: ap
4401   AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 64, 67);
4402 
4403   // 68-76 are various 4-byte special-purpose registers:
4404   // 68-75 cr0-7
4405   // 76: xer
4406   AssignToArrayRange(Builder, Address, Four8, 68, 76);
4407 
4408   // 77-108: v0-31, the 16-byte vector registers
4409   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
4410 
4411   // 109: vrsave
4412   // 110: vscr
4413   AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 109, 110);
4414 
4415   // AIX does not utilize the rest of the registers.
4416   if (IsAIX)
4417     return false;
4418 
4419   // 111: spe_acc
4420   // 112: spefscr
4421   // 113: sfp
4422   AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 111, 113);
4423 
4424   if (!Is64Bit)
4425     return false;
4426 
4427   // TODO: Need to verify if these registers are used on 64 bit AIX with Power8
4428   // or above CPU.
4429   // 64-bit only registers:
4430   // 114: tfhar
4431   // 115: tfiar
4432   // 116: texasr
4433   AssignToArrayRange(Builder, Address, Eight8, 114, 116);
4434 
4435   return false;
4436 }
4437 
4438 // AIX
4439 namespace {
4440 /// AIXABIInfo - The AIX XCOFF ABI information.
4441 class AIXABIInfo : public ABIInfo {
4442   const bool Is64Bit;
4443   const unsigned PtrByteSize;
4444   CharUnits getParamTypeAlignment(QualType Ty) const;
4445 
4446 public:
4447   AIXABIInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit)
4448       : ABIInfo(CGT), Is64Bit(Is64Bit), PtrByteSize(Is64Bit ? 8 : 4) {}
4449 
4450   bool isPromotableTypeForABI(QualType Ty) const;
4451 
4452   ABIArgInfo classifyReturnType(QualType RetTy) const;
4453   ABIArgInfo classifyArgumentType(QualType Ty) const;
4454 
4455   void computeInfo(CGFunctionInfo &FI) const override {
4456     if (!getCXXABI().classifyReturnType(FI))
4457       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4458 
4459     for (auto &I : FI.arguments())
4460       I.info = classifyArgumentType(I.type);
4461   }
4462 
4463   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4464                     QualType Ty) const override;
4465 };
4466 
4467 class AIXTargetCodeGenInfo : public TargetCodeGenInfo {
4468   const bool Is64Bit;
4469 
4470 public:
4471   AIXTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit)
4472       : TargetCodeGenInfo(std::make_unique<AIXABIInfo>(CGT, Is64Bit)),
4473         Is64Bit(Is64Bit) {}
4474   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4475     return 1; // r1 is the dedicated stack pointer
4476   }
4477 
4478   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4479                                llvm::Value *Address) const override;
4480 };
4481 } // namespace
4482 
4483 // Return true if the ABI requires Ty to be passed sign- or zero-
4484 // extended to 32/64 bits.
4485 bool AIXABIInfo::isPromotableTypeForABI(QualType Ty) const {
4486   // Treat an enum type as its underlying type.
4487   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4488     Ty = EnumTy->getDecl()->getIntegerType();
4489 
4490   // Promotable integer types are required to be promoted by the ABI.
4491   if (Ty->isPromotableIntegerType())
4492     return true;
4493 
4494   if (!Is64Bit)
4495     return false;
4496 
4497   // For 64 bit mode, in addition to the usual promotable integer types, we also
4498   // need to extend all 32-bit types, since the ABI requires promotion to 64
4499   // bits.
4500   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4501     switch (BT->getKind()) {
4502     case BuiltinType::Int:
4503     case BuiltinType::UInt:
4504       return true;
4505     default:
4506       break;
4507     }
4508 
4509   return false;
4510 }
4511 
4512 ABIArgInfo AIXABIInfo::classifyReturnType(QualType RetTy) const {
4513   if (RetTy->isAnyComplexType())
4514     return ABIArgInfo::getDirect();
4515 
4516   if (RetTy->isVectorType())
4517     return ABIArgInfo::getDirect();
4518 
4519   if (RetTy->isVoidType())
4520     return ABIArgInfo::getIgnore();
4521 
4522   if (isAggregateTypeForABI(RetTy))
4523     return getNaturalAlignIndirect(RetTy);
4524 
4525   return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
4526                                         : ABIArgInfo::getDirect());
4527 }
4528 
4529 ABIArgInfo AIXABIInfo::classifyArgumentType(QualType Ty) const {
4530   Ty = useFirstFieldIfTransparentUnion(Ty);
4531 
4532   if (Ty->isAnyComplexType())
4533     return ABIArgInfo::getDirect();
4534 
4535   if (Ty->isVectorType())
4536     return ABIArgInfo::getDirect();
4537 
4538   if (isAggregateTypeForABI(Ty)) {
4539     // Records with non-trivial destructors/copy-constructors should not be
4540     // passed by value.
4541     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
4542       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
4543 
4544     CharUnits CCAlign = getParamTypeAlignment(Ty);
4545     CharUnits TyAlign = getContext().getTypeAlignInChars(Ty);
4546 
4547     return ABIArgInfo::getIndirect(CCAlign, /*ByVal*/ true,
4548                                    /*Realign*/ TyAlign > CCAlign);
4549   }
4550 
4551   return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
4552                                      : ABIArgInfo::getDirect());
4553 }
4554 
4555 CharUnits AIXABIInfo::getParamTypeAlignment(QualType Ty) const {
4556   // Complex types are passed just like their elements.
4557   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4558     Ty = CTy->getElementType();
4559 
4560   if (Ty->isVectorType())
4561     return CharUnits::fromQuantity(16);
4562 
4563   // If the structure contains a vector type, the alignment is 16.
4564   if (isRecordWithSIMDVectorType(getContext(), Ty))
4565     return CharUnits::fromQuantity(16);
4566 
4567   return CharUnits::fromQuantity(PtrByteSize);
4568 }
4569 
4570 Address AIXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4571                               QualType Ty) const {
4572   if (Ty->isAnyComplexType())
4573     llvm::report_fatal_error("complex type is not supported on AIX yet");
4574 
4575   if (Ty->isVectorType())
4576     llvm::report_fatal_error(
4577         "vector types are not yet supported for variadic functions on AIX");
4578 
4579   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
4580   TypeInfo.Align = getParamTypeAlignment(Ty);
4581 
4582   CharUnits SlotSize = CharUnits::fromQuantity(PtrByteSize);
4583 
4584   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, TypeInfo,
4585                           SlotSize, /*AllowHigher*/ true);
4586 }
4587 
4588 bool AIXTargetCodeGenInfo::initDwarfEHRegSizeTable(
4589     CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const {
4590   return PPC_initDwarfEHRegSizeTable(CGF, Address, Is64Bit, /*IsAIX*/ true);
4591 }
4592 
4593 // PowerPC-32
4594 namespace {
4595 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
4596 class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
4597   bool IsSoftFloatABI;
4598   bool IsRetSmallStructInRegABI;
4599 
4600   CharUnits getParamTypeAlignment(QualType Ty) const;
4601 
4602 public:
4603   PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI,
4604                      bool RetSmallStructInRegABI)
4605       : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI),
4606         IsRetSmallStructInRegABI(RetSmallStructInRegABI) {}
4607 
4608   ABIArgInfo classifyReturnType(QualType RetTy) const;
4609 
4610   void computeInfo(CGFunctionInfo &FI) const override {
4611     if (!getCXXABI().classifyReturnType(FI))
4612       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4613     for (auto &I : FI.arguments())
4614       I.info = classifyArgumentType(I.type);
4615   }
4616 
4617   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4618                     QualType Ty) const override;
4619 };
4620 
4621 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
4622 public:
4623   PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI,
4624                          bool RetSmallStructInRegABI)
4625       : TargetCodeGenInfo(std::make_unique<PPC32_SVR4_ABIInfo>(
4626             CGT, SoftFloatABI, RetSmallStructInRegABI)) {}
4627 
4628   static bool isStructReturnInRegABI(const llvm::Triple &Triple,
4629                                      const CodeGenOptions &Opts);
4630 
4631   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4632     // This is recovered from gcc output.
4633     return 1; // r1 is the dedicated stack pointer
4634   }
4635 
4636   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4637                                llvm::Value *Address) const override;
4638 };
4639 }
4640 
4641 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
4642   // Complex types are passed just like their elements.
4643   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4644     Ty = CTy->getElementType();
4645 
4646   if (Ty->isVectorType())
4647     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16
4648                                                                        : 4);
4649 
4650   // For single-element float/vector structs, we consider the whole type
4651   // to have the same alignment requirements as its single element.
4652   const Type *AlignTy = nullptr;
4653   if (const Type *EltType = isSingleElementStruct(Ty, getContext())) {
4654     const BuiltinType *BT = EltType->getAs<BuiltinType>();
4655     if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) ||
4656         (BT && BT->isFloatingPoint()))
4657       AlignTy = EltType;
4658   }
4659 
4660   if (AlignTy)
4661     return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4);
4662   return CharUnits::fromQuantity(4);
4663 }
4664 
4665 ABIArgInfo PPC32_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
4666   uint64_t Size;
4667 
4668   // -msvr4-struct-return puts small aggregates in GPR3 and GPR4.
4669   if (isAggregateTypeForABI(RetTy) && IsRetSmallStructInRegABI &&
4670       (Size = getContext().getTypeSize(RetTy)) <= 64) {
4671     // System V ABI (1995), page 3-22, specified:
4672     // > A structure or union whose size is less than or equal to 8 bytes
4673     // > shall be returned in r3 and r4, as if it were first stored in the
4674     // > 8-byte aligned memory area and then the low addressed word were
4675     // > loaded into r3 and the high-addressed word into r4.  Bits beyond
4676     // > the last member of the structure or union are not defined.
4677     //
4678     // GCC for big-endian PPC32 inserts the pad before the first member,
4679     // not "beyond the last member" of the struct.  To stay compatible
4680     // with GCC, we coerce the struct to an integer of the same size.
4681     // LLVM will extend it and return i32 in r3, or i64 in r3:r4.
4682     if (Size == 0)
4683       return ABIArgInfo::getIgnore();
4684     else {
4685       llvm::Type *CoerceTy = llvm::Type::getIntNTy(getVMContext(), Size);
4686       return ABIArgInfo::getDirect(CoerceTy);
4687     }
4688   }
4689 
4690   return DefaultABIInfo::classifyReturnType(RetTy);
4691 }
4692 
4693 // TODO: this implementation is now likely redundant with
4694 // DefaultABIInfo::EmitVAArg.
4695 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList,
4696                                       QualType Ty) const {
4697   if (getTarget().getTriple().isOSDarwin()) {
4698     auto TI = getContext().getTypeInfoInChars(Ty);
4699     TI.Align = getParamTypeAlignment(Ty);
4700 
4701     CharUnits SlotSize = CharUnits::fromQuantity(4);
4702     return emitVoidPtrVAArg(CGF, VAList, Ty,
4703                             classifyArgumentType(Ty).isIndirect(), TI, SlotSize,
4704                             /*AllowHigherAlign=*/true);
4705   }
4706 
4707   const unsigned OverflowLimit = 8;
4708   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4709     // TODO: Implement this. For now ignore.
4710     (void)CTy;
4711     return Address::invalid(); // FIXME?
4712   }
4713 
4714   // struct __va_list_tag {
4715   //   unsigned char gpr;
4716   //   unsigned char fpr;
4717   //   unsigned short reserved;
4718   //   void *overflow_arg_area;
4719   //   void *reg_save_area;
4720   // };
4721 
4722   bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
4723   bool isInt =
4724       Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType();
4725   bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64;
4726 
4727   // All aggregates are passed indirectly?  That doesn't seem consistent
4728   // with the argument-lowering code.
4729   bool isIndirect = Ty->isAggregateType();
4730 
4731   CGBuilderTy &Builder = CGF.Builder;
4732 
4733   // The calling convention either uses 1-2 GPRs or 1 FPR.
4734   Address NumRegsAddr = Address::invalid();
4735   if (isInt || IsSoftFloatABI) {
4736     NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr");
4737   } else {
4738     NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr");
4739   }
4740 
4741   llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs");
4742 
4743   // "Align" the register count when TY is i64.
4744   if (isI64 || (isF64 && IsSoftFloatABI)) {
4745     NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1));
4746     NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U));
4747   }
4748 
4749   llvm::Value *CC =
4750       Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond");
4751 
4752   llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
4753   llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
4754   llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
4755 
4756   Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
4757 
4758   llvm::Type *DirectTy = CGF.ConvertType(Ty);
4759   if (isIndirect) DirectTy = DirectTy->getPointerTo(0);
4760 
4761   // Case 1: consume registers.
4762   Address RegAddr = Address::invalid();
4763   {
4764     CGF.EmitBlock(UsingRegs);
4765 
4766     Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4);
4767     RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr),
4768                       CharUnits::fromQuantity(8));
4769     assert(RegAddr.getElementType() == CGF.Int8Ty);
4770 
4771     // Floating-point registers start after the general-purpose registers.
4772     if (!(isInt || IsSoftFloatABI)) {
4773       RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr,
4774                                                    CharUnits::fromQuantity(32));
4775     }
4776 
4777     // Get the address of the saved value by scaling the number of
4778     // registers we've used by the number of
4779     CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8);
4780     llvm::Value *RegOffset =
4781       Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity()));
4782     RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty,
4783                                             RegAddr.getPointer(), RegOffset),
4784                       RegAddr.getAlignment().alignmentOfArrayElement(RegSize));
4785     RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy);
4786 
4787     // Increase the used-register count.
4788     NumRegs =
4789       Builder.CreateAdd(NumRegs,
4790                         Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1));
4791     Builder.CreateStore(NumRegs, NumRegsAddr);
4792 
4793     CGF.EmitBranch(Cont);
4794   }
4795 
4796   // Case 2: consume space in the overflow area.
4797   Address MemAddr = Address::invalid();
4798   {
4799     CGF.EmitBlock(UsingOverflow);
4800 
4801     Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr);
4802 
4803     // Everything in the overflow area is rounded up to a size of at least 4.
4804     CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4);
4805 
4806     CharUnits Size;
4807     if (!isIndirect) {
4808       auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty);
4809       Size = TypeInfo.Width.alignTo(OverflowAreaAlign);
4810     } else {
4811       Size = CGF.getPointerSize();
4812     }
4813 
4814     Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3);
4815     Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"),
4816                          OverflowAreaAlign);
4817     // Round up address of argument to alignment
4818     CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
4819     if (Align > OverflowAreaAlign) {
4820       llvm::Value *Ptr = OverflowArea.getPointer();
4821       OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align),
4822                                                            Align);
4823     }
4824 
4825     MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy);
4826 
4827     // Increase the overflow area.
4828     OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size);
4829     Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr);
4830     CGF.EmitBranch(Cont);
4831   }
4832 
4833   CGF.EmitBlock(Cont);
4834 
4835   // Merge the cases with a phi.
4836   Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow,
4837                                 "vaarg.addr");
4838 
4839   // Load the pointer if the argument was passed indirectly.
4840   if (isIndirect) {
4841     Result = Address(Builder.CreateLoad(Result, "aggr"),
4842                      getContext().getTypeAlignInChars(Ty));
4843   }
4844 
4845   return Result;
4846 }
4847 
4848 bool PPC32TargetCodeGenInfo::isStructReturnInRegABI(
4849     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
4850   assert(Triple.getArch() == llvm::Triple::ppc);
4851 
4852   switch (Opts.getStructReturnConvention()) {
4853   case CodeGenOptions::SRCK_Default:
4854     break;
4855   case CodeGenOptions::SRCK_OnStack: // -maix-struct-return
4856     return false;
4857   case CodeGenOptions::SRCK_InRegs: // -msvr4-struct-return
4858     return true;
4859   }
4860 
4861   if (Triple.isOSBinFormatELF() && !Triple.isOSLinux())
4862     return true;
4863 
4864   return false;
4865 }
4866 
4867 bool
4868 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4869                                                 llvm::Value *Address) const {
4870   return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ false,
4871                                      /*IsAIX*/ false);
4872 }
4873 
4874 // PowerPC-64
4875 
4876 namespace {
4877 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
4878 class PPC64_SVR4_ABIInfo : public SwiftABIInfo {
4879 public:
4880   enum ABIKind {
4881     ELFv1 = 0,
4882     ELFv2
4883   };
4884 
4885 private:
4886   static const unsigned GPRBits = 64;
4887   ABIKind Kind;
4888   bool HasQPX;
4889   bool IsSoftFloatABI;
4890 
4891   // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and
4892   // will be passed in a QPX register.
4893   bool IsQPXVectorTy(const Type *Ty) const {
4894     if (!HasQPX)
4895       return false;
4896 
4897     if (const VectorType *VT = Ty->getAs<VectorType>()) {
4898       unsigned NumElements = VT->getNumElements();
4899       if (NumElements == 1)
4900         return false;
4901 
4902       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) {
4903         if (getContext().getTypeSize(Ty) <= 256)
4904           return true;
4905       } else if (VT->getElementType()->
4906                    isSpecificBuiltinType(BuiltinType::Float)) {
4907         if (getContext().getTypeSize(Ty) <= 128)
4908           return true;
4909       }
4910     }
4911 
4912     return false;
4913   }
4914 
4915   bool IsQPXVectorTy(QualType Ty) const {
4916     return IsQPXVectorTy(Ty.getTypePtr());
4917   }
4918 
4919 public:
4920   PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX,
4921                      bool SoftFloatABI)
4922       : SwiftABIInfo(CGT), Kind(Kind), HasQPX(HasQPX),
4923         IsSoftFloatABI(SoftFloatABI) {}
4924 
4925   bool isPromotableTypeForABI(QualType Ty) const;
4926   CharUnits getParamTypeAlignment(QualType Ty) const;
4927 
4928   ABIArgInfo classifyReturnType(QualType RetTy) const;
4929   ABIArgInfo classifyArgumentType(QualType Ty) const;
4930 
4931   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4932   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4933                                          uint64_t Members) const override;
4934 
4935   // TODO: We can add more logic to computeInfo to improve performance.
4936   // Example: For aggregate arguments that fit in a register, we could
4937   // use getDirectInReg (as is done below for structs containing a single
4938   // floating-point value) to avoid pushing them to memory on function
4939   // entry.  This would require changing the logic in PPCISelLowering
4940   // when lowering the parameters in the caller and args in the callee.
4941   void computeInfo(CGFunctionInfo &FI) const override {
4942     if (!getCXXABI().classifyReturnType(FI))
4943       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4944     for (auto &I : FI.arguments()) {
4945       // We rely on the default argument classification for the most part.
4946       // One exception:  An aggregate containing a single floating-point
4947       // or vector item must be passed in a register if one is available.
4948       const Type *T = isSingleElementStruct(I.type, getContext());
4949       if (T) {
4950         const BuiltinType *BT = T->getAs<BuiltinType>();
4951         if (IsQPXVectorTy(T) ||
4952             (T->isVectorType() && getContext().getTypeSize(T) == 128) ||
4953             (BT && BT->isFloatingPoint())) {
4954           QualType QT(T, 0);
4955           I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
4956           continue;
4957         }
4958       }
4959       I.info = classifyArgumentType(I.type);
4960     }
4961   }
4962 
4963   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4964                     QualType Ty) const override;
4965 
4966   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
4967                                     bool asReturnValue) const override {
4968     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
4969   }
4970 
4971   bool isSwiftErrorInRegister() const override {
4972     return false;
4973   }
4974 };
4975 
4976 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
4977 
4978 public:
4979   PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT,
4980                                PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX,
4981                                bool SoftFloatABI)
4982       : TargetCodeGenInfo(std::make_unique<PPC64_SVR4_ABIInfo>(
4983             CGT, Kind, HasQPX, SoftFloatABI)) {}
4984 
4985   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4986     // This is recovered from gcc output.
4987     return 1; // r1 is the dedicated stack pointer
4988   }
4989 
4990   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4991                                llvm::Value *Address) const override;
4992 };
4993 
4994 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
4995 public:
4996   PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
4997 
4998   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4999     // This is recovered from gcc output.
5000     return 1; // r1 is the dedicated stack pointer
5001   }
5002 
5003   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5004                                llvm::Value *Address) const override;
5005 };
5006 
5007 }
5008 
5009 // Return true if the ABI requires Ty to be passed sign- or zero-
5010 // extended to 64 bits.
5011 bool
5012 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
5013   // Treat an enum type as its underlying type.
5014   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5015     Ty = EnumTy->getDecl()->getIntegerType();
5016 
5017   // Promotable integer types are required to be promoted by the ABI.
5018   if (isPromotableIntegerTypeForABI(Ty))
5019     return true;
5020 
5021   // In addition to the usual promotable integer types, we also need to
5022   // extend all 32-bit types, since the ABI requires promotion to 64 bits.
5023   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
5024     switch (BT->getKind()) {
5025     case BuiltinType::Int:
5026     case BuiltinType::UInt:
5027       return true;
5028     default:
5029       break;
5030     }
5031 
5032   if (const auto *EIT = Ty->getAs<ExtIntType>())
5033     if (EIT->getNumBits() < 64)
5034       return true;
5035 
5036   return false;
5037 }
5038 
5039 /// isAlignedParamType - Determine whether a type requires 16-byte or
5040 /// higher alignment in the parameter area.  Always returns at least 8.
5041 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
5042   // Complex types are passed just like their elements.
5043   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
5044     Ty = CTy->getElementType();
5045 
5046   // Only vector types of size 16 bytes need alignment (larger types are
5047   // passed via reference, smaller types are not aligned).
5048   if (IsQPXVectorTy(Ty)) {
5049     if (getContext().getTypeSize(Ty) > 128)
5050       return CharUnits::fromQuantity(32);
5051 
5052     return CharUnits::fromQuantity(16);
5053   } else if (Ty->isVectorType()) {
5054     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8);
5055   } else if (Ty->isRealFloatingType() &&
5056              &getContext().getFloatTypeSemantics(Ty) ==
5057                  &llvm::APFloat::IEEEquad()) {
5058     // According to ABI document section 'Optional Save Areas': If extended
5059     // precision floating-point values in IEEE BINARY 128 QUADRUPLE PRECISION
5060     // format are supported, map them to a single quadword, quadword aligned.
5061     return CharUnits::fromQuantity(16);
5062   }
5063 
5064   // For single-element float/vector structs, we consider the whole type
5065   // to have the same alignment requirements as its single element.
5066   const Type *AlignAsType = nullptr;
5067   const Type *EltType = isSingleElementStruct(Ty, getContext());
5068   if (EltType) {
5069     const BuiltinType *BT = EltType->getAs<BuiltinType>();
5070     if (IsQPXVectorTy(EltType) || (EltType->isVectorType() &&
5071          getContext().getTypeSize(EltType) == 128) ||
5072         (BT && BT->isFloatingPoint()))
5073       AlignAsType = EltType;
5074   }
5075 
5076   // Likewise for ELFv2 homogeneous aggregates.
5077   const Type *Base = nullptr;
5078   uint64_t Members = 0;
5079   if (!AlignAsType && Kind == ELFv2 &&
5080       isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
5081     AlignAsType = Base;
5082 
5083   // With special case aggregates, only vector base types need alignment.
5084   if (AlignAsType && IsQPXVectorTy(AlignAsType)) {
5085     if (getContext().getTypeSize(AlignAsType) > 128)
5086       return CharUnits::fromQuantity(32);
5087 
5088     return CharUnits::fromQuantity(16);
5089   } else if (AlignAsType) {
5090     return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8);
5091   }
5092 
5093   // Otherwise, we only need alignment for any aggregate type that
5094   // has an alignment requirement of >= 16 bytes.
5095   if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) {
5096     if (HasQPX && getContext().getTypeAlign(Ty) >= 256)
5097       return CharUnits::fromQuantity(32);
5098     return CharUnits::fromQuantity(16);
5099   }
5100 
5101   return CharUnits::fromQuantity(8);
5102 }
5103 
5104 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
5105 /// aggregate.  Base is set to the base element type, and Members is set
5106 /// to the number of base elements.
5107 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
5108                                      uint64_t &Members) const {
5109   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
5110     uint64_t NElements = AT->getSize().getZExtValue();
5111     if (NElements == 0)
5112       return false;
5113     if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
5114       return false;
5115     Members *= NElements;
5116   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
5117     const RecordDecl *RD = RT->getDecl();
5118     if (RD->hasFlexibleArrayMember())
5119       return false;
5120 
5121     Members = 0;
5122 
5123     // If this is a C++ record, check the bases first.
5124     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
5125       for (const auto &I : CXXRD->bases()) {
5126         // Ignore empty records.
5127         if (isEmptyRecord(getContext(), I.getType(), true))
5128           continue;
5129 
5130         uint64_t FldMembers;
5131         if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
5132           return false;
5133 
5134         Members += FldMembers;
5135       }
5136     }
5137 
5138     for (const auto *FD : RD->fields()) {
5139       // Ignore (non-zero arrays of) empty records.
5140       QualType FT = FD->getType();
5141       while (const ConstantArrayType *AT =
5142              getContext().getAsConstantArrayType(FT)) {
5143         if (AT->getSize().getZExtValue() == 0)
5144           return false;
5145         FT = AT->getElementType();
5146       }
5147       if (isEmptyRecord(getContext(), FT, true))
5148         continue;
5149 
5150       // For compatibility with GCC, ignore empty bitfields in C++ mode.
5151       if (getContext().getLangOpts().CPlusPlus &&
5152           FD->isZeroLengthBitField(getContext()))
5153         continue;
5154 
5155       uint64_t FldMembers;
5156       if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
5157         return false;
5158 
5159       Members = (RD->isUnion() ?
5160                  std::max(Members, FldMembers) : Members + FldMembers);
5161     }
5162 
5163     if (!Base)
5164       return false;
5165 
5166     // Ensure there is no padding.
5167     if (getContext().getTypeSize(Base) * Members !=
5168         getContext().getTypeSize(Ty))
5169       return false;
5170   } else {
5171     Members = 1;
5172     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
5173       Members = 2;
5174       Ty = CT->getElementType();
5175     }
5176 
5177     // Most ABIs only support float, double, and some vector type widths.
5178     if (!isHomogeneousAggregateBaseType(Ty))
5179       return false;
5180 
5181     // The base type must be the same for all members.  Types that
5182     // agree in both total size and mode (float vs. vector) are
5183     // treated as being equivalent here.
5184     const Type *TyPtr = Ty.getTypePtr();
5185     if (!Base) {
5186       Base = TyPtr;
5187       // If it's a non-power-of-2 vector, its size is already a power-of-2,
5188       // so make sure to widen it explicitly.
5189       if (const VectorType *VT = Base->getAs<VectorType>()) {
5190         QualType EltTy = VT->getElementType();
5191         unsigned NumElements =
5192             getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy);
5193         Base = getContext()
5194                    .getVectorType(EltTy, NumElements, VT->getVectorKind())
5195                    .getTypePtr();
5196       }
5197     }
5198 
5199     if (Base->isVectorType() != TyPtr->isVectorType() ||
5200         getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
5201       return false;
5202   }
5203   return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
5204 }
5205 
5206 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
5207   // Homogeneous aggregates for ELFv2 must have base types of float,
5208   // double, long double, or 128-bit vectors.
5209   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
5210     if (BT->getKind() == BuiltinType::Float ||
5211         BT->getKind() == BuiltinType::Double ||
5212         BT->getKind() == BuiltinType::LongDouble ||
5213         (getContext().getTargetInfo().hasFloat128Type() &&
5214           (BT->getKind() == BuiltinType::Float128))) {
5215       if (IsSoftFloatABI)
5216         return false;
5217       return true;
5218     }
5219   }
5220   if (const VectorType *VT = Ty->getAs<VectorType>()) {
5221     if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty))
5222       return true;
5223   }
5224   return false;
5225 }
5226 
5227 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough(
5228     const Type *Base, uint64_t Members) const {
5229   // Vector and fp128 types require one register, other floating point types
5230   // require one or two registers depending on their size.
5231   uint32_t NumRegs =
5232       ((getContext().getTargetInfo().hasFloat128Type() &&
5233           Base->isFloat128Type()) ||
5234         Base->isVectorType()) ? 1
5235                               : (getContext().getTypeSize(Base) + 63) / 64;
5236 
5237   // Homogeneous Aggregates may occupy at most 8 registers.
5238   return Members * NumRegs <= 8;
5239 }
5240 
5241 ABIArgInfo
5242 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
5243   Ty = useFirstFieldIfTransparentUnion(Ty);
5244 
5245   if (Ty->isAnyComplexType())
5246     return ABIArgInfo::getDirect();
5247 
5248   // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
5249   // or via reference (larger than 16 bytes).
5250   if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) {
5251     uint64_t Size = getContext().getTypeSize(Ty);
5252     if (Size > 128)
5253       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5254     else if (Size < 128) {
5255       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
5256       return ABIArgInfo::getDirect(CoerceTy);
5257     }
5258   }
5259 
5260   if (const auto *EIT = Ty->getAs<ExtIntType>())
5261     if (EIT->getNumBits() > 128)
5262       return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
5263 
5264   if (isAggregateTypeForABI(Ty)) {
5265     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
5266       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
5267 
5268     uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity();
5269     uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
5270 
5271     // ELFv2 homogeneous aggregates are passed as array types.
5272     const Type *Base = nullptr;
5273     uint64_t Members = 0;
5274     if (Kind == ELFv2 &&
5275         isHomogeneousAggregate(Ty, Base, Members)) {
5276       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
5277       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
5278       return ABIArgInfo::getDirect(CoerceTy);
5279     }
5280 
5281     // If an aggregate may end up fully in registers, we do not
5282     // use the ByVal method, but pass the aggregate as array.
5283     // This is usually beneficial since we avoid forcing the
5284     // back-end to store the argument to memory.
5285     uint64_t Bits = getContext().getTypeSize(Ty);
5286     if (Bits > 0 && Bits <= 8 * GPRBits) {
5287       llvm::Type *CoerceTy;
5288 
5289       // Types up to 8 bytes are passed as integer type (which will be
5290       // properly aligned in the argument save area doubleword).
5291       if (Bits <= GPRBits)
5292         CoerceTy =
5293             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
5294       // Larger types are passed as arrays, with the base type selected
5295       // according to the required alignment in the save area.
