1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "TargetInfo.h"
16 #include "ABIInfo.h"
17 #include "CodeGenFunction.h"
18 #include "clang/AST/RecordLayout.h"
19 #include "clang/Frontend/CodeGenOptions.h"
20 #include "llvm/Type.h"
21 #include "llvm/Target/TargetData.h"
22 #include "llvm/ADT/Triple.h"
23 #include "llvm/Support/raw_ostream.h"
24 using namespace clang;
25 using namespace CodeGen;
26 
27 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
28                                llvm::Value *Array,
29                                llvm::Value *Value,
30                                unsigned FirstIndex,
31                                unsigned LastIndex) {
32   // Alternatively, we could emit this as a loop in the source.
33   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
34     llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I);
35     Builder.CreateStore(Value, Cell);
36   }
37 }
38 
39 static bool isAggregateTypeForABI(QualType T) {
40   return CodeGenFunction::hasAggregateLLVMType(T) ||
41          T->isMemberFunctionPointerType();
42 }
43 
44 ABIInfo::~ABIInfo() {}
45 
46 ASTContext &ABIInfo::getContext() const {
47   return CGT.getContext();
48 }
49 
50 llvm::LLVMContext &ABIInfo::getVMContext() const {
51   return CGT.getLLVMContext();
52 }
53 
54 const llvm::TargetData &ABIInfo::getTargetData() const {
55   return CGT.getTargetData();
56 }
57 
58 
59 void ABIArgInfo::dump() const {
60   raw_ostream &OS = llvm::errs();
61   OS << "(ABIArgInfo Kind=";
62   switch (TheKind) {
63   case Direct:
64     OS << "Direct Type=";
65     if (llvm::Type *Ty = getCoerceToType())
66       Ty->print(OS);
67     else
68       OS << "null";
69     break;
70   case Extend:
71     OS << "Extend";
72     break;
73   case Ignore:
74     OS << "Ignore";
75     break;
76   case Indirect:
77     OS << "Indirect Align=" << getIndirectAlign()
78        << " ByVal=" << getIndirectByVal()
79        << " Realign=" << getIndirectRealign();
80     break;
81   case Expand:
82     OS << "Expand";
83     break;
84   }
85   OS << ")\n";
86 }
87 
88 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
89 
90 // If someone can figure out a general rule for this, that would be great.
91 // It's probably just doomed to be platform-dependent, though.
92 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
93   // Verified for:
94   //   x86-64     FreeBSD, Linux, Darwin
95   //   x86-32     FreeBSD, Linux, Darwin
96   //   PowerPC    Linux, Darwin
97   //   ARM        Darwin (*not* EABI)
98   return 32;
99 }
100 
101 bool TargetCodeGenInfo::isNoProtoCallVariadic(
102                                        const CodeGen::CGFunctionInfo &) const {
103   // The following conventions are known to require this to be false:
104   //   x86_stdcall
105   //   MIPS
106   // For everything else, we just prefer false unless we opt out.
107   return false;
108 }
109 
110 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
111 
112 /// isEmptyField - Return true iff a the field is "empty", that is it
113 /// is an unnamed bit-field or an (array of) empty record(s).
114 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
115                          bool AllowArrays) {
116   if (FD->isUnnamedBitfield())
117     return true;
118 
119   QualType FT = FD->getType();
120 
121   // Constant arrays of empty records count as empty, strip them off.
122   // Constant arrays of zero length always count as empty.
123   if (AllowArrays)
124     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
125       if (AT->getSize() == 0)
126         return true;
127       FT = AT->getElementType();
128     }
129 
130   const RecordType *RT = FT->getAs<RecordType>();
131   if (!RT)
132     return false;
133 
134   // C++ record fields are never empty, at least in the Itanium ABI.
135   //
136   // FIXME: We should use a predicate for whether this behavior is true in the
137   // current ABI.
138   if (isa<CXXRecordDecl>(RT->getDecl()))
139     return false;
140 
141   return isEmptyRecord(Context, FT, AllowArrays);
142 }
143 
144 /// isEmptyRecord - Return true iff a structure contains only empty
145 /// fields. Note that a structure with a flexible array member is not
146 /// considered empty.
147 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
148   const RecordType *RT = T->getAs<RecordType>();
149   if (!RT)
150     return 0;
151   const RecordDecl *RD = RT->getDecl();
152   if (RD->hasFlexibleArrayMember())
153     return false;
154 
155   // If this is a C++ record, check the bases first.
156   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
157     for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
158            e = CXXRD->bases_end(); i != e; ++i)
159       if (!isEmptyRecord(Context, i->getType(), true))
160         return false;
161 
162   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
163          i != e; ++i)
164     if (!isEmptyField(Context, *i, AllowArrays))
165       return false;
166   return true;
167 }
168 
169 /// hasNonTrivialDestructorOrCopyConstructor - Determine if a type has either
170 /// a non-trivial destructor or a non-trivial copy constructor.
171 static bool hasNonTrivialDestructorOrCopyConstructor(const RecordType *RT) {
172   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
173   if (!RD)
174     return false;
175 
176   return !RD->hasTrivialDestructor() || !RD->hasTrivialCopyConstructor();
177 }
178 
179 /// isRecordWithNonTrivialDestructorOrCopyConstructor - Determine if a type is
180 /// a record type with either a non-trivial destructor or a non-trivial copy
181 /// constructor.
182 static bool isRecordWithNonTrivialDestructorOrCopyConstructor(QualType T) {
183   const RecordType *RT = T->getAs<RecordType>();
184   if (!RT)
185     return false;
186 
187   return hasNonTrivialDestructorOrCopyConstructor(RT);
188 }
189 
190 /// isSingleElementStruct - Determine if a structure is a "single
191 /// element struct", i.e. it has exactly one non-empty field or
192 /// exactly one field which is itself a single element
193 /// struct. Structures with flexible array members are never
194 /// considered single element structs.
195 ///
196 /// \return The field declaration for the single non-empty field, if
197 /// it exists.
198 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
199   const RecordType *RT = T->getAsStructureType();
200   if (!RT)
201     return 0;
202 
203   const RecordDecl *RD = RT->getDecl();
204   if (RD->hasFlexibleArrayMember())
205     return 0;
206 
207   const Type *Found = 0;
208 
209   // If this is a C++ record, check the bases first.
210   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
211     for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
212            e = CXXRD->bases_end(); i != e; ++i) {
213       // Ignore empty records.
214       if (isEmptyRecord(Context, i->getType(), true))
215         continue;
216 
217       // If we already found an element then this isn't a single-element struct.
218       if (Found)
219         return 0;
220 
221       // If this is non-empty and not a single element struct, the composite
222       // cannot be a single element struct.
223       Found = isSingleElementStruct(i->getType(), Context);
224       if (!Found)
225         return 0;
226     }
227   }
228 
229   // Check for single element.
230   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
231          i != e; ++i) {
232     const FieldDecl *FD = *i;
233     QualType FT = FD->getType();
234 
235     // Ignore empty fields.
236     if (isEmptyField(Context, FD, true))
237       continue;
238 
239     // If we already found an element then this isn't a single-element
240     // struct.
241     if (Found)
242       return 0;
243 
244     // Treat single element arrays as the element.
245     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
246       if (AT->getSize().getZExtValue() != 1)
247         break;
248       FT = AT->getElementType();
249     }
250 
251     if (!isAggregateTypeForABI(FT)) {
252       Found = FT.getTypePtr();
253     } else {
254       Found = isSingleElementStruct(FT, Context);
255       if (!Found)
256         return 0;
257     }
258   }
259 
260   // We don't consider a struct a single-element struct if it has
261   // padding beyond the element type.
262   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
263     return 0;
264 
265   return Found;
266 }
267 
268 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
269   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
270       !Ty->isAnyComplexType() && !Ty->isEnumeralType() &&
271       !Ty->isBlockPointerType())
272     return false;
273 
274   uint64_t Size = Context.getTypeSize(Ty);
275   return Size == 32 || Size == 64;
276 }
277 
278 /// canExpandIndirectArgument - Test whether an argument type which is to be
279 /// passed indirectly (on the stack) would have the equivalent layout if it was
280 /// expanded into separate arguments. If so, we prefer to do the latter to avoid
281 /// inhibiting optimizations.
282 ///
283 // FIXME: This predicate is missing many cases, currently it just follows
284 // llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
285 // should probably make this smarter, or better yet make the LLVM backend
286 // capable of handling it.
287 static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
288   // We can only expand structure types.
289   const RecordType *RT = Ty->getAs<RecordType>();
290   if (!RT)
291     return false;
292 
293   // We can only expand (C) structures.
294   //
295   // FIXME: This needs to be generalized to handle classes as well.
296   const RecordDecl *RD = RT->getDecl();
297   if (!RD->isStruct() || isa<CXXRecordDecl>(RD))
298     return false;
299 
300   uint64_t Size = 0;
301 
302   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
303          i != e; ++i) {
304     const FieldDecl *FD = *i;
305 
306     if (!is32Or64BitBasicType(FD->getType(), Context))
307       return false;
308 
309     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
310     // how to expand them yet, and the predicate for telling if a bitfield still
311     // counts as "basic" is more complicated than what we were doing previously.
312     if (FD->isBitField())
313       return false;
314 
315     Size += Context.getTypeSize(FD->getType());
316   }
317 
318   // Make sure there are not any holes in the struct.
319   if (Size != Context.getTypeSize(Ty))
320     return false;
321 
322   return true;
323 }
324 
325 namespace {
326 /// DefaultABIInfo - The default implementation for ABI specific
327 /// details. This implementation provides information which results in
328 /// self-consistent and sensible LLVM IR generation, but does not
329 /// conform to any particular ABI.
330 class DefaultABIInfo : public ABIInfo {
331 public:
332   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
333 
334   ABIArgInfo classifyReturnType(QualType RetTy) const;
335   ABIArgInfo classifyArgumentType(QualType RetTy) const;
336 
337   virtual void computeInfo(CGFunctionInfo &FI) const {
338     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
339     for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
340          it != ie; ++it)
341       it->info = classifyArgumentType(it->type);
342   }
343 
344   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
345                                  CodeGenFunction &CGF) const;
346 };
347 
348 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
349 public:
350   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
351     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
352 };
353 
354 llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
355                                        CodeGenFunction &CGF) const {
356   return 0;
357 }
358 
359 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
360   if (isAggregateTypeForABI(Ty)) {
361     // Records with non trivial destructors/constructors should not be passed
362     // by value.
363     if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
364       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
365 
366     return ABIArgInfo::getIndirect(0);
367   }
368 
369   // Treat an enum type as its underlying type.
370   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
371     Ty = EnumTy->getDecl()->getIntegerType();
372 
373   return (Ty->isPromotableIntegerType() ?
374           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
375 }
376 
377 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
378   if (RetTy->isVoidType())
379     return ABIArgInfo::getIgnore();
380 
381   if (isAggregateTypeForABI(RetTy))
382     return ABIArgInfo::getIndirect(0);
383 
384   // Treat an enum type as its underlying type.
385   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
386     RetTy = EnumTy->getDecl()->getIntegerType();
387 
388   return (RetTy->isPromotableIntegerType() ?
389           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
390 }
391 
392 /// UseX86_MMXType - Return true if this is an MMX type that should use the
393 /// special x86_mmx type.
394 bool UseX86_MMXType(llvm::Type *IRType) {
395   // If the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>, use the
396   // special x86_mmx type.
397   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
398     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
399     IRType->getScalarSizeInBits() != 64;
400 }
401 
402 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
403                                           StringRef Constraint,
404                                           llvm::Type* Ty) {
405   if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy())
406     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
407   return Ty;
408 }
409 
410 //===----------------------------------------------------------------------===//
411 // X86-32 ABI Implementation
412 //===----------------------------------------------------------------------===//
413 
414 /// X86_32ABIInfo - The X86-32 ABI information.
415 class X86_32ABIInfo : public ABIInfo {
416   static const unsigned MinABIStackAlignInBytes = 4;
417 
418   bool IsDarwinVectorABI;
419   bool IsSmallStructInRegABI;
420   bool IsMMXDisabled;
421   bool IsWin32FloatStructABI;
422 
423   static bool isRegisterSize(unsigned Size) {
424     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
425   }
426 
427   static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context);
428 
429   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
430   /// such that the argument will be passed in memory.
431   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal = true) const;
432 
433   /// \brief Return the alignment to use for the given type on the stack.
434   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
435 
436 public:
437 
438   ABIArgInfo classifyReturnType(QualType RetTy) const;
439   ABIArgInfo classifyArgumentType(QualType RetTy) const;
440 
441   virtual void computeInfo(CGFunctionInfo &FI) const {
442     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
443     for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
444          it != ie; ++it)
445       it->info = classifyArgumentType(it->type);
446   }
447 
448   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
449                                  CodeGenFunction &CGF) const;
450 
451   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool m, bool w)
452     : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p),
453       IsMMXDisabled(m), IsWin32FloatStructABI(w) {}
454 };
455 
456 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
457 public:
458   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
459       bool d, bool p, bool m, bool w)
460     :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, m, w)) {}
461 
462   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
463                            CodeGen::CodeGenModule &CGM) const;
464 
465   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
466     // Darwin uses different dwarf register numbers for EH.
467     if (CGM.isTargetDarwin()) return 5;
468 
469     return 4;
470   }
471 
472   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
473                                llvm::Value *Address) const;
474 
475   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
476                                   StringRef Constraint,
477                                   llvm::Type* Ty) const {
478     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
479   }
480 
481 };
482 
483 }
484 
485 /// shouldReturnTypeInRegister - Determine if the given type should be
486 /// passed in a register (for the Darwin ABI).
487 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
488                                                ASTContext &Context) {
489   uint64_t Size = Context.getTypeSize(Ty);
490 
491   // Type must be register sized.
492   if (!isRegisterSize(Size))
493     return false;
494 
495   if (Ty->isVectorType()) {
496     // 64- and 128- bit vectors inside structures are not returned in
497     // registers.
498     if (Size == 64 || Size == 128)
499       return false;
500 
501     return true;
502   }
503 
504   // If this is a builtin, pointer, enum, complex type, member pointer, or
505   // member function pointer it is ok.
506   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
507       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
508       Ty->isBlockPointerType() || Ty->isMemberPointerType())
509     return true;
510 
511   // Arrays are treated like records.
512   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
513     return shouldReturnTypeInRegister(AT->getElementType(), Context);
514 
515   // Otherwise, it must be a record type.
