1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes wrap the information about a call or function 11 // definition used to handle ABI compliancy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "TargetInfo.h" 16 #include "ABIInfo.h" 17 #include "CGCXXABI.h" 18 #include "CGValue.h" 19 #include "CodeGenFunction.h" 20 #include "clang/AST/RecordLayout.h" 21 #include "clang/CodeGen/CGFunctionInfo.h" 22 #include "clang/CodeGen/SwiftCallingConv.h" 23 #include "clang/Frontend/CodeGenOptions.h" 24 #include "llvm/ADT/StringExtras.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/Type.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include <algorithm> // std::sort 30 31 using namespace clang; 32 using namespace CodeGen; 33 34 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 35 llvm::Value *Array, 36 llvm::Value *Value, 37 unsigned FirstIndex, 38 unsigned LastIndex) { 39 // Alternatively, we could emit this as a loop in the source. 40 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 41 llvm::Value *Cell = 42 Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); 43 Builder.CreateAlignedStore(Value, Cell, CharUnits::One()); 44 } 45 } 46 47 static bool isAggregateTypeForABI(QualType T) { 48 return !CodeGenFunction::hasScalarEvaluationKind(T) || 49 T->isMemberFunctionPointerType(); 50 } 51 52 ABIArgInfo 53 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign, 54 llvm::Type *Padding) const { 55 return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), 56 ByRef, Realign, Padding); 57 } 58 59 ABIArgInfo 60 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const { 61 return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty), 62 /*ByRef*/ false, Realign); 63 } 64 65 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 66 QualType Ty) const { 67 return Address::invalid(); 68 } 69 70 ABIInfo::~ABIInfo() {} 71 72 /// Does the given lowering require more than the given number of 73 /// registers when expanded? 74 /// 75 /// This is intended to be the basis of a reasonable basic implementation 76 /// of should{Pass,Return}IndirectlyForSwift. 77 /// 78 /// For most targets, a limit of four total registers is reasonable; this 79 /// limits the amount of code required in order to move around the value 80 /// in case it wasn't produced immediately prior to the call by the caller 81 /// (or wasn't produced in exactly the right registers) or isn't used 82 /// immediately within the callee. But some targets may need to further 83 /// limit the register count due to an inability to support that many 84 /// return registers. 85 static bool occupiesMoreThan(CodeGenTypes &cgt, 86 ArrayRef<llvm::Type*> scalarTypes, 87 unsigned maxAllRegisters) { 88 unsigned intCount = 0, fpCount = 0; 89 for (llvm::Type *type : scalarTypes) { 90 if (type->isPointerTy()) { 91 intCount++; 92 } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) { 93 auto ptrWidth = cgt.getTarget().getPointerWidth(0); 94 intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth; 95 } else { 96 assert(type->isVectorTy() || type->isFloatingPointTy()); 97 fpCount++; 98 } 99 } 100 101 return (intCount + fpCount > maxAllRegisters); 102 } 103 104 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 105 llvm::Type *eltTy, 106 unsigned numElts) const { 107 // The default implementation of this assumes that the target guarantees 108 // 128-bit SIMD support but nothing more. 109 return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16); 110 } 111 112 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 113 CGCXXABI &CXXABI) { 114 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 115 if (!RD) 116 return CGCXXABI::RAA_Default; 117 return CXXABI.getRecordArgABI(RD); 118 } 119 120 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 121 CGCXXABI &CXXABI) { 122 const RecordType *RT = T->getAs<RecordType>(); 123 if (!RT) 124 return CGCXXABI::RAA_Default; 125 return getRecordArgABI(RT, CXXABI); 126 } 127 128 /// Pass transparent unions as if they were the type of the first element. Sema 129 /// should ensure that all elements of the union have the same "machine type". 130 static QualType useFirstFieldIfTransparentUnion(QualType Ty) { 131 if (const RecordType *UT = Ty->getAsUnionType()) { 132 const RecordDecl *UD = UT->getDecl(); 133 if (UD->hasAttr<TransparentUnionAttr>()) { 134 assert(!UD->field_empty() && "sema created an empty transparent union"); 135 return UD->field_begin()->getType(); 136 } 137 } 138 return Ty; 139 } 140 141 CGCXXABI &ABIInfo::getCXXABI() const { 142 return CGT.getCXXABI(); 143 } 144 145 ASTContext &ABIInfo::getContext() const { 146 return CGT.getContext(); 147 } 148 149 llvm::LLVMContext &ABIInfo::getVMContext() const { 150 return CGT.getLLVMContext(); 151 } 152 153 const llvm::DataLayout &ABIInfo::getDataLayout() const { 154 return CGT.getDataLayout(); 155 } 156 157 const TargetInfo &ABIInfo::getTarget() const { 158 return CGT.getTarget(); 159 } 160 161 bool ABIInfo:: isAndroid() const { return getTarget().getTriple().isAndroid(); } 162 163 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 164 return false; 165 } 166 167 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 168 uint64_t Members) const { 169 return false; 170 } 171 172 bool ABIInfo::shouldSignExtUnsignedType(QualType Ty) const { 173 return false; 174 } 175 176 LLVM_DUMP_METHOD void ABIArgInfo::dump() const { 177 raw_ostream &OS = llvm::errs(); 178 OS << "(ABIArgInfo Kind="; 179 switch (TheKind) { 180 case Direct: 181 OS << "Direct Type="; 182 if (llvm::Type *Ty = getCoerceToType()) 183 Ty->print(OS); 184 else 185 OS << "null"; 186 break; 187 case Extend: 188 OS << "Extend"; 189 break; 190 case Ignore: 191 OS << "Ignore"; 192 break; 193 case InAlloca: 194 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 195 break; 196 case Indirect: 197 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 198 << " ByVal=" << getIndirectByVal() 199 << " Realign=" << getIndirectRealign(); 200 break; 201 case Expand: 202 OS << "Expand"; 203 break; 204 case CoerceAndExpand: 205 OS << "CoerceAndExpand Type="; 206 getCoerceAndExpandType()->print(OS); 207 break; 208 } 209 OS << ")\n"; 210 } 211 212 // Dynamically round a pointer up to a multiple of the given alignment. 213 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF, 214 llvm::Value *Ptr, 215 CharUnits Align) { 216 llvm::Value *PtrAsInt = Ptr; 217 // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align; 218 PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy); 219 PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt, 220 llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1)); 221 PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt, 222 llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity())); 223 PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt, 224 Ptr->getType(), 225 Ptr->getName() + ".aligned"); 226 return PtrAsInt; 227 } 228 229 /// Emit va_arg for a platform using the common void* representation, 230 /// where arguments are simply emitted in an array of slots on the stack. 231 /// 232 /// This version implements the core direct-value passing rules. 233 /// 234 /// \param SlotSize - The size and alignment of a stack slot. 235 /// Each argument will be allocated to a multiple of this number of 236 /// slots, and all the slots will be aligned to this value. 237 /// \param AllowHigherAlign - The slot alignment is not a cap; 238 /// an argument type with an alignment greater than the slot size 239 /// will be emitted on a higher-alignment address, potentially 240 /// leaving one or more empty slots behind as padding. If this 241 /// is false, the returned address might be less-aligned than 242 /// DirectAlign. 243 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF, 244 Address VAListAddr, 245 llvm::Type *DirectTy, 246 CharUnits DirectSize, 247 CharUnits DirectAlign, 248 CharUnits SlotSize, 249 bool AllowHigherAlign) { 250 // Cast the element type to i8* if necessary. Some platforms define 251 // va_list as a struct containing an i8* instead of just an i8*. 252 if (VAListAddr.getElementType() != CGF.Int8PtrTy) 253 VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy); 254 255 llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur"); 256 257 // If the CC aligns values higher than the slot size, do so if needed. 258 Address Addr = Address::invalid(); 259 if (AllowHigherAlign && DirectAlign > SlotSize) { 260 Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign), 261 DirectAlign); 262 } else { 263 Addr = Address(Ptr, SlotSize); 264 } 265 266 // Advance the pointer past the argument, then store that back. 267 CharUnits FullDirectSize = DirectSize.alignTo(SlotSize); 268 llvm::Value *NextPtr = 269 CGF.Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), FullDirectSize, 270 "argp.next"); 271 CGF.Builder.CreateStore(NextPtr, VAListAddr); 272 273 // If the argument is smaller than a slot, and this is a big-endian 274 // target, the argument will be right-adjusted in its slot. 275 if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() && 276 !DirectTy->isStructTy()) { 277 Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize); 278 } 279 280 Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy); 281 return Addr; 282 } 283 284 /// Emit va_arg for a platform using the common void* representation, 285 /// where arguments are simply emitted in an array of slots on the stack. 286 /// 287 /// \param IsIndirect - Values of this type are passed indirectly. 288 /// \param ValueInfo - The size and alignment of this type, generally 289 /// computed with getContext().getTypeInfoInChars(ValueTy). 290 /// \param SlotSizeAndAlign - The size and alignment of a stack slot. 291 /// Each argument will be allocated to a multiple of this number of 292 /// slots, and all the slots will be aligned to this value. 293 /// \param AllowHigherAlign - The slot alignment is not a cap; 294 /// an argument type with an alignment greater than the slot size 295 /// will be emitted on a higher-alignment address, potentially 296 /// leaving one or more empty slots behind as padding. 297 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr, 298 QualType ValueTy, bool IsIndirect, 299 std::pair<CharUnits, CharUnits> ValueInfo, 300 CharUnits SlotSizeAndAlign, 301 bool AllowHigherAlign) { 302 // The size and alignment of the value that was passed directly. 303 CharUnits DirectSize, DirectAlign; 304 if (IsIndirect) { 305 DirectSize = CGF.getPointerSize(); 306 DirectAlign = CGF.getPointerAlign(); 307 } else { 308 DirectSize = ValueInfo.first; 309 DirectAlign = ValueInfo.second; 310 } 311 312 // Cast the address we've calculated to the right type. 313 llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy); 314 if (IsIndirect) 315 DirectTy = DirectTy->getPointerTo(0); 316 317 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy, 318 DirectSize, DirectAlign, 319 SlotSizeAndAlign, 320 AllowHigherAlign); 321 322 if (IsIndirect) { 323 Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second); 324 } 325 326 return Addr; 327 328 } 329 330 static Address emitMergePHI(CodeGenFunction &CGF, 331 Address Addr1, llvm::BasicBlock *Block1, 332 Address Addr2, llvm::BasicBlock *Block2, 333 const llvm::Twine &Name = "") { 334 assert(Addr1.getType() == Addr2.getType()); 335 llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name); 336 PHI->addIncoming(Addr1.getPointer(), Block1); 337 PHI->addIncoming(Addr2.getPointer(), Block2); 338 CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment()); 339 return Address(PHI, Align); 340 } 341 342 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; } 343 344 // If someone can figure out a general rule for this, that would be great. 345 // It's probably just doomed to be platform-dependent, though. 346 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 347 // Verified for: 348 // x86-64 FreeBSD, Linux, Darwin 349 // x86-32 FreeBSD, Linux, Darwin 350 // PowerPC Linux, Darwin 351 // ARM Darwin (*not* EABI) 352 // AArch64 Linux 353 return 32; 354 } 355 356 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 357 const FunctionNoProtoType *fnType) const { 358 // The following conventions are known to require this to be false: 359 // x86_stdcall 360 // MIPS 361 // For everything else, we just prefer false unless we opt out. 362 return false; 363 } 364 365 void 366 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 367 llvm::SmallString<24> &Opt) const { 368 // This assumes the user is passing a library name like "rt" instead of a 369 // filename like "librt.a/so", and that they don't care whether it's static or 370 // dynamic. 371 Opt = "-l"; 372 Opt += Lib; 373 } 374 375 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const { 376 return llvm::CallingConv::C; 377 } 378 379 unsigned TargetCodeGenInfo::getOpenCLImageAddrSpace(CodeGen::CodeGenModule &CGM) const { 380 return CGM.getContext().getTargetAddressSpace(LangAS::opencl_global); 381 } 382 383 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 384 385 /// isEmptyField - Return true iff a the field is "empty", that is it 386 /// is an unnamed bit-field or an (array of) empty record(s). 387 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 388 bool AllowArrays) { 389 if (FD->isUnnamedBitfield()) 390 return true; 391 392 QualType FT = FD->getType(); 393 394 // Constant arrays of empty records count as empty, strip them off. 395 // Constant arrays of zero length always count as empty. 396 if (AllowArrays) 397 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 398 if (AT->getSize() == 0) 399 return true; 400 FT = AT->getElementType(); 401 } 402 403 const RecordType *RT = FT->getAs<RecordType>(); 404 if (!RT) 405 return false; 406 407 // C++ record fields are never empty, at least in the Itanium ABI. 408 // 409 // FIXME: We should use a predicate for whether this behavior is true in the 410 // current ABI. 411 if (isa<CXXRecordDecl>(RT->getDecl())) 412 return false; 413 414 return isEmptyRecord(Context, FT, AllowArrays); 415 } 416 417 /// isEmptyRecord - Return true iff a structure contains only empty 418 /// fields. Note that a structure with a flexible array member is not 419 /// considered empty. 420 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 421 const RecordType *RT = T->getAs<RecordType>(); 422 if (!RT) 423 return false; 424 const RecordDecl *RD = RT->getDecl(); 425 if (RD->hasFlexibleArrayMember()) 426 return false; 427 428 // If this is a C++ record, check the bases first. 429 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 430 for (const auto &I : CXXRD->bases()) 431 if (!isEmptyRecord(Context, I.getType(), true)) 432 return false; 433 434 for (const auto *I : RD->fields()) 435 if (!isEmptyField(Context, I, AllowArrays)) 436 return false; 437 return true; 438 } 439 440 /// isSingleElementStruct - Determine if a structure is a "single 441 /// element struct", i.e. it has exactly one non-empty field or 442 /// exactly one field which is itself a single element 443 /// struct. Structures with flexible array members are never 444 /// considered single element structs. 445 /// 446 /// \return The field declaration for the single non-empty field, if 447 /// it exists. 448 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 449 const RecordType *RT = T->getAs<RecordType>(); 450 if (!RT) 451 return nullptr; 452 453 const RecordDecl *RD = RT->getDecl(); 454 if (RD->hasFlexibleArrayMember()) 455 return nullptr; 456 457 const Type *Found = nullptr; 458 459 // If this is a C++ record, check the bases first. 460 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 461 for (const auto &I : CXXRD->bases()) { 462 // Ignore empty records. 463 if (isEmptyRecord(Context, I.getType(), true)) 464 continue; 465 466 // If we already found an element then this isn't a single-element struct. 467 if (Found) 468 return nullptr; 469 470 // If this is non-empty and not a single element struct, the composite 471 // cannot be a single element struct. 472 Found = isSingleElementStruct(I.getType(), Context); 473 if (!Found) 474 return nullptr; 475 } 476 } 477 478 // Check for single element. 479 for (const auto *FD : RD->fields()) { 480 QualType FT = FD->getType(); 481 482 // Ignore empty fields. 483 if (isEmptyField(Context, FD, true)) 484 continue; 485 486 // If we already found an element then this isn't a single-element 487 // struct. 488 if (Found) 489 return nullptr; 490 491 // Treat single element arrays as the element. 492 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 493 if (AT->getSize().getZExtValue() != 1) 494 break; 495 FT = AT->getElementType(); 496 } 497 498 if (!isAggregateTypeForABI(FT)) { 499 Found = FT.getTypePtr(); 500 } else { 501 Found = isSingleElementStruct(FT, Context); 502 if (!Found) 503 return nullptr; 504 } 505 } 506 507 // We don't consider a struct a single-element struct if it has 508 // padding beyond the element type. 509 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 510 return nullptr; 511 512 return Found; 513 } 514 515 namespace { 516 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, 517 const ABIArgInfo &AI) { 518 // This default implementation defers to the llvm backend's va_arg 519 // instruction. It can handle only passing arguments directly 520 // (typically only handled in the backend for primitive types), or 521 // aggregates passed indirectly by pointer (NOTE: if the "byval" 522 // flag has ABI impact in the callee, this implementation cannot 523 // work.) 524 525 // Only a few cases are covered here at the moment -- those needed 526 // by the default abi. 527 llvm::Value *Val; 528 529 if (AI.isIndirect()) { 530 assert(!AI.getPaddingType() && 531 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 532 assert( 533 !AI.getIndirectRealign() && 534 "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!"); 535 536 auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty); 537 CharUnits TyAlignForABI = TyInfo.second; 538 539 llvm::Type *BaseTy = 540 llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 541 llvm::Value *Addr = 542 CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy); 543 return Address(Addr, TyAlignForABI); 544 } else { 545 assert((AI.isDirect() || AI.isExtend()) && 546 "Unexpected ArgInfo Kind in generic VAArg emitter!"); 547 548 assert(!AI.getInReg() && 549 "Unexpected InReg seen in arginfo in generic VAArg emitter!"); 550 assert(!AI.getPaddingType() && 551 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 552 assert(!AI.getDirectOffset() && 553 "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!"); 554 assert(!AI.getCoerceToType() && 555 "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!"); 556 557 Address Temp = CGF.CreateMemTemp(Ty, "varet"); 558 Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty)); 559 CGF.Builder.CreateStore(Val, Temp); 560 return Temp; 561 } 562 } 563 564 /// DefaultABIInfo - The default implementation for ABI specific 565 /// details. This implementation provides information which results in 566 /// self-consistent and sensible LLVM IR generation, but does not 567 /// conform to any particular ABI. 568 class DefaultABIInfo : public ABIInfo { 569 public: 570 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 571 572 ABIArgInfo classifyReturnType(QualType RetTy) const; 573 ABIArgInfo classifyArgumentType(QualType RetTy) const; 574 575 void computeInfo(CGFunctionInfo &FI) const override { 576 if (!getCXXABI().classifyReturnType(FI)) 577 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 578 for (auto &I : FI.arguments()) 579 I.info = classifyArgumentType(I.type); 580 } 581 582 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 583 QualType Ty) const override { 584 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 585 } 586 }; 587 588 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 589 public: 590 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 591 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 592 }; 593 594 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 595 Ty = useFirstFieldIfTransparentUnion(Ty); 596 597 if (isAggregateTypeForABI(Ty)) { 598 // Records with non-trivial destructors/copy-constructors should not be 599 // passed by value. 600 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 601 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 602 603 return getNaturalAlignIndirect(Ty); 604 } 605 606 // Treat an enum type as its underlying type. 607 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 608 Ty = EnumTy->getDecl()->getIntegerType(); 609 610 return (Ty->isPromotableIntegerType() ? 611 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 612 } 613 614 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 615 if (RetTy->isVoidType()) 616 return ABIArgInfo::getIgnore(); 617 618 if (isAggregateTypeForABI(RetTy)) 619 return getNaturalAlignIndirect(RetTy); 620 621 // Treat an enum type as its underlying type. 622 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 623 RetTy = EnumTy->getDecl()->getIntegerType(); 624 625 return (RetTy->isPromotableIntegerType() ? 626 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 627 } 628 629 //===----------------------------------------------------------------------===// 630 // WebAssembly ABI Implementation 631 // 632 // This is a very simple ABI that relies a lot on DefaultABIInfo. 633 //===----------------------------------------------------------------------===// 634 635 class WebAssemblyABIInfo final : public DefaultABIInfo { 636 public: 637 explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT) 638 : DefaultABIInfo(CGT) {} 639 640 private: 641 ABIArgInfo classifyReturnType(QualType RetTy) const; 642 ABIArgInfo classifyArgumentType(QualType Ty) const; 643 644 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 645 // non-virtual, but computeInfo and EmitVAArg are virtual, so we 646 // overload them. 647 void computeInfo(CGFunctionInfo &FI) const override { 648 if (!getCXXABI().classifyReturnType(FI)) 649 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 650 for (auto &Arg : FI.arguments()) 651 Arg.info = classifyArgumentType(Arg.type); 652 } 653 654 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 655 QualType Ty) const override; 656 }; 657 658 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo { 659 public: 660 explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 661 : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT)) {} 662 }; 663 664 /// \brief Classify argument of given type \p Ty. 665 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const { 666 Ty = useFirstFieldIfTransparentUnion(Ty); 667 668 if (isAggregateTypeForABI(Ty)) { 669 // Records with non-trivial destructors/copy-constructors should not be 670 // passed by value. 671 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 672 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 673 // Ignore empty structs/unions. 674 if (isEmptyRecord(getContext(), Ty, true)) 675 return ABIArgInfo::getIgnore(); 676 // Lower single-element structs to just pass a regular value. TODO: We 677 // could do reasonable-size multiple-element structs too, using getExpand(), 678 // though watch out for things like bitfields. 679 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 680 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 681 } 682 683 // Otherwise just do the default thing. 684 return DefaultABIInfo::classifyArgumentType(Ty); 685 } 686 687 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const { 688 if (isAggregateTypeForABI(RetTy)) { 689 // Records with non-trivial destructors/copy-constructors should not be 690 // returned by value. 691 if (!getRecordArgABI(RetTy, getCXXABI())) { 692 // Ignore empty structs/unions. 693 if (isEmptyRecord(getContext(), RetTy, true)) 694 return ABIArgInfo::getIgnore(); 695 // Lower single-element structs to just return a regular value. TODO: We 696 // could do reasonable-size multiple-element structs too, using 697 // ABIArgInfo::getDirect(). 698 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 699 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 700 } 701 } 702 703 // Otherwise just do the default thing. 704 return DefaultABIInfo::classifyReturnType(RetTy); 705 } 706 707 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 708 QualType Ty) const { 709 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect=*/ false, 710 getContext().getTypeInfoInChars(Ty), 711 CharUnits::fromQuantity(4), 712 /*AllowHigherAlign=*/ true); 713 } 714 715 //===----------------------------------------------------------------------===// 716 // le32/PNaCl bitcode ABI Implementation 717 // 718 // This is a simplified version of the x86_32 ABI. Arguments and return values 719 // are always passed on the stack. 720 //===----------------------------------------------------------------------===// 721 722 class PNaClABIInfo : public ABIInfo { 723 public: 724 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 725 726 ABIArgInfo classifyReturnType(QualType RetTy) const; 727 ABIArgInfo classifyArgumentType(QualType RetTy) const; 728 729 void computeInfo(CGFunctionInfo &FI) const override; 730 Address EmitVAArg(CodeGenFunction &CGF, 731 Address VAListAddr, QualType Ty) const override; 732 }; 733 734 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 735 public: 736 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 737 : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {} 738 }; 739 740 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 741 if (!getCXXABI().classifyReturnType(FI)) 742 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 743 744 for (auto &I : FI.arguments()) 745 I.info = classifyArgumentType(I.type); 746 } 747 748 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 749 QualType Ty) const { 750 // The PNaCL ABI is a bit odd, in that varargs don't use normal 751 // function classification. Structs get passed directly for varargs 752 // functions, through a rewriting transform in 753 // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows 754 // this target to actually support a va_arg instructions with an 755 // aggregate type, unlike other targets. 756 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 757 } 758 759 /// \brief Classify argument of given type \p Ty. 760 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 761 if (isAggregateTypeForABI(Ty)) { 762 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 763 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 764 return getNaturalAlignIndirect(Ty); 765 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 766 // Treat an enum type as its underlying type. 767 Ty = EnumTy->getDecl()->getIntegerType(); 768 } else if (Ty->isFloatingType()) { 769 // Floating-point types don't go inreg. 770 return ABIArgInfo::getDirect(); 771 } 772 773 return (Ty->isPromotableIntegerType() ? 774 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 775 } 776 777 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 778 if (RetTy->isVoidType()) 779 return ABIArgInfo::getIgnore(); 780 781 // In the PNaCl ABI we always return records/structures on the stack. 782 if (isAggregateTypeForABI(RetTy)) 783 return getNaturalAlignIndirect(RetTy); 784 785 // Treat an enum type as its underlying type. 786 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 787 RetTy = EnumTy->getDecl()->getIntegerType(); 788 789 return (RetTy->isPromotableIntegerType() ? 790 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 791 } 792 793 /// IsX86_MMXType - Return true if this is an MMX type. 794 bool IsX86_MMXType(llvm::Type *IRType) { 795 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 796 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 797 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 798 IRType->getScalarSizeInBits() != 64; 799 } 800 801 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 802 StringRef Constraint, 803 llvm::Type* Ty) { 804 if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) { 805 if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) { 806 // Invalid MMX constraint 807 return nullptr; 808 } 809 810 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 811 } 812 813 // No operation needed 814 return Ty; 815 } 816 817 /// Returns true if this type can be passed in SSE registers with the 818 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 819 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 820 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 821 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) 822 return true; 823 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 824 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 825 // registers specially. 826 unsigned VecSize = Context.getTypeSize(VT); 827 if (VecSize == 128 || VecSize == 256 || VecSize == 512) 828 return true; 829 } 830 return false; 831 } 832 833 /// Returns true if this aggregate is small enough to be passed in SSE registers 834 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 835 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 836 return NumMembers <= 4; 837 } 838 839 //===----------------------------------------------------------------------===// 840 // X86-32 ABI Implementation 841 //===----------------------------------------------------------------------===// 842 843 /// \brief Similar to llvm::CCState, but for Clang. 844 struct CCState { 845 CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {} 846 847 unsigned CC; 848 unsigned FreeRegs; 849 unsigned FreeSSERegs; 850 }; 851 852 /// X86_32ABIInfo - The X86-32 ABI information. 853 class X86_32ABIInfo : public SwiftABIInfo { 854 enum Class { 855 Integer, 856 Float 857 }; 858 859 static const unsigned MinABIStackAlignInBytes = 4; 860 861 bool IsDarwinVectorABI; 862 bool IsRetSmallStructInRegABI; 863 bool IsWin32StructABI; 864 bool IsSoftFloatABI; 865 bool IsMCUABI; 866 unsigned DefaultNumRegisterParameters; 867 868 static bool isRegisterSize(unsigned Size) { 869 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 870 } 871 872 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 873 // FIXME: Assumes vectorcall is in use. 874 return isX86VectorTypeForVectorCall(getContext(), Ty); 875 } 876 877 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 878 uint64_t NumMembers) const override { 879 // FIXME: Assumes vectorcall is in use. 880 return isX86VectorCallAggregateSmallEnough(NumMembers); 881 } 882 883 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 884 885 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 886 /// such that the argument will be passed in memory. 887 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 888 889 ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; 890 891 /// \brief Return the alignment to use for the given type on the stack. 892 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 893 894 Class classify(QualType Ty) const; 895 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 896 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 897 /// \brief Updates the number of available free registers, returns 898 /// true if any registers were allocated. 899 bool updateFreeRegs(QualType Ty, CCState &State) const; 900 901 bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, 902 bool &NeedsPadding) const; 903 bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; 904 905 bool canExpandIndirectArgument(QualType Ty) const; 906 907 /// \brief Rewrite the function info so that all memory arguments use 908 /// inalloca. 909 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 910 911 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 912 CharUnits &StackOffset, ABIArgInfo &Info, 913 QualType Type) const; 914 915 public: 916 917 void computeInfo(CGFunctionInfo &FI) const override; 918 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 919 QualType Ty) const override; 920 921 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 922 bool RetSmallStructInRegABI, bool Win32StructABI, 923 unsigned NumRegisterParameters, bool SoftFloatABI) 924 : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), 925 IsRetSmallStructInRegABI(RetSmallStructInRegABI), 926 IsWin32StructABI(Win32StructABI), 927 IsSoftFloatABI(SoftFloatABI), 928 IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), 929 DefaultNumRegisterParameters(NumRegisterParameters) {} 930 931 bool shouldPassIndirectlyForSwift(CharUnits totalSize, 932 ArrayRef<llvm::Type*> scalars, 933 bool asReturnValue) const override { 934 // LLVM's x86-32 lowering currently only assigns up to three 935 // integer registers and three fp registers. Oddly, it'll use up to 936 // four vector registers for vectors, but those can overlap with the 937 // scalar registers. 938 return occupiesMoreThan(CGT, scalars, /*total*/ 3); 939 } 940 }; 941 942 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 943 public: 944 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 945 bool RetSmallStructInRegABI, bool Win32StructABI, 946 unsigned NumRegisterParameters, bool SoftFloatABI) 947 : TargetCodeGenInfo(new X86_32ABIInfo( 948 CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, 949 NumRegisterParameters, SoftFloatABI)) {} 950 951 static bool isStructReturnInRegABI( 952 const llvm::Triple &Triple, const CodeGenOptions &Opts); 953 954 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 955 CodeGen::CodeGenModule &CGM) const override; 956 957 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 958 // Darwin uses different dwarf register numbers for EH. 959 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 960 return 4; 961 } 962 963 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 964 llvm::Value *Address) const override; 965 966 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 967 StringRef Constraint, 968 llvm::Type* Ty) const override { 969 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 970 } 971 972 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 973 std::string &Constraints, 974 std::vector<llvm::Type *> &ResultRegTypes, 975 std::vector<llvm::Type *> &ResultTruncRegTypes, 976 std::vector<LValue> &ResultRegDests, 977 std::string &AsmString, 978 unsigned NumOutputs) const override; 979 980 llvm::Constant * 981 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 982 unsigned Sig = (0xeb << 0) | // jmp rel8 983 (0x06 << 8) | // .+0x08 984 ('F' << 16) | 985 ('T' << 24); 986 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 987 } 988 989 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 990 return "movl\t%ebp, %ebp" 991 "\t\t## marker for objc_retainAutoreleaseReturnValue"; 992 } 993 }; 994 995 } 996 997 /// Rewrite input constraint references after adding some output constraints. 998 /// In the case where there is one output and one input and we add one output, 999 /// we need to replace all operand references greater than or equal to 1: 1000 /// mov $0, $1 1001 /// mov eax, $1 1002 /// The result will be: 1003 /// mov $0, $2 1004 /// mov eax, $2 1005 static void rewriteInputConstraintReferences(unsigned FirstIn, 1006 unsigned NumNewOuts, 1007 std::string &AsmString) { 1008 std::string Buf; 1009 llvm::raw_string_ostream OS(Buf); 1010 size_t Pos = 0; 1011 while (Pos < AsmString.size()) { 1012 size_t DollarStart = AsmString.find('$', Pos); 1013 if (DollarStart == std::string::npos) 1014 DollarStart = AsmString.size(); 1015 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 1016 if (DollarEnd == std::string::npos) 1017 DollarEnd = AsmString.size(); 1018 OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 1019 Pos = DollarEnd; 1020 size_t NumDollars = DollarEnd - DollarStart; 1021 if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 1022 // We have an operand reference. 1023 size_t DigitStart = Pos; 1024 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 1025 if (DigitEnd == std::string::npos) 1026 DigitEnd = AsmString.size(); 1027 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 1028 unsigned OperandIndex; 1029 if (!OperandStr.getAsInteger(10, OperandIndex)) { 1030 if (OperandIndex >= FirstIn) 1031 OperandIndex += NumNewOuts; 1032 OS << OperandIndex; 1033 } else { 1034 OS << OperandStr; 1035 } 1036 Pos = DigitEnd; 1037 } 1038 } 1039 AsmString = std::move(OS.str()); 1040 } 1041 1042 /// Add output constraints for EAX:EDX because they are return registers. 