5296       else {
5297         uint64_t RegBits = ABIAlign * 8;
5298         uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits;
5299         llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
5300         CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
5301       }
5302 
5303       return ABIArgInfo::getDirect(CoerceTy);
5304     }
5305 
5306     // All other aggregates are passed ByVal.
5307     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
5308                                    /*ByVal=*/true,
5309                                    /*Realign=*/TyAlign > ABIAlign);
5310   }
5311 
5312   return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
5313                                      : ABIArgInfo::getDirect());
5314 }
5315 
5316 ABIArgInfo
5317 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
5318   if (RetTy->isVoidType())
5319     return ABIArgInfo::getIgnore();
5320 
5321   if (RetTy->isAnyComplexType())
5322     return ABIArgInfo::getDirect();
5323 
5324   // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
5325   // or via reference (larger than 16 bytes).
5326   if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) {
5327     uint64_t Size = getContext().getTypeSize(RetTy);
5328     if (Size > 128)
5329       return getNaturalAlignIndirect(RetTy);
5330     else if (Size < 128) {
5331       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
5332       return ABIArgInfo::getDirect(CoerceTy);
5333     }
5334   }
5335 
5336   if (const auto *EIT = RetTy->getAs<ExtIntType>())
5337     if (EIT->getNumBits() > 128)
5338       return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
5339 
5340   if (isAggregateTypeForABI(RetTy)) {
5341     // ELFv2 homogeneous aggregates are returned as array types.
5342     const Type *Base = nullptr;
5343     uint64_t Members = 0;
5344     if (Kind == ELFv2 &&
5345         isHomogeneousAggregate(RetTy, Base, Members)) {
5346       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
5347       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
5348       return ABIArgInfo::getDirect(CoerceTy);
5349     }
5350 
5351     // ELFv2 small aggregates are returned in up to two registers.
5352     uint64_t Bits = getContext().getTypeSize(RetTy);
5353     if (Kind == ELFv2 && Bits <= 2 * GPRBits) {
5354       if (Bits == 0)
5355         return ABIArgInfo::getIgnore();
5356 
5357       llvm::Type *CoerceTy;
5358       if (Bits > GPRBits) {
5359         CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
5360         CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy);
5361       } else
5362         CoerceTy =
5363             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
5364       return ABIArgInfo::getDirect(CoerceTy);
5365     }
5366 
5367     // All other aggregates are returned indirectly.
5368     return getNaturalAlignIndirect(RetTy);
5369   }
5370 
5371   return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
5372                                         : ABIArgInfo::getDirect());
5373 }
5374 
5375 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
5376 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5377                                       QualType Ty) const {
5378   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
5379   TypeInfo.Align = getParamTypeAlignment(Ty);
5380 
5381   CharUnits SlotSize = CharUnits::fromQuantity(8);
5382 
5383   // If we have a complex type and the base type is smaller than 8 bytes,
5384   // the ABI calls for the real and imaginary parts to be right-adjusted
5385   // in separate doublewords.  However, Clang expects us to produce a
5386   // pointer to a structure with the two parts packed tightly.  So generate
5387   // loads of the real and imaginary parts relative to the va_list pointer,
5388   // and store them to a temporary structure.
5389   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
5390     CharUnits EltSize = TypeInfo.Width / 2;
5391     if (EltSize < SlotSize) {
5392       Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty,
5393                                             SlotSize * 2, SlotSize,
5394                                             SlotSize, /*AllowHigher*/ true);
5395 
5396       Address RealAddr = Addr;
5397       Address ImagAddr = RealAddr;
5398       if (CGF.CGM.getDataLayout().isBigEndian()) {
5399         RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr,
5400                                                           SlotSize - EltSize);
5401         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr,
5402                                                       2 * SlotSize - EltSize);
5403       } else {
5404         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize);
5405       }
5406 
5407       llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType());
5408       RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy);
5409       ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy);
5410       llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal");
5411       llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag");
5412 
5413       Address Temp = CGF.CreateMemTemp(Ty, "vacplx");
5414       CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty),
5415                              /*init*/ true);
5416       return Temp;
5417     }
5418   }
5419 
5420   // Otherwise, just use the general rule.
5421   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
5422                           TypeInfo, SlotSize, /*AllowHigher*/ true);
5423 }
5424 
5425 bool
5426 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
5427   CodeGen::CodeGenFunction &CGF,
5428   llvm::Value *Address) const {
5429   return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true,
5430                                      /*IsAIX*/ false);
5431 }
5432 
5433 bool
5434 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5435                                                 llvm::Value *Address) const {
5436   return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true,
5437                                      /*IsAIX*/ false);
5438 }
5439 
5440 //===----------------------------------------------------------------------===//
5441 // AArch64 ABI Implementation
5442 //===----------------------------------------------------------------------===//
5443 
5444 namespace {
5445 
5446 class AArch64ABIInfo : public SwiftABIInfo {
5447 public:
5448   enum ABIKind {
5449     AAPCS = 0,
5450     DarwinPCS,
5451     Win64
5452   };
5453 
5454 private:
5455   ABIKind Kind;
5456 
5457 public:
5458   AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind)
5459     : SwiftABIInfo(CGT), Kind(Kind) {}
5460 
5461 private:
5462   ABIKind getABIKind() const { return Kind; }
5463   bool isDarwinPCS() const { return Kind == DarwinPCS; }
5464 
5465   ABIArgInfo classifyReturnType(QualType RetTy, bool IsVariadic) const;
5466   ABIArgInfo classifyArgumentType(QualType RetTy) const;
5467   ABIArgInfo coerceIllegalVector(QualType Ty) const;
5468   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
5469   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
5470                                          uint64_t Members) const override;
5471 
5472   bool isIllegalVectorType(QualType Ty) const;
5473 
5474   void computeInfo(CGFunctionInfo &FI) const override {
5475     if (!::classifyReturnType(getCXXABI(), FI, *this))
5476       FI.getReturnInfo() =
5477           classifyReturnType(FI.getReturnType(), FI.isVariadic());
5478 
5479     for (auto &it : FI.arguments())
5480       it.info = classifyArgumentType(it.type);
5481   }
5482 
5483   Address EmitDarwinVAArg(Address VAListAddr, QualType Ty,
5484                           CodeGenFunction &CGF) const;
5485 
5486   Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
5487                          CodeGenFunction &CGF) const;
5488 
5489   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5490                     QualType Ty) const override {
5491     llvm::Type *BaseTy = CGF.ConvertType(Ty);
5492     if (isa<llvm::ScalableVectorType>(BaseTy))
5493       llvm::report_fatal_error("Passing SVE types to variadic functions is "
5494                                "currently not supported");
5495 
5496     return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty)
5497                          : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
5498                                          : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
5499   }
5500 
5501   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
5502                       QualType Ty) const override;
5503 
5504   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
5505                                     bool asReturnValue) const override {
5506     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
5507   }
5508   bool isSwiftErrorInRegister() const override {
5509     return true;
5510   }
5511 
5512   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
5513                                  unsigned elts) const override;
5514 
5515   bool allowBFloatArgsAndRet() const override {
5516     return getTarget().hasBFloat16Type();
5517   }
5518 };
5519 
5520 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
5521 public:
5522   AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
5523       : TargetCodeGenInfo(std::make_unique<AArch64ABIInfo>(CGT, Kind)) {}
5524 
5525   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
5526     return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue";
5527   }
5528 
5529   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5530     return 31;
5531   }
5532 
5533   bool doesReturnSlotInterfereWithArgs() const override { return false; }
5534 
5535   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5536                            CodeGen::CodeGenModule &CGM) const override {
5537     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5538     if (!FD)
5539       return;
5540 
5541     const auto *TA = FD->getAttr<TargetAttr>();
5542     if (TA == nullptr)
5543       return;
5544 
5545     ParsedTargetAttr Attr = TA->parse();
5546     if (Attr.BranchProtection.empty())
5547       return;
5548 
5549     TargetInfo::BranchProtectionInfo BPI;
5550     StringRef Error;
5551     (void)CGM.getTarget().validateBranchProtection(Attr.BranchProtection,
5552                                                    BPI, Error);
5553     assert(Error.empty());
5554 
5555     auto *Fn = cast<llvm::Function>(GV);
5556     static const char *SignReturnAddrStr[] = {"none", "non-leaf", "all"};
5557     Fn->addFnAttr("sign-return-address", SignReturnAddrStr[static_cast<int>(BPI.SignReturnAddr)]);
5558 
5559     if (BPI.SignReturnAddr != LangOptions::SignReturnAddressScopeKind::None) {
5560       Fn->addFnAttr("sign-return-address-key",
5561                     BPI.SignKey == LangOptions::SignReturnAddressKeyKind::AKey
5562                         ? "a_key"
5563                         : "b_key");
5564     }
5565 
5566     Fn->addFnAttr("branch-target-enforcement",
5567                   BPI.BranchTargetEnforcement ? "true" : "false");
5568   }
5569 };
5570 
5571 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo {
5572 public:
5573   WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K)
5574       : AArch64TargetCodeGenInfo(CGT, K) {}
5575 
5576   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5577                            CodeGen::CodeGenModule &CGM) const override;
5578 
5579   void getDependentLibraryOption(llvm::StringRef Lib,
5580                                  llvm::SmallString<24> &Opt) const override {
5581     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
5582   }
5583 
5584   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
5585                                llvm::SmallString<32> &Opt) const override {
5586     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
5587   }
5588 };
5589 
5590 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes(
5591     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
5592   AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
5593   if (GV->isDeclaration())
5594     return;
5595   addStackProbeTargetAttributes(D, GV, CGM);
5596 }
5597 }
5598 
5599 ABIArgInfo AArch64ABIInfo::coerceIllegalVector(QualType Ty) const {
5600   assert(Ty->isVectorType() && "expected vector type!");
5601 
5602   const auto *VT = Ty->castAs<VectorType>();
5603   if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) {
5604     assert(VT->getElementType()->isBuiltinType() && "expected builtin type!");
5605     assert(VT->getElementType()->castAs<BuiltinType>()->getKind() ==
5606                BuiltinType::UChar &&
5607            "unexpected builtin type for SVE predicate!");
5608     return ABIArgInfo::getDirect(llvm::ScalableVectorType::get(
5609         llvm::Type::getInt1Ty(getVMContext()), 16));
5610   }
5611 
5612   if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector) {
5613     assert(VT->getElementType()->isBuiltinType() && "expected builtin type!");
5614 
5615     const auto *BT = VT->getElementType()->castAs<BuiltinType>();
5616     llvm::ScalableVectorType *ResType = nullptr;
5617     switch (BT->getKind()) {
5618     default:
5619       llvm_unreachable("unexpected builtin type for SVE vector!");
5620     case BuiltinType::SChar:
5621     case BuiltinType::UChar:
5622       ResType = llvm::ScalableVectorType::get(
5623           llvm::Type::getInt8Ty(getVMContext()), 16);
5624       break;
5625     case BuiltinType::Short:
5626     case BuiltinType::UShort:
5627       ResType = llvm::ScalableVectorType::get(
5628           llvm::Type::getInt16Ty(getVMContext()), 8);
5629       break;
5630     case BuiltinType::Int:
5631     case BuiltinType::UInt:
5632       ResType = llvm::ScalableVectorType::get(
5633           llvm::Type::getInt32Ty(getVMContext()), 4);
5634       break;
5635     case BuiltinType::Long:
5636     case BuiltinType::ULong:
5637       ResType = llvm::ScalableVectorType::get(
5638           llvm::Type::getInt64Ty(getVMContext()), 2);
5639       break;
5640     case BuiltinType::Half:
5641       ResType = llvm::ScalableVectorType::get(
5642           llvm::Type::getHalfTy(getVMContext()), 8);
5643       break;
5644     case BuiltinType::Float:
5645       ResType = llvm::ScalableVectorType::get(
5646           llvm::Type::getFloatTy(getVMContext()), 4);
5647       break;
5648     case BuiltinType::Double:
5649       ResType = llvm::ScalableVectorType::get(
5650           llvm::Type::getDoubleTy(getVMContext()), 2);
5651       break;
5652     case BuiltinType::BFloat16:
5653       ResType = llvm::ScalableVectorType::get(
5654           llvm::Type::getBFloatTy(getVMContext()), 8);
5655       break;
5656     }
5657     return ABIArgInfo::getDirect(ResType);
5658   }
5659 
5660   uint64_t Size = getContext().getTypeSize(Ty);
5661   // Android promotes <2 x i8> to i16, not i32
5662   if (isAndroid() && (Size <= 16)) {
5663     llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext());
5664     return ABIArgInfo::getDirect(ResType);
5665   }
5666   if (Size <= 32) {
5667     llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
5668     return ABIArgInfo::getDirect(ResType);
5669   }
5670   if (Size == 64) {
5671     auto *ResType =
5672         llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
5673     return ABIArgInfo::getDirect(ResType);
5674   }
5675   if (Size == 128) {
5676     auto *ResType =
5677         llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
5678     return ABIArgInfo::getDirect(ResType);
5679   }
5680   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5681 }
5682 
5683 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const {
5684   Ty = useFirstFieldIfTransparentUnion(Ty);
5685 
5686   // Handle illegal vector types here.
5687   if (isIllegalVectorType(Ty))
5688     return coerceIllegalVector(Ty);
5689 
5690   if (!isAggregateTypeForABI(Ty)) {
5691     // Treat an enum type as its underlying type.
5692     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5693       Ty = EnumTy->getDecl()->getIntegerType();
5694 
5695     if (const auto *EIT = Ty->getAs<ExtIntType>())
5696       if (EIT->getNumBits() > 128)
5697         return getNaturalAlignIndirect(Ty);
5698 
5699     return (isPromotableIntegerTypeForABI(Ty) && isDarwinPCS()
5700                 ? ABIArgInfo::getExtend(Ty)
5701                 : ABIArgInfo::getDirect());
5702   }
5703 
5704   // Structures with either a non-trivial destructor or a non-trivial
5705   // copy constructor are always indirect.
5706   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5707     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
5708                                      CGCXXABI::RAA_DirectInMemory);
5709   }
5710 
5711   // Empty records are always ignored on Darwin, but actually passed in C++ mode
5712   // elsewhere for GNU compatibility.
5713   uint64_t Size = getContext().getTypeSize(Ty);
5714   bool IsEmpty = isEmptyRecord(getContext(), Ty, true);
5715   if (IsEmpty || Size == 0) {
5716     if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
5717       return ABIArgInfo::getIgnore();
5718 
5719     // GNU C mode. The only argument that gets ignored is an empty one with size
5720     // 0.
5721     if (IsEmpty && Size == 0)
5722       return ABIArgInfo::getIgnore();
5723     return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5724   }
5725 
5726   // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
5727   const Type *Base = nullptr;
5728   uint64_t Members = 0;
5729   if (isHomogeneousAggregate(Ty, Base, Members)) {
5730     return ABIArgInfo::getDirect(
5731         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
5732   }
5733 
5734   // Aggregates <= 16 bytes are passed directly in registers or on the stack.
5735   if (Size <= 128) {
5736     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5737     // same size and alignment.
5738     if (getTarget().isRenderScriptTarget()) {
5739       return coerceToIntArray(Ty, getContext(), getVMContext());
5740     }
5741     unsigned Alignment;
5742     if (Kind == AArch64ABIInfo::AAPCS) {
5743       Alignment = getContext().getTypeUnadjustedAlign(Ty);
5744       Alignment = Alignment < 128 ? 64 : 128;
5745     } else {
5746       Alignment = std::max(getContext().getTypeAlign(Ty),
5747                            (unsigned)getTarget().getPointerWidth(0));
5748     }
5749     Size = llvm::alignTo(Size, Alignment);
5750 
5751     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5752     // For aggregates with 16-byte alignment, we use i128.
5753     llvm::Type *BaseTy = llvm::Type::getIntNTy(getVMContext(), Alignment);
5754     return ABIArgInfo::getDirect(
5755         Size == Alignment ? BaseTy
5756                           : llvm::ArrayType::get(BaseTy, Size / Alignment));
5757   }
5758 
5759   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5760 }
5761 
5762 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy,
5763                                               bool IsVariadic) const {
5764   if (RetTy->isVoidType())
5765     return ABIArgInfo::getIgnore();
5766 
5767   if (const auto *VT = RetTy->getAs<VectorType>()) {
5768     if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector ||
5769         VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector)
5770       return coerceIllegalVector(RetTy);
5771   }
5772 
5773   // Large vector types should be returned via memory.
5774   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
5775     return getNaturalAlignIndirect(RetTy);
5776 
5777   if (!isAggregateTypeForABI(RetTy)) {
5778     // Treat an enum type as its underlying type.
5779     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5780       RetTy = EnumTy->getDecl()->getIntegerType();
5781 
5782     if (const auto *EIT = RetTy->getAs<ExtIntType>())
5783       if (EIT->getNumBits() > 128)
5784         return getNaturalAlignIndirect(RetTy);
5785 
5786     return (isPromotableIntegerTypeForABI(RetTy) && isDarwinPCS()
5787                 ? ABIArgInfo::getExtend(RetTy)
5788                 : ABIArgInfo::getDirect());
5789   }
5790 
5791   uint64_t Size = getContext().getTypeSize(RetTy);
5792   if (isEmptyRecord(getContext(), RetTy, true) || Size == 0)
5793     return ABIArgInfo::getIgnore();
5794 
5795   const Type *Base = nullptr;
5796   uint64_t Members = 0;
5797   if (isHomogeneousAggregate(RetTy, Base, Members) &&
5798       !(getTarget().getTriple().getArch() == llvm::Triple::aarch64_32 &&
5799         IsVariadic))
5800     // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
5801     return ABIArgInfo::getDirect();
5802 
5803   // Aggregates <= 16 bytes are returned directly in registers or on the stack.
5804   if (Size <= 128) {
5805     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5806     // same size and alignment.
5807     if (getTarget().isRenderScriptTarget()) {
5808       return coerceToIntArray(RetTy, getContext(), getVMContext());
5809     }
5810     unsigned Alignment = getContext().getTypeAlign(RetTy);
5811     Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes
5812 
5813     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5814     // For aggregates with 16-byte alignment, we use i128.
5815     if (Alignment < 128 && Size == 128) {
5816       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
5817       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
5818     }
5819     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
5820   }
5821 
5822   return getNaturalAlignIndirect(RetTy);
5823 }
5824 
5825 /// isIllegalVectorType - check whether the vector type is legal for AArch64.
5826 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
5827   if (const VectorType *VT = Ty->getAs<VectorType>()) {
5828     // Check whether VT is a fixed-length SVE vector. These types are
5829     // represented as scalable vectors in function args/return and must be
5830     // coerced from fixed vectors.
5831     if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector ||
5832         VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector)
5833       return true;
5834 
5835     // Check whether VT is legal.
5836     unsigned NumElements = VT->getNumElements();
5837     uint64_t Size = getContext().getTypeSize(VT);
5838     // NumElements should be power of 2.
5839     if (!llvm::isPowerOf2_32(NumElements))
5840       return true;
5841 
5842     // arm64_32 has to be compatible with the ARM logic here, which allows huge
5843     // vectors for some reason.
5844     llvm::Triple Triple = getTarget().getTriple();
5845     if (Triple.getArch() == llvm::Triple::aarch64_32 &&
5846         Triple.isOSBinFormatMachO())
5847       return Size <= 32;
5848 
5849     return Size != 64 && (Size != 128 || NumElements == 1);
5850   }
5851   return false;
5852 }
5853 
5854 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize,
5855                                                llvm::Type *eltTy,
5856                                                unsigned elts) const {
5857   if (!llvm::isPowerOf2_32(elts))
5858     return false;
5859   if (totalSize.getQuantity() != 8 &&
5860       (totalSize.getQuantity() != 16 || elts == 1))
5861     return false;
5862   return true;
5863 }
5864 
5865 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
5866   // Homogeneous aggregates for AAPCS64 must have base types of a floating
5867   // point type or a short-vector type. This is the same as the 32-bit ABI,
5868   // but with the difference that any floating-point type is allowed,
5869   // including __fp16.
5870   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
5871     if (BT->isFloatingPoint())
5872       return true;
5873   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
5874     unsigned VecSize = getContext().getTypeSize(VT);
5875     if (VecSize == 64 || VecSize == 128)
5876       return true;
5877   }
5878   return false;
5879 }
5880 
5881 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
5882                                                        uint64_t Members) const {
5883   return Members <= 4;
5884 }
5885 
5886 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr,
5887                                             QualType Ty,
5888                                             CodeGenFunction &CGF) const {
5889   ABIArgInfo AI = classifyArgumentType(Ty);
5890   bool IsIndirect = AI.isIndirect();
5891 
5892   llvm::Type *BaseTy = CGF.ConvertType(Ty);
5893   if (IsIndirect)
5894     BaseTy = llvm::PointerType::getUnqual(BaseTy);
5895   else if (AI.getCoerceToType())
5896     BaseTy = AI.getCoerceToType();
5897 
5898   unsigned NumRegs = 1;
5899   if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
5900     BaseTy = ArrTy->getElementType();
5901     NumRegs = ArrTy->getNumElements();
5902   }
5903   bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy();
5904 
5905   // The AArch64 va_list type and handling is specified in the Procedure Call
5906   // Standard, section B.4:
5907   //
5908   // struct {
5909   //   void *__stack;
5910   //   void *__gr_top;
5911   //   void *__vr_top;
5912   //   int __gr_offs;
5913   //   int __vr_offs;
5914   // };
5915 
5916   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
5917   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
5918   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
5919   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
5920 
5921   CharUnits TySize = getContext().getTypeSizeInChars(Ty);
5922   CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty);
5923 
5924   Address reg_offs_p = Address::invalid();
5925   llvm::Value *reg_offs = nullptr;
5926   int reg_top_index;
5927   int RegSize = IsIndirect ? 8 : TySize.getQuantity();
5928   if (!IsFPR) {
5929     // 3 is the field number of __gr_offs
5930     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p");
5931     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
5932     reg_top_index = 1; // field number for __gr_top
5933     RegSize = llvm::alignTo(RegSize, 8);
5934   } else {
5935     // 4 is the field number of __vr_offs.
5936     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p");
5937     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
5938     reg_top_index = 2; // field number for __vr_top
5939     RegSize = 16 * NumRegs;
5940   }
5941 
5942   //=======================================
5943   // Find out where argument was passed
5944   //=======================================
5945 
5946   // If reg_offs >= 0 we're already using the stack for this type of
5947   // argument. We don't want to keep updating reg_offs (in case it overflows,
5948   // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
5949   // whatever they get).
5950   llvm::Value *UsingStack = nullptr;
5951   UsingStack = CGF.Builder.CreateICmpSGE(
5952       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
5953 
5954   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
5955 
5956   // Otherwise, at least some kind of argument could go in these registers, the
5957   // question is whether this particular type is too big.
5958   CGF.EmitBlock(MaybeRegBlock);
5959 
5960   // Integer arguments may need to correct register alignment (for example a
5961   // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
5962   // align __gr_offs to calculate the potential address.
5963   if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) {
5964     int Align = TyAlign.getQuantity();
5965 
5966     reg_offs = CGF.Builder.CreateAdd(
5967         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
5968         "align_regoffs");
5969     reg_offs = CGF.Builder.CreateAnd(
5970         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
5971         "aligned_regoffs");
5972   }
5973 
5974   // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
5975   // The fact that this is done unconditionally reflects the fact that
5976   // allocating an argument to the stack also uses up all the remaining
5977   // registers of the appropriate kind.
5978   llvm::Value *NewOffset = nullptr;
5979   NewOffset = CGF.Builder.CreateAdd(
5980       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
5981   CGF.Builder.CreateStore(NewOffset, reg_offs_p);
5982 
5983   // Now we're in a position to decide whether this argument really was in
5984   // registers or not.
5985   llvm::Value *InRegs = nullptr;
5986   InRegs = CGF.Builder.CreateICmpSLE(
5987       NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
5988 
5989   CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
5990 
5991   //=======================================
5992   // Argument was in registers
5993   //=======================================
5994 
5995   // Now we emit the code for if the argument was originally passed in
5996   // registers. First start the appropriate block:
5997   CGF.EmitBlock(InRegBlock);
5998 
5999   llvm::Value *reg_top = nullptr;
6000   Address reg_top_p =
6001       CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p");
6002   reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
6003   Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs),
6004                    CharUnits::fromQuantity(IsFPR ? 16 : 8));
6005   Address RegAddr = Address::invalid();
6006   llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty);
6007 
6008   if (IsIndirect) {
6009     // If it's been passed indirectly (actually a struct), whatever we find from
6010     // stored registers or on the stack will actually be a struct **.
6011     MemTy = llvm::PointerType::getUnqual(MemTy);
6012   }
6013 
6014   const Type *Base = nullptr;
6015   uint64_t NumMembers = 0;
6016   bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
6017   if (IsHFA && NumMembers > 1) {
6018     // Homogeneous aggregates passed in registers will have their elements split
6019     // and stored 16-bytes apart regardless of size (they're notionally in qN,
6020     // qN+1, ...). We reload and store into a temporary local variable
6021     // contiguously.
6022     assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
6023     auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0));
6024     llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
6025     llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
6026     Address Tmp = CGF.CreateTempAlloca(HFATy,
6027                                        std::max(TyAlign, BaseTyInfo.Align));
6028 
6029     // On big-endian platforms, the value will be right-aligned in its slot.
6030     int Offset = 0;
6031     if (CGF.CGM.getDataLayout().isBigEndian() &&
6032         BaseTyInfo.Width.getQuantity() < 16)
6033       Offset = 16 - BaseTyInfo.Width.getQuantity();
6034 
6035     for (unsigned i = 0; i < NumMembers; ++i) {
6036       CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset);
6037       Address LoadAddr =
6038         CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset);
6039       LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy);
6040 
6041       Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i);
6042 
6043       llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
6044       CGF.Builder.CreateStore(Elem, StoreAddr);
6045     }
6046 
6047     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy);
6048   } else {
6049     // Otherwise the object is contiguous in memory.
6050 
6051     // It might be right-aligned in its slot.
6052     CharUnits SlotSize = BaseAddr.getAlignment();
6053     if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect &&
6054         (IsHFA || !isAggregateTypeForABI(Ty)) &&
6055         TySize < SlotSize) {
6056       CharUnits Offset = SlotSize - TySize;
6057       BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset);
6058     }
6059 
6060     RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy);
6061   }
6062 
6063   CGF.EmitBranch(ContBlock);
6064 
6065   //=======================================
6066   // Argument was on the stack
6067   //=======================================
6068   CGF.EmitBlock(OnStackBlock);
6069 
6070   Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p");
6071   llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack");
6072 
6073   // Again, stack arguments may need realignment. In this case both integer and
6074   // floating-point ones might be affected.
6075   if (!IsIndirect && TyAlign.getQuantity() > 8) {
6076     int Align = TyAlign.getQuantity();
6077 
6078     OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty);
6079 
6080     OnStackPtr = CGF.Builder.CreateAdd(
6081         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
6082         "align_stack");
6083     OnStackPtr = CGF.Builder.CreateAnd(
6084         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
6085         "align_stack");
6086 
6087     OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy);
6088   }
6089   Address OnStackAddr(OnStackPtr,
6090                       std::max(CharUnits::fromQuantity(8), TyAlign));
6091 
6092   // All stack slots are multiples of 8 bytes.
6093   CharUnits StackSlotSize = CharUnits::fromQuantity(8);
6094   CharUnits StackSize;
6095   if (IsIndirect)
6096     StackSize = StackSlotSize;
6097   else
6098     StackSize = TySize.alignTo(StackSlotSize);
6099 
6100   llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize);
6101   llvm::Value *NewStack =
6102       CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack");
6103 
6104   // Write the new value of __stack for the next call to va_arg
6105   CGF.Builder.CreateStore(NewStack, stack_p);
6106 
6107   if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
6108       TySize < StackSlotSize) {
6109     CharUnits Offset = StackSlotSize - TySize;
6110     OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset);
6111   }
6112 
6113   OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy);
6114 
6115   CGF.EmitBranch(ContBlock);
6116 
6117   //=======================================
6118   // Tidy up
6119   //=======================================
6120   CGF.EmitBlock(ContBlock);
6121 
6122   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
6123                                  OnStackAddr, OnStackBlock, "vaargs.addr");
6124 
6125   if (IsIndirect)
6126     return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"),
6127                    TyAlign);
6128 
6129   return ResAddr;
6130 }
6131 
6132 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty,
6133                                         CodeGenFunction &CGF) const {
6134   // The backend's lowering doesn't support va_arg for aggregates or
6135   // illegal vector types.  Lower VAArg here for these cases and use
6136   // the LLVM va_arg instruction for everything else.
6137   if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
6138     return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
6139 
6140   uint64_t PointerSize = getTarget().getPointerWidth(0) / 8;
6141   CharUnits SlotSize = CharUnits::fromQuantity(PointerSize);
6142 
6143   // Empty records are ignored for parameter passing purposes.
6144   if (isEmptyRecord(getContext(), Ty, true)) {
6145     Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
6146     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
6147     return Addr;
6148   }
6149 
6150   // The size of the actual thing passed, which might end up just
6151   // being a pointer for indirect types.
6152   auto TyInfo = getContext().getTypeInfoInChars(Ty);
6153 
6154   // Arguments bigger than 16 bytes which aren't homogeneous
6155   // aggregates should be passed indirectly.