516   const RecordType *RT = Ty->getAs<RecordType>();
517   if (!RT) return false;
518 
519   // FIXME: Traverse bases here too.
520 
521   // Structure types are passed in register if all fields would be
522   // passed in a register.
523   for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(),
524          e = RT->getDecl()->field_end(); i != e; ++i) {
525     const FieldDecl *FD = *i;
526 
527     // Empty fields are ignored.
528     if (isEmptyField(Context, FD, true))
529       continue;
530 
531     // Check fields recursively.
532     if (!shouldReturnTypeInRegister(FD->getType(), Context))
533       return false;
534   }
535 
536   return true;
537 }
538 
539 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy) const {
540   if (RetTy->isVoidType())
541     return ABIArgInfo::getIgnore();
542 
543   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
544     // On Darwin, some vectors are returned in registers.
545     if (IsDarwinVectorABI) {
546       uint64_t Size = getContext().getTypeSize(RetTy);
547 
548       // 128-bit vectors are a special case; they are returned in
549       // registers and we need to make sure to pick a type the LLVM
550       // backend will like.
551       if (Size == 128)
552         return ABIArgInfo::getDirect(llvm::VectorType::get(
553                   llvm::Type::getInt64Ty(getVMContext()), 2));
554 
555       // Always return in register if it fits in a general purpose
556       // register, or if it is 64 bits and has a single element.
557       if ((Size == 8 || Size == 16 || Size == 32) ||
558           (Size == 64 && VT->getNumElements() == 1))
559         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
560                                                             Size));
561 
562       return ABIArgInfo::getIndirect(0);
563     }
564 
565     return ABIArgInfo::getDirect();
566   }
567 
568   if (isAggregateTypeForABI(RetTy)) {
569     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
570       // Structures with either a non-trivial destructor or a non-trivial
571       // copy constructor are always indirect.
572       if (hasNonTrivialDestructorOrCopyConstructor(RT))
573         return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
574 
575       // Structures with flexible arrays are always indirect.
576       if (RT->getDecl()->hasFlexibleArrayMember())
577         return ABIArgInfo::getIndirect(0);
578     }
579 
580     // If specified, structs and unions are always indirect.
581     if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
582       return ABIArgInfo::getIndirect(0);
583 
584     // Small structures which are register sized are generally returned
585     // in a register.
586     if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, getContext())) {
587       uint64_t Size = getContext().getTypeSize(RetTy);
588 
589       // As a special-case, if the struct is a "single-element" struct, and
590       // the field is of type "float" or "double", return it in a
591       // floating-point register. (MSVC does not apply this special case.)
592       // We apply a similar transformation for pointer types to improve the
593       // quality of the generated IR.
594       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
595         if ((!IsWin32FloatStructABI && SeltTy->isRealFloatingType())
596             || SeltTy->hasPointerRepresentation())
597           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
598 
599       // FIXME: We should be able to narrow this integer in cases with dead
600       // padding.
601       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
602     }
603 
604     return ABIArgInfo::getIndirect(0);
605   }
606 
607   // Treat an enum type as its underlying type.
608   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
609     RetTy = EnumTy->getDecl()->getIntegerType();
610 
611   return (RetTy->isPromotableIntegerType() ?
612           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
613 }
614 
615 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
616   const RecordType *RT = Ty->getAs<RecordType>();
617   if (!RT)
618     return 0;
619   const RecordDecl *RD = RT->getDecl();
620 
621   // If this is a C++ record, check the bases first.
622   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
623     for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
624            e = CXXRD->bases_end(); i != e; ++i)
625       if (!isRecordWithSSEVectorType(Context, i->getType()))
626         return false;
627 
628   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
629        i != e; ++i) {
630     QualType FT = i->getType();
631 
632     if (FT->getAs<VectorType>() && Context.getTypeSize(FT) == 128)
633       return true;
634 
635     if (isRecordWithSSEVectorType(Context, FT))
636       return true;
637   }
638 
639   return false;
640 }
641 
642 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
643                                                  unsigned Align) const {
644   // Otherwise, if the alignment is less than or equal to the minimum ABI
645   // alignment, just use the default; the backend will handle this.
646   if (Align <= MinABIStackAlignInBytes)
647     return 0; // Use default alignment.
648 
649   // On non-Darwin, the stack type alignment is always 4.
650   if (!IsDarwinVectorABI) {
651     // Set explicit alignment, since we may need to realign the top.
652     return MinABIStackAlignInBytes;
653   }
654 
655   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
656   if (Align >= 16 && isRecordWithSSEVectorType(getContext(), Ty))
657     return 16;
658 
659   return MinABIStackAlignInBytes;
660 }
661 
662 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal) const {
663   if (!ByVal)
664     return ABIArgInfo::getIndirect(0, false);
665 
666   // Compute the byval alignment.
667   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
668   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
669   if (StackAlign == 0)
670     return ABIArgInfo::getIndirect(4);
671 
672   // If the stack alignment is less than the type alignment, realign the
673   // argument.
674   if (StackAlign < TypeAlign)
675     return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true,
676                                    /*Realign=*/true);
677 
678   return ABIArgInfo::getIndirect(StackAlign);
679 }
680 
681 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty) const {
682   // FIXME: Set alignment on indirect arguments.
683   if (isAggregateTypeForABI(Ty)) {
684     // Structures with flexible arrays are always indirect.
685     if (const RecordType *RT = Ty->getAs<RecordType>()) {
686       // Structures with either a non-trivial destructor or a non-trivial
687       // copy constructor are always indirect.
688       if (hasNonTrivialDestructorOrCopyConstructor(RT))
689         return getIndirectResult(Ty, /*ByVal=*/false);
690 
691       if (RT->getDecl()->hasFlexibleArrayMember())
692         return getIndirectResult(Ty);
693     }
694 
695     // Ignore empty structs/unions.
696     if (isEmptyRecord(getContext(), Ty, true))
697       return ABIArgInfo::getIgnore();
698 
699     // Expand small (<= 128-bit) record types when we know that the stack layout
700     // of those arguments will match the struct. This is important because the
701     // LLVM backend isn't smart enough to remove byval, which inhibits many
702     // optimizations.
703     if (getContext().getTypeSize(Ty) <= 4*32 &&
704         canExpandIndirectArgument(Ty, getContext()))
705       return ABIArgInfo::getExpand();
706 
707     return getIndirectResult(Ty);
708   }
709 
710   if (const VectorType *VT = Ty->getAs<VectorType>()) {
711     // On Darwin, some vectors are passed in memory, we handle this by passing
712     // it as an i8/i16/i32/i64.
713     if (IsDarwinVectorABI) {
714       uint64_t Size = getContext().getTypeSize(Ty);
715       if ((Size == 8 || Size == 16 || Size == 32) ||
716           (Size == 64 && VT->getNumElements() == 1))
717         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
718                                                             Size));
719     }
720 
721     llvm::Type *IRType = CGT.ConvertType(Ty);
722     if (UseX86_MMXType(IRType)) {
723       if (IsMMXDisabled)
724         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
725                                                             64));
726       ABIArgInfo AAI = ABIArgInfo::getDirect(IRType);
727       AAI.setCoerceToType(llvm::Type::getX86_MMXTy(getVMContext()));
728       return AAI;
729     }
730 
731     return ABIArgInfo::getDirect();
732   }
733 
734 
735   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
736     Ty = EnumTy->getDecl()->getIntegerType();
737 
738   return (Ty->isPromotableIntegerType() ?
739           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
740 }
741 
742 llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
743                                       CodeGenFunction &CGF) const {
744   llvm::Type *BPP = CGF.Int8PtrPtrTy;
745 
746   CGBuilderTy &Builder = CGF.Builder;
747   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
748                                                        "ap");
749   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
750 
751   // Compute if the address needs to be aligned
752   unsigned Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity();
753   Align = getTypeStackAlignInBytes(Ty, Align);
754   Align = std::max(Align, 4U);
755   if (Align > 4) {
756     // addr = (addr + align - 1) & -align;
757     llvm::Value *Offset =
758       llvm::ConstantInt::get(CGF.Int32Ty, Align - 1);
759     Addr = CGF.Builder.CreateGEP(Addr, Offset);
760     llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(Addr,
761                                                     CGF.Int32Ty);
762     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -Align);
763     Addr = CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
764                                       Addr->getType(),
765                                       "ap.cur.aligned");
766   }
767 
768   llvm::Type *PTy =
769     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
770   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
771 
772   uint64_t Offset =
773     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, Align);
774   llvm::Value *NextAddr =
775     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
776                       "ap.next");
777   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
778 
779   return AddrTyped;
780 }
781 
782 void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
783                                                   llvm::GlobalValue *GV,
784                                             CodeGen::CodeGenModule &CGM) const {
785   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
786     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
787       // Get the LLVM function.
788       llvm::Function *Fn = cast<llvm::Function>(GV);
789 
790       // Now add the 'alignstack' attribute with a value of 16.
791       Fn->addFnAttr(llvm::Attribute::constructStackAlignmentFromInt(16));
792     }
793   }
794 }
795 
796 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
797                                                CodeGen::CodeGenFunction &CGF,
798                                                llvm::Value *Address) const {
799   CodeGen::CGBuilderTy &Builder = CGF.Builder;
800 
801   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
802 
803   // 0-7 are the eight integer registers;  the order is different
804   //   on Darwin (for EH), but the range is the same.
805   // 8 is %eip.
806   AssignToArrayRange(Builder, Address, Four8, 0, 8);
807 
808   if (CGF.CGM.isTargetDarwin()) {
809     // 12-16 are st(0..4).  Not sure why we stop at 4.
810     // These have size 16, which is sizeof(long double) on
811     // platforms with 8-byte alignment for that type.
812     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
813     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
814 
815   } else {
816     // 9 is %eflags, which doesn't get a size on Darwin for some
817     // reason.
818     Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9));
819 
820     // 11-16 are st(0..5).  Not sure why we stop at 5.
821     // These have size 12, which is sizeof(long double) on
822     // platforms with 4-byte alignment for that type.
823     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
824     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
825   }
826 
827   return false;
828 }
829 
830 //===----------------------------------------------------------------------===//
831 // X86-64 ABI Implementation
832 //===----------------------------------------------------------------------===//
833 
834 
835 namespace {
836 /// X86_64ABIInfo - The X86_64 ABI information.
837 class X86_64ABIInfo : public ABIInfo {
838   enum Class {
839     Integer = 0,
840     SSE,
841     SSEUp,
842     X87,
843     X87Up,
844     ComplexX87,
845     NoClass,
846     Memory
847   };
848 
849   /// merge - Implement the X86_64 ABI merging algorithm.
850   ///
851   /// Merge an accumulating classification \arg Accum with a field
852   /// classification \arg Field.
853   ///
854   /// \param Accum - The accumulating classification. This should
855   /// always be either NoClass or the result of a previous merge
856   /// call. In addition, this should never be Memory (the caller
857   /// should just return Memory for the aggregate).
858   static Class merge(Class Accum, Class Field);
859 
860   /// postMerge - Implement the X86_64 ABI post merging algorithm.
861   ///
862   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
863   /// final MEMORY or SSE classes when necessary.
864   ///
865   /// \param AggregateSize - The size of the current aggregate in
866   /// the classification process.
867   ///
868   /// \param Lo - The classification for the parts of the type
869   /// residing in the low word of the containing object.
870   ///
871   /// \param Hi - The classification for the parts of the type
872   /// residing in the higher words of the containing object.
873   ///
874   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
875 
876   /// classify - Determine the x86_64 register classes in which the
877   /// given type T should be passed.
878   ///
879   /// \param Lo - The classification for the parts of the type
880   /// residing in the low word of the containing object.
881   ///
882   /// \param Hi - The classification for the parts of the type
883   /// residing in the high word of the containing object.
884   ///
885   /// \param OffsetBase - The bit offset of this type in the
886   /// containing object.  Some parameters are classified different
887   /// depending on whether they straddle an eightbyte boundary.
888   ///
889   /// If a word is unused its result will be NoClass; if a type should
890   /// be passed in Memory then at least the classification of \arg Lo
891   /// will be Memory.
892   ///
893   /// The \arg Lo class will be NoClass iff the argument is ignored.
894   ///
895   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
896   /// also be ComplexX87.
897   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi) const;
898 
899   llvm::Type *GetByteVectorType(QualType Ty) const;
900   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
901                                  unsigned IROffset, QualType SourceTy,
902                                  unsigned SourceOffset) const;
903   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
904                                      unsigned IROffset, QualType SourceTy,
905                                      unsigned SourceOffset) const;
906 
907   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
908   /// such that the argument will be returned in memory.
909   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
910 
911   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
912   /// such that the argument will be passed in memory.
913   ABIArgInfo getIndirectResult(QualType Ty) const;
914 
915   ABIArgInfo classifyReturnType(QualType RetTy) const;
916 
917   ABIArgInfo classifyArgumentType(QualType Ty,
918                                   unsigned &neededInt,
919                                   unsigned &neededSSE) const;
920 
921   bool IsIllegalVectorType(QualType Ty) const;
922 
923   /// The 0.98 ABI revision clarified a lot of ambiguities,
924   /// unfortunately in ways that were not always consistent with
925   /// certain previous compilers.  In particular, platforms which
926   /// required strict binary compatibility with older versions of GCC
927   /// may need to exempt themselves.
928   bool honorsRevision0_98() const {
929     return !getContext().getTargetInfo().getTriple().isOSDarwin();
930   }
931 
932   bool HasAVX;
933 
934 public:
935   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool hasavx) :
936       ABIInfo(CGT), HasAVX(hasavx) {}
937 
938   virtual void computeInfo(CGFunctionInfo &FI) const;
939 
940   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
941                                  CodeGenFunction &CGF) const;
942 };
943 
944 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
945 class WinX86_64ABIInfo : public ABIInfo {
946 
947   ABIArgInfo classify(QualType Ty) const;
948 
949 public:
950   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
951 
952   virtual void computeInfo(CGFunctionInfo &FI) const;
953 
954   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
955                                  CodeGenFunction &CGF) const;
956 };
957 
958 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
959 public:
960   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
961     : TargetCodeGenInfo(new X86_64ABIInfo(CGT, HasAVX)) {}
962 
963   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
964     return 7;
965   }
966 
967   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
968                                llvm::Value *Address) const {
969     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
970 
971     // 0-15 are the 16 integer registers.
972     // 16 is %rip.