1043 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 1044 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 1045 std::vector<llvm::Type *> &ResultRegTypes, 1046 std::vector<llvm::Type *> &ResultTruncRegTypes, 1047 std::vector<LValue> &ResultRegDests, std::string &AsmString, 1048 unsigned NumOutputs) const { 1049 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 1050 1051 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 1052 // larger. 1053 if (!Constraints.empty()) 1054 Constraints += ','; 1055 if (RetWidth <= 32) { 1056 Constraints += "={eax}"; 1057 ResultRegTypes.push_back(CGF.Int32Ty); 1058 } else { 1059 // Use the 'A' constraint for EAX:EDX. 1060 Constraints += "=A"; 1061 ResultRegTypes.push_back(CGF.Int64Ty); 1062 } 1063 1064 // Truncate EAX or EAX:EDX to an integer of the appropriate size. 1065 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 1066 ResultTruncRegTypes.push_back(CoerceTy); 1067 1068 // Coerce the integer by bitcasting the return slot pointer. 1069 ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(), 1070 CoerceTy->getPointerTo())); 1071 ResultRegDests.push_back(ReturnSlot); 1072 1073 rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 1074 } 1075 1076 /// shouldReturnTypeInRegister - Determine if the given type should be 1077 /// returned in a register (for the Darwin and MCU ABI). 1078 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 1079 ASTContext &Context) const { 1080 uint64_t Size = Context.getTypeSize(Ty); 1081 1082 // For i386, type must be register sized. 1083 // For the MCU ABI, it only needs to be <= 8-byte 1084 if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) 1085 return false; 1086 1087 if (Ty->isVectorType()) { 1088 // 64- and 128- bit vectors inside structures are not returned in 1089 // registers. 1090 if (Size == 64 || Size == 128) 1091 return false; 1092 1093 return true; 1094 } 1095 1096 // If this is a builtin, pointer, enum, complex type, member pointer, or 1097 // member function pointer it is ok. 1098 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 1099 Ty->isAnyComplexType() || Ty->isEnumeralType() || 1100 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 1101 return true; 1102 1103 // Arrays are treated like records. 1104 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 1105 return shouldReturnTypeInRegister(AT->getElementType(), Context); 1106 1107 // Otherwise, it must be a record type. 1108 const RecordType *RT = Ty->getAs<RecordType>(); 1109 if (!RT) return false; 1110 1111 // FIXME: Traverse bases here too. 1112 1113 // Structure types are passed in register if all fields would be 1114 // passed in a register. 1115 for (const auto *FD : RT->getDecl()->fields()) { 1116 // Empty fields are ignored. 1117 if (isEmptyField(Context, FD, true)) 1118 continue; 1119 1120 // Check fields recursively. 1121 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 1122 return false; 1123 } 1124 return true; 1125 } 1126 1127 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 1128 // Treat complex types as the element type. 1129 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 1130 Ty = CTy->getElementType(); 1131 1132 // Check for a type which we know has a simple scalar argument-passing 1133 // convention without any padding. (We're specifically looking for 32 1134 // and 64-bit integer and integer-equivalents, float, and double.) 1135 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 1136 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 1137 return false; 1138 1139 uint64_t Size = Context.getTypeSize(Ty); 1140 return Size == 32 || Size == 64; 1141 } 1142 1143 /// Test whether an argument type which is to be passed indirectly (on the 1144 /// stack) would have the equivalent layout if it was expanded into separate 1145 /// arguments. If so, we prefer to do the latter to avoid inhibiting 1146 /// optimizations. 1147 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const { 1148 // We can only expand structure types. 1149 const RecordType *RT = Ty->getAs<RecordType>(); 1150 if (!RT) 1151 return false; 1152 const RecordDecl *RD = RT->getDecl(); 1153 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1154 if (!IsWin32StructABI ) { 1155 // On non-Windows, we have to conservatively match our old bitcode 1156 // prototypes in order to be ABI-compatible at the bitcode level. 1157 if (!CXXRD->isCLike()) 1158 return false; 1159 } else { 1160 // Don't do this for dynamic classes. 1161 if (CXXRD->isDynamicClass()) 1162 return false; 1163 // Don't do this if there are any non-empty bases. 1164 for (const CXXBaseSpecifier &Base : CXXRD->bases()) { 1165 if (!isEmptyRecord(getContext(), Base.getType(), /*AllowArrays=*/true)) 1166 return false; 1167 } 1168 } 1169 } 1170 1171 uint64_t Size = 0; 1172 1173 for (const auto *FD : RD->fields()) { 1174 // Scalar arguments on the stack get 4 byte alignment on x86. If the 1175 // argument is smaller than 32-bits, expanding the struct will create 1176 // alignment padding. 1177 if (!is32Or64BitBasicType(FD->getType(), getContext())) 1178 return false; 1179 1180 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 1181 // how to expand them yet, and the predicate for telling if a bitfield still 1182 // counts as "basic" is more complicated than what we were doing previously. 1183 if (FD->isBitField()) 1184 return false; 1185 1186 Size += getContext().getTypeSize(FD->getType()); 1187 } 1188 1189 // We can do this if there was no alignment padding. 1190 return Size == getContext().getTypeSize(Ty); 1191 } 1192 1193 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { 1194 // If the return value is indirect, then the hidden argument is consuming one 1195 // integer register. 1196 if (State.FreeRegs) { 1197 --State.FreeRegs; 1198 if (!IsMCUABI) 1199 return getNaturalAlignIndirectInReg(RetTy); 1200 } 1201 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 1202 } 1203 1204 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 1205 CCState &State) const { 1206 if (RetTy->isVoidType()) 1207 return ABIArgInfo::getIgnore(); 1208 1209 const Type *Base = nullptr; 1210 uint64_t NumElts = 0; 1211 if (State.CC == llvm::CallingConv::X86_VectorCall && 1212 isHomogeneousAggregate(RetTy, Base, NumElts)) { 1213 // The LLVM struct type for such an aggregate should lower properly. 1214 return ABIArgInfo::getDirect(); 1215 } 1216 1217 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 1218 // On Darwin, some vectors are returned in registers. 1219 if (IsDarwinVectorABI) { 1220 uint64_t Size = getContext().getTypeSize(RetTy); 1221 1222 // 128-bit vectors are a special case; they are returned in 1223 // registers and we need to make sure to pick a type the LLVM 1224 // backend will like. 1225 if (Size == 128) 1226 return ABIArgInfo::getDirect(llvm::VectorType::get( 1227 llvm::Type::getInt64Ty(getVMContext()), 2)); 1228 1229 // Always return in register if it fits in a general purpose 1230 // register, or if it is 64 bits and has a single element. 1231 if ((Size == 8 || Size == 16 || Size == 32) || 1232 (Size == 64 && VT->getNumElements() == 1)) 1233 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1234 Size)); 1235 1236 return getIndirectReturnResult(RetTy, State); 1237 } 1238 1239 return ABIArgInfo::getDirect(); 1240 } 1241 1242 if (isAggregateTypeForABI(RetTy)) { 1243 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 1244 // Structures with flexible arrays are always indirect. 1245 if (RT->getDecl()->hasFlexibleArrayMember()) 1246 return getIndirectReturnResult(RetTy, State); 1247 } 1248 1249 // If specified, structs and unions are always indirect. 1250 if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) 1251 return getIndirectReturnResult(RetTy, State); 1252 1253 // Ignore empty structs/unions. 1254 if (isEmptyRecord(getContext(), RetTy, true)) 1255 return ABIArgInfo::getIgnore(); 1256 1257 // Small structures which are register sized are generally returned 1258 // in a register. 1259 if (shouldReturnTypeInRegister(RetTy, getContext())) { 1260 uint64_t Size = getContext().getTypeSize(RetTy); 1261 1262 // As a special-case, if the struct is a "single-element" struct, and 1263 // the field is of type "float" or "double", return it in a 1264 // floating-point register. (MSVC does not apply this special case.) 1265 // We apply a similar transformation for pointer types to improve the 1266 // quality of the generated IR. 1267 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 1268 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 1269 || SeltTy->hasPointerRepresentation()) 1270 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 1271 1272 // FIXME: We should be able to narrow this integer in cases with dead 1273 // padding. 1274 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 1275 } 1276 1277 return getIndirectReturnResult(RetTy, State); 1278 } 1279 1280 // Treat an enum type as its underlying type. 1281 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1282 RetTy = EnumTy->getDecl()->getIntegerType(); 1283 1284 return (RetTy->isPromotableIntegerType() ? 1285 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 1286 } 1287 1288 static bool isSSEVectorType(ASTContext &Context, QualType Ty) { 1289 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 1290 } 1291 1292 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) { 1293 const RecordType *RT = Ty->getAs<RecordType>(); 1294 if (!RT) 1295 return 0; 1296 const RecordDecl *RD = RT->getDecl(); 1297 1298 // If this is a C++ record, check the bases first. 1299 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1300 for (const auto &I : CXXRD->bases()) 1301 if (!isRecordWithSSEVectorType(Context, I.getType())) 1302 return false; 1303 1304 for (const auto *i : RD->fields()) { 1305 QualType FT = i->getType(); 1306 1307 if (isSSEVectorType(Context, FT)) 1308 return true; 1309 1310 if (isRecordWithSSEVectorType(Context, FT)) 1311 return true; 1312 } 1313 1314 return false; 1315 } 1316 1317 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 1318 unsigned Align) const { 1319 // Otherwise, if the alignment is less than or equal to the minimum ABI 1320 // alignment, just use the default; the backend will handle this. 1321 if (Align <= MinABIStackAlignInBytes) 1322 return 0; // Use default alignment. 1323 1324 // On non-Darwin, the stack type alignment is always 4. 1325 if (!IsDarwinVectorABI) { 1326 // Set explicit alignment, since we may need to realign the top. 1327 return MinABIStackAlignInBytes; 1328 } 1329 1330 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 1331 if (Align >= 16 && (isSSEVectorType(getContext(), Ty) || 1332 isRecordWithSSEVectorType(getContext(), Ty))) 1333 return 16; 1334 1335 return MinABIStackAlignInBytes; 1336 } 1337 1338 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 1339 CCState &State) const { 1340 if (!ByVal) { 1341 if (State.FreeRegs) { 1342 --State.FreeRegs; // Non-byval indirects just use one pointer. 1343 if (!IsMCUABI) 1344 return getNaturalAlignIndirectInReg(Ty); 1345 } 1346 return getNaturalAlignIndirect(Ty, false); 1347 } 1348 1349 // Compute the byval alignment. 1350 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 1351 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 1352 if (StackAlign == 0) 1353 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); 1354 1355 // If the stack alignment is less than the type alignment, realign the 1356 // argument. 1357 bool Realign = TypeAlign > StackAlign; 1358 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), 1359 /*ByVal=*/true, Realign); 1360 } 1361 1362 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 1363 const Type *T = isSingleElementStruct(Ty, getContext()); 1364 if (!T) 1365 T = Ty.getTypePtr(); 1366 1367 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 1368 BuiltinType::Kind K = BT->getKind(); 1369 if (K == BuiltinType::Float || K == BuiltinType::Double) 1370 return Float; 1371 } 1372 return Integer; 1373 } 1374 1375 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { 1376 if (!IsSoftFloatABI) { 1377 Class C = classify(Ty); 1378 if (C == Float) 1379 return false; 1380 } 1381 1382 unsigned Size = getContext().getTypeSize(Ty); 1383 unsigned SizeInRegs = (Size + 31) / 32; 1384 1385 if (SizeInRegs == 0) 1386 return false; 1387 1388 if (!IsMCUABI) { 1389 if (SizeInRegs > State.FreeRegs) { 1390 State.FreeRegs = 0; 1391 return false; 1392 } 1393 } else { 1394 // The MCU psABI allows passing parameters in-reg even if there are 1395 // earlier parameters that are passed on the stack. Also, 1396 // it does not allow passing >8-byte structs in-register, 1397 // even if there are 3 free registers available. 1398 if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) 1399 return false; 1400 } 1401 1402 State.FreeRegs -= SizeInRegs; 1403 return true; 1404 } 1405 1406 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, 1407 bool &InReg, 1408 bool &NeedsPadding) const { 1409 // On Windows, aggregates other than HFAs are never passed in registers, and 1410 // they do not consume register slots. Homogenous floating-point aggregates 1411 // (HFAs) have already been dealt with at this point. 1412 if (IsWin32StructABI && isAggregateTypeForABI(Ty)) 1413 return false; 1414 1415 NeedsPadding = false; 1416 InReg = !IsMCUABI; 1417 1418 if (!updateFreeRegs(Ty, State)) 1419 return false; 1420 1421 if (IsMCUABI) 1422 return true; 1423 1424 if (State.CC == llvm::CallingConv::X86_FastCall || 1425 State.CC == llvm::CallingConv::X86_VectorCall) { 1426 if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) 1427 NeedsPadding = true; 1428 1429 return false; 1430 } 1431 1432 return true; 1433 } 1434 1435 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { 1436 if (!updateFreeRegs(Ty, State)) 1437 return false; 1438 1439 if (IsMCUABI) 1440 return false; 1441 1442 if (State.CC == llvm::CallingConv::X86_FastCall || 1443 State.CC == llvm::CallingConv::X86_VectorCall) { 1444 if (getContext().getTypeSize(Ty) > 32) 1445 return false; 1446 1447 return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || 1448 Ty->isReferenceType()); 1449 } 1450 1451 return true; 1452 } 1453 1454 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 1455 CCState &State) const { 1456 // FIXME: Set alignment on indirect arguments. 1457 1458 Ty = useFirstFieldIfTransparentUnion(Ty); 1459 1460 // Check with the C++ ABI first. 1461 const RecordType *RT = Ty->getAs<RecordType>(); 1462 if (RT) { 1463 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 1464 if (RAA == CGCXXABI::RAA_Indirect) { 1465 return getIndirectResult(Ty, false, State); 1466 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 1467 // The field index doesn't matter, we'll fix it up later. 1468 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 1469 } 1470 } 1471 1472 // vectorcall adds the concept of a homogenous vector aggregate, similar 1473 // to other targets. 1474 const Type *Base = nullptr; 1475 uint64_t NumElts = 0; 1476 if (State.CC == llvm::CallingConv::X86_VectorCall && 1477 isHomogeneousAggregate(Ty, Base, NumElts)) { 1478 if (State.FreeSSERegs >= NumElts) { 1479 State.FreeSSERegs -= NumElts; 1480 if (Ty->isBuiltinType() || Ty->isVectorType()) 1481 return ABIArgInfo::getDirect(); 1482 return ABIArgInfo::getExpand(); 1483 } 1484 return getIndirectResult(Ty, /*ByVal=*/false, State); 1485 } 1486 1487 if (isAggregateTypeForABI(Ty)) { 1488 // Structures with flexible arrays are always indirect. 1489 // FIXME: This should not be byval! 1490 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 1491 return getIndirectResult(Ty, true, State); 1492 1493 // Ignore empty structs/unions on non-Windows. 1494 if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true)) 1495 return ABIArgInfo::getIgnore(); 1496 1497 llvm::LLVMContext &LLVMContext = getVMContext(); 1498 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 1499 bool NeedsPadding = false; 1500 bool InReg; 1501 if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { 1502 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 1503 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 1504 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 1505 if (InReg) 1506 return ABIArgInfo::getDirectInReg(Result); 1507 else 1508 return ABIArgInfo::getDirect(Result); 1509 } 1510 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 1511 1512 // Expand small (<= 128-bit) record types when we know that the stack layout 1513 // of those arguments will match the struct. This is important because the 1514 // LLVM backend isn't smart enough to remove byval, which inhibits many 1515 // optimizations. 1516 // Don't do this for the MCU if there are still free integer registers 1517 // (see X86_64 ABI for full explanation). 1518 if (getContext().getTypeSize(Ty) <= 4 * 32 && 1519 (!IsMCUABI || State.FreeRegs == 0) && canExpandIndirectArgument(Ty)) 1520 return ABIArgInfo::getExpandWithPadding( 1521 State.CC == llvm::CallingConv::X86_FastCall || 1522 State.CC == llvm::CallingConv::X86_VectorCall, 1523 PaddingType); 1524 1525 return getIndirectResult(Ty, true, State); 1526 } 1527 1528 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1529 // On Darwin, some vectors are passed in memory, we handle this by passing 1530 // it as an i8/i16/i32/i64. 1531 if (IsDarwinVectorABI) { 1532 uint64_t Size = getContext().getTypeSize(Ty); 1533 if ((Size == 8 || Size == 16 || Size == 32) || 1534 (Size == 64 && VT->getNumElements() == 1)) 1535 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1536 Size)); 1537 } 1538 1539 if (IsX86_MMXType(CGT.ConvertType(Ty))) 1540 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 1541 1542 return ABIArgInfo::getDirect(); 1543 } 1544 1545 1546 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1547 Ty = EnumTy->getDecl()->getIntegerType(); 1548 1549 bool InReg = shouldPrimitiveUseInReg(Ty, State); 1550 1551 if (Ty->isPromotableIntegerType()) { 1552 if (InReg) 1553 return ABIArgInfo::getExtendInReg(); 1554 return ABIArgInfo::getExtend(); 1555 } 1556 1557 if (InReg) 1558 return ABIArgInfo::getDirectInReg(); 1559 return ABIArgInfo::getDirect(); 1560 } 1561 1562 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 1563 CCState State(FI.getCallingConvention()); 1564 if (IsMCUABI) 1565 State.FreeRegs = 3; 1566 else if (State.CC == llvm::CallingConv::X86_FastCall) 1567 State.FreeRegs = 2; 1568 else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1569 State.FreeRegs = 2; 1570 State.FreeSSERegs = 6; 1571 } else if (FI.getHasRegParm()) 1572 State.FreeRegs = FI.getRegParm(); 1573 else 1574 State.FreeRegs = DefaultNumRegisterParameters; 1575 1576 if (!getCXXABI().classifyReturnType(FI)) { 1577 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 1578 } else if (FI.getReturnInfo().isIndirect()) { 1579 // The C++ ABI is not aware of register usage, so we have to check if the 1580 // return value was sret and put it in a register ourselves if appropriate. 1581 if (State.FreeRegs) { 1582 --State.FreeRegs; // The sret parameter consumes a register. 1583 if (!IsMCUABI) 1584 FI.getReturnInfo().setInReg(true); 1585 } 1586 } 1587 1588 // The chain argument effectively gives us another free register. 1589 if (FI.isChainCall()) 1590 ++State.FreeRegs; 1591 1592 bool UsedInAlloca = false; 1593 for (auto &I : FI.arguments()) { 1594 I.info = classifyArgumentType(I.type, State); 1595 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1596 } 1597 1598 // If we needed to use inalloca for any argument, do a second pass and rewrite 1599 // all the memory arguments to use inalloca. 1600 if (UsedInAlloca) 1601 rewriteWithInAlloca(FI); 1602 } 1603 1604 void 1605 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1606 CharUnits &StackOffset, ABIArgInfo &Info, 1607 QualType Type) const { 1608 // Arguments are always 4-byte-aligned. 1609 CharUnits FieldAlign = CharUnits::fromQuantity(4); 1610 1611 assert(StackOffset.isMultipleOf(FieldAlign) && "unaligned inalloca struct"); 1612 Info = ABIArgInfo::getInAlloca(FrameFields.size()); 1613 FrameFields.push_back(CGT.ConvertTypeForMem(Type)); 1614 StackOffset += getContext().getTypeSizeInChars(Type); 1615 1616 // Insert padding bytes to respect alignment. 1617 CharUnits FieldEnd = StackOffset; 1618 StackOffset = FieldEnd.alignTo(FieldAlign); 1619 if (StackOffset != FieldEnd) { 1620 CharUnits NumBytes = StackOffset - FieldEnd; 1621 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 1622 Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); 1623 FrameFields.push_back(Ty); 1624 } 1625 } 1626 1627 static bool isArgInAlloca(const ABIArgInfo &Info) { 1628 // Leave ignored and inreg arguments alone. 1629 switch (Info.getKind()) { 1630 case ABIArgInfo::InAlloca: 1631 return true; 1632 case ABIArgInfo::Indirect: 1633 assert(Info.getIndirectByVal()); 1634 return true; 1635 case ABIArgInfo::Ignore: 1636 return false; 1637 case ABIArgInfo::Direct: 1638 case ABIArgInfo::Extend: 1639 if (Info.getInReg()) 1640 return false; 1641 return true; 1642 case ABIArgInfo::Expand: 1643 case ABIArgInfo::CoerceAndExpand: 1644 // These are aggregate types which are never passed in registers when 1645 // inalloca is involved. 1646 return true; 1647 } 1648 llvm_unreachable("invalid enum"); 1649 } 1650 1651 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 1652 assert(IsWin32StructABI && "inalloca only supported on win32"); 1653 1654 // Build a packed struct type for all of the arguments in memory. 1655 SmallVector<llvm::Type *, 6> FrameFields; 1656 1657 // The stack alignment is always 4. 1658 CharUnits StackAlign = CharUnits::fromQuantity(4); 1659 1660 CharUnits StackOffset; 1661 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 1662 1663 // Put 'this' into the struct before 'sret', if necessary. 1664 bool IsThisCall = 1665 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 1666 ABIArgInfo &Ret = FI.getReturnInfo(); 1667 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 1668 isArgInAlloca(I->info)) { 1669 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1670 ++I; 1671 } 1672 1673 // Put the sret parameter into the inalloca struct if it's in memory. 1674 if (Ret.isIndirect() && !Ret.getInReg()) { 1675 CanQualType PtrTy = getContext().getPointerType(FI.getReturnType()); 1676 addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy); 1677 // On Windows, the hidden sret parameter is always returned in eax. 1678 Ret.setInAllocaSRet(IsWin32StructABI); 1679 } 1680 1681 // Skip the 'this' parameter in ecx. 1682 if (IsThisCall) 1683 ++I; 1684 1685 // Put arguments passed in memory into the struct. 1686 for (; I != E; ++I) { 1687 if (isArgInAlloca(I->info)) 1688 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1689 } 1690 1691 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 1692 /*isPacked=*/true), 1693 StackAlign); 1694 } 1695 1696 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, 1697 Address VAListAddr, QualType Ty) const { 1698 1699 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 1700 1701 // x86-32 changes the alignment of certain arguments on the stack. 1702 // 1703 // Just messing with TypeInfo like this works because we never pass 1704 // anything indirectly. 1705 TypeInfo.second = CharUnits::fromQuantity( 1706 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity())); 1707 1708 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 1709 TypeInfo, CharUnits::fromQuantity(4), 1710 /*AllowHigherAlign*/ true); 1711 } 1712 1713 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 1714 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 1715 assert(Triple.getArch() == llvm::Triple::x86); 1716 1717 switch (Opts.getStructReturnConvention()) { 1718 case CodeGenOptions::SRCK_Default: 1719 break; 1720 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 1721 return false; 1722 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 1723 return true; 1724 } 1725 1726 if (Triple.isOSDarwin() || Triple.isOSIAMCU()) 1727 return true; 1728 1729 switch (Triple.getOS()) { 1730 case llvm::Triple::DragonFly: 1731 case llvm::Triple::FreeBSD: 1732 case llvm::Triple::OpenBSD: 1733 case llvm::Triple::Bitrig: 1734 case llvm::Triple::Win32: 1735 return true; 1736 default: 1737 return false; 1738 } 1739 } 1740 1741 void X86_32TargetCodeGenInfo::setTargetAttributes(const Decl *D, 1742 llvm::GlobalValue *GV, 1743 CodeGen::CodeGenModule &CGM) const { 1744 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 1745 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 1746 // Get the LLVM function. 1747 llvm::Function *Fn = cast<llvm::Function>(GV); 1748 1749 // Now add the 'alignstack' attribute with a value of 16. 1750 llvm::AttrBuilder B; 1751 B.addStackAlignmentAttr(16); 1752 Fn->addAttributes(llvm::AttributeSet::FunctionIndex, 1753 llvm::AttributeSet::get(CGM.getLLVMContext(), 1754 llvm::AttributeSet::FunctionIndex, 1755 B)); 1756 } 1757 if (FD->hasAttr<AnyX86InterruptAttr>()) { 1758 llvm::Function *Fn = cast<llvm::Function>(GV); 1759 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 1760 } 1761 } 1762 } 1763 1764 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 1765 CodeGen::CodeGenFunction &CGF, 1766 llvm::Value *Address) const { 1767 CodeGen::CGBuilderTy &Builder = CGF.Builder; 1768 1769 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 1770 1771 // 0-7 are the eight integer registers; the order is different 1772 // on Darwin (for EH), but the range is the same. 1773 // 8 is %eip. 1774 AssignToArrayRange(Builder, Address, Four8, 0, 8); 1775 1776 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 1777 // 12-16 are st(0..4). Not sure why we stop at 4. 1778 // These have size 16, which is sizeof(long double) on 1779 // platforms with 8-byte alignment for that type. 1780 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 1781 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 1782 1783 } else { 1784 // 9 is %eflags, which doesn't get a size on Darwin for some 1785 // reason. 1786 Builder.CreateAlignedStore( 1787 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), 1788 CharUnits::One()); 1789 1790 // 11-16 are st(0..5). Not sure why we stop at 5. 1791 // These have size 12, which is sizeof(long double) on 1792 // platforms with 4-byte alignment for that type. 1793 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 1794 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 1795 } 1796 1797 return false; 1798 } 1799 1800 //===----------------------------------------------------------------------===// 1801 // X86-64 ABI Implementation 1802 //===----------------------------------------------------------------------===// 1803 1804 1805 namespace { 1806 /// The AVX ABI level for X86 targets. 1807 enum class X86AVXABILevel { 1808 None, 1809 AVX, 1810 AVX512 1811 }; 1812 1813 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. 1814 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { 1815 switch (AVXLevel) { 1816 case X86AVXABILevel::AVX512: 1817 return 512; 1818 case X86AVXABILevel::AVX: 1819 return 256; 1820 case X86AVXABILevel::None: 1821 return 128; 1822 } 1823 llvm_unreachable("Unknown AVXLevel"); 1824 } 1825 1826 /// X86_64ABIInfo - The X86_64 ABI information. 1827 class X86_64ABIInfo : public SwiftABIInfo { 1828 enum Class { 1829 Integer = 0, 1830 SSE, 1831 SSEUp, 1832 X87, 1833 X87Up, 1834 ComplexX87, 1835 NoClass, 1836 Memory 1837 }; 1838 1839 /// merge - Implement the X86_64 ABI merging algorithm. 1840 /// 1841 /// Merge an accumulating classification \arg Accum with a field 1842 /// classification \arg Field. 1843 /// 1844 /// \param Accum - The accumulating classification. This should 1845 /// always be either NoClass or the result of a previous merge 1846 /// call. In addition, this should never be Memory (the caller 1847 /// should just return Memory for the aggregate). 1848 static Class merge(Class Accum, Class Field); 1849 1850 /// postMerge - Implement the X86_64 ABI post merging algorithm. 1851 /// 1852 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 1853 /// final MEMORY or SSE classes when necessary. 1854 /// 1855 /// \param AggregateSize - The size of the current aggregate in 1856 /// the classification process. 1857 /// 1858 /// \param Lo - The classification for the parts of the type 1859 /// residing in the low word of the containing object. 1860 /// 1861 /// \param Hi - The classification for the parts of the type 1862 /// residing in the higher words of the containing object. 1863 /// 1864 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 1865 1866 /// classify - Determine the x86_64 register classes in which the 1867 /// given type T should be passed. 1868 /// 1869 /// \param Lo - The classification for the parts of the type 1870 /// residing in the low word of the containing object. 1871 /// 1872 /// \param Hi - The classification for the parts of the type 1873 /// residing in the high word of the containing object. 1874 /// 1875 /// \param OffsetBase - The bit offset of this type in the 1876 /// containing object. Some parameters are classified different 1877 /// depending on whether they straddle an eightbyte boundary. 1878 /// 1879 /// \param isNamedArg - Whether the argument in question is a "named" 1880 /// argument, as used in AMD64-ABI 3.5.7. 1881 /// 1882 /// If a word is unused its result will be NoClass; if a type should 1883 /// be passed in Memory then at least the classification of \arg Lo 1884 /// will be Memory. 1885 /// 1886 /// The \arg Lo class will be NoClass iff the argument is ignored. 1887 /// 1888 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 1889 /// also be ComplexX87. 1890 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 1891 bool isNamedArg) const; 1892 1893 llvm::Type *GetByteVectorType(QualType Ty) const; 1894 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 1895 unsigned IROffset, QualType SourceTy, 1896 unsigned SourceOffset) const; 1897 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 1898 unsigned IROffset, QualType SourceTy, 1899 unsigned SourceOffset) const; 1900 1901 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1902 /// such that the argument will be returned in memory. 1903 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 1904 1905 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1906 /// such that the argument will be passed in memory. 1907 /// 1908 /// \param freeIntRegs - The number of free integer registers remaining 1909 /// available. 1910 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 1911 1912 ABIArgInfo classifyReturnType(QualType RetTy) const; 1913 1914 ABIArgInfo classifyArgumentType(QualType Ty, 1915 unsigned freeIntRegs, 1916 unsigned &neededInt, 1917 unsigned &neededSSE, 1918 bool isNamedArg) const; 1919 1920 bool IsIllegalVectorType(QualType Ty) const; 1921 1922 /// The 0.98 ABI revision clarified a lot of ambiguities, 1923 /// unfortunately in ways that were not always consistent with 1924 /// certain previous compilers. In particular, platforms which 1925 /// required strict binary compatibility with older versions of GCC 1926 /// may need to exempt themselves. 1927 bool honorsRevision0_98() const { 1928 return !getTarget().getTriple().isOSDarwin(); 1929 } 1930 1931 /// GCC classifies <1 x long long> as SSE but compatibility with older clang 1932 // compilers require us to classify it as INTEGER. 1933 bool classifyIntegerMMXAsSSE() const { 1934 const llvm::Triple &Triple = getTarget().getTriple(); 1935 if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4) 1936 return false; 1937 if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10) 1938 return false; 1939 return true; 1940 } 1941 1942 X86AVXABILevel AVXLevel; 1943 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 1944 // 64-bit hardware. 1945 bool Has64BitPointers; 1946 1947 public: 1948 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : 1949 SwiftABIInfo(CGT), AVXLevel(AVXLevel), 1950 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 1951 } 1952 1953 bool isPassedUsingAVXType(QualType type) const { 1954 unsigned neededInt, neededSSE; 1955 // The freeIntRegs argument doesn't matter here. 1956 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 1957 /*isNamedArg*/true); 1958 if (info.isDirect()) { 1959 llvm::Type *ty = info.getCoerceToType(); 1960 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 1961 return (vectorTy->getBitWidth() > 128); 1962 } 1963 return false; 1964 } 1965 1966 void computeInfo(CGFunctionInfo &FI) const override; 1967 1968 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 1969 QualType Ty) const override; 1970 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 1971 QualType Ty) const override; 1972 1973 bool has64BitPointers() const { 1974 return Has64BitPointers; 1975 } 1976 1977 bool shouldPassIndirectlyForSwift(CharUnits totalSize, 1978 ArrayRef<llvm::Type*> scalars, 1979 bool asReturnValue) const override { 1980 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 1981 } 1982 }; 1983 1984 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 1985 class WinX86_64ABIInfo : public ABIInfo { 1986 public: 1987 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) 1988 : ABIInfo(CGT), 1989 IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} 1990 1991 void computeInfo(CGFunctionInfo &FI) const override; 1992 1993 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 1994 QualType Ty) const override; 1995 1996 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 1997 // FIXME: Assumes vectorcall is in use. 1998 return isX86VectorTypeForVectorCall(getContext(), Ty); 1999 } 2000 2001 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 2002 uint64_t NumMembers) const override { 2003 // FIXME: Assumes vectorcall is in use. 2004 return isX86VectorCallAggregateSmallEnough(NumMembers); 2005 } 2006 2007 private: 2008 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, 2009 bool IsReturnType) const; 2010 2011 bool IsMingw64; 2012 }; 2013 2014 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2015 public: 2016 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2017 : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {} 2018 2019 const X86_64ABIInfo &getABIInfo() const { 2020 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 2021 } 2022 2023 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2024 return 7; 2025 } 2026 2027 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2028 llvm::Value *Address) const override { 2029 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2030 2031 // 0-15 are the 16 integer registers. 2032 // 16 is %rip. 2033 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2034 return false; 2035 } 2036 2037 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 2038 StringRef Constraint, 2039 llvm::Type* Ty) const override { 2040 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 2041 } 2042 2043 bool isNoProtoCallVariadic(const CallArgList &args, 2044 const FunctionNoProtoType *fnType) const override { 2045 // The default CC on x86-64 sets %al to the number of SSA 2046 // registers used, and GCC sets this when calling an unprototyped 2047 // function, so we override the default behavior. However, don't do 2048 // that when AVX types are involved: the ABI explicitly states it is 2049 // undefined, and it doesn't work in practice because of how the ABI 2050 // defines varargs anyway. 2051 if (fnType->getCallConv() == CC_C) { 2052 bool HasAVXType = false; 2053 for (CallArgList::const_iterator 2054 it = args.begin(), ie = args.end(); it != ie; ++it) { 2055 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 2056 HasAVXType = true; 2057 break; 2058 } 2059 } 2060 2061 if (!HasAVXType) 2062 return true; 2063 } 2064 2065 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 2066 } 2067 2068 llvm::Constant * 2069 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 2070 unsigned Sig; 2071 if (getABIInfo().has64BitPointers()) 2072 Sig = (0xeb << 0) | // jmp rel8 2073 (0x0a << 8) | // .