6156   bool IsIndirect = false;
6157   if (TyInfo.Width.getQuantity() > 16) {
6158     const Type *Base = nullptr;
6159     uint64_t Members = 0;
6160     IsIndirect = !isHomogeneousAggregate(Ty, Base, Members);
6161   }
6162 
6163   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
6164                           TyInfo, SlotSize, /*AllowHigherAlign*/ true);
6165 }
6166 
6167 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
6168                                     QualType Ty) const {
6169   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
6170                           CGF.getContext().getTypeInfoInChars(Ty),
6171                           CharUnits::fromQuantity(8),
6172                           /*allowHigherAlign*/ false);
6173 }
6174 
6175 //===----------------------------------------------------------------------===//
6176 // ARM ABI Implementation
6177 //===----------------------------------------------------------------------===//
6178 
6179 namespace {
6180 
6181 class ARMABIInfo : public SwiftABIInfo {
6182 public:
6183   enum ABIKind {
6184     APCS = 0,
6185     AAPCS = 1,
6186     AAPCS_VFP = 2,
6187     AAPCS16_VFP = 3,
6188   };
6189 
6190 private:
6191   ABIKind Kind;
6192   bool IsFloatABISoftFP;
6193 
6194 public:
6195   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind)
6196       : SwiftABIInfo(CGT), Kind(_Kind) {
6197     setCCs();
6198     IsFloatABISoftFP = CGT.getCodeGenOpts().FloatABI == "softfp" ||
6199         CGT.getCodeGenOpts().FloatABI == ""; // default
6200   }
6201 
6202   bool isEABI() const {
6203     switch (getTarget().getTriple().getEnvironment()) {
6204     case llvm::Triple::Android:
6205     case llvm::Triple::EABI:
6206     case llvm::Triple::EABIHF:
6207     case llvm::Triple::GNUEABI:
6208     case llvm::Triple::GNUEABIHF:
6209     case llvm::Triple::MuslEABI:
6210     case llvm::Triple::MuslEABIHF:
6211       return true;
6212     default:
6213       return false;
6214     }
6215   }
6216 
6217   bool isEABIHF() const {
6218     switch (getTarget().getTriple().getEnvironment()) {
6219     case llvm::Triple::EABIHF:
6220     case llvm::Triple::GNUEABIHF:
6221     case llvm::Triple::MuslEABIHF:
6222       return true;
6223     default:
6224       return false;
6225     }
6226   }
6227 
6228   ABIKind getABIKind() const { return Kind; }
6229 
6230   bool allowBFloatArgsAndRet() const override {
6231     return !IsFloatABISoftFP && getTarget().hasBFloat16Type();
6232   }
6233 
6234 private:
6235   ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic,
6236                                 unsigned functionCallConv) const;
6237   ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic,
6238                                   unsigned functionCallConv) const;
6239   ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base,
6240                                           uint64_t Members) const;
6241   ABIArgInfo coerceIllegalVector(QualType Ty) const;
6242   bool isIllegalVectorType(QualType Ty) const;
6243   bool containsAnyFP16Vectors(QualType Ty) const;
6244 
6245   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
6246   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
6247                                          uint64_t Members) const override;
6248 
6249   bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const;
6250 
6251   void computeInfo(CGFunctionInfo &FI) const override;
6252 
6253   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6254                     QualType Ty) const override;
6255 
6256   llvm::CallingConv::ID getLLVMDefaultCC() const;
6257   llvm::CallingConv::ID getABIDefaultCC() const;
6258   void setCCs();
6259 
6260   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
6261                                     bool asReturnValue) const override {
6262     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
6263   }
6264   bool isSwiftErrorInRegister() const override {
6265     return true;
6266   }
6267   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
6268                                  unsigned elts) const override;
6269 };
6270 
6271 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
6272 public:
6273   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
6274       : TargetCodeGenInfo(std::make_unique<ARMABIInfo>(CGT, K)) {}
6275 
6276   const ARMABIInfo &getABIInfo() const {
6277     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
6278   }
6279 
6280   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
6281     return 13;
6282   }
6283 
6284   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
6285     return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue";
6286   }
6287 
6288   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6289                                llvm::Value *Address) const override {
6290     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
6291 
6292     // 0-15 are the 16 integer registers.
6293     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
6294     return false;
6295   }
6296 
6297   unsigned getSizeOfUnwindException() const override {
6298     if (getABIInfo().isEABI()) return 88;
6299     return TargetCodeGenInfo::getSizeOfUnwindException();
6300   }
6301 
6302   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6303                            CodeGen::CodeGenModule &CGM) const override {
6304     if (GV->isDeclaration())
6305       return;
6306     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6307     if (!FD)
6308       return;
6309 
6310     const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
6311     if (!Attr)
6312       return;
6313 
6314     const char *Kind;
6315     switch (Attr->getInterrupt()) {
6316     case ARMInterruptAttr::Generic: Kind = ""; break;
6317     case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break;
6318     case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break;
6319     case ARMInterruptAttr::SWI:     Kind = "SWI"; break;
6320     case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break;
6321     case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break;
6322     }
6323 
6324     llvm::Function *Fn = cast<llvm::Function>(GV);
6325 
6326     Fn->addFnAttr("interrupt", Kind);
6327 
6328     ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind();
6329     if (ABI == ARMABIInfo::APCS)
6330       return;
6331 
6332     // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
6333     // however this is not necessarily true on taking any interrupt. Instruct
6334     // the backend to perform a realignment as part of the function prologue.
6335     llvm::AttrBuilder B;
6336     B.addStackAlignmentAttr(8);
6337     Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
6338   }
6339 };
6340 
6341 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo {
6342 public:
6343   WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
6344       : ARMTargetCodeGenInfo(CGT, K) {}
6345 
6346   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6347                            CodeGen::CodeGenModule &CGM) const override;
6348 
6349   void getDependentLibraryOption(llvm::StringRef Lib,
6350                                  llvm::SmallString<24> &Opt) const override {
6351     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
6352   }
6353 
6354   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
6355                                llvm::SmallString<32> &Opt) const override {
6356     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
6357   }
6358 };
6359 
6360 void WindowsARMTargetCodeGenInfo::setTargetAttributes(
6361     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
6362   ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
6363   if (GV->isDeclaration())
6364     return;
6365   addStackProbeTargetAttributes(D, GV, CGM);
6366 }
6367 }
6368 
6369 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
6370   if (!::classifyReturnType(getCXXABI(), FI, *this))
6371     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(),
6372                                             FI.getCallingConvention());
6373 
6374   for (auto &I : FI.arguments())
6375     I.info = classifyArgumentType(I.type, FI.isVariadic(),
6376                                   FI.getCallingConvention());
6377 
6378 
6379   // Always honor user-specified calling convention.
6380   if (FI.getCallingConvention() != llvm::CallingConv::C)
6381     return;
6382 
6383   llvm::CallingConv::ID cc = getRuntimeCC();
6384   if (cc != llvm::CallingConv::C)
6385     FI.setEffectiveCallingConvention(cc);
6386 }
6387 
6388 /// Return the default calling convention that LLVM will use.
6389 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
6390   // The default calling convention that LLVM will infer.
6391   if (isEABIHF() || getTarget().getTriple().isWatchABI())
6392     return llvm::CallingConv::ARM_AAPCS_VFP;
6393   else if (isEABI())
6394     return llvm::CallingConv::ARM_AAPCS;
6395   else
6396     return llvm::CallingConv::ARM_APCS;
6397 }
6398 
6399 /// Return the calling convention that our ABI would like us to use
6400 /// as the C calling convention.
6401 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
6402   switch (getABIKind()) {
6403   case APCS: return llvm::CallingConv::ARM_APCS;
6404   case AAPCS: return llvm::CallingConv::ARM_AAPCS;
6405   case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
6406   case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
6407   }
6408   llvm_unreachable("bad ABI kind");
6409 }
6410 
6411 void ARMABIInfo::setCCs() {
6412   assert(getRuntimeCC() == llvm::CallingConv::C);
6413 
6414   // Don't muddy up the IR with a ton of explicit annotations if
6415   // they'd just match what LLVM will infer from the triple.
6416   llvm::CallingConv::ID abiCC = getABIDefaultCC();
6417   if (abiCC != getLLVMDefaultCC())
6418     RuntimeCC = abiCC;
6419 }
6420 
6421 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const {
6422   uint64_t Size = getContext().getTypeSize(Ty);
6423   if (Size <= 32) {
6424     llvm::Type *ResType =
6425         llvm::Type::getInt32Ty(getVMContext());
6426     return ABIArgInfo::getDirect(ResType);
6427   }
6428   if (Size == 64 || Size == 128) {
6429     auto *ResType = llvm::FixedVectorType::get(
6430         llvm::Type::getInt32Ty(getVMContext()), Size / 32);
6431     return ABIArgInfo::getDirect(ResType);
6432   }
6433   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6434 }
6435 
6436 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty,
6437                                                     const Type *Base,
6438                                                     uint64_t Members) const {
6439   assert(Base && "Base class should be set for homogeneous aggregate");
6440   // Base can be a floating-point or a vector.
6441   if (const VectorType *VT = Base->getAs<VectorType>()) {
6442     // FP16 vectors should be converted to integer vectors
6443     if (!getTarget().hasLegalHalfType() && containsAnyFP16Vectors(Ty)) {
6444       uint64_t Size = getContext().getTypeSize(VT);
6445       auto *NewVecTy = llvm::FixedVectorType::get(
6446           llvm::Type::getInt32Ty(getVMContext()), Size / 32);
6447       llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members);
6448       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
6449     }
6450   }
6451   return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
6452 }
6453 
6454 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic,
6455                                             unsigned functionCallConv) const {
6456   // 6.1.2.1 The following argument types are VFP CPRCs:
6457   //   A single-precision floating-point type (including promoted
6458   //   half-precision types); A double-precision floating-point type;
6459   //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
6460   //   with a Base Type of a single- or double-precision floating-point type,
6461   //   64-bit containerized vectors or 128-bit containerized vectors with one
6462   //   to four Elements.
6463   // Variadic functions should always marshal to the base standard.
6464   bool IsAAPCS_VFP =
6465       !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false);
6466 
6467   Ty = useFirstFieldIfTransparentUnion(Ty);
6468 
6469   // Handle illegal vector types here.
6470   if (isIllegalVectorType(Ty))
6471     return coerceIllegalVector(Ty);
6472 
6473   if (!isAggregateTypeForABI(Ty)) {
6474     // Treat an enum type as its underlying type.
6475     if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
6476       Ty = EnumTy->getDecl()->getIntegerType();
6477     }
6478 
6479     if (const auto *EIT = Ty->getAs<ExtIntType>())
6480       if (EIT->getNumBits() > 64)
6481         return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
6482 
6483     return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
6484                                               : ABIArgInfo::getDirect());
6485   }
6486 
6487   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
6488     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6489   }
6490 
6491   // Ignore empty records.
6492   if (isEmptyRecord(getContext(), Ty, true))
6493     return ABIArgInfo::getIgnore();
6494 
6495   if (IsAAPCS_VFP) {
6496     // Homogeneous Aggregates need to be expanded when we can fit the aggregate
6497     // into VFP registers.
6498     const Type *Base = nullptr;
6499     uint64_t Members = 0;
6500     if (isHomogeneousAggregate(Ty, Base, Members))
6501       return classifyHomogeneousAggregate(Ty, Base, Members);
6502   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
6503     // WatchOS does have homogeneous aggregates. Note that we intentionally use
6504     // this convention even for a variadic function: the backend will use GPRs
6505     // if needed.
6506     const Type *Base = nullptr;
6507     uint64_t Members = 0;
6508     if (isHomogeneousAggregate(Ty, Base, Members)) {
6509       assert(Base && Members <= 4 && "unexpected homogeneous aggregate");
6510       llvm::Type *Ty =
6511         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members);
6512       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
6513     }
6514   }
6515 
6516   if (getABIKind() == ARMABIInfo::AAPCS16_VFP &&
6517       getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) {
6518     // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're
6519     // bigger than 128-bits, they get placed in space allocated by the caller,
6520     // and a pointer is passed.
6521     return ABIArgInfo::getIndirect(
6522         CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false);
6523   }
6524 
6525   // Support byval for ARM.
6526   // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
6527   // most 8-byte. We realign the indirect argument if type alignment is bigger
6528   // than ABI alignment.
6529   uint64_t ABIAlign = 4;
6530   uint64_t TyAlign;
6531   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
6532       getABIKind() == ARMABIInfo::AAPCS) {
6533     TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity();
6534     ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
6535   } else {
6536     TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
6537   }
6538   if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
6539     assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval");
6540     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
6541                                    /*ByVal=*/true,
6542                                    /*Realign=*/TyAlign > ABIAlign);
6543   }
6544 
6545   // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of
6546   // same size and alignment.
6547   if (getTarget().isRenderScriptTarget()) {
6548     return coerceToIntArray(Ty, getContext(), getVMContext());
6549   }
6550 
6551   // Otherwise, pass by coercing to a structure of the appropriate size.
6552   llvm::Type* ElemTy;
6553   unsigned SizeRegs;
6554   // FIXME: Try to match the types of the arguments more accurately where
6555   // we can.
6556   if (TyAlign <= 4) {
6557     ElemTy = llvm::Type::getInt32Ty(getVMContext());
6558     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
6559   } else {
6560     ElemTy = llvm::Type::getInt64Ty(getVMContext());
6561     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
6562   }
6563 
6564   return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
6565 }
6566 
6567 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
6568                               llvm::LLVMContext &VMContext) {
6569   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
6570   // is called integer-like if its size is less than or equal to one word, and
6571   // the offset of each of its addressable sub-fields is zero.
6572 
6573   uint64_t Size = Context.getTypeSize(Ty);
6574 
6575   // Check that the type fits in a word.
6576   if (Size > 32)
6577     return false;
6578 
6579   // FIXME: Handle vector types!
6580   if (Ty->isVectorType())
6581     return false;
6582 
6583   // Float types are never treated as "integer like".
6584   if (Ty->isRealFloatingType())
6585     return false;
6586 
6587   // If this is a builtin or pointer type then it is ok.
6588   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
6589     return true;
6590 
6591   // Small complex integer types are "integer like".
6592   if (const ComplexType *CT = Ty->getAs<ComplexType>())
6593     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
6594 
6595   // Single element and zero sized arrays should be allowed, by the definition
6596   // above, but they are not.
6597 
6598   // Otherwise, it must be a record type.
6599   const RecordType *RT = Ty->getAs<RecordType>();
6600   if (!RT) return false;
6601 
6602   // Ignore records with flexible arrays.
6603   const RecordDecl *RD = RT->getDecl();
6604   if (RD->hasFlexibleArrayMember())
6605     return false;
6606 
6607   // Check that all sub-fields are at offset 0, and are themselves "integer
6608   // like".
6609   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
6610 
6611   bool HadField = false;
6612   unsigned idx = 0;
6613   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
6614        i != e; ++i, ++idx) {
6615     const FieldDecl *FD = *i;
6616 
6617     // Bit-fields are not addressable, we only need to verify they are "integer
6618     // like". We still have to disallow a subsequent non-bitfield, for example:
6619     //   struct { int : 0; int x }
6620     // is non-integer like according to gcc.
6621     if (FD->isBitField()) {
6622       if (!RD->isUnion())
6623         HadField = true;
6624 
6625       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
6626         return false;
6627 
6628       continue;
6629     }
6630 
6631     // Check if this field is at offset 0.
6632     if (Layout.getFieldOffset(idx) != 0)
6633       return false;
6634 
6635     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
6636       return false;
6637 
6638     // Only allow at most one field in a structure. This doesn't match the
6639     // wording above, but follows gcc in situations with a field following an
6640     // empty structure.
6641     if (!RD->isUnion()) {
6642       if (HadField)
6643         return false;
6644 
6645       HadField = true;
6646     }
6647   }
6648 
6649   return true;
6650 }
6651 
6652 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic,
6653                                           unsigned functionCallConv) const {
6654 
6655   // Variadic functions should always marshal to the base standard.
6656   bool IsAAPCS_VFP =
6657       !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true);
6658 
6659   if (RetTy->isVoidType())
6660     return ABIArgInfo::getIgnore();
6661 
6662   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
6663     // Large vector types should be returned via memory.
6664     if (getContext().getTypeSize(RetTy) > 128)
6665       return getNaturalAlignIndirect(RetTy);
6666     // TODO: FP16/BF16 vectors should be converted to integer vectors
6667     // This check is similar  to isIllegalVectorType - refactor?
6668     if ((!getTarget().hasLegalHalfType() &&
6669         (VT->getElementType()->isFloat16Type() ||
6670          VT->getElementType()->isHalfType())) ||
6671         (IsFloatABISoftFP &&
6672          VT->getElementType()->isBFloat16Type()))
6673       return coerceIllegalVector(RetTy);
6674   }
6675 
6676   if (!isAggregateTypeForABI(RetTy)) {
6677     // Treat an enum type as its underlying type.
6678     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6679       RetTy = EnumTy->getDecl()->getIntegerType();
6680 
6681     if (const auto *EIT = RetTy->getAs<ExtIntType>())
6682       if (EIT->getNumBits() > 64)
6683         return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
6684 
6685     return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
6686                                                 : ABIArgInfo::getDirect();
6687   }
6688 
6689   // Are we following APCS?
6690   if (getABIKind() == APCS) {
6691     if (isEmptyRecord(getContext(), RetTy, false))
6692       return ABIArgInfo::getIgnore();
6693 
6694     // Complex types are all returned as packed integers.
6695     //
6696     // FIXME: Consider using 2 x vector types if the back end handles them
6697     // correctly.
6698     if (RetTy->isAnyComplexType())
6699       return ABIArgInfo::getDirect(llvm::IntegerType::get(
6700           getVMContext(), getContext().getTypeSize(RetTy)));
6701 
6702     // Integer like structures are returned in r0.
6703     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
6704       // Return in the smallest viable integer type.
6705       uint64_t Size = getContext().getTypeSize(RetTy);
6706       if (Size <= 8)
6707         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6708       if (Size <= 16)
6709         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6710       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6711     }
6712 
6713     // Otherwise return in memory.
6714     return getNaturalAlignIndirect(RetTy);
6715   }
6716 
6717   // Otherwise this is an AAPCS variant.
6718 
6719   if (isEmptyRecord(getContext(), RetTy, true))
6720     return ABIArgInfo::getIgnore();
6721 
6722   // Check for homogeneous aggregates with AAPCS-VFP.
6723   if (IsAAPCS_VFP) {
6724     const Type *Base = nullptr;
6725     uint64_t Members = 0;
6726     if (isHomogeneousAggregate(RetTy, Base, Members))
6727       return classifyHomogeneousAggregate(RetTy, Base, Members);
6728   }
6729 
6730   // Aggregates <= 4 bytes are returned in r0; other aggregates
6731   // are returned indirectly.
6732   uint64_t Size = getContext().getTypeSize(RetTy);
6733   if (Size <= 32) {
6734     // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of
6735     // same size and alignment.
6736     if (getTarget().isRenderScriptTarget()) {
6737       return coerceToIntArray(RetTy, getContext(), getVMContext());
6738     }
6739     if (getDataLayout().isBigEndian())
6740       // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
6741       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6742 
6743     // Return in the smallest viable integer type.
6744     if (Size <= 8)
6745       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6746     if (Size <= 16)
6747       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6748     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6749   } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) {
6750     llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext());
6751     llvm::Type *CoerceTy =
6752         llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32);
6753     return ABIArgInfo::getDirect(CoerceTy);
6754   }
6755 
6756   return getNaturalAlignIndirect(RetTy);
6757 }
6758 
6759 /// isIllegalVector - check whether Ty is an illegal vector type.
6760 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
6761   if (const VectorType *VT = Ty->getAs<VectorType> ()) {
6762     // On targets that don't support half, fp16 or bfloat, they are expanded
6763     // into float, and we don't want the ABI to depend on whether or not they
6764     // are supported in hardware. Thus return false to coerce vectors of these
6765     // types into integer vectors.
6766     // We do not depend on hasLegalHalfType for bfloat as it is a
6767     // separate IR type.
6768     if ((!getTarget().hasLegalHalfType() &&
6769         (VT->getElementType()->isFloat16Type() ||
6770          VT->getElementType()->isHalfType())) ||
6771         (IsFloatABISoftFP &&
6772          VT->getElementType()->isBFloat16Type()))
6773       return true;
6774     if (isAndroid()) {
6775       // Android shipped using Clang 3.1, which supported a slightly different
6776       // vector ABI. The primary differences were that 3-element vector types
6777       // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path
6778       // accepts that legacy behavior for Android only.
6779       // Check whether VT is legal.
6780       unsigned NumElements = VT->getNumElements();
6781       // NumElements should be power of 2 or equal to 3.
6782       if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3)
6783         return true;
6784     } else {
6785       // Check whether VT is legal.
6786       unsigned NumElements = VT->getNumElements();
6787       uint64_t Size = getContext().getTypeSize(VT);
6788       // NumElements should be power of 2.
6789       if (!llvm::isPowerOf2_32(NumElements))
6790         return true;
6791       // Size should be greater than 32 bits.
6792       return Size <= 32;
6793     }
6794   }
6795   return false;
6796 }
6797 
6798 /// Return true if a type contains any 16-bit floating point vectors
6799 bool ARMABIInfo::containsAnyFP16Vectors(QualType Ty) const {
6800   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
6801     uint64_t NElements = AT->getSize().getZExtValue();
6802     if (NElements == 0)
6803       return false;
6804     return containsAnyFP16Vectors(AT->getElementType());
6805   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
6806     const RecordDecl *RD = RT->getDecl();
6807 
6808     // If this is a C++ record, check the bases first.
6809     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
6810       if (llvm::any_of(CXXRD->bases(), [this](const CXXBaseSpecifier &B) {
6811             return containsAnyFP16Vectors(B.getType());
6812           }))
6813         return true;
6814 
6815     if (llvm::any_of(RD->fields(), [this](FieldDecl *FD) {
6816           return FD && containsAnyFP16Vectors(FD->getType());
6817         }))
6818       return true;
6819 
6820     return false;
6821   } else {
6822     if (const VectorType *VT = Ty->getAs<VectorType>())
6823       return (VT->getElementType()->isFloat16Type() ||
6824               VT->getElementType()->isBFloat16Type() ||
6825               VT->getElementType()->isHalfType());
6826     return false;
6827   }
6828 }
6829 
6830 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
6831                                            llvm::Type *eltTy,
6832                                            unsigned numElts) const {
6833   if (!llvm::isPowerOf2_32(numElts))
6834     return false;
6835   unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy);
6836   if (size > 64)
6837     return false;
6838   if (vectorSize.getQuantity() != 8 &&
6839       (vectorSize.getQuantity() != 16 || numElts == 1))
6840     return false;
6841   return true;
6842 }
6843 
6844 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
6845   // Homogeneous aggregates for AAPCS-VFP must have base types of float,
6846   // double, or 64-bit or 128-bit vectors.
6847   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
6848     if (BT->getKind() == BuiltinType::Float ||
6849         BT->getKind() == BuiltinType::Double ||
6850         BT->getKind() == BuiltinType::LongDouble)
6851       return true;
6852   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
6853     unsigned VecSize = getContext().getTypeSize(VT);
6854     if (VecSize == 64 || VecSize == 128)
6855       return true;
6856   }
6857   return false;
6858 }
6859 
6860 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
6861                                                    uint64_t Members) const {
6862   return Members <= 4;
6863 }
6864 
6865 bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention,
6866                                         bool acceptHalf) const {
6867   // Give precedence to user-specified calling conventions.
6868   if (callConvention != llvm::CallingConv::C)
6869     return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP);
6870   else
6871     return (getABIKind() == AAPCS_VFP) ||
6872            (acceptHalf && (getABIKind() == AAPCS16_VFP));
6873 }
6874 
6875 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6876                               QualType Ty) const {
6877   CharUnits SlotSize = CharUnits::fromQuantity(4);
6878 
6879   // Empty records are ignored for parameter passing purposes.
6880   if (isEmptyRecord(getContext(), Ty, true)) {
6881     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
6882     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
6883     return Addr;
6884   }
6885 
6886   CharUnits TySize = getContext().getTypeSizeInChars(Ty);
6887   CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty);
6888 
6889   // Use indirect if size of the illegal vector is bigger than 16 bytes.
6890   bool IsIndirect = false;
6891   const Type *Base = nullptr;
6892   uint64_t Members = 0;
6893   if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) {
6894     IsIndirect = true;
6895 
6896   // ARMv7k passes structs bigger than 16 bytes indirectly, in space
6897   // allocated by the caller.
6898   } else if (TySize > CharUnits::fromQuantity(16) &&
6899              getABIKind() == ARMABIInfo::AAPCS16_VFP &&
6900              !isHomogeneousAggregate(Ty, Base, Members)) {
6901     IsIndirect = true;
6902 
6903   // Otherwise, bound the type's ABI alignment.
6904   // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
6905   // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
6906   // Our callers should be prepared to handle an under-aligned address.
6907   } else if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
6908              getABIKind() == ARMABIInfo::AAPCS) {
6909     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6910     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8));
6911   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
6912     // ARMv7k allows type alignment up to 16 bytes.
6913     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6914     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16));
6915   } else {
6916     TyAlignForABI = CharUnits::fromQuantity(4);
6917   }
6918 
6919   TypeInfoChars TyInfo(TySize, TyAlignForABI, false);
6920   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo,
6921                           SlotSize, /*AllowHigherAlign*/ true);
6922 }
6923 
6924 //===----------------------------------------------------------------------===//
6925 // NVPTX ABI Implementation
6926 //===----------------------------------------------------------------------===//
6927 
6928 namespace {
6929 
6930 class NVPTXTargetCodeGenInfo;
6931 
6932 class NVPTXABIInfo : public ABIInfo {
6933   NVPTXTargetCodeGenInfo &CGInfo;
6934 
6935 public:
6936   NVPTXABIInfo(CodeGenTypes &CGT, NVPTXTargetCodeGenInfo &Info)
6937       : ABIInfo(CGT), CGInfo(Info) {}
6938 
6939   ABIArgInfo classifyReturnType(QualType RetTy) const;
6940   ABIArgInfo classifyArgumentType(QualType Ty) const;
6941 
6942   void computeInfo(CGFunctionInfo &FI) const override;
6943   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6944                     QualType Ty) const override;
6945   bool isUnsupportedType(QualType T) const;
6946   ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, unsigned MaxSize) const;
6947 };
6948 
6949 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
6950 public:
6951   NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
6952       : TargetCodeGenInfo(std::make_unique<NVPTXABIInfo>(CGT, *this)) {}
6953 
6954   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6955                            CodeGen::CodeGenModule &M) const override;
6956   bool shouldEmitStaticExternCAliases() const override;
6957 
6958   llvm::Type *getCUDADeviceBuiltinSurfaceDeviceType() const override {
6959     // On the device side, surface reference is represented as an object handle
6960     // in 64-bit integer.
6961     return llvm::Type::getInt64Ty(getABIInfo().getVMContext());
6962   }
6963 
6964   llvm::Type *getCUDADeviceBuiltinTextureDeviceType() const override {
6965     // On the device side, texture reference is represented as an object handle
6966     // in 64-bit integer.
6967     return llvm::Type::getInt64Ty(getABIInfo().getVMContext());
6968   }
6969 
6970   bool emitCUDADeviceBuiltinSurfaceDeviceCopy(CodeGenFunction &CGF, LValue Dst,
6971                                               LValue Src) const override {
6972     emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src);
6973     return true;
6974   }
6975 
6976   bool emitCUDADeviceBuiltinTextureDeviceCopy(CodeGenFunction &CGF, LValue Dst,
6977                                               LValue Src) const override {
6978     emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src);
6979     return true;
6980   }
6981 
6982 private:
6983   // Adds a NamedMDNode with GV, Name, and Operand as operands, and adds the
6984   // resulting MDNode to the nvvm.annotations MDNode.
6985   static void addNVVMMetadata(llvm::GlobalValue *GV, StringRef Name,
6986                               int Operand);
6987 
6988   static void emitBuiltinSurfTexDeviceCopy(CodeGenFunction &CGF, LValue Dst,
6989                                            LValue Src) {
6990     llvm::Value *Handle = nullptr;
6991     llvm::Constant *C =
6992         llvm::dyn_cast<llvm::Constant>(Src.getAddress(CGF).getPointer());
6993     // Lookup `addrspacecast` through the constant pointer if any.
6994     if (auto *ASC = llvm::dyn_cast_or_null<llvm::AddrSpaceCastOperator>(C))
6995       C = llvm::cast<llvm::Constant>(ASC->getPointerOperand());
6996     if (auto *GV = llvm::dyn_cast_or_null<llvm::GlobalVariable>(C)) {
6997       // Load the handle from the specific global variable using
6998       // `nvvm.texsurf.handle.internal` intrinsic.
6999       Handle = CGF.EmitRuntimeCall(
7000           CGF.CGM.getIntrinsic(llvm::Intrinsic::nvvm_texsurf_handle_internal,
7001                                {GV->getType()}),
7002           {GV}, "texsurf_handle");
7003     } else
7004       Handle = CGF.EmitLoadOfScalar(Src, SourceLocation());
7005     CGF.EmitStoreOfScalar(Handle, Dst);
7006   }
7007 };
7008 
7009 /// Checks if the type is unsupported directly by the current target.
7010 bool NVPTXABIInfo::isUnsupportedType(QualType T) const {
7011   ASTContext &Context = getContext();
7012   if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type())
7013     return true;
7014   if (!Context.getTargetInfo().hasFloat128Type() &&
7015       (T->isFloat128Type() ||
7016        (T->isRealFloatingType() && Context.getTypeSize(T) == 128)))
7017     return true;
7018   if (const auto *EIT = T->getAs<ExtIntType>())
7019     return EIT->getNumBits() >
7020            (Context.getTargetInfo().hasInt128Type() ? 128U : 64U);
7021   if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() &&
7022       Context.getTypeSize(T) > 64U)
7023     return true;
7024   if (const auto *AT = T->getAsArrayTypeUnsafe())
7025     return isUnsupportedType(AT->getElementType());
7026   const auto *RT = T->getAs<RecordType>();
7027   if (!RT)
7028     return false;
7029   const RecordDecl *RD = RT->getDecl();
7030 
7031   // If this is a C++ record, check the bases first.
7032   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
7033     for (const CXXBaseSpecifier &I : CXXRD->bases())
7034       if (isUnsupportedType(I.getType()))
7035         return true;
7036 
7037   for (const FieldDecl *I : RD->fields())
7038     if (isUnsupportedType(I->getType()))
7039       return true;
7040   return false;
7041 }
7042 
7043 /// Coerce the given type into an array with maximum allowed size of elements.
7044 ABIArgInfo NVPTXABIInfo::coerceToIntArrayWithLimit(QualType Ty,
7045                                                    unsigned MaxSize) const {
7046   // Alignment and Size are measured in bits.