973     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
974     return false;
975   }
976 
977   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
978                                   StringRef Constraint,
979                                   llvm::Type* Ty) const {
980     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
981   }
982 
983   bool isNoProtoCallVariadic(const CodeGen::CGFunctionInfo &FI) const {
984     // The default CC on x86-64 sets %al to the number of SSA
985     // registers used, and GCC sets this when calling an unprototyped
986     // function, so we override the default behavior.  However, don't do
987     // that when AVX types are involved: the ABI explicitly states it is
988     // undefined, and it doesn't work in practice because of how the ABI
989     // defines varargs anyway.
990     if (FI.getCallingConvention() == llvm::CallingConv::C) {
991       bool HasAVXType = false;
992       for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
993                                               ie = FI.arg_end();
994            it != ie; ++it) {
995         if (it->info.isDirect()) {
996           llvm::Type *Ty = it->info.getCoerceToType();
997           if (llvm::VectorType *VTy = dyn_cast_or_null<llvm::VectorType>(Ty)) {
998             if (VTy->getBitWidth() > 128) {
999               HasAVXType = true;
1000               break;
1001             }
1002           }
1003         }
1004       }
1005       if (!HasAVXType)
1006         return true;
1007     }
1008 
1009     return TargetCodeGenInfo::isNoProtoCallVariadic(FI);
1010   }
1011 
1012 };
1013 
1014 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1015 public:
1016   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
1017     : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
1018 
1019   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
1020     return 7;
1021   }
1022 
1023   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1024                                llvm::Value *Address) const {
1025     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1026 
1027     // 0-15 are the 16 integer registers.
1028     // 16 is %rip.
1029     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1030     return false;
1031   }
1032 };
1033 
1034 }
1035 
1036 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
1037                               Class &Hi) const {
1038   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
1039   //
1040   // (a) If one of the classes is Memory, the whole argument is passed in
1041   //     memory.
1042   //
1043   // (b) If X87UP is not preceded by X87, the whole argument is passed in
1044   //     memory.
1045   //
1046   // (c) If the size of the aggregate exceeds two eightbytes and the first
1047   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
1048   //     argument is passed in memory. NOTE: This is necessary to keep the
1049   //     ABI working for processors that don't support the __m256 type.
1050   //
1051   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
1052   //
1053   // Some of these are enforced by the merging logic.  Others can arise
1054   // only with unions; for example:
1055   //   union { _Complex double; unsigned; }
1056   //
1057   // Note that clauses (b) and (c) were added in 0.98.
1058   //
1059   if (Hi == Memory)
1060     Lo = Memory;
1061   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
1062     Lo = Memory;
1063   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
1064     Lo = Memory;
1065   if (Hi == SSEUp && Lo != SSE)
1066     Hi = SSE;
1067 }
1068 
1069 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
1070   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
1071   // classified recursively so that always two fields are
1072   // considered. The resulting class is calculated according to
1073   // the classes of the fields in the eightbyte:
1074   //
1075   // (a) If both classes are equal, this is the resulting class.
1076   //
1077   // (b) If one of the classes is NO_CLASS, the resulting class is
1078   // the other class.
1079   //
1080   // (c) If one of the classes is MEMORY, the result is the MEMORY
1081   // class.
1082   //
1083   // (d) If one of the classes is INTEGER, the result is the
1084   // INTEGER.
1085   //
1086   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
1087   // MEMORY is used as class.
1088   //
1089   // (f) Otherwise class SSE is used.
1090 
1091   // Accum should never be memory (we should have returned) or
1092   // ComplexX87 (because this cannot be passed in a structure).
1093   assert((Accum != Memory && Accum != ComplexX87) &&
1094          "Invalid accumulated classification during merge.");
1095   if (Accum == Field || Field == NoClass)
1096     return Accum;
1097   if (Field == Memory)
1098     return Memory;
1099   if (Accum == NoClass)
1100     return Field;
1101   if (Accum == Integer || Field == Integer)
1102     return Integer;
1103   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
1104       Accum == X87 || Accum == X87Up)
1105     return Memory;
1106   return SSE;
1107 }
1108 
1109 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
1110                              Class &Lo, Class &Hi) const {
1111   // FIXME: This code can be simplified by introducing a simple value class for
1112   // Class pairs with appropriate constructor methods for the various
1113   // situations.
1114 
1115   // FIXME: Some of the split computations are wrong; unaligned vectors
1116   // shouldn't be passed in registers for example, so there is no chance they
1117   // can straddle an eightbyte. Verify & simplify.
1118 
1119   Lo = Hi = NoClass;
1120 
1121   Class &Current = OffsetBase < 64 ? Lo : Hi;
1122   Current = Memory;
1123 
1124   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
1125     BuiltinType::Kind k = BT->getKind();
1126 
1127     if (k == BuiltinType::Void) {
1128       Current = NoClass;
1129     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
1130       Lo = Integer;
1131       Hi = Integer;
1132     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
1133       Current = Integer;
1134     } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
1135       Current = SSE;
1136     } else if (k == BuiltinType::LongDouble) {
1137       Lo = X87;
1138       Hi = X87Up;
1139     }
1140     // FIXME: _Decimal32 and _Decimal64 are SSE.
1141     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
1142     return;
1143   }
1144 
1145   if (const EnumType *ET = Ty->getAs<EnumType>()) {
1146     // Classify the underlying integer type.
1147     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi);
1148     return;
1149   }
1150 
1151   if (Ty->hasPointerRepresentation()) {
1152     Current = Integer;
1153     return;
1154   }
1155 
1156   if (Ty->isMemberPointerType()) {
1157     if (Ty->isMemberFunctionPointerType())
1158       Lo = Hi = Integer;
1159     else
1160       Current = Integer;
1161     return;
1162   }
1163 
1164   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1165     uint64_t Size = getContext().getTypeSize(VT);
1166     if (Size == 32) {
1167       // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
1168       // float> as integer.
1169       Current = Integer;
1170 
1171       // If this type crosses an eightbyte boundary, it should be
1172       // split.
1173       uint64_t EB_Real = (OffsetBase) / 64;
1174       uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
1175       if (EB_Real != EB_Imag)
1176         Hi = Lo;
1177     } else if (Size == 64) {
1178       // gcc passes <1 x double> in memory. :(
1179       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
1180         return;
1181 
1182       // gcc passes <1 x long long> as INTEGER.
1183       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) ||
1184           VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) ||
1185           VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) ||
1186           VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong))
1187         Current = Integer;
1188       else
1189         Current = SSE;
1190 
1191       // If this type crosses an eightbyte boundary, it should be
1192       // split.
1193       if (OffsetBase && OffsetBase != 64)
1194         Hi = Lo;
1195     } else if (Size == 128 || (HasAVX && Size == 256)) {
1196       // Arguments of 256-bits are split into four eightbyte chunks. The
1197       // least significant one belongs to class SSE and all the others to class
1198       // SSEUP. The original Lo and Hi design considers that types can't be
1199       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
1200       // This design isn't correct for 256-bits, but since there're no cases
1201       // where the upper parts would need to be inspected, avoid adding
1202       // complexity and just consider Hi to match the 64-256 part.
1203       Lo = SSE;
1204       Hi = SSEUp;
1205     }
1206     return;
1207   }
1208 
1209   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
1210     QualType ET = getContext().getCanonicalType(CT->getElementType());
1211 
1212     uint64_t Size = getContext().getTypeSize(Ty);
1213     if (ET->isIntegralOrEnumerationType()) {
1214       if (Size <= 64)
1215         Current = Integer;
1216       else if (Size <= 128)
1217         Lo = Hi = Integer;
1218     } else if (ET == getContext().FloatTy)
1219       Current = SSE;
1220     else if (ET == getContext().DoubleTy)
1221       Lo = Hi = SSE;
1222     else if (ET == getContext().LongDoubleTy)
1223       Current = ComplexX87;
1224 
1225     // If this complex type crosses an eightbyte boundary then it
1226     // should be split.
1227     uint64_t EB_Real = (OffsetBase) / 64;
1228     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
1229     if (Hi == NoClass && EB_Real != EB_Imag)
1230       Hi = Lo;
1231 
1232     return;
1233   }
1234 
1235   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
1236     // Arrays are treated like structures.
1237 
1238     uint64_t Size = getContext().getTypeSize(Ty);
1239 
1240     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1241     // than four eightbytes, ..., it has class MEMORY.
1242     if (Size > 256)
1243       return;
1244 
1245     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
1246     // fields, it has class MEMORY.
1247     //
1248     // Only need to check alignment of array base.
1249     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
1250       return;
1251 
1252     // Otherwise implement simplified merge. We could be smarter about
1253     // this, but it isn't worth it and would be harder to verify.
1254     Current = NoClass;
1255     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
1256     uint64_t ArraySize = AT->getSize().getZExtValue();
1257 
1258     // The only case a 256-bit wide vector could be used is when the array
1259     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1260     // to work for sizes wider than 128, early check and fallback to memory.
1261     if (Size > 128 && EltSize != 256)
1262       return;
1263 
1264     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
1265       Class FieldLo, FieldHi;
1266       classify(AT->getElementType(), Offset, FieldLo, FieldHi);
1267       Lo = merge(Lo, FieldLo);
1268       Hi = merge(Hi, FieldHi);
1269       if (Lo == Memory || Hi == Memory)
1270         break;
1271     }
1272 
1273     postMerge(Size, Lo, Hi);
1274     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
1275     return;
1276   }
1277 
1278   if (const RecordType *RT = Ty->getAs<RecordType>()) {
1279     uint64_t Size = getContext().getTypeSize(Ty);
1280 
1281     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1282     // than four eightbytes, ..., it has class MEMORY.
1283     if (Size > 256)
1284       return;
1285 
1286     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
1287     // copy constructor or a non-trivial destructor, it is passed by invisible
1288     // reference.
1289     if (hasNonTrivialDestructorOrCopyConstructor(RT))
1290       return;
1291 
1292     const RecordDecl *RD = RT->getDecl();
1293 
1294     // Assume variable sized types are passed in memory.
1295     if (RD->hasFlexibleArrayMember())
1296       return;
1297 
1298     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1299 
1300     // Reset Lo class, this will be recomputed.
1301     Current = NoClass;
1302 
1303     // If this is a C++ record, classify the bases first.
1304     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1305       for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1306              e = CXXRD->bases_end(); i != e; ++i) {
1307         assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1308                "Unexpected base class!");
1309         const CXXRecordDecl *Base =
1310           cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1311 
1312         // Classify this field.
1313         //
1314         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
1315         // single eightbyte, each is classified separately. Each eightbyte gets
1316         // initialized to class NO_CLASS.
1317         Class FieldLo, FieldHi;
1318         uint64_t Offset = OffsetBase + Layout.getBaseClassOffsetInBits(Base);
1319         classify(i->getType(), Offset, FieldLo, FieldHi);
1320         Lo = merge(Lo, FieldLo);
1321         Hi = merge(Hi, FieldHi);
1322         if (Lo == Memory || Hi == Memory)
1323           break;
1324       }
1325     }
1326 
1327     // Classify the fields one at a time, merging the results.
1328     unsigned idx = 0;
1329     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1330            i != e; ++i, ++idx) {
1331       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1332       bool BitField = i->isBitField();
1333 
1334       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
1335       // four eightbytes, or it contains unaligned fields, it has class MEMORY.
1336       //
1337       // The only case a 256-bit wide vector could be used is when the struct
1338       // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1339       // to work for sizes wider than 128, early check and fallback to memory.
1340       //
1341       if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) {
1342         Lo = Memory;
1343         return;
1344       }
1345       // Note, skip this test for bit-fields, see below.
1346       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
1347         Lo = Memory;
1348         return;
1349       }
1350 
1351       // Classify this field.
1352       //
1353       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
1354       // exceeds a single eightbyte, each is classified
1355       // separately. Each eightbyte gets initialized to class
1356       // NO_CLASS.
1357       Class FieldLo, FieldHi;
1358 
1359       // Bit-fields require special handling, they do not force the
1360       // structure to be passed in memory even if unaligned, and
1361       // therefore they can straddle an eightbyte.
1362       if (BitField) {
1363         // Ignore padding bit-fields.
1364         if (i->isUnnamedBitfield())
1365           continue;
1366 
1367         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1368         uint64_t Size = i->getBitWidthValue(getContext());
1369 
1370         uint64_t EB_Lo = Offset / 64;
1371         uint64_t EB_Hi = (Offset + Size - 1) / 64;
1372         FieldLo = FieldHi = NoClass;
1373         if (EB_Lo) {
1374           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
1375           FieldLo = NoClass;
1376           FieldHi = Integer;
1377         } else {
1378           FieldLo = Integer;
1379           FieldHi = EB_Hi ? Integer : NoClass;
1380         }
1381       } else
1382         classify(i->getType(), Offset, FieldLo, FieldHi);
1383       Lo = merge(Lo, FieldLo);
1384       Hi = merge(Hi, FieldHi);
1385       if (Lo == Memory || Hi == Memory)
1386         break;
1387     }
1388 
1389     postMerge(Size, Lo, Hi);
1390   }
1391 }
1392 
1393 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
1394   // If this is a scalar LLVM value then assume LLVM will pass it in the right
1395   // place naturally.
1396   if (!isAggregateTypeForABI(Ty)) {
1397     // Treat an enum type as its underlying type.
1398     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1399       Ty = EnumTy->getDecl()->getIntegerType();
1400 
1401     return (Ty->isPromotableIntegerType() ?
1402             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1403   }
1404 
1405   return ABIArgInfo::getIndirect(0);
1406 }
1407 
1408 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
1409   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
1410     uint64_t Size = getContext().getTypeSize(VecTy);
1411     unsigned LargestVector = HasAVX ? 256 : 128;
1412     if (Size <= 64 || Size > LargestVector)
1413       return true;
1414   }
1415 
1416   return false;
1417 }
1418 
1419 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty) const {
1420   // If this is a scalar LLVM value then assume LLVM will pass it in the right
1421   // place naturally.
1422   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
1423     // Treat an enum type as its underlying type.
1424     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1425       Ty = EnumTy->getDecl()->getIntegerType();
1426 
1427     return (Ty->isPromotableIntegerType() ?
1428             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1429   }
1430 
1431   if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
1432     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
1433 
1434   // Compute the byval alignment. We specify the alignment of the byval in all
1435   // cases so that the mid-level optimizer knows the alignment of the byval.