+0x0c 2074 ('F' << 16) | 2075 ('T' << 24); 2076 else 2077 Sig = (0xeb << 0) | // jmp rel8 2078 (0x06 << 8) | // .+0x08 2079 ('F' << 16) | 2080 ('T' << 24); 2081 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 2082 } 2083 2084 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2085 CodeGen::CodeGenModule &CGM) const override { 2086 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2087 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2088 llvm::Function *Fn = cast<llvm::Function>(GV); 2089 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2090 } 2091 } 2092 } 2093 }; 2094 2095 class PS4TargetCodeGenInfo : public X86_64TargetCodeGenInfo { 2096 public: 2097 PS4TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2098 : X86_64TargetCodeGenInfo(CGT, AVXLevel) {} 2099 2100 void getDependentLibraryOption(llvm::StringRef Lib, 2101 llvm::SmallString<24> &Opt) const override { 2102 Opt = "\01"; 2103 // If the argument contains a space, enclose it in quotes. 2104 if (Lib.find(" ") != StringRef::npos) 2105 Opt += "\"" + Lib.str() + "\""; 2106 else 2107 Opt += Lib; 2108 } 2109 }; 2110 2111 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 2112 // If the argument does not end in .lib, automatically add the suffix. 2113 // If the argument contains a space, enclose it in quotes. 2114 // This matches the behavior of MSVC. 2115 bool Quote = (Lib.find(" ") != StringRef::npos); 2116 std::string ArgStr = Quote ? "\"" : ""; 2117 ArgStr += Lib; 2118 if (!Lib.endswith_lower(".lib")) 2119 ArgStr += ".lib"; 2120 ArgStr += Quote ? "\"" : ""; 2121 return ArgStr; 2122 } 2123 2124 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 2125 public: 2126 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2127 bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, 2128 unsigned NumRegisterParameters) 2129 : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, 2130 Win32StructABI, NumRegisterParameters, false) {} 2131 2132 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2133 CodeGen::CodeGenModule &CGM) const override; 2134 2135 void getDependentLibraryOption(llvm::StringRef Lib, 2136 llvm::SmallString<24> &Opt) const override { 2137 Opt = "/DEFAULTLIB:"; 2138 Opt += qualifyWindowsLibrary(Lib); 2139 } 2140 2141 void getDetectMismatchOption(llvm::StringRef Name, 2142 llvm::StringRef Value, 2143 llvm::SmallString<32> &Opt) const override { 2144 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2145 } 2146 }; 2147 2148 static void addStackProbeSizeTargetAttribute(const Decl *D, 2149 llvm::GlobalValue *GV, 2150 CodeGen::CodeGenModule &CGM) { 2151 if (D && isa<FunctionDecl>(D)) { 2152 if (CGM.getCodeGenOpts().StackProbeSize != 4096) { 2153 llvm::Function *Fn = cast<llvm::Function>(GV); 2154 2155 Fn->addFnAttr("stack-probe-size", 2156 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 2157 } 2158 } 2159 } 2160 2161 void WinX86_32TargetCodeGenInfo::setTargetAttributes(const Decl *D, 2162 llvm::GlobalValue *GV, 2163 CodeGen::CodeGenModule &CGM) const { 2164 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2165 2166 addStackProbeSizeTargetAttribute(D, GV, CGM); 2167 } 2168 2169 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2170 public: 2171 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2172 X86AVXABILevel AVXLevel) 2173 : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {} 2174 2175 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2176 CodeGen::CodeGenModule &CGM) const override; 2177 2178 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2179 return 7; 2180 } 2181 2182 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2183 llvm::Value *Address) const override { 2184 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2185 2186 // 0-15 are the 16 integer registers. 2187 // 16 is %rip. 2188 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2189 return false; 2190 } 2191 2192 void getDependentLibraryOption(llvm::StringRef Lib, 2193 llvm::SmallString<24> &Opt) const override { 2194 Opt = "/DEFAULTLIB:"; 2195 Opt += qualifyWindowsLibrary(Lib); 2196 } 2197 2198 void getDetectMismatchOption(llvm::StringRef Name, 2199 llvm::StringRef Value, 2200 llvm::SmallString<32> &Opt) const override { 2201 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2202 } 2203 }; 2204 2205 void WinX86_64TargetCodeGenInfo::setTargetAttributes(const Decl *D, 2206 llvm::GlobalValue *GV, 2207 CodeGen::CodeGenModule &CGM) const { 2208 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2209 2210 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2211 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2212 llvm::Function *Fn = cast<llvm::Function>(GV); 2213 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2214 } 2215 } 2216 2217 addStackProbeSizeTargetAttribute(D, GV, CGM); 2218 } 2219 } 2220 2221 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 2222 Class &Hi) const { 2223 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 2224 // 2225 // (a) If one of the classes is Memory, the whole argument is passed in 2226 // memory. 2227 // 2228 // (b) If X87UP is not preceded by X87, the whole argument is passed in 2229 // memory. 2230 // 2231 // (c) If the size of the aggregate exceeds two eightbytes and the first 2232 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 2233 // argument is passed in memory. NOTE: This is necessary to keep the 2234 // ABI working for processors that don't support the __m256 type. 2235 // 2236 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 2237 // 2238 // Some of these are enforced by the merging logic. Others can arise 2239 // only with unions; for example: 2240 // union { _Complex double; unsigned; } 2241 // 2242 // Note that clauses (b) and (c) were added in 0.98. 2243 // 2244 if (Hi == Memory) 2245 Lo = Memory; 2246 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 2247 Lo = Memory; 2248 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 2249 Lo = Memory; 2250 if (Hi == SSEUp && Lo != SSE) 2251 Hi = SSE; 2252 } 2253 2254 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 2255 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 2256 // classified recursively so that always two fields are 2257 // considered. The resulting class is calculated according to 2258 // the classes of the fields in the eightbyte: 2259 // 2260 // (a) If both classes are equal, this is the resulting class. 2261 // 2262 // (b) If one of the classes is NO_CLASS, the resulting class is 2263 // the other class. 2264 // 2265 // (c) If one of the classes is MEMORY, the result is the MEMORY 2266 // class. 2267 // 2268 // (d) If one of the classes is INTEGER, the result is the 2269 // INTEGER. 2270 // 2271 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 2272 // MEMORY is used as class. 2273 // 2274 // (f) Otherwise class SSE is used. 2275 2276 // Accum should never be memory (we should have returned) or 2277 // ComplexX87 (because this cannot be passed in a structure). 2278 assert((Accum != Memory && Accum != ComplexX87) && 2279 "Invalid accumulated classification during merge."); 2280 if (Accum == Field || Field == NoClass) 2281 return Accum; 2282 if (Field == Memory) 2283 return Memory; 2284 if (Accum == NoClass) 2285 return Field; 2286 if (Accum == Integer || Field == Integer) 2287 return Integer; 2288 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 2289 Accum == X87 || Accum == X87Up) 2290 return Memory; 2291 return SSE; 2292 } 2293 2294 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 2295 Class &Lo, Class &Hi, bool isNamedArg) const { 2296 // FIXME: This code can be simplified by introducing a simple value class for 2297 // Class pairs with appropriate constructor methods for the various 2298 // situations. 2299 2300 // FIXME: Some of the split computations are wrong; unaligned vectors 2301 // shouldn't be passed in registers for example, so there is no chance they 2302 // can straddle an eightbyte. Verify & simplify. 2303 2304 Lo = Hi = NoClass; 2305 2306 Class &Current = OffsetBase < 64 ? Lo : Hi; 2307 Current = Memory; 2308 2309 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 2310 BuiltinType::Kind k = BT->getKind(); 2311 2312 if (k == BuiltinType::Void) { 2313 Current = NoClass; 2314 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 2315 Lo = Integer; 2316 Hi = Integer; 2317 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 2318 Current = Integer; 2319 } else if (k == BuiltinType::Float || k == BuiltinType::Double) { 2320 Current = SSE; 2321 } else if (k == BuiltinType::LongDouble) { 2322 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2323 if (LDF == &llvm::APFloat::IEEEquad) { 2324 Lo = SSE; 2325 Hi = SSEUp; 2326 } else if (LDF == &llvm::APFloat::x87DoubleExtended) { 2327 Lo = X87; 2328 Hi = X87Up; 2329 } else if (LDF == &llvm::APFloat::IEEEdouble) { 2330 Current = SSE; 2331 } else 2332 llvm_unreachable("unexpected long double representation!"); 2333 } 2334 // FIXME: _Decimal32 and _Decimal64 are SSE. 2335 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 2336 return; 2337 } 2338 2339 if (const EnumType *ET = Ty->getAs<EnumType>()) { 2340 // Classify the underlying integer type. 2341 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 2342 return; 2343 } 2344 2345 if (Ty->hasPointerRepresentation()) { 2346 Current = Integer; 2347 return; 2348 } 2349 2350 if (Ty->isMemberPointerType()) { 2351 if (Ty->isMemberFunctionPointerType()) { 2352 if (Has64BitPointers) { 2353 // If Has64BitPointers, this is an {i64, i64}, so classify both 2354 // Lo and Hi now. 2355 Lo = Hi = Integer; 2356 } else { 2357 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 2358 // straddles an eightbyte boundary, Hi should be classified as well. 2359 uint64_t EB_FuncPtr = (OffsetBase) / 64; 2360 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 2361 if (EB_FuncPtr != EB_ThisAdj) { 2362 Lo = Hi = Integer; 2363 } else { 2364 Current = Integer; 2365 } 2366 } 2367 } else { 2368 Current = Integer; 2369 } 2370 return; 2371 } 2372 2373 if (const VectorType *VT = Ty->getAs<VectorType>()) { 2374 uint64_t Size = getContext().getTypeSize(VT); 2375 if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { 2376 // gcc passes the following as integer: 2377 // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> 2378 // 2 bytes - <2 x char>, <1 x short> 2379 // 1 byte - <1 x char> 2380 Current = Integer; 2381 2382 // If this type crosses an eightbyte boundary, it should be 2383 // split. 2384 uint64_t EB_Lo = (OffsetBase) / 64; 2385 uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; 2386 if (EB_Lo != EB_Hi) 2387 Hi = Lo; 2388 } else if (Size == 64) { 2389 QualType ElementType = VT->getElementType(); 2390 2391 // gcc passes <1 x double> in memory. :( 2392 if (ElementType->isSpecificBuiltinType(BuiltinType::Double)) 2393 return; 2394 2395 // gcc passes <1 x long long> as SSE but clang used to unconditionally 2396 // pass them as integer. For platforms where clang is the de facto 2397 // platform compiler, we must continue to use integer. 2398 if (!classifyIntegerMMXAsSSE() && 2399 (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) || 2400 ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) || 2401 ElementType->isSpecificBuiltinType(BuiltinType::Long) || 2402 ElementType->isSpecificBuiltinType(BuiltinType::ULong))) 2403 Current = Integer; 2404 else 2405 Current = SSE; 2406 2407 // If this type crosses an eightbyte boundary, it should be 2408 // split. 2409 if (OffsetBase && OffsetBase != 64) 2410 Hi = Lo; 2411 } else if (Size == 128 || 2412 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { 2413 // Arguments of 256-bits are split into four eightbyte chunks. The 2414 // least significant one belongs to class SSE and all the others to class 2415 // SSEUP. The original Lo and Hi design considers that types can't be 2416 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 2417 // This design isn't correct for 256-bits, but since there're no cases 2418 // where the upper parts would need to be inspected, avoid adding 2419 // complexity and just consider Hi to match the 64-256 part. 2420 // 2421 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 2422 // registers if they are "named", i.e. not part of the "..." of a 2423 // variadic function. 2424 // 2425 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are 2426 // split into eight eightbyte chunks, one SSE and seven SSEUP. 2427 Lo = SSE; 2428 Hi = SSEUp; 2429 } 2430 return; 2431 } 2432 2433 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 2434 QualType ET = getContext().getCanonicalType(CT->getElementType()); 2435 2436 uint64_t Size = getContext().getTypeSize(Ty); 2437 if (ET->isIntegralOrEnumerationType()) { 2438 if (Size <= 64) 2439 Current = Integer; 2440 else if (Size <= 128) 2441 Lo = Hi = Integer; 2442 } else if (ET == getContext().FloatTy) { 2443 Current = SSE; 2444 } else if (ET == getContext().DoubleTy) { 2445 Lo = Hi = SSE; 2446 } else if (ET == getContext().LongDoubleTy) { 2447 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2448 if (LDF == &llvm::APFloat::IEEEquad) 2449 Current = Memory; 2450 else if (LDF == &llvm::APFloat::x87DoubleExtended) 2451 Current = ComplexX87; 2452 else if (LDF == &llvm::APFloat::IEEEdouble) 2453 Lo = Hi = SSE; 2454 else 2455 llvm_unreachable("unexpected long double representation!"); 2456 } 2457 2458 // If this complex type crosses an eightbyte boundary then it 2459 // should be split. 2460 uint64_t EB_Real = (OffsetBase) / 64; 2461 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 2462 if (Hi == NoClass && EB_Real != EB_Imag) 2463 Hi = Lo; 2464 2465 return; 2466 } 2467 2468 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 2469 // Arrays are treated like structures. 2470 2471 uint64_t Size = getContext().getTypeSize(Ty); 2472 2473 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2474 // than four eightbytes, ..., it has class MEMORY. 2475 if (Size > 256) 2476 return; 2477 2478 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 2479 // fields, it has class MEMORY. 2480 // 2481 // Only need to check alignment of array base. 2482 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 2483 return; 2484 2485 // Otherwise implement simplified merge. We could be smarter about 2486 // this, but it isn't worth it and would be harder to verify. 2487 Current = NoClass; 2488 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 2489 uint64_t ArraySize = AT->getSize().getZExtValue(); 2490 2491 // The only case a 256-bit wide vector could be used is when the array 2492 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2493 // to work for sizes wider than 128, early check and fallback to memory. 2494 if (Size > 128 && EltSize != 256) 2495 return; 2496 2497 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 2498 Class FieldLo, FieldHi; 2499 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 2500 Lo = merge(Lo, FieldLo); 2501 Hi = merge(Hi, FieldHi); 2502 if (Lo == Memory || Hi == Memory) 2503 break; 2504 } 2505 2506 postMerge(Size, Lo, Hi); 2507 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 2508 return; 2509 } 2510 2511 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2512 uint64_t Size = getContext().getTypeSize(Ty); 2513 2514 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2515 // than four eightbytes, ..., it has class MEMORY. 2516 if (Size > 256) 2517 return; 2518 2519 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 2520 // copy constructor or a non-trivial destructor, it is passed by invisible 2521 // reference. 2522 if (getRecordArgABI(RT, getCXXABI())) 2523 return; 2524 2525 const RecordDecl *RD = RT->getDecl(); 2526 2527 // Assume variable sized types are passed in memory. 2528 if (RD->hasFlexibleArrayMember()) 2529 return; 2530 2531 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2532 2533 // Reset Lo class, this will be recomputed. 2534 Current = NoClass; 2535 2536 // If this is a C++ record, classify the bases first. 2537 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2538 for (const auto &I : CXXRD->bases()) { 2539 assert(!I.isVirtual() && !I.getType()->isDependentType() && 2540 "Unexpected base class!"); 2541 const CXXRecordDecl *Base = 2542 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2543 2544 // Classify this field. 2545 // 2546 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 2547 // single eightbyte, each is classified separately. Each eightbyte gets 2548 // initialized to class NO_CLASS. 2549 Class FieldLo, FieldHi; 2550 uint64_t Offset = 2551 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 2552 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 2553 Lo = merge(Lo, FieldLo); 2554 Hi = merge(Hi, FieldHi); 2555 if (Lo == Memory || Hi == Memory) { 2556 postMerge(Size, Lo, Hi); 2557 return; 2558 } 2559 } 2560 } 2561 2562 // Classify the fields one at a time, merging the results. 2563 unsigned idx = 0; 2564 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2565 i != e; ++i, ++idx) { 2566 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2567 bool BitField = i->isBitField(); 2568 2569 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 2570 // four eightbytes, or it contains unaligned fields, it has class MEMORY. 2571 // 2572 // The only case a 256-bit wide vector could be used is when the struct 2573 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2574 // to work for sizes wider than 128, early check and fallback to memory. 2575 // 2576 if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) { 2577 Lo = Memory; 2578 postMerge(Size, Lo, Hi); 2579 return; 2580 } 2581 // Note, skip this test for bit-fields, see below. 2582 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 2583 Lo = Memory; 2584 postMerge(Size, Lo, Hi); 2585 return; 2586 } 2587 2588 // Classify this field. 2589 // 2590 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 2591 // exceeds a single eightbyte, each is classified 2592 // separately. Each eightbyte gets initialized to class 2593 // NO_CLASS. 2594 Class FieldLo, FieldHi; 2595 2596 // Bit-fields require special handling, they do not force the 2597 // structure to be passed in memory even if unaligned, and 2598 // therefore they can straddle an eightbyte. 2599 if (BitField) { 2600 // Ignore padding bit-fields. 2601 if (i->isUnnamedBitfield()) 2602 continue; 2603 2604 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2605 uint64_t Size = i->getBitWidthValue(getContext()); 2606 2607 uint64_t EB_Lo = Offset / 64; 2608 uint64_t EB_Hi = (Offset + Size - 1) / 64; 2609 2610 if (EB_Lo) { 2611 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 2612 FieldLo = NoClass; 2613 FieldHi = Integer; 2614 } else { 2615 FieldLo = Integer; 2616 FieldHi = EB_Hi ? Integer : NoClass; 2617 } 2618 } else 2619 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 2620 Lo = merge(Lo, FieldLo); 2621 Hi = merge(Hi, FieldHi); 2622 if (Lo == Memory || Hi == Memory) 2623 break; 2624 } 2625 2626 postMerge(Size, Lo, Hi); 2627 } 2628 } 2629 2630 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 2631 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2632 // place naturally. 2633 if (!isAggregateTypeForABI(Ty)) { 2634 // Treat an enum type as its underlying type. 2635 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2636 Ty = EnumTy->getDecl()->getIntegerType(); 2637 2638 return (Ty->isPromotableIntegerType() ? 2639 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 2640 } 2641 2642 return getNaturalAlignIndirect(Ty); 2643 } 2644 2645 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 2646 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 2647 uint64_t Size = getContext().getTypeSize(VecTy); 2648 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); 2649 if (Size <= 64 || Size > LargestVector) 2650 return true; 2651 } 2652 2653 return false; 2654 } 2655 2656 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 2657 unsigned freeIntRegs) const { 2658 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2659 // place naturally. 2660 // 2661 // This assumption is optimistic, as there could be free registers available 2662 // when we need to pass this argument in memory, and LLVM could try to pass 2663 // the argument in the free register. This does not seem to happen currently, 2664 // but this code would be much safer if we could mark the argument with 2665 // 'onstack'. See PR12193. 2666 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) { 2667 // Treat an enum type as its underlying type. 2668 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2669 Ty = EnumTy->getDecl()->getIntegerType(); 2670 2671 return (Ty->isPromotableIntegerType() ? 2672 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 2673 } 2674 2675 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 2676 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 2677 2678 // Compute the byval alignment. We specify the alignment of the byval in all 2679 // cases so that the mid-level optimizer knows the alignment of the byval. 2680 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 2681 2682 // Attempt to avoid passing indirect results using byval when possible. This 2683 // is important for good codegen. 2684 // 2685 // We do this by coercing the value into a scalar type which the backend can 2686 // handle naturally (i.e., without using byval). 2687 // 2688 // For simplicity, we currently only do this when we have exhausted all of the 2689 // free integer registers. Doing this when there are free integer registers 2690 // would require more care, as we would have to ensure that the coerced value 2691 // did not claim the unused register. That would require either reording the 2692 // arguments to the function (so that any subsequent inreg values came first), 2693 // or only doing this optimization when there were no following arguments that 2694 // might be inreg. 2695 // 2696 // We currently expect it to be rare (particularly in well written code) for 2697 // arguments to be passed on the stack when there are still free integer 2698 // registers available (this would typically imply large structs being passed 2699 // by value), so this seems like a fair tradeoff for now. 2700 // 2701 // We can revisit this if the backend grows support for 'onstack' parameter 2702 // attributes. See PR12193. 2703 if (freeIntRegs == 0) { 2704 uint64_t Size = getContext().getTypeSize(Ty); 2705 2706 // If this type fits in an eightbyte, coerce it into the matching integral 2707 // type, which will end up on the stack (with alignment 8). 2708 if (Align == 8 && Size <= 64) 2709 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 2710 Size)); 2711 } 2712 2713 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); 2714 } 2715 2716 /// The ABI specifies that a value should be passed in a full vector XMM/YMM 2717 /// register. Pick an LLVM IR type that will be passed as a vector register. 2718 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 2719 // Wrapper structs/arrays that only contain vectors are passed just like 2720 // vectors; strip them off if present. 2721 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) 2722 Ty = QualType(InnerTy, 0); 2723 2724 llvm::Type *IRType = CGT.ConvertType(Ty); 2725 if (isa<llvm::VectorType>(IRType) || 2726 IRType->getTypeID() == llvm::Type::FP128TyID) 2727 return IRType; 2728 2729 // We couldn't find the preferred IR vector type for 'Ty'. 2730 uint64_t Size = getContext().getTypeSize(Ty); 2731 assert((Size == 128 || Size == 256) && "Invalid type found!"); 2732 2733 // Return a LLVM IR vector type based on the size of 'Ty'. 2734 return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2735 Size / 64); 2736 } 2737 2738 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 2739 /// is known to either be off the end of the specified type or being in 2740 /// alignment padding. The user type specified is known to be at most 128 bits 2741 /// in size, and have passed through X86_64ABIInfo::classify with a successful 2742 /// classification that put one of the two halves in the INTEGER class. 2743 /// 2744 /// It is conservatively correct to return false. 2745 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 2746 unsigned EndBit, ASTContext &Context) { 2747 // If the bytes being queried are off the end of the type, there is no user 2748 // data hiding here. This handles analysis of builtins, vectors and other 2749 // types that don't contain interesting padding. 2750 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 2751 if (TySize <= StartBit) 2752 return true; 2753 2754 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 2755 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 2756 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 2757 2758 // Check each element to see if the element overlaps with the queried range. 2759 for (unsigned i = 0; i != NumElts; ++i) { 2760 // If the element is after the span we care about, then we're done.. 2761 unsigned EltOffset = i*EltSize; 2762 if (EltOffset >= EndBit) break; 2763 2764 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 2765 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 2766 EndBit-EltOffset, Context)) 2767 return false; 2768 } 2769 // If it overlaps no elements, then it is safe to process as padding. 2770 return true; 2771 } 2772 2773 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2774 const RecordDecl *RD = RT->getDecl(); 2775 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 2776 2777 // If this is a C++ record, check the bases first. 2778 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2779 for (const auto &I : CXXRD->bases()) { 2780 assert(!I.isVirtual() && !I.getType()->isDependentType() && 2781 "Unexpected base class!"); 2782 const CXXRecordDecl *Base = 2783 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2784 2785 // If the base is after the span we care about, ignore it. 2786 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 2787 if (BaseOffset >= EndBit) continue; 2788 2789 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 2790 if (!BitsContainNoUserData(I.getType(), BaseStart, 2791 EndBit-BaseOffset, Context)) 2792 return false; 2793 } 2794 } 2795 2796 // Verify that no field has data that overlaps the region of interest. Yes 2797 // this could be sped up a lot by being smarter about queried fields, 2798 // however we're only looking at structs up to 16 bytes, so we don't care 2799 // much. 2800 unsigned idx = 0; 2801 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2802 i != e; ++i, ++idx) { 2803 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 2804 2805 // If we found a field after the region we care about, then we're done. 2806 if (FieldOffset >= EndBit) break; 2807 2808 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 2809 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 2810 Context)) 2811 return false; 2812 } 2813 2814 // If nothing in this record overlapped the area of interest, then we're 2815 // clean. 2816 return true; 2817 } 2818 2819 return false; 2820 } 2821 2822 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a 2823 /// float member at the specified offset. For example, {int,{float}} has a 2824 /// float at offset 4. It is conservatively correct for this routine to return 2825 /// false. 2826 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, 2827 const llvm::DataLayout &TD) { 2828 // Base case if we find a float. 2829 if (IROffset == 0 && IRType->isFloatTy()) 2830 return true; 2831 2832 // If this is a struct, recurse into the field at the specified offset. 2833 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 2834 const llvm::StructLayout *SL = TD.getStructLayout(STy); 2835 unsigned Elt = SL->getElementContainingOffset(IROffset); 2836 IROffset -= SL->getElementOffset(Elt); 2837 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); 2838 } 2839 2840 // If this is an array, recurse into the field at the specified offset. 2841 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 2842 llvm::Type *EltTy = ATy->getElementType(); 2843 unsigned EltSize = TD.getTypeAllocSize(EltTy); 2844 IROffset -= IROffset/EltSize*EltSize; 2845 return ContainsFloatAtOffset(EltTy, IROffset, TD); 2846 } 2847 2848 return false; 2849 } 2850 2851 2852 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 2853 /// low 8 bytes of an XMM register, corresponding to the SSE class. 2854 llvm::Type *X86_64ABIInfo:: 2855 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 2856 QualType SourceTy, unsigned SourceOffset) const { 2857 // The only three choices we have are either double, <2 x float>, or float. We 2858 // pass as float if the last 4 bytes is just padding. This happens for 2859 // structs that contain 3 floats. 2860 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, 2861 SourceOffset*8+64, getContext())) 2862 return llvm::Type::getFloatTy(getVMContext()); 2863 2864 // We want to pass as <2 x float> if the LLVM IR type contains a float at 2865 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the 2866 // case. 2867 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && 2868 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) 2869 return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2); 2870 2871 return llvm::Type::getDoubleTy(getVMContext()); 2872 } 2873 2874 2875 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 2876 /// an 8-byte GPR. This means that we either have a scalar or we are talking 2877 /// about the high or low part of an up-to-16-byte struct. This routine picks 2878 /// the best LLVM IR type to represent this, which may be i64 or may be anything 2879 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 2880 /// etc). 2881 /// 2882 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 2883 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 2884 /// the 8-byte value references. PrefType may be null. 2885 /// 2886 /// SourceTy is the source-level type for the entire argument. SourceOffset is 2887 /// an offset into this that we're processing (which is always either 0 or 8). 2888 /// 2889 llvm::Type *X86_64ABIInfo:: 2890 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 2891 QualType SourceTy, unsigned SourceOffset) const { 2892 // If we're dealing with an un-offset LLVM IR type, then it means that we're 2893 // returning an 8-byte unit starting with it. See if we can safely use it. 2894 if (IROffset == 0) { 2895 // Pointers and int64's always fill the 8-byte unit. 2896 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 2897 IRType->isIntegerTy(64)) 2898 return IRType; 2899 2900 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 2901 // goodness in the source type is just tail padding. This is allowed to 2902 // kick in for struct {double,int} on the int, but not on 2903 // struct{double,int,int} because we wouldn't return the second int. We 2904 // have to do this analysis on the source type because we can't depend on 2905 // unions being lowered a specific way etc. 2906 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 2907 IRType->isIntegerTy(32) || 2908 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 2909 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 2910 cast<llvm::IntegerType>(IRType)->getBitWidth(); 2911 2912 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 2913 SourceOffset*8+64, getContext())) 2914 return IRType; 2915 } 2916 } 2917 2918 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 2919 // If this is a struct, recurse into the field at the specified offset. 2920 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 2921 if (IROffset < SL->getSizeInBytes()) { 2922 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 2923 IROffset -= SL->getElementOffset(FieldIdx); 2924 2925 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 2926 SourceTy, SourceOffset); 2927 } 2928 } 2929 2930 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 2931 llvm::Type *EltTy = ATy->getElementType(); 2932 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 2933 unsigned EltOffset = IROffset/EltSize*EltSize; 2934 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 2935 SourceOffset); 2936 } 2937 2938 // Okay, we don't have any better idea of what to pass, so we pass this in an 2939 // integer register that isn't too big to fit the rest of the struct. 2940 unsigned TySizeInBytes = 2941 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 2942 2943 assert(TySizeInBytes != SourceOffset && "Empty field?"); 2944 2945 // It is always safe to classify this as an integer type up to i64 that 2946 // isn't larger than the structure. 2947 return llvm::IntegerType::get(getVMContext(), 2948 std::min(TySizeInBytes-SourceOffset, 8U)*8); 2949 } 2950 2951 2952 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 2953 /// be used as elements of a two register pair to pass or return, return a 2954 /// first class aggregate to represent them. For example, if the low part of 2955 /// a by-value argument should be passed as i32* and the high part as float, 2956 /// return {i32*, float}. 2957 static llvm::Type * 2958 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 2959 const llvm::DataLayout &TD) { 2960 // In order to correctly satisfy the ABI, we need to the high part to start 2961 // at offset 8. If the high and low parts we inferred are both 4-byte types 2962 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 2963 // the second element at offset 8. Check for this: 2964 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 2965 unsigned HiAlign = TD.getABITypeAlignment(Hi); 2966 unsigned HiStart = llvm::alignTo(LoSize, HiAlign); 2967 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 2968 2969 // To handle this, we have to increase the size of the low part so that the 2970 // second element will start at an 8 byte offset. We can't increase the size 2971 // of the second element because it might make us access off the end of the 2972 // struct. 2973 if (HiStart != 8) { 2974 // There are usually two sorts of types the ABI generation code can produce 2975 // for the low part of a pair that aren't 8 bytes in size: float or 2976 // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and 2977 // NaCl). 2978 // Promote these to a larger type. 2979 if (Lo->isFloatTy()) 2980 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 2981 else { 2982 assert((Lo->isIntegerTy() || Lo->isPointerTy()) 2983 && "Invalid/unknown lo type"); 2984 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 2985 } 2986 } 2987 2988 llvm::StructType *Result = llvm::StructType::get(Lo, Hi, nullptr); 2989 2990 2991 // Verify that the second element is at an 8-byte offset. 2992 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 2993 "Invalid x86-64 argument pair!"); 2994 return Result; 2995 } 2996 2997 ABIArgInfo X86_64ABIInfo:: 2998 classifyReturnType(QualType RetTy) const { 2999 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 3000 // classification algorithm. 3001 X86_64ABIInfo::Class Lo, Hi; 3002 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 3003 3004 // Check some invariants. 3005 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3006 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3007 3008 llvm::Type *ResType = nullptr; 3009 switch (Lo) { 3010 case NoClass: 3011 if (Hi == NoClass) 3012 return ABIArgInfo::getIgnore(); 3013 // If the low part is just padding, it takes no register, leave ResType 3014 // null. 3015 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3016 "Unknown missing lo part"); 3017 break; 3018 3019 case SSEUp: 3020 case X87Up: 3021 llvm_unreachable("Invalid classification for lo word."); 3022 3023 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 3024 // hidden argument. 3025 case Memory: 3026 return getIndirectReturnResult(RetTy); 3027 3028 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 3029 // available register of the sequence %rax, %rdx is used. 3030 case Integer: 3031 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3032 3033 // If we have a sign or zero extended integer, make sure to return Extend 3034 // so that the parameter gets the right LLVM IR attributes. 