7047   const uint64_t Size = getContext().getTypeSize(Ty);
7048   const uint64_t Alignment = getContext().getTypeAlign(Ty);
7049   const unsigned Div = std::min<unsigned>(MaxSize, Alignment);
7050   llvm::Type *IntType = llvm::Type::getIntNTy(getVMContext(), Div);
7051   const uint64_t NumElements = (Size + Div - 1) / Div;
7052   return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
7053 }
7054 
7055 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
7056   if (RetTy->isVoidType())
7057     return ABIArgInfo::getIgnore();
7058 
7059   if (getContext().getLangOpts().OpenMP &&
7060       getContext().getLangOpts().OpenMPIsDevice && isUnsupportedType(RetTy))
7061     return coerceToIntArrayWithLimit(RetTy, 64);
7062 
7063   // note: this is different from default ABI
7064   if (!RetTy->isScalarType())
7065     return ABIArgInfo::getDirect();
7066 
7067   // Treat an enum type as its underlying type.
7068   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
7069     RetTy = EnumTy->getDecl()->getIntegerType();
7070 
7071   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
7072                                                : ABIArgInfo::getDirect());
7073 }
7074 
7075 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
7076   // Treat an enum type as its underlying type.
7077   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7078     Ty = EnumTy->getDecl()->getIntegerType();
7079 
7080   // Return aggregates type as indirect by value
7081   if (isAggregateTypeForABI(Ty)) {
7082     // Under CUDA device compilation, tex/surf builtin types are replaced with
7083     // object types and passed directly.
7084     if (getContext().getLangOpts().CUDAIsDevice) {
7085       if (Ty->isCUDADeviceBuiltinSurfaceType())
7086         return ABIArgInfo::getDirect(
7087             CGInfo.getCUDADeviceBuiltinSurfaceDeviceType());
7088       if (Ty->isCUDADeviceBuiltinTextureType())
7089         return ABIArgInfo::getDirect(
7090             CGInfo.getCUDADeviceBuiltinTextureDeviceType());
7091     }
7092     return getNaturalAlignIndirect(Ty, /* byval */ true);
7093   }
7094 
7095   if (const auto *EIT = Ty->getAs<ExtIntType>()) {
7096     if ((EIT->getNumBits() > 128) ||
7097         (!getContext().getTargetInfo().hasInt128Type() &&
7098          EIT->getNumBits() > 64))
7099       return getNaturalAlignIndirect(Ty, /* byval */ true);
7100   }
7101 
7102   return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
7103                                             : ABIArgInfo::getDirect());
7104 }
7105 
7106 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
7107   if (!getCXXABI().classifyReturnType(FI))
7108     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7109   for (auto &I : FI.arguments())
7110     I.info = classifyArgumentType(I.type);
7111 
7112   // Always honor user-specified calling convention.
7113   if (FI.getCallingConvention() != llvm::CallingConv::C)
7114     return;
7115 
7116   FI.setEffectiveCallingConvention(getRuntimeCC());
7117 }
7118 
7119 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7120                                 QualType Ty) const {
7121   llvm_unreachable("NVPTX does not support varargs");
7122 }
7123 
7124 void NVPTXTargetCodeGenInfo::setTargetAttributes(
7125     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
7126   if (GV->isDeclaration())
7127     return;
7128   const VarDecl *VD = dyn_cast_or_null<VarDecl>(D);
7129   if (VD) {
7130     if (M.getLangOpts().CUDA) {
7131       if (VD->getType()->isCUDADeviceBuiltinSurfaceType())
7132         addNVVMMetadata(GV, "surface", 1);
7133       else if (VD->getType()->isCUDADeviceBuiltinTextureType())
7134         addNVVMMetadata(GV, "texture", 1);
7135       return;
7136     }
7137   }
7138 
7139   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7140   if (!FD) return;
7141 
7142   llvm::Function *F = cast<llvm::Function>(GV);
7143 
7144   // Perform special handling in OpenCL mode
7145   if (M.getLangOpts().OpenCL) {
7146     // Use OpenCL function attributes to check for kernel functions
7147     // By default, all functions are device functions
7148     if (FD->hasAttr<OpenCLKernelAttr>()) {
7149       // OpenCL __kernel functions get kernel metadata
7150       // Create !{<func-ref>, metadata !"kernel", i32 1} node
7151       addNVVMMetadata(F, "kernel", 1);
7152       // And kernel functions are not subject to inlining
7153       F->addFnAttr(llvm::Attribute::NoInline);
7154     }
7155   }
7156 
7157   // Perform special handling in CUDA mode.
7158   if (M.getLangOpts().CUDA) {
7159     // CUDA __global__ functions get a kernel metadata entry.  Since
7160     // __global__ functions cannot be called from the device, we do not
7161     // need to set the noinline attribute.
7162     if (FD->hasAttr<CUDAGlobalAttr>()) {
7163       // Create !{<func-ref>, metadata !"kernel", i32 1} node
7164       addNVVMMetadata(F, "kernel", 1);
7165     }
7166     if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) {
7167       // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
7168       llvm::APSInt MaxThreads(32);
7169       MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext());
7170       if (MaxThreads > 0)
7171         addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue());
7172 
7173       // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was
7174       // not specified in __launch_bounds__ or if the user specified a 0 value,
7175       // we don't have to add a PTX directive.
7176       if (Attr->getMinBlocks()) {
7177         llvm::APSInt MinBlocks(32);
7178         MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext());
7179         if (MinBlocks > 0)
7180           // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
7181           addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue());
7182       }
7183     }
7184   }
7185 }
7186 
7187 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::GlobalValue *GV,
7188                                              StringRef Name, int Operand) {
7189   llvm::Module *M = GV->getParent();
7190   llvm::LLVMContext &Ctx = M->getContext();
7191 
7192   // Get "nvvm.annotations" metadata node
7193   llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
7194 
7195   llvm::Metadata *MDVals[] = {
7196       llvm::ConstantAsMetadata::get(GV), llvm::MDString::get(Ctx, Name),
7197       llvm::ConstantAsMetadata::get(
7198           llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
7199   // Append metadata to nvvm.annotations
7200   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
7201 }
7202 
7203 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
7204   return false;
7205 }
7206 }
7207 
7208 //===----------------------------------------------------------------------===//
7209 // SystemZ ABI Implementation
7210 //===----------------------------------------------------------------------===//
7211 
7212 namespace {
7213 
7214 class SystemZABIInfo : public SwiftABIInfo {
7215   bool HasVector;
7216   bool IsSoftFloatABI;
7217 
7218 public:
7219   SystemZABIInfo(CodeGenTypes &CGT, bool HV, bool SF)
7220     : SwiftABIInfo(CGT), HasVector(HV), IsSoftFloatABI(SF) {}
7221 
7222   bool isPromotableIntegerTypeForABI(QualType Ty) const;
7223   bool isCompoundType(QualType Ty) const;
7224   bool isVectorArgumentType(QualType Ty) const;
7225   bool isFPArgumentType(QualType Ty) const;
7226   QualType GetSingleElementType(QualType Ty) const;
7227 
7228   ABIArgInfo classifyReturnType(QualType RetTy) const;
7229   ABIArgInfo classifyArgumentType(QualType ArgTy) const;
7230 
7231   void computeInfo(CGFunctionInfo &FI) const override {
7232     if (!getCXXABI().classifyReturnType(FI))
7233       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7234     for (auto &I : FI.arguments())
7235       I.info = classifyArgumentType(I.type);
7236   }
7237 
7238   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7239                     QualType Ty) const override;
7240 
7241   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
7242                                     bool asReturnValue) const override {
7243     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
7244   }
7245   bool isSwiftErrorInRegister() const override {
7246     return false;
7247   }
7248 };
7249 
7250 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
7251 public:
7252   SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector, bool SoftFloatABI)
7253       : TargetCodeGenInfo(
7254             std::make_unique<SystemZABIInfo>(CGT, HasVector, SoftFloatABI)) {}
7255 };
7256 
7257 }
7258 
7259 bool SystemZABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const {
7260   // Treat an enum type as its underlying type.
7261   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7262     Ty = EnumTy->getDecl()->getIntegerType();
7263 
7264   // Promotable integer types are required to be promoted by the ABI.
7265   if (ABIInfo::isPromotableIntegerTypeForABI(Ty))
7266     return true;
7267 
7268   if (const auto *EIT = Ty->getAs<ExtIntType>())
7269     if (EIT->getNumBits() < 64)
7270       return true;
7271 
7272   // 32-bit values must also be promoted.
7273   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
7274     switch (BT->getKind()) {
7275     case BuiltinType::Int:
7276     case BuiltinType::UInt:
7277       return true;
7278     default:
7279       return false;
7280     }
7281   return false;
7282 }
7283 
7284 bool SystemZABIInfo::isCompoundType(QualType Ty) const {
7285   return (Ty->isAnyComplexType() ||
7286           Ty->isVectorType() ||
7287           isAggregateTypeForABI(Ty));
7288 }
7289 
7290 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const {
7291   return (HasVector &&
7292           Ty->isVectorType() &&
7293           getContext().getTypeSize(Ty) <= 128);
7294 }
7295 
7296 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
7297   if (IsSoftFloatABI)
7298     return false;
7299 
7300   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
7301     switch (BT->getKind()) {
7302     case BuiltinType::Float:
7303     case BuiltinType::Double:
7304       return true;
7305     default:
7306       return false;
7307     }
7308 
7309   return false;
7310 }
7311 
7312 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const {
7313   const RecordType *RT = Ty->getAs<RecordType>();
7314 
7315   if (RT && RT->isStructureOrClassType()) {
7316     const RecordDecl *RD = RT->getDecl();
7317     QualType Found;
7318 
7319     // If this is a C++ record, check the bases first.
7320     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
7321       for (const auto &I : CXXRD->bases()) {
7322         QualType Base = I.getType();
7323 
7324         // Empty bases don't affect things either way.
7325         if (isEmptyRecord(getContext(), Base, true))
7326           continue;
7327 
7328         if (!Found.isNull())
7329           return Ty;
7330         Found = GetSingleElementType(Base);
7331       }
7332 
7333     // Check the fields.
7334     for (const auto *FD : RD->fields()) {
7335       // For compatibility with GCC, ignore empty bitfields in C++ mode.
7336       // Unlike isSingleElementStruct(), empty structure and array fields
7337       // do count.  So do anonymous bitfields that aren't zero-sized.
7338       if (getContext().getLangOpts().CPlusPlus &&
7339           FD->isZeroLengthBitField(getContext()))
7340         continue;
7341       // Like isSingleElementStruct(), ignore C++20 empty data members.
7342       if (FD->hasAttr<NoUniqueAddressAttr>() &&
7343           isEmptyRecord(getContext(), FD->getType(), true))
7344         continue;
7345 
7346       // Unlike isSingleElementStruct(), arrays do not count.
7347       // Nested structures still do though.
7348       if (!Found.isNull())
7349         return Ty;
7350       Found = GetSingleElementType(FD->getType());
7351     }
7352 
7353     // Unlike isSingleElementStruct(), trailing padding is allowed.
7354     // An 8-byte aligned struct s { float f; } is passed as a double.
7355     if (!Found.isNull())
7356       return Found;
7357   }
7358 
7359   return Ty;
7360 }
7361 
7362 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7363                                   QualType Ty) const {
7364   // Assume that va_list type is correct; should be pointer to LLVM type:
7365   // struct {
7366   //   i64 __gpr;
7367   //   i64 __fpr;
7368   //   i8 *__overflow_arg_area;
7369   //   i8 *__reg_save_area;
7370   // };
7371 
7372   // Every non-vector argument occupies 8 bytes and is passed by preference
7373   // in either GPRs or FPRs.  Vector arguments occupy 8 or 16 bytes and are
7374   // always passed on the stack.
7375   Ty = getContext().getCanonicalType(Ty);
7376   auto TyInfo = getContext().getTypeInfoInChars(Ty);
7377   llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty);
7378   llvm::Type *DirectTy = ArgTy;
7379   ABIArgInfo AI = classifyArgumentType(Ty);
7380   bool IsIndirect = AI.isIndirect();
7381   bool InFPRs = false;
7382   bool IsVector = false;
7383   CharUnits UnpaddedSize;
7384   CharUnits DirectAlign;
7385   if (IsIndirect) {
7386     DirectTy = llvm::PointerType::getUnqual(DirectTy);
7387     UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8);
7388   } else {
7389     if (AI.getCoerceToType())
7390       ArgTy = AI.getCoerceToType();
7391     InFPRs = (!IsSoftFloatABI && (ArgTy->isFloatTy() || ArgTy->isDoubleTy()));
7392     IsVector = ArgTy->isVectorTy();
7393     UnpaddedSize = TyInfo.Width;
7394     DirectAlign = TyInfo.Align;
7395   }
7396   CharUnits PaddedSize = CharUnits::fromQuantity(8);
7397   if (IsVector && UnpaddedSize > PaddedSize)
7398     PaddedSize = CharUnits::fromQuantity(16);
7399   assert((UnpaddedSize <= PaddedSize) && "Invalid argument size.");
7400 
7401   CharUnits Padding = (PaddedSize - UnpaddedSize);
7402 
7403   llvm::Type *IndexTy = CGF.Int64Ty;
7404   llvm::Value *PaddedSizeV =
7405     llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity());
7406 
7407   if (IsVector) {
7408     // Work out the address of a vector argument on the stack.
7409     // Vector arguments are always passed in the high bits of a
7410     // single (8 byte) or double (16 byte) stack slot.
7411     Address OverflowArgAreaPtr =
7412         CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
7413     Address OverflowArgArea =
7414       Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
7415               TyInfo.Align);
7416     Address MemAddr =
7417       CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr");
7418 
7419     // Update overflow_arg_area_ptr pointer
7420     llvm::Value *NewOverflowArgArea =
7421       CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
7422                             "overflow_arg_area");
7423     CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
7424 
7425     return MemAddr;
7426   }
7427 
7428   assert(PaddedSize.getQuantity() == 8);
7429 
7430   unsigned MaxRegs, RegCountField, RegSaveIndex;
7431   CharUnits RegPadding;
7432   if (InFPRs) {
7433     MaxRegs = 4; // Maximum of 4 FPR arguments
7434     RegCountField = 1; // __fpr
7435     RegSaveIndex = 16; // save offset for f0
7436     RegPadding = CharUnits(); // floats are passed in the high bits of an FPR
7437   } else {
7438     MaxRegs = 5; // Maximum of 5 GPR arguments
7439     RegCountField = 0; // __gpr
7440     RegSaveIndex = 2; // save offset for r2
7441     RegPadding = Padding; // values are passed in the low bits of a GPR
7442   }
7443 
7444   Address RegCountPtr =
7445       CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr");
7446   llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
7447   llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
7448   llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
7449                                                  "fits_in_regs");
7450 
7451   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
7452   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
7453   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
7454   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
7455 
7456   // Emit code to load the value if it was passed in registers.
7457   CGF.EmitBlock(InRegBlock);
7458 
7459   // Work out the address of an argument register.
7460   llvm::Value *ScaledRegCount =
7461     CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
7462   llvm::Value *RegBase =
7463     llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity()
7464                                       + RegPadding.getQuantity());
7465   llvm::Value *RegOffset =
7466     CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
7467   Address RegSaveAreaPtr =
7468       CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr");
7469   llvm::Value *RegSaveArea =
7470     CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
7471   Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset,
7472                                            "raw_reg_addr"),
7473                      PaddedSize);
7474   Address RegAddr =
7475     CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr");
7476 
7477   // Update the register count
7478   llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
7479   llvm::Value *NewRegCount =
7480     CGF.Builder.CreateAdd(RegCount, One, "reg_count");
7481   CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
7482   CGF.EmitBranch(ContBlock);
7483 
7484   // Emit code to load the value if it was passed in memory.
7485   CGF.EmitBlock(InMemBlock);
7486 
7487   // Work out the address of a stack argument.
7488   Address OverflowArgAreaPtr =
7489       CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
7490   Address OverflowArgArea =
7491     Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
7492             PaddedSize);
7493   Address RawMemAddr =
7494     CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr");
7495   Address MemAddr =
7496     CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr");
7497 
7498   // Update overflow_arg_area_ptr pointer
7499   llvm::Value *NewOverflowArgArea =
7500     CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
7501                           "overflow_arg_area");
7502   CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
7503   CGF.EmitBranch(ContBlock);
7504 
7505   // Return the appropriate result.
7506   CGF.EmitBlock(ContBlock);
7507   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
7508                                  MemAddr, InMemBlock, "va_arg.addr");
7509 
7510   if (IsIndirect)
7511     ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"),
7512                       TyInfo.Align);
7513 
7514   return ResAddr;
7515 }
7516 
7517 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
7518   if (RetTy->isVoidType())
7519     return ABIArgInfo::getIgnore();
7520   if (isVectorArgumentType(RetTy))
7521     return ABIArgInfo::getDirect();
7522   if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
7523     return getNaturalAlignIndirect(RetTy);
7524   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
7525                                                : ABIArgInfo::getDirect());
7526 }
7527 
7528 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
7529   // Handle the generic C++ ABI.
7530   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
7531     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7532 
7533   // Integers and enums are extended to full register width.
7534   if (isPromotableIntegerTypeForABI(Ty))
7535     return ABIArgInfo::getExtend(Ty);
7536 
7537   // Handle vector types and vector-like structure types.  Note that
7538   // as opposed to float-like structure types, we do not allow any
7539   // padding for vector-like structures, so verify the sizes match.
7540   uint64_t Size = getContext().getTypeSize(Ty);
7541   QualType SingleElementTy = GetSingleElementType(Ty);
7542   if (isVectorArgumentType(SingleElementTy) &&
7543       getContext().getTypeSize(SingleElementTy) == Size)
7544     return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy));
7545 
7546   // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
7547   if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
7548     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
7549 
7550   // Handle small structures.
7551   if (const RecordType *RT = Ty->getAs<RecordType>()) {
7552     // Structures with flexible arrays have variable length, so really
7553     // fail the size test above.
7554     const RecordDecl *RD = RT->getDecl();
7555     if (RD->hasFlexibleArrayMember())
7556       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
7557 
7558     // The structure is passed as an unextended integer, a float, or a double.
7559     llvm::Type *PassTy;
7560     if (isFPArgumentType(SingleElementTy)) {
7561       assert(Size == 32 || Size == 64);
7562       if (Size == 32)
7563         PassTy = llvm::Type::getFloatTy(getVMContext());
7564       else
7565         PassTy = llvm::Type::getDoubleTy(getVMContext());
7566     } else
7567       PassTy = llvm::IntegerType::get(getVMContext(), Size);
7568     return ABIArgInfo::getDirect(PassTy);
7569   }
7570 
7571   // Non-structure compounds are passed indirectly.
7572   if (isCompoundType(Ty))
7573     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
7574 
7575   return ABIArgInfo::getDirect(nullptr);
7576 }
7577 
7578 //===----------------------------------------------------------------------===//
7579 // MSP430 ABI Implementation
7580 //===----------------------------------------------------------------------===//
7581 
7582 namespace {
7583 
7584 class MSP430ABIInfo : public DefaultABIInfo {
7585   static ABIArgInfo complexArgInfo() {
7586     ABIArgInfo Info = ABIArgInfo::getDirect();
7587     Info.setCanBeFlattened(false);
7588     return Info;
7589   }
7590 
7591 public:
7592   MSP430ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
7593 
7594   ABIArgInfo classifyReturnType(QualType RetTy) const {
7595     if (RetTy->isAnyComplexType())
7596       return complexArgInfo();
7597 
7598     return DefaultABIInfo::classifyReturnType(RetTy);
7599   }
7600 
7601   ABIArgInfo classifyArgumentType(QualType RetTy) const {
7602     if (RetTy->isAnyComplexType())
7603       return complexArgInfo();
7604 
7605     return DefaultABIInfo::classifyArgumentType(RetTy);
7606   }
7607 
7608   // Just copy the original implementations because
7609   // DefaultABIInfo::classify{Return,Argument}Type() are not virtual
7610   void computeInfo(CGFunctionInfo &FI) const override {
7611     if (!getCXXABI().classifyReturnType(FI))
7612       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7613     for (auto &I : FI.arguments())
7614       I.info = classifyArgumentType(I.type);
7615   }
7616 
7617   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7618                     QualType Ty) const override {
7619     return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty));
7620   }
7621 };
7622 
7623 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
7624 public:
7625   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
7626       : TargetCodeGenInfo(std::make_unique<MSP430ABIInfo>(CGT)) {}
7627   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7628                            CodeGen::CodeGenModule &M) const override;
7629 };
7630 
7631 }
7632 
7633 void MSP430TargetCodeGenInfo::setTargetAttributes(
7634     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
7635   if (GV->isDeclaration())
7636     return;
7637   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
7638     const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>();
7639     if (!InterruptAttr)
7640       return;
7641 
7642     // Handle 'interrupt' attribute:
7643     llvm::Function *F = cast<llvm::Function>(GV);
7644 
7645     // Step 1: Set ISR calling convention.
7646     F->setCallingConv(llvm::CallingConv::MSP430_INTR);
7647 
7648     // Step 2: Add attributes goodness.
7649     F->addFnAttr(llvm::Attribute::NoInline);
7650     F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber()));
7651   }
7652 }
7653 
7654 //===----------------------------------------------------------------------===//
7655 // MIPS ABI Implementation.  This works for both little-endian and
7656 // big-endian variants.
7657 //===----------------------------------------------------------------------===//
7658 
7659 namespace {
7660 class MipsABIInfo : public ABIInfo {
7661   bool IsO32;
7662   unsigned MinABIStackAlignInBytes, StackAlignInBytes;
7663   void CoerceToIntArgs(uint64_t TySize,
7664                        SmallVectorImpl<llvm::Type *> &ArgList) const;
7665   llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
7666   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
7667   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
7668 public:
7669   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
7670     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
7671     StackAlignInBytes(IsO32 ? 8 : 16) {}
7672 
7673   ABIArgInfo classifyReturnType(QualType RetTy) const;
7674   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
7675   void computeInfo(CGFunctionInfo &FI) const override;
7676   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7677                     QualType Ty) const override;
7678   ABIArgInfo extendType(QualType Ty) const;
7679 };
7680 
7681 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
7682   unsigned SizeOfUnwindException;
7683 public:
7684   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
7685       : TargetCodeGenInfo(std::make_unique<MipsABIInfo>(CGT, IsO32)),
7686         SizeOfUnwindException(IsO32 ? 24 : 32) {}
7687 
7688   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
7689     return 29;
7690   }
7691 
7692   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7693                            CodeGen::CodeGenModule &CGM) const override {
7694     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7695     if (!FD) return;
7696     llvm::Function *Fn = cast<llvm::Function>(GV);
7697 
7698     if (FD->hasAttr<MipsLongCallAttr>())
7699       Fn->addFnAttr("long-call");
7700     else if (FD->hasAttr<MipsShortCallAttr>())
7701       Fn->addFnAttr("short-call");
7702 
7703     // Other attributes do not have a meaning for declarations.
7704     if (GV->isDeclaration())
7705       return;
7706 
7707     if (FD->hasAttr<Mips16Attr>()) {
7708       Fn->addFnAttr("mips16");
7709     }
7710     else if (FD->hasAttr<NoMips16Attr>()) {
7711       Fn->addFnAttr("nomips16");
7712     }
7713 
7714     if (FD->hasAttr<MicroMipsAttr>())
7715       Fn->addFnAttr("micromips");
7716     else if (FD->hasAttr<NoMicroMipsAttr>())
7717       Fn->addFnAttr("nomicromips");
7718 
7719     const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>();
7720     if (!Attr)
7721       return;
7722 
7723     const char *Kind;
7724     switch (Attr->getInterrupt()) {
7725     case MipsInterruptAttr::eic:     Kind = "eic"; break;
7726     case MipsInterruptAttr::sw0:     Kind = "sw0"; break;
7727     case MipsInterruptAttr::sw1:     Kind = "sw1"; break;
7728     case MipsInterruptAttr::hw0:     Kind = "hw0"; break;
7729     case MipsInterruptAttr::hw1:     Kind = "hw1"; break;
7730     case MipsInterruptAttr::hw2:     Kind = "hw2"; break;
7731     case MipsInterruptAttr::hw3:     Kind = "hw3"; break;
7732     case MipsInterruptAttr::hw4:     Kind = "hw4"; break;
7733     case MipsInterruptAttr::hw5:     Kind = "hw5"; break;
7734     }
7735 
7736     Fn->addFnAttr("interrupt", Kind);
7737 
7738   }
7739 
7740   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
7741                                llvm::Value *Address) const override;
7742 
7743   unsigned getSizeOfUnwindException() const override {
7744     return SizeOfUnwindException;
7745   }
7746 };
7747 }
7748 
7749 void MipsABIInfo::CoerceToIntArgs(
7750     uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const {
7751   llvm::IntegerType *IntTy =
7752     llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
7753 
7754   // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
7755   for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
7756     ArgList.push_back(IntTy);
7757 
7758   // If necessary, add one more integer type to ArgList.
7759   unsigned R = TySize % (MinABIStackAlignInBytes * 8);
7760 
7761   if (R)
7762     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
7763 }
7764 
7765 // In N32/64, an aligned double precision floating point field is passed in
7766 // a register.
7767 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
7768   SmallVector<llvm::Type*, 8> ArgList, IntArgList;
7769 
7770   if (IsO32) {
7771     CoerceToIntArgs(TySize, ArgList);
7772     return llvm::StructType::get(getVMContext(), ArgList);
7773   }
7774 
7775   if (Ty->isComplexType())
7776     return CGT.ConvertType(Ty);
7777 
7778   const RecordType *RT = Ty->getAs<RecordType>();
7779 
7780   // Unions/vectors are passed in integer registers.
7781   if (!RT || !RT->isStructureOrClassType()) {
7782     CoerceToIntArgs(TySize, ArgList);
7783     return llvm::StructType::get(getVMContext(), ArgList);
7784   }
7785 
7786   const RecordDecl *RD = RT->getDecl();
7787   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
7788   assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
7789 
7790   uint64_t LastOffset = 0;
7791   unsigned idx = 0;
7792   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
7793 
7794   // Iterate over fields in the struct/class and check if there are any aligned
7795   // double fields.
7796   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
7797        i != e; ++i, ++idx) {
7798     const QualType Ty = i->getType();
7799     const BuiltinType *BT = Ty->getAs<BuiltinType>();
7800 
7801     if (!BT || BT->getKind() != BuiltinType::Double)
7802       continue;
7803 
7804     uint64_t Offset = Layout.getFieldOffset(idx);
7805     if (Offset % 64) // Ignore doubles that are not aligned.
7806       continue;
7807 
7808     // Add ((Offset - LastOffset) / 64) args of type i64.
7809     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
7810       ArgList.push_back(I64);
7811 
7812     // Add double type.
7813     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
7814     LastOffset = Offset + 64;
7815   }
7816 
7817   CoerceToIntArgs(TySize - LastOffset, IntArgList);
7818   ArgList.append(IntArgList.begin(), IntArgList.end());
7819 
7820   return llvm::StructType::get(getVMContext(), ArgList);
7821 }
7822 
7823 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
7824                                         uint64_t Offset) const {
7825   if (OrigOffset + MinABIStackAlignInBytes > Offset)
7826     return nullptr;
7827 
7828   return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
7829 }
7830 
7831 ABIArgInfo
7832 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
7833   Ty = useFirstFieldIfTransparentUnion(Ty);
7834 
7835   uint64_t OrigOffset = Offset;
7836   uint64_t TySize = getContext().getTypeSize(Ty);
7837   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
7838 
7839   Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
7840                    (uint64_t)StackAlignInBytes);
7841   unsigned CurrOffset = llvm::alignTo(Offset, Align);
7842   Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8;
7843 
7844   if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
7845     // Ignore empty aggregates.
7846     if (TySize == 0)
7847       return ABIArgInfo::getIgnore();
7848 
7849     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
7850       Offset = OrigOffset + MinABIStackAlignInBytes;
7851       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7852     }
7853 
7854     // If we have reached here, aggregates are passed directly by coercing to
7855     // another structure type. Padding is inserted if the offset of the
7856     // aggregate is unaligned.
7857     ABIArgInfo ArgInfo =
7858         ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
7859                               getPaddingType(OrigOffset, CurrOffset));
7860     ArgInfo.setInReg(true);
7861     return ArgInfo;
7862   }
7863 
7864   // Treat an enum type as its underlying type.
7865   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7866     Ty = EnumTy->getDecl()->getIntegerType();
7867 
7868   // Make sure we pass indirectly things that are too large.
7869   if (const auto *EIT = Ty->getAs<ExtIntType>())
7870     if (EIT->getNumBits() > 128 ||
7871         (EIT->getNumBits() > 64 &&
7872          !getContext().getTargetInfo().hasInt128Type()))
7873       return getNaturalAlignIndirect(Ty);
7874 
7875   // All integral types are promoted to the GPR width.
7876   if (Ty->isIntegralOrEnumerationType())
7877     return extendType(Ty);
7878 
7879   return ABIArgInfo::getDirect(
7880       nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
7881 }
7882 
7883 llvm::Type*
7884 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
7885   const RecordType *RT = RetTy->getAs<RecordType>();
7886   SmallVector<llvm::Type*, 8> RTList;
7887 
7888   if (RT && RT->isStructureOrClassType()) {
7889     const RecordDecl *RD = RT->getDecl();
7890     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
7891     unsigned FieldCnt = Layout.getFieldCount();
7892 
7893     // N32/64 returns struct/classes in floating point registers if the
7894     // following conditions are met:
7895     // 1. The size of the struct/class is no larger than 128-bit.
7896     // 2. The struct/class has one or two fields all of which are floating
7897     //    point types.
7898     // 3. The offset of the first field is zero (this follows what gcc does).
7899     //
7900     // Any other composite results are returned in integer registers.