1436   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
1437   return ABIArgInfo::getIndirect(Align);
1438 }
1439 
1440 /// GetByteVectorType - The ABI specifies that a value should be passed in an
1441 /// full vector XMM/YMM register.  Pick an LLVM IR type that will be passed as a
1442 /// vector register.
1443 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
1444   llvm::Type *IRType = CGT.ConvertType(Ty);
1445 
1446   // Wrapper structs that just contain vectors are passed just like vectors,
1447   // strip them off if present.
1448   llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType);
1449   while (STy && STy->getNumElements() == 1) {
1450     IRType = STy->getElementType(0);
1451     STy = dyn_cast<llvm::StructType>(IRType);
1452   }
1453 
1454   // If the preferred type is a 16-byte vector, prefer to pass it.
1455   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(IRType)){
1456     llvm::Type *EltTy = VT->getElementType();
1457     unsigned BitWidth = VT->getBitWidth();
1458     if ((BitWidth >= 128 && BitWidth <= 256) &&
1459         (EltTy->isFloatTy() || EltTy->isDoubleTy() ||
1460          EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) ||
1461          EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) ||
1462          EltTy->isIntegerTy(128)))
1463       return VT;
1464   }
1465 
1466   return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2);
1467 }
1468 
1469 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
1470 /// is known to either be off the end of the specified type or being in
1471 /// alignment padding.  The user type specified is known to be at most 128 bits
1472 /// in size, and have passed through X86_64ABIInfo::classify with a successful
1473 /// classification that put one of the two halves in the INTEGER class.
1474 ///
1475 /// It is conservatively correct to return false.
1476 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
1477                                   unsigned EndBit, ASTContext &Context) {
1478   // If the bytes being queried are off the end of the type, there is no user
1479   // data hiding here.  This handles analysis of builtins, vectors and other
1480   // types that don't contain interesting padding.
1481   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
1482   if (TySize <= StartBit)
1483     return true;
1484 
1485   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
1486     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
1487     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
1488 
1489     // Check each element to see if the element overlaps with the queried range.
1490     for (unsigned i = 0; i != NumElts; ++i) {
1491       // If the element is after the span we care about, then we're done..
1492       unsigned EltOffset = i*EltSize;
1493       if (EltOffset >= EndBit) break;
1494 
1495       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
1496       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
1497                                  EndBit-EltOffset, Context))
1498         return false;
1499     }
1500     // If it overlaps no elements, then it is safe to process as padding.
1501     return true;
1502   }
1503 
1504   if (const RecordType *RT = Ty->getAs<RecordType>()) {
1505     const RecordDecl *RD = RT->getDecl();
1506     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1507 
1508     // If this is a C++ record, check the bases first.
1509     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1510       for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1511            e = CXXRD->bases_end(); i != e; ++i) {
1512         assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1513                "Unexpected base class!");
1514         const CXXRecordDecl *Base =
1515           cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1516 
1517         // If the base is after the span we care about, ignore it.
1518         unsigned BaseOffset = (unsigned)Layout.getBaseClassOffsetInBits(Base);
1519         if (BaseOffset >= EndBit) continue;
1520 
1521         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
1522         if (!BitsContainNoUserData(i->getType(), BaseStart,
1523                                    EndBit-BaseOffset, Context))
1524           return false;
1525       }
1526     }
1527 
1528     // Verify that no field has data that overlaps the region of interest.  Yes
1529     // this could be sped up a lot by being smarter about queried fields,
1530     // however we're only looking at structs up to 16 bytes, so we don't care
1531     // much.
1532     unsigned idx = 0;
1533     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1534          i != e; ++i, ++idx) {
1535       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
1536 
1537       // If we found a field after the region we care about, then we're done.
1538       if (FieldOffset >= EndBit) break;
1539 
1540       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
1541       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
1542                                  Context))
1543         return false;
1544     }
1545 
1546     // If nothing in this record overlapped the area of interest, then we're
1547     // clean.
1548     return true;
1549   }
1550 
1551   return false;
1552 }
1553 
1554 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
1555 /// float member at the specified offset.  For example, {int,{float}} has a
1556 /// float at offset 4.  It is conservatively correct for this routine to return
1557 /// false.
1558 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
1559                                   const llvm::TargetData &TD) {
1560   // Base case if we find a float.
1561   if (IROffset == 0 && IRType->isFloatTy())
1562     return true;
1563 
1564   // If this is a struct, recurse into the field at the specified offset.
1565   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
1566     const llvm::StructLayout *SL = TD.getStructLayout(STy);
1567     unsigned Elt = SL->getElementContainingOffset(IROffset);
1568     IROffset -= SL->getElementOffset(Elt);
1569     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
1570   }
1571 
1572   // If this is an array, recurse into the field at the specified offset.
1573   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
1574     llvm::Type *EltTy = ATy->getElementType();
1575     unsigned EltSize = TD.getTypeAllocSize(EltTy);
1576     IROffset -= IROffset/EltSize*EltSize;
1577     return ContainsFloatAtOffset(EltTy, IROffset, TD);
1578   }
1579 
1580   return false;
1581 }
1582 
1583 
1584 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
1585 /// low 8 bytes of an XMM register, corresponding to the SSE class.
1586 llvm::Type *X86_64ABIInfo::
1587 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
1588                    QualType SourceTy, unsigned SourceOffset) const {
1589   // The only three choices we have are either double, <2 x float>, or float. We
1590   // pass as float if the last 4 bytes is just padding.  This happens for
1591   // structs that contain 3 floats.
1592   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
1593                             SourceOffset*8+64, getContext()))
1594     return llvm::Type::getFloatTy(getVMContext());
1595 
1596   // We want to pass as <2 x float> if the LLVM IR type contains a float at
1597   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
1598   // case.
1599   if (ContainsFloatAtOffset(IRType, IROffset, getTargetData()) &&
1600       ContainsFloatAtOffset(IRType, IROffset+4, getTargetData()))
1601     return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
1602 
1603   return llvm::Type::getDoubleTy(getVMContext());
1604 }
1605 
1606 
1607 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
1608 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
1609 /// about the high or low part of an up-to-16-byte struct.  This routine picks
1610 /// the best LLVM IR type to represent this, which may be i64 or may be anything
1611 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
1612 /// etc).
1613 ///
1614 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
1615 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
1616 /// the 8-byte value references.  PrefType may be null.
1617 ///
1618 /// SourceTy is the source level type for the entire argument.  SourceOffset is
1619 /// an offset into this that we're processing (which is always either 0 or 8).
1620 ///
1621 llvm::Type *X86_64ABIInfo::
1622 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
1623                        QualType SourceTy, unsigned SourceOffset) const {
1624   // If we're dealing with an un-offset LLVM IR type, then it means that we're
1625   // returning an 8-byte unit starting with it.  See if we can safely use it.
1626   if (IROffset == 0) {
1627     // Pointers and int64's always fill the 8-byte unit.
1628     if (isa<llvm::PointerType>(IRType) || IRType->isIntegerTy(64))
1629       return IRType;
1630 
1631     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
1632     // goodness in the source type is just tail padding.  This is allowed to
1633     // kick in for struct {double,int} on the int, but not on
1634     // struct{double,int,int} because we wouldn't return the second int.  We
1635     // have to do this analysis on the source type because we can't depend on
1636     // unions being lowered a specific way etc.
1637     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
1638         IRType->isIntegerTy(32)) {
1639       unsigned BitWidth = cast<llvm::IntegerType>(IRType)->getBitWidth();
1640 
1641       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
1642                                 SourceOffset*8+64, getContext()))
1643         return IRType;
1644     }
1645   }
1646 
1647   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
1648     // If this is a struct, recurse into the field at the specified offset.
1649     const llvm::StructLayout *SL = getTargetData().getStructLayout(STy);
1650     if (IROffset < SL->getSizeInBytes()) {
1651       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
1652       IROffset -= SL->getElementOffset(FieldIdx);
1653 
1654       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
1655                                     SourceTy, SourceOffset);
1656     }
1657   }
1658 
1659   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
1660     llvm::Type *EltTy = ATy->getElementType();
1661     unsigned EltSize = getTargetData().getTypeAllocSize(EltTy);
1662     unsigned EltOffset = IROffset/EltSize*EltSize;
1663     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
1664                                   SourceOffset);
1665   }
1666 
1667   // Okay, we don't have any better idea of what to pass, so we pass this in an
1668   // integer register that isn't too big to fit the rest of the struct.
1669   unsigned TySizeInBytes =
1670     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
1671 
1672   assert(TySizeInBytes != SourceOffset && "Empty field?");
1673 
1674   // It is always safe to classify this as an integer type up to i64 that
1675   // isn't larger than the structure.
1676   return llvm::IntegerType::get(getVMContext(),
1677                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
1678 }
1679 
1680 
1681 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
1682 /// be used as elements of a two register pair to pass or return, return a
1683 /// first class aggregate to represent them.  For example, if the low part of
1684 /// a by-value argument should be passed as i32* and the high part as float,
1685 /// return {i32*, float}.
1686 static llvm::Type *
1687 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
1688                            const llvm::TargetData &TD) {
1689   // In order to correctly satisfy the ABI, we need to the high part to start
1690   // at offset 8.  If the high and low parts we inferred are both 4-byte types
1691   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
1692   // the second element at offset 8.  Check for this:
1693   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
1694   unsigned HiAlign = TD.getABITypeAlignment(Hi);
1695   unsigned HiStart = llvm::TargetData::RoundUpAlignment(LoSize, HiAlign);
1696   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
1697 
1698   // To handle this, we have to increase the size of the low part so that the
1699   // second element will start at an 8 byte offset.  We can't increase the size
1700   // of the second element because it might make us access off the end of the
1701   // struct.
1702   if (HiStart != 8) {
1703     // There are only two sorts of types the ABI generation code can produce for
1704     // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32.
1705     // Promote these to a larger type.
1706     if (Lo->isFloatTy())
1707       Lo = llvm::Type::getDoubleTy(Lo->getContext());
1708     else {
1709       assert(Lo->isIntegerTy() && "Invalid/unknown lo type");
1710       Lo = llvm::Type::getInt64Ty(Lo->getContext());
1711     }
1712   }
1713 
1714   llvm::StructType *Result = llvm::StructType::get(Lo, Hi, NULL);
1715 
1716 
1717   // Verify that the second element is at an 8-byte offset.
1718   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
1719          "Invalid x86-64 argument pair!");
1720   return Result;
1721 }
1722 
1723 ABIArgInfo X86_64ABIInfo::
1724 classifyReturnType(QualType RetTy) const {
1725   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
1726   // classification algorithm.
1727   X86_64ABIInfo::Class Lo, Hi;
1728   classify(RetTy, 0, Lo, Hi);
1729 
1730   // Check some invariants.
1731   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
1732   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
1733 
1734   llvm::Type *ResType = 0;
1735   switch (Lo) {
1736   case NoClass:
1737     if (Hi == NoClass)
1738       return ABIArgInfo::getIgnore();
1739     // If the low part is just padding, it takes no register, leave ResType
1740     // null.
1741     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
1742            "Unknown missing lo part");
1743     break;
1744 
1745   case SSEUp:
1746   case X87Up:
1747     llvm_unreachable("Invalid classification for lo word.");
1748 
1749     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
1750     // hidden argument.
1751   case Memory:
1752     return getIndirectReturnResult(RetTy);
1753 
1754     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
1755     // available register of the sequence %rax, %rdx is used.
1756   case Integer:
1757     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
1758 
1759     // If we have a sign or zero extended integer, make sure to return Extend
1760     // so that the parameter gets the right LLVM IR attributes.
1761     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
1762       // Treat an enum type as its underlying type.
1763       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1764         RetTy = EnumTy->getDecl()->getIntegerType();
1765 
1766       if (RetTy->isIntegralOrEnumerationType() &&
1767           RetTy->isPromotableIntegerType())
1768         return ABIArgInfo::getExtend();
1769     }
1770     break;
1771 
1772     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
1773     // available SSE register of the sequence %xmm0, %xmm1 is used.
1774   case SSE:
1775     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
1776     break;
1777 
1778     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
1779     // returned on the X87 stack in %st0 as 80-bit x87 number.
1780   case X87:
1781     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
1782     break;
1783 
1784     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
1785     // part of the value is returned in %st0 and the imaginary part in
1786     // %st1.
1787   case ComplexX87:
1788     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
1789     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
1790                                     llvm::Type::getX86_FP80Ty(getVMContext()),
1791                                     NULL);
1792     break;
1793   }
1794 
1795   llvm::Type *HighPart = 0;
1796   switch (Hi) {
1797     // Memory was handled previously and X87 should
1798     // never occur as a hi class.
1799   case Memory:
1800   case X87:
1801     llvm_unreachable("Invalid classification for hi word.");
1802 
1803   case ComplexX87: // Previously handled.
1804   case NoClass:
1805     break;
1806 
1807   case Integer:
1808     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
1809     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
1810       return ABIArgInfo::getDirect(HighPart, 8);
1811     break;
1812   case SSE:
1813     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
1814     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
1815       return ABIArgInfo::getDirect(HighPart, 8);
1816     break;
1817 
1818     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
1819     // is passed in the next available eightbyte chunk if the last used
1820     // vector register.
1821     //
1822     // SSEUP should always be preceded by SSE, just widen.
1823   case SSEUp:
1824     assert(Lo == SSE && "Unexpected SSEUp classification.");
1825     ResType = GetByteVectorType(RetTy);
1826     break;
1827 
1828     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
1829     // returned together with the previous X87 value in %st0.
1830   case X87Up:
1831     // If X87Up is preceded by X87, we don't need to do
1832     // anything. However, in some cases with unions it may not be
1833     // preceded by X87. In such situations we follow gcc and pass the
1834     // extra bits in an SSE reg.
1835     if (Lo != X87) {
1836       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
1837       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
1838         return ABIArgInfo::getDirect(HighPart, 8);
1839     }
1840     break;
1841   }
1842 
1843   // If a high part was specified, merge it together with the low part.  It is
1844   // known to pass in the high eightbyte of the result.  We do this by forming a
1845   // first class struct aggregate with the high and low part: {low, high}
1846   if (HighPart)
1847     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getTargetData());
1848 
1849   return ABIArgInfo::getDirect(ResType);
1850 }
1851 
1852 ABIArgInfo X86_64ABIInfo::classifyArgumentType(QualType Ty, unsigned &neededInt,
1853                                                unsigned &neededSSE) const {
1854   X86_64ABIInfo::Class Lo, Hi;
1855   classify(Ty, 0, Lo, Hi);
1856 
1857   // Check some invariants.