3035 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3036 // Treat an enum type as its underlying type. 3037 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3038 RetTy = EnumTy->getDecl()->getIntegerType(); 3039 3040 if (RetTy->isIntegralOrEnumerationType() && 3041 RetTy->isPromotableIntegerType()) 3042 return ABIArgInfo::getExtend(); 3043 } 3044 break; 3045 3046 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 3047 // available SSE register of the sequence %xmm0, %xmm1 is used. 3048 case SSE: 3049 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3050 break; 3051 3052 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 3053 // returned on the X87 stack in %st0 as 80-bit x87 number. 3054 case X87: 3055 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 3056 break; 3057 3058 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 3059 // part of the value is returned in %st0 and the imaginary part in 3060 // %st1. 3061 case ComplexX87: 3062 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 3063 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 3064 llvm::Type::getX86_FP80Ty(getVMContext()), 3065 nullptr); 3066 break; 3067 } 3068 3069 llvm::Type *HighPart = nullptr; 3070 switch (Hi) { 3071 // Memory was handled previously and X87 should 3072 // never occur as a hi class. 3073 case Memory: 3074 case X87: 3075 llvm_unreachable("Invalid classification for hi word."); 3076 3077 case ComplexX87: // Previously handled. 3078 case NoClass: 3079 break; 3080 3081 case Integer: 3082 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3083 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3084 return ABIArgInfo::getDirect(HighPart, 8); 3085 break; 3086 case SSE: 3087 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3088 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3089 return ABIArgInfo::getDirect(HighPart, 8); 3090 break; 3091 3092 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 3093 // is passed in the next available eightbyte chunk if the last used 3094 // vector register. 3095 // 3096 // SSEUP should always be preceded by SSE, just widen. 3097 case SSEUp: 3098 assert(Lo == SSE && "Unexpected SSEUp classification."); 3099 ResType = GetByteVectorType(RetTy); 3100 break; 3101 3102 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 3103 // returned together with the previous X87 value in %st0. 3104 case X87Up: 3105 // If X87Up is preceded by X87, we don't need to do 3106 // anything. However, in some cases with unions it may not be 3107 // preceded by X87. In such situations we follow gcc and pass the 3108 // extra bits in an SSE reg. 3109 if (Lo != X87) { 3110 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3111 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3112 return ABIArgInfo::getDirect(HighPart, 8); 3113 } 3114 break; 3115 } 3116 3117 // If a high part was specified, merge it together with the low part. It is 3118 // known to pass in the high eightbyte of the result. We do this by forming a 3119 // first class struct aggregate with the high and low part: {low, high} 3120 if (HighPart) 3121 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3122 3123 return ABIArgInfo::getDirect(ResType); 3124 } 3125 3126 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 3127 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 3128 bool isNamedArg) 3129 const 3130 { 3131 Ty = useFirstFieldIfTransparentUnion(Ty); 3132 3133 X86_64ABIInfo::Class Lo, Hi; 3134 classify(Ty, 0, Lo, Hi, isNamedArg); 3135 3136 // Check some invariants. 3137 // FIXME: Enforce these by construction. 3138 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3139 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3140 3141 neededInt = 0; 3142 neededSSE = 0; 3143 llvm::Type *ResType = nullptr; 3144 switch (Lo) { 3145 case NoClass: 3146 if (Hi == NoClass) 3147 return ABIArgInfo::getIgnore(); 3148 // If the low part is just padding, it takes no register, leave ResType 3149 // null. 3150 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3151 "Unknown missing lo part"); 3152 break; 3153 3154 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 3155 // on the stack. 3156 case Memory: 3157 3158 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 3159 // COMPLEX_X87, it is passed in memory. 3160 case X87: 3161 case ComplexX87: 3162 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 3163 ++neededInt; 3164 return getIndirectResult(Ty, freeIntRegs); 3165 3166 case SSEUp: 3167 case X87Up: 3168 llvm_unreachable("Invalid classification for lo word."); 3169 3170 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 3171 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 3172 // and %r9 is used. 3173 case Integer: 3174 ++neededInt; 3175 3176 // Pick an 8-byte type based on the preferred type. 3177 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 3178 3179 // If we have a sign or zero extended integer, make sure to return Extend 3180 // so that the parameter gets the right LLVM IR attributes. 3181 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3182 // Treat an enum type as its underlying type. 3183 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3184 Ty = EnumTy->getDecl()->getIntegerType(); 3185 3186 if (Ty->isIntegralOrEnumerationType() && 3187 Ty->isPromotableIntegerType()) 3188 return ABIArgInfo::getExtend(); 3189 } 3190 3191 break; 3192 3193 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 3194 // available SSE register is used, the registers are taken in the 3195 // order from %xmm0 to %xmm7. 3196 case SSE: { 3197 llvm::Type *IRType = CGT.ConvertType(Ty); 3198 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 3199 ++neededSSE; 3200 break; 3201 } 3202 } 3203 3204 llvm::Type *HighPart = nullptr; 3205 switch (Hi) { 3206 // Memory was handled previously, ComplexX87 and X87 should 3207 // never occur as hi classes, and X87Up must be preceded by X87, 3208 // which is passed in memory. 3209 case Memory: 3210 case X87: 3211 case ComplexX87: 3212 llvm_unreachable("Invalid classification for hi word."); 3213 3214 case NoClass: break; 3215 3216 case Integer: 3217 ++neededInt; 3218 // Pick an 8-byte type based on the preferred type. 3219 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3220 3221 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3222 return ABIArgInfo::getDirect(HighPart, 8); 3223 break; 3224 3225 // X87Up generally doesn't occur here (long double is passed in 3226 // memory), except in situations involving unions. 3227 case X87Up: 3228 case SSE: 3229 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3230 3231 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3232 return ABIArgInfo::getDirect(HighPart, 8); 3233 3234 ++neededSSE; 3235 break; 3236 3237 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 3238 // eightbyte is passed in the upper half of the last used SSE 3239 // register. This only happens when 128-bit vectors are passed. 3240 case SSEUp: 3241 assert(Lo == SSE && "Unexpected SSEUp classification"); 3242 ResType = GetByteVectorType(Ty); 3243 break; 3244 } 3245 3246 // If a high part was specified, merge it together with the low part. It is 3247 // known to pass in the high eightbyte of the result. We do this by forming a 3248 // first class struct aggregate with the high and low part: {low, high} 3249 if (HighPart) 3250 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3251 3252 return ABIArgInfo::getDirect(ResType); 3253 } 3254 3255 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3256 3257 if (!getCXXABI().classifyReturnType(FI)) 3258 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3259 3260 // Keep track of the number of assigned registers. 3261 unsigned freeIntRegs = 6, freeSSERegs = 8; 3262 3263 // If the return value is indirect, then the hidden argument is consuming one 3264 // integer register. 3265 if (FI.getReturnInfo().isIndirect()) 3266 --freeIntRegs; 3267 3268 // The chain argument effectively gives us another free register. 3269 if (FI.isChainCall()) 3270 ++freeIntRegs; 3271 3272 unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 3273 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 3274 // get assigned (in left-to-right order) for passing as follows... 3275 unsigned ArgNo = 0; 3276 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3277 it != ie; ++it, ++ArgNo) { 3278 bool IsNamedArg = ArgNo < NumRequiredArgs; 3279 3280 unsigned neededInt, neededSSE; 3281 it->info = classifyArgumentType(it->type, freeIntRegs, neededInt, 3282 neededSSE, IsNamedArg); 3283 3284 // AMD64-ABI 3.2.3p3: If there are no registers available for any 3285 // eightbyte of an argument, the whole argument is passed on the 3286 // stack. If registers have already been assigned for some 3287 // eightbytes of such an argument, the assignments get reverted. 3288 if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) { 3289 freeIntRegs -= neededInt; 3290 freeSSERegs -= neededSSE; 3291 } else { 3292 it->info = getIndirectResult(it->type, freeIntRegs); 3293 } 3294 } 3295 } 3296 3297 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, 3298 Address VAListAddr, QualType Ty) { 3299 Address overflow_arg_area_p = CGF.Builder.CreateStructGEP( 3300 VAListAddr, 2, CharUnits::fromQuantity(8), "overflow_arg_area_p"); 3301 llvm::Value *overflow_arg_area = 3302 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 3303 3304 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 3305 // byte boundary if alignment needed by type exceeds 8 byte boundary. 3306 // It isn't stated explicitly in the standard, but in practice we use 3307 // alignment greater than 16 where necessary. 3308 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 3309 if (Align > CharUnits::fromQuantity(8)) { 3310 overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, 3311 Align); 3312 } 3313 3314 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 3315 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3316 llvm::Value *Res = 3317 CGF.Builder.CreateBitCast(overflow_arg_area, 3318 llvm::PointerType::getUnqual(LTy)); 3319 3320 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 3321 // l->overflow_arg_area + sizeof(type). 3322 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 3323 // an 8 byte boundary. 3324 3325 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 3326 llvm::Value *Offset = 3327 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 3328 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 3329 "overflow_arg_area.next"); 3330 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 3331 3332 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 3333 return Address(Res, Align); 3334 } 3335 3336 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3337 QualType Ty) const { 3338 // Assume that va_list type is correct; should be pointer to LLVM type: 3339 // struct { 3340 // i32 gp_offset; 3341 // i32 fp_offset; 3342 // i8* overflow_arg_area; 3343 // i8* reg_save_area; 3344 // }; 3345 unsigned neededInt, neededSSE; 3346 3347 Ty = getContext().getCanonicalType(Ty); 3348 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 3349 /*isNamedArg*/false); 3350 3351 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 3352 // in the registers. If not go to step 7. 3353 if (!neededInt && !neededSSE) 3354 return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3355 3356 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 3357 // general purpose registers needed to pass type and num_fp to hold 3358 // the number of floating point registers needed. 3359 3360 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 3361 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 3362 // l->fp_offset > 304 - num_fp * 16 go to step 7. 3363 // 3364 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 3365 // register save space). 3366 3367 llvm::Value *InRegs = nullptr; 3368 Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); 3369 llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; 3370 if (neededInt) { 3371 gp_offset_p = 3372 CGF.Builder.CreateStructGEP(VAListAddr, 0, CharUnits::Zero(), 3373 "gp_offset_p"); 3374 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 3375 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 3376 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 3377 } 3378 3379 if (neededSSE) { 3380 fp_offset_p = 3381 CGF.Builder.CreateStructGEP(VAListAddr, 1, CharUnits::fromQuantity(4), 3382 "fp_offset_p"); 3383 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 3384 llvm::Value *FitsInFP = 3385 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 3386 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 3387 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 3388 } 3389 3390 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 3391 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 3392 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 3393 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 3394 3395 // Emit code to load the value if it was passed in registers. 3396 3397 CGF.EmitBlock(InRegBlock); 3398 3399 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 3400 // an offset of l->gp_offset and/or l->fp_offset. This may require 3401 // copying to a temporary location in case the parameter is passed 3402 // in different register classes or requires an alignment greater 3403 // than 8 for general purpose registers and 16 for XMM registers. 3404 // 3405 // FIXME: This really results in shameful code when we end up needing to 3406 // collect arguments from different places; often what should result in a 3407 // simple assembling of a structure from scattered addresses has many more 3408 // loads than necessary. Can we clean this up? 3409 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3410 llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( 3411 CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(16)), 3412 "reg_save_area"); 3413 3414 Address RegAddr = Address::invalid(); 3415 if (neededInt && neededSSE) { 3416 // FIXME: Cleanup. 3417 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 3418 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 3419 Address Tmp = CGF.CreateMemTemp(Ty); 3420 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3421 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 3422 llvm::Type *TyLo = ST->getElementType(0); 3423 llvm::Type *TyHi = ST->getElementType(1); 3424 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 3425 "Unexpected ABI info for mixed regs"); 3426 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 3427 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 3428 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset); 3429 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset); 3430 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 3431 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 3432 3433 // Copy the first element. 3434 llvm::Value *V = 3435 CGF.Builder.CreateDefaultAlignedLoad( 3436 CGF.Builder.CreateBitCast(RegLoAddr, PTyLo)); 3437 CGF.Builder.CreateStore(V, 3438 CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero())); 3439 3440 // Copy the second element. 3441 V = CGF.Builder.CreateDefaultAlignedLoad( 3442 CGF.Builder.CreateBitCast(RegHiAddr, PTyHi)); 3443 CharUnits Offset = CharUnits::fromQuantity( 3444 getDataLayout().getStructLayout(ST)->getElementOffset(1)); 3445 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1, Offset)); 3446 3447 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3448 } else if (neededInt) { 3449 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset), 3450 CharUnits::fromQuantity(8)); 3451 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3452 3453 // Copy to a temporary if necessary to ensure the appropriate alignment. 3454 std::pair<CharUnits, CharUnits> SizeAlign = 3455 getContext().getTypeInfoInChars(Ty); 3456 uint64_t TySize = SizeAlign.first.getQuantity(); 3457 CharUnits TyAlign = SizeAlign.second; 3458 3459 // Copy into a temporary if the type is more aligned than the 3460 // register save area. 3461 if (TyAlign.getQuantity() > 8) { 3462 Address Tmp = CGF.CreateMemTemp(Ty); 3463 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); 3464 RegAddr = Tmp; 3465 } 3466 3467 } else if (neededSSE == 1) { 3468 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3469 CharUnits::fromQuantity(16)); 3470 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3471 } else { 3472 assert(neededSSE == 2 && "Invalid number of needed registers!"); 3473 // SSE registers are spaced 16 bytes apart in the register save 3474 // area, we need to collect the two eightbytes together. 3475 // The ABI isn't explicit about this, but it seems reasonable 3476 // to assume that the slots are 16-byte aligned, since the stack is 3477 // naturally 16-byte aligned and the prologue is expected to store 3478 // all the SSE registers to the RSA. 3479 Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3480 CharUnits::fromQuantity(16)); 3481 Address RegAddrHi = 3482 CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, 3483 CharUnits::fromQuantity(16)); 3484 llvm::Type *DoubleTy = CGF.DoubleTy; 3485 llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, nullptr); 3486 llvm::Value *V; 3487 Address Tmp = CGF.CreateMemTemp(Ty); 3488 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3489 V = CGF.Builder.CreateLoad( 3490 CGF.Builder.CreateElementBitCast(RegAddrLo, DoubleTy)); 3491 CGF.Builder.CreateStore(V, 3492 CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero())); 3493 V = CGF.Builder.CreateLoad( 3494 CGF.Builder.CreateElementBitCast(RegAddrHi, DoubleTy)); 3495 CGF.Builder.CreateStore(V, 3496 CGF.Builder.CreateStructGEP(Tmp, 1, CharUnits::fromQuantity(8))); 3497 3498 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3499 } 3500 3501 // AMD64-ABI 3.5.7p5: Step 5. Set: 3502 // l->gp_offset = l->gp_offset + num_gp * 8 3503 // l->fp_offset = l->fp_offset + num_fp * 16. 3504 if (neededInt) { 3505 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 3506 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 3507 gp_offset_p); 3508 } 3509 if (neededSSE) { 3510 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 3511 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 3512 fp_offset_p); 3513 } 3514 CGF.EmitBranch(ContBlock); 3515 3516 // Emit code to load the value if it was passed in memory. 3517 3518 CGF.EmitBlock(InMemBlock); 3519 Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3520 3521 // Return the appropriate result. 3522 3523 CGF.EmitBlock(ContBlock); 3524 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, 3525 "vaarg.addr"); 3526 return ResAddr; 3527 } 3528 3529 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 3530 QualType Ty) const { 3531 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 3532 CGF.getContext().getTypeInfoInChars(Ty), 3533 CharUnits::fromQuantity(8), 3534 /*allowHigherAlign*/ false); 3535 } 3536 3537 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 3538 bool IsReturnType) const { 3539 3540 if (Ty->isVoidType()) 3541 return ABIArgInfo::getIgnore(); 3542 3543 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3544 Ty = EnumTy->getDecl()->getIntegerType(); 3545 3546 TypeInfo Info = getContext().getTypeInfo(Ty); 3547 uint64_t Width = Info.Width; 3548 CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); 3549 3550 const RecordType *RT = Ty->getAs<RecordType>(); 3551 if (RT) { 3552 if (!IsReturnType) { 3553 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 3554 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 3555 } 3556 3557 if (RT->getDecl()->hasFlexibleArrayMember()) 3558 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 3559 3560 } 3561 3562 // vectorcall adds the concept of a homogenous vector aggregate, similar to 3563 // other targets. 3564 const Type *Base = nullptr; 3565 uint64_t NumElts = 0; 3566 if (FreeSSERegs && isHomogeneousAggregate(Ty, Base, NumElts)) { 3567 if (FreeSSERegs >= NumElts) { 3568 FreeSSERegs -= NumElts; 3569 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 3570 return ABIArgInfo::getDirect(); 3571 return ABIArgInfo::getExpand(); 3572 } 3573 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3574 } 3575 3576 3577 if (Ty->isMemberPointerType()) { 3578 // If the member pointer is represented by an LLVM int or ptr, pass it 3579 // directly. 3580 llvm::Type *LLTy = CGT.ConvertType(Ty); 3581 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 3582 return ABIArgInfo::getDirect(); 3583 } 3584 3585 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { 3586 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 3587 // not 1, 2, 4, or 8 bytes, must be passed by reference." 3588 if (Width > 64 || !llvm::isPowerOf2_64(Width)) 3589 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 3590 3591 // Otherwise, coerce it to a small integer. 3592 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 3593 } 3594 3595 // Bool type is always extended to the ABI, other builtin types are not 3596 // extended. 3597 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 3598 if (BT && BT->getKind() == BuiltinType::Bool) 3599 return ABIArgInfo::getExtend(); 3600 3601 // Mingw64 GCC uses the old 80 bit extended precision floating point unit. It 3602 // passes them indirectly through memory. 3603 if (IsMingw64 && BT && BT->getKind() == BuiltinType::LongDouble) { 3604 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 3605 if (LDF == &llvm::APFloat::x87DoubleExtended) 3606 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3607 } 3608 3609 return ABIArgInfo::getDirect(); 3610 } 3611 3612 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3613 bool IsVectorCall = 3614 FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall; 3615 3616 // We can use up to 4 SSE return registers with vectorcall. 3617 unsigned FreeSSERegs = IsVectorCall ? 4 : 0; 3618 if (!getCXXABI().classifyReturnType(FI)) 3619 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true); 3620 3621 // We can use up to 6 SSE register parameters with vectorcall. 3622 FreeSSERegs = IsVectorCall ? 6 : 0; 3623 for (auto &I : FI.arguments()) 3624 I.info = classify(I.type, FreeSSERegs, false); 3625 } 3626 3627 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3628 QualType Ty) const { 3629 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 3630 CGF.getContext().getTypeInfoInChars(Ty), 3631 CharUnits::fromQuantity(8), 3632 /*allowHigherAlign*/ false); 3633 } 3634 3635 // PowerPC-32 3636 namespace { 3637 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. 3638 class PPC32_SVR4_ABIInfo : public DefaultABIInfo { 3639 bool IsSoftFloatABI; 3640 public: 3641 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI) 3642 : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI) {} 3643 3644 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3645 QualType Ty) const override; 3646 }; 3647 3648 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { 3649 public: 3650 PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI) 3651 : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT, SoftFloatABI)) {} 3652 3653 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 3654 // This is recovered from gcc output. 3655 return 1; // r1 is the dedicated stack pointer 3656 } 3657 3658 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3659 llvm::Value *Address) const override; 3660 }; 3661 3662 } 3663 3664 // TODO: this implementation is now likely redundant with 3665 // DefaultABIInfo::EmitVAArg. 3666 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList, 3667 QualType Ty) const { 3668 const unsigned OverflowLimit = 8; 3669 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 3670 // TODO: Implement this. For now ignore. 3671 (void)CTy; 3672 return Address::invalid(); // FIXME? 3673 } 3674 3675 // struct __va_list_tag { 3676 // unsigned char gpr; 3677 // unsigned char fpr; 3678 // unsigned short reserved; 3679 // void *overflow_arg_area; 3680 // void *reg_save_area; 3681 // }; 3682 3683 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; 3684 bool isInt = 3685 Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType(); 3686 bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64; 3687 3688 // All aggregates are passed indirectly? That doesn't seem consistent 3689 // with the argument-lowering code. 3690 bool isIndirect = Ty->isAggregateType(); 3691 3692 CGBuilderTy &Builder = CGF.Builder; 3693 3694 // The calling convention either uses 1-2 GPRs or 1 FPR. 3695 Address NumRegsAddr = Address::invalid(); 3696 if (isInt || IsSoftFloatABI) { 3697 NumRegsAddr = Builder.CreateStructGEP(VAList, 0, CharUnits::Zero(), "gpr"); 3698 } else { 3699 NumRegsAddr = Builder.CreateStructGEP(VAList, 1, CharUnits::One(), "fpr"); 3700 } 3701 3702 llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs"); 3703 3704 // "Align" the register count when TY is i64. 3705 if (isI64 || (isF64 && IsSoftFloatABI)) { 3706 NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1)); 3707 NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U)); 3708 } 3709 3710 llvm::Value *CC = 3711 Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond"); 3712 3713 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); 3714 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); 3715 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 3716 3717 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); 3718 3719 llvm::Type *DirectTy = CGF.ConvertType(Ty); 3720 if (isIndirect) DirectTy = DirectTy->getPointerTo(0); 3721 3722 // Case 1: consume registers. 3723 Address RegAddr = Address::invalid(); 3724 { 3725 CGF.EmitBlock(UsingRegs); 3726 3727 Address RegSaveAreaPtr = 3728 Builder.CreateStructGEP(VAList, 4, CharUnits::fromQuantity(8)); 3729 RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr), 3730 CharUnits::fromQuantity(8)); 3731 assert(RegAddr.getElementType() == CGF.Int8Ty); 3732 3733 // Floating-point registers start after the general-purpose registers. 3734 if (!(isInt || IsSoftFloatABI)) { 3735 RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr, 3736 CharUnits::fromQuantity(32)); 3737 } 3738 3739 // Get the address of the saved value by scaling the number of 3740 // registers we've used by the number of 3741 CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8); 3742 llvm::Value *RegOffset = 3743 Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity())); 3744 RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty, 3745 RegAddr.getPointer(), RegOffset), 3746 RegAddr.getAlignment().alignmentOfArrayElement(RegSize)); 3747 RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy); 3748 3749 // Increase the used-register count. 3750 NumRegs = 3751 Builder.CreateAdd(NumRegs, 3752 Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1)); 3753 Builder.CreateStore(NumRegs, NumRegsAddr); 3754 3755 CGF.EmitBranch(Cont); 3756 } 3757 3758 // Case 2: consume space in the overflow area. 3759 Address MemAddr = Address::invalid(); 3760 { 3761 CGF.EmitBlock(UsingOverflow); 3762 3763 Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr); 3764 3765 // Everything in the overflow area is rounded up to a size of at least 4. 3766 CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4); 3767 3768 CharUnits Size; 3769 if (!isIndirect) { 3770 auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty); 3771 Size = TypeInfo.first.alignTo(OverflowAreaAlign); 3772 } else { 3773 Size = CGF.getPointerSize(); 3774 } 3775 3776 Address OverflowAreaAddr = 3777 Builder.CreateStructGEP(VAList, 3, CharUnits::fromQuantity(4)); 3778 Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), 3779 OverflowAreaAlign); 3780 // Round up address of argument to alignment 3781 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 3782 if (Align > OverflowAreaAlign) { 3783 llvm::Value *Ptr = OverflowArea.getPointer(); 3784 OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align), 3785 Align); 3786 } 3787 3788 MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy); 3789 3790 // Increase the overflow area. 3791 OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size); 3792 Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr); 3793 CGF.EmitBranch(Cont); 3794 } 3795 3796 CGF.EmitBlock(Cont); 3797 3798 // Merge the cases with a phi. 3799 Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow, 3800 "vaarg.addr"); 3801 3802 // Load the pointer if the argument was passed indirectly. 3803 if (isIndirect) { 3804 Result = Address(Builder.CreateLoad(Result, "aggr"), 3805 getContext().getTypeAlignInChars(Ty)); 3806 } 3807 3808 return Result; 3809 } 3810 3811 bool 3812 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3813 llvm::Value *Address) const { 3814 // This is calculated from the LLVM and GCC tables and verified 3815 // against gcc output. AFAIK all ABIs use the same encoding. 3816 3817 CodeGen::CGBuilderTy &Builder = CGF.Builder; 3818 3819 llvm::IntegerType *i8 = CGF.Int8Ty; 3820 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 3821 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 3822 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 3823 3824 // 0-31: r0-31, the 4-byte general-purpose registers 3825 AssignToArrayRange(Builder, Address, Four8, 0, 31); 3826 3827 // 32-63: fp0-31, the 8-byte floating-point registers 3828 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 3829 3830 // 64-76 are various 4-byte special-purpose registers: 3831 // 64: mq 3832 // 65: lr 3833 // 66: ctr 3834 // 67: ap 3835 // 68-75 cr0-7 3836 // 76: xer 3837 AssignToArrayRange(Builder, Address, Four8, 64, 76); 3838 3839 // 77-108: v0-31, the 16-byte vector registers 3840 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 3841 3842 // 109: vrsave 3843 // 110: vscr 3844 // 111: spe_acc 3845 // 112: spefscr 3846 // 113: sfp 3847 AssignToArrayRange(Builder, Address, Four8, 109, 113); 3848 3849 return false; 3850 } 3851 3852 // PowerPC-64 3853 3854 namespace { 3855 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 3856 class PPC64_SVR4_ABIInfo : public ABIInfo { 3857 public: 3858 enum ABIKind { 3859 ELFv1 = 0, 3860 ELFv2 3861 }; 3862 3863 private: 3864 static const unsigned GPRBits = 64; 3865 ABIKind Kind; 3866 bool HasQPX; 3867 3868 // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and 3869 // will be passed in a QPX register. 3870 bool IsQPXVectorTy(const Type *Ty) const { 3871 if (!HasQPX) 3872 return false; 3873 3874 if (const VectorType *VT = Ty->getAs<VectorType>()) { 3875 unsigned NumElements = VT->getNumElements(); 3876 if (NumElements == 1) 3877 return false; 3878 3879 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) { 3880 if (getContext().getTypeSize(Ty) <= 256) 3881 return true; 3882 } else if (VT->getElementType()-> 3883 isSpecificBuiltinType(BuiltinType::Float)) { 3884 if (getContext().getTypeSize(Ty) <= 128) 3885 return true; 3886 } 3887 } 3888 3889 return false; 3890 } 3891 3892 bool IsQPXVectorTy(QualType Ty) const { 3893 return IsQPXVectorTy(Ty.getTypePtr()); 3894 } 3895 3896 public: 3897 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX) 3898 : ABIInfo(CGT), Kind(Kind), HasQPX(HasQPX) {} 3899 3900 bool isPromotableTypeForABI(QualType Ty) const; 3901 CharUnits getParamTypeAlignment(QualType Ty) const; 3902 3903 ABIArgInfo classifyReturnType(QualType RetTy) const; 3904 ABIArgInfo classifyArgumentType(QualType Ty) const; 3905 3906 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 3907 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 3908 uint64_t Members) const override; 3909 3910 // TODO: We can add more logic to computeInfo to improve performance. 3911 // Example: For aggregate arguments that fit in a register, we could 3912 // use getDirectInReg (as is done below for structs containing a single 3913 // floating-point value) to avoid pushing them to memory on function 3914 // entry. This would require changing the logic in PPCISelLowering 3915 // when lowering the parameters in the caller and args in the callee. 3916 void computeInfo(CGFunctionInfo &FI) const override { 3917 if (!getCXXABI().classifyReturnType(FI)) 3918 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3919 for (auto &I : FI.arguments()) { 3920 // We rely on the default argument classification for the most part. 3921 // One exception: An aggregate containing a single floating-point 3922 // or vector item must be passed in a register if one is available. 3923 const Type *T = isSingleElementStruct(I.type, getContext()); 3924 if (T) { 3925 const BuiltinType *BT = T->getAs<BuiltinType>(); 3926 if (IsQPXVectorTy(T) || 3927 (T->isVectorType() && getContext().getTypeSize(T) == 128) || 3928 (BT && BT->isFloatingPoint())) { 3929 QualType QT(T, 0); 3930 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 3931 continue; 3932 } 3933 } 3934 I.info = classifyArgumentType(I.type); 3935 } 3936 } 3937 3938 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3939 QualType Ty) const override; 3940 }; 3941 3942 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 3943 3944 public: 3945 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 3946 PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX) 3947 : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX)) {} 3948 3949 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 3950 // This is recovered from gcc output. 3951 return 1; // r1 is the dedicated stack pointer 3952 } 3953 3954 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3955 llvm::Value *Address) const override; 3956 }; 3957 3958 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 3959 public: 3960 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 3961 3962 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 3963 // This is recovered from gcc output. 3964 return 1; // r1 is the dedicated stack pointer 3965 } 3966 3967 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3968 llvm::Value *Address) const override; 3969 }; 3970 3971 } 3972 3973 // Return true if the ABI requires Ty to be passed sign- or zero- 3974 // extended to 64 bits. 3975 bool 3976 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 3977 // Treat an enum type as its underlying type. 3978 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3979 Ty = EnumTy->getDecl()->getIntegerType(); 3980 3981 // Promotable integer types are required to be promoted by the ABI. 3982 if (Ty->isPromotableIntegerType()) 3983 return true; 3984 3985 // In addition to the usual promotable integer types, we also need to 3986 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 3987 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 3988 switch (BT->getKind()) { 3989 case BuiltinType::Int: 3990 case BuiltinType::UInt: 3991 return true; 3992 default: 3993 break; 3994 } 3995 3996 return false; 3997 } 3998 3999 /// isAlignedParamType - Determine whether a type requires 16-byte or 4000 /// higher alignment in the parameter area. Always returns at least 8. 4001 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4002 // Complex types are passed just like their elements. 4003 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4004 Ty = CTy->getElementType(); 4005 4006 // Only vector types of size 16 bytes need alignment (larger types are 4007 // passed via reference, smaller types are not aligned). 4008 if (IsQPXVectorTy(Ty)) { 4009 if (getContext().getTypeSize(Ty) > 128) 4010 return CharUnits::fromQuantity(32); 4011 4012 return CharUnits::fromQuantity(16); 4013 } else if (Ty->isVectorType()) { 4014 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8); 4015 } 4016 4017 // For single-element float/vector structs, we consider the whole type 4018 // to have the same alignment requirements as its single element. 4019 const Type *AlignAsType = nullptr; 4020 const Type *EltType = isSingleElementStruct(Ty, getContext()); 4021 if (EltType) { 4022 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4023 if (IsQPXVectorTy(EltType) || (EltType->isVectorType() && 4024 getContext().getTypeSize(EltType) == 128) || 4025 (BT && BT->isFloatingPoint())) 4026 AlignAsType = EltType; 4027 } 4028 4029 // Likewise for ELFv2 homogeneous aggregates. 