7901     //
7902     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
7903       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
7904       for (; b != e; ++b) {
7905         const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
7906 
7907         if (!BT || !BT->isFloatingPoint())
7908           break;
7909 
7910         RTList.push_back(CGT.ConvertType(b->getType()));
7911       }
7912 
7913       if (b == e)
7914         return llvm::StructType::get(getVMContext(), RTList,
7915                                      RD->hasAttr<PackedAttr>());
7916 
7917       RTList.clear();
7918     }
7919   }
7920 
7921   CoerceToIntArgs(Size, RTList);
7922   return llvm::StructType::get(getVMContext(), RTList);
7923 }
7924 
7925 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
7926   uint64_t Size = getContext().getTypeSize(RetTy);
7927 
7928   if (RetTy->isVoidType())
7929     return ABIArgInfo::getIgnore();
7930 
7931   // O32 doesn't treat zero-sized structs differently from other structs.
7932   // However, N32/N64 ignores zero sized return values.
7933   if (!IsO32 && Size == 0)
7934     return ABIArgInfo::getIgnore();
7935 
7936   if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
7937     if (Size <= 128) {
7938       if (RetTy->isAnyComplexType())
7939         return ABIArgInfo::getDirect();
7940 
7941       // O32 returns integer vectors in registers and N32/N64 returns all small
7942       // aggregates in registers.
7943       if (!IsO32 ||
7944           (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
7945         ABIArgInfo ArgInfo =
7946             ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
7947         ArgInfo.setInReg(true);
7948         return ArgInfo;
7949       }
7950     }
7951 
7952     return getNaturalAlignIndirect(RetTy);
7953   }
7954 
7955   // Treat an enum type as its underlying type.
7956   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
7957     RetTy = EnumTy->getDecl()->getIntegerType();
7958 
7959   // Make sure we pass indirectly things that are too large.
7960   if (const auto *EIT = RetTy->getAs<ExtIntType>())
7961     if (EIT->getNumBits() > 128 ||
7962         (EIT->getNumBits() > 64 &&
7963          !getContext().getTargetInfo().hasInt128Type()))
7964       return getNaturalAlignIndirect(RetTy);
7965 
7966   if (isPromotableIntegerTypeForABI(RetTy))
7967     return ABIArgInfo::getExtend(RetTy);
7968 
7969   if ((RetTy->isUnsignedIntegerOrEnumerationType() ||
7970       RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32)
7971     return ABIArgInfo::getSignExtend(RetTy);
7972 
7973   return ABIArgInfo::getDirect();
7974 }
7975 
7976 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
7977   ABIArgInfo &RetInfo = FI.getReturnInfo();
7978   if (!getCXXABI().classifyReturnType(FI))
7979     RetInfo = classifyReturnType(FI.getReturnType());
7980 
7981   // Check if a pointer to an aggregate is passed as a hidden argument.
7982   uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
7983 
7984   for (auto &I : FI.arguments())
7985     I.info = classifyArgumentType(I.type, Offset);
7986 }
7987 
7988 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7989                                QualType OrigTy) const {
7990   QualType Ty = OrigTy;
7991 
7992   // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64.
7993   // Pointers are also promoted in the same way but this only matters for N32.
7994   unsigned SlotSizeInBits = IsO32 ? 32 : 64;
7995   unsigned PtrWidth = getTarget().getPointerWidth(0);
7996   bool DidPromote = false;
7997   if ((Ty->isIntegerType() &&
7998           getContext().getIntWidth(Ty) < SlotSizeInBits) ||
7999       (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) {
8000     DidPromote = true;
8001     Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits,
8002                                             Ty->isSignedIntegerType());
8003   }
8004 
8005   auto TyInfo = getContext().getTypeInfoInChars(Ty);
8006 
8007   // The alignment of things in the argument area is never larger than
8008   // StackAlignInBytes.
8009   TyInfo.Align =
8010     std::min(TyInfo.Align, CharUnits::fromQuantity(StackAlignInBytes));
8011 
8012   // MinABIStackAlignInBytes is the size of argument slots on the stack.
8013   CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes);
8014 
8015   Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
8016                           TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true);
8017 
8018 
8019   // If there was a promotion, "unpromote" into a temporary.
8020   // TODO: can we just use a pointer into a subset of the original slot?
8021   if (DidPromote) {
8022     Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp");
8023     llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr);
8024 
8025     // Truncate down to the right width.
8026     llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType()
8027                                                  : CGF.IntPtrTy);
8028     llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy);
8029     if (OrigTy->isPointerType())
8030       V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType());
8031 
8032     CGF.Builder.CreateStore(V, Temp);
8033     Addr = Temp;
8034   }
8035 
8036   return Addr;
8037 }
8038 
8039 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const {
8040   int TySize = getContext().getTypeSize(Ty);
8041 
8042   // MIPS64 ABI requires unsigned 32 bit integers to be sign extended.
8043   if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
8044     return ABIArgInfo::getSignExtend(Ty);
8045 
8046   return ABIArgInfo::getExtend(Ty);
8047 }
8048 
8049 bool
8050 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
8051                                                llvm::Value *Address) const {
8052   // This information comes from gcc's implementation, which seems to
8053   // as canonical as it gets.
8054 
8055   // Everything on MIPS is 4 bytes.  Double-precision FP registers
8056   // are aliased to pairs of single-precision FP registers.
8057   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
8058 
8059   // 0-31 are the general purpose registers, $0 - $31.
8060   // 32-63 are the floating-point registers, $f0 - $f31.
8061   // 64 and 65 are the multiply/divide registers, $hi and $lo.
8062   // 66 is the (notional, I think) register for signal-handler return.
8063   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
8064 
8065   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
8066   // They are one bit wide and ignored here.
8067 
8068   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
8069   // (coprocessor 1 is the FP unit)
8070   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
8071   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
8072   // 176-181 are the DSP accumulator registers.
8073   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
8074   return false;
8075 }
8076 
8077 //===----------------------------------------------------------------------===//
8078 // AVR ABI Implementation.
8079 //===----------------------------------------------------------------------===//
8080 
8081 namespace {
8082 class AVRTargetCodeGenInfo : public TargetCodeGenInfo {
8083 public:
8084   AVRTargetCodeGenInfo(CodeGenTypes &CGT)
8085       : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {}
8086 
8087   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
8088                            CodeGen::CodeGenModule &CGM) const override {
8089     if (GV->isDeclaration())
8090       return;
8091     const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
8092     if (!FD) return;
8093     auto *Fn = cast<llvm::Function>(GV);
8094 
8095     if (FD->getAttr<AVRInterruptAttr>())
8096       Fn->addFnAttr("interrupt");
8097 
8098     if (FD->getAttr<AVRSignalAttr>())
8099       Fn->addFnAttr("signal");
8100   }
8101 };
8102 }
8103 
8104 //===----------------------------------------------------------------------===//
8105 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
8106 // Currently subclassed only to implement custom OpenCL C function attribute
8107 // handling.
8108 //===----------------------------------------------------------------------===//
8109 
8110 namespace {
8111 
8112 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
8113 public:
8114   TCETargetCodeGenInfo(CodeGenTypes &CGT)
8115     : DefaultTargetCodeGenInfo(CGT) {}
8116 
8117   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
8118                            CodeGen::CodeGenModule &M) const override;
8119 };
8120 
8121 void TCETargetCodeGenInfo::setTargetAttributes(
8122     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
8123   if (GV->isDeclaration())
8124     return;
8125   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
8126   if (!FD) return;
8127 
8128   llvm::Function *F = cast<llvm::Function>(GV);
8129 
8130   if (M.getLangOpts().OpenCL) {
8131     if (FD->hasAttr<OpenCLKernelAttr>()) {
8132       // OpenCL C Kernel functions are not subject to inlining
8133       F->addFnAttr(llvm::Attribute::NoInline);
8134       const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
8135       if (Attr) {
8136         // Convert the reqd_work_group_size() attributes to metadata.
8137         llvm::LLVMContext &Context = F->getContext();
8138         llvm::NamedMDNode *OpenCLMetadata =
8139             M.getModule().getOrInsertNamedMetadata(
8140                 "opencl.kernel_wg_size_info");
8141 
8142         SmallVector<llvm::Metadata *, 5> Operands;
8143         Operands.push_back(llvm::ConstantAsMetadata::get(F));
8144 
8145         Operands.push_back(
8146             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
8147                 M.Int32Ty, llvm::APInt(32, Attr->getXDim()))));
8148         Operands.push_back(
8149             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
8150                 M.Int32Ty, llvm::APInt(32, Attr->getYDim()))));
8151         Operands.push_back(
8152             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
8153                 M.Int32Ty, llvm::APInt(32, Attr->getZDim()))));
8154 
8155         // Add a boolean constant operand for "required" (true) or "hint"
8156         // (false) for implementing the work_group_size_hint attr later.
8157         // Currently always true as the hint is not yet implemented.
8158         Operands.push_back(
8159             llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context)));
8160         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
8161       }
8162     }
8163   }
8164 }
8165 
8166 }
8167 
8168 //===----------------------------------------------------------------------===//
8169 // Hexagon ABI Implementation
8170 //===----------------------------------------------------------------------===//
8171 
8172 namespace {
8173 
8174 class HexagonABIInfo : public DefaultABIInfo {
8175 public:
8176   HexagonABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
8177 
8178 private:
8179   ABIArgInfo classifyReturnType(QualType RetTy) const;
8180   ABIArgInfo classifyArgumentType(QualType RetTy) const;
8181   ABIArgInfo classifyArgumentType(QualType RetTy, unsigned *RegsLeft) const;
8182 
8183   void computeInfo(CGFunctionInfo &FI) const override;
8184 
8185   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8186                     QualType Ty) const override;
8187   Address EmitVAArgFromMemory(CodeGenFunction &CFG, Address VAListAddr,
8188                               QualType Ty) const;
8189   Address EmitVAArgForHexagon(CodeGenFunction &CFG, Address VAListAddr,
8190                               QualType Ty) const;
8191   Address EmitVAArgForHexagonLinux(CodeGenFunction &CFG, Address VAListAddr,
8192                                    QualType Ty) const;
8193 };
8194 
8195 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
8196 public:
8197   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
8198       : TargetCodeGenInfo(std::make_unique<HexagonABIInfo>(CGT)) {}
8199 
8200   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
8201     return 29;
8202   }
8203 
8204   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
8205                            CodeGen::CodeGenModule &GCM) const override {
8206     if (GV->isDeclaration())
8207       return;
8208     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
8209     if (!FD)
8210       return;
8211   }
8212 };
8213 
8214 } // namespace
8215 
8216 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
8217   unsigned RegsLeft = 6;
8218   if (!getCXXABI().classifyReturnType(FI))
8219     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8220   for (auto &I : FI.arguments())
8221     I.info = classifyArgumentType(I.type, &RegsLeft);
8222 }
8223 
8224 static bool HexagonAdjustRegsLeft(uint64_t Size, unsigned *RegsLeft) {
8225   assert(Size <= 64 && "Not expecting to pass arguments larger than 64 bits"
8226                        " through registers");
8227 
8228   if (*RegsLeft == 0)
8229     return false;
8230 
8231   if (Size <= 32) {
8232     (*RegsLeft)--;
8233     return true;
8234   }
8235 
8236   if (2 <= (*RegsLeft & (~1U))) {
8237     *RegsLeft = (*RegsLeft & (~1U)) - 2;
8238     return true;
8239   }
8240 
8241   // Next available register was r5 but candidate was greater than 32-bits so it
8242   // has to go on the stack. However we still consume r5
8243   if (*RegsLeft == 1)
8244     *RegsLeft = 0;
8245 
8246   return false;
8247 }
8248 
8249 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty,
8250                                                 unsigned *RegsLeft) const {
8251   if (!isAggregateTypeForABI(Ty)) {
8252     // Treat an enum type as its underlying type.
8253     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
8254       Ty = EnumTy->getDecl()->getIntegerType();
8255 
8256     uint64_t Size = getContext().getTypeSize(Ty);
8257     if (Size <= 64)
8258       HexagonAdjustRegsLeft(Size, RegsLeft);
8259 
8260     if (Size > 64 && Ty->isExtIntType())
8261       return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
8262 
8263     return isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
8264                                              : ABIArgInfo::getDirect();
8265   }
8266 
8267   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
8268     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
8269 
8270   // Ignore empty records.
8271   if (isEmptyRecord(getContext(), Ty, true))
8272     return ABIArgInfo::getIgnore();
8273 
8274   uint64_t Size = getContext().getTypeSize(Ty);
8275   unsigned Align = getContext().getTypeAlign(Ty);
8276 
8277   if (Size > 64)
8278     return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
8279 
8280   if (HexagonAdjustRegsLeft(Size, RegsLeft))
8281     Align = Size <= 32 ? 32 : 64;
8282   if (Size <= Align) {
8283     // Pass in the smallest viable integer type.
8284     if (!llvm::isPowerOf2_64(Size))
8285       Size = llvm::NextPowerOf2(Size);
8286     return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size));
8287   }
8288   return DefaultABIInfo::classifyArgumentType(Ty);
8289 }
8290 
8291 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
8292   if (RetTy->isVoidType())
8293     return ABIArgInfo::getIgnore();
8294 
8295   const TargetInfo &T = CGT.getTarget();
8296   uint64_t Size = getContext().getTypeSize(RetTy);
8297 
8298   if (RetTy->getAs<VectorType>()) {
8299     // HVX vectors are returned in vector registers or register pairs.
8300     if (T.hasFeature("hvx")) {
8301       assert(T.hasFeature("hvx-length64b") || T.hasFeature("hvx-length128b"));
8302       uint64_t VecSize = T.hasFeature("hvx-length64b") ? 64*8 : 128*8;
8303       if (Size == VecSize || Size == 2*VecSize)
8304         return ABIArgInfo::getDirectInReg();
8305     }
8306     // Large vector types should be returned via memory.
8307     if (Size > 64)
8308       return getNaturalAlignIndirect(RetTy);
8309   }
8310 
8311   if (!isAggregateTypeForABI(RetTy)) {
8312     // Treat an enum type as its underlying type.
8313     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
8314       RetTy = EnumTy->getDecl()->getIntegerType();
8315 
8316     if (Size > 64 && RetTy->isExtIntType())
8317       return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
8318 
8319     return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
8320                                                 : ABIArgInfo::getDirect();
8321   }
8322 
8323   if (isEmptyRecord(getContext(), RetTy, true))
8324     return ABIArgInfo::getIgnore();
8325 
8326   // Aggregates <= 8 bytes are returned in registers, other aggregates
8327   // are returned indirectly.
8328   if (Size <= 64) {
8329     // Return in the smallest viable integer type.
8330     if (!llvm::isPowerOf2_64(Size))
8331       Size = llvm::NextPowerOf2(Size);
8332     return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size));
8333   }
8334   return getNaturalAlignIndirect(RetTy, /*ByVal=*/true);
8335 }
8336 
8337 Address HexagonABIInfo::EmitVAArgFromMemory(CodeGenFunction &CGF,
8338                                             Address VAListAddr,
8339                                             QualType Ty) const {
8340   // Load the overflow area pointer.
8341   Address __overflow_area_pointer_p =
8342       CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p");
8343   llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad(
8344       __overflow_area_pointer_p, "__overflow_area_pointer");
8345 
8346   uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
8347   if (Align > 4) {
8348     // Alignment should be a power of 2.
8349     assert((Align & (Align - 1)) == 0 && "Alignment is not power of 2!");
8350 
8351     // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
8352     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
8353 
8354     // Add offset to the current pointer to access the argument.
8355     __overflow_area_pointer =
8356         CGF.Builder.CreateGEP(__overflow_area_pointer, Offset);
8357     llvm::Value *AsInt =
8358         CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty);
8359 
8360     // Create a mask which should be "AND"ed
8361     // with (overflow_arg_area + align - 1)
8362     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -(int)Align);
8363     __overflow_area_pointer = CGF.Builder.CreateIntToPtr(
8364         CGF.Builder.CreateAnd(AsInt, Mask), __overflow_area_pointer->getType(),
8365         "__overflow_area_pointer.align");
8366   }
8367 
8368   // Get the type of the argument from memory and bitcast
8369   // overflow area pointer to the argument type.
8370   llvm::Type *PTy = CGF.ConvertTypeForMem(Ty);
8371   Address AddrTyped = CGF.Builder.CreateBitCast(
8372       Address(__overflow_area_pointer, CharUnits::fromQuantity(Align)),
8373       llvm::PointerType::getUnqual(PTy));
8374 
8375   // Round up to the minimum stack alignment for varargs which is 4 bytes.
8376   uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4);
8377 
8378   __overflow_area_pointer = CGF.Builder.CreateGEP(
8379       __overflow_area_pointer, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
8380       "__overflow_area_pointer.next");
8381   CGF.Builder.CreateStore(__overflow_area_pointer, __overflow_area_pointer_p);
8382 
8383   return AddrTyped;
8384 }
8385 
8386 Address HexagonABIInfo::EmitVAArgForHexagon(CodeGenFunction &CGF,
8387                                             Address VAListAddr,
8388                                             QualType Ty) const {
8389   // FIXME: Need to handle alignment
8390   llvm::Type *BP = CGF.Int8PtrTy;
8391   llvm::Type *BPP = CGF.Int8PtrPtrTy;
8392   CGBuilderTy &Builder = CGF.Builder;
8393   Address VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
8394   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
8395   // Handle address alignment for type alignment > 32 bits
8396   uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
8397   if (TyAlign > 4) {
8398     assert((TyAlign & (TyAlign - 1)) == 0 && "Alignment is not power of 2!");
8399     llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
8400     AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
8401     AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
8402     Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
8403   }
8404   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
8405   Address AddrTyped = Builder.CreateBitCast(
8406       Address(Addr, CharUnits::fromQuantity(TyAlign)), PTy);
8407 
8408   uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4);
8409   llvm::Value *NextAddr = Builder.CreateGEP(
8410       Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next");
8411   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
8412 
8413   return AddrTyped;
8414 }
8415 
8416 Address HexagonABIInfo::EmitVAArgForHexagonLinux(CodeGenFunction &CGF,
8417                                                  Address VAListAddr,
8418                                                  QualType Ty) const {
8419   int ArgSize = CGF.getContext().getTypeSize(Ty) / 8;
8420 
8421   if (ArgSize > 8)
8422     return EmitVAArgFromMemory(CGF, VAListAddr, Ty);
8423 
8424   // Here we have check if the argument is in register area or
8425   // in overflow area.
8426   // If the saved register area pointer + argsize rounded up to alignment >
8427   // saved register area end pointer, argument is in overflow area.
8428   unsigned RegsLeft = 6;
8429   Ty = CGF.getContext().getCanonicalType(Ty);
8430   (void)classifyArgumentType(Ty, &RegsLeft);
8431 
8432   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
8433   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
8434   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
8435   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
8436 
8437   // Get rounded size of the argument.GCC does not allow vararg of
8438   // size < 4 bytes. We follow the same logic here.
8439   ArgSize = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8;
8440   int ArgAlign = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8;
8441 
8442   // Argument may be in saved register area
8443   CGF.EmitBlock(MaybeRegBlock);
8444 
8445   // Load the current saved register area pointer.
8446   Address __current_saved_reg_area_pointer_p = CGF.Builder.CreateStructGEP(
8447       VAListAddr, 0, "__current_saved_reg_area_pointer_p");
8448   llvm::Value *__current_saved_reg_area_pointer = CGF.Builder.CreateLoad(
8449       __current_saved_reg_area_pointer_p, "__current_saved_reg_area_pointer");
8450 
8451   // Load the saved register area end pointer.
8452   Address __saved_reg_area_end_pointer_p = CGF.Builder.CreateStructGEP(
8453       VAListAddr, 1, "__saved_reg_area_end_pointer_p");
8454   llvm::Value *__saved_reg_area_end_pointer = CGF.Builder.CreateLoad(
8455       __saved_reg_area_end_pointer_p, "__saved_reg_area_end_pointer");
8456 
8457   // If the size of argument is > 4 bytes, check if the stack
8458   // location is aligned to 8 bytes
8459   if (ArgAlign > 4) {
8460 
8461     llvm::Value *__current_saved_reg_area_pointer_int =
8462         CGF.Builder.CreatePtrToInt(__current_saved_reg_area_pointer,
8463                                    CGF.Int32Ty);
8464 
8465     __current_saved_reg_area_pointer_int = CGF.Builder.CreateAdd(
8466         __current_saved_reg_area_pointer_int,
8467         llvm::ConstantInt::get(CGF.Int32Ty, (ArgAlign - 1)),
8468         "align_current_saved_reg_area_pointer");
8469 
8470     __current_saved_reg_area_pointer_int =
8471         CGF.Builder.CreateAnd(__current_saved_reg_area_pointer_int,
8472                               llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign),
8473                               "align_current_saved_reg_area_pointer");
8474 
8475     __current_saved_reg_area_pointer =
8476         CGF.Builder.CreateIntToPtr(__current_saved_reg_area_pointer_int,
8477                                    __current_saved_reg_area_pointer->getType(),
8478                                    "align_current_saved_reg_area_pointer");
8479   }
8480 
8481   llvm::Value *__new_saved_reg_area_pointer =
8482       CGF.Builder.CreateGEP(__current_saved_reg_area_pointer,
8483                             llvm::ConstantInt::get(CGF.Int32Ty, ArgSize),
8484                             "__new_saved_reg_area_pointer");
8485 
8486   llvm::Value *UsingStack = 0;
8487   UsingStack = CGF.Builder.CreateICmpSGT(__new_saved_reg_area_pointer,
8488                                          __saved_reg_area_end_pointer);
8489 
8490   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, InRegBlock);
8491 
8492   // Argument in saved register area
8493   // Implement the block where argument is in register saved area
8494   CGF.EmitBlock(InRegBlock);
8495 
8496   llvm::Type *PTy = CGF.ConvertType(Ty);
8497   llvm::Value *__saved_reg_area_p = CGF.Builder.CreateBitCast(
8498       __current_saved_reg_area_pointer, llvm::PointerType::getUnqual(PTy));
8499 
8500   CGF.Builder.CreateStore(__new_saved_reg_area_pointer,
8501                           __current_saved_reg_area_pointer_p);
8502 
8503   CGF.EmitBranch(ContBlock);
8504 
8505   // Argument in overflow area
8506   // Implement the block where the argument is in overflow area.
8507   CGF.EmitBlock(OnStackBlock);
8508 
8509   // Load the overflow area pointer
8510   Address __overflow_area_pointer_p =
8511       CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p");
8512   llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad(
8513       __overflow_area_pointer_p, "__overflow_area_pointer");
8514 
8515   // Align the overflow area pointer according to the alignment of the argument
8516   if (ArgAlign > 4) {
8517     llvm::Value *__overflow_area_pointer_int =
8518         CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty);
8519 
8520     __overflow_area_pointer_int =
8521         CGF.Builder.CreateAdd(__overflow_area_pointer_int,
8522                               llvm::ConstantInt::get(CGF.Int32Ty, ArgAlign - 1),
8523                               "align_overflow_area_pointer");
8524 
8525     __overflow_area_pointer_int =
8526         CGF.Builder.CreateAnd(__overflow_area_pointer_int,
8527                               llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign),
8528                               "align_overflow_area_pointer");
8529 
8530     __overflow_area_pointer = CGF.Builder.CreateIntToPtr(
8531         __overflow_area_pointer_int, __overflow_area_pointer->getType(),
8532         "align_overflow_area_pointer");
8533   }
8534 
8535   // Get the pointer for next argument in overflow area and store it
8536   // to overflow area pointer.
8537   llvm::Value *__new_overflow_area_pointer = CGF.Builder.CreateGEP(
8538       __overflow_area_pointer, llvm::ConstantInt::get(CGF.Int32Ty, ArgSize),
8539       "__overflow_area_pointer.next");
8540 
8541   CGF.Builder.CreateStore(__new_overflow_area_pointer,
8542                           __overflow_area_pointer_p);
8543 
8544   CGF.Builder.CreateStore(__new_overflow_area_pointer,
8545                           __current_saved_reg_area_pointer_p);
8546 
8547   // Bitcast the overflow area pointer to the type of argument.
8548   llvm::Type *OverflowPTy = CGF.ConvertTypeForMem(Ty);
8549   llvm::Value *__overflow_area_p = CGF.Builder.CreateBitCast(
8550       __overflow_area_pointer, llvm::PointerType::getUnqual(OverflowPTy));
8551 
8552   CGF.EmitBranch(ContBlock);
8553 
8554   // Get the correct pointer to load the variable argument
8555   // Implement the ContBlock
8556   CGF.EmitBlock(ContBlock);
8557 
8558   llvm::Type *MemPTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
8559   llvm::PHINode *ArgAddr = CGF.Builder.CreatePHI(MemPTy, 2, "vaarg.addr");
8560   ArgAddr->addIncoming(__saved_reg_area_p, InRegBlock);
8561   ArgAddr->addIncoming(__overflow_area_p, OnStackBlock);
8562 
8563   return Address(ArgAddr, CharUnits::fromQuantity(ArgAlign));
8564 }
8565 
8566 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8567                                   QualType Ty) const {
8568 
8569   if (getTarget().getTriple().isMusl())
8570     return EmitVAArgForHexagonLinux(CGF, VAListAddr, Ty);
8571 
8572   return EmitVAArgForHexagon(CGF, VAListAddr, Ty);
8573 }
8574 
8575 //===----------------------------------------------------------------------===//
8576 // Lanai ABI Implementation
8577 //===----------------------------------------------------------------------===//
8578 
8579 namespace {
8580 class LanaiABIInfo : public DefaultABIInfo {
8581 public:
8582   LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
8583 
8584   bool shouldUseInReg(QualType Ty, CCState &State) const;
8585 
8586   void computeInfo(CGFunctionInfo &FI) const override {
8587     CCState State(FI);
8588     // Lanai uses 4 registers to pass arguments unless the function has the
8589     // regparm attribute set.
8590     if (FI.getHasRegParm()) {
8591       State.FreeRegs = FI.getRegParm();
8592     } else {
8593       State.FreeRegs = 4;
8594     }
8595 
8596     if (!getCXXABI().classifyReturnType(FI))
8597       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8598     for (auto &I : FI.arguments())
8599       I.info = classifyArgumentType(I.type, State);
8600   }
8601 
8602   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
8603   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
8604 };
8605 } // end anonymous namespace
8606 
8607 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const {
8608   unsigned Size = getContext().getTypeSize(Ty);
8609   unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U;
8610 
8611   if (SizeInRegs == 0)
8612     return false;
8613 
8614   if (SizeInRegs > State.FreeRegs) {
8615     State.FreeRegs = 0;
8616     return false;
8617   }
8618 
8619   State.FreeRegs -= SizeInRegs;
8620 
8621   return true;
8622 }
8623 
8624 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal,
8625                                            CCState &State) const {
8626   if (!ByVal) {
8627     if (State.FreeRegs) {
8628       --State.FreeRegs; // Non-byval indirects just use one pointer.
8629       return getNaturalAlignIndirectInReg(Ty);
8630     }
8631     return getNaturalAlignIndirect(Ty, false);
8632   }
8633 
8634   // Compute the byval alignment.
8635   const unsigned MinABIStackAlignInBytes = 4;
8636   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
8637   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
8638                                  /*Realign=*/TypeAlign >
8639                                      MinABIStackAlignInBytes);
8640 }
8641 
8642 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty,
8643                                               CCState &State) const {
8644   // Check with the C++ ABI first.
8645   const RecordType *RT = Ty->getAs<RecordType>();
8646   if (RT) {
8647     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
8648     if (RAA == CGCXXABI::RAA_Indirect) {
8649       return getIndirectResult(Ty, /*ByVal=*/false, State);
8650     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
8651       return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
8652     }
8653   }
8654 
8655   if (isAggregateTypeForABI(Ty)) {
8656     // Structures with flexible arrays are always indirect.
8657     if (RT && RT->getDecl()->hasFlexibleArrayMember())
8658       return getIndirectResult(Ty, /*ByVal=*/true, State);
8659 
8660     // Ignore empty structs/unions.
8661     if (isEmptyRecord(getContext(), Ty, true))
8662       return ABIArgInfo::getIgnore();
8663 
8664     llvm::LLVMContext &LLVMContext = getVMContext();
8665     unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
8666     if (SizeInRegs <= State.FreeRegs) {
8667       llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
8668       SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
8669       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
8670       State.FreeRegs -= SizeInRegs;
8671       return ABIArgInfo::getDirectInReg(Result);
8672     } else {
8673       State.FreeRegs = 0;
8674     }
8675     return getIndirectResult(Ty, true, State);
8676   }
8677 
8678   // Treat an enum type as its underlying type.
8679   if (const auto *EnumTy = Ty->getAs<EnumType>())
8680     Ty = EnumTy->getDecl()->getIntegerType();
8681 
8682   bool InReg = shouldUseInReg(Ty, State);
8683 
8684   // Don't pass >64 bit integers in registers.
8685   if (const auto *EIT = Ty->getAs<ExtIntType>())
8686     if (EIT->getNumBits() > 64)
8687       return getIndirectResult(Ty, /*ByVal=*/true, State);
8688 
8689   if (isPromotableIntegerTypeForABI(Ty)) {
8690     if (InReg)
8691       return ABIArgInfo::getDirectInReg();
8692     return ABIArgInfo::getExtend(Ty);
8693   }
8694   if (InReg)
8695     return ABIArgInfo::getDirectInReg();
8696   return ABIArgInfo::getDirect();
8697 }
8698 
8699 namespace {
8700 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo {
8701 public:
8702   LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
8703       : TargetCodeGenInfo(std::make_unique<LanaiABIInfo>(CGT)) {}
8704 };
8705 }
8706 
8707 //===----------------------------------------------------------------------===//
8708 // AMDGPU ABI Implementation
8709 //===----------------------------------------------------------------------===//
8710 
8711 namespace {
8712 
8713 class AMDGPUABIInfo final : public DefaultABIInfo {
8714 private:
8715   static const unsigned MaxNumRegsForArgsRet = 16;
8716 
8717   unsigned numRegsForType(QualType Ty) const;
8718 
8719   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
8720   bool isHomogeneousAggregateSmallEnough(const Type *Base,
8721                                          uint64_t Members) const override;
8722 
8723   // Coerce HIP scalar pointer arguments from generic pointers to global ones.
8724   llvm::Type *coerceKernelArgumentType(llvm::Type *Ty, unsigned FromAS,
8725                                        unsigned ToAS) const {
8726     // Single value types.