1858   // FIXME: Enforce these by construction.
1859   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
1860   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
1861 
1862   neededInt = 0;
1863   neededSSE = 0;
1864   llvm::Type *ResType = 0;
1865   switch (Lo) {
1866   case NoClass:
1867     if (Hi == NoClass)
1868       return ABIArgInfo::getIgnore();
1869     // If the low part is just padding, it takes no register, leave ResType
1870     // null.
1871     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
1872            "Unknown missing lo part");
1873     break;
1874 
1875     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
1876     // on the stack.
1877   case Memory:
1878 
1879     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
1880     // COMPLEX_X87, it is passed in memory.
1881   case X87:
1882   case ComplexX87:
1883     if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
1884       ++neededInt;
1885     return getIndirectResult(Ty);
1886 
1887   case SSEUp:
1888   case X87Up:
1889     llvm_unreachable("Invalid classification for lo word.");
1890 
1891     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
1892     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
1893     // and %r9 is used.
1894   case Integer:
1895     ++neededInt;
1896 
1897     // Pick an 8-byte type based on the preferred type.
1898     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
1899 
1900     // If we have a sign or zero extended integer, make sure to return Extend
1901     // so that the parameter gets the right LLVM IR attributes.
1902     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
1903       // Treat an enum type as its underlying type.
1904       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1905         Ty = EnumTy->getDecl()->getIntegerType();
1906 
1907       if (Ty->isIntegralOrEnumerationType() &&
1908           Ty->isPromotableIntegerType())
1909         return ABIArgInfo::getExtend();
1910     }
1911 
1912     break;
1913 
1914     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
1915     // available SSE register is used, the registers are taken in the
1916     // order from %xmm0 to %xmm7.
1917   case SSE: {
1918     llvm::Type *IRType = CGT.ConvertType(Ty);
1919     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
1920     ++neededSSE;
1921     break;
1922   }
1923   }
1924 
1925   llvm::Type *HighPart = 0;
1926   switch (Hi) {
1927     // Memory was handled previously, ComplexX87 and X87 should
1928     // never occur as hi classes, and X87Up must be preceded by X87,
1929     // which is passed in memory.
1930   case Memory:
1931   case X87:
1932   case ComplexX87:
1933     llvm_unreachable("Invalid classification for hi word.");
1934 
1935   case NoClass: break;
1936 
1937   case Integer:
1938     ++neededInt;
1939     // Pick an 8-byte type based on the preferred type.
1940     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
1941 
1942     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
1943       return ABIArgInfo::getDirect(HighPart, 8);
1944     break;
1945 
1946     // X87Up generally doesn't occur here (long double is passed in
1947     // memory), except in situations involving unions.
1948   case X87Up:
1949   case SSE:
1950     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
1951 
1952     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
1953       return ABIArgInfo::getDirect(HighPart, 8);
1954 
1955     ++neededSSE;
1956     break;
1957 
1958     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
1959     // eightbyte is passed in the upper half of the last used SSE
1960     // register.  This only happens when 128-bit vectors are passed.
1961   case SSEUp:
1962     assert(Lo == SSE && "Unexpected SSEUp classification");
1963     ResType = GetByteVectorType(Ty);
1964     break;
1965   }
1966 
1967   // If a high part was specified, merge it together with the low part.  It is
1968   // known to pass in the high eightbyte of the result.  We do this by forming a
1969   // first class struct aggregate with the high and low part: {low, high}
1970   if (HighPart)
1971     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getTargetData());
1972 
1973   return ABIArgInfo::getDirect(ResType);
1974 }
1975 
1976 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1977 
1978   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
1979 
1980   // Keep track of the number of assigned registers.
1981   unsigned freeIntRegs = 6, freeSSERegs = 8;
1982 
1983   // If the return value is indirect, then the hidden argument is consuming one
1984   // integer register.
1985   if (FI.getReturnInfo().isIndirect())
1986     --freeIntRegs;
1987 
1988   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
1989   // get assigned (in left-to-right order) for passing as follows...
1990   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
1991        it != ie; ++it) {
1992     unsigned neededInt, neededSSE;
1993     it->info = classifyArgumentType(it->type, neededInt, neededSSE);
1994 
1995     // AMD64-ABI 3.2.3p3: If there are no registers available for any
1996     // eightbyte of an argument, the whole argument is passed on the
1997     // stack. If registers have already been assigned for some
1998     // eightbytes of such an argument, the assignments get reverted.
1999     if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
2000       freeIntRegs -= neededInt;
2001       freeSSERegs -= neededSSE;
2002     } else {
2003       it->info = getIndirectResult(it->type);
2004     }
2005   }
2006 }
2007 
2008 static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
2009                                         QualType Ty,
2010                                         CodeGenFunction &CGF) {
2011   llvm::Value *overflow_arg_area_p =
2012     CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
2013   llvm::Value *overflow_arg_area =
2014     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
2015 
2016   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
2017   // byte boundary if alignment needed by type exceeds 8 byte boundary.
2018   // It isn't stated explicitly in the standard, but in practice we use
2019   // alignment greater than 16 where necessary.
2020   uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
2021   if (Align > 8) {
2022     // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
2023     llvm::Value *Offset =
2024       llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
2025     overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
2026     llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
2027                                                     CGF.Int64Ty);
2028     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align);
2029     overflow_arg_area =
2030       CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
2031                                  overflow_arg_area->getType(),
2032                                  "overflow_arg_area.align");
2033   }
2034 
2035   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
2036   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2037   llvm::Value *Res =
2038     CGF.Builder.CreateBitCast(overflow_arg_area,
2039                               llvm::PointerType::getUnqual(LTy));
2040 
2041   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
2042   // l->overflow_arg_area + sizeof(type).
2043   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
2044   // an 8 byte boundary.
2045 
2046   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
2047   llvm::Value *Offset =
2048       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
2049   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
2050                                             "overflow_arg_area.next");
2051   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
2052 
2053   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
2054   return Res;
2055 }
2056 
2057 llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2058                                       CodeGenFunction &CGF) const {
2059   // Assume that va_list type is correct; should be pointer to LLVM type:
2060   // struct {
2061   //   i32 gp_offset;
2062   //   i32 fp_offset;
2063   //   i8* overflow_arg_area;
2064   //   i8* reg_save_area;
2065   // };
2066   unsigned neededInt, neededSSE;
2067 
2068   Ty = CGF.getContext().getCanonicalType(Ty);
2069   ABIArgInfo AI = classifyArgumentType(Ty, neededInt, neededSSE);
2070 
2071   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
2072   // in the registers. If not go to step 7.
2073   if (!neededInt && !neededSSE)
2074     return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2075 
2076   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
2077   // general purpose registers needed to pass type and num_fp to hold
2078   // the number of floating point registers needed.
2079 
2080   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
2081   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
2082   // l->fp_offset > 304 - num_fp * 16 go to step 7.
2083   //
2084   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
2085   // register save space).
2086 
2087   llvm::Value *InRegs = 0;
2088   llvm::Value *gp_offset_p = 0, *gp_offset = 0;
2089   llvm::Value *fp_offset_p = 0, *fp_offset = 0;
2090   if (neededInt) {
2091     gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
2092     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
2093     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
2094     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
2095   }
2096 
2097   if (neededSSE) {
2098     fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
2099     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
2100     llvm::Value *FitsInFP =
2101       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
2102     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
2103     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
2104   }
2105 
2106   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
2107   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
2108   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
2109   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
2110 
2111   // Emit code to load the value if it was passed in registers.
2112 
2113   CGF.EmitBlock(InRegBlock);
2114 
2115   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
2116   // an offset of l->gp_offset and/or l->fp_offset. This may require
2117   // copying to a temporary location in case the parameter is passed
2118   // in different register classes or requires an alignment greater
2119   // than 8 for general purpose registers and 16 for XMM registers.
2120   //
2121   // FIXME: This really results in shameful code when we end up needing to
2122   // collect arguments from different places; often what should result in a
2123   // simple assembling of a structure from scattered addresses has many more
2124   // loads than necessary. Can we clean this up?
2125   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2126   llvm::Value *RegAddr =
2127     CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
2128                            "reg_save_area");
2129   if (neededInt && neededSSE) {
2130     // FIXME: Cleanup.
2131     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
2132     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
2133     llvm::Value *Tmp = CGF.CreateTempAlloca(ST);
2134     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
2135     llvm::Type *TyLo = ST->getElementType(0);
2136     llvm::Type *TyHi = ST->getElementType(1);
2137     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
2138            "Unexpected ABI info for mixed regs");
2139     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
2140     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
2141     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2142     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2143     llvm::Value *RegLoAddr = TyLo->isFloatingPointTy() ? FPAddr : GPAddr;
2144     llvm::Value *RegHiAddr = TyLo->isFloatingPointTy() ? GPAddr : FPAddr;
2145     llvm::Value *V =
2146       CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
2147     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2148     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
2149     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2150 
2151     RegAddr = CGF.Builder.CreateBitCast(Tmp,
2152                                         llvm::PointerType::getUnqual(LTy));
2153   } else if (neededInt) {
2154     RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2155     RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2156                                         llvm::PointerType::getUnqual(LTy));
2157   } else if (neededSSE == 1) {
2158     RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2159     RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2160                                         llvm::PointerType::getUnqual(LTy));
2161   } else {
2162     assert(neededSSE == 2 && "Invalid number of needed registers!");
2163     // SSE registers are spaced 16 bytes apart in the register save
2164     // area, we need to collect the two eightbytes together.
2165     llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2166     llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16);
2167     llvm::Type *DoubleTy = CGF.DoubleTy;
2168     llvm::Type *DblPtrTy =
2169       llvm::PointerType::getUnqual(DoubleTy);
2170     llvm::StructType *ST = llvm::StructType::get(DoubleTy,
2171                                                        DoubleTy, NULL);
2172     llvm::Value *V, *Tmp = CGF.CreateTempAlloca(ST);
2173     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
2174                                                          DblPtrTy));
2175     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2176     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
2177                                                          DblPtrTy));
2178     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2179     RegAddr = CGF.Builder.CreateBitCast(Tmp,
2180                                         llvm::PointerType::getUnqual(LTy));
2181   }
2182 
2183   // AMD64-ABI 3.5.7p5: Step 5. Set:
2184   // l->gp_offset = l->gp_offset + num_gp * 8
2185   // l->fp_offset = l->fp_offset + num_fp * 16.
2186   if (neededInt) {
2187     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
2188     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
2189                             gp_offset_p);
2190   }
2191   if (neededSSE) {
2192     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
2193     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
2194                             fp_offset_p);
2195   }
2196   CGF.EmitBranch(ContBlock);
2197 
2198   // Emit code to load the value if it was passed in memory.
2199 
2200   CGF.EmitBlock(InMemBlock);
2201   llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2202 
2203   // Return the appropriate result.
2204 
2205   CGF.EmitBlock(ContBlock);
2206   llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2,
2207                                                  "vaarg.addr");
2208   ResAddr->addIncoming(RegAddr, InRegBlock);
2209   ResAddr->addIncoming(MemAddr, InMemBlock);
2210   return ResAddr;
2211 }
2212 
2213 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty) const {
2214 
2215   if (Ty->isVoidType())
2216     return ABIArgInfo::getIgnore();
2217 
2218   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2219     Ty = EnumTy->getDecl()->getIntegerType();
2220 
2221   uint64_t Size = getContext().getTypeSize(Ty);
2222 
2223   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2224     if (hasNonTrivialDestructorOrCopyConstructor(RT) ||
2225         RT->getDecl()->hasFlexibleArrayMember())
2226       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2227 
2228     // FIXME: mingw-w64-gcc emits 128-bit struct as i128
2229     if (Size == 128 &&
2230         getContext().getTargetInfo().getTriple().getOS()
2231           == llvm::Triple::MinGW32)
2232       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2233                                                           Size));
2234 
2235     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
2236     // not 1, 2, 4, or 8 bytes, must be passed by reference."
2237     if (Size <= 64 &&
2238         (Size & (Size - 1)) == 0)
2239       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2240                                                           Size));
2241 
2242     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2243   }
2244 
2245   if (Ty->isPromotableIntegerType())
2246     return ABIArgInfo::getExtend();
2247 
2248   return ABIArgInfo::getDirect();
2249 }
2250 
2251 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2252 
2253   QualType RetTy = FI.getReturnType();
2254   FI.getReturnInfo() = classify(RetTy);
2255 
2256   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2257        it != ie; ++it)
2258     it->info = classify(it->type);
2259 }
2260 
2261 llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2262                                       CodeGenFunction &CGF) const {
2263   llvm::Type *BPP = CGF.Int8PtrPtrTy;
2264 
2265   CGBuilderTy &Builder = CGF.Builder;
2266   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
2267                                                        "ap");
2268   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2269   llvm::Type *PTy =
2270     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2271   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
2272 
2273   uint64_t Offset =
2274     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8);
2275   llvm::Value *NextAddr =
2276     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
2277                       "ap.next");
2278   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2279 
2280   return AddrTyped;
2281 }
2282 
2283 // PowerPC-32
2284 
2285 namespace {
2286 class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
2287 public:
2288   PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
2289 
2290   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2291     // This is recovered from gcc output.
2292     return 1; // r1 is the dedicated stack pointer
2293   }
2294 
2295   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2296                                llvm::Value *Address) const;
2297 };
2298 
2299 }
2300 
2301 bool
2302 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2303                                                 llvm::Value *Address) const {
2304   // This is calculated from the LLVM and GCC tables and verified
2305   // against gcc output.  AFAIK all ABIs use the same encoding.