4030 const Type *Base = nullptr; 4031 uint64_t Members = 0; 4032 if (!AlignAsType && Kind == ELFv2 && 4033 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 4034 AlignAsType = Base; 4035 4036 // With special case aggregates, only vector base types need alignment. 4037 if (AlignAsType && IsQPXVectorTy(AlignAsType)) { 4038 if (getContext().getTypeSize(AlignAsType) > 128) 4039 return CharUnits::fromQuantity(32); 4040 4041 return CharUnits::fromQuantity(16); 4042 } else if (AlignAsType) { 4043 return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8); 4044 } 4045 4046 // Otherwise, we only need alignment for any aggregate type that 4047 // has an alignment requirement of >= 16 bytes. 4048 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { 4049 if (HasQPX && getContext().getTypeAlign(Ty) >= 256) 4050 return CharUnits::fromQuantity(32); 4051 return CharUnits::fromQuantity(16); 4052 } 4053 4054 return CharUnits::fromQuantity(8); 4055 } 4056 4057 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 4058 /// aggregate. Base is set to the base element type, and Members is set 4059 /// to the number of base elements. 4060 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 4061 uint64_t &Members) const { 4062 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 4063 uint64_t NElements = AT->getSize().getZExtValue(); 4064 if (NElements == 0) 4065 return false; 4066 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 4067 return false; 4068 Members *= NElements; 4069 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 4070 const RecordDecl *RD = RT->getDecl(); 4071 if (RD->hasFlexibleArrayMember()) 4072 return false; 4073 4074 Members = 0; 4075 4076 // If this is a C++ record, check the bases first. 4077 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 4078 for (const auto &I : CXXRD->bases()) { 4079 // Ignore empty records. 4080 if (isEmptyRecord(getContext(), I.getType(), true)) 4081 continue; 4082 4083 uint64_t FldMembers; 4084 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) 4085 return false; 4086 4087 Members += FldMembers; 4088 } 4089 } 4090 4091 for (const auto *FD : RD->fields()) { 4092 // Ignore (non-zero arrays of) empty records. 4093 QualType FT = FD->getType(); 4094 while (const ConstantArrayType *AT = 4095 getContext().getAsConstantArrayType(FT)) { 4096 if (AT->getSize().getZExtValue() == 0) 4097 return false; 4098 FT = AT->getElementType(); 4099 } 4100 if (isEmptyRecord(getContext(), FT, true)) 4101 continue; 4102 4103 // For compatibility with GCC, ignore empty bitfields in C++ mode. 4104 if (getContext().getLangOpts().CPlusPlus && 4105 FD->isBitField() && FD->getBitWidthValue(getContext()) == 0) 4106 continue; 4107 4108 uint64_t FldMembers; 4109 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 4110 return false; 4111 4112 Members = (RD->isUnion() ? 4113 std::max(Members, FldMembers) : Members + FldMembers); 4114 } 4115 4116 if (!Base) 4117 return false; 4118 4119 // Ensure there is no padding. 4120 if (getContext().getTypeSize(Base) * Members != 4121 getContext().getTypeSize(Ty)) 4122 return false; 4123 } else { 4124 Members = 1; 4125 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 4126 Members = 2; 4127 Ty = CT->getElementType(); 4128 } 4129 4130 // Most ABIs only support float, double, and some vector type widths. 4131 if (!isHomogeneousAggregateBaseType(Ty)) 4132 return false; 4133 4134 // The base type must be the same for all members. Types that 4135 // agree in both total size and mode (float vs. vector) are 4136 // treated as being equivalent here. 4137 const Type *TyPtr = Ty.getTypePtr(); 4138 if (!Base) { 4139 Base = TyPtr; 4140 // If it's a non-power-of-2 vector, its size is already a power-of-2, 4141 // so make sure to widen it explicitly. 4142 if (const VectorType *VT = Base->getAs<VectorType>()) { 4143 QualType EltTy = VT->getElementType(); 4144 unsigned NumElements = 4145 getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy); 4146 Base = getContext() 4147 .getVectorType(EltTy, NumElements, VT->getVectorKind()) 4148 .getTypePtr(); 4149 } 4150 } 4151 4152 if (Base->isVectorType() != TyPtr->isVectorType() || 4153 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 4154 return false; 4155 } 4156 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); 4157 } 4158 4159 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 4160 // Homogeneous aggregates for ELFv2 must have base types of float, 4161 // double, long double, or 128-bit vectors. 4162 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4163 if (BT->getKind() == BuiltinType::Float || 4164 BT->getKind() == BuiltinType::Double || 4165 BT->getKind() == BuiltinType::LongDouble) 4166 return true; 4167 } 4168 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4169 if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty)) 4170 return true; 4171 } 4172 return false; 4173 } 4174 4175 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( 4176 const Type *Base, uint64_t Members) const { 4177 // Vector types require one register, floating point types require one 4178 // or two registers depending on their size. 4179 uint32_t NumRegs = 4180 Base->isVectorType() ? 1 : (getContext().getTypeSize(Base) + 63) / 64; 4181 4182 // Homogeneous Aggregates may occupy at most 8 registers. 4183 return Members * NumRegs <= 8; 4184 } 4185 4186 ABIArgInfo 4187 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 4188 Ty = useFirstFieldIfTransparentUnion(Ty); 4189 4190 if (Ty->isAnyComplexType()) 4191 return ABIArgInfo::getDirect(); 4192 4193 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 4194 // or via reference (larger than 16 bytes). 4195 if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) { 4196 uint64_t Size = getContext().getTypeSize(Ty); 4197 if (Size > 128) 4198 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4199 else if (Size < 128) { 4200 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 4201 return ABIArgInfo::getDirect(CoerceTy); 4202 } 4203 } 4204 4205 if (isAggregateTypeForABI(Ty)) { 4206 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 4207 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4208 4209 uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity(); 4210 uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 4211 4212 // ELFv2 homogeneous aggregates are passed as array types. 4213 const Type *Base = nullptr; 4214 uint64_t Members = 0; 4215 if (Kind == ELFv2 && 4216 isHomogeneousAggregate(Ty, Base, Members)) { 4217 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 4218 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 4219 return ABIArgInfo::getDirect(CoerceTy); 4220 } 4221 4222 // If an aggregate may end up fully in registers, we do not 4223 // use the ByVal method, but pass the aggregate as array. 4224 // This is usually beneficial since we avoid forcing the 4225 // back-end to store the argument to memory. 4226 uint64_t Bits = getContext().getTypeSize(Ty); 4227 if (Bits > 0 && Bits <= 8 * GPRBits) { 4228 llvm::Type *CoerceTy; 4229 4230 // Types up to 8 bytes are passed as integer type (which will be 4231 // properly aligned in the argument save area doubleword). 4232 if (Bits <= GPRBits) 4233 CoerceTy = 4234 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 4235 // Larger types are passed as arrays, with the base type selected 4236 // according to the required alignment in the save area. 4237 else { 4238 uint64_t RegBits = ABIAlign * 8; 4239 uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits; 4240 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 4241 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 4242 } 4243 4244 return ABIArgInfo::getDirect(CoerceTy); 4245 } 4246 4247 // All other aggregates are passed ByVal. 4248 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 4249 /*ByVal=*/true, 4250 /*Realign=*/TyAlign > ABIAlign); 4251 } 4252 4253 return (isPromotableTypeForABI(Ty) ? 4254 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 4255 } 4256 4257 ABIArgInfo 4258 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 4259 if (RetTy->isVoidType()) 4260 return ABIArgInfo::getIgnore(); 4261 4262 if (RetTy->isAnyComplexType()) 4263 return ABIArgInfo::getDirect(); 4264 4265 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 4266 // or via reference (larger than 16 bytes). 4267 if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) { 4268 uint64_t Size = getContext().getTypeSize(RetTy); 4269 if (Size > 128) 4270 return getNaturalAlignIndirect(RetTy); 4271 else if (Size < 128) { 4272 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 4273 return ABIArgInfo::getDirect(CoerceTy); 4274 } 4275 } 4276 4277 if (isAggregateTypeForABI(RetTy)) { 4278 // ELFv2 homogeneous aggregates are returned as array types. 4279 const Type *Base = nullptr; 4280 uint64_t Members = 0; 4281 if (Kind == ELFv2 && 4282 isHomogeneousAggregate(RetTy, Base, Members)) { 4283 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 4284 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 4285 return ABIArgInfo::getDirect(CoerceTy); 4286 } 4287 4288 // ELFv2 small aggregates are returned in up to two registers. 4289 uint64_t Bits = getContext().getTypeSize(RetTy); 4290 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 4291 if (Bits == 0) 4292 return ABIArgInfo::getIgnore(); 4293 4294 llvm::Type *CoerceTy; 4295 if (Bits > GPRBits) { 4296 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 4297 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy, nullptr); 4298 } else 4299 CoerceTy = 4300 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 4301 return ABIArgInfo::getDirect(CoerceTy); 4302 } 4303 4304 // All other aggregates are returned indirectly. 4305 return getNaturalAlignIndirect(RetTy); 4306 } 4307 4308 return (isPromotableTypeForABI(RetTy) ? 4309 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 4310 } 4311 4312 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 4313 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4314 QualType Ty) const { 4315 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 4316 TypeInfo.second = getParamTypeAlignment(Ty); 4317 4318 CharUnits SlotSize = CharUnits::fromQuantity(8); 4319 4320 // If we have a complex type and the base type is smaller than 8 bytes, 4321 // the ABI calls for the real and imaginary parts to be right-adjusted 4322 // in separate doublewords. However, Clang expects us to produce a 4323 // pointer to a structure with the two parts packed tightly. So generate 4324 // loads of the real and imaginary parts relative to the va_list pointer, 4325 // and store them to a temporary structure. 4326 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4327 CharUnits EltSize = TypeInfo.first / 2; 4328 if (EltSize < SlotSize) { 4329 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, 4330 SlotSize * 2, SlotSize, 4331 SlotSize, /*AllowHigher*/ true); 4332 4333 Address RealAddr = Addr; 4334 Address ImagAddr = RealAddr; 4335 if (CGF.CGM.getDataLayout().isBigEndian()) { 4336 RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, 4337 SlotSize - EltSize); 4338 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr, 4339 2 * SlotSize - EltSize); 4340 } else { 4341 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize); 4342 } 4343 4344 llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType()); 4345 RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy); 4346 ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy); 4347 llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal"); 4348 llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag"); 4349 4350 Address Temp = CGF.CreateMemTemp(Ty, "vacplx"); 4351 CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty), 4352 /*init*/ true); 4353 return Temp; 4354 } 4355 } 4356 4357 // Otherwise, just use the general rule. 4358 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 4359 TypeInfo, SlotSize, /*AllowHigher*/ true); 4360 } 4361 4362 static bool 4363 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4364 llvm::Value *Address) { 4365 // This is calculated from the LLVM and GCC tables and verified 4366 // against gcc output. AFAIK all ABIs use the same encoding. 4367 4368 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4369 4370 llvm::IntegerType *i8 = CGF.Int8Ty; 4371 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4372 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4373 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4374 4375 // 0-31: r0-31, the 8-byte general-purpose registers 4376 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 4377 4378 // 32-63: fp0-31, the 8-byte floating-point registers 4379 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4380 4381 // 64-76 are various 4-byte special-purpose registers: 4382 // 64: mq 4383 // 65: lr 4384 // 66: ctr 4385 // 67: ap 4386 // 68-75 cr0-7 4387 // 76: xer 4388 AssignToArrayRange(Builder, Address, Four8, 64, 76); 4389 4390 // 77-108: v0-31, the 16-byte vector registers 4391 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4392 4393 // 109: vrsave 4394 // 110: vscr 4395 // 111: spe_acc 4396 // 112: spefscr 4397 // 113: sfp 4398 AssignToArrayRange(Builder, Address, Four8, 109, 113); 4399 4400 return false; 4401 } 4402 4403 bool 4404 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 4405 CodeGen::CodeGenFunction &CGF, 4406 llvm::Value *Address) const { 4407 4408 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 4409 } 4410 4411 bool 4412 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4413 llvm::Value *Address) const { 4414 4415 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 4416 } 4417 4418 //===----------------------------------------------------------------------===// 4419 // AArch64 ABI Implementation 4420 //===----------------------------------------------------------------------===// 4421 4422 namespace { 4423 4424 class AArch64ABIInfo : public SwiftABIInfo { 4425 public: 4426 enum ABIKind { 4427 AAPCS = 0, 4428 DarwinPCS 4429 }; 4430 4431 private: 4432 ABIKind Kind; 4433 4434 public: 4435 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) 4436 : SwiftABIInfo(CGT), Kind(Kind) {} 4437 4438 private: 4439 ABIKind getABIKind() const { return Kind; } 4440 bool isDarwinPCS() const { return Kind == DarwinPCS; } 4441 4442 ABIArgInfo classifyReturnType(QualType RetTy) const; 4443 ABIArgInfo classifyArgumentType(QualType RetTy) const; 4444 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4445 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4446 uint64_t Members) const override; 4447 4448 bool isIllegalVectorType(QualType Ty) const; 4449 4450 void computeInfo(CGFunctionInfo &FI) const override { 4451 if (!getCXXABI().classifyReturnType(FI)) 4452 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4453 4454 for (auto &it : FI.arguments()) 4455 it.info = classifyArgumentType(it.type); 4456 } 4457 4458 Address EmitDarwinVAArg(Address VAListAddr, QualType Ty, 4459 CodeGenFunction &CGF) const; 4460 4461 Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 4462 CodeGenFunction &CGF) const; 4463 4464 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4465 QualType Ty) const override { 4466 return isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 4467 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 4468 } 4469 4470 bool shouldPassIndirectlyForSwift(CharUnits totalSize, 4471 ArrayRef<llvm::Type*> scalars, 4472 bool asReturnValue) const override { 4473 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 4474 } 4475 }; 4476 4477 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 4478 public: 4479 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 4480 : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {} 4481 4482 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 4483 return "mov\tfp, fp\t\t; marker for objc_retainAutoreleaseReturnValue"; 4484 } 4485 4486 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4487 return 31; 4488 } 4489 4490 bool doesReturnSlotInterfereWithArgs() const override { return false; } 4491 }; 4492 } 4493 4494 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const { 4495 Ty = useFirstFieldIfTransparentUnion(Ty); 4496 4497 // Handle illegal vector types here. 4498 if (isIllegalVectorType(Ty)) { 4499 uint64_t Size = getContext().getTypeSize(Ty); 4500 // Android promotes <2 x i8> to i16, not i32 4501 if (isAndroid() && (Size <= 16)) { 4502 llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext()); 4503 return ABIArgInfo::getDirect(ResType); 4504 } 4505 if (Size <= 32) { 4506 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 4507 return ABIArgInfo::getDirect(ResType); 4508 } 4509 if (Size == 64) { 4510 llvm::Type *ResType = 4511 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 4512 return ABIArgInfo::getDirect(ResType); 4513 } 4514 if (Size == 128) { 4515 llvm::Type *ResType = 4516 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 4517 return ABIArgInfo::getDirect(ResType); 4518 } 4519 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4520 } 4521 4522 if (!isAggregateTypeForABI(Ty)) { 4523 // Treat an enum type as its underlying type. 4524 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4525 Ty = EnumTy->getDecl()->getIntegerType(); 4526 4527 return (Ty->isPromotableIntegerType() && isDarwinPCS() 4528 ? ABIArgInfo::getExtend() 4529 : ABIArgInfo::getDirect()); 4530 } 4531 4532 // Structures with either a non-trivial destructor or a non-trivial 4533 // copy constructor are always indirect. 4534 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 4535 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 4536 CGCXXABI::RAA_DirectInMemory); 4537 } 4538 4539 // Empty records are always ignored on Darwin, but actually passed in C++ mode 4540 // elsewhere for GNU compatibility. 4541 if (isEmptyRecord(getContext(), Ty, true)) { 4542 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 4543 return ABIArgInfo::getIgnore(); 4544 4545 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 4546 } 4547 4548 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 4549 const Type *Base = nullptr; 4550 uint64_t Members = 0; 4551 if (isHomogeneousAggregate(Ty, Base, Members)) { 4552 return ABIArgInfo::getDirect( 4553 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); 4554 } 4555 4556 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 4557 uint64_t Size = getContext().getTypeSize(Ty); 4558 if (Size <= 128) { 4559 unsigned Alignment = getContext().getTypeAlign(Ty); 4560 Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes 4561 4562 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 4563 // For aggregates with 16-byte alignment, we use i128. 4564 if (Alignment < 128 && Size == 128) { 4565 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 4566 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 4567 } 4568 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 4569 } 4570 4571 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4572 } 4573 4574 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const { 4575 if (RetTy->isVoidType()) 4576 return ABIArgInfo::getIgnore(); 4577 4578 // Large vector types should be returned via memory. 4579 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 4580 return getNaturalAlignIndirect(RetTy); 4581 4582 if (!isAggregateTypeForABI(RetTy)) { 4583 // Treat an enum type as its underlying type. 4584 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 4585 RetTy = EnumTy->getDecl()->getIntegerType(); 4586 4587 return (RetTy->isPromotableIntegerType() && isDarwinPCS() 4588 ? ABIArgInfo::getExtend() 4589 : ABIArgInfo::getDirect()); 4590 } 4591 4592 if (isEmptyRecord(getContext(), RetTy, true)) 4593 return ABIArgInfo::getIgnore(); 4594 4595 const Type *Base = nullptr; 4596 uint64_t Members = 0; 4597 if (isHomogeneousAggregate(RetTy, Base, Members)) 4598 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 4599 return ABIArgInfo::getDirect(); 4600 4601 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 4602 uint64_t Size = getContext().getTypeSize(RetTy); 4603 if (Size <= 128) { 4604 unsigned Alignment = getContext().getTypeAlign(RetTy); 4605 Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes 4606 4607 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 4608 // For aggregates with 16-byte alignment, we use i128. 4609 if (Alignment < 128 && Size == 128) { 4610 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 4611 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 4612 } 4613 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 4614 } 4615 4616 return getNaturalAlignIndirect(RetTy); 4617 } 4618 4619 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 4620 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 4621 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4622 // Check whether VT is legal. 4623 unsigned NumElements = VT->getNumElements(); 4624 uint64_t Size = getContext().getTypeSize(VT); 4625 // NumElements should be power of 2. 4626 if (!llvm::isPowerOf2_32(NumElements)) 4627 return true; 4628 return Size != 64 && (Size != 128 || NumElements == 1); 4629 } 4630 return false; 4631 } 4632 4633 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 4634 // Homogeneous aggregates for AAPCS64 must have base types of a floating 4635 // point type or a short-vector type. This is the same as the 32-bit ABI, 4636 // but with the difference that any floating-point type is allowed, 4637 // including __fp16. 4638 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4639 if (BT->isFloatingPoint()) 4640 return true; 4641 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 4642 unsigned VecSize = getContext().getTypeSize(VT); 4643 if (VecSize == 64 || VecSize == 128) 4644 return true; 4645 } 4646 return false; 4647 } 4648 4649 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 4650 uint64_t Members) const { 4651 return Members <= 4; 4652 } 4653 4654 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, 4655 QualType Ty, 4656 CodeGenFunction &CGF) const { 4657 ABIArgInfo AI = classifyArgumentType(Ty); 4658 bool IsIndirect = AI.isIndirect(); 4659 4660 llvm::Type *BaseTy = CGF.ConvertType(Ty); 4661 if (IsIndirect) 4662 BaseTy = llvm::PointerType::getUnqual(BaseTy); 4663 else if (AI.getCoerceToType()) 4664 BaseTy = AI.getCoerceToType(); 4665 4666 unsigned NumRegs = 1; 4667 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { 4668 BaseTy = ArrTy->getElementType(); 4669 NumRegs = ArrTy->getNumElements(); 4670 } 4671 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); 4672 4673 // The AArch64 va_list type and handling is specified in the Procedure Call 4674 // Standard, section B.4: 4675 // 4676 // struct { 4677 // void *__stack; 4678 // void *__gr_top; 4679 // void *__vr_top; 4680 // int __gr_offs; 4681 // int __vr_offs; 4682 // }; 4683 4684 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 4685 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 4686 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 4687 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 4688 4689 auto TyInfo = getContext().getTypeInfoInChars(Ty); 4690 CharUnits TyAlign = TyInfo.second; 4691 4692 Address reg_offs_p = Address::invalid(); 4693 llvm::Value *reg_offs = nullptr; 4694 int reg_top_index; 4695 CharUnits reg_top_offset; 4696 int RegSize = IsIndirect ? 8 : TyInfo.first.getQuantity(); 4697 if (!IsFPR) { 4698 // 3 is the field number of __gr_offs 4699 reg_offs_p = 4700 CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24), 4701 "gr_offs_p"); 4702 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 4703 reg_top_index = 1; // field number for __gr_top 4704 reg_top_offset = CharUnits::fromQuantity(8); 4705 RegSize = llvm::alignTo(RegSize, 8); 4706 } else { 4707 // 4 is the field number of __vr_offs. 4708 reg_offs_p = 4709 CGF.Builder.CreateStructGEP(VAListAddr, 4, CharUnits::fromQuantity(28), 4710 "vr_offs_p"); 4711 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 4712 reg_top_index = 2; // field number for __vr_top 4713 reg_top_offset = CharUnits::fromQuantity(16); 4714 RegSize = 16 * NumRegs; 4715 } 4716 4717 //======================================= 4718 // Find out where argument was passed 4719 //======================================= 4720 4721 // If reg_offs >= 0 we're already using the stack for this type of 4722 // argument. We don't want to keep updating reg_offs (in case it overflows, 4723 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 4724 // whatever they get). 4725 llvm::Value *UsingStack = nullptr; 4726 UsingStack = CGF.Builder.CreateICmpSGE( 4727 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 4728 4729 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 4730 4731 // Otherwise, at least some kind of argument could go in these registers, the 4732 // question is whether this particular type is too big. 4733 CGF.EmitBlock(MaybeRegBlock); 4734 4735 // Integer arguments may need to correct register alignment (for example a 4736 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 4737 // align __gr_offs to calculate the potential address. 4738 if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) { 4739 int Align = TyAlign.getQuantity(); 4740 4741 reg_offs = CGF.Builder.CreateAdd( 4742 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 4743 "align_regoffs"); 4744 reg_offs = CGF.Builder.CreateAnd( 4745 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 4746 "aligned_regoffs"); 4747 } 4748 4749 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 4750 // The fact that this is done unconditionally reflects the fact that 4751 // allocating an argument to the stack also uses up all the remaining 4752 // registers of the appropriate kind. 4753 llvm::Value *NewOffset = nullptr; 4754 NewOffset = CGF.Builder.CreateAdd( 4755 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 4756 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 4757 4758 // Now we're in a position to decide whether this argument really was in 4759 // registers or not. 4760 llvm::Value *InRegs = nullptr; 4761 InRegs = CGF.Builder.CreateICmpSLE( 4762 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 4763 4764 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 4765 4766 //======================================= 4767 // Argument was in registers 4768 //======================================= 4769 4770 // Now we emit the code for if the argument was originally passed in 4771 // registers. First start the appropriate block: 4772 CGF.EmitBlock(InRegBlock); 4773 4774 llvm::Value *reg_top = nullptr; 4775 Address reg_top_p = CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, 4776 reg_top_offset, "reg_top_p"); 4777 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 4778 Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs), 4779 CharUnits::fromQuantity(IsFPR ? 16 : 8)); 4780 Address RegAddr = Address::invalid(); 4781 llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty); 4782 4783 if (IsIndirect) { 4784 // If it's been passed indirectly (actually a struct), whatever we find from 4785 // stored registers or on the stack will actually be a struct **. 4786 MemTy = llvm::PointerType::getUnqual(MemTy); 4787 } 4788 4789 const Type *Base = nullptr; 4790 uint64_t NumMembers = 0; 4791 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); 4792 if (IsHFA && NumMembers > 1) { 4793 // Homogeneous aggregates passed in registers will have their elements split 4794 // and stored 16-bytes apart regardless of size (they're notionally in qN, 4795 // qN+1, ...). We reload and store into a temporary local variable 4796 // contiguously. 4797 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 4798 auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0)); 4799 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 4800 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 4801 Address Tmp = CGF.CreateTempAlloca(HFATy, 4802 std::max(TyAlign, BaseTyInfo.second)); 4803 4804 // On big-endian platforms, the value will be right-aligned in its slot. 4805 int Offset = 0; 4806 if (CGF.CGM.getDataLayout().isBigEndian() && 4807 BaseTyInfo.first.getQuantity() < 16) 4808 Offset = 16 - BaseTyInfo.first.getQuantity(); 4809 4810 for (unsigned i = 0; i < NumMembers; ++i) { 4811 CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset); 4812 Address LoadAddr = 4813 CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset); 4814 LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy); 4815 4816 Address StoreAddr = 4817 CGF.Builder.CreateConstArrayGEP(Tmp, i, BaseTyInfo.first); 4818 4819 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 4820 CGF.Builder.CreateStore(Elem, StoreAddr); 4821 } 4822 4823 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy); 4824 } else { 4825 // Otherwise the object is contiguous in memory. 4826 4827 // It might be right-aligned in its slot. 4828 CharUnits SlotSize = BaseAddr.getAlignment(); 4829 if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect && 4830 (IsHFA || !isAggregateTypeForABI(Ty)) && 4831 TyInfo.first < SlotSize) { 4832 CharUnits Offset = SlotSize - TyInfo.first; 4833 BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset); 4834 } 4835 4836 RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy); 4837 } 4838 4839 CGF.EmitBranch(ContBlock); 4840 4841 //======================================= 4842 // Argument was on the stack 4843 //======================================= 4844 CGF.EmitBlock(OnStackBlock); 4845 4846 Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, 4847 CharUnits::Zero(), "stack_p"); 4848 llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack"); 4849 4850 // Again, stack arguments may need realignment. In this case both integer and 4851 // floating-point ones might be affected. 4852 if (!IsIndirect && TyAlign.getQuantity() > 8) { 4853 int Align = TyAlign.getQuantity(); 4854 4855 OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty); 4856 4857 OnStackPtr = CGF.Builder.CreateAdd( 4858 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 4859 "align_stack"); 4860 OnStackPtr = CGF.Builder.CreateAnd( 4861 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 4862 "align_stack"); 4863 4864 OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy); 4865 } 4866 Address OnStackAddr(OnStackPtr, 4867 std::max(CharUnits::fromQuantity(8), TyAlign)); 4868 4869 // All stack slots are multiples of 8 bytes. 4870 CharUnits StackSlotSize = CharUnits::fromQuantity(8); 4871 CharUnits StackSize; 4872 if (IsIndirect) 4873 StackSize = StackSlotSize; 4874 else 4875 StackSize = TyInfo.first.alignTo(StackSlotSize); 4876 4877 llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize); 4878 llvm::Value *NewStack = 4879 CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack"); 4880 4881 // Write the new value of __stack for the next call to va_arg 4882 CGF.Builder.CreateStore(NewStack, stack_p); 4883 4884 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 4885 TyInfo.first < StackSlotSize) { 4886 CharUnits Offset = StackSlotSize - TyInfo.first; 4887 OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset); 4888 } 4889 4890 OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy); 4891 4892 CGF.EmitBranch(ContBlock); 4893 4894 //======================================= 4895 // Tidy up 4896 //======================================= 4897 CGF.EmitBlock(ContBlock); 4898 4899 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 4900 OnStackAddr, OnStackBlock, "vaargs.addr"); 4901 4902 if (IsIndirect) 4903 return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), 4904 TyInfo.second); 4905 4906 return ResAddr; 4907 } 4908 4909 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty, 4910 CodeGenFunction &CGF) const { 4911 // The backend's lowering doesn't support va_arg for aggregates or 4912 // illegal vector types. Lower VAArg here for these cases and use 4913 // the LLVM va_arg instruction for everything else. 4914 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 4915 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 4916 4917 CharUnits SlotSize = CharUnits::fromQuantity(8); 4918 4919 // Empty records are ignored for parameter passing purposes. 4920 if (isEmptyRecord(getContext(), Ty, true)) { 4921 Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 4922 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 4923 return Addr; 4924 } 4925 4926 // The size of the actual thing passed, which might end up just 4927 // being a pointer for indirect types. 4928 auto TyInfo = getContext().getTypeInfoInChars(Ty); 4929 4930 // Arguments bigger than 16 bytes which aren't homogeneous 4931 // aggregates should be passed indirectly. 4932 bool IsIndirect = false; 4933 if (TyInfo.first.getQuantity() > 16) { 4934 const Type *Base = nullptr; 4935 uint64_t Members = 0; 4936 IsIndirect = !isHomogeneousAggregate(Ty, Base, Members); 4937 } 4938 4939 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 4940 TyInfo, SlotSize, /*AllowHigherAlign*/ true); 4941 } 4942 4943 //===----------------------------------------------------------------------===// 4944 // ARM ABI Implementation 4945 //===----------------------------------------------------------------------===// 4946 4947 namespace { 4948 4949 class ARMABIInfo : public SwiftABIInfo { 4950 public: 4951 enum ABIKind { 4952 APCS = 0, 4953 AAPCS = 1, 4954 AAPCS_VFP = 2, 4955 AAPCS16_VFP = 3, 4956 }; 4957 4958 private: 4959 ABIKind Kind; 4960 4961 public: 4962 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) 4963 : SwiftABIInfo(CGT), Kind(_Kind) { 4964 setCCs(); 4965 } 4966 4967 bool isEABI() const { 4968 switch (getTarget().getTriple().getEnvironment()) { 4969 case llvm::Triple::Android: 4970 case llvm::Triple::EABI: 4971 case llvm::Triple::EABIHF: 4972 case llvm::Triple::GNUEABI: 4973 case llvm::Triple::GNUEABIHF: 4974 case llvm::Triple::MuslEABI: 4975 case llvm::Triple::MuslEABIHF: 4976 return true; 4977 default: 4978 return false; 4979 } 4980 } 4981 4982 bool isEABIHF() const { 4983 switch (getTarget().getTriple().getEnvironment()) { 4984 case llvm::Triple::EABIHF: 4985 case llvm::Triple::GNUEABIHF: 4986 case llvm::Triple::MuslEABIHF: 4987 return true; 4988 default: 4989 return false; 4990 } 4991 } 4992 4993 ABIKind getABIKind() const { return Kind; } 4994 4995 private: 4996 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const; 4997 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic) const; 4998 bool isIllegalVectorType(QualType Ty) const; 4999 5000 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 5001 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 5002 uint64_t Members) const override; 5003 5004 void computeInfo(CGFunctionInfo &FI) const override; 5005 5006 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5007 QualType Ty) const override; 5008 5009 llvm::CallingConv::ID getLLVMDefaultCC() const; 5010 llvm::CallingConv::ID getABIDefaultCC() const; 5011 void setCCs(); 5012 5013 bool shouldPassIndirectlyForSwift(CharUnits totalSize, 5014 ArrayRef<llvm::Type*> scalars, 5015 bool asReturnValue) const override { 5016 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5017 } 5018 }; 5019 5020 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 5021 public: 5022 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 5023 :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {} 5024 5025 const ARMABIInfo &getABIInfo() const { 5026 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 5027 } 5028 5029 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5030 return 13; 5031 } 5032 5033 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 5034 return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue"; 5035 } 5036 5037 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5038 llvm::Value *Address) const override { 5039 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 5040 5041 // 0-15 are the 16 integer registers. 