8727     if (Ty->isPointerTy() && Ty->getPointerAddressSpace() == FromAS)
8728       return llvm::PointerType::get(
8729           cast<llvm::PointerType>(Ty)->getElementType(), ToAS);
8730     return Ty;
8731   }
8732 
8733 public:
8734   explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) :
8735     DefaultABIInfo(CGT) {}
8736 
8737   ABIArgInfo classifyReturnType(QualType RetTy) const;
8738   ABIArgInfo classifyKernelArgumentType(QualType Ty) const;
8739   ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const;
8740 
8741   void computeInfo(CGFunctionInfo &FI) const override;
8742   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8743                     QualType Ty) const override;
8744 };
8745 
8746 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
8747   return true;
8748 }
8749 
8750 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough(
8751   const Type *Base, uint64_t Members) const {
8752   uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32;
8753 
8754   // Homogeneous Aggregates may occupy at most 16 registers.
8755   return Members * NumRegs <= MaxNumRegsForArgsRet;
8756 }
8757 
8758 /// Estimate number of registers the type will use when passed in registers.
8759 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const {
8760   unsigned NumRegs = 0;
8761 
8762   if (const VectorType *VT = Ty->getAs<VectorType>()) {
8763     // Compute from the number of elements. The reported size is based on the
8764     // in-memory size, which includes the padding 4th element for 3-vectors.
8765     QualType EltTy = VT->getElementType();
8766     unsigned EltSize = getContext().getTypeSize(EltTy);
8767 
8768     // 16-bit element vectors should be passed as packed.
8769     if (EltSize == 16)
8770       return (VT->getNumElements() + 1) / 2;
8771 
8772     unsigned EltNumRegs = (EltSize + 31) / 32;
8773     return EltNumRegs * VT->getNumElements();
8774   }
8775 
8776   if (const RecordType *RT = Ty->getAs<RecordType>()) {
8777     const RecordDecl *RD = RT->getDecl();
8778     assert(!RD->hasFlexibleArrayMember());
8779 
8780     for (const FieldDecl *Field : RD->fields()) {
8781       QualType FieldTy = Field->getType();
8782       NumRegs += numRegsForType(FieldTy);
8783     }
8784 
8785     return NumRegs;
8786   }
8787 
8788   return (getContext().getTypeSize(Ty) + 31) / 32;
8789 }
8790 
8791 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const {
8792   llvm::CallingConv::ID CC = FI.getCallingConvention();
8793 
8794   if (!getCXXABI().classifyReturnType(FI))
8795     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8796 
8797   unsigned NumRegsLeft = MaxNumRegsForArgsRet;
8798   for (auto &Arg : FI.arguments()) {
8799     if (CC == llvm::CallingConv::AMDGPU_KERNEL) {
8800       Arg.info = classifyKernelArgumentType(Arg.type);
8801     } else {
8802       Arg.info = classifyArgumentType(Arg.type, NumRegsLeft);
8803     }
8804   }
8805 }
8806 
8807 Address AMDGPUABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8808                                  QualType Ty) const {
8809   llvm_unreachable("AMDGPU does not support varargs");
8810 }
8811 
8812 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const {
8813   if (isAggregateTypeForABI(RetTy)) {
8814     // Records with non-trivial destructors/copy-constructors should not be
8815     // returned by value.
8816     if (!getRecordArgABI(RetTy, getCXXABI())) {
8817       // Ignore empty structs/unions.
8818       if (isEmptyRecord(getContext(), RetTy, true))
8819         return ABIArgInfo::getIgnore();
8820 
8821       // Lower single-element structs to just return a regular value.
8822       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
8823         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
8824 
8825       if (const RecordType *RT = RetTy->getAs<RecordType>()) {
8826         const RecordDecl *RD = RT->getDecl();
8827         if (RD->hasFlexibleArrayMember())
8828           return DefaultABIInfo::classifyReturnType(RetTy);
8829       }
8830 
8831       // Pack aggregates <= 4 bytes into single VGPR or pair.
8832       uint64_t Size = getContext().getTypeSize(RetTy);
8833       if (Size <= 16)
8834         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
8835 
8836       if (Size <= 32)
8837         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
8838 
8839       if (Size <= 64) {
8840         llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
8841         return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
8842       }
8843 
8844       if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet)
8845         return ABIArgInfo::getDirect();
8846     }
8847   }
8848 
8849   // Otherwise just do the default thing.
8850   return DefaultABIInfo::classifyReturnType(RetTy);
8851 }
8852 
8853 /// For kernels all parameters are really passed in a special buffer. It doesn't
8854 /// make sense to pass anything byval, so everything must be direct.
8855 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const {
8856   Ty = useFirstFieldIfTransparentUnion(Ty);
8857 
8858   // TODO: Can we omit empty structs?
8859 
8860   if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
8861     Ty = QualType(SeltTy, 0);
8862 
8863   llvm::Type *OrigLTy = CGT.ConvertType(Ty);
8864   llvm::Type *LTy = OrigLTy;
8865   if (getContext().getLangOpts().HIP) {
8866     LTy = coerceKernelArgumentType(
8867         OrigLTy, /*FromAS=*/getContext().getTargetAddressSpace(LangAS::Default),
8868         /*ToAS=*/getContext().getTargetAddressSpace(LangAS::cuda_device));
8869   }
8870 
8871   // FIXME: Should also use this for OpenCL, but it requires addressing the
8872   // problem of kernels being called.
8873   //
8874   // FIXME: This doesn't apply the optimization of coercing pointers in structs
8875   // to global address space when using byref. This would require implementing a
8876   // new kind of coercion of the in-memory type when for indirect arguments.
8877   if (!getContext().getLangOpts().OpenCL && LTy == OrigLTy &&
8878       isAggregateTypeForABI(Ty)) {
8879     return ABIArgInfo::getIndirectAliased(
8880         getContext().getTypeAlignInChars(Ty),
8881         getContext().getTargetAddressSpace(LangAS::opencl_constant),
8882         false /*Realign*/, nullptr /*Padding*/);
8883   }
8884 
8885   // If we set CanBeFlattened to true, CodeGen will expand the struct to its
8886   // individual elements, which confuses the Clover OpenCL backend; therefore we
8887   // have to set it to false here. Other args of getDirect() are just defaults.
8888   return ABIArgInfo::getDirect(LTy, 0, nullptr, false);
8889 }
8890 
8891 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty,
8892                                                unsigned &NumRegsLeft) const {
8893   assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow");
8894 
8895   Ty = useFirstFieldIfTransparentUnion(Ty);
8896 
8897   if (isAggregateTypeForABI(Ty)) {
8898     // Records with non-trivial destructors/copy-constructors should not be
8899     // passed by value.
8900     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
8901       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
8902 
8903     // Ignore empty structs/unions.
8904     if (isEmptyRecord(getContext(), Ty, true))
8905       return ABIArgInfo::getIgnore();
8906 
8907     // Lower single-element structs to just pass a regular value. TODO: We
8908     // could do reasonable-size multiple-element structs too, using getExpand(),
8909     // though watch out for things like bitfields.
8910     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
8911       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
8912 
8913     if (const RecordType *RT = Ty->getAs<RecordType>()) {
8914       const RecordDecl *RD = RT->getDecl();
8915       if (RD->hasFlexibleArrayMember())
8916         return DefaultABIInfo::classifyArgumentType(Ty);
8917     }
8918 
8919     // Pack aggregates <= 8 bytes into single VGPR or pair.
8920     uint64_t Size = getContext().getTypeSize(Ty);
8921     if (Size <= 64) {
8922       unsigned NumRegs = (Size + 31) / 32;
8923       NumRegsLeft -= std::min(NumRegsLeft, NumRegs);
8924 
8925       if (Size <= 16)
8926         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
8927 
8928       if (Size <= 32)
8929         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
8930 
8931       // XXX: Should this be i64 instead, and should the limit increase?
8932       llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
8933       return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
8934     }
8935 
8936     if (NumRegsLeft > 0) {
8937       unsigned NumRegs = numRegsForType(Ty);
8938       if (NumRegsLeft >= NumRegs) {
8939         NumRegsLeft -= NumRegs;
8940         return ABIArgInfo::getDirect();
8941       }
8942     }
8943   }
8944 
8945   // Otherwise just do the default thing.
8946   ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty);
8947   if (!ArgInfo.isIndirect()) {
8948     unsigned NumRegs = numRegsForType(Ty);
8949     NumRegsLeft -= std::min(NumRegs, NumRegsLeft);
8950   }
8951 
8952   return ArgInfo;
8953 }
8954 
8955 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
8956 public:
8957   AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
8958       : TargetCodeGenInfo(std::make_unique<AMDGPUABIInfo>(CGT)) {}
8959   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
8960                            CodeGen::CodeGenModule &M) const override;
8961   unsigned getOpenCLKernelCallingConv() const override;
8962 
8963   llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM,
8964       llvm::PointerType *T, QualType QT) const override;
8965 
8966   LangAS getASTAllocaAddressSpace() const override {
8967     return getLangASFromTargetAS(
8968         getABIInfo().getDataLayout().getAllocaAddrSpace());
8969   }
8970   LangAS getGlobalVarAddressSpace(CodeGenModule &CGM,
8971                                   const VarDecl *D) const override;
8972   llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts,
8973                                          SyncScope Scope,
8974                                          llvm::AtomicOrdering Ordering,
8975                                          llvm::LLVMContext &Ctx) const override;
8976   llvm::Function *
8977   createEnqueuedBlockKernel(CodeGenFunction &CGF,
8978                             llvm::Function *BlockInvokeFunc,
8979                             llvm::Value *BlockLiteral) const override;
8980   bool shouldEmitStaticExternCAliases() const override;
8981   void setCUDAKernelCallingConvention(const FunctionType *&FT) const override;
8982 };
8983 }
8984 
8985 static bool requiresAMDGPUProtectedVisibility(const Decl *D,
8986                                               llvm::GlobalValue *GV) {
8987   if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility)
8988     return false;
8989 
8990   return D->hasAttr<OpenCLKernelAttr>() ||
8991          (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) ||
8992          (isa<VarDecl>(D) &&
8993           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
8994            cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinSurfaceType() ||
8995            cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinTextureType()));
8996 }
8997 
8998 void AMDGPUTargetCodeGenInfo::setTargetAttributes(
8999     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
9000   if (requiresAMDGPUProtectedVisibility(D, GV)) {
9001     GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
9002     GV->setDSOLocal(true);
9003   }
9004 
9005   if (GV->isDeclaration())
9006     return;
9007   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
9008   if (!FD)
9009     return;
9010 
9011   llvm::Function *F = cast<llvm::Function>(GV);
9012 
9013   const auto *ReqdWGS = M.getLangOpts().OpenCL ?
9014     FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr;
9015 
9016 
9017   const bool IsOpenCLKernel = M.getLangOpts().OpenCL &&
9018                               FD->hasAttr<OpenCLKernelAttr>();
9019   const bool IsHIPKernel = M.getLangOpts().HIP &&
9020                            FD->hasAttr<CUDAGlobalAttr>();
9021   if ((IsOpenCLKernel || IsHIPKernel) &&
9022       (M.getTriple().getOS() == llvm::Triple::AMDHSA))
9023     F->addFnAttr("amdgpu-implicitarg-num-bytes", "56");
9024 
9025   if (IsHIPKernel)
9026     F->addFnAttr("uniform-work-group-size", "true");
9027 
9028 
9029   const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>();
9030   if (ReqdWGS || FlatWGS) {
9031     unsigned Min = 0;
9032     unsigned Max = 0;
9033     if (FlatWGS) {
9034       Min = FlatWGS->getMin()
9035                 ->EvaluateKnownConstInt(M.getContext())
9036                 .getExtValue();
9037       Max = FlatWGS->getMax()
9038                 ->EvaluateKnownConstInt(M.getContext())
9039                 .getExtValue();
9040     }
9041     if (ReqdWGS && Min == 0 && Max == 0)
9042       Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim();
9043 
9044     if (Min != 0) {
9045       assert(Min <= Max && "Min must be less than or equal Max");
9046 
9047       std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max);
9048       F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
9049     } else
9050       assert(Max == 0 && "Max must be zero");
9051   } else if (IsOpenCLKernel || IsHIPKernel) {
9052     // By default, restrict the maximum size to a value specified by
9053     // --gpu-max-threads-per-block=n or its default value.
9054     std::string AttrVal =
9055         std::string("1,") + llvm::utostr(M.getLangOpts().GPUMaxThreadsPerBlock);
9056     F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
9057   }
9058 
9059   if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) {
9060     unsigned Min =
9061         Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue();
9062     unsigned Max = Attr->getMax() ? Attr->getMax()
9063                                         ->EvaluateKnownConstInt(M.getContext())
9064                                         .getExtValue()
9065                                   : 0;
9066 
9067     if (Min != 0) {
9068       assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max");
9069 
9070       std::string AttrVal = llvm::utostr(Min);
9071       if (Max != 0)
9072         AttrVal = AttrVal + "," + llvm::utostr(Max);
9073       F->addFnAttr("amdgpu-waves-per-eu", AttrVal);
9074     } else
9075       assert(Max == 0 && "Max must be zero");
9076   }
9077 
9078   if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
9079     unsigned NumSGPR = Attr->getNumSGPR();
9080 
9081     if (NumSGPR != 0)
9082       F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR));
9083   }
9084 
9085   if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
9086     uint32_t NumVGPR = Attr->getNumVGPR();
9087 
9088     if (NumVGPR != 0)
9089       F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR));
9090   }
9091 
9092   if (M.getContext().getTargetInfo().allowAMDGPUUnsafeFPAtomics())
9093     F->addFnAttr("amdgpu-unsafe-fp-atomics", "true");
9094 }
9095 
9096 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
9097   return llvm::CallingConv::AMDGPU_KERNEL;
9098 }
9099 
9100 // Currently LLVM assumes null pointers always have value 0,
9101 // which results in incorrectly transformed IR. Therefore, instead of
9102 // emitting null pointers in private and local address spaces, a null
9103 // pointer in generic address space is emitted which is casted to a
9104 // pointer in local or private address space.
9105 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer(
9106     const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT,
9107     QualType QT) const {
9108   if (CGM.getContext().getTargetNullPointerValue(QT) == 0)
9109     return llvm::ConstantPointerNull::get(PT);
9110 
9111   auto &Ctx = CGM.getContext();
9112   auto NPT = llvm::PointerType::get(PT->getElementType(),
9113       Ctx.getTargetAddressSpace(LangAS::opencl_generic));
9114   return llvm::ConstantExpr::getAddrSpaceCast(
9115       llvm::ConstantPointerNull::get(NPT), PT);
9116 }
9117 
9118 LangAS
9119 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
9120                                                   const VarDecl *D) const {
9121   assert(!CGM.getLangOpts().OpenCL &&
9122          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
9123          "Address space agnostic languages only");
9124   LangAS DefaultGlobalAS = getLangASFromTargetAS(
9125       CGM.getContext().getTargetAddressSpace(LangAS::opencl_global));
9126   if (!D)
9127     return DefaultGlobalAS;
9128 
9129   LangAS AddrSpace = D->getType().getAddressSpace();
9130   assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace));
9131   if (AddrSpace != LangAS::Default)
9132     return AddrSpace;
9133 
9134   if (CGM.isTypeConstant(D->getType(), false)) {
9135     if (auto ConstAS = CGM.getTarget().getConstantAddressSpace())
9136       return ConstAS.getValue();
9137   }
9138   return DefaultGlobalAS;
9139 }
9140 
9141 llvm::SyncScope::ID
9142 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts,
9143                                             SyncScope Scope,
9144                                             llvm::AtomicOrdering Ordering,
9145                                             llvm::LLVMContext &Ctx) const {
9146   std::string Name;
9147   switch (Scope) {
9148   case SyncScope::OpenCLWorkGroup:
9149     Name = "workgroup";
9150     break;
9151   case SyncScope::OpenCLDevice:
9152     Name = "agent";
9153     break;
9154   case SyncScope::OpenCLAllSVMDevices:
9155     Name = "";
9156     break;
9157   case SyncScope::OpenCLSubGroup:
9158     Name = "wavefront";
9159   }
9160 
9161   if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) {
9162     if (!Name.empty())
9163       Name = Twine(Twine(Name) + Twine("-")).str();
9164 
9165     Name = Twine(Twine(Name) + Twine("one-as")).str();
9166   }
9167 
9168   return Ctx.getOrInsertSyncScopeID(Name);
9169 }
9170 
9171 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
9172   return false;
9173 }
9174 
9175 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention(
9176     const FunctionType *&FT) const {
9177   FT = getABIInfo().getContext().adjustFunctionType(
9178       FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel));
9179 }
9180 
9181 //===----------------------------------------------------------------------===//
9182 // SPARC v8 ABI Implementation.
9183 // Based on the SPARC Compliance Definition version 2.4.1.
9184 //
9185 // Ensures that complex values are passed in registers.
9186 //
9187 namespace {
9188 class SparcV8ABIInfo : public DefaultABIInfo {
9189 public:
9190   SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
9191 
9192 private:
9193   ABIArgInfo classifyReturnType(QualType RetTy) const;
9194   void computeInfo(CGFunctionInfo &FI) const override;
9195 };
9196 } // end anonymous namespace
9197 
9198 
9199 ABIArgInfo
9200 SparcV8ABIInfo::classifyReturnType(QualType Ty) const {
9201   if (Ty->isAnyComplexType()) {
9202     return ABIArgInfo::getDirect();
9203   }
9204   else {
9205     return DefaultABIInfo::classifyReturnType(Ty);
9206   }
9207 }
9208 
9209 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const {
9210 
9211   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
9212   for (auto &Arg : FI.arguments())
9213     Arg.info = classifyArgumentType(Arg.type);
9214 }
9215 
9216 namespace {
9217 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo {
9218 public:
9219   SparcV8TargetCodeGenInfo(CodeGenTypes &CGT)
9220       : TargetCodeGenInfo(std::make_unique<SparcV8ABIInfo>(CGT)) {}
9221 };
9222 } // end anonymous namespace
9223 
9224 //===----------------------------------------------------------------------===//
9225 // SPARC v9 ABI Implementation.
9226 // Based on the SPARC Compliance Definition version 2.4.1.
9227 //
9228 // Function arguments a mapped to a nominal "parameter array" and promoted to
9229 // registers depending on their type. Each argument occupies 8 or 16 bytes in
9230 // the array, structs larger than 16 bytes are passed indirectly.
9231 //
9232 // One case requires special care:
9233 //
9234 //   struct mixed {
9235 //     int i;
9236 //     float f;
9237 //   };
9238 //
9239 // When a struct mixed is passed by value, it only occupies 8 bytes in the
9240 // parameter array, but the int is passed in an integer register, and the float
9241 // is passed in a floating point register. This is represented as two arguments
9242 // with the LLVM IR inreg attribute:
9243 //
9244 //   declare void f(i32 inreg %i, float inreg %f)
9245 //
9246 // The code generator will only allocate 4 bytes from the parameter array for
9247 // the inreg arguments. All other arguments are allocated a multiple of 8
9248 // bytes.
9249 //
9250 namespace {
9251 class SparcV9ABIInfo : public ABIInfo {
9252 public:
9253   SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
9254 
9255 private:
9256   ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
9257   void computeInfo(CGFunctionInfo &FI) const override;
9258   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9259                     QualType Ty) const override;
9260 
9261   // Coercion type builder for structs passed in registers. The coercion type
9262   // serves two purposes:
9263   //
9264   // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
9265   //    in registers.
9266   // 2. Expose aligned floating point elements as first-level elements, so the
9267   //    code generator knows to pass them in floating point registers.
9268   //
9269   // We also compute the InReg flag which indicates that the struct contains
9270   // aligned 32-bit floats.
9271   //
9272   struct CoerceBuilder {
9273     llvm::LLVMContext &Context;
9274     const llvm::DataLayout &DL;
9275     SmallVector<llvm::Type*, 8> Elems;
9276     uint64_t Size;
9277     bool InReg;
9278 
9279     CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
9280       : Context(c), DL(dl), Size(0), InReg(false) {}
9281 
9282     // Pad Elems with integers until Size is ToSize.
9283     void pad(uint64_t ToSize) {
9284       assert(ToSize >= Size && "Cannot remove elements");
9285       if (ToSize == Size)
9286         return;
9287 
9288       // Finish the current 64-bit word.
9289       uint64_t Aligned = llvm::alignTo(Size, 64);
9290       if (Aligned > Size && Aligned <= ToSize) {
9291         Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
9292         Size = Aligned;
9293       }
9294 
9295       // Add whole 64-bit words.
9296       while (Size + 64 <= ToSize) {
9297         Elems.push_back(llvm::Type::getInt64Ty(Context));
9298         Size += 64;
9299       }
9300 
9301       // Final in-word padding.
9302       if (Size < ToSize) {
9303         Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
9304         Size = ToSize;
9305       }
9306     }
9307 
9308     // Add a floating point element at Offset.
9309     void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
9310       // Unaligned floats are treated as integers.
9311       if (Offset % Bits)
9312         return;
9313       // The InReg flag is only required if there are any floats < 64 bits.
9314       if (Bits < 64)
9315         InReg = true;
9316       pad(Offset);
9317       Elems.push_back(Ty);
9318       Size = Offset + Bits;
9319     }
9320 
9321     // Add a struct type to the coercion type, starting at Offset (in bits).
9322     void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
9323       const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
9324       for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
9325         llvm::Type *ElemTy = StrTy->getElementType(i);
9326         uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
9327         switch (ElemTy->getTypeID()) {
9328         case llvm::Type::StructTyID:
9329           addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
9330           break;
9331         case llvm::Type::FloatTyID:
9332           addFloat(ElemOffset, ElemTy, 32);
9333           break;
9334         case llvm::Type::DoubleTyID:
9335           addFloat(ElemOffset, ElemTy, 64);
9336           break;
9337         case llvm::Type::FP128TyID:
9338           addFloat(ElemOffset, ElemTy, 128);
9339           break;
9340         case llvm::Type::PointerTyID:
9341           if (ElemOffset % 64 == 0) {
9342             pad(ElemOffset);
9343             Elems.push_back(ElemTy);
9344             Size += 64;
9345           }
9346           break;
9347         default:
9348           break;
9349         }
9350       }
9351     }
9352 
9353     // Check if Ty is a usable substitute for the coercion type.
9354     bool isUsableType(llvm::StructType *Ty) const {
9355       return llvm::makeArrayRef(Elems) == Ty->elements();
9356     }
9357 
9358     // Get the coercion type as a literal struct type.
9359     llvm::Type *getType() const {
9360       if (Elems.size() == 1)
9361         return Elems.front();
9362       else
9363         return llvm::StructType::get(Context, Elems);
9364     }
9365   };
9366 };
9367 } // end anonymous namespace
9368 
9369 ABIArgInfo
9370 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
9371   if (Ty->isVoidType())
9372     return ABIArgInfo::getIgnore();
9373 
9374   uint64_t Size = getContext().getTypeSize(Ty);
9375 
9376   // Anything too big to fit in registers is passed with an explicit indirect
9377   // pointer / sret pointer.
9378   if (Size > SizeLimit)
9379     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
9380 
9381   // Treat an enum type as its underlying type.
9382   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
9383     Ty = EnumTy->getDecl()->getIntegerType();
9384 
9385   // Integer types smaller than a register are extended.
9386   if (Size < 64 && Ty->isIntegerType())
9387     return ABIArgInfo::getExtend(Ty);
9388 
9389   if (const auto *EIT = Ty->getAs<ExtIntType>())
9390     if (EIT->getNumBits() < 64)
9391       return ABIArgInfo::getExtend(Ty);
9392 
9393   // Other non-aggregates go in registers.
9394   if (!isAggregateTypeForABI(Ty))
9395     return ABIArgInfo::getDirect();
9396 
9397   // If a C++ object has either a non-trivial copy constructor or a non-trivial
9398   // destructor, it is passed with an explicit indirect pointer / sret pointer.
9399   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
9400     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
9401 
9402   // This is a small aggregate type that should be passed in registers.
9403   // Build a coercion type from the LLVM struct type.
9404   llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
9405   if (!StrTy)
9406     return ABIArgInfo::getDirect();
9407 
9408   CoerceBuilder CB(getVMContext(), getDataLayout());
9409   CB.addStruct(0, StrTy);
9410   CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64));
9411 
9412   // Try to use the original type for coercion.
9413   llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
9414 
9415   if (CB.InReg)
9416     return ABIArgInfo::getDirectInReg(CoerceTy);
9417   else
9418     return ABIArgInfo::getDirect(CoerceTy);
9419 }
9420 
9421 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9422                                   QualType Ty) const {
9423   ABIArgInfo AI = classifyType(Ty, 16 * 8);
9424   llvm::Type *ArgTy = CGT.ConvertType(Ty);
9425   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
9426     AI.setCoerceToType(ArgTy);
9427 
9428   CharUnits SlotSize = CharUnits::fromQuantity(8);
9429 
9430   CGBuilderTy &Builder = CGF.Builder;
9431   Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
9432   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
9433 
9434   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
9435 
9436   Address ArgAddr = Address::invalid();
9437   CharUnits Stride;
9438   switch (AI.getKind()) {
9439   case ABIArgInfo::Expand:
9440   case ABIArgInfo::CoerceAndExpand:
9441   case ABIArgInfo::InAlloca:
9442     llvm_unreachable("Unsupported ABI kind for va_arg");
9443 
9444   case ABIArgInfo::Extend: {
9445     Stride = SlotSize;
9446     CharUnits Offset = SlotSize - TypeInfo.Width;
9447     ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend");
9448     break;
9449   }
9450 
9451   case ABIArgInfo::Direct: {
9452     auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
9453     Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize);
9454     ArgAddr = Addr;
9455     break;
9456   }
9457 
9458   case ABIArgInfo::Indirect:
9459   case ABIArgInfo::IndirectAliased:
9460     Stride = SlotSize;
9461     ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect");
9462     ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"),
9463                       TypeInfo.Align);
9464     break;
9465 
9466   case ABIArgInfo::Ignore:
9467     return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.Align);
9468   }
9469 
9470   // Update VAList.
9471   Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next");
9472   Builder.CreateStore(NextPtr.getPointer(), VAListAddr);
9473 
9474   return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr");
9475 }
9476 
9477 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
9478   FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
9479   for (auto &I : FI.arguments())
9480     I.info = classifyType(I.type, 16 * 8);
9481 }
9482 
9483 namespace {
9484 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
9485 public:
9486   SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
9487       : TargetCodeGenInfo(std::make_unique<SparcV9ABIInfo>(CGT)) {}
9488 
9489   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
9490     return 14;
9491   }
9492 
9493   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
9494                                llvm::Value *Address) const override;
9495 };
9496 } // end anonymous namespace
9497 
9498 bool
9499 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
9500                                                 llvm::Value *Address) const {
9501   // This is calculated from the LLVM and GCC tables and verified
9502   // against gcc output.  AFAIK all ABIs use the same encoding.
9503 
9504   CodeGen::CGBuilderTy &Builder = CGF.Builder;
9505 
9506   llvm::IntegerType *i8 = CGF.Int8Ty;
9507   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
9508   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
9509 
9510   // 0-31: the 8-byte general-purpose registers
9511   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
9512 
9513   // 32-63: f0-31, the 4-byte floating-point registers
9514   AssignToArrayRange(Builder, Address, Four8, 32, 63);
9515 
9516   //   Y   = 64
9517   //   PSR = 65
9518   //   WIM = 66
9519   //   TBR = 67
9520   //   PC  = 68
9521   //   NPC = 69
9522   //   FSR = 70
9523   //   CSR = 71
9524   AssignToArrayRange(Builder, Address, Eight8, 64, 71);
9525 
9526   // 72-87: d0-15, the 8-byte floating-point registers
9527   AssignToArrayRange(Builder, Address, Eight8, 72, 87);
9528 
9529   return false;
9530 }
9531 
9532 // ARC ABI implementation.
9533 namespace {
9534 
9535 class ARCABIInfo : public DefaultABIInfo {
9536 public:
9537   using DefaultABIInfo::DefaultABIInfo;
9538 
9539 private:
9540   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9541                     QualType Ty) const override;
9542 
9543   void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const {
9544     if (!State.FreeRegs)
9545       return;
9546     if (Info.isIndirect() && Info.getInReg())
9547       State.FreeRegs--;
9548     else if (Info.isDirect() && Info.getInReg()) {
9549       unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32;
9550       if (sz < State.FreeRegs)
9551         State.FreeRegs -= sz;
9552       else
9553         State.FreeRegs = 0;
9554     }
9555   }
9556 
9557   void computeInfo(CGFunctionInfo &FI) const override {
9558     CCState State(FI);
9559     // ARC uses 8 registers to pass arguments.
9560     State.FreeRegs = 8;
9561 
9562     if (!getCXXABI().classifyReturnType(FI))
9563       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
9564     updateState(FI.getReturnInfo(), FI.getReturnType(), State);
9565     for (auto &I : FI.arguments()) {
9566       I.info = classifyArgumentType(I.type, State.FreeRegs);
9567       updateState(I.info, I.type, State);
9568     }
9569   }
9570 
9571   ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const;
9572   ABIArgInfo getIndirectByValue(QualType Ty) const;
9573   ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const;
9574   ABIArgInfo classifyReturnType(QualType RetTy) const;
9575 };
9576 
9577 class ARCTargetCodeGenInfo : public TargetCodeGenInfo {
9578 public:
9579   ARCTargetCodeGenInfo(CodeGenTypes &CGT)
9580       : TargetCodeGenInfo(std::make_unique<ARCABIInfo>(CGT)) {}
9581 };
9582 
9583 
9584 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const {
9585   return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) :
9586                        getNaturalAlignIndirect(Ty, false);
9587 }
9588 
9589 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const {
9590   // Compute the byval alignment.
9591   const unsigned MinABIStackAlignInBytes = 4;
9592   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
9593   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
9594                                  TypeAlign > MinABIStackAlignInBytes);
9595 }
9596 
9597 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9598                               QualType Ty) const {
9599   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
9600                           getContext().getTypeInfoInChars(Ty),
9601                           CharUnits::fromQuantity(4), true);
9602 }
9603 
9604 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty,
9605                                             uint8_t FreeRegs) const {
9606   // Handle the generic C++ ABI.