2306 
2307   CodeGen::CGBuilderTy &Builder = CGF.Builder;
2308 
2309   llvm::IntegerType *i8 = CGF.Int8Ty;
2310   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2311   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
2312   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
2313 
2314   // 0-31: r0-31, the 4-byte general-purpose registers
2315   AssignToArrayRange(Builder, Address, Four8, 0, 31);
2316 
2317   // 32-63: fp0-31, the 8-byte floating-point registers
2318   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
2319 
2320   // 64-76 are various 4-byte special-purpose registers:
2321   // 64: mq
2322   // 65: lr
2323   // 66: ctr
2324   // 67: ap
2325   // 68-75 cr0-7
2326   // 76: xer
2327   AssignToArrayRange(Builder, Address, Four8, 64, 76);
2328 
2329   // 77-108: v0-31, the 16-byte vector registers
2330   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
2331 
2332   // 109: vrsave
2333   // 110: vscr
2334   // 111: spe_acc
2335   // 112: spefscr
2336   // 113: sfp
2337   AssignToArrayRange(Builder, Address, Four8, 109, 113);
2338 
2339   return false;
2340 }
2341 
2342 
2343 //===----------------------------------------------------------------------===//
2344 // ARM ABI Implementation
2345 //===----------------------------------------------------------------------===//
2346 
2347 namespace {
2348 
2349 class ARMABIInfo : public ABIInfo {
2350 public:
2351   enum ABIKind {
2352     APCS = 0,
2353     AAPCS = 1,
2354     AAPCS_VFP
2355   };
2356 
2357 private:
2358   ABIKind Kind;
2359 
2360 public:
2361   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) {}
2362 
2363   bool isEABI() const {
2364     StringRef Env =
2365       getContext().getTargetInfo().getTriple().getEnvironmentName();
2366     return (Env == "gnueabi" || Env == "eabi" || Env == "androideabi");
2367   }
2368 
2369 private:
2370   ABIKind getABIKind() const { return Kind; }
2371 
2372   ABIArgInfo classifyReturnType(QualType RetTy) const;
2373   ABIArgInfo classifyArgumentType(QualType RetTy) const;
2374 
2375   virtual void computeInfo(CGFunctionInfo &FI) const;
2376 
2377   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2378                                  CodeGenFunction &CGF) const;
2379 };
2380 
2381 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
2382 public:
2383   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
2384     :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
2385 
2386   const ARMABIInfo &getABIInfo() const {
2387     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
2388   }
2389 
2390   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2391     return 13;
2392   }
2393 
2394   StringRef getARCRetainAutoreleasedReturnValueMarker() const {
2395     return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue";
2396   }
2397 
2398   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2399                                llvm::Value *Address) const {
2400     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
2401 
2402     // 0-15 are the 16 integer registers.
2403     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
2404     return false;
2405   }
2406 
2407   unsigned getSizeOfUnwindException() const {
2408     if (getABIInfo().isEABI()) return 88;
2409     return TargetCodeGenInfo::getSizeOfUnwindException();
2410   }
2411 };
2412 
2413 }
2414 
2415 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
2416   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2417   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2418        it != ie; ++it)
2419     it->info = classifyArgumentType(it->type);
2420 
2421   // Always honor user-specified calling convention.
2422   if (FI.getCallingConvention() != llvm::CallingConv::C)
2423     return;
2424 
2425   // Calling convention as default by an ABI.
2426   llvm::CallingConv::ID DefaultCC;
2427   if (isEABI())
2428     DefaultCC = llvm::CallingConv::ARM_AAPCS;
2429   else
2430     DefaultCC = llvm::CallingConv::ARM_APCS;
2431 
2432   // If user did not ask for specific calling convention explicitly (e.g. via
2433   // pcs attribute), set effective calling convention if it's different than ABI
2434   // default.
2435   switch (getABIKind()) {
2436   case APCS:
2437     if (DefaultCC != llvm::CallingConv::ARM_APCS)
2438       FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_APCS);
2439     break;
2440   case AAPCS:
2441     if (DefaultCC != llvm::CallingConv::ARM_AAPCS)
2442       FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS);
2443     break;
2444   case AAPCS_VFP:
2445     if (DefaultCC != llvm::CallingConv::ARM_AAPCS_VFP)
2446       FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS_VFP);
2447     break;
2448   }
2449 }
2450 
2451 /// isHomogeneousAggregate - Return true if a type is an AAPCS-VFP homogeneous
2452 /// aggregate.  If HAMembers is non-null, the number of base elements
2453 /// contained in the type is returned through it; this is used for the
2454 /// recursive calls that check aggregate component types.
2455 static bool isHomogeneousAggregate(QualType Ty, const Type *&Base,
2456                                    ASTContext &Context,
2457                                    uint64_t *HAMembers = 0) {
2458   uint64_t Members;
2459   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
2460     if (!isHomogeneousAggregate(AT->getElementType(), Base, Context, &Members))
2461       return false;
2462     Members *= AT->getSize().getZExtValue();
2463   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
2464     const RecordDecl *RD = RT->getDecl();
2465     if (RD->isUnion() || RD->hasFlexibleArrayMember())
2466       return false;
2467     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2468       if (!CXXRD->isAggregate())
2469         return false;
2470     }
2471     Members = 0;
2472     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2473          i != e; ++i) {
2474       const FieldDecl *FD = *i;
2475       uint64_t FldMembers;
2476       if (!isHomogeneousAggregate(FD->getType(), Base, Context, &FldMembers))
2477         return false;
2478       Members += FldMembers;
2479     }
2480   } else {
2481     Members = 1;
2482     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
2483       Members = 2;
2484       Ty = CT->getElementType();
2485     }
2486 
2487     // Homogeneous aggregates for AAPCS-VFP must have base types of float,
2488     // double, or 64-bit or 128-bit vectors.
2489     if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
2490       if (BT->getKind() != BuiltinType::Float &&
2491           BT->getKind() != BuiltinType::Double)
2492         return false;
2493     } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
2494       unsigned VecSize = Context.getTypeSize(VT);
2495       if (VecSize != 64 && VecSize != 128)
2496         return false;
2497     } else {
2498       return false;
2499     }
2500 
2501     // The base type must be the same for all members.  Vector types of the
2502     // same total size are treated as being equivalent here.
2503     const Type *TyPtr = Ty.getTypePtr();
2504     if (!Base)
2505       Base = TyPtr;
2506     if (Base != TyPtr &&
2507         (!Base->isVectorType() || !TyPtr->isVectorType() ||
2508          Context.getTypeSize(Base) != Context.getTypeSize(TyPtr)))
2509       return false;
2510   }
2511 
2512   // Homogeneous Aggregates can have at most 4 members of the base type.
2513   if (HAMembers)
2514     *HAMembers = Members;
2515   return (Members <= 4);
2516 }
2517 
2518 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty) const {
2519   if (!isAggregateTypeForABI(Ty)) {
2520     // Treat an enum type as its underlying type.
2521     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2522       Ty = EnumTy->getDecl()->getIntegerType();
2523 
2524     return (Ty->isPromotableIntegerType() ?
2525             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2526   }
2527 
2528   // Ignore empty records.
2529   if (isEmptyRecord(getContext(), Ty, true))
2530     return ABIArgInfo::getIgnore();
2531 
2532   // Structures with either a non-trivial destructor or a non-trivial
2533   // copy constructor are always indirect.
2534   if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
2535     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2536 
2537   if (getABIKind() == ARMABIInfo::AAPCS_VFP) {
2538     // Homogeneous Aggregates need to be expanded.
2539     const Type *Base = 0;
2540     if (isHomogeneousAggregate(Ty, Base, getContext()))
2541       return ABIArgInfo::getExpand();
2542   }
2543 
2544   // Otherwise, pass by coercing to a structure of the appropriate size.
2545   //
2546   // FIXME: This is kind of nasty... but there isn't much choice because the ARM
2547   // backend doesn't support byval.
2548   // FIXME: This doesn't handle alignment > 64 bits.
2549   llvm::Type* ElemTy;
2550   unsigned SizeRegs;
2551   if (getContext().getTypeAlign(Ty) > 32) {
2552     ElemTy = llvm::Type::getInt64Ty(getVMContext());
2553     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
2554   } else {
2555     ElemTy = llvm::Type::getInt32Ty(getVMContext());
2556     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
2557   }
2558 
2559   llvm::Type *STy =
2560     llvm::StructType::get(llvm::ArrayType::get(ElemTy, SizeRegs), NULL);
2561   return ABIArgInfo::getDirect(STy);
2562 }
2563 
2564 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
2565                               llvm::LLVMContext &VMContext) {
2566   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
2567   // is called integer-like if its size is less than or equal to one word, and
2568   // the offset of each of its addressable sub-fields is zero.
2569 
2570   uint64_t Size = Context.getTypeSize(Ty);
2571 
2572   // Check that the type fits in a word.
2573   if (Size > 32)
2574     return false;
2575 
2576   // FIXME: Handle vector types!
2577   if (Ty->isVectorType())
2578     return false;
2579 
2580   // Float types are never treated as "integer like".
2581   if (Ty->isRealFloatingType())
2582     return false;
2583 
2584   // If this is a builtin or pointer type then it is ok.
2585   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
2586     return true;
2587 
2588   // Small complex integer types are "integer like".
2589   if (const ComplexType *CT = Ty->getAs<ComplexType>())
2590     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
2591 
2592   // Single element and zero sized arrays should be allowed, by the definition
2593   // above, but they are not.
2594 
2595   // Otherwise, it must be a record type.
2596   const RecordType *RT = Ty->getAs<RecordType>();
2597   if (!RT) return false;
2598 
2599   // Ignore records with flexible arrays.
2600   const RecordDecl *RD = RT->getDecl();
2601   if (RD->hasFlexibleArrayMember())
2602     return false;
2603 
2604   // Check that all sub-fields are at offset 0, and are themselves "integer
2605   // like".
2606   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
2607 
2608   bool HadField = false;
2609   unsigned idx = 0;
2610   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2611        i != e; ++i, ++idx) {
2612     const FieldDecl *FD = *i;
2613 
2614     // Bit-fields are not addressable, we only need to verify they are "integer
2615     // like". We still have to disallow a subsequent non-bitfield, for example:
2616     //   struct { int : 0; int x }
2617     // is non-integer like according to gcc.
2618     if (FD->isBitField()) {
2619       if (!RD->isUnion())
2620         HadField = true;
2621 
2622       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
2623         return false;
2624 
2625       continue;
2626     }
2627 
2628     // Check if this field is at offset 0.
2629     if (Layout.getFieldOffset(idx) != 0)
2630       return false;
2631 
2632     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
2633       return false;
2634 
2635     // Only allow at most one field in a structure. This doesn't match the
2636     // wording above, but follows gcc in situations with a field following an
2637     // empty structure.
2638     if (!RD->isUnion()) {
2639       if (HadField)
2640         return false;
2641 
2642       HadField = true;
2643     }
2644   }
2645 
2646   return true;
2647 }
2648 
2649 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy) const {
2650   if (RetTy->isVoidType())
2651     return ABIArgInfo::getIgnore();
2652 
2653   // Large vector types should be returned via memory.
2654   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
2655     return ABIArgInfo::getIndirect(0);
2656 
2657   if (!isAggregateTypeForABI(RetTy)) {
2658     // Treat an enum type as its underlying type.
2659     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2660       RetTy = EnumTy->getDecl()->getIntegerType();
2661 
2662     return (RetTy->isPromotableIntegerType() ?
2663             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2664   }
2665 
2666   // Structures with either a non-trivial destructor or a non-trivial
2667   // copy constructor are always indirect.
2668   if (isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
2669     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2670 
2671   // Are we following APCS?
2672   if (getABIKind() == APCS) {
2673     if (isEmptyRecord(getContext(), RetTy, false))
2674       return ABIArgInfo::getIgnore();
2675 
2676     // Complex types are all returned as packed integers.
2677     //
2678     // FIXME: Consider using 2 x vector types if the back end handles them
2679     // correctly.
2680     if (RetTy->isAnyComplexType())
2681       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2682                                               getContext().getTypeSize(RetTy)));
2683 
2684     // Integer like structures are returned in r0.
2685     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
2686       // Return in the smallest viable integer type.
2687       uint64_t Size = getContext().getTypeSize(RetTy);
2688       if (Size <= 8)
2689         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
2690       if (Size <= 16)
2691         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
2692       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
2693     }
2694 
2695     // Otherwise return in memory.
2696     return ABIArgInfo::getIndirect(0);
2697   }
2698 
2699   // Otherwise this is an AAPCS variant.
2700 
2701   if (isEmptyRecord(getContext(), RetTy, true))
2702     return ABIArgInfo::getIgnore();
2703 
2704   // Check for homogeneous aggregates with AAPCS-VFP.
2705   if (getABIKind() == AAPCS_VFP) {
2706     const Type *Base = 0;
2707     if (isHomogeneousAggregate(RetTy, Base, getContext()))
2708       // Homogeneous Aggregates are returned directly.
2709       return ABIArgInfo::getDirect();
2710   }
2711 
2712   // Aggregates <= 4 bytes are returned in r0; other aggregates
2713   // are returned indirectly.
2714   uint64_t Size = getContext().getTypeSize(RetTy);
2715   if (Size <= 32) {
2716     // Return in the smallest viable integer type.
2717     if (Size <= 8)
2718       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
2719     if (Size <= 16)
2720       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
2721     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
2722   }
2723 
2724   return ABIArgInfo::getIndirect(0);
2725 }
2726 
2727 llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2728                                    CodeGenFunction &CGF) const {
2729   llvm::Type *BP = CGF.Int8PtrTy;
2730   llvm::Type *BPP = CGF.Int8PtrPtrTy;
2731 
2732   CGBuilderTy &Builder = CGF.Builder;
2733   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
2734   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2735   // Handle address alignment for type alignment > 32 bits
2736   uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
2737   if (TyAlign > 4) {
2738     assert((TyAlign & (TyAlign - 1)) == 0 &&
2739            "Alignment is not power of 2!");
2740     llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
2741     AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
2742     AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
2743     Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
2744   }
2745   llvm::Type *PTy =
2746     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2747   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
2748 
2749   uint64_t Offset =
2750     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
2751   llvm::Value *NextAddr =
2752     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
2753                       "ap.next");
2754   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2755 
2756   return AddrTyped;
2757 }
2758 
2759 //===----------------------------------------------------------------------===//
2760 // PTX ABI Implementation
2761 //===----------------------------------------------------------------------===//
2762 
2763 namespace {
2764 
2765 class PTXABIInfo : public ABIInfo {
2766 public:
2767   PTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
2768 
2769   ABIArgInfo classifyReturnType(QualType RetTy) const;
2770   ABIArgInfo classifyArgumentType(QualType Ty) const;
2771 
2772   virtual void computeInfo(CGFunctionInfo &FI) const;
2773   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2774                                  CodeGenFunction &CFG) const;
2775 };
2776 
2777 class PTXTargetCodeGenInfo : public TargetCodeGenInfo {
2778 public:
2779   PTXTargetCodeGenInfo(CodeGenTypes &CGT)
2780     : TargetCodeGenInfo(new PTXABIInfo(CGT)) {}
2781 
2782   virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2783                                    CodeGen::CodeGenModule &M) const;
2784 };
2785 
2786 ABIArgInfo PTXABIInfo::classifyReturnType(QualType RetTy) const {
2787   if (RetTy->isVoidType())
2788     return ABIArgInfo::getIgnore();
2789   if (isAggregateTypeForABI(RetTy))
2790     return ABIArgInfo::getIndirect(0);
2791   return ABIArgInfo::getDirect();
2792 }
2793 
2794 ABIArgInfo PTXABIInfo::classifyArgumentType(QualType Ty) const {
2795   if (isAggregateTypeForABI(Ty))
2796     return ABIArgInfo::getIndirect(0);
2797 
2798   return ABIArgInfo::getDirect();
2799 }
2800 
2801 void PTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
2802   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2803   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2804        it != ie; ++it)
2805     it->info = classifyArgumentType(it->type);
2806 
2807   // Always honor user-specified calling convention.