5042 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 5043 return false; 5044 } 5045 5046 unsigned getSizeOfUnwindException() const override { 5047 if (getABIInfo().isEABI()) return 88; 5048 return TargetCodeGenInfo::getSizeOfUnwindException(); 5049 } 5050 5051 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5052 CodeGen::CodeGenModule &CGM) const override { 5053 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5054 if (!FD) 5055 return; 5056 5057 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 5058 if (!Attr) 5059 return; 5060 5061 const char *Kind; 5062 switch (Attr->getInterrupt()) { 5063 case ARMInterruptAttr::Generic: Kind = ""; break; 5064 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 5065 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 5066 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 5067 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 5068 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 5069 } 5070 5071 llvm::Function *Fn = cast<llvm::Function>(GV); 5072 5073 Fn->addFnAttr("interrupt", Kind); 5074 5075 ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind(); 5076 if (ABI == ARMABIInfo::APCS) 5077 return; 5078 5079 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 5080 // however this is not necessarily true on taking any interrupt. Instruct 5081 // the backend to perform a realignment as part of the function prologue. 5082 llvm::AttrBuilder B; 5083 B.addStackAlignmentAttr(8); 5084 Fn->addAttributes(llvm::AttributeSet::FunctionIndex, 5085 llvm::AttributeSet::get(CGM.getLLVMContext(), 5086 llvm::AttributeSet::FunctionIndex, 5087 B)); 5088 } 5089 }; 5090 5091 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { 5092 public: 5093 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 5094 : ARMTargetCodeGenInfo(CGT, K) {} 5095 5096 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5097 CodeGen::CodeGenModule &CGM) const override; 5098 5099 void getDependentLibraryOption(llvm::StringRef Lib, 5100 llvm::SmallString<24> &Opt) const override { 5101 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5102 } 5103 5104 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5105 llvm::SmallString<32> &Opt) const override { 5106 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5107 } 5108 }; 5109 5110 void WindowsARMTargetCodeGenInfo::setTargetAttributes( 5111 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 5112 ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 5113 addStackProbeSizeTargetAttribute(D, GV, CGM); 5114 } 5115 } 5116 5117 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 5118 if (!getCXXABI().classifyReturnType(FI)) 5119 FI.getReturnInfo() = 5120 classifyReturnType(FI.getReturnType(), FI.isVariadic()); 5121 5122 for (auto &I : FI.arguments()) 5123 I.info = classifyArgumentType(I.type, FI.isVariadic()); 5124 5125 // Always honor user-specified calling convention. 5126 if (FI.getCallingConvention() != llvm::CallingConv::C) 5127 return; 5128 5129 llvm::CallingConv::ID cc = getRuntimeCC(); 5130 if (cc != llvm::CallingConv::C) 5131 FI.setEffectiveCallingConvention(cc); 5132 } 5133 5134 /// Return the default calling convention that LLVM will use. 5135 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 5136 // The default calling convention that LLVM will infer. 5137 if (isEABIHF() || getTarget().getTriple().isWatchABI()) 5138 return llvm::CallingConv::ARM_AAPCS_VFP; 5139 else if (isEABI()) 5140 return llvm::CallingConv::ARM_AAPCS; 5141 else 5142 return llvm::CallingConv::ARM_APCS; 5143 } 5144 5145 /// Return the calling convention that our ABI would like us to use 5146 /// as the C calling convention. 5147 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 5148 switch (getABIKind()) { 5149 case APCS: return llvm::CallingConv::ARM_APCS; 5150 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 5151 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 5152 case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 5153 } 5154 llvm_unreachable("bad ABI kind"); 5155 } 5156 5157 void ARMABIInfo::setCCs() { 5158 assert(getRuntimeCC() == llvm::CallingConv::C); 5159 5160 // Don't muddy up the IR with a ton of explicit annotations if 5161 // they'd just match what LLVM will infer from the triple. 5162 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 5163 if (abiCC != getLLVMDefaultCC()) 5164 RuntimeCC = abiCC; 5165 5166 // AAPCS apparently requires runtime support functions to be soft-float, but 5167 // that's almost certainly for historic reasons (Thumb1 not supporting VFP 5168 // most likely). It's more convenient for AAPCS16_VFP to be hard-float. 5169 switch (getABIKind()) { 5170 case APCS: 5171 case AAPCS16_VFP: 5172 if (abiCC != getLLVMDefaultCC()) 5173 BuiltinCC = abiCC; 5174 break; 5175 case AAPCS: 5176 case AAPCS_VFP: 5177 BuiltinCC = llvm::CallingConv::ARM_AAPCS; 5178 break; 5179 } 5180 } 5181 5182 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, 5183 bool isVariadic) const { 5184 // 6.1.2.1 The following argument types are VFP CPRCs: 5185 // A single-precision floating-point type (including promoted 5186 // half-precision types); A double-precision floating-point type; 5187 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 5188 // with a Base Type of a single- or double-precision floating-point type, 5189 // 64-bit containerized vectors or 128-bit containerized vectors with one 5190 // to four Elements. 5191 bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic; 5192 5193 Ty = useFirstFieldIfTransparentUnion(Ty); 5194 5195 // Handle illegal vector types here. 5196 if (isIllegalVectorType(Ty)) { 5197 uint64_t Size = getContext().getTypeSize(Ty); 5198 if (Size <= 32) { 5199 llvm::Type *ResType = 5200 llvm::Type::getInt32Ty(getVMContext()); 5201 return ABIArgInfo::getDirect(ResType); 5202 } 5203 if (Size == 64) { 5204 llvm::Type *ResType = llvm::VectorType::get( 5205 llvm::Type::getInt32Ty(getVMContext()), 2); 5206 return ABIArgInfo::getDirect(ResType); 5207 } 5208 if (Size == 128) { 5209 llvm::Type *ResType = llvm::VectorType::get( 5210 llvm::Type::getInt32Ty(getVMContext()), 4); 5211 return ABIArgInfo::getDirect(ResType); 5212 } 5213 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5214 } 5215 5216 // __fp16 gets passed as if it were an int or float, but with the top 16 bits 5217 // unspecified. This is not done for OpenCL as it handles the half type 5218 // natively, and does not need to interwork with AAPCS code. 5219 if (Ty->isHalfType() && !getContext().getLangOpts().NativeHalfArgsAndReturns) { 5220 llvm::Type *ResType = IsEffectivelyAAPCS_VFP ? 5221 llvm::Type::getFloatTy(getVMContext()) : 5222 llvm::Type::getInt32Ty(getVMContext()); 5223 return ABIArgInfo::getDirect(ResType); 5224 } 5225 5226 if (!isAggregateTypeForABI(Ty)) { 5227 // Treat an enum type as its underlying type. 5228 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 5229 Ty = EnumTy->getDecl()->getIntegerType(); 5230 } 5231 5232 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend() 5233 : ABIArgInfo::getDirect()); 5234 } 5235 5236 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5237 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 5238 } 5239 5240 // Ignore empty records. 5241 if (isEmptyRecord(getContext(), Ty, true)) 5242 return ABIArgInfo::getIgnore(); 5243 5244 if (IsEffectivelyAAPCS_VFP) { 5245 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 5246 // into VFP registers. 5247 const Type *Base = nullptr; 5248 uint64_t Members = 0; 5249 if (isHomogeneousAggregate(Ty, Base, Members)) { 5250 assert(Base && "Base class should be set for homogeneous aggregate"); 5251 // Base can be a floating-point or a vector. 5252 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 5253 } 5254 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 5255 // WatchOS does have homogeneous aggregates. Note that we intentionally use 5256 // this convention even for a variadic function: the backend will use GPRs 5257 // if needed. 5258 const Type *Base = nullptr; 5259 uint64_t Members = 0; 5260 if (isHomogeneousAggregate(Ty, Base, Members)) { 5261 assert(Base && Members <= 4 && "unexpected homogeneous aggregate"); 5262 llvm::Type *Ty = 5263 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members); 5264 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 5265 } 5266 } 5267 5268 if (getABIKind() == ARMABIInfo::AAPCS16_VFP && 5269 getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) { 5270 // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're 5271 // bigger than 128-bits, they get placed in space allocated by the caller, 5272 // and a pointer is passed. 5273 return ABIArgInfo::getIndirect( 5274 CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false); 5275 } 5276 5277 // Support byval for ARM. 5278 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 5279 // most 8-byte. We realign the indirect argument if type alignment is bigger 5280 // than ABI alignment. 5281 uint64_t ABIAlign = 4; 5282 uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8; 5283 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 5284 getABIKind() == ARMABIInfo::AAPCS) 5285 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 5286 5287 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 5288 assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval"); 5289 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 5290 /*ByVal=*/true, 5291 /*Realign=*/TyAlign > ABIAlign); 5292 } 5293 5294 // Otherwise, pass by coercing to a structure of the appropriate size. 5295 llvm::Type* ElemTy; 5296 unsigned SizeRegs; 5297 // FIXME: Try to match the types of the arguments more accurately where 5298 // we can. 5299 if (getContext().getTypeAlign(Ty) <= 32) { 5300 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 5301 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 5302 } else { 5303 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 5304 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 5305 } 5306 5307 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); 5308 } 5309 5310 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 5311 llvm::LLVMContext &VMContext) { 5312 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 5313 // is called integer-like if its size is less than or equal to one word, and 5314 // the offset of each of its addressable sub-fields is zero. 5315 5316 uint64_t Size = Context.getTypeSize(Ty); 5317 5318 // Check that the type fits in a word. 5319 if (Size > 32) 5320 return false; 5321 5322 // FIXME: Handle vector types! 5323 if (Ty->isVectorType()) 5324 return false; 5325 5326 // Float types are never treated as "integer like". 5327 if (Ty->isRealFloatingType()) 5328 return false; 5329 5330 // If this is a builtin or pointer type then it is ok. 5331 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 5332 return true; 5333 5334 // Small complex integer types are "integer like". 5335 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 5336 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 5337 5338 // Single element and zero sized arrays should be allowed, by the definition 5339 // above, but they are not. 5340 5341 // Otherwise, it must be a record type. 5342 const RecordType *RT = Ty->getAs<RecordType>(); 5343 if (!RT) return false; 5344 5345 // Ignore records with flexible arrays. 5346 const RecordDecl *RD = RT->getDecl(); 5347 if (RD->hasFlexibleArrayMember()) 5348 return false; 5349 5350 // Check that all sub-fields are at offset 0, and are themselves "integer 5351 // like". 5352 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 5353 5354 bool HadField = false; 5355 unsigned idx = 0; 5356 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 5357 i != e; ++i, ++idx) { 5358 const FieldDecl *FD = *i; 5359 5360 // Bit-fields are not addressable, we only need to verify they are "integer 5361 // like". We still have to disallow a subsequent non-bitfield, for example: 5362 // struct { int : 0; int x } 5363 // is non-integer like according to gcc. 5364 if (FD->isBitField()) { 5365 if (!RD->isUnion()) 5366 HadField = true; 5367 5368 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 5369 return false; 5370 5371 continue; 5372 } 5373 5374 // Check if this field is at offset 0. 5375 if (Layout.getFieldOffset(idx) != 0) 5376 return false; 5377 5378 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 5379 return false; 5380 5381 // Only allow at most one field in a structure. This doesn't match the 5382 // wording above, but follows gcc in situations with a field following an 5383 // empty structure. 5384 if (!RD->isUnion()) { 5385 if (HadField) 5386 return false; 5387 5388 HadField = true; 5389 } 5390 } 5391 5392 return true; 5393 } 5394 5395 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, 5396 bool isVariadic) const { 5397 bool IsEffectivelyAAPCS_VFP = 5398 (getABIKind() == AAPCS_VFP || getABIKind() == AAPCS16_VFP) && !isVariadic; 5399 5400 if (RetTy->isVoidType()) 5401 return ABIArgInfo::getIgnore(); 5402 5403 // Large vector types should be returned via memory. 5404 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) { 5405 return getNaturalAlignIndirect(RetTy); 5406 } 5407 5408 // __fp16 gets returned as if it were an int or float, but with the top 16 5409 // bits unspecified. This is not done for OpenCL as it handles the half type 5410 // natively, and does not need to interwork with AAPCS code. 5411 if (RetTy->isHalfType() && !getContext().getLangOpts().NativeHalfArgsAndReturns) { 5412 llvm::Type *ResType = IsEffectivelyAAPCS_VFP ? 5413 llvm::Type::getFloatTy(getVMContext()) : 5414 llvm::Type::getInt32Ty(getVMContext()); 5415 return ABIArgInfo::getDirect(ResType); 5416 } 5417 5418 if (!isAggregateTypeForABI(RetTy)) { 5419 // Treat an enum type as its underlying type. 5420 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5421 RetTy = EnumTy->getDecl()->getIntegerType(); 5422 5423 return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend() 5424 : ABIArgInfo::getDirect(); 5425 } 5426 5427 // Are we following APCS? 5428 if (getABIKind() == APCS) { 5429 if (isEmptyRecord(getContext(), RetTy, false)) 5430 return ABIArgInfo::getIgnore(); 5431 5432 // Complex types are all returned as packed integers. 5433 // 5434 // FIXME: Consider using 2 x vector types if the back end handles them 5435 // correctly. 5436 if (RetTy->isAnyComplexType()) 5437 return ABIArgInfo::getDirect(llvm::IntegerType::get( 5438 getVMContext(), getContext().getTypeSize(RetTy))); 5439 5440 // Integer like structures are returned in r0. 5441 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 5442 // Return in the smallest viable integer type. 5443 uint64_t Size = getContext().getTypeSize(RetTy); 5444 if (Size <= 8) 5445 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5446 if (Size <= 16) 5447 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 5448 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 5449 } 5450 5451 // Otherwise return in memory. 5452 return getNaturalAlignIndirect(RetTy); 5453 } 5454 5455 // Otherwise this is an AAPCS variant. 5456 5457 if (isEmptyRecord(getContext(), RetTy, true)) 5458 return ABIArgInfo::getIgnore(); 5459 5460 // Check for homogeneous aggregates with AAPCS-VFP. 5461 if (IsEffectivelyAAPCS_VFP) { 5462 const Type *Base = nullptr; 5463 uint64_t Members = 0; 5464 if (isHomogeneousAggregate(RetTy, Base, Members)) { 5465 assert(Base && "Base class should be set for homogeneous aggregate"); 5466 // Homogeneous Aggregates are returned directly. 5467 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 5468 } 5469 } 5470 5471 // Aggregates <= 4 bytes are returned in r0; other aggregates 5472 // are returned indirectly. 5473 uint64_t Size = getContext().getTypeSize(RetTy); 5474 if (Size <= 32) { 5475 if (getDataLayout().isBigEndian()) 5476 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 5477 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 5478 5479 // Return in the smallest viable integer type. 5480 if (Size <= 8) 5481 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5482 if (Size <= 16) 5483 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 5484 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 5485 } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) { 5486 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext()); 5487 llvm::Type *CoerceTy = 5488 llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32); 5489 return ABIArgInfo::getDirect(CoerceTy); 5490 } 5491 5492 return getNaturalAlignIndirect(RetTy); 5493 } 5494 5495 /// isIllegalVector - check whether Ty is an illegal vector type. 5496 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 5497 if (const VectorType *VT = Ty->getAs<VectorType> ()) { 5498 if (isAndroid()) { 5499 // Android shipped using Clang 3.1, which supported a slightly different 5500 // vector ABI. The primary differences were that 3-element vector types 5501 // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path 5502 // accepts that legacy behavior for Android only. 5503 // Check whether VT is legal. 5504 unsigned NumElements = VT->getNumElements(); 5505 // NumElements should be power of 2 or equal to 3. 5506 if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3) 5507 return true; 5508 } else { 5509 // Check whether VT is legal. 5510 unsigned NumElements = VT->getNumElements(); 5511 uint64_t Size = getContext().getTypeSize(VT); 5512 // NumElements should be power of 2. 5513 if (!llvm::isPowerOf2_32(NumElements)) 5514 return true; 5515 // Size should be greater than 32 bits. 5516 return Size <= 32; 5517 } 5518 } 5519 return false; 5520 } 5521 5522 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5523 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 5524 // double, or 64-bit or 128-bit vectors. 5525 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5526 if (BT->getKind() == BuiltinType::Float || 5527 BT->getKind() == BuiltinType::Double || 5528 BT->getKind() == BuiltinType::LongDouble) 5529 return true; 5530 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 5531 unsigned VecSize = getContext().getTypeSize(VT); 5532 if (VecSize == 64 || VecSize == 128) 5533 return true; 5534 } 5535 return false; 5536 } 5537 5538 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 5539 uint64_t Members) const { 5540 return Members <= 4; 5541 } 5542 5543 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5544 QualType Ty) const { 5545 CharUnits SlotSize = CharUnits::fromQuantity(4); 5546 5547 // Empty records are ignored for parameter passing purposes. 5548 if (isEmptyRecord(getContext(), Ty, true)) { 5549 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 5550 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 5551 return Addr; 5552 } 5553 5554 auto TyInfo = getContext().getTypeInfoInChars(Ty); 5555 CharUnits TyAlignForABI = TyInfo.second; 5556 5557 // Use indirect if size of the illegal vector is bigger than 16 bytes. 5558 bool IsIndirect = false; 5559 const Type *Base = nullptr; 5560 uint64_t Members = 0; 5561 if (TyInfo.first > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) { 5562 IsIndirect = true; 5563 5564 // ARMv7k passes structs bigger than 16 bytes indirectly, in space 5565 // allocated by the caller. 5566 } else if (TyInfo.first > CharUnits::fromQuantity(16) && 5567 getABIKind() == ARMABIInfo::AAPCS16_VFP && 5568 !isHomogeneousAggregate(Ty, Base, Members)) { 5569 IsIndirect = true; 5570 5571 // Otherwise, bound the type's ABI alignment. 5572 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 5573 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 5574 // Our callers should be prepared to handle an under-aligned address. 5575 } else if (getABIKind() == ARMABIInfo::AAPCS_VFP || 5576 getABIKind() == ARMABIInfo::AAPCS) { 5577 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 5578 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8)); 5579 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 5580 // ARMv7k allows type alignment up to 16 bytes. 5581 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 5582 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16)); 5583 } else { 5584 TyAlignForABI = CharUnits::fromQuantity(4); 5585 } 5586 TyInfo.second = TyAlignForABI; 5587 5588 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo, 5589 SlotSize, /*AllowHigherAlign*/ true); 5590 } 5591 5592 //===----------------------------------------------------------------------===// 5593 // NVPTX ABI Implementation 5594 //===----------------------------------------------------------------------===// 5595 5596 namespace { 5597 5598 class NVPTXABIInfo : public ABIInfo { 5599 public: 5600 NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 5601 5602 ABIArgInfo classifyReturnType(QualType RetTy) const; 5603 ABIArgInfo classifyArgumentType(QualType Ty) const; 5604 5605 void computeInfo(CGFunctionInfo &FI) const override; 5606 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5607 QualType Ty) const override; 5608 }; 5609 5610 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 5611 public: 5612 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 5613 : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {} 5614 5615 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5616 CodeGen::CodeGenModule &M) const override; 5617 private: 5618 // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the 5619 // resulting MDNode to the nvvm.annotations MDNode. 5620 static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand); 5621 }; 5622 5623 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 5624 if (RetTy->isVoidType()) 5625 return ABIArgInfo::getIgnore(); 5626 5627 // note: this is different from default ABI 5628 if (!RetTy->isScalarType()) 5629 return ABIArgInfo::getDirect(); 5630 5631 // Treat an enum type as its underlying type. 5632 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5633 RetTy = EnumTy->getDecl()->getIntegerType(); 5634 5635 return (RetTy->isPromotableIntegerType() ? 5636 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5637 } 5638 5639 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 5640 // Treat an enum type as its underlying type. 5641 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5642 Ty = EnumTy->getDecl()->getIntegerType(); 5643 5644 // Return aggregates type as indirect by value 5645 if (isAggregateTypeForABI(Ty)) 5646 return getNaturalAlignIndirect(Ty, /* byval */ true); 5647 5648 return (Ty->isPromotableIntegerType() ? 5649 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5650 } 5651 5652 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 5653 if (!getCXXABI().classifyReturnType(FI)) 5654 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 5655 for (auto &I : FI.arguments()) 5656 I.info = classifyArgumentType(I.type); 5657 5658 // Always honor user-specified calling convention. 5659 if (FI.getCallingConvention() != llvm::CallingConv::C) 5660 return; 5661 5662 FI.setEffectiveCallingConvention(getRuntimeCC()); 5663 } 5664 5665 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5666 QualType Ty) const { 5667 llvm_unreachable("NVPTX does not support varargs"); 5668 } 5669 5670 void NVPTXTargetCodeGenInfo:: 5671 setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5672 CodeGen::CodeGenModule &M) const{ 5673 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5674 if (!FD) return; 5675 5676 llvm::Function *F = cast<llvm::Function>(GV); 5677 5678 // Perform special handling in OpenCL mode 5679 if (M.getLangOpts().OpenCL) { 5680 // Use OpenCL function attributes to check for kernel functions 5681 // By default, all functions are device functions 5682 if (FD->hasAttr<OpenCLKernelAttr>()) { 5683 // OpenCL __kernel functions get kernel metadata 5684 // Create !{<func-ref>, metadata !"kernel", i32 1} node 5685 addNVVMMetadata(F, "kernel", 1); 5686 // And kernel functions are not subject to inlining 5687 F->addFnAttr(llvm::Attribute::NoInline); 5688 } 5689 } 5690 5691 // Perform special handling in CUDA mode. 5692 if (M.getLangOpts().CUDA) { 5693 // CUDA __global__ functions get a kernel metadata entry. Since 5694 // __global__ functions cannot be called from the device, we do not 5695 // need to set the noinline attribute. 5696 if (FD->hasAttr<CUDAGlobalAttr>()) { 5697 // Create !{<func-ref>, metadata !"kernel", i32 1} node 5698 addNVVMMetadata(F, "kernel", 1); 5699 } 5700 if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) { 5701 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 5702 llvm::APSInt MaxThreads(32); 5703 MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); 5704 if (MaxThreads > 0) 5705 addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); 5706 5707 // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was 5708 // not specified in __launch_bounds__ or if the user specified a 0 value, 5709 // we don't have to add a PTX directive. 5710 if (Attr->getMinBlocks()) { 5711 llvm::APSInt MinBlocks(32); 5712 MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); 5713 if (MinBlocks > 0) 5714 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 5715 addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); 5716 } 5717 } 5718 } 5719 } 5720 5721 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name, 5722 int Operand) { 5723 llvm::Module *M = F->getParent(); 5724 llvm::LLVMContext &Ctx = M->getContext(); 5725 5726 // Get "nvvm.annotations" metadata node 5727 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 5728 5729 llvm::Metadata *MDVals[] = { 5730 llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name), 5731 llvm::ConstantAsMetadata::get( 5732 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; 5733 // Append metadata to nvvm.annotations 5734 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 5735 } 5736 } 5737 5738 //===----------------------------------------------------------------------===// 5739 // SystemZ ABI Implementation 5740 //===----------------------------------------------------------------------===// 5741 5742 namespace { 5743 5744 class SystemZABIInfo : public SwiftABIInfo { 5745 bool HasVector; 5746 5747 public: 5748 SystemZABIInfo(CodeGenTypes &CGT, bool HV) 5749 : SwiftABIInfo(CGT), HasVector(HV) {} 5750 5751 bool isPromotableIntegerType(QualType Ty) const; 5752 bool isCompoundType(QualType Ty) const; 5753 bool isVectorArgumentType(QualType Ty) const; 5754 bool isFPArgumentType(QualType Ty) const; 5755 QualType GetSingleElementType(QualType Ty) const; 5756 5757 ABIArgInfo classifyReturnType(QualType RetTy) const; 5758 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 5759 5760 void computeInfo(CGFunctionInfo &FI) const override { 5761 if (!getCXXABI().classifyReturnType(FI)) 5762 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 5763 for (auto &I : FI.arguments()) 5764 I.info = classifyArgumentType(I.type); 5765 } 5766 5767 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5768 QualType Ty) const override; 5769 5770 bool shouldPassIndirectlyForSwift(CharUnits totalSize, 5771 ArrayRef<llvm::Type*> scalars, 5772 bool asReturnValue) const override { 5773 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5774 } 5775 }; 5776 5777 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 5778 public: 5779 SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector) 5780 : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {} 5781 }; 5782 5783 } 5784 5785 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const { 5786 // Treat an enum type as its underlying type. 5787 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5788 Ty = EnumTy->getDecl()->getIntegerType(); 5789 5790 // Promotable integer types are required to be promoted by the ABI. 5791 if (Ty->isPromotableIntegerType()) 5792 return true; 5793 5794 // 32-bit values must also be promoted. 5795 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 5796 switch (BT->getKind()) { 5797 case BuiltinType::Int: 5798 case BuiltinType::UInt: 5799 return true; 5800 default: 5801 return false; 5802 } 5803 return false; 5804 } 5805 5806 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 5807 return (Ty->isAnyComplexType() || 5808 Ty->isVectorType() || 5809 isAggregateTypeForABI(Ty)); 5810 } 5811 5812 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { 5813 return (HasVector && 5814 Ty->isVectorType() && 5815 getContext().getTypeSize(Ty) <= 128); 5816 } 5817 5818 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 5819 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 5820 switch (BT->getKind()) { 5821 case BuiltinType::Float: 5822 case BuiltinType::Double: 5823 return true; 5824 default: 5825 return false; 5826 } 5827 5828 return false; 5829 } 5830 5831 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { 5832 if (const RecordType *RT = Ty->getAsStructureType()) { 5833 const RecordDecl *RD = RT->getDecl(); 5834 QualType Found; 5835 5836 // If this is a C++ record, check the bases first. 5837 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 5838 for (const auto &I : CXXRD->bases()) { 5839 QualType Base = I.getType(); 5840 5841 // Empty bases don't affect things either way. 5842 if (isEmptyRecord(getContext(), Base, true)) 5843 continue; 5844 5845 if (!Found.isNull()) 5846 return Ty; 5847 Found = GetSingleElementType(Base); 5848 } 5849 5850 // Check the fields. 5851 for (const auto *FD : RD->fields()) { 5852 // For compatibility with GCC, ignore empty bitfields in C++ mode. 5853 // Unlike isSingleElementStruct(), empty structure and array fields 5854 // do count. So do anonymous bitfields that aren't zero-sized. 5855 if (getContext().getLangOpts().CPlusPlus && 5856 FD->isBitField() && FD->getBitWidthValue(getContext()) == 0) 5857 continue; 5858 5859 // Unlike isSingleElementStruct(), arrays do not count. 5860 // Nested structures still do though. 5861 if (!Found.isNull()) 5862 return Ty; 5863 Found = GetSingleElementType(FD->getType()); 5864 } 5865 5866 // Unlike isSingleElementStruct(), trailing padding is allowed. 5867 // An 8-byte aligned struct s { float f; } is passed as a double. 5868 if (!Found.isNull()) 5869 return Found; 5870 } 5871 5872 return Ty; 5873 } 5874 5875 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5876 QualType Ty) const { 5877 // Assume that va_list type is correct; should be pointer to LLVM type: 5878 // struct { 5879 // i64 __gpr; 5880 // i64 __fpr; 5881 // i8 *__overflow_arg_area; 5882 // i8 *__reg_save_area; 5883 // }; 5884 5885 // Every non-vector argument occupies 8 bytes and is passed by preference 5886 // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are 5887 // always passed on the stack. 5888 Ty = getContext().getCanonicalType(Ty); 5889 auto TyInfo = getContext().getTypeInfoInChars(Ty); 5890 llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); 5891 llvm::Type *DirectTy = ArgTy; 5892 ABIArgInfo AI = classifyArgumentType(Ty); 5893 bool IsIndirect = AI.isIndirect(); 5894 bool InFPRs = false; 5895 bool IsVector = false; 5896 CharUnits UnpaddedSize; 5897 CharUnits DirectAlign; 5898 if (IsIndirect) { 5899 DirectTy = llvm::PointerType::getUnqual(DirectTy); 5900 UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8); 5901 } else { 5902 if (AI.getCoerceToType()) 5903 ArgTy = AI.getCoerceToType(); 5904 InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy(); 5905 IsVector = ArgTy->isVectorTy(); 5906 UnpaddedSize = TyInfo.first; 5907 DirectAlign = TyInfo.second; 5908 } 5909 CharUnits PaddedSize = CharUnits::fromQuantity(8); 5910 if (IsVector && UnpaddedSize > PaddedSize) 5911 PaddedSize = CharUnits::fromQuantity(16); 5912 assert((UnpaddedSize <= PaddedSize) && "Invalid argument size."); 5913 5914 CharUnits Padding = (PaddedSize - UnpaddedSize); 5915 5916 llvm::Type *IndexTy = CGF.Int64Ty; 5917 llvm::Value *PaddedSizeV = 5918 llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity()); 5919 5920 if (IsVector) { 5921 // Work out the address of a vector argument on the stack. 5922 // Vector arguments are always passed in the high bits of a 5923 // single (8 byte) or double (16 byte) stack slot. 5924 Address OverflowArgAreaPtr = 5925 CGF.Builder.CreateStructGEP(VAListAddr, 2, CharUnits::fromQuantity(16), 5926 "overflow_arg_area_ptr"); 5927 Address OverflowArgArea = 5928 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 5929 TyInfo.second); 5930 Address MemAddr = 5931 CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr"); 5932 5933 // Update overflow_arg_area_ptr pointer 5934 llvm::Value *NewOverflowArgArea = 5935 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 5936 "overflow_arg_area"); 5937 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 5938 5939 return MemAddr; 5940 } 5941 5942 assert(PaddedSize.getQuantity() == 8); 5943 5944 unsigned MaxRegs, RegCountField, RegSaveIndex; 5945 CharUnits RegPadding; 5946 if (InFPRs) { 5947 MaxRegs = 4; // Maximum of 4 FPR arguments 5948 RegCountField = 1; // __fpr 5949 RegSaveIndex = 16; // save offset for f0 5950 RegPadding = CharUnits(); // floats are passed in the high bits of an FPR 5951 } else { 5952 MaxRegs = 5; // Maximum of 5 GPR arguments 5953 RegCountField = 0; // __gpr 5954 RegSaveIndex = 2; // save offset for r2 5955 RegPadding = Padding; // values are passed in the low bits of a GPR 5956 } 5957 5958 Address RegCountPtr = CGF.Builder.CreateStructGEP( 5959 VAListAddr, RegCountField, RegCountField * CharUnits::fromQuantity(8), 5960 "reg_count_ptr"); 5961 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 5962 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 5963 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 5964 "fits_in_regs"); 5965 5966 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 5967 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 5968 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 5969 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 5970 5971 // Emit code to load the value if it was passed in registers. 5972 CGF.EmitBlock(InRegBlock); 5973 5974 // Work out the address of an argument register. 5975 llvm::Value *ScaledRegCount = 5976 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 5977 llvm::Value *RegBase = 5978 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity() 5979 + RegPadding.getQuantity()); 5980 llvm::Value *RegOffset = 5981 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 5982 Address RegSaveAreaPtr = 5983 CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24), 5984 "reg_save_area_ptr"); 5985 llvm::Value *RegSaveArea = 5986 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 5987 Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset, 5988 "raw_reg_addr"), 5989 PaddedSize); 5990 Address RegAddr = 5991 CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr"); 5992 5993 // Update the register count 5994 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 5995 llvm::Value *NewRegCount = 5996 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 5997 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 5998 CGF.EmitBranch(ContBlock); 5999 6000 // Emit code to load the value if it was passed in memory. 6001 CGF.EmitBlock(InMemBlock); 6002 6003 // Work out the address of a stack argument. 6004 Address OverflowArgAreaPtr = CGF.Builder.CreateStructGEP( 6005 VAListAddr, 2, CharUnits::fromQuantity(16), "overflow_arg_area_ptr"); 6006 Address OverflowArgArea = 6007 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 6008 PaddedSize); 6009 Address RawMemAddr = 6010 CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr"); 6011 Address MemAddr = 6012 CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr"); 6013 6014 // Update overflow_arg_area_ptr pointer 6015 llvm::Value *NewOverflowArgArea = 6016 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 6017 "overflow_arg_area"); 6018 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 6019 CGF.EmitBranch(ContBlock); 6020 6021 // Return the appropriate result. 6022 CGF.EmitBlock(ContBlock); 6023 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 6024 MemAddr, InMemBlock, "va_arg.addr"); 6025 6026 if (IsIndirect) 6027 ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), 6028 TyInfo.second); 6029 6030 return ResAddr; 6031 } 6032 6033 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 6034 if (RetTy->isVoidType()) 6035 return ABIArgInfo::getIgnore(); 6036 if (isVectorArgumentType(RetTy)) 6037 return ABIArgInfo::getDirect(); 6038 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 6039 return getNaturalAlignIndirect(RetTy); 6040 return (isPromotableIntegerType(RetTy) ? 