9607   const RecordType *RT = Ty->getAs<RecordType>();
9608   if (RT) {
9609     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
9610     if (RAA == CGCXXABI::RAA_Indirect)
9611       return getIndirectByRef(Ty, FreeRegs > 0);
9612 
9613     if (RAA == CGCXXABI::RAA_DirectInMemory)
9614       return getIndirectByValue(Ty);
9615   }
9616 
9617   // Treat an enum type as its underlying type.
9618   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
9619     Ty = EnumTy->getDecl()->getIntegerType();
9620 
9621   auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32;
9622 
9623   if (isAggregateTypeForABI(Ty)) {
9624     // Structures with flexible arrays are always indirect.
9625     if (RT && RT->getDecl()->hasFlexibleArrayMember())
9626       return getIndirectByValue(Ty);
9627 
9628     // Ignore empty structs/unions.
9629     if (isEmptyRecord(getContext(), Ty, true))
9630       return ABIArgInfo::getIgnore();
9631 
9632     llvm::LLVMContext &LLVMContext = getVMContext();
9633 
9634     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
9635     SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
9636     llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
9637 
9638     return FreeRegs >= SizeInRegs ?
9639         ABIArgInfo::getDirectInReg(Result) :
9640         ABIArgInfo::getDirect(Result, 0, nullptr, false);
9641   }
9642 
9643   if (const auto *EIT = Ty->getAs<ExtIntType>())
9644     if (EIT->getNumBits() > 64)
9645       return getIndirectByValue(Ty);
9646 
9647   return isPromotableIntegerTypeForABI(Ty)
9648              ? (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty)
9649                                        : ABIArgInfo::getExtend(Ty))
9650              : (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg()
9651                                        : ABIArgInfo::getDirect());
9652 }
9653 
9654 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const {
9655   if (RetTy->isAnyComplexType())
9656     return ABIArgInfo::getDirectInReg();
9657 
9658   // Arguments of size > 4 registers are indirect.
9659   auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32;
9660   if (RetSize > 4)
9661     return getIndirectByRef(RetTy, /*HasFreeRegs*/ true);
9662 
9663   return DefaultABIInfo::classifyReturnType(RetTy);
9664 }
9665 
9666 } // End anonymous namespace.
9667 
9668 //===----------------------------------------------------------------------===//
9669 // XCore ABI Implementation
9670 //===----------------------------------------------------------------------===//
9671 
9672 namespace {
9673 
9674 /// A SmallStringEnc instance is used to build up the TypeString by passing
9675 /// it by reference between functions that append to it.
9676 typedef llvm::SmallString<128> SmallStringEnc;
9677 
9678 /// TypeStringCache caches the meta encodings of Types.
9679 ///
9680 /// The reason for caching TypeStrings is two fold:
9681 ///   1. To cache a type's encoding for later uses;
9682 ///   2. As a means to break recursive member type inclusion.
9683 ///
9684 /// A cache Entry can have a Status of:
9685 ///   NonRecursive:   The type encoding is not recursive;
9686 ///   Recursive:      The type encoding is recursive;
9687 ///   Incomplete:     An incomplete TypeString;
9688 ///   IncompleteUsed: An incomplete TypeString that has been used in a
9689 ///                   Recursive type encoding.
9690 ///
9691 /// A NonRecursive entry will have all of its sub-members expanded as fully
9692 /// as possible. Whilst it may contain types which are recursive, the type
9693 /// itself is not recursive and thus its encoding may be safely used whenever
9694 /// the type is encountered.
9695 ///
9696 /// A Recursive entry will have all of its sub-members expanded as fully as
9697 /// possible. The type itself is recursive and it may contain other types which
9698 /// are recursive. The Recursive encoding must not be used during the expansion
9699 /// of a recursive type's recursive branch. For simplicity the code uses
9700 /// IncompleteCount to reject all usage of Recursive encodings for member types.
9701 ///
9702 /// An Incomplete entry is always a RecordType and only encodes its
9703 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
9704 /// are placed into the cache during type expansion as a means to identify and
9705 /// handle recursive inclusion of types as sub-members. If there is recursion
9706 /// the entry becomes IncompleteUsed.
9707 ///
9708 /// During the expansion of a RecordType's members:
9709 ///
9710 ///   If the cache contains a NonRecursive encoding for the member type, the
9711 ///   cached encoding is used;
9712 ///
9713 ///   If the cache contains a Recursive encoding for the member type, the
9714 ///   cached encoding is 'Swapped' out, as it may be incorrect, and...
9715 ///
9716 ///   If the member is a RecordType, an Incomplete encoding is placed into the
9717 ///   cache to break potential recursive inclusion of itself as a sub-member;
9718 ///
9719 ///   Once a member RecordType has been expanded, its temporary incomplete
9720 ///   entry is removed from the cache. If a Recursive encoding was swapped out
9721 ///   it is swapped back in;
9722 ///
9723 ///   If an incomplete entry is used to expand a sub-member, the incomplete
9724 ///   entry is marked as IncompleteUsed. The cache keeps count of how many
9725 ///   IncompleteUsed entries it currently contains in IncompleteUsedCount;
9726 ///
9727 ///   If a member's encoding is found to be a NonRecursive or Recursive viz:
9728 ///   IncompleteUsedCount==0, the member's encoding is added to the cache.
9729 ///   Else the member is part of a recursive type and thus the recursion has
9730 ///   been exited too soon for the encoding to be correct for the member.
9731 ///
9732 class TypeStringCache {
9733   enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
9734   struct Entry {
9735     std::string Str;     // The encoded TypeString for the type.
9736     enum Status State;   // Information about the encoding in 'Str'.
9737     std::string Swapped; // A temporary place holder for a Recursive encoding
9738                          // during the expansion of RecordType's members.
9739   };
9740   std::map<const IdentifierInfo *, struct Entry> Map;
9741   unsigned IncompleteCount;     // Number of Incomplete entries in the Map.
9742   unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
9743 public:
9744   TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}
9745   void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
9746   bool removeIncomplete(const IdentifierInfo *ID);
9747   void addIfComplete(const IdentifierInfo *ID, StringRef Str,
9748                      bool IsRecursive);
9749   StringRef lookupStr(const IdentifierInfo *ID);
9750 };
9751 
9752 /// TypeString encodings for enum & union fields must be order.
9753 /// FieldEncoding is a helper for this ordering process.
9754 class FieldEncoding {
9755   bool HasName;
9756   std::string Enc;
9757 public:
9758   FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}
9759   StringRef str() { return Enc; }
9760   bool operator<(const FieldEncoding &rhs) const {
9761     if (HasName != rhs.HasName) return HasName;
9762     return Enc < rhs.Enc;
9763   }
9764 };
9765 
9766 class XCoreABIInfo : public DefaultABIInfo {
9767 public:
9768   XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
9769   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9770                     QualType Ty) const override;
9771 };
9772 
9773 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
9774   mutable TypeStringCache TSC;
9775   void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
9776                     const CodeGen::CodeGenModule &M) const;
9777 
9778 public:
9779   XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
9780       : TargetCodeGenInfo(std::make_unique<XCoreABIInfo>(CGT)) {}
9781   void emitTargetMetadata(CodeGen::CodeGenModule &CGM,
9782                           const llvm::MapVector<GlobalDecl, StringRef>
9783                               &MangledDeclNames) const override;
9784 };
9785 
9786 } // End anonymous namespace.
9787 
9788 // TODO: this implementation is likely now redundant with the default
9789 // EmitVAArg.
9790 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9791                                 QualType Ty) const {
9792   CGBuilderTy &Builder = CGF.Builder;
9793 
9794   // Get the VAList.
9795   CharUnits SlotSize = CharUnits::fromQuantity(4);
9796   Address AP(Builder.CreateLoad(VAListAddr), SlotSize);
9797 
9798   // Handle the argument.
9799   ABIArgInfo AI = classifyArgumentType(Ty);
9800   CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty);
9801   llvm::Type *ArgTy = CGT.ConvertType(Ty);
9802   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
9803     AI.setCoerceToType(ArgTy);
9804   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
9805 
9806   Address Val = Address::invalid();
9807   CharUnits ArgSize = CharUnits::Zero();
9808   switch (AI.getKind()) {
9809   case ABIArgInfo::Expand:
9810   case ABIArgInfo::CoerceAndExpand:
9811   case ABIArgInfo::InAlloca:
9812     llvm_unreachable("Unsupported ABI kind for va_arg");
9813   case ABIArgInfo::Ignore:
9814     Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign);
9815     ArgSize = CharUnits::Zero();
9816     break;
9817   case ABIArgInfo::Extend:
9818   case ABIArgInfo::Direct:
9819     Val = Builder.CreateBitCast(AP, ArgPtrTy);
9820     ArgSize = CharUnits::fromQuantity(
9821                        getDataLayout().getTypeAllocSize(AI.getCoerceToType()));
9822     ArgSize = ArgSize.alignTo(SlotSize);
9823     break;
9824   case ABIArgInfo::Indirect:
9825   case ABIArgInfo::IndirectAliased:
9826     Val = Builder.CreateElementBitCast(AP, ArgPtrTy);
9827     Val = Address(Builder.CreateLoad(Val), TypeAlign);
9828     ArgSize = SlotSize;
9829     break;
9830   }
9831 
9832   // Increment the VAList.
9833   if (!ArgSize.isZero()) {
9834     Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize);
9835     Builder.CreateStore(APN.getPointer(), VAListAddr);
9836   }
9837 
9838   return Val;
9839 }
9840 
9841 /// During the expansion of a RecordType, an incomplete TypeString is placed
9842 /// into the cache as a means to identify and break recursion.
9843 /// If there is a Recursive encoding in the cache, it is swapped out and will
9844 /// be reinserted by removeIncomplete().
9845 /// All other types of encoding should have been used rather than arriving here.
9846 void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
9847                                     std::string StubEnc) {
9848   if (!ID)
9849     return;
9850   Entry &E = Map[ID];
9851   assert( (E.Str.empty() || E.State == Recursive) &&
9852          "Incorrectly use of addIncomplete");
9853   assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
9854   E.Swapped.swap(E.Str); // swap out the Recursive
9855   E.Str.swap(StubEnc);
9856   E.State = Incomplete;
9857   ++IncompleteCount;
9858 }
9859 
9860 /// Once the RecordType has been expanded, the temporary incomplete TypeString
9861 /// must be removed from the cache.
9862 /// If a Recursive was swapped out by addIncomplete(), it will be replaced.
9863 /// Returns true if the RecordType was defined recursively.
9864 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
9865   if (!ID)
9866     return false;
9867   auto I = Map.find(ID);
9868   assert(I != Map.end() && "Entry not present");
9869   Entry &E = I->second;
9870   assert( (E.State == Incomplete ||
9871            E.State == IncompleteUsed) &&
9872          "Entry must be an incomplete type");
9873   bool IsRecursive = false;
9874   if (E.State == IncompleteUsed) {
9875     // We made use of our Incomplete encoding, thus we are recursive.
9876     IsRecursive = true;
9877     --IncompleteUsedCount;
9878   }
9879   if (E.Swapped.empty())
9880     Map.erase(I);
9881   else {
9882     // Swap the Recursive back.
9883     E.Swapped.swap(E.Str);
9884     E.Swapped.clear();
9885     E.State = Recursive;
9886   }
9887   --IncompleteCount;
9888   return IsRecursive;
9889 }
9890 
9891 /// Add the encoded TypeString to the cache only if it is NonRecursive or
9892 /// Recursive (viz: all sub-members were expanded as fully as possible).
9893 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
9894                                     bool IsRecursive) {
9895   if (!ID || IncompleteUsedCount)
9896     return; // No key or it is is an incomplete sub-type so don't add.
9897   Entry &E = Map[ID];
9898   if (IsRecursive && !E.Str.empty()) {
9899     assert(E.State==Recursive && E.Str.size() == Str.size() &&
9900            "This is not the same Recursive entry");
9901     // The parent container was not recursive after all, so we could have used
9902     // this Recursive sub-member entry after all, but we assumed the worse when
9903     // we started viz: IncompleteCount!=0.
9904     return;
9905   }
9906   assert(E.Str.empty() && "Entry already present");
9907   E.Str = Str.str();
9908   E.State = IsRecursive? Recursive : NonRecursive;
9909 }
9910 
9911 /// Return a cached TypeString encoding for the ID. If there isn't one, or we
9912 /// are recursively expanding a type (IncompleteCount != 0) and the cached
9913 /// encoding is Recursive, return an empty StringRef.
9914 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
9915   if (!ID)
9916     return StringRef();   // We have no key.
9917   auto I = Map.find(ID);
9918   if (I == Map.end())
9919     return StringRef();   // We have no encoding.
9920   Entry &E = I->second;
9921   if (E.State == Recursive && IncompleteCount)
9922     return StringRef();   // We don't use Recursive encodings for member types.
9923 
9924   if (E.State == Incomplete) {
9925     // The incomplete type is being used to break out of recursion.
9926     E.State = IncompleteUsed;
9927     ++IncompleteUsedCount;
9928   }
9929   return E.Str;
9930 }
9931 
9932 /// The XCore ABI includes a type information section that communicates symbol
9933 /// type information to the linker. The linker uses this information to verify
9934 /// safety/correctness of things such as array bound and pointers et al.
9935 /// The ABI only requires C (and XC) language modules to emit TypeStrings.
9936 /// This type information (TypeString) is emitted into meta data for all global
9937 /// symbols: definitions, declarations, functions & variables.
9938 ///
9939 /// The TypeString carries type, qualifier, name, size & value details.
9940 /// Please see 'Tools Development Guide' section 2.16.2 for format details:
9941 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf
9942 /// The output is tested by test/CodeGen/xcore-stringtype.c.
9943 ///
9944 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
9945                           const CodeGen::CodeGenModule &CGM,
9946                           TypeStringCache &TSC);
9947 
9948 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
9949 void XCoreTargetCodeGenInfo::emitTargetMD(
9950     const Decl *D, llvm::GlobalValue *GV,
9951     const CodeGen::CodeGenModule &CGM) const {
9952   SmallStringEnc Enc;
9953   if (getTypeString(Enc, D, CGM, TSC)) {
9954     llvm::LLVMContext &Ctx = CGM.getModule().getContext();
9955     llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV),
9956                                 llvm::MDString::get(Ctx, Enc.str())};
9957     llvm::NamedMDNode *MD =
9958       CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
9959     MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
9960   }
9961 }
9962 
9963 void XCoreTargetCodeGenInfo::emitTargetMetadata(
9964     CodeGen::CodeGenModule &CGM,
9965     const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames) const {
9966   // Warning, new MangledDeclNames may be appended within this loop.
9967   // We rely on MapVector insertions adding new elements to the end
9968   // of the container.
9969   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
9970     auto Val = *(MangledDeclNames.begin() + I);
9971     llvm::GlobalValue *GV = CGM.GetGlobalValue(Val.second);
9972     if (GV) {
9973       const Decl *D = Val.first.getDecl()->getMostRecentDecl();
9974       emitTargetMD(D, GV, CGM);
9975     }
9976   }
9977 }
9978 //===----------------------------------------------------------------------===//
9979 // SPIR ABI Implementation
9980 //===----------------------------------------------------------------------===//
9981 
9982 namespace {
9983 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo {
9984 public:
9985   SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
9986       : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {}
9987   unsigned getOpenCLKernelCallingConv() const override;
9988 };
9989 
9990 } // End anonymous namespace.
9991 
9992 namespace clang {
9993 namespace CodeGen {
9994 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) {
9995   DefaultABIInfo SPIRABI(CGM.getTypes());
9996   SPIRABI.computeInfo(FI);
9997 }
9998 }
9999 }
10000 
10001 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
10002   return llvm::CallingConv::SPIR_KERNEL;
10003 }
10004 
10005 static bool appendType(SmallStringEnc &Enc, QualType QType,
10006                        const CodeGen::CodeGenModule &CGM,
10007                        TypeStringCache &TSC);
10008 
10009 /// Helper function for appendRecordType().
10010 /// Builds a SmallVector containing the encoded field types in declaration
10011 /// order.
10012 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
10013                              const RecordDecl *RD,
10014                              const CodeGen::CodeGenModule &CGM,
10015                              TypeStringCache &TSC) {
10016   for (const auto *Field : RD->fields()) {
10017     SmallStringEnc Enc;
10018     Enc += "m(";
10019     Enc += Field->getName();
10020     Enc += "){";
10021     if (Field->isBitField()) {
10022       Enc += "b(";
10023       llvm::raw_svector_ostream OS(Enc);
10024       OS << Field->getBitWidthValue(CGM.getContext());
10025       Enc += ':';
10026     }
10027     if (!appendType(Enc, Field->getType(), CGM, TSC))
10028       return false;
10029     if (Field->isBitField())
10030       Enc += ')';
10031     Enc += '}';
10032     FE.emplace_back(!Field->getName().empty(), Enc);
10033   }
10034   return true;
10035 }
10036 
10037 /// Appends structure and union types to Enc and adds encoding to cache.
10038 /// Recursively calls appendType (via extractFieldType) for each field.
10039 /// Union types have their fields ordered according to the ABI.
10040 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
10041                              const CodeGen::CodeGenModule &CGM,
10042                              TypeStringCache &TSC, const IdentifierInfo *ID) {
10043   // Append the cached TypeString if we have one.
10044   StringRef TypeString = TSC.lookupStr(ID);
10045   if (!TypeString.empty()) {
10046     Enc += TypeString;
10047     return true;
10048   }
10049 
10050   // Start to emit an incomplete TypeString.
10051   size_t Start = Enc.size();
10052   Enc += (RT->isUnionType()? 'u' : 's');
10053   Enc += '(';
10054   if (ID)
10055     Enc += ID->getName();
10056   Enc += "){";
10057 
10058   // We collect all encoded fields and order as necessary.
10059   bool IsRecursive = false;
10060   const RecordDecl *RD = RT->getDecl()->getDefinition();
10061   if (RD && !RD->field_empty()) {
10062     // An incomplete TypeString stub is placed in the cache for this RecordType
10063     // so that recursive calls to this RecordType will use it whilst building a
10064     // complete TypeString for this RecordType.
10065     SmallVector<FieldEncoding, 16> FE;
10066     std::string StubEnc(Enc.substr(Start).str());
10067     StubEnc += '}';  // StubEnc now holds a valid incomplete TypeString.
10068     TSC.addIncomplete(ID, std::move(StubEnc));
10069     if (!extractFieldType(FE, RD, CGM, TSC)) {
10070       (void) TSC.removeIncomplete(ID);
10071       return false;
10072     }
10073     IsRecursive = TSC.removeIncomplete(ID);
10074     // The ABI requires unions to be sorted but not structures.
10075     // See FieldEncoding::operator< for sort algorithm.
10076     if (RT->isUnionType())
10077       llvm::sort(FE);
10078     // We can now complete the TypeString.
10079     unsigned E = FE.size();
10080     for (unsigned I = 0; I != E; ++I) {
10081       if (I)
10082         Enc += ',';
10083       Enc += FE[I].str();
10084     }
10085   }
10086   Enc += '}';
10087   TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
10088   return true;
10089 }
10090 
10091 /// Appends enum types to Enc and adds the encoding to the cache.
10092 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
10093                            TypeStringCache &TSC,
10094                            const IdentifierInfo *ID) {
10095   // Append the cached TypeString if we have one.
10096   StringRef TypeString = TSC.lookupStr(ID);
10097   if (!TypeString.empty()) {
10098     Enc += TypeString;
10099     return true;
10100   }
10101 
10102   size_t Start = Enc.size();
10103   Enc += "e(";
10104   if (ID)
10105     Enc += ID->getName();
10106   Enc += "){";
10107 
10108   // We collect all encoded enumerations and order them alphanumerically.
10109   if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
10110     SmallVector<FieldEncoding, 16> FE;
10111     for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
10112          ++I) {
10113       SmallStringEnc EnumEnc;
10114       EnumEnc += "m(";
10115       EnumEnc += I->getName();
10116       EnumEnc += "){";
10117       I->getInitVal().toString(EnumEnc);
10118       EnumEnc += '}';
10119       FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
10120     }
10121     llvm::sort(FE);
10122     unsigned E = FE.size();
10123     for (unsigned I = 0; I != E; ++I) {
10124       if (I)
10125         Enc += ',';
10126       Enc += FE[I].str();
10127     }
10128   }
10129   Enc += '}';
10130   TSC.addIfComplete(ID, Enc.substr(Start), false);
10131   return true;
10132 }
10133 
10134 /// Appends type's qualifier to Enc.
10135 /// This is done prior to appending the type's encoding.
10136 static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
10137   // Qualifiers are emitted in alphabetical order.
10138   static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"};
10139   int Lookup = 0;
10140   if (QT.isConstQualified())
10141     Lookup += 1<<0;
10142   if (QT.isRestrictQualified())
10143     Lookup += 1<<1;
10144   if (QT.isVolatileQualified())
10145     Lookup += 1<<2;
10146   Enc += Table[Lookup];
10147 }
10148 
10149 /// Appends built-in types to Enc.
10150 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
10151   const char *EncType;
10152   switch (BT->getKind()) {
10153     case BuiltinType::Void:
10154       EncType = "0";
10155       break;
10156     case BuiltinType::Bool:
10157       EncType = "b";
10158       break;
10159     case BuiltinType::Char_U:
10160       EncType = "uc";
10161       break;
10162     case BuiltinType::UChar:
10163       EncType = "uc";
10164       break;
10165     case BuiltinType::SChar:
10166       EncType = "sc";
10167       break;
10168     case BuiltinType::UShort:
10169       EncType = "us";
10170       break;
10171     case BuiltinType::Short:
10172       EncType = "ss";
10173       break;
10174     case BuiltinType::UInt:
10175       EncType = "ui";
10176       break;
10177     case BuiltinType::Int:
10178       EncType = "si";
10179       break;
10180     case BuiltinType::ULong:
10181       EncType = "ul";
10182       break;
10183     case BuiltinType::Long:
10184       EncType = "sl";
10185       break;
10186     case BuiltinType::ULongLong:
10187       EncType = "ull";
10188       break;
10189     case BuiltinType::LongLong:
10190       EncType = "sll";
10191       break;
10192     case BuiltinType::Float:
10193       EncType = "ft";
10194       break;
10195     case BuiltinType::Double:
10196       EncType = "d";
10197       break;
10198     case BuiltinType::LongDouble:
10199       EncType = "ld";
10200       break;
10201     default:
10202       return false;
10203   }
10204   Enc += EncType;
10205   return true;
10206 }
10207 
10208 /// Appends a pointer encoding to Enc before calling appendType for the pointee.
10209 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
10210                               const CodeGen::CodeGenModule &CGM,
10211                               TypeStringCache &TSC) {
10212   Enc += "p(";
10213   if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
10214     return false;
10215   Enc += ')';
10216   return true;
10217 }
10218 
10219 /// Appends array encoding to Enc before calling appendType for the element.
10220 static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
10221                             const ArrayType *AT,
10222                             const CodeGen::CodeGenModule &CGM,
10223                             TypeStringCache &TSC, StringRef NoSizeEnc) {
10224   if (AT->getSizeModifier() != ArrayType::Normal)
10225     return false;
10226   Enc += "a(";
10227   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
10228     CAT->getSize().toStringUnsigned(Enc);
10229   else
10230     Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
10231   Enc += ':';
10232   // The Qualifiers should be attached to the type rather than the array.
10233   appendQualifier(Enc, QT);
10234   if (!appendType(Enc, AT->getElementType(), CGM, TSC))
10235     return false;
10236   Enc += ')';
10237   return true;
10238 }
10239 
10240 /// Appends a function encoding to Enc, calling appendType for the return type
10241 /// and the arguments.
10242 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
10243                              const CodeGen::CodeGenModule &CGM,
10244                              TypeStringCache &TSC) {
10245   Enc += "f{";
10246   if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
10247     return false;
10248   Enc += "}(";
10249   if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
10250     // N.B. we are only interested in the adjusted param types.
10251     auto I = FPT->param_type_begin();
10252     auto E = FPT->param_type_end();
10253     if (I != E) {
10254       do {
10255         if (!appendType(Enc, *I, CGM, TSC))
10256           return false;
10257         ++I;
10258         if (I != E)
10259           Enc += ',';
10260       } while (I != E);
10261       if (FPT->isVariadic())
10262         Enc += ",va";
10263     } else {
10264       if (FPT->isVariadic())
10265         Enc += "va";
10266       else
10267         Enc += '0';
10268     }
10269   }
10270   Enc += ')';
10271   return true;
10272 }
10273 
10274 /// Handles the type's qualifier before dispatching a call to handle specific
10275 /// type encodings.
10276 static bool appendType(SmallStringEnc &Enc, QualType QType,
10277                        const CodeGen::CodeGenModule &CGM,
10278                        TypeStringCache &TSC) {
10279 
10280   QualType QT = QType.getCanonicalType();
10281 
10282   if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
10283     // The Qualifiers should be attached to the type rather than the array.
10284     // Thus we don't call appendQualifier() here.
10285     return appendArrayType(Enc, QT, AT, CGM, TSC, "");
10286 
10287   appendQualifier(Enc, QT);
10288 
10289   if (const BuiltinType *BT = QT->getAs<BuiltinType>())
10290     return appendBuiltinType(Enc, BT);
10291 
10292   if (const PointerType *PT = QT->getAs<PointerType>())
10293     return appendPointerType(Enc, PT, CGM, TSC);
10294 
10295   if (const EnumType *ET = QT->getAs<EnumType>())
10296     return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
10297 
10298   if (const RecordType *RT = QT->getAsStructureType())
10299     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
10300 
10301   if (const RecordType *RT = QT->getAsUnionType())
10302     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
10303 
10304   if (const FunctionType *FT = QT->getAs<FunctionType>())
10305     return appendFunctionType(Enc, FT, CGM, TSC);
10306 
10307   return false;
10308 }
10309 
10310 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
10311                           const CodeGen::CodeGenModule &CGM,
10312                           TypeStringCache &TSC) {
10313   if (!D)
10314     return false;
10315 
10316   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
10317     if (FD->getLanguageLinkage() != CLanguageLinkage)
10318       return false;
10319     return appendType(Enc, FD->getType(), CGM, TSC);
10320   }
10321 
10322   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
10323     if (VD->getLanguageLinkage() != CLanguageLinkage)
10324       return false;
10325     QualType QT = VD->getType().getCanonicalType();
10326     if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
10327       // Global ArrayTypes are given a size of '*' if the size is unknown.
10328       // The Qualifiers should be attached to the type rather than the array.
10329       // Thus we don't call appendQualifier() here.
10330       return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
10331     }
10332     return appendType(Enc, QT, CGM, TSC);
10333   }
10334   return false;
10335 }
10336 
10337 //===----------------------------------------------------------------------===//
10338 // RISCV ABI Implementation
10339 //===----------------------------------------------------------------------===//
10340 
10341 namespace {
10342 class RISCVABIInfo : public DefaultABIInfo {
10343 private:
10344   // Size of the integer ('x') registers in bits.
10345   unsigned XLen;
10346   // Size of the floating point ('f') registers in bits. Note that the target
10347   // ISA might have a wider FLen than the selected ABI (e.g. an RV32IF target
10348   // with soft float ABI has FLen==0).
10349   unsigned FLen;
10350   static const int NumArgGPRs = 8;
10351   static const int NumArgFPRs = 8;
10352   bool detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff,
10353                                       llvm::Type *&Field1Ty,
10354                                       CharUnits &Field1Off,
10355                                       llvm::Type *&Field2Ty,
10356                                       CharUnits &Field2Off) const;
10357 
10358 public:
10359   RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen)
10360       : DefaultABIInfo(CGT), XLen(XLen), FLen(FLen) {}
10361 
10362   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
10363   // non-virtual, but computeInfo is virtual, so we overload it.
10364   void computeInfo(CGFunctionInfo &FI) const override;
10365 
10366   ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &ArgGPRsLeft,
10367                                   int &ArgFPRsLeft) const;
10368   ABIArgInfo classifyReturnType(QualType RetTy) const;
10369 
10370   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
10371                     QualType Ty) const override;
10372 
10373   ABIArgInfo extendType(QualType Ty) const;
10374 
10375   bool detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty,
10376                                 CharUnits &Field1Off, llvm::Type *&Field2Ty,
10377                                 CharUnits &Field2Off, int &NeededArgGPRs,
10378                                 int &NeededArgFPRs) const;
10379   ABIArgInfo coerceAndExpandFPCCEligibleStruct(llvm::Type *Field1Ty,
10380                                                CharUnits Field1Off,
10381                                                llvm::Type *Field2Ty,
10382                                                CharUnits Field2Off) const;
10383 };
10384 } // end anonymous namespace
10385 
10386 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const {
10387   QualType RetTy = FI.getReturnType();
10388   if (!getCXXABI().classifyReturnType(FI))
10389     FI.getReturnInfo() = classifyReturnType(RetTy);
10390 
10391   // IsRetIndirect is true if classifyArgumentType indicated the value should
10392   // be passed indirect, or if the type size is a scalar greater than 2*XLen
10393   // and not a complex type with elements <= FLen. e.g. fp128 is passed direct
10394   // in LLVM IR, relying on the backend lowering code to rewrite the argument
10395   // list and pass indirectly on RV32.
10396   bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect;
10397   if (!IsRetIndirect && RetTy->isScalarType() &&
10398       getContext().getTypeSize(RetTy) > (2 * XLen)) {
10399     if (RetTy->isComplexType() && FLen) {
10400       QualType EltTy = RetTy->castAs<ComplexType>()->getElementType();
10401       IsRetIndirect = getContext().getTypeSize(EltTy) > FLen;
10402     } else {
10403       // This is a normal scalar > 2*XLen, such as fp128 on RV32.
10404       IsRetIndirect = true;
10405     }
10406   }
10407 
10408   // We must track the number of GPRs used in order to conform to the RISC-V
10409   // ABI, as integer scalars passed in registers should have signext/zeroext
10410   // when promoted, but are anyext if passed on the stack. As GPR usage is
10411   // different for variadic arguments, we must also track whether we are
10412   // examining a vararg or not.