2808   if (FI.getCallingConvention() != llvm::CallingConv::C)
2809     return;
2810 
2811   // Calling convention as default by an ABI.
2812   llvm::CallingConv::ID DefaultCC;
2813   const LangOptions &LangOpts = getContext().getLangOptions();
2814   if (LangOpts.OpenCL || LangOpts.CUDA) {
2815     // If we are in OpenCL or CUDA mode, then default to device functions
2816     DefaultCC = llvm::CallingConv::PTX_Device;
2817   } else {
2818     // If we are in standard C/C++ mode, use the triple to decide on the default
2819     StringRef Env =
2820       getContext().getTargetInfo().getTriple().getEnvironmentName();
2821     if (Env == "device")
2822       DefaultCC = llvm::CallingConv::PTX_Device;
2823     else
2824       DefaultCC = llvm::CallingConv::PTX_Kernel;
2825   }
2826   FI.setEffectiveCallingConvention(DefaultCC);
2827 
2828 }
2829 
2830 llvm::Value *PTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2831                                    CodeGenFunction &CFG) const {
2832   llvm_unreachable("PTX does not support varargs");
2833 }
2834 
2835 void PTXTargetCodeGenInfo::SetTargetAttributes(const Decl *D,
2836                                                llvm::GlobalValue *GV,
2837                                                CodeGen::CodeGenModule &M) const{
2838   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
2839   if (!FD) return;
2840 
2841   llvm::Function *F = cast<llvm::Function>(GV);
2842 
2843   // Perform special handling in OpenCL mode
2844   if (M.getLangOptions().OpenCL) {
2845     // Use OpenCL function attributes to set proper calling conventions
2846     // By default, all functions are device functions
2847     if (FD->hasAttr<OpenCLKernelAttr>()) {
2848       // OpenCL __kernel functions get a kernel calling convention
2849       F->setCallingConv(llvm::CallingConv::PTX_Kernel);
2850       // And kernel functions are not subject to inlining
2851       F->addFnAttr(llvm::Attribute::NoInline);
2852     }
2853   }
2854 
2855   // Perform special handling in CUDA mode.
2856   if (M.getLangOptions().CUDA) {
2857     // CUDA __global__ functions get a kernel calling convention.  Since
2858     // __global__ functions cannot be called from the device, we do not
2859     // need to set the noinline attribute.
2860     if (FD->getAttr<CUDAGlobalAttr>())
2861       F->setCallingConv(llvm::CallingConv::PTX_Kernel);
2862   }
2863 }
2864 
2865 }
2866 
2867 //===----------------------------------------------------------------------===//
2868 // MBlaze ABI Implementation
2869 //===----------------------------------------------------------------------===//
2870 
2871 namespace {
2872 
2873 class MBlazeABIInfo : public ABIInfo {
2874 public:
2875   MBlazeABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
2876 
2877   bool isPromotableIntegerType(QualType Ty) const;
2878 
2879   ABIArgInfo classifyReturnType(QualType RetTy) const;
2880   ABIArgInfo classifyArgumentType(QualType RetTy) const;
2881 
2882   virtual void computeInfo(CGFunctionInfo &FI) const {
2883     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2884     for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2885          it != ie; ++it)
2886       it->info = classifyArgumentType(it->type);
2887   }
2888 
2889   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2890                                  CodeGenFunction &CGF) const;
2891 };
2892 
2893 class MBlazeTargetCodeGenInfo : public TargetCodeGenInfo {
2894 public:
2895   MBlazeTargetCodeGenInfo(CodeGenTypes &CGT)
2896     : TargetCodeGenInfo(new MBlazeABIInfo(CGT)) {}
2897   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2898                            CodeGen::CodeGenModule &M) const;
2899 };
2900 
2901 }
2902 
2903 bool MBlazeABIInfo::isPromotableIntegerType(QualType Ty) const {
2904   // MBlaze ABI requires all 8 and 16 bit quantities to be extended.
2905   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
2906     switch (BT->getKind()) {
2907     case BuiltinType::Bool:
2908     case BuiltinType::Char_S:
2909     case BuiltinType::Char_U:
2910     case BuiltinType::SChar:
2911     case BuiltinType::UChar:
2912     case BuiltinType::Short:
2913     case BuiltinType::UShort:
2914       return true;
2915     default:
2916       return false;
2917     }
2918   return false;
2919 }
2920 
2921 llvm::Value *MBlazeABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2922                                       CodeGenFunction &CGF) const {
2923   // FIXME: Implement
2924   return 0;
2925 }
2926 
2927 
2928 ABIArgInfo MBlazeABIInfo::classifyReturnType(QualType RetTy) const {
2929   if (RetTy->isVoidType())
2930     return ABIArgInfo::getIgnore();
2931   if (isAggregateTypeForABI(RetTy))
2932     return ABIArgInfo::getIndirect(0);
2933 
2934   return (isPromotableIntegerType(RetTy) ?
2935           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2936 }
2937 
2938 ABIArgInfo MBlazeABIInfo::classifyArgumentType(QualType Ty) const {
2939   if (isAggregateTypeForABI(Ty))
2940     return ABIArgInfo::getIndirect(0);
2941 
2942   return (isPromotableIntegerType(Ty) ?
2943           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2944 }
2945 
2946 void MBlazeTargetCodeGenInfo::SetTargetAttributes(const Decl *D,
2947                                                   llvm::GlobalValue *GV,
2948                                                   CodeGen::CodeGenModule &M)
2949                                                   const {
2950   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
2951   if (!FD) return;
2952 
2953   llvm::CallingConv::ID CC = llvm::CallingConv::C;
2954   if (FD->hasAttr<MBlazeInterruptHandlerAttr>())
2955     CC = llvm::CallingConv::MBLAZE_INTR;
2956   else if (FD->hasAttr<MBlazeSaveVolatilesAttr>())
2957     CC = llvm::CallingConv::MBLAZE_SVOL;
2958 
2959   if (CC != llvm::CallingConv::C) {
2960       // Handle 'interrupt_handler' attribute:
2961       llvm::Function *F = cast<llvm::Function>(GV);
2962 
2963       // Step 1: Set ISR calling convention.
2964       F->setCallingConv(CC);
2965 
2966       // Step 2: Add attributes goodness.
2967       F->addFnAttr(llvm::Attribute::NoInline);
2968   }
2969 
2970   // Step 3: Emit _interrupt_handler alias.
2971   if (CC == llvm::CallingConv::MBLAZE_INTR)
2972     new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
2973                           "_interrupt_handler", GV, &M.getModule());
2974 }
2975 
2976 
2977 //===----------------------------------------------------------------------===//
2978 // MSP430 ABI Implementation
2979 //===----------------------------------------------------------------------===//
2980 
2981 namespace {
2982 
2983 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
2984 public:
2985   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
2986     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
2987   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2988                            CodeGen::CodeGenModule &M) const;
2989 };
2990 
2991 }
2992 
2993 void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
2994                                                   llvm::GlobalValue *GV,
2995                                              CodeGen::CodeGenModule &M) const {
2996   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2997     if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
2998       // Handle 'interrupt' attribute:
2999       llvm::Function *F = cast<llvm::Function>(GV);
3000 
3001       // Step 1: Set ISR calling convention.
3002       F->setCallingConv(llvm::CallingConv::MSP430_INTR);
3003 
3004       // Step 2: Add attributes goodness.
3005       F->addFnAttr(llvm::Attribute::NoInline);
3006 
3007       // Step 3: Emit ISR vector alias.
3008       unsigned Num = attr->getNumber() + 0xffe0;
3009       new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
3010                             "vector_" + Twine::utohexstr(Num),
3011                             GV, &M.getModule());
3012     }
3013   }
3014 }
3015 
3016 //===----------------------------------------------------------------------===//
3017 // MIPS ABI Implementation.  This works for both little-endian and
3018 // big-endian variants.
3019 //===----------------------------------------------------------------------===//
3020 
3021 namespace {
3022 class MipsABIInfo : public ABIInfo {
3023   bool IsO32;
3024   unsigned MinABIStackAlignInBytes;
3025   llvm::Type* HandleAggregates(QualType Ty) const;
3026   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
3027   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
3028 public:
3029   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
3030     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8) {}
3031 
3032   ABIArgInfo classifyReturnType(QualType RetTy) const;
3033   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
3034   virtual void computeInfo(CGFunctionInfo &FI) const;
3035   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3036                                  CodeGenFunction &CGF) const;
3037 };
3038 
3039 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
3040   unsigned SizeOfUnwindException;
3041 public:
3042   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
3043     : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
3044       SizeOfUnwindException(IsO32 ? 24 : 32) {}
3045 
3046   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
3047     return 29;
3048   }
3049 
3050   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3051                                llvm::Value *Address) const;
3052 
3053   unsigned getSizeOfUnwindException() const {
3054     return SizeOfUnwindException;
3055   }
3056 };
3057 }
3058 
3059 // In N32/64, an aligned double precision floating point field is passed in
3060 // a register.
3061 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty) const {
3062   if (IsO32)
3063     return 0;
3064 
3065   if (Ty->isComplexType())
3066     return CGT.ConvertType(Ty);
3067 
3068   const RecordType *RT = Ty->getAs<RecordType>();
3069 
3070   // Unions are passed in integer registers.
3071   if (!RT || !RT->isStructureOrClassType())
3072     return 0;
3073 
3074   const RecordDecl *RD = RT->getDecl();
3075   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
3076   uint64_t StructSize = getContext().getTypeSize(Ty);
3077   assert(!(StructSize % 8) && "Size of structure must be multiple of 8.");
3078 
3079   uint64_t LastOffset = 0;
3080   unsigned idx = 0;
3081   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
3082   SmallVector<llvm::Type*, 8> ArgList;
3083 
3084   // Iterate over fields in the struct/class and check if there are any aligned
3085   // double fields.
3086   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3087        i != e; ++i, ++idx) {
3088     const QualType Ty = (*i)->getType();
3089     const BuiltinType *BT = Ty->getAs<BuiltinType>();
3090 
3091     if (!BT || BT->getKind() != BuiltinType::Double)
3092       continue;
3093 
3094     uint64_t Offset = Layout.getFieldOffset(idx);
3095     if (Offset % 64) // Ignore doubles that are not aligned.
3096       continue;
3097 
3098     // Add ((Offset - LastOffset) / 64) args of type i64.
3099     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
3100       ArgList.push_back(I64);
3101 
3102     // Add double type.
3103     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
3104     LastOffset = Offset + 64;
3105   }
3106 
3107   // This struct/class doesn't have an aligned double field.
3108   if (!LastOffset)
3109     return 0;
3110 
3111   // Add ((StructSize - LastOffset) / 64) args of type i64.
3112   for (unsigned N = (StructSize - LastOffset) / 64; N; --N)
3113     ArgList.push_back(I64);
3114 
3115   // If the size of the remainder is not zero, add one more integer type to
3116   // ArgList.
3117   unsigned R = (StructSize - LastOffset) % 64;
3118   if (R)
3119     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
3120 
3121   return llvm::StructType::get(getVMContext(), ArgList);
3122 }
3123 
3124 llvm::Type *MipsABIInfo::getPaddingType(uint64_t Align, uint64_t Offset) const {
3125   // Padding is inserted only for N32/64.
3126   if (IsO32)
3127     return 0;
3128 
3129   assert(Align <= 16 && "Alignment larger than 16 not handled.");
3130   return (Align == 16 && Offset & 0xf) ?
3131     llvm::IntegerType::get(getVMContext(), 64) : 0;
3132 }
3133 
3134 ABIArgInfo
3135 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
3136   uint64_t OrigOffset = Offset;
3137   uint64_t TySize =
3138     llvm::RoundUpToAlignment(getContext().getTypeSize(Ty), 64) / 8;
3139   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
3140   Offset = llvm::RoundUpToAlignment(Offset, std::max(Align, (uint64_t)8));
3141   Offset += TySize;
3142 
3143   if (isAggregateTypeForABI(Ty)) {
3144     // Ignore empty aggregates.
3145     if (TySize == 0)
3146       return ABIArgInfo::getIgnore();
3147 
3148     // Records with non trivial destructors/constructors should not be passed
3149     // by value.
3150     if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty)) {
3151       Offset = OrigOffset + 8;
3152       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3153     }
3154 
3155     // If we have reached here, aggregates are passed either indirectly via a
3156     // byval pointer or directly by coercing to another structure type. In the
3157     // latter case, padding is inserted if the offset of the aggregate is
3158     // unaligned.
3159     llvm::Type *ResType = HandleAggregates(Ty);
3160 
3161     if (!ResType)
3162       return ABIArgInfo::getIndirect(0);
3163 
3164     return ABIArgInfo::getDirect(ResType, 0, getPaddingType(Align, OrigOffset));
3165   }
3166 
3167   // Treat an enum type as its underlying type.
3168   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3169     Ty = EnumTy->getDecl()->getIntegerType();
3170 
3171   if (Ty->isPromotableIntegerType())
3172     return ABIArgInfo::getExtend();
3173 
3174   return ABIArgInfo::getDirect(0, 0, getPaddingType(Align, OrigOffset));
3175 }
3176 
3177 llvm::Type*
3178 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
3179   const RecordType *RT = RetTy->getAs<RecordType>();
3180   SmallVector<llvm::Type*, 2> RTList;
3181 
3182   if (RT && RT->isStructureOrClassType()) {
3183     const RecordDecl *RD = RT->getDecl();
3184     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
3185     unsigned FieldCnt = Layout.getFieldCount();
3186 
3187     // N32/64 returns struct/classes in floating point registers if the
3188     // following conditions are met:
3189     // 1. The size of the struct/class is no larger than 128-bit.