6041 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 6042 } 6043 6044 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 6045 // Handle the generic C++ ABI. 6046 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 6047 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6048 6049 // Integers and enums are extended to full register width. 6050 if (isPromotableIntegerType(Ty)) 6051 return ABIArgInfo::getExtend(); 6052 6053 // Handle vector types and vector-like structure types. Note that 6054 // as opposed to float-like structure types, we do not allow any 6055 // padding for vector-like structures, so verify the sizes match. 6056 uint64_t Size = getContext().getTypeSize(Ty); 6057 QualType SingleElementTy = GetSingleElementType(Ty); 6058 if (isVectorArgumentType(SingleElementTy) && 6059 getContext().getTypeSize(SingleElementTy) == Size) 6060 return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); 6061 6062 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 6063 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 6064 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6065 6066 // Handle small structures. 6067 if (const RecordType *RT = Ty->getAs<RecordType>()) { 6068 // Structures with flexible arrays have variable length, so really 6069 // fail the size test above. 6070 const RecordDecl *RD = RT->getDecl(); 6071 if (RD->hasFlexibleArrayMember()) 6072 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6073 6074 // The structure is passed as an unextended integer, a float, or a double. 6075 llvm::Type *PassTy; 6076 if (isFPArgumentType(SingleElementTy)) { 6077 assert(Size == 32 || Size == 64); 6078 if (Size == 32) 6079 PassTy = llvm::Type::getFloatTy(getVMContext()); 6080 else 6081 PassTy = llvm::Type::getDoubleTy(getVMContext()); 6082 } else 6083 PassTy = llvm::IntegerType::get(getVMContext(), Size); 6084 return ABIArgInfo::getDirect(PassTy); 6085 } 6086 6087 // Non-structure compounds are passed indirectly. 6088 if (isCompoundType(Ty)) 6089 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6090 6091 return ABIArgInfo::getDirect(nullptr); 6092 } 6093 6094 //===----------------------------------------------------------------------===// 6095 // MSP430 ABI Implementation 6096 //===----------------------------------------------------------------------===// 6097 6098 namespace { 6099 6100 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 6101 public: 6102 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 6103 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 6104 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6105 CodeGen::CodeGenModule &M) const override; 6106 }; 6107 6108 } 6109 6110 void MSP430TargetCodeGenInfo::setTargetAttributes(const Decl *D, 6111 llvm::GlobalValue *GV, 6112 CodeGen::CodeGenModule &M) const { 6113 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 6114 if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) { 6115 // Handle 'interrupt' attribute: 6116 llvm::Function *F = cast<llvm::Function>(GV); 6117 6118 // Step 1: Set ISR calling convention. 6119 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 6120 6121 // Step 2: Add attributes goodness. 6122 F->addFnAttr(llvm::Attribute::NoInline); 6123 6124 // Step 3: Emit ISR vector alias. 6125 unsigned Num = attr->getNumber() / 2; 6126 llvm::GlobalAlias::create(llvm::Function::ExternalLinkage, 6127 "__isr_" + Twine(Num), F); 6128 } 6129 } 6130 } 6131 6132 //===----------------------------------------------------------------------===// 6133 // MIPS ABI Implementation. This works for both little-endian and 6134 // big-endian variants. 6135 //===----------------------------------------------------------------------===// 6136 6137 namespace { 6138 class MipsABIInfo : public ABIInfo { 6139 bool IsO32; 6140 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 6141 void CoerceToIntArgs(uint64_t TySize, 6142 SmallVectorImpl<llvm::Type *> &ArgList) const; 6143 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 6144 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 6145 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 6146 public: 6147 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 6148 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 6149 StackAlignInBytes(IsO32 ? 8 : 16) {} 6150 6151 ABIArgInfo classifyReturnType(QualType RetTy) const; 6152 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 6153 void computeInfo(CGFunctionInfo &FI) const override; 6154 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6155 QualType Ty) const override; 6156 bool shouldSignExtUnsignedType(QualType Ty) const override; 6157 }; 6158 6159 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 6160 unsigned SizeOfUnwindException; 6161 public: 6162 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 6163 : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)), 6164 SizeOfUnwindException(IsO32 ? 24 : 32) {} 6165 6166 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 6167 return 29; 6168 } 6169 6170 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6171 CodeGen::CodeGenModule &CGM) const override { 6172 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6173 if (!FD) return; 6174 llvm::Function *Fn = cast<llvm::Function>(GV); 6175 if (FD->hasAttr<Mips16Attr>()) { 6176 Fn->addFnAttr("mips16"); 6177 } 6178 else if (FD->hasAttr<NoMips16Attr>()) { 6179 Fn->addFnAttr("nomips16"); 6180 } 6181 6182 const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>(); 6183 if (!Attr) 6184 return; 6185 6186 const char *Kind; 6187 switch (Attr->getInterrupt()) { 6188 case MipsInterruptAttr::eic: Kind = "eic"; break; 6189 case MipsInterruptAttr::sw0: Kind = "sw0"; break; 6190 case MipsInterruptAttr::sw1: Kind = "sw1"; break; 6191 case MipsInterruptAttr::hw0: Kind = "hw0"; break; 6192 case MipsInterruptAttr::hw1: Kind = "hw1"; break; 6193 case MipsInterruptAttr::hw2: Kind = "hw2"; break; 6194 case MipsInterruptAttr::hw3: Kind = "hw3"; break; 6195 case MipsInterruptAttr::hw4: Kind = "hw4"; break; 6196 case MipsInterruptAttr::hw5: Kind = "hw5"; break; 6197 } 6198 6199 Fn->addFnAttr("interrupt", Kind); 6200 6201 } 6202 6203 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6204 llvm::Value *Address) const override; 6205 6206 unsigned getSizeOfUnwindException() const override { 6207 return SizeOfUnwindException; 6208 } 6209 }; 6210 } 6211 6212 void MipsABIInfo::CoerceToIntArgs( 6213 uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const { 6214 llvm::IntegerType *IntTy = 6215 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 6216 6217 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 6218 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 6219 ArgList.push_back(IntTy); 6220 6221 // If necessary, add one more integer type to ArgList. 6222 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 6223 6224 if (R) 6225 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 6226 } 6227 6228 // In N32/64, an aligned double precision floating point field is passed in 6229 // a register. 6230 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 6231 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 6232 6233 if (IsO32) { 6234 CoerceToIntArgs(TySize, ArgList); 6235 return llvm::StructType::get(getVMContext(), ArgList); 6236 } 6237 6238 if (Ty->isComplexType()) 6239 return CGT.ConvertType(Ty); 6240 6241 const RecordType *RT = Ty->getAs<RecordType>(); 6242 6243 // Unions/vectors are passed in integer registers. 6244 if (!RT || !RT->isStructureOrClassType()) { 6245 CoerceToIntArgs(TySize, ArgList); 6246 return llvm::StructType::get(getVMContext(), ArgList); 6247 } 6248 6249 const RecordDecl *RD = RT->getDecl(); 6250 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 6251 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 6252 6253 uint64_t LastOffset = 0; 6254 unsigned idx = 0; 6255 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 6256 6257 // Iterate over fields in the struct/class and check if there are any aligned 6258 // double fields. 6259 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 6260 i != e; ++i, ++idx) { 6261 const QualType Ty = i->getType(); 6262 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 6263 6264 if (!BT || BT->getKind() != BuiltinType::Double) 6265 continue; 6266 6267 uint64_t Offset = Layout.getFieldOffset(idx); 6268 if (Offset % 64) // Ignore doubles that are not aligned. 6269 continue; 6270 6271 // Add ((Offset - LastOffset) / 64) args of type i64. 6272 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 6273 ArgList.push_back(I64); 6274 6275 // Add double type. 6276 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 6277 LastOffset = Offset + 64; 6278 } 6279 6280 CoerceToIntArgs(TySize - LastOffset, IntArgList); 6281 ArgList.append(IntArgList.begin(), IntArgList.end()); 6282 6283 return llvm::StructType::get(getVMContext(), ArgList); 6284 } 6285 6286 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 6287 uint64_t Offset) const { 6288 if (OrigOffset + MinABIStackAlignInBytes > Offset) 6289 return nullptr; 6290 6291 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 6292 } 6293 6294 ABIArgInfo 6295 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 6296 Ty = useFirstFieldIfTransparentUnion(Ty); 6297 6298 uint64_t OrigOffset = Offset; 6299 uint64_t TySize = getContext().getTypeSize(Ty); 6300 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 6301 6302 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 6303 (uint64_t)StackAlignInBytes); 6304 unsigned CurrOffset = llvm::alignTo(Offset, Align); 6305 Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8; 6306 6307 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 6308 // Ignore empty aggregates. 6309 if (TySize == 0) 6310 return ABIArgInfo::getIgnore(); 6311 6312 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 6313 Offset = OrigOffset + MinABIStackAlignInBytes; 6314 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6315 } 6316 6317 // If we have reached here, aggregates are passed directly by coercing to 6318 // another structure type. Padding is inserted if the offset of the 6319 // aggregate is unaligned. 6320 ABIArgInfo ArgInfo = 6321 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 6322 getPaddingType(OrigOffset, CurrOffset)); 6323 ArgInfo.setInReg(true); 6324 return ArgInfo; 6325 } 6326 6327 // Treat an enum type as its underlying type. 6328 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6329 Ty = EnumTy->getDecl()->getIntegerType(); 6330 6331 // All integral types are promoted to the GPR width. 6332 if (Ty->isIntegralOrEnumerationType()) 6333 return ABIArgInfo::getExtend(); 6334 6335 return ABIArgInfo::getDirect( 6336 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 6337 } 6338 6339 llvm::Type* 6340 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 6341 const RecordType *RT = RetTy->getAs<RecordType>(); 6342 SmallVector<llvm::Type*, 8> RTList; 6343 6344 if (RT && RT->isStructureOrClassType()) { 6345 const RecordDecl *RD = RT->getDecl(); 6346 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 6347 unsigned FieldCnt = Layout.getFieldCount(); 6348 6349 // N32/64 returns struct/classes in floating point registers if the 6350 // following conditions are met: 6351 // 1. The size of the struct/class is no larger than 128-bit. 6352 // 2. The struct/class has one or two fields all of which are floating 6353 // point types. 6354 // 3. The offset of the first field is zero (this follows what gcc does). 6355 // 6356 // Any other composite results are returned in integer registers. 6357 // 6358 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 6359 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 6360 for (; b != e; ++b) { 6361 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 6362 6363 if (!BT || !BT->isFloatingPoint()) 6364 break; 6365 6366 RTList.push_back(CGT.ConvertType(b->getType())); 6367 } 6368 6369 if (b == e) 6370 return llvm::StructType::get(getVMContext(), RTList, 6371 RD->hasAttr<PackedAttr>()); 6372 6373 RTList.clear(); 6374 } 6375 } 6376 6377 CoerceToIntArgs(Size, RTList); 6378 return llvm::StructType::get(getVMContext(), RTList); 6379 } 6380 6381 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 6382 uint64_t Size = getContext().getTypeSize(RetTy); 6383 6384 if (RetTy->isVoidType()) 6385 return ABIArgInfo::getIgnore(); 6386 6387 // O32 doesn't treat zero-sized structs differently from other structs. 6388 // However, N32/N64 ignores zero sized return values. 6389 if (!IsO32 && Size == 0) 6390 return ABIArgInfo::getIgnore(); 6391 6392 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 6393 if (Size <= 128) { 6394 if (RetTy->isAnyComplexType()) 6395 return ABIArgInfo::getDirect(); 6396 6397 // O32 returns integer vectors in registers and N32/N64 returns all small 6398 // aggregates in registers. 6399 if (!IsO32 || 6400 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { 6401 ABIArgInfo ArgInfo = 6402 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 6403 ArgInfo.setInReg(true); 6404 return ArgInfo; 6405 } 6406 } 6407 6408 return getNaturalAlignIndirect(RetTy); 6409 } 6410 6411 // Treat an enum type as its underlying type. 6412 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6413 RetTy = EnumTy->getDecl()->getIntegerType(); 6414 6415 return (RetTy->isPromotableIntegerType() ? 6416 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 6417 } 6418 6419 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 6420 ABIArgInfo &RetInfo = FI.getReturnInfo(); 6421 if (!getCXXABI().classifyReturnType(FI)) 6422 RetInfo = classifyReturnType(FI.getReturnType()); 6423 6424 // Check if a pointer to an aggregate is passed as a hidden argument. 6425 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 6426 6427 for (auto &I : FI.arguments()) 6428 I.info = classifyArgumentType(I.type, Offset); 6429 } 6430 6431 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6432 QualType OrigTy) const { 6433 QualType Ty = OrigTy; 6434 6435 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. 6436 // Pointers are also promoted in the same way but this only matters for N32. 6437 unsigned SlotSizeInBits = IsO32 ? 32 : 64; 6438 unsigned PtrWidth = getTarget().getPointerWidth(0); 6439 bool DidPromote = false; 6440 if ((Ty->isIntegerType() && 6441 getContext().getIntWidth(Ty) < SlotSizeInBits) || 6442 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { 6443 DidPromote = true; 6444 Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits, 6445 Ty->isSignedIntegerType()); 6446 } 6447 6448 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6449 6450 // The alignment of things in the argument area is never larger than 6451 // StackAlignInBytes. 6452 TyInfo.second = 6453 std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes)); 6454 6455 // MinABIStackAlignInBytes is the size of argument slots on the stack. 6456 CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes); 6457 6458 Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 6459 TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true); 6460 6461 6462 // If there was a promotion, "unpromote" into a temporary. 6463 // TODO: can we just use a pointer into a subset of the original slot? 6464 if (DidPromote) { 6465 Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp"); 6466 llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr); 6467 6468 // Truncate down to the right width. 6469 llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType() 6470 : CGF.IntPtrTy); 6471 llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy); 6472 if (OrigTy->isPointerType()) 6473 V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType()); 6474 6475 CGF.Builder.CreateStore(V, Temp); 6476 Addr = Temp; 6477 } 6478 6479 return Addr; 6480 } 6481 6482 bool MipsABIInfo::shouldSignExtUnsignedType(QualType Ty) const { 6483 int TySize = getContext().getTypeSize(Ty); 6484 6485 // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. 6486 if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 6487 return true; 6488 6489 return false; 6490 } 6491 6492 bool 6493 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6494 llvm::Value *Address) const { 6495 // This information comes from gcc's implementation, which seems to 6496 // as canonical as it gets. 6497 6498 // Everything on MIPS is 4 bytes. Double-precision FP registers 6499 // are aliased to pairs of single-precision FP registers. 6500 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 6501 6502 // 0-31 are the general purpose registers, $0 - $31. 6503 // 32-63 are the floating-point registers, $f0 - $f31. 6504 // 64 and 65 are the multiply/divide registers, $hi and $lo. 6505 // 66 is the (notional, I think) register for signal-handler return. 6506 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 6507 6508 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 6509 // They are one bit wide and ignored here. 6510 6511 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 6512 // (coprocessor 1 is the FP unit) 6513 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 6514 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 6515 // 176-181 are the DSP accumulator registers. 6516 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 6517 return false; 6518 } 6519 6520 //===----------------------------------------------------------------------===// 6521 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 6522 // Currently subclassed only to implement custom OpenCL C function attribute 6523 // handling. 6524 //===----------------------------------------------------------------------===// 6525 6526 namespace { 6527 6528 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 6529 public: 6530 TCETargetCodeGenInfo(CodeGenTypes &CGT) 6531 : DefaultTargetCodeGenInfo(CGT) {} 6532 6533 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6534 CodeGen::CodeGenModule &M) const override; 6535 }; 6536 6537 void TCETargetCodeGenInfo::setTargetAttributes( 6538 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 6539 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6540 if (!FD) return; 6541 6542 llvm::Function *F = cast<llvm::Function>(GV); 6543 6544 if (M.getLangOpts().OpenCL) { 6545 if (FD->hasAttr<OpenCLKernelAttr>()) { 6546 // OpenCL C Kernel functions are not subject to inlining 6547 F->addFnAttr(llvm::Attribute::NoInline); 6548 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 6549 if (Attr) { 6550 // Convert the reqd_work_group_size() attributes to metadata. 6551 llvm::LLVMContext &Context = F->getContext(); 6552 llvm::NamedMDNode *OpenCLMetadata = 6553 M.getModule().getOrInsertNamedMetadata( 6554 "opencl.kernel_wg_size_info"); 6555 6556 SmallVector<llvm::Metadata *, 5> Operands; 6557 Operands.push_back(llvm::ConstantAsMetadata::get(F)); 6558 6559 Operands.push_back( 6560 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 6561 M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); 6562 Operands.push_back( 6563 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 6564 M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); 6565 Operands.push_back( 6566 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 6567 M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); 6568 6569 // Add a boolean constant operand for "required" (true) or "hint" 6570 // (false) for implementing the work_group_size_hint attr later. 6571 // Currently always true as the hint is not yet implemented. 6572 Operands.push_back( 6573 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); 6574 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 6575 } 6576 } 6577 } 6578 } 6579 6580 } 6581 6582 //===----------------------------------------------------------------------===// 6583 // Hexagon ABI Implementation 6584 //===----------------------------------------------------------------------===// 6585 6586 namespace { 6587 6588 class HexagonABIInfo : public ABIInfo { 6589 6590 6591 public: 6592 HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 6593 6594 private: 6595 6596 ABIArgInfo classifyReturnType(QualType RetTy) const; 6597 ABIArgInfo classifyArgumentType(QualType RetTy) const; 6598 6599 void computeInfo(CGFunctionInfo &FI) const override; 6600 6601 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6602 QualType Ty) const override; 6603 }; 6604 6605 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 6606 public: 6607 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 6608 :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {} 6609 6610 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 6611 return 29; 6612 } 6613 }; 6614 6615 } 6616 6617 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 6618 if (!getCXXABI().classifyReturnType(FI)) 6619 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6620 for (auto &I : FI.arguments()) 6621 I.info = classifyArgumentType(I.type); 6622 } 6623 6624 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const { 6625 if (!isAggregateTypeForABI(Ty)) { 6626 // Treat an enum type as its underlying type. 6627 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6628 Ty = EnumTy->getDecl()->getIntegerType(); 6629 6630 return (Ty->isPromotableIntegerType() ? 6631 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 6632 } 6633 6634 // Ignore empty records. 6635 if (isEmptyRecord(getContext(), Ty, true)) 6636 return ABIArgInfo::getIgnore(); 6637 6638 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 6639 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6640 6641 uint64_t Size = getContext().getTypeSize(Ty); 6642 if (Size > 64) 6643 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 6644 // Pass in the smallest viable integer type. 6645 else if (Size > 32) 6646 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 6647 else if (Size > 16) 6648 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6649 else if (Size > 8) 6650 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6651 else 6652 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6653 } 6654 6655 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 6656 if (RetTy->isVoidType()) 6657 return ABIArgInfo::getIgnore(); 6658 6659 // Large vector types should be returned via memory. 6660 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64) 6661 return getNaturalAlignIndirect(RetTy); 6662 6663 if (!isAggregateTypeForABI(RetTy)) { 6664 // Treat an enum type as its underlying type. 6665 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6666 RetTy = EnumTy->getDecl()->getIntegerType(); 6667 6668 return (RetTy->isPromotableIntegerType() ? 6669 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 6670 } 6671 6672 if (isEmptyRecord(getContext(), RetTy, true)) 6673 return ABIArgInfo::getIgnore(); 6674 6675 // Aggregates <= 8 bytes are returned in r0; other aggregates 6676 // are returned indirectly. 6677 uint64_t Size = getContext().getTypeSize(RetTy); 6678 if (Size <= 64) { 6679 // Return in the smallest viable integer type. 6680 if (Size <= 8) 6681 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6682 if (Size <= 16) 6683 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6684 if (Size <= 32) 6685 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6686 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 6687 } 6688 6689 return getNaturalAlignIndirect(RetTy, /*ByVal=*/true); 6690 } 6691 6692 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6693 QualType Ty) const { 6694 // FIXME: Someone needs to audit that this handle alignment correctly. 6695 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 6696 getContext().getTypeInfoInChars(Ty), 6697 CharUnits::fromQuantity(4), 6698 /*AllowHigherAlign*/ true); 6699 } 6700 6701 //===----------------------------------------------------------------------===// 6702 // Lanai ABI Implementation 6703 //===----------------------------------------------------------------------===// 6704 6705 namespace { 6706 class LanaiABIInfo : public DefaultABIInfo { 6707 public: 6708 LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 6709 6710 bool shouldUseInReg(QualType Ty, CCState &State) const; 6711 6712 void computeInfo(CGFunctionInfo &FI) const override { 6713 CCState State(FI.getCallingConvention()); 6714 // Lanai uses 4 registers to pass arguments unless the function has the 6715 // regparm attribute set. 6716 if (FI.getHasRegParm()) { 6717 State.FreeRegs = FI.getRegParm(); 6718 } else { 6719 State.FreeRegs = 4; 6720 } 6721 6722 if (!getCXXABI().classifyReturnType(FI)) 6723 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6724 for (auto &I : FI.arguments()) 6725 I.info = classifyArgumentType(I.type, State); 6726 } 6727 6728 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 6729 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 6730 }; 6731 } // end anonymous namespace 6732 6733 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const { 6734 unsigned Size = getContext().getTypeSize(Ty); 6735 unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U; 6736 6737 if (SizeInRegs == 0) 6738 return false; 6739 6740 if (SizeInRegs > State.FreeRegs) { 6741 State.FreeRegs = 0; 6742 return false; 6743 } 6744 6745 State.FreeRegs -= SizeInRegs; 6746 6747 return true; 6748 } 6749 6750 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal, 6751 CCState &State) const { 6752 if (!ByVal) { 6753 if (State.FreeRegs) { 6754 --State.FreeRegs; // Non-byval indirects just use one pointer. 6755 return getNaturalAlignIndirectInReg(Ty); 6756 } 6757 return getNaturalAlignIndirect(Ty, false); 6758 } 6759 6760 // Compute the byval alignment. 6761 const unsigned MinABIStackAlignInBytes = 4; 6762 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 6763 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 6764 /*Realign=*/TypeAlign > 6765 MinABIStackAlignInBytes); 6766 } 6767 6768 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty, 6769 CCState &State) const { 6770 // Check with the C++ ABI first. 6771 const RecordType *RT = Ty->getAs<RecordType>(); 6772 if (RT) { 6773 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 6774 if (RAA == CGCXXABI::RAA_Indirect) { 6775 return getIndirectResult(Ty, /*ByVal=*/false, State); 6776 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 6777 return getNaturalAlignIndirect(Ty, /*ByRef=*/true); 6778 } 6779 } 6780 6781 if (isAggregateTypeForABI(Ty)) { 6782 // Structures with flexible arrays are always indirect. 6783 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 6784 return getIndirectResult(Ty, /*ByVal=*/true, State); 6785 6786 // Ignore empty structs/unions. 6787 if (isEmptyRecord(getContext(), Ty, true)) 6788 return ABIArgInfo::getIgnore(); 6789 6790 llvm::LLVMContext &LLVMContext = getVMContext(); 6791 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 6792 if (SizeInRegs <= State.FreeRegs) { 6793 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 6794 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 6795 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 6796 State.FreeRegs -= SizeInRegs; 6797 return ABIArgInfo::getDirectInReg(Result); 6798 } else { 6799 State.FreeRegs = 0; 6800 } 6801 return getIndirectResult(Ty, true, State); 6802 } 6803 6804 // Treat an enum type as its underlying type. 6805 if (const auto *EnumTy = Ty->getAs<EnumType>()) 6806 Ty = EnumTy->getDecl()->getIntegerType(); 6807 6808 bool InReg = shouldUseInReg(Ty, State); 6809 if (Ty->isPromotableIntegerType()) { 6810 if (InReg) 6811 return ABIArgInfo::getDirectInReg(); 6812 return ABIArgInfo::getExtend(); 6813 } 6814 if (InReg) 6815 return ABIArgInfo::getDirectInReg(); 6816 return ABIArgInfo::getDirect(); 6817 } 6818 6819 namespace { 6820 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo { 6821 public: 6822 LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 6823 : TargetCodeGenInfo(new LanaiABIInfo(CGT)) {} 6824 }; 6825 } 6826 6827 //===----------------------------------------------------------------------===// 6828 // AMDGPU ABI Implementation 6829 //===----------------------------------------------------------------------===// 6830 6831 namespace { 6832 6833 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { 6834 public: 6835 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) 6836 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 6837 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6838 CodeGen::CodeGenModule &M) const override; 6839 unsigned getOpenCLKernelCallingConv() const override; 6840 unsigned getOpenCLImageAddrSpace(CodeGen::CodeGenModule &CGM) const override; 6841 }; 6842 6843 } 6844 6845 static void appendOpenCLVersionMD (CodeGen::CodeGenModule &CGM); 6846 6847 void AMDGPUTargetCodeGenInfo::setTargetAttributes( 6848 const Decl *D, 6849 llvm::GlobalValue *GV, 6850 CodeGen::CodeGenModule &M) const { 6851 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6852 if (!FD) 6853 return; 6854 6855 if (const auto Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { 6856 llvm::Function *F = cast<llvm::Function>(GV); 6857 uint32_t NumVGPR = Attr->getNumVGPR(); 6858 if (NumVGPR != 0) 6859 F->addFnAttr("amdgpu_num_vgpr", llvm::utostr(NumVGPR)); 6860 } 6861 6862 if (const auto Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { 6863 llvm::Function *F = cast<llvm::Function>(GV); 6864 unsigned NumSGPR = Attr->getNumSGPR(); 6865 if (NumSGPR != 0) 6866 F->addFnAttr("amdgpu_num_sgpr", llvm::utostr(NumSGPR)); 6867 } 6868 6869 appendOpenCLVersionMD(M); 6870 } 6871 6872 6873 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 6874 return llvm::CallingConv::AMDGPU_KERNEL; 6875 } 6876 6877 unsigned AMDGPUTargetCodeGenInfo::getOpenCLImageAddrSpace(CodeGen::CodeGenModule &CGM) const { 6878 return CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 6879 } 6880 6881 //===----------------------------------------------------------------------===// 6882 // SPARC v8 ABI Implementation. 6883 // Based on the SPARC Compliance Definition version 2.4.1. 6884 // 6885 // Ensures that complex values are passed in registers. 6886 // 6887 namespace { 6888 class SparcV8ABIInfo : public DefaultABIInfo { 6889 public: 6890 SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 6891 6892 private: 6893 ABIArgInfo classifyReturnType(QualType RetTy) const; 6894 void computeInfo(CGFunctionInfo &FI) const override; 6895 }; 6896 } // end anonymous namespace 6897 6898 6899 ABIArgInfo 6900 SparcV8ABIInfo::classifyReturnType(QualType Ty) const { 6901 if (Ty->isAnyComplexType()) { 6902 return ABIArgInfo::getDirect(); 6903 } 6904 else { 6905 return DefaultABIInfo::classifyReturnType(Ty); 6906 } 6907 } 6908 6909 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const { 6910 6911 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6912 for (auto &Arg : FI.arguments()) 6913 Arg.info = classifyArgumentType(Arg.type); 6914 } 6915 6916 namespace { 6917 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo { 6918 public: 6919 SparcV8TargetCodeGenInfo(CodeGenTypes &CGT) 6920 : TargetCodeGenInfo(new SparcV8ABIInfo(CGT)) {} 6921 }; 6922 } // end anonymous namespace 6923 6924 //===----------------------------------------------------------------------===// 6925 // SPARC v9 ABI Implementation. 6926 // Based on the SPARC Compliance Definition version 2.4.1. 6927 // 6928 // Function arguments a mapped to a nominal "parameter array" and promoted to 6929 // registers depending on their type. Each argument occupies 8 or 16 bytes in 6930 // the array, structs larger than 16 bytes are passed indirectly. 6931 // 6932 // One case requires special care: 6933 // 6934 // struct mixed { 6935 // int i; 6936 // float f; 6937 // }; 6938 // 6939 // When a struct mixed is passed by value, it only occupies 8 bytes in the 6940 // parameter array, but the int is passed in an integer register, and the float 6941 // is passed in a floating point register. This is represented as two arguments 6942 // with the LLVM IR inreg attribute: 6943 // 6944 // declare void f(i32 inreg %i, float inreg %f) 6945 // 6946 // The code generator will only allocate 4 bytes from the parameter array for 6947 // the inreg arguments. All other arguments are allocated a multiple of 8 6948 // bytes. 6949 // 6950 namespace { 6951 class SparcV9ABIInfo : public ABIInfo { 6952 public: 6953 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 6954 6955 private: 6956 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 6957 void computeInfo(CGFunctionInfo &FI) const override; 6958 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6959 QualType Ty) const override; 6960 6961 // Coercion type builder for structs passed in registers. The coercion type 6962 // serves two purposes: 6963 // 6964 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 6965 // in registers. 6966 // 2. Expose aligned floating point elements as first-level elements, so the 6967 // code generator knows to pass them in floating point registers. 6968 // 6969 // We also compute the InReg flag which indicates that the struct contains 6970 // aligned 32-bit floats. 6971 // 6972 struct CoerceBuilder { 6973 llvm::LLVMContext &Context; 6974 const llvm::DataLayout &DL; 6975 SmallVector<llvm::Type*, 8> Elems; 6976 uint64_t Size; 6977 bool InReg; 6978 6979 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 6980 : Context(c), DL(dl), Size(0), InReg(false) {} 6981 6982 // Pad Elems with integers until Size is ToSize. 6983 void pad(uint64_t ToSize) { 6984 assert(ToSize >= Size && "Cannot remove elements"); 6985 if (ToSize == Size) 6986 return; 6987 6988 // Finish the current 64-bit word. 6989 uint64_t Aligned = llvm::alignTo(Size, 64); 6990 if (Aligned > Size && Aligned <= ToSize) { 6991 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 6992 Size = Aligned; 6993 } 6994 6995 // Add whole 64-bit words. 6996 while (Size + 64 <= ToSize) { 6997 Elems.push_back(llvm::Type::getInt64Ty(Context)); 6998 Size += 64; 6999 } 7000 7001 // Final in-word padding. 7002 if (Size < ToSize) { 7003 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 7004 Size = ToSize; 7005 } 7006 } 7007 7008 // Add a floating point element at Offset. 7009 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 7010 // Unaligned floats are treated as integers. 7011 if (Offset % Bits) 7012 return; 7013 // The InReg flag is only required if there are any floats < 64 bits. 7014 if (Bits < 64) 7015 InReg = true; 7016 pad(Offset); 7017 Elems.push_back(Ty); 7018 Size = Offset + Bits; 7019 } 7020 7021 // Add a struct type to the coercion type, starting at Offset (in bits). 7022 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 7023 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 7024 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 7025 llvm::Type *ElemTy = StrTy->getElementType(i); 7026 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 7027 switch (ElemTy->getTypeID()) { 7028 case llvm::Type::StructTyID: 7029 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 7030 break; 7031 case llvm::Type::FloatTyID: 7032 addFloat(ElemOffset, ElemTy, 32); 7033 break; 7034 case llvm::Type::DoubleTyID: 7035 addFloat(ElemOffset, ElemTy, 64); 7036 break; 7037 case llvm::Type::FP128TyID: 7038 addFloat(ElemOffset, ElemTy, 128); 7039 break; 7040 case llvm::Type::PointerTyID: 7041 if (ElemOffset % 64 == 0) { 7042 pad(ElemOffset); 7043 Elems.push_back(ElemTy); 7044 Size += 64; 7045 } 7046 break; 7047 default: 7048 break; 7049 } 7050 } 7051 } 7052 7053 // Check if Ty is a usable substitute for the coercion type. 7054 bool isUsableType(llvm::StructType *Ty) const { 7055 return llvm::makeArrayRef(Elems) == Ty->elements(); 7056 } 7057 7058 // Get the coercion type as a literal struct type. 7059 llvm::Type *getType() const { 7060 if (Elems.size() == 1) 7061 return Elems.front(); 7062 else 7063 return llvm::StructType::get(Context, Elems); 7064 } 7065 }; 7066 }; 7067 } // end anonymous namespace 7068 7069 ABIArgInfo 7070 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 7071 if (Ty->isVoidType()) 7072 return ABIArgInfo::getIgnore(); 7073 7074 uint64_t Size = getContext().getTypeSize(Ty); 7075 7076 // Anything too big to fit in registers is passed with an explicit indirect 7077 // pointer / sret pointer. 