10413   int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs;
10414   int ArgFPRsLeft = FLen ? NumArgFPRs : 0;
10415   int NumFixedArgs = FI.getNumRequiredArgs();
10416 
10417   int ArgNum = 0;
10418   for (auto &ArgInfo : FI.arguments()) {
10419     bool IsFixed = ArgNum < NumFixedArgs;
10420     ArgInfo.info =
10421         classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft, ArgFPRsLeft);
10422     ArgNum++;
10423   }
10424 }
10425 
10426 // Returns true if the struct is a potential candidate for the floating point
10427 // calling convention. If this function returns true, the caller is
10428 // responsible for checking that if there is only a single field then that
10429 // field is a float.
10430 bool RISCVABIInfo::detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff,
10431                                                   llvm::Type *&Field1Ty,
10432                                                   CharUnits &Field1Off,
10433                                                   llvm::Type *&Field2Ty,
10434                                                   CharUnits &Field2Off) const {
10435   bool IsInt = Ty->isIntegralOrEnumerationType();
10436   bool IsFloat = Ty->isRealFloatingType();
10437 
10438   if (IsInt || IsFloat) {
10439     uint64_t Size = getContext().getTypeSize(Ty);
10440     if (IsInt && Size > XLen)
10441       return false;
10442     // Can't be eligible if larger than the FP registers. Half precision isn't
10443     // currently supported on RISC-V and the ABI hasn't been confirmed, so
10444     // default to the integer ABI in that case.
10445     if (IsFloat && (Size > FLen || Size < 32))
10446       return false;
10447     // Can't be eligible if an integer type was already found (int+int pairs
10448     // are not eligible).
10449     if (IsInt && Field1Ty && Field1Ty->isIntegerTy())
10450       return false;
10451     if (!Field1Ty) {
10452       Field1Ty = CGT.ConvertType(Ty);
10453       Field1Off = CurOff;
10454       return true;
10455     }
10456     if (!Field2Ty) {
10457       Field2Ty = CGT.ConvertType(Ty);
10458       Field2Off = CurOff;
10459       return true;
10460     }
10461     return false;
10462   }
10463 
10464   if (auto CTy = Ty->getAs<ComplexType>()) {
10465     if (Field1Ty)
10466       return false;
10467     QualType EltTy = CTy->getElementType();
10468     if (getContext().getTypeSize(EltTy) > FLen)
10469       return false;
10470     Field1Ty = CGT.ConvertType(EltTy);
10471     Field1Off = CurOff;
10472     assert(CurOff.isZero() && "Unexpected offset for first field");
10473     Field2Ty = Field1Ty;
10474     Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy);
10475     return true;
10476   }
10477 
10478   if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) {
10479     uint64_t ArraySize = ATy->getSize().getZExtValue();
10480     QualType EltTy = ATy->getElementType();
10481     CharUnits EltSize = getContext().getTypeSizeInChars(EltTy);
10482     for (uint64_t i = 0; i < ArraySize; ++i) {
10483       bool Ret = detectFPCCEligibleStructHelper(EltTy, CurOff, Field1Ty,
10484                                                 Field1Off, Field2Ty, Field2Off);
10485       if (!Ret)
10486         return false;
10487       CurOff += EltSize;
10488     }
10489     return true;
10490   }
10491 
10492   if (const auto *RTy = Ty->getAs<RecordType>()) {
10493     // Structures with either a non-trivial destructor or a non-trivial
10494     // copy constructor are not eligible for the FP calling convention.
10495     if (getRecordArgABI(Ty, CGT.getCXXABI()))
10496       return false;
10497     if (isEmptyRecord(getContext(), Ty, true))
10498       return true;
10499     const RecordDecl *RD = RTy->getDecl();
10500     // Unions aren't eligible unless they're empty (which is caught above).
10501     if (RD->isUnion())
10502       return false;
10503     int ZeroWidthBitFieldCount = 0;
10504     for (const FieldDecl *FD : RD->fields()) {
10505       const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
10506       uint64_t FieldOffInBits = Layout.getFieldOffset(FD->getFieldIndex());
10507       QualType QTy = FD->getType();
10508       if (FD->isBitField()) {
10509         unsigned BitWidth = FD->getBitWidthValue(getContext());
10510         // Allow a bitfield with a type greater than XLen as long as the
10511         // bitwidth is XLen or less.
10512         if (getContext().getTypeSize(QTy) > XLen && BitWidth <= XLen)
10513           QTy = getContext().getIntTypeForBitwidth(XLen, false);
10514         if (BitWidth == 0) {
10515           ZeroWidthBitFieldCount++;
10516           continue;
10517         }
10518       }
10519 
10520       bool Ret = detectFPCCEligibleStructHelper(
10521           QTy, CurOff + getContext().toCharUnitsFromBits(FieldOffInBits),
10522           Field1Ty, Field1Off, Field2Ty, Field2Off);
10523       if (!Ret)
10524         return false;
10525 
10526       // As a quirk of the ABI, zero-width bitfields aren't ignored for fp+fp
10527       // or int+fp structs, but are ignored for a struct with an fp field and
10528       // any number of zero-width bitfields.
10529       if (Field2Ty && ZeroWidthBitFieldCount > 0)
10530         return false;
10531     }
10532     return Field1Ty != nullptr;
10533   }
10534 
10535   return false;
10536 }
10537 
10538 // Determine if a struct is eligible for passing according to the floating
10539 // point calling convention (i.e., when flattened it contains a single fp
10540 // value, fp+fp, or int+fp of appropriate size). If so, NeededArgFPRs and
10541 // NeededArgGPRs are incremented appropriately.
10542 bool RISCVABIInfo::detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty,
10543                                             CharUnits &Field1Off,
10544                                             llvm::Type *&Field2Ty,
10545                                             CharUnits &Field2Off,
10546                                             int &NeededArgGPRs,
10547                                             int &NeededArgFPRs) const {
10548   Field1Ty = nullptr;
10549   Field2Ty = nullptr;
10550   NeededArgGPRs = 0;
10551   NeededArgFPRs = 0;
10552   bool IsCandidate = detectFPCCEligibleStructHelper(
10553       Ty, CharUnits::Zero(), Field1Ty, Field1Off, Field2Ty, Field2Off);
10554   // Not really a candidate if we have a single int but no float.
10555   if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy())
10556     return false;
10557   if (!IsCandidate)
10558     return false;
10559   if (Field1Ty && Field1Ty->isFloatingPointTy())
10560     NeededArgFPRs++;
10561   else if (Field1Ty)
10562     NeededArgGPRs++;
10563   if (Field2Ty && Field2Ty->isFloatingPointTy())
10564     NeededArgFPRs++;
10565   else if (Field2Ty)
10566     NeededArgGPRs++;
10567   return IsCandidate;
10568 }
10569 
10570 // Call getCoerceAndExpand for the two-element flattened struct described by
10571 // Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an
10572 // appropriate coerceToType and unpaddedCoerceToType.
10573 ABIArgInfo RISCVABIInfo::coerceAndExpandFPCCEligibleStruct(
10574     llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty,
10575     CharUnits Field2Off) const {
10576   SmallVector<llvm::Type *, 3> CoerceElts;
10577   SmallVector<llvm::Type *, 2> UnpaddedCoerceElts;
10578   if (!Field1Off.isZero())
10579     CoerceElts.push_back(llvm::ArrayType::get(
10580         llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity()));
10581 
10582   CoerceElts.push_back(Field1Ty);
10583   UnpaddedCoerceElts.push_back(Field1Ty);
10584 
10585   if (!Field2Ty) {
10586     return ABIArgInfo::getCoerceAndExpand(
10587         llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()),
10588         UnpaddedCoerceElts[0]);
10589   }
10590 
10591   CharUnits Field2Align =
10592       CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(Field2Ty));
10593   CharUnits Field1Size =
10594       CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty));
10595   CharUnits Field2OffNoPadNoPack = Field1Size.alignTo(Field2Align);
10596 
10597   CharUnits Padding = CharUnits::Zero();
10598   if (Field2Off > Field2OffNoPadNoPack)
10599     Padding = Field2Off - Field2OffNoPadNoPack;
10600   else if (Field2Off != Field2Align && Field2Off > Field1Size)
10601     Padding = Field2Off - Field1Size;
10602 
10603   bool IsPacked = !Field2Off.isMultipleOf(Field2Align);
10604 
10605   if (!Padding.isZero())
10606     CoerceElts.push_back(llvm::ArrayType::get(
10607         llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity()));
10608 
10609   CoerceElts.push_back(Field2Ty);
10610   UnpaddedCoerceElts.push_back(Field2Ty);
10611 
10612   auto CoerceToType =
10613       llvm::StructType::get(getVMContext(), CoerceElts, IsPacked);
10614   auto UnpaddedCoerceToType =
10615       llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked);
10616 
10617   return ABIArgInfo::getCoerceAndExpand(CoerceToType, UnpaddedCoerceToType);
10618 }
10619 
10620 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed,
10621                                               int &ArgGPRsLeft,
10622                                               int &ArgFPRsLeft) const {
10623   assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow");
10624   Ty = useFirstFieldIfTransparentUnion(Ty);
10625 
10626   // Structures with either a non-trivial destructor or a non-trivial
10627   // copy constructor are always passed indirectly.
10628   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
10629     if (ArgGPRsLeft)
10630       ArgGPRsLeft -= 1;
10631     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
10632                                            CGCXXABI::RAA_DirectInMemory);
10633   }
10634 
10635   // Ignore empty structs/unions.
10636   if (isEmptyRecord(getContext(), Ty, true))
10637     return ABIArgInfo::getIgnore();
10638 
10639   uint64_t Size = getContext().getTypeSize(Ty);
10640 
10641   // Pass floating point values via FPRs if possible.
10642   if (IsFixed && Ty->isFloatingType() && !Ty->isComplexType() &&
10643       FLen >= Size && ArgFPRsLeft) {
10644     ArgFPRsLeft--;
10645     return ABIArgInfo::getDirect();
10646   }
10647 
10648   // Complex types for the hard float ABI must be passed direct rather than
10649   // using CoerceAndExpand.
10650   if (IsFixed && Ty->isComplexType() && FLen && ArgFPRsLeft >= 2) {
10651     QualType EltTy = Ty->castAs<ComplexType>()->getElementType();
10652     if (getContext().getTypeSize(EltTy) <= FLen) {
10653       ArgFPRsLeft -= 2;
10654       return ABIArgInfo::getDirect();
10655     }
10656   }
10657 
10658   if (IsFixed && FLen && Ty->isStructureOrClassType()) {
10659     llvm::Type *Field1Ty = nullptr;
10660     llvm::Type *Field2Ty = nullptr;
10661     CharUnits Field1Off = CharUnits::Zero();
10662     CharUnits Field2Off = CharUnits::Zero();
10663     int NeededArgGPRs;
10664     int NeededArgFPRs;
10665     bool IsCandidate =
10666         detectFPCCEligibleStruct(Ty, Field1Ty, Field1Off, Field2Ty, Field2Off,
10667                                  NeededArgGPRs, NeededArgFPRs);
10668     if (IsCandidate && NeededArgGPRs <= ArgGPRsLeft &&
10669         NeededArgFPRs <= ArgFPRsLeft) {
10670       ArgGPRsLeft -= NeededArgGPRs;
10671       ArgFPRsLeft -= NeededArgFPRs;
10672       return coerceAndExpandFPCCEligibleStruct(Field1Ty, Field1Off, Field2Ty,
10673                                                Field2Off);
10674     }
10675   }
10676 
10677   uint64_t NeededAlign = getContext().getTypeAlign(Ty);
10678   bool MustUseStack = false;
10679   // Determine the number of GPRs needed to pass the current argument
10680   // according to the ABI. 2*XLen-aligned varargs are passed in "aligned"
10681   // register pairs, so may consume 3 registers.
10682   int NeededArgGPRs = 1;
10683   if (!IsFixed && NeededAlign == 2 * XLen)
10684     NeededArgGPRs = 2 + (ArgGPRsLeft % 2);
10685   else if (Size > XLen && Size <= 2 * XLen)
10686     NeededArgGPRs = 2;
10687 
10688   if (NeededArgGPRs > ArgGPRsLeft) {
10689     MustUseStack = true;
10690     NeededArgGPRs = ArgGPRsLeft;
10691   }
10692 
10693   ArgGPRsLeft -= NeededArgGPRs;
10694 
10695   if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) {
10696     // Treat an enum type as its underlying type.
10697     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
10698       Ty = EnumTy->getDecl()->getIntegerType();
10699 
10700     // All integral types are promoted to XLen width, unless passed on the
10701     // stack.
10702     if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) {
10703       return extendType(Ty);
10704     }
10705 
10706     if (const auto *EIT = Ty->getAs<ExtIntType>()) {
10707       if (EIT->getNumBits() < XLen && !MustUseStack)
10708         return extendType(Ty);
10709       if (EIT->getNumBits() > 128 ||
10710           (!getContext().getTargetInfo().hasInt128Type() &&
10711            EIT->getNumBits() > 64))
10712         return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
10713     }
10714 
10715     return ABIArgInfo::getDirect();
10716   }
10717 
10718   // Aggregates which are <= 2*XLen will be passed in registers if possible,
10719   // so coerce to integers.
10720   if (Size <= 2 * XLen) {
10721     unsigned Alignment = getContext().getTypeAlign(Ty);
10722 
10723     // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is
10724     // required, and a 2-element XLen array if only XLen alignment is required.
10725     if (Size <= XLen) {
10726       return ABIArgInfo::getDirect(
10727           llvm::IntegerType::get(getVMContext(), XLen));
10728     } else if (Alignment == 2 * XLen) {
10729       return ABIArgInfo::getDirect(
10730           llvm::IntegerType::get(getVMContext(), 2 * XLen));
10731     } else {
10732       return ABIArgInfo::getDirect(llvm::ArrayType::get(
10733           llvm::IntegerType::get(getVMContext(), XLen), 2));
10734     }
10735   }
10736   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
10737 }
10738 
10739 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const {
10740   if (RetTy->isVoidType())
10741     return ABIArgInfo::getIgnore();
10742 
10743   int ArgGPRsLeft = 2;
10744   int ArgFPRsLeft = FLen ? 2 : 0;
10745 
10746   // The rules for return and argument types are the same, so defer to
10747   // classifyArgumentType.
10748   return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft,
10749                               ArgFPRsLeft);
10750 }
10751 
10752 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
10753                                 QualType Ty) const {
10754   CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8);
10755 
10756   // Empty records are ignored for parameter passing purposes.
10757   if (isEmptyRecord(getContext(), Ty, true)) {
10758     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
10759     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
10760     return Addr;
10761   }
10762 
10763   auto TInfo = getContext().getTypeInfoInChars(Ty);
10764 
10765   // Arguments bigger than 2*Xlen bytes are passed indirectly.
10766   bool IsIndirect = TInfo.Width > 2 * SlotSize;
10767 
10768   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TInfo,
10769                           SlotSize, /*AllowHigherAlign=*/true);
10770 }
10771 
10772 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const {
10773   int TySize = getContext().getTypeSize(Ty);
10774   // RV64 ABI requires unsigned 32 bit integers to be sign extended.
10775   if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
10776     return ABIArgInfo::getSignExtend(Ty);
10777   return ABIArgInfo::getExtend(Ty);
10778 }
10779 
10780 namespace {
10781 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo {
10782 public:
10783   RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen,
10784                          unsigned FLen)
10785       : TargetCodeGenInfo(std::make_unique<RISCVABIInfo>(CGT, XLen, FLen)) {}
10786 
10787   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
10788                            CodeGen::CodeGenModule &CGM) const override {
10789     const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
10790     if (!FD) return;
10791 
10792     const auto *Attr = FD->getAttr<RISCVInterruptAttr>();
10793     if (!Attr)
10794       return;
10795 
10796     const char *Kind;
10797     switch (Attr->getInterrupt()) {
10798     case RISCVInterruptAttr::user: Kind = "user"; break;
10799     case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break;
10800     case RISCVInterruptAttr::machine: Kind = "machine"; break;
10801     }
10802 
10803     auto *Fn = cast<llvm::Function>(GV);
10804 
10805     Fn->addFnAttr("interrupt", Kind);
10806   }
10807 };
10808 } // namespace
10809 
10810 //===----------------------------------------------------------------------===//
10811 // VE ABI Implementation.
10812 //
10813 namespace {
10814 class VEABIInfo : public DefaultABIInfo {
10815 public:
10816   VEABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
10817 
10818 private:
10819   ABIArgInfo classifyReturnType(QualType RetTy) const;
10820   ABIArgInfo classifyArgumentType(QualType RetTy) const;
10821   void computeInfo(CGFunctionInfo &FI) const override;
10822 };
10823 } // end anonymous namespace
10824 
10825 ABIArgInfo VEABIInfo::classifyReturnType(QualType Ty) const {
10826   if (Ty->isAnyComplexType())
10827     return ABIArgInfo::getDirect();
10828   uint64_t Size = getContext().getTypeSize(Ty);
10829   if (Size < 64 && Ty->isIntegerType())
10830     return ABIArgInfo::getExtend(Ty);
10831   return DefaultABIInfo::classifyReturnType(Ty);
10832 }
10833 
10834 ABIArgInfo VEABIInfo::classifyArgumentType(QualType Ty) const {
10835   if (Ty->isAnyComplexType())
10836     return ABIArgInfo::getDirect();
10837   uint64_t Size = getContext().getTypeSize(Ty);
10838   if (Size < 64 && Ty->isIntegerType())
10839     return ABIArgInfo::getExtend(Ty);
10840   return DefaultABIInfo::classifyArgumentType(Ty);
10841 }
10842 
10843 void VEABIInfo::computeInfo(CGFunctionInfo &FI) const {
10844   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
10845   for (auto &Arg : FI.arguments())
10846     Arg.info = classifyArgumentType(Arg.type);
10847 }
10848 
10849 namespace {
10850 class VETargetCodeGenInfo : public TargetCodeGenInfo {
10851 public:
10852   VETargetCodeGenInfo(CodeGenTypes &CGT)
10853       : TargetCodeGenInfo(std::make_unique<VEABIInfo>(CGT)) {}
10854   // VE ABI requires the arguments of variadic and prototype-less functions
10855   // are passed in both registers and memory.
10856   bool isNoProtoCallVariadic(const CallArgList &args,
10857                              const FunctionNoProtoType *fnType) const override {
10858     return true;
10859   }
10860 };
10861 } // end anonymous namespace
10862 
10863 //===----------------------------------------------------------------------===//
10864 // Driver code
10865 //===----------------------------------------------------------------------===//
10866 
10867 bool CodeGenModule::supportsCOMDAT() const {
10868   return getTriple().supportsCOMDAT();
10869 }
10870 
10871 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
10872   if (TheTargetCodeGenInfo)
10873     return *TheTargetCodeGenInfo;
10874 
10875   // Helper to set the unique_ptr while still keeping the return value.
10876   auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & {
10877     this->TheTargetCodeGenInfo.reset(P);
10878     return *P;
10879   };
10880 
10881   const llvm::Triple &Triple = getTarget().getTriple();
10882   switch (Triple.getArch()) {
10883   default:
10884     return SetCGInfo(new DefaultTargetCodeGenInfo(Types));
10885 
10886   case llvm::Triple::le32:
10887     return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
10888   case llvm::Triple::mips:
10889   case llvm::Triple::mipsel:
10890     if (Triple.getOS() == llvm::Triple::NaCl)
10891       return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
10892     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true));
10893 
10894   case llvm::Triple::mips64:
10895   case llvm::Triple::mips64el:
10896     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false));
10897 
10898   case llvm::Triple::avr:
10899     return SetCGInfo(new AVRTargetCodeGenInfo(Types));
10900 
10901   case llvm::Triple::aarch64:
10902   case llvm::Triple::aarch64_32:
10903   case llvm::Triple::aarch64_be: {
10904     AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
10905     if (getTarget().getABI() == "darwinpcs")
10906       Kind = AArch64ABIInfo::DarwinPCS;
10907     else if (Triple.isOSWindows())
10908       return SetCGInfo(
10909           new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64));
10910 
10911     return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind));
10912   }
10913 
10914   case llvm::Triple::wasm32:
10915   case llvm::Triple::wasm64: {
10916     WebAssemblyABIInfo::ABIKind Kind = WebAssemblyABIInfo::MVP;
10917     if (getTarget().getABI() == "experimental-mv")
10918       Kind = WebAssemblyABIInfo::ExperimentalMV;
10919     return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types, Kind));
10920   }
10921 
10922   case llvm::Triple::arm:
10923   case llvm::Triple::armeb:
10924   case llvm::Triple::thumb:
10925   case llvm::Triple::thumbeb: {
10926     if (Triple.getOS() == llvm::Triple::Win32) {
10927       return SetCGInfo(
10928           new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP));
10929     }
10930 
10931     ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
10932     StringRef ABIStr = getTarget().getABI();
10933     if (ABIStr == "apcs-gnu")
10934       Kind = ARMABIInfo::APCS;
10935     else if (ABIStr == "aapcs16")
10936       Kind = ARMABIInfo::AAPCS16_VFP;
10937     else if (CodeGenOpts.FloatABI == "hard" ||
10938              (CodeGenOpts.FloatABI != "soft" &&
10939               (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
10940                Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
10941                Triple.getEnvironment() == llvm::Triple::EABIHF)))
10942       Kind = ARMABIInfo::AAPCS_VFP;
10943 
10944     return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind));
10945   }
10946 
10947   case llvm::Triple::ppc: {
10948     if (Triple.isOSAIX())
10949       return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ false));
10950 
10951     bool IsSoftFloat =
10952         CodeGenOpts.FloatABI == "soft" || getTarget().hasFeature("spe");
10953     bool RetSmallStructInRegABI =
10954         PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
10955     return SetCGInfo(
10956         new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI));
10957   }
10958   case llvm::Triple::ppc64:
10959     if (Triple.isOSAIX())
10960       return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ true));
10961 
10962     if (Triple.isOSBinFormatELF()) {
10963       PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1;
10964       if (getTarget().getABI() == "elfv2")
10965         Kind = PPC64_SVR4_ABIInfo::ELFv2;
10966       bool HasQPX = getTarget().getABI() == "elfv1-qpx";
10967       bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
10968 
10969       return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX,
10970                                                         IsSoftFloat));
10971     }
10972     return SetCGInfo(new PPC64TargetCodeGenInfo(Types));
10973   case llvm::Triple::ppc64le: {
10974     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
10975     PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2;
10976     if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx")
10977       Kind = PPC64_SVR4_ABIInfo::ELFv1;
10978     bool HasQPX = getTarget().getABI() == "elfv1-qpx";
10979     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
10980 
10981     return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX,
10982                                                       IsSoftFloat));
10983   }
10984 
10985   case llvm::Triple::nvptx:
10986   case llvm::Triple::nvptx64:
10987     return SetCGInfo(new NVPTXTargetCodeGenInfo(Types));
10988 
10989   case llvm::Triple::msp430:
10990     return SetCGInfo(new MSP430TargetCodeGenInfo(Types));
10991 
10992   case llvm::Triple::riscv32:
10993   case llvm::Triple::riscv64: {
10994     StringRef ABIStr = getTarget().getABI();
10995     unsigned XLen = getTarget().getPointerWidth(0);
10996     unsigned ABIFLen = 0;
10997     if (ABIStr.endswith("f"))
10998       ABIFLen = 32;
10999     else if (ABIStr.endswith("d"))
11000       ABIFLen = 64;
11001     return SetCGInfo(new RISCVTargetCodeGenInfo(Types, XLen, ABIFLen));
11002   }
11003 
11004   case llvm::Triple::systemz: {
11005     bool SoftFloat = CodeGenOpts.FloatABI == "soft";
11006     bool HasVector = !SoftFloat && getTarget().getABI() == "vector";
11007     return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector, SoftFloat));
11008   }
11009 
11010   case llvm::Triple::tce:
11011   case llvm::Triple::tcele:
11012     return SetCGInfo(new TCETargetCodeGenInfo(Types));
11013 
11014   case llvm::Triple::x86: {
11015     bool IsDarwinVectorABI = Triple.isOSDarwin();
11016     bool RetSmallStructInRegABI =
11017         X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
11018     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
11019 
11020     if (Triple.getOS() == llvm::Triple::Win32) {
11021       return SetCGInfo(new WinX86_32TargetCodeGenInfo(
11022           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
11023           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters));
11024     } else {
11025       return SetCGInfo(new X86_32TargetCodeGenInfo(
11026           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
11027           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters,
11028           CodeGenOpts.FloatABI == "soft"));
11029     }
11030   }
11031 
11032   case llvm::Triple::x86_64: {
11033     StringRef ABI = getTarget().getABI();
11034     X86AVXABILevel AVXLevel =
11035         (ABI == "avx512"
11036              ? X86AVXABILevel::AVX512
11037              : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None);
11038 
11039     switch (Triple.getOS()) {
11040     case llvm::Triple::Win32:
11041       return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel));
11042     default:
11043       return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel));
11044     }
11045   }
11046   case llvm::Triple::hexagon:
11047     return SetCGInfo(new HexagonTargetCodeGenInfo(Types));
11048   case llvm::Triple::lanai:
11049     return SetCGInfo(new LanaiTargetCodeGenInfo(Types));
11050   case llvm::Triple::r600:
11051     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
11052   case llvm::Triple::amdgcn:
11053     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
11054   case llvm::Triple::sparc:
11055     return SetCGInfo(new SparcV8TargetCodeGenInfo(Types));
11056   case llvm::Triple::sparcv9:
11057     return SetCGInfo(new SparcV9TargetCodeGenInfo(Types));
11058   case llvm::Triple::xcore:
11059     return SetCGInfo(new XCoreTargetCodeGenInfo(Types));
11060   case llvm::Triple::arc:
11061     return SetCGInfo(new ARCTargetCodeGenInfo(Types));
11062   case llvm::Triple::spir:
11063   case llvm::Triple::spir64:
11064     return SetCGInfo(new SPIRTargetCodeGenInfo(Types));
11065   case llvm::Triple::ve:
11066     return SetCGInfo(new VETargetCodeGenInfo(Types));
11067   }
11068 }
11069 
11070 /// Create an OpenCL kernel for an enqueued block.
11071 ///
11072 /// The kernel has the same function type as the block invoke function. Its
11073 /// name is the name of the block invoke function postfixed with "_kernel".
11074 /// It simply calls the block invoke function then returns.
11075 llvm::Function *
11076 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF,
11077                                              llvm::Function *Invoke,
11078                                              llvm::Value *BlockLiteral) const {
11079   auto *InvokeFT = Invoke->getFunctionType();
11080   llvm::SmallVector<llvm::Type *, 2> ArgTys;
11081   for (auto &P : InvokeFT->params())
11082     ArgTys.push_back(P);
11083   auto &C = CGF.getLLVMContext();
11084   std::string Name = Invoke->getName().str() + "_kernel";
11085   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
11086   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
11087                                    &CGF.CGM.getModule());
11088   auto IP = CGF.Builder.saveIP();
11089   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
11090   auto &Builder = CGF.Builder;
11091   Builder.SetInsertPoint(BB);
11092   llvm::SmallVector<llvm::Value *, 2> Args;
11093   for (auto &A : F->args())
11094     Args.push_back(&A);
11095   Builder.CreateCall(Invoke, Args);
11096   Builder.CreateRetVoid();
11097   Builder.restoreIP(IP);
11098   return F;
11099 }
11100 
11101 /// Create an OpenCL kernel for an enqueued block.
11102 ///
11103 /// The type of the first argument (the block literal) is the struct type
11104 /// of the block literal instead of a pointer type. The first argument
11105 /// (block literal) is passed directly by value to the kernel. The kernel
11106 /// allocates the same type of struct on stack and stores the block literal
11107 /// to it and passes its pointer to the block invoke function. The kernel
11108 /// has "enqueued-block" function attribute and kernel argument metadata.
11109 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel(
11110     CodeGenFunction &CGF, llvm::Function *Invoke,
11111     llvm::Value *BlockLiteral) const {
11112   auto &Builder = CGF.Builder;
11113   auto &C = CGF.getLLVMContext();
11114 
11115   auto *BlockTy = BlockLiteral->getType()->getPointerElementType();
11116   auto *InvokeFT = Invoke->getFunctionType();
11117   llvm::SmallVector<llvm::Type *, 2> ArgTys;
11118   llvm::SmallVector<llvm::Metadata *, 8> AddressQuals;
11119   llvm::SmallVector<llvm::Metadata *, 8> AccessQuals;
11120   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames;
11121   llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames;
11122   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals;
11123   llvm::SmallVector<llvm::Metadata *, 8> ArgNames;
11124 
11125   ArgTys.push_back(BlockTy);
11126   ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
11127   AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0)));
11128   ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
11129   ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
11130   AccessQuals.push_back(llvm::MDString::get(C, "none"));
11131   ArgNames.push_back(llvm::MDString::get(C, "block_literal"));
11132   for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) {
11133     ArgTys.push_back(InvokeFT->getParamType(I));
11134     ArgTypeNames.push_back(llvm::MDString::get(C, "void*"));
11135     AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3)));
11136     AccessQuals.push_back(llvm::MDString::get(C, "none"));
11137     ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*"));
11138     ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
11139     ArgNames.push_back(
11140         llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str()));
11141   }
11142   std::string Name = Invoke->getName().str() + "_kernel";
11143   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
11144   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
11145                                    &CGF.CGM.getModule());
11146   F->addFnAttr("enqueued-block");
11147   auto IP = CGF.Builder.saveIP();
11148   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
11149   Builder.SetInsertPoint(BB);
11150   const auto BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(BlockTy);
11151   auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr);
11152   BlockPtr->setAlignment(BlockAlign);
11153   Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign);
11154   auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0));
11155   llvm::SmallVector<llvm::Value *, 2> Args;
11156   Args.push_back(Cast);
11157   for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I)
11158     Args.push_back(I);
11159   Builder.CreateCall(Invoke, Args);
11160   Builder.CreateRetVoid();
11161   Builder.restoreIP(IP);
11162 
11163   F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals));
11164   F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals));
11165   F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames));
11166   F->setMetadata("kernel_arg_base_type",
11167                  llvm::MDNode::get(C, ArgBaseTypeNames));
11168   F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals));
11169   if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
11170     F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames));
11171 
11172   return F;
11173 }
11174