3190     // 2. The struct/class has one or two fields all of which are floating
3191     //    point types.
3192     // 3. The offset of the first field is zero (this follows what gcc does).
3193     //
3194     // Any other composite results are returned in integer registers.
3195     //
3196     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
3197       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
3198       for (; b != e; ++b) {
3199         const BuiltinType *BT = (*b)->getType()->getAs<BuiltinType>();
3200 
3201         if (!BT || !BT->isFloatingPoint())
3202           break;
3203 
3204         RTList.push_back(CGT.ConvertType((*b)->getType()));
3205       }
3206 
3207       if (b == e)
3208         return llvm::StructType::get(getVMContext(), RTList,
3209                                      RD->hasAttr<PackedAttr>());
3210 
3211       RTList.clear();
3212     }
3213   }
3214 
3215   RTList.push_back(llvm::IntegerType::get(getVMContext(),
3216                                           std::min(Size, (uint64_t)64)));
3217   if (Size > 64)
3218     RTList.push_back(llvm::IntegerType::get(getVMContext(), Size - 64));
3219 
3220   return llvm::StructType::get(getVMContext(), RTList);
3221 }
3222 
3223 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
3224   uint64_t Size = getContext().getTypeSize(RetTy);
3225 
3226   if (RetTy->isVoidType() || Size == 0)
3227     return ABIArgInfo::getIgnore();
3228 
3229   if (isAggregateTypeForABI(RetTy)) {
3230     if (Size <= 128) {
3231       if (RetTy->isAnyComplexType())
3232         return ABIArgInfo::getDirect();
3233 
3234       if (!IsO32 && !isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
3235         return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
3236     }
3237 
3238     return ABIArgInfo::getIndirect(0);
3239   }
3240 
3241   // Treat an enum type as its underlying type.
3242   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3243     RetTy = EnumTy->getDecl()->getIntegerType();
3244 
3245   return (RetTy->isPromotableIntegerType() ?
3246           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3247 }
3248 
3249 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
3250   ABIArgInfo &RetInfo = FI.getReturnInfo();
3251   RetInfo = classifyReturnType(FI.getReturnType());
3252 
3253   // Check if a pointer to an aggregate is passed as a hidden argument.
3254   uint64_t Offset = RetInfo.isIndirect() ? 8 : 0;
3255 
3256   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3257        it != ie; ++it)
3258     it->info = classifyArgumentType(it->type, Offset);
3259 }
3260 
3261 llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3262                                     CodeGenFunction &CGF) const {
3263   llvm::Type *BP = CGF.Int8PtrTy;
3264   llvm::Type *BPP = CGF.Int8PtrPtrTy;
3265 
3266   CGBuilderTy &Builder = CGF.Builder;
3267   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
3268   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
3269   int64_t TypeAlign = getContext().getTypeAlign(Ty) / 8;
3270   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3271   llvm::Value *AddrTyped;
3272   unsigned PtrWidth = getContext().getTargetInfo().getPointerWidth(0);
3273   llvm::IntegerType *IntTy = (PtrWidth == 32) ? CGF.Int32Ty : CGF.Int64Ty;
3274 
3275   if (TypeAlign > MinABIStackAlignInBytes) {
3276     llvm::Value *AddrAsInt = CGF.Builder.CreatePtrToInt(Addr, IntTy);
3277     llvm::Value *Inc = llvm::ConstantInt::get(IntTy, TypeAlign - 1);
3278     llvm::Value *Mask = llvm::ConstantInt::get(IntTy, -TypeAlign);
3279     llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt, Inc);
3280     llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask);
3281     AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy);
3282   }
3283   else
3284     AddrTyped = Builder.CreateBitCast(Addr, PTy);
3285 
3286   llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP);
3287   TypeAlign = std::max((unsigned)TypeAlign, MinABIStackAlignInBytes);
3288   uint64_t Offset =
3289     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, TypeAlign);
3290   llvm::Value *NextAddr =
3291     Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(IntTy, Offset),
3292                       "ap.next");
3293   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3294 
3295   return AddrTyped;
3296 }
3297 
3298 bool
3299 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3300                                                llvm::Value *Address) const {
3301   // This information comes from gcc's implementation, which seems to
3302   // as canonical as it gets.
3303 
3304   // Everything on MIPS is 4 bytes.  Double-precision FP registers
3305   // are aliased to pairs of single-precision FP registers.
3306   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
3307 
3308   // 0-31 are the general purpose registers, $0 - $31.
3309   // 32-63 are the floating-point registers, $f0 - $f31.
3310   // 64 and 65 are the multiply/divide registers, $hi and $lo.
3311   // 66 is the (notional, I think) register for signal-handler return.
3312   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
3313 
3314   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
3315   // They are one bit wide and ignored here.
3316 
3317   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
3318   // (coprocessor 1 is the FP unit)
3319   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
3320   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
3321   // 176-181 are the DSP accumulator registers.
3322   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
3323   return false;
3324 }
3325 
3326 //===----------------------------------------------------------------------===//
3327 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
3328 // Currently subclassed only to implement custom OpenCL C function attribute
3329 // handling.
3330 //===----------------------------------------------------------------------===//
3331 
3332 namespace {
3333 
3334 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
3335 public:
3336   TCETargetCodeGenInfo(CodeGenTypes &CGT)
3337     : DefaultTargetCodeGenInfo(CGT) {}
3338 
3339   virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
3340                                    CodeGen::CodeGenModule &M) const;
3341 };
3342 
3343 void TCETargetCodeGenInfo::SetTargetAttributes(const Decl *D,
3344                                                llvm::GlobalValue *GV,
3345                                                CodeGen::CodeGenModule &M) const {
3346   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
3347   if (!FD) return;
3348 
3349   llvm::Function *F = cast<llvm::Function>(GV);
3350 
3351   if (M.getLangOptions().OpenCL) {
3352     if (FD->hasAttr<OpenCLKernelAttr>()) {
3353       // OpenCL C Kernel functions are not subject to inlining
3354       F->addFnAttr(llvm::Attribute::NoInline);
3355 
3356       if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) {
3357 
3358         // Convert the reqd_work_group_size() attributes to metadata.
3359         llvm::LLVMContext &Context = F->getContext();
3360         llvm::NamedMDNode *OpenCLMetadata =
3361             M.getModule().getOrInsertNamedMetadata("opencl.kernel_wg_size_info");
3362 
3363         SmallVector<llvm::Value*, 5> Operands;
3364         Operands.push_back(F);
3365 
3366         Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
3367                              llvm::APInt(32,
3368                              FD->getAttr<ReqdWorkGroupSizeAttr>()->getXDim())));
3369         Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
3370                              llvm::APInt(32,
3371                                FD->getAttr<ReqdWorkGroupSizeAttr>()->getYDim())));
3372         Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
3373                              llvm::APInt(32,
3374                                FD->getAttr<ReqdWorkGroupSizeAttr>()->getZDim())));
3375 
3376         // Add a boolean constant operand for "required" (true) or "hint" (false)
3377         // for implementing the work_group_size_hint attr later. Currently
3378         // always true as the hint is not yet implemented.
3379         Operands.push_back(llvm::ConstantInt::getTrue(Context));
3380         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
3381       }
3382     }
3383   }
3384 }
3385 
3386 }
3387 
3388 //===----------------------------------------------------------------------===//
3389 // Hexagon ABI Implementation
3390 //===----------------------------------------------------------------------===//
3391 
3392 namespace {
3393 
3394 class HexagonABIInfo : public ABIInfo {
3395 
3396 
3397 public:
3398   HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
3399 
3400 private:
3401 
3402   ABIArgInfo classifyReturnType(QualType RetTy) const;
3403   ABIArgInfo classifyArgumentType(QualType RetTy) const;
3404 
3405   virtual void computeInfo(CGFunctionInfo &FI) const;
3406 
3407   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3408                                  CodeGenFunction &CGF) const;
3409 };
3410 
3411 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
3412 public:
3413   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
3414     :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
3415 
3416   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
3417     return 29;
3418   }
3419 };
3420 
3421 }
3422 
3423 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
3424   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3425   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3426        it != ie; ++it)
3427     it->info = classifyArgumentType(it->type);
3428 }
3429 
3430 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
3431   if (!isAggregateTypeForABI(Ty)) {
3432     // Treat an enum type as its underlying type.
3433     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3434       Ty = EnumTy->getDecl()->getIntegerType();
3435 
3436     return (Ty->isPromotableIntegerType() ?
3437             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3438   }
3439 
3440   // Ignore empty records.
3441   if (isEmptyRecord(getContext(), Ty, true))
3442     return ABIArgInfo::getIgnore();
3443 
3444   // Structures with either a non-trivial destructor or a non-trivial
3445   // copy constructor are always indirect.
3446   if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
3447     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3448 
3449   uint64_t Size = getContext().getTypeSize(Ty);
3450   if (Size > 64)
3451     return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
3452     // Pass in the smallest viable integer type.
3453   else if (Size > 32)
3454       return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
3455   else if (Size > 16)
3456       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
3457   else if (Size > 8)
3458       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
3459   else
3460       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
3461 }
3462 
3463 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
3464   if (RetTy->isVoidType())
3465     return ABIArgInfo::getIgnore();
3466 
3467   // Large vector types should be returned via memory.
3468   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
3469     return ABIArgInfo::getIndirect(0);
3470 
3471   if (!isAggregateTypeForABI(RetTy)) {
3472     // Treat an enum type as its underlying type.
3473     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3474       RetTy = EnumTy->getDecl()->getIntegerType();
3475 
3476     return (RetTy->isPromotableIntegerType() ?
3477             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3478   }
3479 
3480   // Structures with either a non-trivial destructor or a non-trivial
3481   // copy constructor are always indirect.
3482   if (isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
3483     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3484 
3485   if (isEmptyRecord(getContext(), RetTy, true))
3486     return ABIArgInfo::getIgnore();
3487 
3488   // Aggregates <= 8 bytes are returned in r0; other aggregates
3489   // are returned indirectly.
3490   uint64_t Size = getContext().getTypeSize(RetTy);
3491   if (Size <= 64) {
3492     // Return in the smallest viable integer type.
3493     if (Size <= 8)
3494       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
3495     if (Size <= 16)
3496       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
3497     if (Size <= 32)
3498       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
3499     return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
3500   }
3501 
3502   return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
3503 }
3504 
3505 llvm::Value *HexagonABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3506                                        CodeGenFunction &CGF) const {
3507   // FIXME: Need to handle alignment
3508   llvm::Type *BPP = CGF.Int8PtrPtrTy;
3509 
3510   CGBuilderTy &Builder = CGF.Builder;
3511   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
3512                                                        "ap");
3513   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
3514   llvm::Type *PTy =
3515     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3516   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
3517 
3518   uint64_t Offset =
3519     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
3520   llvm::Value *NextAddr =
3521     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
3522                       "ap.next");
3523   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3524 
3525   return AddrTyped;
3526 }
3527 
3528 
3529 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
3530   if (TheTargetCodeGenInfo)
3531     return *TheTargetCodeGenInfo;
3532 
3533   const llvm::Triple &Triple = getContext().getTargetInfo().getTriple();
3534   switch (Triple.getArch()) {
3535   default:
3536     return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types));
3537 
3538   case llvm::Triple::mips:
3539   case llvm::Triple::mipsel:
3540     return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true));
3541 
3542   case llvm::Triple::mips64:
3543   case llvm::Triple::mips64el:
3544     return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false));
3545 
3546   case llvm::Triple::arm:
3547   case llvm::Triple::thumb:
3548     {
3549       ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
3550 
3551       if (strcmp(getContext().getTargetInfo().getABI(), "apcs-gnu") == 0)
3552         Kind = ARMABIInfo::APCS;
3553       else if (CodeGenOpts.FloatABI == "hard")
3554         Kind = ARMABIInfo::AAPCS_VFP;
3555 
3556       return *(TheTargetCodeGenInfo = new ARMTargetCodeGenInfo(Types, Kind));
3557     }
3558 
3559   case llvm::Triple::ppc:
3560     return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types));
3561 
3562   case llvm::Triple::ptx32:
3563   case llvm::Triple::ptx64:
3564     return *(TheTargetCodeGenInfo = new PTXTargetCodeGenInfo(Types));
3565 
3566   case llvm::Triple::mblaze:
3567     return *(TheTargetCodeGenInfo = new MBlazeTargetCodeGenInfo(Types));
3568 
3569   case llvm::Triple::msp430:
3570     return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
3571 
3572   case llvm::Triple::tce:
3573     return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types));
3574 
3575   case llvm::Triple::x86: {
3576     bool DisableMMX = strcmp(getContext().getTargetInfo().getABI(), "no-mmx") == 0;
3577 
3578     if (Triple.isOSDarwin())
3579       return *(TheTargetCodeGenInfo =
3580                new X86_32TargetCodeGenInfo(
3581                  Types, true, true, DisableMMX, false));
3582 
3583     switch (Triple.getOS()) {
3584     case llvm::Triple::Cygwin:
3585     case llvm::Triple::MinGW32:
3586     case llvm::Triple::AuroraUX:
3587     case llvm::Triple::DragonFly:
3588     case llvm::Triple::FreeBSD:
3589     case llvm::Triple::OpenBSD:
3590       return *(TheTargetCodeGenInfo =
3591                new X86_32TargetCodeGenInfo(
3592                  Types, false, true, DisableMMX, false));
3593 
3594     case llvm::Triple::Win32:
3595       return *(TheTargetCodeGenInfo =
3596                new X86_32TargetCodeGenInfo(
3597                  Types, false, true, DisableMMX, true));
3598 
3599     default:
3600       return *(TheTargetCodeGenInfo =
3601                new X86_32TargetCodeGenInfo(
3602                  Types, false, false, DisableMMX, false));
3603     }
3604   }
3605 
3606   case llvm::Triple::x86_64: {
3607     bool HasAVX = strcmp(getContext().getTargetInfo().getABI(), "avx") == 0;
3608 
3609     switch (Triple.getOS()) {
3610     case llvm::Triple::Win32:
3611     case llvm::Triple::MinGW32:
3612     case llvm::Triple::Cygwin:
3613       return *(TheTargetCodeGenInfo = new WinX86_64TargetCodeGenInfo(Types));
3614     default:
3615       return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo(Types,
3616                                                                   HasAVX));
3617     }
3618   }
3619   case llvm::Triple::hexagon:
3620     return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types));
3621   }
3622 }
3623