7078 if (Size > SizeLimit) 7079 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7080 7081 // Treat an enum type as its underlying type. 7082 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7083 Ty = EnumTy->getDecl()->getIntegerType(); 7084 7085 // Integer types smaller than a register are extended. 7086 if (Size < 64 && Ty->isIntegerType()) 7087 return ABIArgInfo::getExtend(); 7088 7089 // Other non-aggregates go in registers. 7090 if (!isAggregateTypeForABI(Ty)) 7091 return ABIArgInfo::getDirect(); 7092 7093 // If a C++ object has either a non-trivial copy constructor or a non-trivial 7094 // destructor, it is passed with an explicit indirect pointer / sret pointer. 7095 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 7096 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7097 7098 // This is a small aggregate type that should be passed in registers. 7099 // Build a coercion type from the LLVM struct type. 7100 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 7101 if (!StrTy) 7102 return ABIArgInfo::getDirect(); 7103 7104 CoerceBuilder CB(getVMContext(), getDataLayout()); 7105 CB.addStruct(0, StrTy); 7106 CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64)); 7107 7108 // Try to use the original type for coercion. 7109 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 7110 7111 if (CB.InReg) 7112 return ABIArgInfo::getDirectInReg(CoerceTy); 7113 else 7114 return ABIArgInfo::getDirect(CoerceTy); 7115 } 7116 7117 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7118 QualType Ty) const { 7119 ABIArgInfo AI = classifyType(Ty, 16 * 8); 7120 llvm::Type *ArgTy = CGT.ConvertType(Ty); 7121 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 7122 AI.setCoerceToType(ArgTy); 7123 7124 CharUnits SlotSize = CharUnits::fromQuantity(8); 7125 7126 CGBuilderTy &Builder = CGF.Builder; 7127 Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 7128 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 7129 7130 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 7131 7132 Address ArgAddr = Address::invalid(); 7133 CharUnits Stride; 7134 switch (AI.getKind()) { 7135 case ABIArgInfo::Expand: 7136 case ABIArgInfo::CoerceAndExpand: 7137 case ABIArgInfo::InAlloca: 7138 llvm_unreachable("Unsupported ABI kind for va_arg"); 7139 7140 case ABIArgInfo::Extend: { 7141 Stride = SlotSize; 7142 CharUnits Offset = SlotSize - TypeInfo.first; 7143 ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend"); 7144 break; 7145 } 7146 7147 case ABIArgInfo::Direct: { 7148 auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 7149 Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize); 7150 ArgAddr = Addr; 7151 break; 7152 } 7153 7154 case ABIArgInfo::Indirect: 7155 Stride = SlotSize; 7156 ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect"); 7157 ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), 7158 TypeInfo.second); 7159 break; 7160 7161 case ABIArgInfo::Ignore: 7162 return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second); 7163 } 7164 7165 // Update VAList. 7166 llvm::Value *NextPtr = 7167 Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), Stride, "ap.next"); 7168 Builder.CreateStore(NextPtr, VAListAddr); 7169 7170 return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr"); 7171 } 7172 7173 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 7174 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 7175 for (auto &I : FI.arguments()) 7176 I.info = classifyType(I.type, 16 * 8); 7177 } 7178 7179 namespace { 7180 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 7181 public: 7182 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 7183 : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {} 7184 7185 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 7186 return 14; 7187 } 7188 7189 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7190 llvm::Value *Address) const override; 7191 }; 7192 } // end anonymous namespace 7193 7194 bool 7195 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7196 llvm::Value *Address) const { 7197 // This is calculated from the LLVM and GCC tables and verified 7198 // against gcc output. AFAIK all ABIs use the same encoding. 7199 7200 CodeGen::CGBuilderTy &Builder = CGF.Builder; 7201 7202 llvm::IntegerType *i8 = CGF.Int8Ty; 7203 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 7204 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 7205 7206 // 0-31: the 8-byte general-purpose registers 7207 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 7208 7209 // 32-63: f0-31, the 4-byte floating-point registers 7210 AssignToArrayRange(Builder, Address, Four8, 32, 63); 7211 7212 // Y = 64 7213 // PSR = 65 7214 // WIM = 66 7215 // TBR = 67 7216 // PC = 68 7217 // NPC = 69 7218 // FSR = 70 7219 // CSR = 71 7220 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 7221 7222 // 72-87: d0-15, the 8-byte floating-point registers 7223 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 7224 7225 return false; 7226 } 7227 7228 7229 //===----------------------------------------------------------------------===// 7230 // XCore ABI Implementation 7231 //===----------------------------------------------------------------------===// 7232 7233 namespace { 7234 7235 /// A SmallStringEnc instance is used to build up the TypeString by passing 7236 /// it by reference between functions that append to it. 7237 typedef llvm::SmallString<128> SmallStringEnc; 7238 7239 /// TypeStringCache caches the meta encodings of Types. 7240 /// 7241 /// The reason for caching TypeStrings is two fold: 7242 /// 1. To cache a type's encoding for later uses; 7243 /// 2. As a means to break recursive member type inclusion. 7244 /// 7245 /// A cache Entry can have a Status of: 7246 /// NonRecursive: The type encoding is not recursive; 7247 /// Recursive: The type encoding is recursive; 7248 /// Incomplete: An incomplete TypeString; 7249 /// IncompleteUsed: An incomplete TypeString that has been used in a 7250 /// Recursive type encoding. 7251 /// 7252 /// A NonRecursive entry will have all of its sub-members expanded as fully 7253 /// as possible. Whilst it may contain types which are recursive, the type 7254 /// itself is not recursive and thus its encoding may be safely used whenever 7255 /// the type is encountered. 7256 /// 7257 /// A Recursive entry will have all of its sub-members expanded as fully as 7258 /// possible. The type itself is recursive and it may contain other types which 7259 /// are recursive. The Recursive encoding must not be used during the expansion 7260 /// of a recursive type's recursive branch. For simplicity the code uses 7261 /// IncompleteCount to reject all usage of Recursive encodings for member types. 7262 /// 7263 /// An Incomplete entry is always a RecordType and only encodes its 7264 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 7265 /// are placed into the cache during type expansion as a means to identify and 7266 /// handle recursive inclusion of types as sub-members. If there is recursion 7267 /// the entry becomes IncompleteUsed. 7268 /// 7269 /// During the expansion of a RecordType's members: 7270 /// 7271 /// If the cache contains a NonRecursive encoding for the member type, the 7272 /// cached encoding is used; 7273 /// 7274 /// If the cache contains a Recursive encoding for the member type, the 7275 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 7276 /// 7277 /// If the member is a RecordType, an Incomplete encoding is placed into the 7278 /// cache to break potential recursive inclusion of itself as a sub-member; 7279 /// 7280 /// Once a member RecordType has been expanded, its temporary incomplete 7281 /// entry is removed from the cache. If a Recursive encoding was swapped out 7282 /// it is swapped back in; 7283 /// 7284 /// If an incomplete entry is used to expand a sub-member, the incomplete 7285 /// entry is marked as IncompleteUsed. The cache keeps count of how many 7286 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 7287 /// 7288 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 7289 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 7290 /// Else the member is part of a recursive type and thus the recursion has 7291 /// been exited too soon for the encoding to be correct for the member. 7292 /// 7293 class TypeStringCache { 7294 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 7295 struct Entry { 7296 std::string Str; // The encoded TypeString for the type. 7297 enum Status State; // Information about the encoding in 'Str'. 7298 std::string Swapped; // A temporary place holder for a Recursive encoding 7299 // during the expansion of RecordType's members. 7300 }; 7301 std::map<const IdentifierInfo *, struct Entry> Map; 7302 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 7303 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 7304 public: 7305 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {} 7306 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 7307 bool removeIncomplete(const IdentifierInfo *ID); 7308 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 7309 bool IsRecursive); 7310 StringRef lookupStr(const IdentifierInfo *ID); 7311 }; 7312 7313 /// TypeString encodings for enum & union fields must be order. 7314 /// FieldEncoding is a helper for this ordering process. 7315 class FieldEncoding { 7316 bool HasName; 7317 std::string Enc; 7318 public: 7319 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {} 7320 StringRef str() {return Enc.c_str();} 7321 bool operator<(const FieldEncoding &rhs) const { 7322 if (HasName != rhs.HasName) return HasName; 7323 return Enc < rhs.Enc; 7324 } 7325 }; 7326 7327 class XCoreABIInfo : public DefaultABIInfo { 7328 public: 7329 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7330 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7331 QualType Ty) const override; 7332 }; 7333 7334 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 7335 mutable TypeStringCache TSC; 7336 public: 7337 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 7338 :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {} 7339 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 7340 CodeGen::CodeGenModule &M) const override; 7341 }; 7342 7343 } // End anonymous namespace. 7344 7345 // TODO: this implementation is likely now redundant with the default 7346 // EmitVAArg. 7347 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7348 QualType Ty) const { 7349 CGBuilderTy &Builder = CGF.Builder; 7350 7351 // Get the VAList. 7352 CharUnits SlotSize = CharUnits::fromQuantity(4); 7353 Address AP(Builder.CreateLoad(VAListAddr), SlotSize); 7354 7355 // Handle the argument. 7356 ABIArgInfo AI = classifyArgumentType(Ty); 7357 CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty); 7358 llvm::Type *ArgTy = CGT.ConvertType(Ty); 7359 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 7360 AI.setCoerceToType(ArgTy); 7361 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 7362 7363 Address Val = Address::invalid(); 7364 CharUnits ArgSize = CharUnits::Zero(); 7365 switch (AI.getKind()) { 7366 case ABIArgInfo::Expand: 7367 case ABIArgInfo::CoerceAndExpand: 7368 case ABIArgInfo::InAlloca: 7369 llvm_unreachable("Unsupported ABI kind for va_arg"); 7370 case ABIArgInfo::Ignore: 7371 Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign); 7372 ArgSize = CharUnits::Zero(); 7373 break; 7374 case ABIArgInfo::Extend: 7375 case ABIArgInfo::Direct: 7376 Val = Builder.CreateBitCast(AP, ArgPtrTy); 7377 ArgSize = CharUnits::fromQuantity( 7378 getDataLayout().getTypeAllocSize(AI.getCoerceToType())); 7379 ArgSize = ArgSize.alignTo(SlotSize); 7380 break; 7381 case ABIArgInfo::Indirect: 7382 Val = Builder.CreateElementBitCast(AP, ArgPtrTy); 7383 Val = Address(Builder.CreateLoad(Val), TypeAlign); 7384 ArgSize = SlotSize; 7385 break; 7386 } 7387 7388 // Increment the VAList. 7389 if (!ArgSize.isZero()) { 7390 llvm::Value *APN = 7391 Builder.CreateConstInBoundsByteGEP(AP.getPointer(), ArgSize); 7392 Builder.CreateStore(APN, VAListAddr); 7393 } 7394 7395 return Val; 7396 } 7397 7398 /// During the expansion of a RecordType, an incomplete TypeString is placed 7399 /// into the cache as a means to identify and break recursion. 7400 /// If there is a Recursive encoding in the cache, it is swapped out and will 7401 /// be reinserted by removeIncomplete(). 7402 /// All other types of encoding should have been used rather than arriving here. 7403 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 7404 std::string StubEnc) { 7405 if (!ID) 7406 return; 7407 Entry &E = Map[ID]; 7408 assert( (E.Str.empty() || E.State == Recursive) && 7409 "Incorrectly use of addIncomplete"); 7410 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 7411 E.Swapped.swap(E.Str); // swap out the Recursive 7412 E.Str.swap(StubEnc); 7413 E.State = Incomplete; 7414 ++IncompleteCount; 7415 } 7416 7417 /// Once the RecordType has been expanded, the temporary incomplete TypeString 7418 /// must be removed from the cache. 7419 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 7420 /// Returns true if the RecordType was defined recursively. 7421 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 7422 if (!ID) 7423 return false; 7424 auto I = Map.find(ID); 7425 assert(I != Map.end() && "Entry not present"); 7426 Entry &E = I->second; 7427 assert( (E.State == Incomplete || 7428 E.State == IncompleteUsed) && 7429 "Entry must be an incomplete type"); 7430 bool IsRecursive = false; 7431 if (E.State == IncompleteUsed) { 7432 // We made use of our Incomplete encoding, thus we are recursive. 7433 IsRecursive = true; 7434 --IncompleteUsedCount; 7435 } 7436 if (E.Swapped.empty()) 7437 Map.erase(I); 7438 else { 7439 // Swap the Recursive back. 7440 E.Swapped.swap(E.Str); 7441 E.Swapped.clear(); 7442 E.State = Recursive; 7443 } 7444 --IncompleteCount; 7445 return IsRecursive; 7446 } 7447 7448 /// Add the encoded TypeString to the cache only if it is NonRecursive or 7449 /// Recursive (viz: all sub-members were expanded as fully as possible). 7450 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 7451 bool IsRecursive) { 7452 if (!ID || IncompleteUsedCount) 7453 return; // No key or it is is an incomplete sub-type so don't add. 7454 Entry &E = Map[ID]; 7455 if (IsRecursive && !E.Str.empty()) { 7456 assert(E.State==Recursive && E.Str.size() == Str.size() && 7457 "This is not the same Recursive entry"); 7458 // The parent container was not recursive after all, so we could have used 7459 // this Recursive sub-member entry after all, but we assumed the worse when 7460 // we started viz: IncompleteCount!=0. 7461 return; 7462 } 7463 assert(E.Str.empty() && "Entry already present"); 7464 E.Str = Str.str(); 7465 E.State = IsRecursive? Recursive : NonRecursive; 7466 } 7467 7468 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 7469 /// are recursively expanding a type (IncompleteCount != 0) and the cached 7470 /// encoding is Recursive, return an empty StringRef. 7471 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 7472 if (!ID) 7473 return StringRef(); // We have no key. 7474 auto I = Map.find(ID); 7475 if (I == Map.end()) 7476 return StringRef(); // We have no encoding. 7477 Entry &E = I->second; 7478 if (E.State == Recursive && IncompleteCount) 7479 return StringRef(); // We don't use Recursive encodings for member types. 7480 7481 if (E.State == Incomplete) { 7482 // The incomplete type is being used to break out of recursion. 7483 E.State = IncompleteUsed; 7484 ++IncompleteUsedCount; 7485 } 7486 return E.Str.c_str(); 7487 } 7488 7489 /// The XCore ABI includes a type information section that communicates symbol 7490 /// type information to the linker. The linker uses this information to verify 7491 /// safety/correctness of things such as array bound and pointers et al. 7492 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 7493 /// This type information (TypeString) is emitted into meta data for all global 7494 /// symbols: definitions, declarations, functions & variables. 7495 /// 7496 /// The TypeString carries type, qualifier, name, size & value details. 7497 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 7498 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf 7499 /// The output is tested by test/CodeGen/xcore-stringtype.c. 7500 /// 7501 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 7502 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC); 7503 7504 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 7505 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 7506 CodeGen::CodeGenModule &CGM) const { 7507 SmallStringEnc Enc; 7508 if (getTypeString(Enc, D, CGM, TSC)) { 7509 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 7510 llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV), 7511 llvm::MDString::get(Ctx, Enc.str())}; 7512 llvm::NamedMDNode *MD = 7513 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 7514 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 7515 } 7516 } 7517 7518 //===----------------------------------------------------------------------===// 7519 // SPIR ABI Implementation 7520 //===----------------------------------------------------------------------===// 7521 7522 namespace { 7523 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo { 7524 public: 7525 SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 7526 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 7527 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 7528 CodeGen::CodeGenModule &M) const override; 7529 unsigned getOpenCLKernelCallingConv() const override; 7530 }; 7531 } // End anonymous namespace. 7532 7533 /// Emit SPIR specific metadata: OpenCL and SPIR version. 7534 void SPIRTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 7535 CodeGen::CodeGenModule &CGM) const { 7536 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 7537 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(Ctx); 7538 llvm::Module &M = CGM.getModule(); 7539 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 7540 // opencl.spir.version named metadata. 7541 llvm::Metadata *SPIRVerElts[] = { 7542 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int32Ty, 2)), 7543 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int32Ty, 0))}; 7544 llvm::NamedMDNode *SPIRVerMD = 7545 M.getOrInsertNamedMetadata("opencl.spir.version"); 7546 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 7547 appendOpenCLVersionMD(CGM); 7548 } 7549 7550 static void appendOpenCLVersionMD (CodeGen::CodeGenModule &CGM) { 7551 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 7552 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(Ctx); 7553 llvm::Module &M = CGM.getModule(); 7554 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 7555 // opencl.ocl.version named metadata node. 7556 llvm::Metadata *OCLVerElts[] = { 7557 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 7558 Int32Ty, CGM.getLangOpts().OpenCLVersion / 100)), 7559 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 7560 Int32Ty, (CGM.getLangOpts().OpenCLVersion % 100) / 10))}; 7561 llvm::NamedMDNode *OCLVerMD = 7562 M.getOrInsertNamedMetadata("opencl.ocl.version"); 7563 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 7564 } 7565 7566 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 7567 return llvm::CallingConv::SPIR_KERNEL; 7568 } 7569 7570 static bool appendType(SmallStringEnc &Enc, QualType QType, 7571 const CodeGen::CodeGenModule &CGM, 7572 TypeStringCache &TSC); 7573 7574 /// Helper function for appendRecordType(). 7575 /// Builds a SmallVector containing the encoded field types in declaration 7576 /// order. 7577 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 7578 const RecordDecl *RD, 7579 const CodeGen::CodeGenModule &CGM, 7580 TypeStringCache &TSC) { 7581 for (const auto *Field : RD->fields()) { 7582 SmallStringEnc Enc; 7583 Enc += "m("; 7584 Enc += Field->getName(); 7585 Enc += "){"; 7586 if (Field->isBitField()) { 7587 Enc += "b("; 7588 llvm::raw_svector_ostream OS(Enc); 7589 OS << Field->getBitWidthValue(CGM.getContext()); 7590 Enc += ':'; 7591 } 7592 if (!appendType(Enc, Field->getType(), CGM, TSC)) 7593 return false; 7594 if (Field->isBitField()) 7595 Enc += ')'; 7596 Enc += '}'; 7597 FE.emplace_back(!Field->getName().empty(), Enc); 7598 } 7599 return true; 7600 } 7601 7602 /// Appends structure and union types to Enc and adds encoding to cache. 7603 /// Recursively calls appendType (via extractFieldType) for each field. 7604 /// Union types have their fields ordered according to the ABI. 7605 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 7606 const CodeGen::CodeGenModule &CGM, 7607 TypeStringCache &TSC, const IdentifierInfo *ID) { 7608 // Append the cached TypeString if we have one. 7609 StringRef TypeString = TSC.lookupStr(ID); 7610 if (!TypeString.empty()) { 7611 Enc += TypeString; 7612 return true; 7613 } 7614 7615 // Start to emit an incomplete TypeString. 7616 size_t Start = Enc.size(); 7617 Enc += (RT->isUnionType()? 'u' : 's'); 7618 Enc += '('; 7619 if (ID) 7620 Enc += ID->getName(); 7621 Enc += "){"; 7622 7623 // We collect all encoded fields and order as necessary. 7624 bool IsRecursive = false; 7625 const RecordDecl *RD = RT->getDecl()->getDefinition(); 7626 if (RD && !RD->field_empty()) { 7627 // An incomplete TypeString stub is placed in the cache for this RecordType 7628 // so that recursive calls to this RecordType will use it whilst building a 7629 // complete TypeString for this RecordType. 7630 SmallVector<FieldEncoding, 16> FE; 7631 std::string StubEnc(Enc.substr(Start).str()); 7632 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 7633 TSC.addIncomplete(ID, std::move(StubEnc)); 7634 if (!extractFieldType(FE, RD, CGM, TSC)) { 7635 (void) TSC.removeIncomplete(ID); 7636 return false; 7637 } 7638 IsRecursive = TSC.removeIncomplete(ID); 7639 // The ABI requires unions to be sorted but not structures. 7640 // See FieldEncoding::operator< for sort algorithm. 7641 if (RT->isUnionType()) 7642 std::sort(FE.begin(), FE.end()); 7643 // We can now complete the TypeString. 7644 unsigned E = FE.size(); 7645 for (unsigned I = 0; I != E; ++I) { 7646 if (I) 7647 Enc += ','; 7648 Enc += FE[I].str(); 7649 } 7650 } 7651 Enc += '}'; 7652 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 7653 return true; 7654 } 7655 7656 /// Appends enum types to Enc and adds the encoding to the cache. 7657 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 7658 TypeStringCache &TSC, 7659 const IdentifierInfo *ID) { 7660 // Append the cached TypeString if we have one. 7661 StringRef TypeString = TSC.lookupStr(ID); 7662 if (!TypeString.empty()) { 7663 Enc += TypeString; 7664 return true; 7665 } 7666 7667 size_t Start = Enc.size(); 7668 Enc += "e("; 7669 if (ID) 7670 Enc += ID->getName(); 7671 Enc += "){"; 7672 7673 // We collect all encoded enumerations and order them alphanumerically. 7674 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 7675 SmallVector<FieldEncoding, 16> FE; 7676 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 7677 ++I) { 7678 SmallStringEnc EnumEnc; 7679 EnumEnc += "m("; 7680 EnumEnc += I->getName(); 7681 EnumEnc += "){"; 7682 I->getInitVal().toString(EnumEnc); 7683 EnumEnc += '}'; 7684 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 7685 } 7686 std::sort(FE.begin(), FE.end()); 7687 unsigned E = FE.size(); 7688 for (unsigned I = 0; I != E; ++I) { 7689 if (I) 7690 Enc += ','; 7691 Enc += FE[I].str(); 7692 } 7693 } 7694 Enc += '}'; 7695 TSC.addIfComplete(ID, Enc.substr(Start), false); 7696 return true; 7697 } 7698 7699 /// Appends type's qualifier to Enc. 7700 /// This is done prior to appending the type's encoding. 7701 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 7702 // Qualifiers are emitted in alphabetical order. 7703 static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 7704 int Lookup = 0; 7705 if (QT.isConstQualified()) 7706 Lookup += 1<<0; 7707 if (QT.isRestrictQualified()) 7708 Lookup += 1<<1; 7709 if (QT.isVolatileQualified()) 7710 Lookup += 1<<2; 7711 Enc += Table[Lookup]; 7712 } 7713 7714 /// Appends built-in types to Enc. 7715 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 7716 const char *EncType; 7717 switch (BT->getKind()) { 7718 case BuiltinType::Void: 7719 EncType = "0"; 7720 break; 7721 case BuiltinType::Bool: 7722 EncType = "b"; 7723 break; 7724 case BuiltinType::Char_U: 7725 EncType = "uc"; 7726 break; 7727 case BuiltinType::UChar: 7728 EncType = "uc"; 7729 break; 7730 case BuiltinType::SChar: 7731 EncType = "sc"; 7732 break; 7733 case BuiltinType::UShort: 7734 EncType = "us"; 7735 break; 7736 case BuiltinType::Short: 7737 EncType = "ss"; 7738 break; 7739 case BuiltinType::UInt: 7740 EncType = "ui"; 7741 break; 7742 case BuiltinType::Int: 7743 EncType = "si"; 7744 break; 7745 case BuiltinType::ULong: 7746 EncType = "ul"; 7747 break; 7748 case BuiltinType::Long: 7749 EncType = "sl"; 7750 break; 7751 case BuiltinType::ULongLong: 7752 EncType = "ull"; 7753 break; 7754 case BuiltinType::LongLong: 7755 EncType = "sll"; 7756 break; 7757 case BuiltinType::Float: 7758 EncType = "ft"; 7759 break; 7760 case BuiltinType::Double: 7761 EncType = "d"; 7762 break; 7763 case BuiltinType::LongDouble: 7764 EncType = "ld"; 7765 break; 7766 default: 7767 return false; 7768 } 7769 Enc += EncType; 7770 return true; 7771 } 7772 7773 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 7774 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 7775 const CodeGen::CodeGenModule &CGM, 7776 TypeStringCache &TSC) { 7777 Enc += "p("; 7778 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 7779 return false; 7780 Enc += ')'; 7781 return true; 7782 } 7783 7784 /// Appends array encoding to Enc before calling appendType for the element. 7785 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 7786 const ArrayType *AT, 7787 const CodeGen::CodeGenModule &CGM, 7788 TypeStringCache &TSC, StringRef NoSizeEnc) { 7789 if (AT->getSizeModifier() != ArrayType::Normal) 7790 return false; 7791 Enc += "a("; 7792 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 7793 CAT->getSize().toStringUnsigned(Enc); 7794 else 7795 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 7796 Enc += ':'; 7797 // The Qualifiers should be attached to the type rather than the array. 7798 appendQualifier(Enc, QT); 7799 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 7800 return false; 7801 Enc += ')'; 7802 return true; 7803 } 7804 7805 /// Appends a function encoding to Enc, calling appendType for the return type 7806 /// and the arguments. 7807 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 7808 const CodeGen::CodeGenModule &CGM, 7809 TypeStringCache &TSC) { 7810 Enc += "f{"; 7811 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 7812 return false; 7813 Enc += "}("; 7814 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 7815 // N.B. we are only interested in the adjusted param types. 7816 auto I = FPT->param_type_begin(); 7817 auto E = FPT->param_type_end(); 7818 if (I != E) { 7819 do { 7820 if (!appendType(Enc, *I, CGM, TSC)) 7821 return false; 7822 ++I; 7823 if (I != E) 7824 Enc += ','; 7825 } while (I != E); 7826 if (FPT->isVariadic()) 7827 Enc += ",va"; 7828 } else { 7829 if (FPT->isVariadic()) 7830 Enc += "va"; 7831 else 7832 Enc += '0'; 7833 } 7834 } 7835 Enc += ')'; 7836 return true; 7837 } 7838 7839 /// Handles the type's qualifier before dispatching a call to handle specific 7840 /// type encodings. 7841 static bool appendType(SmallStringEnc &Enc, QualType QType, 7842 const CodeGen::CodeGenModule &CGM, 7843 TypeStringCache &TSC) { 7844 7845 QualType QT = QType.getCanonicalType(); 7846 7847 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 7848 // The Qualifiers should be attached to the type rather than the array. 7849 // Thus we don't call appendQualifier() here. 7850 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 7851 7852 appendQualifier(Enc, QT); 7853 7854 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 7855 return appendBuiltinType(Enc, BT); 7856 7857 if (const PointerType *PT = QT->getAs<PointerType>()) 7858 return appendPointerType(Enc, PT, CGM, TSC); 7859 7860 if (const EnumType *ET = QT->getAs<EnumType>()) 7861 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 7862 7863 if (const RecordType *RT = QT->getAsStructureType()) 7864 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 7865 7866 if (const RecordType *RT = QT->getAsUnionType()) 7867 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 7868 7869 if (const FunctionType *FT = QT->getAs<FunctionType>()) 7870 return appendFunctionType(Enc, FT, CGM, TSC); 7871 7872 return false; 7873 } 7874 7875 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 7876 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) { 7877 if (!D) 7878 return false; 7879 7880 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 7881 if (FD->getLanguageLinkage() != CLanguageLinkage) 7882 return false; 7883 return appendType(Enc, FD->getType(), CGM, TSC); 7884 } 7885 7886 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 7887 if (VD->getLanguageLinkage() != CLanguageLinkage) 7888 return false; 7889 QualType QT = VD->getType().getCanonicalType(); 7890 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 7891 // Global ArrayTypes are given a size of '*' if the size is unknown. 7892 // The Qualifiers should be attached to the type rather than the array. 7893 // Thus we don't call appendQualifier() here. 7894 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 7895 } 7896 return appendType(Enc, QT, CGM, TSC); 7897 } 7898 return false; 7899 } 7900 7901 7902 //===----------------------------------------------------------------------===// 7903 // Driver code 7904 //===----------------------------------------------------------------------===// 7905 7906 const llvm::Triple &CodeGenModule::getTriple() const { 7907 return getTarget().getTriple(); 7908 } 7909 7910 bool CodeGenModule::supportsCOMDAT() const { 7911 return getTriple().supportsCOMDAT(); 7912 } 7913 7914 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 7915 if (TheTargetCodeGenInfo) 7916 return *TheTargetCodeGenInfo; 7917 7918 // Helper to set the unique_ptr while still keeping the return value. 7919 auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & { 7920 this->TheTargetCodeGenInfo.reset(P); 7921 return *P; 7922 }; 7923 7924 const llvm::Triple &Triple = getTarget().getTriple(); 7925 switch (Triple.getArch()) { 7926 default: 7927 return SetCGInfo(new DefaultTargetCodeGenInfo(Types)); 7928 7929 case llvm::Triple::le32: 7930 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 7931 case llvm::Triple::mips: 7932 case llvm::Triple::mipsel: 7933 if (Triple.getOS() == llvm::Triple::NaCl) 7934 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 7935 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true)); 7936 7937 case llvm::Triple::mips64: 7938 case llvm::Triple::mips64el: 7939 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false)); 7940 7941 case llvm::Triple::aarch64: 7942 case llvm::Triple::aarch64_be: { 7943 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 7944 if (getTarget().getABI() == "darwinpcs") 7945 Kind = AArch64ABIInfo::DarwinPCS; 7946 7947 return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind)); 7948 } 7949 7950 case llvm::Triple::wasm32: 7951 case llvm::Triple::wasm64: 7952 return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types)); 7953 7954 case llvm::Triple::arm: 7955 case llvm::Triple::armeb: 7956 case llvm::Triple::thumb: 7957 case llvm::Triple::thumbeb: { 7958 if (Triple.getOS() == llvm::Triple::Win32) { 7959 return SetCGInfo( 7960 new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP)); 7961 } 7962 7963 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 7964 StringRef ABIStr = getTarget().getABI(); 7965 if (ABIStr == "apcs-gnu") 7966 Kind = ARMABIInfo::APCS; 7967 else if (ABIStr == "aapcs16") 7968 Kind = ARMABIInfo::AAPCS16_VFP; 7969 else if (CodeGenOpts.FloatABI == "hard" || 7970 (CodeGenOpts.FloatABI != "soft" && 7971 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 7972 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 7973 Triple.getEnvironment() == llvm::Triple::EABIHF))) 7974 Kind = ARMABIInfo::AAPCS_VFP; 7975 7976 return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind)); 7977 } 7978 7979 case llvm::Triple::ppc: 7980 return SetCGInfo( 7981 new PPC32TargetCodeGenInfo(Types, CodeGenOpts.FloatABI == "soft")); 7982 case llvm::Triple::ppc64: 7983 if (Triple.isOSBinFormatELF()) { 7984 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 7985 if (getTarget().getABI() == "elfv2") 7986 Kind = PPC64_SVR4_ABIInfo::ELFv2; 7987 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 7988 7989 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX)); 7990 } else 7991 return SetCGInfo(new PPC64TargetCodeGenInfo(Types)); 7992 case llvm::Triple::ppc64le: { 7993 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 7994 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 7995 if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx") 7996 Kind = PPC64_SVR4_ABIInfo::ELFv1; 7997 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 7998 7999 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX)); 8000 } 8001 8002 case llvm::Triple::nvptx: 8003 case llvm::Triple::nvptx64: 8004 return SetCGInfo(new NVPTXTargetCodeGenInfo(Types)); 8005 8006 case llvm::Triple::msp430: 8007 return SetCGInfo(new MSP430TargetCodeGenInfo(Types)); 8008 8009 case llvm::Triple::systemz: { 8010 bool HasVector = getTarget().getABI() == "vector"; 8011 return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector)); 8012 } 8013 8014 case llvm::Triple::tce: 8015 return SetCGInfo(new TCETargetCodeGenInfo(Types)); 8016 8017 case llvm::Triple::x86: { 8018 bool IsDarwinVectorABI = Triple.isOSDarwin(); 8019 bool RetSmallStructInRegABI = 8020 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 8021 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 8022 8023 if (Triple.getOS() == llvm::Triple::Win32) { 8024 return SetCGInfo(new WinX86_32TargetCodeGenInfo( 8025 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 8026 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); 8027 } else { 8028 return SetCGInfo(new X86_32TargetCodeGenInfo( 8029 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 8030 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters, 8031 CodeGenOpts.FloatABI == "soft")); 8032 } 8033 } 8034 8035 case llvm::Triple::x86_64: { 8036 StringRef ABI = getTarget().getABI(); 8037 X86AVXABILevel AVXLevel = 8038 (ABI == "avx512" 8039 ? X86AVXABILevel::AVX512 8040 : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None); 8041 8042 switch (Triple.getOS()) { 8043 case llvm::Triple::Win32: 8044 return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel)); 8045 case llvm::Triple::PS4: 8046 return SetCGInfo(new PS4TargetCodeGenInfo(Types, AVXLevel)); 8047 default: 8048 return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel)); 8049 } 8050 } 8051 case llvm::Triple::hexagon: 8052 return SetCGInfo(new HexagonTargetCodeGenInfo(Types)); 8053 case llvm::Triple::lanai: 8054 return SetCGInfo(new LanaiTargetCodeGenInfo(Types)); 8055 case llvm::Triple::r600: 8056 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 8057 case llvm::Triple::amdgcn: 8058 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 8059 case llvm::Triple::sparc: 8060 return SetCGInfo(new SparcV8TargetCodeGenInfo(Types)); 8061 case llvm::Triple::sparcv9: 8062 return SetCGInfo(new SparcV9TargetCodeGenInfo(Types)); 8063 case llvm::Triple::xcore: 8064 return SetCGInfo(new XCoreTargetCodeGenInfo(Types)); 8065 case llvm::Triple::spir: 8066 case llvm::Triple::spir64: 8067 return SetCGInfo(new SPIRTargetCodeGenInfo(Types)); 8068 } 8069 } 8070